

Arduino Lesson 7. Make an RGB LED

Fader

Created by Simon Monk

https://learn.adafruit.com/adafruit-arduino-lesson-7-make-an-rgb-led-fader

Last updated on 2021-11-15 05:52:15 PM EST

©Adafruit Industries Page 1 of 12

3

3

8

9

11

Table of Contents

Overview

Parts

• Part

• Qty

Breadboard Layout

Arduino Code

Other Things to Do

©Adafruit Industries Page 2 of 12

Overview

In this lesson, you will be combining some of the things that you learnt in earlier

lessons to use three push switches (from lesson 6) to control the color of the RGB

LED that you used in lesson 3 in order to make a Color Organ!

Parts

To carry out the experiment described in this lesson, you will need the following parts.

©Adafruit Industries Page 3 of 12

Part

Qty

10mm Common Cathode RGB LED

1

©Adafruit Industries Page 4 of 12

270 Ω Resistor (red, purple, brown stripes)

3

Tactile push switch

©Adafruit Industries Page 5 of 12

3

Half-size Breadboard

1

©Adafruit Industries Page 6 of 12

Arduino Uno R3

1

©Adafruit Industries Page 7 of 12

Breadboard Layout

The breadboard layout is shown below. The RGB LED should have the longest lead in

row 2 of the breadboard. This will be connected to GND.

This wiring diagram assumes you have a common cathode LED - if you have a

common anode LED, connect the longest pin to +5V instead of ground. Note that with

a common anode display the LED color cycling will be reversed.

Jumper wire pack

1

©Adafruit Industries Page 8 of 12

Arduino Code

Load the following sketch onto your Arduino board.

To start with, all the LEDs will be off. If you press and hold one of the buttons, then the

LED will gradually get brighter. The color will be red for the top button, green for the

middle one and blue for the bottom button.

When you have got enough of one color, try pressing another button and see how

they mix together.

If you want to start over, then press the reset button on the Arduino. This is the red

button, next to the USB connector.

/*

Adafruit Arduino - Lesson 7. RGB Fader

*/

int redLEDPin = 11;

int greenLEDPin = 10;

int blueLEDPin = 9;

int redSwitchPin = 7;

int greenSwitchPin = 6;

int blueSwitchPin = 5;

int red = 0;

int blue = 0;

int green = 0;

void setup()

{

 pinMode(redLEDPin, OUTPUT);

 pinMode(greenLEDPin, OUTPUT);

 pinMode(blueLEDPin, OUTPUT);

©Adafruit Industries Page 9 of 12

 pinMode(redSwitchPin, INPUT_PULLUP);

 pinMode(greenSwitchPin, INPUT_PULLUP);

 pinMode(blueSwitchPin, INPUT_PULLUP);

}

void loop()

{

 if (digitalRead(redSwitchPin) == LOW)

 {

 red ++;

 if (red > 255) red = 0;

 }

 if (digitalRead(greenSwitchPin) == LOW)

 {

 green ++;

 if (green > 255) green = 0;

 }

 if (digitalRead(blueSwitchPin) == LOW)

 {

 blue ++;

 if (blue > 255) blue = 0;

 }

 analogWrite(redLEDPin, red);

 analogWrite(greenLEDPin, green);

 analogWrite(blueLEDPin, blue);

 delay(10);

}

The sketch is similar to that of lesson 3. Again, we have three output pins to control

the LED. These are PWM pins so that we can control how much power goes to each

color of the LED.

There are three other pins needed, one for each of the buttons and these are

configured in 'setup' to be inputs that are pulled up to HIGH, unless the button is

pressed, which will cause them to become LOW.

After the pin definition, there is another little group of variables called 'red', 'green'

and 'blue'.

int red = 0;

int blue = 0;

int green = 0;

These variables are used to hold the current values for the intensity of each of the

LED channels. So, if 'red' is 0 then the red part of the LED will be off. However, if it is

255 then it will be at maximum brightness.

The 'loop' function is in two parts. The first part checks the buttons and makes any

necessary changes to 'red', 'green' or 'blue' depending on the button. Each button

works in the same way, just for a different color. The section for checking the red

button is like this:

©Adafruit Industries Page 10 of 12

 if (digitalRead(redSwitchPin) == LOW)

 {

 red ++;

 if (red > 255) red = 0;

 }

If, when we carry out a 'digitalRead' on the red switch pin, we find it is LOW, then that

means the button is pressed, so we add 1 to 'red'. The command ++ adds one to a

variable.

However, we need to be careful here, because the maximum value that you can use

for PWM is 255. So on the next line, we check to see if we have gone over the limit,

and if we have then red is set back to 0, so we start over.

The second part of the 'loop' function carries out the 'analogWrite's to each of the LED

colors.

 analogWrite(redLEDPin, red);

 analogWrite(greenLEDPin, green);

 analogWrite(blueLEDPin, blue);

Finally there is a short delay at the end of the loop, that slows down the color

changing to a manageable speed.

Other Things to Do

Try removing the delay at the end of 'loop'. You can do this by 'commenting out' the

delay line by putting // at the start of the line like this:

 analogWrite(blueLEDPin, blue);

 // delay(10);

}

This is a useful technique, because when you find out that you need to put the line

back in again, you can do so, just by taking the // away again.

Without the delay, you will find that basically, whenever you release the button, you

will be left with a random level of brightness for that color. What is happening is that

the it is cycling through the brightness levels so fast, that you have no chance of

actually controlling it.

Another experiment you could make would be to change the function of the three

buttons so that they control the LED as if it was a traffic signal.

©Adafruit Industries Page 11 of 12

Try to make it so that the top button turns the LED fully green, the middle button

Orange and the bottom button red.

Click Here for the Next Lesson

https://adafru.it/aUu

About the Author

Simon Monk is author of a number of books relating to Open Source Hardware. The

following books written by Simon are available from Adafruit: Programming Arduino (h

ttp://adafru.it/1019), 30 Arduino Projects for the Evil Genius (http://adafru.it/868) and Pr

ogramming the Raspberry Pi (https://adafru.it/aM5).

©Adafruit Industries Page 12 of 12

http://learn.adafruit.com/adafruit-arduino-lesson-8-analog-inputs
https://www.adafruit.com/products/1019
https://www.adafruit.com/products/868
https://www.adafruit.com/index.php?main_page=adasearch&q=programming+raspberry+pi
https://www.adafruit.com/index.php?main_page=adasearch&q=programming+raspberry+pi

	Arduino Lesson 7. Make an RGB LED Fader
	Table of Contents
	Overview
	Parts
	Breadboard Layout
	Arduino Code
	Other Things to Do

	Overview
	Parts
	Part
	Qty

	Breadboard Layout
	Arduino Code
	Other Things to Do

