A subset of allowable symbols (which we'll call subsyms) may be assigned
arbitrary string values. This is roughly equivalent to C preprocessor
#define macros. When as
encounters one of these
symbols, the symbol is replaced in the input stream by its string value.
Subsym names must begin with a letter.
Subsyms may be defined using the .asg
and .eval
directives
(See
.asg
,
See
.eval
.
Expansion is recursive until a previously encountered symbol is seen, at which point substitution stops.
In this example, x is replaced with SYM2; SYM2 is replaced with SYM1, and SYM1 is replaced with x. At this point, x has already been encountered and the substitution stops.
.asg "x",SYM1 .asg "SYM1",SYM2 .asg "SYM2",x add x,a ; final code assembled is "add x, a"
Macro parameters are converted to subsyms; a side effect of this is the normal
as
'\ARG' dereferencing syntax is unnecessary. Subsyms
defined within a macro will have global scope, unless the .var
directive is used to identify the subsym as a local macro variable
see
.var
.
Substitution may be forced in situations where replacement might be ambiguous by placing colons on either side of the subsym. The following code:
.eval "10",x LAB:X: add #x, a
When assembled becomes:
LAB10 add #10, a
Smaller parts of the string assigned to a subsym may be accessed with the following syntax:
:
symbol
(
char_index
):
:
symbol
(
start
,
length
):
The text of the Arduino reference is licensed under a Creative Commons Attribution-ShareAlike 3.0 License. Code samples in the reference are released into the public domain.