
Extending Dreamweaver

Trademarks

1 Step RoboPDF, ActiveEdit, ActiveTest, Authorware, Blue Sky Software, Blue Sky, Breeze, Breezo, Captivate, Central,
ColdFusion, Contribute, Database Explorer, Director, Dreamweaver, Fireworks, Flash, FlashCast, FlashHelp, Flash Lite,
FlashPaper, Flex, Flex Builder, Fontographer, FreeHand, Generator, HomeSite, JRun, MacRecorder, Macromedia, MXML,
RoboEngine, RoboHelp, RoboInfo, RoboPDF, Roundtrip, Roundtrip HTML, Shockwave, SoundEdit, Studio MX, UltraDev,
and WebHelp are either registered trademarks or trademarks of Macromedia, Inc. and may be registered in the United States or
in other jurisdictions including internationally. Other product names, logos, designs, titles, words, or phrases mentioned within
this publication may be trademarks, service marks, or trade names of Macromedia, Inc. or other entities and may be registered in
certain jurisdictions including internationally.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not
responsible for the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia
endorses or accepts any responsibility for the content on those third-party sites.

Opera ® browser Copyright © 1995-2002 Opera Software ASA and its suppliers. All rights reserved.

Copyright © 2005 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without written approval from
Macromedia, Inc. Notwithstanding the foregoing, the owner or authorized user of a valid copy of the software with which
this manual was provided may print out one copy of this manual from an electronic version of this manual for the sole
purpose of such owner or authorized user learning to use such software, provided that no part of this manual may be
printed out, reproduced, distributed, resold, or transmitted for any other purposes, including, without limitation,
commercial purposes, such as selling copies of this documentation or providing paid-for support services.

Acknowledgments

Project Management: Charles Nadeau, Robert Berry

Writing: Anne Sandstrom

Editing: Anne Szabla, John Hammett

Production and Editing Management: Patrice OíNeill and Rosana Francescato

Media Design and Production: Adam Barnett, Aaron Begley, Paul Benkman, John Francis, Geeta Karmarkar, Mario Reynoso

Localization Management: Melissa Baerwald

Special thanks to Jay London, Raymond Lim, Alain Dumesny, and the entire Dreamweaver engineering and QA teams.

First Edition: September 2005

Macromedia, Inc.
601 Townsend St.‘
San Francisco, CA 94103

Contents
Introduction .9
Background .9
Installing an extension . 10
Creating an extension . 10
Additional resources for extension writers .11
What’s new in Dreamweaver .11
Conventions used in this guide . 13

PART 1: CUSTOMIZING DREAMWEAVER

Chapter 1: Customizing Dreamweaver . 17

Ways to customize Dreamweaver . 17
Customizing Dreamweaver in a multiuser environment.27
Working with browser profiles. 30
Changing FTP mappings . 34
Extensible document types in Dreamweaver . 35

Chapter 2: Customizing Code View . 55

Code hints . 55
Code coloring . 63
Code validation . 92
Changing default HTML formatting . 95

PART 2: OVERVIEW OF EXTENDING DREAMWEAVER

Chapter 3: Extending Dreamweaver . 99

Types of Dreamweaver extensions . 100
Configuration folders and extensions. .102
Extension APIs .105
Localizing an extension. 107
Working with the Extension Manager .109
3

Chapter 4: User Interfaces for Extensions. 111

Designing an extension user interface . 111
Dreamweaver HTML rendering control .112
Using custom UI controls in extensions .113
Adding Flash content to Dreamweaver . 124

Chapter 5: The Dreamweaver Document Object Model 127

Which document DOM? . 128
The Dreamweaver DOM . 128

PART 3: EXTENSION APIS

Chapter 6: Insert Bar Objects . 139

How object files work . 140
The Insert bar definition file .141
Modifying the Insert bar . 148
A simple insert object example. 150
The Objects API. .161

Chapter 7: Commands . 167

How commands work. 167
Adding commands to the Commands menu . 168
A simple command example . 168
The Commands API . 176

Chapter 8: Menus and Menu Commands 181

About the menus.xml file . 182
Changing menus and menu commands .191
Menu commands . 194
A simple menu command example . 197
A dynamic menu example . 201
The Menu Commands API . 209

Chapter 9: Toolbars . 215

How toolbars work . 215
A simple toolbar command file . 218
The toolbar definition file . 220
Toolbar item tags. .226
Item tag attributes .232
The toolbar command API. .238
4 Contents

Chapter 10: Reports . 249

Site reports . 249
Stand-alone reports. 253
The Reports API . 256

Chapter 11: Tag Libraries and Editors . 261

Tag library file format . 262
The Tag Chooser . 268
A simple example of creating a new tag editor 270
Tag editor APIs . 275

Chapter 12: Property Inspectors . 279

How Property inspector files work .281
A simple Property inspector example . 282
The Property inspector API . 285

Chapter 13: Floating Panels. 289

How floating panel files work . 290
A simple floating panel example .291
The Floating panel API . 297

Chapter 14: Behaviors . 305

How Behaviors work . 306
A simple behavior example. 307
The Behaviors API .312

Chapter 15: Server Behaviors . 321

Dreamweaver architecture . 322
A simple server behavior example . 324
How the Server Behavior API functions are called. 326
The Server Behavior API . 329
Server behavior implementation functions . 335
Editing EDML files . 337
Group EDML file tags . 340
Participant EDML files . 347
Server behavior techniques . 369
Contents 5

Chapter 16: Data Sources . 379

How data sources work . 380
A simple data source example .382
The Data Sources API . 391

Chapter 17: Server Formats. 399

How data formatting works . 400
When the data formatting functions are called 402
The Server Formats API . 403

Chapter 18: Components . 407

Component basics. .407
Extending the Components panel . 408
How to customize the Components panel . 408
Components panel files . 409
Components panel API functions . 412

Chapter 19: Server Models . 423

How customizing server models works .423
The Server Model API functions . 424

Chapter 20: Data Translators . 433

How data translators work. 434
Determining what kind of translator to use .435
Adding a translated attribute to a tag .435
Inspecting translated attributes .437
Locking translated tags or blocks of code .437
Creating Property inspectors for locked content 439
Finding bugs in your translator . 442
A simple attribute translator example . 443
A simple block/tag translator example .447
The Data Translator API. 452

Chapter 21: C-Level Extensibility . 457

How integrating C functions works .457
C-level extensibility and the JavaScript interpreter 459
Data types . 460
The C-level API . 461
File Access and Multiuser Configuration API .470
Calling a C function from JavaScript. .479
6 Contents

PART 4: APPENDIX

Appendix: The Shared Folder . 483

The Shared folder contents . 483
Using the Shared folder .491

Index . 493
Contents 7

8 Contents

Introduction
This guide describes the Macromedia Dreamweaver 8 framework and application
programming interface (API) that lets you build extensions to Dreamweaver. It provides
information about how each type of extension works; the API functions that Dreamweaver
calls to implement the various objects, menus, floating panels, server behaviors, and so on,
that make up the features of Dreamweaver; and a simple example of each type of extension.
This guide also explains how to customize Dreamweaver by editing tags in various HTML
and XML files to add menu items or document types, and so on.

To add an object, menu, floating panel, or other feature to Dreamweaver, you must code the
functions that the particular type of extension requires. This guide describes the arguments
that Dreamweaver passes to these functions and also the values that Dreamweaver expects
these functions to return.

For information on the utility and general purpose JavaScript APIs that you can use to
perform various support operations in your Dreamweaver extensions, see the Dreamweaver
API Reference. If you plan to create extensions that work with databases, you might also want
to review the sections in Getting Started with Dreamweaver about making connections to
databases.

Background
Most Dreamweaver extensions are written in HTML and JavaScript. This guide assumes that
you are familiar with Dreamweaver, HTML, XML, and JavaScript programming. If you are
implementing C extensions, the guide assumes that you know how to create and use C
dynamic link libraries (DLLs). If you are writing extensions for building web applications,
you should also be familiar with server-side scripting on at least one platform, such as Active
Server Pages (ASP), ASP.net, PHP: Hypertext Preprocessor (PHP), Macromedia ColdFusion,
or Java Server Pages (JSP).
9

Installing an extension
To become familiar with the process of writing extensions, you might want to explore the
extensions and resources that are available through the Macromedia Exchange website
(www.macromedia.com/exchange). Installing an existing extension introduces you to some of
the tools that you need to work with in your own extensions.

To install an extension, use the following procedure:

1. Download and install the Extension Manager, which is available on the Macromedia
Downloads website (www.macromedia.com/software/downloads).

2. Log on to the Macromedia Exchange website (www.macromedia.com/exchange).

3. From the available extensions, select one that you want to use. Click the Download link to
download the extension package.

4. Save the extension package in the Dreamweaver 8/Downloaded Extensions folder of your
installed Dreamweaver folder.

5. In the Extension Manager, select File > Install Extension. In Dreamweaver, select
Commands > Manage Extensions to start the Extension Manager.

The Extension Manager automatically installs the extension from the Downloaded
Extension folder into Dreamweaver.

Some extensions need Dreamweaver to restart before you can use them. If you are running
Dreamweaver when you install the extension, you might be prompted to quit and restart
the application.

To view basic information on the extension after its installation, go to the Extension Manager
(Commands > Manage Extensions) in Dreamweaver.

Creating an extension
Before you create a Dreamweaver extension, visit the Macromedia Exchange website at
www.macromedia.com/exchange to see if the extension you plan to create already exists. If
you do not find an extension that meets your needs, you then perform the following steps to
create the extension:

■ Determine the type of extension you want to create. For more information about the
extension types, see “Types of Dreamweaver extensions” on page 100.

■ Review the documentation for the type of extension you plan to create. To become
familiar with creating that type of extension, it’s a good idea to create the simple extension
example in the appropriate chapter.
10 Introduction

http://www.macromedia.com/exchange
http://www.macromedia.com/software/downloads/
http://www.macromedia.com/exchange/
http://www.macromedia.com/exchange/

■ Determine which files you need to modify or create.
■ Plan the user interface (UI), if any, for the extension.
■ Create the necessary files and save them in the appropriate folders.
■ Restart Dreamweaver so that it recognizes the new extension.
■ Test the extension.
■ Package the extension so that you can share it with others. For more information, see

“Working with the Extension Manager” on page 109.

Additional resources for extension writers
To communicate with other developers who are involved in writing extensions, you might
want to join the Dreamweaver extensibility newsgroup. You can access the website for this
newsgroup at www.macromedia.com/go/extending_newsgrp/.

What’s new in Dreamweaver
Dreamweaver 8 includes the following new features and interfaces that are extensible. Each of
these features has new related functions, which are listed in the Dreamweaver API Reference.

■ Improved site synchronization
The comparison of local and remote files is more reliable in Dreamweaver 8.

■ Copy and paste improvements
Copy and paste choices have been simplified. Users can also now set the default behavior
of a paste operation to be to paste text only.

■ Site root-relative links mapping has been improved.
■ Code collapse

Dreamweaver now lets users selectively collapse or expand segments of code.
■ Code view toolbar

Dreamweaver now provides a toolbar in Code view that allows quick access to commonly
used commands.

■ Background file transfer
This feature lets users to do other things in Dreamweaver while processing server-related
tasks.

■ File compare integration
Dreamweaver now lets users launch a third-party file comparison application to compare
two local files, two remote files, or the local and remote versions of a file.
What’s new in Dreamweaver 11

http://www.macromedia.com/go/extending_newsgrp/

■ Streamlined handling of CSS styles
The CSS Styles and Relevant CSS panels have been combined. The Design panel is now
named CSS; the CSS Styles panel is now named Styles. There is now a menu option for
Document CSS Styles and Selection CSS Styles in the Window menu. In addition, an
Edit Rule button has been added to the Property inspector.

■ Visual aids for CSS divs and layers
Dreamweaver now includes visual aids to let users see their CSS page layout.

■ Zooming in and out
Dreamweaver now lets users zoom in and out while viewing their web pages.

■ Guides
Dreamweaver now lets users create guides in their documents.

Documentation changes
Extending Dreamweaver includes the following improvements to help new extension authors
get started.

■ New and updated examples
New examples have been added for Reports and Behaviors. The example for Property
inspectors has been improved. The steps for creating each type of extension are presented
as a tutorial, which you can follow to understand what the files do and how they interact.

■ New organization
Each chapter now begins with a table that lists the files required to create the type of
extension described in the chapter.

For information on the new functions that have been added to the Utility API and the
JavaScript API, see the Dreamweaver API Reference.

Macromedia Press
Improve your Dreamweaver skills with books from Macromedia Press. Check out the latest
content written by the experts. See www.macromedia.com/go/dw2004_help_mmp.

Deprecated functions
In Dreamweaver 8, several functions have been deprecated. For information on the functions
that have been removed from the Utility and JavaScript APIs, see the Dreamweaver API
Reference.
12 Introduction

http://www.macromedia.com/go/dw2004_help_mmp

Errata
A current list of known issues can be found in the Extensibility section of the Dreamweaver
Support Center (www.macromedia.com/go/extending_errata).

Conventions used in this guide
The following typographical conventions are used in this guide:

■ Code font indicates code fragments and API literals, including class names, method
names, function names, type names, scripts, SQL statements, and both HTML and XML
tag and attribute names.

■ Italic code font indicates replaceable items in code.
■ The continuation symbol (¬) indicates that a long line of code has been broken across two

or more lines. Due to margin limits in this guide’s format, what is otherwise a continuous
line of code must be split. When copying the lines of code, eliminate the continuation
symbol, and type the lines as one line.

■ Curly braces ({ }) that surround a function argument indicate that the argument is
optional.

■ Function names that have the prefix dreamweaver. as in dreamweaver.funcname, can be
abbreviated to dw.funcname when you are writing code. This manual uses the full
dreamweaver. prefix when defining the function and in the index. Many examples use
the shorter dw. prefix, however.

The following naming conventions are used in this guide:

■ You—the developer who is responsible for writing extensions
■ The user—the person using Dreamweaver
■ The visitor—the person who views the web page that the user created
Conventions used in this guide 13

http://www.macromedia.com/go/extending_errata

14 Introduction

1
PART 1

Customizing Dreamweaver
You can customize Macromedia Dreamweaver 8 to suit your web
development needs, including changing settings in dialog boxes, setting
preferences in a variety of areas, and changing keyboard shortcuts. You can
also customize code hints and code coloring in Code view, the cascading
style sheet (CSS) profile, and Dreamweaver’s default HTML formatting.
Chapter 1: Customizing Dreamweaver. 17

Chapter 2: Customizing Code View .55
15

1

CHAPTER 1

Customizing Dreamweaver
In addition to creating and using Dreamweaver extensions, you can customize Macromedia
Dreamweaver in many ways, which lets you work in a manner that’s familiar, comfortable,
and efficient for you.

Ways to customize Dreamweaver
There are several general approaches to customizing Dreamweaver. Some of these approaches
are covered in Using Dreamweaver. These approaches let you customize your workspace. You
can also change settings in dialog boxes in Dreamweaver. You can set preferences in a variety
of areas, including accessibility, code coloring, fonts, highlighting, and previewing in
browsers, using the Preferences panel (Edit > Preferences). You can also change keyboard
shortcuts, using the Keyboard Shortcut Editor (Edit > Keyboard Shortcuts).

The following list describes some of the ways you can customize Dreamweaver by editing
configuration files:

■ Rearrange the objects in the Insert bar, create new tabs to reorganize the objects, or add
new objects. See “Modifying the Insert bar” on page 148.

■ Change the names of menu items, add new commands to menus, and remove existing
commands from menus. See Chapter 8, “Menus and Menu Commands,” on page 181.

■ Change browser profiles or create new ones. See “Working with browser profiles”
on page 30.

■ Change how third-party tags (including ASP and JSP tags) appear in the Document
window’s Design view. See “Customizing the interpretation of third-party tags”
on page 21.

In addition, you can tailor Dreamweaver to meet your needs by doing the following:

■ Customizing default documents
■ Customizing page designs
■ Customizing the appearance of dialog boxes
17

■ Changing the default file type
■ Customizing the interpretation of third-party tags
■ Customizing workspace layouts
■ Customizing the Code view toolbar

Customizing default documents
The DocumentTypes/NewDocuments folder contains a default (blank) document of each
type that you can create using Dreamweaver. When you create a new blank document by
selecting File > New and selecting an item from the Basic Page, Dynamic Page, or Other
categories, Dreamweaver bases the new document on the appropriate default document in
this folder. To change what appears in a default document of a given type, edit the appropriate
document in this folder.

Customizing page designs
Dreamweaver provides a variety of predesigned cascading style sheets, framesets, and page
designs. You can create pages based on these designs by selecting File > New.

To customize the available designs, edit the files in BuiltIn/css, BuiltIn/framesets, BuiltIn/
Templates, and BuiltIn/TemplatesAccessible folders.

You can also create custom page designs by adding files to the subfolders of the BuiltIn folder.
To make a description of the file appear in the New Document dialog box, create a Design
Notes file (in the appropriate _notes folder) that corresponds to the page design file.

N
O

T
E

If you want all the pages in your site to contain common elements (such as a copyright
notice) or a common layout, it’s better to use templates and library items than to change
the default documents. For more information about templates and library items, see
Using Dreamweaver).

N
O

T
E

The designs listed in the Page Designs and Page Designs (Accessible) categories are
Dreamweaver template files; for more information on templates, see Using
Dreamweaver).
18 Customizing Dreamweaver

Customizing the appearance of dialog boxes
The dialog box layouts for objects, commands, and behaviors are specified as HTML forms;
they reside in HTML files in the Configuration folder within the Dreamweaver application
folder. You edit these forms as you would edit any form in Dreamweaver. For more
information, see Using Dreamweaver.

To change the appearance of a dialog box:

1. In Dreamweaver, select Edit > Preferences, and then select the Code Rewriting category.

2. Unselect the Rename Form Items when Pasting option.

Unselecting this option ensures that form items retain their original names when you copy
and paste them.

3. Click OK to close the Preferences dialog box.

4. On your disk, find the appropriate HTM file in the Configuration/Objects,
Configuration/ Commands, or Configuration/Behaviors folder.

5. Make a copy of the file somewhere other than the Configuration folder.

6. Open the copy in Dreamweaver, edit the form, and save it.

7. Quit Dreamweaver.

8. Copy the changed file back to the Configuration folder in place of the original. (It’s a good
idea to first make a backup of the original, so you can restore it later if needed.)

9. Restart Dreamweaver to see the changes.

You should change only the appearance of the dialog box, not how it works; it must still
contain the same types of form elements with the same names, so that the information
Dreamweaver obtains from the dialog box can still be used in the same way.

For example, the Comment object takes text input from a text area in a dialog box and uses a
simple JavaScript function to turn that text into an HTML comment and insert the comment
into your document. The form that describes the dialog box is in the Comment.htm file in
the Configuration/Objects/Invisibles folder. You can open that file and change the size and
other attributes of the text area, but if you remove the textarea tag entirely, or change the
value of its name attribute, the Comment object does not work properly.

N
O

T
E

Remember that in a multiuser operating system, you should edit copies of configuration
files in your user Configuration folder rather than editing Dreamweaver configuration
files. For more information, see “Multiuser Configuration folders” on page 104.
Ways to customize Dreamweaver 19

Changing the default file type
By default, Dreamweaver shows all the file types it recognizes in the File > Open dialog box.
You can use a pop-up menu in that dialog box to limit the display to certain types of files. If
most of your work involves a specific file type (such as ASP files), you can change the default
display. Whatever file type is listed on the first line of the Dreamweaver Extensions.txt file
becomes the default.

To change the Dreamweaver default File > Open file type:

1. Make a backup copy of the Extensions.txt file in the Configuration folder.

2. Open Extensions.txt in Dreamweaver or in a text editor.

3. Cut the line corresponding to the new default and paste it at the beginning of the file so
that it becomes the first line of the file.

4. Save the file.

5. Restart Dreamweaver.

To see the new default, select File > Open, and look at the pop-up menu of file types.

To add new file types to the menu in the File > Open dialog box:

1. Make a backup copy of the Extensions.txt file in the Configuration folder.

2. Open Extensions.txt in Dreamweaver or in a text editor.

3. Add a new line for each new file type.

a. In capital letters, enter the filename extensions that the new file type can have,
separated by commas.

b. Add a colon and a brief description to show in the pop-up menu for file types that
appear in the File > Open dialog box.

For example, for JPEG files, enter the following:
JPG,JPEG,JFIF:JPEG Image Files

4. Save the file.

5. Restart Dreamweaver.

To see the changes, select File > Open, and click the pop-up menu of file types.

N
O

T
E

If you want to see all file types in the File > Open dialog box (even the files Dreamweaver
can’t open), you must select All Files (*.*). This is different from All Documents, which
shows only the files Dreamweaver can open.
20 Customizing Dreamweaver

Customizing the interpretation of third-party tags
Server-side technologies such as ASP, Macromedia ColdFusion, JSP, and PHP use special non-
HTML code in HTML files; servers create and serve HTML content based on that code.
When Dreamweaver encounters non-HTML tags, it compares them with information in its
third-party tag files, which define how Dreamweaver reads and displays non-HTML tags.

For example, in addition to regular HTML, ASP files contain ASP code for the server to
interpret. ASP code looks almost like an HTML tag, but is marked by a pair of delimiters: it
begins with <% and ends with %>. The Dreamweaver Configuration/ThirdPartyTags folder
contains a file named Tags.xml, which describes the format of various third-party tags,
including ASP code, and defines how Dreamweaver displays that code. Because of the way
ASP code is specified in Tags.xml, Dreamweaver does not try to interpret anything between
the delimiters; instead, in Design view, it displays an icon that indicates ASP code. Your own
tag database files can define how Dreamweaver reads and displays your tags. Create a new tag
database file for each set of tags, to tell Dreamweaver how to display the tags.

Each tag database file defines the name, type, content model, rendering scheme, and icon for
one or more custom tags. You can create any number of tag database files, but all of them
must reside in the Configuration/ThirdPartyTags folder to be read and processed by
Dreamweaver. Tag database files have the .xml file extension.

You define a tag specification with an XML tag called tagspec. For example, the following
code describes the specification for a tag named happy:
<tagspec tag_name="happy" tag_type="nonempty" render_contents="false"

content_model="marker_model" icon="happy.gif" icon_width="18"
icon_height="18"></tagspec>

You can define two kinds of tags using tagspec:

■ Normal HTML-style tags
The happy tag example is a normal HTML-style tag. It starts with an opening <happy>

tag, contains data between opening and closing tags, and ends with a closing </happy>

tag.

N
O

T
E

This section explains how to define the way Dreamweaver displays a custom tag, but
doesn’t describe how to provide a way to edit the content or properties of a custom tag.
For information on how to create a Property inspector to inspect and change the
properties of a custom tag, see Chapter 12, “Property Inspectors,” on page 279.

T
IP If you are working on several unrelated sites at once (for example, as a freelance

developer), you can put all the tag specifications for a particular site in one file. Then
simply include that tag database file with the custom icons and Property inspectors that
you hand over to the people who will maintain the site.
Ways to customize Dreamweaver 21

■ String-delimited tags
String-delimited tags start with one string and end with another string. They are like
empty HTML tags (such as img) in that they don’t surround content and don’t have
closing tags. If the happy tag were a string-delimited tag, the tag specification would
include the start_string and end_string attributes. An ASP tag is a string-delimited
tag; it starts with the string <% and ends with the string %>, and it has no closing tag.

The following information describes the attributes and valid values for the tagspec tag.
Attributes marked with an asterisk (*) are ignored for string-delimited tags. Optional
attributes are marked in the attribute lists with curly braces ({}); all attributes not marked
with curly braces are required.

<tagspec>

Description

Provides information about a third-party tag.

Attributes
tag_name, {tag_type}, {render_contents}, {content_model}, {start_string},

{end_string}, {detect_in_attribute}, {parse_attributes}, icon,
icon_width, icon_height, {equivalent_tag}, {is_visual}, {server_model}

■ tag_name is the name of the custom tag. For string-delimited tags, tag_name is used only
to determine whether a given Property inspector can be used for the tag. If the first line of
the Property inspector contains this tag name with an asterisk on each side, the inspector
can be used for tags of this type. For example, the tag name for ASP code is ASP. Property
inspectors that can examine ASP code should have *ASP* on the first line. For
information on the Property inspector API, see Chapter 12, “Property Inspectors,” on

page 279.
■ tag_type determines whether the tag is empty (as the img tag is), or whether it contains

anything between its opening and closing tags (as the code tag does). This attribute is
required for normal (nonstring-delimited) tags. It’s ignored for string-delimited tags
because they’re always empty. Valid values are "empty" and "nonempty".

■ render_contents determines whether the contents of the tag should appear in the
Design view or whether the specified icon should appear instead. This attribute is required
for nonempty tags and is ignored for empty tags. (Empty tags have no content.) This
attribute applies only to tags that appear outside attributes. The contents of tags that
appear inside the values of attributes of other tags are not rendered. Valid values are
"true" and "false".
22 Customizing Dreamweaver

■ content_model describes what kinds of content the tag can contain and where in an
HTML file the tag can appear. Valid values are "block_model", "head_model",
"marker_model", and "script_model":
■ block_model specifies that the tag can contain block-level elements such as div and p,

and that the tag can appear only in the body section or inside other body-content tags
such as div, layer, or td.

■ head_model specifies that the tag can contain text content and that it can appear only
in the HEAD section.

■ marker_model specifies that the tag can contain any valid HTML code, and that it
can appear anywhere in an HTML file. The HTML validator in Dreamweaver ignores
tags that are specified as marker_model. However, the validator doesn’t ignore the
contents of such a tag; so even though the tag itself can appear anywhere, the contents
of the tag may result in invalid HTML in certain places. For example, plain text
cannot appear (outside a valid head element) in the head section of a document, so
you can’t place a marker_model tag that contains plain text in the head section. (To
place a custom tag containing plain text in the head section, specify the tag’s content
model as head_model instead of marker_model.) Use marker_model for tags that
should be displayed inline (inside a block-level element such as p or div—for example,
inside a paragraph). If the tag should be displayed as a paragraph of its own, with line
breaks before and after it, don’t use this model.

■ script_model lets the tag exist anywhere between the opening and closing HTML
tags of a document. When Dreamweaver encounters a tag with this model, it ignores
all of the tag’s content. Used for markup (such as certain ColdFusion tags) that
Dreamweaver shouldn’t parse.

■ start_string specifies a delimiter that marks the beginning of a string-delimited tag.
String delimited tags can appear anywhere in the document where a comment can appear.
Dreamweaver does not parse tags or decode entities or URLs between start_string and
end_string. This attribute is required if end_string is specified.

■ end_string specifies a delimiter that marks the end of a string-delimited tag. This
attribute is required if start_string is specified.
Ways to customize Dreamweaver 23

■ detect_in_attribute indicates whether to ignore everything between start_string

and end_string (or between opening and closing tags if those strings are not defined)
even when those strings appear inside attribute names or values. You should generally set
this to "true" for string-delimited tags. The default is "false". For example, ASP tags
sometimes appear inside attribute values, and sometimes contain quotation marks (").
Because the ASP tag specification specifies detect_in_attribute="true",
Dreamweaver ignores the ASP tags, including the internal quotation marks, when they
appear inside attribute values.

■ parse_attributes indicates whether to parse the attributes of the tag. If this is set to
"true" (the default), Dreamweaver parses the attributes; if it’s set to "false",
Dreamweaver ignores everything until the next closing angle bracket that appears outside
quotation marks. For example, this attribute should be set to "false" for a tag such as
cfif (as in <cfif a is 1>, which Dreamweaver cannot parse as a set of attribute name/
value pairs).

■ icon specifies the path and filename of the icon associated with the tag. This attribute is
required for empty tags, and for nonempty tags whose contents do not appear in the
Document window’s Design view.

■ icon_width specifies the width of the icon in pixels.
■ icon_height specifies the height of the icon in pixels.
■ equivalent_tag specifies simple HTML equivalents for certain ColdFusion form-related

tags. This is not intended for use with other tags.
■ is_visual indicates whether the tag has a direct visual effect on the page. For example,

the ColdFusion tag cfgraph doesn’t specify a value for is_visual (so the value defaults
to "true"); the ColdFusion tag cfset is specified as having is_visual set to "false".
Visibility for server markup tags is controlled by the Invisible Elements category of the
Preferences dialog box; visibility for visual server markup tags can be set independent of
visibility for nonvisual server markup tags.

■ server_model, if specified, indicates that the tagspec tag applies only on pages that
belong to the specified server model. If server_model is not specified, the tagspec tag
applies on all pages. For example, the delimiters for ASP and JSP tags are the same, but the
tagspec tag for JSP specifies a server_model of "JSP", so when Dreamweaver encounters
code with the appropriate delimiters on a JSP page, it displays a JSP icon. When it
encounters such code on a non-JSP page, it displays an ASP icon.

Contents

None (empty tag).
24 Customizing Dreamweaver

Container

None.

Example
<tagspec tag_name="happy" tag_type="nonempty" render_contents="false"

content_model="marker_model" icon="happy.gif" icon_width="18"
icon_height="18"></tagspec>

How custom tags appear in the Design view
The way that custom tags appear in the Design view of the Document window depends on
the values of the tag_type and render_contents attributes of the tagspec tag. (See
“Customizing the interpretation of third-party tags” on page 21.) If the value of tag_type is
"empty", the icon specified in the icon attribute appears. If the value of tag_type is
"nonempty" but the value of render_contents is "false", the icon appears as it would for
an empty tag. The following example shows how an instance of the happy tag defined earlier
might appear in the HTML:
<p>This is a paragraph that includes an instance of the <code>happy</code>
tag (<happy>Joe</happy>).</p>

Because render_contents is set to "false" in the tag specification, the contents of the
happy tag (the word Joe) are not rendered. Instead, the start and end tags and their contents
appear as a single icon.

For nonempty tags that have a render_contents value of "true", the icon does not appear
in the Design view; instead, the content between the opening and closing tags (such as the
text between the tags in <mytag>This is the content between the opening and
closing tags</mytag>) appears. If View > Invisible Elements is enabled, the content is
highlighted using the third-party tag color specified in Highlighting preferences.
(Highlighting applies only to tags defined in tag database files.)

To change the highlighting color of third-party tags:

1. Select Edit > Preferences, and select the Highlighting category.

2. Click the Third-Party Tags color box to display the color picker.

3. Select a color, and click OK to close the Preferences dialog box. For information about
selecting a color, see Using Dreamweaver.
Ways to customize Dreamweaver 25

Avoiding rewriting third-party tags
Dreamweaver corrects certain kinds of errors in HTML code. For details, see Using
Dreamweaver. By default, Dreamweaver refrains from changing HTML in files with certain
filename extensions, including .asp (ASP), .cfm (ColdFusion), .jsp (JSP), and .php (PHP).
This default is set so that Dreamweaver does not accidentally modify the code contained in
any such non-HTML tags. You can change the Dreamweaver default rewriting behavior so
that it rewrites HTML when it opens such files, and you can add other file types to the list of
types that Dreamweaver does not rewrite.

Dreamweaver encodes certain special characters by replacing them with numerical values
when you enter them in the Property inspector. It’s usually best to let Dreamweaver perform
this encoding because the special characters are more likely to display correctly across
platforms and browsers. However, because such encoding can interfere with third-party tags,
you may want to change the Dreamweaver encoding behavior when you’re working with files
that contain third-party tags.

To allow Dreamweaver to rewrite HTML in more kinds of files:

1. Select Edit > Preferences, and select the Code Rewriting category.

2. Select either of the following options:

■ Fix Invalidly Nested and Unclosed Tags
■ Remove Extra Closing Tags

3. Do one of the following:

■ Delete one or more extensions from the list of extensions in the Never Rewrite Code:
In Files with Extensions option.

■ Deselect the Never Rewrite Code: In Files with Extensions option. (Deselecting this
option lets Dreamweaver rewrite HTML in all types of files.)

To add file types that Dreamweaver should not rewrite:

1. Select Edit > Preferences, and select the Code Rewriting category.

2. Select either of the following options:

■ Fix Invalidly Nested and Unclosed Tags
■ Remove Extra Closing Tags

3. Make sure the Never Rewrite Code: In Files with Extensions option is selected, and add
the new file extensions to the list in the text field.

If the new file type doesn’t appear in the file-types pop-up menu in the File > Open dialog
box, you might want to add it to the Configuration/Extensions.txt file. For details, see
“Changing the default file type” on page 20.
26 Customizing Dreamweaver

To turn off Dreamweaver encoding options:

1. Select Edit > Preferences, and select the Code Rewriting category.

2. Deselect either or both Special Characters options.

For information on the other Code Rewriting preferences, see Using Dreamweaver.

Customizing Dreamweaver in a multiuser
environment
You can customize Dreamweaver in a multiuser operating system such as Windows 2000,
Windows XP, or Mac OS X. Dreamweaver prevents any user’s customized configuration from
affecting any other user’s customized configuration. To accomplish this goal, the first time you
run Dreamweaver in a multiuser operating system that it recognizes, Dreamweaver copies
various configuration files into a user Configuration folder for you. When you customize
Dreamweaver by using dialog boxes and panels, the application modifies your user
Configuration files instead of modifying the Dreamweaver Configuration files. To customize
Dreamweaver by editing a configuration file in a multiuser environment, edit the appropriate
user Configuration file, rather than editing the files in the Dreamweaver Configuration folder.
To make a change that affects most users, you can edit a Dreamweaver Configuration file, but
users who already have corresponding user-configuration files will not see the change. In
general, if you want to make a change that affects all the users, it’s best to create an extension
and install it using the Extension Manager.

The location of the user’s Configuration folder depends on the user’s platform.

Windows 2000 and Windows XP platforms use the following location:

drive:\Documents and Settings\username\Application Data\Macromedia\
Dreamweaver 8\Configuration

N
O

T
E

In older operating systems (Windows 98, Windows ME, and Mac OS 9.x), a single set of
Dreamweaver Configuration files is shared by all users, even if the operating system is
configured to support multiple users.

N
O

T
E

In Windows XP, this folder may be inside a hidden folder.
Customizing Dreamweaver in a multiuser environment 27

Mac OS X platforms use the following location:

drive:Users/username/Library/Application Support/Macromedia/Dreamweaver 8/
Configuration

The first time you run Dreamweaver, it copies only some of the configuration files into your
user Configuration folder. (The files that it copies are specified in the version.xml file in the
Configuration folder.) When you customize Dreamweaver from within the application (for
example, when you modify one of the predesigned code snippets in the Snippets panel),
Dreamweaver copies the relevant files into your user Configuration folder. The version of a
file in your user Configuration folder always takes precedence over the version in the
Dreamweaver Configuration folder. To customize a configuration file that Dreamweaver has
not copied into your user Configuration folder, first copy the file from the Dreamweaver
Configuration folder to the corresponding location inside your user Configuration folder.
Then edit the copy in your user Configuration folder.

Deleting configuration files in a multiuser environment
When working in a multiuser operating system, if you do something within Dreamweaver
that would delete a configuration file (for example, deleting a predesigned snippet from the
Snippets panel), Dreamweaver creates a file in your user Configuration folder called
mm_deleted_files.xml. When a file is listed in mm_deleted_files.xml, Dreamweaver behaves
as if that file doesn’t exist.

To deactivate a configuration file:

1. Quit Dreamweaver.

2. Using a text editor, edit mm_deleted_files.xml in your user Configuration folder; add an
item tag to that file, giving the path (relative to the Dreamweaver Configuration folder) of
the configuration file to deactivate.

3. Save and close mm_deleted_files.xml.

4. Start Dreamweaver again.

N
O

T
E

To install extensions that all users can use in a multiuser operating system, you must be
logged in as Administrator (Windows) or root (Mac OS X).

N
O

T
E

Do not edit mm_deleted_files.xml in Dreamweaver.
28 Customizing Dreamweaver

About mm_deleted_files.xml tag syntax
The mm_deleted_files.xml file contains a structured list of items that specify configuration
files that Dreamweaver is to ignore. These items are specified by XML tags, which you can
edit in a text editor.

The following sections describe the syntax of the mm_deleted_files.xml tags. Optional
attributes are marked in the attribute lists with curly braces ({}); all attributes not marked
with curly braces are required.

<deleteditems>

Description

Container tag that holds a list of items that Dreamweaver should treat as deleted.

Attributes

None.

Contents

This tag must contain one or more item tags.

Container

None.

Example
<deleteditems>
<!-- item tags here -->
</deleteditems>

<item>

Description

Specifies a configuration file that Dreamweaver should ignore.

Attributes
name

■ name The path to the configuration file, relative to the Configuration folder. In
Windows, use a backslash (\) to separate parts of the path; on the Macintosh, use a colon
(:).

Contents

None (empty tag).
Customizing Dreamweaver in a multiuser environment 29

Container

This tag must be contained in a deleteditems tag.

Example
<item name="snippets\headers\5columnwith4links.csn" />

Reinstalling and uninstalling Dreamweaver in a
multiuser environment
After you install Dreamweaver, if you later reinstall it or upgrade to a later version,
Dreamweaver automatically makes backup copies of existing user configuration files, so that if
you’ve customized those files, you can still access the changes you made. When you uninstall
Dreamweaver from a multiuser system (which you can do only if you have administrative
privileges), Dreamweaver can remove each user Configuration folder for you.

Working with browser profiles
Browser profiles are the files Dreamweaver uses to check your documents when you run a
target browser check (see Using Dreamweaver). Each profile contains information about the
HTML tags and attributes that a particular browser supports. A browser profile can also
contain warnings, error messages, and suggestions for tag substitutions.

Browser profiles are stored in the Configuration/BrowserProfiles folder in the Dreamweaver
application folder. You can edit existing profiles or create new ones using Dreamweaver or a
text editor. It is not necessary to quit Dreamweaver before editing or creating browser profiles.

About browser-profile formatting
Browser profiles follow a specific format. To avoid parsing errors during target browser checks,
follow these rules when editing or creating profiles:

■ The first line is reserved for the name of the profile. It must be followed by a single
carriage return. The name on this line appears in the Target Browser Check dialog box
and in the target check report. It must be unique.

■ The second line is reserved for the designator PROFILE_TYPE=BROWSER_PROFILE.
Dreamweaver uses this line to determine which documents are browser profiles. Do not
change or move this line.

■ Two hyphens (--) at the beginning of a line indicate a comment (that is, the line is ignored
during the target check process). A comment must start at the beginning of a line; you
can’t put two hyphens in the middle of a line.
30 Customizing Dreamweaver

■ You must use a space in the following places:
■ Before the closing angle bracket (>) on the !ELEMENT line
■ After the opening parentheses in a list of values for an attribute
■ Before a closing parentheses in a list of values
■ Before and after each pipe (|) in a list of values.

■ You must include an exclamation point (!) without a space before each of the following
words:
ELEMENT, ATTLIST, Error, and msg (ELEMENT, !ATTLIST, !Error, !msg).

■ You can include !Error, !Warning, and !Info within the !ELEMENT or the !ATTLIST
area.

■ !msg messages can contain only plain text.
■ HTML comments (!---->) cannot be listed as tags in browser profiles because they

interfere with parsing. Dreamweaver does not report an error for comments because all
browsers support them.

The following example shows the syntax for a tag entry:
<!ELEMENT htmlTag NAME="tagName ">
<!ATTLIST htmlTag
unsupportedAttribute1 !Error !msg="The unsupportedAttribute1
attribute of the htmlTag tag is not supported.Try using
supportedAttribute1 for a similar effect."
supportedAttribute1
supportedAttribute2 (validValue1 |validValue2 |validValue3)
unsupportedAttribute2 !Error !msg="Don’t ever use the
unsupportedAttribute2 attribute of the htmlTag tag!"
>

The elements shown in this syntax are defined as follows:

■ htmlTag is the tag as it appears in an HTML document.
■ tagName is an explanatory name for the tag; for example, the name for the HR tag is

“Horizontal Rule.” The NAME attribute is optional. If specified, tagName is used in error
messages; if you do not supply a name, htmlTag is used in error messages.

■ unsupportedAttribute is an attribute that is not supported. Any tags or attributes not
specifically mentioned as supported attributes are assumed to be unsupported. Specify
unsupported tags or attributes only when you want to create a custom error message.

■ supportedAttribute is an attribute that is supported by htmlTag. Only tags listed
without an !Error designation are considered to be supported by the browser.

■ validValue indicates a value that is supported by the attribute.
Working with browser profiles 31

The following example shows an entry for the APPLET tag that would be accurate for Netscape
Navigator 3.0:
<!ELEMENT APPLET Name="Java Applet">
<!ATTLIST APPLET
Align (top |middle |bottom |left |right |absmiddle |
absbottom |baseline |texttop)
Alt
Archive
Class !Warning !msg="This browser ignores the CLASS attribute for the APPLET
tag."
Code
Codebase
Height
HSpace
ID !Warning !msg="This browser ignores the ID attribute for the APPLET tag.
Use NAME instead."
Name
Style !Warning !msg="This browser ignores the STYLE attribute for the APPLET
tag."
VSpace
Width
>

Creating and editing a browser profile
You can create a browser profile by modifying an existing profile. For example, to create a
profile for a future version of Microsoft Internet Explorer, you can open the profile for the
most recent version of Internet Explorer that has a profile, add any new tags or attributes
introduced in the new version, and save it as a profile for the new version.

To create or edit a browser profile:

1. Open an existing profile for editing.

If you’re creating a new profile, open the profile that most closely resembles the profile you
want to create, and save the file under a new filename.

2. If you’re creating a new profile, change the name that appears on the first line of text in the
file. (Two profiles cannot have the same name.)

N
O

T
E

Before you create a browser profile for a new version of a browser, check the
Macromedia Exchange for Dreamweaver site at www.macromedia.com/exchange/
dreamweaver to see if Macromedia has supplied a browser profile that you can
download and install using the Extension Manager.
32 Customizing Dreamweaver

3. Add any new tags or attributes that you know are supported by the browser, using the
syntax shown in “About browser-profile formatting” on page 30.

If you don’t want to receive error messages about a particular unsupported tag, add it to
the list of supported tags. If you do this, save the profile in a separate file with a new
filename (such as Browsername x.x limited). Giving this alternate profile a new name
preserves the original profile with only the tags that are truly supported.

4. Delete any tags or attributes that are not supported by the browser.

This step is probably unnecessary if you are creating a profile for a new version of
Netscape Navigator or Internet Explorer because browsers rarely drop support for tags.

5. Add any custom error messages according to the syntax shown in “About browser-profile
formatting” on page 30.

The profiles that come with Dreamweaver list all supported tags for the specified
browsers. To add a custom error message to a tag, type !msg = "message" after !Error.
The following example shows information that appears in the Netscape Navigator 3.0
profile (along with other attributes not shown here):
<!ELEMENT HR name="Horizontal Rule">
<!ATTLIST HR
COLOR !Error
>

To add a custom error message enter !msg= followed by your error message in quotation
marks ("):
<!ELEMENT HR name="Horizontal Rule">
<!ATTLIST HR
COLOR !Error !msg="Internet Explorer 3.0 supports the COLOR tag in
horizontal rules,but Netscape Navigator 3.0 does not."
>

6. You can use !Error for all error situations, or you can use !Warning or !Info to indicate
that a tag will be ignored but will not actually cause an error.
Working with browser profiles 33

Changing FTP mappings
The FTPExtensionMap.txt file (Windows) and the FTPExtensionMapMac.txt file
(Macintosh) map filename extensions to FTP transfer modes (ASCII or BINARY).

Each line in each of the two files includes a filename extension (such as GIF) and either the
word ASCII or the word BINARY, to indicate which of the two FTP transfer modes should
be used when transferring a file with that extension. On the Macintosh, each line also includes
a creator code (such as DmWr) and a file type (such as TEXT). When you download a file
with the given filename extension on the Macintosh, Dreamweaver assigns the specified
creator and file type to the file.

If a file that you are transferring doesn’t have a filename extension, Dreamweaver uses the
BINARY transfer mode.

The following example shows a line (from the Macintosh file) that indicates that files with the
extension .html should be transferred in ASCII mode:
HTML DmWr TEXT ASCII

In both the FTPExtensionMap.txt file and FTPExtensionMapMac.txt file (Macintosh), all
elements on a given line are separated by tabs. The extension and the transfer mode are in
uppercase letters.

To change a default setting, edit the file in a text editor.

To add information about a new filename extension:

1. Edit the extension-map file in a text editor.

2. On a blank line, enter the filename extension (in uppercase letters) and press Tab.

3. On the Macintosh, add the creator code, a tab, the file type, and another tab.

4. Enter ASCII or BINARY to set an FTP transfer mode.

5. Save the file.

N
O

T
E

TDreamweaver cannot transfer files in Macbinary mode. If you need to transfer files in
Macbinary mode, you must use another FTP client.
34 Customizing Dreamweaver

Extensible document types in
Dreamweaver
XML provides a rich system for defining complex documents and data structures.
Dreamweaver uses several XML schemas to organize information about server behaviors, tags
and tag libraries, components, document types, and reference information.

When you create and work with extensions in Dreamweaver, there are many instances in
which you create or modify existing XML files to manage the data that your extension uses. In
many cases, you can copy an existing file from the appropriate subfolder within the
Configuration folder to use as a template.

Document type definition file
The central component of extensible document types is the document type definition file.
There might be several definition files, all of which are located in the Configuration/
DocumentTypes folder. Each definition file contains information about at least one
document type. For each document type, essential information such as server model, color
coding style, descriptions, and so forth, is described.

Dreamweaver provides an initial document type definition file. This file, named
MMDocumentTypes.xml, contains the document type definitions provided by Macromedia:

N
O

T
E

Do not confuse Dreamweaver document type definition files with the XML document
type definition (DTD). Document type definition files in Dreamweaver contain a set of
documenttype elements, each of which defines a predefined collection of tags and
attributes that are associated with a document type. When Dreamweaver starts, it
parses the document type definition files and creates an in-memory database of
information regarding all defined document types.

Document type Server
model

Internal type File
extensions

Previous server
model

ASP.NET C# ASP.NET-
Csharp

Dynamic aspx, ascx

ASP.NET VB ASP.NET-VB Dynamic aspx, ascx

ASP JavaScript ASP-JS Dynamic asp

ASP VBScript ASP-VB Dynamic asp

ColdFusion ColdFusion Dynamic cfm, cfml UltraDev 4
ColdFusion
Extensible document types in Dreamweaver 35

ColdFusion
Component

Dynamic cfc

JSP JSP Dynamic jsp

PHP PHP Dynamic php, php3

Library Item DWExtension lbi

ASP.NET C#
Template

DWTemplate axcs.dwt

ASP.NET VB
Template

DWTemplate axvb.dwt

ASP JavaScript
Template

DWTemplate aspjs.dwt

ASP VBScript
Template

DWTemplate aspvb.dwt

ColdFusion Template DWTemplate cfm.dwt

HTML Template DWTemplate dwt

JSP Template DWTemplate jsp.dwt

PHP Template DWTemplate php.dwt

HTML HTML htm, html

ActionScript Text as

CSharp Text cs

CSS Text css

Java Text java

JavaScript Text js

VB Text vb

VBScript Text vbs

Text Text txt

EDML XML edml

TLD XML tld

VTML XML vtm, vtml

WML XML wml

XML XML xml

Document type Server
model

Internal type File
extensions

Previous server
model
36 Customizing Dreamweaver

If you need to create a new document type, you can either add your entry to the document
definition file that Macromedia provides (MMDocumentTypes.xml) or add a custom
definition file to the Configuration/DocumentTypes folder.

Structure of document type definition files
The following example shows what a typical document type definition file might look like:
<?xml version="1.0" encoding="utf-8"?>
<documenttypes

 xmlns:MMString="http://www.macromedia.com/schemes/data/string/">
 <documenttype
 id="dt-ASP-JS"
 servermodel="ASP-JS"
 internaltype="Dynamic"
 winfileextension="asp,htm, html"
 macfileextension=asp, html"
 previewfile="default_aspjs_preview.htm"
 file="default_aspjs.htm"
 priorversionservermodel="UD4-ASP-JS" >
 <title>
 <loadString id="mmdocumenttypes_0title" />
 </title>
 <description>
 <loadString id="mmdocumenttypes_0descr" />
 </description>
 </documenttype>
 ...
</documenttypes>

In the previous example, the loadstring element identifies the localized strings that
Dreamweaver should use for the title and description for ASP-JS type documents. For more
information about localized strings, see “Localized strings” on page 44.

N
O

T
E

The NewDocuments subfolder resides in the Configuration/DocumentTypes folder. This
subfolder contains default pages (templates) for each document type.

N
O

T
E

Color coding for document types is specified in the XML files that reside in the
Configuration/CodeColoring folder.
Extensible document types in Dreamweaver 37

The following table describes the tags and attributes that you can use within a document type
definition file.

Element Type Required Description

Tag Attribute

documenttype
(root)

Yes Parent node.

id Yes Unique identifier across all document
type definition files.

servermodel No Specifies the associated server model
(case-sensitive); by default, the
following values are valid:
 ASP.NET C#
 ASP.NET VB
 ASP VBScript
 ASP JavaScript
 ColdFusion
 JSP
 PHP MySQL
A call to the
getServerModelDisplayName() functions
returns these names. The server model
implementation files are located in the
Configuration/ServerModels folder.
Extension developers can create new
server models extending this list.
38 Customizing Dreamweaver

internaltype Yes A broad classification of how
Dreamweaver treats a file. The
internaltype identifies whether the
Design view is enabled for this
document and handles special cases
such as Dreamweaver templates or
extensions.
The following values are valid:
 Dynamic
 DWExtension (has special display
regions)
 DWTemplate (has special display
regions)
 HTML
 HTML4
 Text (Code view only)
 XHTML1
 XML (Code view only)
All server model-related document
types should map to Dynamic. HTML
should map to HTML. Script files (such as
CSS, JS, VB, and CS) should map to
Text.
If internaltype is DWTemplate, you
should also specify dynamicid. If you
omit dynamicid in this case, the new
blank template that the New Document
dialog box creates is not a recognized
document type by the Server Behavior
or Bindings panel. Instances of this
template are simply an HTML template.

dynamicid No A reference to the unique identifier of a
dynamic document type. This attribute
is meaningful only when internaltype is
DWTemplate. This attribute lets you
associate a dynamic template with a
dynamic document type.

Element Type Required Description

Tag Attribute
Extensible document types in Dreamweaver 39

winfileextension Yes The file extension that is associated with
the document type on Windows. You
specify multiple file extensions by using
a comma-separated list. The first
extension in the list is the extension that
Dreamweaver uses when the user saves
a documenttype document.
If two nonserver model-associated
document types have the same file
extension, Dreamweaver recognizes
the first one as the document type for
the extension.

macfileextension Yes The file extension that is associated with
the document type on the Macintosh.
You specify multiple file extensions by
using a comma-separated list. The first
extension in the list is the extension that
Dreamweaver uses when the user saves
a documenttype document.
If two nonserver model-associated
document types have the same file
extension, Dreamweaver recognizes
the first one as the document type for
the extension.

previewfile No The file that is rendered in the Preview
area of the New Document dialog box.

file Yes The file that is located in the
DocumentTypes/NewDocuments
folder that contains template content for
new documenttype documents.

priorversionservermodel No If this document’s server model has a
Dreamweaver UltraDev 4 equivalent,
specify the name of the older version of
the server model.
UltraDev 4 ColdFusion is a valid prior
server model.

Element Type Required Description

Tag Attribute
40 Customizing Dreamweaver

When Dreamweaver starts, it reads all document type definition files and builds a list of valid
document types. Dreamweaver treats any entries within the definition files that have
nonexistent server models as nonserver model document types. Dreamweaver ignores entries
that have bad contents or IDs that are not unique.

If, while scanning the Configuration/DocumentTypes folder, Dreamweaver finds no
document type definition files or if any of the definition files appear to be corrupt,
Dreamweaver closes with an error message.

Dynamic templates
You can create templates that are based on dynamic document types. These templates are
called dynamic templates. The following two elements are essential to defining a dynamic
template:

title
(subtag)

Yes The string that appears as a category
item under Blank Document in the New
Document dialog box. You can place
this string directly in the definition file or
point to it indirectly for localization
purposes. For more information on
localizing this string, see “Localized
strings” on page 44.
Formatting is not allowed, so HTML
tags cannot be specified.

description
(subtag)

No The string that describes the document
type. You can place this string directly in
the definition file or point to it indirectly
for localization purposes. For more
information on localizing this string, see
“Localized strings” on page 44.
Formatting is allowed, so HTML tags
can be specified.

N
O

T
E

When the user saves a new document, Dreamweaver examines the list of extensions for
the current platform that are associated with the document type (winfileextension
and macfileextension). Dreamweaver selects the first string in the list and uses it as
the default file extension. To change this default file extension, you must reorder the
extensions in the comma-separated list so the new default is listed first.

Element Type Required Description

Tag Attribute
Extensible document types in Dreamweaver 41

■ The value of the internaltype attribute for the new document type must be
DWTemplate.

■ The dynamicid attribute must be set, and the value must be a reference to the identifier of
an existing dynamic document type.

The following example defines a dynamic document type:
<documenttype
 id="PHP_MySQL"
 servermodel="PHP MySQL"
 internaltype="Dynamic"
 winfileextension="php,php3"
 macfileextension="php,php3"
 file="Default.php">
 <title>PHP</title>
 <description><![CDATA[PHP document]]></description>
</documenttype>

Now, you can define the following dynamic template, which is based on this PHP_MySQL
dynamic document type:
<documenttype
 id="DWTemplate_PHP"
 internaltype="DWTemplate"
 dynamicid="PHP_MySQL"
 winfileextension="php.dwt"
 macfileextension="php.dwt"
 file="Default.php.dwt">
 <title>PHP Template</title>
 <description><![CDATA[Dreamweaver PHP Template document]]></

description>
</documenttype>

When a Dreamweaver user creates a new blank template of type DWTemplate_PHP,
Dreamweaver lets the user create PHP server behaviors in the file. Furthermore, when the user
creates instances of the new template, the user can create PHP server behaviors in the
instance.

In the previous example, when the user saves the template, Dreamweaver automatically adds a
.php.dwt extension to the file. When the user saves an instance of the template, Dreamweaver
adds the .php extension to the file.
42 Customizing Dreamweaver

Document extensions and file types
By default, Dreamweaver shows all the file types it recognizes in the File > Open dialog box.
After creating a new document type, extension developers need to update the appropriate
Extensions.txt file. If the user is on a multiuser system (such as Windows XP, Windows 2000,
or Mac OS X), the user has another Extensions.txt file in their Configuration folder. The user
must update the Extensions.txt file because it is the instance that Dreamweaver looks for and
parses.

The location of the user’s Configuration folder depends on the user’s platform.

Windows 2000 and Windows XP platforms use the following location:

drive:\Documents and Settings\username\Application Data\Macromedia\Dreamweaver
8\Configuration

Mac OS X platforms use the following location:

drive:Users/username/Library/Application Support/Macromedia:Dreamweaver 8/
Configuration

If Dreamweaver cannot find the Extensions.txt file in the user’s Configuration folder,
Dreamweaver looks for it in the Dreamweaver Configuration folder.

To create a new document extension, you can either add the new extension to an existing
document type or create a new document type.

To add a new extension to an existing document type:

1. Edit MMDocumentTypes.xml.

2. Add the new extension to the winfileextension and macfileextension attributes of
the existing document type.

To add a new document type:

1. Make a backup copy of the Extensions.txt file in the Configuration folder.

2. Open Extensions.txt in Dreamweaver or a text editor.

N
O

T
E

In Windows XP, this folder may be inside a hidden folder.

N
O

T
E

On multiuser platforms, if you edit the copy of Extensions.txt that resides in the
Dreamweaver Configuration folder and not the one in the user’s Configuration folder,
Dreamweaver is not aware of the changes because Dreamweaver parses the copy of the
Extensions.txt file in the user’s Configuration folder, not the file in the Dreamweaver
Configuration folder.
Extensible document types in Dreamweaver 43

3. Add a new line for each new file type. In capital letters, enter the filename extensions that
the new file type can have, separated by commas; then add a colon and a brief descriptive
phrase to show in the pop-up menu for file types that appears in the File > Open dialog box.

For example, for JPEG files, enter JPG,JPEG,JFIF:JPEG Image Files
4. Save the Extensions.txt file.

5. Restart Dreamweaver.

To see the changes, select File > Open and click the pop-up menu of file types.

To change the Dreamweaver default File > 0pen file type:

1. Make a backup copy of the Extensions.txt file in the Configuration folder.

2. Open Extensions.txt in Dreamweaver or a text editor.

3. Cut the line that corresponds to the new default, and paste it at the beginning of the file,
to make it the first line of the file.

4. Save the Extensions.txt file.

5. Restart Dreamweaver.

To see the changes, select File > Open and click the pop-up menu of file types.

Localized strings
Within a document type definition file, the <title> and <description> subtags specify the
display title and description for the document type. You can use the MMString:loadstring
directive in the subtags as a placeholder for providing localized strings for the two subtags.
This process is similar to server-side scripting where you specify a particular string to use in
your page by using a string identifier as a placeholder. For the placeholder, you can use a
special tag or you can specify a tag attribute whose value is replaced.

To provide localized strings, perform the following steps:

1. Place the following statement at the beginning of the document type definition file:
<?xml version="1.0" encoding="utf-8"?>

2. Declare the MMString name space in the <documenttypes> tag:
 <documenttypes
 xmlns:MMString="http://www.macromedia.com/schemes/data/string/">

3. At the location in the document type definition file where you want to provide a localized
string, use the MMString:loadstring directive to define a placeholder for the localized
string. You can specify this placeholder in one of the following ways:
<description>
44 Customizing Dreamweaver

 <loadstring>myJSPDocType/Description</loadstring>
</description>

or
<description>
 <loadstring id="myJSPDocType/Description" />
</description>

In these examples, myJSPDocType/Description is a unique string identifier that acts as a
placeholder for the localized string. The localized string is defined in the next step.

4. In the Configuration/Strings folder, create a new XML file (or edit an existing file) that
defines the localized string. For example, the following code, when placed in the
Configuration/Strings/strings.xml file, defines the myJSPDocType/Description string:
<strings>
...
 <string id="myJSPDocType/Description"
 value=
 "<![CDATA[JavaServer Page with special

features]]>"
 />
...
</strings>

Rules for document type definition files
Dreamweaver lets document types that are associated with a server model share file extensions.
For example: ASP-JS and ASP-VB can claim .asp as their file extension. (For information on
which server model gets preference, see “canRecognizeDocument()” on page 424.)

Dreamweaver does not let document types that are not associated with a server model share
file extensions.

If a file extension is claimed by two document types where one type is associated with a server
model and the other is not, the latter document type gets preference. Suppose you have a
document type called SAM, which is not associated with a server model, that has a file
extension of .sam, and you add this file extension to the ASP-JS document type. When a
Dreamweaver user opens a file that has a .sam extension, Dreamweaver assigns the SAM
document type to it, not ASP-JS.

N
O

T
E

String identifiers, such as myJSPDocType/Description in the previous example, must
be unique within the application. Dreamweaver, when it starts, parses all XML files
within the Configuration/Strings folder and loads these unique strings.
Extensible document types in Dreamweaver 45

Opening a document in Dreamweaver
When a user opens a file, Dreamweaver follows a series of steps to identify the document type
based on the file’s extension.

If Dreamweaver successfully finds a unique document type, Dreamweaver uses that type and
loads the associated server model (if any) for the document that the user is opening. If the user
has selected to use Dreamweaver UltraDev 4 server behaviors, Dreamweaver loads the
appropriate UltraDev 4 server model.

If the file extension maps to more than one document type, Dreamweaver performs the
following actions:

■ If a static document type is among the list of document types, it gets preference.
■ If all the document types are dynamic, Dreamweaver creates an alphabetical list of the

server models that are associated with these document types and then calls the
canRecognizeDocument() function in each server model (see
“canRecognizeDocument()” on page 424). Dreamweaver collects the return values and
determines which server model returned the highest valued positive integer. The
document type whose server model returns the highest integer is the document type that
Dreamweaver assigns to the document being opened. If, however, more than one server
model returns the same integer, Dreamweaver goes through the alphabetical list of those
server models, picks the first in the list, and uses that document type. For example, if both
ASP-JS and ASP-VB claim an ASP document and if their respective
canRecognizeDocument() functions return equal values, Dreamweaver assigns the
document to ASP-JS (because, alphabetically, ASP-JS is first).

If Dreamweaver cannot map the file extension to a document type, Dreamweaver opens the
document as a text file.

Customizing workspace layouts
Dreamweaver lets you customize the workspace layout, including which panels are in the
specified layout, as well as other attributes such as the positions and sizes of the panels, their
collapsed or expanded states, the position and size of the application window, and the position
and size of the Document window.

The workspace layout is specified in XML files stored in the Configuration/Workspace
layouts folder. The following sections describe the syntax of the XML tags. Optional
attributes are marked in the attribute lists with curly braces ({}); all attributes not marked
with curly braces are required.
46 Customizing Dreamweaver

<panelset>

Description

Outermost tag, which signals the start of the panel set description.

Attributes

None.

Contents

This tag may contain one or more <application>, <document>, or <panelset> tags.

Container

None.

Example
<panelset>
<!-- panelset tags here -->
</panelset>

<application>

Description

Specifies the application window’s initial position and size.

Attributes
rect, maximize

■ rect specifies the position and size of the application window. The string is in the form
“left top right bottom” specified as integers.

■ maximize is a Boolean value: true if the application window should be maximized on
startup; false otherwise. The default value is true.

Contents

None.

Container

This tag must be contained in a panelset tag.

Example
<panelset>

<application rect=”0 0 1000 1200” maximize=”false”>
</application>

</panelset>
Extensible document types in Dreamweaver 47

<document>

Description

Specifies the Document window’s initial position and size.

Attributes
rect, maximize

■ rect specifies the position and size of the Document window. The string is in the form
“left top right bottom” specified as integers. If the maximize value is true, the rect value
is ignored.

■ maximize is a Boolean value: true if the Document window should be maximized on
startup; false otherwise. The default value is true.

Contents

None.

Container

This tag must be contained in a panelset tag.

Example
<panelset>

<document rect=”100 257 1043 1200” maximize=”false”>
</document>

</panelset>

<panelframe>

Description

Describes an entire panel group.

Attributes
x, y, {width, height}, dock, collapse

■ x specifies the left position of the panel group. Its value can be an integer or a value that is
relative to the screen. If the integer value is not on the screen, the panel group appears in
the closest screen position possible to make it visible on the screen. Relative values can be
“left” or “right”; these values indicate which edge of the panel group to align with which
edge of the virtual screen.
48 Customizing Dreamweaver

■ y specifies the top position of the panel group. Its value can be an integer or a value that is
relative to the screen. If the integer value is not on the screen, the panel group appears in
the closest screen position possible to make it visible on the screen. Relative values can be
“top” or “bottom”; these values indicate which edge of the panel group to align with which
edge of the virtual screen.

■ width is the width, in pixels, of the panel group. This attribute is optional. If the width is
not specified, the built-in default for the panel group is used.

■ height is the height, in pixels, of the panel group. This attribute is optional. If the height
is not specified, the built-in default for the panel group is used.

■ dock is a string value that specifies to which edge of the application frame to dock the
panel group. This attribute is ignored on the Macintosh because panel groups cannot be
docked.

■ collapse is a Boolean value: true indicates that the panel group is collapsed: false
indicates that the panel group is expanded. This attribute is ignored on the Macintosh
because panels are floating.

Contents

This tag must contain one or more panelcontainer tags.

Container

This tag must be contained in a panelset tag.

Example
<panelset>

<panelframe rect=”196 453 661 987” visible=”true” dock=”floating”>
<!-- panelcontainer tags here -->

</panelframe>
</panelset>

<panelcontainer>

Description

Describes an entire panel group.

Attributes
expanded, title,{ height,} activepanel, visible, maximize, maxRestorePanel,

maxRestoreIndex, maxRect, tabsinheader

■ expanded is a Boolean value: true if the panel is expanded; false otherwise.
■ title is a string that specifies the title of the panel.
Extensible document types in Dreamweaver 49

■ height is an integer that specifies the height of the panel in pixels. This attribute is
optional. If height is not specified, the build-in default for each panel is used.

■ activepanel is a number that is the ID of the front panel.
■ visible is a Boolean value: true if the panel is visible; false otherwise.
■ maximize is a Boolean value: true if the panel should be maximized when it appears

initially; false otherwise.
■ maxRestorePanel is a number that is the ID of the panel to restore to.
■ maxRect is a string that indicates the position and size of the panel when it is maximized.

The string is in the form “left top right bottom”, specified as integers.
■ tabsinheader is a Boolean value: true indicates that tabs should be positioned in the

header instead of below the header bar; false otherwise.

Contents

This tag must contain one or more panel tags.

Container

This tag must be contained in a panelframe tag.

Example
<panelset>

<panelframe rect=”196 453 661 987” visible=”true” dock=”floating”>
<panelcontainer title=”Color” height=”250” visible=”true”

expanded=”true” activepanel=”20”>
<!-- panel tags here --->

</panelcontainer>
</panelframe>

</panelset>

<panel>

Description

Specifies the panel that appears in the panel container.

Attributes
id, visibleTab

N
O

T
E

Width is inherited from the parent.
50 Customizing Dreamweaver

■ id is a number that indicates the ID for the panel. The following table contains a list of
values:

■ visibleTab is a Boolean value: true if the tab and the panel should be visible; false
otherwise.

Contents

None.

Product ID Panel

Flash 1 Properties

2 Actions

3 Align

4 Behaviors

5 Components

6 Component Inspector

7 Color Mixer

8 Color Swatches

9 History

10 Info

11 Library

12 Movie Explorer

13 Output

14 Properties

15 Project

16 Transform

17 Scene

18 Strings

19 Debugger

101–110 Library Panels

Dreamweaver 1 Properties

Zorn 1 Properties
Extensible document types in Dreamweaver 51

Container

This tag must be contained in a panelcontainer tag.

Example
<panelset>

<panelframe rect=”196 453 661 987” visible=”true” dock=”floating”>
<panelcontainer title=”Color” height=”250” visible=”true”

expanded=”true” activepanel=”20”>
<panel id=”20”></panel>

</panelcontainer>
</panelframe>

</panelset>

Customizing the Code view toolbar
The Code view toolbar displays 15 buttons initially. This is a subset of the buttons that are
available. You can customize the Code view toolbar by changing the buttons that appear on
the toolbar and the order in which they appear by editing the file Configuration/Toolbars/
Toolbars.xml. You can also insert your own buttons into the toolbar through the Extension
Manager.

To change the order of button:

1. Open the file Configuration/Toolbars/toolbars.xml.

2. Locate the Code view toolbar section by searching for the following comment:
<!-- Code view toolbar -->

3. Copy and paste the button tags so that they appear in the order you want on the toolbar.

4. Save the file.

To remove a button:

1. Open the file Configuration/Toolbars/toolbars.xml.

2. Locate the Code view toolbar section by searching for the following comment:
<!-- Code view toolbar -->

3. Surround the button you want to remove with a comment.

The following example shows a button that is surrounded by comments so that it does not
appear on the toolbar:
<!-- remove button from Code view toolbar

<button id="DW_ExpandAll"
image="Toolbars/images/MM/T_ExpandAll_Sm_N.png"
disabledImage="Toolbars/images/MM/T_ExpandAll_Sm_D.png"
tooltip="Expand All"
domRequired="false"
52 Customizing Dreamweaver

enabled="dw.getFocus(true) == 'textView' || dw.getFocus(true) == ¬
'html'"

command="if (dw.getFocus(true) == 'textView' || dw.getFocus(true) ¬
== 'html') dw.getDocumentDOM().source.expandAllCodeFragments();"

update="onViewChange" />
-->

4. Save the file.

To make any buttons that are not visible in the toolbar appear, you remove the comment that
surrounds a button in the XML file.
Extensible document types in Dreamweaver 53

54 Customizing Dreamweaver

2

CHAPTER 2

Customizing Code View
Macromedia Dreamweaver 8 uses two devices in Code view that help you enter code quickly
and make your code readable and accurate. These two devices are code hints and code
coloring. In addition, Dreamweaver validates your code for the target browsers that you
specify and allows you to change default HTML formatting.

You can customize code hints and code coloring by modifying the XML files that implement
them. You can add items to the Code Hints menus by adding entries to the CodeHints.xml
file. You can modify color schemes by modifying the code coloring style file, Colors.xml, or
you can change code coloring schemes or add new ones by modifying one of the code coloring
syntax files, such as CodeColoring.xml. You can also modify the cascading style sheet (CSS)
profile file for your target browser to affect how Dreamweaver validates CSS properties and
values. You can also change Dreamweaver’s default HTML formatting through the
Preferences dialog box. The following sections describe how to customize these features.

Code hints
Code hints are menus that Dreamweaver opens when you type certain character patterns in
the Code view. Code hints offer a typing shortcut by providing a list of strings that potentially
complete the string you are typing. If the string you are typing appears in the menu, you can
scroll to it and press Enter or Return to complete your entry. For example, when you type <, a
pop-up menu shows a list of tag names. Instead of typing the rest of the tag name, you can
select the tag from the menu to include it in your text.

Dreamweaver loads Code Hints menus from the CodeHints.xml file in the Configuration/
CodeHints folder. You can add Code Hints menus to Dreamweaver by defining them in the
CodeHints.xml file. After Dreamweaver loads the contents of CodeHints.xml, you can also
add new Code Hints menus dynamically through JavaScript. For example, JavaScript code
populates the list of session variables in the Bindings panel. You can use the same code to add
a Code Hints menu, so when a user types "Session." in Code view, Dreamweaver displays a
menu of session variables. For information on using JavaScript to add or modify a Code Hints
menu, see Code Functions in the Dreamweaver API Reference.
55

Dreamweaver cannot express some types of Code Hints menus through the XML file or the
JavaScript API. Both the CodeHints.xml file and the JavaScript API expose a useful subset of
the Code Hints engine, but some Dreamweaver functionality is not accessible. For example,
there is no JavaScript hook to open a color picker, so Dreamweaver cannot express the
Attribute Values menu using JavaScript. You can only open a menu of text items from which
you can insert text.

The CodeHints.xml file
The CodeHints.xml file contains the following entities:

■ A list of all the menu groups
Dreamweaver displays the list of menu groups when you select the Code Hints category
from the Preferences dialog box. You can open the Preferences dialog box by selecting
Edit > Preferences. Dreamweaver MX provides the following menu groups or types of
Code Hints menus: Tag Names, Attribute Names, Attribute Values, Function Arguments,
Object Methods and Variables, and HTML Entities.

■ The description for each menu group
The description appears in the Preferences dialog box for the Code Hints category when
you select the menu group in the list. The description for the selected entry appears below
the menu group list.

■ Code Hints menus
A menu consists of a pattern that triggers the Code Hints menu and a list of menu items.
For example, a pattern such as "&" could trigger a menu such as "&", ">", "<".

The following example shows the format of the CodeHints.xml file:
<codehints>
<menugroup name="HTML Entities" enabled="true"

id="CodeHints_HTML_Entities">
<description>
<![CDATA[When you type a '&', a drop-down menu shows

a list of HTML entities. The list of HTML entities
is stored in Configuration/CodeHints.xml.]]>

</description>

<menu pattern="&">
 <menuitem value="&amp;" texticon="&"/>
 <menuitem value="&lt;" icon="lessThan.gif"/>

</menu>
</menugroup>

N
O

T
E

When you insert text, the insertion pointer is placed after the inserted string.
56 Customizing Code View

<menugroup name="Tag Names" enabled="true" id="CodeHints_Tag_Names">
<description>

 <![CDATA[When you type '<', a drop-down menu shows
 all possible tag names. You can edit the list of tag
 names using the
 Tag Library Editor

]]>
</description>

</menugroup>

<menugroup name="Function Arguments" enabled="true"
id="CodeHints_Function_Arguments">

<description>
...

</description>
<function pattern="ArraySort(array, sort_type, sort_order)"

doctypes="CFML"/>
<function pattern="Response.addCookie(Cookie cookie)"

doctypes="JSP"/>
</menugroup>
<codehints>

Code Hints tags
The CodeHints.xml file contains the following tags, which define Code Hints menus. You
can use these tags to define additional Code Hints menus.

<codehints>

Description

The codehints tag is the root of the CodeHints.xml file.

Attributes

None.

Contents

One or more menugroup tags.

Container

None.

Example
<codehints>
Code hints 57

<menugroup>

Description

Each menugroup tag corresponds to a type of menu. You can see the menu types that
Dreamweaver defines by selecting the Code Hints category from the Preferences dialog box.
Select Preferences from the Edit menu to display the Preferences dialog box.

You can create a new menu group or add to an existing group. Menu groups are logical
collections of menus that the user might want to enable or disable using the Preferences dialog
box.

Attributes
name, enabled, id

■ The name attribute is the localized name that appears in the list of menu groups in the
Code Hints category of the Preferences dialog box.

■ The enabled attribute indicates whether the menu group is currently checked or enabled.
A menu group that is enabled appears with a check mark next to it in the Code Hints
category of the Preferences dialog box. Assign a true value to enable the menu group or a
false value to disable a menu group.

■ The id attribute is a nonlocalized identifier that refers to the menu group.

Contents

The description, menu, and function tags.

Container

The codehints tag.

Example

<menugroup name="Session Variables" enabled="true" id="Session_Code_Hints">

<description>

Description

The description tag contains text that Dreamweaver displays when you select the menu
group from the Preferences dialog box. The description text displays below the list of menu
groups. The description text might optionally contain a single a tag where the href attribute
must be a JavaScript URL that Dreamweaver executes if the user clicks the link. Use the XML
CDATA construct to enclose any special or illegal characters in the string so that
Dreamweaver treats them as text.
58 Customizing Code View

Attributes

None.

Contents

Description text.

Container

The menugroup tag.

Example
<description>
<![CDATA[To add or remove tags and attributes, use the Tag Library
Editor.

]]>
</description>

<menu>

Description

This tag describes a single pop-up menu. Dreamweaver opens the menu whenever the user
types the last character of the string in the pattern attribute. For example, the menu that
shows the contents of a Session variable might have a pattern attribute that is equal to
"Session.".

Attributes
pattern, doctypes, casesensitive

■ The pattern attribute specifies the pattern of typed characters that cause Dreamweaver to
open the Code Hints menu. If the first character of the pattern is a letter, number, or
underscore, Dreamweaver displays the menu only if the character that precedes the
pattern in the document is not a letter, number, or underscore. For example, if the pattern
is "Session.", Dreamweaver does not display the menu if the user types "my_Session.".

■ The doctypes attribute specifies that the menu is active only for the specified document
types. This attribute lets you specify different lists of function names for ASP-JavaScript
(ASP-JS), Java Server Pages (JSP), Macromedia ColdFusion, and so on. You can specify
the doctypes attribute as a comma-separated list of document type IDs. See the
Dreamweaver Configuration/Documenttypes/MMDocumentTypes.xml file for a list of
Dreamweaver document types.
Code hints 59

■ The casesensitive attribute specifies whether the pattern is case-sensitive. The possible
values for the casesensitive attribute are true, false, or a subset of the comma-
separated list that you specify for the doctypes attribute. The list of document types lets
you specify that the pattern is case-sensitive for some document types but not for others.
The value defaults to false if you omit this attribute. If the casesensitive attribute is a
value of true, the Code Hints menu will open only if the text that the user types exactly
matches the pattern that the pattern attribute specifies. If the casesensitive attribute is
a value of false, the menu appears even if the pattern is lowercase and the text is
uppercase.

Contents

The menuitem tag.

Container

The menugroup tag.

Example
<menu pattern="CGI." doctypes="ColdFusion">

<menuitem>

Description

This tag specifies the text for an item in a Code Hints pop-up menu. The menuitem tag also
specifies the value to insert into the text when you select the item.

Attributes

label, value {icon}, {texticon}

■ The label attribute is the string that Dreamweaver displays in the pop-up menu.
■ The value attribute is the string that Dreamweaver inserts in the document when you

select the menu item. When the user selects the item from the menu and presses Enter or
Return, Dreamweaver replaces all the text that the user typed since the menu opened. The
user typed the pattern-matching characters before the menu opened, so Dreamweaver
does not insert them again. For example, if you want to insert &, which is the HTML
entity for ampersand (&), you can define the following menu and menuitem tags:
<menu pattern="&">
<menuitem label="&amp;" value="amp;" texticon="&"/>

The value attribute does not include the ampersand (&) character because the user typed
it before the menu opened.
60 Customizing Code View

■ The icon attribute, which is optional, specifies the path to an image file that
Dreamweaver displays as an icon to the left of the menu text. The location is expressed as
a URL, relative to the Configuration folder.

■ The texticon attribute, which is optional, specifies a text string to appear in the icon area
instead of an image file. This attribute is used for the HTML Entities menu.

Contents

None.

Container

The menu tag.

Example
<menuitem label="CONTENT_TYPE" value=""CONTENT_TYPE")"

icon="shared/mm/images/hintMisc.gif" />

<function>

Description

This tag replaces the menu tag for specifying function arguments and object methods for a
Code Hints pop-up menu. When you type a function or method name in Code view,
Dreamweaver opens a menu of function prototypes, displaying the current argument in bold.
Each time you type a comma, Dreamweaver updates the menu to display the next argument
in bold. For example, if you typed the function name ArrayAppend in a Coldfusion
document, the Code Hints menu would display ArrayAppend(array, value). After you
type the comma following array, the menu updates to show ArrayAppend(array, value).

For object methods, when you type the object name, Dreamweaver opens a menu of the
methods that are defined for that object.

The set of recognized functions is stored in the Dreamweaver Configuration/CodeHints.xml
file.

Attributes
pattern, doctypes, casesensitive
Code hints 61

■ The pattern attribute specifies the name of the function and its argument list. For
methods, the pattern attribute describes the name of the object, the name of the method,
and the method’s arguments. For a function name, the Code Hints menu appears when
the user types functionname(. The menu shows the list of arguments for the function.
For an object method, the Code Hints menu appears when the user types objectname.
(including the period). This menu shows the methods that have been specified for the
object. After that, the Code Hints menu opens a list of the arguments for the method in
the same way it does for a function.

■ The doctypes attribute specifies that the menu is active only for the specified document
types. This attribute lets you specify different lists of function names for ASP-JavaScript
(ASP-JS), Java Server Pages (JSP), Macromedia ColdFusion, and so on. You can specify
the doctypes attribute as a comma-separated list of document type IDs. For a list of
Dreamweaver document types, see the Dreamweaver Configuration/Documenttypes/
MMDocumentTypes.xml file.

■ The casesensitive attribute specifies whether the pattern is case-sensitive. The possible
values for the casesensitive attribute are true, false, or a subset of the comma-
separated list that you specify for the doctypes attribute. The list of document types lets
you specify that the pattern is case-sensitive for some document types but not for others.
The value defaults to false if you omit this attribute. If the casesensitive attribute is a
value of true, the Code Hints menu appears only if the text that the user types exactly
matches the pattern that the pattern attribute specifies. If the casesensitive attribute is
a value of false, the menu appears even if the pattern is lowercase and the text is
uppercase.

Contents

None.

Container

The menugroup tag.

Example
// function example
<function pattern="CreateDate(year, month, day)" DOCTYPES="ColdFusion" />
// object method example
<function pattern="application.getAttribute(String name)" DOCTYPES="JSP" />
62 Customizing Code View

Code coloring
Dreamweaver lets you customize or extend the code coloring schemes that you see in Code
view so that you can add new keywords to a scheme or add code coloring schemes for new
document types. If you develop JavaScript functions to use in your client-side script, for
example, you can add the names of these functions to the keywords section so that they
display in the color that is specified in Preferences. Likewise, if you develop a new
programming language for an application server and you want to distribute a new document
type to help Dreamweaver users build pages with it, you could add a code coloring scheme for
the document type.

Dreamweaver provides the JavaScript function dreamweaver.reloadCodeColoring(),
which enables you to reload code coloring XML files that might have been edited manually.
For more information on this function, see the Dreamweaver API Reference.

To update a code coloring scheme or add a new scheme, you must modify the code coloring
definition files.

Code coloring files
Dreamweaver defines code coloring styles and schemes in XML files that reside in the
Configuration/CodeColoring folder. A code coloring style file defines styles for fields that are
defined in syntax definitions. It has a root node of <codeColors>. A code coloring scheme
file defines code coloring syntax and has a root node of <codeColoring>.

The code coloring style file that Dreamweaver provides is Colors.xml. The code coloring
syntax files that Dreamweaver provides are CodeColoring.xml, ASP JavaScript.xml, ASP
VBScript.xml, ASP.NET CSharp.xml, and ASP.NET VB.xml.

The following excerpt from the Colors.xml file illustrates the hierarchy of tags in a code
coloring style file:
<codeColors>

<colorGroup>
<syntaxColor id="CodeColor_HTMLEntity" bold="true" italic="true" />
<syntaxColor id="CodeColor_JavascriptNative" text="#009999" />
<syntaxColor id="CodeColor_JavascriptNumber" text="#FF0000" />

…
<tagColor id="CodeColor_HTMLStyle" text="#990099" />

N
O

T
E

The code coloring in the following examples does not appear on a black and white
printed page. To see the code coloring in these examples, see Dreamweaver Help >
Extensions > Extending Dreamweaver or see the PDF file for Extending Dreamweaver in
the Documentation folder on your installation CD.
Code coloring 63

<tagColor id="CodeColor_HTMLTable" text="#009999" />
<syntaxColor id="CodeColor_HTMLComment" text="#999999" italic="true" /

>

…
</colorGroup>

</codeColors>

Colors are specified in red-green-blue (RGB) hexadecimal values. For example, the statement
text="009999" in the preceding XML code assigns a blue-green (teal) color to the ID
"CodeColor_JavascriptNative".

The following excerpt from the codeColoring.xml file illustrates the hierarchy of tags in a
code coloring scheme file, and it also illustrates the relationship between the styles file and the
scheme file:
<codeColoring>

<scheme name="Text" id="Text" doctypes="Text" priority="1">
<ignoreTags>Yes</ignoreTags>
<defaultText name="Text" id="CodeColor_TextText" />
<sampleText doctypes="Text">

<![CDATA[Default file syntax highlighting.
The quick brown fox
jumped over the lazy dog.
]]>

</sampleText>
</scheme>

<scheme name="HTML" id="HTML" doctypes="ASP.NET_VB,ASP.NET_CSharp,ASP-
JS,ASP-
VB,ColdFusion,CFC,HTML,JSP,EDML,PHP_MySQL,DWTemplate,LibraryItem,WML"
priority="50">

<ignoreCase>Yes</ignoreCase>
<ignoreTags>No</ignoreTags>
<defaultText name="Text" id="CodeColor_HTMLText" />
<defaultTag name="Other Tags" id="CodeColor_HTMLTag" />
<defaultAttribute />
<commentStart name="Comment" id="CodeColor_HTMLComment"><![CDATA[<!--

]]></commentStart>
. . .

<tagGroup name="HTML Anchor Tags" id="CodeColor_HTMLAnchor"
taglibrary="DWTagLibrary_html" tags="a" />
<tagGroup name="HTML Form Tags" id="CodeColor_HTMLForm"
taglibrary="DWTagLibrary_html" tags="select,form,input,option,textarea"
/>

. . .
</codeColoring>
64 Customizing Code View

Notice that the syntaxColor and tagColor tags in the Colors.xml file assign color and style
values to an id string value. The id value is then used in the codeColoring.xml file to assign a
style to a scheme tag. For example, the defaultTag tag in the codeColoring.xml excerpt has
an id of "CodeColor_HTMLComment". In the Colors.xml file, the id value of
"CodeColor_HTMLComment" is assigned a text= value of "#999999", which is gray.

Dreamweaver includes the following code coloring schemes: Default, HTML, JavaScript,
ASP_JavaScript, ASP_VBScript, JSP, and ColdFusion. The Default scheme has an id value
equal to "Text". Dreamweaver uses the Default scheme for document types that do not have
a defined code coloring scheme.

A code coloring file contains the following tags.

<scheme>

Description

The scheme tag specifies code coloring for a block of code text. You can have multiple
schemes within a file to specify different coloring for different scripting or tag languages. Each
scheme has a priority that lets you nest a block of text with one scheme inside a block of text
with a different scheme.

Attributes

name, id, priority, doctypes

■ name="scheme_name" A string that assigns a name to the scheme. Dreamweaver shows
the scheme name in the Edit Coloring Scheme dialog box. Dreamweaver shows a
combination of scheme name and field name, such as HTML Comment. If you do not
specify a name, the fields for the scheme do not appear in the Edit Coloring Scheme
dialog box. For more information about the Edit Coloring Scheme dialog box, see
“Editing schemes” on page 87.

■ id="id_string" Required. An identifier string that maps color and style to this syntax
item.

■ priority="string" The value ranges from "1" to "99". Highest priority is "1".
Specifies the precedence of the scheme. Blocks that are inside blocks with higher priority
are ignored; blocks that are inside blocks with the same or lower priority take precedence.
The priority defaults to "50" if you do not specify one.

■ doctypes="doc_list" Optional. Specifies a comma-separated list of the document
types to which this code coloring scheme applies. This value is necessary to resolve
conflicts in which different start and end blocks use the same extensions.
Code coloring 65

Contents

blockEnd, blockStart, brackets, charStart, charEnd, charEsc, commentStart,
commentEnd, cssProperty, cssSelector, cssValue, defaultAttribute, defaultText,
endOfLineComment, entity, functionKeyword, idChar1, idCharrest, ignoreCase,
ignoreMMTParam, ignoreTags, keywords, numbers, operators, regexp, sampletext,
searchPattern, stringStart, stringEnd, stringEsc, urlProtocol, urlProtocols

Container

The codeColoring tag.

Example
<scheme name="Text" id="Text" doctypes="Text" priority="1">

<blockEnd>

Description

Optional. Text values that delimit the end of the text block for this scheme. The blockEnd
and blockStart tags must be paired and the combination must be unique. Values are not
evaluated as case-sensitive. The blockEnd value can be one character. Multiple instances of
this tag are allowed. For more information on blockEnd strings, see “Wildcard characters”
on page 84.

Attributes

None.

Example
<blockEnd><![CDATA[--->]]></blockEnd>

<blockStart>

Description

Optional. Specified only if the coloring scheme can be embedded inside a different coloring
scheme. The blockStart and blockEnd tags must be paired, and the combination must be
unique. Values are not evaluated as case-sensitive. The blockStart value must be two or
more characters in length. Multiple instances of this tag are allowed. For more information on
blockStart strings, see “Wildcard characters” on page 84. For information on the
blockStart scheme attribute, see “Scheme block delimiter coloring” on page 80.
66 Customizing Code View

Attributes

canNest, doctypes, id, name, scheme

■ canNest Specifies whether the scheme can nest inside itself. Values are "Yes" or "No".
The default is "No".

■ doctypes="doc_type1, doc_type2,…" Required. Specifies a comma-separated list of
document types into which you can nest this code coloring scheme. Document types are
defined in the Dreamweaver Configuration/Document Types/MMDocumentTypes.xml
file.

■ id="id_string" Required when scheme="customText". An identifier string that maps
color and style to this syntax item.

■ name="display_name" A string that appears in the Edit Coloring Scheme dialog box
when scheme="customText".

■ scheme Required. This defines how the blockStart and blockEnd strings are colored.
For information on the possible values for the scheme attribute, see “Scheme block
delimiter coloring” on page 80.

Example
<blockStart doctypes="ColdFusion,CFC" scheme="innerText"

canNest="Yes"><![CDATA[<!---]]></blockStart>

<brackets>

Description

A list of characters that represent brackets.

Attributes

name, id

■ name="bracket_name" A string that assigns a name to the list of brackets.
■ id="id_string" Required. An identifier string that maps color and style to this syntax

item.

Example
<brackets name="Bracket" id="CodeColor_JavaBracket"><![CDATA[{[()]}]]></

brackets>
Code coloring 67

<charStart>

Description

Contains a text string that represents the delimiter of the start of a character. You must specify
the charStart and charEnd tags in pairs. Multiple charStart … charEnd pairs are allowed.

Attributes

None.

Example
<charStart><![CDATA[']]></charStart>

<charEnd>

Description

Contains a text string that represents the delimiter of the end of a character. You must specify
the charStart and charEnd tags in pairs. Multiple charStart … charEnd pairs are allowed.

Attributes

None.

Example
<charEnd><![CDATA[']]></charEnd>

<charEsc>

Description

Contains a text string that represents an escape character. Multiple charEsc tags are allowed.

Attributes

None.

Example
<charEsc><![CDATA[\]]></charEsc>

<commentStart>

Description

A text string that delimits the start of a comment block. You must specify the commentStart
and commentEnd tags in pairs. Multiple commentStart…/commentEnd pairs are allowed.
68 Customizing Code View

Attributes

None.

Example
<commentStart><![CDATA[<%--]]></commentStart>

<commentEnd>

Description

A text string that delimits the end of a comment block. You must specify the commentStart
and commentEnd tags in pairs. Multiple commentStart…/commentEnd pairs are allowed.

Attributes

None.

Example
<commentEnd><![CDATA[--%>]]></commentEnd>

<cssImport/>

Description

An empty tag that indicates the code coloring rule for the @import function of the style
element in a CSS.

Attributes

name, id

name="cssImport_name" A string that assigns a name to the CSS @import function.

id="id_string" Required. An identifier string that maps color and style to this syntax
item.

Example
<cssImport name="@import" id="CodeColor_CSSImport" />

<cssMedia/>

Description

An empty tag that indicates the code coloring rule for the @media function of the style
element in a CSS.
Code coloring 69

Attributes

name, id

■ name="cssMedia_name" A string that assigns a name to the CSS @media function.
■ id="id_string" Required. An identifier string that maps color and style to this syntax

item.

Example
<cssMedia name="@media" id="CodeColor_CSSMedia" />

<cssProperty/>

Description

An empty tag that indicates CSS rules and holds code coloring attributes.

Attributes

name, id

■ name="cssProperty_name" A string that assigns a name to the CSS property.
■ id="id_string" Required. An identifier string that maps color and style to this syntax

item.

Code Color Preference

CSS Property

Example
<cssProperty name="Property" id="CodeColor_CSSProperty" />

<cssSelector/>

Description

An empty tag that indicates CSS rules and holds code coloring attributes.

Attributes

name, id

■ name="cssSelector_name" A string that assigns a name to the CSS Selector.
■ id="id_string" Required. An identifier string that maps color and style to this syntax

item.

Example
<cssSelector name="Selector" id="CodeColor_CSSSelector" />
70 Customizing Code View

<cssValue/>

Description

An empty tag that indicates CSS rules and holds code coloring attributes.

Attributes

name, id

■ name="cssValue_name" A string that assigns a name to the CSS value.
■ id="id_string" Required. An identifier string that maps color and style to this syntax

item.

Example
<cssValue name="Value" id="CodeColor_CSSValue" />

<defaultAttribute>

Description

Optional. This tag applies only to tag-based syntax (that is, where ignoreTags="No"). If this
tag is present, then all tag attributes are colored according to the style assigned to this tag. If
this tag is omitted, then attributes are colored the same as the tag.

Attributes

name

■ A string that assigns a name to the default attribute.

Example
<defaultAttribute name="Attribute"/>

<defaultTag>

Description

This tag is used to specify the default color and style for tags in a scheme.

Attributes

name, id

■ name="display_name" A string that Dreamweaver displays in the code color editor.
■ id="id_string" Required. An identifier string that maps color and style to this syntax

item.
Code coloring 71

Example
<defaultTag name="Other Tags" id="CodeColor_HTMLTag" />

<defaultText/>

Description

Optional. If this tag is present, all text that is not defined by any other tag is colored according
to the style assigned to this tag. If this tag is omitted, black text is used.

Attributes

name, id

■ name="cssSelector_name" A string that assigns a name to the CSS Selector.
■ id="id_string" Required. An identifier string that maps color and style to this syntax

item.

Example
<defaultText name="Text" id="CodeColor_TextText" />

<endOfLineComment>

Description

A text string that delimits the start of a comment that continues until the end of the current
line. Multiple endOfLineComment…/endOfLineComment tags are allowed.

Attributes

None.

Example
<endOfLineComment><![CDATA[//]]></endOfLineComment>

<entity/>

Description

An empty tag that indicates that HTML special characters should be recognized and hold
coloring attributes.
72 Customizing Code View

Attributes

name, id

■ name="entity_name" A string that assigns a name to the entity.
■ id="id_string" Required. An identifier string that maps color and style to this syntax

item.

Example
<entity name="Special Characters" id="CodeColor_HTMLEntity" />

<functionKeyword>

Description

Identifies keywords that define a function. Dreamweaver uses these keywords to perform code
navigation. Multiple functionKeyword tags are allowed.

Attributes

name, id

■ name="functionKeyword_name" A string that assigns a name to the functionKeyword
block.

■ id="id_string" Required. An identifier string that maps color and style to this syntax
item.

Example
<functionKeyword name="Function Keyword"

id="CodeColor_JavascriptFunction">function</functionKeyword>

<idChar1>

Description

A list of characters, each of which Dreamweaver can recognize as the first character in
an identifier.

Attributes

name, id

■ name="idChar1_name" A string that assigns a name to the list of identifier characters.
■ id="id_string" Required. An identifier string that maps color and style to this syntax

item.

Example
<idChar1>_$abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ</idChar1>
Code coloring 73

<idCharRest>

Description

A list of characters that are to be recognized as the remaining characters in an identifier. If
idChar1 is not specified, all characters of the identifier are validated against this list.

Attributes

name, id

■ name="idCharRest_name" A string that assigns a name to the stringStart block.
■ id="id_string" Required. An identifier string that maps color and style to this syntax

item.

Example
<idCharRest name="Identifier"

id="CodeColor_JavascriptIdentifier">_$abcdefghijklmnopqrstuvwxyzABCDEFGH
IJKLMNOPQRSTUVWXYZ0123456789</idCharRest>

<ignoreCase>

Description

Specifies whether case should be ignored when comparing tokens to keywords. Values are Yes
or No. The default is Yes.

Attributes

None.

Example
<ignoreCase>Yes</ignoreCase>

<ignoreMMTParams>

Description

Specifies whether the MMTInstance:Param, <!-- InstanceParam, or <!-- #InstanceParam
tags should be colored specially. Values are Yes and No; the default is Yes. This handles
proper coloring in pages that use Templates.

Attributes

None.

Example
<ignoreMMTParams>No</ignoreMMTParams>
74 Customizing Code View

<ignoreTags>

Description

Specifies whether markup tags should be ignored. Values are Yes and No; the default is Yes.
Set to No when syntax is for tag markup language that is delimited by < and >. Set to Yes
when syntax is for a programming language.

Attributes

None.

Example
<ignoreTags>No</ignoreTags>

<isLocked>

Description

Specifies whether the text that is matched by this scheme is locked from being edited in the
Code view. Values are Yes and No. Default is No.

Attributes

None.

Example
<isLocked>Yes</isLocked>

<keyword>

Description

A string of text that defines a keyword. Multiple keyword tags are allowed. A keyword may
start with any character, but subsequent characters may only be a-z, A-Z, 0-9, _, $, or @.

The code color is specified by the containing keyword tags.

Attributes

None.

Example
<keyword>.getdate</keyword>
Code coloring 75

<keywords>

Description

List of keywords for type specified in category attribute. Multiple keywords tags are allowed.

Attributes

name, id

■ name="keywords_name" A string that assigns a name to the list of keywords.
■ id="id_string" Required. An identifier string that maps color and style to this syntax

item.

Contents
<keyword></keyword>

Example
<keywords name="Reserved Keywords" id="CodeColor_JavascriptReserved">

<keyword>break</keyword>
<keyword>case</keyword>

</keywords>

<numbers/>

Description

An empty tag that specifies numbers that should be recognized and also holds color attributes.

Attributes

name, id

■ name="number_name" A string that assigns a name to the numbers tag.
■ id="id_string" Required. An identifier string that maps color and style to this syntax

item.

Example
<numbers name="Number" id="CodeColor_CFScriptNumber" />

<operators>

Description

A list of characters to be recognized as operators.
76 Customizing Code View

Attributes

name, id

■ name="operator_name" A string that assigns a name to the list of operator characters.
■ id="id_string" Required. An identifier string that maps color and style to this syntax

item.

Example
<operators name="Operator" id="CodeColor_JavaOperator"><![CDATA[+-*/

%<>!?:=&|^~]]></operators>

<regexp>

Description

Specifies a list of searchPattern tags.

Attributes

name, id, delimiter, escape

■ name="stringStart_name" A string that assigns a name to the list of search pattern
strings.

■ id="id_string" Required. An identifier string that maps color and style to this syntax
item.

■ delimiter The character or string that starts and ends a regular expression.
■ escape The character or string that signals special character processing, known as the

“escape” character or string.

Contents
<searchPattern></searchPattern>

Example
<regexp name="RegExp" id="CodeColor_JavascriptRegexp" delimiter="/"

escape="\\">
<searchPattern><![CDATA[(\s*/\e*\\/]]></searchPattern>
<searchPattern><![CDATA[=\s*/\e*\\/]]></searchPattern>

</regexp>

<sampleText>

Description

Representative text that appears in the Preview window of the Edit Coloring Scheme dialog
box. For more information on the Edit Coloring Scheme dialog box, see “Editing schemes”
on page 87.
Code coloring 77

Attributes
doctypes

■ doctypes="doc_type1, doc_type2,...” The document types for which this sample
text appears.

Example
<sampleText doctypes="JavaScript"><![CDATA[/* JavaScript */
function displayWords(arrayWords) {

for (i=0; i < arrayWords.length(); i++) {
// inline comment
alert("Word " + i + " is " + arrayWords[i]);

}
}

var tokens = new Array("Hello", "world");
displayWords(tokens);
]]></sampleText>

<searchPattern>

Description

A string of characters that define a regular search pattern using supported wildcard characters.
Multiple searchPattern tags are allowed.

Attributes

None.

Container

The regexp tag.

Example
<searchPattern><![CDATA[(\s*/\e*\\/]]></searchPattern>

<stringStart>

Description

These tags contain a text string that represents the delimiter of the start of a string. You must
specify the stringStart and stringEnd tags in pairs. Multiple stringStart … stringEnd
pairs are allowed.
78 Customizing Code View

Attributes

name, id, wrap

■ name="stringStart_name" A string that assigns a name to the stringStart block.
■ id="id_string" Required. An identifier string that maps color and style to this syntax

item.
■ wrap="true" or "false". Defines whether code coloring recognizes text strings that wrap

to the next line. The default is "true".

Example
<stringStart name="Attribute Value"

id="CodeColor_HTMLString"><![CDATA["]]></stringStart>

<stringEnd>

Description

Contains a text string that represents the delimiter of the end of a code string. You must
specify the stringStart and stringEnd tags in pairs. Multiple stringStart … stringEnd
pairs are allowed.

Attributes

None.

Example
<stringEnd><![CDATA["]]></stringEnd>

<stringEsc>

Description

Contains a text string that represents the delimiter of a string escape character. Multiple
stringEsc tags are allowed.

Attributes

None.

Example
<stringEsc><![CDATA[\]]></stringEsc>
Code coloring 79

<tagGroup>

Description

This tag groups one or more tags to which you can assign a unique color and style.

Attributes

id, name, taglibrary, tags

■ id="id_string" Required. An identifier string that maps color and style to this syntax
item.

■ name="display_name" A string that Dreamweaver displays in the code color editor.
■ taglibrary="tag_library_id" The identifier of the tag library to which this group of

tags belongs.
■ tags="tag_list" A tag or comma-separated list of tags that comprise the tag group.

Example
<tagGroup name="HTML Table Tags" id="CodeColor_HTMLTable"

taglibrary="DWTagLibrary_html"
tags="table,tbody,td,tfoot,th,thead,tr,vspec,colw,hspec" />

Scheme block delimiter coloring
The blockStart scheme attribute controls the coloring of block opening and closing strings
or block delimiters. The following values are valid values for the blockStart attribute.

innerText
This value tells Dreamweaver to color the block delimiters the same as the default text of the
scheme inside them.

The Template scheme provides an example of the effect of this scheme. The Template scheme
matches blocks of read-only code that are colored gray because you cannot edit them. The
block delimiters, which are the <!-- #EndEditable --> and <!-- #BeginEditable "..."
--> strings, are also colored gray because they also are not editable.

N
O

T
E

Do not confuse the blockStart.scheme attribute with the scheme tag.
80 Customizing Code View

Sample code
<!-- #EndEditable -->

<p>header</p>
<!-- #BeginEditable "test" -->
<p>Here's some editable text </p>
<p> </p>
<!-- #EndEditable -->

Example
<blockStart doctypes="ASP-JS,ASP-VB, ASP.NET_CSharp, ASP.NET_VB,

ColdFusion,CFC, HTML, JSP,LibraryItem,PHP_MySQL"
scheme="innerText"><![CDATA[<!--\s*#BeginTemplate]]></blockStart>

customText
This value tells Dreamweaver to use custom colors to color the block delimiters.

Sample code

The delimiters for blocks of PHP script, which appear in red, provide an example of the effect
of the customText value:
<?php

if ($loginMsg <> "")
echo $loginMsg;
?>

Example
<blockStart name="Block Delimiter" id="CodeColor_JavaBlock" doctypes="JSP"

scheme="customText"><![CDATA[<%]]></blockStart>

outerTag
The outerTag value specifies that both the blockStart and blockEnd tags are complete tags
and that Dreamweaver should color them as tags would be colored in the scheme that
surrounds them.

The JavaScript scheme, in which <script> and </script> strings are the blockStart and
blockEnd tags, provides an example of this value. This scheme matches blocks of JavaScript
code, which does not recognize tags, so the delimiters need to be colored by the scheme that
surrounds them.

Sample code
<script language="JavaScript">

// comment
if (true)
window.alert("Hello, World");
</script>
Code coloring 81

Example
<blockStart doctypes="PHP_MySQL"

scheme="outerTag"><![CDATA[<script\s+language="php">]]></blockStart>

innerTag
This value is identical to the outerTag value, except that the tag coloring is taken from the
scheme inside the delimiters. This is currently used for the html tag.

nameTag
This value specifies that the blockStart string is the opening of a tag and blockEnd string is
the closing of a tag, and these delimiters are to be colored based on the tag settings of the
scheme.

This type of scheme displays tags that can be embedded inside other tags, such as the
cfoutput tag.

Sample code
<input type="text" name="zip"

<cfif newRecord IS "no">
<cfoutput query="employee"> Value="#zip#" </cfoutput>
</cfif>
>

Example
<blockStart doctypes="ColdFusion,CFC"

scheme="nameTag"><![CDATA[<cfoutput\n]]></blockStart>

nameTagScript
This value is identical to the nameTag scheme; however, the content is script, such as
assignment statements or expressions, as opposed to attribute name=value pairs.

This type of scheme displays a unique type of tag that contains script inside the tag itself, such
as the ColdFusion cfset, cfif, and cfifelse tags, and can be embedded inside other tags.

Sample Code

See the sample text for nameTag.

Example
<blockStart doctypes="ColdFusion,CFC"

scheme="nameTagScript"><![CDATA[<cfset\n]]></blockStart>
82 Customizing Code View

Scheme processing
Dreamweaver has three basic code coloring modes: CSS mode, Script mode, and Tags mode.

In each mode, Dreamweaver applies code coloring only to particular fields. The following
chart indicates which fields are subject to code coloring in each mode.

To make the process of defining schemes more flexible, Dreamweaver lets you specify
wildcard and escape characters.

Field CSS Tags Script

defaultText X X

defaultTag X

defaultAttribute X

comment X X X

string X X X

cssProperty X

cssSelector X

cssValue X

character X X

function keyword X

identifier X

number X X

operator X

brackets X X

keywords X X
Code coloring 83

Wildcard characters
The following is a list of wildcard characters that Dreamweaver supports, along with the
strings to specify them and descriptions of their usage.

Wildcard Escape
string

Description

Wildcard * Skip all characters in the rule until the character that follows
the wildcard is found. For example, use
<MMTInstance:Editable name=”*”> to match all tags of this
type that have the name attribute specified.

Wildcard with
escape character

\e*x Where x is the escape character.
This is the same as the wildcard, except that an escape
character can be specified. The character following any
escape character is ignored. This lets the character following
the wildcard appear in the string without matching the
criteria to end wildcard processing.
For example, /\e*\\/ is used to recognize a JavaScript
regular expression that starts and ends with a forward slash
(/) and can contain forward slashes that are preceded by a
backslash (\). Because the backslash is the code coloring
escape character, you must precede it with a backslash
when you specify it in code coloring XML.

Optional whitespace \s* This matches zero or more white space or
newline characters.
For example, <!--\s*#include is used to match ASP include
directives whether they have any white space preceding the
#include token or not because either case is valid.
The white space wildcards match any combination of white
space and newline characters.

Required
whitespace

\s+ This matches one or more white space or newline
characters.
For example, <!--#include\s+virtual is used to match ASP
include directives with any combination of white space
between #include and virtual. White space must be
specified between these tokens, but it can be any
combination of valid white space characters.
The white space wildcards match any combination of white
space and newline characters.
84 Customizing Code View

Escape characters
The following is a list of escape characters that Dreamweaver supports, along with the strings
to specify them and descriptions of their usage.

Maximum string length
The maximum length allowed for a data string is 100 characters. For example, the following
blockEnd tag contains a wildcard character.
<blockEnd><![CDATA[<!--\s*#BeginEditable\s*"*"\s*-->]]></blockEnd>

Assuming the optional white space wildcard strings (\s*) are a single space character, which
Dreamweaver generates automatically, then the data string is 26 characters long, plus a
wildcard string (*) for the name.
<!-- #BeginEditable "*" -->

This leaves an editable region name that can be as man y as 74 characters, which is the
maximum of 100 characters minus 26.

Escape
character

Escape
string

Description

Backslash \\ The backslash character (\) is the code coloring escape
character, so it must be escaped to be specified in a code
coloring rule.

White space \s This escape character matches any non-visible characters,
except those listed that match the Newline escape character,
such as space and tab characters.
The optional white space and required white space wildcards
match both the white space and newline characters.

Newline \n This escape character matches the newline (also known as
linefeed) and carriage-return characters.
Code coloring 85

Scheme precedence
Dreamweaver uses the following algorithm to color text syntax in Code view:

1. Dreamweaver determines the initial syntax scheme based on the document type of the
current file. The file document type is matched against the scheme.documentType
attribute. If no match is found, the scheme where scheme.documentType = "Text" is
used.

2. Schemes can be nested if they specify blockStart…blockEnd pairs. All nestable schemes
that have the current file extension listed in one of the blockStart.doctypes attribute are
enabled for the current file and all others are disabled.

Schemes can nest within another scheme only if the scheme.priority is equal to or
greater than the outer scheme. If the priority is equal, the scheme can nest only in the
body state of the outer scheme. For example, the <script>...</script> block can nest
only inside the <html>...</html> block where tags are legal—not inside a tag, attribute,
string, comment, and so on.
Schemes with a higher priority than the outer scheme can nest almost anywhere within
the outer scheme. For example, in addition to nesting in the body state of the
<html>...</html> block, the <%...%> block can also nest inside a tag, attribute, string,
comment, and so on.
The maximum nesting level is 4.

3. When matching blockStart strings, Dreamweaver always uses the longest match.

4. After reaching the blockEnd string for the current scheme, syntax coloring returns to the
state where the blockStart string is detected. For example, if a <%...%> block is found
within an HTML string, then coloring resumes with the HTML string color.

N
O

T
E

All blockStart/blockEnd combinations should be unique.
86 Customizing Code View

Editing schemes
You can edit the styles for a code coloring scheme either by editing the code coloring file or by
selecting the Code Coloring category in the Dreamweaver Preferences dialog box, as shown in
the following figure:

For fields that you can specify more than once, such as stringStart, specify color and style
settings only on the first tag. Data will be lost when you split color and style settings across
tags and you later edit the colors or styles by using the Preferences dialog box.

N
O

T
E

Macromedia recommends that you create backup copies of all XML files before you
make changes. You should verify all manual changes before you edit color and style
settings using the Preferences dialog box. Data will be lost if you edit an invalid XML file
using the Preferences dialog box.
Code coloring 87

To edit styles for a scheme using the Code Coloring category in the Preferences dialog box,
double-click a document type, or click the Edit Coloring Scheme button, to open the Edit
Coloring Scheme dialog box.

To edit the style for a particular element, select it in the Styles For list. The items listed in the
Styles For pane include the fields for the scheme being edited and also the schemes that might
appear as blocks within this scheme. For example, if you edit the HTML scheme, the fields
for CSS and JavaScript blocks are also listed.

The fields listed for a scheme correspond to the fields defined in the XML file. The value of
the scheme.name attribute precedes each field listed in the Styles For pane. Fields that do not
have a name are not listed.

The style for a particular element includes bold, italic, underline, and background color in
addition to code coloring. After you select an element in the Styles For pane, you can change
any of these style characteristics.

The Preview area displays how sample text would appear with the current settings. The
sample text is taken from the sampleText setting for the scheme.

Select an element in the Preview area to change the selection in the Styles For list.

If you change the setting for an element of a scheme, Dreamweaver stores the value in the
code coloring file and overrides the original setting. When you click OK, Dreamweaver
reloads all code coloring changes automatically.
88 Customizing Code View

Code coloring examples
The following code coloring examples illustrate the code coloring schemes for a cascading
style document and a JavaScript document. The lists of keywords in the JavaScript example
are abbreviated for the sake of keeping the example short.

CSS code coloring
<scheme name="CSS" id="CSS" doctypes="CSS" priority="50">

<ignoreCase>Yes</ignoreCase>
<ignoreTags>Yes</ignoreTags>
<blockStart doctypes="ASP-JS,ASP-

VB,ASP.NET_CSharp,ASP.NET_VB,ColdFusion,CFC,HTML,JSP,LibraryItem,DWTempl
ate,PHP_MySQL" scheme="outerTag"><![CDATA[<style>]]></blockStart>

<blockEnd><![CDATA[</style>]]></blockEnd>
<blockStart doctypes="ASP-JS,ASP-

VB,ASP.NET_CSharp,ASP.NET_VB,ColdFusion,CFC,HTML,JSP,LibraryItem,DWTempl
ate,PHP_MySQL" scheme="outerTag"><![CDATA[<style\s+*>]]></blockStart>

<blockEnd><![CDATA[</style>]]></blockEnd>
<commentStart name="Comment" id="CodeColor_CSSComment"><![CDATA[/

*]]></commentStart>
<commentEnd><![CDATA[*/]]></commentEnd>
<endOfLineComment><![CDATA[<!--]]></endOfLineComment>
<endOfLineComment><![CDATA[-->]]></endOfLineComment>
<stringStart name="String" id="CodeColor_CSSString"><![CDATA["]]></

stringStart>
<stringEnd><![CDATA["]]></stringEnd>
<stringStart><![CDATA[']]></stringStart>
<stringEnd><![CDATA[']]></stringEnd>
<stringEsc><![CDATA[\]]></stringEsc>
<cssSelector name="Selector" id="CodeColor_CSSSelector" />
<cssProperty name="Property" id="CodeColor_CSSProperty" />
<cssValue name="Value" id="CodeColor_CSSValue" />
<sampleText doctypes="CSS"><![CDATA[/* Comment */

H2, .head2 {
 font-family : 'Sans-Serif';
 font-weight : bold;
 color : #339999;
 }]]>

</sampleText>
</scheme>
Code coloring 89

CSS sample text

The following sample text for the CSS scheme illustrates the CSS code coloring scheme:
/* Comment */
H2, .head2 {
 font-family : 'Sans-Serif';
 font-weight : bold;
 color : #339999;

 }

The following lines from the Colors.xml file provide the color and style values that are seen in
the sample text and were assigned by the code coloring scheme:
<syntaxColor id="CodeColor_CSSSelector" text="#FF00FF" />
<syntaxColor id="CodeColor_CSSProperty" text="#000099" />
<syntaxColor id="CodeColor_CSSValue" text="#0000FF" />

JavaScript code coloring
<scheme name="JavaScript" id="JavaScript" doctypes="JavaScript"

priority="50">
<ignoreCase>No</ignoreCase>
<ignoreTags>Yes</ignoreTags>
<blockStart doctypes="ASP-JS,ASP-

VB,ASP.NET_CSharp,ASP.NET_VB,ColdFusion,CFC,HTML,JSP,LibraryItem,DWTempl
ate,PHP_MySQL" scheme="outerTag"><![CDATA[<script>]]></blockStart>

<blockEnd><![CDATA[</script>]]></blockEnd>
<blockStart doctypes="ASP-JS,ASP-

VB,ASP.NET_CSharp,ASP.NET_VB,ColdFusion,CFC,HTML,JSP,LibraryItem,DWTempl
ate,PHP_MySQL" scheme="outerTag"><![CDATA[<script\s+*>]]></blockStart>

<blockEnd><![CDATA[</script>]]></blockEnd>
<commentStart name="Comment"

id="CodeColor_JavascriptComment"><![CDATA[/*]]></commentStart>
<commentEnd><![CDATA[*/]]></commentEnd>
<endOfLineComment><![CDATA[//]]></endOfLineComment>
<endOfLineComment><![CDATA[<!--]]></endOfLineComment>
<endOfLineComment><![CDATA[-->]]></endOfLineComment>
<stringStart name="String"

id="CodeColor_JavascriptString"><![CDATA["]]></stringStart>
<stringEnd><![CDATA["]]></stringEnd>
<stringStart><![CDATA[']]></stringStart>
<stringEnd><![CDATA[']]></stringEnd>
<stringEsc><![CDATA[\]]></stringEsc>
<brackets name="Bracket"

id="CodeColor_JavascriptBracket"><![CDATA[{[()]}]]></brackets>
<operators name="Operator"

id="CodeColor_JavascriptOperator"><![CDATA[+-*/%<>!?:=&|^]]></operators>
<numbers name="Number" id="CodeColor_JavascriptNumber" />
<regexp name="RegExp" id="CodeColor_JavascriptRegexp" delimiter="/"

escape="\\">
<searchPattern><![CDATA[(\s*/\e*\\/]]></searchPattern>
90 Customizing Code View

<searchPattern><![CDATA[=\s*/\e*\\/]]></searchPattern>
</regexp>
<idChar1>_$abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ</

idChar1>
<idCharRest name="Identifier"

id="CodeColor_JavascriptIdentifier">_$abcdefghijklmnopqrstuvwxyzABCDEFGH
IJKLMNOPQRSTUVWXYZ0123456789</idCharRest>

<functionKeyword name="Function Keyword"
id="CodeColor_JavascriptFunction">function</functionKeyword>

<keywords name="Reserved Keywords" id="CodeColor_JavascriptReserved">
<keyword>break</keyword>

. . .
</keywords>
<keywords name="Native Keywords" id="CodeColor_JavascriptNative">

<keyword>abs</keyword>
. . .

</keywords>
<keywords id="CodeColor_JavascriptNumber">

<keyword>Infinity</keyword>
<keyword>Nan</keyword>

</keywords>
<keywords name="Client Keywords" id="CodeColor_JavascriptClient">

<keyword>alert</keyword>
. . .

</keywords>
<sampleText><![CDATA[/* JavaScript */

function displayWords(arrayWords) {
for (i=0; i < arrayWords.length(); i++) {

// inline comment
alert("Word " + i + " is " + arrayWords[i]);

}
}

var tokens = new Array("Hello", "world");
displayWords(tokens);
]]></sampleText>

</scheme>

JavaScript sample text

The sample text for the JavaScript scheme illustrates the JavaScript code coloring scheme as
follows:
* JavaScript */
function displayWords(arrayWords) {

for (i=0; i < arrayWords.length(); i++) {
// inline comment
alert("Word " + i + " is " + arrayWords[i]);

}
}

Code coloring 91

var tokens = new Array("Hello", "world");
displayWords(tokens);

The following lines from the Colors.xml file provide the color and style values that are seen in
the sample text and were assigned by the code coloring scheme:
<syntaxColor id="CodeColor_JavascriptComment" text="#999999" italic="true"

/>
<syntaxColor id="CodeColor_JavascriptFunction" text="#000000" bold="true" /

>
<syntaxColor id="CodeColor_JavascriptBracket" text="#000099" bold="true" />
<syntaxColor id="CodeColor_JavascriptNumber" text="#FF0000" />
<syntaxColor id="CodeColor_JavascriptClient" text="#990099" />
<syntaxColor id="CodeColor_JavascriptNative" text="#009999" />

Code validation
When opening a document in Code view, Dreamweaver automatically validates that the
document is not using any tags, attributes, CSS properties, or CSS values that are not
available in the target browsers that the user selected. Dreamweaver underlines errors with a
wavy red line.

Dreamweaver stores browser profiles in the Browser Profile folder inside the Dreamweaver
Configuration folder. Each browser profile is defined as a text file that is named for the
browser. For example, the browser profile for Internet Explorer version 6.0 is
Internet_Explorer_6.0.txt. To support target browser checking for CSS, Dreamweaver stores
CSS profile information for a browser in an XML file whose name corresponds to the browser
profile but with a suffix of _CSS.xml. For example, the CSS profile for Internet Explorer 6.0
is Internet_Explorer_6.0_CSS.xml. You might want to make changes to a CSS profile file if
you find that Dreamweaver is reporting an error that you do not want.

The CSS profile file consists of three XML tags: css-support, property, and value. The
following sections describe these tags.

<css-support>

Description

This tag is the root node for a set of property and value tags that are supported by a
particular browser.

Attributes

None.
92 Customizing Code View

Contents

The property and value tags.

Container

None.

Example
<css-support>

. . .
</css-support>

<property>

Description

Defines a supported CSS property for the browser profile.

Attributes
name, names, supportlevel, message

■ name="property_name" The name of the property for which you are specifying support.
■ names="property_name, property_name, ..." A comma-separated list of property

names for which you are specifying support.
The names attribute is a kind of shorthand. For example, the following names attribute is
a shorthand method of defining the name attribute that follows it:
<property names="foo,bar">

<value type="named" name="top"/>
<value type="named" name="bottom"/>

</property>

<property name="foo">
<value type="named" name="top"/>
<value type="named" name="bottom"/>

</property>
<property name="bar">

<value type="named" name="top"/>
<value type="named" name="bottom"/>

</property>

■ supportlevel="error", "warning", "info", or "supported" Specifies the level of
support for the property. If not specified, "supported" is assumed. If you specify a
support level other than "supported" and omit the message attribute, Dreamweaver uses
the default message, “CSS property name property_name is not supported.”
Code validation 93

■ message="message_string" The message attribute defines a message string that
Dreamweaver displays when it finds the property in a document. The message string
describes possible limitations or workarounds for the property value.

Contents
value

Container
css-support

Example

<property name="background-color" supportLevel="supported">

<value>

Description

Defines a list of values supported by the current property.

Attributes
type, name, names, supportlevel, message,

■ type="any", "named", "units", "color", "string", or "function" Specifies the
type of value. If you specify "named", "units", or "color", then either the name or
names attribute must specify the value IDs to match for this item. The "units" value
matches a numeric value, followed by one of the units values specified in the names
attribute.

■ name="value_name" A CSS value identifier. No spaces or punctuation allowed other
than hyphen (-). The name of one of the values that are valid for the CSS property named
in the parent property node. This can identify either a specific value or a units specifier.

■ names="name1, name2, . . ." Specifies a comma-separated list of value IDs.
■ supportlevel="error", "warning", "info", or "supported" Specifies the level of

support for this value in the browser. If not specified, the value "supported" is assumed.
■ message="message_string" The message attribute defines a message string that

Dreamweaver displays when it finds the property value in a document. If the message
attribute is omitted, Dreamweaver displays a message string of “value_name is not
supported.”

Contents

None.
94 Customizing Code View

Container
property

Example
<property name="margin">

<value type="units" name="ex" supportLevel="warning"
message="The implementation of ex units is buggy in Safari 1.0."/>

<value type="units" names="%,em,px,in,cm,mm,pt,pc”/>
<value type="named" name="auto"/>
<value type="named" name="inherit"/>

</property>

Changing default HTML formatting
To change general code formatting preferences, use the Code Format category of the
Preferences dialog box. To change the format of specific tags and attributes, use the Tag
Library Editor (Edit > Tag Libraries). For more information, see Using Dreamweaver on the
Dreamweaver Help menu.

You can also edit the formatting for a tag by editing the VTM file that corresponds to the tag
(in a subfolder of the Tag Libraries configuration folder), but it’s much easier to change
formatting within Dreamweaver.

If you add or remove a VTM file, you must edit the TagLibraries.vtm file; Dreamweaver
ignores any VTM file that is not listed in TagLibraries.vtm.

N
O

T
E

Edit this file in a text editor, not in Dreamweaver.
Changing default HTML formatting 95

96 Customizing Code View

2

PART 2

Overview of Extending
Dreamweaver
Learn the fundamental concepts of the Macromedia Dreamweaver 8
interface and how to extend Dreamweaver to suit your web development
needs. These fundamental concepts include the Dreamweaver folders,
extension APIs, Dreamweaver interface components, the Dreamweaver
Document Object Model (DOM), and Dreamweaver document types.
Chapter 3: Extending Dreamweaver .99

Chapter 4: User Interfaces for Extensions . 111

Chapter 5: The Dreamweaver Document Object Model 127
97

3

CHAPTER 3

Extending Dreamweaver
Typically, you create a Dreamweaver extension to perform one of the following types of tasks:

■ Automating changes to the user’s current document, such as inserting HTML, CFML, or
JavaScript; changing text or image properties; or sorting tables

■ Interacting with the application to automatically open or close windows, open or close
documents, change keyboard shortcuts, and more

■ Connecting to data sources, which lets Dreamweaver users create dynamic, data-driven
pages

■ Inserting and managing blocks of server code in the current document

You might want to write an extension to handle a commonly used, and therefore repetitive,
task. Or you might have a unique requirement that you can satisfy only by writing an
extension for that specific situation. In both cases, Dreamweaver provides an extensive set of
tools that you can use to add to or customize its functionality.

When you create a Dreamweaver extension, you should follow the steps outlined in “Creating
an extension” on page 10.

The following features of Macromedia Dreamweaver 8 let you create extensions:

■ An HTML parser (also called a renderer), which makes it possible to design user interfaces
(UIs) for extensions using form fields, layers, images, and other HTML elements.
Dreamweaver has its own HTML parser.

■ A tree of folders that organize and store the files that implement and configure
Dreamweaver elements and extensions.

■ A series of application programming interfaces (APIs) that provide access to Dreamweaver
functionality through JavaScript.

■ A JavaScript interpreter, which executes the JavaScript code in extension files.
Dreamweaver uses the Netscape JavaScript version 1.5 interpreter. For more information
about changes between this version of the interpreter and previous versions, see “How
Dreamweaver processes JavaScript in extensions” on page 106.
99

Types of Dreamweaver extensions
The following list describes the types of Dreamweaver extensions that are documented in
this guide:

Insert Bar object extensions create changes in the Insert bar. An object is typically used to
automate inserting code into a document. It can also contain a form that gathers input from
the user and JavaScript that processes the input. Object files are stored in the Configuration/
Objects folder.

Command extensions can perform almost any specific task, with or without input from the
user. Command files are typically invoked from the Commands menu, but they can also be
called from other extensions. Command files are stored in the Configuration/Commands
folder.

Menu Command extensions expand the Command API to accomplish tasks related to calling
a command from a menu. The Menu Commands API also lets you create a dynamic
submenu.

Toolbar extensions can add elements to existing toolbars or create new toolbars in the
Dreamweaver UI. New toolbars appear below the default toolbar. Toolbar files are stored in
the Configuration/Toolbars folder.

Report extensions can add custom site reports or modify the set of prewritten reports that
come with Dreamweaver. You can also use the Results Window API to create a stand-alone
report.

Tag Library and Editor extensions work with the associated tag library files. Tag Library and
Editor extensions can modify attributes of existing Tag Dialogs, create new Tag Dialogs, and
add tags to the tag library. Tag Library and Editor extension files are stored in the
Configuration/TagLibraries folder.

Property Inspector extensions appear in the Property inspector panel. Most of the inspectors
in Dreamweaver are part of the core product code and cannot be modified, but custom
Property inspector files can override the built-in Dreamweaver Property inspector interfaces
or create new ones to inspect custom tags. Inspectors are stored in the Configuration/
Inspectors folder.

Floating Panel extensions add floating panels to the Dreamweaver UI. Floating panels can
interact with the selection, the document, or the task. They can also display useful
information. Floating panel files are stored in the Configuration/Floaters folder.

Behavior extensions let users add JavaScript code to their documents. The JavaScript code
performs a specific task in response to an event when the document is viewed in a browser.
Behavior extensions appear on the Plus (+) menu of the Dreamweaver Behaviors panel.
Behavior files are stored in the Configuration/Behaviors/Actions folder.
100 Extending Dreamweaver

Server Behavior extensions add blocks of server-side code (ASP, JSP, or ColdFusion) to the
document. The server-side code performs tasks on the server when the document is viewed in
a browser. Server behaviors appear on the Plus (+) menu of the Dreamweaver Server Behaviors
panel. Server behavior files are stored in the Configuration/Server Behaviors folder.

Data source extensions let you build a connection to dynamic data stored in a database. Data
source extensions appear on the Plus (+) menu of the Bindings panel. Data source extension
files are stored in the Configuration/Data Sources folder.

Server Format extensions let you define formatting for dynamic data.

Component extensions let you add new types of components to the Components panel.
Components is the term that Dreamweaver uses to refer to some of the more popular and
modern encapsulation strategies, including web services, JavaBeans, and ColdFusion
components (CFCs).

Server model extensions let you add support for new server models. Dreamweaver supports
the most common server models (ASP, JSP, ColdFusion, PHP, and ASP.NET). Server model
extensions are needed only for custom server solutions, different languages, or a customized
server. Server model files are stored in the Configuration/ServerModels folder.

Data translator extensions convert non-HTML code into HTML that appears in the Design
view of the document window. These extensions also lock the non-HTML code to prevent
Dreamweaver from parsing it. Translator files are stored in the Configuration/Translators
folder.

Other ways to extend Dreamweaver
You can also extend the following elements of Dreamweaver to expand its capabilities or tailor
it to your needs.

Document types define how Dreamweaver works with different server models. Information
about document types for server models is stored in the Configuration/DocumentTypes
folder. For more information, see “Extensible document types in Dreamweaver” on page 35.

Code snippets are reusable blocks of code that are stored as code snippet (CSN) files in the
Dreamweaver Configuration/Snippets folder and which Dreamweaver makes accessible in the
Snippets panel. You can create additional code snippet files and install them into the Snippets
folder to make them available.
Types of Dreamweaver extensions 101

Code Hints are menus that offer a typing shortcut by displaying a list of strings that
potentially complete the string you are typing. If one of the strings in the menu matches the
string that you started to type, you can select it to insert it in place of the string that you are
typing. Code Hints menus are defined in the codehints.xml file in the Configuration/
CodeHints folder, and you can add new code hints menus to it for new tags or functions that
you have defined.

Menus are defined in the menus.xml file in the Configuration/Menus folder. You can add
new Dreamweaver menus for your extensions by adding the menu tags for them to the
menus.xml file. For more information, see Chapter 8, “Menus and Menu Commands,” on
page 181.

Configuration folders and extensions
The folders and files that are stored in the Dreamweaver Configuration folder contain the
extensions that come with Dreamweaver. When you write an extension, you must save the
files in the proper folder for Dreamweaver to recognize them. For example, if you create a
Property inspector extension, you save the files in the Configuration/Inspectors folder. If you
download and install an extension from the Macromedia Exchange website
(www.macromedia.com/exchange), the Extension Manager automatically saves the extension
files to the proper folders.

You can use the files in the Dreamweaver Configuration folder as examples, but these files are
generally more complex than the average extension that is available on the Macromedia
Exchange website. For more information on the contents of each subfolder within the
Configuration folder, see the Configuration_ReadMe.htm file.
102 Extending Dreamweaver

http://www.macromedia.com/exchange/

The Configuration/Shared folder does not correspond to a specific extension type. It is the
central repository for utility functions, classes, and images that are used by more than one
extension. The files in the Configuration/Shared/Common folder are designed to be useful to
a broad range of extensions. These files are useful as examples of JavaScript techniques and as
utilities. Look here first for the functions that perform specific tasks, such as creating a valid
Document Object Model (DOM) reference to an object, testing whether the current selection
is inside a particular tag, escaping special characters in strings, and more. If you create
common files, you should create a separate subfolder in the Configuration/Shared/Common
folder, which is shown in the following figure, and store them there.

Configuration/Shared/Common/Scripts folder structure

For more information about the Shared folder, see Appendix, “The Shared Folder,” on
page 483.
Configuration folders and extensions 103

Multiuser Configuration folders
For the multiuser operating systems of Windows XP, Windows 2000, and Macintosh OS X,
Dreamweaver creates a separate Configuration folder for each user in addition to the
Dreamweaver Configuration folder. Any time Dreamweaver or a JavaScript extension writes
to the Configuration folder, Dreamweaver automatically writes to the user Configuration
folder instead. This practice lets each Dreamweaver user customize configuration settings
without disturbing the configuration settings of other users. For more information, see
“Customizing Dreamweaver in a multiuser environment” on page 27 and “File Access and
Multiuser Configuration API” in the Dreamweaver API Reference.

Running scripts at startup or shutdown
If you place a command file in the Configuration/Startup folder, the command runs as
Dreamweaver starts up. Startup commands load before the menus.xml file, before the files in
the ThirdPartyTags folder, and before any other commands, objects, behaviors, inspectors,
floating panels, or translators. You can use startup commands to modify the menus.xml file or
other extension files. You can also show warnings, prompt the user for information, or call the
dreamweaver.runCommand() function. However, from within the Startup folder, you cannot
call a command that expects a valid Document Object Model (DOM). For information about
the Dreamweaver DOM, see Chapter 5, “The Dreamweaver Document Object Model,” on
page 127.

Similarly, if you place a command file in the Configuration/Shutdown folder, the command
runs as Dreamweaver shuts down. From the shutdown commands, you can call
dreamweaver.runCommand() function, show warnings, or prompt the user for information,
but you cannot stop the shutdown process.

For more information about commands, see Chapter 7, “Commands,” on page 167. For
more information about the dreamweaver.runCommand() function, see the Dreamweaver
API Reference.

Reloading extensions
If you make a change to an extension while you are working in Dreamweaver, you can reload
the extensions so that Dreamweaver recognizes the change.
104 Extending Dreamweaver

To reload extensions

1. Control-click (Windows) or Option-click (Macintosh) the Categories menu in the Insert
bar’s title bar.

2. Select Reload Extensions.

Extension APIs
The extension APIs provide you with the functions that Dreamweaver calls to implement each
type of extension. You must write the bodies of these functions as described for each extension
type and specify the return values that Dreamweaver expects.

If you are a developer who wants to work directly in the C programming language, there is a
C extensibility API that lets you create dynamic link libraries (DLLs). The functionality that
is provided in these APIs wraps your C DLLs in JavaScript so that your extension can work
seamlessly in Dreamweaver.

The documentation of extension APIs outlines what each function does, when Dreamweaver
calls it, and what value Dreamweaver expects it to return.

See the Dreamweaver API Reference for information about the Utility API and the JavaScript
API, which provide functions that you can use to perform specific tasks in your extensions.

N
O

T
E

Remember that in a multiuser operating system you should edit copies of
configuration files in your user Configuration folder rather than editing master
configuration files. For more information, see “Configuration folders and extensions”
on page 102.
Extension APIs 105

How Dreamweaver processes JavaScript in
extensions
Dreamweaver checks the Configuration/extension_type folder during startup. If it encounters
an extension file within the folder, Dreamweaver processes the JavaScript by completing the
following steps:

■ Compiling everything between the beginning and ending SCRIPT tags
■ Executing any code within SCRIPT tags that is not part of a function declaration

Dreamweaver performs the following actions for any external JavaScript files that are specified
in the SRC attributes of SCRIPT tags:

■ Reads in the file
■ Compiles the code
■ Executes the procedures

Dreamweaver executes code in the onLoad event handler (if one appears in the BODY tag)
when the user selects the command or action from a menu for the Command and Behavior
action extension types.

Dreamweaver executes code in the onLoad event handler on the BODY tag if the body of the
document contains a form for object extensions.

Dreamweaver ignores the onLoad handler on the BODY tag in the following extensions:

■ Data translator
■ Property inspector
■ Floating panel

For all extensions, Dreamweaver executes code in other event handlers (for example,
onBlur="alert('This is a required field.')") when the user interacts with the form
fields to which they are attached.

N
O

T
E

This procedure is necessary during startup because some extensions might require
global variables to initialize.

N
O

T
E

If any JavaScript code in your extension file contains the string “</SCRIPT>”, the
JavaScript interpreter reads the string as an ending SCRIPT tag and reports an
unterminated string literal error. To avoid this problem, break the string into pieces
and concatenate them like this: "<' + '/SCRIPT>".
106 Extending Dreamweaver

Dreamweaver supports the use of event handlers within links. Event handlers in links must
use syntax, as shown in the following example:
link text

Plug-ins (set to play at all times) are supported in the BODY of extensions. The
document.write() statement, Java applets, and ActiveX controls are not supported
in extensions.

Displaying Help
The displayHelp() function, which is part of several extension APIs, causes Dreamweaver to
do the following two things when you include it in your extension:

■ Add a Help button to the interface.
■ Call displayHelp() when the user clicks the Help button.

You must write the body of the displayHelp() function to display Help. How you code the
displayHelp() function determines how your extension displays Help. You can call the
dreamweaver.browseDocument() function to open a file in a browser or devise a custom way
to display Help such as displaying messages in another layer in alert boxes.

The following example uses the displayHelp() function to display Help by calling
dreamweaver.browseDocument():
// The following instance of displayHelp() opens a browser to display a file
// that explains how to use the extension.
function displayHelp() {

var myHelpFile = dw.getConfigurationPath() + "ExtensionsHelp/
myExtHelp.htm";
dw.browseDocument(myHelpFile);

}

Localizing an extension
Use the following techniques to make it easier to translate your extensions into local
languages.

■ Separate extensions into HTML and JavaScript files. The HTML files can be replicated
and localized; the JavaScript files are not localized.

■ Do not define display strings in the JavaScript files (check for alerts and UI code). Extract
all localizable strings into separate XML files in the Dreamweaver Configuration/Strings
folder.
Localizing an extension 107

■ Do not write JavaScript code in the HTML files except for required event handlers. This
eliminates the need to fix a bug multiple times for multiple translations after the HTML
files are replicated and translated into other languages.

XML String files
Store all strings in XML files in the Dreamweaver Configuration/Strings folder. If you install
many related extension files, this lets you share all strings in a single XML file. If applicable,
this also lets you refer to the same string from both C++ and JavaScript extensions.

You could create a file called myExtensionStrings.xml. The following example shows the
format of the file:
<strings>

<!-- errors for feature X -->
<string id="featureX/subProblemY" value="There was a with X when you did
Y. Try not to do Y!"/>
<string id="featureX/subProblemZ" value="There was another problem with
X, regarding Z. Don't ever do Z!"/>

</strings>

Now your JavaScript files can refer to these translatable strings by calling the
dw.loadString() function, as shown in the following example:
function initializeUI()
{
 ...
 if (problemYhasOccured)
 {
 alert(dw.loadString("featureX/subProblemY");
 }
}

You can use slash (/) characters in your string identifiers, but do not use spaces. Using slashes,
you can create a hierarchy to suit your needs, and include all the strings in a single XML file.

N
O

T
E

Files that begin with cc in the Configuration/Strings folder are Contribute files. For
example, the file ccSiteStrings.xml is a Contribute file.
108 Extending Dreamweaver

Localizable Strings with Embedded Values
Some display strings have values embedded in them. You can use the errMsg() function to
display these strings. You can find the errMsg() function, which is similar to the printf()
function in C, in the string.js file in the Configuration/Shared/MM/Scripts/CMN folder. Use
the placeholder characters percent sign (%) and s to indicate where values should appear in
the string and then pass the string and variable names as arguments to errMsg(). For
example:
<string id="featureX/fileNotFoundInFolder" value="File %s could not be

found in folder %s."/>

The following example shows how the string, along with any variables to embed, is passed to
the alert() function.
if (fileMissing)
{

alert(errMsg(dw.loadString("featureX/fileNotFoundInFolder"),fileName,
folderName));

}

Working with the Extension Manager
If you create extensions for others users, you must package them according to the guidelines
on the Macromedia Exchange website (www.macromedia.com/exchange) under the Help >
How to Create an Extension category. After you have written and tested an extension in the
Extension Manager, select File > Package Extension. After the extension is packaged, you can
submit it to the Exchange from the Extension Manager by selecting File > Submit Extension.

The Extension Manager comes with Dreamweaver. Details about its use are available in its
Help files and on the Macromedia Exchange website.
Working with the Extension Manager 109

http://www.macromedia.com/exchange/

110 Extending Dreamweaver

4

CHAPTER 4

User Interfaces for
Extensions
Most extensions are built to receive information from the user through a user interface (UI).
For example, if you create a Property inspector extension for the marquee tag, you need to
create a way for the user to specify attributes like direction and height. If you plan to submit
your extension for Macromedia certification, you need to follow the guidelines that are
available within the Extension Manager files on the Macromedia Exchange website
(www.macromedia.com/exchange). These guidelines are not intended to limit your creativity.
Their purpose is to ensure that certified extensions work effectively within the Macromedia
Dreamweaver 8 UI and that the extension UI design does not detract from its functionality.

Designing an extension user interface
Typically, you create an extension to perform a task that users encounter frequently. Certain
parts of the task are repetitive; by creating an extension, you can automate the repetitive
actions. Some steps in the task can change, or specific attributes of the code that the extension
processes can change. To receive user inputs for these variable values, you build a UI.

For example, you might create an extension to update a web catalog. Users periodically need
to change values for image sources, item descriptions, and prices. Although the values change,
the procedures for getting these values and formatting the information for display on the
website remain the same. A simple extension can automate the formatting while letting users
manually input the new, updated values for image sources, item descriptions, and prices. A
more robust extension can retrieve these values periodically from a database.

The purpose of your extension UI is to receive information that the user inputs. This
information handles the variable aspects of a repetitive task that the extension performs.
Dreamweaver supports HTML and JavaScript form elements as the basic building blocks for
creating extension UI controls and displays the UI using its own HTML renderer. Therefore,
an extension UI can be as simple as an HTML file that contains a two-column table with text
descriptions and form input fields.
111

http://www.macromedia.com/exchange

When you design an extension, you should determine what variables are necessary and what
form elements can best handle them.

Consider the following basic guidelines when you design an extension UI:

■ To name your extension, place the name in the title tag of your HTML file.
Dreamweaver displays the name in the extension title bar.

■ Keep text labels on the left side of your UI, aligned right, with text boxes on the right side,
aligned left. This arrangement lets the user’s eyes easily locate the beginning of any text
box. Minimal text can follow the text box as explanation or units of measure.

■ Keep checkbox and radio button labels on the right side of your UI, aligned left.
■ For readable code, assign logical names to your text boxes. If you use Dreamweaver to

create your extension UI, you can use the Property inspector or the Quick Tag Editor to
assign names to the fields.

In a typical scenario, after you create the UI, you test the extension code to see that it properly
performs the following UI-related tasks:

■ Getting the values from the text boxes
■ Setting default values for the text boxes or gathering values from the selection
■ Applying changes to the user document

Dreamweaver HTML rendering control
For versions through Dreamweaver 4, Dreamweaver rendered more space around form
controls than Microsoft Internet Explorer and Netscape Navigator do. Form controls in
extension UIs are rendered with extra space around them because Dreamweaver uses its
HTML rendering engine to display extension UIs.

Macromedia has improved form-control rendering to more closely match the browsers. To
take advantage of the rendering improvements, you must use one of three new DOCTYPE
statements in your extension files, as shown in the following example:
<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine 5.0//

dialog">

<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine5.0//
floater">

<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine5.0//pi">
112 User Interfaces for Extensions

In most cases, DOCTYPE statements must go on the first line of a document. However, to avoid
conflicts with extension-specific directives that, in previous versions, were required to be on
the first line of a file (such as the comment at the top of a Property inspector file, or the MENU-
LOCATION=NONE directive in a command), DOCTYPE statements and directives can now be in
any order as long as they appear before the opening html tag.

In addition to letting you make extension UIs more closely match the built-in dialog boxes
and panels, the new DOCTYPE statements also let you view your extensions in the
Dreamweaver Design view so that you can see them as they would appear when viewed by
users.

The following examples show the Base Property inspector without the DOCTYPE statement,
which improves form-control rendering, and then with the DOCTYPE statement.

The Base Property inspector as it appears in Design view without the DOCTYPE statement.

The Base Property inspector as it appears in Design view with the DOCTYPE statement (and after a
few adjustments to accommodate the new rendering).

Using custom UI controls in extensions

In addition to the standard HTML form elements, Dreamweaver supports custom controls to
help you create flexible, professional-looking interfaces, as described in the following list:

■ Editable select lists (also known as combo boxes) that let you combine the functionality of
a select list with that of a text box

■ Database controls that facilitate the display of data hierarchies and fields
■ Tree controls that organize information into expandable and collapsible nodes
■ Color button controls that let you add color picker interfaces to your extensions
Using custom UI controls in extensions 113

Editable select lists
Extension UIs often contain pop-up lists that are defined using the select tag. In
Dreamweaver, you can make pop-up lists in extensions editable by adding editable="true"
to the select tag. To set a default value, set the editText attribute and the value that you
want the select list to display.

The following example shows the settings for an editable select list:
<select name="travelOptions" style="width:250px" editable="true"

 editText="other (please specify)">
<option value="plane">plane</option>
<option value="car">car</option>
<option value="bus">bus</option>
</select>

When you use select lists in your extensions, check for the presence and value of the editable
attribute. If no value is present, the select list returns the default value of false, which
indicates that the select list is not editable.

As with standard, noneditable select lists, editable select lists have a selectedIndex property
(see “Objects, properties, and methods of the Dreamweaver DOM” on page 129). This
property returns -1 if the text box is selected.

To read the value of an active editable text box into an extension, read the value of the
editText property. The editText property returns the string that the user entered into the
editable text box, the value of the editText attribute, or an empty string if no text has been
entered and no value has been specified for editText.

Dreamweaver adds the following custom attributes for the select tag to control editable
pop-up lists:

Attribute
name

Description Accepted Values

editable Declares that the pop-up list has an editable
text area

A Boolean value of true or
false

editText Holds or sets text within the editable text area A string of any value

N
O

T
E

Editable select lists are available in Dreamweaver.
114 User Interfaces for Extensions

The following example creates a Command extension that contains an editable select list
using common JavaScript functions:

To create the example:

1. Create a new blank file in a text editor.

2. Enter the following code:
<html>
<head>

<title>Editable Dropdown Test</title>
<script language="javascript">
function getAlert()
{

var i=document.myForm.mySelect.selectedIndex;
if (i>=0)
{

alert("Selected index: " + i + "\n" + "Selected text " +
document.myForm.mySelect.options[i].text);

}
else
{

alert("Nothing is selected" + "\n" + "or you entered a value");
}

}
function commandButtons()
{

return new Array("OK", "getAlert()", "Cancel", "window.close()");
}
</script>

</head>

<body>
<div name="test">
<form name="myForm">
<table>

<tr>
<td colspan="2">
<h4>Select your favorite</h4>
</td>

</tr>
<tr>

<td>Sport:</td>
<td>
<select name="mySelect" editable="true" style="width:150px"

editText="Editable Text">
<option> Baseball</option>
<option> Football </option>
<option> Soccer </option>
Using custom UI controls in extensions 115

</select>
</td>

</tr>
</table>
</form>
</div>
</body>
</html>

3. Save the file as EditableSelectTest.htm in the Dreamweaver Configuration/Commands
folder.

To test the example:

1. Restart Dreamweaver.

2. Select Commands > EditableSelectTest.

When you select a value from the list, an alert message displays the index of the value and
the text. If you enter a value, an alert message indicates that nothing is selected.

Database controls
Using Dreamweaver, you can extend the HTML select tag to create a database tree control.
You can also add a variable grid control. The database tree control displays database schema,
and the variable grid control displays tabular information.
116 User Interfaces for Extensions

The following figure shows an advanced Recordset dialog box that uses a database tree control
and a variable grid control:

Adding a database tree control
The database tree control has the following attributes:

Attribute name Description

name Name of the database tree control

control.style Width and height, in pixels

type Type of control

connection Name of the database connection that is defined in the Connection
Manager; if empty, the control is empty.
Using custom UI controls in extensions 117

Any option tags that are placed inside the select tag are ignored.

To add a database tree control to a dialog box, you can use the following sample code with
appropriate substitutions for quoted variables:
<select name="DBTree" style="width:400px;height:110px" ¬
type="mmdatabasetree" connection="connectionName" noexpandbuttons

showHeaders></select>

You can change the connection attribute to retrieve selected data and display it in the tree.
You can use the DBTreeControl attribute as a JavaScript wrapper object for the new tag.
For more examples, see the DBTreeControlClass.js file in the Configuration/Shared/
Common/Scripts folder.

Adding a variable grid control
The variable grid control has the following attributes:

The following example adds a simple variable grid control to a dialog box:
<select name="ParamList" style="width:515px;" ¬
type="mmparameterlist columns"="Name,SQL Data ¬
Type,Direction,Default Value,Run-time Value" size=6></select>

noexpandbuttons When this attribute is specified, the tree control does not draw the
expand Plus (+) or collapse Minus (-) indicators or the associated
arrows on the Macintosh. This attribute is useful for drawing
multicolumn list controls.

showheaders When this attribute is specified, the tree control displays a header at
the top that lists the name of each column.

Attribute name Description

name Name of the variable grid control

style Width of the control, in pixels

type Type of control

columns Each column must have a name, separated by a comma

columnWidth Width of each column, each separated by a comma. The columns are
of equal width if you do not specify widths.

Attribute name Description
118 User Interfaces for Extensions

The following example creates a variable grid control that is 500 pixels wide, with five
columns of various widths:
<select

name="ParamList"
style="width:800px;"
type="mmparameterlist"
columns="Name,SQL Data Type,Direction, Default Value,Run-time Value"
columnWidth="100,25,11,"
size=6>

This example creates two blank columns that are 182 pixels wide. (The specified columns
total 136. The total width of the variable grid control is 500. The remaining space after the
first three columns are placed is 364. Two columns remain; 364 divided by 2 is 182.)

This variable grid control also has a JavaScript wrapper object that should be used to access
and manipulate the variable grid control’s data. You can find the implementation in the
GridControlClass.js file in the Configuration/Shared/MM/Scripts/Class folder.
Using custom UI controls in extensions 119

Adding tree controls
Tree controls display data in a hierarchical format and let users expand and collapse nodes in
the tree. The MM:TREECONTROL tag lets you create tree controls for any type of information;
unlike the database tree control that is described in “Adding a database tree control”
on page 117, no association with a database is required. The Dreamweaver Keyboard
Shortcuts editor uses the tree control, as shown in the following figure:

Creating a tree control
The MM:TREECONTROL tag creates a tree control and can use one or more tags to add structure,
as described in the following list:

■ MM:TREECOLUMN is an empty, optional tag that defines a column in the tree control.
■ MM:TREENODE is an optional tag that defines a node in the tree. It is a nonempty tag that

can contain only other MM:TREENODE tags.
120 User Interfaces for Extensions

MM:TREECONTROL tags have the following attributes:

MM:TREECOLUMN tags have the following attributes:

For readability, TREECOLUMN tags should follow immediately after the MM:TreeControl tag, as
shown in the following example:
<MM:TREECONTROL name="tree1">
<MM:TREECOLUMN name="Column1" width="100" state="visible">
<MM:TREECOLUMN name="Column2" width="80" state="visible">
...
</MM:TREECONTROL>

Attribute name Description

name Name of the tree control

size Optional. Number of rows that show in the control; default is 5 rows

theControl Optional. If the number of nodes in the theControl attribute exceeds
the value of the size attribute, scrollbars appear

multiple Optional. Allows multiple selections; default is single-selection

style Optional. Style definition for height and width of tree control; if
specified, takes precedence over the size attribute

noheaders Optional. Specifies that the column headers should not appear

Attribute name Description

name Name of the column

value String to appear in column header

width Width of the column in pixels (percentage not supported); default is
100

align Optional. Specifies whether the text in the column should be aligned
left, right, or center; default is left

state Specifies whether the column is visible or hidden
Using custom UI controls in extensions 121

The MM:TREENODE attributes are described in the following table:

For example, the following tree control has all its nodes expanded:
<mm:treecontrol name="test" style="height:300px;width:300px">

<mm:treenode value="rootnode1" state="expanded">
<mm:treenode value="node1" state="expanded"></mm:treenode>
<mm:treenode value="node3" state="expanded"></mm:treenode>
</mm:treenode>

<mm:treenode value="rootnode2" state="expanded">
<mm:treenode value="node2" state="expanded"></mm:treenode>
<mm:treenode value="node4" state="expanded"></mm:treenode>
</mm:treenode>

</mm:treecontrol>

Manipulating content within a tree control
Tree controls and the nodes within them are implemented as HTML tags. They are parsed by
Dreamweaver and stored in the document tree. These tags can be manipulated in the same
way as any other document node. For more information on DOM functions and methods, see
Chapter 5, “The Dreamweaver Document Object Model,” on page 127.

Adding nodes To add a node to an existing tree control programmatically, set the
innerHTML property of the MM:TREECONTROL tag or one of the existing MM:TREENODE tags.
Setting the inner HTML property of a tree node creates a nested node.

Attribute name Description

name Name of the node

value Contains the content for the given node. For more than one column,
this is a pipe-delimited string. To specify an empty column, place a
single space character before the pipe (|).

state Specifies that the node is expanded or collapsed with the strings
"expanded" or "collapsed".

selected You can select multiple nodes by setting this attribute on more than
one tree node, if the tree has a MULTIPLE attribute.

icon Optional. The index of built-in icon to use, starting with 0:
0 = no icon; 1 = DW document icon; 2 = Multidocument icon
122 User Interfaces for Extensions

The following example adds a node to the top level of a tree:
var tree = document.myTreeControl;
//add a top-level node to the bottom of the tree
tree.innerHTML = tree.innerHTML + ‘<mm:treenode name="node3"¬

value="node3">’;

Adding a child node To add a child node to the currently selected node set the innerHTML
property of the selected node.

The following example adds a child node to the currently selected node:
var tree = document.myTreeControl;
var selNode = tree.selectedNodes[0];
//deselect the node, so we can select the new one
selnode.removeAttribute("selected");
//add the new node to the top of the selected node’s children
selNode.innerHTML = '<mm:treenode name="item10" value="New item11" ¬

expanded selected>' + selNode.innerHTML;

Deleting nodes To delete the currently selected node from the document structure, use the
innerHTML or outerHTML properties.

The following example deletes the entire selected node and any children:
var tree = document.myTreeControl;
var selNode = tree.selectedNodes[0];
selNode.outerHTML = "";

A color button control for extensions
In addition to the standard input types such as text, checkbox, and button, Dreamweaver
supports mmcolorbutton, an additional input type in extensions.

Specifying <input type="mmcolorbutton"> in your code causes a color picker to appear in
the UI. You can set the default color for the color picker by setting a value attribute on the
input tag. If you do not set a value, the color picker appears grey by default and the value
property of the input object returns an empty string.

The following example shows a valid mmcolorbutton tag:
<input type="mmcolorbutton" name="colorbutton" value="#FF0000">
<input type="mmcolorbutton" name="colorbutton" value="teal">

A color button has one event, onChange, which is triggered when the color changes.
Using custom UI controls in extensions 123

You might want to keep a text box and a color picker synchronized. The following example
creates a text box that synchronizes the color of the text box with the color of the color picker:
<input type = "mmcolorbutton" name="fgcolorPicker"

onChange="document.fgcolorText.value=this.value">
<input type = "test" name="fgcolorText"

onBlur="document.fgColorPicker.value=this.value">

In this example, when the user changes the value of the text box and then tabs or clicks
elsewhere, the color picker updates to show the color that is specified in the text box.
Whenever the user selects a new color with the color picker, the text box updates to show the
hex value for that color.

Adding Flash content to Dreamweaver
Flash content (SWF files) can display in the Dreamweaver interface either as part of an object
or command. This Flash support is especially useful if you build extensions that use Flash
forms, animations, ActionScript or other Flash content.

Basically, you leverage the ability for Dreamweaver objects and commands to display dialogs
(see Chapter 6, “Insert Bar Objects,” on page 139 for more information about building
objects and Chapter 7, “Commands,” on page 167 for information about commands) using
the form tag with the object tag to embed your Flash content in a Dreamweaver dialog box.

A simple Flash dialog box example
In this example, you use Dreamweaver to create a new command that displays a SWF file
called myFlash.swf when the user clicks the command in the Commands menu. For specific
information about creating commands before trying this example, see the information about
commands in Extending Dreamweaver.

N
O

T
E

This example assumes you already have a SWF file called myFlash.swf in the
Configuration/Commands folder of your Dreamweaver application installation folder. To
test this with your own SWF file, save the SWF file to the application Commands folder,
and substitute your filename in all instances of myFlash.swf.
124 User Interfaces for Extensions

In Dreamweaver, open a new basic HTML file (this will be your Command definition file).
Between the opening and closing title tags, enter My Flash Movie so the head of your page
reads as follows:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>My Flash Movie</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

Now, save the file as My Flash Movie.htm in the application Configuration/Commands folder
(but do not close the file yet). You save the file at this point so you can embed your Flash
content with a relative path, otherwise Dreamweaver will try to use an absolute path.

Back in the HTML document, between the opening and closing body tags, add an opening
and closing form tag. Then, within the form tags, use the Insert > Media > Flash menu option
to add your Flash content to the Command definition file. When prompted, select the SWF
file in the Commands folder, and click OK. Your Command definition file should now look
like the following example (of course, the width and height attributes might differ,
depending on your SWF file properties):
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>My Flash Movie</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

<body>
<body>
<form>
<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/
swflash.cab#version=6,0,29,0" width="200" height="100">

 <param name="movie" value="myFlash.swf">
 <param name="quality" value="high">
 <embed src="myFlash.swf" quality="high" pluginspage="http://

www.macromedia.com/go/getflashplayer" type="application/x-shockwave-
flash" width="200" height="100"></embed>

</object>
</form>
</body>
</html>
Adding Flash content to Dreamweaver 125

Save the file again. Next, exit and restart Dreamweaver. Select the Command > My Flash
Movie menu option, and your Flash content appears in a Dreamweaver dialog box, as shown
in the following figure:

This example shows a simple implementation of Dreamweaver’s Flash content support. After
you are familiar with building objects and commands as well as more sophisticated forms, you
can integrate Flash content into your Dreamweaver extensions for a more dynamic user
experience. For more information, see Chapter 7, “Commands,” on page 167 about writing a
commandButtons() function to add buttons to the dialog box that displays your Flash
content.
126 User Interfaces for Extensions

5

CHAPTER 5

The Dreamweaver Document
Object Model
In Macromedia Dreamweaver 8, the Document Object Model (DOM) is a critically
important structure for extension builders. It lets you access and manipulate elements within a
user’s document and within the extension file.

A DOM defines the composition of documents that are created using a markup language. By
representing tags and attributes as objects and properties, the DOM lets programming
languages access and manipulate documents and their components.

The structure of an HTML document can be seen as a document tree. The root is the HTML
tag, and the two largest trunks are the HEAD tag and the BODY tag. Offshoots of the HEAD tag
include the TITLE, STYLE, SCRIPT, ISINDEX, BASE, META, and LINK tags. Offshoots of the
BODY tag include headings (H1, H2, and so on), block-level elements (P, DIV, FORM, and so on),
text-level elements (FONT, BR, IMG, and so on), and other element types. Leaves on these
offshoots include attributes such as WIDTH, HEIGHT, ALT, and others.

In a DOM, the tree structure is preserved and presented as a hierarchy of parent nodes and
child nodes. The root node has no parent, and leaf nodes have no children. At each level
within the HTML structure, the HTML element can be exposed to JavaScript as a node.
Using this structure, you can access the document or any element within it.

In JavaScript, you can call any document object by name or by index, as described in the
following list:

■ By name, as in document.myForm.myButton
■ By index, as in document.forms[0].elements[1]

Objects with the same name are collapsed into an array. You can access a particular object in
the array by incrementing the index with zero as the origin (for example, the first radio button
with the name myRadioGroup in the myForm document is referenced as
document.myForm.myRadioGroup[0]).
127

Which document DOM?
It is important to distinguish between the DOM of the user’s document and the DOM of the
extension. The information in this chapter applies to both types of Dreamweaver documents,
but the way that you reference each DOM is different.

If you are familiar with JavaScript in browsers, you can reference objects in the active
document by writing document. (for example, document.forms[0]), the same way that you
reference objects in extension files. To reference objects in the user’s document, however, you
must call dw.getDocumentDOM(), dw.createDocument(), or another function that returns a
user document object.

For example, to refer to the first image in the active document, you can write
dw.getDocumentDOM().images[0]. You can also store the document object in a variable and
use that variable in future references, as shown in the following example:
var dom = dw.getDocumentDOM(); //get the dom of the current document
var firstImg = dom.images[0];
firstImg.src = “myImages.gif”;

This kind of notation is common in files throughout the Configuration folder, especially in
command files. For more information about the dw.getDocumentDOM() method, see the
dreamweaver.getDocumentDOM() function in the Dreamweaver API Reference.

The Dreamweaver DOM
The Dreamweaver DOM contains a subset of objects, properties, and methods from the
World Wide Web Consortium (W3C) (www.w3.org/TR/REC-DOM-Level-1/) DOM Level
1, which are combined with some properties of the Microsoft Internet Explorer 4.0 DOM.
128 The Dreamweaver Document Object Model

http://www.w3.org/TR/REC-DOM-Level-1/

Objects, properties, and methods of the
Dreamweaver DOM
The following table lists the objects, properties, methods, and events that the Dreamweaver
DOM supports. Some properties are read-only when they are accessed as properties of a
specific object. A bullet (•) indicates properties that are read-only when they are used in the
listed context.

Object Properties Methods Events

window navigator •
document •
innerWidth •
innerHeight •
screenX •
screenY •

alert()
confirm()
escape()
unescape()
close()
setTimeout()
clearTimeout()
setInterval()
clearInterval()
resizeTo()

onResize

navigator platform • None None

document forms • (an array of form
objects)
images • (an array of image
objects)
layers • (an array of LAYER,
ILAYER, and absolutely
positioned DIV and SPAN
objects)
child objects by name •
nodeType •
parentNode •
childNodes •
documentElement •
body •
URL •
parentWindow •

getElementsBy TagName()
hasChildNodes()

onLoad

all tags/
elements

nodeType •
parentNode •
childNodes •
tagName •
attributes by name
innerHTML
outerHTML

getAttribute()
setAttribute()
removeAttribute()
getElementsByTagName()
hasChildNodes()
The Dreamweaver DOM 129

form In addition to the properties that
are available for all tags:
tags:elements • (an array of
button, checkbox, password,

radio, reset, select, submit,

text, file, hidden, image,

and textarea objects)
mmcolorbutton
child objects by name •

Only those methods
available to all tags

None

layer In addition to the properties that
are available for all tags:
visibility
left
top
width
height
zIndex

Only those methods that
are available to all tags

None

image In addition to the properties that
are available for all tags:
src

Only those methods that
are available to all tags

onMouseOver
onMouseOut
onMouseDown
onMouseUp

button
reset
submit

In addition to the properties that
are available for all tags:
form •

In addition to the methods
that are available for all
tags:
blur()
focus()

onClick

checkbox
radio

In addition to the properties that
are available for all tags:
checked
form •

In addition to the methods
that are available for all
tags:
blur()
focus()

onClick

password
text
file
hidden
image (field)
textarea

In addition to the properties that
are available for all tags:
form •
value

In addition to the methods
that are available for all
tags:
blur()
focus()
select()

onBlur
onFocus

select In addition to the properties that
are available for all tags:
form •
options • (an array of option

objects)
selectedIndex

In addition to the methods
that are available for all
tags:
blur() (Windows only)
focus() (Windows only)

onBlur
(Windows
only)
onChange
onFocus

(Windows
only)

Object Properties Methods Events
130 The Dreamweaver Document Object Model

Properties and methods of the document object
The following table details the properties and methods of the document object that are taken
from DOM Level 1 and used in Dreamweaver. A bullet (•) marks read-only properties.

option In addition to the properties that
are available for all tags:
text

Only those methods that
are available to all tags

None

mmcolorbutton In addition to the properties that
are available for all tags:
name
value

None onChange

array
boolean
date
function
math
number
object
string
regexp

Matches Netscape Navigator
4.0

Matches Netscape
Navigator 4.0

None

text nodeType •
parentNode •
childNodes •
data

hasChildNodes() None

comment nodeType •
parentNode •
childNodes •
data

hasChildNodes() None

NodeList length • item() None

NamedNodeMap length • item() None

Property or method Return value

nodeType • Node.DOCUMENT_NODE

parentNode • null

parentWindow • The JavaScript object that corresponds to the document’s
parent window. (This property is not included in DOM
Level 1; however, Microsoft Internet Explorer 4.0 supports
it.)

Object Properties Methods Events
The Dreamweaver DOM 131

Properties and methods of HTML tag objects
Every HTML tag is represented by a JavaScript object. Tags are organized in a tree hierarchy,
where tag x is a parent of tag y, if y falls completely within x’s opening and closing tags (<x>x
content <y>y content</y> more x content.</x>). For this reason, your code should be
well-formed.

The following table lists the properties and methods of tag objects in Dreamweaver, along
with their return values or explanations. A bullet (•) marks read-only properties.

childNodes • A NodeList that contains all the immediate children of the
document object. Typically the document has a single child,
the HTML object.

documentElement • The JavaScript object that corresponds to the HTML tag.
This property is shorthand for getting the value of
document.childNodes and extracting the HTML tag from
the NodeList.

body • The JavaScript object that corresponds to the BODY tag.
This property is shorthand for calling
document.documentElement.childNodes and extracting the
BODY tag from the NodeList. For frameset documents, this
property returns the node for the outermost frameset.

URL • The file://URL for the document or, if the file has not been
saved, an empty string.

getElementsByTagName(tagName) A NodeList that can be used to step through tags of type
tagName (for example, IMG, DIV, and so on).
If the tag argument is LAYER, the function returns all LAYER
and ILAYER tags and all absolutely positioned DIV and SPAN
tags.
If the tag argument is INPUT, the function returns all form
elements. (If a name attribute is specified for one or more
tagName objects, it must begin with a letter, which the
HTML 4.01 specification requires, or the length of the array
that this function returns is incorrect.)

hasChildNodes() true

Property or method Return value

nodeType • Node.ELEMENT_NODE

parentNode • The parent tag. If this is the HTML tag, the document
object returns.

Property or method Return value
132 The Dreamweaver Document Object Model

childNodes • A NodeList that contains all the immediate children of
the tag.

tagName • The HTML name for the tag, such as IMG, A, or BLINK.
This value always returns in uppercase letters.

attrName A string that contains the value of the specified tag
attribute. tag.attrName cannot be used if the attrName
attribute is a reserved word in the JavaScript language
(for example, class). In this case, use getAttribute()
and setAttribute().

innerHTML The source code that is contained between the opening
tag and the closing tag.For example, in the code
<p>Hello, World!</p>, p.innerHTML returns
Hello, World!. If you write to this property, the
DOM tree immediately updates to reflect the new
structure of the document. (This property is not
included in DOM Level 1, but Internet Explorer 4.0
supports it.)

outerHTML The source code for this tag, including the tag. For the
previous example code, p.outerHTML returns
<p>Hello, World!</p>. If you write to this
property, the DOM tree immediately updates to reflect
the new structure of the document. (This property is not
included in DOM Level 1, but Internet Explorer 4.0
supports it.)

getAttribute(attrName) The value of the specified attribute if it is explicitly
specified; null otherwise.

getTranslatedAttribute(attrName) The translated value of the specified attribute or the
same value that getAttribute() returns if the attribute’s
value is not translated. (This property is not included in
DOM Level 1; it was added to Dreamweaver 3 to
support attribute translation.)

setAttribute(attrName, attrValue) Does not return a value. Sets the specified attribute to
the specified value: for example,
img.setAttribute("src", "image/roses.gif").

removeAttribute(attrName) Does not return a value. Removes the specified
attribute and its value from the HTML for this tag.

Property or method Return value
The Dreamweaver DOM 133

Properties and methods of text objects
Each contiguous block of text in an HTML document (for example, the text within a P tag) is
represented by a JavaScript object. Text objects never have children. The following table
describes the properties and methods of text objects that are taken from DOM Level 1 and
used in Dreamweaver. A bullet (•) marks read-only properties.

getElementsByTagName(tagName) A NodeList that can be used to step through child tags
of type tagName (for example, IMG, DIV, and so on).
If the tag argument is LAYER, the function returns all
LAYER and ILAYER tags and all absolutely positioned DIV
and SPAN tags.
If the tag argument is INPUT, the function returns all form
elements. (If a name attribute is specified for one or
more tagName objects, it must begin with a letter, which
the HTML 4.01 specification requires, or the length of
the array that this function returns is incorrect.)

hasChildNodes() A Boolean value that indicates whether the tag has
any children.

hasTranslatedAttributes() A Boolean value that indicates whether the tag has any
translated attributes. (This property is not included in
DOM Level 1; it was added to Dreamweaver 3 to
support attribute translation.)

Property or method Return value

nodeType • Node.TEXT_NODE

parentNode • The parent tag

childNodes • An empty NodeList

data The actual text string. Entities in the text are
represented as a single character (for example, the text
Joseph & I is returned as Joseph & I).

hasChildNodes() false

Property or method Return value
134 The Dreamweaver Document Object Model

Properties and methods of comment objects
A JavaScript object represents each HTML comment. The following table details the
properties and methods of comment objects that are taken from DOM Level 1 and are used
in Dreamweaver. A bullet (•) marks read-only properties.

The dreamweaver and site objects
Dreamweaver implements the standard objects that are accessible through the DOM and adds
two custom objects: dreamweaver and site. These custom objects are widely used within the
APIs and in writing extensions. For more information on the methods of the dreamweaver
and site objects, see the Dreamweaver API Reference.

Properties of the dreamweaver object
The dreamweaver object has two read-only properties, which are described in the following
list:

■ The appName property has the value "Dreamweaver".
■ The appVersion property has a value of the form

"versionNumber.releaseNumber.buildNumber [languageCode] (platform)".

As an example, the value of the appVersion property for the Swedish Windows version of
Dreamweaver 8 is "8.0.XXXX [se] (Win32)"; the value for the English Macintosh version is
"8.0.XXXX [en] (MacPPC)".

The appName and appVersion properties were implemented in Dreamweaver 3 and are not
available in earlier versions of Dreamweaver. You might want to check that the user of your
extension has Dreamweaver version 3 or later by checking for the existence of the appVersion
or appName property.

Property or method Return value

nodeType • Node.COMMENT_NODE

parentNode • The parent tag

childNodes • An empty NodeList array

data The text string between the comment markers
(<!-- and -->)

hasChildNodes() false

N
O

T
E

You can find the version and build number by selecting the Help > About menu item.
The Dreamweaver DOM 135

To find the specific version of Dreamweaver, check first for the existence of appVersion and
then for the version number, as shown in the following example:
if (dreamweaver.appVersion && ¬
dreamweaver.appVersion.indexOf('3.01') != -1){

// execute code
}

The dreamweaver object has a property called systemScript that lets you query the
language of the user’s operating system. Use this property if you need to include special cases
in your extension code for localized operating systems, as shown in the following example:
if (dreamweaver,systemScript && (dreamweaver.systemScript.indexOf('ja')!=-

1){
SpecialCase
}

The systemScript property returns the following values for localized operating systems:

Operating systems for all European languages return 'en'.

The site object
The site object has no properties. For information about the methods of the site object, see
the Dreamweaver API Reference.

Language Value

Japanese ja

Korean ko

TChinese zh_tw

SChinese zh_cn
136 The Dreamweaver Document Object Model

3
PART 3

Extension APIs
Learn about functions that you need to write when you create new objects,
toolbars, tag editors, floating panels, server behaviors, components, or
server models.
Chapter 6: Insert Bar Objects . 139

Chapter 7: Commands. 167

Chapter 8: Menus and Menu Commands . 181

Chapter 9: Toolbars . 215

Chapter 10: Reports . 249

Chapter 11: Tag Libraries and Editors. 261

Chapter 12: Property Inspectors . 279

Chapter 13: Floating Panels . 289

Chapter 14: Behaviors . 305

Chapter 15: Server Behaviors . 321

Chapter 16: Data Sources. 379

Chapter 17: Server Formats . 399

Chapter 18: Components . 407

Chapter 19: Server Models. 423

Chapter 20: Data Translators . 433

Chapter 21: C-Level Extensibility . 457
137

6

CHAPTER 6

Insert Bar Objects
In Macromedia Dreamweaver, objects insert specific strings of code into a user’s document.
Objects commonly reside on the Insert bar, on the Insert menu, or both. Objects let users add
content, such as images, layers, and tables, by clicking icons or menu options. You can add
items to the Insert bar to automate repetitive tasks for your users or even create dialog boxes
for users to set specific attributes.

Objects reside in the Configuration/Objects folder inside the Dreamweaver application
folder. The Objects subfolders are grouped according to their location on the Insert bar, and
you can open these files to see the construction of current objects. For example, you can open
the Configuration/Objects/Common/Hyperlink.htm file to see the code that corresponds to
the hypertext link object button on the Insert bar.

The following table lists the files you use to create an object:

Path File Description

Configuration/Objects/objecttype/ objectname.htm Specifies what to insert in the
document.

Configuration/Objects/objecttype/ objectname.js Contains the functions to execute.

Configuration/Objects/objecttype/ objectname.gif Contains the image that appears on
the Insert bar.

Configuration/Objects insertbar.xml Specifies the objects that appear,
and their order, on the Insert bar.
139

How object files work
Objects have the following components:

■ The HTML file that defines what is inserted into a document
The HEAD section of an Object file contains JavaScript functions (or references external
JavaScript files) that process form input from the BODY section and control what content is
added to the user’s document.The BODY of an Object file can contain an HTML form that
accepts parameters for the object (for example, the number of rows and columns to insert
in a table) and activates a dialog box for users to input attributes.

■ The 18 x 18 pixel image that appears on the Insert bar
■ Additions to the insertbar.xml file. The insertbar.xml file defines where the object appears

on the Insert bar.

When a user selects an object by clicking an icon on the Insert bar or by selecting an item on
the Insert menu, the following events occur:

1. Dreamweaver calls the canInsertObject() function to determine whether to show a
dialog box.

2. The Object file is scanned for a FORM tag. If a form exists and you select the Show Dialog
When Inserting Objects option in the General Preferences dialog box, Dreamweaver calls
the windowDimensions() function, if defined, to determine the size of the dialog box in
which to display the form. If no form exists in the Object file, Dreamweaver does not
display a dialog box, and skips step 2.

3. If Dreamweaver displays a dialog box in step 1, the user enters parameters for the object
(such as the number of rows and columns in a table) in the dialog box text fields and clicks
OK.

4. Dreamweaver calls the objectTag() function and inserts its return value in the document
after the current selection. (It does not replace the current selection.)

5. If Dreamweaver does not find the objectTag() function, it looks for an insertObject()
function and calls that function instead.

N
O

T
E

The simplest objects contain only the HTML to insert, without a BODY and HEAD tag.
For more information, see “Customizing Dreamweaver” on the Macromedia Support
Center.
140 Insert Bar Objects

The Insert bar definition file
The Configuration/Objects/insertbar.xml file defines the Insert bar properties. This XML file
contains definitions for each individual object, in the order in which the objects appear.

The first time a user starts Dreamweaver, the Insert bar appears horizontally above the
document. After that, its visibility and position are saved in the registry.

Insertbar.xml tag hierarchy
The following example shows the format and hierarchy of nested tags in the insertbar.xml file:
<?xml version="1.0" ?>
<!DOCTYPE insertbarset SYSTEM "-//Macromedia//DWExtension insertbar 5.0">

<insertbar xmlns:MMString="http://www.macromedia.com/schemes/data/string/">

<category id="DW_Insertbar_Common" MMString:name="insertbar/categorycommon"
folder="Common">

<button id="DW_Hyperlink" image="Common\Hyperlink.png"
MMString:name="insertbar/hyperlink" file="Common\Hyperlink.htm" />
<button id="DW_Email" image="Common\E-Mail Link.png"
MMString:name="insertbar/email" file="Common\E-Mail Link.htm" />
<separator />

<menubutton id="DW_Images" MMString:name="insertbar/images"
image="Common\Image.png">

<button id="DW_Image" image="Common\Image.png"
MMString:name="insertbar/image" file="Common\Image.htm" />

...
</menubutton>
<separator />

<button id="DW_TagChooser" MMString:name="insertbar/tagChooser"
image="Common\Tag Chooser.gif" command="dw.showTagChooser()"
codeOnly="TRUE"/>

</category>
...

</insertbar>

N
O

T
E

Although the insertbar and category tags use </insertbar> and </category>
closing tags to denote the end of their content, the tags button, checkbutton, and
separator do not have related closing tags. Instead button, checkbutton, and separator
use a slash (/) before the closing bracket to denote the end of their attributes and
content.
The Insert bar definition file 141

Insert bar definition tags
The insertbar.xml file contains the following tags and attributes:

<insertbar>

Description

This tag signals the content of the Insert bar definition file. The </insertbar> closing tag
specifies the end of the content.

Attributes

None.

Example
<insertbar>

<category id="DW_Insertbar_Common" folder="Common">
<button id="DW_Hyperlink" image="Common\Hyperlink.gif"
file="Common\Hyperlink.htm"/>

...
</insertbar>

<category>

Description

This tag defines a category on the Insert bar (such as Common, Forms, or HTML). The </
category> closing tag specifies the end of the category content.

Attributes
id, {folder}, {showIf}

Example
<category id="DW_Insertbar_Common" folder="Common">

<button id="DW_Hyperlink" image="Common\Hyperlink.gif"
file="Common\Hyperlink.htm"/>

</category>

N
O

T
E

By default, the Insert bar is organized into categories of use (such as Common, Forms,
or HTML). In previous versions of Dreamweaver, the Insert bar was organized similarly
by tabs. Users can set their own preferences for how the Insert bar objects are organized
(by category or tab). If the user has selected the tab organization, the category tag
defines each tab.
142 Insert Bar Objects

<menubutton>

Description

This tag defines a pop-up menu for the Insert bar.

Attributes
id, image, {showIf}, {name}, {folder}

Example
<menubutton
 id="DW_ImageMenu"
 name="Images"
 image="Common\imagemenu.gif"
 folder="Images">

 <button id="DW_Image"
 image="Common\Image.gif"
 enabled=""
 showIf=""
 file="Common\Image.htm" />
</menubutton>

<button />

Description

This tag defines a button on the Insert bar that the user clicks to execute the code that the
command or file attributes specify.

Attributes
id, image, name, {canDrag}, {showIf}, {enabled}, {command}, {file}, {tag},
{codeOnly}

Example
<button id="DW_Object"
image="Common\Object.gif"
name=”Object”
enabled="true"
showIf=""
file="Common\Obect.htm"

/>
The Insert bar definition file 143

<checkbutton />

Description

A checkbutton is a button that has a checked or unchecked state. When clicked, a
checkbutton appears pressed in and highlighted. When it is unchecked, a checkbutton
appears flat. Dreamweaver has Mouse-over, Pressed, Mouse-over-while-pressed, and Disabled-
while-pressed states. The command must ensure that clicking the checkbutton causes its state
to change.

Attributes
id, image, checked, {showIf}, {enabled}, {command}, {file}, {tag}, {name},
{codeOnly}

Example
<checkbutton id="DW_StandardView"
name = "Standard View"
image="Tools\Standard View.gif"
checked="_View_Standard"
command="dw.getDocumentDOM().setShowLayoutView(false)"/>

<separator />

Description

This tag displays a vertical line on the Insert bar.

Attributes
{showIf}

Example
<separator showIf="_VIEW_CODE"/>

Insert bar definition tag attributes
The attributes for the Insert bar definition tags have the following meanings:

id="unique id"

Description

The id attribute is an identifier for the buttons that appear on the Insert bar. The id attribute
must be unique for the element within the file.

Example
id="DW_Anchor"
144 Insert Bar Objects

image="image_path”

Description

This attribute specifies the path, relative to the Dreamweaver Configuration folder, to the
icon file that appears on the Insert bar. The icon can be in any format that Dreamweaver can
render, but typically it is in GIF or JPEG file format, with a size of 18 x 18 pixels.

Example
image="Common/table.gif"

canDrag="Boolean”

Description

This attribute specifies whether the user can drag the icon into the code or workspace to insert
the object into a document. If omitted, the default value is true.

Example
canDrag="false"

showIf="enabler"

Description

This attribute specifies that this button should appear on the Insert bar only if the given
Dreamweaver enabler is a true value. If you do not specify showIf, the button always
appears. The possible enablers are _SERVERMODEL_ASP, _SERVERMODEL_ASPNET,
_SERVERMODEL_JSP, _SERVERMODEL_CFML (for all versions of Macromedia ColdFusion),
_SERVERMODEL_CFML_UD4 (only for UltraDev version 4 of ColdFusion), _SERVERMODEL_PHP,
_FILE_TEMPLATE, _VIEW_CODE, _VIEW_DESIGN, _VIEW_LAYOUT,

_VIEW_EXPANDED_TABLES, and _VIEW_STANDARD.
To specify multiple enablers, place a comma (which means AND) between the enablers. To
specify NOT, use an exclamation point (!).

Example

If you want a button to appear only in Code view for an ASP page, specify the enablers as
follows:
showIf="_VIEW_CODE, _SERVERMODEL_ASP"
The Insert bar definition file 145

enabled="enabler"

Description

This attribute specifies that the item is available to the user if the DW_enabler value is true. If
you do not specify the enabled function, the item defaults to always enabled. The possible
enablers are _SERVERMODEL_ASP, _SERVERMODEL_ASPNET, _SERVERMODEL_JSP,
_SERVERMODEL_CFML (for all versions of ColdFusion), _SERVERMODEL_CFML_UD4 (only for
UltraDev version 4 of ColdFusion), _SERVERMODEL_PHP, _FILE_TEMPLATE, _VIEW_CODE,
_VIEW_DESIGN, _VIEW_LAYOUT, _VIEW_EXPANDED_TABLES, and _VIEW_STANDARD.

To specify multiple enablers, place a comma (which means AND) between the enablers. To
specify NOT, use an exclamation point (!).

Example

If you want the button to be available only in Code view, specify the following:
enabled="_VIEW_CODE"

This dims the button in other views.

checked="enabler"

Description

The checked attribute is required if you use the checkbutton tag.

The item is checked if the DW_enabler value is true. The possible enablers are
_SERVERMODEL_ASP, _SERVERMODEL_ASPNET, _SERVERMODEL_JSP, _SERVERMODEL_CFML
(for all versions of ColdFusion), _SERVERMODEL_CFML_UD4 (only for UltraDev version 4 of
ColdFusion), _SERVERMODEL_PHP, _FILE_TEMPLATE, _VIEW_CODE, _VIEW_DESIGN,
_VIEW_LAYOUT, _VIEW_EXPANDED_TABLES, and _VIEW_STANDARD.

To specify multiple enablers, place a comma (which means AND) between them. To specify
NOT, use an exclamation point (!).

Example
checked="_View_Layout"

command="API_function"

Description

Instead of referring Dreamweaver to an HTML file that contains the code to insert, you use
this tag to specify a command that Dreamweaver performs when the button is clicked.
146 Insert Bar Objects

Example
command="dw.showTagChooser()"

file="file_path"

Description

The file attribute specifies the path, relative to the Dreamweaver Configuration folder, of an
object file. Dreamweaver derives the tooltip for the object icon from the title of the object file,
unless you specify the name attribute.

Example
file="Templates/Editable.htm"

tag="editor"

Description

This attribute tells Dreamweaver to invoke a Tag editor. In Code view, if the tag attribute is
defined and the user clicks the object, Dreamweaver invokes the Tag dialog box. In Code
view, if you specify the tag and command attributes, Dreamweaver invokes the Tag editor. In
Design view, if codeOnly="TRUE" and you do not specify the file attribute, Dreamweaver
MX invokes Split view, places focus in the code, and invokes the Tag editor.

Example
tag = "form"

name="tooltip_text"

Description

The name attribute specifies the tooltip that appears when the mouse pointer rests over the
object. If you specify an object file but do not specify the name attribute, Dreamweaver uses
the name of the object file for the tooltip.

Some Insert bar objects use a variation of the name attribute with prefix MMString. The
MMString denotes a localized string; these values are explained in “Localizing an extension”
on page 107.

Example
name = "cfoutput"

N
O

T
E

If the name attribute is not provided, the object will not be available for grouping in the
Favorites category on the Insert bar UI.
The Insert bar definition file 147

Modifying the Insert bar
You can move objects from one category to another, rename categories, and completely
remove objects from the panel. To make the changes appear in the Insert bar, you must either
restart Dreamweaver or reload extensions. For information on reloading extensions, see
“Reloading extensions” on page 104.

To move or copy an object from one Insert bar category to another or to a new
location within a category:

1. Save a backup copy of insertbar.xml (with a name such as insertbar.backup.xml).

2. Open the original insertbar.xml file.

3. Find the button tag that represents the object you want to move or copy. For example, to
move the Image object from its location in the Common category, find the button tag that
has an id attribute of "DW_Image".

4. Cut or copy the entire button tag.

5. Find the category tag that represents the category in which you want to move or copy
the object.

6. Find the location within the category where you want the object to appear.

7. Paste the copied button tag.

8. Save the insertbar.xml file.

9. Reload extensions.

To remove an object from the Insert bar:

1. Save a backup copy of insertbar.xml (with a name such as insertbar.backup.xml).

2. Open the original insertbar.xml file.

3. Find the button tag that represents the object you want to remove.

4. Delete the entire button tag.

5. Save the insertbar.xml file.

6. On your disk, move the object’s HTML, GIF, and JavaScript files out of their current
folder, and put them into a folder that isn’t listed in the insertbar.xml file. For example,
you can create a new folder in the Configuration/Objects folder named Unused, and move
the object’s files there. (If you’re certain you want to remove the object, you can delete
those files entirely; however, it’s a good idea to keep backups of those files in case you need
to restore the object later.)

7. Reload extensions.
148 Insert Bar Objects

To change the order of categories in the Insert bar:

1. Save a backup copy of insertbar.xml (with a name such as insertbar.backup.xml).

2. Open the original insertbar.xml file.

3. Find the category tag that corresponds to the category you want to move, and select that
tag, including all the tags it contains.

4. Cut that tag.

5. Paste the tag into its new location. Be sure to paste the tag in a location that isn’t inside any
other category tag.

6. Save the insertbar.xml file.

7. Reload extensions.

To create a new category:

1. Save a backup copy of insertbar.xml (with a name such as “insertbar.backup.xml”).

2. Open the original insertbar.xml file.

3. Create a new category tag, specifying the default folder for the category and a set of objects
to appear in the category.

4. For information on the syntax of the tags in insertbar.xml, see “Insert bar definition tags”
on page 142.

5. Save the insertbar.xml file.

6. Reload extensions.

Adding objects to the Insert bar
You can add objects to the Insert bar. To make the changes appear in the Insert bar, you must
either restart Dreamweaver or reload extensions. For information on reloading extensions, see
“Reloading extensions” on page 104.

To add a new object to the Insert bar, do the following:

1. Define the specific string of code for the user’s document by using HTML and, optionally,
JavaScript.

2. Identify or create an image (18 x 18 pixels) for the button in the Dreamweaver interface.

If you create a larger image, Dreamweaver scales it to 18 x 18 pixels. If you do not create
an image for your object, a default object icon with a question mark (?) appears on the
Insert bar.

3. Add the new files to the Configuration/Objects folder.
Modifying the Insert bar 149

4. Edit the insertbar.xml file to identify the location of these new files and set attributes (see
“The Insert bar definition file” on page 141) for the button’s appearance.

5. Restart Dreamweaver or reload extensions.

The new object appears on the Insert bar in the specified location.

Adding objects to the Insert menu
To add or control the position of an object on the Insert menu (or any other menu), modify
the menus.xml file. This file controls the entire menu structure for Dreamweaver. For more
information about modifying the menus.xml file, see Chapter 8, “Menus and Menu
Commands,” on page 181.

If you plan to distribute the extension to other Dreamweaver users, see “Working with the
Extension Manager” on page 109 to learn more about packaging extensions.

A simple insert object example
This example adds an object to the Insert bar so users can add a line through (strike through)
selected text by clicking a button. This object is useful if a user needs to make editorial
comments in a document.

Because this example performs text manipulation, you may want to explore some of the
objects from the Text pop-up menu in the HTML category on the Insert bar as models. For
example, look at the Bold, Emphasis, and Heading object files to see similar functionality,
where Dreamweaver wraps a tag around selected text.

You will perform the following steps to create the strike-through insert object:

■ Creating the HTML file
■ Adding the JavaScript functions
■ Creating the image
■ Editing the insertbar.xml file
■ Adding a dialog box
■ Building an Insert bar pop-up menu

N
O

T
E

Although you can store Object files in separate folders, it’s important that each
filename be unique. The dom.insertObject() function, for example, looks for files
anywhere within the Objects folder without regard to subfolders (for more
information about the dom.insertObject() function, see the Dreamweaver API
Reference). If a file called Button.htm exists in the Forms folder and another object
file called Button.htm is in the MyObjects folder, Dreamweaver cannot distinguish
between them. If two separate instances of Button.htm exist, dom.insertObject()
displays two objects called Button, and the user might not recognize any difference.
150 Insert Bar Objects

Creating the HTML file
The title of the object is specified between the opening and closing title tags. You also
specify that the scripting language is JavaScript.

To create the HTML file:

1. Create a new blank file.

2. Add the following code:
<html>
<head>
<title>Strikethrough</title>
<script language="javascript">
</script>
</head>
<body>
</body>
</html>

3. Save the file as Strikethrough.htm in the Configuration/Objects/Text folder.

Adding the JavaScript functions
In this example, the JavaScript functions define the behavior and insert code for the
Strikethrough object. You must place all the API functions in the HEAD section of the file. The
existing object files, such as Configuration/Objects/Text/Em.htm, follow a similar pattern of
functions and comments.

The first function the object definition file uses is isDOMRequired(), which tells whether the
Design view needs to be synchronized to the existing Code view before execution continues.
However, because the Superscript object might be used with many other objects in the Code
view, it does not require a forced synchronization.

To add the isDOMRequired() function:

1. In the HEAD section of the Strikethrough.htm file, between the opening and closing script
tags, add the following function:
<script language="javascript">

function isDOMRequired() {
// Return false, indicating that this object is available in Code

view.
return false;

}
</script>

2. Save the file.
A simple insert object example 151

Next, decide whether to use objectTag() or insertObject() for the next function. The
Strikethrough object simply wraps the s tag around the selected text, so it doesn’t meet the
criteria for using the insertObject() function (see “insertObject()” on page 162).

Within the objectTag() function, use dw.getFocus() to determine whether the Code view
is the current view. If the Code view has input focus, the function should wrap the
appropriate (uppercase or lowercase) tag around the selected text. If the Design view has input
focus, the function can use dom.applyCharacterMarkup() to assign the formatting to the
selected text. Remember that this function works only for supported tags (see
dom.applyCharacterMarkup() in the Dreamweaver API Reference). For other tags or
operations, you may need to use other API functions. After Dreamweaver applies the
formatting, it should return the insertion point (cursor) to the document without any
messages or prompting. The following procedure shows how the objectTag() function
now reads.

To add the objectTag() function:

1. In the HEAD section of the Strikethrough.htm file, after the isDOMRequired() function,
add the following function:
function objectTag() {

// Determine if the user is in Code view.
var dom = dw.getDocumentDOM();
if (dw.getFocus() == 'textView' || dw.getFocus(true) == 'html'){

 var upCaseTag = (dw.getPreferenceString("Source Format", "Tags Upper
Case", "") == 'TRUE');

 // Manually wrap tags around selection.
 if (upCaseTag){
 dom.source.wrapSelection('<S>','</S>');
 }else{
 dom.source.wrapSelection('<s>','</s>');
 }

// If the user is not in Code view, apply the formatting in Design
view.
}else if (dw.getFocus() == 'document'){

dom.applyCharacterMarkup("s");
 }

 // Just return--don't do anything else.
 return;
}

2. Save the file as Strikethrough.htm in the Configuration/Objects/Text folder.

Instead of including the JavaScript functions in the HEAD section of the HTML file, you can
create a separate JavaScript file. This separate organization is useful for objects that contain
several functions, or functions that might be shared by other objects.
152 Insert Bar Objects

To separate the HTML object definition file from the supporting JavaScript
functions:

1. Create a new blank file.

2. Paste all the JavaScript functions into the file.

3. Remove the functions from Strikethrough.htm, and add the JavaScript filename to the src
attribute of the script tag, as shown in the following example:
<html>
<head>
<title>Strikethrough</title>
<script language="javascript" src="Strikethrough.js">
</script>
</head>
<body>
</body>
</html>

4. Save the Strikethrough.htm file.

5. Save the file that now contains the JavaScript functions as Strikethrough.js in the
Configuration/Objects/Text folder.

Creating the image

To create the image for the Insert bar:

1. Create a GIF image (18 x 18 pixels), as shown in the following figure:

2. Save the file as Strikethrough.gif in the Configuration/Objects/Text folder.

Editing the insertbar.xml file
Next, you need to edit the insertbar.xml file so Dreamweaver can associate these two items
with the Insert bar interface.

The code within the insertbar.xml file identifies all the existing objects on the Insert bar

■ Each category tag in the XML file creates a category in the interface.
■ Each menubutton tag creates a pop-up menu on the Insert bar.

N
O

T
E

Before you edit the insertbar.xml file, you might want to copy the original one as
insertbar.xml.bak, so you have a backup.
A simple insert object example 153

■ Each button tag in the XML file places an icon on the Insert bar and connects it to the
proper HTML file or function.

To add the new object to the Insert bar:

1. Find the following line near the beginning of the inserbar.xml file:
<category id="DW_Insertbar_Common" MMString:name="insertbar/category/

common" folder="Common">

This line identifies the beginning of the Common category on the Insert bar.
2. Start a new line after the category tag; then insert the button tag and assign it the id,

image, and file attributes for the Strikethrough object.

The ID must be a unique name for the button (following standard naming conventions,
use DW_Text_Strikethrough for this object). The image and file attributes simply tell
Dreamweaver the location of the supporting files, as shown here:
<button id="DW_Text_Strikethrough"
image="Text\Strikethrough.gif"
file="Text\Strikethrough.htm"/>

3. Save the insertbar.xml file.

4. Reload the extensions (see “Reloading extensions” on page 104).

The new object appears at the beginning of the Common category on the Insert bar, as shown
in the following figure:

Adding a dialog box
You can add a form to your object to let the user enter parameters before Dreamweaver inserts
the specified code (for example, the Hyperlink object requests the text, link, target, category
index, title, and access key values from the user). In this example, you add a form to the
Strikethrough object from the previous example. The form opens a dialog box that provides
the user with the option to change the text color to red as well as add the strike-through tag.

This example assumes you have already created a separate JavaScript file called
Strikethrough.js.

First, in Strikethrough.js, you add the function that the form calls if the user changes the text
color. This function is similar to the objectTag() function for the Strikethrough object, but
is an optional function.
154 Insert Bar Objects

To create the function:

1. After the objectTag() function in Strikethrough.js, create a function called
fontColorRed() by entering the following code:
function fontColorRed(){

var dom = dw.getDocumentDOM();
if (dw.getFocus() == 'textView' || dw.getFocus(true) == 'html'){

 var upCaseTag = (dw.getPreferenceString("Source Format", "Tags
Upper Case", "") == 'TRUE');

 // Manually wrap tags around selection.
 if (upCaseTag){
 dom.source.wrapSelection('','');
 }else{
 dom.source.wrapSelection('','');
 }
 }else if (dw.getFocus() == 'document'){
 dom.applyFontMarkup("color", "#FF0000");
 }

 // Just return -- don't do anything else.
 return;

}

2. Save the file as Strikethrough.js.

Next, in the Strikethrough.htm file, you add the form. The form for this example is a simple
checkbox that calls the fontColorRed() function when the user clicks on it. You use the
form tag to define your form, and the table tag for layout control (otherwise, the dialog box
might wrap words or size awkwardly).

To add the form:

1. After the body tag, add the following code:
<form>
<table border="0" height="100" width="100">

<tr valign="baseline">
<td align="left" nowrap>
<input type="checkbox" name="red" onClick=fontColorRed()>Red text</
input>
</td>
</tr>

</table>
</form>

N
O

T
E

Because dom.applyCharacterMarkup() doesn’t support font color changes, you need
to find the appropriate API function for font color changes. (For more information,
see dom.applyFontMarkup() in the Dreamweaver API Reference).
A simple insert object example 155

2. Save the file as Strikethrough.htm.

3. Reload the extensions (see “Reloading extensions” on page 104).

To test the dialog box:

1. Click the Red Text checkbox.

2. Click OK to perform the objectTag() function, which adds the strike-through:
156 Insert Bar Objects

Building an Insert bar pop-up menu
The Dreamweaver Insert bar introduces a new organization for objects and now supports
pop-up menus to help organize objects into smaller groups, as shown in the following figure.

The following example builds a new category on the Insert bar called Editorial and then adds
a pop-up menu to that category. The pop-up menu contains the Strikethrough object you
already created and groups it with a Blue Text object you will create. The objects in the
Editorial category let users make editorial comments in a file and either strike through the
content they want to remove or make new content blue.

To organize the files:

1. Create a new Configuration/Objects/Editorial folder in your Dreamweaver installation
folder.

2. Copy the files for the Strikethrough object example you created (Strikethrough.htm,
Strikethrough.js, and Strikethrough.gif) to the Editorial folder.

To create the Blue Text object:

1. Create a new HTML file.

2. Add the following code:
<html>
<head>
<title>Blue Text</title>
<script language="javascript">

//--------------- API FUNCTIONS ---------------

function isDOMRequired() {
// Return false, indicating that this object is available in Code
view.
return false;

}

function objectTag() {
A simple insert object example 157

// Manually wrap tags around selection.
var dom = dw.getDocumentDOM();
if (dw.getFocus() == 'textView' || dw.getFocus(true) == 'html'){

 var upCaseTag = (dw.getPreferenceString("Source Format", "Tags Upper
Case", "") == 'TRUE');

 // Manually wrap tags around selection.
 if (upCaseTag){
 dom.source.wrapSelection('','');
 }else{
 dom.source.wrapSelection('','');
 }
 }else if (dw.getFocus() == 'document'){
 dom.applyFontMarkup("color", "#0000FF");
 }

 // Just return -- don't do anything else.
 return;
}

</script>
</head>
<body>
</body>
</html>

3. Save the file as AddBlue.htm in the Editorial folder.

Now you can create an image for the Blue Text Object.

To create the image:

1. Create a GIF file that is 18 x 18 pixels, which will look like the following figure:

2. Save the image as AddBlue.gif in the Editorial folder.

Next, you edit the insertbar.xml file. This file defines the objects on the Insert bar and their
locations. Notice the various menubutton tags and their attributes within the category tags;
these menubutton tags define each pop-up menu in the HTML category. Within the
menubutton tags, each button tag defines an item in the pop-up menu.
158 Insert Bar Objects

To edit insertbar.xml:

1. Find the following line of code near the beginning of the file:
<insertbar xmlns:MMString="http://www.macromedia.com/schemes/data/

string/">

The insertbar tag defines the beginning of all the Insert bar contents.
2. After that line, add a new category tag for the Editorial category you want to create, giving

it unique ID, name, and folder attributes, and then add a closing category tag, as shown
in the following example:
<category id="DW_Insertbar_Editorial" name="Editorial"

folder="Editorial">
</category>

3. Reload extensions. For information on reloading extensions, see “Reloading extensions”
on page 104.

The Editorial category appears on the Insert bar:

4. Within the opening and closing category tags, add the pop-up menu by using the
menubutton tag and the following attributes, including a unique ID.
<menubutton id="DW_Insertbar_Markup" name="markup"

image="Editorial\Strikethrough.gif" folder="Editorial">

For more information about attributes, see “Insert bar definition tag attributes”
on page 144.

5. Add the objects for the new pop-up menu using the button tag, as follows:
<button id="DW_Editorial_Strikethrough"

image="Editorial\Strikethrough.gif"
file="Editorial\Strikethrough.htm"/>
A simple insert object example 159

6. After the Strikethrough object button tag, add the hypertext object, as follows:
<button id="DW_Blue_Text" image="Editorial\AddBlue.gif name="Blue Text"

file="Editorial\AddBlue.htm"/>

7. End the pop-up menu with the </menubutton> closing tag.

The following code shows your entire category with the pop-up menu and the two objects:
<category id="DW_Insertbar_Editorial" name="Editorial" folder="Editorial">

<menubutton id="DW_Insertbar_Markup" name="markup"
image="Editorial\Strikethrough.gif" folder="Editorial">

<button id="DW_Editorial_Strikethrough"
image="Editorial\Strikethrough.gif"

file="Editorial\Strikethrough.htm"/>
<button id="DW_Blue_Text" image="Editorial\AddBlue.gif" name="Blue

Text"
file="Editorial\AddBlue.htm"/>

</menubutton>
</category>

To test the new pop-up menu:

1. Reload extensions. For information on reloading extensions, see “Reloading extensions”
on page 104.

2. Click the Editorial menu.

The following pop-up menu appears:

N
O

T
E

The button tag does not have a separate closing tag; it simply ends with “/>”.
160 Insert Bar Objects

The Objects API
This section describes the functions in the Objects API. You must define either the
insertObject() or the objectTag() function. For details about these functions, see
“insertObject()” on page 162. The remaining functions are optional.

canInsertObject()

Availability

Dreamweaver MX.

Description

This function determines whether to display the Object dialog box.

Arguments

None.

Returns

Dreamweaver expects a Boolean value.

Example

The following code tells Dreamweaver to check to see that the document contains a particular
string before allowing the user to insert the selected object:
function canInsertObject(){
 var docStr = dw.getDocumentDOM().documentElement.outerHTML;
 var patt = /hava/;
 var found = (docStr.search(patt) != -1);
 var insertionIsValid = true;

 if (!found){
 insertionIsValid = false;
 alert("the document must contain a 'hava' string to use this object.");}
 return insertionIsValid;}

displayHelp()

Description

If you define this function, it displays a Help button below the OK and Cancel buttons in the
Parameters dialog box. This function is called when the user clicks the Help button.

Arguments

None.
The Objects API 161

Returns

Dreamweaver expects nothing.

Example

The following example opens the myObjectHelp.htm file in a browser; this file explains how
to use the extension:
function displayHelp(){

var myHelpFile = dw.getConfigurationPath() +
'/ExtensionsHelp/myObjectHelp.htm';

 dw.browseDocument(myHelpFile);
}

isDomRequired()

Description

This function determines whether the object requires a valid DOM to operate. If this
function returns a true value or if the function is not defined, Dreamweaver assumes that the
command requires a valid DOM and synchronizes the Code and Design views for the
document before executing. Synchronization causes all edits in the Code view to be updated
in the Design view.

Arguments

None.

Returns

Dreamweaver expects a true value if a command requires a valid DOM to operate;
false otherwise.

insertObject()

Availability

Dreamweaver MX.
162 Insert Bar Objects

Description

This function is required if the objectTag() function is not defined. It is called when the
user clicks OK. It either inserts code into the user’s document and closes the dialog box or
displays an error message and leaves the dialog box open. This works as an alternate function
to use in objects instead of the objectTag() function. It does not assume that the user is
inserting text at the current insertion point and allows data validation when the user clicks
OK. You should use the insertObject() function if one of the following conditions exists:

■ You need to insert code in more than one place.
■ You need to insert code somewhere other than the insertion point.
■ You need to validate input before inserting code.

If none of these conditions apply, use the objectTag() function.

Arguments

None.

Returns

Dreamweaver expects a string that contains an error message or an empty string. If it returns
an empty string, the Object dialog box closes when the user clicks OK. If it is not empty,
Dreamweaver displays the error message and the dialog box remains.

Enabler
canInsertObject()

Example

The following example uses the insertObject() function because it needs to validate input
before inserting code:
function insertObject() {
 var theForm = document.forms[0];
 var nameVal = theForm.firstField.value;
 var passwordVal = theForm.secondField.value;
 var errMsg = "",
 var isValid = true;

 // ensure that field values are complete and valid
 if (nameVal == "" || passwordVal == "") {
 errMsg = "Complete all values or click Cancel."
 } else if (nameVal.length < 4 || passwordVal.length < 6) {
 errMsg = "Your name must be at least four characters, and your password

at
least six";
 }

 if (!errMsg) {
The Objects API 163

 // do some document manipulation here. Exercise left to the reader
 }
 return errMsg;
}

objectTag()

Description

The objectTag() and insertObject() functions are mutually exclusive: If both are defined
in a document, the objectTag() function is used. For more information, see “insertObject()”
on page 162.

This function inserts a string of code into the user’s document. In Dreamweaver MX,
returning an empty string, or a null value (also known as "return;"), is a signal to
Dreamweaver to do nothing.

In Dreamweaver 4, if the focus is in Code view and the selection is a range (meaning that it is
not an insertion point), the range is replaced by the string that the objectTag() function
returns. This is the value true, even if the objectTag() function returns an empty string or
returns nothing. The objectTag() function returns an empty string or a null value because
edits to the document have already been made manually. Otherwise, double quotation marks
(" ") often delete the edit by replacing the selection.

Arguments

None.

Returns

Dreamweaver expects the string to insert into the user’s document.

Example

The following example of the objectTag() function inserts an OBJECT/EMBED combination
for a specific ActiveX control and plug-in:
function objectTag() {
return '\n' +
'<OBJECT CLASSID="clsid:166F1OOB-3A9R-11FB-8075444553540000" \n'¬
+ 'CODEBASE="http://www.mysite.com/product/cabs/¬
myproduct.cab#version=1,0,0,0" \n' + 'NAME="MyProductName"> \n' ¬
+ '<PARAM NAME="SRC" VALUE=""> \n' + '<EMBED SRC="" HEIGHT="" ¬
WIDTH="" NAME="MyProductName"> \n' + '</OBJECT>'
}

N
O

T
E

The assumption is that edits have been made manually before the return statement, so
doing nothing in this case is not equivalent to clicking Cancel.
164 Insert Bar Objects

windowDimensions()

Description

This function sets specific dimensions for the Options dialog box. If this function is not
defined, the window dimensions are computed automatically.

Arguments
platform

■ The value of the platform argument is either "macintosh" or "windows", depending on
the user’s platform.

Returns

Dreamweaver expects a string of the form "widthInPixels,heightInPixels".

The returned dimensions are smaller than the size of the entire dialog box because they do not
include the area for the OK and Cancel buttons. If the returned dimensions do not
accommodate all options, scroll bars appear.

Example

The following example of the windowDimensions() function sets the dimensions of the
Parameters dialog box to 648 x 520 pixels for Windows and 660 x 580 pixels for the
Macintosh:
function windowDimensions(platform){

var retval = ""
if (platform = = "windows"){
retval = "648, 520";
}else{
retval = "660, 580";
}
return retval;

}

N
O

T
E

Do not define this function unless you want an Options dialog box that is larger than
640 x 480 pixels.
The Objects API 165

166 Insert Bar Objects

7

CHAPTER 7

Commands
Macromedia Dreamweaver 8 commands can perform almost any kind of edit to a user’s
current document, other open documents, or any HTML document on a local drive.
Commands can insert, remove, or rearrange HTML tags and attributes, comments, and text.

Commands are HTML files. The BODY section of a command file can contain an HTML
form that accepts options for the command (for example, how a table should be sorted and by
which column). The HEAD section of a command file contains JavaScript functions that
process form input from the BODY section and control what edits are made to the user’s
document.

The following table lists the files you use to create a command:

How commands work
When a user clicks a menu that contains a command, the following events occur:

1. Dreamweaver calls the canAcceptCommand() function to determine whether the menu
item should be disabled. If the canAcceptCommand() function returns a false value, the
command is dimmed in the menu, and the procedure stops. If the canAcceptCommand()
function returns a true value, the procedure can continue.

2. The user selects a command from the menu.

3. Dreamweaver calls the receiveArguments() function, if defined, in the selected
Command file to let the command process any arguments that pass from the menu item
or from the dreamweaver.runCommand() function. For more information on the
dreamweaver.runCommand() function, see the Dreamweaver API Reference.

Path File Description

Configuration/Commands/ commandname.htm Specifies the user interface.

Configuration/Commands/ commandname.js Contains the functions to execute.
167

4. Dreamweaver calls the commandButtons() function, if defined, to determine which
buttons appear on the right side of the Options dialog box and what code should execute
when the user clicks the buttons.

5. Dreamweaver scans the command file for a FORM tag. If a form exists, Dreamweaver calls
the windowDimensions() function, which sizes the Options dialog box that contains the
BODY elements of the file. If the windowDimensions() function is not defined,
Dreamweaver automatically sizes the dialog box.

6. If the command file’s BODY tag contains an onLoad handler, Dreamweaver executes it
(whether or not a dialog box appears). If no dialog box appears, the remaining steps do not
occur.

7. The user selects options for the command. Dreamweaver executes event handlers that are
associated with the fields as the user encounters them.

8. The user clicks one of the buttons that is defined by the commandButtons() function.

9. Dreamweaver executes the associated code. The dialog box remains visible until one of the
scripts in the command calls the window.close() function.

Adding commands to the Commands
menu
Dreamweaver automatically adds any files that are inside the Configuration/Commands
folder to the bottom of the Commands menu. To prevent a command from appearing in the
Commands menu, insert the following comment on the first line of the file:
<!-- MENU-LOCATION=NONE -->

When this line is present, Dreamweaver does not create a menu item for the file, and you
must call dw.runCommand() to execute the command.

A simple command example
This simple extension adds an item to the Commands menu and lets you convert selected text
in your document to either uppercase or lowercase. When you click the menu item, it
activates a three-button interface that lets you submit your choice.

You create this extension by performing the following steps:

■ Creating the UI
■ Writing the JavaScript code
■ Testing the extension
168 Commands

This example creates two files in the Commands folder: Change Case.htm, which contains
the UI, and Change Case.js, which contains the JavaScript code. If you prefer, you can create
only the Change Case.htm file and put the JavaScript code in the HEAD section.

Creating the UI
The UI is a form that contains two radio buttons that let the user select uppercase or
lowercase.

To create the user interface:

1. Create a new blank file.

2. Add the following code to the file to create the form:
<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine 5.0//

dialog">
<HTML>
<HEAD>
<!-- Copyright 2001-2002 Macromedia, Inc. All rights reserved. -->
<Title>Make Uppercase or Lowercase</Title>
<SCRIPT SRC="Change Selection Case.js"></SCRIPT>

</HEAD>
<BODY>
 <form name="uorl">
 <table border="0">
 <!--DWLayoutTable-->
 <tr>
 <td valign="top" nowrap> <p>
 <label>
 <input type="radio" name="RadioGroup1" value="uppercase"

checked>
 Uppercase</label>

 <label>
 <input type="radio" name="RadioGroup1" value="lowercase">
 Lowercase</label>
 </p></td>
 </tr>
 </table>
 </div>
</form>
</BODY>
</HTML>

3. Save the file as Change Case.htm in the Configuration/Commands folder.
A simple command example 169

The contents of the Title tag, Make Uppercase or Lowercase, appears in the top bar of
the dialog box. Within the form, a table with two cells controls the layout of the elements.
Within the table cells are the two radio buttons, Uppercase and Lowercase. The Uppercase
button has the checked attribute, making it the default selection and ensuring that the user
must either select one of the two buttons or cancel the command.

The form looks like the following figure.

The commandButtons() function supplies the OK and Cancel buttons that let the user
submit the choice or cancel the operation.

Writing the JavaScript code
The following example consists of two extension API functions, canAcceptCommand() and
commandButtons(), which Dreamweaver calls, and one user-defined function,
changeCase(), which is called from the commandButtons() function.

In this example, you will write JavaScript to perform the following tasks:

■ Determining whether the command should be enabled or dimmed
■ Linking functions to the OK and Cancel buttons
■ Letting the user specify uppercase or lowercase

Determining whether the command should be enabled or
dimmed
The first task in creating a command is to determine when the item should be active and
when it should be dimmed. When a user clicks the Commands menu, Dreamweaver calls the
canAcceptCommand() function for each menu item to determine whether it should be
enabled. If canAcceptCommand() returns the value true, Dreamweaver displays the menu
item text as active or enabled. If canAcceptCommand() returns the value false, Dreamweaver
dims the menu item. In this example, the menu item is active when the user has selected text
in the document.
170 Commands

To determine whether the command should be active or dimmed:

1. Create a new blank file.

2. Add the following code:
function canAcceptCommand(){

var theDOM = dw.getDocumentDOM(); // Get the DOM of the current
document
var theSel = theDOM.getSelection(); // Get start and end of selection
var theSelNode = theDOM.getSelectedNode(); // Get the selected node
var theChildren = theSelNode.childNodes; // Get children of selected
node
return (theSel[0] != theSel[1] && (theSelNode.nodeType ==
Node.TEXT_NODE¬

|| theSelNode.hasChildNodes() && (theChildren[0].nodeType == ¬
Node.TEXT_NODE)));

}

3. Save the file as Change Case.js in the Configuration/Commands folder.

The first lines of the canAcceptCommand() function retrieve the selected text by retrieving the
DOM for the user’s document and calling the getSelection() function on the document
object. Next, the function retrieves the node that contains the selected text, followed by any
children of the node, as shown in the following code. Then, the last line checks to see if the
selection or its first child is text and returns the result as a value of true or false.

The first part of the return statement (theSel[0] != theSel[1]) checks if the user has
selected anything in the document. The variable theSel is a two-slot array that holds the
beginning and ending offsets of the selection within the document. If the two values are not
equal, content has been selected. If the values in the two slots are equal, there is only an
insertion point and nothing has been selected.
A simple command example 171

The next part of the return statement (&& (theSelNode.nodeType == Node.TEXT_NODE)
checks to see if the selected node type is text. If so, the canAcceptCommand() function
returns the value true. If the node type is not text, the test continues to see if the node has
children (|| theSelNode.hasChildNodes()), and if the type of the first child node is text
(&& (theChildren[0].nodeType == Node.TEXT_NODE))). If both conditions are true,
canAcceptCommand() returns the value true, and Dreamweaver enables the menu item at
the bottom of the Commands menu, as shown in the following figure:

Otherwise, canAcceptCommand() returns the value false and Dreamweaver dims the item,
as shown in the following figure:
172 Commands

Linking functions to the OK and Cancel buttons
When the user clicks OK or Cancel, the extension needs to perform the appropriate action.
You determine the appropriate action by specifying which JavaScript function to perform
when either button is clicked.

To link the OK and Cancel button to functions:

1. Open the file Change Case.js in the Configuration/Commands folder.

2. At the end of the file, add the following code:
function commandButtons() {

return new Array("OK", "changeCase()", "Cancel", "window.close()");
}

3. Save the file.

The commandButtons() function causes Dreamweaver to supply the OK and Cancel buttons
and tells Dreamweaver what to do when the user clicks them. The commandButtons()
function tells Dreamweaver to call changeCase() when the user clicks OK and to call
window.close() when the user clicks Cancel.

Letting the user specify uppercase or lowercase
When the user clicks a menu item, the extension needs a mechanism to let the user select
uppercase or lowercase. The UI provides this mechanism by defining two radio buttons to let
the user make that choice.

To let the user specify uppercase or lowercase:

1. Open the file Change Case.js.

2. At the end of the file, add the following code:
function changeCase() {
 var uorl;

// Check whether user requested uppercase or lowercase.
 if (document.forms[0].elements[0].checked)

uorl = 'u';
else

uorl = 'l';

// Get the DOM.
var theDOM = dw.getDocumentDOM();

// Get the outerHTML of the HTML tag (the
// entire contents of the document).
var theDocEl = theDOM.documentElement;
var theWholeDoc = theDocEl.outerHTML;
A simple command example 173

// Get the node that contains the selection.
var theSelNode = theDOM.getSelectedNode();

// Get the children of the selected node.
var theChildren = theSelNode.childNodes;
var i = 0;
if (theSelNode.hasChildNodes()){

while (i < theChildren.length){
if (theChildren[i].nodeType == Node.TEXT_NODE){

 var selText = theChildren[i].data;
var theSel = theDOM.nodeToOffsets(theChildren[0]);
break;

}
++i;

}
}
else {
// Get the offsets of the selection

 var theSel = theDOM.getSelection();
 // Extract the selection
 var selText = theWholeDoc.substring(theSel[0],theSel[1]);
}
if (uorl == 'u'){

theDocEl.outerHTML = theWholeDoc.substring(0,theSel[0]) +
selText.toUpperCase() + theWholeDoc.substring(theSel[1]);

}
else {

theDocEl.outerHTML = theWholeDoc.substring(0,theSel[0]) +
selText.toLowerCase() + theWholeDoc.substring(theSel[1]);

}
// Set the selection back to where it was when you started
 theDOM.setSelection(theSel[0],theSel[1]);

window.close(); // close extension UI
}

3. Save the file as Change Case.js in the Configuration/Commands folder.

The changeCase() function is a user-defined function that is called by the
commandButtons() function when the user clicks OK. This function changes the selected
text to uppercase or lowercase. Because the UI uses radio buttons, the code can rely on one
choice or the other being checked; it does not need to test for the possibility that the user
makes neither choice.
174 Commands

The changeCase() function first tests the property
document.forms[0].elements[0].checked. The document.forms[0].elements[0]
property refers to the first element in the first form of the current document object, which is
the UI for the extension. The checked property has the value true if the element is checked
(or enabled) and false if it is not. In the interface, elements[0] refers to the first radio
button, which is the Uppercase button. Because one of the radio buttons is always checked
when the user clicks OK, the code assumes that if the choice is not uppercase, it must be
lowercase. The function sets the variable uorl to "u" or "l" to store the user’s response.

The remaining code in the function retrieves the selected text, converts it to the specified case,
and copies it back in place in the document.

To retrieve the selected text for the user’s document, the function gets the DOM. It then gets
the root element of the document, which is the html tag. Finally, it extracts the whole
document into the theWholeDoc variable.

Next, changeCase() calls getSelectedNode() to retrieve the node that contains the selected
text. It also retrieves any child nodes (theSelNode.childNodes) in case the selection is a tag
that contains text, such as text.

If there are child nodes (hasChildNodes() returns the value true), the command loops
through the children looking for a text node. If one is found, the text
(theChildren[i].data) is stored in selText, and the offsets of the text node are stored in
theSel.

If there are no child nodes, the command calls getSelection() and stores the beginning and
ending offsets of the selection in theSel. It then extracts the string between those two offsets
and stores it in selText.

The function then checks the uorl variable to determine whether the user selected uppercase.
If so, the function writes the HTML code back to the document in sections: first, the
beginning of the document to the beginning of the selection; then the selected text,
converting it to uppercase (selText.toUppercase()); and last, the end of the selected text to
the end of the document.

If the user selects lowercase, the function performs the same operation, but calls
selText.toLowerCase() to convert the selected text to lowercase.

Finally, changeCase() resets the selection and calls window.close() to close the UI.
A simple command example 175

Testing the extension
After you place the files in the Commands folder, you can test the extension.

To test the extension:

1. Restart Dreamweaver or reload extensions. For information on reloading extensions, see
“Reloading extensions” on page 104.

The Change Case entry should now appear on the Commands menu.
2. Type some text in a document.

3. Select the text.

4. Select Change Case from the Commands menu.

The text changes case.

The Commands API
The custom functions in the Commands API are not required.

canAcceptCommand()

Description

This function determines whether the command is appropriate for the current selection.

Arguments

None.

Returns

Dreamweaver expects a true value if the command is allowed; if the value is false,
Dreamweaver dims the command in the menu.

N
O

T
E

Change Case is dimmed until the user selects text in the document.

N
O

T
E

Do not define canAcceptCommand() unless it returns a value of false in at least one
case. If the function is not defined, the command is assumed to be appropriate. Making
this assumption saves time and improves performance.
176 Commands

Example

The following example of the canAcceptCommand() function makes the command available
only when the selection is a table:
function canAcceptCommand(){

var retval=false;
var selObj=dw.getDocumentDOM.getSelectedNode();
return (selObj.nodeType == Node.ELEMENT_NODE && ¬
selObj.tagName=="TABLE");{

retval=true;
}
return retval;
}

commandButtons()

Description

This function defines the buttons that should appear on the right side of the Options dialog
box and their behaviors when they are clicked. If this function is not defined, no buttons
appear, and the BODY section of the Commands file expands to fill the entire dialog box.

Arguments

None.

Returns

Dreamweaver expects an array that contains an even number of elements. The first element is
a string that contains the label for the topmost button. The second element is a string of
JavaScript code that defines the behavior of the topmost button when it is clicked. The
remaining elements define additional buttons in the same way.

Example

The following instance of commandButtons() defines three buttons: OK, Cancel, and Help:
function commandButtons(){

return new Array("OK" , "doCommand()" , "Cancel" , ¬
"window.close()" , "Help" , "showHelp()");

}

The Commands API 177

isDomRequired()

Description

This function determines whether the command requires a valid DOM to operate. If this
function returns a value of true or if the function is not defined, Dreamweaver assumes that
the command requires a valid DOM and synchronizes the Design and Code views of the
document before executing. Synchronization causes all edits in the Code view to update in the
Design view.

Arguments

None.

Returns

Dreamweaver expects a true value if a command requires a valid DOM to operate;
false otherwise.

receiveArguments()

Description

This function processes any arguments that pass from a menu item or from the
dw.runCommand() function.

Arguments
{arg1}, {arg2},...{argN}

■ If the arguments attribute is defined for a menuitem tag, the value of that attribute passes
to the receiveArguments() function as one or more arguments. Arguments can also pass
to a command by the dw.runCommand() function.

Returns

Dreamweaver expects nothing.

windowDimensions()

Description

This function sets specific dimensions for the Parameters dialog box. If this function is not
defined, the window dimensions are computed automatically.

N
O

T
E

Do not define this function unless you want an Options dialog box that is larger than
640 x 480 pixels.
178 Commands

Arguments
platform

■ The value of the platform argument is either "macintosh" or "windows", depending on
the user’s platform.

Returns

Dreamweaver expects a string of the form "widthInPixels,heightInPixels".

The returned dimensions are smaller than the size of the entire dialog box because they do not
include the area for the OK and Cancel buttons. If the returned dimensions do not
accommodate all options, scroll bars appear.

Example

The following example of the windowDimensions() function sets the dimensions of the
Parameters dialog box to 648 x 520 pixels:
function windowDimensions(){

return "648,520";
}

The Commands API 179

180 Commands

8

CHAPTER 8

Menus and Menu Commands
Macromedia Dreamweaver 8 creates all its menus from the structure defined in the
menus.xml file in the Dreamweaver Configuration/Menus folder. You can rearrange, rename,
and remove menu commands by editing the menus.xml file. You can also add, change, and
remove keyboard shortcuts for menu commands, although in most cases it is easier to do that
using the Keyboard Shortcut Editor (see Dreamweaver Help). Changes to the Dreamweaver
menus take effect the next time you start Dreamweaver or reload extensions.

In a multiuser operating system, when you make changes within Dreamweaver that result in
changes to menus.xml (such as changing keyboard shortcuts using the Keyboard Shortcut
Editor), Dreamweaver creates a new menus.xml file in your user Configuration folder. To
customize menus.xml in a multiuser operating system, edit the copy of the file in your user
Configuration folder (or copy the master menus.xml file to your user Configuration folder if
Dreamweaver hasn’t yet created a version there). For more information, see “Multiuser
Configuration folders” on page 104.

If you open menus.xml in an XML editor, you might see error messages regarding the
ampersands (&) in the menus.xml file. It’s best to edit menus.xml in a text editor; do not edit
it in Dreamweaver. For basic information about XML, see Dreamweaver Help.

N
O

T
E

Always make a backup copy of the current menus.xml file, or any other Dreamweaver
configuration file, before you modify it. It’s easy to make mistakes while editing the menu
configuration file, and there’s no way to revert to a previous set of menus other than
replacing the menus.xml file. In case you forget to make a backup, the Configuration
folder contains a backup of the default menus.xml file, called menus.bak; to revert to the
default menu set, replace menus.xml with a copy of menus.bak.
181

About the menus.xml file
The menus.xml file contains a structured list of menu bars, menus, menu commands,
separators, shortcut lists, and keyboard shortcuts. These items are described by XML tags that
you can edit in a text editor.

A menu bar (tagged with opening and closing menubar tags) is a discrete menu or set of
menus—for example, there’s a main menu bar, a separate Site window menu bar (which
appears only on Windows, not the Macintosh), and a menu bar for each context menu. Each
menu bar contains one or more menus; a menu is contained in a menu tag. Each menu
contains one or more menu commands, each described by a menuitem tag and its attributes.
A menu can also contain separators (described by separator tags) and submenus.

In addition to the keyboard shortcuts associated with menu commands, Dreamweaver
provides a variety of other keyboard shortcuts, including alternate shortcuts and shortcuts that
are available only in certain contexts. For example, Control+Y (Windows) or Command+Y
(Macintosh) is the shortcut for Redo; but Control+Shift+Z or Command+Shift+Z is an
alternate shortcut for Redo. These alternates—and other shortcuts that can’t be represented in
the tags for menu commands—are defined in shortcut lists in the menus.xml file. Each
shortcut list (described by a shortcutlist tag) contains one or more shortcuts, each of
which is described by a shortcut tag.

The following sections describe the syntax of the menus.xml tags. Optional attributes are
marked in the attribute lists with curly braces ({}); all attributes not marked with curly braces
are required.

<menubar>

Description

Provides information about a menu bar in the Dreamweaver menu structure.

Attributes
name, {app}, id, {platform}

■ name The name of the menu bar. Although name is a required attribute, you can give it the
value "".

■ app The name of the application in which the menu bar is available. Not currently used.

N
O

T
E

Be careful when making changes to menus. Dreamweaver ignores any menu or menu
command that contains an XML syntax error.
182 Menus and Menu Commands

■ id The menu ID for the menu bar. Each menu ID in the menus.xml file should be
unique.

■ platform Indicates that the menu bar should appear only on the given platform. Valid
values are "win" and "mac".

Contents

This tag must contain one or more menu tags.

Container

None.

Example

The main (Document window) menu bar uses the following menubar tag:
<menubar name="Main Window" id="DWMainWindow">
<!-- menu tags here -->
</menubar>

<menu>

Description

Provides information about a menu or submenu to appear in the Dreamweaver menu
structure.

Attributes
name, {app}, id, {platform}, {showIf}

■ name The name of the menu as it will appear on the menu bar. To set the menu’s access
key (mnemonic) in Windows, use an underscore (_) before the access letter. The
underscore is automatically removed on the Macintosh.

■ app The name of the application in which the menu is available. Not currently used.
■ id The menu ID for the menu. Every ID in the file should be unique.
■ platform Indicates that the menu should appear only on the given platform. Valid values

are "win" and "mac".
About the menus.xml file 183

■ showIf Specifies that the menu should appear only if the given Dreamweaver enabler is
the value true. The possible enablers are: _SERVERMODEL_ASP, _SERVERMODEL_ASPNET,
_SERVERMODEL_JSP, _SERVERMODEL_CFML (for all versions of Macromedia ColdFusion),
_SERVERMODEL_CFML_UD4 (for UltraDev version 4 of ColdFusion), _SERVERMODEL_PHP,
_FILE_TEMPLATE, _VIEW_CODE, _VIEW_DESIGN, _VIEW_LAYOUT,

_VIEW_EXPANDED_TABLES, and _VIEW_STANDARD. You can specify multiple enablers by
placing a comma (which means AND) between the enablers. You can specify NOT with
"!". For example, if you want the menu to appear only in Code view for an ASP page,
specify the attribute as showIf="_VIEW_CODE, _SERVERMODEL_ASP".

Contents

This tag can contain one or more menuitem tags, and one or more separator tags. It can also
contain other menu tags (to create submenus) and standard HTML comment tags.

Container

This tag must be contained in a menubar tag.

Example
<menu name="_File" id="DWMenu_File">

<!-- menuitem, separator, menu, and comment tags here -->
</menu>

<menuitem>

Description

Defines a menu command for a Dreamweaver menu.

Attributes
name, id, {app}, {key}, {platform}, {enabled}, {arguments}, {command},

{file}, {checked}, {dynamic}, {isdomrequired}, {showIf}

■ name The menu command name that appears in the menu. An underscore indicates that
the following letter is the command’s access key (mnemonic), for Windows only.

■ id Used by Dreamweaver to identify the item. This ID must be unique throughout the
menu structure. If you add new menu commands to menus.xml, ensure uniqueness by
using your company name or another unique string as a prefix for each menu command’s
ID.

■ app The name of the application in which the menu command is available. Not currently
used.
184 Menus and Menu Commands

■ key The keyboard shortcut for the command, if any. Use the following strings to specify
modifier keys:
■ Cmd specifies the Control key (Windows) or Command key (Macintosh).
■ Alt and Opt interchangeably specify the Alt key (Windows) or Option key

(Macintosh).
■ Shift specifies the Shift key on both platforms.
■ Ctrl specifies the Control key on both platforms.
■ A Plus (+) sign separates modifier keys if a given shortcut uses more than one modifier.

For example, Cmd+Opt+5 in the key attribute means the menu command is executed
when the user presses Control+Alt+5 (Windows) or Command+Option+5
(Macintosh).

■ Special keys are specified by name: F1 through F12, PgDn, PgUp, Home, End, Ins, Del,
Tab, Esc, BkSp, and Space. Modifier keys can also be applied to special keys.

■ platform Indicates on which platform the item appears. Valid values are "win", meaning
Windows, or "mac", meaning Macintosh. If you don’t specify the platform attribute, the
menu command appears on both platforms. If you want a menu command to behave
differently on different platforms, supply two menu commands with the same name (but
different IDs): one with platform="win" and the other with platform="mac".

■ enabled Provides JavaScript code (usually a JavaScript function call) that determines
whether the menu command is currently enabled. If the function returns the value false,
the menu command is dimmed. The default value is "true", but it’s best to always specify
a value for clarity even if the value is "true".

■ arguments Provides arguments for Dreamweaver to pass to the code in the JavaScript file
that you specify in the file attribute. Enclose arguments in single quotation marks ('),
inside the double quotation marks (") used to delimit an attribute’s value.

■ command Specifies a JavaScript expression that’s executed when the user selects this item
from the menu. For complex JavaScript code, use a JavaScript file (specified in the file
attribute) instead. You must specify either file or command for each menu command.

■ file The name of an HTML file containing JavaScript that controls the menu command.
Specify a path to the file relative to the Configuration folder. (For example, the Help >
Welcome menu command specifies file="Commands/Welcome.htm".) The file
attribute overrides the command, enabled, and checked attributes. You must specify
either file or command for each menu command. For information on creating a
command file using the History panel, see Dreamweaver Help. For information on
writing your own JavaScript commands, see Chapter 7, “Commands,” on page 167.
About the menus.xml file 185

■ checked A JavaScript expression that indicates whether the menu command has a check
mark next to it in the menu; if the expression evaluates as true, the item appears with a
check mark.

■ dynamic If present, indicates that a menu command is to be determined dynamically, by
an HTML file; the file contains JavaScript code to set the text and state of the menu
command. If you specify a tag as dynamic, you must also specify a file attribute.

■ isdomrequired Indicates whether to synchronize the Design view and the Code view
before executing the code for this menu command. Valid values are "true" (the default)
and "false". If you set this attribute to "false", it means that the changes to the file that
this menu command makes do not use the Dreamweaver DOM. For information about
the DOM, see Chapter 5, “The Dreamweaver Document Object Model,” on page 127).

■ showIf Specifies that the menuitem should appear only if the given Dreamweaver enabler
has value true. The possible enablers are: _SERVERMODEL_ASP, _SERVERMODEL_ASPNET,
_SERVERMODEL_JSP, _SERVERMODEL_CFML (for all versions of ColdFusion),
_SERVERMODEL_CFML_UD4 (for UltraDev version 4 of ColdFusion), _SERVERMODEL_PHP,
_FILE_TEMPLATE, _VIEW_CODE, _VIEW_DESIGN, _VIEW_LAYOUT,

_VIEW_EXPANDED_TABLES, and _VIEW_STANDARD. You can specify multiple enablers by
placing a comma (which means AND) between the enablers. You can specify NOT with
"!". For example, if you want the menu command to appear in Code view but not for a
ColdFusion page, specify the attribute as showIf="_VIEW_CODE,
!_SERVERMODEL_CFML".

Contents

None (empty tag).

Container

This tag must be contained in a menu tag.

Example
<menuitem name="_New" key="Cmd+N" enabled="true"

command="dw.createDocument()" id="DWMenu_File_New" />

<separator>

Description

Indicates that a separator should appear at the corresponding location in the menu.
186 Menus and Menu Commands

Attributes
{app}

■ app The name of the application in which the separator is shown. Not currently used.

Contents

None (empty tag).

Container

This tag must be contained in a menu tag.

Example
<separator />

<shortcutlist>

Description

Specifies a shortcut list in the menus.xml file.

Attributes
{app}, id, {platform}

■ app The name of the application in which the shortcut list is available. Not currently
used.

■ id The ID for the shortcut list. It should be the same as the menu ID for the menu bar
(or context menu) in Dreamweaver that the shortcuts are associated with. Valid values are
"DWMainWindow", "DWMainSite", "DWTimelineContext", and "DWHTMLContext".

■ platform Indicates that the shortcut list should appear only on the given platform. Valid
values are "win" and "mac".

Contents

This tag can contain one or more shortcut tags. It can also contain one or more comment
tags (which use the same syntax as HTML comment tags).

Container

None.

Example
<shortcutlist id="DWMainWindow">
<!-- shortcut and comment tags here -->
</shortcutlist>
About the menus.xml file 187

<shortcut>

Description

Specifies a keyboard shortcut in the menus.xml file.

Attributes
key, {app}, {platform}, {file}, {arguments}, {command}, id, {name}

■ key The key combination that activates the keyboard shortcut. For syntax details, see
<menuitem>.

■ app The name of the application in which the shortcut is available. Not currently used.
■ platform Specifies that the shortcut works only on the indicated platform. Valid values

are "win" and "mac". If you do not specify this attribute, the shortcut works on both
platforms.

■ file The path to a file containing the JavaScript code that Dreamweaver executes when
you use the keyboard shortcut. The file attribute overrides the command attribute. You
must specify either file or command for each shortcut.

■ arguments Provides arguments for Dreamweaver to pass to the code in the JavaScript file
that you specify in the file attribute. Enclose arguments in single quotation marks ('),
inside the double quotation marks (") used to delimit an attribute’s value.

■ command The JavaScript code that Dreamweaver executes when you use the keyboard
shortcut. Specify either file or command for each shortcut.

■ id A unique identifier for a shortcut.
■ name A name for the command executed by the keyboard shortcut, in the style of a menu

command name. For example, the name attribute for the F12 shortcut is "Preview in
Primary Browser".

Contents

None (empty tag).

Container

This tag must be contained in a shortcutlist tag.

Example
<shortcut key="Cmd+Shift+Z" file="Menus/MM/Edit_Clipboard.htm"
arguments="’redo’" id="DWShortcuts_Edit_Redo" />
188 Menus and Menu Commands

<tool>

Description

Represents one tool; it contains all the shortcuts for the tool as subtags in the menus.xml file.

Attributes
{name}, id

■ name A localized version of the tool name.
■ id The internal tool identifier that identifies the tool to which the shortcuts apply.

Contents

This tag can contain one or more activate, override, or action tags.

Container

This tag must be contained in a menu tag.

Example
<tool name="Hand tool" id="com.macromedia.dreamweaver.tools.hand">

<!-- tool tags here -->
</tool>

<action>

Description

Contains the key combination and JavaScript to execute when the tool is active and the key
combination is pressed.

Attributes
{name}, key, command, id

■ name A localized version of the action.
■ key The key combination used to execute the action. For syntax details, see <menuitem>.
■ command The JavaScript statements to execute. This attribute has the same format as the

command attribute of <shortcut>.
■ id A unique ID used to reference the action.

Contents

None (empty tag).

Container

This tag must be contained in a tool tag.
About the menus.xml file 189

Example
<action name="Set magnification to 50%" key="5" command="dw.activeViewScale

= 0.50" id ="DWTools_Zoom_50" />

<activate>

Description

Contains the key combination to activate the tool.

Attributes
{name}, key, id

■ name A localized version of the action.
■ key The key combination used to activate the tool. For syntax details, see <menuitem>.
■ id A unique ID used to reference the action.

Contents

None (empty tag).

Container

This tag must be contained in a tool tag.

Example
<activate name="Switch to Hand tool" key="H" id="DWTools_Hand_Active1" />

<override>

Description

Contains the key combination to temporarily activate the tool. While in another modal tool,
the user can press and hold this key to switch to this tool.

Attributes
{name}, key, id

■ name A localized version of the action.
■ key The key combination used to quickly activate the tool. For syntax details, see

<menuitem>.
■ id A unique ID used to reference the action.

Contents

None (empty tag).
190 Menus and Menu Commands

Container

This tag must be contained in a tool tag.

Example
<override name="Quick switch to Hand tool" key="Space"

id="DWTools_Hand_Override" />

Changing menus and menu commands
By editing the menus.xml file, you can move menu commands within a menu or from one
menu to another, add separators to or remove them from menus, and move menus within a
menu bar or even from one menu bar to another.

You can move items into or out of context menus using the same procedure as for other
menus.

For information, see “About the menus.xml file” on page 182.

To move a menu command:

1. Quit Dreamweaver.

2. Make a backup copy of the menus.xml file.

3. Open menus.xml in a text editor such as BBEdit, HomeSite, or Wordpad. (Don’t open it
in Dreamweaver.)

4. Cut an entire menuitem tag, from the <menuitem at the beginning to the /> at the end.

5. Place the insertion point at the new location for the menu command. (Make sure it’s
between a menu tag and the corresponding /menu tag.)

6. Paste the menu command into its new location.

To create a submenu while moving a menu command:

1. Place the insertion point inside a menu (somewhere between a menu tag and the
corresponding /menu tag).

2. Insert a new menu tag and /menu tag pair inside the menu.
3. Add new menu commands to the new submenu.

To insert a separator between two menu commands:

■ Place a separator/ tag between the two menuitem tags.

To remove an existing separator:

■ Delete the corresponding separator/ line.
Changing menus and menu commands 191

To move a menu:

1. Quit Dreamweaver.

2. Make a backup copy of the menus.xml file.

3. Open menus.xml in a text editor such as BBEdit, HomeSite, or Wordpad. (Don’t open it
in Dreamweaver.)

4. Cut an entire menu and its contents, from the opening menu tag to the closing /menu tag.

5. Place the insertion point at the new location for the menu. (Make sure it’s between a
menubar tag and the corresponding /menubar tag.)

6. Paste the menu into its new location.

Changing the name of a menu command or menu
You can easily change the name of any menu command or menu by editing the menus.xml
file.

To change the name of a menu command or menu:

1. Quit Dreamweaver.

2. Make a backup copy of the menus.xml file.

3. Open menus.xml in a text editor such as HomeSite, BBEdit, or Wordpad. (Don’t open it
in Dreamweaver.)

4. If you’re changing a menu command, find the appropriate menuitem tag, and change the
value of its name attribute. If you are changing a menu, find the appropriate menu tag, and
change the value of its name attribute. In either case, do not change the id attribute.

5. Save and close menus.xml; then start Dreamweaver again to see your changes.

Changing keyboard shortcuts
If the default keyboard shortcuts aren’t convenient for you, you can change or remove existing
shortcuts or add new ones. The easiest way to do this is to use the Keyboard Shortcut Editor.
(For more information, see Dreamweaver Help). However, you can also modify keyboard
shortcuts directly in menus.xml if you prefer, but it’s much easier to make mistakes entering
shortcuts in menus.xml than in the Keyboard Shortcut Editor.

To change a keyboard shortcut:

1. Quit Dreamweaver.

2. Make a backup copy of the menus.xml file.
192 Menus and Menu Commands

3. Open menus.xml in a text editor such as BBEdit, HomeSite, or Wordpad. (Don’t open it
in Dreamweaver.)

4. Look at the Keyboard Shortcut Matrix (available from the Dreamweaver Support Center)
and find a shortcut that’s not being used or one that you want to reassign.

If you reassign a keyboard shortcut, change it on a printed copy of the matrix for
future reference.

5. If you’re reassigning a keyboard shortcut, find the menu command that the shortcut is
assigned to, and remove the key="shortcut" attribute from that menu command.

6. Find the menu command to assign or reassign the keyboard shortcut.

7. If the menu command already has a keyboard shortcut, find the key attribute on that line.
If it doesn’t already have a shortcut, add key="" anywhere between attributes inside the
menuitem tag.

8. Between the double quotation marks (") of the key attribute, enter the new
keyboard shortcut.

Use a Plus (+) sign between the keys in a key combination. For more information about
modifiers, see the description of the menuitem tag in <menuitem>.
If the keyboard shortcut is in use elsewhere and you didn’t remove its other use, the
shortcut applies only to the first menu command that uses it in menus.xml.

9. Write your new shortcut in the appropriate location in the Keyboard Shortcut Matrix.

Modifying pop-up menus and context menus

Dreamweaver provides pop-up menus and context menus in many of its panels and dialog
boxes. Some context menus are defined in the menus.xml file; others are defined in other
XML files. You can add, remove, or modify items in those menus, although in most cases it’s
better to write an extension to make such changes.

The following pop-up menus and context menus in Dreamweaver are specified in XML files,
using the same tags as menus.xml:

■ Data sources (listed in the Plus (+) pop-up menu on the Bindings panel) are specified in
DataSources.xml files, in subfolders of the DataSources folder.

■ Server behaviors (listed in the Plus (+) pop-up menu on the Server Behaviors panel) are
specified in ServerBehaviors.xml files, in subfolders of the ServerBehaviors folder.

■ Server formats (listed in the Plus (+) pop-up menu in the Edit Format List dialog box) are
specified in ServerFormats.xml files, in subfolders of the ServerFormats folder.

N
O

T
E

You can use the same keyboard shortcut for a Windows-only menu command and
for a Macintosh-only menu command.
Changing menus and menu commands 193

■ Items in the formats pop-up menu for a binding in the Bindings panel are specified in
Formats.xml files, in subfolders of the ServerFormats folder. You can add entries to this
menu from inside Dreamweaver by using the Add Format dialog box.

■ The Tag Library Editor dialog box menu commands are specified in the TagLibraries/
TagImporters/TagImporters.xml file.

■ Menu commands for parameters in the Generate Behavior dialog box, which is part of the
Server Behavior Builder, are specified in Shared/Controls/String Menu/Controls.xml.

■ Items for context menus associated with ColdFusion Components are specified in
Components/ColdFusion/CFCs/CFCsMenus.xml.

■ Items for context menus associated with ColdFusion data sources are specified in
Components/ColdFusion/DataSources/DataSourcesMenus.xml.

■ Items for context menus associated with JavaBeans are specified in Components/Jsp/
JavaBeans/JavaBeanMenus.xml.

■ Items for context menus associated with various server components are specified in XML
files, in subfolders of the Components folder.

Menu commands
Menu commands make menus more flexible and dynamic. As with regular commands, menu
commands can perform almost any kind of edit to the current document, other open
documents, or any HTML document on a local drive. The Menu Commands API expands
the regular Commands API to accomplish several tasks that are related to displaying and
calling the command from the menu system.

Menu commands are HTML files that are referenced in the file attribute of a menuitem tag
in the menus.xml file. The BODY section of a Menu Commands file can contain an HTML
form that accepts options for the command (for example, how a table should be sorted and by
which column). The HEAD section of a Menu Commands file contains JavaScript functions
that process form input from the BODY section and control the edits to the user’s document.

Menu commands are stored in the Configuration/Menus folder inside the Dreamweaver
application folder.
194 Menus and Menu Commands

The following table lists the files you use to create a Menu command.

Modifying the Commands menu
You can add certain kinds of commands to the Commands menu, and change their names,
without editing the menus.xml file. For more information about menus.xml, see “Changing
menus and menu commands” on page 191.

To create new commands that are automatically placed in the Commands menu, use the
History panel. Alternatively, you can use the Extension Manager to install new extensions,
including commands. For more information, see Dreamweaver Help.

To reorder the items in the Commands menu, or to move items between menus, you must
edit the menus.xml file.

To rename a command you’ve created:

1. Select Commands > Edit Command List.

A dialog box appears, listing all the commands whose names you can change. (Commands
that are in the default Commands menu don’t appear on this list and can’t be edited using
this approach.)

2. Select a command to rename.

3. Enter a new name for it.

4. Click Close.

Path File Description

Configuration/Menus/ menus.xml Contains a structured list of menu
bars, menus, menu commands,
separators, shortcut lists, and
keyboard shortcuts. Modify this file to
add new menus and menu commands.

Configuration/Menus/ commandname.htm Contains the functions required by the
menu command.

N
O

T
E

If you add custom menu commands to Dreamweaver, add them at the top level of the
Menus folder or create a subfolder. The Macromedia folder MM is reserved for the menu
commands that come with Dreamweaver.

N
O

T
E

The term “command” has two meanings in Dreamweaver. Strictly speaking, a command
is a particular kind of extension. In some contexts, however, “command” is used
interchangeably with “menu item” to mean any item that appears in a Dreamweaver
menu, no matter what it does or how it’s implemented.
Menu commands 195

The command is renamed in the Commands menu.

To delete a command you’ve created:

1. Select Commands > Edit Command List.

A dialog box appears, listing all the commands you can delete. (Commands that are in the
default Commands menu don’t appear on this list and can’t be deleted using this
approach.)

2. Select a command to delete.

3. Click Delete, and then confirm that you want to delete the command.

The command is deleted. The file that contains the code for the command is also deleted;
deleting a command does not simply remove the menu command from the menu. Be
certain that you really want to delete the command before you use this approach. If you
want to remove it from the Commands menu without deleting the file, you can find the
file in Configuration/Commands and move it to another folder.

4. Click Close.

How menu commands work
When the user clicks a menu with a menu item that contains a menu command, the following
events occur:

1. If any menuitem tag in the menu contains the dynamic attribute, Dreamweaver calls the
getDynamicContent() function in the associated Menu Commands file to populate the
menu.

2. Dreamweaver calls the canAcceptCommand() function in each Menu Commands file that
is referenced in the menu to check whether the command is appropriate for the selection.

■ If the canAcceptCommand() function returns a false value, the menu item is
dimmed.

■ If the canAcceptCommand() function returns a true value or is not defined,
Dreamweaver calls the isCommandChecked() function to determine whether to
display a check mark next to the menu item. If the isCommandChecked() function is
not defined, no check mark appears.

3. Dreamweaver calls the setMenuText() function to determine the text that should appear
in the menu.

If the setMenuText() function is not defined, Dreamweaver uses the text that is specified
in the menuitem tag.

4. The user selects an item from the menu.
196 Menus and Menu Commands

5. Dreamweaver calls the receiveArguments() function, if defined, in the selected Menu
Commands file to let the command process any arguments that pass from the menu item.

6. Dreamweaver calls the commandButtons() function, if defined, to determine which
buttons appear on the right side of the Options dialog box and what code should execute
when the user clicks the buttons.

7. Dreamweaver scans the Menu Commands file for a FORM tag.

If a form exists, Dreamweaver calls the windowDimensions() function to determine the
size of the Options dialog box that contains the BODY elements of the file.
If the windowDimensions() function is not defined, Dreamweaver automatically sizes the
dialog box.

8. If the Menu Commands file’s BODY tag contains an onLoad handler, Dreamweaver executes
the associated code (whether or not a dialog box appears). If no dialog box appears, the
remaining steps do not occur.

9. The user selects options in the dialog box. Dreamweaver executes event handlers that are
associated with the fields as the user encounters them.

10. The user clicks one of the buttons that are defined by the commandButtons() function.

11. Dreamweaver executes the code that is associated with the clicked button.

12. The dialog box remains visible until one of the scripts in the Menu Commands file calls
the window.close() function.

A simple menu command example
This simple menu command example shows how Undo and Redo menu commands might
work. The Undo menu command reverses the effect of a user’s editing operation, and the
Redo item reverses an Undo operation and restores the effect of the user’s last editing
operation.

You can implement this example by performing the following steps:

■ Creating the menu commands
■ Writing the JavaScript code
■ Placing the command file in the Menu folder

N
O

T
E

If it is a dynamic menu item, the ID of the menu item passes as the only argument.
A simple menu command example 197

Creating the menu commands
Add the following HTML menu tags to the end of the menus.xml file to create a menu called
MyMenu that contains the Undo and Redo menu items.
<menu name="MyMenu" id="MyMenu_Edit">
<menuitem name="MyUndo" key="Cmd+Z" file="Menus/MyMenu.htm"

arguments="'undo'" id="MyMenu_Edit_Undo" />
<menuitem name="MyRedo" key="Cmd+Y" file="Menus/MyMenu.htm"

arguments="'redo'" id="MyMenu_Edit_Redo" />
</menu>

The key attribute defines keyboard shortcut keys that the user can type to invoke the menu
item. The file attribute specifies the name of the command file that Dreamweaver executes
when Dreamweaver invokes the menu item. The value of the arguments attribute defines the
arguments that Dreamweaver will pass when it calls the receiveArguments() function.

The following figure shows these menu items:

Writing the JavaScript code
When the user selects either Undo or Redo on the MyMenu menu, Dreamweaver calls the
MyMenu.htm command file, which is specified by the file attribute of the menuitem tag.
Create the MyMenu.htm command file in the Dreamweaver Configuration/Menus folder
and add the three menu command API functions, canAcceptCommand(),
receiveArguments(), and setMenuText(), to implement the logic associated with the
Undo and Redo menu items. The following sections describe these functions.

canAcceptCommand()
Dreamweaver calls the canAcceptCommand() function for each menu item in the MyMenu
menu to determine whether it should be enabled or disabled. In the MyMenu.htm file, the
canAcceptCommand() function checks the value of arguments[0] to determine whether
Dreamweaver is processing a Redo menu item or an Undo menu item. If the argument is
"undo", the canAcceptCommand() function calls the enabler function dw.canUndo() and
returns the returned value, which is either true or false. Likewise, if the argument is
"redo", the canAcceptCommand() function calls the enabler function dw.canRedo() and
returns its value to Dreamweaver. If the canAcceptCommand() function returns the value
false, Dreamweaver dims the menu item for which it called the function. The following
example shows the code for the canAcceptCommand() function:
198 Menus and Menu Commands

function canAcceptCommand()
{
 var selarray;
 if (arguments.length != 1) return false;
 var bResult = false;

 var whatToDo = arguments[0];
 if (whatToDo == "undo")
 {
 bResult = dw.canUndo();
 }
 else if (whatToDo == "redo")
 {
 bResult = dw.canRedo();
 }
 return bResult;
}

receiveArguments()
Dreamweaver calls the receiveArguments() function to process any arguments that you
defined for the menuitem tag. For the Undo and Redo menu items, the receiveArguments()
function calls either the dw.undo() function or the dw.redo() function, depending on
whether the value of the argument, arguments[0], is "undo" or "redo". The dw.undo()
function undoes the previous step that the user performed in the document window, dialog
box, or panel that has focus. The dw.redo() function redoes the last operation that was
undone.

The receiveArguments() function looks like the following example code:
function receiveArguments()
{
 if (arguments.length != 1) return;

 var whatToDo = arguments[0];
 if (whatToDo == "undo")
 {
 dw.undo();
 }
 else if (whatToDo == "redo")
 {
 dw.redo();
 }
}

A simple menu command example 199

In this command, the receiveArguments() function processes the arguments and executes
the command. More complex menu commands might call different functions to execute the
command. For example, the following code checks whether the first argument is "foo"; if it
is, it calls the doOperationX() function and passes it the second argument. If the first
argument is "bar", it calls the doOperationY() function and passes it the second argument.
The doOperationX() or doOperationY() function is responsible for executing the
command.
function receiveArguments(){
 if (arguments.length != 2) return;

 var whatToDo = arguments[0];

 if (whatToDo == "foo"){
 doOperationX(arguments[1]);
 }else if (whatToDo == "bar"){
 doOperationX(arguments[1]);
 }
}

setMenuText()
Dreamweaver calls the setMenuText() function to determine what text appears for the menu
item. If you do not define the setMenuText() function, Dreamweaver uses the text that you
specified in the name attribute of the menuitem tag.

The setMenuText() function checks the value of the argument that Dreamweaver passes,
arguments[0]. If the value of the argument is "undo", Dreamweaver calls the
dw.getUndoText() function; if it is "redo", Dreamweaver calls dw.getRedoText(). The
dw.getUndoText() function returns text that specifies the operation that Dreamweaver will
undo. For example, if the user executes multiple Redo operations, dw.getUndoText() could
return the menu text “Undo Edit Source.” Likewise, the dw.getRedoText() function returns
text that specifies the operation that Dreamweaver will redo. If the user executes multiple
Undo operations, the dw.RedoText() function could return the menu text “Redo Edit
Source.”
200 Menus and Menu Commands

The setMenuText() function looks like the following example code:
function setMenuText()
{
 if (arguments.length != 1) return "";

 var whatToDo = arguments[0];
 if (whatToDo == "undo")
 return dw.getUndoText();
 else if (whatToDo == "redo")
 return dw.getRedoText();
 else return "";
}

Placing the command file in the Menu folder
To implement the menu Undo and Redo menu items, you must save the MyMenu.htm
command file in the Dreamweaver Configuration/Menus folder or a subfolder that you
create. The location of the file must agree with the location that you specified in the
menuitem tag. To make it accessible to Dreamweaver, either restart Dreamweaver or reload
extensions. For information on how to reload extensions, see “Reloading extensions”
on page 104.

To run the menu commands, select the menu item when it is enabled. Dreamweaver will
invoke the functions in the command file, as described in “How menu commands work”
on page 196.

A dynamic menu example
This example implements the Dreamweaver Preview in Browser submenu that displays a list
of available browsers. The example also opens the current file, or the selected files in the Site
panel, in the user-specified browser. Implementing this dynamic menu consists of the
following steps:

■ Creating the dynamic menu items
■ Writing the JavaScript code
A dynamic menu example 201

Creating the dynamic menu items
The following menu tags in the menus.xml file define the Preview in Browser submenu of the
File menu:
<menu name="_Preview in Browser" id="DWMenu_File_PIB">

<menuitem dynamic name="No Browsers Selected"
file="Menus/MM/PIB_Dynamic.htm" arguments="'No Browsers'"
id="DWMenu_File_PIB_Default" />

<separator />
<menuitem name="_Edit Browser List..." enabled="true"

command="dw.editBrowserList()" id="DWMenu_File_PIB_EditBrowserList" />
</menu>

The first menuitem tag defines the default menu item No Browsers Selected, which appears
on the submenu if you have not specified any browsers for the Preview in Browser item in
Preferences. If you specified the Microsoft Internet Explorer browser, however, the submenu
would look like the following figure:

The name attribute for the first menu item specifies the command file PIB_Dynamic.htm.
This file contains the following line:
<SCRIPT LANGUAGE="javascript" SRC="PIB_Dynamic.js"></SCRIPT>

The script tag includes the JavaScript code in the PIB_Dynamic.js file, which supplies the
JavaScript code that interacts with the Preview in Browser submenu. This code could be saved
directly in the PIB_Dynamic.htm file, but storing it in a separate file allows multiple
commands to include the same code.

Writing the JavaScript code
Because the first menuitem tag contains the dynamic attribute, Dreamweaver calls the
getDynamicContent() function in the PIB_Dynamic.js file, which is shown in the following
example:
function getDynamicContent(itemID)
{

var browsers = null;
var PIB = null;
var i;
var j=0;
browsers = new Array();
PIB = dw.getBrowserList();
202 Menus and Menu Commands

for (i=0; i<PIB.length; i=i+2)
{

browsers[j] = new String(PIB[i]);

if (dw.getPrimaryBrowser() == PIB[i+1])
 browsers[j] += "\tF12";
else if (dw.getSecondaryBrowser() == PIB[i+1])
 browsers[j] += "\tCmd+F12";

browsers[j] += ";id='"+escQuotes(PIB[i])+"'";

if (itemID == "DWPopup_PIB_Default")
browsers[j] = MENU_strPreviewIn + browsers[j];

j = j+1;
}
return browsers;

}

The getDynamicContent() function calls the dw.getBrowserList() function to obtain an
array of the browser names that have been specified in the Preview in Browser section of
Dreamweaver Preferences. This array contains the name of each browser and the path to the
executable file. Next, for each item in the array (i=0; i<PIB.length; i=i+2), the
getDynamicContents() function moves the name of the browser (PIB[i]) into a second
array called browsers (browsers[j] = new String(PIB[i]);). If the browser has been
designated as the primary or secondary browser, the function appends the names of the
keyboard shortcut keys that invoke them. Next it appends the string ";id=" followed by the
name of the browser in single quotes (for example, ;id=’iexplore’). If the itemID
argument is "DWPopup_PIB_Default", the function prefixes the array item with the string
Preview in. After it constructs an entry for each browser listed in Preferences, the
getDynamicContent() function returns the array browsers to Dreamweaver. If no browsers
have been selected in Preferences, the function returns the value null, and Dreamweaver
displays No Browsers Selected in the menu.

canAcceptCommand()
Dreamweaver next calls the canAcceptCommand() function for each menuitem tag that
references a command file with the file attribute. If the canAcceptCommand() function
returns the value false, the menu item is dimmed. If the canAcceptCommand() function
returns the value true, Dreamweaver enables the item on the menu. If the function returns
true or is not defined, Dreamweaver calls the isCommandChecked() function to determine
whether to display a check mark next to the menu item. If the isCommandChecked() function
is not defined, no check mark appears.
A dynamic menu example 203

function canAcceptCommand()
{

var PIB = dw.getBrowserList();

if (arguments[0] == 'primary' || arguments[0] == 'secondary')
return havePreviewTarget();

return havePreviewTarget() && (PIB.length > 0);
}

The canAcceptCommand() function in the PIB_Dynamic.js file again retrieves the browser
list that was created in Preferences. Then it checks whether the first argument
(arguments[0]) is primary or secondary. If so, it returns the value returned by the
havePreviewTarget() function. If not, it tests the call to the havePreviewTarget()
function and tests whether any browsers have been specified (PIB.length > 0). If both tests
are true, the function returns the value true. If either or both of the tests are false, the
function returns the value false.

havePreviewTarget()
The havePreviewTarget() function is a user-defined function that returns the value true
if Dreamweaver has a valid target to display in the browser. A valid target is a document or a
selected group of files in the site panel. The havePreviewTarget() function looks like the
following example:
function havePreviewTarget()
{

var bHavePreviewTarget = false;

if (dw.getFocus(true) == 'site')
{

if (site.getFocus() == 'remote')
{

bHavePreviewTarget = site.getRemoteSelection().length > 0 &&
site.canBrowseDocument();

}
else if (site.getFocus() != 'none')
{

var selFiles = site.getSelection();

if (selFiles.length > 0)
{

var i;

bHavePreviewTarget = true;

for (i = 0; i < selFiles.length; i++)
{

204 Menus and Menu Commands

var selFile = selFiles[i];

// For server connections, the files will
// already be remote URLs.

if (selFile.indexOf("://") == (-1))
{

var urlPrefix = "file:///";
var strTemp = selFile.substr(urlPrefix.length);

if (selFile.indexOf(urlPrefix) == -1)
bHavePreviewTarget = false;

else if (strTemp.indexOf("/") == -1)
bHavePreviewTarget = false;

else if (!DWfile.exists(selFile))
bHavePreviewTarget = false;

else if (DWfile.getAttributes(selFile).indexOf("D") != -1)
bHavePreviewTarget = false;

}
else
{

bHavePreviewTarget = true;
}

}
}

}
}
else if (dw.getFocus() == 'document' ||

dw.getFocus() == 'textView' || dw.getFocus("true") == 'html')
{

var dom = dw.getDocumentDOM('document');
if (dom != null)
{

var parseMode = dom.getParseMode();
if (parseMode == 'html' || parseMode == 'xml')

bHavePreviewTarget = true;
}

}

return bHavePreviewTarget;
}

A dynamic menu example 205

The havePreviewTarget() function sets the value bHavePreviewTarget to false as the
default return value. The function performs two basic tests calling the dw.getFocus()
function to determine what part of the application currently has input focus. The first test
checks whether the site panel has focus (if (dw.getFocus(true) == 'site')). If the site
panel does not have focus, the second test checks to see if a document (dw.getFocus() ==
'document'), Text view (dw.getFocus() == 'textView'), or the Code inspector
(dw.getFocus("true") == 'html') has focus. If neither test is true, the function returns the
value false.

If the site panel has focus, the function checks whether the view setting is Remote view. If it is,
the function sets bHavePreviewTarget to true if there are remote files
(site.getRemoteSelection().length > 0) and the files can be opened in a browser
(site.canBrowseDocument()). If the view setting is not Remote view, and if the view is not
None, the function gets a list of the selected files (var selFiles = site.getSelection();)
in the form of file:/// URLs.

For each item in the selected list, the function tests for the presence of the character string
"://". If it is not found, the code performs a series of tests on the list item. If the item is not
in the form of a file:/// URL (if (selFile.indexOf(urlPrefix) == -1)), it sets the
return value to false. If the remainder of the string following the file:/// prefix does not
contain a slash (/) (if (strTemp.indexOf("/") == -1)), it sets the return value to false. If
the file does not exist (else if (!DWfile.exists(selFile))), it sets the return value to
false. Last, it checks to see if the specified file is a folder (else if
(DWfile.getAttributes(selFile).indexOf("D") != -1)). If selfile is a folder, the
function returns the value false. Otherwise, if the target is a file, the function sets
bHavePreviewTarget to the value true.

If a document, Text view, or the Code inspector has input focus (else if (dw.getFocus()
== 'document' || dw.getFocus() == 'textView' || dw.getFocus("true") ==

'html')), the function gets the DOM and checks to see if the document is an HTML or an
XML document. If so, the function sets bHavePreviewTarget to true. Finally, the function
returns the value stored in bHavePreviewTarget.

receiveArguments()
Dreamweaver calls the receiveArguments() function to let the command process any
arguments that pass from the menu item. For the Preview in Browsers menu, the
receiveArguments() function invokes the browser that the user selects. The
receiveArguments() function looks like the following example:
function receiveArguments()
{

var whichBrowser = arguments[0];
206 Menus and Menu Commands

var theBrowser = null;
var i=0;
var browserList = null;
var result = false;

if (havePreviewTarget())
{

// Code to check if we were called from a shortcut key
if (whichBrowser == 'primary' || whichBrowser == 'secondary')
{

// get the path of the selected browser
if (whichBrowser == 'primary')
{

theBrowser = dw.getPrimaryBrowser();
}
else if (whichBrowser == 'secondary')
{

theBrowser = dw.getSecondaryBrowser();
}

// Match the path with the name of the corresponding browser
// that appears in the menu.
browserList = dw.getBrowserList();
while(i < browserList.length)
{

if (browserList[i+1] == theBrowser)
theBrowser = browserList[i];

i+=2;
}

}
else

theBrowser = whichBrowser;
// Only launch the browser if we have a valid browser selected.
if (theBrowser != "file:///" && typeof(theBrowser) != "undefined" &&

theBrowser.length > 0)
{

if (dw.getFocus(true) == 'site')
{

// Only get the first item of the selection because
// browseDocument() can't take an array.
//dw.browseDocument(site.getSelection()[0],theBrowser);
site.browseDocument(theBrowser);

}
else

dw.browseDocument(dw.getDocumentPath('document'),theBrowser);
}
else
{

// Otherwise, F12 or Ctrl+F12 was pressed, ask if the user wants
// to specify a primary or secondary browser now.
A dynamic menu example 207

if (whichBrowser == 'primary')
{

result = window.confirm(MSG_NoPrimaryBrowserDefined);
}
else if (whichBrowser == 'secondary')
{

result = window.confirm(MSG_NoSecondaryBrowserDefined);
}

// If the user clicked OK, show the prefs dialog with the browser
panel.

if (result)
dw.showPreferencesDialog('browsers');

}
}

}

The function first sets the variable whichBrowser to the value that Dreamweaver passes,
arguments[0]. Along with setting other default values, the function also sets result to a
default value of false.

After variables are initialized, the receiveArguments() function calls the user-defined
function havePreviewTarget() and tests the result. If the result of the test is true, the
function checks to see if the user selected the primary or secondary browser. If so, the function
sets the variable theBrowser to the path of the executable file that starts the browser
(dw.getPrimaryBrowser() or dw.getSecondaryBrowser()). The function then performs a
loop that examines the list of browsers returned by dw.getBrowsersList(). If the path to a
browser in the list matches the path to the primary or secondary browser, the function sets the
variable theBrowser to the matching value in browserList. This value contains the name of
the browser and the path to the executable file that starts the browser. If
havePreviewTarget() returns the value false, the function sets the variable theBrowser to
the value of the variable whichBrowser.

Next, the receiveArguments() function tests the variable theBrowser to make sure that it
does not begin with a path, that it is not "undefined", and that it has a length greater than 0.
If all these conditions are true, and if the Site panel has focus, the receiveArguments()
function calls the site.browseDocument() function to invoke the selected browser with the
files selected in the Site panel. If the Site panel does not have focus, the receiveArguments()
function calls the function dw.browseDocument() and passes it the path of the current
document and the value of the variable theBrowser, which specifies the name of the browser
with which to open the document.
208 Menus and Menu Commands

If the user pressed the shortcut keys (F12 or Ctrl+F12) and no primary or secondary browser
has been specified, a dialog box appears to inform the user. If the user clicks OK, the function
calls the function dw.showPreferencesDialog() with the browsers argument to let the
user specify a browser at that point.

The Menu Commands API
The custom functions in the Menu Commands API are not required.

canAcceptCommand()

Description

Determines whether the menu item is active or dimmed.

Arguments
{arg1}, {arg2},...{argN}}

■ If it is a dynamic menu item, the unique ID that the getDynamicContents() function
specifies is the only argument. Otherwise, if the arguments attribute is defined for a
menuitem tag, the value of that attribute passes to the canAcceptCommand() function
(and to the isCommandChecked(), receiveArguments(), and setMenuText()
functions) as one or more arguments. The arguments attribute is useful for distinguishing
between two menu items that call the same menu command.

Returns

Dreamweaver expects a Boolean value: true if the item should be enabled; false otherwise.

commandButtons()

Description

Defines the buttons that appear on the right side of the Options dialog box and their behavior
when they are clicked. If this function is not defined, no buttons appear, and the BODY section
of the Menu Commands file expands to fill the entire dialog box.

Arguments

None.

N
O

T
E

The arguments attribute is ignored for dynamic menu items.
The Menu Commands API 209

Returns

Dreamweaver expects an array that contains an even number of elements. The first element is
a string that contains the label for the topmost button. The second element is a string of
JavaScript code that defines the behavior of the topmost button when it is clicked.
The remaining elements define additional buttons in the same manner.

Example

The following example of the commandButtons() function defines the OK, Cancel, and Help
buttons:
function commandButtons(){

return new Array("OK" , "doCommand()" , "Cancel" , ¬
"window.close()" , "Help" , "showHelp()");

}

getDynamicContent()

Description

Retrieves the content for the dynamic portion of the menu.

Arguments
menuID

■ The menuID argument is the value of the id attribute in the menuitem tag that is
associated with the item.

Returns

Dreamweaver expects an array of strings where each string contains the name of a menu item
and its unique ID, separated by a semicolon. If the function returns a null value, the menu
does not change.

Example

The following example of the getDynamicContent() function returns an array of four menu
items (My Menu Item 1, My Menu Item 2, My Menu Item 3, and My Menu Item 4):
function getDynamicContent(){

var stringArray= new Array();
var i=0;
var numItems = 4;

for (i=0; i<numItems;i++)

stringArray[i] = new String("My Menu Item " + i + ";¬
id=’My-MenuItem" + i + “‘”);

return stringArray;
}

210 Menus and Menu Commands

isCommandChecked()

Description

Determines whether to display a check mark next to the menu item.

Arguments
{arg1}, {arg2},...{argN}

■ If it is a dynamic menu item, the unique ID that the getDynamicContents() function
specifies is the only argument. Otherwise, if the arguments attribute is defined for a
menuitem tag, the value of that attribute passes to the isCommandChecked() function
(and to the canAcceptCommand(), receiveArguments(), and setMenuText()
functions) as one or more arguments. The arguments attribute is useful for distinguishing
between two menu items that call the same menu command.

Returns

Dreamweaver expects a Boolean value: true if a check mark should appear next to the menu
item; false otherwise.

Example
function isCommandChecked()
{
 var bChecked = false;

var cssStyle = arguments[0];

if (dw.getDocumentDOM() == null)
 return false;

if (cssStyle == "(None)")
{

return dw.cssStylePalette.getSelectedStyle() == '';
}
else
{

return dw.cssStylePalette.getSelectedStyle() == cssStyle;
}

return bChecked;
}

N
O

T
E

The arguments attribute is ignored for dynamic menu items.
The Menu Commands API 211

receiveArguments()

Description

Processes any arguments passed from a menu item or from the dw.runCommand() function.
If it is a dynamic menu item, it processes the dynamic menu item ID.

Arguments
{arg1}, {arg2},...{argN}

■ If it is a dynamic menu item, the unique ID that the getDynamicContents() function
specifies is the only argument. Otherwise, if the arguments attribute is defined for a
menuitem tag, the value of that attribute passes to the receiveArguments() function
(and to the canAcceptCommand(), isCommandChecked(), and setMenuText()
functions) as one or more arguments. The arguments attribute is useful for distinguishing
between two menu items that call the same menu command.

Returns

Dreamweaver expects nothing.

Example
function receiveArguments()
{

var styleName = arguments[0];
if (styleName == "(None)")

dw.getDocumentDOM('document').applyCSSStyle('','');
else

dw.getDocumentDOM('document').applyCSSStyle('',styleName);
}

setMenuText()

Description

Specifies the text that should appear in the menu.

Arguments
{arg1}, {arg2},...{argN}

N
O

T
E

The arguments attribute is ignored for dynamic menu items.

N
O

T
E

Do not use this function if you are using getDynamicContent().
212 Menus and Menu Commands

■ If the arguments attribute is defined for a menuitem tag, the value of that attribute passes
to the setMenuText() function (and to the canAcceptCommand(),
isCommandChecked(), and receiveArguments() functions) as one or more arguments.
The arguments attribute is useful for distinguishing between two menu items that call the
same menu command.

Returns

Dreamweaver expects the string that should appear in the menu.

Example
function setMenuText()
{

if (arguments.length != 1) return "";

var whatToDo = arguments[0];
if (whatToDo == "undo")

return dw.getUndoText();
else if (whatToDo == "redo")

return dw.getRedoText();
else return "";

}

windowDimensions()

Description

Sets specific dimensions for the Parameters dialog box. If this function is not defined, the
window dimensions are computed automatically.

Arguments
platform

■ The value of the platform argument is either "macintosh" or "windows", depending on
the user’s platform.

Returns

Dreamweaver expects a string of the form "widthInPixels,heightInPixels".

The returned dimensions are smaller than the size of the entire dialog box because they do not
include the area for the OK and Cancel buttons. If the returned dimensions do not
accommodate all options, scroll bars appear.

N
O

T
E

Do not define this function unless you want a dialog box that is larger than 640 x 480
pixels.
The Menu Commands API 213

Example

The following example of windowDimensions() sets the dimensions of the Parameters dialog
box to 648 x 520 pixels:
function windowDimensions(){

return "648,520";
}

214 Menus and Menu Commands

9

CHAPTER 9

Toolbars
You can create a toolbar for Macromedia Dreamweaver 8 simply by creating a file that defines
the toolbar and placing that file in the Configuration/Toolbars folder. Within a toolbar file,
you can define items such as check buttons, radio buttons, text boxes, and pop-up menus
using a few custom XML tags. You can assign attributes and commands to toolbar items to
specify how they look and behave, include other toolbar files, and reference toolbar items that
are defined in other toolbars.

The following table lists the files you use to create a toolbar:

How toolbars work
Toolbars are defined by XML and image files that are stored in the Toolbars folder of the main
Dreamweaver Configuration folder. The default Dreamweaver toolbars are stored in the
toolbars.xml file in the Configuration/Toolbars folder. When Dreamweaver starts, it loads all
the toolbar files in the Toolbars folder. You can add new toolbars simply by copying a file into
the Toolbars folder rather than modifying the original toolbars.xml file.

Toolbar XML files define one or more toolbars and their toolbar items. A toolbar is a list of
items such as buttons, text boxes, pop-up menus, and so on. A toolbar item represents a single
control that a user can access in a toolbar.

Path File Description

Configuration/Toolbars/ toolbars.xml Edit this file to change the contents of
the toolbar.

Configuration/Toolbars/ newtoolbar.xml Create this file to create a new toolbar.

Configuration/Toolbars/ imagefile.gif Icon image for toolbar control.

Configuration/
Commands/

MyCommand.htm Command file associated with toolbar
item.
215

Some types of toolbar controls, such as push buttons and pop-up menus, have icon images
associated with them. Icon images are stored in an images folder in the Toolbars folder.
Images can be in any format that Dreamweaver can render but are typically GIF or JPEG file
formats. Images for Macromedia-authored toolbars are stored in the Toolbars/images/MM
folder.

As with menus, you can specify the functionality of individual toolbar items either through
the item attributes or through a command file. Macromedia-authored toolbar command files
are stored in the Toolbars/MM folder.

Unlike menus, you can define toolbar items independently from the toolbars that use them.
This flexibility lets you use toolbar items in multiple toolbars by using the itemref tag.

The first time Dreamweaver loads a toolbar, its visibility and position are set by the toolbar
definition. After that, its visibility and position are saved in and restored from the registry
(Windows) or the Dreamweaver Preferences file (Macintosh).

How toolbars behave
In Windows, Dreamweaver toolbars generally act the same as standard Windows toolbars.
Dreamweaver toolbars have the following characteristics:

■ You can drag and drop toolbars to dock them, undock them, and reposition them relative
to other toolbars.

■ You can horizontally dock toolbars to the top or bottom of the frame window.
In the Dreamweaver workspace, which integrates all the Dreamweaver document
windows within a single parent frame, you can specify whether toolbars dock to the
workspace frame or to the document window.
For toolbars that dock to the Dreamweaver workspace frame, there is only one instance of
each toolbar. In this case, the toolbars always operate on the document in front. In the
Dreamweaver workspace, you can dock toolbars above, below, or to the left or right of the
Insert toolbar. Toolbars that are attached to the Dreamweaver workspace frame do not
automatically disable when there is no document window. The toolbar items determine
whether they are enabled when no document is open.
When toolbars stay docked to the document window, there is one instance for each
window. Toolbars that are attached to a document window completely disable themselves
when their window is not the front document and rerun all their update handlers when
their window comes to the front.

T
IP The Toolbar API is compatible with the Menu Commands API, so toolbar controls can

reuse menu command files.
216 Toolbars

You cannot drag and drop toolbars between the document window and the Dreamweaver
workspace frame.

■ Toolbars remain a fixed size. A toolbar does not shrink if the container shrinks or if other
toolbars are placed next to it.

■ You can show or hide toolbars from the View >Toolbars menu.
■ Toolbars cannot overlap.
■ Only the outline of the toolbar appears while you drag it.

On the Macintosh, toolbars are always attached to the document window. They can be shown
or hidden from the menu, but you cannot drag and drop, rearrange, or undock them.

How toolbar commands work
When Dreamweaver draws a toolbar, the following events occur:

1. For each toolbar control item, Dreamweaver determines whether the file attribute exists.

2. If the file attribute exists, Dreamweaver calls the canAcceptCommand() function to
determine whether it should enable the control in the current context of the document.

For the Document Title text box in the Dreamweaver toolbar, for example, the
canAcceptCommand() function checks to see if there is a current DOM and if the current
document is an HTML file. If both these conditions are true, the function returns true
and Dreamweaver enables the text box on the toolbar.

3. If the file attribute exists, Dreamweaver ignores the following attributes, if they are
specified: checked, command, DOMRequired, enabled, script, showif, update, and
value.

4. If the file attribute does not exist, Dreamweaver processes the attributes that are set for
the toolbar control item: checked, command, DomRequired, and so on.

For more information on specific item tag attributes, see “Item tag attributes”
on page 232.

5. Dreamweaver calls the getCurrentValue() function on every update cycle, as specified by
the update attribute, to determine what value to display for the control.

6. The user selects an item on the toolbar.

7. Dreamweaver calls the receiveArguments() function to process any arguments that the
arguments attribute of the toolbar item specifies.

For more information on the purpose of specific functions in the Toolbar Command API, see
“The toolbar command API” on page 238.
How toolbars work 217

A simple toolbar command file
This simple example implements a Title text box item as seen on the Dreamweaver Document
toolbar. The text box item lets the user enter a name for the current Dreamweaver document.
You can implement this toolbar example by performing the following steps:

■ Creating the text box
■ Writing the JavaScript code

Creating the text box
To add a toolbar to Dreamweaver, you place an XML file that contains the toolbar definition
in the Toolbars folder inside the Dreamweaver Configuration folder.

The following figure shows the Title text box:

The following toolbar editcontrol item defines a text box that is labeled Title:
<EDITCONTROL ID="DW_SetTitle"

label="Title: "
tooltip="Document Title"
width="150"
file="Toolbars/MM/EditTitle.htm"/>

The tooltip attribute causes Dreamweaver to display Document Title in a tooltip box when
the user places the mouse pointer over the text box. The width attribute specifies the size of
the field in pixels. The file attribute specifies that the EditTitle.htm file contains the
JavaScript functions that operate on the text box. To see the full definition of the
Dreamweaver Document toolbar, see the main toolbar (id="DW_Toolbar_Main") in the
toolbars.xml file.

Writing the JavaScript code
When the user interacts with the text box, it causes Dreamweaver to invoke the EditTitle.htm
command file in the Toolbars/MM folder. This file contains three JavaScript functions that
operate on the Title text box. These functions are canAcceptCommand(),
receiveArguments(), and getCurrentValue().
218 Toolbars

canAcceptCommand(): enable the toolbar item
The canAcceptCommand() function consists of one line of code that checks to see whether
there is a current Document Object Model (DOM) and whether the document is parsed as
HTML. The function returns the results of those tests. If the conditions are true,
Dreamweaver enables the text box item on the toolbar. If the function returns the value
false, Dreamweaver disables the item.

The function is as follows:
function canAcceptCommand()
{

return (dw.getDocumentDOM() != null && dw.getDocumentDOM().getParseMode()
== 'html');

}

receiveArguments(): set the title
Dreamweaver invokes the receiveArguments() function, shown in the following example,
when the user enters a value in the Title text box and presses the Enter key or moves the focus
away from the control.

The function is as follows:
function receiveArguments(newTitle)
{

var dom = dw.getDocumentDOM();
if (dom)

dom.setTitle(newTitle);
}

Dreamweaver passes newTitle, which is the value that the user enters, to the
receiveArguments() function. The receiveArguments() function first checks to see
whether a current DOM exists. If it does, the receiveArguments() function sets the new
document title by passing newTitle to the dom.setTitle() function.

getCurrentValue(): get the title
Whenever an update cycle occurs, as determined by the default update frequency of the
onEdit event handler, Dreamweaver calls the getCurrentValue() function to determine
what value to display for the control. The default update frequency of the onEdit handler
determines the update frequency because the Title text edit control has no update attribute.

For the Title text box, the following getCurrentValue() function calls the JavaScript
application programming interface (API) function dom.getTitle() to obtain and return the
current title.
A simple toolbar command file 219

The function is as follows:
function getCurrentValue()
{

var title = "";
var dom = dw.getDocumentDOM();
if (dom)

title = dom.getTitle();
return title;

}

Until the user enters a title for the document, the getTitle() function returns Untitled
Document, which appears in the text box. After the user enters a title, the getTitle()
function returns that value, and Dreamweaver displays it as the new document title.

To see the complete HTML file that contains the JavaScript functions for the Title text box,
see the EditTitle.htm file in the Toolbars/MM folder.

The MM folder is reserved for Macromedia files. Create another folder inside the Toolbars
folder, and place your JavaScript code in that folder.

The toolbar definition file
A toolbar is simply a list of radio buttons, check buttons, edit boxes, and other toolbar items,
optionally divided by separator tags. Each toolbar item can be a reference to an item using
the itemref tag, a separator using the separator tag, or a complete toolbar item definition,
for a checkbox or an edit box, for example, as described in “Toolbar item tags” on page 226.

Each toolbar definition file starts with the following declarations:
<?xml version="1.0" encoding="optional_encoding"?>
<!DOCTYPE toolbarset SYSTEM "-//Macromedia//DWExtension toolbar 5.0">

If the encoding is omitted, Dreamweaver uses the default encoding of the operating system.

After the declarations, the file consists of a single toolbarset tag, which contains any
number of the following tags: toolbar, itemref, separator, include, and itemtype tags,
where itemtype is a button, checkbutton, radiobutton, menubutton, dropdown,
combobox, editcontrol, or colorpicker. The following example, which is an abbreviated
excerpt from the toolbars.xml file, illustrates the hierarchy of tags in the toolbar file. The
example substitutes ellipses (. . .) for the toolbar item attributes that are described in the
following sections.
<?xml version="1.0"?>
<!DOCTYPE toolbarset SYSTEM "-//Macromedia//DWExtension toolbar 5.0">
<toolbarset>
220 Toolbars

<!-- main toolbar -->
<toolbar id="DW_Toolbar_Main" label="Document">

<radiobutton id="DW_CodeView" . . ./>
<radiobutton id="DW_SplitView" . . ./>
<radiobutton id="DW_DesignView" . . ./>
<separator/>
<checkbutton id="DW_LiveDebug" . . ./>
<checkbutton id="DW_LiveDataView" . . ./>
<separator/>
<editcontrol id="DW_SetTitle" . . ./>
<menubutton id="DW_FileTransfer" . . ./>
<menubutton id="DW_Preview" . . ./>
<separator/>
<button id="DW_DocRefresh" . . ./>
<button id="DW_Reference" . . ./>
<menubutton id="DW_CodeNav" . . ./>
<menubutton id="DW_ViewOptions" . . ./>

</toolbar>
</toolbarset>

The following section describes each of the toolbar tags.

<toolbar>

Description

Defines a toolbar. Dreamweaver displays the items and separators from left to right in the
specified order, laying out the items automatically. The toolbar file does not specify control
over the spacing between the items, but you can specify the widths of certain kinds of items.

Attributes
id, label, {container}, {initiallyVisible}, {initialPosition}, {relativeTo}

■ id="unique_id" Required. An identifier string must be unique within a file and within
all files that the file includes. The JavaScript API functions that manipulate a toolbar refer
to it by its ID. For more information on these functions, see the Dreamweaver API
Reference. If two toolbars that are included in the same file have the same ID,
Dreamweaver displays an error.

■ label="string" Required. The label attribute specifies the label, which is a character
string, that Dreamweaver displays to the user. The label appears in the View >Toolbars
menu and in the title bar of the toolbar when it’s floating.
The toolbar definition file 221

■ container="mainframe" or "document" Defaults to "mainframe". Specifies where the
toolbar should dock in the Dreamweaver workspace on Windows. If the container is set to
"mainframe", the toolbar appears in the outer workspace frame and operates on the front
document. If the container is set to "document", the toolbar appears in each document
window. On the Macintosh, all toolbars appear in each document window.

■ initiallyVisible="true" or "false". This tag specifies whether the toolbar should be
visible the first time that Dreamweaver loads it from the Toolbars folder. After the first
time, the user controls visibility. Dreamweaver saves the current state to the system registry
(Windows) or the Dreamweaver Preferences file (Macintosh) when the user quits
Dreamweaver. Dreamweaver restores the setting from the registry or the Preferences file
when it restarts. You can manipulate toolbar visibility using the
dom.getToolbarVisibility() and dom.setToolbarVisibility() functions, as
described in the Dreamweaver API Reference. If you do not set the initiallyVisible
attribute, it defaults to true.

■ initialPosition="top", "below", or "floating". Specifies where Dreamweaver
initially positions the toolbar, relative to other toolbars, the first time that Dreamweaver
loads it. The possible values for intialPosition are described in the following list:
■ top This is the default position, so the toolbar appears at the top of the document

window. If multiple toolbars specify top for a given window type, the toolbars appear
in the order that Dreamweaver encounters them during loading, which might not be
predictable, if the toolbars reside in separate files.

■ below The toolbar appears at the beginning of the row immediately below the toolbar
that the relativeTo attribute specifies. Dreamweaver reports an error if the
relativeTo toolbar isn’t found. If multiple toolbars specify below relative to the same
toolbar, they appear in the order that Dreamweaver encounters them during loading,
which might not be predictable if the toolbars reside in separate files.

■ floating Toolbar is not initially docked to the window; it floats above the document.
Dreamweaver automatically places the toolbar so it is offset from other floating
toolbars. On the Macintosh, floating is treated the same as top.

As with the initiallyVisible attribute, the initialPosition attribute applies only
the first time that Dreamweaver loads the toolbar. After that, the toolbar’s position is saved
to the registry or the Dreamweaver Preferences file. You can reset the position of the
toolbar by using the dom.setToolbarPosition() function. For more information on the
dom.setToolbarPosition() function, see the Dreamweaver API Reference.
If you do not specify the initialPosition attribute, Dreamweaver positions the toolbar
in the order that it is encountered during loading.
222 Toolbars

■ relativeTo="toolbar_id" This attribute is required if the initialPosition attribute
specifies below. Otherwise, it is ignored. Specifies the ID of the toolbar below which this
toolbar should be positioned.

Contents

The toolbar tag contains include, itemref, and separator tags as well as individual item
definitions such as button, combobox, dropdown, and so on. For descriptions of the item
definitions that you can specify, see “Toolbar item tags” on page 226.

Container

The toolbarset tag.

Example
<toolbar id="MyDWedit_toolbar" label="Edit">

<include/>

Description

Loads toolbar items from the specified file before continuing to load the current file. Toolbar
items that are defined in the included file can be referenced in the current file. If a file
attempts to recursively include another file, Dreamweaver displays an error message and
ignores the recursive include. Any toolbar tags in the included file are skipped, although
toolbar items in those toolbars are available for reference in the current file.

Attributes

■ The file path, relative to the Toolbars folder, of the toolbar XML file to include.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example
<include file="mine/editbar.xml"/>
The toolbar definition file 223

<itemtype/>

Description

Defines a single toolbar item. Toolbar items include buttons, radio buttons, check buttons,
combo boxes, pop-up menus, and so on. For a list of the types of toolbar items that you can
define, see “Toolbar item tags” on page 226.

Attributes

The attributes vary, depending on the item that you define. For a complete list of the
attributes that you can specify for toolbar items, see “Item tag attributes” on page 232.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example
<button id="strikeout_button" .../>

<itemref/>

Description

Refers to (and includes in the current toolbar) a toolbar item that was defined either inside a
previous toolbar or outside of all toolbars.

Attributes
id, {showIf}

■ id="id_reference" Required. Must be the ID of an item that was previously defined or
included in the file. Dreamweaver does not allow forward references. If a toolbar item tag
references an undefined ID, Dreamweaver reports an error and ignores the reference.
224 Toolbars

■ showIf="script" Specifies that this item appears on the toolbar only if the specified
script returns a true value. For example, you can use showIf to show certain buttons only
in a given application or only when a page is written in a server-side language such as
ColdFusion, ASP, or JSP. If you do not specify showIf, the item always appears.
Dreamweaver checks this property whenever the item’s enabler runs; that is, according to
the value of the update attribute. You should use this attribute sparingly. The showIf
attribute can be used either in the item definition or in a reference to the item from a
toolbar. If both the definition and the reference specify the showIf attribute,
Dreamweaver shows the item only if both conditions are true. The showIf attribute is
equivalent to the showIf() function in a command file.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example
<itemref id="strikeout_button">

<separator/>

Description

Inserts a separator at the current location in the toolbar.

Attributes
{showIf}

■ The showif attribute specifies that the separator should appear only on the toolbar if the
given script returns true. For example, you can use the showIf attribute to show the
separator only in a given application or only when the page has a certain document type.
If the showIf attribute is unspecified, the separator always appears.

Contents

None.

Container

The toolbar tag.

Example
<separator/>
The toolbar definition file 225

Toolbar item tags
Each type of toolbar item has its own tag and set of required and optional attributes. You can
define toolbar items either inside or outside of toolbars. In general, it is better to define them
outside of toolbars and refer to them within toolbars using the itemref tag.

You can define the following types of items in a toolbar.

<button>

Description

This push button executes a specific command when you click it. It looks and acts the same as
the Reference button on the Dreamweaver toolbar.

Attributes
id, image, tooltip, command, {showIf}, {disabledImage}, {overImage},

{label}, {file}, {domRequired}, {enabled}, {update}, {arguments}

For a description of each attribute, see “Item tag attributes” on page 232.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example
<BUTTON ID="DW_DocRefresh"

image="Toolbars/images/MM/refresh.gif"
disabledImage="Toolbars/images/MM/refresh_dis.gif"
tooltip="Refresh Design View (F5)"
enabled="((dw.getDocumentDOM() != null) && (dw.getDocumentDOM().getView()
!= 'browse') && (!dw.getDocumentDOM().isDesignViewUpdated()))"
command="dw.getDocumentDOM().synchronizeDocument()"
update="onViewChange,onCodeViewSyncChange"/>
226 Toolbars

<checkbutton>

Description

A check button is a button that has a checked or unchecked state and that executes a specific
command when clicked. When it is checked, it appears pressed in and highlighted. When it is
not checked, it appears flat. Dreamweaver implements the following states for the check
button: Mouse-over, Pressed, Mouse-over-while-pressed, and Disabled-while-pressed. The
handler that is specified by the checked attribute or the isCommandChecked() function must
ensure that clicking the check button causes the button’s state to toggle.

Attributes
id, {showIf}, image, {disabledImage}, {overImage}, tooltip, {label},

{file}, {domRequired}, {enabled}, checked, {update}, command, {arguments}

For a description of each attribute, see “Item tag attributes” on page 232.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example
<CHECKBUTTON ID="DW_LiveDebug"

image="Toolbars/images/MM/debugview.gif"
disabledImage="Toolbars/images/MM/globe_dis.gif"
tooltip="Live Debug"
enabled="dw.canLiveDebug()"
checked="dw.getDocumentDOM() != null && dw.getDocumentDOM().getView() ==
'browse'"
command="dw.toggleLiveDebug()"
showIf="dw.canLiveDebug()"
update="onViewChange"/>

<radiobutton>

Description

A radio button is exactly the same as a check button, except that when it is off, it appears as a
raised button. Dreamweaver implements the following states for the radio button: Mouse-
over, Pressed, Mouse-over-while-pressed, and Disabled-while-pressed. Dreamweaver does not
enforce mutual exclusion between radio buttons. The handler that the checked attribute or
the isCommandChecked() function specifies must ensure that the checked and unchecked
states of radio buttons are consistent with each other.
Toolbar item tags 227

Radio buttons act the same as the Code view, Design view, and Split view buttons on the
Dreamweaver document toolbar.

Attributes
id, image, tooltip, checked, command, {showIf}, {disabledImage},

{overImage}, {label}, {file}, {domRequired}, {enabled}, {update},
{arguments}

For a description of each attribute, see “Item tag attributes” on page 232.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example
<RADIOBUTTON ID="DW_CodeView"

image="Toolbars/images/MM/codeView.gif"
disabledImage="Toolbars/images/MM/codeView_dis.gif"
tooltip="Show Code View"
domRequired="false"
enabled="dw.getDocumentDOM() != null"
checked="dw.getDocumentDOM() != null && dw.getDocumentDOM().getView() ==
'code'"
command="dw.getDocumentDOM().setView('code')"
update="onViewChange"/>

<menubutton>

Description

A menu button is a button that invokes the context menu that is specified by the menuid
attribute. Dreamweaver implements Mouse-over and Pressed states for menu buttons.
Dreamweaver does not draw the menu arrow, which is the downward-pointing arrow that
indicates menu items are attached to the button; you must include it in your icon. The File
Management and Code Navigation buttons on the Dreamweaver document toolbar are
examples of menu buttons.

Attributes
id, image, tooltip, menuID, domRequired, enabled, {showIf},

{disabledImage}, {overImage}, {label}, {file}, {update}

For a description of each attribute, see “Item tag attributes” on page 232.
228 Toolbars

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example
<MENUBUTTON ID="DW_CodeNav"

image="Toolbars/images/MM/codenav.gif"
disabledImage="Toolbars/images/MM/codenav_dis.gif"
tooltip="Code Navigation"
enabled="dw.getFocus() == 'textView' || dw.getFocus() == 'html'"
menuID="DWCodeNavPopup"
update="onViewChange"/>

<dropdown>

Description

A dropdown menu is a noneditable menu that executes a specific command when you select
an entry and the menu updates itself, based on an attached JavaScript function. The
dropdown menu looks and acts the same as the Format control in the Text Property inspector,
except it’s a standard size instead of the small Property inspector size.

Attributes
id, tooltip, file, enabled, checked, value, command, {showIf}, {label},

{width}, {domRequired}, {update}, {arguments}

For a description of each attribute, see “Item tag attributes” on page 232.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example
<dropdown id="Font_Example"

width="115"
tooltip="Font"
domRequired="false"
file="Toolbars/mine/fontExample.htm"
update="onSelChange"/>
Toolbar item tags 229

<combobox>

Description

A combo box is an editable pop-up menu that executes its command when you select an entry
or when the user makes an edit in the text box and switches focus. The menu looks and acts
the same as the Font control on the Text Property inspector, except it’s a standard size instead
of the small Property inspector size.

Attributes
id, file, tooltip, enabled, value, command, {showiI}, {label}, {width},

{domRequired}, {update}, {arguments}

For a description of each attribute, see “Item tag attributes” on page 232.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example
<COMBOBOX ID="Address_URL"

width="300"
tooltip="Address"
label="Address: "
file="Toolbars/MM/AddressURL.htm"
update="onBrowserPageBusyChange"/>

<editcontrol>

Description

An edit control box is a text-editing box that executes its command when the user changes
text in the box and switches focus.

Attributes
id, tooltip, file, value, command, {showIf}, {label}, {width},

{domRequired}, {enabled}, {update}, {arguments}

For a description of each attribute, see “Item tag attributes” on page 232.

Contents

None.
230 Toolbars

Container

The toolbar tag or the toolbarset tag.

Example
<EDITCONTROL ID="DW_SetTitle"

label="Title: "
tooltip="Document Title"
width="150"
file="Toolbars/MM/EditTitle.htm"/>

<colorpicker>

Description

A color picker is a panel of colors that does not have an associated text box that executes its
command when the user selects a new color. This panel looks and acts the same as the color
picker on the Dreamweaver Property inspector. You can specify a different icon to replace the
default icon.

Attributes
id, tooltip, value, command, {showIf}, {image}, {disabledImage},

{overImage}, {label}, {colorRect}, {file}, {domRequired}, {enabled},
{update}, {arguments}

For a description of each attribute, see “Item tag attributes” on page 232.

Contents

None.

Container

The toolbar tag or the toolbarset tag.

Example
<colorpicker id="Color_Example"

image="Toolbars/images/colorpickerIcon.gif"
disabledImage="Toolbars/images/colorpickerIconD.gif"
colorRect="0 12 16 16"
tooltip="Text Color"
domRequired="false"
file="Toolbars/mine/colorExample.htm"
update="onSelChange"/>
Toolbar item tags 231

Item tag attributes
The attributes for toolbar item tags have the following meanings:

id="unique_id"
Required. The id attribute is an identifier for the toolbar item. The id attribute must be
unique within the current file and all files that are included within the current file. The
itemref tag uses the item id to refer to and include an item within a toolbar.

Example
<button id="DW_DocRerefresh" . . . >

showIf="script"
Optional. This attribute specifies that the item appears on the toolbar only if the script
returns a true value. For example, you can use the showIf attribute to show certain buttons
only when a page is written in a certain server-side language such as ColdFusion, ASP, or JSP.
If you do not specify showIf, the item always appears.

The showIf attribute is checked whenever the item’s enabler runs; that is, according to the
value of the update attribute. You should use the showIf attribute sparingly.

You can specify the showIf attribute in the item definition and in a reference to the item on
an itemref tag. If the definition and the reference specify the showIf attribute, the item
shows only if both conditions are true. The showIf attribute is the same as the showIf()
function in a toolbar command file. If you specify both the showIf attribute and the
showif() function, the function overrides the attribute.

Example
showIf="dw.canLiveDebug()"

image="image_path"
This attribute is required for buttons, check buttons, radio buttons, menu buttons, and
combo buttons. The image attribute is optional for color pickers and is ignored for other item
types. The image attribute specifies the path, relative to the Configuration folder, of the icon
file that displays on the button. The icon can be in any format that Dreamweaver can render,
but typically it is a GIF or JPEG file format.
232 Toolbars

If an icon is specified for a color picker, the icon replaces the color picker entirely. If the
colorRect attribute is also set, the current color appears on top of the icon in the specified
rectangle.

Example
image="Toolbars/images/MM/codenav.gif"

disabledImage="image_path"
Optional. Dreamweaver ignores the disabledImage attribute for items other than buttons,
check buttons, radio buttons, menu buttons, color pickers, and combo buttons. This attribute
specifies the path, relative to the Configuration folder, of the icon file that Dreamweaver
displays if the button is disabled. If you do not specify the disabledImage attribute,
Dreamweaver displays the image that is specified in the image attribute when the button is
disabled.

Example
disabledImage="Toolbars/images/MM/codenav_dis.gif"

overImage="image_path"
Optional. Dreamweaver ignores the overImage attribute for items other than buttons, check
buttons, radio buttons, menu buttons, color pickers, and combo buttons. This attribute
specifies the path, relative to the Configuration folder, of the icon file that Dreamweaver
displays when the user moves the mouse over the button. If you do not specify the overImage
attribute, the button does not change when the user moves the mouse over it, except for a ring
that Dreamweaver draws around the button.

Example
overImage="Toolbars/images/MM/codenav_ovr.gif"

tooltip="tooltip string"
Required. This attribute specifies the identifying text, or tooltip, that appears when the mouse
pointer hovers over the toolbar item.

Example
tooltip="Code Navigation"
Item tag attributes 233

label="label string"
Optional. This attribute specifies a label that displays next to the item. Dreamweaver does not
automatically add a colon to labels. Labels for nonbutton items are always positioned on the
left of the item. Dreamweaver places labels for buttons, check buttons, radio buttons, menu
buttons, and combo buttons inside the button and to the right of the icon.

Example
label="Title: "

width="number"
Optional. This attribute applies only to text box, pop-up menu, and combo box items by
specifying the width of the item in pixels. If you do not specify the width attribute,
Dreamweaver uses a reasonable default width.

Example
width="150"

menuID="menu_id"
This attribute is required for menu buttons and combo buttons, unless you specify the
getMenuID() function in an associated command file. Dreamweaver ignores the menuID
attribute for other types of items. This attribute specifies the ID of the menu bar that contains
the context menu to pop up when the user clicks the button, menu button, or combo button.
The ID comes from the ID attribute of a menubar tag in the menus.xml file.

Example
menuID="DWCodeNavPopup"

colorRect="left top right bottom"
This attribute is optional for color pickers that have an image attribute. The colorRect
attribute is ignored for other types of items and for color pickers that do not specify an image.
If you specify the colorRect attribute, Dreamweaver displays the color that is currently
selected in the color picker in the rectangle, relative to the left or top of the icon. If you do not
specify the colorRect attribute, Dreamweaver does not display the current color on the
image.

Example
colorRect=”0 12 16 16”
234 Toolbars

file="command_file_path"
Required for pop-up menus and combo boxes. The file attribute is optional for other types
of items. The file attribute specifies the path, relative to the Configuration folder, of a
command file that contains JavaScript functions to populate, update, and execute the item.
The file attribute overrides the enabled, checked, value, update, domRequired, menuID,
showIf, and command attributes. In general, if you specify a command file with the file
attribute, Dreamweaver ignores all the equivalent attributes that are specified in the tag. For
more information about command files, see “The toolbar command API” on page 238.

Example
file="Toolbars/MM/EditTitle.htm"

domRequired="true" or "false"
Optional. As with menus, the domRequired attribute specifies whether the Design view
should be synchronized with the Code view before Dreamweaver runs the associated
command. If you do not specify this attribute, it defaults to a true value. This attribute is
equivalent to the isDOMRequired() function in a toolbar command file.

Example
domRequired="false"

enabled="script"
Optional. As with menus, the script returns a value that specifies whether the item is enabled.
If you do not specify this attribute, it defaults to enabled. The enabled attribute is equivalent
to the canAcceptCommand() function in a toolbar command file.

Example
enabled="dw.getFocus() == 'textView' || dw.getFocus() == 'html'"

checked="script"
This attribute is required for check buttons and radio buttons. Dreamweaver ignores the
checked attribute for other types of items. As with menus, the script returns a value that
specifies whether the item is checked or unchecked. The checked attribute is equivalent to
isCommandChecked() in a toolbar command file. If you do not specify this attribute, it
defaults to unchecked.
Item tag attributes 235

Example
checked="dw.getDocumentDOM() != null && dw.getDocumentDOM().getView() ==

'code'"

value="script"
This attribute is required for pop-up menus, combo boxes, text boxes, and color pickers.
Dreamweaver ignores the value attribute for other types of items.

To determine what value to display for pop-up menus and combo boxes, Dreamweaver first
calls isCommandchecked() for each item in the menu. If the isCommandchecked() function
returns a true value for any items, Dreamweaver displays the value for the first one. If no
items return a true value or the isCommandChecked() function is not defined, Dreamweaver
calls the getCurrentValue() function or executes the script that the value attribute
specifies. If the control is a combo box, Dreamweaver displays the returned value. If the
control is a pop-up menu, Dreamweaver temporarily adds the returned value to the list and
displays it.

In all other cases, the script returns the current value to display. For pop-up menus or combo
boxes, this value should be one of the items in the menu list. For combo boxes and text boxes,
the value can be any string that the script returns. For color pickers, the value should be a
valid color but Dreamweaver does not enforce this.

The value attribute is equivalent to the getCurrentValue() function in a toolbar command
file.

update="update_frequency_list"
Optional. This attribute specifies how often the enabled, checked, showif, and value
handlers should run to update the visible state of the item. The update attribute is equivalent
to the getUpdateFrequency() function in a toolbar command file.

You must specify the update frequency for toolbar items because these items are always visible,
unlike menu items. For this reason, you should always select the lowest frequency possible and
make sure your handlers for the enabled, checked, and value handlers are as simple as
possible.
236 Toolbars

The following list shows the possible handlers for update_frequency_list, from least to
most frequent. If you do not specify the update attribute, the update frequency defaults to
onEdit frequency. You can specify multiple update frequencies, separated by commas. The
handlers run on any of the following specified events:

■ onServerModelChange executes when the server model of the current page changes.
■ onCodeViewSyncChange executes when the Code view becomes in or out of sync with the

Design view.
■ onViewChange executes whenever the user switches focus between Code view and Design

view or when the user changes between Code view, Design view, or Split view.
■ onEdit executes whenever the document is edited in Design view. Changes that you make

in Code view do not trigger this event.
■ onSelChange executes whenever the selection changes in Design view. Changes that you

make in Code view do not trigger this event.
■ onEveryIdle executes regularly when the application is idle. This can be time-consuming

because the enabler/checked/showif/value handlers are running often. It should be
used only for buttons that need to have their enable state changed at special times, and
handlers should be quick.

Example
update="onViewChange"

command="script"
This attribute is required for all items except menu buttons. Dreamweaver ignores the
command attribute for menu buttons. Specifies the JavaScript function to execute when the
user performs one of the following actions:

■ Clicks a button
■ Selects an item from a pop-up menu or combo box
■ Tabs out of, presses Return in, or clicks away from a text box or combo box
■ Selects a color from a color picker

The command attribute is equivalent to the receiveArguments() function in a toolbar
command file.

N
O

T
E

In all these cases, Dreamweaver actually executes the handlers after the specified
event occurs, when the application is in a quiescent state. It is not guaranteed that
your handlers run after every edit or selection change; your handlers run soon after a
batch of edits or selection changes occur. The handlers are guaranteed to run when
the user clicks on a toolbar item.
Item tag attributes 237

Example
command="dw.toggleLiveDebug()"

arguments="argument_list"
Optional. This attribute specifies the comma-separated list of arguments to pass to
the receiveArguments() function in a toolbar command file. If you do not specify the
arguments attribute, Dreamweaver passes the ID of the toolbar item. In addition, pop-up
menus, combo boxes, text boxes, and color pickers pass their current value as the first
argument, before any arguments that the arguments attribute specifies, and before the item
ID if no arguments are specified.

Example

On a toolbar that has Undo and Redo buttons, each button calls the menu command file,
Edit_Clipboard.htm, and passes an argument that specifies the action, as shown in the
following example:
<button id="DW_Undo"
 image="Toolbars/images/MM/undo.gif"
 disabledImage="Toolbars/images/MM/undo_dis.gif"
 tooltip="Undo"
 file="Menus/MM/Edit_Clipboard.htm"
 arguments="'undo'"
 update="onEveryIdle"/>

<button id="DW_Redo"
 image="Toolbars/images/MM/redo.gif"
 disabledImage="Toolbars/images/MM/redo_dis.gif"
 tooltip="Redo"
 file="Menus/MM/Edit_Clipboard.htm"
 arguments="'redo'"
 update="onEveryIdle"/>

The toolbar command API
In many cases where you specify a script for an attribute, you can also implement the attribute
through a JavaScript function in a command file. This action is necessary when the functions
need to take arguments, as in the command handler for a text box. It is required for pop-up
menus and combo boxes.

The command file API for toolbar items is an extension of the menu command file API, so
you can reuse menu command files directly as toolbar command files, perhaps with some
additional functions that are specific to toolbars.
238 Toolbars

canAcceptCommand()

Availability

Dreamweaver MX.

Description

Determines whether the toolbar item is enabled. The enabled state is the default condition for
an item, so you should not define this function unless it returns a false value in at least one
case.

Arguments

For pop-up menus, combo boxes, text boxes, and color pickers, the first argument is the
current value within the control. The getDynamicContent() function can optionally attach
individual IDs to items within a pop-up menu. If the selected item in the pop-up menu has
an ID attached, Dreamweaver passes that ID to canAcceptCommand() instead of the value.
For combo boxes, if the current contents of the text box do not match an entry in the pop-up
menu, Dreamweaver passes the contents of the text box. Dreamweaver compares against the
pop-up menu without case-sensitivity to determine whether the contents of the text box
match an entry in the list.

If you specify the arguments attribute for this toolbar item in the toolbars.xml file, those
arguments are passed next. If you did not specify the arguments attribute, Dreamweaver
passes the ID of the item.

Returns

Dreamweaver expects a Boolean value; true if the item is enabled; false otherwise.

Example
function canAcceptCommand()
{

return (dw.getDocumentDOM() != null);
}

The toolbar command API 239

getCurrentValue()

Availability

Dreamweaver MX.

Description

Returns the current value to display in the item. Dreamweaver calls the getCurrentValue()
function for pop-up menus, combo boxes, text boxes, and color pickers. For pop-up menus,
the current value should be one of the items in the menu. If the value is not in the pop-up
menu, Dreamweaver selects the first item. For combo boxes and text boxes, this value can be
any string that the function returns. For color pickers, the value should be a valid color, but
Dreamweaver does not enforce this. This function is equivalent to the value attribute.

Arguments

None.

Returns

Dreamweaver expects a string that contains the current value to display. For the color picker,
the string contains the RGB form of the selected color (for example #FFFFFF for the color
white).

Example
function getCurrentValue()
{

var title = "";
var dom = dw.getDocumentDOM();
if (dom)

title = dom.getTitle();
return title;

}

getDynamicContent()

Availability

Dreamweaver MX.

Description

This function is required for pop-up menus and combo boxes. As with menus, this function
returns an array of strings that populate the pop-up menu. Each string can optionally end
with ";id=id". If an ID is specified, Dreamweaver passes the ID to the
receiveArguments() function instead of the actual string to appear in the menu.
240 Toolbars

The name getDynamicContent() is a misnomer because this function should be used even if
the list of entries in the menu is fixed. For example, the Text_Size.htm file in the
Configuration/Menus/MM folder is not a dynamic menu; it is designed to be called from
each one of a set of static menu items. By adding a getDynamicContent() function that
simply returns the list of possible font sizes, however, the same command file can also be used
for a toolbar pop-up menu. Toolbar items ignore underscores in the strings in a returned array
so you can reuse menu command files. In the menu command file, Dreamweaver ignores the
getDynamicContent() function because the menu item is not marked as dynamic.

Arguments

None.

Returns

Dreamweaver expects an array of strings with which to populate the menu.

Example
function getDynamicContent()
{

var items = new Array;
var filename = dw.getConfigurationPath() + "/Toolbars/MM/
AddressList.xml";
var location = MMNotes.localURLToFilePath(filename);
if (DWfile.exists(location))
{

var addressData = DWfile.read(location);
var addressDOM = dw.getDocumentDOM(dw.getConfigurationPath() +

'/Shared/MM/Cache/empty.htm');
addressDOM.documentElement.outerHTML = addressData;
var addressNodes = addressDOM.getElementsByTagName("url");
if (addressNodes.length)
{

for (var i=0; i < addressNodes.length ; i++)
{

items[i] = addressNodes[i].address + ";id='" +
addressNodes[i].address + "'";

}
}

}
return items;
The toolbar command API 241

getMenuID()

Availability

Dreamweaver MX.

Description

Only valid for menu buttons. Dreamweaver calls the getMenuID() function to get the ID of
the menu that should appear when the user clicks the button.

Arguments

None.

Returns

Dreamweaver expects a string that contains a menu ID, which is defined in the menus.xml
file.

Example
function getMenuID()
{

var dom = dw.getDocumentDOM();
var menuID = '';
if (dom)
{

var view = dom.getView();
var focus = dw.getFocus();
if (view == 'design')
{

menuID = 'DWDesignOnlyOptionsPopup';
}
else if (view == 'split')
{

if (focus == 'textView')
{

menuID = 'DWSplitCodeOptionsPopup';
}
else
{

menuID = 'DWSplitDesignOptionsPopup';
}

}
else if (view == 'code')
{

menuID = 'DWCodeOnlyOptionsPopup';
}
else
{

242 Toolbars

menuID = 'DWBrowseOptionsPopup';
}

}
return menuID;

}

getUpdateFrequency()

Availability

Dreamweaver MX.

Description

Specifies how often to run the handlers for the enabled, checked, showIf, and value
attributes to update the visible state of the item.

You must specify the update frequency for toolbar items because they are always visible, unlike
menus. For this reason, you should always select the lowest frequency possible and make sure
your enabled, checked, and value handlers are as simple as possible.

This function is equivalent to the update attribute in a toolbar item.

Arguments

None.

Returns

Dreamweaver expects a string that contains a comma-separated list of update handlers. For a
complete list of the possible update handlers, see “update="update_frequency_list"”
on page 236.

Example
function getUpdateFrequency()
{

return onSelChange”;
}

isCommandChecked()

Availability

Dreamweaver MX.
The toolbar command API 243

Description

Returns a value that specifies whether the item is selected. For a button, checked means that
the button appears on or depressed. The isCommandChecked() function is equivalent to the
checked attribute in a toolbar item tag.

Arguments

For pop-up menus, combo boxes, text boxes, and color pickers, the first argument is the
current value within the control. The getDynamicContent() function can optionally attach
individual IDs to items within a pop-up menu. If the selected item in the menu has an ID
attached, Dreamweaver passes that ID to the isCommandChecked() function instead of the
value. For combo boxes, if the current contents of the text box do not match an entry in the
pop-up menu, Dreamweaver passes the contents of the text box. For determining whether the
text box matches, Dreamweaver compares against the menu without case-sensitivity.

If you specified the arguments attribute, those arguments are passed next. If you do not
specify the arguments attribute, Dreamweaver passes the ID of the item.

Returns

Dreamweaver expects a Boolean value: true if the item is checked; false otherwise.

Example

The following example determines which item, if any, should be checked in a pop-up menu of
paragraph formats and CSS styles:
function isCommandChecked()
{
 var bChecked = false;
 var style = arguments[0];
 var textFormat = dw.getDocumentDOM().getTextFormat();

 if (dw.getDocumentDOM() == null)
 bChecked = false;

 if (style == "(None)")
 bChecked = (dw.cssStylePalette.getSelectedStyle() == '' || textFormat ==
"" || textFormat == "P" || textFormat == "PRE");
 else if (style == "Heading 1")
 bChecked = (textFormat == "h1");
 else if (style == "Heading 2")
 bChecked = (textFormat == "h2");
 else if (style == "Heading 3")
 bChecked = (textFormat == "h3");
 else if (style == "Heading 4")
 bChecked = (textFormat == "h4");
 else if (style == "Heading 5")
 bChecked = (textFormat == "h5");
244 Toolbars

 else if (style == "Heading 6")
 bChecked = (textFormat == "h6");
 else
 bChecked = (dw.cssStylePalette.getSelectedStyle() == style);

 return bChecked;
}

isDOMRequired()

Availability

Dreamweaver MX.

Description

Specifies whether the toolbar command requires a valid DOM to operate. If this function
returns a true value or if the function is not defined, Dreamweaver assumes that the
command requires a valid DOM and synchronizes the Code view and Design view for the
document before executing the associated command. This function is equivalent to the
domRequired attribute in a toolbar item tag.

Arguments

None.

Returns

Dreamweaver expects a Boolean value: true if the DOM is required; false otherwise.

Example
function isDOMRequired()
{

return false;
}

receiveArguments()

Availability

Dreamweaver MX.

Description

Processes any arguments that pass from a toolbar item. The receiveArguments() function is
equivalent to the command attribute in a toolbar item tag.
The toolbar command API 245

Arguments

For pop-up menus, combo boxes, text boxes, and color pickers, the first argument is the
current value within the control. The getDynamicContent() function can optionally attach
individual IDs to items within a pop-up menu. If the selected item in the pop-up menu has
an ID attached, Dreamweaver passes that ID to the receiveArguments() function instead of
the value. For combo boxes, if the current contents of the text box do not match an entry in
the pop-up menu, Dreamweaver passes the contents of the text box. To determine whether
the text box matches, Dreamweaver compares against the pop-up menu without case-
sensitivity.

If you specified the arguments attribute, those arguments are passed next. If you did not
specify the arguments attribute, Dreamweaver passes the ID of the item.

Returns

Dreamweaver expects nothing.

Example
function receiveArguments(newTitle)
{

var dom = dw.getDocumentDOM();
if (dom)

dom.setTitle(newTitle);
}

showIf()

Availability

Dreamweaver MX.

Description

Specifies that an item appears on the toolbar only if the function returns a true value. For
example, you can use the showIf() function to show certain buttons only when the page has
a certain server model. If the showif() function is not defined, the item always appears. The
showIf() function is the same as the showIf attribute in a toolbar item tag.

The showIf() function is called whenever the item’s enabler runs; that is, according to the
value that the getUpdateFrequency() function returns.

Arguments

None.
246 Toolbars

Returns

Dreamweaver expects a Boolean value: true if the item appears; false otherwise.

Example
function showif()
{

var retval = false;
var dom = dw.getDocumentDOM();

if(dom)
{

var view = dom.getView();
if(view == ‘design’)
{

retval = true;
}

}
return retval;

}

The toolbar command API 247

248 Toolbars

10

CHAPTER 10

Reports
Macromedia Dreamweaver 8 supports two types of reports: site reports and stand-alone
reports.

Site reports
You use the Reports API to create custom site reports or modify the set of prewritten reports
that come with Dreamweaver 8. You can access site reports only through the Reports dialog
box.

Site reports reside in the Dreamweaver Configuration/Reports folder. The Reports folder has
subfolders that represent report categories. Each report can belong to only one category. The
category name cannot exceed 31 characters. Each subfolder can have a file in it named
_foldername.txt. If this file is present, Dreamweaver uses its contents as the category name. If
_foldername.txt is not present, Dreamweaver uses the folder name as the category name.

When the user selects multiple site reports from the Reports dialog box, Dreamweaver places
all the results in the same Results window under the Site Reports tab of the Results panel.
Dreamweaver replaces these results the next time the user runs any site report.

The following table lists the files you use to create a site report:

Path File Description

Configuration/Reports/{type/} reportname.js Contains the functions to generate the
contents of the report.

Configuration/Reports/{type/} reportname.htm Calls the appropriate JavaScript files.
Defines the user interface (UI) of the
Settings dialog box for the report, if
needed.

Configuration/Reports/ Reports.js Provides common functions used in
generating reports.
249

How site reports work
1. Reports are accessible through the Site > Reports command. When it is selected, this

command displays a dialog box from which the user selects reports to run on a choice of
targets.

2. The user selects which files to run the selected reports on using the Report On: pop-up
menu. This menu contains the Current Document, Entire Current Local Site, Selected
Files In Site, and Folder commands. When the user selects the Folder command, a Browse
button and text field appear, so the user can select a folder.

3. The user can customize reports that have parameters by clicking the Settings button and
entering values for the parameters. To let a user set report parameters, a report must contain
a Settings dialog box. This dialog box is optional; not every report requires the user to set
the report’s parameters. If a report does not have a Settings dialog box, the Settings button
is dimmed when a user selects the report in the list.

4. After selecting the reports and specifying the settings, the user clicks the Run button.

At this point, Dreamweaver clears all items from the Site Reports tab of the Results panel.
Dreamweaver calls the beginReporting() function in each report before the reporting
process begins. If a report returns a false value from this function, it is removed from the
report run.

5. Each file is passed to each report that was selected in the Reports dialog box using the
processFile() function. If the report needs to include information about this file in the
results list, it should call the dw.resultsPalette.siteReports.addResultItem()
function. This process continues until all files that pertain to the user’s selection are
processed or the user clicks the Stop button in the bottom of the window. Dreamweaver
displays the name of each file being processed and the number of files that remain to be
processed.

Dreamweaver calls the endReporting() function in each report after all the files have
been processed and the reporting process completes.

A simple site report example
The simple extension example lists all the images referenced in a particular file, an entire site,
selected files, or a folder and displays the report in the Results window under the Site
Results tab.

N
O

T
E

If a report has the preventFileActivity handler, Dreamweaver prevents the user
from performing any other file activity while this report is being run.
250 Reports

You create this extension by performing the following steps:

■ Creating the report definition
■ Writing the JavaScript code

This example creates two files in the HTML Reports folder: List images.htm, which contains
the report definition, and List Images.js, which contains the JavaScript code specific to this
report. In addition, you reference the Reports.js file, which is included with Dreamweaver.

Creating the report definition
The report definition specifies the name of the report as it appears in the Reports dialog box,
calls any JavaScript files required, and defines the user interface of the Settings dialog box, if
needed.

To create the report definition:

1. Create the file Configuration/Reports/HTML Reports/List images.htm.

2. Add the following to specify the name of the report that you want to appear in the Reports
dialog box in the title of the HTML page.
<html>
<head>
<title>List Images</title>

3. At the end of the file, add the script tag and specify the Reports.js file in the src attribute.
<script src="../Reports.js"></script>

4. At the end of the file, add another script tag and specify the List Images.js file, which you
will create next, in the src attribute.
<html>
<head>
<title>List Images</title>
<script src="../Reports.js"></script>
<script src="List Images.js"></script>

5. Close the head tag, include opening and closing body tags, and close the html tag.
</head>
<body>
</body>
</html>

6. Save the file as List images in the Configuration/Reports/HTML Reports folder.
Site reports 251

Writing the JavaScript code
Dreamweaver includes the Reports.js file. You can call any of the functions in Reports.js.
However, you also have to create the JavaScript file that contains any functions that are
specific to your custom site report.

To create the JavaScript file:

1. Create the file Configuration/Reports/HTML Reports/List Images.js, with the following
content:
// Function: configureSettings
// Description: Standard report API, used to initialize and load
// the default values. Does not initialize the UI.
//
function configureSettings() {
 return false;
}

// Function: processFile
// Description: Report command API called during file processing.
//
function processFile (fileURL) {
 if (!isHTMLType(fileURL)) //If the file isn’t an HTML file
 return; //skip it.
 var curDOM = dw.getDocumentDOM(fileURL); // Variable for DOM
 var tagList = curDOM.getElementsByTagName('img'); // Variable for img

tags
 var imgfilename; // Variable for file name specified in img tag
 for (var i=0; i < tagList.length; i++) { // For img tag list
 imgfilename = tagList[i].getAttribute('src'); // Get image filename
 if (imgfilename != null) { // If a filename is specified

// Print the appropriate icon, HTML filename,
// image filename, and line number
reportItem(REP_ITEM_CUSTOM, fileURL, imgfilename,

curDOM.nodeToSourceViewOffsets(tagList[i])); }
 }
}

2. Save the file as List Images.js in the Configuration/Reports/HTML Reports folder.
252 Reports

Stand-alone reports
You can use the Results Window API to create a stand-alone report. Stand-alone reports are
regular commands that directly use the Results Window API rather than the Reports API. You
can access a stand-alone report the same way you access any other command, through the
menus or through another command.

Stand-alone reports reside in the Dreamweaver Configuration/Commands folder. A custom
command for a stand-alone report appears on the Commands menu.

Dreamweaver creates a new Results window each time the user runs a new stand-alone report.

How stand-alone reports work
1. The custom command, which is the command you create to generate the report, opens a

new results window by calling the dw.createResultsWindow() function and storing the
returned results object in a window variable. The remaining functions in this process
should be called as methods of this object.

2. The custom command initializes the title and format of the Results window by calling the
setTitle() and SetColumnWidths() functions as methods of the Results window
object.

3. The command can either start adding items to the Results window immediately by calling
the addItem() function, or it can begin iterating through a list of files by calling the
setFileList() and startProcessing() functions as methods of the Results window
object.

4. When the command calls resWin.startProcessing(), Dreamweaver calls the
processFile() function for each file URL in the list. Define the processFile() function
in the stand-alone command. It receives the file URL as its only argument. Use the
setCallbackCommands() function of the Results window object if you want
Dreamweaver to call the processFile() function in some other command.

Path File Description

Configuration/Commands commandname.htm Defines the UI for the dialog box that
appears when the user selects the
command and contains the
JavaScript code or a reference to the
JavaScript file that performs the
actions needed to generate the report.

Configuration/Commands commandname.js Generates a Results window and puts
the report in it.
Stand-alone reports 253

5. To call the addItem() function, the processFile() function needs to have access to the
Results window that was created by the stand-alone command. The processFile()
function can also call the stopProcessing() function of the Results window object to
stop processing the list of files.

A simple stand-alone report example
The simple stand-alone report extension lists all the images referenced in a particular file and
displays the report in the Results window.

You create this extension by performing the following steps:

1. Creating the dialog box UI

2. Writing the JavaScript code

This example creates two files in the Configuration/Commands folder: List images.htm
which defines the UI of the dialog box that appears when the user selects the custom
command, and Listimages.js, which contains the JavaScript code specific to this report.

Creating the dialog box UI
The BODY of the HTML file specifies the contents of the dialog box that appears when the
user selects the custom command and calls any JavaScript files required.

To create the HTML file:

1. Create the Configuration/Commands/Listimages.htm file.

2. Enter the following in the Listimages.htm file:
<html>
<head>
<title>Standalone report example</title>
<script src=”Listimages.js”>
</script>
</head>
<body>
<div name="test">
<form name="myForm">
<table>
<tr>
<td>Click OK to display the standalone report.</td>
</tr>
</table>
</form>
</div>
</body>

3. Save the file as Listimages.htm in the Configuration/Commands folder.
254 Reports

Writing the JavaScript code
Next, you create the JavaScript file that contains any functions that are specific to your stand-
alone report.

To create the JavaScript file:

1. Create the Listimages.js file in the Configuration/Commands folder with the following
code:

function stdaloneresultwin()
{

var curDOM = dw.getDocumentDOM("document");
var tagList = curDOM.getElementsByTagName('img');
var imgfilename;
var iOffset = 0;
var iLineNumber = 0;

var resWin = dw.createResultsWindow("Images in File", ¬
["Line", "Image"]);

for (var i=0; i < tagList.length; i++)
{

// Get the name of the source file.
 imgfilename = tagList[i].getAttribute('src');

// Get the character offset from the start of the file
// to the start of the img tag.
iOffset = curDOM.nodeToOffsets(curDOM.images[i]);
// Based on the offset, figure out what line in the file
// the img tag is on.
iLineNumber = curDOM.getLineFromOffset(iOffset[0]);
// As long as the src attribute specifies a file name,

 if (imgfilename != null)
{ // display the line number, and image path.

resWin.addItem(resWin, "0", "Images in Current File", null, ¬
null, null, [iLineNumber, imgfilename]);

 }
}
return;

}

// add buttons to dialog
function commandButtons()
{

return new Array("OK", "stdaloneresultwin()", "Cancel",
"window.close()");
}

2. Save the file as Listimages.js in the Configuration/Commands folder.
Stand-alone reports 255

The Reports API
The only required function for the Reports API is the processFile() function. All other
functions are optional.

processFile()

Availability

Dreamweaver 4.

Description

This function is called when there is a file to process. The Report command should process
the file without modifying it and use the dw.ResultsPalette.SiteReports() function, the
addResultItem() function, or the resWin.addItem() function to return information about
the file. Dreamweaver automatically releases each file’s DOM when it finishes.

Arguments

strFilePath

■ The strFilePath argument is the full path and filename of the file to process.

Returns

Dreamweaver expects nothing.

beginReporting()

Availability

Dreamweaver 4.

Description

This function is called at the start of the reporting process, before any reports are run. If the
Report command returns a false value from this function, the Report command is excluded
from the report run.

Arguments
target

■ The target argument is a string that indicates the target of the report session. It can be
one of the following values: "CurrentDoc", "CurrentSite", "CurrentSiteSelection"
(for the selected files in a site), or "Folder:+ the path to the folder the user
selected" (for example, "Folder:c:temp").
256 Reports

Returns

Dreamweaver expects a Boolean value: true if the report runs successfully; false if target is
excluded from the report run.

endReporting()

Availability

Dreamweaver 4.

Description

This function is called at the end of the Report process.

Arguments

None.

Returns

Dreamweaver expects nothing.

commandButtons()

Availability

Dreamweaver 4.

Description

Defines the buttons that should appear on the right side of the Options dialog box and their
behavior when they are clicked. If this function is not defined, no buttons appear, and the
BODY section of the report file expands to fill the entire dialog box.

Arguments

None.

Returns

Dreamweaver expects an array that contains an even number of elements. The first element is
a string that contains the label for the topmost button. The second element is a string of
JavaScript code that defines the behavior of the topmost button when it is clicked. The
remaining elements define additional buttons in the same manner.
The Reports API 257

Example

The following instance of the commandButtons() function defines the OK, Cancel, and Help
buttons.
function commandButtons(){

return new Array("OK" , "doCommand()" , "Cancel" , ¬
"window.close()" , "Help" , "showHelp()");

}

configureSettings()

Availability

Dreamweaver 4.

Description

Determines whether the Report Settings button should be enabled in the Reports dialog box
when this report is selected.

Arguments

None.

Returns

Dreamweaver expects a Boolean value: true if the Report Settings button should be enabled;
false otherwise.

windowDimensions()

Availability

Dreamweaver 4.

Description

Sets specific dimensions for the Parameters dialog box. If this function is not defined, the
window dimensions are computed automatically.

Arguments
platform

■ The value of the platform argument is either "macintosh" or "windows", depending on
the user’s platform.

N
O

T
E

Do not define this function unless you want an Options dialog box that is larger than
640 x 480 pixels.
258 Reports

Returns

Dreamweaver expects a string of the form "widthInPixels,heightInPixels".

The returned dimensions are smaller than the size of the entire dialog box because they do not
include the area for the OK and Cancel buttons. If the returned dimensions do not
accommodate all options, scroll bars appear.

Example

The following instance of the windowDimensions() function sets the dimensions of the
Parameters dialog box to 648 x 520 pixels:
function windowDimensions(){

return "648,520";
}

The Reports API 259

260 Reports

11

CHAPTER 11

Tag Libraries and Editors
Macromedia Dreamweaver 8 users can use tag editors to insert new tags, edit existing tags,
and access reference information about tags. Dreamweaver comes with editors for the
following languages: HTML, ASP.Net, CFML, JRun, and JSP. You can customize tag editors
that come with Dreamweaver, and you can create new tag editors. You can also add new tags
to the tag libraries.

The Tag Chooser uses information that is stored in the tag libraries to let Dreamweaver users
view available tags and select them to use in the active document.

Dreamweaver stores information about each tag, including all tag attributes, in a set of
subfolders that reside in the Configuration/TagLibraries folder. The tag editor and Tag
Chooser functions use the information that is stored in this folder when manipulating and
editing tags. Before you can create custom tag editors, you should understand the tag library
structure.

The following table lists the files you use to create a tag library:

Path File Description

Configuration/TagLibraries/ TagLibraries.vt
m

Lists every installed tag.

Configuration/TagLibraries/language/ tag.vtm Includes information about tags, for
example tag attributes, whether the
tag has a closing tag, and
formatting rules.

Configuration/TagLibraries/language/ Tagimagefile.gif Optional file to display in the
Property inspector.
261

Tag library file format
A tag library consists of a single root file, the TagLibraries.vtm file, that lists every installed
tag, plus a VTML file for each tag in the tag library. The TagLibraries.vtm file functions as a
table of contents and contains pointers to each individual tag’s VTML file. The following
figure shows how Dreamweaver organizes the VTML files by markup language:

Macromedia HomeSite users can recognize the VTML file structure, but Dreamweaver does
not use VTML files in the same way as HomeSite. The most important difference is that
Dreamweaver contains its own HTML renderer that displays extension user interfaces (UIs),
so the Dreamweaver VTML files are not used in the GUI rendering process.

The following example illustrates the structure of the TagLibraries.vtm file:
<taglibraries>
<taglibrary name="Name of tag library" doctypes="HTML,ASP-JS,ASP-VB"

tagchooser="relative path to TagChooser.xml file" id="DWTagLibrary_html">
 <tagref name="tag name" file="relative path to tag .vtm file"/>
</taglibrary>

<taglibrary name="CFML Tags" doctypes="ColdFusion" servermodel="Cold
Fusion" tagchooser="cfml/TagChooser.xml" id="DWTagLibrary_cfml">

 <tagref name="cfabort" file="cfml/cfabort.vtm"/>
262 Tag Libraries and Editors

</taglibrary>

<taglibrary name="ASP.NET Tags" doctypes="ASP.NET_CSharp,ASP.NET_VB"¬
servermodel="ASPNet" prefix="<asp:" tagchooser="ASPNet/TagChooser.xml"¬
id="DWTagLibrary_aspnet">

 <tagref name="dataset" file="aspnet/dataset.vtm" prefix="<mm:dataset"/>
</taglibrary>
</taglibraries>

The taglibrary tag groups one or more tags into a tag library. When you import tags or
create a new set of tags, you can group them into tag libraries. Typically, a taglibrary
grouping corresponds to a set of tags that are defined in a JavaServer Pages (JSP) TLD file, an
XML document type definition (DTD) file, an ASP.Net name space, or some other logical
grouping.

The following table lists the taglibrary attributes:

Attribute Description Mandatory/
optional

taglibary.name Used to refer to the tag library in the UI. Mandatory

taglibrary.doctypes Indicates the document types for which this
library is active. When the library is active,
library tags appear in the Code Hints pop-up
menu. Not all tag libraries can be active at the
same time because name conflicts can occur
(for example, HTML and WML files
are incompatible).

Mandatory

taglibrary.prefix When specified, tags within the tag library
have the form taglibrary.prefix +
tagref.name For example, if the
taglibrary.prefix is "<jrun:" and the
tagref.name is "if" then the tag is of the form
"<jrun:if". This can be overridden for a
particular tag.

Optional

taglibrary.servermodel If the tags in the tag library execute on an
application server, the servermodel attribute
identifies the server model of the tag. If the
tags are client-side tags (not server-side tags),
the servermodel attribute is omitted. The
servermodel attribute is also used for Check
Target Browsers.

Optional
Tag library file format 263

The following table lists tagref attributes:

Because the tagref.prefix attribute can override the taglibrary.prefix attribute, the
relationship between the two attributes can be confusing. The following table shows the
relationship between the taglibrary.prefix and tagref.prefix attributes:

taglibrary.id This can be any string that is different from the
taglibrary.ID attributes of other tag libraries in
the file. The Extension Manager uses the ID
attribute, so the MXP files can insert new
taglibrary and the tags files into the
TagLibraries.vtm file.

Optional

taglibrary.tagchooser A relative path to the TagChooser.xml file that
is associated with this tag library.

Optional

Attribute Description Mandatory/
optional

tagref.name Used to refer to the tag in the UI. Mandatory

tagref.prefix Specifies how the tag appears in Source view.
When used, the tagref.prefix attribute
determines the prefix of the current tag. When
the attribute is defined, it overrides the value
specified for the taglibrary.prefix attribute.

Optional

tagref.file References the VTML file for the tag. Optional

Is the taglibrary.prefix
defined?

Is the tagref.prefix
defined?

Resulting tag prefix

No No '<' + tagref.name

Yes No taglibrary.prefix +
tagref.name

No Yes tagref.prefix

Yes Yes tagref.prefix

Attribute Description Mandatory/
optional
264 Tag Libraries and Editors

To define tags, Dreamweaver uses a modified version of the Macromedia VTML file format.
The following example demonstrates all the elements that Dreamweaver must use to define an
individual tag:
<tag name="input" bind="value" casesensitive="no" endtag="no">
 <tagformat indentcontents="yes" formatcontents="yes" nlbeforetag ¬

nlbeforecontents=0 nlaftercontents=0 nlaftertag=1 />
 <tagdialog file = "input.HTM"/>
 <attributes>
 <attrib name="name"/>
 <attrib name="wrap" type="Enumerated">
 <attriboption value="off"/>
 <attriboption value="soft"/>
 <attriboption value="hard"/>
 </attrib>
 <attrib name="onFocus" casesensitive="yes"/>
 <event name="onFocus"/>
 </attributes>
</tag>
Tag library file format 265

The following table lists the attributes that define tags:

Attribute Description Mandatory/
optional

tag.bind Used by the Data Binding panel. When you
select a tag of this type, the bind attribute
indicates the default attribute for data binding.

Optional

tag.casesensitive Specifies whether the tag name is case-
sensitive. If the tag is case-sensitive, it is
inserted into the user’s document using exactly
the case that the tag library specifies. If the tag
is not case-sensitive, it is inserted using the
default case that is specified in the Code
Format tab in the Preferences dialog box. If
casesensitive is omitted, the tag is assumed to
be case-insensitive.

Optional

tag.endtag Specifies whether the tag has both an opening
and a closing tag. For example, the input tag
has no closing tag; there is no matching /input
tag. If the closing tag is optional, the ENDTAG
attribute should be set to Yes.tag. Specify xml
to enforce XML syntax for an empty tag. For
example, <tag name="foo" endtag="xml"
tagtype="empty"> inserts <foo/>.

Optional

tagformat Specifies the tag’s formatting rules. In
Dreamweaver versions before Dreamweaver
MX, these rules were stored in the
SourceFormat.txt file.

Optional

tagformat.indentcontents Specifies whether the contents of this tag
should be indented.

Optional

tagformat.formatcontents Specifies whether the contents of this tag
should be parsed. This attribute is set to No for
tags such as SCRIPT and STYLE, for which
content is something other than HTML.

Optional

tagformat.nlbeforetag The number of newline characters to insert
before this tag.

Optional

tagformat.nlbeforecontents The number of newline characters to insert
before the contents of this tag.

Optional

tagformat.nlaftercontents The number of newline characters to insert
after the contents of this tag.

Optional
266 Tag Libraries and Editors

tagformat.nlaftertag The number of newline characters to insert
after this tag.

Optional

attrib.name The name of the attribute, as it appears in the
source code.

Mandatory

attrib.type If omitted, attrib.type is "text".
It can have the following values:
TEXT—free text content
ENUMERATED—a list of enumerated values
COLOR—a color value (name or hex)
FONT—font name or font family
STYLE—CSS styles attribute
CSSSTYLE—CSS class name
CSSID—CSS class ID
FILEPATH —a full file path
DIRECTORY—a folder path
FILENAME—filename only
RELATIVEPATH —a relative representation of the
path
FLAG —an ON/OFF attribute that contains
no value

Optional

attrib.casesensitive Specifies whether the attribute name is case-
sensitive. If the CASESENSITIVE attribute is
missing, the attribute name is case-insensitive.

Optional

N
O

T
E

In versions before Dreamweaver MX, tag information is stored in the Configuration/
TagAttributeList.txt file.

Attribute Description Mandatory/
optional
Tag library file format 267

The Tag Chooser
The Tag Chooser lets you view tags in functional groups so you can easily access frequently
used tags. In order to add a tag or a set of tags to the Tag Chooser, you must add them to the
tag library. You can do this by using the Tag Library Editor dialog box or by installing a
Dreamweaver extension, which is packaged in an MXP file.

TagChooser.xml files
The TagChooser.xml file provides the metadata for organizing tag groupings that appear in
the Tag Chooser. Each tag that comes with Dreamweaver is stored in a functional grouping
and is available in the Tag Chooser. By editing the TagChooser.xml file, you can regroup
existing tags and group new tags. You can customize how tags are organized for your users by
creating subcategories so they can easily access their most important tags.

The TagLibraries.vtm file supports the use of the TAGLIBRARY.TAGCHOOSER attribute, which
points to the TagChooser.xml file. If you change existing TagChooser.xml files or create new
ones, the TAGLIBRARY.TAGCHOOSER attribute must point to the correct location for the Tag
Chooser to be fully functional.

If there is no TAGLIBRARY.TAGCHOOSER attribute, the Tag Chooser displays the tree structure
that is in the TagLibraries.vtm file.

TagChooser.xml files are stored in the Configuration/TagLibraries/TagLibraryName folder.
The following example shows the structure of TagChooser.xml files:
<?xml version="1.0" encoding="iso-8859-1" standalone="yes" ?>
<tclibrary name="Friendly name for library node" desc='Description for

incorporated reference' reference="Language[,Topic[,Subtopic]]">
 <category name="Friendly name for category node" desc='Description for

incorporated reference' reference="Language[,Topic[,Subtopic]]"
id="Unique id">

 <category name="Friendly name for subcategory node" ICON="Relative path"
desc='Description for incorporated reference'
reference="Language,Topic[,Subtopic]" id="Unique id">

 <element name="Friendly name for list item" value='Value to pass to
visual dialog editors' desc='Description for incorporated reference'
reference="Language[,Topic[,Subtopic]]" id="Unique id"/>

 ... more elements to display in the list view ...
 </category>
 ... more subcategories ...
 </category>
 ... more categories ...
</tclibrary>
268 Tag Libraries and Editors

The following table lists the tags that are available for use in the TagChooser.xml files:

The CATEGORY tag represents all other nodes in the Tree view under the TCLIBRARY’s node, as
shown in the following table:

Tag Description Mandatory/
Optional

tclibrary The tag is the outermost tag, which encapsulates
this tag library’s Tag Chooser structure.

Mandatory

tclibrary.name Value appears in the Tree view node. Mandatory

tclibrary.desc Value is an HTML string and appears in the Tag
Info section of the Tag Chooser dialog box. If
there is no DESC attribute, the information for Tag
Info comes from the Reference panel.
Interchangeable with tclibrary.reference.

Optional
(desc and
reference are
mutually
exclusive)

tclibrary.reference Value describes the language, topic, and subtopic
to display in the Tag Info section of the Tag
Chooser dialog box. Interchangeable with
tclibrary.desc.

Optional
(desc and
reference are
mutually
exclusive)

Tag Description Mandatory/
Optional

category.name Value appears in the Tree view node. Mandatory

category.desc Value is an HTML string that appears in the Tag
Info section of the Tag Chooser dialog box. If
neither desc nor reference attr are specified,
nothing appears in the Tag info section.

Optional
(desc and
reference are
mutually
exclusive)

category.reference Value describes the language, topic, and
subtopic to display in the Tag info section.

Optional
(desc and
reference are
mutually
exclusive)

category.icon Value is a relative path to an icon GIF. Optional

category.id Any string that is different from the category.id
attributes of other categories in this file.

Mandatory
The Tag Chooser 269

The following table lists the attributes of the ELEMENT tag, which represents the tag to insert:

A simple example of creating a new tag
editor
The examples in this section use cfweather, a hypothetical ColdFusion tag designed to
extract the current temperature from a weather database, to illustrate the steps necessary to
create a new tag editor.

The attributes for the cfweather tag are described in the following table:

You create this new tag editor by performing the following steps:

■ Registering the tag in the tag library
■ Creating a tag definition (VTML) file
■ Creating a tag editor UI
■ Adding a tag to Tag Chooser

Attribute Description Mandatory/
Optional

element.name Value appears as a List view item. Mandatory

element.value Value that is either placed directly into the code or
a parameter that passes into visual dialog boxes.

Mandatory

element.desc Value is an HTML string and appears in the
incorporated Reference panel. If not specified, the
REFERENCE attribute displays reference content in
the incorporated Reference panel.

Optional
(desc and
reference are
mutually
exclusive)

element.reference As many as three strings separated by commas
that describes the language, topic, and subtopic
respectively. This information appears in the
Reference panel. The first string is mandatory. The
second string is mandatory for the ELEMENT tag
only; optional for CATEGORY and TCLIBRARY tags. The
third string is optional.

Optional
(desc and
reference are
mutually
exclusive)

element.id Any string that is different from the element.id
attributes of other elements in this file.

Optional

Attribute Description

zip A five-digit ZIP code

tempaturescale The temperature scale (Celsius or Farhenheit)
270 Tag Libraries and Editors

Registering the tag in the tag library
For Dreamweaver to recognize the new tag, it must be identified in the TagLibraries.vtm file,
which is located in the Configuration/TagLibraries folder. However, if the user is on multiuser
platform (such as Windows XP, Windows 2000, Windows NT, or Mac OS X), the user has
another TagLibraries.vtm file in their user Configuration folder. This file is the one that needs
to be updated because this file is the instance that Dreamweaver searches for and parses.

The location of the user’s Configuration folder depends on the user’s platform.

For Windows 2000 and Windows XP platforms:
<drive>:\Documents and Settings\<username>\ ¬

Application Data\Macromedia\Dreamweaver 8\Configuration

For Mac OS X platforms:
<drive>:Users:<username>:Library:Application Support: ¬

Macromedia:Dreamweaver 8:Configuration

If Dreamweaver cannot find the TagLibraries.vtm file in the user’s Configuration folder, it
searches for the file in the Dreamweaver Configuration folder.

The cfweather tag is a ColdFusion tag, so an appropriate tag library group already exists that
you can use to register the cfweather tag.

To register the tag:

1. Open the TagLibraries.vtm file in a text editor.

2. Scroll through the existing tag libraries to find the CFML tags taglibrary group.

3. Add a new tag reference element, as shown in the following example:
<tagref name="cfweather" file="cfml/cfweather.vtm"/>

4. Save the file.

The tag is now registered in the tag library, and it has a file pointer to the cfweather.vtm
tag definition file.

N
O

T
E

In Windows XP, this folder may be inside a hidden folder.

N
O

T
E

On multiuser platforms, if you edit the copy of TagLibraries.vtm that resides in the
Dreamweaver Configuration folder and not the one located in the user’s configuration
folder, Dreamweaver is not aware of the changes because it parses the copy of the
TagLibraries.vtm file in the user’s Configuration folder, not the one in the Dreamweaver
Configuration folder.
A simple example of creating a new tag editor 271

Creating a tag definition (VTML) file
When a user selects a registered tag using the Tag Chooser or a tag editor, Dreamweaver
searches for a corresponding VTML file for the tag definition.

To create a tag definition file:

1. In a text editor, create a file with the following contents:
<TAG NAME="cfweather" endtag="no">

<TAGFORMAT NLBEFORETAG="1" NLAFTERTAG="1"/>
<TAGDIALOG FILE="cfweather.htm"/>

<ATTRIBUTES>

<ATTRIB NAME="zip" TYPE="TEXT"/>
<ATTRIB NAME="tempaturescale" TYPE="ENUMERATED">

<ATTRIBOPTION VALUE="Celsius"/>
<ATTRIBOPTION VALUE="Fahrenheit"/>

</ATTRIB>
</ATTRIBUTES>

</TAG>

2. Save the cfweather.vtm file in the Configuration/Taglibraries/CFML folder.

Using the tag definition file, Dreamweaver can perform code hinting, code completion,
and tag formatting functionality for the cfweather tag.

Creating a tag editor UI

To create the cfweather tag editor user interface:

1. Save the cfweather.htm file in the Configuration/Taglibraries/CFML folder:
<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine 5.0//

dialog">
<html>
<head>
<title>CFWEATHER</title>
<script src="../../Shared/Common/Scripts/dwscripts.js"></script>
<script src="../../Shared/Common/Scripts/ListControlClass.js"></script>
<script src="../../Shared/Common/Scripts/tagDialogsCmn.js"></script>
<script>

/************************* GLOBAL VARS **************************/
var TEMPATURESCALELIST; // tempaurelist control (initialized in

initializeUI())
var theUIObjects; // array of UI objects used by common API

functions

/**/
272 Tag Libraries and Editors

// inspectTag() API function defined (required by all tag editors)
function inspectTag(tagNodeObj)
{
 // call into a common library version of inspectTagCommon defined
 // in tagDialogCmns.js (note that it's been included)
 // For more information about this function, look at the comments
 // for inspectTagCommon in tagDialogCmn.js
 tagDialog.inspectTagCommon(tagNodeObj, theUIObjects);
}

function applyTag(tagNodeObj)
{
 // call into a common library version of applyTagCommon defined
 // in tagDialogCmns.js (note that it's been included)
 // For more information about this function, look at the comments
 // for applyTagCommon in tagDialogCmn.js
 tagDialog.applyTagCommon(tagNodeObj, theUIObjects);
}

function initializeUI()
{
 // define two arrays for the values and display captions for the list

control
 var theTempatureScaleCap = new Array("celsius","fahrenheit");
 var theTempatureScaleVal = new Array("celsius","fahrenheit");

 // instantiate a new list control
 TEMPATURESCALELIST = new ListControl("thetempaturescale");

 // add the tempaturescalelist dropdown list control to the uiobjects
 theUIObjects = new Array(TEMPATURESCALELIST);

 // call common populateDropDownList function defined in tagDialogCmn.js to
 // populate the tempaturescale list control
 tagDialog.populateDropDownList(TEMPATURESCALELIST, theTempatureScaleCap,

theTempatureScaleVal, 1);
}
</script>

</head>
<body onLoad="initializeUI()">
<div name="General">
 <table border="0" cellspacing="4">
 <tr>
 <td valign="baseline" align="right" nowrap="nowrap">Zip Code: </td>
 <td nowrap="nowrap">
 <input type="text" id="attr:cfargument:zip" name="thezip"

attname="zip" style="width:100px" />
 </td>
 </tr>
A simple example of creating a new tag editor 273

 <tr>
 <td valign="baseline" align="right" nowrap="nowrap">Type: </td>
 <td nowrap="nowrap">
 <select name="thetempaturescale"

id="attr:cfargument:tempaturescale" attname="tempaturescale"
editable="false" style="width:200px">

 </select>
 </td>
 </tr>
 </table>
</div>
</body>
</html>

2. Verify that the tag editor is working by performing the following steps:

■ Launch Dreamweaver.
■ Type cfweather in Code view.
■ Right click on the tag.
■ Select Edit Tag cfweather from the Context menu.
If the tag editor launches, it has been created successfully.

Adding a tag to Tag Chooser

To add the cfweather tag to the Tag Chooser:

1. Modify the TagChooser.xml file in the Configuration/Taglibraries/CFML folder by
adding a new category called Third Party Tags, which features the cfweather tag, as shown
in the following example:
<category name="Third Party Tags" icon="icons/Elements.gif"

reference='CFML'>
<element name="cfweather" value='cfweather zip=""
temperaturescale="fahrenheit">' />

</category>

2. Verify the cfweather tag now appears in the Tag Chooser by performing the following
steps:

■ Select Insert > Tag.
■ Expand the CFML Tags group.
■ Select the Third Party Tags group that appears at the bottom of the Tag Chooser.

N
O

T
E

On multiuser platforms, the TagChooser.xml file also exists in the user’s Configuration
folder. For more information regarding multiuser platforms, see the discussion in
“Registering the tag in the tag library” on page 271.
274 Tag Libraries and Editors

■ The cfweather tag appears in the list box on the right.
■ Select cfweather, and click the Insert button.
The tag editor should appear.

Tag editor APIs
In order to create a new tag editor, you must provide an implementation for the
inspectTag(), validateTag(), and applyTag() functions. For an example of an
implementation, see “Creating a tag editor UI” on page 272.

inspectTag()

Availability

Dreamweaver MX.

Description

The function is called when the tag editor first appears. The function receives as an argument
the tag that the user is editing, which is expressed as a dom object. The function extracts
attribute values from the tag that is being edited and uses these values to initialize form
elements in the tag editor.

Arguments
tag

■ The tag argument is the DOM node of the edited tag.

Returns

Dreamweaver expects nothing.

Example

Suppose the user edits the following tag:
<crfweather zip = “94065”/>

If the editor contains a text field for editing the zip attribute, the function needs to initialize
the form element so that the user sees the actual ZIP code in the text field, rather than an
empty field.

The following code performs the initialization:
function inspectTag(tag)
{

document.forms[0].zip.value = tag.zip
}

Tag editor APIs 275

validateTag()

Availability

Dreamweaver MX.

Description

When a user clicks on a node in the tree control or clicks OK, the function performs input
validation on the currently displayed HTML form elements.

Arguments

None.

Returns

Dreamweaver expects a Boolean value: true if the input for HTML form elements is valid;
false if input values are not valid.

Example

When the user creates a table, a negative integer is entered for the number of table rows. The
validateTag() function detects the invalid input, displays an alert message, and returns a
false value.

applyTag()

Availability

Dreamweaver MX.

Description

When the user clicks OK, Dreamweaver calls the validateTag() function. If the
validateTag() function returns a true value, Dreamweaver calls this function and passes
the dom object that represents the current tag (the tag that is being edited). The function reads
the values out of the form elements and writes them into the dom object.

Arguments
tag

■ The tag argument is the DOM node of the tag being edited.

Returns

Dreamweaver expects nothing.
276 Tag Libraries and Editors

Example

Continuing the cfweather example, in the following code, if the user changes the ZIP code
from 94065 to 53402, in order to update the user’s document to use the new ZIP code, the
dom object must be updated:
function applyTag(tag)
{

tag.zip = document.forms[0].zip.value

}

Tag editor APIs 277

278 Tag Libraries and Editors

12

CHAPTER 12

Property Inspectors
The Property inspector is perhaps the most familiar floating panel in the Macromedia
Dreamweaver 8 interface. It is indispensable for defining, reviewing, and changing the name,
size, appearance, and other attributes of the selection as well as for launching internal and
external editors for the selected element.

Dreamweaver has several built-in interfaces for the Property inspector that let you set
properties for many standard HTML tags. Because these built-in inspectors are part of the
core Dreamweaver code, you cannot find corresponding Property inspector files for them in
the Configuration folder. However, custom Property inspector files let you override these
built-in interfaces or create new ones to inspect custom tags. Custom Property inspector files
reside in the Configuration/Inspectors folder inside the Dreamweaver application folder.

The following table lists the files you use to create a Property inspector:

Property inspector files
The Property inspector HTML file must contain a comment (in addition to the doctype
comment) immediately preceding the opening HTML tag, as shown in the following
example:
<!-- tag:serverModel:tagNameOrKeyword,priority:1to10,selection:¬
exactOrWithin,hline,vline, serverModel-->
<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine5.0//pi">

Path File Description

Configuration/Inspectors/ Propertyinspectorname.htm Defines the user interface (UI) of
the Property inspector.

Configuration/Inspectors/ Propertyinspectorname.js Contains the functions required by
the Property inspector.

Configuration/Inspectors/ Tagimagefile.gif Optional file to display in the
Property inspector.
279

This comment has the following elements:

■ The serverModel element specifies that Dreamweaver should load this Property
inspector only when the server model specified is active.

■ The tagNameOrKeyword element is the tag to be inspected or one of the following
keywords: *COMMENT* (for comments), *LOCKED* (for locked regions), or *ASP* (for ASP
tags).

■ The 1to10 element is the priority of the Property inspector file: 1 indicates that this
inspector should be used only when no others can inspect the selection; 10 indicates that
this inspector takes precedence over all others that can inspect the selection.

■ The exactOrWithin element indicates whether the selection can be within the tag
(within) or must exactly contain the tag (exact).

■ The hline element (optional) indicates that a horizontal gray line should appear between
the upper and lower halves of the inspector in expanded mode.

■ The vline element (optional) indicates that a vertical gray line should appear between the
tag name field and the rest of the properties in the inspector.

■ The serverModel element (optional) indicates the server model of the Property inspector.
If the server model of the Property inspector is not the same as the server model for the
document, Dreamweaver does not use the Property inspector to display the properties of
the current selection. For example, if the server model of the document is Macromedia
ColdFusion, but the server model of the Property inspector is ASP, Dreamweaver does not
use that Property inspector for selections in the document.

The following comment is appropriate for an inspector that is designed to inspect the HAPPY
tag:
<!-- tag:HAPPY, priority:8,selection:exact,hline,vline, ¬
serverModel:ASP -->

In some cases, you might want to specify that your extension use only Dreamweaver extension
rendering (and not the previous rendering engine) by inserting the following line immediately
before the tag comment, as shown in the following example:
<!--DOCTYPE HTML SYSTEM “-//Macromedia//DWExtension layout-engine 5.0//pi”-

->

The BODY section of a Property inspector file contains an HTML form. Instead of displaying
the form contents in a dialog box, however, Dreamweaver uses the form to define the input
areas and layout of the Property inspector.

The HEAD section of a Property inspector file contains JavaScript functions or a reference to
the JavaScript file or files.
280 Property Inspectors

How Property inspector files work
At start up, Dreamweaver reads the first line of each HTM and HTML file in the
Configuration/Inspectors folder, searching for the comment string that defines the type,
priority, and selection type of a Property inspector. Files that do not have this comment as
their first line are ignored.

When the user makes a selection in Dreamweaver or moves the insertion point to a different
location, the following events occur:

1. Dreamweaver searches for any inspectors that have a within selection type.

2. If there are any within inspectors, Dreamweaver searches up the document tree from the
currently selected tag to check whether there are inspectors for any tags that surround the
selection. If there are no within inspectors, Dreamweaver searches for any inspectors that
have a selection type of exact.

3. For the first tag that has one or more inspectors, Dreamweaver calls each inspector’s
canInspectSelection() function. If this function returns the value false, Dreamweaver
no longer considers the inspector a candidate for inspecting the selection.

4. If more than one potential inspector remains after calling the canInspectSelection()
function, Dreamweaver sorts the remaining inspectors by priority.

5. If more than one potential inspector shares the same priority, Dreamweaver selects an
inspector alphabetically by name.

6. The selected inspector appears in the Property inspector floating panel. If the Property
inspector file defines the displayHelp() function, a small question mark (?) icon appears
in the upper-right corner of the inspector.

7. Dreamweaver calls the inspectSelection() function to gather information about the
current selection and populate the inspector’s fields.

8. Event handlers attached to the fields in the Property inspector interface execute as the user
encounters them. (For example, you might have an onBlur event that calls the
setAttribute() function to set an attribute to the value that the user enters.)
How Property inspector files work 281

A simple Property inspector example
The following Property inspector inspects the MARQUEE tag, which is available only in
Microsoft Internet Explorer. The example lets you set the value of the direction attribute in
the Property inspector. To set the value of the MARQUEE tag’s other attributes, use this example
as a model.

You create this extension by performing the following steps:

■ Creating the user interface
■ Writing the JavaScript code
■ Creating the image
■ Testing the Property inspector

Creating the user interface
You create an HTML file that contains a form, which appears in the Property inspector.

To create the user interface:

1. Create a new blank file.

2. As the first line of the file, add the comment that identifies the property inspector, as
follows:
<!-- tag:MARQUEE,priority:9,selection:exact,vline,hline -->

3. To specify the document title and the JavaScript file that you will create, add the following
after the comment:
<HTML>
<HEAD>
<TITLE>Marquee Inspector</TITLE>
<SCRIPT src="marquee.js"></SCRIPT>
</HEAD>
<BODY>

</BODY>
</HTML>

4. To specify what appears in the Property inspector, add the following between the opening
and closing BODY tags:
<!-- Specify the image that will appear in the Property inspector -->
<SPAN ID="image" STYLE="position:absolute; width:23px; height:17px; ¬

z-index:16; left: 3px; top: 2px">

<SPAN ID="label" STYLE="position:absolute; width:23px; height:17px; ¬
282 Property Inspectors

z-index:16; left: 44px; top: 5px">Marquee

<!-- If your form fields are in different layers, you must ¬
create a separate form inside each layer and reference it as ¬
shown in the inspectSelection() and setInterjectionTag() ¬
functions. -->

<SPAN ID="topLayer" STYLE="position:absolute; z-index:1; left: 125px; ¬
top: 3px; width: 431px; height: 32px">

<FORM NAME="topLayerForm">
<TABLE BORDER="0" CELLPADDING="0" CELLSPACING="0">

<TR>
<TD VALIGN="baseline" ALIGN="right">Direction:</TD>
<TD VALIGN="baseline" ALIGN="right">
<SELECT NAME="marqDirection" STYLE="width:86"

onChange="setMarqueeTag()">
<OPTION VALUE="left">Left</OPTION>
<OPTION VALUE="right">Right</OPTION>

</SELECT>
</TR>

</TABLE>
</FORM>

5. Save the file as marquee.htm in the Configuration/Inspectors folder.

Writing the JavaScript code
You need to add JavaScript functions to make sure you can inspect the selection, to inspect the
selection, and to enter the appropriate values in the Property inspector.

To write the JavaScript code:

1. Create a new blank file.

2. To specify that the Property inspector appears whenever the selection contains the MARQUEE
tag, add the following function:
function canInspectSelection(){
 return true;
}

3. To refresh the value of the direction attribute that appears in the text field, add the
following function at the end of the file:
function inspectSelection(){

// Get the DOM of the current document.
var theDOM = dw.getDocumentDOM();
// Get the selected node.
var theObj = theDOM.getSelectedNode();
A simple Property inspector example 283

// Get the value of the DIRECTION attribute on the MARQUEE tag.
var theDirection = theObj.getAttribute('direction');

// Initialize a variable for the DIRECTION attribute to -1.
// This is used to store the menu index that corresponds to
// the value of the attribute.
// var typeIndex = -1;
var directionIndex = -1;

// If there was a DIRECTION attribute...
if (theDirection){

// If the value of DIRECTION is "left", set typeIndex to 0.
if (theDirection.toLowerCase() == "left"){

directionIndex = 0;
// If the value of DIRECTION is "right", set typeIndex to 1.

}else if (theDirection.toLowerCase() == "right"){
directionIndex = 1;

 }
}

// If the value of the DIRECTION attribute was "left"
// or "right", choose the corresponding
// option from the pop-up menu in the interface.
if (directionIndex != -1){

document.topLayer.document.topLayerForm.marqDirection.selectedIndex
=¬ directionIndex;
}

}

4. To get the current selection and make the text box in the Property inspector display the
direction attribute’s value, add the following function at the end of the file:
function setMarqueeTag(){

// Get the DOM of the current document.
var theDOM = dw.getDocumentDOM();
// Get the selected node.
var theObj = theDOM.getSelectedNode();

// Get the index of the selected option in the pop-up menu
// in the interface.
var directionIndex = ¬
document.topLayer.document.topLayerForm.marqDirection.selectedIndex;
// Get the value of the selected option in the pop-up menu
// in the interface.
var theDirection = ¬

document.topLayer.document.topLayerForm.marqDirection.¬
options[directionIndex].value;

// Set the value of the direction attribute to theDirection.
theObj.setAttribute('direction',theDirection);

}

5. Save the file as marquee.js in the Configuration/Inspectors folder.
284 Property Inspectors

Creating the image
You can optionally create the image that appears in the Property inspector.

To create the image:

1. Create an image that is 36 pixels wide and 36 pixels high.

2. Save the image as marquee.gif in Configuration/Inspectors.

In general, you can save images for Property inspectors in any format that Dreamweaver
supports.

Testing the Property inspector
Finally, you can test the Property inspector.

To test the Property inspector:

1. Restart Dreamweaver.

2. Create a new HTML page, or open an existing HTML page.

3. Add the following in the BODY section of the page:
<MARQUEE></MARQUEE>

4. Highlight the text you just added.

The Property inspector you created for the MARQUEE tag appears.
5. Enter a value for the Direction attribute in the Property inspector.

The tag on your page changes to include the direction attribute and the value you entered
in the Property inspector.

The Property inspector API
Two of the Property inspector API functions (canInspectSelection() and
inspectSelection()) are required.

canInspectSelection()

Description

Determines whether the Property inspector is appropriate for the current selection.
The Property inspector API 285

Arguments

None.

Returns

Dreamweaver expects a Boolean value: true if the inspector can inspect the current selection;
false otherwise.

Example

The following instance of the canInspectSelection() function returns a true value if the
selection contains the CLASSID attribute, and the value of that attribute is "clsid:D27CDB6E-
AE6D-11cf-96B8-444553540000" (the class ID for Macromedia Flash Player):
function canInspectSelection(){

var theDOM = dw.getDocumentDOM();
var theObj = theDOM.getSelectedNode();
return (theObj.nodeType == Node.ELEMENT_NODE && ¬

theObj.hasAttribute("classid") && ¬
theObj.getAttribute("classid").toLowerCase()== ¬
"clsid:D27CDB6E-AE6D-11cf-96B8-444553540000");

}

displayHelp()

Description

If this function is defined, a question mark (?) icon appears in the upper-right corner of the
Property inspector. This function is called when the user clicks the icon.

Arguments

None.

Returns

Dreamweaver expects nothing.

Example

The following example of the displayHelp() function opens a file in a browser window. The
file explains the fields of the Property inspector.
function displayHelp(){

dw.browseDocument(‘http://www.hooha.com/dw/inspectors/inspHelp.html’);
}

N
O

T
E

Use dom.getSelectedNode() to get the current selection as a JavaScript object (for
more information about dom.getSelectedNode(), see the Dreamweaver API
Reference).
286 Property Inspectors

inspectSelection()

Description

Refreshes the contents of the text fields based on the attributes of the current selection.

Arguments
maxOrMin

■ The maxOrMin argument is either max or min, depending on whether the Property
inspector is in its expanded or contracted state.

Returns

Dreamweaver expects nothing.

Example

The following example of the inspectSelection() function gets the value of the CONTENT
attribute and uses it to populate a form field called keywords:
function inspectSelection(){

var dom = dreamweaver.getDocumentDOM();
var theObj = dom.getSelectedNode();
document.forms[0].keywords.value = ¬
theObj.getAttribute("content");

}

The Property inspector API 287

288 Property Inspectors

13

CHAPTER 13

Floating Panels
You can create any kind of floating panel or inspector without the size and layout limitations
of Property inspectors.

Although a custom Property inspector should be your first choice for setting the properties of
the current selection, custom floating panels offer more room and flexibility for displaying
information about the entire document or multiple selections.

Custom floating panel files are HTML files that reside in the Configuration/Floaters folder
inside the Macromedia Dreamweaver 8 application folder. The BODY section of a floating
panel file contains an HTML form; event handlers that are attached to form elements can call
JavaScript code that performs arbitrary edits to the current document.

Dreamweaver has several built-in floating panels that are accessible from the Window menu.
(These built-in panels are part of the core Dreamweaver code and do not have corresponding
floating panel files for them in the Configuration/Floaters folder.)

You can create custom panels and add them to the Window menu. For more information on
adding items to the menu system, see Chapter 8, “Menus and Menu Commands,” on
page 181.

The following table lists the files you use to create a floating panel:

Path File Description

Configuration/Floaters/ panelname.htm Specifies the text that appears in the
title bar of the floating panel, defines
the floating panel, and contains the
required JavaScript functions.

Configuration/Menus/ menus.xml Adds a command to a menu.
289

How floating panel files work
Custom floating panels can be moved, resized, and tabbed together the same way as the
floating panels that are built in to Dreamweaver. Custom floating panels differ from built-in
floating panels in the following ways:

■ Custom floating panels display in the default gray. Setting the BGCOLOR attribute in the
BODY tag has no effect.

■ All custom floating panels either appear always in front of the Document window or float
behind it when inactive, depending on the setting for All Other Floaters in the
Panels preferences.

Floating panel files also differ somewhat from other extensions. Unlike other extension files,
Dreamweaver does not load floating panel files into memory at startup unless the floating
panels were visible when Dreamweaver last shut down. If the floating panels were not visible
when Dreamweaver shut down, the files that define them are loaded only when referenced
from one of the following functions: dreamweaver.getFloaterVisibility(),
dreamweaver.setFloaterVisibility(), or dreamweaver.toggleFloater(). For more
information on these functions, see the Dreamweaver API Reference.

When one of the files inside the Configuration folder calls the
dw.getFloaterVisibility(floaterName), dw.setFloaterVisibility(floaterName),
or dw.toggleFloater(floaterName) functions, the following events occur:

1. If floaterName is not one of the reserved floating panel names, Dreamweaver searches the
Configuration/Floaters folder for a file called floaterName.htm. (For a complete list of
reserved floating panel names, see the dreamweaver.getFloaterVisibility() function
in the Dreamweaver API Reference. If floaterName.htm is not found, Dreamweaver
searches for floaterName.html. If no file is found, nothing happens.

2. If the floating panel file is being loaded for the first time, the initialPosition() function
is called, if it is defined, to determine the floating panel’s default position on the screen,
and the initialTabs() function is called, if it is defined, to determine the floating panel’s
default tab grouping.

3. The selectionChanged() and documentEdited() functions are called on the
assumption that changes probably occurred while the floating panel was hidden.
290 Floating Panels

4. When the floating panel is visible, the following actions occur:

■ When the selection changes, the selectionChanged() function is called, if it is
defined.

■ When the user makes changes to the document, the documentEdited() function is
called, if it is defined.

■ Event handlers that are attached to the fields in the floating panel interface execute as
the user encounters them. (For example, a button with an onClick event handler that
executes dw.getDocumentDOM().body.innerHTML='' removes everything between
the opening and closing BODY tags in the document when it is clicked.)
Floating panels support two special events on the body tag: onShow() and onHide().

5. When the user quits Dreamweaver, the current visibility, position, and tab grouping of the
floating panel are saved. The next time Dreamweaver starts up, it loads the floating panel
files for any floating panels that were visible at the last shutdown and displays the floating
panels in their last position and tab grouping.

A simple floating panel example
In this example, you create a Script Editor extension that creates a floating panel to display the
JavaScript code that underlies a selected script marker in Design view. The Script Editor
displays the JavaScript code in the textarea element of an HTML form that is defined in a
floating panel called scriptlayer. If you make changes to the selected code in the floating
panel, the extension calls the updateScript() function to save your changes. If you have not
selected a script marker when you invoke the Script Editor, the extension displays (no
script selected) in a floating panel called blanklayer.

You create this extension by performing the following steps:

■ Creating the floating panels
■ Writing the JavaScript code
■ Creating a menu item

Creating the floating panels
The beginning of the HTML file for this extension contains the standard document header
information and a title tag that puts the words Script Editor in the title bar of the floating
panels.
A simple floating panel example 291

To create the HTML file header:

1. Create a new blank document.

2. Enter the following:
<!doctype html public "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Script Editor</title>
<script language="JavaScript">

The extension defines two floating panels that display either (no script selected) if the
user has not selected a script marker or the JavaScript code that underlies a selected script
marker. The following code defines these two floating panels, or layers, called blanklayer
and scriptlayer:

To create the two floating panels:

1. Add the following code after the header in the HTML file:
<body>
<div id="blanklayer" style="position:absolute; width:422px; ¬
height:181px; z-index:1; left: 8px; top: 11px; ¬
visibility: hidden">
<center>

(no script selected)
</center>
</div>

<div id="scriptlayer" style="position:absolute; width:422px; ¬
height:181px; z-index:1; left: 8px; top: 11px; ¬
visibility: visible">
<form name="theForm">
<textarea name="scriptCode" cols="80" rows="20" wrap="VIRTUAL" ¬
onBlur="updateScript()"></textarea>
</form>
</div>

</body>
</html>

2. Save the file as scriptEditor.htm in the Configuration/Floaters folder.
292 Floating Panels

Both div tags use the style attribute to specify the position (absolute), size (width:422px
and height:181px), and default visibility setting (visible) of the floating panels. The
blanklayer panel uses the center attribute and a series of break (br) tags to position the text
in the center of the panel. The scriptlayer panel creates a form with a single textarea to
display the selected JavaScript code. The textarea tag also specifies that when an onBlur
event occurs, indicating that the selected code has changed, the updateScript() function is
called to write the changed text back to the document.

Writing the JavaScript code
The JavaScript code for the Script Editor consists of one floating panel function that
Dreamweaver calls, selectionchanged(), and one user-defined function, updateScript().

selectionChanged(): is a script marker selected?
The selectionChanged() function determines whether a script marker has been selected in
Design view. A script marker appears in Design view if there is a JavaScript routine in the
BODY section of a document and if Scripts is selected on the Invisible Elements section of the
Preferences dialog box. The following figure shows a script marker icon:

Script marker
A simple floating panel example 293

The selectionChanged() function first calls the dw.getDocumentDOM() function to get the
Document Object Model (DOM) for the user’s document. It then calls the
getSelectedNode() function to see if the selected node for that document is, first, an
element and, second, a SCRIPT tag. If both these conditions are true, the
selectionChanged() function makes the scripteditor floating panel visible and loads it
with the underlying JavaScript code. It also sets the visibility property of the blanklayer
floating panel to the value hidden. The following figure shows the scriptlayer floating
panel with the selected JavaScript code:
294 Floating Panels

If the selected node is not an element, or it is not a SCRIPT tag, the selectionChanged()
function makes the blanklayer floating panel visible and hides the scriptlayer panel. The
blanklayer floating panel displays the text (no script selected), as shown in the
following figure:

To add the selectionChanged() function:

1. Open the file scriptEditor.htm that is in the Configuration/Floaters folder.

2. Enter the following code in the header section of the file.
function selectionChanged(){
 /* get the selected node */
 var theDOM = dw.getDocumentDOM();
 var theNode = theDOM.getSelectedNode();

 /* check to see if the node is a script marker */
 if (theNode.nodeType == Node.ELEMENT_NODE && ¬
 theNode.tagName == "SCRIPT"){
 document.layers['scriptlayer'].visibility = 'visible';
 document.layers['scriptlayer'].document.theForm.¬
 scriptCode.value = theNode.innerHTML;
 document.layers['blanklayer'].visibility = 'hidden';
 }else{
 document.layers['scriptlayer'].visibility = 'hidden';
 document.layers['blanklayer'].visibility = 'visible';
 }
}

3. Save the file.
A simple floating panel example 295

updateScript(): write back changes
The updateScript() function writes back the selected script when an onBlur event occurs
in the textarea of the scriptlayer panel. The textarea form element contains the
JavaScript code, and the onBlur event occurs when textarea loses input focus.

To add the updateScript() function:

1. Open the scriptEditor.htm file that is in the Configuration/Floaters folder.

2. Enter the following code in the header section of the file.
/* update the document with any changes made by
 the user in the textarea */

function updateScript(){
 var theDOM = dw.getDocumentDOM();
 var theNode = theDOM.getSelectedNode();
 theNode.innerHTML = document.layers['scriptlayer'].document.¬
 theForm.scriptCode.value;
}

</script>
</head>

3. Save the file.

Creating a menu item
It is not sufficient to save the Script Editor code in the Configuration/Floaters folder. You
must also call either the dw.setFloaterVisibility('scriptEditor',true) function or
the dw.toggleFloater('scriptEditor') function to load the floating panel and make it
visible. The most obvious place from which to invoke the Script Editor is from the Window
menu, which is defined in the menus.xml file. You need to create the menuitem tag that
creates an entry for the Script Editor extension on the Window menu, as shown in the
following figure:
296 Floating Panels

If you select a script marker in Design view for the current document and then select the
Script Editor menu item, it invokes the Script Editor floating panel and displays the
JavaScript code that underlies the script marker. If you select the menu item when a script
marker has not been selected, it displays the blanklayer panel that contains the text (no
script selected).

To add the menu item:

1. Open the menus.xml file in the Configuration/Menus folder.

2. locate the tag that begins <menuitem name="Tile _Vertically" and position the cursor
after the closing /> of the tag.

3. On a new line, insert the following:
<menuitem name="Script Editor" enabled="true" ¬
command="dw.toggleFloater('scriptEditor')"¬
checked="dw.getFloaterVisibility('scriptEditor')" />

4. Save the file.

The Floating panel API
All the custom functions in the Floating panel API are optional.

Some of the functions in this section operate only on the Windows operating system. The
description of the function indicates whether this is the case.

displayHelp()

Description

If this function is defined, a Help button appears below the OK and Cancel buttons in your
dialog box. This function is called when the user clicks the Help button.

Arguments

None.

Returns

Dreamweaver expects nothing.
The Floating panel API 297

Example
// the following instance of displayHelp() opens
// in a browser a file that explains how to use
// the extension.
function displayHelp(){

var myHelpFile = dw.getConfigurationPath() +
'/ExtensionsHelp/superDuperHelp.htm';

dw.browseDocument(myHelpFile);
}

documentEdited()

Description

This function is called when the floating panel becomes visible and after the current series of
edits is complete; that is, multiple edits might occur before this function is called. This
function should be defined only if the floating panel must track edits to the document.

Arguments

None.

Returns

Dreamweaver expects nothing.

Example

The following example of the documentEdited() function scans the document for layers and
updates a text field that displays the number of layers in the document:
function documentEdited(){

/* create a list of all the layers in the document */
var theDOM = dw.getDocumentDOM();
var layersInDoc = theDOM.getElementsByTagName("layer");
var layerCount = layersInDoc.length;

/* update the numOfLayers field with the new layer count */
document.theForm.numOfLayers.value = layerCount;

}

N
O

T
E

Define the documentEdited() function only if you require it because its existence
impacts performance.
298 Floating Panels

getDockingSide()

Availability

Dreamweaver MX.

Description

Specifies the locations at which a floating panel can dock. The function returns a string that
contains some combination of the words "left", "right", "top", and "bottom". If the label is
in the string, you can dock a floating panel to that side. If the function is missing, you cannot
dock a floating panel to any side.

You can use this function to prevent certain panels from docking on a certain side of the
Dreamweaver workspace or to each other.

Arguments

None.

Returns

Dreamweaver expects a string containing the words "left", "right", "top", and "bottom", or
a combination of them, that specifies where Dreamweaver can dock the floating panel.

Example
getDockingSide()
{

return dock_side = “left top”;
}

initialPosition()

Description

Determines the initial position of the floating panel the first time it is called. If this function is
not defined, the default position is the center of the screen.

Arguments
platform

■ The platform argument has a value of either "Mac" or "Win", depending on the
user’s platform.

Returns

Dreamweaver expects a string of the form "leftPosInPixels,topPosInPixels".
The Floating panel API 299

Example

The following example of the initialPosition() function specifies that the first time the
floating panel appears, it should be 420 pixels from the left and 20 pixels from the top in
Windows, and 390 pixels from the left side of the screen and 20 pixels from the top of the
screen on the Macintosh:
function initialPosition(platform){

var initPos = "420,20";
if (platform == "macintosh"){

initPos = "390,20";
}
return initPos;

}

initialTabs()

Description

Determines which other floating panels are tabbed together the first time that this floating
panel appears. If any listed floating panel has appeared previously, it is not included in the tab
group. To ensure that two custom floating panels are tabbed together, each panel should
reference the other with the initialTabs() function.

Arguments

None.

Returns

Dreamweaver expects a string of the form
"floaterName1,floaterName2,...floaterNameN".

Example

The following example of the initialTabs() function specifies that the first time the
floating panel appears, it should be tabbed with the scriptEditor floating panel:
function initialTabs(){

return "scriptEditor";
}

300 Floating Panels

isATarget()

Availability

Dreamweaver MX (Windows only).

Description

Specifies whether other panels can dock to this floating panel. If the isATarget() function is
not specified, Dreamweaver prevents other panels from docking to this one. Dreamweaver
calls this function when the user tries to combine this panel with others.

Arguments

None.

Returns

Dreamweaver expects a Boolean value: true if other floating panels can dock to this one;
false otherwise.

Example
IsATarget()
{

return true;
}

isAvailableInCodeView()

Description

Determines whether the floating panel should be enabled when Code view is selected. If this
function is not defined, the floating panel is disabled in the Code view.

Arguments

None.

Returns

Dreamweaver expects a Boolean value: true if the floating panel should be enabled in Code
view; false otherwise.
The Floating panel API 301

isResizable()

Availability

Dreamweaver 4.

Description

Determines whether a user can resize a floating panel. If the function is not defined or returns
a true value, the user can resize the floating panel. If the function returns a false value, the
user cannot resize the floating panel.

Arguments

None.

Returns

Dreamweaver expects a Boolean value: true if the user can resize the floating panel;
false otherwise.

Example

The following example prevents the user from resizing the floating panel:
function isResizable()
{

return false;
}

selectionChanged()

Description

Called when the floating panel becomes visible and when the selection changes (when focus
switches to a new document or when the insertion pointer moves to a new location in the
current document). This function should be defined only if the floating panel must track the
selection.

Arguments

None.

Returns

Dreamweaver expects nothing.

N
O

T
E

Define selectionChanged() only if you absolutely require it because its existence
impacts performance.
302 Floating Panels

Example

The following example of selectionChanged() shows a different layer in the floating panel,
depending on whether the selection is a script marker. If the selection is a script marker,
Dreamweaver makes the script layer visible. Otherwise, Dreamweaver makes the blank
layer visible.
function selectionChanged(){
 /* get the selected node */
 var theDOM = dw.getDocumentDOM();
 var theNode = theDOM.getSelectedNode();

 /* check to see if the node is a script marker */
 if (theNode.nodeType == Node.ELEMENT_NODE && ¬
 theNode.tagName == "SCRIPT"){
 document.layers['blanklayer'].visibility = 'hidden';
 document.layers['scriptlayer'].visibility = 'visible';}

else{
document.layers['scriptlayer'].visibility = 'hidden';
document.layers['blanklayer'].visibility = 'visible';

 }
}

About performance
Declaring the selectionChanged() or documentEdited() function in your custom floating
panels can impact Dreamweaver performance adversely. Consider that the
documentEdited() and selectionChanged() functions are called after every keystroke and
mouse click when Dreamweaver is idle for more than one-tenth of a second. It’s important to
use different scenarios to test your floating panel, using large documents (100K or more of
HTML) whenever possible, to test performance impact.

To help avoid performance penalties, the setTimeout() function was implemented as a
global method in Dreamweaver 3. As in the browsers, the setTimeout() function takes two
arguments: the JavaScript to be called and the amount of time in milliseconds to wait before
calling it.

The setTimeout() method lets you build pauses into your processing. These pauses let the
user continue interacting with the application. You must build in these pauses explicitly
because the screen freezes while scripts process, which prevents the user from performing
further edits. The pauses also prevent you from updating the interface or the floating panel.

The following example is from a floating panel that displays information about every layer in
the document. It uses the setTimeout() method to pause for a half second after processing
each layer.
The Floating panel API 303

/* create a flag that specifies whether an edit is being processed, and set
it to false. */

document.running = false;

/* this function called when document is edited */
function documentEdited(){
 /* create a list of all the layers to be processed */
 var dom = dw.getDocumentDOM();
 document.layers = dom.getElementsByTagName("layer");
 document.numLayers = document.layers.length;
 document.numProcessed = 0;

 /* set a timer to call processLayer(); if we didn't get
 * to finish processing the previous edit, then the timer
 * is already set. */
 if (document.running = false){
 setTimeout("processLayer()", 500);
 }

 /* set the processing flag to true */
 document.running = true;
}

/* process one layer */
function processLayer(){
 /* display information for the next unprocessed layer.
 displayLayer() is a function you would write to
 perform the "magic". */
 displayLayer(document.layers[document.numProcessed]);

 /* if there's more work to do, set a timeout to process
 * the next layer. If we're finished, set the document.running
 * flag to false. */
 document.numProcessed = document.numProcessed + 1;
 if (document.numProcessed < document.numLayers){
 setTimeout("processLayer()", 500);
 }else{
 document.running = false;
 }
}

304 Floating Panels

14

CHAPTER 14

Behaviors
Behaviors let users make their HTML pages interactive. They offer web designers an easy way
to assign actions to page elements by filling in an HTML form.

The term behavior refers to the combination of an event (such as onClick, onLoad, or
onSubmit) and an action (such as Check Plugin, Go to URL, Swap Image). The browser
determines which HTML elements accept which events. Files that list events that each
browser supports are stored in the Configuration/Behaviors/Events folder within the
Macromedia Dreamweaver 8 application folder.

Actions are the part of a behavior that you can control; when you write a behavior, you’re
really writing an Action file. Actions are HTML files. The BODY section of an Action file
generally contains an HTML form that accepts parameters for the action (for example,
parameters that indicate which layers to display or hide). The HEAD section of an Action file
contains JavaScript functions that process form input from the BODY content and control the
functions, arguments, and event handlers that are inserted into a user’s document.

You should write behavior actions when you want to share functions with users or when you
want to insert the same JavaScript function repeatedly, but change the parameters each time.

The following table lists the files you use to create behavior actions:

N
O

T
E

You cannot use behaviors to insert VBScript functions directly; however, you can add a
VBScript function indirectly by editing the Document Object Model (DOM) in the
applyBehavior() function.

Path File Description

Configuration/Behaviors/Actions/ behavior action.htm The BODY of the file contains an
HTML form for the action’s
parameters. The HEAD of the file
contains the JavaScript functions.

N
O

T
E

For information about server behaviors that provide web application functionality, see
Chapter 15, “Server Behaviors,” on page 321.
305

How Behaviors work
When a user selects an HTML element in a Dreamweaver document and clicks the Plus (+)
button on the Behaviors panel, the following events occur:

1. Dreamweaver calls the canAcceptBehavior() function in each Action file to see whether
this action is appropriate for the document or the selected element.

If the return value of this function is false, Dreamweaver dims the action in the Actions
pop-up menu. (For example, the Control Shockwave action is dimmed when the user’s
document has no SWF files.) If the return value is a list of events, Dreamweaver compares
each event with the valid events for the currently selected HTML element and target
browser until it finds a match. Dreamweaver populates the Events pop-up menu with the
matched event from the canAcceptBehavior() function at the top of the list. If no
match exists, the default event for the HTML element (marked in the Event file with an
asterisk [*]) becomes the top item. The remaining events in the menu are assembled from
the Event file.

2. The user selects an action from the Actions pop-up menu.

3. Dreamweaver calls the windowDimensions() function to determine the
size of the Parameters dialog box. If the windowDimensions() function is not defined, the
size is determined automatically.

A dialog box always appears, with OK and Cancel buttons at the right edge, regardless of
the contents of the BODY element.

4. Dreamweaver displays a dialog box that contains the BODY elements of the Action file. If
the Action file’s BODY tag contains an onLoad handler, Dreamweaver executes it.

5. The user fills in the parameters for the action. Dreamweaver executes event handlers that
are associated with the form fields as the user encounters them.

6. The user clicks OK.

7. Dreamweaver calls the behaviorFunction() and applyBehavior() functions in the
selected Action file. These functions return strings that are inserted into the user’s
document.

8. If the user later double-clicks the action in the Actions column, Dreamweaver reopens the
Parameters dialog box and executes the onLoad handler. Dreamweaver then calls the
inspectBehavior() function in the selected Action file, which fills in the fields with the
data that the user previously entered.
306 Behaviors

Inserting multiple functions in the user’s file
Actions can insert multiple functions—the main behavior function plus any number of helper
functions—into the HEAD section. Two or more behaviors can even share helper functions as
long as the function definition is exactly the same in each Action file. One way of ensuring
that shared functions are identical is to store each helper function in an external JavaScript file
and insert it into the appropriate Action files using <SCRIPT SRC="externalFile.js">.

When the user deletes a behavior, Dreamweaver attempts to remove any unused helper
functions that are associated with the behavior. If other behaviors are using a helper function,
it is not deleted. Because the algorithm for deleting helper functions errs on the side of
caution, Dreamweaver might occasionally leave an unused function in the user’s document.

What to do when an action requires a return value
Sometimes an event handler must have a return value (for example,
onMouseOver="window.status='This is a link'; return true"). But if Dreamweaver
inserts the "return behaviorName(args)" action into the event handler, behaviors later in
the list are skipped.

To get around this limitation, set the document.MM_returnValue variable to the desired
return value within the string that the behaviorFunction() function returns. This setting
causes Dreamweaver to insert return document.MM_returnValue at the end of the list of
actions in the event handler. For an example that uses the MM_returnValue variable, see the
Validate Form.js file in the Configuration/Behaviors/Actions folder within the Dreamweaver
application folder.

A simple behavior example
To understand how behaviors work and how you can create one, it’s helpful to look at an
example. The Configuration/Behaviors/Actions folder inside the Dreamweaver application
folder contains examples; however, many are very complex. This example is simpler so that
you can learn about creating behaviors. Start with the simple Action file Call JavaScript.htm
(along with its counterpart, Call JavaScript.js, which contains all the JavaScript functions).

To create the behavior, you perform the following steps:

■ Creating the behavior extension
■ Creating the HTML files to browse
■ Testing the behavior
A simple behavior example 307

Creating the behavior extension
The following code presents a relatively simple example. It checks the brand of the browser
and goes to one page if the brand is Netscape Navigator and another if the brand is Microsoft
Internet Explorer. This code can easily be expanded to check for other brands such as Opera
and WebTV and modified to perform actions other than going to URLs.

To create the behavior extension:

1. Create a new blank file.

2. Add the following to the file:
<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine 5.0 ¬

//dialog">
<html>
<head>
<title>behavior "Check Browser Brand"</title>
<meta http-equiv="Content-Type" content="text/html">
<script language="JavaScript">

// The function that will be inserted into the
// HEAD of the user's document
function checkBrowserBrand(netscapeURL,explorerURL) {
 if (navigator.appName == "Netscape") {
 if (netscapeURL) location.href = netscapeURL;
 }else if (navigator.appName == "Microsoft Internet Explorer") {
 if (explorerURL) location.href = explorerURL;
 }
}

//******************* API **********************

function canAcceptBehavior(){
 return true;
}

// Return the name of the function to be inserted into
// the HEAD of the user's document
function behaviorFunction(){
 return "checkBrowserBrand";
}

// Create the function call that will be inserted
// with the event handler
function applyBehavior() {
 var nsURL = escape(document.theForm.nsURL.value);
 var ieURL = escape(document.theForm.ieURL.value);
 if (nsURL && ieURL) {
 return "checkBrowserBrand(\'" + nsURL + "\',\'" + ieURL + ¬
308 Behaviors

 "\')";
 }else{
 return "Please enter URLs in both fields."
 }
}

// Extract the arguments from the function call
// in the event handler and repopulate the
// parameters form
function inspectBehavior(fnCall){
 var argArray = getTokens(fnCall, "()',");
 var nsURL = unescape(argArray[1]);
 var ieURL = unescape(argArray[2]);
 document.theForm.nsURL.value = nsURL;
 document.theForm.ieURL.value = ieURL;
}

//***************** LOCAL FUNCTIONS ******************

// Put the pointer in the first text field
// and select the contents, if any
function initializeUI(){
 document.theForm.nsURL.focus();
 document.theForm.nsURL.select();
}

// Let the user browse to the Navigator and
// IE URLs
function browseForURLs(whichButton){
 var theURL = dreamweaver.browseForFileURL();
 if (whichButton == "nsURL"){
 document.theForm.nsURL.value = theURL;
 }else{
 document.theForm.ieURL.value = theURL;
 }
}

//*************** END OF JAVASCRIPT *****************
</script>
</head>
<body>
<form method="post" action="" name="theForm">
<table border="0" cellpadding="8">
<tr>
<td nowrap="nowrap"> Go to this URL if the browser is ¬
Netscape Navigator:

<input type="text" name="nsURL" size="50" value="">
<input type="button" name="nsBrowse" value="Browse..." ¬
onClick="browseForURLs('nsURL')"></td>
</tr>
A simple behavior example 309

<tr>
<td nowrap="nowrap"> Go to this URL is the browser is ¬
Microsoft Internet Explorer:

<input type="text" name="ieURL" size="50" value="">
<input type="button" name="ieBrowse" value="Browse..." ¬
onClick="browseForURLs('ieURL')"></td>
</tr>
</table>
</form>
</body>
</html>

3. Save the file as Configuration/Behaviors/Actions/BrowserDependentURL.htm.

Creating the HTML files to browse
Next, you create the HTML files to browse, the file to go to if the browser is Internet
Explorer, and the file to go to if the browser is Netscape Navigator.

To create the HTML files to browse:

1. Create a new file with the following content:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Internet Explorer Only</title>
</head>

<body>
This is the page to go to if you are using Internet Explorer.
</body>
</html>

2. Save the file as iecontent.htm in a site on your computer.

3. Create another new file with the following content:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Netscape Navigator content</title>
</head>

<body>
This is the page to go to if you are using Netscape Navigator.
</body>
</html>
310 Behaviors

4. Save the file as netscapecontent.htm in the same directory as the iecontent.htm file.

5. Restart Dreamweaver.

6. Create a new HTML file with the following content:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Which browser</title>
</head>

<body>
</body>
</html>

7. Save the file as whichbrowser.htm in the same directory as the iecontent.htm file.

8. Click the Plus (+) button on the Behaviors panel and select the Check Browser Band
behavior.

9. Click the Browse button next to the Go to the URL if the browser is Netscape Navigator
text box, and select the netscapecontent.htm file.

10. Click the Browse button next to the Go to the URL if the browser is Internet Explorer text
box, and select the iecontent.htm file.

11. Click OK.

Dreamweaver adds the specified JavaScript to the whichbrowser.htm file, so that the file
appears as follows:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Which browser</title>
<script language="JavaScript" type="text/JavaScript">
<!--
function checkBrowserBrand(netscapeURL,explorerURL) {
 if (navigator.appName == "Netscape") {
 if (netscapeURL) location.href = netscapeURL;
 }else if (navigator.appName == "Microsoft Internet Explorer") {
 if (explorerURL) location.href = explorerURL;
 }
}
//-->
</script>
</head>
A simple behavior example 311

<body
onLoad="checkBrowserBrand('netscaptecontent.htm','iecontent.htm')">

</body>
</html>

Testing the behavior
Finally, you can test the behavior.

To test the behavior:

1. View the file whichbrowser.htm in your browser.

Depending on which browser you are using, either iecontent.htm or netscapecontent.htm
appears.

The Behaviors API
Two Behaviors API functions are required (applyBehavior() and behaviorFunction());
the rest are optional.

applyBehavior()

Description

This function inserts into the user’s document an event handler that calls the function that the
behaviorFunction() function inserts. The applyBehavior() function can also perform
other edits on the user’s document, but it must not delete the object to which the behavior is
being applied or the object that receives the action.

Arguments
uniqueName

■ The argument is a unique identifier among all instances of all behaviors in the user’s
document. Its format is functionNameInteger, where functionName is the name of the
function that behaviorFunction() inserts. This argument is useful if you insert a tag
into the user’s document and you want to assign a unique value to its NAME attribute.
312 Behaviors

Returns

Dreamweaver expects a string that contains the function call to be inserted in the user’s
document, usually after accepting parameters from the user. If the applyBehavior()
function determines that the user made an invalid entry, the function can return an error
string instead of the function call. If the string is empty (return "";), Dreamweaver does not
report an error; if the string is not empty and not a function call, Dreamweaver displays a
dialog box with the text Invalid input supplied for this behavior: [the string returned from

applyBehavior()]. If the return value is null (return;), Dreamweaver indicates that an
error occurred but gives no specific information.

Example

The following example of the applyBehavior() function returns a call to the
MM_openBrWindow() function and passes user-specified parameters (the height and width of
the window; whether the window should have scroll bars, a toolbar, a location bar, and other
features; and the URL that should open in the window):
function applyBehavior() {

var i,theURL,theName,arrayIndex = 0;
var argArray = new Array(); //use array to produce correct ¬
number of commas w/o spaces
var checkBoxNames = new Array("toolbar","location",¬
"status","menubar","scrollbars","resizable");

for (i=0; i<checkBoxNames.length; i++) {
theCheckBox = eval("document.theForm." + checkBoxNames[i]);
if (theCheckBox.checked) argArray[arrayIndex++] = ¬
(checkBoxNames[i] + "=yes");

}
if (document.theForm.width.value)

argArray[arrayIndex++] = ("width=" + ¬
document.theForm.width.value);

if (document.theForm.height.value)
argArray[arrayIndex++] = ("height=" + ¬
document.theForm.height.value);

theURL = escape(document.theForm.URL.value);
theName = document.theForm.winName.value;
return "MM_openBrWindow('"+theURL+"',¬
'"+theName+"','"+argArray.join()+"')";

}

N
O

T
E

Quotation marks ("")within the returned string must be preceded by a backslash (\) to
avoid errors that the JavaScript interpreter reports.
The Behaviors API 313

behaviorFunction()

Description

This function inserts one or more functions—surrounded by the following tags, if they don’t
yet exist—into the HEAD section of the user’s document:
<SCRIPT LANGUAGE="JavaScript"></SCRIPT>

Arguments

None.

Returns

Dreamweaver expects either a string that contains the JavaScript functions or a string that
contains the names of the functions to be inserted in the user’s document. This value must be
exactly the same every time (it cannot depend on user input). The functions are inserted only
once, regardless of how many times the action is applied to elements in the document.

Example

The following instance of the behaviorFunction() function returns the MM_popupMsg()
function:
function behaviorFunction(){

return ""+
"function MM_popupMsg(theMsg) { //v1.0\n"+
" alert(theMsg);\n"+
"}";

}

The following example is equivalent to the preceding behaviorFunction() declaration and
is the method used to declare the behaviorFunction() function in all behaviors that come
with Dreamweaver:
function MM_popupMsg(theMsg){ //v1.0

alert(theMsg);
}

function behaviorFunction(){
return "MM_popupMsg";

}

N
O

T
E

Quotation marks ("")within the returned string must be preceded by a backslash (\)
escape character to avoid errors that the JavaScript interpreter reports.
314 Behaviors

canAcceptBehavior()

Description

This function determines whether the action is allowed for the selected HTML element and
specifies the default event that should trigger the action. Can also check for the existence of
certain objects (such as SWF files) in the user’s document and not allow the action if these
objects do not appear.

Arguments
HTMLElement

■ The argument is the selected HTML element.

Returns

Dreamweaver expects one of the following values:

■ A true value if the action is allowed but has no preferred events.
■ A list of preferred events (in descending order of preference) for this action. Specifying

preferred events overrides the default event (as denoted with an asterisk [*] in the Event
file) for the selected object. See step 1 in “How Behaviors work” on page 306.

■ A false value if the action is not allowed.

If the canAcceptBehavior() function returns a false value, the action is dimmed in the
Actions pop-up menu on the Behaviors panel.

Example

The following instance of the canAcceptBehavior() function returns a list of preferred
events for the behavior if the document has any named images:
function canAcceptBehavior(){

var theDOM = dreamweaver.getDocumentDOM();
// Get an array of all images in the document
var allImages = theDOM.getElementsByTagName('IMG');
if (allImages.length > 0){

return "onMouseOver, onClick, onMouseDown";
}else{

return false;
}

}

The Behaviors API 315

displayHelp()

Description

If this function is defined, a Help button appears below the OK and Cancel buttons in the
Parameters dialog box. This function is called when the user clicks the Help button.

Arguments

None.

Returns

Dreamweaver expects nothing.

Example
// the following instance of displayHelp() opens
// in a browser a file that explains how to use
// the extension.
function displayHelp(){

var myHelpFile = dw.getConfigurationPath() +
'/ExtensionsHelp/superDuperHelp.htm';

 dw.browseDocument(myHelpFile);
}

deleteBehavior()

Description

This function undoes any edits that the applyBehavior() function performed.

Arguments
applyBehaviorString

■ This argument is the string that the applyBehavior() function returns.

Returns

Dreamweaver expects nothing.

N
O

T
E

Dreamweaver automatically deletes the function declaration and the event handler that
are associated with a behavior when the user deletes the behavior in the Behaviors
panel. It is necessary to define the deleteBehavior() function only if the
applyBehavior() function performs additional edits on the user’s document (for
example, if it inserts a tag).
316 Behaviors

identifyBehaviorArguments()

Description

This function identifies arguments from a behavior function call as navigation links,
dependent files, URLs, Netscape Navigator 4.0-style references, or object names so that URLs
in behaviors can update if the user saves the document to another location and so the
referenced files can appear in the site map and be considered dependent files for the purposes
of uploading to and downloading from a server.

Arguments
theFunctionCall

■ This argument is the string that the applyBehavior() function returns.

Returns

Dreamweaver expects a string that contains a comma-separated list of the types of arguments
in the function call. The length of the list must equal the number of arguments in the
function call. Argument types must be one of the following types:

■ The nav argument type specifies that the argument is a navigational URL, and therefore,
it should appear in the site map.

■ The dep argument type specifies that the argument is a dependent file URL, and
therefore, it should be included with all other dependent files when a document that
contains this behavior is downloaded from or uploaded to a server.

■ The URL argument type specifies that the argument is both a navigational URL and a
dependent URL or that it is a URL of an unknown type and should appear in the site map
and be considered a dependent file when downloading from or uploading to a server.

■ The NS4.0ref argument type specifies that the argument is a Netscape Navigator 4.0-
style object reference.

■ The IE4.0ref argument type specifies that the argument is an Internet Explorer DOM
4.0-style object reference.

■ The objName argument type specifies that the argument is a simple object name, as
specified in the NAME attribute for the object. This type was added in Dreamweaver 3.

■ The other argument type specifies that the argument is none of the above types.
The Behaviors API 317

Example

This simple example of the identifyBehaviorArguments() function works for the Open
Browser Window behavior action, which returns a function that always has three arguments
(the URL to open, the name of the new window, and the list of window properties):
function identifyBehaviorArguments(fnCallStr) {

return "URL,other,other";
}

A more complex version of the identifyBehaviorArguments() function is necessary for
behavior functions that have a variable number of arguments (such as Show/Hide Layer). For
this example version of the identifyBehaviorArguments() function, there is a minimum
number of arguments, and additional arguments always come in multiples of the minimum
number. In other words, a function with a minimum number of arguments of 4 may have 4,
8, or 12 arguments, but it cannot have 10 arguments:
function identifyBehaviorArguments(fnCallStr) {

var listOfArgTypes;
var itemArray = dreamweaver.getTokens(fnCallStr, '(),');

// The array of items returned by getTokens() includes the
// function name, so the number of *arguments* in the array
// is the length of the array minus one. Divide by 4 to get the
// number of groups of arguments.
var numArgGroups = ((itemArray.length - 1)/4);
// For each group of arguments
for (i=0; i < numArgGroups; i++){

// Add a comma and "NS4.0ref,IE4.0ref,other,dep" (because this
// hypothetical behavior function has a minimum of four
// arguments the Netscape object reference, the IE object
// reference, a dependent URL, and perhaps a property value
// such as "show" or "hide") to the existing list of argument
// types, or if no list yet exists, add only
// "NS4.0ref,IE4.0ref,other,dep"
var listOfArgTypes += ((listOfArgTypes)?",":"") + ¬
"NS4.0ref,IE4.0ref,other,dep";
}

}

318 Behaviors

inspectBehavior()

Description

This function inspects the function call for a previously applied behavior in the user’s
document and sets the values of the options in the Parameters dialog box accordingly. If the
inspectBehavior() function is not defined, the default option values appear.

Arguments
applyBehaviorString

■ This argument is the string that the applyBehavior() function returns.

function inspectBehavior(enteredStr){
if(enteredStr){
//do your work here
}

}

Returns

Dreamweaver expects nothing.

Example

The following instance of the inspectBehavior() function, taken from the Display Status
Message.htm file, fills in the Message field in the Parameters dialog box with the message that
the user selected when the behavior was originally applied:
function inspectBehavior(msgStr){

var startStr = msgStr.indexOf("'") + 1;
var endStr = msgStr.lastIndexOf("'");
if (startStr > 0 && endStr > startStr) {

document.theForm.message.value = ¬
unescQuotes(msgStr.substring(startStr,endStr));

}
}

N
O

T
E

The inspectBehavior() function must rely solely on information that the
applyBehaviorString argument passes to it. Do not attempt to obtain other
information about the user’s document (for example, using
dreamweaver.getDocumentDOM()) within this function.

N
O

T
E

If the HTML element contains code that is similar to 'onClick="someBehavior();
return document.MM_returnValue;"', and you add a new behavior from the behavior
menu, Dreamweaver calls inspectBehavior() as soon as the new behavior UI pops up,
and passes an empty string as the parameter. Consequently, be sure to check the
applyBehaviorString parameter, as shown in the following example:
The Behaviors API 319

windowDimensions()

Description

This function sets specific dimensions for the Parameters dialog box. If this function is not
defined, the window dimensions are computed automatically.

Arguments
platform

■ The value of the argument is either "macintosh" or "windows", depending on the user’s
platform.

Returns

Dreamweaver expects a string of the form "widthInPixels,heightInPixels".

The returned dimensions are smaller than the size of the entire dialog box because they do not
include the area for the OK and Cancel buttons. If the returned dimensions do not
accommodate all options, scroll bars appear.

Example

The following instance of windowDimensions() sets the dimensions of the Parameters dialog
box to 648 x 520 pixels:
function windowDimensions(){

return "648,520";
}

N
O

T
E

For more information about the unescQuotes() function, see the dwscripts.js file in the
Configuration/Shared/Common/Scripts/CMN folder.

N
O

T
E

Do not define this function unless you want an Parameters dialog box that is larger than
640 x 480 pixels.
320 Behaviors

15

CHAPTER 15

Server Behaviors
Macromedia Dreamweaver 8 provides users with an interface for adding server behaviors into
their documents to perform server-side tasks such as filtering records based on user criteria,
paging through records, linking result lists to details pages, and inserting records into a result
set. If a Dreamweaver user repeatedly inserts the same runtime code into documents, you can
create a new extension to automate updating a document with these frequently used code
blocks. For details about working with the Server Behavior Builder interface to implement a
custom server behavior, see “Adding Custom Server Behaviors” in Getting Started with
Dreamweaver. Then, refer to this chapter for details about working with the supporting server
behavior files and the functions that interact with established server behaviors. For individual
function information, see “Server Behavior functions” and “Extension Data Manager
functions” in the Dreamweaver API Reference. Dreamweaver currently supports server
behavior extensions that add runtime code for the following server models: ASP.Net/C#,
ASP.Net/VisualBasic, ASP/JavaScript, ASP/VBScript, ColdFusion, JSP, and PHP/MySQL.

The following terms are used throughout this chapter:

■ Server behavior extension The server behavior extension is the interface between server-
side code and Dreamweaver. A server behavior extension consists of JavaScript, HTML,
and Extension Data Markup Language (EDML), which is XML that is created specifically
for extension data. Examples of these files reside in your installation folder in the
Configuration/ServerBehaviors folder, arranged according to server model. When you
script an extension, use the dwscripts.applySB() function to instruct Dreamweaver to
read the EDML files, retrieve the components of your extension, and add the appropriate
code blocks to the user’s document.

■ Server behavior instance When Dreamweaver adds code blocks to a user’s document,
the inserted code constitutes an instance of the server behavior. The user can apply most
server behaviors more than once, which results in multiple server behavior instances. Each
server behavior instance is listed in the Server Behaviors panel of the Dreamweaver
interface.
321

■ Runtime code Runtime code is the set of code blocks that are added to a document
when a server behavior is applied. These code blocks usually include some server-side
code, such as ASP script that is enclosed in <% ... %> tags.

■ Participants Your server behavior extension inserts code blocks into the user’s
document. A code block is a single, continuous block of script, such as a server-side tag, an
HTML tag, or an attribute that adds server-side functionality to a web page. An EDML
file defines each code block as a participant. All the participants for a given server behavior
comprise one participant group.

Dreamweaver architecture
When you use the Server Behavior Builder to create a Dreamweaver-specific extension,
Dreamweaver creates several files (EDML and HTML script files) that support inserting the
Server Behavior code into a Dreamweaver document (some behaviors also reference JavaScript
files for additional functionality). The architecture simplifies your implementation of the API
and also separates your runtime code from how Dreamweaver deploys it. This chapter
discusses ways of modifying these files.

Server behavior folders and files
The user interface (UI) for each server behavior resides in the Configuration/ServerBehaviors/
ServerModelName folder, where ServerModelName is one of the following server types:
ASP.NET_Csharp, ASP.NET_VB (Visual Basic), ASP_Js (JavaScript), ASP_Vbs (VBScript),
ColdFusion, JSP, PHP_MySQL, or Shared (cross-server model implementations).

Extension Data Markup Language
Dreamweaver generates two EDML files when you use the Server Behavior Builder: a group
EDML file and a participant EDML file corresponding to the names that you provide in the
Server Behavior Builder. The group file defines the relevant participants, which represent
code blocks, and the groups define which participants are combined to make an individual
server behavior.

N
O

T
E

For information about participants, participant groups, and how Dreamweaver
EDML files are structured, see “Extension Data Markup Language” on page 322.
322 Server Behaviors

Group files
Group files contain a list of participants, and participant files have all server-model-specific
code data. Participant files can be used by more than one extension, so several group files can
refer to the same participant file.

The following example shows a high-level view of the Server Behavior Group EDML file. For
a complete list of elements and attributes, see “Group EDML file tags” on page 340.
<group serverBehavior="Go To Detail Page.htm" dataSource="Recordset.htm">
 <groupParticipants selectParticipant="goToDetailPage_attr">
 <groupParticipant name="moveTo_declareParam" partType="member"/>
 <groupParticipant name="moveTo_keepParams" partType="member"/>
 <groupParticipant name="goToDetailPage_attr" partType="identifier" />
 </groupParticipants>
</group>

In the groupParticipants block tag, each groupParticipant tag indicates the EDML
participant file that contains the code block to use. The value of the name attribute is the
participant file name minus the .edml extension (for example, the moveTo_declareParam
attribute).

Participant files
A participant represents a single code block on the page, such as a server tag, an HTML tag,
or an attribute. A participant file must be listed in a group file to be available to a
Dreamweaver document author. Several group files can use a single participant file.

For example, the moveTo_declareParam.edml file contains the following code:
<participant>
 <quickSearch><![CDATA[MM_paramName]]></quickSearch>
 <insertText location="aboveHTML+80">
<![CDATA[
<% var MM_paramName = ""; %>
]]>
 </insertText>
 <searchPatterns whereToSearch="directive">
 <searchPattern><![CDATA[/var\s*MM_paramName/]]></searchPattern>
 </searchPatterns>
</participant>
Dreamweaver architecture 323

When Dreamweaver adds a server behavior to a document, it needs to have detailed
information, including where to insert the code, what the code looks like, and what
parameters the Dreamweaver author or data replaced at runtime. Each participant EDML file
describes these details for each block of code. Specifically, the participant file describes the
following data:

■ The code and where to put the unique instance are defined by the insertText tag
parameters, as shown in the following example:
<insertText location="aboveHTML+80">

■ How to recognize instances already on the page are defined by the searchPatterns tag,
as shown in the following example:
<searchPatterns whereToSearch="directive">
 <searchPattern><![CDATA[/var\s*MM_paramName/]]></searchPattern>
</searchPatterns>

In the searchPatterns block tag, each searchPattern tag contains a pattern that finds
instances of runtime code and extracts specific parameters. For more details, see “Server
behavior techniques” on page 369.

The script file
Each server behavior also has an HTML file that contains functions and links to the scripts
that manage the integration of the server behavior code with the Dreamweaver interface. The
functions that are available for editing in this file are discussed in “Server behavior
implementation functions” on page 335.

A simple server behavior example
This example shows the process of creating a new server behavior so you can see the files that
Dreamweaver generates and how to handle them. For details about working with the Server
Behavior Builder interface, see “Adding Custom Server Behaviors” in Getting Started with
Dreamweaver. The example displays “Hello World” from the ASP server. The Hello World
behavior has only one participant (a single ASP tag) and does not modify or add anything else
on the page.

To create the behavior, you perform the following steps:

■ Creating the dynamic page document
■ Defining the new server behavior
■ Defining the code to insert
324 Server Behaviors

Creating the dynamic page document
First, you create a new ASP document.

To create a new dynamic page document:

1. In Dreamweaver, select the File > New menu option.

2. In the New Document dialog box, select Category: Dynamic Page and Dynamic Page:
ASP JavaScript

3. Click Create.

Defining the new server behavior
Next, you define the new server behavior.

To use the Server Behavior Builder to define your new server behavior:

1. In the Server Behaviors panel, select the Plus (+) button, and then select the New Server
Behavior menu option.

2. In the New Server Behavior dialog box, select Document Type: ASP JavaScript and Name:
Hello World

(Leave the “Copy existing server behavior” checkbox unchecked.)
3. Click OK.

Defining the code to insert
Finally, you define the code to insert.

To define the code to insert:

1. Select the Plus (+) button for Code Blocks to Insert.

2. In the Create a New Code Block dialog box, enter Hello_World_block1 (Dreamweaver
might automatically enter this information for you).

3. Click OK.

4. In the Code Block text field, enter <% Response.Write(“Hello World”) %>.

5. In the Insert Code pop-up menu, select Relative to the Selection so the user can control
where this code goes in the document.

N
O

T
E

If the Server Behaviors panel is not open and visible, select the Window > Server
Behaviors menu option.
A simple server behavior example 325

6. In the Relative Position pop-up menu, select After the Selection.

7. Click OK.

In the Server Behaviors panel, you can see that the Plus (+) menu contains the new server
behavior in the pop-up list. Also, in the installation folder for your Dreamweaver files, the
Configuration/ServerBehaviors/ASP_Js folder now contains the following three files:

■ The group file: Hello World.edml
■ The participant file: Hello World_block1.edml
■ A script file: Hello World.htm

How the Server Behavior API functions
are called
The Server Behavior API functions are called in the following scenarios:

■ The findServerBehaviors() function is called when the document opens and again
when the participant is edited. It searches the user’s document for instances of the server
behavior. For each instance it finds, the findServerBehaviors() function creates a
JavaScript object, and uses JavaScript properties to attach state information to the object.

■ If it is implemented, Dreamweaver calls the analyzeServerBehavior() function for
each behavior instance that is found in the user’s document after all the
findServerBehaviors() functions are called.
When the findServerBehaviors() function creates a behavior object, it usually sets the
four properties (incomplete, participants, selectedNode, and title). However, it is
sometimes easier to delay setting some of the properties until all the other server behaviors
find instances of themselves. For example, the Move To Next Record behavior has two
participants; a link object and a recordset object. Rather than finding the recordset object
in its findServerBehaviors() function, wait until the recordset behavior’s
findServerBehaviors() function runs because the recordset finds all instances of itself.
When the Move To Next Record behavior’s analyzeServerBehavior() function is
called, it gets an array that contains all the server behavior objects in the document. The
function can look through the array for its recordset object.

N
O

T
E

If you are working in a multiuser configuration, these files appear in your Application
Data folder.
326 Server Behaviors

Sometimes during analysis, a single tag in the user’s document is identified by two or more
behaviors as being an instance of that behavior. For example, the
findServerBehaviors() function for the Dynamic Attribute behavior might detect an
instance of the Dynamic Attribute behavior that is associated with an input tag in the
user’s document. At the same time, the findServerBehaviors() function for the
Dynamic Textfield behavior might look at the same input tag and detect an instance of
the Dynamic Textfield behavior. As a result, the Server Behaviors panel shows the
Dynamic Attribute block and the Dynamic Textfield. To correct this problem, the
analyzeServerBehavior() functions need to delete all but one of these redundant server
behaviors.
To delete a server behavior, an analyzeServerBehavior() function can set the deleted
property of any server behavior to the value true. If the deleted property still has the
value true when Dreamweaver finishes calling the analyzeServerBehavior()
functions, the behavior is deleted from the list.

■ When the user clicks the Plus (+) button in the Server Behaviors panel, the pop-up
menu appears.
To determine the content of the menu, Dreamweaver first looks for a ServerBehaviors.xml
file in the same folder as the behaviors. ServerBehaviors.xml references the HTML files
that should appear in the menu.
If the referenced HTML file contains a title tag, the contents of the title tag appear in the
menu. For example, if the ServerBehaviors/ASP_Js/ GetRecords.htm file contains the tag
<title>Get More Records</title>, the text Get More Records appears in the menu.
If the file does not contain a title tag, the filename appears in the menu. For example, if
GetRecords.htm does not contain a title tag, the text GetRecords appears in the menu.
If there is no ServerBehaviors.xml file or the folder contains one or more HTML files that
are not mentioned in ServerBehaviors.xml, Dreamweaver checks each file for a title tag
and uses the title tag or filename to populate the menu.
If you do not want a file that is in the ServerBehaviors folder to appear in the menu, put
the following statement on the first line in the HTML file:
<!-- MENU-LOCATION=NONE -->

■ When the user selects an item from the menu, the canApplyServerBehavior() function
is called. If that function returns a true value, a dialog box appears. When the user clicks
OK, the applyServerBehavior() function is called.
How the Server Behavior API functions are called 327

■ If the user edits an existing server behavior by double-clicking it, Dreamweaver displays
the dialog box, executes the onLoad handler on the BODY tag, if one exists, and then calls
the inspectServerBehavior() function. The inspectServerBehavior() function
populates the form elements with the current parameter values. When the user clicks OK,
Dreamweaver calls the applyServerBehavior() function again.

■ If the user clicks the Minus (-) button, the deleteServerBehavior() function is called.
The deleteServerBehavior() function removes the behavior from the document.

■ When the user selects a server behavior and uses the Cut or Copy commands,
Dreamweaver passes the object that represents the server behavior to its
copyServerBehavior() function. The copyServerBehavior() function adds any other
properties to the server behavior object that are needed to paste it later.
After the copyServerBehavior() function returns, Dreamweaver converts the server
behavior object to a form that can be put on the Clipboard. When Dreamweaver converts
the object, it deletes all the properties that reference objects; every property on the object
that is not a number, Boolean value, or string is lost.
When the user uses the Paste command, Dreamweaver unpacks the contents of the
Clipboard and generates a new server behavior object. The new object is identical to the
original, except that it does not have properties that reference objects. Dreamweaver passes
the new server behavior object to the pasteServerBehavior() function. The
pasteServerBehavior() function adds the behavior to the user’s document. After the
pasteServerBehavior() function returns, Dreamweaver calls the
findServerBehaviors() function to get a new list of all the server behaviors in the user’s
document.

Users can copy and paste behaviors from one document to another. The
copyServerBehavior() and pasteServerBehavior() functions should rely only on
properties on the behavior object to exchange information.
328 Server Behaviors

The Server Behavior API
You can manage server behaviors with the following API functions.

analyzeServerBehavior()

Availability

Dreamweaver UltraDev 1

Description

Lets server behaviors set their incomplete and deleted properties.

After the findServerBehaviors() function is called for every server behavior on the page,
an array of all the behaviors in the user’s document appears. The analyzeServerBehavior()
function is called for each JavaScript object in this array. For example, for a Dynamic Text
behavior, Dreamweaver calls the analyzeServerBehavior() function in the
DynamicText.htm (or DynamicText.js) file.

One purpose of the analyzeServerBehavior() function is to finish setting all the properties
(incomplete, participants, selectedNode, and title) on the behavior object. Sometimes
it’s easier to perform this task after the findServerBehaviors() function generates the
complete list of server behaviors in the user’s document.

The other purpose of the analyzeServerBehavior() function is to notice when two or
more behaviors refer to the same tag in the user’s document. In this case, the deleted
property removes all but one behavior from the array.

Suppose the Recordset1, DynamicText1, and DynamicText2 server behaviors are on a page.
Both DynamicText server behaviors need Recordset1 to exist on the page. After the server
behaviors are found with the findServerBehaviors() function, Dreamweaver calls the
analyzeServerBehavior() function for the three server behaviors. When the
analyzeServerBehavior() function is called for DynamicText1, the function searches the
array of all the server behavior objects on the page, looking for the one that belongs to
Recordset1. If a server behavior object that belongs to Recordset1 cannot be found, the
incomplete property is set to the value true so that an exclamation point appears in the
Server Behaviors panel, which alerts the user that a problem exists. Similarly, when the
analyzeServerBehavior() function is called for DynamicText2, the function searches for
the object that belongs to Recordset1. Because Recordset1 does not depend on other server
behaviors, it does not need to define the analyzeServerBehavior() function in this
example.
The Server Behavior API 329

Arguments

serverBehavior, [serverBehaviorArray]

■ The serverBehavior argument is a JavaScript object that represents the behavior to
analyze.

■ The [serverBehaviorArray] argument is an array of JavaScript objects that represents
all the server behaviors that are found on a page.

Returns

Dreamweaver expects nothing.

applyServerBehavior()

Availability

Dreamweaver UltraDev 1.

Description

Reads values from the form elements in the dialog box and adds the behavior to the user’s
document. Dreamweaver calls this function when the user clicks OK in the Server Behaviors
dialog box. If this function returns successfully, the Server Behaviors dialog box closes. If this
function fails, it displays an error message without closing the Server Behaviors dialog box.
This function can edit a user’s document.

For more information, see “dwscripts.applySB()” on page 336.

Arguments

serverBehavior

■ The serverBehavior JavaScript object represents the server behavior; it is necessary to
modify an existing behavior. If this is a new behavior, the argument is null.

Returns

Dreamweaver expects an empty string if successful or an error message if this function fails.
330 Server Behaviors

canApplyServerBehavior()

Availability

Dreamweaver UltraDev 1.

Description

Determines whether a behavior can be applied. Dreamweaver calls this function before the
Server Behaviors dialog box appears. If this function returns a true value, the Server
Behaviors dialog box appears. If this function returns a false value, the Server Behaviors
dialog box does not appear and the attempt to add a server behavior stops.

Arguments
serverBehavior

■ The serverBehavior JavaScript object represents the behavior; it is necessary to modify
an existing behavior. If this is a new behavior, the argument is null.

Returns

Dreamweaver expects a Boolean value: true if the behavior can be applied; false otherwise.

copyServerBehavior()

Availability

Dreamweaver UltraDev 1.

Description

Implementing the copyServerBehavior() function is optional. Users can copy instances of
the specified server behavior. In the following example, this function is implemented for
recordsets. If a user selects a recordset in the Server Behaviors panel or the Data Binding
panel, using the Copy command copies the behavior to the Clipboard; using the Cut
command cuts the behavior to the Clipboard. For server behaviors that do not implement this
function, the Copy and Cut commands do nothing. For more information, see “How the
Server Behavior API functions are called” on page 326.

The copyServerBehavior() function should rely only on behavior object properties that
can be converted into strings to exchange information with the pasteServerBehavior()
function. The Clipboard stores only raw text, so participant nodes in the document should
be resolved and the resulting raw text should be saved into a secondary property.

N
O

T
E

The pasteServerBehavior() function must also be implemented to let the user paste the
behavior into any Dreamweaver document.
The Server Behavior API 331

Arguments
serverBehavior

■ The serverBehavior JavaScript object represents the behavior.

Returns

Dreamweaver expects a Boolean value: true if the behavior copies successfully to the
Clipboard; false otherwise.

deleteServerBehavior()

Availability

Dreamweaver UltraDev 1.

Description

Removes the behavior from the user’s document. It is called when the user clicks the Minus (-
) button on the Server Behaviors panel. It can edit a user’s document.

For more information, see “dwscripts.deleteSB()” on page 337.

Arguments
serverBehavior

■ The serverBehavior JavaScript object represents the behavior.

Returns

Dreamweaver expects nothing.

displayHelp()

Description

If this function is defined, a Help button appears below the OK and Cancel buttons in the
dialog box. This function is called when the user clicks the Help button.

Arguments

None.

Returns

Dreamweaver expects nothing.
332 Server Behaviors

Example
// the following instance of displayHelp() opens
// in a browser a file that explains how to use
// the extension.
function displayHelp(){

var myHelpFile = dw.getConfigurationPath() +
'/ExtensionsHelp/superDuperHelp.htm';

 dw.browseDocument(myHelpFile);
}

findServerBehaviors()

Availability

Dreamweaver UltraDev 1.

Description

Searches the user’s document for instances of itself. For each instance it finds, the
findServerBehaviors() function creates a JavaScript object, and it attaches state
information as JavaScript properties of the object.

The four required properties are incomplete, participants, title, and selectedNode.
You can set additional properties as necessary.

For more information, see dwscripts.findSBs() and dreamweaver.getParticipants() in the
Dreamweaver API Reference.

Arguments

None.

Returns

Dreamweaver expects an array of JavaScript objects; the length of the array is equal to the
number of behavior instances that are found in the page.

inspectServerBehavior()

Availability

Dreamweaver UltraDev 1.
The Server Behavior API 333

Description

Determines the settings for the Server Behavior dialog box, based on the specified behavior
object. Dreamweaver calls the inspectServerBehavior() function when a user opens a
Server Behavior dialog box. Dreamweaver calls this function only when a user edits an existing
behavior.

Arguments
serverBehavior

■ The serverBehavior argument is a JavaScript object that represents the behavior. It is
the same object that findServerBehaviors() returns.

Returns

Dreamweaver expects nothing.

pasteServerBehavior()

Availability

Dreamweaver UltraDev 1.

Description

If this function is implemented, users can paste instances of the specified server behavior using
the pasteServerBehavior() function. When the user pastes the server behavior,
Dreamweaver organizes the contents of the Clipboard and generates a new behavior object.
The new object is identical to the original, except that it lacks pointer properties.
Dreamweaver passes the new behavior object to the pasteServerBehavior() function. The
pasteServerBehavior() function relies on the properties of the behavior object to
determine what to add to the user’s document. The pasteServerBehavior() function then
adds the behavior to the user’s document. After pasteServerBehavior() returns,
Dreamweaver calls the findServerBehaviors() functions to get a new list of all the server
behaviors in the user’s document.

Implementing the pasteServerBehavior() function is optional. For more information, see
“How the Server Behavior API functions are called” on page 326.

Arguments
behavior

■ The behavior JavaScript object represents the behavior.

N
O

T
E

If you implement this function, you must also implement the copyServerBehavior()
function.
334 Server Behaviors

Returns

Dreamweaver expects a Boolean value: true if the behavior pastes successfully from the
Clipboard; false otherwise.

Server behavior implementation
functions
These functions can be added or edited within the HTML script files or the specified
JavaScript files that are listed within the HTML script file.

dwscripts.findSBs()

Availability

Dreamweaver MX (this function replaces the findSBs() function from earlier versions
of Dreamweaver).

Description

Finds all instances of a server behavior and all the participants on the current page. It sets the
title, type, participants array, weights array, types array, selectedNode value, and incomplete
flag. This function also creates a parameter object that holds an array of user-definable
properties such as recordset, name, and column name. You can return this array from the
findServerBehaviors() function.

Arguments
serverBehaviorTitle

■ The serverBehaviorTitle argument is an optional title string that is used if no title is
specified in the EDML title, which is useful for localization.

Returns

Dreamweaver expects an array of JavaScript objects where the required properties are defined.
Returns an empty array if no instances of the server behavior appear on the page.

Example

The following example searches for all instances of a particular server behavior in the current
user document:
function findServerBehaviors() {

allMySBs = dwscripts.findSBs();
return allMySBs;

}

Server behavior implementation functions 335

dwscripts.applySB()

Availability

Dreamweaver MX (this function replaces the applySB() function from earlier versions
of Dreamweaver).

Description

Inserts or updates runtime code for the server behavior. If the sbObj parameter has a null
value, it inserts new runtime code; otherwise, it updates existing runtime code that is
indicated by the sbObj object. User settings should be set as properties on a JavaScript object
and passed in as paramObj. These settings should match all the parameters that are declared as
@@paramName@@ in the EDML insertion text.

Arguments
paramObj, sbObj

■ The paramObj argument is the object that contains the user parameters.
■ The sbObj argument is the prior server behavior object if you are updating an existing

server behavior; null otherwise.

Returns

Dreamweaver expects a Boolean value: true if the server behavior is added successfully to the
user’s document; false otherwise.

Example

In the following example, you fill the paramObj object with the user’s input and call the
dwscripts.applySB() function, passing in the input and your server behavior, sbObj:
function applyServerBehaviors(sbObj) {

// get all UI values here...
paramObj = new Object();
paramObj.rs = rsName.value;
paramObj.col = colName.value;
paramObj.url = urlPath.value;
paramObj.form__tag = formObj;

dwscripts.applySB(paramObj, sbObj);
}

336 Server Behaviors

dwscripts.deleteSB()

Availability

Dreamweaver MX (this function replaces the deleteSB() function from earlier versions of
Dreamweaver).

Description

Deletes all the participants of the sbObj server behavior instance. The entire participant is
deleted, unless the EDML file indicates special delete instructions with the delete tag. It
does not delete participants that belong to more than one server behavior instance (reference
count > 1).

Arguments
sbObj

■ The sbObj argument is the server behavior object instance that you want to remove from
the user’s document.

Returns

Dreamweaver expects nothing.

Example

The following example deletes all the participants of the sbObj server behavior, except the
participants that are protected by the EDML file’s delete tag.
function deleteServerBehavior(sbObj) {

dwscripts.deleteSB(sbObj);
}

Editing EDML files
You must maintain Dreamweaver coding conventions when you edit a file. Pay attention to
the dependency of one element upon another. For example, if you update the tags that are
being inserted, you might also need to update the search patterns.

N
O

T
E

EDML files were new in Dreamweaver MX. If you are working with legacy server
behaviors, see the earlier versions of the Extending Dreamweaver manuals.
Editing EDML files 337

Regular expressions
You must understand regular expressions as they are implemented in JavaScript 1.5. You must
also know when it is appropriate to use them in the server behavior EDML files. For example,
regular expressions cannot be used in quickSearch values, but they are used in the content of
the searchPattern tag to find and extract data.

Regular expressions describe text strings by using characters that are assigned with special
meanings (metacharacters) to represent the text, break it up, and process it according to
predefined rules. Regular expressions are powerful parsing and processing tools because they
provide a generalized way to represent a pattern.

Good reference books on JavaScript 1.5 have a regular expression section or chapter. This
section examines how Dreamweaver server behavior EDML files use regular expressions in
order to find parameters in your runtime code and extract their values. Each time a user edits
a server behavior, prior parameter values need to be extracted from the instances of the
runtime code. You use regular expressions for the extraction process.

You should understand a few metacharacters and metasequences (special character groupings)
that are useful in server behavior EDML files, as described in the following table:

The EDML tag <searchPatterns whereToSearch="directive"> declares that runtime
code needs to be searched. Each <searchPattern>...</searchPattern> subtag defines one
pattern in the runtime code that must be identified. For the Redirect If Empty example, there
are two patterns.

In the following example, to extract parameter values from <% if (@@rs@@.EOF)
Response.Redirect("@@new__url@@"); %>,write a regular expression that identifies any
string rs and new__url:
<searchPattern paramNames="rs,new__url">

/if d ((\w+)\.EOF\) Response\.Redirect\("([^\r\n]*)"\)/i
</searchPattern>

Regular Expression Description

\ Escapes special characters. For example: \. reverts the
metacharacter back to a literal period; \/ reverts the forward slash
to its literal meaning; and, \) reverts the parens to its literal
meaning.

/ ... /i Ignore case when searching for the metasequence

(...) Creates a parenthetical subexpression within the metasequence

\s* Searches for white spaces
338 Server Behaviors

This process searches the user’s document, and if there is a match, extracts the parameter
values. The first parenthetical subexpression (\w+) extracts the value for rs. The second
subexpression ([^\r\n]*) extracts the value for new_url.

Notes about EDML structure
You should use a unique filename to identify your server behavior group. If only one group
file uses an associated participant file, match the participant filename with the group name.
Using this convention, the server behavior group file updateRecord.edml works with the
participant file updateRecord_init.edml. When participant files might be shared among
server behavior groups, assign unique descriptive names.

The runtime code for your server behavior resides inside the EDML files. The EDML parser
should not confuse any of your runtime code with EDML markup, so the CDATA tag must
wrap around your runtime code. The CDATA tag represents character data and is any text that
is not EDML markup. When you use the CDATA tag, the EDML parser won’t try to interpret
it as markup, but instead, considers it as a block of plain text. The CDATA-marked blocks begin
with <![CDATA[and end with]]>.

If you insert the text Hello, World, it is simple to specify your EDML, as shown in the
following example:
<insertText>Hello, World</insertText>

However, if you insert content that has tags in it, such as , it can
confuse the EDML parser. In that case, embed it in the CDATA construct, as shown in the
following example:
<insertText><![CDATA[]]></insertText>

The ASP runtime code is wrapped within the CDATA tag, as shown in the following example:
<![CDATA[

<% if (@@rs@@.EOF) Response.Redirect("@@new__url@@"); %>
]]

N
O

T
E

The character sequence "[^\r\n]*" matches any character that is not a linefeed, for the
Macintosh and Windows.

N
O

T
E

The EDML name space is shared, regardless of folder structure, make sure you use
unique filenames. Filenames should not exceed 31 characters (including the .edml
extension), due to Macintosh limitations.
Editing EDML files 339

Because of the CDATA tag, the ASP tags <%= %>, along with the other content within the tag,
aren’t processed. Instead, the Extension Data Manager (EDM) receives the uninterpreted text,
as shown in the following example:
<% if (Recordset1.EOF) Response.Redirect("http://www.macromedia.com"); %>

In the following EDML definitions, the locations where the CDATA tag is recommended are
indicated in the examples.

Group EDML file tags
These tags and attributes are valid within the EDML group files.

<group>

Description

This tag contains all the specifications for a group of participants.

Parent

None.

Type

Block tag.

Required

Yes.

<group> attributes
The following items are valid attributes of the group tag.

version

Description

This attribute defines which version of Dreamweaver server behavior processing the current
server behavior targets. For Dreamweaver 8, the version number is 7. If no version is specified,
Dreamweaver assumes version 7. For this release of Dreamweaver, all groups and participants
that the Server Behavior Builder creates have the version attribute set to 7.0. The group
version of this attribute currently has no effect.
340 Server Behaviors

Parent
group

Type

Attribute.

Required

No.

serverBehavior

Description

The serverBehavior attribute indicates which server behavior can use the group. When any
of the group’s participant quickSearch strings are found in the document, the server behavior
that is indicated by the serverBehavior attribute has Dreamweaver call the
findServerBehaviors() function.

In some cases, if multiple groups are associated with a single server behavior, the server
behavior must resolve which particular group to use.

Parent
group

Type

Attribute.

Required

No.

Value

The value is the exact name (without a path) of any server behavior HTML file within a
Configuration/ServerBehaviors folder, as shown in the following example:
<group serverBehavior="redirectIfEmpty.htm">

dataSource

Description

This advanced feature supports new data sources that can be added to Dreamweaver.
Group EDML file tags 341

Multiple versions of a server behavior can differ, depending on which data source you use. For
example, the Repeat Region server behavior is designed for the standard Recordset.htm data
source. If Dreamweaver is extended to support a new type of data source (such as a COM
object), you can set dataSource="COM.htm" in a group file with a different implementation
of Repeat Region. The Repeat Region server behavior then applies the new implementation of
Repeat Region if you select the new data source.

Parent
group

Type

Attribute.

Required

No.

Value

The exact name of a data source file within a Configuration/DataSources folder, as shown in
the following example:
<group serverBehavior="Repeat Region.htm" ¬
dataSource="myCOMdataSource.htm">

This group defines a new implementation of the Repeat Region server behavior to use if you
use the COM data source. In the applyServerBehaviors() function, you can indicate that
this group should be applied by setting the MM_dataSource property on the parameter object,
as shown in the following example:
function applyServerBehavior(ssRec) {

var paramObj = new Object();
paramObj.rs = getComObjectName();
paramObj.MM_dataSource = "myCOMdataSource.htm";

dwscripts.applySB(paramObj, sbObj);
}

subType

Description

This advanced feature supports multiple implementations of a server behavior.

Multiple versions of a server behavior might differ, depending on user selection. When a
server behavior is applied, but multiple group files are relevant, the correct group file can be
selected by passing in a subType value. The group with that specific subType value is applied.
342 Server Behaviors

Parent
group

Type

Attribute.

Required

No.

Value

The value is a unique string that determines which group to apply, as shown in the following
example:
<group serverBehavior="myServerBehavior.htm" ¬
subType="longVersion">

This group attribute defines the long version of the myServerBehavior subtype. You would
also have a version with the subType="shortVersion" attribute. In the
applyServerBehaviors() function, you can indicate which group should be applied by
setting the MM_subType property on the parameter object, as shown in the following example:
function applyServerBehavior(ssRec) {

var paramObj = new Object();
if (longVersionChecked) {

paramObj.MM_subType = "longVersion";
} else {

paramObj.MM_subType = "shortVersion";
}
dwscripts.applySB(paramObj, sbObj);

}

<title>

Description

This string appears in the Server Behaviors panel for each server behavior instance that is
found in the current document.

Parent
group

Type

Block tag.

Required

No.
Group EDML file tags 343

Value

The value is a plain text string that can include parameter names to make each instance
unique, as shown in the following example:
<title>Redirect If Empty (@@recordsetName@@)</title>

<groupParticipants>

Description

This tag contains an array of groupParticipant declarations.

Parent
group

Type

Block tag.

Required

Yes.

<groupParticipants> attributes
The following items are valid attributes of the groupParticipants tag.

selectParticipant

Description

Indicates which participant should be selected and highlighted in the document when an
instance is selected in the Server Behaviors panel. The server behavior instances that are listed
in this panel are ordered by the selected participant, so set the selectParticipant attribute
even if the participant is not visible.

Parent
groupParticipants

Type

Attribute.

Required

No.
344 Server Behaviors

Value

The participantName value is the exact name (without the .edml extension) of a single
participant file that is listed as a group participant, as shown in the following example. See
“name” on page 345.
<groupParticipants selectParticipant="redirectIfEmpty_link">

<groupParticipant>

Description

This tag represents the inclusion of a single participant in the group.

Parent
groupParticipants

Type

Tag.

Required

Yes (at least one).

<groupParticipant> attributes
The following items are valid attributes of the groupParticipant tag.

name

Description

This attribute names a particular participant to be included in the group. The name attribute
on the groupParticipant tag should be the same as the filename of the participant (without
the .edml file extension).

Parent
groupParticipant

Type

Attribute.

Required

Yes.
Group EDML file tags 345

Value

The value is the exact name (without the .edml extension) of any participant file, as shown in
the following example:
<groupParticipant name="redirectIfEmpty_init">

This example refers to the redirectIfEmpty_init.edml file.

partType

Description

This attribute indicates the type of participant.

Parent
groupParticipant

Type

Attribute.

Required

No.

Values

identifier, member, option, multiple, data

■ The identifier value is a participant that identifies the entire group. If this participant is
found in the document, the group is considered to exist whether other group participants
are found. This is the default value if the partType attribute is not specified.

■ The member value is a normal member of a group. If it is found by itself, it does not
identify a group. If it is not found in a group, the group is considered incomplete.

■ The option value indicates that the participant is optional. If it is not found, the group is
still considered complete and no incomplete flag is set in the Server Behaviors panel.

■ The multiple value indicates that the participant is optional and multiple copies of it can
be associated with the server behavior. Any parameters that are unique to this participant
are not used when grouping participants because they might have different values.

■ The data value is a nonstandard participant that is used by programmers as a repository
for additional group data. It is ignored by everything else.
346 Server Behaviors

Participant EDML files
These tags and attributes are valid within the EDML participant files.

<participant>

Description

This tag contains all the specifications for a single participant.

Parent

None.

Type

Block tag.

Required

Yes.

<participant> attributes
The following items are valid attributes of the participant tag.

version

Description

This attribute defines which version of Dreamweaver server behavior processing the current
server behavior targets. For Dreamweaver 8, the version number is 7. If no version is specified,
Dreamweaver assumes version 7. For this release of Dreamweaver, all groups and participants
that the Server Behavior Builder creates have the version attribute set to 7.0.

For participant files, this attribute determines if code-block merging should occur. For
participants without this attribute (or have it set to 4 or earlier), the inserted code blocks are
not merged with other code blocks on the page. Participants that have this set to version 5 or
later are merged with other code blocks on the page when possible. Please note that code-
block merging occurs only for participants above and below the HTML tag.

N
O

T
E

The participant version attribute overrides the group version attribute if they are different.
But, the participant file will use the group version attribute if the participant does not
specify one.
Participant EDML files 347

Parent
participant

Type

Attribute.

Required

No.

<quickSearch>

Description

This tag is a simple search string that is used for performance reasons. It cannot be a regular
expression. If the string is found in the current document, the rest of the search patterns are
called to locate specific instances. This string can be empty to always use the search patterns.

Parent
participant

Type

Block tag.

Required

No.

Value

The searchString value is a literal string that exists on the page if the participant exists. The
string should be as unique as possible to maximize performance, but the string does not have
to be definitively unique. It is not case-sensitive, but be careful with nonessential spaces that
can be changed by the user, as shown in the following example:
<quickSearch>Response.Redirect</quickSearch>

If the quickSearch tag is empty, it is considered to match, and more precise searches use the
regular expressions that are defined in the searchPattern tags. This is helpful if a simple
string cannot be used to express a reliable search pattern and regular expressions are required.
348 Server Behaviors

<insertText>

Description

This tag provides information about what to insert in the document and where to insert it. It
contains the text to insert. Parts of the text that are customized should be indicated by using
the @@parameterName@@ format.

In some cases, such as a translator-only participant, you might not need this tag.

Parent
implementation

Type

Block tag.

Required

No.

Value

The value is the text to insert in the document. If any parts of the text need customizing, they
can be passed in later as parameters. Parameters should be embedded within two at (@@) signs.
Because this text can interfere with the EDML structure, it should use the CDATA construct, as
shown in the following example:
<insertText location="aboveHTML">

<![CDATA[<%= @@recordset@@).cursorType %>]]>
</insertText>

When the text is inserted, the @@recordset@@ parameter is replaced by a recordset name that
the user supplies. For more information on conditional and repeating code blocks, see the
“Adding Custom Server Behaviors” chapter in Getting Started with Dreamweaver.

<insertText> attributes
The following items are valid attributes of the insertText tag.

location

Description

This attribute specifies where the participant text should be inserted. The insert location is
related to the whereToSearch attribute of the searchPatterns tag, so be sure to set both
carefully (see whereToSearch on page 353).
Participant EDML files 349

Parent
insertText

Type

Attribute.

Required

Yes.

Values

aboveHTML[+weight], belowHTML[+weight], beforeSelection, replaceSelection,
wrapSelection, afterSelection, beforeNode, replaceNode, afterNode,
firstChildOfNode, lastChildOfNode, nodeAttribute[+attribute]

■ The aboveHTML[+weight] value inserts the text above the HTML tag (suitable only for
server code). The weight can be an integer from 1 to 99 and is used to preserve relative
order among different participants. By convention, recordsets have a weight of 50, so if a
participant refers to recordset variables, it needs a heavier weight, such as 60, so the code is
inserted below the recordset, as shown in the following example:
<insert location="aboveHTML+60">

If no weight is provided, it is internally assigned a weight of 100 and is added below all
specifically weighted participants, as shown in the following example:
<insert location="aboveHTML">

■ The belowHTML[+weight] value is similar to the aboveHTML location, except that
participants are added below the closing /HTML tag.

■ The beforeSelection value inserts the text before the current selection or insertion
point. If there is no selection, it inserts the text at the end of the BODY tag.

■ The replaceSelection value replaces the current selection with the text. If there is no
selection, it inserts the text at the end of the BODY tag.

■ The wrapSelection value balances the current selection, inserts a block tag before the
selection, and adds the appropriate closing tag after the selection.

■ The afterSelection value inserts the text after the current selection or insertion point.
If there is no selection, it inserts the text at the end of the BODY tag.
350 Server Behaviors

■ The beforeNode value inserts the text before a node, which is a specific location in the
DOM. When a function such as dwscripts.applySB() is called to make the insertion,
the node pointer must pass in as a paramObj parameter. The user-definable name of this
parameter must be specified by the nodeParamName attribute (see “nodeParamName”
on page 351).
In summary, if your location includes the word node, make sure that you declare the
nodeParamName tag.

■ The replaceNode value replaces a node with the text.
■ The afterNode value inserts the text after a node.
■ The firstChildOfNode value inserts the text as the first child of a block tag; for example,

if you want to insert something at the beginning of a FORM tag.
■ lastChildOfNode inserts the text as the last child of a block tag; for example, if you want

to insert code at the end of a FORM tag (useful for adding hidden form fields).
■ nodeAttribute[+attribute] sets an attribute of a tag node. If the attribute does not

already exist, this value creates it.
For example, use <insert location="nodeAttribute+ACTION"
nodeParamName="form"> to set the ACTION attribute of a form. This variation changes
the user’s FORM tag from <form> to <form action="myText">.
If you do not specify an attribute, the nodeAttribute location causes the text to be added
directly to the open tag. For example, use insert location="nodeAttribute" to add
an optional attribute to a tag. This can be used to change a user’s INPUT tag from
<input type="checkbox"> to <input type="checkbox"
<%if(foo)Reponse.Write("CHECKED")%>> .

nodeParamName

Description

This attribute is used only for node-relative insert locations. It indicates the name of the
parameter that passes the node in at insertion time.

Parent
insertText

Type

Attribute.

N
O

T
E

For the location="nodeAttribute" attribute value, the last search pattern
determines where the attribute starts and ends. Make sure that the last pattern finds
the entire statement.
Participant EDML files 351

Required

This attribute is required only if the insert location contains the word node.

Value

The tagtype__Tag value is a user-specified name for the node parameter that passes with the
parameter object to the dwscripts.applySB() function. For example, if you insert some text
into a form, you might use a form__tag parameter. In your server behavior
applyServerBehavior() function, you could use the form__tag parameter to indicate the
exact form to update, as shown in the following example:
function applyServerBehavior(ssRec) {

var paramObj = new Object();
paramObj.rs = getRecordsetName();
paramObj.form__tag = getFormNode();
dwscripts.applySB(paramObj, sbObj);

}

You can indicate the form__tag node parameter in your EDML file, as shown in the
following example:
<insertText location="lastChildOfNode" nodeParamName="form__tag">

<![CDATA[<input type="hidden" name="MY_DATA">]]>
</insertText>

The text is inserted as the lastChildOfNode value, and the specific node passes in using the
form__tag property of the parameter object.

<searchPatterns>

Description

This tag provides information about finding the participant text in the document, and it
contains a list of patterns that are used when searching for a participant. If multiple search
patterns are defined, they must all be found within the text being searched (the search patterns
have a logical AND relationship), unless they are marked as optional using the isOptional
flag.

Parent
implementation

Type

Block tag.

Required

No.
352 Server Behaviors

<searchPatterns> attributes
The following items are valid attributes of the searchPatterns tag.

whereToSearch

Description

This attribute specifies where to search for the participant text. This attribute is related to the
insert location, so be sure to set each attribute carefully (see “location” on page 349).

Parent
searchPatterns

Type

Attribute.

Required

Yes.

Values

directive, tag+tagName, tag+*, comment, text

■ The directive value searches all server directives (server-specific tags). For ASP and JSP,
this means search all <% ... %> script blocks.

■ The tag+tagName value searches the contents of a specified tag, as shown in the
following example:
<searchPatterns whereToSearch="tag+FORM">

This example searches only form tags. By default, the entire outerHTML node is searched.
For INPUT tags, specify the type after a slash (/). In the following example, to search all
submit buttons, use the following code:
<searchPatterns whereToSearch="tag+INPUT/SUBMIT">.

■ The tag+* value searches the contents of any tag, as shown in the following example:
<searchPatterns whereToSearch="tag+*">

This example searches all tags.

N
O

T
E

Tag attributes are not searched, even if they contain directives.
Participant EDML files 353

■ The comment value searches only within the HTML comments <! ... >, as shown in the
following example:
<searchPatterns whereToSearch="comment">

This example searches tags such as <!-- my comment here -->.
■ The text value searches only within raw text sections, as shown in the following example:

<searchPatterns whereToSearch="text">
<searchPattern>XYZ</searchPattern>

</searchPatterns>

This example finds a text node that contains the text XYZ.

<searchPattern>

Description

This tag is a pattern that identifies participant text and extracts parameter values from it. Each
parameter subexpression must be enclosed in parentheses ().

You can have patterns with no parameters (which are used to identify participant text),
patterns with one parameter, or patterns with many parameters. All non-optional patterns
must be found, and each parameter must be named and found exactly once.

For more information about using the searchPattern tag, see “Finding server behaviors”
on page 369.

Parent
searchPatterns

Type

Block tag.

Required

Yes.

Values

searchString, /regularExpression/, <empty>

■ The searchString value is a simple search string that is case-sensitive. It cannot be used
to extract parameters.

■ The /regularExpression/ value is a regular expression search pattern.
354 Server Behaviors

■ The <empty> value is used if no pattern is given. It is always considered a match, and the
entire value is assigned to the first parameter.
In the following example, to identify the participant text
<%= RS1.Field.Items("author_id") %>, you can define a simple pattern, followed by
a precise pattern that also extracts the two parameter values:
<searchPattern>Field.Items</searchPattern>
<searchPattern paramNames="rs,col">

<![CDATA[
/<%=\s*(\w+)\.Field\.Items\("(\w+)"\)/
]]>

</searchPattern>

This example matches the pattern precisely and assigns the value of the first subexpression
(\w+) to parameter "rs" and the second subexpression (\w+) to parameter "col".

Sometimes you might want to assign the entire contents of the limited search location to a
parameter. In that case, provide no pattern, as shown in the following example:
<searchPatterns whereToSearch="tag+OPTION">

<searchPattern>MY_OPTION_NAME</searchPattern>
<searchPattern paramNames="optionLabel" limitSearch="innerOnly">
</searchPattern>

</searchPatterns>

This example sets the optionLabel parameter to the entire innerHTML contents of an
OPTION tag.

<searchPattern> attributes
The following items are valid attributes of the searchPattern tag.

paramNames

Description

This attribute is a comma-separated list of parameter names whose values are being extracted.
These parameters are assigned in the order of the subexpression. You can assign single
parameters or use a comma-separated list to assign multiple parameters. If other parenthetical
expressions are used but do not indicate parameters, extra commas can be used as placeholders
in the Parameter Name list.

N
O

T
E

It is important that regular expressions start and end with a slash (/). Otherwise, the
expression is used as a literal string search. Regular expressions can be followed by
the regular-expression modifier "i" to indicate case-insensitivity (as in /pattern/i).
For example, VBScript is not case-sensitive, so it should use /pattern/i. JavaScript
is case-sensitive and should use /pattern/.
Participant EDML files 355

The parameter names should match the ones that are specified in the insertion text and the
update parameters.

Parent
searchPattern

Type

Attribute.

Required

Yes.

Values

paramName1, paramName2, ...

Each parameter name should be the exact name of a parameter that is used in the insertion
text. For example, if the insertion text contains @@p1@@, you should define exactly one
parameter with that name:
<searchPattern paramNames="p1">patterns</searchPattern>

To extract multiple parameters using a single pattern, use a comma-separated list of parameter
names, in the order that the subexpressions appear in the pattern. Suppose the following
example shows your search pattern:
<searchPattern paramName="p1,,p2">/(\w+)_(BIG|SMALL)_(\w+)/¬
</searchPattern>

There are two parameters (with some text in between them) to extract. Given the text:
<%= a_BIG_b %>, the first subexpression in the search pattern matches "a", so p1="a". The
second subexpression is ignored (note the ,, in the paramName value). The third
subexpression matches "b", so p2="b".

limitSearch

Description

This attribute limits the search to some part of the whereToSearch tag.

Parent
searchPattern

Type

Attribute.
356 Server Behaviors

Required

No.

Values

all, attribute+attribName, tagOnly, innerOnly

■ The all value (default) searches the entire tag that is specified in the whereToSearch
attribute.

■ The attribute+attribName value searches only within the value of the specified
attribute, as shown in the following example:
<searchPatterns whereToSearch="tag+FORM">

<searchPattern limitSearch="attribute+ACTION">
/MY_PATTERN/

</searchPattern>
</searchPatterns>

This example indicates that only the value of the ACTION attribute of FORM tags should be
searched. If that attribute is not defined, the tag is ignored.

■ The tagOnly value searches only the outer tag and ignores the innerHTML tag. This value
is valid only if whereToSearch is a tag.

■ The innerOnly value searches only the innerHTML tag and ignores the outer tag. This
value is valid only if whereToSearch is a tag.

isOptional

Description

This attribute is a flag that indicates that the search pattern is not required to find the
participant. This is useful for complex participants that might have non-critical parameters to
extract. You can create some patterns for distinctly identifying a participant and have some
optional patterns for extracting non-critical parameters.

Parent
searchPattern

Type

Attribute.

Required

No.
Participant EDML files 357

Values

true, false

■ The value is true if the searchPattern is not necessary to identify the participant.
■ The value is false (default) if the searchPattern tag is required.

For example, consider the following simple recordset string:
<%
var Recordset1 = Server.CreateObject("ADODB.Recordset");
Recordset1.ActiveConnection = "dsn=andescoffee;";
Recordset1.Source = "SELECT * FROM PressReleases";
Recordset1.CursorType = 3;
Recordset1.Open();
%>

The search patterns must identify the participant and extract several parameters. However,
if a parameter such as cursorType is not found, you should still recognize this pattern as a
recordset. The cursor parameter is optional. In the EDML, the search patterns might look
like the following example:
<searchPattern paramNames="rs">/var (\w+) = Server.CreateObject/
</searchPattern>
<searchPattern paramNames="src">/ActiveConnection = "([^\r\n]*)"/¬
</searchPattern>
<searchPattern paramNames="conn">/Source = "([^\r\n]*)"/¬
</searchPattern>
<searchPattern paramNames="cursor" isOptional="true">¬
/CursorType = (\d+)/
</searchPattern>

The first three patterns are required to identify the recordset. If the last parameter is not
found, the recordset is still identified.

<updatePatterns>

Description

This optional advanced feature lets you update the participant precisely. Without this tag, the
participant is updated automatically by replacing the entire participant text each time. If you
specify an <updatePatterns> tag, it must contain specific patterns to find and replace each
parameter within the participant.

This tag is beneficial if the user edits the participant text. It performs precise updates only to
the parts of the text that need changing.

Parent
implementation
358 Server Behaviors

Type

Block tag.

Required

No.

<updatePattern>

Description

This tag is a specific type of regular expression that lets you update participant text precisely.
There should be at least one update pattern definition for every unique parameter that is
declared in the insertion text (of the form @@paramName@@).

Parent
updatePatterns

Type

Block tag.

Required

Yes (at least one, if you declare the updatePatterns tag).

Values

The value is a regular expression that finds a parameter between two parenthetical
subexpressions, in the form /(pre-pattern)parameter-pattern(post-pattern)/. You
need to define at least one update pattern for each unique @@paramName@@ in the insertion
text. The following example shows how your insertion text might look:
<insertText location="afterSelection">

<![CDATA[<%= @@rs@@.Field.Items("@@col@@") %>]]>
</insertText>

A particular instance of the insertion text on a page might look like the following example:
<%= RS1.Field.Items("author_id") %>

There are two parameters, rs and col. To update this text after you insert it on the page, you
need two update pattern definitions:
<updatePattern paramName="rs" >

/(\b)\w+(\.Field\.Items)/
</updatePattern>
<updatePattern paramName="col">

/(\bItems\(")\w+("\))/
</updatePattern>
Participant EDML files 359

The literal parentheses, as well as other special regular expression characters, are escaped by
preceding them with a backslash (\). The middle expression, defined as \w+, is updated with
the latest value that passed in for parameters "rs" and "col", respectively. The values "RS1"
and "author_id" can be precisely updated with new values.

Multiple occurrences of the same pattern can be updated simultaneously by using the regular
expression global flag "g" after the closing slash (such as /pattern/g).

If the participant text is long and complex, you might need multiple patterns to update a
single parameter, as shown in the following example:
<% ...

Recordset1.CursorType = 0;
Recordset1.CursorLocation = 2;
Recordset1.LockType = 3;

%>

To update the recordset name in all three positions, you need three update patterns for a single
parameter, as shown in the following example:
<updatePattern paramName="rs">

/(\b)\w+(\.CursorType)/
</updatePattern>
<updatePattern paramName="rs">

/(\b)\w+(\.CursorLocation)/
</updatePattern>
<updatePattern paramName="rs">

/(\b)\w+(\.LockType)/
</updatePattern>

Now you can pass in a new value for the recordset, and it is precisely updated in three
locations.

<updatePattern> attributes
The following items are valid attributes of the updatePattern tag.

paramName

Description

This attribute indicates the name of the parameter whose value is used to update the
participant. This parameter should match the ones that are specified in the insertion text and
search parameters.

Parent
updatePattern
360 Server Behaviors

Type

Attribute.

Required

Yes.

Values

The value is the exact name of a parameter that is used in the insertion text. In the following
example, if the insertion text contains an @@rs@@ value, you should have a parameter with
that name:
<updatePattern paramName="rs">pattern</updatePattern>

<delete>

Description

This tag is an optional advanced feature lets you control how to delete a participant. Without
this tag, the participant is deleted by removing it completely but only if no server behaviors
refer to it. By specifying a <delete> tag, you can specify that it should never be deleted or
that only portions should be deleted.

Parent
implementation

Type

Tag.

Required

No.

<delete> attributes
The following items are valid attributes of the delete tag.

deleteType

Description

This attribute is used to indicate the type of delete to perform. It has different meanings,
depending on whether the participant is a directive, a tag, or an attribute. By default, the
entire participant is deleted.
Participant EDML files 361

Parent
delete

Type

Attribute.

Required

No.

Values

all, none, tagOnly, innerOnly, attribute+attribName, attribute+*

■ The all value (default) deletes the entire directive or tag. For attributes, it deletes the
entire definition.

■ The none value is never automatically deleted.
■ The tagOnly value removes only the outer tag but leaves the contents of the innerHTML

tag intact. For attributes, it also removes the outer tag if it is a block tag. It is meaningless
for directives.

■ The innerOnly value, when applied to tags, removes only the contents (the innerHTML
tag). For attributes, it removes only the value. It is meaningless for directives.

■ The attribute+attribName value, when applied to tags, removes only the specified
attribute. It is meaningless for directives and attributes.

■ The attribute+* value removes all attributes for tags. It is meaningless for directives
and attributes.

If your server behavior converts selected text into a link, you can remove the link by removing
the outer tag only, as shown in the following example:
<delete deleteType="tagOnly"/>

This example changes a link participant from HELLO to HELLO.

<translator>

Description

This tag provides information for translating a participant so that it can be rendered
differently and have a custom Property inspector.

Parent
implementation
362 Server Behaviors

Type

Block tag.

Required

No.

<searchPatterns>

Description

This tag lets Dreamweaver find each specified instance in a document. If multiple search
patterns are defined, they must all be found within the text being searched (the search patterns
have a logical AND relationship), unless they are marked as optional using the isOptional
flag.

Parent
translator

Type

Block tag.

Required

Yes.

<translations>

Description

This tag contains a list of translation instructions where each instruction indicates where to
search for the participant and what to do with the participant.

Parent
translator

Type

Block tag.

Required

No.
Participant EDML files 363

<translation>

Description

This tag contains a single translation instruction that includes the location for the participant,
what type of translation to perform, and the content that should replace the participant text.

Parent
translations

Type

Block tag.

Required

No.

<translation> attributes
The following items are valid attributes of the translation tag.

whereToSearch

Description

This attribute specifies where to search for the text, which is related to the insert location, so
be sure to set each location carefully (see “location” on page 349).

Parent
translation

Type

Attribute.

Required

Yes.

limitSearch

Description

This attribute limits the search to some part of the whereToSearch tag.

Parent
translation
364 Server Behaviors

Type

Attribute.

Required

No.

translationType

Description

This attribute indicates the type of translation to perform. These types are preset and give the
translation specific functionality. For example, if you specify "dynamic data", any data that
is translated should behave the same as Dreamweaver dynamic data; that is, it should have the
dynamic data placeholder look in the Design view (curly braces ({}) notation with dynamic
background color) and appear in the Server Behaviors panel.

Parent
translation

Type

Attribute.

Required

Yes.

Values

dynamic data, dynamic image, dynamic source, tabbed region start, tabbed region
end, custom

■ The dynamic data value indicates that the translated directives look and behave the same
as Dreamweaver dynamic data, as shown in the following example:
<translation whereToSearch="tag+IMAGE"

limitSearch="attribute+SRC"
translationType="dynamic data">

■ The dynamic image value indicates that the translated attributes should look and behave
the same as Dreamweaver dynamic images, as shown in the following example:
<translation whereToSearch="IMAGE+SRC"

translationType="dynamic image">

■ The dynamic source value indicates that the translated directives should behave the same
as Dreamweaver dynamic sources, as shown in the following example:
<translation whereToSearch="directive"

translationType="dynamic source">
Participant EDML files 365

■ The tabbed region start value indicates that the translated <CFLOOP> tags define the
beginning of a tabbed outline, as shown in the following example:
<translation whereToSearch="CFLOOP"

translationType="tabbed region start">

■ The tabbed region end value indicates that the translated </CFLOOP> tags define the
end of a tabbed outline, as shown in the following example:
<translation whereToSearch="CFLOOP"

translationType="tabbed region end">

■ The custom value is the default case in which no internal Dreamweaver functionality is
added to the translation. It is often used when specifying a tag to insert for a custom
Property inspector, as shown in the following example:
<translation whereToSearch="directive"

translationType="custom">

<openTag>

Description

This optional tag can be inserted at the beginning of the translation section. This tag lets
certain other extensions, such as custom Property inspectors, find the translation.

Parent
translation

Type

Block tag.

Required

No.

Values

The tagName value is a valid tag name. It should be unique to prevent conflicts with known
tag types. For example, if you specify <openTag>MM_DYNAMIC_CONTENT</openTag> the
dynamic data is translated to the MM_DYNAMIC_CONTENT tag.
366 Server Behaviors

<attributes>

Description

This tag contains a list of attributes to add to the translated tag that is specified by the
openTag tag. Alternatively, if the openTag tag is not defined and the searchPattern tag
specifies tag, this tag contains a list of translated attributes to add to the tag that is found.

Parent
translation

Type

Block tag.

Required

No.

<attribute>

Description

This tag specifies a single attribute (or translated attribute) to add to the translated tag.

Parent
attributes

Type

Block tag.

Required

Yes (at least one).

Values

The attributeName="attributeValue" specification sets an attribute to a value. Typically,
the attribute name is fixed, and the value contains some parameter references that are
extracted by the parameter patterns, as shown in the following example:
<attribute>SOURCE="@@rs@@"</attribute>
<attribute>BINDING="@@col@@"</attribute>

or
<attribute>

mmTranslatedValueDynValue="VALUE={@@rs@@.@@col@@}"
</attribute>
Participant EDML files 367

<display>

Description

This tag is an optional display string that should be inserted in the translation.

Parent
translation

Type

Block tag.

Required

No.

Values

The displayString value is any string comprising text and HTML. It can include parameter
references that are extracted by the parameter patterns. For example,
<display>{@@rs@@.@@col@@}</display> causes the translation to render as
{myRecordset.myCol}.

<closeTag>

Description

This optional tag should be inserted at the end of the translated section. This tag enables
certain other extensions, such as custom Property inspectors, to find the translation.

Parent
translation

Type

Block tag.

Required

No.

Values

The tagName value is a valid tag name; it should match a translation openTag tag.

Example

If you specify the value <closeTag>MM_DYNAMIC_CONTENT</closeTag>, the dynamic data is
translated to end with the </MM_DYNAMIC_CONTENT> tag.
368 Server Behaviors

Server behavior techniques
This section covers the common and advanced techniques that create and edit server
behaviors. Most of the suggestions involve specific settings in the EDML files.

Finding server behaviors
Writing search patterns In order to update or delete server behaviors, you must provide a
way for Dreamweaver to find each instance in a document. This requires a quickSearch tag
and at least one searchPattern tag, which is contained within the searchPatterns tag.

The quickSearch tag should be a string, not a regular expression, that indicates that the
server behavior might exist on the page. It is not case-sensitive. It should be short and unique,
and it should avoid spaces and other sections that can be changed by the user. The following
example shows a participant that consists of the simple ASP JavaScript tag:
<% if (Recordset1.EOF) Response.Redirect("some_url_here") %>

In the following example, the quickSearch string checks for that tag:
<quickSearch>Response.Redirect</quickSearch>

For performance reasons, the quickSearch pattern is the beginning of the process of finding
server behavior instances. If this string is found in the document and the participant identifies
a server behavior (in the group file, partType="identifier" for this participant), the related
server behavior files are loaded and the findServerBehaviors() function is called. If your
participant has no reliable strings for which to search (or for debugging purposes), you can
leave the quickSearch string empty, as shown in the following example:
<quickSearch></quickSearch>

In this example, the server behavior is always loaded and can search the document.

Next, the searchPattern tag searches the document more precisely than the quickSearch
tag and extracts parameter values from the participant code. The search patterns specify where
to search (the whereToSearch attribute) with a series of searchPattern tags that contain
specific patterns. These patterns can use simple strings or regular expressions. The previous
example code is an ASP directive, so the whereToSearch="directive" specification and a
regular expression identifies the directive and extracts the parameters, as shown in the
following example:
<quickSearch>Response.Write</quickSearch>
<searchPatterns whereToSearch="directive">

<searchPattern paramNames="rs,new__url">
/if\s*\((\w+)\.EOF\)\s*Response\.Redirect\("([^\r\n]*)"\)/i

</searchPattern>
</searchPatterns>
Server behavior techniques 369

The search string is defined as a regular expression by starting and ending with a slash (/) and
is followed by i, which means that it is not case-sensitive. Within the regular expression,
special characters such as parentheses () and periods (.) are escaped by preceding them with a
backslash (\). The two parameters rs and new__url are extracted from the string by using
parenthetical subexpressions (the parameters must be enclosed in parentheses). In this
example, they are indicated by (\w+) and ([^\r\n]*): These values correspond to the
regular expression values that are normally returned by $1 and $2.

Optional search patterns There might be cases where you want to identify a participant
even if some parameters are not found. You might have a participant that stores some optional
information such as a telephone number. For such an example, you could use the following
ASP code:
<% //address block

LNAME = "joe";
FNAME = "smith";
PHONE = "123-4567";

%>

You could use the following search patterns:
<quickSearch>address</quickSearch>
<searchPatterns whereToSearch="directive">

<searchPattern paramNames="lname">/LNAME\s*=\s*"([^\r\n]*)"/i¬
</searchPattern>
<searchPattern paramNames="fname">/FNAME\s*=\s*"([^\r\n]*)"/i¬
</searchPattern>

<searchPattern paramNames="phone">/PHONE\s*=\s*"([^\r\n]*)"/i¬
</searchPattern>
</searchPatterns>

In the previous example, the telephone number must be specified. However, you can make
the telephone number optional, by adding the isOptional attribute, as shown in the
following example:
<quickSearch>address</quickSearch>
<searchPatterns whereToSearch="directive">

<searchPattern paramNames="lname">/LNAME\s*=\s*"([^\r\n]*)"/i¬
</searchPattern>
<searchPattern paramNames="fname">/FNAME\s*=\s*"([^\r\n]*)"/i¬
</searchPattern>
<searchPattern paramNames="phone" isOptional="true">¬
/PHONE\s*=\s*"([^\r\n]*)"/i
</searchPattern>

</searchPatterns>

Now the participant is recognized, even if the telephone number is not found.
370 Server Behaviors

How participants are matched If a server behavior has more than one participant, the
participants must be identified in the user’s document and matched. If the user applies
multiple instances of the server behavior to a document, each group of participants must be
matched accordingly. To ensure participants are matched correctly, you might need to change
or add parameters and construct participants so they can be uniquely identified.

Matching requires some rules. Participants are matched when all parameters with the same
name have the same value. Above and below the html tag, there can be only one instance of a
participant with a given set of parameter values. Within the html.../html tags, participants
are also matched by their position relative to the selection or to common nodes that are used
for insertion.

Participants without parameters are automatically matched, as shown in the following
example of a server behavior with group file:
<group serverBehavior="test.htm">

<title>Test</title>
<groupParticipants>

<groupParticipant name="test_p1" partType="identifier" />
<groupParticipant name="test_p2" partType="identifier" />

</groupParticipants>
</group>

The following example inserts two simple participants above the html tag:
<% //test_p1 %>
<% //test_p2 %>
<html>

These participants are found and matched, and Test appears once in the Server Behaviors
panel. If you add the server behavior again, nothing is added because the participants already
exist.

If the participants have unique parameters, multiple instances can be inserted above the html
tag. For example, by adding a name parameter to the participant, a user can enter a unique
name in the Test Server Behavior dialog box. If the user enters name "aaa", the following
participants are inserted:
<% //test_p1 name="aaa" %>
<% //test_p2 name="aaa" %>
<html>

If you add the server behavior again with a different name, such as "bbb", the document now
looks like the following example:
<% //test_p1 name="aaa" %>
<% //test_p2 name="aaa" %>
<% //test_p1 name="bbb" %>
<% //test_p2 name="bbb" %>
<html>
Server behavior techniques 371

There are two instances of Test listed in the Server Behaviors panel. If the user tries to add a
third instance to the page and names it "aaa", nothing is added because it already exists.

Within the html tag, matching can also use position information. In the following example,
there are two participants, one that is added before the selection and another that is added
after the selection:
<% if (expression) { //mySBName %>

Random HTML selection here
<% } //end mySBName %>

These two participants are without parameters, so they are grouped together. However, you
can add another instance of this server behavior elsewhere in the HTML, as shown in the
following example:
<% if (expression) { //mySBName %>

Random HTML selection here
<% } //end mySBName %>

More HTML here...
<% if (expression) { //mySBName %>

Another HTML selection here
<% } //end mySBName %>

Now there are two identical instances of each participant, which is allowed within the
HTML. They are matched by the order in which they occur in the document.

The following example shows a matching problem and how to avoid it. You can create a
participant that computes the tax on some dynamic data and displays the result at the
selection.
<% total = Recordset1.Fields.Item("itemPrice").Value * 1.0825 %>
<html>
<body>

The total (with taxes) is $<%=total%>
</body>
</html>

The two participants are matched because they have no common parameters. However, if you
add a second instance of this server behavior, you should have the following code:
<% total = Recordset1.Fields.Item("itemPrice").Value * 1.0825 %>
<% total = Recordset1.Fields.Item("salePrice").Value * 1.0825 %>
<html>
<body>

The total (with taxes) is $<%=total%>
Sale price (with taxes) is $<%=total%>

</body>
</html>
372 Server Behaviors

This server behavior no longer works correctly because only one parameter is named total.
To solve this problem, make sure that there is a parameter with a unique value and can be
used to match the participants. In the following example, you could make the total variable
name unique using the column name:
<% itemPrice_total = Recordset1.Fields.Item("itemPrice").¬
Value * 1.0825 %>
<% salePrice_total = Recordset1.Fields.Item("salePrice").¬
Value * 1.0825 %>
<html>
<body>

The total (with taxes) is $<%=itemPrice_total%>
Sale price (with taxes) is $<%=salePrice_total%>

</body>
</html>

The search patterns now uniquely identify and match the participants.

Search pattern resolution
Dreamweaver supports the following actions by using the participant
searchPatterns functionality:

■ File transfer dependency
■ Updating the file paths for any file reference (such as those for include files)

When Dreamweaver creates server models, it builds lists of patterns by scanning all the
participants for special paramNames attributes. To find URLs to check file dependency and to
fix the pathname, Dreamweaver uses each searchPattern tag in which one of the
paramNames attribute ends with _url. Multiple URLs can be specified in a single
searchPattern tag.

For each translator searchPattern tag that has a paramNames attribute value that ends with
_includeUrl, Dreamweaver uses that searchPattern tag to translate include file statements
on the page. Dreamweaver uses a different suffix string to identify include file URLs because
not all URL references are translated. Also, only a single URL can be translated as an include
file.

In resolving a searchPatterns tag, Dreamweaver uses the following algorithm:

1. Look for the whereToSearch attribute within the searchPatterns tag.

2. If the attribute value starts with tag+, the remaining string is assumed to be the tag name
(no spaces are allowed in the tag name).
Server behavior techniques 373

3. Look for the limitSearch attribute within the searchPattern tag.

4. If the attribute value starts with attribute+, the remaining string is assumed to be the
attribute name (no spaces are allowed in the attribute name).

If these four steps are successful, Dreamweaver assumes a tag/attribute combination.
Otherwise, Dreamweaver starts looking for searchPattern tags with a paramName attribute
that has a _url suffix and a regular expression that is defined. (For information about regular
expressions, see the “Regular expressions” on page 338.)

The following example of a searchPatterns tag has no search pattern because it combines a
tag (cfinclude) with an attribute (template) to isolate the URL for dependency file
checking, path fixing, and so forth:
<searchPatterns whereToSearch="tag+cfinclude">
 <searchPattern paramNames="include_url" limitSearch="attribute+template"

/>
</searchPatterns>

The tag/attribute combination (see the previous example) does not apply to translation
because Dreamweaver always translates to straight text in the JavaScript layer. File dependency
checking, path fixing, and so on occurs in the C layer. In the C layer, Dreamweaver internally
splits the document into directives (straight text) and tags (parsed into an efficient tree
structure).

Updating server behaviors
Replacement update By default, participant EDML files do not have an
<updatePatterns> tag, and instances of the participant are updated in the document by
replacing them entirely. When a user edits an existing server behavior and clicks OK, any
participant that contains a parameter whose value has changed is removed and reinserted with
the new value in the same location.

If the user customizes participant code in the document, the participant might not be
recognized if the search patterns look for the old code. Shorter search patterns can let the user
customize the participant code in their document; however, updating the server behavior
instance can cause the participant to be replaced, which loses the custom edits.

Precision update In some cases, it can be desirable to let users customize the participant
code after it is inserted in the document. This situation can be achieved by limiting the search
patterns and providing update patterns in the EDML file. After you add the participant to the
page, the server behavior updates only specific parts of it. The following example shows a
simple participant with two parameters:
<% if (Recordset1.EOF) Response.Redirect("some_url_here") %>
374 Server Behaviors

This example might use the following search patterns:
<quickSearch>Response.Write</quickSearch>
<searchPatterns whereToSearch="directive">

<searchPattern paramNames="rs,new__url">
/if\s*\((\w+)\.EOF\)\s*Response\.Redirect\("([^\r\n]*)"\)/i

</searchPattern>
</searchPatterns>

The user might add another test to a particular instance of this code, as shown in the
following example:
<% if (Recordset1.EOF || x > 2) Response.Redirect("some_url_here") %>

The search patterns fail because they are looking for a parenthesis after the EOF parameter. To
make the search patterns more forgiving, you can shorten them by splitting them up, as
shown in the following example:
<quickSearch>Response.Write</quickSearch>
<searchPatterns whereToSearch="directive">

<searchPattern paramNames="rs">/(\w+)\.EOF/</searchPattern>
<searchPattern paramNames="new__url">

/if\s*\([^\r\n]*\)\s*Response\.Redirect\("([^\r\n]*)"/i
</searchPattern>

</searchPatterns>

These shortened search patterns are flexible, so the user can add to the code. However, if the
server behavior changes the URL, when the user clicks OK, the participant is replaced, and
the customizations are lost. To update more precisely, add an updatePatterns tag that
contains a pattern for updating each parameter:
<updatePatterns>

<updatePattern paramNames="rs">/(\b)\w+(\.EOF)/¬
</updatePattern>
<updatePattern paramNames="new__url">

/(Response\.Redirect\(")[^\r\n]*(")/i
</updatePattern>

</updatePatterns>

In update patterns, the parentheses are reversed and are placed around the text before and
after the parameter. For search patterns, use the textBeforeParam(param)textAfterParam
parameter. For update patterns, use the (textBeforeParam)param(textAfterParam)
parameter. All the text between the two parenthetical subexpressions is replaced with the new
value for the parameter.
Server behavior techniques 375

Deleting server behaviors
Default deletion and dependency counts The user can delete an instance that is selected
in the Server Behaviors panel by clicking the Minus (-) button or pressing Delete. All the
participants are removed except for the ones that are shared by other server behaviors.
Specifically, if more than one server behavior has a participant pointer to the same node, the
node is not deleted.

By default, participants are deleted by removing an entire tag. If the insert location is
"wrapSelection", only the outer tag is removed. For attributes, the entire attribute
declaration is removed. The following example shows an attribute participant on the ACTION
attribute of a form tag:
<form action="<% my_participant %>">

After deleting the attribute, only form remains.

Using delete flags to limit participant deletion There might be cases where you want to
limit the way that participants are deleted. This can be achieved by adding a delete tag to the
EDML file. The following example shows a participant that is an href attribute of a link:
<a href="<%=MY_URL%>">Link Text

When this attribute participant is deleted, the resulting tag is <a>Link Text, which no
longer appears as a link in Dreamweaver. It might be preferable to delete only the attribute
value, which is done by adding the following tag to the participant EDML file:
<delete deleteType="innerOnly"/>

Another approach is to remove the entire tag when the attribute is deleted by typing <delete
deleteType="tagOnly"/>. The resulting text is Link Text.

Avoiding conflicts with share-in-memory JavaScript
files
If several HTML files reference a particular JavaScript file, Dreamweaver loads the JavaScript
into a central location where the HTML files can share the same JavaScript source. These files
contain the following line:
//SHARE-IN-MEMORY=true
376 Server Behaviors

If a JavaScript file has the SHARE-IN-MEMORY directive and an HTML file references it (by
using the SCRIPT tag with the SRC attribute), Dreamweaver loads the JavaScript into a
memory location where the code is implicitly included in all HTML files thereafter.

N
O

T
E

Because JavaScript files that are loaded into this central location share memory, the
files cannot duplicate any declarations. If a share-in-memory file defines a variable or
function and any other JavaScript file defines the same variable or function, a name
conflict occurs. When writing new JavaScript files, be aware of these files and their
naming conventions.
Server behavior techniques 377

378 Server Behaviors

16

CHAPTER 16

Data Sources
The Macromedia Dreamweaver 8 Data Sources API functions let you add data sources, which
appear in the Plus (+) menu in the Bindings panel (for related information, see the function
dreamweaver.dbi.getDataSources() in the Dreamweaver API Reference).

Data source files are stored in the Configuration/DataSources/ServerModelName folder.
Dreamweaver currently supports the following server models: ASP.Net/C#, ASP.Net/
VisualBasic, ASP/JavaScript, ASP/VBScript, Macromedia ColdFusion, JSP, and PHP/
MySQL. Within each server model subfolder are HTML and EDML files that are associated
with the data sources for that server model.

The following table lists the files you use to create a data source:

Path File Description

Configuration/DataSources/
ServerModelName

datasourcename.htm Specifies the name of
the data source and
where to find the
supporting JavaScript
files.

Configuration/DataSources/
ServerModelName

datasourcename.edml Defines the code that
Dreamweaver inserts
into the document to
represent the data
source value.

Configuration/DataSources/
ServerModelName

datasourcename.js Contains the
JavaScript functions to
add, insert, and delete
the necessary code into
a document.
379

How data sources work
Dreamweaver users can add dynamic data by using the Bindings panel. The dynamic data
objects that are shown on the Plus (+) menu are based on the server model that is specified for
the page. For example, users can insert recordsets, commands, request variables, session
variables, and application variables for ASP applications.

The following steps describe the process that is involved in adding dynamic data:

1. When the user clicks the Plus (+) menu in the Bindings panel, a pop-up menu appears.

To determine the contents of the menu, Dreamweaver first looks for a DataSources.xml
file in the same folder as the data sources (for example, Configuration/DataSources/
ASP_Js/DataSources.xml). The DataSources.xml file describes the contents of the pop-up
menu; it contains references to the HTML files that should be placed in the pop-up
menu.
Dreamweaver checks each referenced HTML file for a title tag. If the file contains a title
tag, the content of the title tag appears in the menu. If the file does not contain a title tag,
the filename is used in the menu.
After Dreamweaver finishes reading the DataSources.xml file or if the file does not exist,
Dreamweaver searches the rest of the folder to find other items that should appear in the
menu. If Dreamweaver finds files in the main folder that aren’t in the menu, it adds them
to the menu. If subfolders contain files that aren’t in the menu, Dreamweaver creates a
submenu and adds those files to the submenu.

2. When the user selects an item from the Plus (+) menu, Dreamweaver calls the
addDynamicSource() function, so that code for the data source is added to the
user’s document.

3. Dreamweaver goes through each file in the appropriate server model folder, calling the
findDynamicSources() function in each file. For each value in the returned array,
Dreamweaver calls the generateDynamicSourceBindings() function in the same file to
get a new list of all the fields in each data source for the user’s document. Those fields are
presented to the user as a tree control in the Dynamic Data or the Dynamic Text dialog
box or in the Bindings panel. The data source tree for an ASP document might appear as
shown in the following example:
Recordset (Recordset1)

ColumnOneInRecordset
ColumnTwoInRecordset

Recordset (Recordset2)
ColumnOfRecordset
380 Data Sources

Request
NameOfRequestVariable
NameOfAnotherRequestVariable

Session
NameOfSessionVariable

4. If the user double-clicks on a data source name in the Bindings panel to edit the data
source, Dreamweaver calls the editDynamicSource() function to handle the user edits
within the tree.

5. If the user clicks the Minus (-) button, Dreamweaver gets the current node selection from
the tree and passes it to the deleteDynamicSource() function, which deletes the code that
was added earlier with the addDynamicSource() function. If it cannot delete the current
selection, the function returns an error message. After the deleteDynamicSource()
function returns, Dreamweaver refreshes the data source tree by calling the
findDynamicSources() and the generateDynamicSourceBindings() functions.

6. If the user selects a data source and clicks OK in the Dynamic Data or the Dynamic Text
dialog box, or clicks Insert or Bind in the Bindings panel, Dreamweaver calls the
generateDynamicDataRef() function. The return value is inserted in the document at the
current insertion point.

7. If the user displays the Dynamic Data or the Dynamic Text dialog box to edit an existing
dynamic data object, the selection in the data source tree needs to be initialized to the
dynamic data object. To initialize the tree control, Dreamweaver goes through each file in
the appropriate server model folder (for example, the Configuration/DataSources/ASP_Js
folder), calling the implementation of the inspectDynamicDataRef() function in each
file.

Dreamweaver calls the inspectDynamicDataRef() function to convert the dynamic data
object back from the code in the user’s document to an item in the tree. (This process is
the reverse of what occurs when the generateDynamicDataRef() function is called.) If
the inspectDynamicDataRef() function returns an array that contains two elements,
Dreamweaver shows with a visual cue which item in the tree is bound to the current
selection.
How data sources work 381

8. Every time the user changes the selection, Dreamweaver calls the
inspectDynamicDataRef() function to determine whether the new selection is dynamic
text or a tag with a dynamic attribute. If it is dynamic text, Dreamweaver displays the
bindings for the current selection in the Bindings panel.

9. Using the Dynamic Data or the Dynamic Text dialog box or the Bindings panel, it’s
possible to change the data format for a dynamic text object or a dynamic attribute that the
user has already added to the page. When the format changes, Dreamweaver calls the
generateDynamicDataRef() function to get the string to insert into the user’s document
and passes that string to the formatDynamicDataRef() function (see
“formatDynamicDataRef()” on page 405). The string that the formatDynamicDataRef()
function returns is inserted in the user’s document.

A simple data source example
This extension adds a custom data source to the Bindings panel for Macromedia ColdFusion
documents. Users can specify the variable they want from the new data source.

This example creates a data source called MyDatasource, which includes a MyDatasource.js
JavaScript file, a MyDatasource_DataRef.edml file, and MyDatasource Variable command
files to implement a dialog box for users to enter the name of a specific variable. The
MyDatasource example is based on the implementation of the Cookie Variable data source
and the URL Variable data source. The files for these data sources reside in the Configuration/
DataSources/ColdFusion folder.

You create this data source by performing the following steps:

■ Creating the data source definition file
■ Creating the EDML file
■ Creating the JavaScript file that implements the Data Sources API functions
■ Creating the supporting command files for user input
■ Testing the new data source

Creating the data source definition file
The data source definition file tells Dreamweaver the name of the data source as it will appear
in the Bindings Plus (+) menu and also tells Dreamweaver where to find the supporting
JavaScript files for the data source implementation.
382 Data Sources

When a user clicks on the Bindings Plus (+) menu, Dreamweaver searches the DataSources
folder for the current server model to gather all available data sources defined in the folder’s
HTML (HTM) files. So, to make a new data source available to the user, you need to create a
data source definition file that simply provides the name of the data source using the TITLE
tag and the location of all supporting JavaScript files using the SCRIPT tag.

In addition, several supporting files are necessary for implementing this data source. In
general, you might not need to use the functions in these supporting files, but they are often
useful (and necessary in this example). For example, the dwscriptsServer.js file contains the
dwscripts.stripCFOutputTags() function used in the implementation of this data source.
And, using the DataSourceClass.js file, you create an instance of the DataSource class to use as
the return value of the findDynamicSources() function.

To create the data source definition file:

1. Create a new blank file.

2. Enter the following:
<HTML>
<HEAD>
<TITLE>MyDatasource</TITLE>
<SCRIPT SRC="../../Shared/Common/Scripts/dwscripts.js"></SCRIPT>
<SCRIPT SRC="../../Shared/Common/Scripts/dwscriptsServer.js"></SCRIPT>
<SCRIPT SRC="../../Shared/Common/Scripts/DataSourceClass.js"></SCRIPT>
<SCRIPT SRC="MyDatasource.js"></SCRIPT>
</HEAD>
<body></body>
</HTML>

3. Save the file as MyDatasource.htm in the Configuration/DataSources/ColdFusion folder.

Creating the EDML file
The EDML file defines the code that Dreamweaver inserts into the document to represent the
data source value. (For more information about EDML files, see Chapter 15, “Server
Behaviors,” on page 321). When a user adds a particular value from a data source to a
document, Dreamweaver inserts the code that will translate into the actual value at runtime.
The participant EDML file defines the code for the document (for more information, see
“Participant EDML files” on page 347).

For the MyDatasource Variable, you want Dreamweaver to insert the ColdFusion code
<cfoutput>#MyXML.variable#</cfoutput> where variable is the value the user wants
from the data source.
A simple data source example 383

To create the EDML file:

1. Create a new blank file.

2. Enter the following:
<participant>
 <quickSearch><![CDATA[#]]></quickSearch>
 <insertText

location="replaceSelection"><![CDATA[<cfoutput>#MyDatasource.@@bindin
gName@@#</cfoutput>]]></insertText>

 <searchPatterns whereToSearch="tag+cfoutput">
 <searchPattern paramNames="sourceName,bindingName"><![CDATA[/

#(?:\s*\w+\s*\()?(MyDatasource)\.(\w+)\b[^#]*#/i]]></searchPattern>
 </searchPatterns>
</participant>

3. Save the file as MyDatasource_DataRef.edml in the Configuration/DataSources/
ColdFusion folder.

Creating the JavaScript file that implements the Data
Sources API functions
After you have defined the name of the data source, the name of the supporting script files,
and the code for the working Dreamweaver document, you need to specify the JavaScript
functions for Dreamweaver to provide the user with the ability to add, insert, and delete the
necessary code into a document.

Based on the construction of the Cookie Variable data source, you can implement the
MyXML data source, as shown in the following example. (The MyDatasource_Variable
command used in the addDynamicSource() function is defined in “Creating the supporting
command files for user input” on page 387.)

To create the JavaScript file:

1. Create a new blank file.

2. Enter the following:
//************** GLOBALS VARS *****************
var MyDatasource_FILENAME = "REQ_D.gif";
var DATASOURCELEAF_FILENAME = "DSL_D.gif";

//****************** API **********************
function addDynamicSource()
{
 MM.retVal = "";
 MM.MyDatasourceContents = "";
 dw.popupCommand("MyDatasource_Variable");
 if (MM.retVal == "OK")
384 Data Sources

 {
 var theResponse = MM.MyDatasourceContents;
 if (theResponse.length)
 {
 var siteURL = dw.getSiteRoot();
 if (siteURL.length)
 {
 dwscripts.addListValueToNote(siteURL, "MyDatasource",

theResponse);
 }
 else
 {
 alert(MM.MSG_DefineSite);
 }
 }
 else
 {
 alert(MM.MSG_DefineMyDatasource);
 }
 }
}

function findDynamicSources()
{
 var retList = new Array();

 var siteURL = dw.getSiteRoot()

 if (siteURL.length)
 {
 var bindingsArray = dwscripts.getListValuesFromNote(siteURL,

"MyDatasource");
 if (bindingsArray.length > 0)
 {

// Here you create an instance of the DataSource class as defined in
the
// DataSourceClass.js file to store the return values.

 retList.push(new DataSource("MyDatasource",
 MyDatasource_FILENAME,
 false,
 "MyDatasource.htm"))
 }
 }

 return retList;
}

function generateDynamicSourceBindings(sourceName)
A simple data source example 385

{
 var retVal = new Array();

 var siteURL = dw.getSiteRoot();

 // For localized object name...
 if (sourceName != "MyDatasource")
 {
 sourceName = "MyDatasource";
 }

 if (siteURL.length)
 {
 var bindingsArray = dwscripts.getListValuesFromNote(siteURL,

sourceName);
 retVal = getDataSourceBindingList(bindingsArray,
 DATASOURCELEAF_FILENAME,
 true,
 "MyDatasource.htm");
 }

 return retVal;
}

function generateDynamicDataRef(sourceName, bindingName, dropObject)
{
 var paramObj = new Object();
 paramObj.bindingName = bindingName;
 var retStr = extPart.getInsertString("", "MyDatasource_DataRef",

paramObj);

 // We need to strip the cfoutput tags if we are inserting into a
CFOUTPUT tag

 // or binding to the attributes of a ColdFusion tag. So, we use the
// dwscripts.canStripCfOutputTags() function from dwscriptsServer.js

 if (dwscripts.canStripCfOutputTags(dropObject, true))
 {
 retStr = dwscripts.stripCFOutputTags(retStr, true);
 }

 return retStr;
}

function inspectDynamicDataRef(expression)
{
 var retArray = new Array();

 if(expression.length)
 {
386 Data Sources

 var params = extPart.findInString("MyDatasource_DataRef",
expression);

 if (params)
 {
 retArray[0] = params.sourceName;
 retArray[1] = params.bindingName;
 }
 }

 return retArray;
}

function deleteDynamicSource(sourceName, bindingName)
{
 var siteURL = dw.getSiteRoot();

 if (siteURL.length)
 {
 //For localized object name
 if (sourceName != "MyDatasource")
 {
 sourceName = "MyDatasource";
 }

 dwscripts.deleteListValueFromNote(siteURL, sourceName, bindingName);
 }
}

3. Save this file MyDatasource.js in the Configuration/DataSources/ColdFusion.

Creating the supporting command files for user input
The addDynamicSource() function contains the command
dw.popupCommand("MyDatasrouce_Variable"), which opens a dialog box for the user to
enter a specific variable name. However, you still need to create the dialog box for
MyDatasource Variable.

To provide a dialog box for the user, you must create a new set of command files: a command
definition file in HTML and a command implementation file in JavaScript (for more
information about command files, see “How commands work” on page 167).

The command definition file tells Dreamweaver the location of the supporting
implementation JavaScript files as well as the form for the dialog box that the user sees. The
supporting JavaScript file determines the buttons for the dialog box and how to assign the
user input from the dialog box.
A simple data source example 387

To create the command definition file:

1. Create a new blank file.

2. Enter the following:
<!DOCTYPE HTML SYSTEM "-//Macromedia//DWExtension layout-engine 5.0//

dialog">
<html>
<head>
<title>MyDatasource Variable</title>
<script src="MyDatasource_Variable.js"></script>
<SCRIPT SRC="../Shared/MM/Scripts/CMN/displayHelp.js"></SCRIPT>
<SCRIPT SRC="../Shared/MM/Scripts/CMN/string.js"></SCRIPT>
<link href="../fields.css" rel="stylesheet" type="text/css">
</head>
<body>
<form>
 <div ALIGN="center">
 <table border="0" cellpadding="2" cellspacing="4">
 <tr>
 <td align="right" valign="baseline" nowrap>Name:</td>
 <td valign="baseline" nowrap>
 <input name="theName" type="text" class="medTField">
 </td>
 </tr>
 </table>
 </div>
</form>
</body>
</html>

3. Save the file as MyDatasource_Variable.htm in the Configuration/Commands folder.

To create the supporting JavaScript file:

1. Create a new blank file.

2. Enter the following:
//******************* API **********************

function commandButtons(){
 return new

Array(MM.BTN_OK,"okClicked()",MM.BTN_Cancel,"window.close()");
}

//***************** LOCAL FUNCTIONS ******************

N
O

T
E

The file MyDatasource_Variable.js is the implementation file that you create in the
next procedure.
388 Data Sources

function okClicked(){
 var nameObj = document.forms[0].theName;

 if (nameObj.value) {
 if (IsValidVarName(nameObj.value)) {
 MM.MyDatasourceContents = nameObj.value;
 MM.retVal = "OK";
 window.close();
 } else {
 alert(nameObj.value + " " + MM.MSG_InvalidParamName);
 }
 } else {
 alert(MM.MSG_NoName);
 }
}

3. Save the file as MyDatasource_Variable.js in the Configuration/Commands folder.

Testing the new data source
You can now open Dreamweaver (or restart it if you already have it open), and open a
ColdFusion file or create a new one.

To test your new data source:

1. With the pointer in the document, click on the Bindings Plus (+) menu to see all the
available data sources. MyDatasource should appear at the bottom of the list:
A simple data source example 389

2. Click the MyDatasource data source option, and the MyDatasource Variable dialog box
you created appears:

3. Enter a value in the dialog box and click OK.

The Bindings panel displays the data source in a tree with the variable from the dialog box
under the data source name:

4. Drag the variable to your document, and Dreamweaver will insert the appropriate code
from the EDML file:
390 Data Sources

The Data Sources API
The functions in the Data Sources API let you find, add, edit, and delete data sources and also
generate and inspect dynamic data objects.

addDynamicSource()

Availability

Dreamweaver UltraDev 1.

Description

This function adds a dynamic data source. Because there is one implementation of this
function in each data source file, Dreamweaver calls the appropriate implementation of the
addDynamicSource() function when you select a data source from the Plus (+) menu.

For example, for recordsets or commands, Dreamweaver calls the
dw.serverBehaviorInspector.popupServerBehavior() function, which inserts a new
server behavior into the document. For request, session, and application variables,
Dreamweaver displays an HTML/JavaScript dialog box to collect the name of the variable;
the behavior stores the variable name for future use.

After the addDynamicSource() function returns, Dreamweaver erases the contents of the
data source tree and calls the findDynamicSources() and
generateDynamicSourceBindings() functions to repopulate the data source tree.

Returns

Dreamweaver expects nothing.

deleteDynamicSource()

Availability

Dreamweaver UltraDev 1.

Description

Dreamweaver calls this function when a user selects a data source in the tree and clicks the
Minus (-) button.
The Data Sources API 391

For example, in Dreamweaver, if the selection is a recordset or command, the
deleteDynamicSource() function calls the
dw.serverBehaviorInspector.deleteServerBehavior() function. If the selection is a
request, session, or application variable, the function remembers that the variable was deleted
and does not continue to display it. After the deleteDynamicSource() function returns,
Dreamweaver erases the contents of the data source tree and calls the findDynamicSources()
and generateDynamicSourceBindings() functions to get a new list of all the data sources
for the user’s document.

Arguments

sourceName, bindingName

■ The sourceName argument is the name of the top-level node to which the child node is
associated.

■ The bindingName argument is the name of the child node.

Returns

Dreamweaver expects nothing.

displayHelp()

Description

If this function is defined, a Help button appears below the OK and Cancel buttons in the
dialog box. This function is called when the user clicks the Help button.

Arguments

None.

Returns

Dreamweaver expects nothing.

Example
// The following instance of displayHelp() opens
// a file (in a browser) that explains how to use
// the extension.
function displayHelp(){

var myHelpFile = dw.getConfigurationPath() +
'/ExtensionsHelp/superDuperHelp.htm';

 dw.browseDocument(myHelpFile);
}

392 Data Sources

editDynamicSource()

Availability

Dreamweaver MX.

Description

This function is called when the user double-clicks a data source name in the Bindings panel
to edit the data source. You can implement this function to handle user edits in the tree.
Otherwise, the server behavior that matches the data source is automatically invoked. The
extension developer can use this function to override the default implementation of server
behaviors and provide a custom handler.

Arguments

sourceName, bindingName

■ The sourceName argument is the name of the top-level node to which the child node is
associated.

■ The bindingName argument is the name of the child node.

Returns

Dreamweaver expects a Boolean value: true if the function has handled the edit;
false otherwise.

findDynamicSources()

Availability

Dreamweaver UltraDev 1.

Description

This function returns the top-level nodes from the data source tree that appears in the
Dynamic Data or Dynamic Text dialog box or in the Bindings panel. Each data source file has
an implementation of the findDynamicSources() function. When Dreamweaver refreshes
the tree, Dreamweaver reads through all the files in the DataSources folder and calls the
findDynamicSources() function in each file.
The Data Sources API 393

Returns

Dreamweaver expects an array of JavaScript objects where each object can have as many as
five properties, which are described in the following list:

■ The title property is the label string that appears to the right of the icon for each parent
node. The title property is always required.

■ The imageFile property is the path of a file that contains the icon (a GIF image), which
represents the parent node in the tree control in the Dynamic Data or Dynamic Text
dialog box or in the Bindings panel. This property is required.

■ The allowDelete property is optional. If this property is set to false, when the user
clicks this node in the Bindings panel, the Minus (-) button is disabled. If this property is
set to true, the Minus (-) button is enabled. If the property is not defined, the default is
true.

■ The dataSource property is the simple name of the file in which the
findDynamicSources() function is defined. For example, the findDynamicSources()
function in the Session.htm file, which is located in the Configuration/DataSources/
ASP_Js folder, sets the dataSource property to session.htm. This property is required.

■ The name property is the name of the server behavior that is associated with the data
source, if one exists. Some data sources, such as recordsets, are associated with server
behaviors. When you create a recordset and name it rsAuthors, the name attribute must
equal rsAuthors. The name property is always defined, but can be an empty string ("") if
no server behavior is associated with the data source (such as a session variable).

generateDynamicDataRef()

Availability

Dreamweaver UltraDev 1.

Description

This function generates the dynamic data object for a child node.

N
O

T
E

A JavaScript class that defines these properties exists in the DataSourceClass.js file,
which is located in the Configuration/Shared/Common/Scripts folder.
394 Data Sources

Arguments

sourceName, bindingName

■ The sourceName argument is the name of the top-level node that is associated with the
child node.

■ The bindingName argument is the name of the child node from which you want to
generate a dynamic data object.

Returns

Dreamweaver expects a string, which can be passed to the formatDynamicDataRef()
function to format it before inserting it in a user’s document.

generateDynamicSourceBindings()

Availability

Dreamweaver UltraDev 1.

Description

This function returns the children of a top-level node.

Arguments
sourceName

■ The sourceName argument is the name of the top-level node whose children you want
to return.

Returns

Dreamweaver expects an array of JavaScript objects where each object can have as many as
four properties, which are described in the following list:

■ The title property is the label string that appears on the right of the icon for each parent
node. This property is required.

■ The allowDelete property is optional. If this property is set to the value false, when the
user clicks this node in the Bindings panel, the Minus (-) button is disabled. If this
property is set to the value true, the Minus (-) button is enabled. If the property is not
defined, the default is the value true.
The Data Sources API 395

■ The dataSource property is the simple name of the file in which the
findDynamicSources() function is defined. For example, the findDynamicSources()
function in the Session.htm file, which is located in the Configuration/DataSources/
ASP_Js folder, sets the dataSource property to session.htm. This property is required.

■ The name property is the name of the server behavior that is associated with the data
source, if one exists. It is a required property. Some data sources, such as recordsets, are
associated with server behaviors. When you create a recordset and name it rsAuthors, the
name property must equal rsAuthors. Other data sources, such as session variables, do
not have a corresponding server behavior. Their name property must be the empty string
("").

inspectDynamicDataRef()

Availability

Dreamweaver UltraDev 1.

Description

This function determines the corresponding node in the data source tree from a dynamic data
object. The inspectDynamicDataRef() function takes the string that Dreamweaver passes in
and compares it to the string that generateDynamicDataRef() returns for each node in the
tree. If a match is found, the inspectDynamicDataRef() function indicates which node in
the tree matches the passed-in string. The function identifies the node by using an array that
contains two elements. The first element is the name of the parent node, and the second
element is the name of the child node. If no match is found, the inspectDynamicDataRef()
function returns an empty array.

Each implementation of the inspectDynamicDataRef() function checks only for matches of
its own object type. For example, the recordset implementation of the
inspectDynamicDataRef() function finds a match only if the passed-in string matches a
recordset node in the tree.

N
O

T
E

A JavaScript class that defines these properties exists in the DataSourceClass.js file,
which is located in the Configuration/Shared/Common/Scripts folder.
396 Data Sources

Arguments
string

■ The string argument is the dynamic data object.

Returns

Dreamweaver expects an array of two elements (parent name and child name) for the matched
node; it returns a null value if no matches are found.
The Data Sources API 397

398 Data Sources

17

CHAPTER 17

Server Formats
Chapter 16, “Data Sources,” on page 379, discusses how Macromedia Dreamweaver 8 inserts
dynamic data into a user’s document by adding a server expression at the appropriate location.
When a visitor requests the document from the web server, that server expression is converted
to a value from a database, the contents of a request variable, or some other dynamic value.
The Dreamweaver server formats let you format how this dynamic value is presented to
the visitor.

This chapter discusses the API that formats the dynamic data that is returned by the functions
described in Chapter 16, “Data Sources,” on page 379. The functions that are described in
both chapters work together to format dynamic data. If the user selects a format for the
dynamic data, Dreamweaver calls the data source function generateDynamicDataRef(), see
“generateDynamicDataRef()” on page 394, to get the string to insert into the user’s
document. Before inserting the string into the user’s document, Dreamweaver passes that
string to the formatDynamicDataRef() function, which is described in this chapter. The
string that the formatDynamicDataRef() function returns is the formatted dynamic data
that is finally inserted in the user’s document.

Dreamweaver users can format data with built-in formats, create new formats that are based
on built-in format types, or create new formats that are based on custom format types.

The user can format dynamic data in several ways. By using the Format menu in the Dynamic
Data or the Dynamic Text dialog box or in the Bindings panel, the user can format the data
before inserting it into an HTML document. If the user wants to create a format, he or she
can select the Edit Format List command from the Format menu and select a format type
from the Plus (+) menu. The Plus (+) menu contains a list of format types. Format types are
basic format categories, such as Currency, DateTime, or AlphaCase. Format types collect all
the common parameters for a category of format, letting you streamline the work to create a
new format.
399

One example might be to create a new currency format. Essentially, all currency formatting
consists of converting a number to a string, inserting commas and decimal points, and
inserting a currency symbol, such as a dollar ($) sign. The Currency format data type collects
all the common parameters and prompts you for the required values.

How data formatting works
All format files reside in the Configuration/ServerFormats/currentServerModel folder. Each
subfolder contains one XML file and multiple HTML files.

The Formats.xml file describes all the choices in the Format menu. Dreamweaver
automatically adds the Edit Format List and None options.

The folder also contains one HTML file for each currently installed format type, which
includes AlphaCase, Currency, DateTime, Math, Number, Percent, Simple, and Trim.

The Formats.xml file
The Formats.xml file contains one format tag for each item in the Format menu. Each
format tag contains the following mandatory attributes:

■ The file=fileName attribute is the HTML file for this format type, such as "Currency".
■ The title=string attribute is the string that appears in the Format menu, such as

"Currency - default".
■ The expression=regexp attribute is a regular expression that matches the dynamic data

objects that use this format. The expression determines what format is currently applied to
a dynamic data object. For example, the expression for the "Currency - default"
format is "<%\s*=\s*FormatCurrency\(.*, -1, -2, -2, -
2\)\s*%>|<%\s*=\s*DoCurrency\(.*, -1, -2, -2, -2\)\s*%>". The value of the
expression attribute must be unique among all format tags in the file; it must be specific
enough to guarantee that only instances of this format match the expression.

■ The visibility=[hidden | visible] attribute indicates whether the value appears in
the Format menu. If the value of the visibility attribute is hidden, the format does not
appear in the Format menu.

The format tag can contain additional, arbitrarily named attributes.

Some data formatting functions require an argument, format, which is a JavaScript object.
This object is the node that corresponds to the format tag in the Formats.xml file. The object
has a JavaScript property for each attribute of the corresponding format tag.
400 Server Formats

The following example shows the format tag for the "Currency - default" string:
<format file="Currency" title="Currency - default" ¬
expression="<%\s*=\s*FormatCurrency\(.*, -1, -2, -2, -2\)\s*%>|¬
<%\s*=\s*DoCurrency\(.*, -1, -2, -2, -2\)\s*%>"
NumDigitsAfterDecimal=-1 IncludeLeadingDigit=-2 ¬
UseParensForNegativeNumbers=-2 GroupDigits=-2/>

The format type for this format is Currency. The "Currency - default" string appears on
the Format menu. The expression <%\s*=\s*FormatCurrency\(.*, -1, -2, -2,¬

-2\)\s*%>|<%\s*=\s*DoCurrency\(.*, -1, -2, -2, -2\)\s*%> finds occurrences of
this format in the user’s document.

The NumDigitsAfterDecimal, IncludeLeadingDigit, UseParensForNegativeNumbers,
and GroupDigits parameters are for the Currency format type and are not required. These
parameters appear in the Parameters dialog box for the Currency format type. The
Parameters dialog box appears when a user selects the Currency format type from the Plus (+)
menu of the Edit Format List dialog box. The values that are specified for these parameters
define the new format.

The Edit Format List Plus (+) menu
If you do not want a file in the ServerFormats folder to appear in the Edit Format List Plus (+)
menu, add the following statement as the first line of the HTML file:
<!-- MENU-LOCATION=NONE -->

To determine the contents of the menu, Dreamweaver first searches for a ServerFormats.xml
file in the same folder as the data formats (for example, Configuration/ServerFormats/ASP/
ServerFormats.xml). The ServerFormats.xml file describes the contents of the Edit Format
List Plus (+) menu, and it contains references to the HTML files that it lists in the menu.

Dreamweaver checks each referenced HTML file for a title tag. If the file contains a title tag,
the content of the title tag appears in the menu. If the file does not contain a title tag, the
filename is used in the menu.

After Dreamweaver finishes searching for the file, or if the file does not exist, Dreamweaver
scans the rest of the folder to find other items that should appear in the menu. If
Dreamweaver finds files in the main folder that aren’t already in the menu, it adds them. If
subfolders contain files that aren’t already in the menu, Dreamweaver creates a submenu and
adds those files to it.
How data formatting works 401

When the data formatting functions
are called
The data formatting functions are called in the following scenarios:

■ In the Dynamic Data or the Dynamic Text dialog box, the user selects a node from the
data source tree and a format from the Format menu. When the user selects the format,
Dreamweaver calls the generateDynamicDataRef() function and passes the return value
from the generateDynamicDataRef() function to the formatDynamicDataRef()
function. The return value from the formatDynamicDataRef() function appears in the
Code setting of the dialog box. After the user clicks OK, the string of code is inserted into
the user’s document. Next, Dreamweaver calls the applyFormat() function to insert a
function declaration. For more information, see “generateDynamicDataRef()”
on page 394. A similar process occurs when the user works with the Bindings panel.

■ If the user changes the format or deletes the dynamic data item, the deleteFormat()
function is called. The deleteFormat() function removes the support scripts from the
document.

■ When the user clicks the Plus (+) button in the Edit Format List dialog box, Dreamweaver
displays a menu that contains all the format types for the specified server model. Each
format type corresponds to a file in the Configuration/ServerFormats/currentServerModel
folder.
If the user selects a format from the Plus (+) menu that requires a user-specified parameter,
Dreamweaver executes the onload handler on the body tag and displays the Parameters
dialog box, which shows the parameters for the format type. In this dialog box, when the
user selects parameters for the format and clicks OK, Dreamweaver calls the
applyFormatDefinition() function.
If the selected format does not need to display a Parameters dialog box, Dreamweaver calls
the applyFormatDefinition() function when the user selects the format type from the
Plus (+) menu.

■ Later, if the user edits the format by selecting it in the Edit Format List dialog box and
clicking the Edit button, Dreamweaver calls the inspectFormatDefinition() function
before the Parameters dialog box appears, so the form controls can be initialized to the
correct values.
402 Server Formats

The Server Formats API
The server formats API consists of the following data formatting functions.

applyFormat()

Availability

Dreamweaver UltraDev 1.

Description

This function can edit a user’s document by adding a format function declaration to it. When
a user selects a format from the Format text field in the Dynamic Data or the Dynamic Text
dialog box or in the Bindings panel, Dreamweaver makes two changes to the user’s document:
It adds the appropriate format function before the HTML tag (if it’s not already there), and it
changes the dynamic data object to call the appropriate format function.

Dreamweaver adds the function declaration by calling the applyFormat() JavaScript
function in the data format file. It changes the dynamic data object by calling the
formatDynamicDataRef() function.

The applyFormat() function should use the DOM to add function declarations to the top of
the user’s document. For example, if the user selects Currency - Default, the function adds the
Currency function declaration.

Arguments
format

■ The format argument is a JavaScript object that describes the format to apply. The
JavaScript object is the node that corresponds to the format tag in the Formats.xml file.
The object has a JavaScript property for each attribute of the corresponding format tag.

Returns

Dreamweaver expects nothing.

applyFormatDefinition()

Availability

Dreamweaver UltraDev 1.
The Server Formats API 403

Description

Commits the changes to a format that was created using the Edit Format dialog box.

Users can create, edit, or delete formats with the Edit Format List dialog box. This function is
called to commit any modifications that are made to a format. It can also set other, arbitrarily
named properties on the object. Each property is stored as an attribute of the format tag in
the Formats.xml file.

Arguments
format

■ The format argument corresponds to the JavaScript format object. The function must
set the expression property of the JavaScript object to be the regular expression for the
format. The function can also set other, arbitrarily named properties of the object. Each
property is stored as an attribute of the format tag.

Returns

Dreamweaver expects the format object, if the function completes successfully. If an error
occurs, the function returns an error string. If it returns an empty string, the form is closed,
but the new format is not created, which is the same as a Cancel operation.

deleteFormat()

Availability

Dreamweaver UltraDev 1.

Description

Removes the format function declaration from the top of the user’s document.

When the user changes the format of a dynamic data object (in the Dynamic Data or the
Dynamic Text dialog box or in the Bindings panel) or deletes a formatted dynamic data
object, Dreamweaver removes the function declaration from the top of the document and also
removes the function call from the dynamic data object by calling the deleteFormat()
function.

Use the DOM with the deleteFormat() function to remove the function declaration from
the top of the current document.

Arguments
format

■ The format argument is a JavaScript object that describes the format to remove. The
JavaScript object is the node that corresponds to the format tag in the Formats.xml file.
404 Server Formats

Returns

Dreamweaver expects nothing.

formatDynamicDataRef()

Availability

Dreamweaver UltraDev 1.

Description

Adds the format function call to the dynamic data object. When a user selects a format from
the Format text box in the Dynamic Data or the Dynamic Text dialog box or in the Bindings
panel, Dreamweaver makes two changes to the user’s document: It adds the appropriate
format function before the HTML tag (if it’s not already there), and it changes the dynamic
data object to call the appropriate format function.

Dreamweaver adds the function declaration by calling the applyFormat() JavaScript
function in the data format file. It changes the dynamic data object by calling the
formatDynamicDataRef() function.

The formatDynamicDataRef() function is called when the user selects a format from the
Format text box in the Dynamic Data or the Dynamic Text dialog box or in the Bindings
panel. It does not edit the user’s document.

Arguments

dynamicDataObject, format

■ The dynamicDataObject argument is a string that contains the dynamic data object.
■ The format argument is a JavaScript object that describes the format to apply. The

JavaScript object is the node that corresponds to the format tag in the Formats.xml file.
The object has a JavaScript property for each attribute of the corresponding format tag.

Returns

Dreamweaver expects the new value for the dynamic data object.

If an error occurs, the function displays an alert message under certain conditions. If the
function returns an empty string, the Format text box is set to None.
The Server Formats API 405

inspectFormatDefinition()

Availability

Dreamweaver UltraDev 1.

Description

Initializes form controls when a user edits a format in the Edit Format List dialog box.

Arguments
format

■ The format argument is a JavaScript object that describes the format to apply. The
JavaScript object is the node that corresponds to the format tag in the Formats.xml file.
The object has a JavaScript property for each attribute of the corresponding format tag.

Returns

Dreamweaver expects nothing.
406 Server Formats

18

CHAPTER 18

Components
Macromedia Dreamweaver supports the creation of many of the most popular types of
components. In addition, Dreamweaver lets you extend the types of components that appear
in the Components panel.

Component basics
Programmers use various strategies to encapsulate their work. You can think of encapsulation
as creating an entity that exists in a virtual black box. To use it, you don’t need to know how it
works; you only need to know what information it needs to do its job and what information it
will output after its job is complete. For example, a programmer might create a program that
gets information from an employee database. Anyone, including other programs, can then use
that program to query that database. Thus, the program is reusable.

Experience shows that well-organized programs that use encapsulation are easier to maintain,
enhance, and reuse. Different technologies offer programmers different ways to accomplish
this encapsulation, and different names describe these strategies: functions, modules, and
others. Macromedia Dreamweaver 8 uses the term component to refer to some of the more
popular and modern encapsulation strategies, including web services, JavaBeans, and
ColdFusion components (CFCs). So, when users build web applications in Dreamweaver, the
Components panel assists them in using available web services, JavaBeans, and CFCs.

Components from recent technologies (such as web services, JavaBeans, or CFCs) can
describe themselves. Usually there is information about the component embedded in the files
that constitute the component. The ability of a component to publish or share this
information is called introspection. In other words, a program such as Dreamweaver can ask a
component for a list of the functions it exposes (that is, functions that can be invoked from
another program). Depending on the technology in use, a component can reveal other
information about itself. For example, a web service might describe new data types.
407

Extending the Components panel
If you have invented (or simply use) a component strategy that is not represented in
Dreamweaver’s current Components panel, you can extend the Components panel’s logic so
the panel can handle new kinds of components.

To add a new kind of component to the Dreamweaver Components panel, you need to locate
the available components (in the user’s environment) and request descriptions from each
component (or parse them if they are written using ASCII files).

The precise way that the location of components and how component details are retrieved
varies among technologies. Additionally, it can vary based on the server model (ASP.NET,
JSP/J2EE, ColdFusion, or others). So, the JavaScript you write to extend the Components
panel depends on the component technology you need to add. The functions described here
are meant to assist you in getting information to appear in the Components panel, but you
must write much of the logic for locating components and introspecting them (querying the
internal structure of the component and making its fields, methods, and properties available
through Dreamweaver).

Finally, server models such as ASP.NET, JSP/J2EE, or ColdFusion tend to support some, but
not all, component types. For example, ASP.NET supports web services but not JavaBeans.
Macromedia ColdFusion also supports web services and CFCs. When you add a new
component type to the Components panel, it must be server-model specific. For example, if a
Dreamweaver user is working on a ColdFusion site, only Web Services and CF Components
should appear in the drop-down list in the Components panel.

The files you need to alter are discussed in this chapter. In some cases, you need to write some
JavaScript code that calls certain component-related functions.

How to customize the Components panel
The Dreamweaver Components panel lets users load and work with components. It lists all
the available component types that are compatible with each enabled server model. For
instance, because JavaBeans can work only on a JavaServer Page (JSP), JavaBeans components
appear only in the JSP server model within the Components panel. Likewise, because CFCs
can work only on a ColdFusion page, they appear only in the ColdFusion server model within
the Components panel.
408 Components

Extensibility lets you add new component types to the panel. There are several general steps
that you need to follow when adding a new component type to the Components panel:

1. Add the component to the list of available component types for the appropriate server
model(s).

2. Add instructions, known as setup steps, which appear as interactive numbered steps, for
setting up the component in the Components panel or in a dialog box (depending on the
extension for which the steps are implemented). Make sure check marks appear next to any
steps the user has completed.

3. List the components of the component type that exist either on the user’s computer or in
the current site only.

4. Create a new component when the user clicks the Plus (+) button in the Components
panel.

In addition, you will probably want to give the user the ability to edit an existing component
and delete a component.

Components panel files
The Configuration/Components folder has a subfolder for each implemented server model.
Component files are stored in the Configuration/Components/server-model/ComponentType
folder. You can add other server models and supporting server extensions (for more
information, see Chapter 19, “Server Models,” on page 423 and Chapter 15, “Server
Behaviors,” on page 321).

To create a custom component that can work in the Components panel:

■ Create an HTML file that identifies the locations of supporting JavaScript and image files.
■ Write the JavaScript to enable the component.
■ Create or identify existing GIF image files to represent the component in the

Components panel.

If you want the component type to appear in a tree control view, you also need to create the
associated optional files and populate the tree control.

You can set a component type to work at the level of an individual web page, to a set of web
pages, or to an entire site. Your JavaScript code must include the logic for component
persistence—for saving itself between sessions and reloading at the start of a new session.

The following example shows a data entry in the file JavaBeansList.xml (to be saved in the
multiuser configuration folder) that defines the component class and its location:
<javabeans>
<javabean classname="TestCollection.MusicCollection"
Components panel files 409

classlocation="d:\music\music.jar"></javabean>
</javabeans>

JavaBeans should contain the logic for saving themselves in the multiuser configuration folder,
so the next time the user launches an application, the component loads itself again from the
saved data file.

Adding a service component

To add a new lightweight directory access protocol (LDAP) service using
Dreamweaver MX:

1. Using existing component type files as a model (such as the files in the application folder
Configuration/Components/Common/WebServices), create all the required files, plus the
desired optional files, to display the new component type in the Dreamweaver
Components panel, as shown in the following table:

Filename Description Required/
Optional

.htm The extension file that identifies other supporting
JavaScript and GIF files.

Required

.js The extension file that implements the Component API
callback.

Required

.gif The image that appears in the Components pop-up list. Required

*Menus.xml The repository for metadata that organizes the
Components panel structure. Although the common
WebServices component does not use this file, you can
refer to the file WebServicesMenus.xml in the application
folder Components/ColdFusion/ WebServices as an
example.

Optional

*.gif Toolbar images, which can be enabled or disabled, as
shown in the following example:
ToolBarImageUp.gif
ToolBarImageDown.gif
ToolBarImageDisabled.gif.

Or, tree node images.

Optional

N
O

T
E

Keep the same prefix throughout all the files that correspond to one component so
that each file and its corresponding component can be identified easily.
410 Components

2. Write the JavaScript code to implement the new server component.

The extension file (HTM) defines the locations of the JavaScript code in the SCRIPT tag.
These JavaScript files can reside in the Shared folder, in the same folder as the extension
file, or in the Common folder for code that applies to multiple server models.
For example, the Configuration/Components/Common/WebServices/WebServices.htm
file contains the line:
<SCRIPT SRC="../../Common/WebServices/WebServicesCommon.js"></SCRIPT>.

For more information on the available Component API functions, see “Components panel
API functions” on page 412.

Populating the tree control
Use the ComponentRec property to populate a Components panel tree control, so that it
appears within the Components panel in the proper location. Every node in a tree control
must have the following properties:

T
IP When adding a new service, you might want to use the Components panel to browse

meta information so that the information is readily available as you create the extension.
Dreamweaver can browse added components and display nodes in the component tree.
The Components panel provides drag-and-drop support and keyboard support in Code
view.

Property name Description Required/
Optional

name Name of the tree node item Required

image Icon of the tree node item. If it is not specified, a
default icon is used.

Optional

hasChildren Responds to clicks on the Plus (+) and Minus (-)
buttons in the tree control by loading children.You
can work with a tree that is not prepopulated.

Required

toolTipText Tooltip text of the tree node item Optional

isCodeViewDraggable Determines whether the item can be dragged and
dropped into the Code view.

Optional

isDesignViewDraggable Determines whether the item can be dragged and
dropped into the Design view.

Optional
Components panel files 411

For example, the following WebServicesClass node has web methods as its children:
this.name = "TrafficLocatorWebService";
this.image = "Components/Common/WebServices/WebServices.gif";
this.hasChildren = true;
this.toolTipText = "TrafficLocatorWebService";
this.isCodeViewDraggable = true;
// the following allows of enabling/disabling of the button that appears
// above the Component Tree
this.allowDelete = true;
this.isDesignViewDraggable = false;

Components panel API functions
This section describes the API functions for populating the Components panel.

getComponentChildren()

Availability

Dreamweaver MX.

Description

This function returns a list of child ComponentRec objects for the active parent
ComponentRec object. To load the root-level tree items, this function needs to read its
metadata from its persistent store.

Arguments
{parentComponentRec}

■ The parentComponentRec argument is the componentRec object of the parent. If it is
omitted, Dreamweaver expects a list of ComponentRec objects for the root node.

Returns

An array of ComponentRec objects.

Example

See function getComponentChildren(componentRec) in the WebServices.js file in the
Configuration/Components/Common/WebServices folder.
412 Components

getContextMenuId()

Availability

Dreamweaver MX.

Description

Returns the Context Menu ID for the component type. Every component type can have a
context menu associated with it. The Context Menu pop-up menus are defined in the
ComponentNameMenus.xml file, and they work the same way as the menu.xml file. The menu
string can be static or dynamic. Shortcut keys (accelerator keys) are supported.

Arguments

None.

Returns

A string defining the Context Menu ID.

Example

The following example sets the menu options for the Components panel for web services
associated with the ASP.NET/C# server model and defines the shortcut keys for that menu:
function getContextMenuId()
{

return "DWWebServicesContext";
}

Where DWWebServicesContext is defined in the file in the Configuration/Components/
ASP.NET_CSharp/WebServices/WebServicesMenus.xml as follows:
<shortcutlist id="DWWebServicesContext">

<shortcut key="Del" domRequired="false"
enabled="(dw.serverComponentsPalette.getSelectedNode() != null &&
(dw.serverComponentsPalette.getSelectedNode().objectType=='Root'))"
command="clickedDelete();" id="DWShortcuts_ServerComponent_Delete" />

</shortcutlist>

<menubar name="" id="DWWebServicesContext">
 <menu name="Server Component Popup" id="DWContext_WebServices">
 <menuitem name="Edit Web Service" domRequired="false"

enabled="dw.serverComponentsPalette.getSelectedNode() != null &&
(dw.serverComponentsPalette.getSelectedNode().objectType=='Root') &&
dw.serverComponentsPalette.getSelectedNode().wsRec != null &&
dw.serverComponentsPalette.getSelectedNode().wsRec.ProxyGeneratorName !=
null" command="editWebService()"
id="DWContext_WebServices_EditWebService" />

...
</menubar>
Components panel API functions 413

getCodeViewDropCode()

Availability

Dreamweaver MX.

Description

This function gets the code that is dragged and dropped in Code view from the Components
panel or the code that is cut, copied, or pasted from the Components panel.

Arguments
componentRec

■ The componentRec argument is an object.

Returns

The string that contains the code for the component.

Example

The following example identifies the code for a common web service:
function getCodeViewDropCode(componentRec)
{

var codeToDrop="";
if (componentRec)
{

if (componentRec.objectType=="Class")
{

codeToDrop =¬
dw.getExtDataValue("webservices_constructor","insertText");

codeToDrop =¬
codeToDrop.replace(RegExp("@@Id@@","g"),componentRec.name);

codeToDrop =¬
codeToDrop.replace(RegExp("@@Class@@","g"),componentRec.name);

}
else if (componentRec.objectType=="Method")
{

codeToDrop = componentRec.dropCode;
}
if(componentRec.dropCode)
{

codeToDrop = componentRec.dropCode;
}
else
{

codeToDrop = componentRec.name;
}

}
return codeToDrop;

}

414 Components

getSetupSteps()

Availability

Dreamweaver MX.

Description

Dreamweaver calls this function if the setupStepsCompleted() function returns zero or a
positive integer. This function controls the server-side setup instructions, which can be
implemented using extensions that use a modal dialog box and extensions that use server
components.

This function returns an array of the strings for Dreamweaver to display in either the Setup
Steps dialog box or the Components panel, depending on the extension type.

Arguments

None.

Returns

An array of n+1 strings, where n is the number of steps, as described in the following list:

■ The title that appears above the list of setup steps
■ For each step, the text instructions, which can include any HTML markup that is legal

inside a li tag

You can include hypertext links (a tags) in the list of steps by using the following form:
Blue Underlined Text

The "handler" value can be replaced by any of the following strings or any JavaScript
expression, such as "dw.browseDocument('http://www.macromedia.com')":

■ An "Event:SetCurSite" handler opens a dialog box to set the current site.
■ An "Event:CreateSite" handler opens a dialog box to create a new site.
■ An "Event:SetDocType" handler opens a dialog box to change the document type of the

user’s document.
■ An "Event:CreateConnection" handler opens a dialog box to create a new

database connection.
■ An "Event:SetRDSPassword" handler opens a dialog box to set the Remote

Development Service (RDS) user name and password (ColdFusion only).
■ An "Event:CreateCFDataSource" handler opens the ColdFusion administrator in a

browser.
Components panel API functions 415

Example

The following example sets four steps for ColdFusion components, and provides a hypertext
link in the fourth step so the user can enter the RDS user name and password:
function getSetupSteps()
{

var doSDK = false;
dom = dw.getDocumentDOM();
if (dom && dom.serverModel)
{

var aServerModelName = dom.serverModel.getDisplayName();
}
else
{

var aServerModelName = site.getServerDisplayNameForSite();
}
if (aServerModelName.length)
{

if(aServerModelName != "ColdFusion")
{

if(needsSDKInstalled != null)
{

doSDK = needsSDKInstalled();
}

}
}

var someSteps = new Array();
someSteps.push(MM.MSG_WebService_InstructionsTitle);
someSteps.push(MM.MSG_Dynamic_InstructionsStep1);
someSteps.push(MM.MSG_Dynamic_InstructionsStep2);
if(doSDK == true)
{

someSteps.push(MM.MSG_WebService_InstructionsStep3);
}
someSteps.push(MM.MSG_WebService_InstructionsStep4);

return someSteps;
}

setupStepsCompleted()

Availability

Dreamweaver MX.
416 Components

Description

Dreamweaver calls this function before the Components tab appears. Dreamweaver then calls
the getSetupSteps() function if the setupStepsCompleted() function returns zero or a
positive integer.

Arguments

None.

Returns

An integer that represents the number of setup steps the user has completed, as described in
the following list:

■ A value of either zero or a positive integer indicates the number of completed steps.
■ A value of -1 indicates that all the necessary steps are complete, so the instruction list does

not appear.

handleDesignViewDrop()

Availability

Dreamweaver MX.

Description

Handles the drop operation when the user drags a table or view from the Database panel or a
component from the Components panel to the Design view.

Arguments
componentRec

■ The componentRec argument is an object that contains the following properties:
■ The name property is the name of the tree node item.
■ The image property is an optional icon for the tree node item. If omitted,

Dreamweaver MX uses a default icon.
■ The hasChildren property is a Boolean value that indicates whether the tree node

item is expandable: if true, Dreamweaver MX displays the Plus (+) and Minus (-)
buttons for the tree node item; if false, the item is not expandable.

■ The toolTipText property is optional tool tip text for the tree node item.
■ The isCodeViewDraggable property is a Boolean value that indicates whether the

tree node item can be dragged and dropped into the Code view.
■ The isDesignViewDraggable property is a Boolean value that indicates whether the

tree node item can be dragged and dropped into the Design view.
Components panel API functions 417

Returns

A Boolean value that indicates whether the drop operation was successful: true if successful;
false otherwise.

Example

The following example determines if the component is a table or view, and then returns the
appropriate bHandled value:
function handleDesignViewDrop(componentRec)
{

var bHandled = false;
if (componentRec)
{

if ((componentRec.objectType == "Table")||
 (componentRec.objectType == "View"))
{

alert("popup Recordset Server Behavior");
bHandled = true;

}
}
return bHandled;

}

handleDoubleClick()

Availability

Dreamweaver MX.

Description

When the user double-clicks the node in the tree, the event handler is called to allow editing.
This function is optional. The function can return a false value, which indicates that the
event handler is not defined. In this case, double-clicking causes the default behavior, which
expands or collapses the tree nodes.
418 Components

Arguments
componentRec

■ The componentRec argument is an object that contains the following properties:
■ The name property is the name of the tree node item.
■ The image property is an optional icon for the tree node item. If this icon is omitted,

Dreamweaver uses a default icon.
■ The hasChildren property is a Boolean value that indicates whether the tree node

item is expandable: if true, Dreamweaver displays the Plus (+) and Minus (-) buttons
for the tree node item; if false, the item is not expandable.

■ The toolTipText property is an optional tooltip text for the tree node item.
■ The isCodeViewDraggable property is a Boolean value that indicates whether the

tree node item can be dragged and dropped into Code view.
■ The isDesignViewDraggable property is a Boolean value that indicates whether the

tree node item can be dragged and dropped into Design view.

Returns

Nothing.

Example

In the following example, the extension has a chance to handle a double-click on the tree node
item; if it returns the value false, the default behavior is to expand/collapse the nodes.
function handleDoubleClick(componentRec)
{

var selectedObj = dw.serverComponentsPalette.getSelectedNode();
if(dwscripts.IS_WIN)
{

if (selectedObj && selectedObj.wsRec &&
selectedObj.wsRec[ProxyGeneratorNamePropName])

{
if (selectedObj.objectType == "Root")
{

editWebService();
return true;

}
else if (selectedObj.objectType == "MissingProxyGen")
{

displayMissingProxyGenMessage(componentRec);
editWebService();
return true;

}
}

}
return false;

}

Components panel API functions 419

toolbarControls()

Availability

Dreamweaver MX.

Description

Every component type returns a list of toolBarButtonRec objects, which represents the
toolbar icons, in left-to-right order. Each toolBarButtonRec object contains the following
properties:

Arguments

None.

Returns

An array of toolbar buttons in left-to-right order.

Property
Name

Description

image Path to image file

disabledImage Optional; path to disabled image searches for the toolbar button

pressedImage Optional; path to pressed image searches for the toolbar button

toolTipText Tooltip for the toolbar button

toolStyle Left /right

enabled JavaScript code that returns a Boolean value (true or false). The enablers
are called when the following conditions exist:
• When the dreamweaver.serverComponents.refresh() function is called
• When the selection in the tree changes
• When server model changes

command The JavaScript code to execute. The command handler can force a refresh
using the dreamweaver.serverComponents.refresh() function.

menuId The unique menu ID for the pop-up menu button when the button is
clicked. When this ID is present, it overrides the command handler. In other
words, the button can be either a button associated with a command, or a
button that has a pop-up menu associated with it, but not both at the same
time.
420 Components

Example

The following example assigns properties to the toolbar buttons:
function toolbarControls()
{

var toolBarBtnArray = new Array();

dom = dw.getDocumentDOM();
var plusButton = new ToolbarControlRec();
var aServerModelName = null;
if (dom && dom.serverModel)
{

aServerModelName = dom.serverModel.getDisplayName();
}
else
{

//look in the site for potential server model
aServerModelName = site.getServerDisplayNameForSite();

}

if (aServerModelName.length)
{

if(aServerModelName == "ColdFusion")
{

plusButton.image= PLUS_BUTTON_UP;
plusButton.pressedImage= PLUS_BUTTON_DOWN;
plusButton.disabledImage= PLUS_BUTTON_UP;
plusButton.toolStyle= "left";
plusButton.toolTipText= MM.MSG_WebServicesAddToolTipText;
plusButton.enabled= "dwscripts.IS_WIN";
plusButton.command= "invokeWebService()";

}
else
{

plusButton.image= PLUSDROPBUTTONUP;
plusButton.pressedImage= PLUSDROPBUTTONDOWN;
plusButton.disabledImage= PLUSDROPBUTTONUP;
plusButton.toolStyle= "left";
plusButton.toolTipText= MM.MSG_WebServicesAddToolTipText;
plusButton.enabled= "dwscripts.IS_WIN";
plusButton.menuId = "DWWebServicesChoosersContext";

}
toolBarBtnArray.push(plusButton);

var minusButton = new ToolbarControlRec();
minusButton.image= MINUSBUTTONUP;
minusButton.pressedImage= MINUSBUTTONDOWN;
minusButton.disabledImage= MINUSBUTTONDISABLED;
minusButton.toolStyle= "left";
minusButton.toolTipText= MM.MSG_WebServicesDeleteToolTipText;
Components panel API functions 421

minusButton.command = "clickedDelete()";
minusButton.enabled = "(dw.serverComponentsPalette.getSelectedNode()

!= null && dw.serverComponentsPalette.getSelectedNode() &&
((dw.serverComponentsPalette.getSelectedNode().objectType=='Root') ||
(dw.serverComponentsPalette.getSelectedNode().objectType == 'Error') ||
(dw.serverComponentsPalette.getSelectedNode().objectType ==
'MissingProxyGen')))";

toolBarBtnArray.push(minusButton);

if(aServerModelName != null && aServerModelName.indexOf(".NET") >= 0)
{

var deployWServiceButton = new ToolbarControlRec();
deployWServiceButton.image= DEPLOYSUPPORTBUTTONUP;
deployWServiceButton.pressedImage= DEPLOYSUPPORTBUTTONDOWN;
deployWServiceButton.disabledImage= DEPLOYSUPPORTBUTTONUP;
deployWServiceButton.toolStyle= "right";
deployWServiceButton.toolTipText=

MM.MSG_WebServicesDeployToolTipText;
deployWServiceButton.command =

"site.showTestingServerBinDeployDialog()";
deployWServiceButton.enabled = true;
toolBarBtnArray.push(deployWServiceButton);

}
//add the rebuild proxy button for windows only.
//bug 45552:
if(navigator.platform.charAt(0) !="M")
{

var proxyButton = new ToolbarControlRec();
proxyButton.image= PROXYBUTTONUP;
proxyButton.pressedImage= PROXYBUTTONDOWN;
proxyButton.disabledImage= PROXYBUTTONDISABLED;
proxyButton.toolStyle= "right";
proxyButton.toolTipText= MM.MSG_WebServicesRegenToolTipText;
proxyButton.command = "reGenerateProxy()";
proxyButton.enabled = "enableRegenerateProxyButton()";
toolBarBtnArray.push(proxyButton);

}
}

return toolBarBtnArray;

}

422 Components

19

CHAPTER 19

Server Models
Server models are the technologies that run scripts on a server. When users define a new site,
they can identify the server model that they want to use at the site level and at the individual
document level. This server model handles any dynamic elements that the user adds to the
document.

Server model configuration files are stored in the Configuration/ServerModels folder. Within
that folder, each server model has its own HTML file that implements a set of functions that
the server model requires.

How customizing server models works
You can customize some features of a server model using the functions that are available in the
Server Model API.

Macromedia Dreamweaver 8 asks new users to identify server models when they first start
Dreamweaver. For cases when the user does not identify a server model, you can create a
dynamic dialog box that prompts the user to complete the necessary steps. This dialog box
appears when the user attempts to insert a server object. For information on creating this
dialog box, see the getSetupSteps() and setupStepsCompleted() functions.

You might want to create a specialized server model. Macromedia suggests that you create a
new server model rather than editing any of the ones that come with Dreamweaver. (For
information regarding creating new document types that are supported by your server model,
see “Extensible document types in Dreamweaver” on page 35.)

When you create a new server model, you need to include an implementation of the
canRecognizeDocument() function in your server model file. This function tells
Dreamweaver the level of preference that it should give to your server model for handling a
file extension when multiple server models claim a particular file extension.
423

The Server Model API functions
This section describes the functions that configure server models for Dreamweaver.

canRecognizeDocument()

Availability

Dreamweaver MX.

Description

When opening a document (and when more than one server model claims a file extension),
Dreamweaver calls this function for each of the extension-associated server models to see
whether any of the functions can identify whether the document is its file. If more than one
server model claims the file extension, Dreamweaver gives priority to the server model that
returns the highest integer.

Arguments
dom

■ The dom argument is the Macromedia document object, which is returned by the
dreamweaver.getDocumentDOM() function.

Returns

Dreamweaver expects an integer that indicates the priority that you give to the server model
for the file extension. This function should return a value of -1 if the server model does not
claim the file extension; otherwise, this function should return a value greater than zero.

Example

In the following example, if the user opens a JavaScript document for the current server
model, the sample code returns a value of 2. This value lets the current server model take
precedence over the Dreamweaver default server model.
var retVal = -1;
var langRE = /@\s*language\s*=\s*(\"|\')?javascript(\"|\')?/i;
// Search for the string language="javascript"
var oHTML = dom.documentElement.outerHTML;
if (oHTML.search(langRE) > -1)
 retVal = 2;
return retVal;

N
O

T
E

All Dreamweaver-defined server models return a value of 1, so third-party server models
can override the file-extension association.
424 Server Models

getFileExtensions()

Availability

Dreamweaver UltraDev 1, deprecated in Dreamweaver MX.

Description

Returns the document file extensions with which a server model can work. For example, the
ASP server model supports .asp and .htm file extensions. This function returns an array of
strings, and Dreamweaver uses these strings to populate the Default Page Extension list that is
found in the App Server category in the Site Definition dialog box.

Arguments

None.

Returns

Dreamweaver expects an array of strings that represent the allowed file extensions.

getLanguageSignatures()

Availability

Dreamweaver MX.

Description

This function returns an object that describes the method and array signatures that the
scripting language uses. The getLanguageSignatures() function helps map generic
signature mapping to language-specific mapping for the following elements:

■ The function
■ Constructors
■ Drop code (return values)
■ Arrays
■ Exceptions
■ Data type mappings for primitive data types

N
O

T
E

The Default Page Extension list exists only in Dreamweaver 4 and earlier. For
Dreamweaver MX, and later, the Site Definition dialog box does not list file extension
settings. Instead, Dreamweaver reads the Extensions.txt file and parses the
documenttype element in the mmDocumentTypes.xml file. (For more information on
these two files and the documenttype element, see “Extensible document types in
Dreamweaver” on page 35.)
The Server Model API functions 425

The getLanguageSignatures() function returns a map of these signature declarations.
Extension developers can use this map to generate language-specific code blocks that
Dreamweaver drops on the page (based on the appropriate server model for the page) when
the user drags and drops a Web Services method, for example.

For examples of how to write this function, see the HTML implementation files for the JSP
and the ASP.Net server models. Server model implementation files are located in the
Configuration/ServerModels folder.

Arguments

None.

Returns

Dreamweaver expects an object that defines the scripting language signatures. This object
should map the generic signatures to language-specific ones.

getServerExtension()

Availability

Dreamweaver UltraDev 4, deprecated in Dreamweaver MX.

Description

This function returns the default file extension of files that use the current server model. The
serverModel object is set to the server model of the currently selected site if no user
document is currently selected.

Arguments

None.

Returns

Dreamweaver expects a string that represents the supported file extensions.

getServerInfo()

Availability

Dreamweaver MX.
426 Server Models

Description

This function returns a JavaScript object that can be accessed from within the JavaScript code.
You can retrieve this object by calling the dom.serverModel.getServerInfo() JavaScript
function. Furthermore, serverName, serverLanguage, and serverVersion are special
properties, which you can access through the following JavaScript functions:
dom.serverModel.getServerName()
dom.serverModel.getServerLanguage()
dom.serverModel.getServerVersion()

Arguments

None.

Returns

Dreamweaver expects an object that contains the properties of your server model.

Example
var obj = new Object();
obj.serverName = "ASP";
obj.serverLanguage = "JavaScript";
obj.serverVersion = "2.0";
...
return obj;

getServerLanguages()

Availability

Dreamweaver UltraDev 1, deprecated in Dreamweaver MX.

Description

This function returns the supported scripting languages of a server model with an array of
strings. Dreamweaver uses these strings to populate the Default Scripting Language list that is
found in the App Server category in the Site Definition dialog box.

In earlier versions of Dreamweaver, a server model could support multiple scripting languages;
for example, the ASP server model supports JavaScript and VBScript.

N
O

T
E

The Default Scripting Language list exists only in Dreamweaver 4 and earlier. For
Dreamweaver MX and later, the Site Definition dialog box does not list supported
scripting languages, nor does Dreamweaver use the getServerLanguages() function.
Dreamweaver does not use this function because each server model has only one server
language in Dreamweaver.
The Server Model API functions 427

If you want a file in the ServerFormats folder to apply only to a specific scripting language,
add the following statement so it is the first line in the HTML file:
<!-- SCRIPTING-LANGUAGE=XXX -->

In this example, XXX represents the scripting language. This statement causes the server
behavior to appear in the Plus (+) menu of the Server Behaviors panel only when the currently
selected scripting language is XXX.

Arguments

None.

Returns

Dreamweaver expects an array of strings that represent the supported scripting languages.

getServerModelExtDataNameUD4()

Availability

Dreamweaver MX.

Description

This function returns the server model implementation name that Dreamweaver should
use when accessing the UltraDev 4 extension data files that reside in the Configurations/
ExtensionData folder.

Arguments

None.

Returns

Dreamweaver expects a string, such as "ASP/JavaScript".

getServerModelDelimiters()

Availability

Dreamweaver MX.

Description

This function returns the script delimiters that the application server uses, and it indicates
whether each delimiter can participate in merging code blocks. You can access this returned
value from JavaScript by calling the dom.serverModel.getDelimiters() function.
428 Server Models

Arguments

None.

Returns

Dreamweaver expects an array of objects where each object contains the following three
properties:

■ The startPattern property is a regular expression that matches the opening script
delimiter (such as "<%").

■ The endPattern property is a regular expression that matches the closing script delimiter
(such as "%>").

■ The participateInMerge property is a Boolean value that specifies whether the content
enclosed in the listed delimiters should (true) or should not (false) participate in
block merging.

getServerModelDisplayName()

Availability

Dreamweaver MX.

Description

This function returns the name that should appear in the user interface for this server model.
You can access this value from JavaScript by calling the
dom.serverModel.getDisplayName() function.

Arguments

None.

Returns

Dreamweaver expects a string, such as "ASP JavaScript".

getServerModelFolderName()

Availability

Dreamweaver MX.
The Server Model API functions 429

Description

This function returns the folder name to use for this server model within the Configuration
folder. You can access this value from JavaScript by calling the
dom.serverModel.getFolderName() function.

Arguments

None.

Returns

Dreamweaver expects a string, such as "ASP_JS".

getServerSupportsCharset()

Availability

Dreamweaver MX.

Description

This function returns a true value if the current server supports the specified character set.
From JavaScript, you can determine whether the server model supports a specific character set
by calling the dom.serverModel.getServerSupportsCharset() function.

Arguments
metaCharSetString

■ The metaCharSetString argument is a string that holds the value of the documents
"charset=" attribute.

Returns

Dreamweaver expects a Boolean value.

getVersionArray()

Availability

Dreamweaver UltraDev 1, deprecated in Dreamweaver MX.

Description

This function retrieves the mapping of server technologies to version numbers. This function
is called by the dom.serverModel.getServerVersion() function.
430 Server Models

Arguments

None.

Returns

Dreamweaver expects an array of version objects, each with a version name and version value,
as listed in the following examples:

■ ASP version 2.0
■ ADODB version 2.1
The Server Model API functions 431

432 Server Models

20

CHAPTER 20

Data Translators
Data translators translate specialized markup—server-side includes, conditional JavaScript
statements, or other code such as PHP3, JSP, CFML, or ASP—into code that Macromedia
Dreamweaver 8 can read and display. In Dreamweaver, you can translate attributes within tags
as well as entire tags or blocks of code. All data translators—block/tag or attribute—are
HTML files.

Translated tags or blocks of code must be enclosed in locked regions to preserve the original
markup. Translated attributes do not require locks, which makes it simple to inspect the tags
that contain them.

Data translation—especially for entire tags or blocks of code—might involve complex
operations that either cannot be done with JavaScript or that can be done more efficiently
using C. If you are familiar with C or C++, you should also read Chapter 21, “C-Level
Extensibility,” on page 457.

The following table lists the files you use to create a data translator:

Path File Description

Configuration/ThirdPartyTags/ language.xml Contains information about tags in the
markup language.

Configuration/thirdPartyTags language.gif Icon for tags in the language.

Configuration/Translators/ language.htm Contains JavaScript functions for the
data translator.
433

How data translators work
Dreamweaver handles all translator files the same way, regardless of whether they translate
entire tags or only attributes. At startup, Dreamweaver reads all the files in the Configuration/
Translators folder and calls the getTranslatorInfo() function to obtain information about
the translator. Dreamweaver ignores any file in which the getTranslatorInfo() function
does not exist or contains an error that causes it to be undefined.

Dreamweaver also calls the translateMarkup() function in all applicable translator files (as
specified in the Translation preferences) whenever the user might add new content or change
existing content that needs translation. Dreamweaver calls the translateMarkup() function
when the user performs one of the following actions:

■ Opens a file in Dreamweaver
■ Switches back to Design view after making changes in the HTML panel or in Code view
■ Changes the properties of an object in the current document
■ Inserts an object (using either the Objects panel or the Insert menu)
■ Refreshes the current document after making changes to it in another application
■ Applies a template to the document
■ Pastes or drags content into or within the Document window
■ Saves changes to a dependent file
■ Invokes a command, behavior, server behavior, Property inspector, or other extension that

sets the innerHTML or outerHTML property of any tag object or the data property of any
comment object

■ Selects File > Convert > 3.0 Browser Compatible
■ Selects Modify > Convert > Convert Tables to Layers
■ Selects Modify > Convert > Convert Layers to Tables
■ Changes a tag or attribute in the Quick Tag Editor and presses Tab or Enter

N
O

T
E

To prevent JavaScript errors from interfering with startup, errors in any translator file are
reported only after all translators are loaded. For more information on debugging
translators, see “Finding bugs in your translator” on page 442.
434 Data Translators

Determining what kind of translator
to use
All translators must contain the getTranslatorInfo() and translateMarkup() functions,
and they must reside in the Configuration/Translators folder. They differ, however, in the
kind of code that they insert into the user’s document and in how that code must be
inspected, as described in the following list:

■ To translate small pieces of server markup that determine attribute values or that
conditionally add attributes to a standard HTML tag, write an attribute translator.
Standard HTML tags that contain translated attributes can be inspected with the Property
inspectors that are built into Dreamweaver. It is not necessary to write a custom Property
inspector (see “Adding a translated attribute to a tag” on page 435).

■ To translate an entire tag (for example, a server-side include) or a block of code (for
example, JavaScript, ColdFusion, PHP, or other scripting), write a block/tag translator.
The code that is generated by a block/tag translator cannot be inspected with the Property
inspectors that are built into Dreamweaver. You must write a custom Property inspector
for the translated content if you want users to be able to change the properties of the
original code (see “Locking translated tags or blocks of code” on page 437).

Adding a translated attribute to a tag
Attribute translation relies on the Dreamweaver parser to ignore server markup. By default,
Dreamweaver already ignores the most common kinds of server markup (including ASP,
CFML, and PHP); if you use server markup that has different opening and closing markers,
you must modify the third-party tag database to ensure that your translator works properly.
For more information on modifying the third-party tag database, see “Customizing
Dreamweaver” in Using Dreamweaver.

When Dreamweaver handles preserving the original server markup, the translator generates a
valid attribute value that can be viewed in the Document window. (If you use server markup
only for attributes that do not have a user-visible effect, you do not need a translator.)

The translator creates an attribute value that has a visible effect in the Document window by
adding a special attribute, mmTranslatedValue, to the tag that contains the server markup.
The mmTranslatedValue attribute and its value are not visible in the HTML panel or in
Code view, nor are they saved with the document.
Adding a translated attribute to a tag 435

The mmTranslatedValue attribute must be unique within the tag. If it is likely that your
translator needs to translate more than one attribute in a single tag, you must add a routine in
the translator that appends numbers to the mmTranslatedValue attribute (for example,
mmTranslatedValue1, mmTranslatedValue2, and so on).

The value of the mmTranslatedValue attribute must be a URL-encoded string that contains
at least one valid attribute/value pair. This means that
mmTranslatedValue="src=%22open.jpg%22" is a valid translation for both src="<? if
(dayType == weekday) then open.jpg else closed.jpg" ?> and <? if (dayType ==
weekday) then src="open.jpg" else src="closed.jpg" ?>.
mmTranslatedValue="%22open.jpg%22" is not valid for either example because it contains
only the value, not the attribute.

Translating more than one attribute at a time
The mmTranslatedValue attribute can contain more than one valid attribute/value pair.
Consider the following untranslated code:
<img <? if (dayType==weekday) then src="open.jpg" width="320" ¬

height="100" else
src="closed.jpg" width="100" height="320" ?> alt="We're open 24 ¬
hours a day from
12:01am Monday until 11:59pm Friday">

The following example shows how the translated markup might appear:
<img <? if (dayType==weekday) then src="open.jpg" width="320" ¬
height="100" else
src="closed.jpg" width="100" height="320" ?>
mmTranslatedValue="src=%22open.jpg%22 width=%22320%22 ¬

height=%22100%22"
alt="We're open 24 hours a day from 12:01am Monday until 11:59pm ¬
Friday">

The spaces between the attribute/value pairs in the mmTranslatedValue attribute are not
encoded. Because Dreamweaver looks for these spaces when it attempts to render the
translated value, each attribute/value pair in the mmTranslatedValue attribute must be
encoded separately and then pieced back together to form the full mmTranslatedValue
attribute. For an example of this process, see “A simple attribute translator example”
on page 443.
436 Data Translators

Inspecting translated attributes
When server markup specifies a single attribute and the attribute is represented in a Property
inspector, Dreamweaver displays the server markup in the Property inspector, as shown in the
following figure:

The markup appears whether or not a translator is associated with it. The translator runs
whenever the user edits the server markup that appears in the Property inspector.

When server markup controls more than one attribute in a tag, the server markup does not
appear in the Property inspector. However, the lightning bolt icon shows that translated
markup exists for the selected element

The text boxes in the Property inspector are editable; users can enter values for attributes that
might be controlled by server markup, which results in duplicate attributes. If both a
translated value and a regular value are set for a particular attribute, Dreamweaver displays the
translated value in the Document window. You must decide whether your translator searches
for duplicate attributes and removes them.

Locking translated tags or blocks of code
In most cases, you want a translator to change the markup so that Dreamweaver can display it,
but you want to save the original markup, not the changes. For such cases, Dreamweaver
provides special XML tags in which to wrap translated content and to refer to the original
code.

When you use these XML tags, the contents of the original attributes are duplicated in Code
view. If the file is saved, the original, untranslated markup is written to the file. The
untranslated content is what Dreamweaver displays in Code view.

N
O

T
E

The lightning bolt icon does not appear when text or table cells, rows, or columns are
selected. Translation continues if the user edits server markup in the panel and a
translator exists to handle that type of markup.
Locking translated tags or blocks of code 437

The syntax of the XML tags is shown in the following example:
<MM:BeginLock translatorClass="translatorClass" ¬
type="tagNameOrType" depFiles="dependentFilesList" ¬
orig="encodedOrignalMarkup">
Translated content
<MM:EndLock>

The italicized values in this example have the following significance:

■ The translatorClass value is the unique identifier for the translator; it is the first string
in the array that the getTranslatorInfo() function returns.

■ The tagNameOrType value is a string that identifies the type of markup (or the tag name
that is associated with the markup) that is contained in the lock. The string can contain
only alphanumeric, hyphen (-), or underscore (_) characters. You can check this value in
the canInspectSelection() function of a custom Property inspector to determine
whether the Property inspector is the right one for the content. For more information, see
“Creating Property inspectors for locked content” on page 439. Locked content cannot be
inspected by the Dreamweaver built-in Property inspectors. For example, specifying
type="IMG" does not make the Image panel appear.

■ The dependentFilesList value is a string that contains a comma-separated list of files
on which the locked markup depends. Files are referenced as URLs, relative to the user’s
document. If the user updates one of the files named in the dependentFilesList string,
Dreamweaver automatically retranslates the content in the document that contains the
list.

■ The encodedOriginalMarkup value is a string that contains the original, untranslated
markup, encoded using a small subset of URL encoding (use %22 for ", %3C for <,
%3E for >, and %25 for %). The quickest way to URL-encode a string is to use the
escape() method. For example, if myString equals '',
escape(myString) returns %3Cimg%20src=%22foo.gif%22%3E.

The following example shows the locked portion of code that might be generated from the
translation of the server-side include <!--#include virtual="/footer.html" -->:
<MM:BeginLock translatorClass="MM_SSI" type="ssi" ¬
depFiles="C:\sites\webdev\footer.html" orig="%3C!--#include ¬
virtual=%22/footer.html%22%20--%3E">
<!-- begin footer -->
<CENTER>
<HR SIZE=1 NOSHADE WIDTH=100%>

[home]
[products]
[services]
438 Data Translators

[support]
[about us]
[help]
</CENTER>
<!-- end footer -->
<MM:EndLock>

Creating Property inspectors for locked
content
After you create a translator, you need to create a Property inspector for the content so the
user can change its properties (for example, the file to be included or one of the conditions in
a conditional statement). Inspecting translated content is a unique problem for several
reasons:

■ The user might want to change the properties of the translated content, and those changes
must be reflected in the untranslated content.

■ The Document Object Model (DOM) contains the translated content (that is, the lock
tags and the tags they surround are nodes in the DOM), but the outerHTML property of
the documentElement object and the dreamweaver.getSelection() and
dreamweaver.nodeToOffsets() functions act on the untranslated source.

■ The tags you inspect are different before and after translation.

A Property inspector for the HAPPY tag might have a comment that looks similar to the
following example:
<!-- tag:HAPPY,priority:5,selection:exact,hline,vline, attrName:xxx,¬

attrValue:yyy -->

The Property inspector for the translated HAPPY tag, however, would have a comment that
looks similar to the following example:
<!-- tag:*LOCKED*,priority:5,selection:within,hline,vline -->

The canInspectSelection() function for the untranslated HAPPY Property inspector is
simple. Because the selection type is exact, it can return a value of true without further
analysis. For the translated HAPPY Property inspector, this function is more complicated; the
keyword *LOCKED* indicates that the Property inspector is appropriate when the selection is
within a locked region, but because a document can have several locked regions, further
checks must be performed to determine whether the Property inspector matches this
particular locked region.
Creating Property inspectors for locked content 439

Another problem is inherent in inspecting translated content. When you call the
dom.getSelection() function, the values that return by default are offsets into the
untranslated source. To expand the selection properly so that the locked region (and only the
locked region) is selected, use the following technique:
var currentDOM = dw.getDocumentDOM();
var offsets = currentDOM.getSelection();
var theSelection = currentDOM.offsetsToNode(offsets[0],offsets[0]+1);

Using offsets[0]+1 as the second argument ensures that you remain within the opening
lock tag when you convert the offsets to a node. If you use offsets[1] as the second
argument, you risk selecting the node above the lock.

After you make the selection (after ensuring that its nodeType is node.ELEMENT_NODE), you
can inspect the type attribute to see if the locked region matches this Property inspector, as
shown in the following example:
if (theSelection.nodeType == node.ELEMENT_NODE && ¬
theSelection.getAttribute('type') == 'happy'){

return true;
}else{

return false
}

To populate the text boxes in the Property inspector for the translated tag, you must parse the
value of the orig attribute. For example, if the untranslated code is <HAPPY TIME="22"> and
the Property inspector has a Time text box, you must extract the value of the TIME attribute
from the orig string:
function inspectSelection() {

var currentDOM = dw.getDocumentDOM();
var currSelection = currentDOM.getSelection();
var theObj = currentDOM.offsetsToNode¬
(curSelection[0],curSelection[0]+1);

if (theObj.nodeType != Node.ELEMENT_NODE) {
return;

}

// To convert the encoded characters back to their
// original values, use the unescape() method.
var origAtt = unescape(theObj.getAttribute("ORIG"));

// Convert the string to lowercase for processing
var origAttLC = origAtt.toLowerCase();

var timeStart = origAttLC.indexOf('time="');
var timeEnd = origAttLC.indexOf('"',timeStart+6);
var timeValue = origAtt.substring(timeStart+6,timeEnd);
440 Data Translators

document.layers['timelayer'].document.timeForm.timefield.¬
value = timeValue;

}

After you parse the orig attribute to populate the boxes in the Property inspector for the
translated tag, the next step is probably to set the value of the orig attribute if the user
changes the value in any of the text boxes. You might find restrictions against making changes
in a locked region. You can avoid this problem by changing the original markup and
retranslating.

The Property inspector for translated server-side includes (the ssi_translated.js file in the
Configuration/Inspectors folder) demonstrates this technique in its setComment() function.
Rather than rewriting the orig attribute, the Property inspector assembles a new server-side
include comment. It inserts that comment into the document, replacing the old one by
rewriting the contents of the document, which generates a new orig attribute. The following
code summarizes this technique:
// Assemble the new include comment. radioStr and URL are
// variables defined earlier in the code.
newInc = "<!--#include " + radioStr + "=" + '"' + URL + '"' ¬
+" -->";

// Get the contents of the document.
var entireDocObj = dreamweaver.getDocumentDOM();
var docSrc = entireDocObj.documentElement.outerHTML;

// Store everything up to the SSI comment and everything after
// the SSI comment in the beforeSelStr and afterSelStr variables.
var beforeSelStr = docSrc.substring(0, curSelection[0]);
var afterSelStr = docSrc.substring(curSelection[1]);

// Assemble the new contents of the document.
docSrc = beforeSelStr + newInc + afterSelStr;

// Set the outerHTML of the HTML tag (represented by
// the documentElement object) to the new contents,
// and then set the selection back to the locked region
// surrounding the SSI comment.
entireDocObj.documentElement.outerHTML = docSrc;
entireDocObj.setSelection(curSelection[0], curSelection[0]+1);
Creating Property inspectors for locked content 441

Finding bugs in your translator
If the translateMarkup() function contains certain types of errors, the translator loads
properly, but it fails without an error message when you invoke it. Although failing silently
prevents Dreamweaver from becoming unstable, it can hinder development, especially when
you need to find one small syntax error in multiple lines of code.

If your translator fails, one effective debugging method is to turn the translator into a
command, as described in the following steps:

1. Copy the entire contents of the translator file to a new document, and save it in the
Configuration/Commands folder inside the Dreamweaver application folder.

2. At the top of the document, between the SCRIPT tags, add the following function:
function commandButtons(){

return new Array("OK","translateMarkup(dreamweaver.¬
getDocumentPath('document'), dreamweaver.getSiteRoot(), ¬
dreamweaver.getDocumentDOM().documentElement.outerHTML); ¬
window.close()", "Cancel", "window.close()");

}

3. At the end of the translateMarkup() function, comment out the return
whateverTheReturnValueIs line, and replace it with
dreamweaver.getDocumentDOM().documentElement.outerHTML =

whateverTheReturnValueIs, as shown in the following example:
// return theCode;
dreamweaver.getDocumentDOM().documentElement.outerHTML = ¬
theCode;

}
/* end of translateMarkup() */

4. In the BODY of the document, add the following form with no text boxes:
<body>
<form>
Hello.
</form>
</body>

5. Restart Dreamweaver, and select your translator command from the Commands menu.
When you click OK, the translateMarkup() function is called, which simulates
translation.

If no error message appears and translation still fails, you probably have a logic error in
your code.
442 Data Translators

6. Add alert() statements in strategic spots throughout the translateMarkup() function
so you can make sure you’re getting the proper branches and so you can check the values
of variables and properties at different points:
for (var i=0; i< foo.length; i++){

alert("we're at the top of foo.length array, and the value ¬
of i is " + i);
/* rest of loop */

}

7. After adding the alert() statements, select your command from the Commands menu,
click Cancel, and select it again. This process reloads the command file and incorporates
your changes.

A simple attribute translator example
To better understand attribute translation, it’s helpful to look at an example. The following
translator is Pound Conditional (Poco) markup, a syntax that’s somewhat similar to ASP or
PHP.

You create the attribute translator by performing the following steps:

■ Creating the tagspec tag
■ Creating the icon
■ Creating the attribute translator

Creating the tagspec tag
The first step in making this translator work properly is to create a tagspec tag for Poco
markup, which prevents Dreamweaver from parsing the untranslated Poco statements.

To create the tagspec tag:

1. Create a new blank file.

2. Enter the following:
<tagspec tag_name="poco" start_string="<#" end_string="#>" ¬
detect_in_attribute="true" icon="poco.gif" icon_width="17" ¬
icon_height="15"></tagspec>

3. Save the file as poco.xml in the Configuration/ThirdPartyTags folder.
A simple attribute translator example 443

Creating the icon
Next, you create the icon for Poco tags.

To create the icon:

1. Create an image file that is 18 x 18 pixels for the Poco tags icon.

2. Save the file as poco.gif in the Configuration/ThirdPartyTags folder.

Creating the attribute translator
You create an HTML file that contains the functions necessary for the attribute translator.

To create the HTML file:

1. Create a new blank file.

2. Enter the following:
<html>
<head>
<title>Conditional Translator</title>
<meta http-equiv="Content-Type" content="text/html; charset=">
<script language="JavaScript">

/***
 * This translator handles the following statement syntaxes: *
 * <# if (condition) then foo else bar #> *
 * <# if (condition) then att="foo" else att="bar" #> *
 * <# if (condition) then att1="foo" att2="jinkies" *
 * att3="jeepers" else att1="bar" att2="zoinks" #> *
 * *
 * It does not handle statements with no else clause. *
 ***/

var count = 1;

function translateMarkup(docNameStr, siteRootStr, inStr){
var count = 1;
// Counter to ensure unique mmTranslatedValues
var outStr = inStr;
// String that will be manipulated
var spacer = "";
// String to manage space between encoded attributes
var start = inStr.indexOf('<# if'); // 1st instance of Pound Conditional

code

// Declared but not initalized. //
var attAndValue;
// Boolean indicating whether the attribute is part of
444 Data Translators

// the conditional statement
var trueStart;
// The beginning of the true case
var falseStart;
// The beginning of the false case
var trueValue;
// The HTML that would render in the true case
var attName;
// The name of the attribute that is being'
// set conditionally.
var equalSign;
// The position of the equal sign just to the
// left of the <#, if there is one
var transAtt;
// The entire translated attribute
var transValue;
// The value that must be URL-encoded
var back3FromStart;
// Three characters back from the start position
// (used to find equal sign to the left of <#
var tokens;
// An array of all the attributes set in the true case
var end;
// The end of the current conditional statement.

// As long as there's still a <# conditional that hasn't been
// translated
while (start != -1){
 back3FromStart = start-3;
 end = outStr.indexOf(' #>',start);
 equalSign = outStr.indexOf('="<# if',back3FromStart);
 attAndValue = (equalSign != -1)?false:true;
 trueStart = outStr.indexOf('then', start);
 falseStart = outStr.indexOf(' else', start);
 trueValue = outStr.substring(trueStart+5, falseStart);
 tokens = dreamweaver.getTokens(trueValue,' ');

 // If attAndValue is false, find out what attribute you're
 // translating by backing up from the equal sign to the
 // first space. The substring between the space and the
 // equal sign is the attribute.

if (!attAndValue){
 for (var i=equalSign; i > 0; i--){
 if (outStr.charAt(i) == " "){
 attName = outStr.substring(i+1,equalSign);
 break;
 }
 }
A simple attribute translator example 445

 transValue = attName + '="' + trueValue + '"';
 transAtt = ' mmTranslatedValue' + count + '="' + ¬
 escape(transValue) + '"';
 outStr = outStr.substring(0,end+4) + transAtt + ¬
 outStr.substring(end+4);

 // If attAndValue is true, and tokens is greater than
 // 1, then trueValue is a series of attribute/value
 // pairs, not just one. In that case, each attribute/value
 // pair must be encoded separately and then added back
 // together to make the translated value.
 }else if (tokens.length > 1){
 transAtt = ' mmTranslatedValue' + count + '="'
 for (var j=0; j < tokens.length; j++){
 tokens[j] = escape(tokens[j]);
 if (j>0){
 spacer=" ";
 }
 transAtt += spacer + tokens[j];
 }
 transAtt += '"';
 outStr = outStr.substring(0,end+3) + transAtt + ¬
 outStr.substring(end+3)

 // If attAndValue is true and tokens is not greater
 // than 1, then trueValue is a single attribute/value pair.
 // This is the simplest case, where all that is necessary is
 // to encode trueValue.
 }else{
 transValue = trueValue;
 transAtt = ' mmTranslatedValue' + count + '="' + ¬
 escape(transValue) + '"';
 outStr = outStr.substring(0,end+3) + transAtt + ¬
 outStr.substring(end+3);
 }

 // Increment the counter so that the next instance
 // of mmTranslatedValue will have a unique name, and
 // then find the next <# conditional in the code.
 count++;
 start = outStr.indexOf('<# if',end);
 }

 // Return the translated string.
 return outStr
}

function getTranslatorInfo(){
 returnArray = new Array(7);

446 Data Translators

 returnArray[0] = "Pound_Conditional"; // The translatorClass
 returnArray[1] = "Pound Conditional Translator"; // The title
 returnArray[2] = "2"; // The number of extensions
 returnArray[3] = "html"; // The first extension
 returnArray[4] = "htm"; // The second extension
 returnArray[5] = "1"; // The number of expressions
 returnArray[6] = "<#"; // The first expression
 returnArray[7] = "byString"; //
 returnArray[8] = "50"; //

 return returnArray
}

</script>
</head>

<body>
</body>
</html>

3. Save the file as Poco.htm in the Configuration/Translators folder.

A simple block/tag translator example
To help understand translation, look at a translator that is written entirely in JavaScript,
which does not rely on a C library for any functionality. The following translator example
would be more efficient if it were written in C, but the JavaScript version is simpler, which
makes it perfect for demonstrating how translators work.

As with most translators, this one is designed to mimic server behavior. Assume that your web
server is configured to replace the KENT tag with a different picture of an engineer, depending
on the day of the week, the time of day, and the user’s platform. The translator does the same
thing, only locally.

To create the block/tag translator:

1. Create a new blank file.

2. Enter the following code:
<html>
<head>
<title>Kent Tag Translator</title>
<meta http-equiv="Content-Type" content="text/html; charset=">
<script language="JavaScript">
/**
 * The getTranslatorInfo() function provides information *
 * about the translator, including its class and name, *
 * the types of documents that are likely to contain the *
A simple block/tag translator example 447

 * markup to be translated, the regular expressions that *
 * a document containing the markup to be translated *
 * would match (whether the translator should run on all *
 * files, no files, in files with the specified *
 * extensions, or in files matching the specified *
 * expressions). *
 **/
function getTranslatorInfo(){
 //Create a new array with 6 slots in it
 returnArray = new Array(6);

 returnArray[0] = "DREAMWEAVER_TEAM"// The translatorClass
 returnArray[1] = "Kent Tags"// The title
 returnArray[2] = "0" // The number of extensions
 returnArray[3] = "1"// The number of expressions
 returnArray[4] = "<kent"// Expression
 returnArray[5] = "byExpression"// run if the file contains "<kent"
 return returnArray;
}

/

* The translateMarkup() function performs the actual translation.
*

* In this translator, the translateMarkup() function is written
*

* entirely in JavaScript (that is, it does not rely on a C library) --
*

* and it's also extremely inefficient. It's a simple example, however,
*

* which is good for learning. *
**

**/
function translateMarkup(docNameStr, siteRootStr, inStr){
 var outStr = ""; // The string to be returned after

translation
 var start = inStr.indexOf('<kent>'); // The first position of the

KENT tag
 // in the document.
 var replCode = replaceKentTag(); // Calls the replaceKentTag()

function
 // to get the code that will replace

KENT.
 var outStr = ""; // The string to be returned after

translation

 //If the document does not contain any content, terminate the
translation.

 if (inStr.length <= 0){
448 Data Translators

 return "";
 }

 // As long as start, which is equal to the location in inStr of the
 // KENT tag, is not equal to -1 (that is, as long as there is another
 // KENT tag in the document)
 while (start != -1){
 // Copy everything up to the start of the KENT tag.
 // This is very important, as translators should never change
 // anything other than the markup that is to be translated.
 outStr = inStr.substring(0, start);
 // Replace the KENT tag with the translated HTML, wrapped in special
 // locking tags. For more information on the replacement operation,

see
 // the comments in the replaceKentTag() function.
 outStr = outStr + replCode;

 // Copy everything after the KENT tag.
 outStr = outStr + inStr.substring(start+6);

 // Use the string you just created for the next trip through
 // the document. This is the most inefficient part of all.
 inStr = outStr;
 start = inStr.indexOf('<kent>');

 }
 // When there are no more KENT tags in the document, return outStr.
 return outStr;
}

/**
* The replaceKentTag() function assembles the HTML that will *
* replace the KENT tag and the special locking tags that will *
* surround the HTML. It calls the getImage() function to *
* determine the SRC of the IMG tag. *
**/
function replaceKentTag(){
 // The image to display.
 var image = getImage();
 // The location of the image on the local disk.
 var depFiles = dreamweaver.getSiteRoot() + image;
 // The IMG tag that will be inserted between the lock tags.
 var imgTag = '<IMG SRC="/' + image + '" WIDTH="320" HEIGHT="240"

ALT="Kent">\n';
 // 1st part of the opening lock tag. The remainder of the tag is

assembled below.
 var start = '<MM:BeginLock translatorClass="DREAMWEAVER_TEAM"

type="kent"';
 // The closing lock tag.
 var end = '<MM:EndLock>';
A simple block/tag translator example 449

 //Assemble the lock tags and the replacement HTML.
 var replCode = start + ' depFiles="' + depFiles + '"';
 replCode = replCode + ' orig="%3Ckent%3E">\n';
 replCode = replCode + imgTag;
 replCode = replCode + end;

 return replCode;
}

/**
 * The getImage() function determines which image to display *
 * based on the day of the week, the time of day and the *
 * user's platform. The day and time are figured based on UTC *
 * time (Greenwich Mean Time) minus 8 hours, which gives *
 * Pacific Standard Time (PST). No allowance is made for Daylight *
 * Savings Time in this routine. *
**/
function getImage(){
 var today = new Date(); // Today's date & time.
 var day = today.getUTCDay(); // Day of the week in the GMT time

zone.
 // 0=Sunday, 1=Monday, and so on.
 var hour = today.getUTCHours(); // The current hour in GMT, based on

the
 // 24-hour clock.
 var SFhour = hour - 8; // The time in San Francisco, based

on the
 // 24-hour clock.
 var platform = navigator.platform; // User's platform. All Windows

machines
 // are identified by Dreamweaver as

"Win32",
 // all Macs as "MacPPC".
 var imageRef; // The image reference to be returned.
// If SFhour is negative, you have two adjustments to make.
 // First, subtract one from the day count because it is already the

wee
 // hours of the next day in GMT. Second, add SFhour to 24 to
 // give a valid hour in the 24-hour clock.
 if (SFhour < 0){
 day = day - 1;
 // The day count back one would make it negative, and it's

Saturday,
 // so set the count to 6.
 if (day < 0){
 day = 6;
 }
 SFhour = SFhour + 24;
 }
450 Data Translators

 // Now determine which photo to show based on whether it's a workday or

a
 // weekend; what time it is; and, if it's a time and day when Kent is
 // working, what platform the user is on.

 //If it's not Sunday
 if (day != 0){
 //And it's between 10am and noon, inclusive
 if (SFhour >= 10 && SFhour <= 12){
 imageRef = "images/kent_tiredAndIrritated.jpg";
 //Or else it's between 1pm and 3pm, inclusive
 }else if (SFhour >= 13 && SFhour <= 15){
 imageRef = "images/kent_hungry.jpg";
 //Or else it's between 4pm and 5pm, inclusive
 }else if (SFhour >= 16 && SFhour <= 17){
 //If user is on Mac, show Kent working on Mac
 if (platform == "MacPPC"){
 imageRef = "images/kent_gettingStartedOnMac.jpg";
 //If user is on Win, show Kent working on Win
 }else{
 imageRef = "images/kent_gettingStartedOnWin.jpg";
 }
 //Or else it's after 6pm but before the stroke of midnight
 }else if (SFhour >= 18){
 //If it's Saturday
 if (day == 6){
 imageRef = "images/kent_dancing.jpg";
 //If it's not Saturday, check the user's platform
 }else if (platform == "MacPPC"){
 imageRef = "images/kent_hardAtWorkOnMac.jpg";
 }else{
 imageRef = "images/kent_hardAtWorkOnWin.jpg";
 }
 }else{
 imageRef = "images/kent_sleeping.jpg";
 }
 //If it's after midnight and before 10am, or anytime on Sunday
 }else{
 imageRef = "images/kent_sleeping.jpg";
 }

 return imageRef;
}

</script>
</head>

<body>
</body>
</html>
A simple block/tag translator example 451

3. Save the file as kent.htm in the Configuration/Translators folder.

The Data Translator API
This section describes the functions used to define translators for Dreamweaver.

getTranslatorInfo()

Description

This function provides information about the translator and the files it can affect.

Arguments

None.

Returns

An array of strings. The elements of the array must appear in the following order:

1. The translatorClass string uniquely identifies the translator. This string must begin
with a letter and can contain only alphanumeric characters, hyphens (-), and underscores
(_).

2. The title string describes the translator in no more than 40 characters.

3. The nExtensions string specifies the number of file extensions to follow. If nExtensions
is zero, the translator can run on any file. If nExtensions is zero, nRegExps is the next
element in the array.

4. The extension string specifies a file extension (for example, "htm" or "SHTML") that works
with this translator. This string is not case-sensitive and should not contain a leading
period. The array should contain the same number of extension elements that are
specified in nExtensions.

5. The nRegExps string specifies the number of regular expressions that follow. If nRegExps
is zero, runDefault is the next element in the array.

6. The regExps string specifies a regular expression that you can check. The array should
contain the same number of regExps elements as are specified in nRegExps, and at least
one of the regExps elements must match a piece of the document’s source code before the
translator can act on a file.
452 Data Translators

7. The runDefault string specifies when this translator executes. The following list gives the
possible string values:

8. The priority string specifies the default priority for running this translator. The priority
is a number between 0 and 100. If you do not specify a priority, the default priority is 100.
The highest priority is 0, and 100 is the lowest. When multiple translators apply to a
document, this setting controls the order in which the translators are applied. The highest
priority is applied first. When multiple translators have the same priority, they are applied
in alphabetical order by translatorClass.

Example

The following instance of the getTranslatorInfo() function gives information about a
translator for server-side includes:
function getTranslatorInfo(){

var transArray = new Array(11);

transArray[0] = "SSI";
transArray[1] = "Server-Side Includes";
transArray[2] = "4";
transArray[3] = "htm";
transArray[4] = "stm";
transArray[5] = "html";
transArray[6] = "shtml";
transArray[7] = "2";
transArray[8] = "<!--#include file";
transArray[9] = "<!--#include virtual";
transArray[10] = "byExtension";

String Definition

"allFiles" Sets the translator to always execute.

"noFiles" Sets the translator to never execute.

"byExtension" Sets the translator to execute for files that have one of the file
extensions that are specified in the extension.

"byExpression" Sets the translator to execute if the document contains a match
for one of the specified regular expressions.

"bystring" Sets the translator to execute if the document contains a match
for one of the specified strings.

N
O

T
E

If you set runDefault to "byExtension" but do not specify any extensions (see step
4.), the effect is the same as setting "allFiles". If you set runDefault to
"byExpression" but do not specify any expressions (see step 6.), the effect is the
same as setting "noFiles".
The Data Translator API 453

transArray[11] = "50";

return transArray;
}

translateMarkup()

Description

This function performs the translation.

Arguments

docName, siteRoot, docContent

■ The docName argument is a string that contains the file:// URL for the document to be
translated.

■ The siteRoot argument is a string that contains the file:// URL for the root of the site
that contains the document to be translated. If the document is outside a site, this string
might be empty.

■ The docContent argument is a string that contains the contents of the document.

Returns

A string that contains the translated document or an empty string if nothing is translated.

Example

The following instance of the translateMarkup() function calls the C function
translateASP(), which is contained in a dynamic link library (DLL) (Windows) or a code
library (Macintosh) called ASPTrans:
function translateMarkup(docName, siteRoot, docContent){

var translatedString = "";
if (docContent.length > 0){
translatedString = ASPTrans.translateASP(docName, siteRoot, ¬
docContent);
}
return translatedString;

}

For an all-JavaScript example, see “A simple attribute translator example” on page 443 or “A
simple block/tag translator example” on page 447.
454 Data Translators

liveDataTranslateMarkup()

Availability

Dreamweaver UltraDev 1.

Description

This function translates documents when users are using the Live Data window. When the
user selects the View > Live Data command or clicks the Refresh button, Dreamweaver calls
the liveDataTranslateMarkup() function instead of the translateMarkup() function.

Arguments

docName, siteRoot, docContent

■ The docName argument is a string that contains the file:// URL for the document to
be translated.

■ The siteRoot argument is a string that contains the file:// URL for the root of the site
that contains the document to be translated. If the document is outside a site, this string
might be empty.

■ The docContent argument is a string that contains the contents of the document.

Returns

A string that contains the translated document or an empty string if nothing is translated.

Example

The following instance of the liveDataTranslateMarkup() function calls the C function
translateASP(), which is contained in a DLL (Windows) or a code library (Macintosh)
called ASPTrans:
function liveDataTranslateMarkup(docName, siteRoot, docContent){

var translatedString = "";
if (docContent.length > 0){
translatedString = ASPTrans.translateASP(docName, siteRoot, docContent);
}
return translatedString;

}

The Data Translator API 455

456 Data Translators

21

CHAPTER 21

C-Level Extensibility
The C-level extensibility mechanism lets you implement Macromedia Dreamweaver 8
extensibility files using a combination of JavaScript and custom C code. You define functions
using C, bundle them in a dynamic linked library (DLL) or a shared library, save the library in
the Configuration/JSExtensions folder within the Dreamweaver application folder, and then
call the functions from JavaScript using the Dreamweaver JavaScript interpreter.

For example, you might want to define a Dreamweaver object that inserts the contents of a
user-specified file into the current document. Because client-side JavaScript does not provide
support file input/output (I/O), you must write a function in C to provide this functionality.

How integrating C functions works
You can use the following HTML and JavaScript to create a simple Insert Text from File
object. The objectTag() function calls the readContentsOfFile() C function, which is
stored in a library named myLibrary.
<HTML>
<HEAD>
<SCRIPT>
function objectTag() {

fileName = document.forms[0].myFile.value;
return myLibrary.readContentsOfFile(fileName);

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Enter the name of the file to be inserted:
<INPUT TYPE="file" NAME="myFile">
</FORM>
</BODY>
</HTML>
457

The readContentsOfFile() function accepts a list of arguments from the user, retrieves the
filename argument, reads the contents of the file, and returns the contents of the file. For
more information about the JavaScript data structures and functions that appear in the
readContentsOfFile() function, see “C-level extensibility and the JavaScript interpreter”
on page 459.
JSBool
readContentsOfFile(JSContext *cx, JSObject *obj, unsigned int ¬
argc, jsval *argv, jsval *rval)
{

char *fileName, *fileContents;
JSBool success;
unsigned int length;

/* Make sure caller passed in exactly one argument. If not,
 * then tell the interpreter to abort script execution. */
if (argc != 1){

JS_ReportError(cx, "Wrong number of arguments", 0);
return JS_FALSE;
}

/* Convert the argument to a string */
fileName = JS_ValueToString(cx, argv[0], &length);
if (fileName == NULL){

JS_ReportError(cx, "The argument must be a string", 0);
return JS_FALSE;

}

/* Use the string (the file name) to open and read a file */
fileContents = exerciseLeftToTheReader(fileName);

/* Store file contents in rval, which is the return value ¬
 passed
* back to the caller */
success = JS_StringToValue(cx, fileContents, 0, *rval);
free(fileContents);

/* Return true to continue or false to abort the script */
return success;

}

To ensure that the readContentsOfFile() function executes properly and doesn’t cause a
JavaScript error, you must register the function with the JavaScript interpreter by including a
MM_Init() function in your library. When Dreamweaver loads the library at startup, it calls
the MM_Init() function to get the following three pieces of information:

■ The JavaScript name of the function
■ A pointer to the function
■ The number of arguments that the function expects
458 C-Level Extensibility

The following example shows how the MM_Init() function for the library myLibrary
might look:
void
MM_Init()
{

JS_DefineFunction("readContentsOfFile", readContentsOfFile, 1);
}

Your library must include exactly one instance of the following macro:
/* MM_STATE is a macro that expands to some definitions that are
 * needed to interact with Dreamweaver. This macro must
 * be defined exactly once in your library. */
MM_STATE

C-level extensibility and the JavaScript
interpreter
The C code in your library must interact with the Dreamweaver JavaScript interpreter at the
following different times:

■ At startup, to register the library’s functions
■ When the function is called, to parse the arguments that JavaScript is passing to C
■ Before the function returns, to package the return value

To accomplish these tasks, the interpreter defines several data types and exposes an API.
Definitions for the data types and functions that are listed in this section appear in the
mm_jsapi.h file. For your library to work properly, you must include the mm_jsapi.h file with
the following line at the top of each file in your library:
#include "mm_jsapi.h"

Including the mm_jsapi.h file includes, in turn, mm_jsapi_environment.h, which defines the
MM_Environment structure.

N
O

T
E

The library can be implemented in either C or C++, but the file that contains the MM_Init()
function and the MM_STATE macro must be implemented in C. The C++ compiler garbles
function names, which makes it impossible for Dreamweaver to find the MM_Init()
function.
C-level extensibility and the JavaScript interpreter 459

Data types
The JavaScript interpreter defines the following data types.

typedef struct JSContext JSContext
A pointer to this opaque data type passes to the C-level function. Some functions in the API
accept this pointer as one of their arguments.

typedef struct JSObject JSObject
A pointer to this opaque data type passes to the C-level function. This data type represents an
object, which might be an array object or some other object type.

typedef struct jsval jsval
An opaque data structure that can contain an integer, or a pointer to a float, string, or object.
Some functions in the API can read the values of function arguments by reading the contents
of a jsval structure, and some can be used to write the function’s return value by writing a
jsval structure.

typedef enum { JS_FALSE = 0, JS_TRUE = 1 }
JSBool
A simple data type that stores a Boolean value.
460 C-Level Extensibility

The C-level API
The C-level extensibility API consists of the following functions:

typedef JSBool (*JSNative)(JSContext *cx,
JSObject *obj, unsigned int argc, jsval *argv, jsval
*rval)

Description

This function signature describes C-level implementations of JavaScript functions in the
following situations:

■ The cx pointer is a pointer to an opaque JSContext structure, which must be passed to
some of the functions in the JavaScript API. This variable holds the interpreter’s execution
context.

■ The obj pointer is a pointer to the object in whose context the script executes. While the
script is running, the this keyword is equal to this object.

■ The argc integer is the number of arguments being passed to the function.
■ The argv pointer is a pointer to an array of jsval structures. The array is argc elements

in length.
■ The rval pointer is a pointer to a single jsval structure. The function’s return value

should be written to *rval.

The function returns JS_TRUE if successful; JS_FALSE otherwise. If the function returns
JS_FALSE, the current script stops executing and an error message appears.

JSBool JS_DefineFunction()

Description

This function registers a C-level function with the JavaScript interpreter in Dreamweaver.
After the JS_DefineFunction() function registers the C-level function that you specify in
the call argument, you can invoke it in a JavaScript script by referring to it with the name
that you specify in the name argument. The name is case-sensitive.

Typically, this function is called from the MM_Init() function, which Dreamweaver calls
during startup.
The C-level API 461

Arguments

char *name, JSNative call, unsigned int nargs

■ The name argument is the name of the function as it is exposed to JavaScript.
■ The call argument is a pointer to a C-level function. The function must accept the same

arguments as readContentsOfFile, and it must return a JSBool, which indicates success
or failure.

■ The nargs argument is the number of arguments that the function expects to receive.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

char *JS_ValueToString()

Description

This function extracts a function argument from a jsval structure, converts it to a string, if
possible, and passes the converted value back to the caller.

Arguments

JSContext *cx, jsval v, unsigned int *pLength

■ The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
■ The v argument is the jsval structure from which the string is to be extracted.
■ The pLength argument is a pointer to an unsigned integer. This function sets *plength

equal to the length of the string in bytes.

Returns

A pointer that points to a null-terminated string if successful or to a null value on failure.
The calling routine must not free this string when it finishes.

JSBool JS_ValueToInteger()

Description

This function extracts a function argument from a jsval structure, converts it to an integer
(if possible), and passes the converted value back to the caller.

N
O

T
E

Do not modify the returned buffer pointer or you might corrupt the data structures of the
JavaScript interpreter. To change the string, you must copy the characters into another
buffer and create a new JavaScript string.
462 C-Level Extensibility

Arguments

JSContext *cx, jsval v, long *lp

■ The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
■ The v argument is the jsval structure from which the integer is to be extracted.
■ The lp argument is a pointer to a 4-byte integer. This function stores the converted value

in *lp.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

JSBool JS_ValueToDouble()

Description

This function extracts a function argument from a jsval structure, converts it to a double (if
possible), and passes the converted value back to the caller.

Arguments

JSContext *cx, jsval v, double *dp

■ The cx argument is the opaque JSContext pointer that passed to the JavaScript function.
■ The v argument is the jsval structure from which the double is to be extracted.
■ The dp argument is a pointer to an 8-byte double. This function stores the converted

value in *dp.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

JSBool JS_ValueToBoolean()

Description

This function extracts a function argument from a jsval structure, converts it to a Boolean
value (if possible), and passes the converted value back to the caller.

Arguments

JSContext *cx, jsval v, JSBool *bp

■ The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
■ The v argument is the jsval structure from which the Boolean value is to be extracted.
The C-level API 463

■ The bp argument is a pointer to a JSBool Boolean value. This function stores the
converted value in *bp.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

JSBool JS_ValueToObject()

Description

This function extracts a function argument from a jsval structure, converts it to an object (if
possible), and passes the converted value back to the caller. If the object is an array, use
JS_GetArrayLength() and JS_GetElement() to read its contents.

Arguments

JSContext *cx, jsval v, JSObject **op

■ The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
■ The v argument is the jsval structure from which the object is to be extracted.
■ The op argument is a pointer to a JSObject pointer. This function stores the converted

value in *op.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

JSBool JS_StringToValue()

Description

This function stores a string return value in a jsval structure. It allocates a new JavaScript
string object.

Arguments

JSContext *cx, char *bytes, size_t sz, jsval *vp

■ The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
■ The bytes argument is the string to be stored in the jsval structure. The string data is

copied, so the caller should free the string when it is not needed. If the string size is not
specified (see the sz argument), the string must be null-terminated.

■ The sz argument is the size of the string, in bytes. If sz is 0, the length of the
null-terminated string is computed automatically.
464 C-Level Extensibility

■ The vp argument is a pointer to the jsval structure into which the contents of the string
should be copied.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

JSBool JS_DoubleToValue()

Description

This function stores a floating-point number return value in a jsval structure.

Arguments

JSContext *cx, double dv, jsval *vp

■ The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
■ The dv argument is an 8-byte floating-point number.
■ The vp argument is a pointer to the jsval structure into which the contents of the double

should be copied.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

JSVal JS_BooleanToValue()

Description

This function stores a Boolean return value in a jsval structure.

Arguments
JSBool bv

■ The bv argument is a Boolean value: JS_TRUE indicates success; JS_FALSE indicates
failure.

Returns

A JSVal structure that contains the Boolean value that passes to the function as an argument.
The C-level API 465

JSVal JS_IntegerToValue()

Description

This function converts a long integer value to JSVal structure.

Arguments
lv

■ The lv argument is the long integer value that you want to convert to a jsval structure.

Returns

A JSVal structure that contains the integer that was passed to the function as an argument.

JSVal JS_ObjectToValue()

Description

This function stores an object return value in a JSVal. Use JS_ NewArrayObject() to create
an array object; use JS_SetElement() to define its contents.

Arguments

JSObject *obj

■ The obj argument is a pointer to the JSObject object that you want to convert to a
JSVal structure.

Returns

A JSVal structure that contains the object that you passed to the function as an argument.

char *JS_ObjectType()

Description

Given an object reference, the JS_ObjectType() function returns the class name of the
object. For example, if the object is a DOM object, the function returns "Document". If the
object is a node in the document, the function returns "Element". For an array object, the
function returns "Array".

Arguments
JSObject *obj

N
O

T
E

Do not modify the returned buffer pointer or you might corrupt the data structures of the
JavaScript interpreter.
466 C-Level Extensibility

■ Typically, this argument is passed in and converted using the JS_ValueToObject()
function.

Returns

A pointer to a null-terminated string. The caller should not free this string when it finishes.

JSObject *JS_NewArrayObject()

Description

This function creates a new object that contains an array of JSVals.

Arguments

JSContext *cx, unsigned int length, jsval *v

■ The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
■ The length argument is the number of elements that the array can hold.
■ The v argument is an optional pointer to the jsvals to be stored in the array. If the

return value is not null, v is an array that contains length elements. If the return value is
null, the initial content of the array object is undefined and can be set using the
JS_SetElement() function.

Returns

A pointer to a new array object or the value null upon failure.

long JS_GetArrayLength()

Description

Given a pointer to an array object, this function gets the number of elements in the array.

Arguments

JSContext *cx, JSObject *obj

■ The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
■ The obj argument is a pointer to an array object.

Returns

The number of elements in the array or -1 upon failure.
The C-level API 467

JSBool JS_GetElement()

Description

This function reads a single element of an array object.

Arguments

JSContext *cx, JSObject *obj, unsigned int index, jsval *v

■ The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
■ The obj argument is a pointer to an array object.
■ The index argument is an integer index into the array. The first element is index 0, and

the last element is index (length - 1).
■ The v argument is a pointer to a jsval where the contents of the jsval structure in the

array should be copied.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

JSBool JS_SetElement()

Description

This function writes a single element of an array object.

Arguments

JSContext *cx, JSObject *obj, unsigned int index, jsval *v

■ The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
■ The obj argument is a pointer to an array object.
■ The index argument is an integer index into the array. The first element is index 0, and

the last element is index (length - 1).
■ The v argument is a pointer to a jsval structure whose contents should be copied to the

jsval in the array.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.
468 C-Level Extensibility

JSBool JS_ExecuteScript()

Description

This function compiles and executes a JavaScript string. If the script generates a return value,
it returns in *rval.

Arguments

JSContext *cx, JSObject *obj, char *script, unsigned int sz, jsval *rval

■ The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
■ The obj argument is a pointer to the object in whose context the script executes. While

the script is running, the this keyword is equal to this object. Usually this is the
JSObject pointer that passes to the JavaScript function.

■ The script argument is a string that contains JavaScript code. If the string size is not
specified (see the sz argument), the string must be null-terminated.

■ The sz argument is the size of the string, in bytes. If sz is 0, the length of the null-
terminated string is computed automatically.

■ The rval argument is a pointer to a single jsval structure. The function’s return value is
stored in *rval.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

JSBool JS_ReportError()

Description

This function describes the reason for a script error. Call this function before returning the
value JS_FALSE for a script error to give the user information about why the script failed (for
example, “wrong number of arguments”).

Arguments

JSContext *cx, char *error, size_t sz

■ The cx argument is the opaque JSContext pointer that passes to the JavaScript function.
■ The error argument is a string that contains the error message. The string is copied, so

the caller should free the string when it is not needed. If the string size is not specified (see
the sz argument), the string must be null-terminated.

■ The sz argument is the size of the string, in bytes. If sz is 0, the length of the null-
terminated string is computed automatically.
The C-level API 469

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

File Access and Multiuser Configuration
API
Macromedia recommends that you always use the File Access and Multiuser Configuration
API to access the file system through C-level extensions. For files other than configuration
files, the functions access the specified file or folder.

Dreamweaver supports multiple-user configurations for the Windows XP, Windows 2000,
and Mac OS X operating systems.

Typically, you install Dreamweaver in a restricted folder such as C:/Program Folders in
Windows. As a result, only users with Administrator privileges can make changes in the
Dreamweaver Configuration folder. To enable users on multiuser operating systems to create
and maintain individual configurations, Dreamweaver creates a separate Configuration folder
for each user. Whenever Dreamweaver or a JavaScript extension writes to the Dreamweaver
Configuration folder, Dreamweaver automatically writes to the user Configuration folder
instead. This process lets each user customize Dreamweaver configuration settings without
disturbing the customized configurations of other users.

Dreamweaver creates the user Configuration folder in a location where the user has full read
and write access. The location of the user’s Configuration folder depends on the user’s
platform.

For Windows 2000 and Windows XP platforms:
<drive>:\Documents and Settings\<username>\ ¬

Application Data\Macromedia\Dreamweaver 8\Configuration

For Mac OS X platforms:
<drive>:Users:<username>:Library:Application Support: ¬

Macromedia:Dreamweaver 8:Configuration

N
O

T
E

In Windows XP, this folder may be inside a hidden folder.
470 C-Level Extensibility

There are many cases where JavaScript extensions open files and write to the Configuration
folder. JavaScript extensions can access the file system by using DWFile, MMNotes, or
passing a URL to the dreamweaver.getDocumentDOM() function. When an extension
accesses the file system in a Configuration folder, it generally uses the
dw.getConfigurationPath() function and adds the filename, or it gets the path by
accessing the dom.URL property of an open document and adding the filename. An extension
can also get the path by accessing the dom.URL and stripping the filename. The
dw.getConfigurationPath() function and the dom.URL property always return a URL in
the Dreamweaver Configuration folder, even if the document is located in the user
Configuration folder.

Any time a JavaScript extension opens a file in the Dreamweaver Configuration folder,
Dreamweaver intercepts the access and checks the user Configuration folder first. If a
JavaScript extension saves data to disk in the Dreamweaver Configuration folder through
DWFile or MMNotes, Dreamweaver intercepts the call and redirects it to the user
Configuration folder.

For example, in Windows 2000 or Windows XP, if the user asks for "file:///C|/Program
Files/Macromedia/Dreamweaver/Configuration/Objects/Common/Table.htm",
Dreamweaver searches for a Table.htm file in the C:/Documents and Settings/username/
Macromedia/Dreamweaver/Configuration/Objects/Common folder and, if it exists, uses
it instead.

C-level extensions, or shared libraries, must use the File Access and Multiuser Configuration
API to read and write to the Dreamweaver Configuration folder. Using the File Access and
Multiuser Configuration API lets Dreamweaver read and write to the user Configuration
folder and ensures that the file operations do not fail due to insufficient access privileges. If
your C-level extension accesses files in the Dreamweaver Configuration folder that were
created through JavaScript with DWFile, MMNotes, or DOM manipulations, it is essential
that you use the File Access and Multiuser Configuration API because these files might be
located in the user Configuration folder.

When you delete a file from the Dreamweaver Configuration folder, Dreamweaver adds an
entry to a mask file to indicate which files in the Configuration folder should not appear in
the user interface. A masked file or folder does not appear to exist to Dreamweaver although it
might physically exist in the folder.

N
O

T
E

Most JavaScript extensions do not need to be changed to write to the user
Configuration folder. Only C shared libraries that write to the Configuration folder need to
be updated to use the File Access and Multiuser Configuration API functions.
File Access and Multiuser Configuration API 471

For example, if you use the trash can icon in the Snippets panel to delete a Snippets folder
called javascript and a file called onepixelborder.csn, Dreamweaver writes a file in the user
Configuration folder called mm_deleted_files.xml, which looks like the following example:
<?xml version = "1.0" encoding="utf-8" ?>

<deleteditems>
<item name="snippets/javascript/" />
<item name="snippets/html/onepixelborder.csn" />
</deleteditems>

As Dreamweaver populates the Snippets panel, it reads all the files in the user’s Configuration/
Snippets folder and all the files in the Dreamweaver Configuration/Snippets folder, except the
Configuration/Snippets/javascript folder and the Configuration/Snippets/html/
onepixelborder.csn file, and it adds the resulting list of files to the Snippets panel list.

If a C-level extension calls the MM_ConfigFileExists() function for the file:///c|Program
Files/Macromedia/Dreamweaver/Configuration/Snippets/javascript/onepixelborder.csn URL,
it returns a value of false. Likewise, if a JavaScript extension tries to call
dw.getDocumentDom("file:///c|Program Files/Macromedia/Dreamweaver/

Configuration/Snippets/javascript/onepixelborder.csn"), it returns a null value.

You can modify the mm_deleted_files.xml file to prevent Dreamweaver from showing files in
the user interface, such as objects, canned content in the new dialog box, and so on. You can
call the MM_DeleteConfigfile() function to add file paths to the mm_deleted_files.xml file.

JS_Object MM_GetConfigFolderList()

Availability

Dreamweaver MX.

Description

This function gets a list of files, folders, or both for the specified folder. If you specify a
configuration folder, the function gets a list of the folders that exists in both the user
Configuration folder and the Dreamweaver Configuration folder, subject to filtering by the
mm_deleted_files.xml file.

Arguments
char *fileURL, char *constraints

■ The char *fileUrl argument is a pointer to a string that names the folder for which you
want a list of the contents. The string must have the format of a file:// URL. The function
accepts valid wildcard characters of asterisks (*) and question marks (?) in the file:// URL
string. Use asterisks (*) to represent one or more unspecified characters, and question
marks (?) to represent a single unspecified character.
472 C-Level Extensibility

■ The char *contstraints argument can be "files" or "directories" or a null value.
If you specify null, the MM_GetConfigFolderList() function returns files and folders.

Returns

JSObject is an array that contains the list of files or folders in either the user Configuration
folder or the Dreamweaver Configuration folder, subject to filtering by the
mm_deleted_files.xml file.

Examples
JSObject *jsobj_array;
jsobj_array = MM_GetConfigFolderList("file:///¬

c|/Program Files/Macromedia/Dreamweaver/Configuration", "directories");

JSBool MM_ConfigFileExists()

Availability

Dreamweaver MX.

Description

This function checks whether the specified file exists. If it is a file in a configuration folder, the
function searches for the file in the user Configuration folder or the Dreamweaver
Configuration folder. The function also checks whether the filename is listed in the
mm_deleted_files.xml file. If the name is listed in this file, the function returns a false value.

Arguments
char *fileUrl

■ The char *fileUrl argument is a pointer to a string that names the desired file, which is
provided in the format of a file:// URL.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

Example
char *dwConfig = “file:///c|/Program Files/Macromedia/Dreamweaver/

Configuration/Extensions.txt”;
int fileno = 0;
if(MM_ConfigFileExists(dwConfig))
{

fileno = MM_OpenConfigFile(dwConfig, “read”);
}

File Access and Multiuser Configuration API 473

int MM_OpenConfigFile()

Availability

Dreamweaver MX.

Description

This function opens the file and returns an operating system file handle. You can use the
operating system file handle in calls to system file functions. You must close the file handle
with a call to the system _close function.

If the file is a configuration file, it finds the file in either the user Configuration folder or the
Dreamweaver Configuration folder. If you open the Configuration file for writing, the
function creates the file in the user Configuration folder, even if it exists in the Dreamweaver
Configuration folder.

Arguments
char *fileURL, char *mode

■ The char *fileURL argument is a pointer to a string that names the file that you are
opening, which is provided as a file:// URL. If it specifies a path in the Dreamweaver
Configuration folder, the MM_OpenConfigFile() function resolves the path before
opening the file.

■ The char *mode argument points to a string that specifies how you want to open the file.
You can specify null, "read", "write", or "append" mode. If you specify "write" and
the file does not exist, the MM_OpenconfigFile() function creates it. If you specify
"write", the MM_OpenConfigFile() function opens the file with an exclusive share. If
you specify "read", the MM_OpenConfigFile() function opens the file with a
nonexclusive share.
If you open the file in "write" mode, any existing data in the file is truncated before
writing new data. If you open the file in "append" mode, any data you write is appended
to the end of the file.

Returns

An integer that is the operating system file handle for this file. Returns -1 if the file cannot be
found or does not exist.

N
O

T
E

If you want to read the file before writing to it, open the file in "read" mode. When you
want to write to the file, close the read handle and open the file again in "write" or
"append" mode.
474 C-Level Extensibility

Example
char *dwConfig = "file:///c|/Program Files/Macromedia/Dreamweaver/

Configuration/Extensions.txt";
int = fileno;
if(MM_ConfigFileExists(dwConfig))
{

fileno = MM_OpenConfigFile(dwConfig, "read");

}

JSBool MM_GetConfigFileAttributes()

Availability

Dreamweaver MX.

Description

This function finds the file and returns the attributes of the file. You can set any of the
arguments except fileURL to null if you do not need the value.

Arguments
char *fileURL, unsigned long *attrs, unsigned long *filesize,

unsigned long *modtime, unsigned long *createtime

■ The char *fileURL argument is a pointer to a string that names the file for which you
want the attributes. You must provide this argument as a file:// URL. If fileURL specifies
a path in the Dreamweaver Configuration folder, the MM_GetConfigFileAttributes()
function resolves the path before opening the file.

■ The unsigned long *attrs argument is the address of an integer that contains the
returned attribute bits (see JSBool MM_SetConfigFileAttributes() for available
attributes).

■ The unsigned long *filesize argument is the address of an integer in which the
function returns the file size in bytes.

■ The unsigned long *modtime argument is the address of an integer in which the
function returns the time that the file was last modified. The time is given as the
operating-system time value. For more information about the operating-system time
value, see DWfile.getModificationDate() in the Dreamweaver API Reference.

■ The unsigned long *createtime argument is the address of an integer in which the
function returns the time that the file was created. The time is given as the operating-
system time value. For more information on the operating system time value, see
DWfile.getCreationDate() in the Dreamweaver API Reference.
File Access and Multiuser Configuration API 475

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure. Returns JS_FALSE if
the file does not exist or an error occurs while getting the attributes.

Example
char dwConfig = "file:///c|/Program Files/Macromedia/Dreamweaver/

Configuration/Extensions.txt";
unsigned long attrs;
unsigned long filesize;
unsigned long modtime;
unsigned long createtime;
MM_GetConfigAttributes(dwConfig, &attrs, &filesize, &modtime, &createtime);

JSBool MM_SetConfigFileAttributes()

Availability

Dreamweaver MX.

Description

This function sets the attributes that you specify for the file, if they are different from the
current attributes.

If the specified file URL is in the Dreamweaver Configuration folder, this function first copies
the file to the user Configuration folder before it sets the attributes. If the attributes are the
same as the current file attributes, the file is not copied.

Arguments
char *fileURL, unsigned long attrs

■ The char *fileURL argument is a pointer to a string that names the file for which you
want to set the attributes, which is provided as a file:// URL.

■ The unsigned long attrs argument specifies the attribute bits to set on the file. You
can use a logical OR on the following constants to set the attributes:

MM_FILEATTR_NORMAL
MM_FILEATTR_RDONLY
MM_FILEATTR_HIDDEN
MM_FILEATTR_SYSTEM
MM_FILEATTR_SUBDIR

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure. Returns JS_FALSE if
the file does not exist or it is marked for deletion.
476 C-Level Extensibility

Example
char *dwConfig = "file:///c|/Program Files/Macromedia/Dreamweaver/

Configuration/Extensions.txt";
unsigned long attrs;
attrs = (MM_FILEATTR_NORMAL | MM_FILEATTR_RDONLY);
int fileno = 0;
if(MM_SetConfigFileAttrs(dwConfig, attrs))
{

fileno = MM_OpenConfigFile(dwConfig);
}

JSBool MM_CreateConfigFolder()

Availability

Dreamweaver MX.

Description

This function creates a folder in the specified location.

If the fileURL argument specifies a folder within the Dreamweaver Configuration folder, the
function creates the folder in the user Configuration folder. If fileURL does not specify a
folder in the Dreamweaver Configuration folder, the function creates the specified folder,
including all higher-level folders in the path if they do not already exist.

Arguments
char *fileURL

■ The char *fileURL argument is a pointer to a file:// URL string that names the
configuration folder that you want to create.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

Example
char *dwConfig = "file:///c|/Program Files\Macromedia\Dreamweaver

\Configuration\Extensions.txt";
MM_CreateConfigFolder(dwConfig);
File Access and Multiuser Configuration API 477

JSBool MM_RemoveConfigFolder()

Availability

Dreamweaver MX.

Description

This function removes the folder and its files and subfolders. If the folder is in the
Dreamweaver Configuration folder, it marks the folder for deletion in the
mm_deleted_files.xml file.

Arguments
char *fileURL

■ The char *fileURL argument is a pointer to a string that names the folder to remove,
which is provided as a file:// URL.

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

Example
char *dwConfig = "file:///c|/Program Files\Macromedia\Dreamweaver

\Configuration\Objects";

MM_RemoveConfigFolder(dwConfig);

JSBool MM_DeleteConfigFile()

Availability

Dreamweaver MX.

Description

This function deletes the file, if it exists. If the file exists below the Dreamweaver
Configuration folder, the function marks the file for deletion in the mm_deleted_files.xml
file.

If the fileURL argument does not specify a folder in the Dreamweaver Configuration folder,
the function deletes the specified file.

Arguments
char *fileURL

■ The char *fileURL argument is a pointer to a string that names the configuration folder
to remove, which is provided as a file:// URL.
478 C-Level Extensibility

Returns

A Boolean value: JS_TRUE indicates success; JS_FALSE indicates failure.

Example
char dwConfig = "file:///c:|Program Files\Macromedia\Dreamweaver

\Configuration\Objects\insertbar.xml";

MM_DeleteConfigFile(dwConfig);

Calling a C function from JavaScript
After you understand how C-level extensibility works in Dreamweaver and its dependency on
certain data types and functions, it’s useful to know how to build a library and call a function.

The following example requires the following five files, located in the Dreamweaver
application folder Samples/Extending as archives for both the Macintosh and Windows:

■ The mm_jsapi.h header file includes definitions for the data types and functions that are
described in “C-level extensibility and the JavaScript interpreter” on page 459.

■ The mm_jsapi_environment.h file defines the MM_Environment.h structure.
■ The MMInfo.h file provides access to the Design Notes API.
■ The Sample.c example file defines the computeSum() function.
■ The Sample.mak makefile lets you build the Sample.c source file into a DLL with

Microsoft Visual C++; Sample.mcp is the equivalent file for building a Mach-O bundle
with Metrowerks CodeWarrior and Sample.xcode is the equivalent file for Apple Xcode. If
you use another tool, you can create the makefile.

To build the DLL in Windows using VS.Net 2003:

1. Use File > Open > Sample.mak with Files of type set to All Files (*.*). (VS.Net 2003 does
not open .mak files directly). You are then prompted to verify that you want to convert the
project to the new format.

2. Select Build > Rebuild Solution.

When the build operation finishes, the Sample.dll file appears in the folder that contains
Sample.mak (or one of its subfolders).

To build the DLL in Windows using Microsoft Visual C++:

1. In Microsoft Visual C++, select File > Open Workspace, and select Sample.mak.

2. Select Build > Rebuild All.

When the build operation finishes, the Sample.dll file appears in the folder that contains
Sample.mak (or one of its subfolders).
Calling a C function from JavaScript 479

To build the shared library on the Macintosh using Metrowerks CodeWarrior 9
or greater:

1. Open Sample.mcp.

2. Build the project (Project > Make) to generate a Mach-O Bundle.

When the build operation finishes, the Sample.bundle file appears in the folder that
contains Sample.mcp.

To build the shared library on the Macintosh using Apple Xcode 1.5 or greater:

1. Open Sample.xcode.

2. Build the project (Build > Build) to generate a Mach-O Bundle.

When the build operation finishes, the Sample.bundle file appears in the build folder that
is next to the Sample.xcode file.

To call the computeSum() function from the Insert Horizontal Rule object:

1. Create a folder called JSExtensions in the Configuration folder within the Dreamweaver
application folder.

2. Copy Sample.dll (Windows) or Sample.bundle (Macintosh) to the JSExtensions folder.

3. In a text editor, open the HR.htm file in the Configuration/Objects/Common folder.

4. Add the line alert(Sample.computeSum(2,2)); to the objectTag() function, as shown
in the following example:
function objectTag() {

// Return the html tag that should be inserted
alert(Sample.computeSum(2,2));
return "<HR>";

}

5. Save the file and restart Dreamweaver.

To execute the computeSum() function, select Insert > HTML > Horizontal Rule.

A dialog box that contains the number 4 (the result of computing the sum of 2 plus 2)
appears.

N
O

T
E

The Mach-O Bundle that is generated can only be used in Macromedia
Dreamweaver 8. Earlier versions of Dreamweaver do not recognize it.

N
O

T
E

The Mach-O Bundle that is generated can only be used in Macromedia
Dreamweaver 8. Earlier versions of Dreamweaver do not recognize it.
480 C-Level Extensibility

4
PART 4

Appendix
Find information about supporting files and reference resources that can
aid in developing Macromedia Dreamweaver 8 extensions.
Appendix: The Shared Folder . 483
481

APPENDIX

The Shared Folder
The Shared folder is the central repository for utility functions, classes, and images that are
commonly used by all extensions. Any extension can reference the files in the Shared folder’s
subfolders, and you can add custom common utilities to the ones already provided by
Macromedia Dreamweaver 8. The multiple user Configuration folders installed for users on
Windows XP, Windows 2000, and Macintosh OS X also contain a Shared folder for
individual customizations. For example, when you install an extension from the Macromedia
exchange, you might notice that the new extension adds contents to your user Configuration/
Shared folder rather than the Dreamweaver application Configuration/Shared folder. For
more information on the Dreamweaver Configuration folders on a multiuser computer, see
“Multiuser Configuration folders” on page 104.

The Shared folder contents
The Shared folder has subfolders that contain files shared by multiple extensions, including
functions for browsing a user’s folder system, inserting a tree control, creating editable grids,
and other features.

In addition to looking at the JavaScript files in the Shared folder, you should also search for
HTML files in the Configuration folder that include these JavaScript files so that you can
investigate how they are used.

Generally, you use the functions and resources in the Common and Macromedia (MM)
folders or add resources to the Common folder for use in new extensions. You should always
look in the Shared/Common/Scripts folder first for utilities and functions. These functions
and utilities are the most current and comprise the formal interface to the Shared folder. Use
files in other folders at your own risk because they might be out of date.

Specifically, the Shared folder contains the following useful folders.

N
O

T
E

The JavaScript files in the Shared folder have comments within the code that provide
details about the functions they contain.
483

The Common folder
The Common folder has shared scripts and classes for use in third-party extensions.

CodeBehindMgr.js Contains functions for creating a code-behind document. A
code-behind document lets you create distinct pages that
separate the code for user interface (UI) logic from the code for
a UI design. The methods of JSCodeBehindMgr defined in this file
can create new code-behind documents and manage the link
to design documents,

ColumnValueNodeClass.js Contains functions for mapping database columns to values.
The methods of ColumnValueNode defined in this file let you get
and set various values and properties of a database column.
Dreamweaver uses this storage class when applying and
inspecting edit operations objects (insert and update record
objects) and working with the SQLStatement class.

CompilerClass.js Contains functions for a base class used by
CompilerASPNetCSharp and CompilerASPNVBNet but could be
extended to support other compilers.

DataSourceClass.js Contains functions that define the return structure for
findDynamicSources().

DBTreeControlClass.js Contains functions that build a database tree control. This class
is used to create and interact with a database tree control. To
create a database tree control, such as the one in the advanced
recordset server behaviors, create a special <select> list with
type="mmdatabasetree" in your HTML file. Attach a
CBTreeControl class to the HTML control by passing the
<select> list name to the class constructor. Then use the
DBTreeControl functions to manipulate the control.

dotNetUtils.js Contains functions to facilitate working with object property
inspectors, and server behaviors for ASP .NET form controls,
which are translated.

dwscripts.js Look in the main file to find useful functions for all
Dreamweaver extensions. It includes functions for working with
strings, files, design notes, and so on.

dwscriptsExtData.js This file is an extension of the dwscripts.js file. This file
facilitates working with server behaviors, particularly with
server behavior EDML files. Used extensively in
Dreamweaver’s implementation of server behaviors.

dwscriptsServer.js This file is an extension of the dwscripts.js file. It contains
functions that are specific to server models. Many of these
functions are used when working with server behaviors.
484 The Shared Folder

GridControlClass.js Use this class to create and manipulate an editable grid. You
add a special select list in your HTML, and attach this class to it
in JavaScript to manipulate the grid.

ImageButtonClass.js This class makes it easy to control the Pressed/Mouse-over-
while-pressed/Mouse-over/Disabled-while-pressed look of
a button.

ListControlClass.js Contains functions that manage a <select> tag>, also known as
a list control. The methods of the ListControl object in this file
get, set, and change the value of the SELECT control.

PageSettingsASPNet.js Contains functions that set the properties of an
ASP .NET document.

RadioGroupClass.js Contains functions that define and manage a radio button
group. The methods of the RadioGroup object in this file set and
get values and behavior of a radio button group. You attach this
class to radio buttons in your HTML to control their behavior.

SBDatabaseCallClass.js A subclass of ServerBehavior class. This class includes
functionality specific to making database calls, for example,
calling a stored procedure, using SQL to return a recordset,
and so on. This is an abstract base class, which means that it
cannot be created and used on its own. To use it, you must
subclass SBDatabaseCall() and implement the placeholder
functions. Dreamweaver uses this class to implement its
recordset and stored procedures server behaviors.

ServerBehaviorClass.js Contains functions that communicate information about server
behaviors to Dreamweaver. You can subclass this class as part
of implementing your own server behaviors.

ServerSettingsASPNet.js Contains functions that store the properties of a
ASP .NET server.

SQLStatementClass.js Contains functions that let you create and edit SQL statements
such as SELECT, INSERT, UPDATE, DELETE, and stored procedure
statements.

tagDialogsCmn.js Contains functions that help you develop custom tag dialog
boxes. The methods of the tagDialog object defined in this file
modify attributes and values for a particular tag.

TagEditClass.js Contains functions that edit tags without changing the DOM of
the current page. The methods of the TagEdit object defined in
this file get and set a tag’s value, attributes, and children. This
class is useful for making complex edits because the DOM
does not get stale.
The Shared folder contents 485

The MM folder
The MM folder contains the shared scripts, images, and classes used by the extensions that
come with Dreamweaver, including the scripts for building a navigation bar, specifying
preload calls, and the shortcut key definitions.

The Scripts folder
The Scripts subfolder contains the following utility functions:

TreeControlClass.js Contains functions that manage a tree control within
Dreamweaver. The methods of the TreeControl object defined
in this file get, set, and arrange values in a tree. You attach this
class to a special MM:TREECONTROL tag in your HTML to manage
the tree control functionality.

XMLPropSheetClass.js Contains functions that manage the location and values of a
XML property sheet.

CFCutilities.js Contains utility functions related to Macromedia ColdFusion
components. Functions parse attributes from within the
opening tag of a given node, parse a CFC tree, get the current
URL DOM, get the CFC DOM, and more.

event.js Contains functions to register events, notify parties of events
from the menus.xml file, and add event notifiers to the
menus.xml file.

FlashObjects.js Contains functions that update a color picker, check for hex
color, check for an absolute link, add an extension to a
filename, generate error messages, set Flash attributes, check
a link for Flash object, and so on.

insertFireworksHTML.js Contains functions to insert Fireworks HTML code into
Dreamweaver documents. Functions check whether current
document is a Fireworks document, insert Fireworks HTML at
insertion point, update Macromedia Fireworks style block
to Dreamweaver, and more. Also contains related
utility functions.

jumpMenuUI.js Contains functions for use with the Jump Menu object and
Jump Menu behavior. Functions populate menu options,
create an option label, add an option, delete an option, and
so on.

keyCodes.js Contains an array of keyboard key codes.
486 The Shared Folder

The Scripts folder also contains two subfolders, Class and CMN.

The Class folder

The Class folder contains the following utility functions:

navBar.js Contains classes and functions for working with a navigation
bar and navigation bar elements. Includes functions to add,
remove, and manipulate navigation bar elements.

NBInit.js Contains functions related to navigation bar image behaviors.

pageEncodings.js Defines various language codes.

preload.js Contains functions for adding and deleting preload-image calls
to the BODY/onLoad MM_preloadImages handler.

RecordsetDialogClass.js Contains the static class and functions to display the recordset
server behaviors UI. Functions determine which interface,
simple or advanced, to display. Also, houses functionality
shared between the UI implementations and mediates switches
between the UIs.

sbUtils.js Contains shared functions for use within Macromedia server
behaviors. The dwscripts class in the Configuration/Shared/
Common/Scripts folder contains more general
purpose utilities.

setText.js Contains functions to escape an expression string, unescape
an expression string, and extract an expression string.

sortTable.js Contains functions to initialize and sort a table as well as
functions to sort an array, set the mouse pointer to a hand icon
or pointer, and check the type and version of the browser.

classCheckbox.js Helps manipulate a checkbox control in your HTML extension.

FileClass.js Contains class that represents a file in the file system. The
paths are represented by URLs for cross-platform
compatibility. Methods include toString(), getName(),
getSimpleName(), getExtension(), getPath(), setPath(),
isAbsolute(), getAbsolutePath(), getParent(),
getAbsoluteParent(), exists(), getAttributes(), canRead(),
canWrite(), isFile(), isFolder(), listFolder(),
createFolder(), getContents(), setContents(), copyTo(), and
remove().

GridClass.js Contains class that manages MM:TREECONTROL.
The Shared folder contents 487

The CMN folder

The CMN folder contains the following utility functions:

GridControlClass.js Older version of the GridControlClass in the Common folder.
See the GridControlClass.js file in the Shared/Common/
Scripts folder.

ImageButtonClass.js Older version of the ImageButtonClass in the Common folder.
See the ImageButtonClass.js file in the Shared/Common/
Scripts folder.

ListControlClass.js Older version of the ListControlClass in the Common folder.
See the Shared/Common/Scripts/ListControlClass.js file.

NameValuePairClass.js Creates and manages a list of name/value pairs. Names can
contain any character. Values can be blank, but cannot be set
to null, which is the same as deleting them.

PageControlClass.js Example of a page class to be used with the TabControl class.
See TabControl class.

PreferencesClass.js Contains an object and methods that contain all the preference
information for a command.

RadioGroupClass.js Older version of the RadioGroupClass in the Common folder.
See the RadioGroupClass.js file in the Shared/Common/
Scripts folder.

TabControlClass.js Helps build an extension that has multiple tab views,
page.lastUnload()

dateID.js Contains two functions, createDateID() and decipherDateID().
Given three strings, dayFormat, dateFormat, and timeFormat,
createDateID() creates an ID for them. Given a date array,
decipherDateID() returns an array with three items: the
dayFormat, the dateFormat, and the timeFormat.

displayHelp.js Contains one function that displays the specified Help
document.

docInfo.js Contains functions that provide information about the user’s
document. Operations performed by functions include
returning an array of object references for a specified browser
type and tag, returning all instances of a specified tag name,
searching for a tag that wraps the current selection, and so on,
488 The Shared Folder

DOM.js Contains general helper functions for working with the
Dreamweaver DOM. Includes functions that get the root node
of the active document, find a tag of a given name, create a list
of nodes from the specified starting node, check whether a
given tag is contained inside another tag, perform various
operations on behavior functions, and more.

enableControl.js Contains one function, SetEnabled(), which enables or disables
a control based on the arguments it receives. It is OK to enable
a control that is already enabled or disable a control that is
already disabled.

errmsg.js Contains logging functions for accumulating tracing output into
an array of log pages that appear in a dialog box.

file.js Contains functions pertaining to file operations. Functions let
the user browse for local filename, convert the relative path to
the file URL path, return filename for current document,
determine if a specified document has been saved in current
site and return the document-relative path, or determine if a
specified file is currently open.

form.js Contains functions that add a form around a given text string if
a form does not already exist in the current document or layer.
Includes functions that determine if an object is a layer and
determine if the cursor is inside a form.

handler.js Contains functions that get a function for an event handler, add
a function to an event handler, and delete a function for an
event handler.

helper.js Contains a handful of useful functions that replace encoding,
unescape quotation marks ("), check whether a node is inside a
selection range, and checks for duplicate object names.

insertion.js Contains the insertIntoDocument() function, which inserts a
text string into a document at the insertion point. Also contains
the supporting functions getHigherBlockTag() and
arrContains(). The getHigherBlockTag() function gets get the
next highest blockTag, as defined in the blockTags array, and
the arrCon() function finds a specified item in an array.

localText.js Reserved variables, not for general use. Use Startup/
mminit.htm instead or use the strings from the Dreamweaver
Configuration/Strings/*.xml files.

menuItem.js Contains functions that add stars or values to a listed menu
item, or removes them.
The Shared folder contents 489

Other folders
The following list describes other folders of interest in the Shared folder:

■ Controls
The Controls folder contains the elements used to build a server behavior. These controls
include interfaces for text and recordset menus.

■ Fireworks
The Fireworks folder has the supporting files for Fireworks integration.

■ UltraDev

Dreamweaver maintains this folder primarily for backward compatibility, and it should
not be used for new extensions. Use the Dreamweaver Configuration/Shared/Common
folder, where most of this functionality also exists. See “The Common folder”
on page 484.

niceName.js Contains functions that convert an array of Object references
to an array of simpler names.

quickString.js Contains functions that aggregate smaller strings without doing
a memory allocation each time.

string.js Contains a generic set of functions for manipulating and
parsing text strings. Functions include: extractArgs(),
escQuotes(), unescQuotes(), quoteMeta(), errMsg(), badChars(),
getParam(), quote(), stripSpaces(), StripChars(),
AllInRange(), reformat(), trim(), createDisplayString(),
entityNameEncode(), entityNameDecode(), stripAccelerator(),
and SprintF(),

TemplateUtils.js Contains utility functions for Dreamweaver templates.
Functions insert an editable region into a document, insert a
repeating region into a document, scan a document for a
specified editable region and so on.

UI.js Contains generic functions that control the UI. These functions
find a designated object in the current document, load select
list options with localized strings, return the attribute value for a
selected option, and word-wrap the text message for an alert.

N
O

T
E

These controls are used by the Dreamweaver Server Behavior Builder and by many
of Dreamweaver’s server behaviors but some are useful for managing a control in
your extension.
490 The Shared Folder

Using the Shared folder
Look first in the Dreamweaver Configuration/Shared/Common folder for useful extension
code because this folder contains the most current and commonly used functionality.

Extensions can leverage the resources in the Shared folder for their own functionality. An
object, command, or other extension can specify one of the JavaScript files in the Shared
folder as a source file in a script tag, and then use the function in the body of the file or in
another included JavaScript file. Objects and commands can even link several JavaScript files
together, and those JavaScript files can leverage Shared folder resources.

For example, open the Hypertext object file (Hyperlink.htm) in the application folder
Configuration/Objects/Common. Notice that the head tag of the file contains the following
lines:
<script language="javascript" src="../../Shared/Common/Scripts/

ListControlClass.js"></script>
<script language="javascript" src="Hyperlink.js"></script>

And, if you open the related Hyperlink.js file, you can see the following lines:
LIST_LINKS = new ListControl('linkPath');

and
LIST_TARGETS = new ListControl('linkTarget');

With the new listControl declarations, Hyperlink.js defines two new ListControl objects.
The code in the Hyperlink.htm file then attaches them to the SELECT controls in the form, as
follows:
<td align="left"> <input name="linkText" type="text"
class="basicTextField" value="">

and
<td align="left" nowrap><select name="linkPath" class="basicTextField"

editable="true">

Now, the Hyperlink.js script can call methods or get properties for the LIST_LINKS or
LIST_TARGETS objects to interact with the SELECT controls in the form.
Using the Shared folder 491

492 The Shared Folder

Index
A
action files 305
action tag 189
activate tag 190
addDynamicSource() 391
alert() 128
analyzeServerBehavior() 329
APIs, types of

Behaviors 312
C-level extensibility 461
Commands 176
Component panel 412
data formatting 399
Data Sources 391
Data Translator 434
Floating panel 297
Menu Commands 209
Objects 161
Property inspector 285
Reports 256
Server Behavior 329
Server Formats 403
Server Model 423
Tag editor 275
toolbar command 238

appearance of dialog boxes 19
applyBehavior() 312
applyFormat() 403
applyFormatDefinition() 403
applySB() 336
applyServerBehavior() 330
applyTag() 276
appName property 135
appVersion property 135
arguments

passed from menuitem 196
receiveArguments() 212

arguments attribute 238
array object 128
attribute translators

about 435
creating 435
debugging 442
sample code 443

attributes
arguments 238
checked 235
colorRect 234
command 237
disabledImage 233
domRequired 235
enabled 235
file 235
id 232
image 232
label 234
menu_ID 234
overImage 233
showIf 232
toolbar item tags 232
tooltip 233
update 236
value 236
width 234

attributes property 132
attributes tag 367

B
beginReporting() 256
behavior extensions, definition 100
behaviorFunction() 314
493

behaviors
API 312
helper functions 307
inserting multiple functions with 307
required functions 312
sample code 307
user experience 306

Behaviors API
applyBehavior() 312
behaviorFunction() 314
canAcceptBehavior() 315
deleteBehavior() 316
displayHelp() 316
identifyBehaviorArguments() 317
inspectBehavior() 319
windowDimensions() 320

Binding inspector 380
block/tag translators

about 435
debugging 442
sample code 447

blockEnd tag, code coloring 66
blockStart attribute

customText value 81
description of 80
innerTag value 82
innerText value 80
nameTag value 82
nameTagScript value 82
outerTag value 81

blockStart tag, code coloring 66
blur() 128
body property 131
Boolean object 128
brackets tag, code coloring 67
browser profiles

changing 17
creating and editing 32
css-support tag 92
formatting 30
property tag 93
value tag 94
working with 30

button object 128
button tag 143, 226

C
C extensibility API

JS_BooleanToValue() 465
JS_DoubleToValue() 465
JS_ExecuteScript() 469
JS_GetArrayLength() 467
JS_GetElement() 468
JS_IntegerToValue() 466
JS_NewArrayObject() 467
JS_ObjectToValue() 466
JS_ObjectType() 466
JS_ReportError() 469
JS_SetElement() 468
JS_StringToValue() 464
JS_ValueToBoolean() 463
JS_ValueToDouble() 463
JS_ValueToInteger() 462
JS_ValueToObject() 464
JS_ValueToString() 462
MM_ConfigFileExists() 473
MM_GetConfigFileAttributes() 475
MM_GetConfigFolderList() 472
MM_OpenConfigFile() 474

C functions
calling from JavaScript 479
in the mm_jsapi.h file 459

C-level extensibility, in translators 433
canAcceptBehavior() 315
canAcceptCommand() 209, 239
canApplyServerBehavior() 331
canDrag attribute 145
canInsertObject() 161
canRecognizeDocument() 424
category tag 142
changing default file type 20
charEnd tag, code coloring 68
charEsc tag, code coloring 68
charStart tag, code coloring 68
checkbox object 128
checkbutton tag 144, 227
checked attribute 146, 235
childNodes property

of comment objects 135
of document objects 131
of tag objects 132
of text objects 134

clearInterval() 128
clearTimeout() 128
close() 128
494 Index

closeTag tag 368
code coloring

about 63
blockEnd tag 66
blockStart tag 66
brackets tag 67
charEnd tag 68
charEsc tag 68
charStart tag 68
commentEnd tag 69
commentStart tag 68
CSS sample text 90
cssImport tag 69
cssMedia tag 69
cssProperty tag 70
cssSelector tag 70
cssValue tag 71
defaultAttribute tag 71
defaultTag tag 71
defaultText tag 72
editing schemes 87
endOfLineComment tag 72
entity tag 72
examples 89
file 63
functionKeyword tag 73
idChar1 tag 73
idCharRest tag 74
ignoreCase tag 74
ignoreMMTParams tag 74
ignoreTags tag 75
isLocked tag 75
JavaScript 90
keyword tag 75
keywords tag 76
numbers tag 76
operators tag 76
regexp tag 77
sampleText tag 77
scheme processing 83
scheme tag 65
searchPattern tag 78
stringEnd tag 79
stringEsc tag 79
stringStart tag 78
style, Colors.xml file 63
tagGroup tag 80

Code Hints
codehints tag 57
definition 55, 102

description tag 58
function tag 61
menu tag 59
menugroup tag 58
menuitem tag 60

code snippet extensions, definition 101
code validation 92
CodeHints.xml file

contains 56
description of 55

color button control 123
colorpicker tag 231
colorRect attribute 234
Colors.xml file 63
combobox tag 230
command attribute 146, 237
command extensions, definition 100
commandButtons() 177, 209, 257
commands

adding Flash SWF files 124
adding to menus 168
menu commands 181
sample code 168
toolbar 217
user experience 167

Commands API
canAcceptCommand() 176
commandButtons() 177
isDomRequired() 178
receiveArguments() 178
windowDimensions() 178

Commands menu, modifying 195
comment object 135
commentEnd tag, code coloring 69
commentStart tag, code coloring 68
component extensions, definition 101
Component panel

files 409
tree control 411

Component panel API functions
getCodeViewDropCode() 414
getComponentChildren() 412
getContextMenuId() 413
getSetupSteps() 415
handleDoubleClick() 418
setupStepsCompleted() 416
toolbarControls() 420

Configuration folders and extensions 102
configureSettings() 258
confirm() 128
Index 495

conventions, in this guide 13
copyServerBehavior() 331
css-support tag, code validation 92
cssImport tag, code coloring 69
cssMedia tag, code coloring 69
cssProperty tag, code coloring 70
cssSelector tag, code coloring 70
cssValue tag, code coloring 71
custom JavaScript controls 113
customizing

appearance of dialog boxes 19
browser profiles 17
default documents 18
Dreamweaver 9
editing configuration files 17
in a multiuser environment 27
Insert bar 17
interpretation of third-party tags 21
menus 17
page designs 18
third-party tags 17
workspace layouts 46

customText value, blockStart 81

D
data formatting 399
data property

of comment objects 135
of text objects 134

data source extensions, definition 101
data sources 379
Data Sources API

addDynamicSource() 391
deleteDynamicSource() 391
displayHelp() 392
editDynamicSource() 393
findDynamicSources() 393
generateDynamicDataRef() 394
generateDynamicSourceBindings() 395
inspectDynamicDataRef() 396

Data Translator API
getTranslatorInfo() 452
liveDataTranslateMarkup() 455
translateMarkup() 454

data translator extensions, definition 101
data translators

debugging 442
for attributes 435

for tags or blocks of code 437
kinds of 435
user experience 434

database controls 116
database tree controls 117
date object 128
default documents, customizing 18
defaultAttribute tag, code coloring 71
defaultTag tag, code coloring 71
defaultText tag, code coloring 72
definition file, document type 35
delete tag 361
deleteBehavior() 316
deleteditems tag 29
deleteDynamicSource() 391
deleteFormat() 404
deleteSB() 337
deleteServerBehavior() 332
deleteType attribute 361
description tag 58
dialog boxes, customizing appearance 19
disabledImage attribute 233
display tag 368
displayHelp()

in Behaviors API 316
in Data Sources API 392
in Floating panel API 297
in object files 161
in Objects API 161
in Property inspector API 286
in Server Behavior API 332

docking toolbars 217
DOCTYPE 112
document extensions 43
document node 131
document object

DOM Level 1 properties and methods of 131
Netscape DOM properties and methods of 128

Document Object Model
about 127
DOM Level 1 specification 128
Dreamweaver 128

document types
definition 101
definition file 35, 37
definition file, rules 45
dynamic templates 41
extensible 35
extensions 43
localizing 37, 44
496 Index

opening, procedure for 46
tags in definition file 38

document, opening 46
documentEdited() 298
documentElement property 131
DOM. <italic>See Document Object Model.
domRequired attribute 235
Dreamweaver DOM 129
dreamweaver object 135, 136
Dreamweaver, customizing or extending 9
dropdown tag 229
dwscripts functions

applySB() 336
deleteSB() 337
findSBs() 335

Dynamic Data dialog box 380
dynamic menus

sample code 201
user experience 196

dynamic templates 41
Dynamic Text dialog box 380

E
Edit Format List Plus (+) pop-up menu 401
editcontrol tag 230
editDynamicSource() 393
editing

menu items 191
schemes, code coloring 87

EDML file tags
attributes 367
closeTag 368
delete 361
deleteType attribute 361
display 368
group 340
groupParticipant 345
groupParticipants 344
insertText 349
isOptional attribute 357
limitSearch attribute 356, 364
location attribute 349
name attribute 345
nodeParamName attribute 351
openTag 366
paramName attribute 360
paramNames attribute 355
participant 347

partType attribute 346
quickSearch 348
searchPatterns 352, 353, 363
selectParticipant attribute 344
subType attribute 342
title 343
translation 364
translations 363
translationType attribute 365
translator 362
updatePattern 359, 360
updatePatterns 358
version attribute 347
whereToSearch attribute 364

EDML files
about 322
definition 321
editing 337
EDML structure 339
group file tags 340
using regular expressions 338

element node 132
enabled attribute 146, 235
endOfLineComment tag, code coloring 72
endReporting() 257
entity tag, code coloring 72
errata 13
escape() 128
event handlers

in behavior dialog boxes 306
in extension files 106
returning a value from 307

events
in extension files 128
role in behaviors 305

examples
floating panel 291

extensible document types 35
extension APIs, types of 100
Extension Data Markup Language (EDML) 322
Extension Manager

guidelines 111
working with 109

extension user interface 111
extensions

color button control for 123
Dreamweaver 99
enabling features 99
installing 10
Index 497

extensions, reloading 104, 105
Extensions.txt file 43
external JavaScript files 106

F
file (field) object 128
file attribute 147, 235
file type, changing default 20
files

CodeHints.xml 56
insertbar.xml 150
menus.xml 182
mm_deleted_files.xml 28
MMDocumentTypes.xml 35
toolbars.xml 215
XML 128

findDynamicSources() 393
findSBs() 335
findServerBehaviors() 333
Flash SWF files, displaying in Dreamweaver 124
Floating panel API

displayHelp() 297
documentEdited() 298
getDockingSide() 299
initialPosition() 299
initialTabs() 300
isATarget() 301
isAvailableInCodeView() 301
isResizable() 302
selectionChanged() 302

floating panel example 291
floating panel extensions, definition 100
floating panels

performance issues 303
user experience 290

focus() 128
form object 128
formatDynamicDataRef() 405
formats 399
FTP mappings, changing 34
function object 128
function tag 61
functionKeyword tag, code coloring 73

G
generateDynamicDataRef() 394
generateDynamicSourceBindings() 395
getAttribute() 132
getCodeViewDropCode() 414
getComponentChildren() 412
getContextMenuId() 413
getCurrentValue() 240
getDockingSide() 299
getDynamicContent() 210, 240
getElementsByTagName()

for document objects 131
for tag objects 132

getFileExtensions() 425
getLanguageSignatures() 425
getMenuID() 242
getServerExtension() 426
getServerInfo() 426
getServerLanguages() 427
getServerModelDelimiters() 428
getServerModelDisplayName() 429
getServerModelExtDataNameUD4() 428
getServerModelFolderName() 429
getServerSupportsCharset() 430
getSetupSteps() 415
getTranslatedAttribute() 132
getTranslatorInfo() 452
getUpdateFrequency() 243
getVersionArray() 430
group file tags 340
group files 323
groupParticipant tag 345
groupParticipants tag 344

H
handleDoubleClick() 418
hasChildNodes()

for comment objects 135
for document objects 131
for tag objects 132
for text objects 134

hasTranslatedAttributes() 132
helper functions, in behaviors 307
hidden (field) object 128
hline 279
HTML

default formatting, changing 95
inner/outer properties 132
498 Index

I
id attribute 144, 232
idChar1 tag, code coloring 73
idCharRest tag, code coloring 74
identifyBehaviorArguments() 317
ignoreCase tag, code coloring 74
ignoreMMTParams tag, code coloring 74
ignoreTags tag, code coloring 75
image attribute 145, 232
image object 128
include/ tag 223
initialPosition() 299
initialTabs() 300
innerHTML property 132
innerTag value, blockStart 82
innerText value, blockStart 80
Insert bar

adding objects 149
definition file 141
modifying 17

Insert bar object
example 150
files 140
reordering 149

Insert bar object extensions, definition 100
insertbar tag 142
insertbar.xml file 140, 150
insertObject() 162
insertText tag 349
inspectBehavior() 319
inspectDynamicDataRef() 396
inspectFormatDefinition() 406
inspector extensions, definition 100
inspectServerBehavior() 333
inspectTag() 275
installing an extension 10
isATarget() 301
isAvailableInCodeView() 301
isCommandChecked() 211, 243
isDOMRequired() 245
isDomRequired() 162, 178
isLocked tag, code coloring 75
isOptional attribute 357
isResizable() 302
item tag 29
item tags, in toolbars 226
item() 128
itemref/ tag 224
itemtype/ tag 224

J
JavaScript

controls 113
external files 106
URLs 106

JS_BooleanToValue() 465
JS_DefineFunction() 461
JS_DoubleToValue() 465
JS_ExecuteScript() 469
JS_GetArrayLength() 467
JS_GetElement() 468
JS_IntegerToValue() 466
JS_NewArrayObject() 467
JS_ObjectToValue() 466
JS_ObjectType() 466
JS_ReportError() 469
JS_SetElement() 468
JS_StringToValue() 464
JS_ValueToBoolean() 463
JS_ValueToDouble() 463
JS_ValueToInteger() 462
JS_ValueToObject() 464
JS_ValueToString() 462
JSBool Boolean value 460
JSContext data type 460
JSNative 461
JSObject data type 460
jsval 460

K
keyboard shortcuts, changing 192
keyword tag, code coloring 75
keywords tag, code coloring 76

L
label attribute 234
language information 135
layer object 128
limitSearch attribute 356, 364
liveDataTranslateMarkup() 455
localized strings 37
location attribute 349
locked content, inspecting 439
LOCKED keyword 439
Index 499

M
manipulating tree control content 122
math object 128
menu command extensions, definition 100
menu commands

about 194
sample code 197
user experience 196

Menu Commands API
canAcceptCommand() 209
commandButtons() 209
getDynamicContent() 210
isCommandChecked() 211
receiveArguments() 212
setMenuText() 212
windowDimensions() 213

menu folder, placing command file 201
menu tag 59, 183
MENU-LOCATION 327
menu_ID attribute 234
menubar tag 182
menubutton tag 143, 228
menugroup tag 58
menuitem tag 60, 184
menus

changing 17, 191
commands 195
definition 102
modifying pop-up and context 193

menus.xml file
about 182
actionr tag 189
activate tag 190
changing 191
menu tag 183
menubar tag 182
menuitem tag 184
override tag 190
separator tag 186
shortcut tag 188
shortcutlist tag 187
tool tag 189

MM
TREECOLUMN 120
TREENODE 120

MM_ConfigFileExists() 473
mm_deleted_files.xml file

about 28
deleteditems tag 29

item tag 29
tag syntax 29

MM_GetConfigFileAttributes() 475
MM_GetConfigFolderList() 472
mm_jsapi.h file

including 459
sample 479

MM_OpenConfigFile() 474
MM_returnValue 307
MMDocumentTypes.xml file 35
multiuser configuration

customizing 27
deleting configuration files in 28
folders 104
reinstalling and uninstalling in 30

multiuser platforms, Configuration folder 43

N
name attribute 147, 345
nameTag value, blockStart 82
nameTagScript value, blockStart 82
navigator object 128
node constants 128
Node.COMMENT_NODE 128
Node.DOCUMENT_NODE 128
Node.ELEMENT_NODE 128
Node.TEXT_NODE 128
nodelist object 128
nodeParamName attribute 351
nodes 128
nodeType property

of comment objects 135
of document objects 131
of tag objects 132
of text objects 134

number object 128
numbers tag, code coloring 76

O
object object 128
objects

adding Flash SWF files 124
adding to Insert bar 149
components of 139
creating 140
how files work 150
500 Index

Objects API
canInsertObject() 161
displayHelp() 161
insertObject() 162
isDomRequired() 162
objectTag() 164
windowDimensions() 165

objectTag() 164
onBlur event 128
onChange event 128
onClick event 128
onFocus event 128
onLoad event 128
onMouseOver event 128
onResize event 128
opening a document 46
openTag attribute 366
operating system, user’s 136
operators tag, code coloring 76
option object 128
outerHTML property 132
outerTag value, blockStart 81
overImage attributes 233
override tag 190

P
page designs 18
panel extensions, definition 100
panelset tag 47
paramName attribute 360
paramNames attribute 355
parentNode property

of comment objects 135
of document objects 131
of tag objects 132
of text objects 134

parentWindow property 131
participant files 323
participant tag 347
participants 322
partType attribute 346
password (field) object 128
pasteServerBehavior() 334
processFile() 256
Property inspector API

canInspectSelection() 285
displayHelp() 286
inspectSelection() 287

Property inspectors
LOCKED keyword 439
comment at top of file 279
custom 279
file structure 279
lightning bolt icon 437
locked content, for 439
overview 279
sample code 282
translated attributes in 437
user experience 281

property tag, code validation 93

Q
quickSearch tag 348, 369

R
radio object 128
radiobutton tag 227
receiveArguments() 178, 212, 245
regexp object 128
regexp tag, code coloring 77
regular expressions in EDML files 338
reinstalling 30
reloading extensions 104, 105
removeAttribute() 132
report extensions, definition 100
reports

site 250
stand-alone 253

Reports API
beginReporting() 256
commandButtons() 257
configureSettings() 258
endReporting() 257
processfile() 256
windowDimensions() 258

reset object 128
resizeTo() 128
Index 501

S
sampleText tag, code coloring 77
scheme block delimiter coloring 80
scheme processing

code coloring 83
escape characters 85
maximum string length 85
precedence 86
wildcard characters 84

scheme tag, code coloring 65
SCRIPTING-LANGUAGE statement 428
search pattern resolution 373
searchPattern tag, code coloring 78
searchPatterns tag 352, 353, 363
select object 128
select() 128
selection, exact versus within 279
selectionChanged() 302
selectParticipant attribute 344
separator tag 144, 186, 225
server behavior

deleting 376
dwscripts functions 335
example 324
extension 321
finding 369
group files 323
instance 321
overview 321
participant files 323
participants 322
runtime code 322
search pattern resolution 373
techniques 369
updating 374

Server Behavior API
analyzeServerBehavior() 329
applyServerBehavior() 330
canApplyServerBehavior() 331
copyServerBehavior() 331
deleteServerBehavior() 332
displayHelp() 332
findServerBehaviors() 333
inspectServerBehavior() 333
pasteServerBehavior() 334

server behavior extensions, definition 101
server format extensions, definition 101

Server Formats API
applyFormat() 403
applyFormatDefinition() 403
deleteFormat() 404
formatDynamicDataRef() 405
inspectFormatDefinition() 406

Server Model API
about 423
canRecognizeDocument() 424
getFileExtensions() 425
getLanguageSignatures() 425
getServerExtension() 426
getServerInfo() 426
getServerLanguages() 427
getServerModelDelimiters() 428
getServerModelDisplayName() 429
getServerModelExtDataNameUD4() 428
getServerModelFolderName() 429
getServerSupportsCharset() 430
getVersionArray() 430

server model extensions, definition 101
server models, definition 423
service component, adding 410
setAttribute() 132
setInterval() 128
setMenuText() 212
setTimeout() 128, 303
setupStepsCompleted() 416
share-in-memory 376
shortcut tag 188
shortcutlist tag 187
showIf attribute 145, 232
showIf() 246
shutdown commands 104
Shutdown folder 104
site object, properties of 135
site reports 250
stand-alone reports 253
startup commands 104
Startup folder 104
string object 128
stringEnd tag, code coloring 79
stringEsc tag, code coloring 79
stringStart tag, code coloring 78
submit object 128
subType attribute 342
systemScript property 136
502 Index

T
tag attribute 147
Tag Chooser 268
Tag Dialog extensions, definition 100
Tag editor API

applyTag() 276
inspectTag() 275
validateTag() 276

Tag editor, creating 275
tag libraries 262
tag object 132
tagGroup tag, code coloring 80
tagName property 132
tagspec tag 22
target browser, code validation 92
text (field) object 128
text node 134
text objects 134
textarea object 128
third-party tags

avoiding rewriting 26
changing appearance of 17
changing color highlighting 25
customizing interpretation of 21
tagspec 22

title tag 343
tool tag 189
toolbar command API

canAcceptCommand() 239
getCurrentValue() 240
getDynamicContent() 240
getMenuID() 242
getUpdateFrequency() 243
isCommandChecked() 243
isDOMRequired() 245
receiveArguments() 245
showIf() 246

toolbar extensions, definition 100
toolbar tag 221
toolbarControls() 420
toolbars

button tag 226
checkbutton tag 227
colorpicker tag 231
combobox tag 230
command API 238
controls 216
creating 215
docking 217

dropdown tag 229
editcontrol tag 230
file definition 220
how commands work 217
how toolbars work 215
include/ tag 223
item tags 226
itemref/ tag 224
itemtype/ tag 224
menubutton tag 228
radiobutton tag 227
separator tag 225
simple command file 218
tag attributes 232
toolbar tag 221
toolbars.xml file 215

toolbars.xml file 215, 220
tooltip attribute 233
translated attributes

finding in tags 132
individual 435
inspecting 437
multiple 436

translated tags, inspecting 439
translateMarkup() 454
translation tag 364
translations tag 363
translationType attribute 365
translator tag 362
translators

attribute 435
block/ tag 437
debugging 442

tree controls
about 116
adding 117
creating 120
manipulating content 122

tree view, XML 128
TREECOLUMN 120
TREENODE 120
Index 503

U
unescape() 128
uninstalling 30
update attribute 236
updatePattern tag 359, 360
updatePatterns tag 358
URL property 131

V
validateTag() 276
value attribute 236
value tag, code validation 94
variable grid controls 118
VBScript 305
version attribute 347
vline 279

W
W3C 128
whereToSearch attribute 364
width attribute 234
window object 128
window.close() 128
windowDimensions()

in behavior actions 320
in Commands API 178
in menu commands 213
in Objects API 165
in Reports API 258

workspace layouts
customizing 46

workspace, Dreamweaver MX 216

X
XML

files 128
structure 339
tree view 128

XML files
CodeHints.xml 56
insertbar.xml 150
menus.xml 182
MMDocumentTypes.xml 35
toolbars.xml 215

XML tag
codehints 57
toolbar 221
504 Index

	Contents
	Introduction
	Background
	Installing an extension
	Creating an extension
	Additional resources for extension writers
	What’s new in Dreamweaver
	Documentation changes
	Macromedia Press
	Deprecated functions
	Errata

	Conventions used in this guide

	Customizing Dreamweaver
	Customizing Dreamweaver
	Ways to customize Dreamweaver
	Customizing default documents
	Customizing page designs
	Customizing the appearance of dialog boxes
	Changing the default file type
	Customizing the interpretation of third-party tags
	<tagspec>
	How custom tags appear in the Design view
	Avoiding rewriting third-party tags

	Customizing Dreamweaver in a multiuser environment
	Deleting configuration files in a multiuser environment
	About mm_deleted_files.xml tag syntax
	<deleteditems>
	<item>

	Reinstalling and uninstalling Dreamweaver in a multiuser environment

	Working with browser profiles
	About browser-profile formatting
	Creating and editing a browser profile

	Changing FTP mappings
	Extensible document types in Dreamweaver
	Document type definition file
	Structure of document type definition files

	Dynamic templates
	Document extensions and file types
	Localized strings
	Rules for document type definition files
	Opening a document in Dreamweaver
	Customizing workspace layouts
	<panelset>
	<application>
	<document>
	<panelframe>
	<panelcontainer>
	<panel>

	Customizing the Code view toolbar

	Customizing Code View
	Code hints
	The CodeHints.xml file
	Code Hints tags
	<codehints>
	<menugroup>
	<description>
	<menu>
	<menuitem>
	<function>

	Code coloring
	Code coloring files
	<scheme>
	<blockEnd>
	<blockStart>
	<brackets>
	<charStart>
	<charEnd>
	<charEsc>
	<commentStart>
	<commentEnd>
	<cssImport/>
	<cssMedia/>
	<cssProperty/>
	<cssSelector/>
	<cssValue/>
	<defaultAttribute>
	<defaultTag>
	<defaultText/>
	<endOfLineComment>
	<entity/>
	<functionKeyword>
	<idChar1>
	<idCharRest>
	<ignoreCase>
	<ignoreMMTParams>
	<ignoreTags>
	<isLocked>
	<keyword>
	<keywords>
	<numbers/>
	<operators>
	<regexp>
	<sampleText>
	<searchPattern>
	<stringStart>
	<stringEnd>
	<stringEsc>
	<tagGroup>

	Scheme block delimiter coloring
	innerText
	customText
	outerTag
	innerTag
	nameTag
	nameTagScript

	Scheme processing
	Wildcard characters
	Escape characters
	Maximum string length
	Scheme precedence

	Editing schemes
	Code coloring examples

	Code validation
	<css-support>
	<property>
	<value>

	Changing default HTML formatting

	Overview of Extending Dreamweaver
	Extending Dreamweaver
	Types of Dreamweaver extensions
	Other ways to extend Dreamweaver

	Configuration folders and extensions
	Multiuser Configuration folders
	Running scripts at startup or shutdown
	Reloading extensions

	Extension APIs
	How Dreamweaver processes JavaScript in extensions
	Displaying Help

	Localizing an extension
	XML String files
	Localizable Strings with Embedded Values

	Working with the Extension Manager

	User Interfaces for Extensions
	Designing an extension user interface
	Dreamweaver HTML rendering control
	Using custom UI controls in extensions
	Editable select lists
	Database controls
	Adding a database tree control

	Adding a variable grid control
	Adding tree controls
	Creating a tree control
	Manipulating content within a tree control
	A color button control for extensions

	Adding Flash content to Dreamweaver
	A simple Flash dialog box example

	The Dreamweaver Document Object Model
	Which document DOM?
	The Dreamweaver DOM
	Objects, properties, and methods of the Dreamweaver DOM
	Properties and methods of the document object
	Properties and methods of HTML tag objects
	Properties and methods of text objects
	Properties and methods of comment objects
	The dreamweaver and site objects
	Properties of the dreamweaver object
	The site object

	Extension APIs
	Insert Bar Objects
	How object files work
	The Insert bar definition file
	Insertbar.xml tag hierarchy
	Insert bar definition tags
	<insertbar>
	<category>
	<menubutton>
	<button />
	<checkbutton />
	<separator />

	Insert bar definition tag attributes
	id="unique id"
	image="image_path”
	canDrag="Boolean”
	showIf="enabler"
	enabled="enabler"
	checked="enabler"
	command="API_function"
	file="file_path"
	tag="editor"
	name="tooltip_text"

	Modifying the Insert bar
	Adding objects to the Insert bar
	Adding objects to the Insert menu

	A simple insert object example
	Creating the HTML file
	Adding the JavaScript functions
	Creating the image
	Editing the insertbar.xml file
	Adding a dialog box
	Building an Insert bar pop-up menu

	The Objects API
	canInsertObject()
	displayHelp()
	isDomRequired()
	insertObject()
	objectTag()
	windowDimensions()

	Commands
	How commands work
	Adding commands to the Commands menu
	A simple command example
	Creating the UI
	Writing the JavaScript code
	Determining whether the command should be enabled or dimmed
	Linking functions to the OK and Cancel buttons
	Letting the user specify uppercase or lowercase

	Testing the extension

	The Commands API
	canAcceptCommand()
	commandButtons()
	isDomRequired()
	receiveArguments()
	windowDimensions()

	Menus and Menu Commands
	About the menus.xml file
	<menubar>
	<menu>
	<menuitem>
	<separator>
	<shortcutlist>
	<shortcut>
	<tool>
	<action>
	<activate>
	<override>

	Changing menus and menu commands
	Changing the name of a menu command or menu
	Changing keyboard shortcuts

	Menu commands
	Modifying the Commands menu
	How menu commands work

	A simple menu command example
	Creating the menu commands
	Writing the JavaScript code
	canAcceptCommand()
	receiveArguments()
	setMenuText()

	Placing the command file in the Menu folder

	A dynamic menu example
	Creating the dynamic menu items
	Writing the JavaScript code
	canAcceptCommand()
	havePreviewTarget()
	receiveArguments()

	The Menu Commands API
	canAcceptCommand()
	commandButtons()
	getDynamicContent()
	isCommandChecked()
	receiveArguments()
	setMenuText()
	windowDimensions()

	Toolbars
	How toolbars work
	How toolbars behave
	How toolbar commands work

	A simple toolbar command file
	Creating the text box
	Writing the JavaScript code
	canAcceptCommand(): enable the toolbar item
	receiveArguments(): set the title
	getCurrentValue(): get the title

	The toolbar definition file
	<toolbar>
	<include/>
	<itemtype/>
	<itemref/>
	<separator/>

	Toolbar item tags
	<button>
	<checkbutton>
	<radiobutton>
	<menubutton>
	<dropdown>
	<combobox>
	<editcontrol>
	<colorpicker>

	Item tag attributes
	id="unique_id"
	showIf="script"
	image="image_path"
	disabledImage="image_path"
	overImage="image_path"
	tooltip="tooltip string"
	label="label string"
	width="number"
	menuID="menu_id"
	colorRect="left top right bottom"
	file="command_file_path"
	domRequired="true" or "false"
	enabled="script"
	checked="script"
	value="script"
	update="update_frequency_list"
	command="script"
	arguments="argument_list"

	The toolbar command API
	canAcceptCommand()
	getCurrentValue()
	getDynamicContent()
	getMenuID()
	getUpdateFrequency()
	isCommandChecked()
	isDOMRequired()
	receiveArguments()
	showIf()

	Reports
	Site reports
	How site reports work
	A simple site report example
	Creating the report definition
	Writing the JavaScript code

	Stand-alone reports
	How stand-alone reports work
	A simple stand-alone report example
	Creating the dialog box UI
	Writing the JavaScript code

	The Reports API
	processFile()
	beginReporting()
	endReporting()
	commandButtons()
	configureSettings()
	windowDimensions()

	Tag Libraries and Editors
	Tag library file format
	The Tag Chooser
	TagChooser.xml files

	A simple example of creating a new tag editor
	Registering the tag in the tag library
	Creating a tag definition (VTML) file
	Creating a tag editor UI
	Adding a tag to Tag Chooser

	Tag editor APIs
	inspectTag()
	validateTag()
	applyTag()

	Property Inspectors
	Property inspector files
	How Property inspector files work
	A simple Property inspector example
	Creating the user interface
	Writing the JavaScript code
	Creating the image
	Testing the Property inspector

	The Property inspector API
	canInspectSelection()
	displayHelp()
	inspectSelection()

	Floating Panels
	How floating panel files work
	A simple floating panel example
	Creating the floating panels
	Writing the JavaScript code
	selectionChanged(): is a script marker selected?
	updateScript(): write back changes

	Creating a menu item

	The Floating panel API
	displayHelp()
	documentEdited()
	getDockingSide()
	initialPosition()
	initialTabs()
	isATarget()
	isAvailableInCodeView()
	isResizable()
	selectionChanged()
	About performance

	Behaviors
	How Behaviors work
	Inserting multiple functions in the user’s file
	What to do when an action requires a return value

	A simple behavior example
	Creating the behavior extension
	Creating the HTML files to browse
	Testing the behavior

	The Behaviors API
	applyBehavior()
	behaviorFunction()
	canAcceptBehavior()
	displayHelp()
	deleteBehavior()
	identifyBehaviorArguments()
	inspectBehavior()
	windowDimensions()

	Server Behaviors
	Dreamweaver architecture
	Server behavior folders and files
	Extension Data Markup Language
	Group files
	Participant files
	The script file

	A simple server behavior example
	Creating the dynamic page document
	Defining the new server behavior
	Defining the code to insert

	How the Server Behavior API functions are called
	The Server Behavior API
	analyzeServerBehavior()
	applyServerBehavior()
	canApplyServerBehavior()
	copyServerBehavior()
	deleteServerBehavior()
	displayHelp()
	findServerBehaviors()
	inspectServerBehavior()
	pasteServerBehavior()

	Server behavior implementation functions
	dwscripts.findSBs()
	dwscripts.applySB()
	dwscripts.deleteSB()

	Editing EDML files
	Regular expressions
	Notes about EDML structure

	Group EDML file tags
	<group>
	<group> attributes
	version
	serverBehavior
	dataSource
	subType

	<title>
	<groupParticipants>
	<groupParticipants> attributes
	selectParticipant

	<groupParticipant>
	<groupParticipant> attributes
	name
	partType

	Participant EDML files
	<participant>
	<participant> attributes
	version

	<quickSearch>
	<insertText>
	<insertText> attributes
	location
	nodeParamName

	<searchPatterns>
	<searchPatterns> attributes
	whereToSearch

	<searchPattern>
	<searchPattern> attributes
	paramNames
	limitSearch
	isOptional

	<updatePatterns>
	<updatePattern>
	<updatePattern> attributes
	paramName

	<delete>
	<delete> attributes
	deleteType

	<translator>
	<searchPatterns>
	<translations>
	<translation>
	<translation> attributes
	whereToSearch
	limitSearch
	translationType

	<openTag>
	<attributes>
	<attribute>
	<display>
	<closeTag>

	Server behavior techniques
	Finding server behaviors
	Search pattern resolution
	Updating server behaviors
	Deleting server behaviors
	Avoiding conflicts with share-in-memory JavaScript files

	Data Sources
	How data sources work
	A simple data source example
	Creating the data source definition file
	Creating the EDML file
	Creating the JavaScript file that implements the Data Sources API functions
	Creating the supporting command files for user input
	Testing the new data source

	The Data Sources API
	addDynamicSource()
	deleteDynamicSource()
	displayHelp()
	editDynamicSource()
	findDynamicSources()
	generateDynamicDataRef()
	generateDynamicSourceBindings()
	inspectDynamicDataRef()

	Server Formats
	How data formatting works
	The Formats.xml file
	The Edit Format List Plus (+) menu

	When the data formatting functions are called
	The Server Formats API
	applyFormat()
	applyFormatDefinition()
	deleteFormat()
	formatDynamicDataRef()
	inspectFormatDefinition()

	Components
	Component basics
	Extending the Components panel
	How to customize the Components panel
	Components panel files
	Adding a service component
	Populating the tree control

	Components panel API functions
	getComponentChildren()
	getContextMenuId()
	getCodeViewDropCode()
	getSetupSteps()
	setupStepsCompleted()
	handleDesignViewDrop()
	handleDoubleClick()
	toolbarControls()

	Server Models
	How customizing server models works
	The Server Model API functions
	canRecognizeDocument()
	getFileExtensions()
	getLanguageSignatures()
	getServerExtension()
	getServerInfo()
	getServerLanguages()
	getServerModelExtDataNameUD4()
	getServerModelDelimiters()
	getServerModelDisplayName()
	getServerModelFolderName()
	getServerSupportsCharset()
	getVersionArray()

	Data Translators
	How data translators work
	Determining what kind of translator to use
	Adding a translated attribute to a tag
	Translating more than one attribute at a time

	Inspecting translated attributes
	Locking translated tags or blocks of code
	Creating Property inspectors for locked content
	Finding bugs in your translator
	A simple attribute translator example
	Creating the tagspec tag
	Creating the icon
	Creating the attribute translator

	A simple block/tag translator example
	The Data Translator API
	getTranslatorInfo()
	translateMarkup()
	liveDataTranslateMarkup()

	C-Level Extensibility
	How integrating C functions works
	C-level extensibility and the JavaScript interpreter
	Data types
	typedef struct JSContext JSContext
	typedef struct JSObject JSObject
	typedef struct jsval jsval
	typedef enum { JS_FALSE = 0, JS_TRUE = 1 } JSBool

	The C-level API
	typedef JSBool (*JSNative)(JSContext *cx, JSObject *obj, unsigned int argc, jsval *argv, jsval *rval)
	JSBool JS_DefineFunction()
	char *JS_ValueToString()
	JSBool JS_ValueToInteger()
	JSBool JS_ValueToDouble()
	JSBool JS_ValueToBoolean()
	JSBool JS_ValueToObject()
	JSBool JS_StringToValue()
	JSBool JS_DoubleToValue()
	JSVal JS_BooleanToValue()
	JSVal JS_IntegerToValue()
	JSVal JS_ObjectToValue()
	char *JS_ObjectType()
	JSObject *JS_NewArrayObject()
	long JS_GetArrayLength()
	JSBool JS_GetElement()
	JSBool JS_SetElement()
	JSBool JS_ExecuteScript()
	JSBool JS_ReportError()

	File Access and Multiuser Configuration API
	JS_Object MM_GetConfigFolderList()
	JSBool MM_ConfigFileExists()
	int MM_OpenConfigFile()
	JSBool MM_GetConfigFileAttributes()
	JSBool MM_SetConfigFileAttributes()
	JSBool MM_CreateConfigFolder()
	JSBool MM_RemoveConfigFolder()
	JSBool MM_DeleteConfigFile()

	Calling a C function from JavaScript

	Appendix
	The Shared Folder
	The Shared folder contents
	The Common folder
	The MM folder
	The Scripts folder

	Other folders

	Using the Shared folder

	Index

