
Dreamweaver API Reference

000_DW_API_Print.book Page 1 Wednesday, July 20, 2005 11:58 AM

Trademarks

1 Step RoboPDF, ActiveEdit, ActiveTest, Authorware, Blue Sky Software, Blue Sky, Breeze, Breezo, Captivate, Central,
ColdFusion, Contribute, Database Explorer, Director, Dreamweaver, Fireworks, Flash, FlashCast, FlashHelp, Flash Lite,
FlashPaper, Flex, Flex Builder, Fontographer, FreeHand, Generator, HomeSite, JRun, MacRecorder, Macromedia, MXML,
RoboEngine, RoboHelp, RoboInfo, RoboPDF, Roundtrip, Roundtrip HTML, Shockwave, SoundEdit, Studio MX, UltraDev,
and WebHelp are either registered trademarks or trademarks of Macromedia, Inc. and may be registered in the United States or
in other jurisdictions including internationally. Other product names, logos, designs, titles, words, or phrases mentioned within
this publication may be trademarks, service marks, or trade names of Macromedia, Inc. or other entities and may be registered in
certain jurisdictions including internationally.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not
responsible for the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia
endorses or accepts any responsibility for the content on those third-party sites.

Opera ® browser Copyright © 1995-2002 Opera Software ASA and its suppliers. All rights reserved.

Copyright © 2005 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without written approval from
Macromedia, Inc. Notwithstanding the foregoing, the owner or authorized user of a valid copy of the software with which
this manual was provided may print out one copy of this manual from an electronic version of this manual for the sole
purpose of such owner or authorized user learning to use such software, provided that no part of this manual may be
printed out, reproduced, distributed, resold, or transmitted for any other purposes, including, without limitation,
commercial purposes, such as selling copies of this documentation or providing paid-for support services.

Acknowledgments

Project Management: Charles Nadeau, Robert Berry

Writing: Anne Sandstrom

Editing: Anne Szabla, John Hammett

Production and Editing Management: Patrice O’Neill and Rosana Francescato

Media Design and Production: Adam Barnett, Aaron Begley, Paul Benkman, John Francis, Geeta Karmarkar

Localization Management: Melissa Baerwald

Special thanks to Jay London, Raymond Lim, Alain Dumesny, and the entire Dreamweaver engineering and QA teams.

First Edition: September 2005

Macromedia, Inc.
601 Townsend St.
San Francisco, CA 94103

000_DW_API_Print.book Page 2 Wednesday, July 20, 2005 11:58 AM

000_DW_API_Print.book Page 3 Wednesday, July 20, 2005 11:58 AM
Contents
Introduction . 7

Background . 8
Extending Dreamweaver . 8
Additional resources for extension writers . 8
New functions in Dreamweaver 8. 8
Removed functions . 13
Errata. 13
Conventions used in this guide . 13

PART 1: UTILITY APIS

Chapter 1: The File I/O API. 17

Accessing configuration folders . 17
The File I/O API. 17

Chapter 2: The HTTP API . 29

How the HTTP API works . 29
The HTTP API. 30

Chapter 3: The Design Notes API . 39

How Design Notes work . 39
The Design Notes JavaScript API . 40
The Design Notes C API . 45

Chapter 4: Fireworks Integration . 53

The FWLaunch API . 53

Chapter 5: Flash Integration . 61

How Flash elements work . 61
Inserting Flash elements . 62
The Flash Objects API. 63
3

000_DW_API_Print.book Page 4 Wednesday, July 20, 2005 11:58 AM
Chapter 6: The Database API .69

How Database API functions work . 69
Database connection functions . 70
Database access functions . 86

Chapter 7: The Database Connectivity API 101

How to develop a new connection type .101
The Connection API . 103
The generated include file . 107
The definition file for your connection type . 109

Chapter 8: The JavaBeans API. 111

The JavaBeans API . 111

Chapter 9: The Source Control Integration API 117

How source control integration with Dreamweaver works.118
Adding source control system functionality. .118
The Source Control Integration API required functions 119
The Source Control Integration API optional functions 126
Enablers. 137

PART 2: JAVASCRIPT API

Chapter 10: Application . 147

External application functions. 147
Global application functions . 155

Chapter 11: Workspace. 161

History functions .161
Insert object functions . 171
Keyboard functions . 173
Menu functions. 182
Results window functions . 183
Toggle functions . 198
Toolbar functions. .222
Window functions .229
Code collapse functions. 241
Code view toolbar functions . 249
4 Contents

000_DW_API_Print.book Page 5 Wednesday, July 20, 2005 11:58 AM
Chapter 12: Site. 255

Report functions . 255
Site functions. 256

Chapter 13: Document . 299

Conversion functions. 299
Command functions. 300
File manipulation functions. 302
Global document functions .321
Path functions . 333
Selection functions . 336
String manipulation functions . 344
Translation functions . 349
XSLT functions .351

Chapter 14: Page Content . 355

Assets panel functions . 355
Behavior functions . 368
Clipboard functions . 379
Library and template functions . 384
Snippets panel functions .391

Chapter 15: Dynamic Documents . 397

Server Components functions. 397
Data source functions . 398
Extension Data Manager functions . 399
Live data functions. 402
Server behavior functions. 408
Server model functions .410

Chapter 16: Design .419

CSS functions .419
Frame and frameset functions. .441
Layer and image map functions . 443
Layout environment functions . 446
Layout view functions . 453
Zoom functions. 464
Guide functions and properties . 468
Table editing functions . 477
Contents 5

000_DW_API_Print.book Page 6 Wednesday, July 20, 2005 11:58 AM
Chapter 17: Code. 489

Code functions . 489
Find/replace functions . 494
General editing functions . 500
Print function . 520
Quick Tag Editor functions . 521
Code view functions . 524
Tag editor and tag library functions . 544

Chapter 18: Enablers . 551

Enablers. 551

Index . 599
6 Contents

000_DW_API_Print.book Page 7 Wednesday, July 20, 2005 11:58 AM
Introduction
The Dreamweaver API Reference describes two application programming interfaces (APIs) that
let you perform various supporting tasks when developing Macromedia Dreamweaver 8
extensions and adding program code to your Dreamweaver web pages. These two APIs are the
utility API and the JavaScript API. The utility API contains subsets of related functions that
let you perform specific types of tasks. The utility API includes the following API subsets:

■ The File I/O API, which lets you read and write files on the local file system
■ The HTTP API, which lets you send and receive information from a web server
■ The Design Notes API, which lets you store and retrieve notes about Dreamweaver

documents
■ The Fireworks Integration API, which lets you communicate with Macromedia Fireworks
■ Flash Integration, which contains information about adding Flash elements to the

Dreamweaver user interface (UI) and details on the Flash Objects API (which lets you
build objects that create Macromedia Flash content)

■ The Database API, which lets you access information stored in databases and manage
database connections

■ The Database Connectivity API, which lets you create a new connection type and
corresponding dialog boxes for new or existing server models

■ The JavaBeans API, which retrieves class names, methods, properties, and events for
JavaBeans that you have defined

■ The Source Control Integration API, which lets you write shared libraries to extend the
Dreamweaver Check In/Check Out feature

The extensive JavaScript API lets you perform a diverse set of smaller tasks, many of which are
tasks that a user would perform when creating or editing Dreamweaver documents. These
API functions are grouped by the parts of the Dreamweaver UI that they affect. For example,
the JavaScript API includes Workspace functions, Document functions, Design functions,
and so on. These functions let you perform tasks such as opening a new document, getting or
setting a font size, finding the occurrence of a search string in HTML code, making a toolbar
visible, and much more.
7

000_DW_API_Print.book Page 8 Wednesday, July 20, 2005 11:58 AM
Background
This book assumes that you are familiar with Dreamweaver, HTML, XML, JavaScript
programming and, if applicable, C programming. If you are writing extensions for building
web applications, you should also be familiar with server-side scripting on at least one
platform, such as Active Server Pages (ASP), ASP.net, PHP: Hypertext Preprocessor (PHP),
ColdFusion, or Java Server Pages (JSP).

Extending Dreamweaver
To learn about the Dreamweaver framework and the API that enables you to build
Dreamweaver extensions, see Extending Dreamweaver. Extending Dreamweaver describes the
API functions that Dreamweaver calls to implement the objects, menus, floating panels,
server behaviors, and so on, that comprise the various features of Dreamweaver. You can use
those APIs to add objects, menus, floating panels, or other features to the product. Extending
Dreamweaver also explains how to customize Dreamweaver by editing and adding tags to
various HTML and XML files to add menu items or document types, and so on.

Additional resources for extension writers
To communicate with other developers who are involved in writing extensions, you might
want to join the Dreamweaver extensibility newsgroup. You can access the website for this
newsgroup at www.macromedia.com/go/extending_newsgrp/.

New functions in Dreamweaver 8
The following new functions have been added to the Dreamweaver 8 JavaScript API. The
headings designate the chapters and sections that contain the new functions:

Application
The following Global application functions have been added to the Application chapter.

Global application
■ dreamweaver.showPasteSpecialDialog() on page 158
■ dreamweaver.showPreferencesDialog() on page 159 (added new argument)
8 Introduction

http://www.macromedia.com/go/extending_newsgrp/

000_DW_API_Print.book Page 9 Wednesday, July 20, 2005 11:58 AM
Workspace
The following new Window, Code collapse, and Code view toolbar functions have been
added to the Workspace chapter.

Window
■ dreamweaver.cascade() on page 231 (added support for the Macintosh)
■ dreamweaver.tileHorizontally() on page 239 (added support for the Macintosh)
■ dreamweaver.tileVertically() on page 240 (added support for the Macintosh)

Code collapse
■ dom.collapseFullTag() on page 241
■ dom.collapseSelectedCodeFragment() on page 243
■ dom.collapseSelectedCodeFragmentInverse() on page 243
■ dom.expandAllCodeFragments() on page 244
■ dom.expandSelectedCodeFragments() on page 245
■ dreamweaver.htmlInspector.collapseFullTag() on page 245
■ dreamweaver.htmlInspector.collapseSelectedCodeFragment() on page 246
■ dreamweaver.htmlInspector.collapseSelectedCodeFragmentInverse()

on page 247
■ dreamweaver.htmlInspector.expandAllCodeFragments() on page 248
■ dreamweaver.htmlInspector.expandSelectedCodeFragments() on page 248

Code view toolbar
■ dom.getOpenPathName() on page 249
■ dom.getShowHiddenCharacters() on page 249
■ dom.setShowHiddenCharacters() on page 250
■ dom.source.applyComment() on page 251
■ dom.source.removeComment() on page 251
■ dreamweaver.htmlInspector.getShowHiddenCharacters() on page 252
■ dreamweaver.htmlInspector.setShowHiddenCharacters() on page 253

Site
The following new Site functions have been added to the Site chapter.
New functions in Dreamweaver 8 9

000_DW_API_Print.book Page 10 Wednesday, July 20, 2005 11:58 AM
Site
■ dom.getSiteURLPrefixFromDoc() on page 256
■ dom.localPathToSiteRelative() on page 257
■ dom.siteRelativeToLocalPath() on page 257
■ dreamweaver.compareFiles() on page 258
■ dreamweaver.siteSyncDialog.compare() on page 259
■ dreamweaver.siteSyncDialog.markDelete() on page 260
■ dreamweaver.siteSyncDialog.markGet() on page 260
■ dreamweaver.siteSyncDialog.markIgnore() on page 261
■ dreamweaver.siteSyncDialog.markPut() on page 261
■ dreamweaver.siteSyncDialog.markSynced() on page 262
■ site.compareFiles() on page 267
■ site.getAppURLPrefixForSite() on page 274
■ site.getSiteURLPrefix() on page 280
■ site.serverActivity() on page 290
■ site.siteRelativeToLocalPath() on page 294

Document
The following new File manipulation functions have been added to the Document chapter.

File manipulation
■ dreamweaver.getNewDocumentDOM() on page 312 (added new argument)
■ MMXSLT.getXMLSchema() on page 351
■ MMXSLT.getXMLSourceURI() on page 352
■ MMXSLT.launchXMLSourceDialog() on page 353

Page content
The following new Clipboard functions have been added to the Page content chapter:

Clipboard
■ dreamweaver.clipPaste() on page 383 (added new argument)
10 Introduction

000_DW_API_Print.book Page 11 Wednesday, July 20, 2005 11:58 AM
Design
The following new CSS, Layout view, and Zoom functions have been added to the Design
chapter:

CSS
■ cssStylePalette.getInternetExplorerRendering() on page 419
■ cssStylePalette.setInternetExplorerRendering() on page 420
■ dom.getElementView() on page 421
■ dom.getShowDivBackgrounds() on page 422
■ dom.getShowDivBoxModel() on page 422
■ dom.getShowDivOutlines() on page 423
■ dom.resetAllElementViews() on page 424
■ dom.setElementView() on page 425
■ dom.setShowDivBackgrounds() on page 426
■ dom.setShowDivBoxModel() on page 426
■ dom.setShowDivOutlines() on page 427
■ dreamweaver.cssStylePalette.applySelectedStyle() on page 428 (added new

argument)
■ dreamweaver.cssStylePalette.deleteSelectedStyle() on page 429 (added new

argument)
■ dreamweaver.cssStylePalette.duplicateSelectedStyle() on page 430 (added

new argument)
■ dreamweaver.cssStylePalette.editSelectedStyle() on page 430 (added new

argument)
■ dreamweaver.cssStylePalette.editSelectedStyleInCodeview() on page 431
■ dreamweaver.cssStylePalette.getDisplayStyles() on page 432
■ dreamweaver.cssStylePalette.renameSelectedStyle() on page 436
■ dreamweaver.cssStylePalette.setDisplayStyles() on page 436
■ dreamweaver.getBlockVisBoxModelColors() on page 437
■ dreamweaver.getBlockVisOutlineProperties() on page 438
■ dreamweaver.getDivBackgroundColors() on page 439
■ dreamweaver.setBlockVisOutlineProperties() on page 439
■ dreamweaver.setDivBackgroundColors() on page 440
New functions in Dreamweaver 8 11

000_DW_API_Print.book Page 12 Wednesday, July 20, 2005 11:58 AM
Layout view
■ dom.getShowBlockBackgrounds() on page 459
■ dom.getShowBlockBorders() on page 459
■ dom.getShowBlockIDs() on page 460
■ dom.getShowBoxModel() on page 461
■ dom.setShowBlockBackgrounds() on page 461
■ dom.setShowBlockBorders() on page 462
■ dom.setShowBlockIDs() on page 462
■ dom.setShowBoxModel() on page 463

Zoom
■ dreamweaver.activeViewScale() on page 464
■ dreamweaver.fitAll() on page 465
■ dreamweaver.fitSelection() on page 465
■ dreamweaver.fitWidth() on page 466
■ dreamweaver.zoomIn() on page 466
■ dreamweaver.zoomOut() on page 467

Guide
■ dom.clearGuides() on page 468
■ dom.createHorizontalGuide() on page 468
■ dom.createVerticalGuide() on page 469
■ dom.deleteHorizontalGuide() on page 470
■ dom.deleteVerticalGuide() on page 470
■ dom.guidesColor on page 471
■ dom.guidesDistanceColor on page 471
■ dom.guidesLocked on page 472
■ dom.guidesSnapToElements on page 473
■ dom.guidesVisible on page 473
■ dom.hasGuides() on page 474
■ dom.hasHorizontalGuide() on page 474
■ dom.hasVerticalGuide() on page 475
12 Introduction

000_DW_API_Print.book Page 13 Wednesday, July 20, 2005 11:58 AM
Enablers
The following new functions have been added to the Enablers chapter:

■ dreamweaver.canFitSelection() on page 568
■ dreamweaver.canPasteSpecial() on page 568
■ dreamweaver.canZoom() on page 574
■ dreamweaver.cssStylePalette.canApplySelectedStyle() on page 575 (added new

argument)
■ dreamweaver.cssStylePalette.canDeleteSelectedStyle() on page 575 (added

new argument)
■ dreamweaver.cssStylePalette.canDuplicateSelectedStyle() on page 576 (added

new argument)
■ dreamweaver.cssStylePalette.canEditSelectedStyle() on page 577 (added new

argument)
■ dreamweaver.cssStylePalette.canEditSelectedStyleInCodeview() on page 577
■ dreamweaver.cssStylePalette.canRenameSelectedStyle() on page 578
■ dreamweaver.siteSyncDialog.canCompare() on page 582
■ dreamweaver.siteSyncDialog.canMarkDelete() on page 583
■ dreamweaver.siteSyncDialog.canMarkGet() on page 583
■ dreamweaver.siteSyncDialog.canMarkIgnore() on page 584
■ dreamweaver.siteSyncDialog.canMarkPut() on page 584
■ dreamweaver.siteSyncDialog.canMarkSynced() on page 585
■ site.canCompareFiles() on page 589

Removed functions
The following functions have been removed from the Dreamweaver 8 API because the
associated features have been removed from the product.

Errata
A current list of known issues can be found in the Extensibility section of the Dreamweaver
Support Center (www.macromedia.com/go/extending_errata).
Errata 13

http://www.macromedia.com/go/extending_errata

000_DW_API_Print.book Page 14 Wednesday, July 20, 2005 11:58 AM
Conventions used in this guide
The following typographical conventions are used in this guide:

■ Code font indicates code fragments and API literals, including class names, method
names, function names, type names, scripts, SQL statements, and both HTML and XML
tag and attribute names.

■ Italic code font indicates replaceable items in code.
■ The continuation symbol (¬) indicates that a long line of code has been broken across two

or more lines. Due to margin limits in this book’s format, what is otherwise a continuous
line of code must be split. When copying the lines of code, eliminate the continuation
symbol and type the lines as one line.

■ Curly braces ({ }) that surround a function argument indicate that the argument is
optional.

■ Function names that have the prefix dreamweaver.funcname can be abbreviated to
dw.funcname when you are writing code. This manual uses the full dreamweaver. prefix
when defining the function and in the index. Many examples use the dw. prefix, however.

The following naming conventions are used in this guide:

■ You—the developer who is responsible for writing extensions
■ The user—the person using Dreamweaver
14 Introduction

1

000_DW_API_Print.book Page 15 Wednesday, July 20, 2005 11:58 AM
PART 1

Utility APIs
Learn about the Macromedia Dreamweaver 8 utility functions that you can
use to access local and web-based files, work with Macromedia Fireworks,
and Macromedia Flash objects, manage database connections, create new
database connection types, access JavaBeans fscomponents, and integrate
Dreamweaver with various source control systems.
Chapter 1: The File I/O API . 17

Chapter 2: The HTTP API .29

Chapter 3: The Design Notes API .39

Chapter 4: Fireworks Integration .53

Chapter 5: Flash Integration. 61

Chapter 6: The Database API .69

Chapter 7: The Database Connectivity API 101

Chapter 8: The JavaBeans API. 111

Chapter 9: The Source Control Integration API.117
15

000_DW_API_Print.book Page 16 Wednesday, July 20, 2005 11:58 AM

1

000_DW_API_Print.book Page 17 Wednesday, July 20, 2005 11:58 AM
CHAPTER 1

The File I/O API
Macromedia Dreamweaver 8 includes a C shared library called DWfile, which gives authors
of objects, commands, behaviors, data translators, floating panels, and Property inspectors the
ability to read and write files on the local file system. This chapter describes the File I/O API
and how to use it.

For general information on how C libraries interact with the JavaScript interpreter in
Dreamweaver, see “C-Level Extensibility” in Extending Dreamweaver.

Accessing configuration folders
On Microsoft Windows 2000 and Windows XP, and Mac OS X platforms, users have their
own copies of configuration files. Whenever Dreamweaver writes to a configuration file,
Dreamweaver writes it to the user’s Configuration folder. Similarly, when Dreamweaver reads
a configuration file, Dreamweaver searches for it first in the user’s Configuration folder and
then in the Dreamweaver Configuration folder. DWfile functions use the same mechanism.
In other words, if your extension reads or writes a file in the Dreamweaver Configuration
folder, your extension also accesses the user’s Configuration folder. For more information
about configuration folders on multiuser platforms, see Extending Dreamweaver.

The File I/O API
All functions in the File I/O API are methods of the DWfile object.

DWfile.copy()

Availability

Dreamweaver 3.
17

000_DW_API_Print.book Page 18 Wednesday, July 20, 2005 11:58 AM
Description

This function copies the specified file to a new location.

Arguments
originalURL, copyURL

■ The originalURL argument, which is expressed as a file:// URL, is the file you want to
copy.

■ The copyURL argument, which is expressed as a file:// URL, is the location where you
want to save the copied file.

Returns

A Boolean value: true if the copy succeeds; false otherwise.

Example

The following code copies a file called myconfig.cfg to myconfig_backup.cfg:
var fileURL = "file:///c|/Config/myconfig.cfg";
var newURL ="file:///c|/Config/myconfig_backup.cfg";
DWfile.copy(fileURL, newURL);

DWfile.createFolder()

Availability

Dreamweaver 2.

Description

This function creates a folder at the specified location.

Arguments
folderURL

■ The folderURL argument, which is expressed as a file:// URL, is the location of the folder
you want to create.

Returns

A Boolean value: true if the folder is created successfully; false otherwise.
18 The File I/O API

000_DW_API_Print.book Page 19 Wednesday, July 20, 2005 11:58 AM
Example

The following code tries to create a folder called tempFolder at the top level of the C drive and
displays an alert box that indicates whether the operation was successful:
var folderURL = "file:///c|/tempFolder";
if (DWfile.createFolder(folderURL)){

alert("Created " + folderURL);
}else{

alert("Unable to create " + folderURL);
}

DWfile.exists()

Availability

Dreamweaver 2.

Description

This function tests for the existence of the specified file.

Arguments
fileURL

■ The fileURL argument, which is expressed as a file:// URL, is the requested file.

Returns

A Boolean value: true if the file exists; false otherwise.

Example

The following code checks for the mydata.txt file and displays an alert message that tells the
user whether the file exists:
var fileURL = "file:///c|/temp/mydata.txt";
if (DWfile.exists(fileURL)){

alert(fileURL + " exists!");
}else{

alert(fileURL + " does not exist.");
}

DWfile.getAttributes()

Availability

Dreamweaver 2.
The File I/O API 19

000_DW_API_Print.book Page 20 Wednesday, July 20, 2005 11:58 AM
Description

This function gets the attributes of the specified file or folder.

Arguments
fileURL

■ The fileURL argument, which is expressed as a file:// URL, is the file or folder for which
you want to get attributes.

Returns

A string that represents the attributes of the specified file or folder. If the file or folder does
not exist, this function returns a null value. The following characters in the string represent
the attributes:

■ R is read only.
■ D is folder.
■ H is hidden.
■ S is system file or folder.

Example

The following code gets the attributes of the mydata.txt file and displays an alert box if the file
is read only:
var fileURL = "file:///c|/temp/mydata.txt";
var str = DWfile.getAttributes(fileURL);
if (str && (str.indexOf("R") != -1)){

alert(fileURL + " is read only!");
}

DWfile.getModificationDate()

Availability

Dreamweaver 2.

Description

This function gets the time when the file was last modified.

Arguments
fileURL

■ The fileURL argument, which is expressed as a file:// URL, is the file for which you are
checking the last modified time.
20 The File I/O API

000_DW_API_Print.book Page 21 Wednesday, July 20, 2005 11:58 AM
Returns

A string that contains a hexadecimal number that represents the number of time units that
have elapsed since some base time. The exact meaning of time units and base time is
platform-dependent; in Windows, for example, a time unit is 100ns, and the base time is
January 1st, 1600.

Example

It’s useful to call the function twice and compare the return values because the value that this
function returns is platform-dependent and is not a recognizable date and time. The
following code example gets the modification dates of file1.txt and file2.txt and displays an
alert message that indicates which file is newer:
var file1 = "file:///c|/temp/file1.txt";
var file2 = "file:///c|/temp/file2.txt";
var time1 = DWfile.getModificationDate(file1);
var time2 = DWfile.getModificationDate(file2);
if (time1 == time2){

alert("file1 and file2 were saved at the same time");
}else if (time1 < time2){

alert("file1 older that file2");
}else{

alert("file1 is newer than file2");
}

DWfile.getCreationDate()

Availability

Dreamweaver 4.

Description

This function gets the time when the file was created.

Arguments
fileURL

■ The fileURL argument, which is expressed as a file:// URL, is the file for which you are
checking the creation time.

Returns

A string that contains a hexadecimal number that represents the number of time units that
have elapsed since some base time. The exact meaning of time units and base time is
platform-dependent; in Windows, for example, a time unit is 100ns, and the base time is
January 1st, 1600.
The File I/O API 21

000_DW_API_Print.book Page 22 Wednesday, July 20, 2005 11:58 AM
Example

You can call this function and the DWfile.getModificationDate() function on a file to
compare the modification date to the creation date:
var file1 = "file:///c|/temp/file1.txt";
var time1 = DWfile.getCreationDate(file1);
var time2 = DWfile.getModificationDate(file1);
if (time1 == time2){

alert("file1 has not been modified since it was created");
}else if (time1 < time2){

alert("file1 was last modified on " + time2);
}

DWfile.getCreationDateObj()

Availability

Dreamweaver MX.

Description

This function gets the JavaScript object that represents the time when the file was created.

Arguments
fileURL

■ The fileURL argument, which is expressed as a file:// URL, is the file for which you are
checking the creation time.

Returns

A JavaScript Date object that represents the date and time when the specified file was created.

DWfile.getModificationDateObj()

Availability

Dreamweaver MX.

Description

This function gets the JavaScript Date object that represents the time when the file was last
modified.
22 The File I/O API

000_DW_API_Print.book Page 23 Wednesday, July 20, 2005 11:58 AM
Arguments
fileURL

■ The fileURL argument, which is expressed as a file:// URL, is the file for which you are
checking the time of the most recent modification.

Returns

A JavaScript Date object that represents the date and time when the specified file was last
modified.

DWfile.getSize()

Availability

Dreamweaver MX.

Description

This function gets the size of a specified file.

Arguments
fileURL

■ The fileURL argument, which is expressed as a file:// URL, is the file for which you are
checking the size.

Returns

An integer that represents the actual size, in bytes, of the specified file.

DWfile.listFolder()

Availability

Dreamweaver 2.

Description

This function gets a list of the contents of the specified folder.

Arguments
folderURL, {constraint}

■ The folderURL argument is the folder for which you want a contents list, which is
expressed as a file:// URL, plus an optional wildcard file mask. Valid wildcards are asterisks
(*), which match one or more characters, and question marks (?), which match a single
character.
The File I/O API 23

000_DW_API_Print.book Page 24 Wednesday, July 20, 2005 11:58 AM
■ The constraint argument, if it is supplied, must be either "files" (return only files) or
"directories" (return only folders). If it is omitted, the function returns files and
folders.

Returns

An array of strings that represents the contents of the folder.

Example

The following code gets a list of all the text (TXT) files in the C:/temp folder and displays the
list in an alert message:
var folderURL = "file:///c|/temp";
var fileMask = "*.txt";
var list = DWfile.listFolder(folderURL + "/" + fileMask, "files");
if (list){

alert(folderURL + " contains: " + list.join("\n"));
}

DWfile.read()

Availability

Dreamweaver 2.

Description

This function reads the contents of the specified file into a string.

Arguments
fileURL

■ The fileURL argument, which is expressed as a file:// URL, is the file you want to read.

Returns

A string that contains the contents of the file or a null value if the read fails.

Example

The following code reads the mydata.txt file and, if it is successful, displays an alert message
with the contents of the file:
var fileURL = "file:///c|/temp/mydata.txt";
var str = DWfile.read(fileURL);
if (str){

alert(fileURL + " contains: " + str);
}

24 The File I/O API

000_DW_API_Print.book Page 25 Wednesday, July 20, 2005 11:58 AM
DWfile.remove()

Availability

Dreamweaver 3.

Description

This function deletes the specified file.

Arguments
fileURL

■ The fileURL argument, which is expressed as a file:// URL, is the file you want to
remove.

Returns

A Boolean value: true value if the operation succeeds; false otherwise.

Example

The following example uses the DWfile.getAttributes() function to determine whether
the file is read-only and the confirm() function to display a Yes/No dialog box to the user:
function deleteFile(){

var delAnyway = false;
var selIndex = document.theForm.menu.selectedIndex;

var selFile = document.theForm.menu.options[selIndex].value;
if (DWfile.getAttributes(selFile).indexOf('R') != -1){

delAnyway = confirm('This file is read-only. Delete anyway?');
if (delAnyway){

DWfile.remove(selFile);
}

}
}

DWfile.setAttributes()

Availability

Dreamweaver MX.

Description

This function sets the system-level attributes of a particular file.
The File I/O API 25

000_DW_API_Print.book Page 26 Wednesday, July 20, 2005 11:58 AM
Arguments
fileURL, strAttrs

■ The fileURL argument, which is expressed as a file:// URL, identifies the file for which
you are setting the attributes.

■ The strAttrs argument specifies the system-level attributes for the file that is identified
by the fileURL argument. The following table describes valid attribute values and their
meaning:

Acceptable values for the strAttrs string are R, W, H, V, RH, RV, WH, or WV.
You should not use R and W together because they are mutually exclusive. If you combine
them, R becomes meaningless, and the file is set as writable (W). You should not use H and
V together because they are also mutually exclusive. If you combine them, H becomes
meaningless, and the file is set as visible (V).
If you specify H or V without specifying an R or W read/write attribute, the existing read/
write attribute for the file is not changed. Likewise, if you specify R or W, without
specifying an H or V visibility attribute, the existing visibility attribute for the file is not
changed.

Returns

Nothing.

DWfile.write()

Availability

Dreamweaver 2.

Description

This function writes the specified string to the specified file. If the specified file does not yet
exist, it is created.

Attribute Value Description

R Read only

W Writable (overrides R)

H Hidden

V Visible (overrides H)
26 The File I/O API

000_DW_API_Print.book Page 27 Wednesday, July 20, 2005 11:58 AM
Arguments
fileURL, text, {mode}

■ The fileURL argument, which is expressed as a file:// URL, is the file to which you are
writing.

■ The text argument is the string to be written.
■ The mode argument, if it is supplied, must be "append". If this argument is omitted, the

contents of the file are overwritten by the string.

Returns

A Boolean value: true if the string is successfully written to the file; false otherwise.

Example

The following code attempts to write the string "xxx" to the mydata.txt file and displays an
alert message if the write operation succeeds. It then tries to append the string "aaa" to the
file and displays a second alert if the write succeeds. After executing this script, the mydata.txt
file contains the text xxxaaa and nothing else.
var fileURL = "file:///c|/temp/mydata.txt";
if (DWfile.write(fileURL, "xxx")){

alert("Wrote xxx to " + fileURL);
}
if (DWfile.write(fileURL, "aaa", "append")){

alert("Appended aaa to " + fileURL);
}

The File I/O API 27

000_DW_API_Print.book Page 28 Wednesday, July 20, 2005 11:58 AM
28 The File I/O API

2

000_DW_API_Print.book Page 29 Wednesday, July 20, 2005 11:58 AM
CHAPTER 2

The HTTP API
Extensions are not limited to working within the local file system. Macromedia
Dreamweaver 8 provides a mechanism to get information from and send information to a
web server by using hypertext transfer protocol (HTTP). This chapter describes the HTTP
API and how to use it.

How the HTTP API works
All functions in the HTTP API are methods of the MMHttp object. Most of these functions
take a URL as an argument, and most return an object. The default port for URL arguments
is 80. To specify a port other than 80, append a colon and the port number to the URL, as
shown in the following example:
MMHttp.getText("http://www.myserver.com:8025");

For functions that return an object, the object has two properties: statusCode and data.

The statusCode property indicates the status of the operation; possible values include, but
are not limited to, the following values:

■ 200: Status OK
■ 400: Unintelligible request
■ 404: Requested URL not found
■ 405: Server does not support requested method
■ 500: Unknown server error
■ 503: Server capacity reached

For a comprehensive list of status codes for your server, check with your Internet service
provider or system administrator.

The value of the data property varies according to the function; possible values are specified
in the individual function listings.
29

000_DW_API_Print.book Page 30 Wednesday, July 20, 2005 11:58 AM
Functions that return an object also have a callback version. Callback functions let other
functions execute while the web server processes an HTTP request. This capability is useful if
you are making multiple HTTP requests from Dreamweaver. The callback version of a
function passes its ID and return value directly to the function that is specified as its first
argument.

The HTTP API
This section details the functions that are methods of the MMHttp object.

MMHttp.clearServerScriptsFolder()

Availability

Dreamweaver MX.

Description

Deletes the _mmServerScripts folder—and all its files—under the root folder for the current
site, which can be local or remote. The _mmServerScripts folder is located in Configuration/
Connections/Scripts/server-model/_mmDBScripts folder.

Arguments
serverScriptsfolder

■ The serverScriptsfolder argument is a string that names a particular folder, relative to
the Configuration folder on the application server, from which you want to retrieve and
clear server scripts.

Returns

An object that represents the reply from the server. The data property of this object is a string
that contains the contents of the deleted scripts. If an error occurs, Dreamweaver reports it in
the statusCode property of the returned object.

Example

The following code, in a menu command file inside the Configuration/Menus folder, removes
all the files from the _mmServerScripts folder when it is called from a menu:
<!-- MENU-LOCATION=NONE -->
<html>
<head>
<TITLE>Clear Server Scripts</TITLE>
<SCRIPT SRC="ClearServerScripts.js"></SCRIPT>
<SCRIPT LANGUAGE="javascript">
30 The HTTP API

000_DW_API_Print.book Page 31 Wednesday, July 20, 2005 11:58 AM
</SCRIPT>
<body onLoad="MMHttp.clearServerScriptsFolder()">
</body>
</html>

MMHttp.clearTemp()

Description

This function deletes all the files in the Configuration/Temp folder, which is located in the
Dreamweaver application folder.

Arguments

None.

Returns

Nothing.

Example

The following code, when saved in a file within the Configuration/Shutdown folder, removes
all the files from the Configuration/Temp folder when the user quits Dreamweaver:
<html>
<head>
<title>Clean Up Temp Files on Shutdown</title>
</head>
<body onLoad="MMHttp.clearTemp()">
</body>
</html>

MMHttp.getFile()

Description

This function gets the file at the specified URL and saves it in the Configuration/Temp folder,
which is located in the Dreamweaver application folder. Dreamweaver automatically creates
subfolders that mimic the folder structure of the server; for example, if the specified file is at
www.dreamcentral.com/people/index.html, Dreamweaver stores the index.html file in the
People folder inside the www.dreamcentral.com folder.

Arguments
URL, {prompt}, {saveURL}, {titleBarLabel}

■ The URL argument is an absolute URL on a web server; if http:// is omitted from the
URL, Dreamweaver assumes HTTP protocol.
The HTTP API 31

000_DW_API_Print.book Page 32 Wednesday, July 20, 2005 11:58 AM
■ The prompt argument, which is optional, is a Boolean value that specifies whether to
prompt the user to save the file. If saveURL is outside the Configuration/Temp folder, a
prompt value of false is ignored for security reasons.

■ The saveURL argument, which is optional, is the location on the user’s hard disk where
the file should be saved, which is expressed as a file:// URL. If prompt is a true value or
saveURL is outside the Configuration/Temp folder, the user can override saveURL in the
Save dialog box.

■ The titleBarLabel argument, which is optional, is the label that should appear in the
title bar of the Save dialog box.

Returns

An object that represents the reply from the server. The data property of this object is a string
that contains the location where the file is saved, which is expressed as a file:// URL.
Normally, the statusCode property of the object contains the status code that is received
from the server. However, if a disk error occurs while Dreamweaver is saving the file on the
local drive, the statusCode property contains an integer that represents one of the following
error codes if the operation is not successful:

■ 1: Unspecified error
■ 2: File not found
■ 3: Invalid path
■ 4: Number of open files limit reached
■ 5: Access denied
■ 6: Invalid file handle
■ 7: Cannot remove current working folder
■ 8: No more folder entries
■ 9: Error setting file pointer
■ 10: Hardware error
■ 11: Sharing violation
■ 12: Lock violation
■ 13: Disk full
■ 14: End of file reached
32 The HTTP API

000_DW_API_Print.book Page 33 Wednesday, July 20, 2005 11:58 AM
Example

The following code gets an HTML file, saves all the files in the Configuration/Temp folder,
and then opens the local copy of the HTML file in a browser:
var httpReply = MMHttp.getFile("http://www.dreamcentral.com/¬
people/profiles/scott.html",
false);
if (httpReply.statusCode == 200){

var saveLoc = httpReply.data;
dw.browseDocument(saveLoc);

}

MMHttp.getFileCallback()

Description

This function gets the file at the specified URL, saves it in the Configuration/Temp folder
inside the Dreamweaver application folder, and then calls the specified function with the
request ID and reply result. When saving the file locally, Dreamweaver automatically creates
subfolders that mimic the folder structure of the server; for example, if the specified file is at
www.dreamcentral.com/people/index.html, Dreamweaver stores the index.html file in the
People folder inside the www.dreamcentral.com folder.

Arguments
callbackFunction, URL, {prompt}, {saveURL}, {titleBarLabel}

■ The callbackFunction argument is the name of the JavaScript function to call when the
HTTP request is complete.

■ The URL argument is an absolute URL on a web server; if http:// is omitted from the
URL, Dreamweaver assumes HTTP protocol.

■ The prompt argument, which is optional, is a Boolean value that specifies whether to
prompt the user to save the file. If saveURL argument specifies a location outside the
Configuration/Temp folder, a prompt value of false is ignored for security reasons.

■ The saveURL argument, which is optional, is the location on the user’s hard disk where
the file should be saved, which is expressed as a file:// URL. If prompt is a true value or
saveURL is outside the Configuration/Temp folder, the user can override saveURL in the
Save dialog box.

■ The titleBarLabel argument, which is optional, is the label that should appear in the
title bar of the Save dialog box.
The HTTP API 33

000_DW_API_Print.book Page 34 Wednesday, July 20, 2005 11:58 AM
Returns

An object that represents the reply from the server. The data property of this object is a string
that contains the location where the file was saved, which is expressed as a file:// URL.
Normally the statusCode property of the object contains the status code that is received
from the server. However, if a disk error occurs while Dreamweaver is saving the file on the
local drive, the statusCode property contains an integer that represents an error code. See
MMHttp.getFile() for a list of possible error codes.

MMHttp.getText()

Availability

Macromedia Dreamweaver UltraDev 4, enhanced in Dreamweaver MX.

Description

Retrieves the contents of the document at the specified URL.

Arguments
URL, {serverScriptsFolder}

■ The URL argument is an absolute URL on a web server. If http:// is omitted from the
URL, Dreamweaver assumes HTTP protocol.

■ The serverScriptsFolder argument is an optional string that names a particular
folder—relative to the Configuration folder on the application server—from which you
want to retrieve server scripts. To retrieve the scripts, Dreamweaver uses the appropriate
transfer protocol (such as FTP, WebDAV, or Remote File System). Dreamweaver copies
these files to the _mmServerScripts subfolder under the root folder for the current site.

If an error occurs, Dreamweaver reports it in the statusCode property of the returned object.

MMHttp.getTextCallback()

Availability

Dreamweaver UltraDev 4, enhanced in Dreamweaver MX.

Description

Retrieves the contents of the document at the specified URL and passes it to the
specified function.
34 The HTTP API

000_DW_API_Print.book Page 35 Wednesday, July 20, 2005 11:58 AM
Arguments
callbackFunc, URL, {serverScriptsFolder}

■ The callbackFunc argument is the JavaScript function to call when the HTTP request is
complete.

■ The URL argument is an absolute URL on a web server; if http:// is omitted from the
URL, Dreamweaver assumes HTTP protocol.

■ The serverScriptsFolder argument is an optional string that names a particular
folder—relative to the Configuration folder on the application server—from which you
want to retrieve server scripts. To retrieve the scripts, Dreamweaver uses the appropriate
transfer protocol (such as FTP, WebDAV, or Remote File System). Dreamweaver retrieves
these files and passes them to the function that callbackFunc identifies.

If an error occurs, Dreamweaver MX reports it in the statusCode property of the
returned object.

MMHttp.postText()

Availability

Dreamweaver UltraDev 4, enhanced in Dreamweaver MX.

Description

Performs an HTTP post of the specified data to the specified URL. Typically, the data
associated with a post operation is form-encoded text, but it could be any type of data that the
server expects to receive.

Arguments
URL, dataToPost, {contentType}, {serverScriptsFolder}

■ The URL argument is an absolute URL on a web server; if http:// is omitted from the
URL, Dreamweaver assumes HTTP protocol.

■ The dataToPost argument is the data to post. If the third argument is "application/x-
www-form-urlencoded" or omitted, dataToPost must be form-encoded according to
section 8.2.1 of the RFC 1866 specification (available at www.faqs.org/rfcs/
rfc1866.html).

■ The contentType argument, which is optional, is the content type of the data to post. If
omitted, this argument defaults to "application/x-www-form-urlencoded".
The HTTP API 35

http://www.faqs.org/rfcs/rfc1866.html
http://www.faqs.org/rfcs/rfc1866.html

000_DW_API_Print.book Page 36 Wednesday, July 20, 2005 11:58 AM
■ The serverScriptsFolder argument is an optional string that names a particular
folder—relative to the Configuration folder on the application server—to which you want
to post the data. To post the data, Dreamweaver uses the appropriate transfer protocol
(such as FTP, WebDAV, or Remote File System).

If an error occurs, Dreamweaver reports it in the statusCode property of the returned object.

Example

In the following example of an MMHttp.postText() function call, assume that a developer
has placed the myScripts.cfm file in a folder named DeployScripts, which is located in the
Configuration folder on the local computer:
MMHttp.postText(
 "http://ultraqa8/DeployScripts/myScripts.cfm",
 "arg1=Foo",
 "application/x-www-form-urlencoded",
 "Configuration/DeployScripts/"
)

When Dreamweaver executes this function call, the following sequence occurs:

1. The myScripts.cfm file in the Configuration/DeployScripts folder on the local computer is
copied to another folder named DeployScripts, which is a subfolder of the root folder on
the ultraqa8 website. To deploy the files, Dreamweaver uses the protocol specified in the
site configuration properties.

2. Dreamweaver uses HTTP protocol to post the arg1=Foo data to the web server.

3. As a result of the post request, the web server on ultraqa8 executes the myScripts.cfm script
using the arg1 data.

MMHttp.postTextCallback()

Availability

Dreamweaver UltraDev 4, enhanced in Dreamweaver MX.

Description

Performs an HTTP post of the text to the specified URL and passes the reply from the server
to the specified function. Typically, the data associated with a post operation is form-encoded
text, but it could be any type of data that the server expects to receive.
36 The HTTP API

000_DW_API_Print.book Page 37 Wednesday, July 20, 2005 11:58 AM
Arguments
callbackFunc, URL, dataToPost, {contentType}, {serverScriptsFolder}

■ The callbackFunc argument is the name of the JavaScript function to call when the
HTTP request is complete.

■ The URL argument is an absolute URL on a web server; if http:// is omitted from the
URL, Dreamweaver assumes HTTP protocol.

■ The dataToPost argument is the data to be posted. If the third argument is
"application/x-www-form-urlencoded" or omitted, data must be form-encoded
according to section 8.2.1 of the RFC 1866 specification (available at www.faqs.org/rfcs/
rfc1866.html).

■ The contentType argument, which is optional, is the content type of the data to be
posted. If omitted, this argument defaults to "application/x-www-form-urlencoded".

■ The serverScriptsFolder argument is an optional string. It names a particular folder,
relative to the Configuration folder on the application server—to which you want to post
the data. To post the data, Dreamweaver uses the appropriate transfer protocol (such as
FTP, WebDAV, or Remote File System). Dreamweaver retrieves these data and passes
them to the function identified by callbackFunc.

If an error occurs, Dreamweaver reports it in the statusCode property of the returned object.
The HTTP API 37

http://www.faqs.org/rfcs/rfc1866.html
http://www.faqs.org/rfcs/rfc1866.html

000_DW_API_Print.book Page 38 Wednesday, July 20, 2005 11:58 AM
38 The HTTP API

3

000_DW_API_Print.book Page 39 Wednesday, July 20, 2005 11:58 AM
CHAPTER 3

The Design Notes API
Macromedia Dreamweaver 8, Macromedia Fireworks, and Macromedia Flash give web
designers and developers a way to store and retrieve extra information about documents—
information such as review comments, change notes, or the source file for a GIF or JPEG—in
files that are called Design Notes.

MMNotes is a C shared library that lets extensions authors read and write Design Notes files.
As with the DWfile shared library, MMNotes has a JavaScript API that lets you call the
functions in the library from objects, commands, behaviors, floating panels, Property
inspectors, and data translators.

MMNotes also has a C API that lets other applications read and write Design Notes files. The
MMNotes shared library can be used independently, even if Dreamweaver is not installed.

For more information about using the Design Notes feature from within Dreamweaver, see
Using Dreamweaver.

How Design Notes work
Each Design Notes file stores information for a single document. If one or more documents in
a folder has an associated Design Notes file, Dreamweaver creates a _notes subfolder where
Design Notes files can be stored. The _notes folder and the Design Notes files that it contains
are not visible in the Site panel, but they appear in the Finder (Macintosh) or Windows
Explorer. A Design Notes filename comprises the main filename plus the .mno extension. For
example, the Design Notes file that is associated with avocado8.gif is avocado8.gif.mno.

Design Notes files are XML files that store information in a series of key/value pairs. The key
describes the type of information that is being stored, and the value represents the
information. Keys are limited to 64 characters.
39

000_DW_API_Print.book Page 40 Wednesday, July 20, 2005 11:58 AM
The following example shows the Design Notes file for foghorn.gif.mno:
<?xml version="1.0" encoding="iso-8859-1" ?>
<info>

<infoitem key="FW_source" value="file:///C|sites/¬
dreamcentral/images/sourceFiles/foghorn.png" />
<infoitem key="Author" value="Heidi B." />
<infoitem key="Status" value="Final draft, approved ¬
by Jay L." />

</info>

The Design Notes JavaScript API
All functions in the Design Notes JavaScript API are methods of the MMNotes object.

MMNotes.close()

Description

This function closes the specified Design Notes file and saves any changes. If all the key/value
pairs are removed, Dreamweaver deletes the Design Notes file. If it is the last Design Notes
file in the _notes folder, Dreamweaver also deletes the folder.

Arguments
fileHandle

■ The fileHandle argument is the file handle that the MMNotes.open() function returns.

Returns

Nothing.

Example

See “MMNotes.set()” on page 45.

MMNotes.filePathToLocalURL()

Description

This function converts the specified local drive path to a file:// URL.

N
O

T
E

Always call the MMNotes.close() function when you finish with Design Notes so
Dreamweaver writes to the file.
40 The Design Notes API

000_DW_API_Print.book Page 41 Wednesday, July 20, 2005 11:58 AM
Arguments
drivePath

■ The drivePath argument is a string that contains the full drive path.

Returns

A string that contains the file:// URL for the specified file.

Example

A call to MMNotes.filePathToLocalURL('C:\sites\webdev\index.htm') returns
"file:///c|/sites/webdev/index.htm".

MMNotes.get()

Description

This function gets the value of the specified key in the specified Design Notes file.

Arguments
fileHandle, keyName

■ The fileHandle argument is the file handle that MMNotes.open() returns.
■ The keyName argument is a string that contains the name of the key.

Returns

A string that contains the value of the key.

Example

See “MMNotes.getKeys()” on page 42.

MMNotes.getKeyCount()

Description

This function gets the number of key/value pairs in the specified Design Notes file.

Arguments
fileHandle

■ The fileHandle argument is the file handle that the MMNotes.open() function returns.

Returns

An integer that represents the number of key/value pairs in the Design Notes file.
The Design Notes JavaScript API 41

000_DW_API_Print.book Page 42 Wednesday, July 20, 2005 11:58 AM
MMNotes.getKeys()

Description

This function gets a list of all the keys in a Design Notes file.

Arguments
fileHandle

■ The fileHandle argument is the file handle that the MMNotes.open() function returns.

Returns

An array of strings where each string contains the name of a key.

Example

The following code might be used in a custom floating panel to display the Design Notes
information for the active document:
var noteHandle = MMNotes.open(dw.getDocumentDOM().URL);
var theKeys = MMNotes.getKeys(noteHandle);
var noteString = "";
var theValue = "";
for (var i=0; i < theKeys.length; i++){

theValue = MMNotes.get(noteHandle,theKeys[i]);
noteString += theKeys[i] + " = " theValue + "\n";

}
document.theForm.bigTextField.value = noteString;
// always close noteHandle
MMNotes.close(noteHandle);

MMNotes.getSiteRootForFile()

Description

This function determines the site root for the specified Design Notes file.

Arguments
fileURL

■ The fileURL argument, which is expressed as a file:// URL, is the path to a local file.

Returns

A string that contains the path of the Local Root folder for the site, which is expressed as a
file:// URL, or an empty string if Dreamweaver is not installed or the Design Notes file is
outside any site that is defined with Dreamweaver. This function searches for all the sites that
are defined in Dreamweaver.
42 The Design Notes API

000_DW_API_Print.book Page 43 Wednesday, July 20, 2005 11:58 AM
MMNotes.getVersionName()

Description

This function gets the version name of the MMNotes shared library, which indicates the
application that implemented it.

Arguments

None.

Returns

A string that contains the name of the application that implemented the MMNotes shared
library.

Example

Calling the MMNotes.getVersionName() function from a Dreamweaver command, object,
behavior, Property inspector, floating panel, or data translator returns "Dreamweaver".
Calling the MMNotes.getVersionName() function from Fireworks also returns
"Dreamweaver" because Fireworks uses the same version of the library, which was created by
the Dreamweaver engineering team.

MMNotes.getVersionNum()

Description

This function gets the version number of the MMNotes shared library.

Arguments

None.

Returns

A string that contains the version number.

MMNotes.localURLToFilePath()

Description

This function converts the specified file:// URL to a local drive path.

Arguments
fileURL

■ The fileURL argument, which is expressed as a file:// URL, is the path to a local file.
The Design Notes JavaScript API 43

000_DW_API_Print.book Page 44 Wednesday, July 20, 2005 11:58 AM
Returns

A string that contains the local drive path for the specified file.

Example

A call to MMNotes.localURLToFilePath('file:///MacintoshHD/images/moon.gif')
returns "MacintoshHD:images:moon.gif".

MMNotes.open()

Description

This function opens the Design Notes file that is associated with the specified file or creates
one if none exists.

Arguments
filePath, {bForceCreate}

■ The filePath argument, which is expressed as a file:// URL, is the path to the main file
with which the Design Notes file is associated.

■ The bForceCreate argument is a Boolean value that indicates whether to create the note
even if Design Notes is turned off for the site or if the filePath argument is not
associated with any site.

Returns

The file handle for the Design Notes file or 0 if the file was not opened or created.

Example

See “MMNotes.set()” on page 45.

MMNotes.remove()

Description

The function removes the specified key (and its value) from the specified Design Notes file.

Arguments
fileHandle, keyName

■ The fileHandle argument is the file handle that the MMNotes.open() function returns.
■ The keyName argument is a string that contains the name of the key to remove.

Returns

A Boolean value: true indicates the operation is successful; false otherwise.
44 The Design Notes API

000_DW_API_Print.book Page 45 Wednesday, July 20, 2005 11:58 AM
MMNotes.set()

Description

This function creates or updates one key/value pair in a Design Notes file.

Arguments
fileHandle, keyName, valueString

■ The fileHandle argument is the file handle that the MMNotes.open() function returns.
■ The keyName argument is a string that contains the name of the key.
■ The valueString argument is a string that contains the value.

Returns

A Boolean value: true indicates the operation is successful; false otherwise.

Example

The following example opens the Design Notes file that is associated with a file in the
dreamcentral site called peakhike99/index.html, adds a new key/value pair, changes the value
of an existing key, and then closes the Design Notes file:
var noteHandle = MMNotes.open('file:///c|/sites/dreamcentral/
peakhike99/index.html',true);
if(noteHandle > 0){

MMNotes.set(noteHandle,"Author","M. G. Miller");
MMNotes.set(noteHandle,"Last Changed","August 28, 1999");
MMNotes.close(noteHandle);

}

The Design Notes C API
In addition to the JavaScript API, the MMNotes shared library also exposes a C API that lets
other applications create Design Notes files. It is not necessary to call these C functions
directly if you use the MMNotes shared library in Dreamweaver because the JavaScript
versions of the functions call them.

This section contains descriptions of the functions, their arguments, and their return values.
You can find definitions for the functions and data types in the MMInfo.h file in the
Extending/c_files folder inside the Dreamweaver application folder.
The Design Notes C API 45

000_DW_API_Print.book Page 46 Wednesday, July 20, 2005 11:58 AM
void CloseNotesFile()

Description

This function closes the specified Design Notes file and saves any changes. If all key/value
pairs are removed from the Design Note file, Dreamweaver deletes it. Dreamweaver deletes
the _notes folder when the last Design Notes file is deleted.

Arguments
FileHandle noteHandle

■ The noteHandle argument is the file handle that the OpenNotesFile() function returns.

Returns

Nothing.

BOOL FilePathToLocalURL()

Description

This function converts the specified local drive path to a file:// URL.

Arguments
const char* drivePath, char* localURLBuf, int localURLMaxLen

■ The drivePath argument is a string that contains the full drive path.
■ The localURLBuf argument is the buffer where the file:// URL is stored.
■ The localURLMaxLen argument is the maximum size of localURLBuf.

Returns

A Boolean value: true indicates the operation is successful; false otherwise. The
localURLBuf argument receives the file:// URL value.

BOOL GetNote()

Description

This function gets the value of the specified key in the specified Design Notes file.

Arguments
FileHandle noteHandle, const char keyName[64], char* valueBuf, int

valueBufLength

■ The noteHandle argument is the file handle that the OpenNotesFile() function returns.
46 The Design Notes API

000_DW_API_Print.book Page 47 Wednesday, July 20, 2005 11:58 AM
■ The keyName[64] argument is a string that contains the name of the key.
■ The valueBuf argument is the buffer where the value is stored.
■ The valueBufLength argument is the integer that GetNoteLength(noteHandle,

keyName) returns, which indicates the maximum length of the value buffer.

Returns

A Boolean value: true indicates the operation is successful; false otherwise. The valueBuf
argument receives the value of the key.

Example

The following code gets the value of the comments key in the Design Notes file that is
associated with the welcome.html file:
FileHandle noteHandle = OpenNotesFile("file:///c|/sites/avocado8/¬
iwjs/welcome.html");
if(noteHandle > 0){

int valueLength = GetNoteLength(noteHandle, "comments");
char* valueBuffer = new char[valueLength + 1];
GetNote(noteHandle, "comments", valueBuffer, valueLength + 1);
printf("Comments: %s",valueBuffer);
CloseNotesFile(noteHandle);

}

int GetNoteLength()

Description

This function gets the length of the value that is associated with the specified key.

Arguments
FileHandle noteHandle, const char keyName[64]

■ The noteHandle argument is the file handle that the OpenNotesFile() function returns.
■ The keyName[64] argument is a string that contains the name of the key.

Returns

An integer that represents the length of the value.

Example

See “BOOL GetNote()” on page 46.
The Design Notes C API 47

000_DW_API_Print.book Page 48 Wednesday, July 20, 2005 11:58 AM
int GetNotesKeyCount()

Description

This function gets the number of key/value pairs in the specified Design Notes file.

Arguments
FileHandle noteHandle

■ The noteHandle argument is the file handle that the OpenNotesFile() function returns.

Returns

An integer that represents the number of key/value pairs in the Design Notes file.

BOOL GetNotesKeys()

Description

This function gets a list of all the keys in a Design Notes file.

Arguments
FileHandle noteHandle, char* keyBufArray[64], int keyArrayMaxLen

■ The noteHandle argument is the file handle that OpenNotesFile() returns.
■ The keyBufArray[64] argument is the buffer array where the keys are stored.
■ The keyArrayMaxLen argument is the integer that GetNotesKeyCount(noteHandle)

returns, indicating the maximum number of items in the key buffer array.

Returns

A Boolean value: true indicates the operation is successful; false otherwise. The
keyBufArray argument receives the key names.

Example

The following code prints the key names and values of all the keys in the Design Notes file
that are associated with the welcome.html file:
typedef char[64] InfoKey;
FileHandle noteHandle = OpenNotesFile("file:///c|/sites/avocado8/¬
iwjs/welcome.html");
if (noteHandle > 0){

int keyCount = GetNotesKeyCount(noteHandle);
if (keyCount <= 0)

return;
InfoKey* keys = new InfoKey[keyCount];
BOOL succeeded = GetNotesKeys(noteHandle, keys, keyCount);
48 The Design Notes API

000_DW_API_Print.book Page 49 Wednesday, July 20, 2005 11:58 AM
if (succeeded){
for (int i=0; i < keyCount; i++){

printf("Key is: %s\n", keys[i]);
printf("Value is: %s\n\n", GetNote(noteHandle, keys[i]);

}
}
delete []keys;

}
CloseNotesFile(noteHandle);

BOOL GetSiteRootForFile()

Description

This function determines the site root for the specified Design Notes file.

Arguments
const char* filePath, char* siteRootBuf, int siteRootBufMaxLen,

{InfoPrefs* infoPrefs}

■ The filePath argument is the file://URL of the file for which you want the site root.
■ The siteRootBuf argument is the buffer where the site root is stored.
■ The siteRootBufMaxLen argument is the maximum size of the buffer that

siteRootBuf references.
■ The infoPrefs argument, which is optional, is a reference to a struct in which the

preferences for the site are stored.

Returns

A Boolean value: true indicates the operation is successful; false otherwise. The
siteRootBuf argument receives the address of the buffer that stores the site root. If you
specify the infoPrefs argument, the function also returns the Design Notes preferences for
the site. The InfoPrefs struct has two variables: bUseDesignNotes and
bUploadDesignNotes, both of type BOOL.

BOOL GetVersionName()

Description

This function gets the version name of the MMNotes shared library, which indicates the
application that implemented it.
The Design Notes C API 49

000_DW_API_Print.book Page 50 Wednesday, July 20, 2005 11:58 AM
Arguments
char* versionNameBuf, int versionNameBufMaxLen

■ The versionNameBuf argument is the buffer where the version name is stored.
■ The versionNameBufMaxLen argument is the maximum size of the buffer that the

versionNameBuf argument references.

Returns

A Boolean value: true indicates the operation is successful; false otherwise. Dreamweaver
stores "Dreamweaver" in versionNameBuf argument.

BOOL GetVersionNum()

Description

This function gets the version number of the MMNotes shared library, which lets you
determine whether certain functions are available.

Arguments
char* versionNumBuf, int versionNumBufMaxLen

■ The versionNumBuf argument is the buffer where the version number is stored.
■ The versionNumBufMaxLen argument is the maximum size of the buffer that

versionNumBuf references.

Returns

A Boolean value: true indicates the operation is successful; false otherwise. The
versionNumBuf argument stores the version number.

BOOL LocalURLToFilePath()

Description

This function converts the specified file:// URL to a local drive path.

Arguments
const char* localURL, char* drivePathBuf, int drivePathMaxLen

■ The localURL argument, which is expressed as a file:// URL, is the path to a local file.
■ The drivePathBuf argument is the buffer where the local drive path is stored.
■ The drivePathMaxLen argument is the maximum size of the buffer that the

drivePathBuf argument references.
50 The Design Notes API

000_DW_API_Print.book Page 51 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true indicates the operation is successful; false otherwise. The
drivePathBuf argument receives the local drive path.

FileHandle OpenNotesFile()

Description

This function opens the Design Notes file that is associated with the specified file or creates
one if none exists.

Arguments
const char* localFileURL, {BOOL bForceCreate}

■ The localFileURL argument, which is expressed as a file:// URL, is a string that contains
the path to the main file with which the Design Notes file is associated.

■ The bForceCreate argument is a Boolean value that indicates whether to create the
Design Notes file even if Design Notes is turned off for the site or if the path specified by
the localFileURL argument is not associated with any site.

FileHandle OpenNotesFilewithOpenFlags()

Description

This function opens the Design Notes file that is associated with the specified file or creates
one if none exists. You can open the file in read-only mode.

Arguments
const char* localFileURL, {BOOL bForceCreate}, {BOOL bReadOnly}

■ The localFileURL argument, which is expressed as a file:// URL, is a string that contains
the path to the main file with which the Design Notes file is associated.

■ The bForceCreate argument is a Boolean value that indicates whether to create the
Design Notes file even if Design Notes are turned off for the site or the path is not
associated with any site. The default value is false. This argument is optional, but you
need to specify it if you specify the third argument.

■ The bReadOnly argument, which is optional, is a Boolean value that indicates whether to
open the file in read-only mode. The default value is false. You can specify the
bReadOnly argument starting in version 2 of the MMNotes.dll file.
The Design Notes C API 51

000_DW_API_Print.book Page 52 Wednesday, July 20, 2005 11:58 AM
BOOL RemoveNote()

Description

This function removes the specified key (and its value) from the specified Design Notes file.

Arguments
FileHandle noteHandle, const char keyName[64]

■ The noteHandle argument is the file handle that the OpenNotesFile() function returns.
■ The keyName[64] argument is a string that contains the name of the key to remove.

Returns

A Boolean value: true indicates the operation is successful; false otherwise.

BOOL SetNote()

Description

This function creates or updates one key/value pair in a Design Notes file.

Arguments
FileHandle noteHandle, const char keyName[64], const char* value

■ The noteHandle argument is the file handle that the OpenNotesFile() function returns.
■ The keyName[64] argument is a string that contains the name of the key.
■ The value argument is a string that contains the value.

Returns

A Boolean value: true indicates the operation is successful; false otherwise.
52 The Design Notes API

4

000_DW_API_Print.book Page 53 Wednesday, July 20, 2005 11:58 AM
CHAPTER 4

Fireworks Integration
FWLaunch is a C shared library that gives authors of objects, commands, behaviors, and
Property inspectors the ability to communicate with Macromedia Fireworks. Using
FWLaunch, you write JavaScript to open the Fireworks user interface (UI) and provide
commands to Fireworks through its own JavaScript API documented in the Extending
Fireworks manual. For general information on how C libraries interact with the JavaScript
interpreter in Macromedia Dreamweaver 8, see Extending Dreamweaver for details on
C-level extensibility.

The FWLaunch API
The FWLaunch object lets extensions open Fireworks, perform Fireworks operations using
the Fireworks JavaScript API, and then return values back to Dreamweaver. This chapter
describes the FWLaunch Communication API and how to use it.

FWLaunch.bringDWToFront()

Availability

Dreamweaver 3, Fireworks 3.

Description

This function brings Dreamweaver to the front.

Arguments

None.

Returns

Nothing.
53

000_DW_API_Print.book Page 54 Wednesday, July 20, 2005 11:58 AM
FWLaunch.bringFWToFront()

Availability

Dreamweaver 3, Fireworks 3.

Description

This function brings Fireworks to the front if it is running.

Arguments

None.

Returns

Nothing.

FWLaunch.execJsInFireworks()

Availability

Dreamweaver 3, Fireworks 3.

Description

This function passes the specified JavaScript, or a reference to a JavaScript file, to Fireworks
to execute.

Arguments
javascriptOrFileURL

■ The javascriptOrFileURL argument, which is expressed as a file:// URL, is either a
string of literal JavaScript or the path to a JavaScript file.

Returns

A cookie object if the JavaScript passes successfully or a nonzero error code that indicates one
of the following errors occurred:

■ Invalid usage, which indicates that the javascriptOrFileURL argument is specified as a
null value or as an empty string, or the path to the JS or JSF file is invalid.

■ File I/O error, which indicates that Fireworks cannot create a Response file because the
disk is full.

■ Error notifying Dreamweaver that the user is not running a valid version of Dreamweaver
(version 3 or later).
54 Fireworks Integration

000_DW_API_Print.book Page 55 Wednesday, July 20, 2005 11:58 AM
■ Error starting Fireworks process, which indicates that the function does not open a valid
version of Fireworks (version 3 or later).

■ User cancelled the operation.

FWLaunch.getJsResponse()

Availability

Dreamweaver 3, Fireworks 3.

Description

This function determines whether Fireworks is still executing the JavaScript passed to it by the
FWLaunch.execJsInFireworks() function, whether the script completed successfully, or
whether an error occurred.

Arguments
progressTrackerCookie

■ The progressTrackerCookie argument is the cookie object that the
FWLaunch.execJsInFireworks() function returns.

Returns

A string that contains the result of the script passed to the FWLaunch.execJsInFireworks()
function if the operation completes successfully, a null value if Fireworks is still executing the
JavaScript, or a nonzero error code that indicates one of the following errors occurred:

■ Invalid usage, which indicates that a JavaScript error occurred while Fireworks executed
the script.

■ File I/O error, which indicates that Fireworks cannot create a Response file because the
disk is full.

■ Error notifying Dreamweaver that the user is not running a valid version of Dreamweaver
(version 3 or later).

■ Error starting Fireworks process, which indicates that the function does not open a valid
version of Fireworks (version 3 or later).

■ User cancelled the operation.
The FWLaunch API 55

000_DW_API_Print.book Page 56 Wednesday, July 20, 2005 11:58 AM
Example

The following code passes the string "prompt('Please enter your name:')" to
FWLaunch.execJsInFireworks() and checks for the result:
var progressCookie = FWLaunch.execJsInFireworks("prompt('Please enter your

name:')");
var doneFlag = false;
while (!doneFlag){

// check for completion every 1/2 second
setTimeout('checkForCompletion()',500);

}

function checkForCompletion(){
if (progressCookie != null) {

var response = FWLaunch.getJsResponse(progressCookie);
if (response != null) {

if (typeof(response) == "number") {
// error or user-cancel, time to close the window
// and let the user know we got an error
window.close();
alert("An error occurred.");

}else{
// got a valid response!
alert("Nice to meet you, " + response);
window.close();

}
doneFlag = true;

}
}

}

FWLaunch.mayLaunchFireworks()

Availability

Dreamweaver 2, Fireworks 2.

Description

This function determines whether it is possible to open a Fireworks optimization session.

Arguments

None.

Returns

A Boolean value that indicates whether the platform is Windows or the Macintosh; if it is the
Macintosh, the value indicates if another Fireworks optimization session is already running.
56 Fireworks Integration

000_DW_API_Print.book Page 57 Wednesday, July 20, 2005 11:58 AM
FWLaunch.optimizeInFireworks()

Availability

Dreamweaver 2, Fireworks 2.

Description

This function opens a Fireworks optimization session for the specified image.

Arguments
docURL, imageURL, {targetWidth}, {targetHeight}

■ The docURL argument is the path to the active document, which is expressed as a file://
URL.

■ The imageURL argument is the path to the selected image. If the path is relative, it is
relative to the path that you specify in the docURL argument.

■ The targetWidth argument, which is optional, defines the width to which the image
should be resized.

■ The targetHeight argument, which is optional, defines the height to which the image
should be resized.

Returns

Zero, if a Fireworks optimization session successfully opens for the specified image; otherwise,
a nonzero error code that indicates one of the following errors occurred:

■ Invalid usage, which indicates that the docURL argument, the imageURL argument, or
both, are specified as a null value or an empty string.

■ File I/O error, which indicates that Fireworks cannot create a response file because the
disk is full.

■ Error notifying Dreamweaver that the user is not running a valid version of Dreamweaver
(version 2 or later).

■ Error starting Fireworks process, which indicates that the function does not open a valid
version of Fireworks (version 2 or later).

■ User cancelled the operation.
The FWLaunch API 57

000_DW_API_Print.book Page 58 Wednesday, July 20, 2005 11:58 AM
FWLaunch.validateFireworks()

Availability

Dreamweaver 2, Fireworks 2.

Description

This function looks for the specified version of Fireworks on the user’s hard disk.

Arguments
{versionNumber}

■ The versionNumber argument is an optional floating-point number that is greater than
or equal to 2; it represents the required version of Fireworks. If this argument is omitted,
the default is 2.

Returns

A Boolean value that indicates whether the specified version of Fireworks was found.

Example

The following code checks whether Fireworks is installed:
if (FWLaunch.validateFireworks(6.0)){

alert("Fireworks 6.0 or later is installed.");
}else{

alert("Fireworks 6.0 is not installed.");
}

A simple FWLaunch communication example
The following command asks Fireworks to prompt the user for their name and returns the
name to Dreamweaver:
<html>
<head>
<title>Prompt in Fireworks</title>
<meta http-equiv="Content-Type" content="text/html; ¬
charset=iso-8859-1">
<script>

function commandButtons(){
return new Array("Prompt", "promptInFireworks()", "Cancel", ¬
"readyToCancel()", "Close","window.close()");

}

var gCancelClicked = false;
var gProgressTrackerCookie = null;
58 Fireworks Integration

000_DW_API_Print.book Page 59 Wednesday, July 20, 2005 11:58 AM
function readyToCancel() {
gCancelClicked = true;

}

function promptInFireworks() {
var isFireworks3 = FWLaunch.validateFireworks(3.0);
if (!isFireworks3) {

alert("You must have Fireworks 3.0 or later to use this ¬
command");

return;
}

// Tell Fireworks to execute the prompt() method.
gProgressTrackerCookie = FWLaunch.execJsInFireworks¬
("prompt('Please enter your name:')");

// null means it wasn't launched, a number means an error code
if (gProgressTrackerCookie == null || ¬
typeof(gProgressTrackerCookie) == "number") {

window.close();
alert("an error occurred");
gProgressTrackerCookie = null;

} else {
// bring Fireworks to the front
FWLaunch.bringFWToFront();
// start the checking to see if Fireworks is done yet
checkOneMoreTime();

}
}

function checkOneMoreTime() {
// Call checkJsResponse() every 1/2 second to see if Fireworks

 // is done yet
window.setTimeout("checkJsResponse();", 500);

}

function checkJsResponse() {
var response = null;

// The user clicked the cancel button, close the window
if (gCancelClicked) {

window.close();
alert("cancel clicked");

} else {
// We're still going, ask Fireworks how it's doing
if (gProgressTrackerCookie != null)

response = ¬
FWLaunch.getJsResponse(gProgressTrackerCookie);
The FWLaunch API 59

000_DW_API_Print.book Page 60 Wednesday, July 20, 2005 11:58 AM
if (response == null) {
// still waiting for a response, call us again in 1/2 a
// second
checkOneMoreTime();

} else if (typeof(response) == "number") {
// if the response was a number, it means an error
// occurred
// the user cancelled in Fireworks
window.close();
alert("an error occurred.");

} else {
// got a valid response! This return value might not
// always be a useful one, since not all functions in
// Fireworks return a string, but we know this one does,
// so we can show the user what we got.
window.close();
FWLaunch.bringDWToFront(); // bring Dreamweaver to the ¬
front
alert("Nice to meet you, " + response + "!");

}
}

}

</script>
</head>
<body>
<form>
<table width="313" nowrap>
<tr>
<td>This command asks Fireworks to execute the prompt() ¬
function. When you click Prompt, Fireworks comes forward and ¬
asks you to enter a value into a dialog box. That value is then ¬
returned to Dreamweaver and displayed in an alert.</td>
</tr>
</table>
</form>
</body>
</html>
60 Fireworks Integration

5

000_DW_API_Print.book Page 61 Wednesday, July 20, 2005 11:58 AM
CHAPTER 5

Flash Integration
Macromedia Dreamweaver 8 provides support for Macromedia Flash elements as well as
continuing support for the Flash Object API, which leverages the Flash Generator Template
file to create new Flash objects. This chapter describes ways of working with Flash elements
(SWC files), and also provides details for the creation of Flash objects (SWF files) from Flash
Generator templates (SWT files).

For information about simply adding Flash content to Dreamweaver objects or commands,
see Extending Dreamweaver.

How Flash elements work
Flash elements are packaged as SWC files. A SWC file is a compiled component movie clip
that is generated by Flash for use by Macromedia and third-party products. Dreamweaver can
make these components available to users through the Insert bar, Insert menu, or a toolbar.
You create Flash elements using the Flash authoring tool, but Dreamweaver can parse
properties of a Flash element and express them through the param tag (a child of the object
tag). Users can then edit the param tag attributes to change the properties of the element as it
is published (for more information about working with component properties in
Dreamweaver, see Using Dreamweaver).
61

000_DW_API_Print.book Page 62 Wednesday, July 20, 2005 11:58 AM
Inserting Flash elements
Flash elements are installed through the Extension Manager. Dreamweaver adds Flash
elements to documents in the same manner as the objects that are available on the Insert bar
or the Insert menu (for details about working with Dreamweaver objects, see “Insert Bar
Objects” in Extending Dreamweaver). By clicking on objects on the Insert bar or selecting
menu options from the Insert menu, users can add strings of code to documents. Flash
elements are available to users through the Insert bar or the Insert menu (meaning you can
add a valid Flash element file that is already installed in the Configuration/Objects/
FlashElements folder or one of its subfolders to the Insert bar or Insert menu). Extension
developers can use the JavaScript function dom.insertFlashElement() in the object definition
file to add available Flash elements to a document. When the user selects the Flash element
object, Dreamweaver unpacks the SWC file, which contains Flash content (SWF file) and a
file that details the parameters the user can edit. Dreamweaver then inserts the SWF file into
the user’s document.

Adding a Flash element to the Insert Bar
As with other objects, you add a Flash element to the Insert Bar using the button tag.
However, a button tag for a Flash element must have both file and command attributes to
add the element successfully to the document (see the button tag details in “Insert Bar
Objects” in Extending Dreamweaver). Use the file attribute to tell Dreamweaver where the
source file for the element resides relative to the Objects folder. Then, use the command
attribute to tell Dreamweaver to use the dom.insertFlashElement() function when the user
clicks the button on the Insert bar.

The following example shows the code to place in the inserbar.xml file (either as a child of the
appropriate category or menubutton tag, depending on where you want the Flash element
button to appear):
<button id="FlashElement_Nav"
name="Navigation"
file="FlashElements\nav.swc"
command="dw.getDocumentDOM().insertFlashElement('nav.swc')" />

N
O

T
E

The image on the Insert bar for the Flash element is determined within the SWC file.
Also, the button tag for a Flash element object must have a file attribute defined.
62 Flash Integration

000_DW_API_Print.book Page 63 Wednesday, July 20, 2005 11:58 AM
Adding a Flash Element to a menu
A Flash element can also reside on the Insert menu, or on other menus, in Dreamweaver. Use
the JavaScript function dom.insertFlashElement() with the menus.xml file format (see
“Menus and Menu Commands” in Extending Dreamweaver) to specify the Flash element
menu item location. The following example shows how code within the menus.xml file makes
a Navigation Flash element available on the Insert > Flash Element menu:
<menuitem name="Navigation"
key=""command="dw.getDocumentDOM().insertFlashElement('nav.swc')"
enabled="(dw.getFocus() != 'browser') && (dw.getDocumentDOM() != null && ¬

dw.getDocumentDOM().getParseMode() == 'html')"
id="DWMenu_Insert_FlashElement_Nav" />

The Flash Objects API
The Flash Objects API lets extension developers build objects that create simple Flash content
through Flash Generator. This API provides a way to set parameters in a Flash Generator
template and output a SWF or image file. The API lets you create new Flash objects as well as
read and manipulate existing Flash objects. The Flash button and Flash text features are built
using this API.

The SWT file is a Flash Generator Template file, which contains all the information you need
to construct a Flash Object file. These API functions let you create a new SWF file (or image
file) from a SWT file by replacing the parameters of the SWT file with real values. For more
information on Flash, see the Flash documentation. The following functions are methods of
the SWFFile object.

SWFFile.createFile()

Description

This function generates a new Flash Object file with the specified template and array of
parameters. It also creates a GIF, PNG, JPEG, and MOV version of the title if filenames for
those formats are specified.

If you want to specify an optional parameter that follows optional parameters that you do not
want to include, you need to specify empty strings for the unused parameters. For example, if
you want to specify a PNG file, but not a GIF file, you need to specify an empty string before
specifying the PNG filename.
The Flash Objects API 63

000_DW_API_Print.book Page 64 Wednesday, July 20, 2005 11:58 AM
Arguments
templateFile, templateParams, swfFileName, {gifFileName}, {pngFileName},

{jpgFileName}, {movFileName}, {generatorParams}

■ The templateFile argument is a path to a template file, which is expressed as a file://
URL. This file can be a SWT file.

■ The templateParams argument is an array of name/value pairs where the names are the
parameters in the SWT file, and the values are what you want to specify for those
parameters. For Dreamweaver to recognize a SWF file as a Flash object, the first parameter
must be "dwType". Its value should be a string that represents the name of the object type,
such as "Flash Text".

■ The swfFileName argument, which is expressed as a file:// URL, is the output filename of
an SWF file or an empty string to ignore.

■ The gifFileName argument, which is expressed as a file:// URL, is the output filename of
a GIF file. This argument is optional.

■ The pngFileName argument, which is expressed as a file:// URL, is the output filename of
a PNG file. This argument is optional.

■ The jpgFileName argument, which is expressed as a file:// URL, is the output filename of
a JPEG file. This argument is optional.

■ The movFileName argument, which is expressed as a file:// URL, is the output filename of
a QuickTime file. This argument is optional.

■ The generatorParams argument is an array of strings that represents optional Generator
command line flags. This argument is optional. Each flag’s data items must follow it in the
array. Some commonly used flags are listed in the following table:

Returns

A string that contains one of the following values:

■ "noError" means the call completed successfully.
■ "invalidTemplateFile" means the specified template file is invalid or not found.
■ "invalidOutputFile" means at least one of the specified output filenames is invalid.

Option Flag Data Description Example

-defaultsize Width, height Sets the output image size to the
specified width and height

"-defaultsize",
"640", "480"

-exactFit None Stretches the contents in the
output image to fit exactly into the
specified output size

"-exactFit"
64 Flash Integration

000_DW_API_Print.book Page 65 Wednesday, July 20, 2005 11:58 AM
■ "invalidData" means that one or more of the templateParams name/value pairs is
invalid.

■ "initGeneratorFailed" means the Generator cannot be initialized.
■ "outOfMemory" means there is insufficient memory to complete the operation.
■ "unknownError" means an unknown error occurred.

Example

The following JavaScript creates a Flash object file of type "myType", which replaces any
occurrences of the string "text" inside the Template file with the string, "Hello World". It
creates a GIF file as well as a SWF file.
var params = new Array;
params[0] = "dwType";
params[1] = "myType";
params[2] = "text";
params[3] = "Hello World";
errorString = SWFFile.createFile("file:///MyMac/test.swt", ¬
params, "file:///MyMac/test.swf", "file:///MyMac/test.gif");

SWFFile.getNaturalSize()

Description

This function returns the natural size of any Flash content.

Arguments
fileName

■ The fileName argument, which is expressed as a file:// URL, is a path to the Flash
content.

Returns

An array that contains two elements that represent the width and the height of the Flash
content or a null value if the file is not a Flash file.
The Flash Objects API 65

000_DW_API_Print.book Page 66 Wednesday, July 20, 2005 11:58 AM
SWFFile.getObjectType()

Description

This function returns the Flash object type; the value that passed in the dwType parameter
when the SWFFile.createFile() function created the file.

Arguments
fileName

■ The fileName argument, which is expressed as a file:// URL, is a path to a Flash Object
file. This file is usually a SWF file.

Returns

A string that represents the object type, or null if the file is not a Flash Object file or if the file
cannot be found.

Example

The following code checks to see if the test.swf file is a Flash object of type myType:
if (SWFFile.getObjectType("file:///MyMac/test.swf") == ¬
"myType"){

alert ("This is a myType object.");
}else{

alert ("This is not a myType object.");
}

SWFFile.readFile()

Description

This function reads a Flash Object file.

Arguments
fileName

■ The fileName argument, which is expressed as a file:// URL, is a path to a Flash Object
file.

Returns

An array of strings where the first array element is the full path to the template SWT file. The
following strings represent the parameters (name/value pairs) for the object. Each name is
followed in the array by its value. The first name/value pair is "dwType", followed by its value.
The function returns a null value if the file cannot be found or if it is not a Flash Object file.
66 Flash Integration

000_DW_API_Print.book Page 67 Wednesday, July 20, 2005 11:58 AM
Example

Calling var params = SWFFile.readFile("file:///MyMac/test.swf") returns the
following values in the parameters array:
"file:///MyMac/test.swt" // template file used to create this .swf file
"dwType" // first parameter
"myType" // first parameter value
"text" // second parameter
"Hello World" // second parameter value
The Flash Objects API 67

000_DW_API_Print.book Page 68 Wednesday, July 20, 2005 11:58 AM
68 Flash Integration

6

000_DW_API_Print.book Page 69 Wednesday, July 20, 2005 11:58 AM
CHAPTER 6

The Database API
Functions in the Database API let you manage database connections and access information
that is stored in databases. The Database API is divided by two distinct purposes: managing
and accessing database connections.

In managing database connections, you can get the user name and password needed to make a
connection to a database, open up a database connection dialog box, and so on.

In accessing database information, you can, for example, retrieve metadata that describes the
schema or structure of a database. This metadata includes information such as the names of
tables, columns, stored procedures, and views. You can also show the results of executing a
database query or stored procedure. When accessing a database through this API, you use
structured query language (SQL) statements.

Database API functions are used at design time when users are building web applications, not
at runtime when the web application is deployed.

You can use these functions in any extension. In fact, the Macromedia Dreamweaver 8
Server Behavior, Data Format, and Data Sources API functions all use these database
functions.

How Database API functions work
The following example shows how the server behavior function, getDynamicBindings(), is
defined for Recordset.js. This example uses the MMDB.getColumnAndTypeList() function:
function getDynamicBindings(ss)
{

var serverModel = dw.getDocumentDOM().serverModel.getServerName();
var bindingsAndTypeArray = new Array();
var connName = ss.connectionName;
var statement = ss.source;
var rsName = ss.rsName;

// remove SQL comments
statement = statement.replace(/\/*[\S\s]*?*\//g, " ");
69

000_DW_API_Print.book Page 70 Wednesday, July 20, 2005 11:58 AM
var bIsSimple = ParseSimpleSQL(statement);
statement = stripCFIFSimple(statement);

if (bIsSimple) {
 statement = RemoveWhereClause(statement,false);
 } else {

var pa = new Array();

 if (ss.ParamArray != null) {
 for (var i = 0; i < ss.ParamArray.length; i++) {
 pa[i] = new Array();
 pa[i][0] = ss.ParamArray[i].name;
 pa[i][1] = ss.ParamArray[i].value;
 }
 }

var statement = replaceParamsWithVals(statement, pa, serverModel);
}

bindingsAndTypeArray = MMDB.getColumnAndTypeList(connName, statement);
return bindingsAndTypeArray;

}

Database connection functions
Database connection functions let you make and manage any connection, including the
Dreamweaver-provided ADO, ColdFusion, and JDBC connections. These functions
interface with the Connection Manager only; they do not access a database. For functions that
access a database, see “Database access functions” on page 86.

MMDB.deleteConnection()

Availability

Dreamweaver MX.

Description

This function deletes the named database connection.

Arguments
connName

■ The connName argument is the name of the database connection as it is specified in the
Connection Manager. This argument identifies, by name, the database connection to
delete.
70 The Database API

000_DW_API_Print.book Page 71 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

Example

The following example deletes a database connection:
function clickedDelete()
{

var selectedObj = dw.serverComponents.getSelectedNode();
if (selectedObj && selectedObj.objectType=="Connection")
{

var connRec = MMDB.getConnection(selectedObj.name);
if (connRec)
{

MMDB.deleteConnection(selectedObj.name);
dw.serverComponents.refresh();

}
}

}

MMDB.getColdFusionDsnList()

Availability

Dreamweaver UltraDev 4.

Description

This function gets the ColdFusion data source names (DSNs) from the site server, using the
getRDSUserName() and getRDSPassword() functions.

Arguments

None.

Returns

An array that contains the ColdFusion DSNs that are defined on the server for the current
site.

MMDB.getConnection()

Availability

Dreamweaver UltraDev 4, enhanced in Dreamweaver MX.

Description

This function gets a named connection object.
Database connection functions 71

000_DW_API_Print.book Page 72 Wednesday, July 20, 2005 11:58 AM
Arguments
name

■ The name argument is a string variable that specifies the name of the connection that you
want to reference.

Returns

A reference to a named connection object. Connection objects contain the following
properties:

Property Description

name Connection name

type Indicates, if useHTTP is a value of false, which DLL to use for
connecting to a database at runtime

string Runtime ADO connection string or JDBC URL

dsn ColdFusion DSN

driver Runtime JDBC driver

username Runtime user name

password Runtime password

useHTTP String that contains either a true or false value, specifying
whether to use a remote driver (HTTP connection) at design time;
otherwise, use a local driver (DLL)

includePattern Regular expression used to find the file include statement on the
page during Live Data and Preview In Browser

variables Array of page variable names and their corresponding values
used during Live Data and Preview In Browser

catalog Used to restrict the metadata that appears (for more information,
see “MMDB.getProcedures()” on page 90)

schema Used to restrict the metadata that appears (for more information,
see “MMDB.getProcedures()” on page 90)

filename Filename of dialog box that was used to create the connection

N
O

T
E

These properties are the standard ones that Dreamweaver implements. Developers can
define their connection types and add new properties to this standard set or provide a
different set of properties.
72 The Database API

000_DW_API_Print.book Page 73 Wednesday, July 20, 2005 11:58 AM
MMDB.getConnectionList()

Availability

Dreamweaver UltraDev 1.

Description

This function gets a list of all the connection strings that are defined in the Connection
Manager.

Arguments

None.

Returns

An array of strings where each string is the name of a connection as it appears in the
Connection Manager.

Example

A call to MMDB.getConnectionList() can return the strings ["EmpDB", "Test",
TestEmp"].

MMDB.getConnectionName()

Availability

Dreamweaver UltraDev 1.

Description

This function gets the connection name that corresponds to the specified connection string.
This function is useful when you need to reselect a connection name in the user interface (UI)
from data on the page.

If you have a connection string that references two drivers, you can specify the connection
string and the driver that corresponds to the connection name that you want to return. For
example, you can have two connections.

■ Connection 1 has the following properties:
ConnectionString="jdbc:inetdae:velcro-qa-5:1433?database=pubs"
DriverName="com.inet.tds.TdsDriver"

■ Connection 2 has the following properties:
ConnectionString="jdbc:inetdae:velcro-qa-5:1433?database=pubs"
DriverName="com.inet.tds.TdsDriver2"
Database connection functions 73

000_DW_API_Print.book Page 74 Wednesday, July 20, 2005 11:58 AM
The connection strings for Connection 1 and Connection 2 are the same. Connection 2
connects to a more recent version of the TdsDriver driver. You should pass the driver name
to this function to fully qualify the connection name you want to return.

Arguments
connString, {driverName}

■ The connString argument is the connection string that gets the connection name.
■ The driverName argument, which is optional, further qualifies the connString

argument.

Returns

A connection name string that corresponds to the connection string.

Example

The following code returns the string "EmpDB":
var connectionName = MMDB.getConnectionName ¬
("dsn=EmpDB;uid=;pwd=");

MMDB.getConnectionString()

Availability

Dreamweaver UltraDev 1.

Description

This function gets the connection string that is associated with the named connection.

Arguments
connName

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.

Returns

A connection string that corresponds to the named connection.
74 The Database API

000_DW_API_Print.book Page 75 Wednesday, July 20, 2005 11:58 AM
Example

The code var connectionString = MMDB.getConnectionString ("EmpDB") returns
different strings for an ADO or JDBC connection.

■ For an ADO connection, the following string can return:
"dsn=EmpDB;uid=;pwd=";

■ For a JDBC connection, the following string can return:
"jdbc:inetdae:192.168.64.49:1433?database=pubs&user=JoeUser&¬
password=joesSecret"

MMDB.getDriverName()

Availability

Dreamweaver UltraDev 1.

Description

This function gets the driver name that is associated with the specified connection. Only a
JDBC connection has a driver name.

Arguments
connName

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.

Returns

A string that contains the driver name.

Example

The statement MMDB.getDriverName ("EmpDB"); might return the following string:
"jdbc/oracle/driver/JdbcOracle"

MMDB.getDriverUrlTemplateList() (deprecated)

Availability

Dreamweaver UltraDev 4, deprecated in Dreamweaver MX.

N
O

T
E

For Dreamweaver UltraDev 4, the list of JDBC drivers are stored in the connections.xml
file, which is located in the Configuration/Connections folder. Each driver has an
associated URL template. This function returns the list of JDBC drivers.
Database connection functions 75

000_DW_API_Print.book Page 76 Wednesday, July 20, 2005 11:58 AM
For Dreamweaver MX (or later), these drivers and URL templates are hard-coded in the
JDBC dialog boxes. In addition, this function is an empty function definition to eliminate
undefined-function errors. The following example shows how a JDBC driver and URL
template are hard-coded:

var DEFAULT_DRIVER = "COM.ibm.db2.jdbc.app.DB2Driver";
var DEFAULT_TEMPLATE = "jdbc:db2:[database name]";

Dreamweaver has a dialog box for each driver/URL template pair.

In summary, Dreamweaver UltraDev 4 developers need to add a new entry to the XML, and
Dreamweaver MX (or later), developers need to implement a new dialog box.

Description

This function gets JDBC Drivers and respective URL templates.

Arguments

None.

Returns

An array that contains JDBC drivers that have been detected on the user’s system and their
respective URL templates, if they are specified. The array has an even number of elements that
contain: Driver1, UrlTemplate1, Driver2, UrlTemplate2, and so on.

MMDB.getLocalDsnList()

Availability

Dreamweaver UltraDev 4.

Description

This function gets ODBC DSNs that are defined on the user’s system.

Arguments

None.

Returns

An array that contains the ODBC DSNs that are defined on the user’s system.

MMDB.getPassword()

Availability

Dreamweaver UltraDev 1.
76 The Database API

000_DW_API_Print.book Page 77 Wednesday, July 20, 2005 11:58 AM
Description

This function gets the password that is used for the specified connection.

Arguments
connName

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.

Returns

A password string that is associated with the connection name.

Example

The statement MMDB.getPassword ("EmpDB"); might return "joessecret".

MMDB.getRDSPassword()

Availability

Dreamweaver UltraDev 4.

Description

This function gets the Remote Development Services (RDS) password (for use with
ColdFusion connections).

Arguments

None.

Returns

A string that contains the RDS password.

MMDB.getRDSUserName()

Availability

Dreamweaver UltraDev 4.

Description

This function gets the RDS user name (for use with ColdFusion connections).
Database connection functions 77

000_DW_API_Print.book Page 78 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

A string that contains the RDS user name.

MMDB.getRemoteDsnList()

Availability

Dreamweaver UltraDev 4, enhanced in Dreamweaver MX.

Description

This function gets the ODBC DSNs from the site server. The getRDSUserName() and
getRDSPassword() functions are used when the server model of the current site is
ColdFusion. This function provides an option for a developer to specify a URL parameter
string to be appended to the Remote Connectivity URL that MMDB.getRemoteDsnList()
generates. If the developer provides a parameter string, this function passes it to the HTTP
connectivity scripts.

Arguments
{urlParams}

■ The urlParams argument, which is optional, is a string that contains a list of name=value
expressions, which are separated by ampersand (&) characters. You must not enclose
values with quotes. Some characters, such as the space in the value Hello World, need to
be encoded. The following example shows a valid sample argument that you can pass to
MMDB.getRemoteDsnList():
a=1&b=Hello%20World

Returns

Returns an array that contains the ODBC DSNs that are defined on the server for the current
site.

MMDB.getRuntimeConnectionType()

Availability

Dreamweaver UltraDev 1.

Description

This function returns the runtime connection type of the specified connection name.
78 The Database API

000_DW_API_Print.book Page 79 Wednesday, July 20, 2005 11:58 AM
Arguments
connName

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.

Returns

A string that corresponds to the connection type. This function can return one of the
following values: "ADO", "ADODSN", "JDBC", or "CFDSN".

Example

The following code returns the string "ADO" for an ADO connection:
var connectionType = MMDB.getRuntimeConnectionType ("EmpDB")

MMDB.getUserName()

Availability

Dreamweaver UltraDev 1.

Description

This function returns a user name for the specified connection.

Arguments
connName

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.

Returns

A user name string that is associated with the connection name.

Example

The statement MMDB.getUserName ("EmpDB"); might return "amit".
Database connection functions 79

000_DW_API_Print.book Page 80 Wednesday, July 20, 2005 11:58 AM
MMDB.hasConnectionWithName()

Availability

Dreamweaver UltraDev 4.

Description

This function determines whether a connection of a given name exists.

Arguments
name

■ The name argument is the connection name.

Returns

Returns a Boolean value: true indicates that a connection with the specified name exists;
false otherwise.

MMDB.needToPromptForRdsInfo()

Availability

Dreamweaver MX.

Description

This function determines whether Dreamweaver should open the RDS Login Information
dialog box.

Arguments
bForce

■ The bForce argument is a Boolean value; true indicates that the user who has
previously cancelled out of the RDS login dialog box still needs to be prompted for
RDS login information.

Returns

A Boolean value: true indicates that the user needs to be prompted for RDS login
information; false otherwise.
80 The Database API

000_DW_API_Print.book Page 81 Wednesday, July 20, 2005 11:58 AM
MMDB.needToRefreshColdFusionDsnList()

Availability

Dreamweaver MX.

Description

This function tells the Connection Manager to empty the cache and get the ColdFusion data
source list from the application server the next time a user requests the list.

Arguments

None.

Returns

Nothing.

MMDB.popupConnection()

Availability

Dreamweaver MX.

Description

This function invokes a connection dialog box. This function has the following three
signatures:

■ If the argument list consists only of dialogFileName (a string), the popupConnection()
function makes Dreamweaver open the Connection dialog box so you can define a
new connection.

■ If the argument list consists only of connRec (a connection reference), the
popupConnection() function makes Dreamweaver launch the Connection dialog box in
edit mode for editing the named connection. In this mode, the name text field is dimmed.

■ If the argument list consists of connRec and the Boolean value bDuplicate, the
popupConnection() function makes Dreamweaver open the Connection dialog box in
duplicate mode. In this mode, the name text field is blanked out, and the remaining
properties are copied to define a duplicate connection.

Arguments
dialogFileName

or
connRec
Database connection functions 81

000_DW_API_Print.book Page 82 Wednesday, July 20, 2005 11:58 AM
or
connrec, bDuplicate

■ The dialogFileName argument is a string that contains the name of an HTML file that
resides in the Configuration/Connections/server-model folder. This HTML file defines the
dialog box that creates a connection. This file must implement three JavaScript API
functions: findConnection(), inspectConnection(), and applyConnection().
Typically, you create a JavaScript file that implements these functions and then include
that file in the HTML file. (For more information on creating a connection, see “The
Database Connectivity API” on page 101.)

■ The connRec argument is a reference to an existing Connection object.
■ The bDuplicate argument is a Boolean value.

Returns

Nothing. The defined connection dialog box appears.

MMDB.setRDSPassword()

Availability

Dreamweaver UltraDev 4.

Description

This function sets the RDS password.

Arguments
password

■ The password argument is a string that contains the RDS password.

Returns

Nothing.

MMDB.setRDSUserName()

Availability

Dreamweaver UltraDev 4.

Description

This function sets the RDS user name.
82 The Database API

000_DW_API_Print.book Page 83 Wednesday, July 20, 2005 11:58 AM
Arguments
username

■ The username argument is a valid RDS user name.

Returns

Nothing.

MMDB.showColdFusionAdmin()

Availability

Dreamweaver MX.

Description

This function displays the ColdFusion Administrator dialog box.

Arguments

None.

Returns

Nothing. The ColdFusion Administrator dialog box appears.

MMDB.showConnectionMgrDialog()

Availability

Dreamweaver UltraDev 1.

Description

This function displays the Connection Manager dialog box.

Arguments

None.

Returns

Nothing. The Connection Manager dialog box appears.

MMDB.showOdbcDialog()

Availability

Dreamweaver UltraDev 4 (Windows only).
Database connection functions 83

000_DW_API_Print.book Page 84 Wednesday, July 20, 2005 11:58 AM
Description

This function displays the System ODBC Administration dialog box or the ODBC Data
Source Administrator dialog box.

Arguments

None.

Returns

Nothing. The System ODBC Administration dialog box or the ODBC Data Source
Administrator dialog box appears.

MMDB.showRdsUserDialog()

Availability

Dreamweaver UltraDev 4.

Description

This function displays the RDS user name and password dialog box.

Arguments
username, password

■ The username argument is the initial user name.
■ The password argument is the initial password.

Returns

An object that contains the new values in the username and password properties. If either
property is not defined, it indicates that the user cancelled the dialog box.

MMDB.showRestrictDialog()

Availability

Dreamweaver UltraDev 4.

Description

This function displays the Restrict dialog box.
84 The Database API

000_DW_API_Print.book Page 85 Wednesday, July 20, 2005 11:58 AM
Arguments
catalog, schema

■ The catalog argument is the initial catalog value.
■ The schema argument is the initial schema value.

Returns

An object that contains the new values in the catalog and schema properties. If either
property is not defined, it indicates that the user cancelled the dialog box.

MMDB.testConnection()

Availability

Dreamweaver UltraDev 4.

Description

This function tests connection settings. It displays a modal dialog box that describes the
results.

Arguments
serverPropertiesArray

This function expects a single argument, an array object that contains values from the
following list, which are appropriate for the current server model. For properties that do not
apply to the connection being tested, set them to empty ("").

■ The type argument indicates, when useHTTP is a false value, which DLL to use for
connecting to a database at design time to test connection settings.

■ The string argument is the ADO connection string or JDBC URL.
■ The dsn argument is the data source name.
■ The driver argument is the JDBC driver.
■ The username argument is the user name.
■ The password argument is the password.
■ The useHTTP argument is a Boolean value. A value of true specifies that Dreamweaver

should use an HTTP connection at design time; otherwise, Dreamweaver uses a DLL.

Returns

A Boolean value: true if the connection test is successful; false otherwise.
Database connection functions 85

000_DW_API_Print.book Page 86 Wednesday, July 20, 2005 11:58 AM
Database access functions
Database access functions let you query a database. For the collection of functions that
manage a database connection, see “Database connection functions” on page 70.

The following list describes some of the arguments that are common to the functions that are
available:

■ Most database access functions use a connection name as an argument. You can see a
list of valid connection names in the Connection Manager, or you can use the
MMDB.getConnectionList() function to get a list of all the connection
names programmatically.

■ Stored procedures often require parameters. There are two ways of specifying parameter
values for database access functions. First, you can provide an array of parameter values
(paramValuesArray). If you specify only parameter values, the values need to be in the
sequence in which the stored procedure requires the parameters. Second, you specify
parameter values to provide an array of parameter names (paramNameArray). You can use
the MMDB.getSPParamsAsString() function to get the parameters of the
stored procedure. If you provide parameter names, the values that you specify in
paramValuesArray must be in the sequence of the parameter names that you specify in
paramNameArray.

MMDB.getColumnAndTypeList()

Availability

Dreamweaver UltraDev 1.

Description

This function gets a list of columns and their types from an executed SQL SELECT statement.

Arguments
connName, statement

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.

■ The statement argument is the SQL SELECT statement to execute.

Returns

An array of strings that represents a list of columns (and their types) that match the SELECT
statement, or an error if the SQL statement is invalid or the connection cannot be made.
86 The Database API

000_DW_API_Print.book Page 87 Wednesday, July 20, 2005 11:58 AM
Example

The code var columnArray = MMDB.getColumnAndTypeList("EmpDB","Select * from
Employees") returns the following array of strings:
columnArray[0] = "EmpName"
columnArray[1] = "varchar"
columnArray[2] = "EmpFirstName"
columnArray[3] = "varchar"
columnArray[4] = "Age"
columnArray[5] = "integer"

MMDB.getColumnList()

Availability

Dreamweaver UltraDev 1.

Description

This function gets a list of columns from an executed SQL SELECT statement.

Arguments
connName, statement

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.

■ The statement argument is the SQL SELECT statement to execute.

Returns

An array of strings that represents a list of columns that match the SELECT statement, or an
error if the SQL statement is invalid or the connection cannot be made.

Example

The code var columnArray = MMDB.getColumnList("EmpDB","Select * from
Employees") returns the following array of strings:
columnArray[0] = "EmpName"
columnArray[1] = "EmpFirstName"
columnArray[2] = "Age"

MMDB.getColumns()

Availability

Dreamweaver MX, arguments updated in Dreamweaver MX 2004.
Database access functions 87

000_DW_API_Print.book Page 88 Wednesday, July 20, 2005 11:58 AM
Description

This function returns an array of objects that describe the columns in the specified table.

Arguments
connName, tableName

■ The connName argument is the connection name. This value identifies the connection
containing the string that Dreamweaver should use to make a database connection to a
live data source.

■ The tableName argument is the table to query.

Returns

An array of objects, one object for each column. Each object defines the following three
properties for the column with which it is associated.

Example

The following example uses MMDB.getColumns() to set the tooltip text value:
var columnNameObjs = MMDB.getColumns(connName,tableName);
var databaseType = MMDB.getDatabaseType(connName);

for (i = 0; i < columnNameObjs.length; i++)
{

var columnObj = columnNameObjs[i];
var columnName = columnObj.name;
var typename = columnObj.datatype;
if (dwscripts.isNumber(typename))
{

// it already is a num
typename = dwscripts.getDBColumnTypeAsString(typename,

databaseType);
}

var tooltiptext = typename;
}

Property Name Description

name Name of the column (for example, price)

datatype Data type of the column (for example, small money)

definedsize Defined size of the column (for example, 8)

nullable Indicates whether the column can contain null values
88 The Database API

000_DW_API_Print.book Page 89 Wednesday, July 20, 2005 11:58 AM
MMDB.getColumnsOfTable()

Availability

Dreamweaver UltraDev 1.

Description

This function gets a list of all the columns in the specified table.

Arguments
connName, tableName

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.

■ The tableName argument is the name of a table in the database that is specified by the
connName argument.

Returns

An array of strings where each string is the name of a column in the table.

Example

The statement MMDB.getColumnsOfTable ("EmpDB","Employees"); returns the
following strings:
["EmpID", "FirstName", "LastName"]

MMDB.getPrimaryKeys()

Availability

Dreamweaver MX.

Description

This function returns the column names that combine to form the primary key of the named
table. A primary key serves as the unique identifier for a database row and consists of at least
one column.

Arguments
connName, tableName

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.
Database access functions 89

000_DW_API_Print.book Page 90 Wednesday, July 20, 2005 11:58 AM
■ The tableName argument is the name of the table for which you want to retrieve the set
of columns that comprises the primary key of that table.

Returns

An array of strings. The array contains one string for each column that comprises the primary
key.

Example

The following example returns the primary key for the specified table.
var connName = componentRec.parent.parent.parent.name;
var tableName = componentRec.name;
var primaryKeys = MMDB.getPrimaryKeys(connName,tableName);

MMDB.getProcedures()

Availability

Dreamweaver MX.

Description

This function returns an array of procedure objects that are associated with a named
connection.

Arguments
connName

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.
90 The Database API

000_DW_API_Print.book Page 91 Wednesday, July 20, 2005 11:58 AM
Returns

An array of procedure objects where each procedure object has the following set of three
properties:

Example

The following code gets a list of procedures:
var procObjects = MMDB.getProcedures(connectionName);
for (i = 0; i < procObjects.length; i++)
{
 var thisProcedure = procObjects[i]
 thisSchema = Trim(thisProcedure.schema)
 if (thisSchema.length == 0)
 {

thisSchema = Trim(thisProcedure.catalog)
 }
 if (thisSchema.length > 0)
 {

thisSchema += "."
 }

Property Name Description

schema*

* Dreamweaver connects to and gets all the tables in the database whenever you modify a recordset. If the
database has many tables, Dreamweaver might take a long time to retrieve them on certain systems. If your
database contains a schema or catalog, you can use the schema or catalog to restrict the number of
database items Dreamweaver gets at design time. You must first create a schema or catalog in your
database application before you can apply it in Dreamweaver. Consult your database documentation or
your system administrator.

Name of the schema that is associated with the object.
This property identifies the user that is associated with the stored
procedure in the SQL database that the getProcedures() function
accesses. The database that this function accesses depends on
the type of connection.
• For ODBC connections, the ODBC data source defines the

database. The DSN is specified by the dsn property in the
connection object (connName) that you pass to the
getProcedures() function.

• For OLE DB connections, the connection string names the
database.

catalog Name of the catalog that is associated with the object (owner
qualifier).
The value of the catalog property is defined by an attribute of the
OLE DB driver. This driver attribute defines a default
user.database property to use when the OLE DB connection
string does not specify a database.

procedure Name of the procedure.
Database access functions 91

000_DW_API_Print.book Page 92 Wednesday, July 20, 2005 11:58 AM
 var procName = String(thisSchema + thisProcedure.procedure);
 }

MMDB.getSPColumnList()

Availability

Dreamweaver UltraDev 1.

Description

This function gets a list of result set columns that are generated by a call to the specified
stored procedure.

Arguments
connName, statement, paramValuesArray

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.

■ The statement argument is the name of the stored procedure that returns the result set
when it executes.

■ The paramValuesArray argument is an array that contains a list of design-time parameter
test values. Specify the parameter values in the order in which the stored procedure expects
them. You can use the MMDB.getSPParamsAsString() function to get the parameters for
the stored procedure.

Returns

An array of strings that represents the list of columns. This function returns an error if the
SQL statement or the connection string is invalid.

Example

The following code can return a list of result set columns that are generated from the executed
stored procedure, getNewEmployeesMakingAtLeast:
var paramValueArray = new Array("2/1/2000", "50000")
var columnArray = MMDB.getSPColumnList("EmpDB", ¬
"getNewEmployeesMakingAtLeast", paramValueArray)

The following values return:
columnArray[0] = "EmpID", columnArray[1] = "LastName", ¬
columnArray[2] ="startDate", columnArray[3] = "salary"
92 The Database API

000_DW_API_Print.book Page 93 Wednesday, July 20, 2005 11:58 AM
MMDB.getSPColumnListNamedParams()

Availability

Dreamweaver UltraDev 1.

Description

This function gets a list of result set columns that are generated by a call to the specified
stored procedure.

Arguments
connName, statement, paramNameArray, paramValuesArray

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.

■ The statement argument is the name of the stored procedure that returns the result set
when it executes.

■ The paramNameArray argument is an array that contains a list of parameter names. You
can use the MMDB.getSPParamsAsString() function to get the parameters of the
stored procedure.

■ The paramValuesArray argument is an array that contains a list of design-time parameter
test values. You can specify if the procedure requires parameters when it executes. If you
have provided parameter names in paramNameArray, specify the parameter values in the
same order that their corresponding parameter names appear in paramNameArray. If you
did not provide paramNameArray, specify the values in the order in which the stored
procedure expects them.

Returns

An array of strings that represents the list of columns. This function returns an error if the
SQL statement or the connection string is invalid.

Example

The following code can return a list of result set columns that are generated from the executed
stored procedure, getNewEmployeesMakingAtLeast:
var paramNameArray = new Array("startDate", "salary")
var paramValueArray = new Array("2/1/2000", "50000")
var columnArray = MMDB.getSPColumnListNamedParams("EmpDB", ¬
"getNewEmployeesMakingAtLeast", paramNameArray, paramValueArray)
Database access functions 93

000_DW_API_Print.book Page 94 Wednesday, July 20, 2005 11:58 AM
The following values return:
columnArray[0] = "EmpID", columnArray[1] = "LastName",¬
columnArray[2] ="startDate", columnArray[3] = "salary"

MMDB.getSPParameters()

Availability

Dreamweaver MX.

Description

This function returns an array of parameter objects for a named procedure.

Arguments
connName, procName

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.

■ The procName argument is the name of the procedure.

Returns

An array of parameter objects, each specifying the following set of properties:

Example

The following example retrieves the parameter objects for the specified procedure and creates
a tooltip for each object using its properties.
var paramNameObjs = MMDB.getSPParameters(connName,procName);
for (i = 0; i < paramNameObjs.length; i++)
{

var paramObj = paramNameObjs[i];

Property name Description

name Name of the parameter (for example, @@lolimit)

datatype Datatype of the parameter (for example, smallmoney)

direction Direction of the parameter:
1-The parameter is used for input only.
2–The parameter is used for output only. In this case, you pass the
parameter by reference and the method places a value in it. You
can use the value after the method returns.
3– The parameter is used for both input and output.
4– The parameter holds a return value.
94 The Database API

000_DW_API_Print.book Page 95 Wednesday, July 20, 2005 11:58 AM
var tooltiptext = paramObj.datatype;
tooltiptext+=" ";
tooltiptext+=GetDirString(paramObj.directiontype);

}

MMDB.getSPParamsAsString()

Availability

Dreamweaver UltraDev 1.

Description

This function gets a comma-delimited string that contains the list of parameters that the
stored procedure takes.

Arguments
connName, procName

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.

■ The procName argument is the name of the stored procedure.

Returns

A comma-delimited string that contains the list of parameters that the stored procedure
requires. The parameters’ names, direction, and data type are included, separated by
semicolons (;).

Example

The code MMDB.getSPParamsAsString ("EmpDB","getNewEmployeesMakingAtLeast")
can return a string of form name startDate;direction:in;datatype:date,
salary;direction:in;datatype:integer.

In this example, the stored procedure, getNewEmployeesMakingAtLeast, has two
parameters: startDate and Salary. For startDate, the direction is in and the data type is
date. For salary, the direction is in and the data type is date.

MMDB.getTables()

Availability

Dreamweaver UltraDev 1.
Database access functions 95

000_DW_API_Print.book Page 96 Wednesday, July 20, 2005 11:58 AM
Description

This function gets a list of all the tables that are defined for the specified database. Each table
object has three properties: table, schema, and catalog.

Arguments
connName

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.

Returns

An array of objects where each object has three properties: table, schema, and catalog.
Table is the name of the table. Schema is the name of the schema that contains the table.
Catalog is the catalog that contains the table.

Example

The statement MMDB.getTables ("EmpDB"); might produce an array of two objects. The
first object’s properties might be similar to the following example:
object1[table:"Employees", schema:"personnel", catalog:"syscat"]

The second object’s properties might be similar to the following example:
object2[table:"Departments", schema:"demo", catalog:"syscat2"]

MMDB.getViews()

Availability

Dreamweaver UltraDev 4.

Description

This function gets a list of all the views that are defined for the specified database. Each view
object has catalog, schema, and view properties.

Arguments
connName

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.
96 The Database API

000_DW_API_Print.book Page 97 Wednesday, July 20, 2005 11:58 AM
Returns

An array of view objects where each object has three properties: catalog, schema, and view.
Use catalog or schema to restrict or filter the number of views that pertain to an individual
schema name or catalog name that is defined as part of the connection information.

Example

The following example returns the views for a given connection value,
CONN_LIST.getValue():
var viewObjects = MMDB.getViews(CONN_LIST.getValue())
for (i = 0; i < viewObjects.length; i++)
{

thisView = viewObjects[i]
thisSchema = Trim(thisView.schema)
if (thisSchema.length == 0)
{

thisSchema = Trim(thisView.catalog)
}
if (thisSchema.length > 0)
{

thisSchema += "."
}
views.push(String(thisSchema + thisView.view))

}

MMDB.showResultset()

Availability

Dreamweaver UltraDev 1.

Description

This function displays a dialog box that contains the results of executing the specified SQL
statement.The dialog box displays a tabular grid in which the header provides column
information that describes the result set. If the connection string or the SQL statement is
invalid, an error appears. This function validates the SQL statement.

Arguments
connName, SQLstatement

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.

■ The SQLstatement argument is the SQL SELECT statement.
Database access functions 97

000_DW_API_Print.book Page 98 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing. This function returns an error if the SQL statement or the connection string is
invalid.

Example

The following code displays the results of the executed SQL statement:
MMDB.showResultset("EmpDB","Select EmpName,EmpFirstName,Age ¬
from Employees")

MMDB.showSPResultset()

Availability

Dreamweaver UltraDev 1.

Description

This function displays a dialog box that contains the results of executing the specified stored
procedure. The dialog box displays a tabular grid in which the header provides column
information that describes the result set. If the connection string or the stored procedure is
invalid, an error appears. This function validates the stored procedure.

Arguments
connName, procName, paramValuesArray

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.

■ The procName argument is the name of the stored procedure to execute.
■ The paramValuesArrayargument is an array that contains a list of design-time parameter

test values. Specify the parameter values in the order in which the stored procedure expects
them. You can use the MMDB.getSPParamsAsString() function to get the parameters of
the stored procedure.

Returns

This function returns an error if the SQL statement or the connection string is invalid;
otherwise, it returns nothing.

Example

The following code displays the results of the executed stored procedure:
var paramValueArray = new Array("2/1/2000", "50000")
98 The Database API

000_DW_API_Print.book Page 99 Wednesday, July 20, 2005 11:58 AM
MMDB.showSPResultset("EmpDB", "getNewEmployeesMakingAtLeast", ¬
paramValueArray)

MMDB.showSPResultsetNamedParams()

Availability

Dreamweaver UltraDev 1.

Description

This function displays a dialog box that contains the result set of the specified stored
procedure. The dialog box displays a tabular grid in which the header provides column
information that describes the result set. If the connection string or the stored procedure is
invalid, an error appears. This function validates the stored procedure. This function differs
from the MMDB.showSPResultset() function because you can specify the parameter values
by name instead of the order in which the stored procedure expects them.

Arguments
connName, procName, paramNameArray, paramValuesArray

■ The connName argument is a connection name that is specified in the Connection
Manager. It identifies the connection string that Dreamweaver should use to make a
database connection to a live data source.

■ The procName argument is the name of the stored procedure that returns the result set
when it executes.

■ The paramNameArray argument is an array that contains a list of parameter names. You
can use the MMDB.getSPParamsAsString() function to get the parameters of the
stored procedure.

■ The paramValuesArray argument is an array that contains a list of design-time parameter
test values.

Returns

This function returns an error if the SQL statement or the connection string is invalid;
otherwise, it returns nothing.

Example

The following code displays the results of the executed stored procedure:
var paramNameArray = new Array("startDate", "salary")
var paramValueArray = new Array("2/1/2000", "50000")
MMDB.showSPResultsetNamedParams("EmpDB","getNewEmployees¬
MakingAtLeast", paramNameArray, paramValueArray)
Database access functions 99

000_DW_API_Print.book Page 100 Wednesday, July 20, 2005 11:58 AM
100 The Database API

7

000_DW_API_Print.book Page 101 Wednesday, July 20, 2005 11:58 AM
CHAPTER 7

The Database Connectivity
API
As a developer, you can create new connection types and corresponding dialog boxes for new
or existing server models for Macromedia Dreamweaver 8. Then, when a user sets up a site to
start building pages, he or she creates a new connection object after selecting the particular
type of connection that you created.

The user can select your new connection type in the following ways:

■ On the Application panel, the user can click the Plus (+) button and select Recordset. In
the Recordset dialog box, the user can expand the Connection list box.

■ On the Database tab of the Databases panel, the user can click the Plus (+) button and
select Data Source Name.

How to develop a new connection type
The following steps outline the process for creating a new connection type:

1. Create the layout for the connection dialog box.

Create an HTML file that lays out the user interface (UI) for your connection dialog box.
Name this file using the name of the connection (for example, myConnection.htm). For
information about creating a dialog box, see Getting Started with Dreamweaver.
Make sure this HTML file includes a reference to the JavaScript implementation file that
you define in Step 2, “Create a JavaScript file that implements at least the following
elements:” on page 102, as shown in the following example:
<head>

<script SRC="../myConnectionImpl.js"></script>
</head>

Store this HTML file, which defines your connection dialog box, in the Configuration/
Connections/server-model/platform folder (where the platform is either Windows or
Macintosh).
101

000_DW_API_Print.book Page 102 Wednesday, July 20, 2005 11:58 AM
For example, the default ADO connection dialog box for an ASP JavaScript
document on a Windows platform is stored in the ASP_Js/Win folder and is named
Connection_ado_conn_string.htm.

The Configuration/ServerModels folder has HTML files that define each server model.
Inside each HTML file is the getServerModelFolderName() function, which returns the
name of the folder that is associated with the server model. The following example shows
the function for the ASP JavaScript document type:
function getServerModelFolderName()
{

return "ASP_JS";
}

You can also look at the MMDocumentTypes.xml file, which is located in the
Configuration/DocumentTypes folder, to determine the mapping between server models
and document types.

2. Create a JavaScript file that implements at least the following elements:

You can select any name for this implementation file, but it must have a .js extension (for
example, myConnectionImpl.js). You can store this implementation file on either your
local or a remote computer. You might want to store your implementation file in the
appropriate subfolder within the Configuration/Connections folder.

N
O

T
E

At runtime, Macromedia Dreamweaver dynamically builds the list of connection
types that are available to the user from the collection of dialog boxes that are in the
ASP_Js/Win folder.

Element Description Examples

A set of variables Each variable defines a specific
connection property

Type of connection, data
source name, and so on

A set of buttons Each button appears in the
connection dialog box

Test, Help, and so on (OK
and Cancel are
automatically included)

Connectivity functions Together, these functions define
the Connectivity API

findConnection()
applyConnection()
inspectConnection()

N
O

T
E

The HTML file that you defined in Step 1, “Create the layout for the connection dialog
box.” on page 101 must include this connection type implementation file.
102 The Database Connectivity API

000_DW_API_Print.book Page 103 Wednesday, July 20, 2005 11:58 AM
Unless you need to define connection parameters other than the ones provided in the
standard connection_includefile.edml file, these two steps are the minimum to create a new
connection dialog box.

The functions listed in the next section let you create a connection dialog box. Along with
implementing the calls for generating include files for the user, you can register your
connectivity type within the server model section of the connection XML file.

For information about the Database Connectivity API that is associated with creating a new
connection, see “Database connection functions” on page 70.

The Connection API
To create a new type of connection, including the dialog box with which users interact, you
must implement the following three functions: findConnection(), inspectConnection(),
and applyConnection(). You write these three functions and include them in the JavaScript
implementation file that is associated with your new connection type (see Step 2 “Create a
JavaScript file that implements at least the following elements:” on page 102).

The applyConnection() function returns an HTML source within an include file. You can
see examples of the HTML source in “The generated include file” on page 107. The
findConnection() function takes the HTML source and extracts its properties. You can
implement findConnection() to use the search patterns in XML files to extract the
information that returns from applyConnection(). For an example of such an
implementation, see the following two JavaScript files:

■ connection_ado_conn_string.js is located in Configuration/Connections/ASP_Js
folder.

■ connection_common.js is located in Configuration/Connections/Shared folder.

When the user opens a site, Dreamweaver goes through each file in the Connections folder,
opens it, and passes the contents to findConnection(). If the contents of a file match the
criteria for a valid connection, findConnection() returns a connection object. Dreamweaver
then lists all the connection objects in the Database Explorer panel.

When the user opens a connection dialog box and selects to create a new connection or
duplicate or edit an existing connection, Dreamweaver calls the inspectConnection()
function and passes back the same connection object that findConnection() created. This
process lets Dreamweaver populate the dialog box with the connection information.

N
O

T
E

The title of the dialog box that the user sees is in the title tag, which is specified in the
HTML document.
The Connection API 103

000_DW_API_Print.book Page 104 Wednesday, July 20, 2005 11:58 AM
When the user clicks OK in a connection dialog box, Dreamweaver calls the
applyConnection() function to build the HTML, which is placed in the connection include
file that is located in the Configuration/Connections folder. The applyConnection()
function returns an empty string that indicates there is an error in one of the fields and the
dialog box should not be closed. The include file has the default file extension type for the
current server model.

When the user adds to the page a server behavior that uses the connection, such as a recordset
or a stored procedure, Dreamweaver adds a statement to the page that includes the connection
include file.

findConnection()

Availability

Dreamweaver UltraDev 4.

Description

Dreamweaver calls this function to detect a connection in the specified HTML source and to
parse the connection parameters. If the contents of this source file match the criteria for a
valid connection, findConnection() returns a connection object; otherwise, this function
returns a null value.

Argument
htmlSource

The htmlSource argument is the HTML source for a connection.

Returns

A connection object that provides values for a particular combination of the properties that
are listed in the following table. The properties for which this function returns a value depend
on the document type.

Property Description

name Name of the connection

type If useHTTP is false, indicates which DLL to use for connecting to
database at runtime

string Runtime connection string. For ADO, it is a string of connection
parameters; for JDBC, it is a connection URL

dsn Data source name used for ODBC or Cold Fusion runtime
connections
104 The Database Connectivity API

000_DW_API_Print.book Page 105 Wednesday, July 20, 2005 11:58 AM
If a connection is not found in htmlSource, a null value returns.

inspectConnection()

Availability

Dreamweaver UltraDev 4.

driver Name of a JDBC driver used at runtime

username Name of the user for the runtime connection

password Password used for the runtime connection

designtimeString Design-time connection string (see string)

designtimeDsn Design-time data source name (see dsn)

designtimeDriver Name of a JDBC driver used at design time

designtimeUsername Name of the user used for the design-time connection

designtimePassword Password used for the design-time connection

designtimeType Design-time connection type

usesDesigntimeInfo When false, Dreamweaver uses runtime properties at design
time; otherwise, Dreamweaver uses design-time properties

useHTTP String containing either true or false: true specifies to use
HTTP connection at design time; false specifies to use DLL

includePattern Regular expression used to find the file include statement on the
page during Live Data and Preview In Browser

variables Object with a property for each page variable that is set to its
corresponding value. This object is used during Live Data and
Preview In Browser

catalog String containing a database identifier that restricts the amount
of metadata that appears

schema String containing a database identifier that restricts the amount
of metadata that appears

filename Name of the dialog box used to create the connection
N

O
T

E

Developers can add custom properties (for example, metadata) to the HTML source,
which applyConnection() returns along with the standard properties.

Property Description
The Connection API 105

000_DW_API_Print.book Page 106 Wednesday, July 20, 2005 11:58 AM
Description

Dreamweaver calls this function to initialize the dialog box data for defining a connection
when the user edits an existing connection. This process lets Dreamweaver populate the
dialog box with the appropriate connection information.

Argument
parameters

The parameters argument is the same object that the findConnection() function returns.

Returns

Nothing.

applyConnection()

Availability

Dreamweaver UltraDev 4.

Description

Dreamweaver calls this function when the user clicks OK in the connection dialog box. The
applyConnection() function generates the HTML source for a connection. Dreamweaver
writes the HTML to the Configuration/Connections/connection-name.ext include file, where
connection-name is the name of your connection (see “Create the layout for the connection
dialog box.” on page 101), and .ext is the default extension that is associated with the server
model.

Arguments

None.

Returns

The HTML source for a connection. Dreamweaver also closes the connection dialog box. If a
field validation error occurs, applyConnection() displays an error message and returns an
empty string to indicate that the dialog box should remain open.
106 The Database Connectivity API

000_DW_API_Print.book Page 107 Wednesday, July 20, 2005 11:58 AM
The generated include file
The include file that applyConnection() generates declares all the properties of a
connection.The filename for the include file is the connection name and has the file extension
that is defined for the server model associated with the current site.

The following sections illustrate some sample include files that applyConnection()
generates for various default server models.

ASP JavaScript
The ASP and JavaScript include file should be named MyConnection1.asp, where
MyConnection1 is the name of the connection. The following sample is an include file for an
ADO connection string:
<%

// Filename="Connection_ado_conn_string.htm"
// Type="ADO"
// HTTP="true"
// Catalog=""
// Schema=""
var MM_MyConnection1_STRING = "dsn=pubs";

%>

The server behavior file includes this connection by using the relative file include statement,
as shown in the following example:
<!--#include file="../Connections/MyConnection1.asp"-->

ColdFusion
When you use UltraDev 4 ColdFusion, Dreamweaver relies on a ColdFusion include file to
get a list of data sources.

N
O

T
E

Connections are shared, so set the allowMultiple value to false. This ensures that the
connection file is included in the document only once and that the server script remains
in the page if any other server behaviors use it.

N
O

T
E

To create a new connection include file format, you need to define a new EDML
mapping file, which should be similar to connection_includefile.edml, as shown in “The
definition file for your connection type” on page 109.

N
O

T
E

For regular Dreamweaver ColdFusion, Dreamweaver ignores any include files and,
instead, makes use of RDS to retrieve the list of data sources from ColdFusion.
The generated include file 107

000_DW_API_Print.book Page 108 Wednesday, July 20, 2005 11:58 AM
The UltraDev 4 ColdFusion include file should be named MyConnection1.cfm, where
MyConnection1 is the name of your connection. The following example shows the include
file for a ColdFusion connection to a product table:
<!-- FileName="Connection_cf_dsn.htm" "dsn=products" -->
<!-- Type="ADO" -->
<!-- Catalog="" -->
<!-- Schema="" -->
<!-- HTTP="false" -->
<CFSET MM_MyConnection1_DSN = "products">
<CFSET MM_MyConnection1_USERNAME = "">
<CFSET MM_Product_USERNAME = "">
<CFSET MM_MyConnection1_PASSWORD = "">

The server behavior file includes this connection by using the cfinclude statement, as shown
in the following example:
<cfinclude template="Connections/MyConnection1.cfm">

JSP
The JSP include file should be named MyConnection1.jsp, where MyConnection1 is the
name of your connection. The following example is the include file for a JDBC connection to
a database:
<%

// Filename="Connection_jdbc_conn1.htm"
// Type="JDBC"
// HTTP="false"
// Catalog=""
// Schema=""
String MM_MyConnection1_DRIVER = "com.inet.tds.TdsDriver";
String MM_MyConnection1_USERNAME = "testadmin";
String MM_MyConnection1_PASSWORD = "velcro";
String MM_MyConnection1_URL = "jdbc:server:test-
3:1433?database=pubs";

%>

The server behavior file includes this connection by using the relative file include statement,
as shown in the following example:
<%@ include file="Connections/MyConnection1.jsp" %>
108 The Database Connectivity API

000_DW_API_Print.book Page 109 Wednesday, July 20, 2005 11:58 AM
The definition file for your connection
type
For each server model, there is a connection_includefile.edml file that defines the connection
type and maps the properties that are defined in the include file to elements in the
Dreamweaver interface.

Dreamweaver provides seven default definition files, one for each of the predefined server
models, as listed in the following table.

Dreamweaver uses the quickSearch and searchPattern parameters to recognize connection
blocks and the insertText parameter to create connection blocks. For more information on
EDML tags and attributes, and regular expression search patterns, see “Server Behaviors” in
Extending Dreamweaver.

<participant name="connection_includefile" version="5.0">
<quickSearch>

<![CDATA[// HTTP=]]></quickSearch>
<insertText location="">

<![CDATA[<%
// FileName="@@filename@@"
// Type="@@type@@" @@designtimeString@@
// DesigntimeType="@@designtimeType@@"
// HTTP="@@http@@"
// Catalog="@@catalog@@"

Server model Subfolder within the Configuration/Connections folder

ASP JavaScript ASP_Js

ASP.NET CSharp ASP.NET_Csharp

ASP.NET VBScript ASP.NET_VB

ASP VBScript ASP_Vbs

ColdFusion ColdFusion

JavaServer Page JSP

PHP MySql PHP_MySql

N
O

T
E

If you change the format of your include file or define an include file for a new server
model, you need to map the connection parameters with the Dreamweaver UI, Live
Data, and Preview In Browser. The following sample EDML file, which is associated with
the default ASP JS server model, maps all connection page variables with their
respective live values before sending the page to the server. For more information on
EDML and regular expression search patterns, see “Server Behaviors” in Extending
Dreamweaver.
The definition file for your connection type 109

000_DW_API_Print.book Page 110 Wednesday, July 20, 2005 11:58 AM
// Schema="@@schema@@"
var MM_@@cname@@_STRING = @@string@@
%>
]]>

</insertText>
<searchPatterns whereToSearch="directive">

<searchPattern paramNames="filename">
<![CDATA[/\/\/\s*FileName="([^"]*)"/]]></searchPattern>

<searchPattern paramNames="type,designtimeString">
<![CDATA[/\/\/\s+Type="(\w*)"([^\r\n]*)/]]></searchPattern>

<searchPattern paramNames="designtimeType" isOptional="true">
<![CDATA[/\/\/\s*DesigntimeType="(\w*)"/]]></searchPattern>

<searchPattern paramNames="http">
<![CDATA[/\/\/\s*HTTP="(\w+)"/]]></searchPattern>

<searchPattern paramNames="catalog">
<![CDATA[/\/\/\s*Catalog="(\w*)"/]]></searchPattern>

<searchPattern paramNames="schema">
<![CDATA[/\/\/\s*Schema="(\w*)"/]]></searchPattern>

<searchPattern paramNames="cname,string">
<![CDATA[/var\s+MM_(\w*)_STRING\s*=\s*([^\r\n]+)/]]></searchPattern>

</searchPatterns>
</participant>

Tokens in an EDML file—such as @@filename@@ in this example—map values in the
include file to properties of a connection object. You set the properties of connection objects
in the JavaScript implementation file.

All the default connection dialog boxes that come with Dreamweaver use the
connection_includefile.edml mapping file. To let Dreamweaver find this file, its name is set in
the JavaScript implementation file, as shown in the following example:
var PARTICIPANT_FILE = "connection_includefile";

When you create a custom connection type, you can use any mapping file in your custom
dialog boxes. If you create a mapping file, you can use a name other than
connection_includefile for your EDML file. If you use a different name, you need to use this
name in your JavaScript implementation file when you specify the value that is assigned to the
PARTICIPANT_FILE variable, as shown in the following example:
var PARTICIPANT_FILE = "myConnection_mappingfile";
110 The Database Connectivity API

8

000_DW_API_Print.book Page 111 Wednesday, July 20, 2005 11:58 AM
CHAPTER 8

The JavaBeans API
This chapter explains the APIs for JavaBeans; the MMJB*() functions are JavaScript hooks that
invoke Java introspection calls for JavaBeans support. These functions get class names,
methods, properties, and events from the JavaBeans, which can appear in the Dreamweaver
user interface (UI). To use these JavaScript functions and let Macromedia Dreamweaver 8
access your JavaBeans, the JavaBeans must reside in the Configuration/Classes folder.

The JavaBeans API
The following functions are methods of the MMJB object.

MMJB.getClasses()

Availability

Dreamweaver UltraDev 4.

Description

This function reads all the JavaBeans class names from the Configuration/Classes folder.

Arguments

None.

Returns

A string array of class names that are located in Configuration/Classes folder; an error returns
an empty array.

N
O

T
E

The function arguments described in this chapter sometimes contain an argument called
packageName.className, which is intended to represent a single value.
111

000_DW_API_Print.book Page 112 Wednesday, July 20, 2005 11:58 AM
MMJB.getClassesFromPackage()

Availability

Dreamweaver UltraDev 4.

Description

This function reads all the JavaBeans classes from the package.

Arguments
packageName.pathName

■ The packageName.pathName argument is the path to the package. It must be a Java JAR
or ZIP Java archive (for example, C:/jdbcdrivers/Una2000_Enterprise.zip).

Returns

A string array of class names inside the particular JAR or ZIP Java archive; an error returns an
empty array.

MMJB.getErrorMessage()

Availability

Dreamweaver UltraDev 4.

Description

This function gets the last error message from Dreamweaver that occurred while using the
MMJB interface.

Arguments

None.

Returns

A string of the Dreamweaver message from the last error.

MMJB.getEvents()

Availability

Dreamweaver UltraDev 4, enhanced in Dreamweaver MX.

Description

Introspects the JavaBeans class and returns its events.
112 The JavaBeans API

000_DW_API_Print.book Page 113 Wednesday, July 20, 2005 11:58 AM
Arguments
packageName.className, {packagePath}

■ The packageName.className argument is the name of the class. The class must reside in
a JAR or ZIP Java archive. If packagePath is omitted, the archive must reside in your
system classpath or be a class file that is installed in the Configuration/Classes folder.

■ The packagePath argument is an optional string that points to the location of the JAR or
ZIP Java archive that contains className.

Returns

A string array of the events associated with className; an error returns an empty array.

MMJB.getIndexedProperties()

Availability

Dreamweaver UltraDev 4, enhanced in Dreamweaver MX.

Description

Introspects the JavaBeans class and returns its indexed properties, which are design patterns
that behave the same way as collections.

Arguments
packageName.className, {packagePath}

■ The packageName.className argument is the name of the class. The class must reside in
a JAR or ZIP Java archive. If packagePath is omitted, the archive must reside in your
system classpath or be a class file that is installed in the Configuration/Classes folder.

■ The packagePath argument, which is optional, is a string that points to the location of
the JAR or ZIP Java archive that contains className.

Returns

A string array of the indexed properties associated with className; an error returns an
empty array.

MMJB.getMethods()

Availability

Dreamweaver UltraDev 4, enhanced in Dreamweaver MX.
The JavaBeans API 113

000_DW_API_Print.book Page 114 Wednesday, July 20, 2005 11:58 AM
Description

Introspects the JavaBeans class and returns its methods.

Arguments
packageName.className, {packagePath}

■ The packageName.className argument is the name of the class. The class must reside in
a JAR or ZIP Java archive. If packagePath is omitted, the archive must reside in your
system classpath or be a class file that is installed in the Configuration/Classes folder.

■ The packagePath argument is an optional string that points to the location of the JAR or
ZIP Java archive that contains className.

Returns

A string array of the methods associated with className; an error returns an empty array.

MMJB.getProperties()

Availability

Dreamweaver UltraDev 4, enhanced in Dreamweaver MX.

Description

Introspects the JavaBeans class and returns its properties.

Arguments
packageName.className, {packagePath}

■ The packageName.className argument is the name of the class. The class must reside in
a JAR or ZIP Java archive. If packagePath is omitted, the archive must reside in your
system classpath or be a class file that is installed in the Configuration/Classes folder.

■ The packagePath argument is an optional string that points to the location of the JAR or
ZIP Java archive that contains className.

Returns

A string array of the properties associated with className; an error returns an empty array.

MMJB.getReadProperties()

Availability

Dreamweaver MX.
114 The JavaBeans API

000_DW_API_Print.book Page 115 Wednesday, July 20, 2005 11:58 AM
Description

Gets read-only properties for JavaBeans that support get accessor calls.

Arguments
packageName.className, {packagePath}

■ The packageName.className argument is the name of the class. The class must reside in
a JAR or ZIP Java archive. If packagePath is omitted, the archive must reside in your
system classpath or be a class file that is installed in the Configuration/Classes folder.

■ The packagePath argument, which is optional, is a string that points to the location of
the JAR or ZIP Java archive that contains className.

Returns

A string array of read-only properties associated with className; an error returns an empty
array.

MMJB.getWriteProperties()

Availability

Dreamweaver MX.

Description

Gets write-only properties for JavaBeans that support set method calls.

Arguments
packageName.className, {packagePath}

■ The packageName.className argument is the name of the class. The class must reside in
a JAR or ZIP Java archive. If packagePath is omitted, the archive must reside in your
system classpath or be a class file that is installed in the Configuration/Classes folder.

■ The packagePath argument, which is optional, is a string that points to the location of
the JAR or ZIP Java archive that contains className.

Returns

A string array of write-only properties associated with className; an error returns an empty
array.
The JavaBeans API 115

000_DW_API_Print.book Page 116 Wednesday, July 20, 2005 11:58 AM
116 The JavaBeans API

9

000_DW_API_Print.book Page 117 Wednesday, July 20, 2005 11:58 AM
CHAPTER 9

The Source Control
Integration API
The Source Control Integration API lets you write shared libraries to extend the Macromedia
Dreamweaver 8 Check In/Check Out feature using source control systems (such as Sourcesafe
or CVS).

Your libraries must support a minimum set of API functions for Dreamweaver to integrate
with a source control system. And, your libraries must reside in the Program Files/Common
Files/Macromedia/2004/Source Control folder.

When Dreamweaver starts, it loads each library. Dreamweaver determines which features the
library supports by calling GetProcAddress() for each API function. If an address does not
exist, Dreamweaver assumes the library does not support the API. If the address exists,
Dreamweaver uses the library’s version of the function to support the functionality. When a
Dreamweaver user defines or edits a site and then selects the Web Server SCS tab, the choices
that correspond to the DLLs that loaded from the Program Files/Common Files/
Macromedia/2004/Source Control folder appear (in addition to the standard items) on the
tab.

To create a Site > Source Control menu to which you can add custom items, add the
following code in the Site menu in the menus.xml file:
<menu name="Source Control" id="DWMenu_MainSite_Site_Source¬
Control"><menuitem dynamic name="None"file="Menus/MM/¬
File_SCSItems.htm" id="DWMenu_MainSite_Site_NewFeatures_¬
Default" />
</menu>
117

000_DW_API_Print.book Page 118 Wednesday, July 20, 2005 11:58 AM
How source control integration with
Dreamweaver works
When a Dreamweaver user selects server connection, file transfer, or Design Notes features,
Dreamweaver calls the DLL’s version of the corresponding API function (Connect(),
Disconnect(), Get(), Put(), Checkin(), Checkout(), Undocheckout(), and
Synchronize()). The DLL handles the request, including displaying dialog boxes that gather
information or letting the user interact with the DLL. The DLL also displays information or
error messages.

The source control system can optionally support Design Notes and Check In/Check Out.
The Dreamweaver user enables Design Notes in source control systems by selecting the
Design Notes tab in the Edit Sites dialog box and checking the box that enables the feature;
this process is same to enable Design Notes with FTP and LAN. If the source control system
does not support Design Notes and the user wants to use this feature, Dreamweaver
transports Design Note (MNO) files to maintain the Design Notes (as it does with FTP and
LAN).

Check In/Check Out is treated differently than the Design Notes feature; if the source control
system supports it, the user cannot override its use from the Design Notes dialog box. If the
user tries to override the source control system, an error message appears.

Adding source control system
functionality
You can add source control system functionality to Dreamweaver by writing a
GetNewFeatures handler that returns a set of menu items and corresponding C functions.
For example, if you write a Sourcesafe library and want to let Dreamweaver users see the
history of a file, you can write a GetNewFeatures handler that returns the History menu item
and the C function name of history. Then, in Windows, when the user right-clicks a file, the
History menu item is one of the items on the menu. If a user selects the History menu item,
Dreamweaver calls the corresponding function, passing the selected file(s) to the DLL. The
DLL displays the History dialog box so the user can interact with it in the same way as
Sourcesafe.
118 The Source Control Integration API

000_DW_API_Print.book Page 119 Wednesday, July 20, 2005 11:58 AM
The Source Control Integration API
required functions
The Source Control Integration API has required and optional functions. The functions listed
in this section are required.

bool SCS_GetAgentInfo()

Description

This function asks the DLL to return its name and description, which appear in the Edit Sites
dialog box. The name appears in the Server Access pop-up menu (for example, sourcesafe,
webdav, perforce) and the description below the pop-up menu.

Arguments
char name[32], char version[32], char description[256], const char

*dwAppVersion

■ The name argument is the name of the source control system. The name appears in the
combo box for selecting a source control system on the Source Control tab in the Edit
Sites dialog box. The name can be a maximum of 32 characters.

■ The version argument is a string that indicates the version of the DLL. The version
appears on the Source Control tab in the Edit Sites dialog box. The version can be a
maximum of 32 characters.

■ The description argument is a string that indicates the description of the source control
system. The description appears on the Source Control tab in the Edit Sites dialog box.
The description can be a maximum of 256 characters.

■ The dwAppVersion argument is a string that indicates the version of Dreamweaver that is
calling the DLL. The DLL can use this string to determine the version and language
of Dreamweaver.

Returns

A Boolean value: true if successful; false otherwise.
The Source Control Integration API required functions 119

000_DW_API_Print.book Page 120 Wednesday, July 20, 2005 11:58 AM
bool SCS_Connect()

Description

This function connects the user to the source control system. If the DLL does not have log-in
information, the DLL must display a dialog box to prompt the user for the information and
must store the data for later use.

Arguments
void **connectionData, const char siteName[64]

■ The connectionData argument is a handle to the data that the agent wants
Dreamweaver to pass to it when calling other API functions.

■ The siteName argument is a string that points to the name of the site. The site name can
be a maximum of 64 characters.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_Disconnect()

Description

This function disconnects the user from the source control system.

Arguments
void *connectionData

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_IsConnected()

Description

This function determines the state of the connection.
120 The Source Control Integration API

000_DW_API_Print.book Page 121 Wednesday, July 20, 2005 11:58 AM
Arguments
void *connectionData

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

Returns

A Boolean value: true if successful; false otherwise.

int SCS_GetRootFolderLength()

Description

This function returns the length of the name of the root folder.

Arguments
void *connectionData

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

Returns

An integer that indicates the length of the name of the root folder. If the function returns < 0,
Dreamweaver considers it an error and tries to retrieve the error message from the DLL,
if supported.

bool SCS_GetRootFolder()

Description

This function returns the name of the root folder.

Arguments
void *connectionData, char remotePath[], const int folderLen

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePath is a buffer where the full remote path of the root folder is stored.
■ The folderLen argument is an integer that indicates the length of remotePath. This is

the value that GetRootFolderLength returns.

Returns

A Boolean value: true if successful; false otherwise.
The Source Control Integration API required functions 121

000_DW_API_Print.book Page 122 Wednesday, July 20, 2005 11:58 AM
int SCS_GetFolderListLength()

Description

This function returns the number of items in the passed-in folder.

Arguments
void *connectionData, const char *remotePath

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePath argument is the full path and name of the remote folder that the DLL
checks for the number of items.

Returns

An integer that indicates the number of items in the current folder. If the function returns <
0, Dreamweaver considers it an error and tries to retrieve the error message from the DLL,
if supported.

bool SCS_GetFolderList()

Description

This function returns a list of files and folders in the passed-in folder, including pertinent
information such as modified date, size, and whether the item is a folder or file.

Arguments
void *connectionData, const char *remotePath, itemInfo itemList[], const

int numItems

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePath argument is the path of the remote folder that the DLL checks for the
number of items.

■ The itemList argument is a preallocated list of itemInfo structures:

name char[256] Name of file or folder

isFolder bool true if folder; false if file

month int Month component of modification date 1-12

day int Day component of modification date 1-31

year int Year component of modification date 1900+
122 The Source Control Integration API

000_DW_API_Print.book Page 123 Wednesday, July 20, 2005 11:58 AM
■ The numItems argument is the number of items that are allocated for the itemList
(returned from GetFolderListLength).

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_Get()

Description

This function gets a list of files or folders and stores them locally.

Arguments
void *connectionData, const char *remotePathList[], const char

*localPathList[], const int numItems

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePathList argument is a list of the remote files or folders to retrieve, which is
specified as complete paths and names.

■ The localPathList argument is a mirrored list of local filenames or folder paths.
■ The numItems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.

hour int Hour component of modification date 0-23

minutes int Minute component of modification date 0-59

seconds int Second component of modification date 0-59

type char[256] Type of file (if not set by DLL, Dreamweaver uses file
extensions to determine type, as it does now)

size int In bytes

name char[256] Name of file or folder
The Source Control Integration API required functions 123

000_DW_API_Print.book Page 124 Wednesday, July 20, 2005 11:58 AM
bool SCS_Put()

Description

This function puts a list of local files or folders into the source control system.

Arguments
void *connectionData, const char *localPathList[], const char

*remotePathList[], const int numItems

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The localPathList argument is the list of local filenames or folder paths to put into the
source control system.

■ The remotePathList argument is a mirrored list of remote filenames or folder paths.
■ The numItems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_NewFolder()

Description

This function creates a new folder.

Arguments
void *connectionData, const char *remotePath

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePath argument is the full path of the remote folder that the DLL creates.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_Delete()

Description

This function deletes a list of files or folders from the source control system.
124 The Source Control Integration API

000_DW_API_Print.book Page 125 Wednesday, July 20, 2005 11:58 AM
Arguments
void *connectionData, const char *remotePathList[], const int numItems

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePathList argument is a list of remote filenames or folder paths to delete.
■ The numItems argument is the number of items in remotePathList.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_Rename()

Description

This function renames or moves a file or folder, depending on the values that are specified for
oldRemotePath and newRemotePath. For example, if oldRemotePath equals "$/folder1/
file1" and newRemotePath equals "$/folder1/renamefile1", file1 is renamed
renamefile1 and is located in folder1.

If oldRemotePath equals "$/folder1/file1" and newRemotePath equals "$/folder1/
subfolder1/file1", file1 is moved to the subfolder1 folder.

To find out if an invocation of this function is a move or a rename, check the parent paths of
the two input values; if they are the same, the operation is a rename.

Arguments

void *connectionData, const char *oldRemotePath, const char *newRemotePath

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The oldRemotePath argument is a remote file or folder path to rename.
■ The newRemotePath argument is the remote path of the new name for the file or folder.

Returns

A Boolean value: true if successful; false otherwise.
The Source Control Integration API required functions 125

000_DW_API_Print.book Page 126 Wednesday, July 20, 2005 11:58 AM
bool SCS_ItemExists()

Description

This function determines whether a file or folder exists on the server.

Arguments
void *connectionData, const char *remotePath

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePath argument is a remote file or folder path.

Returns

A Boolean value: true if successful; false otherwise.

The Source Control Integration API
optional functions
The Source Control Integration API has required and optional functions. The functions in
this section are optional.

bool SCS_GetConnectionInfo()

Description

This function displays a dialog box to let the user change or set the connection information
for this site. It does not make the connection. This function is called when the user clicks the
Settings button in the Remote Info section of the Edit Sites dialog box.

Arguments
void **connectionData, const char siteName[64]

■ The connectionData argument is a handle to data that the agent wants Dreamweaver to
pass it when calling other API functions.

■ The siteName argument is a string that points to the name of the site. The name cannot
exceed 64 characters.

Returns

A Boolean value: true if successful; false otherwise.
126 The Source Control Integration API

000_DW_API_Print.book Page 127 Wednesday, July 20, 2005 11:58 AM
bool SCS_SiteDeleted()

Description

This function notifies the DLL that the site has been deleted or that the site is no longer tied
to this source control system. It indicates that the source control system can delete its
persistent information for this site.

Arguments
const char siteName[64]

■ The siteName argument is a string that points to the name of the site. The name cannot
exceed 64 characters.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_SiteRenamed()

Description

This function notifies the DLL when the user has renamed the site so that it can update its
persistent information about the site.

Arguments
const char oldSiteName[64], const char newSiteName[64]

■ The oldSiteName argument is a string that points to the original name of the site before
it was renamed. The name cannot exceed 64 characters.

■ The newSiteName argument is a string that points to the new name of the site after it was
renamed. The name cannot exceed 64 characters.

Returns

A Boolean value: true if successful; false otherwise.

int SCS_GetNumNewFeatures()

Description

This function returns the number of new features to add to Dreamweaver (for example, File
History, Differences, and so on).

Arguments

None.
The Source Control Integration API optional functions 127

000_DW_API_Print.book Page 128 Wednesday, July 20, 2005 11:58 AM
Returns

An integer that indicates the number of new features to add to Dreamweaver. If the function
returns < 0, Dreamweaver considers it an error and tries to retrieve the error message from the
DLL, if supported.

bool SCS_GetNewFeatures()

Description

This function returns a list of menu items to add to the Dreamweaver main and context
menus. For example, the Sourcesafe DLL can add History and File Differences to the main
menu.

Arguments
char menuItemList[][32], scFunction functionList[], scFunction

enablerList[], const int numNewFeatures

■ The menuItemList argument is a string list that is populated by the DLL; it specifies the
menu items to add to the main and context menus. Each string can contain a maximum
of 32 characters.

■ The functionList argument is populated by the DLL; it specifies the routines in the
DLL to call when the user selects the corresponding menu item.

■ The enablerList argument is populated by the DLL; it specifies the routines in the
DLL to call when Dreamweaver needs to determine whether the corresponding menu
item is enabled.

■ The numNewFeatures argument is the number of items being added by the DLL; this
value is retrieved from the GetNumNewFeatures() call.

The following function signature defines the functions and enablers that passed to the
SCS_GetNewFeatures() call in the functionlist and enablerList arguments.
bool (*scFunction)(void *connectionData, const char *remotePathList[],

const char *localPathList[], const int numItems)

Returns

A Boolean value: true if successful; false otherwise.
128 The Source Control Integration API

000_DW_API_Print.book Page 129 Wednesday, July 20, 2005 11:58 AM
bool SCS_GetCheckoutName()

Description

This function returns the check-out name of the current user. If it is unsupported by the
source control system and this feature is enabled by the user, this function uses the
Dreamweaver internal Check In/Check Out functionality, which transports LCK files to and
from the source control system.

Arguments
void *connectionData, char checkOutName[64], char emailAddress[64]

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The checkOutName argument is the name of the current user.
■ The emailAddress argument is the e-mail address of the current user.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_Checkin()

Description

This function checks a list of local files or folders into the source control system. The DLL is
responsible for making the file read-only. If it is unsupported by the source control system and
this feature is enabled by the user, this function uses the Dreamweaver internal Check In/
Check Out functionality, which transports LCK files to and from the source control system.

Arguments
void *connectionData, const char *localPathList[], const char

*remotePathList[], bool successList[], const int numItems

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The localPathList argument is a list of local filenames or folder paths to check in.
■ The remotePathList argument is a mirrored list of remote filenames or folder paths.
■ The successList argument is a list of Boolean values that are populated by the DLL to

let Dreamweaver know which of the corresponding files are checked in successfully.
■ The numItems argument is the number of items in each list.
The Source Control Integration API optional functions 129

000_DW_API_Print.book Page 130 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true if successful; false otherwise.

bool SCS_Checkout()

Description

This function checks out a list of local files or folders from the source control system. The
DLL is responsible for granting the privileges that let the file be writable. If it is unsupported
by the source control system and this feature is enabled by the user, this function uses the
Dreamweaver internal Check In/Check Out functionality, which transports LCK files to and
from the source control system.

Arguments
void *connectionData, const char *remotePathList[], const char

*localPathList[], bool successList[], const int numItems

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePathList argument is a list of remote filenames or folder paths to check out.
■ The localPathList argument is a mirrored list of local filenames or folder paths.
■ The successList argument is a list of Boolean values that are populated by the DLL to

let Dreamweaver know which of the corresponding files are checked out successfully.
■ The numItems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_UndoCheckout()

Description

This function undoes the check-out status of a list of files or folders. The DLL is responsible
for making the file read-only. If it is unsupported by the source control system and this feature
is enabled by the user, this function uses the Dreamweaver internal Check In/Check Out
functionality, which transports LCK files to and from the source control system.
130 The Source Control Integration API

000_DW_API_Print.book Page 131 Wednesday, July 20, 2005 11:58 AM
Arguments
void *connectionData, const char *remotePathList[], const char

*localPathList[], bool successList[], const int numItems

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePathList argument is a list of remote filenames or folder paths on which to
undo the check out.

■ The localPathList argument is a mirrored list of local filenames or folder paths.
■ The successList argument is a list of Boolean values that are populated by the DLL to

let Dreamweaver know which corresponding files’ check outs are undone successfully.
■ The numItems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.

int SCS_GetNumCheckedOut()

Description

This function returns the number of users who have a file checked out.

Arguments
void *connectionData, const char *remotePath

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePath argument is the remote file or folder path to check to see how many
users have it checked out.

Returns

An integer that indicates the number of people who have the file checked out. If the function
returns < 0, Dreamweaver considers it an error and tries to retrieve the error message from the
DLL, if supported.
The Source Control Integration API optional functions 131

000_DW_API_Print.book Page 132 Wednesday, July 20, 2005 11:58 AM
bool SCS_GetFileCheckoutList()

Description

This function returns a list of users who have a file checked out. If the list is empty, no one has
the file checked out.

Arguments
void *connectionData, const char *remotePath, char checkOutList[][64], char

emailAddressList[][64], const int numCheckedOut

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePath argument is the remote file or folder path to check how many users have
it checked out.

■ The checkOutList argument is a list of strings that corresponds to the users who have
the file checked out. Each user string cannot exceed a maximum length of 64 characters.

■ The emailAddressList argument is a list of strings that corresponds to the users’ e-mail
addresses. Each e-mail address string cannot exceed a maximum length of 64 characters.

■ The numCheckedOut argument is the number of people who have the file checked out.
This is returned from GetNumCheckedOut().

Returns

A Boolean value: true if successful; false otherwise.

int SCS_GetErrorMessageLength()

Description

This function returns the length of the DLL’s current internal error message. This allocates the
buffer that passes into the GetErrorMessage() function. This function should be called only
if an API function returns false or <0, which indicates a failure of that API function.

Arguments
void *connectionData

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

Returns

An integer that represents the length of the error message.
132 The Source Control Integration API

000_DW_API_Print.book Page 133 Wednesday, July 20, 2005 11:58 AM
bool SCS_GetErrorMessage()

Description

This function returns the last error message. If you implement getErrorMessage(),
Dreamweaver calls it each time one of your API functions returns the value false.

If a routine returns -1 or false, it indicates an error message should be available.

Arguments
void *connectionData, char errorMsg[], const int *msgLength

The connectionData argument is a pointer to the agent’s data that passed into Dreamweaver
during the Connect() call.

■ The errorMsg argument is a preallocated string for the DLL to fill in with the error
message.

■ The msgLength argument is the length of the buffer represented by the errorMsg[]
argument.

Returns

A Boolean value: true if successful; false otherwise.

int SCS_GetNoteCount()

Description

This function returns the number of Design Note keys for the specified remote file or folder
path. If unsupported by the source control system, Dreamweaver gets this information from
the companion MNO file.

Arguments
void *connectionData, const char *remotePath

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePath argument is the remote file or folder path that the DLL checks for the
number of attached Design Notes.

Returns

An integer that indicates the number of Design Notes that are associated with this file. If the
function returns < 0, Dreamweaver considers it an error and tries to retrieve the error message
from the DLL, if supported.
The Source Control Integration API optional functions 133

000_DW_API_Print.book Page 134 Wednesday, July 20, 2005 11:58 AM
int SCS_GetMaxNoteLength()

Description

This function returns the length of the largest Design Note for the specified file or folder. If it
is unsupported by the source control system, Dreamweaver gets this information from the
companionMNO file.

Arguments
void *connectionData, const char *remotePath

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePath argument is the remote file or folder path that the DLL checks for the
maximum Design Note length.

Returns

An integer that indicates the size of the longest Design Note that is associated with this file. If
the function returns < 0, Dreamweaver considers it an error and tries to retrieve the error
message from the DLL, if supported.

bool SCS_GetDesignNotes()

Description

This function retrieves key-value pairs from the meta information for the specified file or
folder. If it is unsupported by the source control system, Dreamweaver retrieves the
information from the companionMNO file.

Arguments
void *connectionData, const char *remotePath, char keyList[][64],

char *valueList[], bool showColumnList[], const int noteCount,
const int noteLength

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePath argument is the remote file or folder path that the DLL checks for the
number of items.

■ The keyList argument is a list of Design Note keys, such as "Status".
■ The valueList argument is a list of Design Note values that correspond to the Design

Note keys, such as "Awaiting Signoff".
134 The Source Control Integration API

000_DW_API_Print.book Page 135 Wednesday, July 20, 2005 11:58 AM
■ The showColumnList argument is a list of Boolean values that correspond to the Design
Note keys, which indicate whether Dreamweaver can display the key as a column in the
Site panel.

■ The noteCount argument is the number of Design Notes that are attached to a file or
folder; the GetNoteCount() call returns this value.

■ The noteLength argument is the maximum length of a Design Note; this is the value
that the GetMaxNoteLength() call returns.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_SetDesignNotes()

Description

This function stores the key-value pairs in the meta information for the specified file or folder.
This replaces the set of meta information for the file. If it is unsupported by the source control
system, Dreamweaver stores Design Notes in MNO files.

Arguments
void *connectionData, const char *remotePath, const char keyList[][64],

const char *valueList[], bool showColumnList[], const int noteCount,
const int noteLength

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePath argument is the remote file or folder path that the DLL checks for the
number of items.

■ The keyList argument is a list of Design Note keys, such as "Status".
■ The valueList argument is a list of Design Note values that corresponds to the Design

Note keys, such as "Awaiting Signoff".
■ The showColumnList argument is a list of Boolean values that correspond to the Design

Note keys, which indicate whether Dreamweaver can display the key as a column in the
Site panel.

■ The noteCount argument is the number of Design Notes that are attached to a file or
folder; this number lets the DLL know the size of the specified lists. If noteCount is 0, all
the Design Notes are removed from the file.

■ The noteLength argument is the length of the largest Design note for the specified file
or folder.
The Source Control Integration API optional functions 135

000_DW_API_Print.book Page 136 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true if successful; false otherwise.

bool SCS_IsRemoteNewer()

Description

This function checks each specified remote path to see if the remote copy is newer.
If it is unsupported by the source control system, Dreamweaver uses its internal
isRemoteNewer algorithm.

Arguments
void *connectionData, const char *remotePathList[],

const char *localPathList[], int remoteIsNewerList[], const int numItems

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePathList argument is a list of remote filenames or folder paths to compare
for newer status.

■ The localPathList argument is a mirrored list of local filenames or folder paths.
■ The remoteIsNewerList argument is a list of integers that are populated by the DLL to

let Dreamweaver know which of the corresponding files is newer on the remote side. The
following values are valid: 1 indicates the remote version is newer; -1 indicates the local
version is newer; 0 indicates the versions are the same.

■ The numItems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.
136 The Source Control Integration API

000_DW_API_Print.book Page 137 Wednesday, July 20, 2005 11:58 AM
Enablers
If the optional enablers are not supported by the source control system or the application is
not connected to the server, Dreamweaver determines when the menu items are enabled,
based on the information it has about the remote files.

bool SCS_canConnect()

Description

This function returns whether the Connect menu item should be enabled.

Arguments

None.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_canGet()

Description

This function returns whether the Get menu item should be enabled.

Arguments
void *connectionData, const char *remotePathList[], const char

*localPathList[], const int numItems

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePathList argument is a list of remote filenames or folder paths to get.
■ The localPathList argument is a mirrored list of local filenames or folder paths.
■ The numItems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.
Enablers 137

000_DW_API_Print.book Page 138 Wednesday, July 20, 2005 11:58 AM
bool SCS_canCheckout()

Description

This function returns whether the Checkout menu item should be enabled.

Arguments
void *connectionData, const char *remotePathList[], const char

*localPathList[], const int numItems

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePathList argument is a list of remote filenames or folder paths to check out.
■ The localPathList argument is a mirrored list of local filenames or folder paths.
■ The numItems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_canPut()

Description

This function returns whether the Put menu item should be enabled.

Arguments
void *connectionData, const char *localPathList[], const char

*remotePathList[], const int numItems

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The localPathList argument is a list of local filenames or folder paths to put into the
source control system.

■ The remotePathList argument is a mirrored list of remote filenames or folder paths to
put into the source control system.

■ The numItems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.
138 The Source Control Integration API

000_DW_API_Print.book Page 139 Wednesday, July 20, 2005 11:58 AM
bool SCS_canCheckin()

Description

This function returns whether the Checkin menu item should be enabled.

Arguments
void *connectionData, const char *localPathList[], const char

*remotePathList[], const int numItems

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The localPathList argument is a list of local filenames or folder paths to check in.
■ The remotePathList argument is a mirrored list of remote filenames or folder paths.
■ The numItems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_CanUndoCheckout()

Description

This function returns whether the Undo Checkout menu item should be enabled.

Arguments
void *connectionData, const char *remotePathList[], const char

*localPathList[], const int numItems

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePathList argument is a list of remote filenames or folder paths to check out.
■ The localPathList argument is a list of the local filenames or folder paths to put to the

source control system.
■ The numItems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.
Enablers 139

000_DW_API_Print.book Page 140 Wednesday, July 20, 2005 11:58 AM
bool SCS_canNewFolder()

Description

This function returns whether the New Folder menu item should be enabled.

Arguments
void *connectionData, const char *remotePath

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePath argument is a list of remote filenames or folder paths that the user
selected to indicate where the new folder will be created.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_canDelete()

Description

This function returns whether the Delete menu item should be enabled.

Arguments
void *connectionData, const char *remotePathList[], const int numItems

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePathList argument is a list of remote filenames or folder paths to delete.
■ The numItems argument is the number of items in each list.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_canRename()

Description

This function returns whether the Rename menu item should be enabled.
140 The Source Control Integration API

000_DW_API_Print.book Page 141 Wednesday, July 20, 2005 11:58 AM
Arguments
void *connectionData, const char *remotePath

■ The connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

■ The remotePathList argument is the remote filenames or folder paths that can be
renamed.

Returns

A Boolean value: true if successful; false otherwise.

bool SCS_BeforeGet()

Description

Dreamweaver calls this function before getting or checking out one or more files. This
function lets your DLL perform one operation, such as adding a check-out comment, to a
group of files.

Arguments
*connectionData

■ The *connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

Returns

A Boolean value: true if successful; false otherwise.

Example

To get a group of files, Dreamweaver makes calls to the DLL in the following order:
SCS_BeforeGet(connectionData);
SCS_Get(connectionData,remotePathList1,localPathList1,¬
successList1);
SCS_Get(connectionData,remotePathList2,localPathList2,¬
successList2);
SCS_Get(connectionData,remotePathList3,localPathList3,¬
successList3);
SCS_AfterGet(connectionData);
Enablers 141

000_DW_API_Print.book Page 142 Wednesday, July 20, 2005 11:58 AM
bool SCS_BeforePut()

Description

Dreamweaver calls this function before putting or checking in one or more files. This
function lets your DLL perform one operation, such as adding a check-in comment, to a
group of files.

Arguments
*connectionData

■ The *connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

Returns

A Boolean value: true if successful; false otherwise.

Example

To get a group of files, Dreamweaver makes calls to the DLL in the following order:
SCS_BeforePut(connectionData);
SCS_Put(connectionData,localPathList1,remotePathList1,¬
successList1);
SCS_Put(connectionData,localPathList2,remotePathList2,¬
successList2);
SCS_Put(connectionData,localPathList3,remotePathList3,¬
successList3);
SCS_AfterPut(connectionData);

bool SCS_AfterGet()

Description

Dreamweaver calls this function after getting or checking out one or more files. This function
lets your DLL perform any operation after a batch get or check out, such as creating a
summary dialog box.

Arguments
*connectionData

■ The *connectionData argument is a pointer the agent’s data that passed into
Dreamweaver during the Connect() call.

Returns

A Boolean value: true if successful; false otherwise.
142 The Source Control Integration API

000_DW_API_Print.book Page 143 Wednesday, July 20, 2005 11:58 AM
Example

See “bool SCS_BeforeGet()” on page 141.

bool SCS_AfterPut()

Description

Dreamweaver calls this function after putting or checking in one or more files. This function
lets the DLL perform any operation after a batch put or check in, such as creating a summary
dialog box.

Arguments
*connectionData

■ The *connectionData argument is a pointer to the agent’s data that passed into
Dreamweaver during the Connect() call.

Returns

A Boolean value: true if successful; false otherwise.

Example

See “bool SCS_BeforePut()” on page 142.
Enablers 143

000_DW_API_Print.book Page 144 Wednesday, July 20, 2005 11:58 AM
144 The Source Control Integration API

2

000_DW_API_Print.book Page 145 Wednesday, July 20, 2005 11:58 AM
PART 2

JavaScript API
Use any of the more than 600 core JavaScript functions available in
Macromedia Dreamweaver 8, which encapsulate the kinds of tasks users
perform when creating or editing a document. You can use these functions
to perform any task that the user can accomplish using menus, floating
panels, property inspectors, the Site panel, or the Document window.
Chapter 10: Application. 147

Chapter 11: Workspace . 161

Chapter 12: Site. 255

Chapter 13: Document. 299

Chapter 14: Page Content . 355

Chapter 15: Dynamic Documents . 397

Chapter 16: Design. 419

Chapter 17: Code . 489

Chapter 18: Enablers . 551
145

000_DW_API_Print.book Page 146 Wednesday, July 20, 2005 11:58 AM

10

000_DW_API_Print.book Page 147 Wednesday, July 20, 2005 11:58 AM
CHAPTER 10

Application
The application functions perform operations related to Macromedia Dreamweaver 8’s
interaction with other applications or Dreamweaver operations independent of individual
documents (setting preferences, exiting Dreamweaver, and other functions).

External application functions
External application functions handle operations that are related to the Macromedia Flash
application and to the browsers and external editors that are defined in the Preview in Browser
and External Editors preferences. These functions let you get information about these external
applications and open files with them.

dreamweaver.browseDocument()

Availability

Dreamweaver 2; enhanced in 3 and 4.

Description

Opens the specified URL in the specified browser.

Arguments
fileName, {browser}

■ The fileName argument is the name of the file to open, which is expressed as an
absolute URL.

N
O

T
E

Some browsers cannot locate the file if the URL contains an anchor, such as
"Configuration/ExtensionHelp/browseHelp.htm#helpyou".
147

000_DW_API_Print.book Page 148 Wednesday, July 20, 2005 11:58 AM
■ The browser argument, which was added in Dreamweaver 3, specifies a browser. This
argument can be the name of a browser, as defined in the Preview in Browser preferences
or either 'primary' or 'secondary'. If the argument is omitted, the URL opens in the
user’s primary browser.

Returns

Nothing.

Example

The following function uses the dreamweaver.browseDocument() function to open the
Hotwired home page in a browser:
function goToHotwired(){

dreamweaver.browseDocument('http://www.hotwired.com/');
}

In Dreamweaver 4, you can expand this operation to open the document in Microsoft
Internet Explorer using the following code:
function goToHotwired(){

var prevBrowsers = dw.getBrowserList();
var theBrowser = "";
for (var i=1; i < prevBrowsers.length; i+2){

if (prevBrowsers[i].indexOf('Iexplore.exe') != -1){
theBrowser = prevBrowsers[i];
break;

}
}
dw.browseDocument('http://www.hotwired.com/',theBrowser);

}

For more information on the dreamweaver.getBrowserList() function, see
“dreamweaver.getBrowserList()” on page 148.

dreamweaver.getBrowserList()

Availability

Dreamweaver 3.

Description

Gets a list of all the browsers in the File > Preview in Browser submenu.

Arguments

None.
148 Application

000_DW_API_Print.book Page 149 Wednesday, July 20, 2005 11:58 AM
Returns

An array that contains a pair of strings for each browser in the list. The first string in each pair
is the name of the browser, and the second string is its location on the user’s computer, which
is expressed as a file:// URL. If no browsers appear in the submenu, the function returns
nothing.

dreamweaver.getExtensionEditorList()

Availability

Dreamweaver 3

Description

Gets a list of editors for the specified file from the External Editors preferences.

Arguments
fileURL

■ The fileURL argument can be a complete file:// URL, a filename, or a file extension
(including the period).

Returns

An array that contains a pair of strings for each editor in the list. The first string in each pair is
the name of the editor, and the second string is its location on the user’s computer, which is
expressed as a file:// URL. If no editors appear in Preferences, the function returns an array
that contains one empty string.

Example

A call to the dreamweaver.getExtensionEditorList(".gif") function might return an
array that contains the following strings:

■ "Fireworks 3"
■ "file:///C|/Program Files/Macromedia/Fireworks 3/Fireworks 3.exe"

dreamweaver.getExternalTextEditor()

Availability

Dreamweaver 4.

Description

Gets the name of the currently configured external text editor.
External application functions 149

000_DW_API_Print.book Page 150 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

A string that contains the name of the text editor that is suitable for presentation in the user
interface (UI), not the full path.

dreamweaver.getFlashPath()

Availability

Dreamweaver MX.

Description

Gets the full path to the Flash MX application in the form of a file URL.

Arguments

None.

Returns

An array that contains two elements. Element [0] is a string that contains the name of the
Flash MX editor. Element [1] is a string that contains the path to the Flash application on the
local computer, which is expressed as a file:// URL. If Flash is not installed, it returns nothing.

Example

The following example calls the dw.getFlashPath() function to obtain the path to the Flash
application and then passes the path in the form of a file://URL to the dw.openWithApp()
function to open the document with Flash:
var myDoc = dreamweaver.getDocumentDOM();

if (dreamweaver.validateFlash()) {
var flashArray = dreamweaver.getFlashPath();
dreamweaver.openWithApp(myDoc.myForm.swfFilePath, flashArray[1]);

}

dreamweaver.getPrimaryBrowser()

Availability

Dreamweaver 3.
150 Application

000_DW_API_Print.book Page 151 Wednesday, July 20, 2005 11:58 AM
Description

Gets the path to the primary browser.

Arguments

None.

Returns

A string that contains the path on the user’s computer to the primary browser, which is
expressed as a file:// URL. If no primary browser is defined, it returns nothing.

dreamweaver.getPrimaryExtensionEditor()

Availability

Dreamweaver 3.

Description

Gets the primary editor for the specified file.

Arguments
fileURL

■ The fileURL argument is the path to the file to open, which is expressed as a file:// URL.

Returns

An array that contains a pair of strings. The first string in the pair is the name of the editor,
and the second string is its location on the user’s computer, which is expressed as a file:// URL.
If no primary editor is defined, the function returns an array that contains one empty string.

dreamweaver.getSecondaryBrowser()

Availability

Dreamweaver 3.

Description

Gets the path to the secondary browser.

Arguments

None.
External application functions 151

000_DW_API_Print.book Page 152 Wednesday, July 20, 2005 11:58 AM
Returns

A string that contains the path on the user’s computer to the secondary browser, which is
expressed as a file:// URL. If no secondary browser is defined, it returns nothing.

dreamweaver.openHelpURL()

Availability

Dreamweaver MX.

Description

Opens the specified Help file in the operating system Help viewer.

Dreamweaver displays help content in the standard operating system help viewer instead of a
browser. Help content is in HTML, but it is packaged for Windows HTML Help or Help
Viewer for Mac OS X.

The following four types of files comprise the full help content. For more information on
Help files, see your operating system documentation.

■ Help book
A Help book consists of the HTML Help files, images, and indexes. In Windows, the
Help book is a file that has a name with a .chm extension. On the Macintosh, the Help
book is a folder.
The Help book files reside in the Dreamweaver Help folder.

■ The help.xml file
The help.xml file maps book IDs to help book names. For example, the following XML
code maps the book ID for Dreamweaver Help to the filenames that contains help on
both the Windows and Macintosh operating systems:
<?xml version = "1.0" ?>
<help-books>

<book-id id="DW_Using" win-mapping="UsingDreamweaver.chm" mac-
mapping="Dreamweaver Help"/>
</help-books>

Each book-id entry has the following attributes:
■ The id attribute is the book ID that is used in the help.map and HelpDoc.js files.
■ The win-mapping attribute is the Windows book name, which is

"UsingDreamweaver.chm" in this example.
■ The mac-mapping attribute is the Macintosh book name, which is "Dreamweaver

Help" in this example.
152 Application

000_DW_API_Print.book Page 153 Wednesday, July 20, 2005 11:58 AM
■ The help.map file
The help.map file maps a help content ID to a specific help book. Dreamweaver uses the
help.map file to locate specific help content when it calls help internally.

■ The helpDoc.js file
The helpDoc.js file lets you map variable names that you can use in place of the actual
book ID and page string. The helpDoc.js file maps a help content ID to an HTML page
in a specific help book. Dreamweaver uses the helpDoc.js file when it calls help from
JavaScript.

Arguments
bookID

■ The bookID argument, which is required, has the following format:
ID:page

The ID portion is the bookID of the entry in the help.xml file that names the file that
contains the help content to display. The page portion of the entry identifies the specific
page to display. The pages are referenced in the help.map file.

Returns

A value of true if successful; false if Dreamweaver cannot open the specified file in the
help viewer.

Example
openHelpURL("DW_Using:index.htm");

dreamweaver.openWithApp()

Availability

Dreamweaver 3.

Description

Opens the specified file with the specified application.

Arguments
fileURL, appURL

■ The fileURL argument is the path to the file to open, which is expressed as a file:// URL.
■ The appURL argument is the path to the application that is to open the file, which is

expressed as a file:// URL.
External application functions 153

000_DW_API_Print.book Page 154 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

dreamweaver.openWithBrowseDialog()

Availability

Dreamweaver 3.

Description

Opens the Select External Editor dialog box to let the user select the application with which
to open the specified file.

Arguments
fileURL

■ The fileURL argument is the path to the file to open, which is expressed as a file:// URL.

Returns

Nothing.

dreamweaver.openWithExternalTextEditor()

Availability

Dreamweaver 3.

Description

Opens the current document in the external text editor that is specified in the External
Editors entry in the Preferences dialog box.

Arguments

None.

Returns

Nothing.

dreamweaver.openWithImageEditor()

Availability

Dreamweaver 3.
154 Application

000_DW_API_Print.book Page 155 Wednesday, July 20, 2005 11:58 AM
Description

Opens the named file with the specified image editor.

Arguments
fileURL, appURL

■ The fileURL argument is the path to the file to open, which is expressed as a file:// URL.
■ The appURL argument is the path to the application with which to open the file, which is

expressed as a file:// URL.

Returns

Nothing.

dreamweaver.validateFlash()

Availability

Dreamweaver MX.

Description

Determines whether Flash MX (or a later version) is installed on the local computer.

Arguments

None.

Returns

A Boolean value: true if Flash MX (or a later version) is installed on the local computer;
false otherwise.

Global application functions
Global application functions act on the entire application. They handle tasks such as quitting
and accessing Preferences.

N
O

T
E

This function invokes a special Macromedia Fireworks integration mechanism that
returns information to the active document if Fireworks is specified as the image editor.
To prevent errors if no document is active, this function should never be called from the
Site panel.
Global application functions 155

000_DW_API_Print.book Page 156 Wednesday, July 20, 2005 11:58 AM
dreamweaver.beep()

Availability

Dreamweaver MX.

Description

Creates a system beep.

Arguments

None.

Returns

Nothing.

Example

The following example calls dw.beep() to call the user’s attention to a message that the
alert() function displays:
beep(){

if(confirm(“Is your order complete?”)
{

dreamweaver.beep();
alert(“Click OK to submit your order”);

}
}

dreamweaver.getShowDialogsOnInsert()

Availability

Dreamweaver 3.

Description

Checks whether the Show Dialog When Inserting Objects option is turned on in the General
category of Preferences.

Arguments

None.

Returns

A Boolean value that indicates whether the option is on.
156 Application

000_DW_API_Print.book Page 157 Wednesday, July 20, 2005 11:58 AM
dreamweaver.quitApplication()

Availability

Dreamweaver 3.

Description

Quits Dreamweaver after the script that calls this function finishes executing.

Arguments

None.

Returns

Nothing.

dreamweaver.showAboutBox()

Availability

Dreamweaver 3.

Description

Opens the About dialog box.

Arguments

None.

Returns

Nothing.

dreamweaver.showDynamicDataDialog()

Availability

Dreamweaver UltraDev 1.
Global application functions 157

000_DW_API_Print.book Page 158 Wednesday, July 20, 2005 11:58 AM
Description

Displays the Dynamic Data or the Dynamic Text dialog box, and waits for the user to dismiss
the dialog box. If the user clicks OK, the showDynamicDataDialog() function returns a
string to insert into the user’s document. (This string returns from the Data Sources API
function, generateDynamicDataRef(), and passes to the Data Format API function,
formatDynamicDataRef(); the return value from formatDynamicDataRef() is the one that
the showDynamicDataDialog() function returns.)

Arguments
source, {title}

■ The source argument is a string that contains source code, which represents the dynamic
data object. It is the same string that a previous call to this function returned. The
function uses the contents of the source argument to initialize all the dialog box controls,
so they appear exactly as when the user clicked OK to create this string.
Dreamweaver passes this string to the inspectDynamicDataRef() function to determine
if the string matches any of the nodes in the tree. If the string matches a node, that node is
selected when the dialog box appears. You can also pass an empty string, which does not
initialize the dialog box. For example, a dialog box is not initialized when used to create a
new item.

■ The title argument, which is optional, is a string that contains the text to display in the
title bar of the dialog box. If this argument is not supplied, Dreamweaver displays
Dynamic Data in the title bar.

Returns

A string that represents the dynamic data object, if the user clicks OK.

dreamweaver.showPasteSpecialDialog()

Availability

Dreamweaver 8

Description

This function displays the Paste Special dialog box. If the user clicks OK, the
showPasteSpecialDialog() function performs the paste.

Arguments

None.
158 Application

000_DW_API_Print.book Page 159 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

Example
dw.showPasteSpecialDialog();

dreamweaver.showPreferencesDialog()

Availability

Dreamweaver 3. Added the strCategory argument in Dreamweaver 8.

Description

This function opens the Preferences dialog box.

Arguments
{strCategory}

■ The strCategory argument, which is optional, must be one of the following strings to
open the correlating category of the Preferences dialog box: "general",
"accessibility", "html colors" (for the Code Coloring category), "html format"
(for the Code Format category), "code hints", "html rewriting" (for the Code
Rewriting category), “copyPaste”, "css styles", "file compare", "external
editors" (for the File Types/Editors category), "fonts", "highlighting",
"invisible elements", "layers", "layout mode", "new document", "floaters"
(for the Panels category), "browsers" (for the Preview in Browser category), "site ftp"
(for the Site category), "status bar", and "validator". If Dreamweaver does not
recognize the argument as a valid pane name, or if the argument is omitted, the dialog box
opens to the last active pane.

Returns

Nothing.

Example

The following example opens the Preferences dialog box and selects the Code Coloring
category:
dw.showPreferencesDialog(“html colors”);
Global application functions 159

000_DW_API_Print.book Page 160 Wednesday, July 20, 2005 11:58 AM
dreamweaver.showTagChooser()

Availability

Dreamweaver MX.

Description

Toggles the visibility of the Tag Chooser dialog box for users to insert tags into the Code view.
The function shows the Tag Chooser dialog box on top of all other Dreamweaver windows. If
the dialog box is not visible, the function opens it, brings it to the front, and sets focus to it. If
the Tag Chooser is visible, the function hides the dialog box.

Arguments

None.

Returns

Nothing.
160 Application

11

000_DW_API_Print.book Page 161 Wednesday, July 20, 2005 11:58 AM
CHAPTER 11

Workspace
Workspace API functions create or operate on an element of the Macromedia Dreamweaver 8
workspace. They perform tasks such as redoing steps that appear in the History panel, placing
an object on the Insert bar, navigating with Keyboard functions, reloading menus,
manipulating standalone or built-in results windows, setting options, positioning a toolbar,
and getting or setting focus.

History functions
History functions handle undoing, redoing, recording, and playing steps that appear in the
History panel. A step is any repeatable change to the document or to a selection in the
document. Methods of the dreamweaver.historyPalette object either control or act on
the selection in the History panel, not in the current document.

dom.redo()

Availability

Dreamweaver 3.

Description

Redoes the step that was most recently undone in the document.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canRedo()” on page 560.
161

000_DW_API_Print.book Page 162 Wednesday, July 20, 2005 11:58 AM
dom.undo()

Availability

Dreamweaver 3.

Description

Undoes the previous step in the document.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canUndo()” on page 563.

dreamweaver.getRedoText()

Availability

Dreamweaver 3.

Description

Gets the text that is associated with the editing operation that will be redone if the user selects
Edit > Redo or presses Control+Y (Windows) or Command+Y (Macintosh).

Arguments

None.

Returns

A string that contains the text that is associated with the editing operation that will be redone.

Example

If the user’s last action applied bold to selected text, a call to the
dreamweaver.getRedoText() function returns "Repeat Apply Bold".
162 Workspace

000_DW_API_Print.book Page 163 Wednesday, July 20, 2005 11:58 AM
dreamweaver.getUndoText()

Availability

Dreamweaver 3.

Description

Gets the text that is associated with the editing operation that will be undone if the user
selects Edit > Undo or presses Control+Z (Windows) or Command+Z (Macintosh).

Arguments

None.

Returns

A string that contains the text that is associated with the editing operation that will be
undone.

Example

If the user’s last action applied a cascading style sheet (CSS) style to a selected range of text, a
call to the dreamweaver.getUndoText() function returns "Undo Apply ".

dreamweaver.playRecordedCommand()

Availability

Dreamweaver 3.

Description

Plays the recorded command in the active document.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.canPlayRecordedCommand()” on page 569.
History functions 163

000_DW_API_Print.book Page 164 Wednesday, July 20, 2005 11:58 AM
dreamweaver.redo()

Availability

Dreamweaver 3.

Description

Redoes the step that was most recently undone in the active Document window, dialog box,
floating panel, or Site panel.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.canRedo()” on page 570.

dreamweaver.startRecording()

Availability

Dreamweaver 3.

Description

Starts recording steps in the active document; the previously recorded command is
immediately discarded.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.isRecording()” on page 579 (must return a value of false).
164 Workspace

000_DW_API_Print.book Page 165 Wednesday, July 20, 2005 11:58 AM
dreamweaver.stopRecording()

Availability

Dreamweaver 3.

Description

Stops recording without prompting the user.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.isRecording()” on page 579 (must return a value of true).

dreamweaver.undo()

Availability

Dreamweaver 3.

Description

Undoes the previous step in the Document window, dialog box, floating panel, or Site panel
that has focus.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canUndo()” on page 563.

dreamweaver.historyPalette.clearSteps()

Availability

Dreamweaver 3.
History functions 165

000_DW_API_Print.book Page 166 Wednesday, July 20, 2005 11:58 AM
Description

Clears all steps from the History panel and disables the Undo and Redo menu items.

Arguments

None.

Returns

Nothing.

dreamweaver.historyPalette.copySteps()

Availability

Dreamweaver 3.

Description

Copies the specified history steps to the Clipboard. Dreamweaver warns the user about
possible unintended consequences if the specified steps include an unrepeatable action.

Arguments
arrayOfIndices

■ The arrayOfIndices argument is an array of position indices in the History panel.

Returns

A string that contains the JavaScript that corresponds to the specified history steps.

Example

The following example copies the first four steps in the History panel:
dreamweaver.historyPalette.copySteps([0,1,2,3]);

dreamweaver.historyPalette.getSelectedSteps()

Availability

Dreamweaver 3.

Description

Determines which portion of the History panel is selected.

Arguments

None.
166 Workspace

000_DW_API_Print.book Page 167 Wednesday, July 20, 2005 11:58 AM
Returns

An array that contains the position indices of all the selected steps. The first position is
position 0 (zero).

Example

If the second, third, and fourth steps are selected in the History panel, as shown in the
following figure, a call to the dreamweaver.historyPalette.getSelectedSteps()
function returns [1,2,3]:

dreamweaver.historyPalette.getStepCount()

Availability

Dreamweaver 3.

Description

Gets the number of steps in the History panel.

Arguments

None.

Returns

An integer that represents the number of steps that are currently listed in the History panel.

dreamweaver.historyPalette.getStepsAsJavaScript()

Availability

Dreamweaver 3.

Description

Gets the JavaScript equivalent of the specified history steps.
History functions 167

000_DW_API_Print.book Page 168 Wednesday, July 20, 2005 11:58 AM
Arguments
arrayOfIndices

■ The arrayOfIndices argument is an array of position indices in the History panel.

Returns

A string that contains the JavaScript that corresponds to the specified history steps.

Example

If the three steps shown in the following example are selected in the History panel, a call to
the
dreamweaver.historyPalette.getStepsAsJavaScript(dw.historyPalette.getSelect

edSteps()) function returns "dw.getDocumentDOM().insertText('Hey diddle diddle,
a cat and a fiddle, the cow jumped over the moon.');\
ndw.getDocumentDOM().newBlock();\n dw.getDocumentDOM().insertHTML('<img

src=\ "../wdw99/50browsers/images/sun.gif\">', true);\n":

dreamweaver.historyPalette.getUndoState()

Availability

Dreamweaver 3.

Description

Gets the current undo state.

Arguments

None.

Returns

The position of the Undo marker in the History panel.
168 Workspace

000_DW_API_Print.book Page 169 Wednesday, July 20, 2005 11:58 AM
dreamweaver.historyPalette.replaySteps()

Availability

Dreamweaver 3.

Description

Replays the specified history steps in the active document. Dreamweaver warns the user of
possible unintended consequences if the specified steps include an unrepeatable action.

Arguments
arrayOfIndices

■ The arrayOfIndices argument is an array of position indices in the History panel.

Returns

A string that contains the JavaScript that corresponds to the specified history steps.

Example

A call to dreamweaver.historyPalette.replaySteps([0,2,3]) function plays the first,
third, and fourth steps in the History panel.

dreamweaver.historyPalette.saveAsCommand()

Availability

Dreamweaver 3.

Description

Opens the Save As Command dialog box, which lets the user save the specified steps as a
command. Dreamweaver warns the user of possible unintended consequences if the steps
include an unrepeatable action.

Arguments
arrayOfIndices

■ The arrayOfIndices argument is an array of position indexes in the History panel.

Returns

A string that contains the JavaScript that corresponds to the specified history steps.
History functions 169

000_DW_API_Print.book Page 170 Wednesday, July 20, 2005 11:58 AM
Example

The following example saves the fourth, sixth, and eighth steps in the History panel as a
command:
dreamweaver.historyPalette.saveAsCommand([3,5,7]);

dreamweaver.historyPalette.setSelectedSteps()

Availability

Dreamweaver 3.

Description

Selects the specified steps in the History panel.

Arguments
arrayOfIndices

■ The arrayOfIndices function is an array of position indices in the History panel. If no
argument is supplied, all the steps are unselected.

Returns

Nothing.

Example

The following example selects the first, second, and third steps in the History panel:
dreamweaver.historyPalette.setSelectedSteps([0,1,2]);

dreamweaver.historyPalette.setUndoState()

Availability

Dreamweaver 3.

Description

Performs the correct number of undo or redo operations to arrive at the specified undo state.

Arguments
undoState

■ The undoState argument is the object that the
dreamweaver.historyPalette.getUndoState() function returns.
170 Workspace

000_DW_API_Print.book Page 171 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

Insert object functions
Insert object functions handle operations related to the objects on the Insert bar or listed on
the Insert menu.

dom.insertFlashElement()

Availability

Dreamweaver MX 2004.

Description

Inserts a specified Flash element (SWC file) into the current document. This function
assumes that the Flash element has been added to the Insert bar, and the component file
resides in the Configuration/Objects/FlashElements folder or subfolder.

Arguments
swcFilename

■ The swcFilename string is the path and name of the desired flash component relative to
the Configuration/Objects/FlashElements folder.

Returns

Nothing.

Example

The following example inserts the navigation bar Flash component, which resides in the
Components/Objects/FlashElements/Navigation folder, into the current document:
dom.insertFlashElement("\Navigation\navBar.swc");

dreamweaver.objectPalette.getMenuDefault()

Availability

Dreamweaver MX 2004.

Description

Retrieves the ID string of the default item for the associated menu.
Insert object functions 171

000_DW_API_Print.book Page 172 Wednesday, July 20, 2005 11:58 AM
Arguments
menuId

■ The menuId argument is the string that defines the menu in the insertbar.xml file.

Returns

A string value defining the ID of the default item.

Example

The following example assigns the current default object for the Media menu to the defID
variable:
var defId = dw.objectPalette.getMenuDefault("DW_Media");

dreamweaver.objectPalette.setMenuDefault()

Availability

Dreamweaver MX 2004.

Description

Sets the default object for a pop-up menu. The default object’s icon represents the specified
pop-up menu on the Insert bar. The user can click on the default object to insert it, or click
on the arrow beside the default object to open the pop-up menu and see the other objects in
that menu. Dreamweaver sets the new menu default the next time the user opens
Dreamweaver or uses the Reload Extensions command.

Arguments
menuId, defaultId

■ The menuId argument is the string that defines the menu in the insertbar.xml file.
■ The defaultId argument is the string that defines the new default object in the

insertbar.xml field.

Returns

A Boolean value: true if the new default is successfully set; false otherwise.

Example

The following example sets the Flash object as the default object for the Media menu:
dw.objectPalette.setMenuDefault("DW_Media", "DW_Flash");
172 Workspace

000_DW_API_Print.book Page 173 Wednesday, July 20, 2005 11:58 AM
dreamweaver.reloadObjects()

Availability

Dreamweaver MX 2004.

Description

Reloads all the objects on the Insert bar. This function is the equivalent of Control+left-
clicking the mouse on the Categories menu on the Insert bar and selecting the Reload
Extensions menu option.

Arguments

None.

Returns

A Boolean value: true if the objects were successfully loaded; false otherwise.

Keyboard functions
Keyboard functions mimic document navigation tasks that are accomplished by pressing the
arrow, Backspace, Delete, Page Up, and Page Down keys. In addition to such general arrow
and key functions as arrowLeft() and backspaceKey(), Dreamweaver also provides
methods for moving to the next or previous word or paragraph as well as moving to the start
of the line or document or the end of the line or document.

dom.arrowDown()

Availability

Dreamweaver 3.

Description

Moves the insertion point down the specified number of times.

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument is the number of times that the insertion point must move down. If
this argument is omitted, the default is 1.

■ The bShiftIsDown argument is a Boolean value that indicates whether to extend the
selection. If this argument is omitted, the default is false.
Keyboard functions 173

000_DW_API_Print.book Page 174 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

dom.arrowLeft()

Availability

Dreamweaver 3.

Description

Moves the insertion point to the left the specified number of times.

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument, which is optional, is the number of times that the insertion point
must move left. If this argument is omitted, the default is 1.

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
to extend the selection. If this argument is omitted, the default is false.

Returns

Nothing.

dom.arrowRight()

Availability

Dreamweaver 3.

Description

Moves the insertion point to the right the specified number of times.

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument, which is optional, is the number of times that the insertion point
must move right. If this argument is omitted, the default is 1.

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
to extend the selection. If this argument is omitted, the default is false.

Returns

Nothing.
174 Workspace

000_DW_API_Print.book Page 175 Wednesday, July 20, 2005 11:58 AM
dom.arrowUp()

Availability

Dreamweaver 3.

Description

This function moves the insertion point up the specified number of times.

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument, which is optional, is the number of times that the insertion point
must move up. If this argument is omitted, the default is 1.

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
to extend the selection. If this argument is omitted, the default is false.

Returns

Nothing.

dom.backspaceKey()

Availability

Dreamweaver 3.

Description

This function is equivalent to pressing the Backspace key a specified number of times. The
exact behavior depends on whether there is a current selection or only an insertion point.

Arguments
{nTimes}

■ The nTimes argument, which is optional, is the number of times that a Backspace
operation must occur. If the argument is omitted, the default is 1.

Returns

Nothing.
Keyboard functions 175

000_DW_API_Print.book Page 176 Wednesday, July 20, 2005 11:58 AM
dom.deleteKey()

Availability

Dreamweaver 3.

Description

This function is equivalent to pressing the Delete key the specified number of times. The
exact behavior depends on whether there is a current selection or only an insertion point.

Arguments
{nTimes}

■ The nTimes argument, which is optional, is the number of times that a Delete operation
must occur. If the argument is omitted, the default is 1.

Returns

Nothing.

dom.endOfDocument()

Availability

Dreamweaver 3.

Description

Moves the insertion point to the end of the document (that is, after the last visible content in
the Document window or after the closing HTML tag in the Code inspector, depending on
which window has focus).

Arguments
{bShiftIsDown}

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
to extend the selection. If the argument is omitted, the default is false.

Returns

Nothing.
176 Workspace

000_DW_API_Print.book Page 177 Wednesday, July 20, 2005 11:58 AM
dom.endOfLine()

Availability

Dreamweaver 3.

Description

Moves the insertion point to the end of the line.

Arguments
{bShiftIsDown}

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
to extend the selection. If the argument is omitted, the default is false.

Returns

Nothing.

dom.nextParagraph()

Availability

Dreamweaver 3.

Description

Moves the insertion point to the beginning of the next paragraph or skips multiple paragraphs
if nTimes is greater than 1.

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument, which is optional, is the number of paragraphs that the insertion
point must move ahead. If this argument is omitted, the default is 1.

■ The bShiftIsDown argument is a Boolean value that indicates whether to extend the
selection. If this argument is omitted, the default is false.

Returns

Nothing.
Keyboard functions 177

000_DW_API_Print.book Page 178 Wednesday, July 20, 2005 11:58 AM
dom.nextWord()

Availability

Dreamweaver 3.

Description

Moves the insertion point to the beginning of the next word or skips multiple words if
nTimes is greater than 1.

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument, which is optional, is the number of words that the insertion point
must move ahead. If this argument is omitted, the default is 1.

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
to extend the selection. If this argument is omitted, the default is false.

Returns

Nothing.

dom.pageDown()

Availability

Dreamweaver 3.

Description

Moves the insertion point down one page (equivalent to pressing the Page Down key).

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument, which is optional, is the number of pages that the insertion point
must move down. If this argument is omitted, the default is 1.

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
to extend the selection. If this argument is omitted, the default is false.

Returns

Nothing.
178 Workspace

000_DW_API_Print.book Page 179 Wednesday, July 20, 2005 11:58 AM
dom.pageUp()

Availability

Dreamweaver 3.

Description

Moves the insertion point up one page (equivalent to pressing the Page Up key).

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument, which is optional, is the number of pages that the insertion point
must move up. If this argument is omitted, the default is 1.

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
to extend the selection. If this argument is omitted, the default is false.

Returns

Nothing.

dom.previousParagraph()

Availability

Dreamweaver 3.

Description

Moves the insertion point to the beginning of the previous paragraph or skips multiple
paragraphs if nTimes is greater than 1.

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument, which is optional, is the number of paragraphs that the insertion
point must move back. If this argument is omitted, the default is 1.

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
to extend the selection. If this argument is omitted, the default is false.

Returns

Nothing.
Keyboard functions 179

000_DW_API_Print.book Page 180 Wednesday, July 20, 2005 11:58 AM
dom.previousWord()

Availability

Dreamweaver 3.

Description

Moves the insertion point to the beginning of the previous word or skips multiple words if
nTimes is greater than 1.

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument, which is optional, is the number of words that the insertion point
must move back. If this argument is omitted, the default is 1.

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
to extend the selection. If this argument is omitted, the default is false.

Returns

Nothing.

dom.startOfDocument()

Availability

Dreamweaver 3.

Description

Moves the insertion point to the beginning of the document (that is, before the first visible
content in the Document window, or before the opening HTML tag in the Code inspector,
depending on which window has focus).

Arguments
{bShiftIsDown}

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
to extend the selection. If the argument is omitted, the default is false.

Returns

Nothing.
180 Workspace

000_DW_API_Print.book Page 181 Wednesday, July 20, 2005 11:58 AM
dom.startOfLine()

Availability

Dreamweaver 3.

Description

Moves the insertion point to the beginning of the line.

Arguments
{bShiftIsDown}

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
to extend the selection. If the argument is omitted, the default is false.

Returns

Nothing.

dreamweaver.mapKeyCodeToChar()

Availability

Dreamweaver 4.

Description

Takes a key code as retrieved from the event object’s keyCode field and translates it to a
character. You should check whether the key code is a special key, such as HOME, PGUP, and
so on. If the key code is not a special key, this method can be used to translate it to a character
code that is suitable for display to the user.

Arguments
keyCode

■ The keyCode argument is the key code to translate to a character.

Returns

Nothing.
Keyboard functions 181

000_DW_API_Print.book Page 182 Wednesday, July 20, 2005 11:58 AM
Menu functions
Menu functions handle optimizing and reloading the menus in Dreamweaver. The
dreamweaver.getMenuNeedsUpdating() function and the
dreamweaver.notifyMenuUpdated() function are designed specifically to prevent
unnecessary update routines from running on the dynamic menus that are built into
Dreamweaver. See dreamweaver.getMenuNeedsUpdating() and
dreamweaver.notifyMenuUpdated() for more information.

dreamweaver.getMenuNeedsUpdating()

Availability

Dreamweaver 3.

Description

Checks whether the specified menu needs to be updated.

Arguments
menuId

■ The menuId argument is a string that contains the value of the id attribute for the menu
item, as specified in the menus.xml file.

Returns

A Boolean value that indicates whether the menu needs to be updated. This function returns
false only if dreamweaver.notifyMenuUpdated() has been called with this menuId, and
the return value of menuListFunction has not changed. For more information, see
“dreamweaver.notifyMenuUpdated()” on page 182.

dreamweaver.notifyMenuUpdated()

Availability

Dreamweaver 3.

Description

Notifies Dreamweaver when the specified menu needs to be updated.
182 Workspace

000_DW_API_Print.book Page 183 Wednesday, July 20, 2005 11:58 AM
Arguments
menuId, menuListFunction

■ The menuId argument is a string that contains the value of the id attribute for the menu
item, as specified in the menus.xml file.

■ The menuListFunction argument must be one of the following strings:
"dw.cssStylePalette.getStyles()", "dw.getDocumentDOM().getFrameNames()",
"dw.getDocumentDOM().getEditableRegionList", "dw.getBrowserList()",
"dw.getRecentFileList()", "dw.getTranslatorList()", "dw.getFontList()",
"dw.getDocumentList()", "dw.htmlStylePalette.getStyles()", or
"site.getSites()".

Returns

Nothing.

dreamweaver.reloadMenus()

Availability

Dreamweaver 3.

Description

Reloads the entire menu structure from the menus.xml file in the Configuration folder.

Arguments

None.

Returns

Nothing.

Results window functions
Results window functions let you create a stand-alone window that displays columns of
formatted data, or you can interact with the built-in windows of the Results panel group.

Creating a Stand-alone Results window
These functions create custom windows that are similar to the output from the JavaScript
Debugger window.
Results window functions 183

000_DW_API_Print.book Page 184 Wednesday, July 20, 2005 11:58 AM
dreamweaver.createResultsWindow()

Availability

Dreamweaver 4.

Description

Creates a new Results window and returns a JavaScript object reference to the window.

Arguments
strName, arrColumns

■ The strName argument is the string to use for the window’s title.
■ The arrColumns argument is an array of column names to use in the list control.

Returns

An object reference to the created window.

dreamweaver.showResults()

Availability

Dreamweaver MX 2004.

Description

Opens the specified results floating panel and selects the item.

Arguments
floaterName, floaterIndex

■ The floaterName argument is a string that specifies the results floating panel to open.
Valid values are 'validation', 'btc', or 'reports'.

■ The floaterIndex argument is a number or string. Use a number to specify the index of
an item to select in the Results panel. Use a string to specify the URL of a document. If
you specify a URL, the function selects the first visible item for that document.

Returns

Nothing.

N
O

T
E

This function is supported only in the Validation, Target Browser Check, and Site
Reports windows of the Results floating panel.
184 Workspace

000_DW_API_Print.book Page 185 Wednesday, July 20, 2005 11:58 AM
Example

The following example checks for errors at the offset of the current selection in the document
and, if there are errors, displays them in the specified window (floaterName) of the Results
panel. Otherwise, it opens the Target Browser Check window of the Results panel and
displays the first visible item for the document.
var offset = dw.getDocumentDOM().source.getSelection()[0];
var errors =

dw.getDocumentDOM().source.getValidationErrorsForOffset(offset);
if (errors && errors.length > 0)

dw.showResults(errors[0].floaterName, errors[0].floaterIndex);
else

dw.showResults('btc', dw.getDocumentDOM().URL);

resWin.addItem()

Availability

Dreamweaver 4.

Description

Adds a new item to the Results window.

Arguments
resultWindowObj, strIcon, strDesc, itemData, iStartSel, iEndSel, colNdata

■ The resultWindowObj argument is the object that the createResultsWindow()
function returns.

■ The strIcon argument is a string that specifies the path to the icon to use. To display a
built-in icon, use a value "1" through "10" instead of the fully qualified path of the icon.
Specify "0" (zero) for no icon. The following table shows the icons that correspond to the
values of "1" through "10":

■ The strDesc argument is a detailed description of the item. Specify "0" if there is
no description.

N
O

T
E

Use only on stand-alone results windows created with
dreamweaver.createResultsWindow(). resWin.addItem() cannot be used with the built-
in results windows, including Validation, Browser Target Check, or Site Reports.
Results window functions 185

000_DW_API_Print.book Page 186 Wednesday, July 20, 2005 11:58 AM
■ The itemData argument is a string you can use to store specific data about the item being
added such as a document line number.

■ The iStartSel argument is the start of selection offset in the file. Specify the value null
if you are not specifying an offset.

■ The iEndSel argument is the end of selection offset in the file. Specify the value null if
you are not specifying an offset.

■ The colNdata argument is an array of strings that provide the data for each column (that
is, if there are 3 columns, an array of 3 strings).

Returns

A Boolean value: true if the item was added successfully; false otherwise.

Example

The following example creates a Results window called resWin that has the column headings:
Frodo, Sam, and Gollum. The call to the resWin.addItem() function adds a folder icon and
then the three strings, msg1, msg2, and msg3 into the three columns defined for the window.
var resWin = dw.createResultsWindow("Test Window", ["Frodo", "Sam",

"Gollum"]);
resWin.addItem(resWin, "3", "Description", null, null, null, ["msg1",

"msg2", "msg3"]);

resWin.addResultItem()

Availability

Dreamweaver 4.

Description

Adds a new results entry to the current Results window, based on the information in the file
that the processfile() function processes.

This function is only available in the processFile() callback of a site report. See “Reports”
in Extending Dreamweaver for details on site reports.

N
O

T
E

Use only on the built-in results window for Site Reports
(dreamweaver.resultsPalette.siteReports). resWin.addResultItem() cannot be used with
other built-in results windows or stand-alone results windows created with
dreamweaver.createResultsWindow().
186 Workspace

000_DW_API_Print.book Page 187 Wednesday, July 20, 2005 11:58 AM
Arguments
strFilePath, strIcon, strDisplay, strDesc, {iLineNo}, {iStartSel},

{iEndSel}

■ The strFilePath argument is a fully qualified URL path of the file to process.
■ The strIcon argument is the path to the icon to use. To display a built-in icon, use a

value "1" through "10" instead of the fully qualified path for the icon (use "0" for no
icon). The following table shows the icons that correspond to the values of "1" through
"10":

■ The strDisplay argument is the string to display to the user in first column of the
Results window (usually, the filename).

■ The strDesc argument is the description that goes with the entry.
■ The iLineNo argument is the number of lines in the file (optional).
■ The iStartSel argument is the start of offset into the file (optional, but if it is used, the

iEndSel argument must also be used.).
■ The iEndSel argument is the end of offset into the file (required if iStartSel is used).

Returns

Nothing.

resWin.getItem()

Availability

Dreamweaver 4.

Description

Retrieves an array of items that include the name of the command that added the item and
the same strings that were passed to the addItem() function.

Arguments
itemIndex

■ The itemIndex argument is the index of the item whose data is to be retrieved.
Results window functions 187

000_DW_API_Print.book Page 188 Wednesday, July 20, 2005 11:58 AM
Returns

An array of strings. The first element in the array is the name of the command that added the
item; the remaining elements are the same strings that were passed to the addItem()
function.

resWin.getItemCount()

Availability

Dreamweaver 4.

Description

Retrieves the number of items in the list.

Arguments

None.

Returns

The number of items in the list.

resWin.getSelectedItem()

Availability

Dreamweaver 4.

Description

Retrieves the index of the selected item.

Arguments

None.

Returns

The index of the currently selected item.

resWin.setButtons()

Availability

Dreamweaver 4.
188 Workspace

000_DW_API_Print.book Page 189 Wednesday, July 20, 2005 11:58 AM
Description

Sets the buttons specified by the arrButtons argument.

Arguments
cmdDoc, arrButtons

■ The cmdDoc argument is a document object that represents the command that is calling
the function. Commands should use the keyword this.

■ The arrButtons argument is an array of strings that correspond to the button text and
the JavaScript code to execute when the button is clicked. This is similar to the way the
commandButtons() function works for commands. Only two buttons can be set in the
window.

Returns

Nothing.

resWin.setCallbackCommands()

Availability

Dreamweaver 4.

Description

Tells the Results window on which commands to call the processFile() method. If this
function is not called, the command that created the Results window is called.

Arguments
arrCmdNames

■ The arrCmdNames argument is an array of command names on which to call the
processFile() function.

Returns

Nothing.

resWin.setColumnWidths()

Availability

Dreamweaver 4.

Description

Sets the width of each column.
Results window functions 189

000_DW_API_Print.book Page 190 Wednesday, July 20, 2005 11:58 AM
Arguments
arrWidth

■ The arrWidth argument is an array of integers that represents the widths to use for each
column in the control.

Returns

Nothing.

resWin.setFileList()

Availability

Dreamweaver 4.

Description

Gives the Results window a list of files, folders, or both to call a set of commands to process.

Arguments
arrFilePaths, bRecursive

■ The arrFilePaths argument is an array of file or folder paths to iterate through.
■ The bRecursive argument is a Boolean value that indicates whether the iteration should

be recursive (true) or not (false).

Returns

Nothing.

resWin.setSelectedItem()

Availability

Dreamweaver 4.

Description

Sets the selected item to the one specified by itemIndex.

Arguments
itemIndex

■ The index of the item in the list to select.

Returns

The index of the previously selected item
190 Workspace

000_DW_API_Print.book Page 191 Wednesday, July 20, 2005 11:58 AM
resWin.setTitle()

Availability

Dreamweaver 4.

Description

Sets the title of the window.

Arguments
strTitle

■ The strTitle argument is the new name of the floating panel.

Returns

Nothing.

resWin.startProcessing()

Availability

Dreamweaver 4.

Description

Starts processing the file.

Arguments

None.

Returns

Nothing.

resWin.stopProcessing()

Availability

Dreamweaver 4.

Description

Stops processing the file.

Arguments

None.
Results window functions 191

000_DW_API_Print.book Page 192 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

Working with the built-in Results panel group
These functions produce output in the Results panel group. The Results panel group displays
tabbed reports on searches, source validation, sitewide reports, browser targets, console
reports, FTP logging, and link checking.

Working with specific child panels
The following child panels are built-in Results windows that always exist in the Dreamweaver
interface and can be accessed directly. Because these panels are Results windows, you can use
the following methods that are defined for stand-alone Results windows:

■ dreamweaver.resultsPalette.siteReports
■ dreamweaver.resultsPalette.validator
■ dreamweaver.resultsPalette.btc (Target Browser Check panel)

For more information about using the resWin methods, see “Creating a Stand-alone Results
window” on page 183.

Working with the active child panel
The following general API functions apply to whichever child panel is active. Some child
panels might ignore some of these functions. If the active child panel does not support the
function, calling it has no effect.

dreamweaver.resultsPalette.clear()

Availability

Dreamweaver MX.

Description

Clears the contents of the panel in focus.

Arguments

None.

Returns

Nothing.
192 Workspace

000_DW_API_Print.book Page 193 Wednesday, July 20, 2005 11:58 AM
Enabler

See “dreamweaver.resultsPalette.canClear()” on page 579.

dreamweaver.resultsPalette.Copy()

Availability

Dreamweaver MX.

Description

Sends a copied message to the window that is in focus (often used for the FTP logging
window).

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.resultsPalette.canCopy()” on page 580.

dreamweaver.resultsPalette.cut()

Availability

Dreamweaver MX.

Description

Sends a cut message to the window in focus (often used for the FTP logging window).

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.resultsPalette.canCut()” on page 580.
Results window functions 193

000_DW_API_Print.book Page 194 Wednesday, July 20, 2005 11:58 AM
dreamweaver.resultsPalette.Paste()

Availability

Dreamweaver MX.

Description

Sends a pasted message to the window in focus (often used for the FTP logging window).

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.resultsPalette.canPaste()” on page 580.

dreamweaver.resultsPalette.openInBrowser

Availability

Dreamweaver MX.

Description

Sends a report (Site Reports, Browser Target Check, Validation, and Link Checker) to the
default browser.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.resultsPalette.canOpenInBrowser()” on page 581.
194 Workspace

000_DW_API_Print.book Page 195 Wednesday, July 20, 2005 11:58 AM
dreamweaver.resultsPalette.openInEditor()

Availability

Dreamweaver MX.

Description

Jumps to the selected line for specific reports (Site Reports, Browser Target Check, Validation,
and Link Checker), and opens the document in the editor.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.resultsPalette.canOpenInEditor()” on page 581.

dreamweaver.resultsPalette.save()

Availability

Dreamweaver MX.

Description

Opens the Save dialog box for a window that supports the Save function (Site Reports,
Browser Target Check, Validation, and Link Checker).

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.resultsPalette.canSave()” on page 581.
Results window functions 195

000_DW_API_Print.book Page 196 Wednesday, July 20, 2005 11:58 AM
dreamweaver.resultsPalette.selectAll()

Availability

Dreamweaver MX.

Description

Sends a Select All command to the window in focus.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.resultsPalette.canSelectAll()” on page 582.

Server debugging
Dreamweaver can request files from ColdFusion and display the response in its embedded
browser. When the response returns from the server, Dreamweaver searches the response for a
packet of XML that has a known signature. If Dreamweaver finds XML with that signature, it
processes the XML and displays the contained information in a tree control. This tree displays
information about the following items:

■ All templates, custom tags, and include files that are used to generate the rendered CFM
page

■ Exceptions
■ SQL queries
■ Object queries
■ Variables
■ Trace trail

Additionally, the Server Debug panel can display debug data from other server models. To set
up Dreamweaver to debug other server models, use the
dreamweaver.resultsPalette.debugWindow.addDebugContextData() function.
196 Workspace

000_DW_API_Print.book Page 197 Wednesday, July 20, 2005 11:58 AM
dreamweaver.resultsPalette.debugWindow.addDebug
ContextData()

Availability

Dreamweaver MX.

Description

Interprets a customized XML file that returns from the server that is specified in the Site
Definition dialog box. The contents of the XML file display as tree data in the Server Debug
panel, so you can use the Server Debug panel to evaluate server-generated content from
various server models.

Arguments
treedata

■ The treedata argument is the XML string that the server returns. The XML string
should use the following formatting:

server debug node Root node for the debug XML data

debugnode Corresponds to every node

context Name of item that appears in the context list

icon Icon to use for tree node

name Name to display

value Value to display

timestamp Only applicable to context node

The following strings are optional:

jumptoline Link to a specific line number

template Name of the template file part of the URL

path Path of the file from server point of view

line number Line number within the file

start position Opening character offset within the line

end position Ending character offset within the line
Results window functions 197

000_DW_API_Print.book Page 198 Wednesday, July 20, 2005 11:58 AM
For example:
<serverdebuginfo>

<context>
<template><![CDATA[/ooo/master.cfm]]></template>
<path><![CDATA[C:\server\wwwroot\ooo\master.cfm]]></path>
<timestamp><![CDATA[0:0:0.0]]></timestamp>

</context>
<debugnode>

<name><![CDATA[CGI]]></name>
<icon><![CDATA[ServerDebugOutput/ColdFusion/CGIVariables.gif]]></icon>
<debugnode>

<name><![CDATA[Pubs.name.sourceURL]]></name>
<icon><![CDATA[ServerDebugOutput/ColdFusion/Variable.gif]]></icon>
<value><![CDATA[jdbc:macromedia:sqlserver://

name.macromedia.com:1111;databaseName=Pubs]]></value>
</debugnode>

</debugnode>
<debugnode>

<name><![CDATA[Element Snippet is undefined in class
coldfusion.compiler.TagInfoNotFoundException]]></name>

<icon><![CDATA[ServerDebugOutput/ColdFusion/Exception.gif]]></icon>
<jumptoline linenumber="3" startposition="2" endposition="20">

<template><![CDATA[/ooo/master.cfm]]></template>
<path><![CDATA[C:\Neo\wwwroot\ooo\master.cfm]]></path>

</jumptoline>
</debugnode>

</serverdebuginfo>

Returns

Nothing.

Toggle functions
Toggle functions get and set various options either on or off.

dom.getEditNoFramesContent()

Availability

Dreamweaver 3.

Description

This function gets the current state of the Modify > Frameset > Edit NoFrames Content
option.
198 Workspace

000_DW_API_Print.book Page 199 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

A Boolean value: true indicates the NOFRAMES content is the active view; false otherwise.

dom.getHideAllVisualAids()

Availability

Dreamweaver 4.

Description

This function determines whether visual aids are set as hidden.

Arguments

None.

Returns

A Boolean value: true sets Hide All Visual Aids to hidden; false otherwise.

dom.getPreventLayerOverlaps()

Availability

Dreamweaver 3.

Description

This function gets the current state of the Prevent Layer Overlaps option.

Arguments

None.

Returns

A Boolean value: true turns on the Prevent Layer Overlaps option; false otherwise.
Toggle functions 199

000_DW_API_Print.book Page 200 Wednesday, July 20, 2005 11:58 AM
dom.getShowAutoIndent()

Availability

Dreamweaver 4.

Description

This function determines whether auto-indenting is on in the Code view of the document
window.

Arguments

None.

Returns

A Boolean value: true if auto-indenting is on; false otherwise.

dom.getShowFrameBorders()

Availability

Dreamweaver 3.

Description

This function gets the current state of the View > Frame Borders option.

Arguments

None.

Returns

A Boolean value: true indicates frame borders are visible; false otherwise.

dom.getShowGrid()

Availability

Dreamweaver 3.

Description

This function gets the current state of the View > Grid > Show option.

Arguments

None.
200 Workspace

000_DW_API_Print.book Page 201 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true indicates the grid is visible; false otherwise.

dom.getShowHeadView()

Availability

Dreamweaver 3.

Description

This function gets the current state of the View > Head Content option.

Arguments

None.

Returns

A Boolean value: true indicates the head content is visible; false otherwise.

dom.getShowInvalidHTML()

Availability

Dreamweaver 4.

Description

This function determines whether invalid HTML code is currently highlighted in the Code
view of the document window.

Arguments

None.

Returns

A Boolean value: true if invalid HTML code is highlighted; false otherwise.

dom.getShowImageMaps()

Availability

Dreamweaver 3.

Description

This function gets the current state of the View > Image Maps option.
Toggle functions 201

000_DW_API_Print.book Page 202 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

A Boolean value: true indicates the image maps are visible; false otherwise.

dom.getShowInvisibleElements()

Availability

Dreamweaver 3.

Description

This function gets the current state of the View > Invisible Elements option.

Arguments

None.

Returns

A Boolean value: true indicates the invisible element markers are visible; false otherwise.

dom.getShowLayerBorders()

Availability

Dreamweaver 3.

Description

This function gets the current state of the View > Layer Borders option.

Arguments

None.

Returns

A Boolean value: true indicates the layer borders are visible; false otherwise.

dom.getShowLineNumbers()

Availability

Dreamweaver 4.
202 Workspace

000_DW_API_Print.book Page 203 Wednesday, July 20, 2005 11:58 AM
Description

This function determines whether line numbers are shown in the Code view.

Arguments

None.

Returns

A Boolean value: true indicates the line numbers are shown; false otherwise.

dom.getShowRulers()

Availability

Dreamweaver 3.

Description

This function gets the current state of the View > Rulers > Show option.

Arguments

None.

Returns

A Boolean value: true indicates the rulers are visible; false otherwise.

dom.getShowSyntaxColoring()

Availability

Dreamweaver 4.

Description

This function determines whether syntax coloring is on in the Code view of the
document window.

Arguments

None.

Returns

A Boolean value: true if syntax coloring is on; false otherwise.
Toggle functions 203

000_DW_API_Print.book Page 204 Wednesday, July 20, 2005 11:58 AM
dom.getShowTableBorders()

Availability

Dreamweaver 3.

Description

This function gets the current state of the View > Table Borders option.

Arguments

None.

Returns

A Boolean value: true indicates the table borders are visible; false otherwise.

dom.getShowToolbar()

Availability

Dreamweaver 4.

Description

This function determines whether the toolbar appears.

Arguments

None.

Returns

A Boolean value: true if the toolbar appears; false otherwise.

dom.getShowTracingImage()

Availability

Dreamweaver 3.

Description

This function gets the current state of the View > Tracing Image > Show option.

Arguments

None.
204 Workspace

000_DW_API_Print.book Page 205 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true indicates the option is on; false otherwise.

dom.getShowWordWrap()

Availability

Dreamweaver 4.

Description

This function determines whether word wrap is on in the Code view of the document
window.

Arguments

None.

Returns

A Boolean value: true if word wrap is on; false otherwise.

dom.getSnapToGrid()

Availability

Dreamweaver 3.

Description

This function gets the current state of the View > Grid > Snap To option.

Arguments

None.

Returns

A Boolean value: true indicates that the snap-to-grid option is on; false otherwise.

dom.setEditNoFramesContent()

Availability

Dreamweaver 3.

Description

This function toggles the Modify > Frameset > Edit NoFrames Content option on and off.
Toggle functions 205

000_DW_API_Print.book Page 206 Wednesday, July 20, 2005 11:58 AM
Arguments
bEditNoFrames

■ The bEditNoFrames argument is a Boolean value: true turns on the Edit NoFrames
Content option; false turns it off.

Returns

Nothing.

Enabler

See “dom.canEditNoFramesContent()” on page 556.

dom.setHideAllVisualAids()

Availability

Dreamweaver 4.

Description

This function turns off the display of all borders, image maps, and invisible elements,
regardless of their individual settings in the View menu.

Arguments
bSet

■ The bSet argument is a Boolean value: true hides visual aids; false otherwise.

Returns

Nothing.

dom.setPreventLayerOverlaps()

Availability

Dreamweaver 3.

Description

This function toggles the Prevent Layer Overlaps option on and off.

Arguments
bPreventLayerOverlaps

■ The bPreventLayerOverlaps argument is a Boolean value: true turns on the Prevent
Layer Overlaps option; false turns it off.
206 Workspace

000_DW_API_Print.book Page 207 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

dom.setShowFrameBorders()

Availability

Dreamweaver 3.

Description

This function toggles the View > Frame Borders option on and off.

Arguments
bShowFrameBorders

■ The bShowFrameBorders argument is a Boolean value: true turns the Frame Borders on;
false otherwise.

Returns

Nothing.

dom.setShowGrid()

Availability

Dreamweaver 3.

Description

This function toggles the View > Grid > Show option on and off.

Arguments
bShowGrid

■ The bShowGrid argument is a Boolean value: true turns on the View > Grid > Show
option; false turns it off.

Returns

Nothing.
Toggle functions 207

000_DW_API_Print.book Page 208 Wednesday, July 20, 2005 11:58 AM
dom.setShowHeadView()

Availability

Dreamweaver 3.

Description

This function toggles the View > Head Content option on and off.

Arguments
bShowHead

■ The bShowHead argument is a Boolean value: true turns on the Head Content option;
false turns it off.

Returns

Nothing.

dom.setShowInvalidHTML()

Availability

Dreamweaver 4.

Description

This function turns highlighting of invalid HTML code on or off in the Code view of the
document window.

This function determines whether invalid HTML code is currently highlighted.

Arguments
bShow

■ The bShow argument is a Boolean value: true indicates that highlighting invalid HTML
code is visible; false otherwise.

Returns

Nothing.
208 Workspace

000_DW_API_Print.book Page 209 Wednesday, July 20, 2005 11:58 AM
dom.setShowImageMaps()

Availability

Dreamweaver 3.

Description

This function toggles the View > Image Maps option on and off.

Arguments
bShowImageMaps

■ The bShowImageMaps argument is a Boolean value, true turns on the Image Maps
option; false turns it off.

Returns

Nothing.

dom.setShowInvisibleElements()

Availability

Dreamweaver 3.

Description

This function toggles the View > Invisible Elements option on and off.

Arguments
bViewInvisibleElements

■ The bViewInvisibleElements argument is a Boolean value: true turns on the Invisible
Elements option; false turns it off.

Returns

Nothing.

dom.setShowLayerBorders()

Availability

Dreamweaver 3.

Description

This function toggles the View > Layer Borders option on and off.
Toggle functions 209

000_DW_API_Print.book Page 210 Wednesday, July 20, 2005 11:58 AM
Arguments
bShowLayerBorders

■ The bShowLayerBorders argument is a Boolean value, true turns on the Layer Borders
option; false turns it off.

Returns

Nothing.

dom.setShowLineNumbers()

Availability

Dreamweaver 4.

Description

This function shows or hides the line numbers in the Code view of the document window.

Arguments
bShow

■ The bShow argument is a Boolean value: true indicates the line numbers should be
visible; false hides them.

Returns

Nothing.

dom.setShowRulers()

Availability

Dreamweaver 3.

Description

This function toggles the View >Rulers > Show option on and off.

Arguments
bShowRulers

■ The bShowRulers argument is a Boolean value: true turns on the Show option; false
turns it off.

Returns

Nothing.
210 Workspace

000_DW_API_Print.book Page 211 Wednesday, July 20, 2005 11:58 AM
dom.setShowSyntaxColoring()

Availability

Dreamweaver 4.

Description

This function turns syntax coloring on or off in the Code view of the document window.

Arguments
bShow

■ The bShow argument is a Boolean value: true indicates that syntax coloring should be
visible; false otherwise.

Returns

Nothing.

dom.setShowTableBorders()

Availability

Dreamweaver 3.

Description

This function toggles the View > Table Borders option on and off.

Arguments
bShowTableBorders

■ The bShowTableBorders argument is a Boolean value: true turns on the Table Borders
option; false turns it off.

Returns

Nothing.

dom.setShowToolbar()

Availability

Dreamweaver 4.

Description

This function shows or hides the Toolbar.
Toggle functions 211

000_DW_API_Print.book Page 212 Wednesday, July 20, 2005 11:58 AM
Arguments
bShow

■ The bShow argument is a Boolean value: true indicates the toolbar should be visible;
false otherwise.

Returns

Nothing.

dom.setShowTracingImage()

Availability

Dreamweaver 3.

Description

This function toggles the View > Tracing Image > Show option on and off.

Arguments
bShowTracingImage

■ The bShowTracingImage argument is a Boolean value: true turns on the Show option;
false turns it off.

Returns

Nothing.

dom.setShowWordWrap()

Availability

Dreamweaver 4.

Description

This function toggles the Word Wrap option off or on in the Code view of the
document window.

Arguments
bShow

■ The bShow argument is a Boolean value: true indicates that the lines should wrap;
false otherwise.
212 Workspace

000_DW_API_Print.book Page 213 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

dom.setSnapToGrid()

Availability

Dreamweaver 3.

Description

This function toggles the View > Grid > Snap To option on or off.

Arguments
bSnapToGrid

■ The bSnapToGrid argument is a Boolean value: true turns on the Snap To option; false
turns it off.

Returns

Nothing.

dreamweaver.getHideAllFloaters()

Availability

Dreamweaver 3.

Description

This function gets the current state of the Hide Panels option.

Arguments

None.

Returns

A Boolean value: true indicates whether the Hide Panels option is on; false indicates the
Show Panels option is on.
Toggle functions 213

000_DW_API_Print.book Page 214 Wednesday, July 20, 2005 11:58 AM
dreamweaver.getShowStatusBar()

Availability

Dreamweaver 3.

Description

This function gets the current state of the View > Status Bar option.

Arguments

None.

Returns

A Boolean value: true indicates the status bar is visible; false otherwise.

dreamweaver.htmlInspector.getShowAutoIndent()

Availability

Dreamweaver 4.

Description

This function determines whether the Auto Indent option is on in the Code inspector.

Arguments

None.

Returns

A Boolean value: true if auto-indenting is on; false otherwise.

dreamweaver.htmlInspector.getShowInvalidHTML()

Availability

Dreamweaver 4.

Description

This function determines whether invalid HTML code is currently highlighted in the
Code inspector.

Arguments

None.
214 Workspace

000_DW_API_Print.book Page 215 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true if invalid HTML code is highlighted; false otherwise.

dreamweaver.htmlInspector.getShowLineNumbers()

Availability

Dreamweaver 4.

Description

This function determines whether line numbers appear in the Code inspector.

Arguments

None.

Returns

A Boolean value: true if line numbers appear; false otherwise.

dreamweaver.htmlInspector.getShowSyntaxColoring
()

Availability

Dreamweaver 4.

Description

This function determines whether syntax coloring is on in the Code inspector.

Arguments

None.

Returns

A Boolean value: true if syntax coloring is on; false otherwise.

dreamweaver.htmlInspector.getShowWordWrap()

Availability

Dreamweaver 4.

Description

This function determines whether the Word Wrap is on in the Code inspector.
Toggle functions 215

000_DW_API_Print.book Page 216 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

A Boolean value: true if word wrap is on; false otherwise.

dreamweaver.htmlInspector.setShowAutoIndent()

Availability

Dreamweaver 4.

Description

This function turns the Auto Indent option on or off in the Code inspector.

Arguments
bShow

■ The bShow argument is a Boolean value: true turns the auto-indenting on; false turns it
off.

Returns

Nothing.

dreamweaver.htmlInspector.setShowInvalidHTML()

Availability

Dreamweaver 4.

Description

This function turns highlighting of invalid HTML code on or off in the Code inspector.

Arguments
bShow

■ The bShow argument is a Boolean value: true indicates that the highlighting of invalid
HTML code should be visible; false indicates it should not.

Returns

Nothing.
216 Workspace

000_DW_API_Print.book Page 217 Wednesday, July 20, 2005 11:58 AM
dreamweaver.htmlInspector.setShowLineNumbers()

Availability

Dreamweaver 4.

Description

This function shows or hides the line numbers in the Code view of the Code inspector.

Arguments
bShow

■ The bShow argument is a Boolean value: true sets the line numbers to visible; false
hides them.

Returns

Nothing.

dreamweaver.htmlInspector.setShowSyntaxColoring
()

Availability

Dreamweaver 4.

Description

This function turns syntax coloring on or off in the Code view of the Code inspector.

Arguments
bShow

■ The bShow argument is a Boolean value: true indicates that the syntax coloring should be
visible; false turns it off.

Returns

Nothing.
Toggle functions 217

000_DW_API_Print.book Page 218 Wednesday, July 20, 2005 11:58 AM
dreamweaver.htmlInspector.setShowWordWrap()

Availability

Dreamweaver 4.

Description

This function turns the Word Wrap option off or on in the Code inspector.

Arguments
bShow

■ The bShow argument is a Boolean value: true turns Word Wrap on; false turns it off.

Returns

Nothing.

dreamweaver.setHideAllFloaters()

Availability

Dreamweaver 3.

Description

This function sets either the Hide Panels option or the Show Panels option.

Arguments
bShowFloatingPalettes

■ The bShowFloatingPalettes argument is a Boolean value: true turns on the Hide
Panels option; false turns on the Show Panels option.

Returns

Nothing.

dreamweaver.setShowStatusBar()

Availability

Dreamweaver 3.

Description

This function toggles the View > Status Bar option on or off.
218 Workspace

000_DW_API_Print.book Page 219 Wednesday, July 20, 2005 11:58 AM
Arguments
bShowStatusBar

■ The bShowStatusBar argument is a Boolean value: true turns on the Status Bar option;
false turns it off.

Returns

Nothing.

site.getShowDependents()

Availability

Dreamweaver 3.

Description

This function gets the current state of the Show Dependent Files option.

Arguments

None.

Returns

A Boolean value: true indicates that dependent files are visible in the site map; false
indicates dependent files are not visible.

site.getShowHiddenFiles()

Availability

Dreamweaver 3.

Description

This function gets the current state of the Show Files Marked as Hidden option.

Arguments

None.

Returns

A Boolean value: true indicates that hidden files are visible in the site map; false otherwise.
Toggle functions 219

000_DW_API_Print.book Page 220 Wednesday, July 20, 2005 11:58 AM
site.getShowPageTitles()

Availability

Dreamweaver 3.

Description

This function gets the current state of the Show Page Titles option.

Arguments

None.

Returns

A Boolean value: true indicates that the page titles are visible in the site map; false
otherwise.

site.getShowToolTips()

Availability

Dreamweaver 3.

Description

This function gets the current state of the Tool Tips option.

Arguments

None.

Returns

A Boolean value: true indicates that the tool tips are visible in the Site panel; false
otherwise.

site.setShowDependents()

Availability

Dreamweaver 3.

Description

This function toggles the Show Dependent Files option in the site map on or off.
220 Workspace

000_DW_API_Print.book Page 221 Wednesday, July 20, 2005 11:58 AM
Arguments
bShowDependentFiles

■ The bShowDependentFiles argument is a Boolean value: true turns on the Show
Dependent Files option; false turns it off.

Returns

Nothing.

site.setShowHiddenFiles()

Availability

Dreamweaver 3.

Description

This function toggles the Show Files Marked as Hidden option in the site map on or off.

Arguments
bShowHiddenFiles

■ The bShowHiddenFiles argument is a Boolean value: true turns on the Show Files
Marked as Hidden option; false turns it off.

Returns

Nothing.

site.setShowPageTitles()

Availability

Dreamweaver 3.

Description

This function toggles the Show Page Titles option in the site map on or off.

Arguments
bShowPageTitles

■ The bShowPageTitles argument is a Boolean value: true turns on the Show Page Titles
option; false turns it off.

Returns

Nothing.
Toggle functions 221

000_DW_API_Print.book Page 222 Wednesday, July 20, 2005 11:58 AM
Enabler

See “site.canShowPageTitles()” on page 596.

site.setShowToolTips()

Availability

Dreamweaver 3.

Description

This function toggles the Tool Tips option on or off.

Arguments
bShowToolTips

■ The bShowToolTips argument is a Boolean value: true turns on the Tool Tips option;
false turns it off.

Returns

Nothing.

Toolbar functions
The following JavaScript functions let you get and set the visibility of toolbars and toolbar
labels, obtain the labels of toolbar items in the current window, position toolbars, and obtain
toolbar IDs. For more information on creating or modifying toolbars, see “Toolbars” in
Extending Dreamweaver Help.

dom.forceToolbarUpdate()

Availability

Dreamweaver MX 2004.

Description

Forces the update handlers to run for all the items on the specified toolbar.

Arguments
toolbarID

■ The toolbarID argument is the ID of the toolbar with the items Dreamweaver should
update.
222 Workspace

000_DW_API_Print.book Page 223 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

dom.getShowToolbarIconLabels()

Availability

Dreamweaver MX.

Description

This function determines whether labels for buttons are visible in the current document
window. Dreamweaver always shows labels for non-button controls, if the labels are defined.

Arguments

None.

Returns

A Boolean value: true if labels for buttons are visible in the current document window;
false otherwise.

Example

The following example makes labels for buttons visible:
var dom = dw.getDocumentDom();
if (dom.getShowToolbarIconLabels() == false)
{

dom.setShowToolbarIconLabels(true);
}

dom.getToolbarIdArray()

Availability

Dreamweaver MX.

Description

This function returns an array of the IDs of all the toolbars in the application. You can use
dom.getToolbarIdArray() to turn off all toolbars so you can reposition them and make
only a specific set visible.

Arguments

None.
Toolbar functions 223

000_DW_API_Print.book Page 224 Wednesday, July 20, 2005 11:58 AM
Returns

An array of all toolbar IDs.

Example

The following example stores the array of toolbar IDs in the tb_ids variable:
var tb_ids = new Array();
tb_ids = dom.getToolbarIdArray();

dom.getToolbarItemValue()

Availability

Dreamweaver MX 2004.

Description

Gets the value of the specified toolbar item.

Arguments
toolbarID, itemID

■ The toolbarID argument is a string that specifies the ID of the toolbar that contains the
item for which you want a value.

■ The itemID argument is a string that specifies the ID of the item for which you want the
value.

Returns

A string that represents the value of the toolbar item.

Example

The following example of receiveArguments() is in a toolbar command that controls the
behavior of a Size text field; it gets the value of the Size field as an argument and then reads
the value of the Units field in order to produce a valid value for the CSS property font-size
function:
receiveArguments(newSize){
var dom = dw.getDocumentDOM();
if (newSize != ""){

dom.applyFontMarkupAsStyle('font-size', newSize +
dom.getToolbarItemValue("DW_Toolbar_Text","DW_Text_Units"));
}

else{
dom.removeFontMarkupAsStyle('font-size');
}

}
224 Workspace

000_DW_API_Print.book Page 225 Wednesday, July 20, 2005 11:58 AM
dom.getToolbarLabel()

Availability

Dreamweaver MX.

Description

This function obtains the label of the specified toolbar. You can use dom.getToolbarLabel()
for menus that show or hide toolbars.

Arguments
toolbar_id

■ The toolbar_id argument is the ID of the toolbar, which is the value of the ID attribute
on the toolbar tag in the toolbars.xml file.

Returns

The label name string that is assigned as an attribute on the toolbar tag.

Example

The following example stores the label for myEditbar in the variable label:
var label = dom.getToolbarLabel("myEditbar");

dom.getToolbarVisibility()

Availability

Dreamweaver MX.

Description

This function returns a Boolean value that indicates whether the toolbar that is specified by
toolbar_id is visible.

Arguments
toolbar_id

■ The toolbar_id argument is the ID string that is assigned to the toolbar.

Returns

A Boolean value: true if the toolbar is visible, false if the toolbar is not visible or does not
exist.
Toolbar functions 225

000_DW_API_Print.book Page 226 Wednesday, July 20, 2005 11:58 AM
Example

The following example checks whether the toolbar myEditbar is visible in the document
window, and then stores that value in the retval variable:
var retval = dom.getToolbarVisibility("myEditbar");
return retval;

dom.setToolbarItemAttribute()

Availability

Dreamweaver MX 2004.

Description

Changes an attribute value for the three image attributes or the tooltip attribute on a toolbar
item.

Arguments
toolbarID, toolbarItemId, attrName, attrValue

■ The toolbarID argument is a string that specifies the ID of the toolbar.
■ The toolbarItemId argument is a string that specifies the ID of the toolbar item.
■ The attrName argument is a string that specifies the name of the attribute to set. Valid

values are 'image', 'overImage', 'disabledImage', or 'tooltip'.
■ The attrValue argument is a string that specifies the value to set.

Returns

Nothing.

Example

The following example calls dom.setToolbarItemAttribute() three times to set the image,
imageOver, and tooltip attributes for the toolbar item MyButton on the toolbar having the
ID DW_Toolbar_Main:
var dom = dw.getDocumentDOM();
dom.setToolbarItemAttribute('DW_Toolbar_Main', 'MyButton', 'image',

'Toolbars/imgs/newimage.gif');
dom.setToolbarItemAttribute('DW_Toolbar_Main', 'MyButton', 'imageOver',

'Toolbars/imgs/newimageOver.gif');
dom.setToolbarItemAttribute('DW_Toolbar_Main', 'MyButton', 'tooltip', 'One

fine button');
226 Workspace

000_DW_API_Print.book Page 227 Wednesday, July 20, 2005 11:58 AM
dom.setShowToolbarIconLabels()

Availability

Dreamweaver MX.

Description

This function tells Dreamweaver to show the labels of buttons that have labels. Dreamweaver
always shows labels for non-button controls, if the labels are defined.

Arguments
bShow

■ The bShow argument is a Boolean value: true shows the labels for buttons; false
otherwise.

Returns

Nothing.

Example

The following example tells Dreamweaver to show the labels for the buttons on the toolbars:
dom.setShowToolbarIconLabels(true);

dom.setToolbarPosition()

Availability

Dreamweaver MX.

Description

This function moves the specified toolbar to the specified position.

Arguments
toobar_id, position, relative_to

■ The toolbar_id argument is the ID of the toolbar, which is the value of the ID attribute
on the toolbar tag in the toolbars.xml file.

N
O

T
E

There is no way to determine the current position of a toolbar.
Toolbar functions 227

000_DW_API_Print.book Page 228 Wednesday, July 20, 2005 11:58 AM
■ The position argument specifies where Dreamweaver positions the toolbar, relative to
other toolbars. The possible values for position are described in the following list:
■ top is the default position. The toolbar appears at the top of the document window.
■ below makes the toolbar appear at the beginning of the row immediately below the

toolbar that relative_to specifies. Dreamweaver reports an error if the toolbar does
not find the toolbar that relative_to specifies.

■ floating makes the toolbar float above the document. Dreamweaver automatically
places the toolbar so it is offset from other floating toolbars. On the Macintosh,
floating is treated the same way as top.

■ relative_to="toolbar_id" is required if position specifies below. Otherwise, it is
ignored. Specifies the ID of the toolbar below which this toolbar should be positioned.

Returns

Nothing.

Example

The following example sets the position of myEditbar below the myPicturebar toolbar:
dom.setToolbarPosition("myEditbar", "below", "myPicturebar");

dom.setToolbarVisibility()

Availability

Dreamweaver MX.

Description

This function shows or hides the specified toolbar.

Arguments
toolbar_id, bShow

■ The toolbar_id argument is the ID of the toolbar, the value of the ID attribute on the
toolbar tag in the toolbars.xml file.

■ The bShow argument is a Boolean value that indicates whether to show or hide the
toolbar. If bshow is true, dom.setToolbarVisibility() makes the toolbar visible. If
bShow is false, dom.setToolbarVisibility() makes the toolbar invisible.

Returns

Nothing.
228 Workspace

000_DW_API_Print.book Page 229 Wednesday, July 20, 2005 11:58 AM
Example

The following example checks to see if the toolbar myEditbar is visible in the document
window; if it is not visible, it sets myEditbar to be visible:
var dom = dw.getDocumentDOM();
if(dom != null && dom.getToolbarVisibility("myEditbar") == false)
{

dom.setToolbarVisibility("myEditbar", true);
{

Window functions
Window functions handle operations that are related to the document window and the
floating panels. The window functions show and hide floating panels, determine which part
of the Document window has focus, and set the active document. For operations that are
related specifically to the Site panel, see “Site functions” on page 256.

dom.getFocus()

Availability

Dreamweaver 3.

Description

This function determines the part of the document that is currently in focus.

Arguments

None.

Returns

One of the following strings:

■ The "head" string if the HEAD area is active
■ The "body" string if the BODY or NOFRAMES area is active
■ The "frameset" string if a frameset or any of its frames is selected
■ The "none" string if the focus is not in the document (for example, if it’s in the Property

inspector or another floating panel)

N
O

T
E

Some of the functions in this section operate only on Windows. The description of a
function indicates whether this is the case.
Window functions 229

000_DW_API_Print.book Page 230 Wednesday, July 20, 2005 11:58 AM
dom.getView()

Availability

Dreamweaver 4.

Description

This function determines which view is visible.

Arguments

None.

Returns

"design", "code", or "split", depending on the visible view.

dom.getWindowTitle()

Availability

Dreamweaver 3.

Description

This function gets the title of the window that contains the document.

Arguments

None.

Returns

A string that contains the text that appears between the TITLE tags in the document, or
nothing, if the document is not in an open window.

dom.setView()

Availability

Dreamweaver 4.

Description

This function shows or hides the Design or Code view to produce a design-only, code-only, or
split view.
230 Workspace

000_DW_API_Print.book Page 231 Wednesday, July 20, 2005 11:58 AM
Arguments
viewString

■ The viewString argument is the view to produce; it must be one of the following values:
"design", "code", or "split".

Returns

Nothing.

dreamweaver.bringAttentionToFloater()

Availability

Dreamweaver MX.

Description

Brings the specified panel or inspector to the front, and draws attention to the panel or
inspector by making it flash, which is slightly different functionality than
dw.toggleFloater().

Arguments
floaterName

■ The floaterName argument is the name of the window, panel, or inspector.

Returns

Nothing.

Example

The following example opens and flashes the Assets panel:
dw.bringAttentionToFloater("library");

dreamweaver.cascade()

Availability

Dreamweaver MX (Windows only), Dreamweaver 8 (added Macintosh support).

Description

Cascades the document windows, starting in the upper left corner and positioning each
window below and slightly offset from the previous one.
Window functions 231

000_DW_API_Print.book Page 232 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

Nothing.

Example

The following example cascades the open documents:
dw.cascade()

dreamweaver.getActiveWindow()

Availability

Dreamweaver 3.

Description

This function gets the document in the active window.

Arguments

None.

Returns

The document object that corresponds to the document in the active window; or, if the
document is in a frame, the document object that corresponds to the frameset.

dreamweaver.getDocumentList()

Availability

Dreamweaver 3.

Description

This function gets a list of all the open documents.

Arguments

None.

Returns

An array of document objects, each corresponding to an open Document window. If a
document window contains a frameset, the document object refers to the frameset, not the
contents of the frames.
232 Workspace

000_DW_API_Print.book Page 233 Wednesday, July 20, 2005 11:58 AM
dreamweaver.getFloaterVisibility()

Availability

Dreamweaver 3.

Description

This function checks whether the specified panel or inspector is visible.

Arguments
floaterName

■ The floaterName argument is the name of a floating panel. If floaterName does not
match one of the built-in panel names, Dreamweaver searches in the Configuration/
Floaters folder for a file called floaterName.htm where floaterName is the name of a
floating panel.
The floaterName values for built-in Dreamweaver panels are the strings to the right of
the panel names in the following list:

Assets = "assets"

Behaviors = "behaviors"

Bindings = "data bindings"

Code inspector = "html"

Components = "server components"

CSS Styles = "css styles"

Frames = "frames"

History = "history"

Insert bar = "objects"

Layers = "layers"

Library = "library"

Link Checker Results = "linkchecker"

Properties = "properties"

Reference = "reference"

Report Results = "reports"

Search Results = "search"

Selection inspector = "selection inspector"

Server Behaviors = "server behaviors"
Window functions 233

000_DW_API_Print.book Page 234 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true if the floating panel is visible and in the front; false otherwise or if
Dreamweaver cannot find a floating panel named floaterName.

dreamweaver.getFocus()

Availability

Dreamweaver 4.

Description

This function determines what part of the application is currently in focus.

Arguments
bAllowFloaters

■ The bAllowFloaters argument is a Boolean value: true if you want the function to
return the name of the floating panel, if a floating panel has focus; false otherwise.

Returns

One of the following strings:

■ The "document" string if the document window is in focus
■ The "site" string if the Site panel is in focus
■ The "textView" string if the Text view is in focus
■ The "html" string if the Code inspector is in focus
■ The floaterName string, if bAllowFloaters is true and a floating panel has focus,

where floaterName is "objects", "properties", "launcher", "library", "css
styles", "html styles", "behaviors", "timelines", "layers", "frames",
"templates", or "history"

■ (Macintosh) The "none" string if neither the Site panel nor any document windows are
open

Site = "site"

Site Files = "site files"

Site Map - “site map”

Snippets = "snippets"

Target Browser Check Results = "btc"

Validation Results = "validation"
234 Workspace

000_DW_API_Print.book Page 235 Wednesday, July 20, 2005 11:58 AM
dreamweaver.getPrimaryView()

Availability

Dreamweaver 4.

Description

This function determines which view is visible as the primary view in the front.

Arguments

None.

Returns

The "design" or "code" strings, depending on which view is visible or on the top in a split
view.

dreamweaver.getSnapDistance()

Availability

Dreamweaver 4.

Description

This function returns the snapping distance in pixels.

Arguments

None.

Returns

An integer that represents the snapping distance in pixels. The default is 10 pixels; 0 indicates
that the Snap feature is off.

dreamweaver.minimizeRestoreAll()

Availability

Dreamweaver 4.

Description

This function minimizes (reduces to an icon) or restores all windows in Dreamweaver.
Window functions 235

000_DW_API_Print.book Page 236 Wednesday, July 20, 2005 11:58 AM
Arguments
bMinimize

■ The bMinimize argument is a Boolean value: true if windows should be minimized;
false if the minimized windows should be restored.

Returns

Nothing.

dreamweaver.setActiveWindow()

Availability

Dreamweaver 3.

Description

This function activates the window that contains the specified document.

Arguments
documentObject, {bActivateFrame}

■ The documentObject argument is the object at the root of a document’s DOM tree (the
value that the dreamweaver.getDocumentDOM() function returns).

■ The bActivateFrame argument is optional, and is applicable only if documentObject is
inside a frameset. The bActivateFrame argument is a Boolean value: true activates the
frame that contains the document as well as the window that contains the frameset; false
otherwise.

Returns

Nothing.

dreamweaver.setFloaterVisibility()

Availability

Dreamweaver 3.

Description

This function specifies whether to make a particular floating panel or inspector visible.
236 Workspace

000_DW_API_Print.book Page 237 Wednesday, July 20, 2005 11:58 AM
Arguments
floaterName, bIsVisible

■ The floaterName argument is the name of a floating panel. If floaterName does not
match one of the built-in panel names, Dreamweaver searches in the Configuration/
Floaters folder for a file called floaterName.htm where floaterName is the name of a
floating panel. If Dreamweaver cannot find a floating panel named floaterName, this
function has no effect.
The floaterName values for built-in Dreamweaver panels are the strings to the right of
the panel names in the following list:

Assets = "assets"

Behaviors = "behaviors"

Bindings = "data sources"

Code inspector = "html"

Components = "server components"

CSS Styles = "css styles"

Frames = "frames"

History = "history"

HTML Styles = "html styles"

Insert bar = "objects"

Layers = "layers"

Library = "library"

Link Checker Results = "linkchecker"

Properties = "properties"

Reference = "reference"

Report Results = "reports"

Search Results = "search"

Server Behaviors = "server behaviors"

Site = "site"

Site Files = "site files"

Site Map = "site map"

Snippets = "snippets"
Window functions 237

000_DW_API_Print.book Page 238 Wednesday, July 20, 2005 11:58 AM
The bIsVisible argument is a Boolean value that indicates whether to make the floating
panel visible.

Returns

Nothing.

dreamweaver.setPrimaryView()

Availability

Dreamweaver 4.

Description

This function displays the specified view at the top of the document window.

Arguments
viewString

■ The viewString argument is the view to display at the top of the document window; it
can be one of the following values: "design" or "code".

Returns

Nothing.

dreamweaver.setSnapDistance()

Availability

Dreamweaver 4.

Description

This function sets the snapping distance in pixels.

Tag inspector = "tag inspector"

Target Browser Check Results = "btc"

Templates = "templates"

Validation Results = "validation"
238 Workspace

000_DW_API_Print.book Page 239 Wednesday, July 20, 2005 11:58 AM
Arguments
snapDistance

■ The snapDistance argument is an integer that represents the snapping distance in pixels.
The default is 10 pixels. Specify 0 to turn off the Snap feature.

Returns

Nothing.

dreamweaver.showProperties()

Availability

Dreamweaver 3.

Description

This function makes the Property inspector visible and gives it focus.

Arguments

None.

Returns

Nothing.

dreamweaver.tileHorizontally()

Availability

Dreamweaver MX (Windows only), Dreamweaver 8 (added Macintosh support).

Description

Tiles the document windows horizontally, positioning each window next to another one
without overlapping the documents. This process is similar to splitting the workspace
vertically.

Arguments

None.

Returns

Nothing.
Window functions 239

000_DW_API_Print.book Page 240 Wednesday, July 20, 2005 11:58 AM
Example

The following example tiles the open documents horizontally:
dw.tileHorizontally()

dreamweaver.tileVertically()

Availability

Dreamweaver MX (Windows only), Dreamweaver 8 (added Macintosh support).

Description

Tiles the document window vertically, positioning one document window behind the other
without overlapping documents. This is similar to splitting the workspace horizontally.

Arguments

None.

Returns

Nothing.

Example

The following example tiles the open documents vertically:
dw.tileVertically()

dreamweaver.toggleFloater()

Availability

Dreamweaver 3.

Description

This function shows, hides, or brings to the front the specified panel or inspector.

N
O

T
E

This function is meaningful only in the menus.xml file. To show, bring forward, or hide a
floating panel, use dw.setFloaterVisibility().
240 Workspace

000_DW_API_Print.book Page 241 Wednesday, July 20, 2005 11:58 AM
Arguments
floaterName

■ The floaterName argument is the name of the window. If the floating panel name is
reference, the visible/invisible state of the Reference panel is updated by the user’s
selection in Code view. All other panels track the selection all the time, but the Reference
panel tracks the selection in Code view only when the user invokes tracking.

Returns

Nothing.

dreamweaver.updateReference()

Availability

Dreamweaver 4.

Description

This function updates the Reference floating panel. If the Reference floating panel is not
visible, dw.updateReference() makes it visible and then updates it.

Arguments

None.

Returns

Nothing.

Code collapse functions
Code collapse functions let you visually collapse and expand code. You can collapse or expand
arbitrary selections of code, or fragments between opening and closing tags. Although the
code collapse functions exist in both the dom and htmlInspector, the collapsed ranges are the
same in both Code view and the Cold Inspector.

dom.collapseFullTag()

Availability

Dreamweaver 8.
Code collapse functions 241

000_DW_API_Print.book Page 242 Wednesday, July 20, 2005 11:58 AM
Description

This function determines whether the selection in Code view is entirely within a single pair of
start and end tags or contains a single pair of start and end tags. If so, it collapses the code
fragment that starts just before the start tag and ends after the end tag; if not, the function
does nothing.

Arguments
allowCodeFragmentAdjustment

■ The allowCodeFragmentAdjustment argument is a required, Boolean value. If true, this
argument currently has no effect, or has the same effect as a value of false. If false,
Dreamweaver collapses the code that begins immediately before the opening tag and ends
immediately after the ending tag without any modification

Returns

Nothing.

Example

The following example collapses the code fragment in the current selection in Code view that
starts just before the start tag and ends just after the end tag:
var currentDOM = dw.getDocumentDOM();
currentDOM.collapseFullTag(false);

dom.collapseFullTagInverse()

Availability

Dreamweaver 8.

Description

This function determines whether the selection in Code view is entirely within a single pair of
start and end tags or contains a single pair of start and end tags. If so, it collapses the code that
precedes the start tag and the code that follows the end tag; if not, the function does nothing.

Arguments
allowAdjustmentOfCodeFragments

■ The allowAdjustmentOfCodeFragments argument is a required, Boolean value. If true,
Dreamweaver adjusts the boundaries of the code before the start tag and of the code after
the end tag to perform a smart collapse, which preserves current indenting and spacing. If
false, Dreamweaver collapses the code fragments that are before the open tag and after
the end tag exactly as indicated by the selection.
242 Workspace

000_DW_API_Print.book Page 243 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

Example

The following example adjusts the boundaries of the code before the starting tag after the
ending tag to perform a smart collapse that preserves indenting and spacing:
var currentDOM = dw.getDocumentDOM();
currentDOM.collapseFullTagInverse(true);

dom.collapseSelectedCodeFragment()

Availability

Dreamweaver 8.

Description

This function collapses the selected code in Code view. If the selection is already collapsed,
this function does nothing.

Arguments
allowCodeFragmentAdjustment

■ The allowCodeFragmentAdjustment is a required, Boolean value. If true, Dreamweaver
modifies the boundaries of the current selection to perform a smart collapse, which
preserves current indenting and spacing. If false, Dreamweaver collapses the currently
selected code fragment exactly as indicated by the selection.

Returns

Nothing.

Example

The following example collapses the selected code fragment, without modification, in Code
view:
var currentDOM = dw.getDocumentDOM();
currentDOM.collapseSelectedCodeFragment(false);

dom.collapseSelectedCodeFragmentInverse()

Availability

Dreamweaver 8.
Code collapse functions 243

000_DW_API_Print.book Page 244 Wednesday, July 20, 2005 11:58 AM
Description

This function collapses all code before and after the selected code in Code view.

Arguments
allowAdjustmentOfCodeFragments

■ The allowAdjustmentOfCodeFragments argument is a required, Boolean value. If true,
Dreamweaver adjusts the boundaries of the code before and after the current selection to
perform a smart collapse, which preserves the current indenting and spacing. If false,
Dreamweaver collapses the code fragments exactly as indicated by the selection.

Returns

Nothing.

Example

The following example adjusts and then collapses all code before and after the selected code in
Code view:
var currentDOM = dw.getDocumentDOM();
currentDOM.collapseSelectedCodeFragmentInverse(true);

dom.expandAllCodeFragments()

Availability

Dreamweaver 8.

Description

This function expands all collapsed code fragments in Code view, including nested collapsed
code fragments.

Arguments

None.

Returns

Nothing.

Example

The following example expands all collapsed code in Code view:
var currentDOM = dw.getDocumentDOM();
currentDOM.expandAllCodeFragments();
244 Workspace

000_DW_API_Print.book Page 245 Wednesday, July 20, 2005 11:58 AM
dom.expandSelectedCodeFragments()

Availability

Dreamweaver 8.

Description

This function expands all collapsed code fragments in Code view that are within the current
selection. If the selection is already expanded, this function does nothing.

Arguments

None.

Returns

Nothing.

Example

The following example expands all collapsed code in the current selection in Code view:
var currentDOM = dw.getDocumentDOM();
currentDOM.expandSelectedCodeFragments();

dreamweaver.htmlInspector.collapseFullTag()

Availability

Dreamweaver 8.

Description

This function determines whether the selection in the Code inspector is entirely within a
single pair of start and end tags or contains a single pair of start and end tags. If so, it collapses
the code fragment that starts just before the start tag and ends after the end tag; if not, the
function does nothing.

Arguments
allowACodeFragmentAdjustment

■ The allowCodeFragmentAdjustment argument is a required, Boolean value. If true, this
argument currently has no effect, or has the same effect as a value of false. If false,
Dreamweaver collapses the code that begins immediately before the opening tag and ends
immediately after the ending tag, without any modification.

Returns

Nothing.
Code collapse functions 245

000_DW_API_Print.book Page 246 Wednesday, July 20, 2005 11:58 AM
Example

The following example collapses the code fragment in the current selection in the Code
inspector that starts just before the start tag and ends just after the end tag:
dreamweaver.htmlInspector.collapseFullTag(false);

dreamweaver.htmlInspector.collapseFullTagInverse()

Availability

Dreamweaver 8.

Description

This function determines whether the selection in the Code inspector is entirely within a
single pair of start and end tags or contains a single pair of start and end tags. If so, it collapses
the code before the start tag and the code after the end tag; if not, the function does nothing.

Arguments
allowAdjustmentOfCodeFragments

■ The allowAdjustmentOfCodeFragments argument is a required, Boolean value. If true,
Dreamweaver adjusts the boundaries of the code before the start tag and of the code after
the end tag to perform a smart collapse, which preserves the existing indenting and
spacing. If false, Dreamweaver collapses the code before the open tag and the code after
the end tag, without any modifications.

Returns

Nothing.

Example

The following example performs a smart collapse on the code sections occurring before the
starting tag and after the ending tag of the current selection:
dreamweaver.htmlInspector.collapseFullTagInverse(true);

dreamweaver.htmlInspector.collapseSelectedCode
Fragment()

Availability

Dreamweaver 8.
246 Workspace

000_DW_API_Print.book Page 247 Wednesday, July 20, 2005 11:58 AM
Description

This function collapses the selected code in the Code inspector. If the selection is already
collapsed, this function does nothing.

Arguments
allowCodeFragmentAdjustment

■ The allowCodeFragmentAdjustment is a required, Boolean value. If true, Dreamweaver
modifies the current selection to perform a smart collapse, which preserves the existing
indenting and spacing. If false, Dreamweaver collapses the currently selected code
fragment exactly as indicated by the selection.

Returns

Nothing.

Example

The following example adjusts and collapses the selected code in the Code inspector:
dreamweaver.htmlInspector.collapseSelectedCodeFragment(true);

dreamweaver.htmlInspector.collapseSelectedCode
FragmentInverse()

Availability

Dreamweaver 8.

Description

This function collapses all code before and after the selected code in the Code inspector. If the
selection is already collapsed, this function does nothing.

Arguments
allowAdjustmentOfCodeFragments

■ The allowAdjustmentOfCodeFragments argument is a required, Boolean value. If true,
Dreamweaver adjusts the boundaries of the code sections before and after the current
selection to perform a smart collapse, which preserves the current indenting and spacing. If
false, Dreamweaver collapses the code sections exactly as indicated by the selection.

Returns

Nothing.
Code collapse functions 247

000_DW_API_Print.book Page 248 Wednesday, July 20, 2005 11:58 AM
Example

The following example collapses all code before and after the selected code in the Code
inspector, exactly as indicated by the selection:
dreamweaver.htmlInspector.collapseSelectedCodeFragmentInverse(false);

dreamweaver.htmlInspector.expandAllCodeFragments()

Availability

Dreamweaver 8.

Description

This function expands all collapsed code fragments in the Code inspector, including nested
collapsed code fragments.

Arguments

None.

Returns

Nothing.

Example

The following example expands all collapsed code in the Code inspector:
dreamweaver.htmlInspector.expandAllCodeFragments();

dreamweaver.htmlInspector.expandSelectedCode
Fragments()

Availability

Dreamweaver 8.

Description

This function expands all collapsed code fragments within the current selection in the Code
inspector. If the selection is already expanded, this function does nothing.

Arguments

None.

Returns

Nothing.
248 Workspace

000_DW_API_Print.book Page 249 Wednesday, July 20, 2005 11:58 AM
Example

The following example expands all collapsed code in the current selection in the Code
inspector:
dreamweaver.htmlInspector.expandSelectedCodeFragments();

Code view toolbar functions
Code view toolbar functions let you insert text, remove comments, show or hide special
characters for white spaces in Code view, and get the path of the current document.

dom.getOpenPathName()

Availability

Dreamweaver 8.

Description

This function gets the absolute file path of the open document.

Arguments

None.

Returns

A string that is the absolute file path of the open document.

Example

The following example assigns the string that contains the path of the currently open
document to the variable fileName:
var fileName = dom.getOpenPathName();

dom.getShowHiddenCharacters()

Availability

Dreamweaver 8.

N
O

T
E

There are two different Coding toolbars: one for Code view and one for the Code
inspector. Both are customized in the file Configuration/Toolbars/toolbars.xml.
Code view toolbar functions 249

000_DW_API_Print.book Page 250 Wednesday, July 20, 2005 11:58 AM
Description

This function determines whether the special characters for white spaces are shown in the
Code view of the Document window.

Arguments

None.

Returns

A Boolean: true if the hidden characters are displayed; false otherwise.

Example

The following example turns off the display of the special characters for white space, if the
display of special characters is turned on initially:
var currentDOM = dw.getDocumentDOM();
if (currentDOM.getShowHiddenCharacters()){

currentDOM.setShowHiddenCharacters(false);
}

dom.setShowHiddenCharacters()

Availability

Dreamweaver 8.

Description

This function shows or hides the special characters for white spaces in the Code view of the
Code inspector.

Arguments
show

■ The show argument, which is required, is a Boolean value that indicates whether to
display the hidden characters.

Returns

Nothing.

Example
See “dom.getShowHiddenCharacters()” on page 249.
250 Workspace

000_DW_API_Print.book Page 251 Wednesday, July 20, 2005 11:58 AM
dom.source.applyComment()

Availability

Dreamweaver 8.

Description

This function inserts the text specified in the beforeText argument before the current
selection and the text specified in the afterText argument after the current selection. The
function then extends the current selection to include the added text. However, if there is no
current selection, the function does not select anything. If the text specified in the afterText
argument is null, the function inserts the text specified in the beforeText argument at the
beginning of every line in the current selection.

Arguments
beforeText

■ The beforeText argument is required. It specifies the text to insert at the beginning of
the selection, or, if the value of the afterText argument is null, it specifies the text to
insert at the beginning of every line in the selection.

afterText

■ The afterText argument, which is optional, specifies the text to insert at the end of the
selection.

Returns

Nothing.

Example

The following example makes the current selection an HTML comment:
dw.getDocumentDOM().source.applyComment('<!--', '-->')

dom.source.removeComment()

Availability

Dreamweaver 8.
Code view toolbar functions 251

000_DW_API_Print.book Page 252 Wednesday, July 20, 2005 11:58 AM
Description

This function removes comments. If you specify no arguments, it removes all types of
comments from the current selection, except server-side includes and Dreamweaver-specific
comments. If there are nested comments, it removes only the outer comment. If there is no
current selection, it removes only the first line comment of the line on which the cursor is
located. If you specify arguments, the function removes only comments that match the values
specified in the beforeText and afterText arguments, even if the matching comments are
nested inside other types of comments.

Arguments
beforeText

■ The beforeText argument is optional. It specifies the text to identify the beginning of the
comment to remove from the selection, or, if the value of the afterText argument is null,
it specifies the type of line comment to remove from the current selection.

afterText

■ The afterText argument, which is optional, specifies the text to identify the end of the
comment to remove from the selection.

Returns

Nothing.

Example

The following example removes an HTML comment:
dw.getDocumentDOM().source.removeComment('<!--', '-->')

dreamweaver.htmlInspector.getShowHiddenCharacters()

Availability

Dreamweaver 8.

Description

This function determines whether the special characters for white spaces are displayed in the
Code view of the Code inspector.

Arguments

None.

Returns

A Boolean: true if the hidden characters are displayed; false otherwise.
252 Workspace

000_DW_API_Print.book Page 253 Wednesday, July 20, 2005 11:58 AM
Example

The following example turns off the display of the special characters for white space in the
Code inspector, if the display of special characters is turned on initially:
if (dreamweaver.htmlinspector.getShowHiddenCharacters()){

dreamweaver.htmlinspector.setShowHiddenCharacters(false);
}

dreamweaver.htmlInspector.setShowHiddenCharacters()

Availability

Dreamweaver 8.

Description

This function shows or hides the special characters for white spaces in the Code view of the
Code inspector.

Arguments
show

■ The show argument, which is required, is a Boolean value that indicates whether to
display hidden characters for white spaces.

Returns

A Boolean: true if the hidden characters are displayed; false otherwise.

Example

See “dreamweaver.htmlInspector.getShowHiddenCharacters()” on page 252.
Code view toolbar functions 253

000_DW_API_Print.book Page 254 Wednesday, July 20, 2005 11:58 AM
254 Workspace

12

000_DW_API_Print.book Page 255 Wednesday, July 20, 2005 11:58 AM
CHAPTER 12

Site
Site functions perform operations related to managing a website. These operations include
customizing a report, defining a new site, checking in and checking out files, running
validation on a site and so on.

Report functions
Report functions provide access to the Macromedia Dreamweaver 8 reporting features so you
can initiate, monitor, and customize the reporting process. For more information, see
“Reports” in Extending Dreamweaver Help.

dreamweaver.isReporting()

Availability

Dreamweaver 4.

Description

Checks to see if a reporting process is currently running.

Arguments

None.

Returns

A Boolean value: true if a process is running; false otherwise.
255

000_DW_API_Print.book Page 256 Wednesday, July 20, 2005 11:58 AM
dreamweaver.showReportsDialog()

Availability

Dreamweaver 4.

Description

Opens the Reports dialog box.

Arguments

None.

Returns

Nothing.

Site functions
Site functions handle operations that are related to files in the site files or site map. These
functions let you perform the following tasks:

■ Create links between files
■ Get, put, check in, and check out files
■ Select and deselect files
■ Create and remove files
■ Get information about the sites that the user has defined
■ Import and export site information

dom.getSiteURLPrefixFromDoc()

Availability

Dreamweaver 8.

Description

This function gets the site URL prefix that is extracted from the HTTP address defined in the
Local Info section of the Site Definition dialog box.

Arguments

None.
256 Site

000_DW_API_Print.book Page 257 Wednesday, July 20, 2005 11:58 AM
Returns

A string, which specifies the site URL prefix.

Example

The following example gets the site URL prefix for the current document:
var currentDOM = dw.getDocumentDOM();
var sitePrefix = dom.getSiteURLPrefixFromDoc();

dom.localPathToSiteRelative()

Availability

Dreamweaver 8.

Description

This function converts a local file path to a site-relative URI reference.

Arguments
localFilePath

■ The localFilePath attribute, which is required, is a string that contains the path to a
local file on your local computer.

Returns

A string, which specifies the site-relative URI.

Example

The following example
var siteRelativeURI =

site.localPathToSiteRelative("C:\Inetpub\wwwroot\siteA\myFile.cfm")

returns "/myWebApp/myFile.cfm", based on your site mappings and the HTTP address
specified in the Local Info section of the Site Definition dialog box.

dom.siteRelativeToLocalPath()

Availability

Dreamweaver 8.

Description

This function converts a site-relative URI reference to a local file path.
Site functions 257

000_DW_API_Print.book Page 258 Wednesday, July 20, 2005 11:58 AM
Arguments
siteRelativeURI

■ The siteRelativeURI attribute, which is required, is a string that contains the site-
relative URI.

Returns

A string, which specifies the path to a local file on your local computer.

Example

The following
var filePath = siteRelativeToLocalPath("/myWebApp/myFile.xml");

returns "C:\Inetpub\wwwroot\siteA\myFile.xml", based on your site mappings and the
HTTP address specified in the Local Info section of the Site Definition dialog box.

dreamweaver.compareFiles()

Availability

Dreamweaver 8.

Description

This function launches the file comparison tool that the user installed in the Diff section of
the Preferences dialog box.

Arguments
file1, file2

■ The file1 attribute, which is required, is a string that contains the full path to the first
file to compare.

■ The file2 attribute, which is required, is a string that contains the full path to the second
file to compare.

Returns

Nothing.

Example

The following example compares two files, red.htm and blue.htm:
dw.compareFiles(hc:\data\red.htm", "e:\data\blue.htm");
258 Site

000_DW_API_Print.book Page 259 Wednesday, July 20, 2005 11:58 AM
dreamweaver.loadSitesFromPrefs()

Availability

Dreamweaver 4.

Description

Loads the site information for all the sites from the system registry (Windows) or the
Dreamweaver Preferences file (Macintosh) into Dreamweaver. If a site is connected to a
remote server when this function is called, the site is automatically disconnected.

Arguments

None.

Returns

Nothing.

dreamweaver.saveSitesToPrefs()

Availability

Dreamweaver 4.

Description

Saves all information for each site that the user has defined to the system registry (Windows)
or the Dreamweaver Preferences file (Macintosh).

Arguments

None.

Returns

Nothing.

dreamweaver.siteSyncDialog.compare()

Availability

Dreamweaver 8.

Description

This function runs the file compare application specified in the File Compare Category of the
Preferences dialog box to compare the selected files on the local and remote sites.
Site functions 259

000_DW_API_Print.book Page 260 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.siteSyncDialog.canCompare()” on page 582.

dreamweaver.siteSyncDialog.markDelete()

Availability

Dreamweaver 8.

Description

This function changes the action for the selected items in the Site Synchronization dialog box
to Delete.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.siteSyncDialog.canMarkDelete()” on page 583.

dreamweaver.siteSyncDialog.markGet()

Availability

Dreamweaver 8.

Description

This function changes the action for the selected items in the Site Synchronization dialog box
to Get.

Arguments

None.
260 Site

000_DW_API_Print.book Page 261 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

Enabler

See “dreamweaver.siteSyncDialog.canMarkGet()” on page 583.

dreamweaver.siteSyncDialog.markIgnore()

Availability

Dreamweaver 8.

Description

This function changes the action for the selected items in the Site Synchronization dialog box
to Ignore.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.siteSyncDialog.canMarkIgnore()” on page 584.

dreamweaver.siteSyncDialog.markPut()

Availability

Dreamweaver 8.

Description

This function changes the action for the selected items in the Site Synchronization dialog box
to Put.

Arguments

None.

Returns

Nothing.
Site functions 261

000_DW_API_Print.book Page 262 Wednesday, July 20, 2005 11:58 AM
Enabler

See “dreamweaver.siteSyncDialog.canMarkPut()” on page 584.

dreamweaver.siteSyncDialog.markSynced()

Availability

Dreamweaver 8.

Description

This function changes the action for the selected items in the Site Synchronization dialog box
to Synced.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.siteSyncDialog.canMarkSynced()” on page 585.

dreamweaver.siteSyncDialog.toggleShowAllFiles()

Availability

Dreamweaver 8.

Description

This function lets you see which files Dreamweaver thinks are the same on the remote and
local sites in the Site Synchronize preview dialog box. If the function is called when the Show
All Files checkbox is selected, it deselects it; conversely, if the Show all Files checkbox is not
selected, this function selects it.

Arguments

None.

Returns

Nothing.
262 Site

000_DW_API_Print.book Page 263 Wednesday, July 20, 2005 11:58 AM
site.addLinkToExistingFile()

Availability

Dreamweaver 3.

Description

Opens the Select HTML File dialog box to let the user select a file and creates a link from the
selected document to that file.

Arguments

None.

Returns

Nothing.

Enabler

See “site.canAddLink()” on page 586.

site.addLinkToNewFile()

Availability

Dreamweaver 3.

Description

Opens the Link to New File dialog box to let the user specify details for the new file and
creates a link from the selected document to that file.

Arguments

None.

Returns

Nothing.

Enabler

See “site.canAddLink()” on page 586.
Site functions 263

000_DW_API_Print.book Page 264 Wednesday, July 20, 2005 11:58 AM
site.changeLinkSitewide()

Availability

Dreamweaver 3.

Description

Opens the Change Link Sitewide dialog box.

Arguments

None.

Returns

Nothing.

site.changeLink()

Availability

Dreamweaver 3.

Description

Opens the Select HTML File dialog box to let the user select a new file for the link.

Arguments

None.

Returns

Nothing.

Enabler

See “site.canChangeLink()” on page 587.

site.checkIn()

Availability

Dreamweaver 3.
264 Site

000_DW_API_Print.book Page 265 Wednesday, July 20, 2005 11:58 AM
Description

Checks in the selected files and handles dependent files in one of the following ways:

■ If the user selects Prompt on Put/Check In in the Site FTP preferences, the Dependent
Files dialog box appears.

■ If the user previously selected the Don’t Show Me Again option in the Dependent Files
dialog box and clicked Yes, dependent files are uploaded and no dialog box appears.

■ If the user previously selected the Don’t Show Me Again option in the Dependent Files
dialog box and clicked No, dependent files are not uploaded and no dialog box appears.

Arguments
siteOrURL

■ The siteOrURL argument must be the keyword "site", which indicates that the function
should act on the selection in the Site panel or the URL for a single file.

Returns

Nothing.

Enabler

See “site.canCheckIn()” on page 587.

site.checkLinks()

Availability

Dreamweaver 3.

Description

Opens the Link Checker dialog box and checks links in the specified files.

Arguments
scopeOfCheck

■ The scopeOfCheck argument specifies the scope of the link checking. The value must be
"document", "selection", or "site".

Returns

Nothing.
Site functions 265

000_DW_API_Print.book Page 266 Wednesday, July 20, 2005 11:58 AM
site.checkOut()

Availability

Dreamweaver 3.

Description

Checks out the selected files and handles dependent files in one of the following ways:

■ If the user selects Prompt on Get/Check Out in the Site FTP preferences, the Dependent
Files dialog box appears.

■ If the user previously selected the Don’t Show Me Again option in the Dependent Files
dialog box and clicked Yes, dependent files are downloaded and no dialog box appears.

■ If the user previously selected the Don’t Show Me Again option in the Dependent Files
dialog box and clicked No, dependent files are not downloaded and no dialog box
appears.

Arguments
siteOrURL

■ The siteOrURL argument must be the keyword "site", which indicates that the function
should act on the selection in the Site panel or the URL for a single file.

Returns

Nothing.

Enabler

See “site.canCheckOut()” on page 588.

site.checkTargetBrowsers()

Availability

Dreamweaver 3.

Description

Runs a target browser check on the selected files.

Arguments

None.

Returns

Nothing.
266 Site

000_DW_API_Print.book Page 267 Wednesday, July 20, 2005 11:58 AM
site.cloak()

Availability

Dreamweaver MX.

Description

Cloaks the current selection in the Site panel or the specified folder.

Arguments
siteOrURL

The siteOrURL argument must contain one of the following two values:

■ The keyword "site", which indicates that cloak() should act on the selection in the Site
panel

■ The URL of a particular folder, which indicates that cloak() should act on the specified
folder and all its contents

Returns

Nothing.

Enabler

See “site.canCloak()” on page 588.

site.compareFiles()

Availability

Dreamweaver 8.

Description

This function launches the Diff tool integration application to compare two files.

Arguments
url

The url argument, which is required, must contain one of the following two values:

■ The keyword "site", which indicates that compare() should act on the selection in the
Site panel.

■ The URL of a local file to compare with its remote version.

Returns

A Boolean value: true if the compare succeeded; false otherwise.
Site functions 267

000_DW_API_Print.book Page 268 Wednesday, July 20, 2005 11:58 AM
Enabler

See “site.canCompareFiles()” on page 589.

Example

The following example compares the files selected in the Site panel with their remote versions:
site.compareFiles("site");

site.defineSites()

Availability

Dreamweaver 3.

Description

This function opens the Edit Sites dialog box.

Arguments

None.

Returns

Nothing.

site.deleteSelection()

Availability

Dreamweaver 3.

Description

Deletes the selected files.

Arguments

None.

Returns

Nothing.
268 Site

000_DW_API_Print.book Page 269 Wednesday, July 20, 2005 11:58 AM
site.deployFilesToTestingServerBin()

Availability

Dreamweaver MX.

Description

Puts a specified file (or files) in the testing server’s bin folder. If the current site does not have
any settings defined for deploying supporting files, this function invokes the Deploy
Supporting Files To Testing Server dialog box.

Arguments
filesToDeploy

■ The filesToDeploy argument is an array of filenames that Dreamweaver will deploy.

Returns

A Boolean value: true if the files deploy successfully; false otherwise.

Example

This example deploys the files image1.jpg and script1.js to the testing server’s bin folder:
site.deployFilesToTestingServerBin("image1.jpg", "script1.js");

site.editColumns()

Description

This function displays the Edit Sites dialog box, which shows the File View Columns section.

Arguments

None.

Returns

Nothing.

site.exportSite()

Availability

Dreamweaver MX.
Site functions 269

000_DW_API_Print.book Page 270 Wednesday, July 20, 2005 11:58 AM
Description

Exports a Dreamweaver site to an XML file, which can be imported into another
Dreamweaver instance to duplicate the former site.

All the information that is contained in the Site Definition dialog box is saved in an XML file
that includes the list of cloaked folders and information about the default document type.
The exception is that the user can omit the user login and password when FTP access is set.
The following example shows a sample XML file that Dreamweaver creates when you export a
site:
<?xml version="1.0" ?>
<site>
 <localinfo
 sitename="DW00"
 localroot="C:\Documents and Settings\jlondon\Desktop\DWServer\"
 imagefolder="C:\Documents and

Settings\jlondon\Desktop\DWServer\Images\"
 spacerfilepath=""
 refreshlocal="TRUE"
 cache="FALSE"
 httpaddress="http://" curserver="webserver" />
 <remoteinfo
 accesstype="ftp"
 host="dreamweaver"
 remoteroot="kojak/"
 user="dream"
 checkoutname="Jay"
 emailaddress="jay@macromedia.com"
 usefirewall="FALSE"
 usepasv="TRUE"
 enablecheckin="TRUE"
 checkoutwhenopen="TRUE" />
 <designnotes
 usedesignnotes="TRUE"
 sharedesignnotes="TRUE" />
 <sitemap
 homepage="C:\Documents and Settings\jlondon\Desktop\DWServer\Untitled-

2.htm"
 pagesperrow="200" columnwidth="125" showdependentfiles="TRUE"
 showpagetitles="FALSE" showhiddenfiles="TRUE" />
 <fileviewcolumns sharecolumns="TRUE">
 <column name="Local Folder"
 align="left" show="TRUE" share="FALSE" builtin="TRUE"
 localwidth="180" remotewidth="180" />
 <column name="Notes"
 align="center" show="TRUE" share="FALSE" builtin="TRUE"
 localwidth="36" remotewidth="36" />
 <column name="Size"
 align="right" show="TRUE" share="FALSE" builtin="TRUE"
270 Site

000_DW_API_Print.book Page 271 Wednesday, July 20, 2005 11:58 AM
 localwidth="-2" remotewidth="-2" />
 <column name="Type"
 align="left" show="TRUE" share="FALSE" builtin="TRUE"
 localwidth="60" remotewidth="60" />
 <column name="Modified"
 align="left" show="TRUE" share="FALSE" builtin="TRUE"
 localwidth="102" remotewidth="102" />
 <column name="Checked Out By"
 align="left" show="TRUE" share="FALSE" builtin="TRUE"
 localwidth="50" remotewidth="50" />
 <column name="Status" note="status"
 align="left" show="TRUE" share="FALSE" builtin="FALSE"
 localwidth="50" remotewidth="50" />
 </fileviewcolumns>
 <appserverinfo
 servermodel="ColdFusion"
 urlprefix="http://dreamweaver/kojak/"
 serverscripting="CFML"
 serverpageext=""
 connectionsmigrated="TRUE"
 useUD4andUD5pages="TRUE"
 defaultdoctype=""
 accesstype="ftp"
 host="dreamweaver"
 remoteroot="kojak/"
 user="dream"
 usefirewall="FALSE"
 usepasv="TRUE" />
 <cloaking enabled="TRUE" patterns="TRUE">
 <cloakedfolder folder="databases/" />
 <cloakedpattern pattern=".png" />
 <cloakedpattern pattern=".jpg" />
 <cloakedpattern pattern=".jpeg" />
 </cloaking>
</site>

Arguments
siteName

■ The siteName argument identifies the site to export. If siteName is an empty string,
Dreamweaver exports the current site.

Returns

A Boolean value: true if the named site exists and if the XML file is successfully exported;
false otherwise.
Site functions 271

000_DW_API_Print.book Page 272 Wednesday, July 20, 2005 11:58 AM
site.findLinkSource()

Availability

Dreamweaver 3.

Description

Opens the file that contains the selected link or dependent file, and highlights the text of the
link or the reference to the dependent file. This function operates only on files in the Site Map
view.

Arguments

None.

Returns

Nothing.

Enabler

See “site.canFindLinkSource()” on page 590.

site.get()

Availability

Dreamweaver 3.

Description

Gets the specified files and handles dependent files in one of the following ways:

■ If the user selects Prompt on Get/Check Out in the Site FTP preferences, the Dependent
Files dialog box appears.

■ If the user previously selected the Don’t Show Me Again option in the Dependent Files
dialog box and clicked Yes, dependent files are downloaded and no dialog box appears.

■ If the user previously selected the Don’t Show Me Again option in the Dependent Files
dialog box and clicked No, dependent files are not downloaded and no dialog box
appears.

Arguments
siteOrURL

■ The siteOrURL argument must be the keyword "site", which indicates that the function
should act on the selection in the Site panel or the URL for a single file.
272 Site

000_DW_API_Print.book Page 273 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

Enabler

See “site.canGet()” on page 590.

site.getAppServerAccessType()

Availability

Dreamweaver MX.

Description

Returns the access method that is used for all files on the current site’s application server. The
current site is the site that is associated with the document that currently has focus. If no
document has focus, the site that you opened in Dreamweaver is used.

Arguments

None.

Returns

One of the following strings:

■ "none"
■ "local/network"
■ "ftp"
■ "source_control"

site.getAppServerPathToFiles()

Availability

Dreamweaver MX.

N
O

T
E

ColdFusion Component Explorer uses this function; see site.getAppServerPathToFiles()
and site.getLocalPathToFiles().
Site functions 273

000_DW_API_Print.book Page 274 Wednesday, July 20, 2005 11:58 AM
Description

Determines the path to the remote files on the application server that is defined for the
current site. The current site is the site that is associated with the document that currently has
focus. If no document has focus, the site that you opened in Dreamweaver is used.

Arguments

None.

Returns

If the access type to the application server file is local/network, this function returns a path;
otherwise, this function returns an empty string.

site.getAppURLPrefixForSite()

Availability

Dreamweaver MX.

Description

Gets the value of the URL prefix that is extracted from the HTTP address defined in the
Local Info section of the site definition dialog. It is the path that appears after the http://
hostname:portnumber/.

Arguments
{ siteName }

The siteName argument, which is optional, is the name of the site for which you want to get
the URL prefix. If you do not specify a tie, the function gets the URL prefix for the current
site.

Returns

A string that contains the URL prefix of the currently selected site.

Example
var sitePrefix = site.getAppURLPrefixForSite();

N
O

T
E

ColdFusion Component Explorer uses this function; see
site.getAppServerAccessType() and site.getLocalPathToFiles().
274 Site

000_DW_API_Print.book Page 275 Wednesday, July 20, 2005 11:58 AM
site.getCheckOutUser()

Availability

Dreamweaver 3.

Description

Gets the login and check-out name that is associated with the current site.

Arguments

None.

Returns

A string that contains a login and check-out name, if defined, or an empty string if Check In/
Check Out is disabled.

Example

A call to site.getCheckOutUser() might return "denise (deniseLaptop)". If no check-
out name is specified, only the login name returns (for example, "denise").

site.getCheckOutUserForFile()

Availability

Dreamweaver 3.

Description

Gets the login and check-out name of the user who has the specified file checked out.

Arguments
fileName

■ The fileName argument is the path to the file being queried, which is expressed as a file:/
/URL.

Returns

A string that contains the login and check-out name of the user who has the file checked out
or an empty string if the file is not checked out.

Example

A call to site.getCheckOutUserForFile("file://C:/sites/avocado8/index.html")
might return "denise (deniseLaptop)". If no check-out name is specified, only the login
name returns (for example, "denise").
Site functions 275

000_DW_API_Print.book Page 276 Wednesday, July 20, 2005 11:58 AM
site.getCloakingEnabled()

Availability

Dreamweaver MX.

Description

Determines whether cloaking is enabled for the current site.

Arguments

None.

Returns

A Boolean value: true if cloaking is enabled for the current site; false otherwise.

site.getConnectionState()

Availability

Dreamweaver 3.

Description

Gets the current connection state.

Arguments

None.

Returns

A Boolean value that indicates whether the remote site is connected.

Enabler

See “site.canConnect()” on page 589.

site.getCurrentSite()

Availability

Dreamweaver 3.

Description

Gets the current site.
276 Site

000_DW_API_Print.book Page 277 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

A string that contains the name of the current site.

Example

If you defined several sites, a call to site.getCurrentSite() returns the one that is currently
showing in the Current Sites List in the Site panel.

site.getFocus()

Availability

Dreamweaver 3.

Description

Determines which pane of the Site panel has focus.

Arguments

None.

Returns

One of the following strings:

■ "local"
■ "remote"
■ "site map"

site.getLinkVisibility()

Availability

Dreamweaver 3.

Description

Checks whether all the selected links in the site map are visible (that is, not marked hidden).

Arguments

None.
Site functions 277

000_DW_API_Print.book Page 278 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true if all the selected links are visible; false otherwise.

site.getLocalPathToFiles()

Availability

Dreamweaver MX.

Description

Determines the path to the local files that are defined for the current site. The current site is
the site that is associated with the document that currently has focus. If no document has
focus, the site that you opened in Dreamweaver is used.

Arguments

None.

Returns

The path to the files residing on the local computer for the current site.

site.getSelection()

Availability

Dreamweaver 3.

Description

Determines which files are currently selected in the Site panel.

Arguments

None.

Returns

An array of strings that represents the paths of the selected files and folders, which is expressed
as a file:// URL or an empty array if no files or folders are selected.

N
O

T
E

ColdFusion Component Explorer uses this function; see
site.getAppServerAccessType() and site.getAppServerPathToFiles().
278 Site

000_DW_API_Print.book Page 279 Wednesday, July 20, 2005 11:58 AM
site.getSiteForURL()

Availability

Dreamweaver MX.

Description

Gets the name of the site, if any, that is associated with a specific file.

Arguments
fileURL

■ The fileURL argument is the fully qualified URL (including the string "file://") for a
named file.

Returns

A string that contains the name of the site, if any, in which the specified file exists. The string
is empty when the specified file does not exist in any defined site.

site.getSites()

Availability

Dreamweaver 3.

Description

Gets a list of the defined sites.

Arguments

None.

Returns

An array of strings that represents the names of the defined sites, or an empty array if no sites
are defined.
Site functions 279

000_DW_API_Print.book Page 280 Wednesday, July 20, 2005 11:58 AM
site.getSiteURLPrefix()

Availability

Dreamweaver 8.

Description

Gets the site URL prefix that is extracted from the HTTP Address defined in Local Info
section.

Arguments

None.

Returns

A string that contains the site URL prefix.

Example

sitePrefix = getSiteURLPrefix();

site.importSite()

Availability

Dreamweaver MX.

Description

Creates a Dreamweaver site from an XML file. During import, if the folder that is specified by
the localroot attribute of the <localinfo> element does not exist on the local computer,
Dreamweaver prompts for a different local root folder. Dreamweaver behaves the same way
when it tries to locate the default images folder that is specified by the imagefolder attribute
of the <localinfo> element.

Arguments
fileURL

■ The fileURL argument is a string that contains the URL for the XML file. Dreamweaver
uses this XML file to create a new site. If fileURL is an empty string, Dreamweaver
prompts the user to select an XML file to import.

Returns

A Boolean value: true if the named XML file exists and if the site is created successfully;
false otherwise.
280 Site

000_DW_API_Print.book Page 281 Wednesday, July 20, 2005 11:58 AM
site.invertSelection()

Availability

Dreamweaver 3.

Description

Inverts the selection in the site map.

Arguments

None.

Returns

Nothing.

site.isCloaked()

Availability

Dreamweaver MX.

Description

Determines whether the current selection in the Site panel or the specified folder is cloaked.

Arguments
siteOrURL

■ The siteOrURL argument must contain one of the following two values:
■ The keyword "site", which indicates that the isCloaked() function should test the

selection in the Site panel
■ The file URL of a particular folder, which indicates that isCloaked() should test the

specified folder

Returns

A Boolean value: true if the specified object is cloaked; false otherwise.
Site functions 281

000_DW_API_Print.book Page 282 Wednesday, July 20, 2005 11:58 AM
site.locateInSite()

Availability

Dreamweaver 3.

Description

Locates the specified file (or files) in the specified pane of the Site panel and selects the files.

Arguments
localOrRemote, siteOrURL

■ The localOrRemote argument must be either "local" or "remote".
■ The siteOrURL argument must be the keyword "site", which indicates that the

function should act on the selection in the Site panel or the URL for a single file.

Returns

Nothing.

Enabler

See “site.canLocateInSite()” on page 591.

site.makeEditable()

Availability

Dreamweaver 3.

Description

Turns off the read-only flag on the selected files.

Arguments

None.

Returns

Nothing.

Enabler

See “site.canMakeEditable()” on page 591.
282 Site

000_DW_API_Print.book Page 283 Wednesday, July 20, 2005 11:58 AM
site.makeNewDreamweaverFile()

Availability

Dreamweaver 3.

Description

Creates a new Dreamweaver file in the Site panel in the same folder as the first selected file or
folder.

Arguments

None.

Returns

Nothing.

Enabler

See “site.canMakeNewFileOrFolder()” on page 592.

site.makeNewFolder()

Availability

Dreamweaver 3.

Description

Creates a new folder in the Site panel in the same folder as the first selected file or folder.

Arguments

None.

Returns

Nothing.

Enabler

See “site.canMakeNewFileOrFolder()” on page 592.
Site functions 283

000_DW_API_Print.book Page 284 Wednesday, July 20, 2005 11:58 AM
site.newHomePage()

Availability

Dreamweaver 3.

Description

Opens the New Home Page dialog box to let the user create a new home page.

Arguments

None.

Returns

Nothing.

site.newSite()

Availability

Dreamweaver 3.

Description

Opens the Site Definition dialog box for a new, unnamed site.

Arguments

None.

Returns

Nothing.

site.open()

Availability

Dreamweaver 3.

Description

Opens the files that are currently selected in the Site panel. If any folders are selected, they are
expanded in the Site Files view.

N
O

T
E

This function operates only on files in the Site Map view.
284 Site

000_DW_API_Print.book Page 285 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

Nothing.

Enabler

See “site.canOpen()” on page 592.

site.put()

Availability

Dreamweaver 3.

Description

Puts the selected files and handles dependent files in one of the following ways:

■ If the user selects Prompt on Put/Check In in the Site FTP preferences, the Dependent
Files dialog box appears.

■ If the user previously selected the Don’t Show Me Again option in the Dependent Files
dialog box and clicked Yes, dependent files are uploaded and no dialog box appears.

■ If the user previously selected the Don’t Show Me Again option in the Dependent Files
dialog box and clicked No, dependent files are not uploaded and no dialog box appears.

Arguments
siteOrURL

■ The siteOrURL argument must be the keyword "site", which indicates that the function
should act on the selection in the Site panel or the URL for a single file.

Returns

Nothing.

Enabler

See “site.canPut()” on page 593.
Site functions 285

000_DW_API_Print.book Page 286 Wednesday, July 20, 2005 11:58 AM
site.recreateCache()

Availability

Dreamweaver 3.

Description

Re-creates the cache for the current site.

Arguments

None.

Returns

Nothing.

Enabler

See “site.canRecreateCache()” on page 593.

site.refresh()

Availability

Dreamweaver 3.

Description

Refreshes the file listing on the specified side of the Site panel.

Arguments
whichSide

■ The whichSide argument must be "local", or "remote". If the site map has focus and
whichSide is "local", the site map refreshes.

Returns

Nothing.

Enabler

See “site.canRefresh()” on page 594.
286 Site

000_DW_API_Print.book Page 287 Wednesday, July 20, 2005 11:58 AM
site.remoteIsValid()

Availability

Dreamweaver 3.

Description

Determines whether the remote site is valid.

Arguments

None.

Returns

A Boolean value that indicates whether a remote site has been defined and, if the server type is
Local/Network, whether the drive is mounted.

site.removeLink()

Availability

Dreamweaver 3.

Description

Removes the selected link from the document above it in the site map.

Arguments

None.

Returns

Nothing.

Enabler

See “site.canRemoveLink()” on page 594.

site.renameSelection()

Availability

Dreamweaver 3.

Description

Turns the name of the selected file into an text field, so the user can rename the file. If more
than one file is selected, this function acts on the last selected file.
Site functions 287

000_DW_API_Print.book Page 288 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

Nothing.

site.runValidation()

Availability

Dreamweaver MX.

Description

Runs the Validator on the entire site or only highlighted items.

Arguments
selection

■ The selection argument is the parameter that specifies that the Validator should check
only the highlighted items; otherwise, the Validator checks the entire current site.

Returns

Nothing.

site.saveAsImage()

Availability

Dreamweaver 3.

Description

Opens the Save As dialog box to let the user save the site map as an image.

Arguments
fileType

■ The fileType argument is the type of image that should be saved. Valid values for
Windows are "bmp" and "png"; valid values for the Macintosh are "pict" and "jpeg". If
the argument is omitted, or if the value is not valid on the current platform, the default is
"bmp" in Windows and "pict" on the Macintosh.

Returns

Nothing.
288 Site

000_DW_API_Print.book Page 289 Wednesday, July 20, 2005 11:58 AM
site.selectAll()

Availability

Dreamweaver 3.

Description

Selects all files in the active view (either the site map or the site files).

Arguments

None.

Returns

Nothing.

site.selectHomePage()

Availability

Dreamweaver 3.

Description

Opens the Open File dialog box to let the user select a new home page.

Arguments

None.

Returns

Nothing.

site.selectNewer()

Availability

Dreamweaver 3.

Description

Selects all files that are newer on the specified side of the Site panel.

N
O

T
E

This function operates only on files in the Site Map view.
Site functions 289

000_DW_API_Print.book Page 290 Wednesday, July 20, 2005 11:58 AM
Arguments
whichSide

■ The whichSide argument must be either "local" or "remote".

Returns

Nothing.

Enabler

See “site.canSelectNewer()” on page 595.

site.serverActivity()

Availability

Dreamweaver 8.

Description

This function determines whether Dreamweaver is currently interacting with a server. Because
Dreamweaver cannot do more than one server activity at a time, this function lets you
determine whether to disable functionality that requires server interaction.

Arguments

None.

Returns

A Boolean value that indicates whether Dreamweaver is currently interacting with a server.

Example

The following example, from the menus.xml file, displays a menu item if there is no server
activity (and if there is a current site specified in Dreamweaver):
<menuitem name="Remove Connection Scripts" enabled="!site.serverActivity()

&& site.getCurrentSite() != ''"
command="alert(MMDB.removeConnectionScripts())"
id="SiteOptionsSiteMenu_RemoveConnectionScripts" />
290 Site

000_DW_API_Print.book Page 291 Wednesday, July 20, 2005 11:58 AM
site.setAsHomePage()

Availability

Dreamweaver 3.

Description

Designates the file that is selected in the Site Files view as the home page for the site.

Arguments

None.

Returns

Nothing.

site.setCloakingEnabled()

Availability

Dreamweaver MX.

Description

Determines whether cloaking should be enabled for the current site.

Arguments
enable

■ The enable argument is a Boolean value that indicates whether cloaking should be
enabled. A value of true enables cloaking for the current site; a value of false disables
cloaking for the current site.

Returns

None.

site.setConnectionState()

Availability

Dreamweaver 3.

Description

Sets the connection state of the current site.
Site functions 291

000_DW_API_Print.book Page 292 Wednesday, July 20, 2005 11:58 AM
Arguments
bConnected

■ The bConnected argument is a Boolean value that indicates if there is a connection
(true) or not (false) to the current site.

Returns

Nothing.

site.setCurrentSite()

Availability

Dreamweaver 3.

Description

Opens the specified site in the local pane of the Site panel.

Arguments
whichSite

■ The whichSite argument is the name of a defined site (as it appears in the Current Sites
list in the Site panel or the Edit Sites dialog box).

Returns

Nothing.

Example

If three sites are defined (for example, avocado8, dreamcentral, and testsite), a call to
site.setCurrentSite("dreamcentral"); makes dreamcentral the current site.

site.setFocus()

Availability

Dreamweaver 3.

Description

Gives focus to a specified pane in the Site panel. If the specified pane is not showing, this
function displays the pane and gives it focus.

Arguments
whichPane
292 Site

000_DW_API_Print.book Page 293 Wednesday, July 20, 2005 11:58 AM
■ The whichPane argument must be one of the following strings: "local", "remote", or
"site map".

Returns

Nothing.

site.setLayout()

Availability

Dreamweaver 3.

Description

Opens the Site Map Layout pane in the Site Definition dialog box.

Arguments

None.

Returns

Nothing.

Enabler

See “site.canSetLayout()” on page 595.

site.setLinkVisibility()

Availability

Dreamweaver 3.

Description

Shows or hides the current link.

Arguments
bShow

■ The bShow argument is a Boolean value that indicates whether to remove the Hidden
designation from the current link.

Returns

Nothing.
Site functions 293

000_DW_API_Print.book Page 294 Wednesday, July 20, 2005 11:58 AM
site.setSelection()

Availability

Dreamweaver 3.

Description

Selects files or folders in the active pane in the Site panel.

Arguments
arrayOfURLs

■ The arrayOfURLs argument is an array of strings where each string is a path to a file or
folder in the current site, which is expressed as a file:// URL.

Returns

Nothing.

site.siteRelativeToLocalPath()

Availability

Dreamweaver 8.

Description

Converts a site-relative URI reference to a local file path.

Arguments
siteRelativeURI

■ The siteRelativeURI attribute, which is required, is a string that contains the site-
relative URI.

Returns

A string, which specifies the path to a local file on your local computer.

Example

The following example
var filePath = site.siteRelativeToLocalPath("/myWebApp/myFile.xlml");

returns "C:\Inetpub\wwwroot\siteA\myFile.xml" based on your site mappings and HTTP
address specified in the Local info of the Site Definition dialog box.

N
O

T
E

Omit the trailing slash (/) when specifying folder paths.
294 Site

000_DW_API_Print.book Page 295 Wednesday, July 20, 2005 11:58 AM
site.synchronize()

Availability

Dreamweaver 3.

Description

Opens the Synchronize Files dialog box.

Arguments

None.

Returns

Nothing.

Enabler

See “site.canSynchronize()” on page 596.

site.uncloak()

Availability

Dreamweaver MX.

Description

Uncloaks the current selection in the Site panel or the specified folder.

Arguments
siteOrURL

■ The siteOrURL argument must contain one of the following values:
■ The keyword "site", which indicates that the unCloak() function should act on the

selection in the Site panel
■ The URL of a particular folder, which indicates that the unCloak() function should

act on the specified folder and all its contents

Returns

Nothing.

Enabler

See “site.canUncloak()” on page 597.
Site functions 295

000_DW_API_Print.book Page 296 Wednesday, July 20, 2005 11:58 AM
site.uncloakAll()

Availability

Dreamweaver MX.

Description

Uncloaks all folders in the current site and deselects the Cloak Files Ending With: checkbox in
the Cloaking settings.

Arguments

Nothing.

Returns

Nothing.

Enabler

See “site.canUncloak()” on page 597.

site.undoCheckOut()

Availability

Dreamweaver 3.

Description

Removes the lock files that are associated with the specified files from the local and remote
sites, and replaces the local copy of the specified files with the remote copy.

Arguments
siteOrURL

■ The siteOrURL argument must be the keyword "site", which indicates that the function
should act on the selection in the Site panel or the URL for a single file.

Returns

Nothing.

Enabler

See “site.canUndoCheckOut()” on page 597.
296 Site

000_DW_API_Print.book Page 297 Wednesday, July 20, 2005 11:58 AM
site.viewAsRoot()

Availability

Dreamweaver 3.

Description

Temporarily moves the selected file to the top position in the site map.

Arguments

None.

Returns

Nothing.

Enabler

See “site.canViewAsRoot()” on page 598.
Site functions 297

000_DW_API_Print.book Page 298 Wednesday, July 20, 2005 11:58 AM
298 Site

13

000_DW_API_Print.book Page 299 Wednesday, July 20, 2005 11:58 AM
CHAPTER 13

Document
The Document functions in Macromedia Dreamweaver 8 perform operations that affect the
document on which the user is working. These functions perform tasks that convert tables to
layers, run a command in the Configuration/Commands folder, browse for a file URL, check
spelling or set page properties, convert a relative URL to an absolute URL, get the currently
selected node, perform URL encoding on a string, or run a translator on the document.

Conversion functions
Conversion functions convert tables to layers, layers to tables, and cascading style sheets (CSS)
to HTML markup. Each function exactly duplicates the behavior of one of the conversion
commands in the File or Modify menu.

dom.convertLayersToTable()

Availability

Dreamweaver 3.

Description

Opens the Convert Layers to Table dialog box.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canConvertLayersToTable()” on page 554.
299

000_DW_API_Print.book Page 300 Wednesday, July 20, 2005 11:58 AM
dom.convertTablesToLayers()

Availability

Dreamweaver 3.

Description

Opens the Convert Tables to Layers dialog box.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canConvertTablesToLayers()” on page 554.

Command functions
Command functions help you make the most of the files in the Configuration/Commands
folder. They manage the Command menu and call commands from other types of extension
files.

dreamweaver.editCommandList()

Availability

Dreamweaver 3.

Description

Opens the Edit Command List dialog box.

Arguments

None.

Returns

Nothing.
300 Document

000_DW_API_Print.book Page 301 Wednesday, July 20, 2005 11:58 AM
dreamweaver.popupCommand() (deprecated)

Availability

Dreamweaver 2; deprecated in 3 in favor of dreamweaver.runCommand().

Description

This function executes the specified command. To the user, the effect is the same as selecting
the command from a menu; if a dialog box is associated with the command, it appears. This
function provides the ability to call a command from another extension file. It blocks other
edits until the user closes the dialog box.

Arguments
commandFile

■ The commandFile argument is the name of a command file within the Configuration/
Commands folder (for example, "Format Table.htm").

Returns

Nothing.

dreamweaver.runCommand()

Availability

Dreamweaver 3.

Description

Executes the specified command; it works the same as selecting the command from a menu. If
a dialog box is associated with the command, it appears and the command script blocks other
edits until the user closes the dialog box. This function provides the ability to call a command
from another extension file.

Arguments
commandFile, {commandArg1}, {commandArg2},...{commandArgN}

■ The commandFile argument is a filename in the Configuration/Commands folder.

N
O

T
E

This function can be called within the objectTag() function, from any script in a
command file, or from the Property inspector file.

N
O

T
E

This function can be called within the objectTag() function, from any script in a
command file, or from the Property inspector file.
Command functions 301

000_DW_API_Print.book Page 302 Wednesday, July 20, 2005 11:58 AM
■ The remaining arguments, commandArg1, commandArg2, and so on, which are optional,
pass to the receiveArguments() function in the commandFile argument.

Returns

Nothing.

Example

You can write a custom Property inspector for tables that lets users get to the Format Table
command from a button on the inspector by calling the following function from the button’s
onClick event handler:
function callFormatTable(){

dreamweaver.runCommand('Format Table.htm');
}

File manipulation functions
File manipulation functions handle creating, opening, and saving documents (including XML
and XHTML), converting existing HTML documents into XHTML, and exporting CSS to
external files. These functions accomplish such tasks as browsing for files or folders, creating
files based on templates, closing documents, and getting information about recently opened
files.

dom.cleanupXHTML()

Availability

Dreamweaver MX.

Description

This function is similar to the convertToXHTML() function, but it cleans up an existing
XHTML document. This function can run on a selection within the document. You can run
the cleanupXHTML() function to clean up the syntax in an entire XHTML document or in
the current selection of a document.

Arguments
bWholeDoc

■ The bWholeDoc argument holds a Boolean value. If the value is true, the
cleanupXHTML() function cleans up the entire document; otherwise, this function cleans
up only the selection.
302 Document

000_DW_API_Print.book Page 303 Wednesday, July 20, 2005 11:58 AM
Returns

An array of six integers that quantify the number of the following elements:

■ XHTML errors that Dreamweaver fixed
■ The map elements that do not have an id attribute and cannot be fixed
■ The script elements that do not have a type attribute and cannot be fixed
■ The style elements that do not have a type attribute and cannot be fixed
■ The img elements that do not have an alt attribute and cannot be fixed
■ The area elements that do not have an alt attribute and cannot be fixed

dom.convertToXHTML()

Availability

Dreamweaver MX.

Description

Parses the HTML into a DOM tree, inserts missing items that are required for XHTML,
cleans up the tree, and then writes the tree as clean XHTML. The missing directives,
declarations, elements, and attributes that the convertToXHTML() function adds to the DOM
tree, as necessary, include the following items:

■ An XML directive
■ A doctype declaration
■ The xmlns attribute in the html element
■ A head section
■ A title element
■ A body section

During the conversion, the dom.convertToXHTML() function converts pure HTML tags and
attributes to lowercase, writes HTML tags and attributes with correct XHTML syntax, and
adds missing HTML attributes where it can. This function treats third-party tags and
attributes according to the settings in the Preferences dialog box.

If the document is a template, the dom.convertToXHTML() function alerts the user but does
not perform the conversion.

Arguments

None.
File manipulation functions 303

000_DW_API_Print.book Page 304 Wednesday, July 20, 2005 11:58 AM
Returns

An array of six integers that quantify the following items:

■ XHTML errors that Dreamweaver fixed
■ The map elements that do not have an id attribute and cannot be fixed
■ The script elements that do not have a type attribute and cannot be fixed
■ The style elements that do not have a type attribute and cannot be fixed
■ The img elements that do not have an alt attribute and cannot be fixed
■ The area elements that do not have an alt attribute and cannot be fixed

Example

In normal use, an extension first calls the dreamweaver.openDocument() or
dreamweaver.getDocumentDOM() functions to get a reference to the document. The
extension then calls the dom.getIsXHTMLDocument() function to determine whether the
document is already in XHTML form. If it is not, the extension calls the
dom.convertToXHTML() function to convert the document into XHTML. Then the
extension calls the dreamweaver.saveDocument() function to save the converted file with a
new filename.

dom.getIsXHTMLDocument()

Availability

Dreamweaver MX.

Description

Checks a document (specifically, the <!DOCTYPE> declaration) to see whether it is XHTML.

Arguments

None.

Returns

A true value if the document is XHTML; false otherwise.
304 Document

000_DW_API_Print.book Page 305 Wednesday, July 20, 2005 11:58 AM
dreamweaver.browseForFileURL()

Availability

Dreamweaver 1, enhanced in 2, 3, and 4.

Description

Opens the specified type of dialog box with the specified label in the title bar.

Arguments
openSelectOrSave, {titleBarLabel}, {bShowPreviewPane}, ¬

{bSupressSiteRootWarnings}, {arrayOfExtensions}

■ The openSelectOrSave argument is a string that indicates the type of dialog box as
"open", "select", or "save".

■ The titleBarLabel argument (added in Dreamweaver 2) is the label that should appear
in the title bar of the dialog box. If this argument is omitted, Dreamweaver uses the
default label that the operating system supplies.

■ The bShowPreviewPane argument (added in Dreamweaver 2) is a Boolean value that
indicates whether to display the Image Preview Pane in the dialog box. If this argument is
a value of true, the dialog box filters for image files; if omitted, it defaults to a value of
false.

■ The bSupressSiteRootWarnings argument (added in Dreamweaver 3) is a Boolean
value that indicates whether to suppress warnings about the selected file being outside the
site root. If this argument is omitted, it defaults to a value of false.

■ The arrayOfExtensions argument (added in Dreamweaver 4) is an array of strings for
specifying default content for the Files of type list menu at the bottom of the dialog box.
The proper syntax is menuEntryText|.xxx[;.yyy;.zzz]|CCCC|, where menuEntryText
is the name of the file type to appear. The extensions can be specified as
.xxx[;.yyy;.zzz] or CCCC, where .xxx specifies the file extension for the file type
(optionally, .yyy and .zzz specify multiple file extensions) and CCCC is the four-character
file type constant for the Macintosh.

Returns

A string that contains the name of the file, which is expressed as a file:// URL.
File manipulation functions 305

000_DW_API_Print.book Page 306 Wednesday, July 20, 2005 11:58 AM
dreamweaver.browseForFolderURL()

Availability

Dreamweaver 3.

Description

Opens the Choose Folder dialog box with the specified label in the title bar.

Arguments
{titleBarLabel}, {directoryToStartIn}

■ The titleBarLabel argument is the label that should appear in the title bar of the dialog
box. If it is omitted, the titleBarLabel argument defaults to Choose Folder.

■ The directoryToStartIn argument is the path where the folder should open, which is
expressed as a file:// URL.

Returns

A string that contains the name of the folder, which is expressed as a file:// URL.

Example

The following code returns the URL of a folder:
return dreamweaver.browseForFolderURL('Select a Folder', ¬
dreamweaver.getSiteRoot());

dreamweaver.closeDocument()

Availability

Dreamweaver 2.

Description

Closes the specified document.

Arguments
documentObject

■ The documentObject argument is the object at the root of a document’s DOM tree (the
value that the dreamweaver.getDocumentDOM() function returns). If the
documentObject argument refers to the active document, the Document window might
not close until the script that calls this function finishes executing.

Returns

Nothing.
306 Document

000_DW_API_Print.book Page 307 Wednesday, July 20, 2005 11:58 AM
dreamweaver.createDocument()

Availability

Dreamweaver 2, enhanced in Dreamweaver 4.

Description

Depending on the argument that you pass to this function, it opens a new document either in
the same window or in a new window. The new document becomes the active document.

Arguments
{bOpenInSameWindow}, {type}

■ The bOpenInSameWindow argument is a Boolean value that indicates whether to open the
new document in the current window. If the bOpenInSameWindow argument is a value of
false, if it is omitted, or if the function is called on the Macintosh, the new document
opens in a separate window.

■ The type argument specifies the type of document to create, as declared in the
Dreamweaver Configuration/DocumentTypes/MMDocumentTypes.xml file as the id
attribute of the documenttype tag. For example, the type argument could be "HTML",
"ASP-JS", "ASP-VB", "ColdFusion", "CFC", "JSP", "ASP.NET_VB", and so on. For
a complete list of possible types, see the MMDocumentTypes.xml file. If you do not
specify type, the value defaults to "HTML".

Returns

The document object for the newly created document. This is the same value that the
dreamweaver.getDocumentDOM()function returns.

N
O

T
E

This function can be called only from the menus.xml file, a command, or the Property
inspector file. If a behavior action or object tries to call this function, Dreamweaver
displays an error message.

N
O

T
E

You can extend the MMDocumentTypes file by adding your own document types. For
information on extending document types, see Extending Dreamweaver.
File manipulation functions 307

000_DW_API_Print.book Page 308 Wednesday, July 20, 2005 11:58 AM
dreamweaver.createXHTMLDocument()

Availability

Dreamweaver MX.

Description

Depending on the argument that you pass to this function, it opens a new XHTML
document either in the same window or in a new window. The new document becomes the
active document. It is similar to the dreamweaver.createDocument() function.

When Dreamweaver creates a new XHTML document, it reads a file named default.xhtml,
which is located in the Configuration/Templates folder, and, using the content of that file,
creates an output file that contains the following skeleton declarations:
<?xml version="1.0">
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Untitled Document</title>
<meta http-equiv="Content-Type" content="text/html; charset=" />
</head>

<body bgcolor="#FFFFFF" text="#000000">

</body>
</html>

The default document type definition (DTD) declaration is XHTML 1.0 Transitional,
rather than Strict. If the user adds a frameset to the document, Dreamweaver switches the
DTD to XHTML 1.0 Frameset. Content-Type is text/html, and charset is intentionally
left out of the default.xhtml file but is filled in before the user views the new document. The
?xml directive is not required if the document uses UTF-8 or UTF-16 character encoding; if
it is present, it might be rendered by some older browsers. However, because this directive
should be in an XHTML document, by default, Dreamweaver uses it (for both new and
converted documents). Users can manually delete the directive. The ?xml directive includes
the encoding attribute, which matches the charset in the Content-Type attribute.

Arguments
{bOpenInSameWindow}

■ The bOpenInSameWindow argument is a Boolean value that indicates whether to open the
new document in the current window. If this value is false or omitted, or if the function
is called on the Macintosh, the new document opens in a separate window.
308 Document

000_DW_API_Print.book Page 309 Wednesday, July 20, 2005 11:58 AM
Returns

The document object for the newly created document, which is the same value that the
dreamweaver.getDocumentDOM() function returns.

dreamweaver.createXMLDocument()

Availability

Dreamweaver MX.

Description

Creates and opens a new XML file, which is empty except for the XML directive.

Arguments

None.

Returns

The DOM of the new XML file.

Example

The following example creates a new document, which is empty except for the XML directive:
var theDOM = dreamweaver.createXMLDocument("document");

dreamweaver.exportCSS()

Availability

Dreamweaver 3.

Description

Opens the Export Styles as a CSS File dialog box.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.canExportCSS()” on page 566.
File manipulation functions 309

000_DW_API_Print.book Page 310 Wednesday, July 20, 2005 11:58 AM
dreamweaver.exportEditableRegionsAsXML()
(deprecated)

Availability

Dreamweaver 3; deprecated in MX.

Description

This function opens the Export Editable Regions as XML dialog box.

Arguments

None.

Returns

Nothing.

dreamweaver.exportTemplateDataAsXML()

Availability

Dreamweaver MX.

Description

Exports the current document to the specified file as XML. This function operates on the
document that has focus, which must be a template. If you do not specify a filename
argument, Dreamweaver MX opens a dialog box to request the export file string.

Arguments
{filePath}

■ The filePath argument, which is optional, is a string that specifies the filename to which
Dreamweaver exports the template. Express the filePath argument as a URL file string,
such as "file:///c|/temp/mydata.txt".

Returns

Nothing.

Enabler

See “dreamweaver.canExportTemplateDataAsXML()” on page 567.
310 Document

000_DW_API_Print.book Page 311 Wednesday, July 20, 2005 11:58 AM
Example
if(dreamweaver.canExportTemplateDataAsXML())
{

dreamweaver.exportTemplateDataAsXML("file:///c|/dw_temps/
mytemplate.txt")

}

dreamweaver.getDocumentDOM()

Availability

Dreamweaver 2.

Description

Provides access to the objects tree for the specified document. After the tree of objects returns
to the caller, the caller can edit the tree to change the contents of the document.

Arguments
{sourceDoc}

■ The sourceDoc argument must be "document", "parent", "parent.frames[number]",
"parent.frames['frameName']", or a URL. The sourceDoc value defaults to
"document" if you do not supply a value. These argument values have the following
meanings:
■ The document value specifies the document that has focus and contains the

current selection.
■ The parent value specifies the parent frameset (if the currently selected document is

in a frame).
■ The parent.frames[number] and parent.frames['frameName'] values specify a

document that is in a particular frame within the frameset that contains the
current document.

■ If the argument is a relative URL, it is relative to the extension file.

Returns

The JavaScript document object at the root of the tree.

N
O

T
E

If the argument is "document", the calling function must be the applyBehavior(),
deleteBehavior(), objectTag() function, or any function in a command or
Property inspector file that can perform edits to the document.
File manipulation functions 311

000_DW_API_Print.book Page 312 Wednesday, July 20, 2005 11:58 AM
Examples

The following example uses the dreamweaver.getDocumentDOM() function to access the
current document:
var theDOM = dreamweaver.getDocumentDOM("document");

In the following example, the current document DOM identifies a selection and pastes it at
the end of another document:
var currentDOM = dreamweaver.getDocumentDOM('document');
currentDOM.setSelection(100,200);
currentDOM.clipCopy();
var otherDOM = dreamweaver.openDocument(dreamweaver.¬
getSiteRoot() + "html/foo.htm");
otherDOM.endOfDocument();
otherDOM.clipPaste();

dreamweaver.getNewDocumentDOM()

Availability

Dreamweaver MX; added documentType argument in Dreamweaver 8.

Description

Provides access to the editable tree for a new, empty document. This function works in the
same way as the getDocumetDOM() function, except that it points to a new document, not an
existing one, and does not open the document.

Arguments
{documentType}

■ The documentType argument is a string. Its value must be a document type specified in
the DocumentTypes.xml file.

Returns

A pointer to a new, empty document.

Example

The following code returns the DOM for a new, empty document:
var theDOM = dreamweaver.getNewDocumentDOM();

N
O

T
E

The openDocument() argument is used because DOM methods normally operate only on
open documents. Running a function on a document that isn’t open causes a
Dreamweaver error. The DOM methods that can operate only on the active document or
on closed documents indicate this fact in their descriptions.
312 Document

000_DW_API_Print.book Page 313 Wednesday, July 20, 2005 11:58 AM
dreamweaver.getRecentFileList()

Availability

Dreamweaver 3.

Description

Gets a list of all the files in the recent files list at the bottom of the File menu.

Arguments

None.

Returns

An array of strings that represent the paths of the most recently accessed files. Each path is
expressed as a file:// URL. If there are no recent files, the function returns nothing.

dreamweaver.importXMLIntoTemplate()

Availability

Dreamweaver 3.

Description

Imports an XML text file into the current template document. This function operates on the
document that has focus, which must be a template. If you do not specify a filename
argument, Dreamweaver opens a dialog box to request the import file string.

Arguments
{filePath}

■ The filePath argument, which is optional, is a string that specifies the filename to which
Dreamweaver imports the template. Express the filePath argument as a URL file string,
such as "file:///c/temp/mydata.txt".

Returns

Nothing.
File manipulation functions 313

000_DW_API_Print.book Page 314 Wednesday, July 20, 2005 11:58 AM
dreamweaver.newDocument()

Availability

Dreamweaver MX.

Description

Opens a document in the current site and invokes the New Document dialog box.

Arguments
{bopenWithCurSiteAndShowDialog}

■ The bopenWithCurSiteAndShowDialog argument, which is optional, has a value of true
or false. Specify true to open a document with the current site and to cause the New
Document dialog box to appear; false otherwise.

Returns

Nothing.

dreamweaver.newFromTemplate()

Availability

Dreamweaver 3.

Description

Creates a new document from the specified template. If no argument is supplied, the Select
Template dialog box appears.

Arguments
{templateURL}, bMaintain

■ The templateURL argument is the path to a template in the current site, which is
expressed as a file:// URL.

■ The bMaintain argument is a Boolean value, true or false, that indicates whether to
maintain the link to the original template.

Returns

Nothing.
314 Document

000_DW_API_Print.book Page 315 Wednesday, July 20, 2005 11:58 AM
dreamweaver.openDocument()

Availability

Dreamweaver 2.

Description

Opens a document for editing in a new Dreamweaver window and gives it the focus. For a
user, the effect is the same as selecting File > Open and selecting a file. If the specified file is
already open, the window that contains the document comes to the front. The window that
contains the specified file becomes the currently selected document. In Dreamweaver 2, if
Check In/Check Out is enabled, the file is checked out before it opens. In Dreamweaver 3
and later, you must use dreamweaver.openDocumentFromSite() to get this behavior.

Arguments
fileName

■ The fileName argument is the name of the file to open, which is expressed as a URL. If
the URL is relative, it is relative to the file that contains the script that called this function.

Returns

The document object for the specified file, which is the same value that the
dreamweaver.getDocumentDOM() function returns.

dreamweaver.openDocumentFromSite()

Availability

Dreamweaver 3.

Description

Opens a document for editing in a new Dreamweaver window and gives it the focus. For a
user, the effect is the same as double-clicking a file in the Site panel. If the specified file is
already open, the window that contains the document comes to the front. The window that
contains the specified file becomes the currently selected document.

N
O

T
E

This function will cause an error if called from Behavior action or object files.

N
O

T
E

This function cannot be called from Behavior action or object files because it causes an
error.
File manipulation functions 315

000_DW_API_Print.book Page 316 Wednesday, July 20, 2005 11:58 AM
Arguments
fileName

■ The fileName argument is the file to open, which is expressed as a URL. If the URL is
relative, it is relative to the file that contains the script that called this function.

Returns

The document object for the specified file, which is the same value that the
dreamweaver.getDocumentDOM() function returns.

dreamweaver.openInFrame()

Availability

Dreamweaver 3.

Description

Opens the Open In Frame dialog box. When the user selects a document, it opens into the
active frame.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.canOpenInFrame()” on page 568.

dreamweaver.releaseDocument()

Availability

Dreamweaver 2.

Description

Explicitly releases a previously referenced document from memory.
316 Document

000_DW_API_Print.book Page 317 Wednesday, July 20, 2005 11:58 AM
Documents that are referenced by the dreamweaver.getObjectTags(),
dreamweaver.getObjectRefs(), dreamweaver.getDocumentPath(), or
dreamweaver.getDocumentDOM() functions are automatically released when the script that
contains the call finishes executing. If the script opens many documents, you must use this
function to explicitly release documents before finishing the script to avoid running out of
memory.

Arguments
documentObject

■ The documentObject argument is the object at the root of a document’s DOM tree,
which is the value that the dreamweaver.getDocumentDOM() function returns.

Returns

Nothing.

dreamweaver.revertDocument()

Availability

Dreamweaver 3.

Description

Reverts the specified document to the previously saved version.

Arguments
documentObject

■ The documentObject argument is the object at the root of a document’s DOM tree,
which is the value that the dreamweaver.getDocumentDOM() function returns.

Returns

Nothing.

Enabler

See “dreamweaver.canRevertDocument()” on page 570.

N
O

T
E

This function is relevant only for documents that were referenced by a URL, are not
currently open in a frame or document window, and are not extension files. Extension
files are loaded into memory at startup and are not released until you quit Dreamweaver.
File manipulation functions 317

000_DW_API_Print.book Page 318 Wednesday, July 20, 2005 11:58 AM
dreamweaver.saveAll()

Availability

Dreamweaver 3.

Description

Saves all open documents, opening the Save As dialog box for any documents that have not
been saved previously.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.canSaveAll()” on page 570.

dreamweaver.saveDocument()

Availability

Dreamweaver 2.

Description

Saves the specified file on a local computer.

Arguments
documentObject, {fileURL}

■ The documentObject argument is the object at the root of a document’s DOM tree,
which is the value that the dreamweaver.getDocumentDOM() function returns.

■ The fileURL argument, which is optional, is a URL that represents a location on a local
computer. If the URL is relative, it is relative to the extension file. In Dreamweaver 2, this
argument is required. If the fileURL argument is omitted in Dreamweaver 4, the file is
saved to its current location if it has been previously saved; otherwise, a Save dialog box
appears.

N
O

T
E

In Dreamweaver 2, if the file is read-only, Dreamweaver tries to check it out. If
the document is still read-only after this attempt, or if it cannot be created, an error
message appears.
318 Document

000_DW_API_Print.book Page 319 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value that indicates success (true) or failure (false).

Enabler

See “dreamweaver.canSaveDocument()” on page 571.

dreamweaver.saveDocumentAs()

Availability

Dreamweaver 3.

Description

Opens the Save As dialog box.

Arguments
documentObject

■ The documentObject argument is the object at the root of a document’s DOM tree,
which is the value that the dreamweaver.getDocumentDOM() function returns.

Returns

Nothing.

dreamweaver.saveDocumentAsTemplate()

Availability

Dreamweaver 3.

Description

Opens the Save As Template dialog box.

Arguments
documentObject, {fileName}

■ The documentObject argument is the object at the root of a document’s DOM tree,
which is the value that dreamweaver.getDocumentDOM() returns.

■ The fileName argument, which is optional, is the name of the file to open, expressed as
an absolute URL.

Returns

Nothing.
File manipulation functions 319

000_DW_API_Print.book Page 320 Wednesday, July 20, 2005 11:58 AM
Enabler

See “dreamweaver.canSaveDocumentAsTemplate()” on page 571.

dreamweaver.saveFrameset()

Availability

Dreamweaver 3.

Description

Saves the specified frameset or opens the Save As dialog box if the frameset has not previously
been saved.

Arguments
documentObject

■ The documentObject argument is the object at the root of a document’s DOM tree,
which is the value that the dreamweaver.getDocumentDOM() function returns.

Returns

Nothing.

Enabler

See “dreamweaver.canSaveFrameset()” on page 572.

dreamweaver.saveFramesetAs()

Availability

Dreamweaver 3.

Description

Opens the Save As dialog box for the frameset file that includes the specified DOM.

Arguments
documentObject

■ The documentObject argument is the object at the root of a document’s DOM tree,
which is the value that the dreamweaver.getDocumentDOM() function returns.

Returns

Nothing.
320 Document

000_DW_API_Print.book Page 321 Wednesday, July 20, 2005 11:58 AM
Enabler

See “dreamweaver.canSaveFramesetAs()” on page 572.

Global document functions
Global document functions act on an entire document. They check spelling, check target
browsers, set page properties, and determine correct object references for elements in
the document.

dom.checkSpelling()

Availability

Dreamweaver 3.

Description

Checks the spelling in the document, opening the Check Spelling dialog box if necessary, and
notifies the user when the check is complete.

Arguments

None.

Returns

Nothing.

dom.checkTargetBrowsers()

Availability

Dreamweaver 3.

Description

Runs a target browser check on the document. To run a target browser check on a folder or
group of files, see “site.checkTargetBrowsers()” on page 266.

Arguments

None.

Returns

Nothing.
Global document functions 321

000_DW_API_Print.book Page 322 Wednesday, July 20, 2005 11:58 AM
dom.getParseMode()

Availability

Dreamweaver MX 2004

Description

Gets the current parsing mode of the document, which controls how the document is
validated and whether it shows up in the main document window as HTML.

Arguments

None.

Returns

A string that specifies the current parsing mode: "html", "xml", "css", or "text".

dom.hideInfoMessagePopup()

Availability

Dreamweaver MX 2004.

Description

Hides the tooltip-like message, if it is visible, for the document window.

Arguments

None.

Returns

Nothing.

See also

“dom.showInfoMessagePopup()” on page 324.

dom.runValidation()

Availability

Dreamweaver MX, optional arguments added in Dreamweaver MX 2004.
322 Document

000_DW_API_Print.book Page 323 Wednesday, July 20, 2005 11:58 AM
Description

Runs the Validator on a single specified document (this function is similar to
site.runValidation()). The Validator checks the document for conformance with the language
specified in the document doctype (such as HTML 4.0 or HTML 3.2) and the language
specified by the server model (such as ColdFusion or ASP). If the document has no doctype,
then the Validator uses the language setting specified in the Validator section of the
Preferences dialog box.

Arguments

{controlString}, {bOpenResultsWindow}, {bShowInfoMessage}

■ The controlString argument is an optional string with four possible values: an empty
string, "xml", "auto-explicit", or "auto-implicit".
■ If the argument is an empty string, the Validator performs a default validation. If the

argument is "xml", the Validator validates the document as XML.
■ If the argument is "auto-explicit" or "auto-implicit", Dreamweaver performs

an automatic validation (also known as an inline validation), which underlines errors
in the Code view instead of opening the Validation results window (see
“dom.source.getValidationErrorsForOffset()” on page 533 and
“dom.getAutoValidationCount()” on page 525).

■ If the controlString argument is "auto-explicit", Dreamweaver will prompt the
user to save an unsaved document before running the validation.

■ If the controlString argument is "auto-implicit", the validation will fail without
notifying the user that the current document is unsaved.

■ The bOpenResultsWindow argument is an optional Boolean value: true opens the
Validation results window; false otherwise. The default value is true.

■ The bShowInfoMessage argument is used only when the controlString argument is
defined as "auto-explicit" or "auto-implicit". The bShowInfoMessage argument is
a Boolean value: true shows an informational message under the toolbar item,
DW_ValidatorErrors, with the number of errors found; false displays nothing. The
default value is false.

Returns

The Validation results window object.

N
O

T
E

An automatic validation (defined by the controlString value "auto-explicit" or
"auto-implicit") is currently available only for a Target Browser Check.
Global document functions 323

000_DW_API_Print.book Page 324 Wednesday, July 20, 2005 11:58 AM
Example

The following example runs a regular validation when the user selects the File > Check Page >
Validate Markup menu option (or Validate Current Document in the Validation panel):
dw.getDocumentDOM().runValidation('');

The following example prompts the user to save an unsaved document, runs an automatic
validation, does not open the Validation results window, but does show the total number of
errors over the document toolbar button for DW_ValidatorErrors:
dw.getDocumentDOM().runValidation('auto-explicit', false, true);

The following example does not prompt the user to save an unsaved document. If the
document has not been saved, the validation will not start. If the document has been saved,
Dreamweaver runs an automatic validation, does not open the Validation results window, and
does not indicate the total number of errors encountered on the document toolbar:
dw.getDocumentDOM().runValidation('auto-implicit', false);

dom.showInfoMessagePopup()

Availability

Dreamweaver MX 2004.

Description

Shows a tooltip-like message in the document window or under a toolbar item.

Arguments
location, message, timeout

■ The location argument is a string that specifies a toolbar item, or is an empty string, or
is one of the following keywords: "top", "topright", "right", "bottomright",
"bottom", "bottomleft", "left", or "topleft". The tooltip is placed against the
specified edge or corner and is centered. An empty string causes it to be centered in the
document. To specify a toolbar item, use "toolbar:toolbarID:itemID", where the
toolbar ID and toolbar item ID match the IDs in the toolbars.xml file.

■ The message argument is a string that contains the message.
■ The timeout argument is a number that specifies the milliseconds for which to display

the message. The default is 0. If the value is 0, the message stays indefinitely.
Dreamweaver automatically dismisses it if the user clicks it or switches documents, or if
the time out expires.

Returns

Nothing.
324 Document

000_DW_API_Print.book Page 325 Wednesday, July 20, 2005 11:58 AM
Example

The following example displays two tooltip messages. The first line of code displays the
message "This message is in the center" in the center of the document. The second call
to showInfoMessagePopup() displays the tooltip message "Don’t forget the title for
the Window" for the Title text edit box, which has the ID DW_SetTitle, on the toolbar with
the ID DW_Toolbar_Main.
dw.getDocumentDOM.showInfoMessagePopup('', 'This message is in the center',

5000);
dw.getDocumentDOM.showInfoMessagePopup('toolbar:DW_Toolbar_Main:DW_SetTitle

', 'Don't forget the title for the window', 5000);

See also

“dom.hideInfoMessagePopup()” on page 322.

dom.showPagePropertiesDialog()

Availability

Dreamweaver 3.

Description

Opens the Page Properties dialog box.

Arguments

None.

Returns

Nothing.

dreamweaver.doURLDecoding()

Availability

Dreamweaver MX.

Description

Uses the internal Dreamweaver URL decoding mechanism to decode special characters and
symbols in URL strings. For example, this function decodes %20 to a space character and the
name " to ".
Global document functions 325

000_DW_API_Print.book Page 326 Wednesday, July 20, 2005 11:58 AM
Arguments
inStr

■ The inStr argument is the string to decode.

Returns

A string that contains the decoded URL.

Example

The following example calls dw.doURLDecoding() to decode the special characters in its
argument and store the resulting string in outstr:
outStr = dreamweaver.doURLDecoding(“http://maps.yahoo.com/py/

ddResults.py?Pyt=Tmap&tarname=&tardesc=&newname=&newdesc=&newHash=&newTH
ash=&newSts=&newTSts=&tlt=&tln=&slt=&sln=&newFL=Use+Address+Below&newadd
r=2000+Shamrock+Rd&newcsz=Metroo+Park%2C+CA&newcountry=us&newTFL=Use+Add
ress+Below&newtaddr=500+El+Camino&newtcsz=Santa+Clara%2C+CA&newtcountry=
us&Submit=Get+Directions”)

dreamweaver.getElementRef()

Availability

Dreamweaver 2.

Description

Gets the Netscape Navigator or Internet Explorer object reference for a specific tag object in
the DOM tree.

Arguments
NSorIE, tagObject

■ The NSorIE argument must be either "NS 4.0" or "IE 4.0". The DOM and rules for
nested references differ in Netscape Navigator 4.0 and Internet Explorer 4.0. This
argument specifies for which browser to return a valid reference.

■ The tagObject argument is a tag object in the DOM tree.

Returns

A string that represents a valid JavaScript reference to the object, such as
document.layers['myLayer']. The string is subject to the following conditions:

■ Dreamweaver returns correct references for Internet Explorer for A, AREA, APPLET, EMBED,
DIV, SPAN, INPUT, SELECT, OPTION, TEXTAREA, OBJECT, and IMG tags.
326 Document

000_DW_API_Print.book Page 327 Wednesday, July 20, 2005 11:58 AM
■ Dreamweaver returns correct references for Netscape Navigator for A, AREA, APPLET,
EMBED, LAYER, ILAYER, SELECT, OPTION, TEXTAREA, OBJECT, and IMG tags, and for
absolutely positioned DIV and SPAN tags. For DIV and SPAN tags that are not absolutely
positioned, Dreamweaver returns "cannot reference <tag>".

■ Dreamweaver does not return references for unnamed objects. If an object does not
contain either a NAME or an ID attribute, Dreamweaver returns "unnamed <tag>". If the
browser does not support a reference by name, Dreamweaver references the object by
index (for example, document.myform.applets[3]).

■ Dreamweaver returns references for named objects that are contained in unnamed forms
and layers (for example, document.forms[2].myCheckbox).

dreamweaver.getObjectRefs() (deprecated)

Availability

Dreamweaver 1; deprecated in 3.

Description

This function scans the specified document for instances of the specified tags or, if no tags are
specified, for all tags in the document and formulates browser-specific references to those tags.
This function is equivalent to calling getElementsByTagName() and then calling
dreamweaver.getElementRef() for each tag in the nodelist.

Arguments
NSorIE, sourceDoc, {tag1}, {tag2},...{tagN}

■ The NSorIE argument must be either "NS 4.0" or "IE 4.0". The DOM and rules for
nested references differ in Netscape Navigator 4.0 and Internet Explorer 4.0. This
argument specifies for which browser to return a valid reference.

■ The sourceDoc argument must be "document", "parent", "parent.frames[number]",
"parent.frames['frameName']", or a URL. The document value specifies the
document that has the focus and contains the current selection. The parent value
specifies the parent frameset (if the currently selected document is in a frame), and
parent.frames[number] and parent.frames['frameName'] specify a document that
is in a particular frame within the frameset that contains the current document. If the
argument is a relative URL, it is relative to the extension file.

■ The third and subsequent arguments, if supplied, are the names of tags (for example,
"IMG", "FORM", or "HR").
Global document functions 327

000_DW_API_Print.book Page 328 Wednesday, July 20, 2005 11:58 AM
Returns

An array of strings where each array is a valid JavaScript reference to a named instance of the
requested tag type in the specified document (for example,
"document.myLayer.document.myImage") for the specified browser:

■ Dreamweaver returns correct references for Internet Explorer for A, AREA, APPLET, EMBED,
DIV, SPAN, INPUT, SELECT, OPTION, TEXTAREA, OBJECT, and IMG tags.

■ Dreamweaver returns correct references for Netscape Navigator for A, AREA, APPLET,
EMBED, LAYER, ILAYER, SELECT, OPTION, TEXTAREA, OBJECT, and IMG tags, and for
absolutely positioned DIV and SPAN tags. For DIV and SPAN tags that are not absolutely
positioned, Dreamweaver returns "cannot reference <tag>".

■ Dreamweaver does not return references for unnamed objects. If an object does not
contain either a NAME or an ID attribute, Dreamweaver returns "unnamed <tag>". If the
browser does not support a reference by name, Dreamweaver references the object by
index (for example, document.myform.applets[3]).

■ Dreamweaver does return references for named objects that are contained in unnamed
forms and layers (for example, document.forms[2].myCheckbox).

When the same list of arguments passes to getObjectTags(), the two functions return arrays
of the same length and with parallel content.

dreamweaver.getObjectTags() (deprecated)

Availability

Dreamweaver1; deprecated in 3.

Description

This function scans the specified document for instances of the specified tags or, if no tags are
specified, for all tags in the document. This function is equivalent to calling
getElementsByTagName() and then getting outerHTML for each element in the nodelist.
328 Document

000_DW_API_Print.book Page 329 Wednesday, July 20, 2005 11:58 AM
Arguments
sourceDoc, {tag1}, {tag2},...{tagN}

■ The sourceDoc argument must be "document", "parent", "parent.frames[number]",
"parent.frames['frameName']", or a URL. The document value specifies the
document that has the focus and contains the current selection. The parent value
specifies the parent frameset (if the currently selected document is in a frame), and
parent.frames[number] and parent.frames['frameName'] specify a document that
is in a particular frame within the frameset that contains the current document. If the
argument is a relative URL, it is relative to the extension file.

■ The second and subsequent arguments, if supplied, are the names of tags (for example,
"IMG", "FORM", "HR").

Returns

An array of strings where each array is the source code for an instance of the requested tag type
in the specified document.

■ If one of the tag arguments is LAYER, the function returns all LAYER and ILAYER tags and
all absolutely positioned DIV and SPAN tags.

■ If one of the tag arguments is INPUT, the function returns all form elements. To get a
particular type of form element, specify INPUT/TYPE, where TYPE is button, text,
radio, checkbox, password, textarea, select, hidden, reset, or submit.

When the same list of arguments passes to getObjectRefs(), the two functions return arrays
of the same length.

Example

dreamweaver.getObjectTags("document", "IMG"), depending on the contents of the
active document, might return an array with the following items:
■ ""
■ ""
■ ""

dreamweaver.getPreferenceInt()

Availability

Dreamweaver MX.

Description

Lets you retrieve an integer preference setting for an extension.
Global document functions 329

000_DW_API_Print.book Page 330 Wednesday, July 20, 2005 11:58 AM
Arguments
section, key, default_value

■ The section argument is a string that specifies the preferences section that contains the
entry.

■ The key argument is a string that specifies the entry of the value to retrieve.
■ The default_value argument is the default value that Dreamweaver returns if it cannot

find the entry. This value must be an unsigned integer in the range 0 through 65,535 or a
signed integer in the range -32,768 through 32,767.

Returns

Integer value of the specified entry in the specified section or the default value if the function
does not find the entry. Returns 0 if the value of the specified entry is not an integer.

Example

The following example returns the integer value of the Snap Distance setting in the My
Extension section of Preferences. If there is no MyExtension section or no Snap Distance
entry, the function returns the specified default value of 0.
var snapDist; //default value if entry not found
snapDist = dreamweaver.getPreferenceInt("My Extension", "Snap Distance",

0);

dreamweaver.getPreferenceString()

Availability

Dreamweaver MX.

Description

Lets you retrieve a string preference setting that you stored for an extension.

Arguments
section, key, default_value

■ The section argument is a string that specifies the preferences section that contains the
entry.

■ The key argument is a string that specifies the value to retrieve.
■ The default_value argument is the default string value that Dreamweaver returns if it

cannot find the entry.

N
O

T
E

To access the preferences for sites, you must have version 7.0.1. Check dw.appVersion
for the correct version before accessing site information.
330 Document

000_DW_API_Print.book Page 331 Wednesday, July 20, 2005 11:58 AM
Returns

The requested preference string, or if the string cannot be found, the default value.

Example

The following example returns the String value of the Text Editor setting in the My Extension
section of Preferences. If there is no MyExtension section or no Text Editor entry, the
function returns the default value specified by the variable txtEditor.
var txtEditor = getExternalTextEditor(); //set default text Editor value
txtEditor = dreamweaver.getPreferenceString("My Extension", "Text Editor",

txtEditor);

dreamweaver.setPreferenceInt()

Availability

Dreamweaver MX.

Description

Lets you set an integer preference setting for an extension. This setting is stored with
Dreamweaver preferences when Dreamweaver is not running.

Arguments
section, key, new_value

■ The section argument is a string that specifies the preferences category in which the
option is set. If the category does not exist, Dreamweaver creates it.

■ The key argument is a string that specifies the category option that the function sets. If
the option does not exist, Dreamweaver creates it.

■ The new_value argument is an integer that specifies the value of the category option.

Returns

A true value if successful; false otherwise.

Example

The following example sets the Snap Distance entry to the value of the variable snapDist in
the My Extension category of Preferences:
var snapDist = getSnapDistance();
if(snapDist > 0)
{

dreamweaver.setPreferenceInt("My Extension", "Snap Distance", snapDist);
}

Global document functions 331

000_DW_API_Print.book Page 332 Wednesday, July 20, 2005 11:58 AM
dreamweaver.setPreferenceString()

Availability

Dreamweaver MX.

Description

Lets you write a string preference setting for an extension. This setting is stored with
Dreamweaver preferences when Dreamweaver is not running.

Arguments
section, key, new_value

■ The section argument is a string that specifies the Preferences category in which the
option is set. If the category does not exist, Dreamweaver creates it.

■ The key argument is a string that specifies the category option that the functions sets. If
the category option does not exist, Dreamweaver creates it.

■ The new_value argument is a string that specifies the value of the category option.

Returns

A true value if successful; false otherwise.

Example
var txtEditor = getExternalTextEditor();
dreamweaver.setPreferenceString("My Extension", "Text Editor", txtEditor);

dreamweaver.showTargetBrowsersDialog()

Availability

Dreamweaver MX 2004.

Description

Opens the Target Browsers dialog box. The Target Browsers dialog box lets a user specify
which browser versions the Browser Target Check feature should use for checking the current
page’s browser compatibility issues.

Arguments

None.

N
O

T
E

To access the preferences for sites, you must have version 7.0.1. Check dw.appVersion
for the correct version before accessing site information.
332 Document

000_DW_API_Print.book Page 333 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

Path functions
Path functions get and manipulate the paths to various files and folders on a user’s hard disk.
These functions determine the path to the root of the site in which the current document
resides, convert relative paths to absolute URLs, and more.

dreamweaver.getConfigurationPath()

Availability

Dreamweaver 2.

Description

Gets the path to the Dreamweaver Configuration folder, which is expressed as a file:// URL.

For information on how Dreamweaver accesses Configuration folders on a multiuser
platform, see “C-Level Extensibility” in Extending Dreamweaver Help.

Arguments

None.

Returns

The path to the application configurations.

Example

The following function is useful when referencing other extension files, which are stored in
the Configuration folder in the Dreamweaver application folder:
var sortCmd = dreamweaver.getConfigurationPath() + ¬
"/Commands/Sort Table.htm"
var sortDOM = dreamweaver.getDocumentDOM(sortCmd);
Path functions 333

000_DW_API_Print.book Page 334 Wednesday, July 20, 2005 11:58 AM
dreamweaver.getDocumentPath()

Availability

Dreamweaver 1.2.

Description

Gets the path of the specified document, which is expressed as a file:// URL. This function is
equivalent to calling dreamweaver.getDocumentDOM() and reading the URL property of the
return value.

Arguments
sourceDoc

■ The value of the sourceDoc argument must be "document", "parent",
"parent.frames[number]", or "parent.frames['frameName']". The "document"
value specifies the document that has the focus and contains the current selection. The
"parent" value specifies the parent frameset (if the currently selected document is in a
frame), and the "parent.frames[number]" and "parent.frames['frameName']"
values specify a document that is in a particular frame within the frameset that contains
the current document.

Returns

Either a string that contains the URL of the specified document if the file was saved or an
empty string if the file was not saved.

dreamweaver.getSiteRoot()

Availability

Dreamweaver 1.2.

Description

Gets the local root folder (as specified in the Site Definition dialog box) for the site that is
associated with the currently selected document, which is expressed as a file:// URL.

Arguments

None.

Returns

Either a string that contains the URL of the local root folder of the site where the file is saved
or an empty string if the file is not associated with a site.
334 Document

000_DW_API_Print.book Page 335 Wednesday, July 20, 2005 11:58 AM
dreamweaver.getTempFolderPath()

Availability

Dreamweaver MX.

Description

Gets the full path to a temporary folder where you can store temporary or transient files. This
function looks for a Temp folder inside the Dreamweaver Configuration folder. If the system
supports multiple users, it looks in the user’s Configuration folder. If a Temp folder does not
exist, the function creates it. Shared files that are not transient should be stored in the
Configuration/Shared folder.

Arguments

None.

Returns

The full path to the folder, which is expressed as a file:// URL.

Example

The following line of code returns the full path for the specified file. The
dw.getTempFolderPath() function does not return a slash (/) at the end of the path, as do
other Dreamweaver functions (such as dreamweaver.getSiteRoot()):
var myTempfile = dw.getTempFolderPath() + "/myTempFile.txt";

dreamweaver.relativeToAbsoluteURL()

Availability

Dreamweaver 2.

Description

Given a relative URL and a point of reference (either the path to the current document or the
site root), this function converts the relative URL to an absolute file:// URL.

Arguments
docPath, siteRoot, relURL

■ The docPath argument is the path to a document on the user’s computer (for example,
the current document), which is expressed as a file:// URL or an empty string if relURL is
a root-relative URL.
Path functions 335

000_DW_API_Print.book Page 336 Wednesday, July 20, 2005 11:58 AM
■ The siteRoot argument is the path to the site root, which is expressed as a file:// URL or
an empty string if relURL is a document-relative URL.

■ The relURL argument is the URL to convert.

Returns

An absolute URL string. The return value is generated, as described in the following list:

■ If relURL is an absolute URL, no conversion occurs, and the return value is the same
as relURL.

■ If relURL is a document-relative URL, the return value is the combination of
docPath + relURL.

■ If relURL is a root-relative URL, the return value is the combination of
siteRoot + relURL.

Selection functions
Selection functions get and set the selection in open documents. For information on getting
or setting the selection in the Site panel, see “Site functions” on page 256.

dom.getSelectedNode()

Availability

Dreamweaver 3.

Description

Gets the selected node. Using this function is equivalent to calling the dom.getSelection()
function and passing the return value to the dom.offsetsToNode() function.

Arguments

None.

Returns

The tag, text, or comment object that completely contains the specified range of characters.
336 Document

000_DW_API_Print.book Page 337 Wednesday, July 20, 2005 11:58 AM
dom.getSelection()

Availability

Dreamweaver 3.

Description

Gets the selection, which is expressed as character offsets into the document’s source code.

Arguments
{bAllowMultiple}

■ The bAllowMultiple argument, which is optional, is a Boolean value that indicates
whether the function should return multiple offsets if more than one table cell, image map
hotspot, or layer is selected.
If this argument is omitted, it defaults to false.

Returns

For simple selections, an array that contains two integers. The first integer is the character
offset of the opening of the selection. The second integer is the character offset at the closing
of the selection. If the two numbers are the same, the current selection is an insertion point.

For complex selections (multiple table cells, multiple layers, or multiple image map hotspots),
an array that contains 2n integers, where n is the number of selected items. The first integer in
each pair is the character offset of the opening of the selection (including the opening TD, DIV,
SPAN, LAYER, ILAYER, or MAP tag); the second integer in each pair is the character offset of the
closing of the selection (including the closing TD, DIV, SPAN, LAYER, ILAYER, or MAP tag). If
multiple table rows are selected, the offsets of each cell in each row return. The selection never
includes the TR tags.

dom.nodeToOffsets()

Availability

Dreamweaver 3.

Description

Gets the position of a specific node in the DOM tree, which is expressed as character offsets
into the document’s source code. It is valid for any document on a local drive.
Selection functions 337

000_DW_API_Print.book Page 338 Wednesday, July 20, 2005 11:58 AM
Arguments
node

■ The node argument must be a tag, comment, or range of text that is a node in the tree that
the dreamweaver.getDocumentDOM() function returns.

Returns

An array that contains two integers. The first integer is the character offset of the beginning of
the tag, text, or comment. The second integer is the character offset of the end of the node,
from the beginning of the HTML document.

Example

The following code selects the first image object in the current document:
var theDOM = dw.getDocumentDOM();
var theImg = theDOM.images[0];
var offsets = theDom.nodeToOffsets(theImg);
theDom.setSelection(offsets[0], offsets[1]);

dom.offsetsToNode()

Availability

Dreamweaver 3.

Description

Gets the object in the DOM tree that completely contains the range of characters between the
specified opening and closing points. It is valid for any document on a local drive.

Arguments
offsetBegin, offsetEnd

■ The offsetBegin argument specifies the offset from the beginning of the document to
the beginning of a range of characters that is an object in the DOM tree.

■ The offsetEnd argument specifies the offset from the beginning of the document to the
end of a range of characters that is an object in the DOM tree.

Returns

The tag, text, or comment object that completely contains the specified range of characters.

Example

The following code displays an alert if the selection is an image:
var offsets = dom.getSelection();
var theSelection = dreamweaver.offsetsToNode(offsets[0], ¬
338 Document

000_DW_API_Print.book Page 339 Wednesday, July 20, 2005 11:58 AM
offsets[1]);
if (theSelection.nodeType == Node.ELEMENT_NODE && ¬
theSelection.tagName == 'IMG'){

alert('The current selection is an image.');
}

dom.selectAll()

Availability

Dreamweaver 3.

Description

Performs a Select All operation.

Arguments

None.

Returns

Nothing.

dom.setSelectedNode()

Availability

Dreamweaver 3.

Description

Sets the selected node. This function is equivalent to calling the dom.nodeToOffsets()
function and passing the return value to the dom.setSelection() function.

Arguments
node, {bSelectInside}, {bJumpToNode}

■ The node argument is a text, comment, or element node in the document.
■ The bSelectInside argument, which is optional, is a Boolean value that indicates

whether to select the innterHTML of the node. This argument is relevant only if node is an
element node, and it defaults to false if it is omitted.

N
O

T
E

In most cases, this function selects all the content in the active document. In some cases
(for example, when the insertion point is inside a table), it selects only part of the active
document. To set the selection to the entire document, use dom.setSelection().
Selection functions 339

000_DW_API_Print.book Page 340 Wednesday, July 20, 2005 11:58 AM
■ The bJumpToNode argument, which is optional, is a Boolean value that indicates whether
to scroll the Document window, if necessary, to make the selection visible. If it is omitted,
this argument defaults to false.

Returns

Nothing.

dom.setSelection()

Availability

Dreamweaver 3.

Description

Sets the selection in the document.

Arguments
offsetBegin, offsetEnd

■ These arguments are the opening and closing points, respectively, for the new selection,
which is expressed as character offsets into the document’s source code. If the two
numbers are the same, the new selection is an insertion point. If the new selection is not a
valid HTML selection, it is expanded to include the characters in the first valid HTML
selection. For example, if offsetBegin and offsetEnd define the range
SRC="myImage.gif" within , the selection expands to
include the entire IMG tag.

Returns

Nothing.

dreamweaver.getSelection() (deprecated)

Availability

Dreamweaver 2; deprecated in 3. See “dom.getSelection()” on page 337.

Description

Gets the selection in the current document, which is expressed as byte offsets into the
document’s source code.

Arguments

None.
340 Document

000_DW_API_Print.book Page 341 Wednesday, July 20, 2005 11:58 AM
Returns

An array that contains two integers. The first integer is the byte offset for the beginning of the
selection; the second integer is the byte offset for the end of the selection. If the two numbers
are the same, the current selection is an insertion point.

dreamweaver.nodeExists()

Available

Dreamweaver 3.

Description

Determines whether the reference to the specified node is still good. Often when writing
extensions, you reference a node and then perform an operation that deletes it (such as setting
the innerHTML or outerHTML properties of its parent). This function lets you confirm that the
node hasn’t been deleted before you attempt to reference any of its properties or methods. The
referenced node does not need to be in the current document.

Arguments
node

■ The node argument is the node that you want to check.

Returns

A Boolean value: true if the node exists; false otherwise.

Example

The following example gets the current node, locates a table within it, and later calls
dw.nodeExists() to see if the original node still exists:
function applyFormatToSelectedTable(){

// get current selection
var selObj = dw.getDocumentDOM().getSelectedNode();

alternateRows(dwscripts.findDOMObject("presetNames").selectedIndex,
findTable());

// restore original selection, if it still exists; if not, just select the
// table.

var selArr;

if (dw.nodeExists(selObj))
selArr = dom.nodeToOffsets(selObj);
Selection functions 341

000_DW_API_Print.book Page 342 Wednesday, July 20, 2005 11:58 AM
else
selArr = dom.nodeToOffsets(findTable());

dom.setSelection(selArr[0],selArr[1]);
}

dreamweaver.nodeToOffsets() (deprecated)

Availability

Dreamweaver 2; deprecated in 3 in favor of “dom.nodeToOffsets()” on page 337.

Description

Gets the position of a specific node in the DOM tree, which is expressed as byte offsets into
the document’s source code.

Arguments
node

■ The node argument must be a tag, comment, or range of text that is a node in the tree
that the dreamweaver.getDocumentDOM() function returns.

Returns

An array that contains two integers. The first integer is the byte offset for the opening of the
tag, text, or comment; the second integer is the byte offset for the closing of the node.

dreamweaver.offsetsToNode() (deprecated)

Availability

Dreamweaver 2; deprecated in 3 in favor of “dom.offsetsToNode()” on page 338.

Description

Gets the object in the DOM tree that completely contains the range of characters between the
specified opening and closing points.

Arguments
offsetBegin, offsetEnd

■ These arguments are the opening and closing points, respectively, of a range of characters,
which is expressed as byte offsets into the document’s source code.

Returns

The tag, text, or comment object that completely contains the specified range of characters.
342 Document

000_DW_API_Print.book Page 343 Wednesday, July 20, 2005 11:58 AM
dreamweaver.selectAll()

Availability

Dreamweaver 3.

Description

Performs a Select All operation in the active document window, the Site panel or, on the
Macintosh, the text field that has focus in a dialog box or floating panel.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.canSelectAll()” on page 573.

dreamweaver.setSelection() (deprecated)

Availability

Dreamweaver 2; deprecated in 3 in favor of “dom.setSelection()” on page 340.

Description

Sets the selection in the current document. This function can move the selection only within
the current document; it cannot change the focus to a different document.

Arguments
offsetBegin, offsetEnd

■ These arguments are the opening and closing points, respectively, for the new selection,
which is expressed as byte offsets into the document’s source code. If the two numbers are
the same, the new selection is an insertion point. If the new selection is not a valid HTML
selection, it is expanded to include the characters in the first valid HTML selection. For
example, if offsetBegin and offsetEnd define the range SRC="myImage.gif" within
, the selection expands to include the entire IMG tag.

N
O

T
E

If the operation takes place in the active document, it usually selects all the content in the
active document. In some cases (for example, when the insertion point is inside a table),
however, it selects only part of the active document. To set the selection to the entire
document, use the dom.setSelection() function.
Selection functions 343

000_DW_API_Print.book Page 344 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

String manipulation functions
String manipulation functions help you get information about a string as well as convert a
string from Latin 1 encoding to platform-native encoding and back.

dreamweaver.doURLEncoding()

Availability

Dreamweaver 1.

Description

Takes a string and returns a URL-encoded string by replacing all the spaces and special
characters with specified entities.

Arguments
stringToConvert

■ The stringToConvert argument is a string that contains the unencoded URL that the
function encodes.

Returns

A URL-encoded string.

Example

The following example shows the URL.value for "My URL-encoded string":
var URL = dw.doURLEncoding(theURL.value);
returns "My%20URL-encoded%20string"

dreamweaver.getTokens()

Availability

Dreamweaver 1.

Description

Accepts a string and splits it into tokens.
344 Document

000_DW_API_Print.book Page 345 Wednesday, July 20, 2005 11:58 AM
Arguments
searchString, separatorCharacters

■ The searchString argument is the string to separate into tokens.
■ The separatorCharacters argument is the character or characters that signifies the end

of a token. Separator characters in quoted strings are ignored. Any white-space characters
that occur in separatorCharacters (such as tabs) are treated as separator characters, as if
they are explicitly specified. Two or more consecutive white space characters are treated as
a single separator.

Returns

An array of token strings.

Example

The following call to the dw.getTokens() function returns the tokens that come after it:

dreamweaver.getTokens('foo("my arg1", 34)', '(),')
■ foo
■ "my arg 1"
■ 34

dreamweaver.latin1ToNative()

Availability

Dreamweaver 2.

Description

Converts a string in Latin 1 encoding to the native encoding on the user’s computer. This
function is intended to display the UI of an extension file in another language.

Arguments
stringToConvert

■ The stringToConvert argument is the string to convert from Latin 1 encoding to
native encoding.

Returns

The converted string.

N
O

T
E

This function has no effect in Windows because Windows encodings are already based
on Latin 1.
String manipulation functions 345

000_DW_API_Print.book Page 346 Wednesday, July 20, 2005 11:58 AM
dreamweaver.nativeToLatin1()

Availability

Dreamweaver 2.

Description

Converts a string in native encoding to Latin 1 encoding.

Arguments
stringToConvert

■ The stringToConvert argument is the string to convert from native encoding to Latin 1
encoding.

Returns

The converted string.

dreamweaver.scanSourceString()

Availability

Dreamweaver UltraDev 1.

Description

Scans a string of HTML and finds the tags, attributes, directives, and text. For each tag,
attribute, directive, and text span that it finds, the scanSourceString() function invokes a
callback function that you must supply. Dreamweaver supports the following callback
functions:

■ openTagBegin()
■ openTagEnd()
■ closeTagBegin()
■ closeTagEnd()
■ directive()
■ attribute()
■ text()

N
O

T
E

This function has no effect in Windows because Windows encodings are already based
on Latin 1.
346 Document

000_DW_API_Print.book Page 347 Wednesday, July 20, 2005 11:58 AM
Dreamweaver calls the seven callback functions on the following occasions:

1. Dreamweaver calls openTagBegin() for each opening tag (for example, , as
opposed to) and each empty tag (for example, or <hr>). The
openTagBegin() function accepts two arguments: the name of the tag (for example,
"font" or "img") and the document offset, which is the number of bytes in the document
before the beginning of the tag. The function returns true if scanning should continue or
false if it should stop.

2. After openTagBegin() executes, Dreamweaver calls attribute() for each HTML
attribute. The attribute() function accepts two arguments, a string that contains the
attribute name (for example, "color" or "src") and a string that contains the attribute
value (for example, "#000000" or "foo.gif"). The attribute() function returns a
Boolean value that indicates whether scanning should continue.

3. After all the attributes in the tag have been scanned, Dreamweaver calls openTagEnd().
The openTagEnd() function accepts one argument, the document offset, which is the
number of bytes in the document before the end of the opening tag. It returns a Boolean
value that indicates whether scanning should continue.

4. Dreamweaver calls closeTagBegin() for each closing tag (for example,). The
function accepts two arguments, the name of the tag to close (for example, "font") and
the document offset, which is the number of bytes in the document before the beginning
of the closing tag. The function returns a Boolean value that indicates whether scanning
should continue.

5. After closeTagBegin() returns, Dreamweaver calls the closeTagEnd() function. The
closeTagEnd() function accepts one argument, the document offset, which is the number
of bytes in the document before the end of the closing tag. It returns a Boolean value that
indicates whether scanning should continue.

6. Dreamweaver calls the directive() function for each HTML comment, ASP script, JSP
script, or PHP script. The directive() function accepts two arguments, a string that
contains the directive and the document offset, which is the number of bytes in the
document before the end of the closing tag. The function returns a Boolean value that
indicates whether scanning should continue.

7. Dreamweaver calls the text() function for each span of text in the document (that is,
everything that is not a tag or a directive). Text spans include text that is not visible to the
user, such as the text inside a <title> or <option> tag. The text() function accepts two
arguments, a string that contains the text and the document offset, which is the number of
bytes in the document before the closing of the closing tag. The text() function returns
a Boolean value that indicates whether scanning should continue.
String manipulation functions 347

000_DW_API_Print.book Page 348 Wednesday, July 20, 2005 11:58 AM
Arguments
HTMLstr, parserCallbackObj

■ The HTMLstr argument is a string that contains code.
■ The parserCallbackObj argument is a JavaScript object that has one or more of the

following methods: openTagBegin(), openTagEnd(), closeTagBegin(),
closeTagEnd(), directive(), attribute(), and text(). For best performance,
parserCallbackObj should be a shared library that is defined using the C-Level
Extensibility interface. Performance is also improved if parserCallbackObj defines only
the callback functions that it needs.

Returns

A Boolean value: true if the operation completed successfully; false otherwise.

Example

The following sequence of steps provide an example of how to use the
dreamweaver.scanSourceString() function:

1. Create an implementation for one or more of the seven callback functions.

2. Write a script that calls the dreamweaver.scanSourceString() function.

3. The dreamweaver.scanSourceString() function passes a string that contains HTML
and pointers to the callback functions that you wrote. For example, the string of HTML is
"hello".

4. Dreamweaver analyzes the string and determines that the string contains a font tag.
Dreamweaver calls the callback functions in the following sequence:

■ The openTagBegin() function
■ The attribute() function (for the size attribute)
■ The openTagEnd() function
■ The text() function (for the "hello" string)
■ The closeTagBegin() and closeTagEnd() functions
348 Document

000_DW_API_Print.book Page 349 Wednesday, July 20, 2005 11:58 AM
Translation functions
Translation functions deal either directly with translators or with translation results. These
functions get information about or run a translator, edit content in a locked region, and
specify that the translated source should be used when getting and setting selection offsets.

dom.runTranslator()

Availability

Dreamweaver 3.

Description

This function runs the specified translator on the document. This function is valid only for
the active document.

Arguments
translatorName

■ The translatorName argument is the name of a translator as it appears in the
Translation preferences.

Returns

Nothing.

dreamweaver.editLockedRegions()

Availability

Dreamweaver 2.

Description

Depending on the value of the argument, this function makes locked regions editable or non-
editable. By default, locked regions are non-editable; if you try to edit a locked region before
specifically making it editable with this function, Dreamweaver beeps and does not allow
the change.

N
O

T
E

Editing locked regions can have unintended consequences for library items and
templates. You should not use this function outside the context of data translators.
Translation functions 349

000_DW_API_Print.book Page 350 Wednesday, July 20, 2005 11:58 AM
Arguments
bAllowEdits

■ The bAllowEdits argument is a Boolean value: true indicates that edits are allowed;
false otherwise. Dreamweaver automatically restores locked regions to their default
(non-editable) state when the script that calls this function finishes executing.

Returns

Nothing.

dreamweaver.getTranslatorList()

Availability

Dreamweaver 3.

Description

This function gets a list of the installed translators.

Arguments

None.

Returns

An array of strings where each string represents the name of a translator as it appears in the
Translation preferences.

dreamweaver.useTranslatedSource()

Availability

Dreamweaver 2.

Description

This function specifies that the values that dom.nodeToOffsets() and
dom.getSelection() return. These are used by dom.offsetsToNode() and
dom.setSelection() and should be offsets into the translated source (the HTML that is
contained in the DOM after a translator runs), not the untranslated source.

N
O

T
E

This function is relevant only in Property inspector files.
350 Document

000_DW_API_Print.book Page 351 Wednesday, July 20, 2005 11:58 AM
Arguments
bUseTranslatedSource

■ The bUseTranslatedSource argument is a Boolean value: true if the function uses
offsets into the translated source; false if the function uses the untranslated source.
The default value of the argument is false. Dreamweaver automatically uses the
untranslated source for subsequent calls to dw.getSelection(), dw.setSelection(),
dw.nodeToOffsets(), and dw.offsetsToNode() when the script that calls
dw.useTranslatedSource() finishes executing, if dw.useTranslatedSource() is not
explicitly called with an argument of false before then.

Returns

Nothing.

XSLT functions
XSLT functions deal with XML files. These functions get information about XML
documents, including the schema tree or the reference to an XML document, and prompt the
user to specify the XML document associated with the current XSLT document.

MMXSLT.getXMLSchema()

Availability

Dreamweaver 8.

Description

This function returns the schema tree for the specified XML file.

Arguments
schemaURI, {bRefresh}

■ The schemaURI argument, which is required, is a string that is a reference to a local or
remote XML file.

■ The bRefresh argument, which is optional, is a Boolean value: true forces a refresh of
the schema; false returns the copy of the schema from the XML schema cache. The
default value is false.

Returns

A string that contains the XML schema tree.
XSLT functions 351

000_DW_API_Print.book Page 352 Wednesday, July 20, 2005 11:58 AM
Example

The following example gets the schema tree from the XML schema cache for menus.xml:
var theSchema = MMXSLT.getXMLSchema("file:///c:/Program ¬
Files/Macromedia/dreamweaver/configuration/Menus/menus.xml"");

MMXSLT.getXMLSourceURI()

Availability

Dreamweaver 8.

Description

This function gets a reference to the XML source document associated with the current XSLT
document.

Arguments
xsltfileURI, {bUseTempForRemote}

■ The xsltfileURI argument is a string that is the local file URI that points to the location
of the XSL file.

■ The bUseTempForRemote argument, which is optional, is a Boolean value: true returns a
reference to the temporary XML file (for example, file:///C:/Documents and
Settings/username/Local Settings/Temporary Internet Files/Content.IE5/

GTSLQ9KZ/rss[1].xml) that is downloaded when the original XML file is remote (for
example, http://myHost/rssfeed.xml) ; false returns an absolute reference.

Returns

A string that contains the reference to the XML source document associated with the current
XSLT document. If the XML source reference is a remote reference, the function returns the
downloaded filepath to the temporary location.

Example

The following example gets the reference to the XML source document associated with
c:\myxslt\myxsltdocument.xsl:
var theXMLSource = MMXSLT.getXMLSourceURI("file:///c:/myxslt/

myxsltdocument.xsl");
352 Document

000_DW_API_Print.book Page 353 Wednesday, July 20, 2005 11:58 AM
MMXSLT.launchXMLSourceDialog()

Availability

Dreamweaver 8.

Description

This function prompts the user to specify the XML source document that is associated with
the current XSLT document. The user can choose either a local or remote reference to an
XML document.

Arguments
{xsltfileURI, bUseTempForRemote, bAddSchemaReference}

■ The xsltfileURI argument is optional. It is a string that is the local file URI that points
to the location of the XSL file. If this argument is omitted, it defaults to the current open
document.

■ The bUseTempForRemote argument, which is optional, is a Boolean value: true returns a
reference to the temporary XML file (for example, file:///C:/Documents and
Settings/username/Local Settings/Temporary Internet Files/Content.IE5/

GTSLQ9KZ/rss[1].xml) that is downloaded when the original XML file is remote (for
example, http://myHost/rssfeed.xml) ; false returns an absolute reference.

■ The bAddSchemaReference argument is optional. It adds a reference in the current
document that points to the XML source URI that is specified in the XML source dialog
box. If this argument is omitted, it defaults to the current open document.

Returns

A string that contains the reference to the XML source document associated with the current
XSLT document. If the XML source reference is a remote reference, the function returns the
downloaded filepath to the temporary location.

Example

The following example launches the XML Source Document dialog box without specifying
any values:
MMXSLT.launchXMLSourceDialog()
XSLT functions 353

000_DW_API_Print.book Page 354 Wednesday, July 20, 2005 11:58 AM
354 Document

14

000_DW_API_Print.book Page 355 Wednesday, July 20, 2005 11:58 AM
CHAPTER 14

Page Content
The page content functions perform operations that affect the content of a web page. These
operations include manipulating assets in the Assets panel, adding behaviors, cutting and
pasting elements from the Clipboard, applying a template, or inserting a code snippet.

Assets panel functions
Assets panel functions, which are programmed into the API as an asset panel, let you manage
and use the elements in the Assets panel (templates, libraries, images, Macromedia Shockwave
and Macromedia Flash content, URLs, colors, and scripts).

dreamweaver.assetPalette.addToFavoritesFromDoc
ument()

Availability

Dreamweaver 4.

Description

Adds the element that is selected in the Document window to the Favorites list. This function
handles only images, Shockwave files, Flash files, text font colors, and URLs.

Arguments

None.

Returns

Nothing.
355

000_DW_API_Print.book Page 356 Wednesday, July 20, 2005 11:58 AM
dreamweaver.assetPalette.addToFavoritesFromSite
Assets()

Availability

Dreamweaver 4.

Description

Adds elements that are selected in the Site list to the Favorites list and gives each item a
nickname in the Favorites list. This function does not remove the element from the Site list.

Arguments

None.

Returns

Nothing.

dreamweaver.assetPalette.addToFavoritesFromSite
Window()

Availability

Dreamweaver 4.

Description

Adds the elements that are selected in the Site panel or site map to the Favorites list. This
function handles only images, movies, scripts, Shockwave files, Flash files, and URLs (in the
case of the site map). If other folders or files are selected, they are ignored.

Arguments

None.

Returns

Nothing.
356 Page Content

000_DW_API_Print.book Page 357 Wednesday, July 20, 2005 11:58 AM
dreamweaver.assetPalette.copyToSite()

Availability

Dreamweaver 4.

Description

Copies selected elements to another site and puts them in that site’s Favorites list. If the
elements are files (other than colors or URLs), the actual file is copied into that site.

Arguments
targetSite

■ The targetSite argument is the name of the target site, which the site.getSites()
call returns.

Returns

Nothing.

dreamweaver.assetPalette.edit()

Availability

Dreamweaver 4.

Description

Edits selected elements with primary external editor or Custom Edit control. For colors, the
color picker appears. For URLs, a dialog box appears and prompts the user for a URL and a
nickname. This function is not available for the Site list of colors and URLs.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.assetPalette.canEdit()” on page 563.
Assets panel functions 357

000_DW_API_Print.book Page 358 Wednesday, July 20, 2005 11:58 AM
dreamweaver.assetPalette.getSelectedCategory()

Availability

Dreamweaver 4.

Description

Returns the currently selected category.

Arguments

None.

Returns

The currently selected category, which can be one of the following: "templates",
"library", "images", "movies", "shockwave", "flash", "scripts", "colors", or
"urls".

dreamweaver.assetPalette.getSelectedItems()

Availability

Dreamweaver 4.

Description

Returns an array of the selected items in the Assets panel, either in the Site or Favorites list.

Arguments

None.

Returns

An array of the following three strings for each selected item:

■ The name string, which is the name/filename or nickname that appears in the Assets
panel.

■ The value string, which is the full path, full URL, or color value, depending on the
selected item.

■ The type string, which is either "folder" or one of the following categories:
"templates", "library", "images", "movies", "shockwave", "flash", "scripts",
"colors", or "urls".

N
O

T
E

If nothing is selected in the Assets panel, this function returns an array that contains one
empty string.
358 Page Content

000_DW_API_Print.book Page 359 Wednesday, July 20, 2005 11:58 AM
Example

If URLs is the category, and a folder MyFolderName and a URL MyFavoriteURL are both
selected in the Favorites list, the function returns the following list:
items[0] = "MyFolderName"
items[1] = "//path/FolderName"
items[2] = "folder"
items[3] = "MyFavoriteURL"
items[4] = "http://www.MyFavoriteURL.com"
items[5] = "urls"

dreamweaver.assetPalette.getSelectedView()

Availability

Dreamweaver 4.

Description

Indicates which list is currently shown in the Assets panel.

Arguments

None.

Returns

Returns a string that has a value of either "site" or "favorites".

dreamweaver.assetPalette.insertOrApply()

Availability

Dreamweaver 4.

Description

Inserts selected elements or applies the element to the current selection. It applies templates,
colors, and URLs to the selection; it also inserts URLs and other elements at the insertion
point. If a document isn’t open, the function is not available.

Arguments

None.

Returns

Nothing.
Assets panel functions 359

000_DW_API_Print.book Page 360 Wednesday, July 20, 2005 11:58 AM
Enabler

See “dreamweaver.assetPalette.canInsertOrApply()” on page 564.

dreamweaver.assetPalette.locateInSite()

Availability

Dreamweaver 4.

Description

Selects files that are associated with the selected elements in the local side of the Site panel.
This function does not work for colors or URLs. It is available in the Site list and the Favorites
list. If a folder is selected in the Favorites list, the folder is ignored.

Arguments

None.

Returns

Nothing.

dreamweaver.assetPalette.newAsset()

Availability

Dreamweaver 4.

Description

Creates a new element for the current category in the Favorites list. For library and templates,
this is a new blank library or template file that the user can name immediately. For colors, the
color picker appears. For URLs, a dialog box appears and prompts the user for a URL and a
nickname. This function is not available for images, Shockwave files, Flash files, or scripts.

Arguments

None.

Returns

Nothing.
360 Page Content

000_DW_API_Print.book Page 361 Wednesday, July 20, 2005 11:58 AM
dreamweaver.assetPalette.newFolder()

Availability

Dreamweaver 4.

Description

Creates a new folder in the current category with the default name (untitled) and puts a text
box around the default name. It is available only in the Favorites list.

Arguments

None.

Returns

Nothing.

dreamweaver.assetPalette.recreateLibraryFromDoc
ument()

Availability

Dreamweaver 4.

Description

Replaces the deprecated libraryPalette function, recreateLibraryFromDocument(). It
creates a Library item (LBI) file for the selected instance of a library item in the current
document. This function is equivalent to clicking Recreate in the Property inspector.

Arguments

None.

Returns

Nothing.

dreamweaver.assetPalette.refreshSiteAssets()

Availability

Dreamweaver 4.

Description

Scans the site, switches to the Site list, and populates the list.
Assets panel functions 361

000_DW_API_Print.book Page 362 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

Nothing.

dreamweaver.assetPalette.removeFromFavorites()

Availability

Dreamweaver 4.

Description

Removes the selected elements from the Favorites list. This function does not delete the actual
file on disk, except in the case of a library or template where the user is prompted before the
file is deleted. It works only in the Favorites list or if the category is Library or Templates.

Arguments

None.

Returns

Nothing.

dreamweaver.assetPalette.renameNickname()

Availability

Dreamweaver 4.

Description

Edits the folder name or the file’s nickname by displaying a text box around the existing
nickname. It is available only in the Favorites list or in the Library or Template category.

Arguments

None.

Returns

Nothing.
362 Page Content

000_DW_API_Print.book Page 363 Wednesday, July 20, 2005 11:58 AM
dreamweaver.assetPalette.setSelectedCategory()

Availability

Dreamweaver 4.

Description

Switches to show a different category.

Arguments
categoryType

■ The categoryType argument can be one of the following categories: "templates",
"library", "images", "movies", "shockwave", "flash", "scripts", "colors", or
"urls".

Returns

Nothing.

dreamweaver.assetPalette.setSelectedView()

Availability

Dreamweaver 4.

Description

Switches the display to show either the Site list or the Favorites list.

Arguments
viewType

■ The viewType argument is a string that can be "site" or "favorites".

Returns

Nothing.

dreamweaver.libraryPalette.deleteSelectedItem()
(deprecated)

Availability

Dreamweaver 3; deprecated in Dreamweaver 4 in favor of using
dreamweaver.assetPalette.setSelectedCategory(), and then calling
dreamweaver.assetPalette.removeFromFavorites().
Assets panel functions 363

000_DW_API_Print.book Page 364 Wednesday, July 20, 2005 11:58 AM
Description

This function removes the selected library item from the Library panel and deletes its
associated Dreamweaver LBI file from the Library folder at the root of the current site.
Instances of the deleted item might still exist in pages throughout the site.

Arguments

None.

Returns

Nothing.

dreamweaver.libraryPalette.getSelectedItem()
(deprecated)

Availability

Dreamweaver 3; deprecated in 4 in favor of dreamweaver.assetPalette.getSelectedItems().

Description

This function gets the path of the selected library item.

Arguments

None.

Returns

A string that contains the path of the library item, which is expressed as a file:// URL.

dreamweaver.libraryPalette.newFromDocument()
(deprecated)

Availability

Dreamweaver 3; deprecated in Dreamweaver 4 in favor of using
dreamweaver.assetPalette.setSelectedCategory(), and then calling
dreamweaver.assetPalette.newAsset().

Description

This function creates a new library item based on the selection in the current document.
364 Page Content

000_DW_API_Print.book Page 365 Wednesday, July 20, 2005 11:58 AM
Arguments
bReplaceCurrent

■ The bReplaceCurrent argument is a Boolean value that indicates whether to replace the
selection with an instance of the newly created library item.

Returns

Nothing.

dreamweaver.libraryPalette.recreateFromDocument()
(deprecated)

Availability

Dreamweaver 3; deprecated in Dreamweaver 4 in favor of
dreamweaver.assetPalette.recreateLibraryFromDocument().

Description

This function creates an LBI file for the selected instance of a library item in the current
document. This function is equivalent to clicking Recreate in the Property inspector.

Arguments

None.

Returns

Nothing.

dreamweaver.libraryPalette.renameSelectedItem()
(deprecated)

Availability

Dreamweaver 3; deprecated in Dreamweaver 4 in favor of using
dreamweaver.assetPalette.setSelectedCategory() with "library" as the argument value, and
then calling dreamweaver.assetPalette.renameNickname().

Description

This function turns the name of the selected library item into a text field, so the user can
rename the selection.
Assets panel functions 365

000_DW_API_Print.book Page 366 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

Nothing.

dreamweaver.referencePalette.getFontSize()

Availability

Dreamweaver 4.

Description

Returns the current font size of the Reference panel display region.

Arguments

None.

Returns

The relative font size as small, medium, or large.

dreamweaver.referencePalette.setFontSize()

Availability

Dreamweaver 4.

Description

Changes the font size that appears in the Reference panel.

Arguments
fontSize

■ The fontSize argument is one of the following relative sizes: small, medium, or large.

Returns

Nothing.
366 Page Content

000_DW_API_Print.book Page 367 Wednesday, July 20, 2005 11:58 AM
dreamweaver.templatePalette.deleteSelected
Template() (deprecated)

Availability

Dreamweaver 3; deprecated in Dreamweaver 4 in favor of using
dreamweaver.assetPalette.setSelectedCategory() with "templates" as the argument value,
and then calling dreamweaver.assetPalette.removeFromFavorites().

Description

This function deletes the selected template from the Templates folder.

Arguments

None.

Returns

Nothing.

dreamweaver.templatePalette.getSelected
Template() (deprecated)

Availability

Dreamweaver 3; deprecated in 4 in favor of dreamweaver.assetPalette.getSelectedItems().

Description

This function gets the path of the selected template.

Arguments

None.

Returns

A string that contains the path of the template, which is expressed as a file:// URL.
Assets panel functions 367

000_DW_API_Print.book Page 368 Wednesday, July 20, 2005 11:58 AM
dreamweaver.templatePalette.renameSelectedTemp
late() (deprecated)

Availability

Dreamweaver 3; deprecated in Dreamweaver 4 in favor of using
dreamweaver.assetPalette.setSelectedCategory() with "templates" as the argument value,
and then calling dreamweaver.assetPalette.renameNickname().

Description

This function turns the name of the selected template into a text field, so the user can rename
the selection.

Arguments

None.

Returns

Nothing.

Behavior functions
Behavior functions let you add behaviors to and remove them from an object, find out which
behaviors are attached to an object, get information about the object to which a behavior is
attached, and so on. Methods of the dreamweaver.behaviorInspector object either control
or act on only the selection in the Behaviors panel, not the selection in the current document.

dom.addBehavior()

Availability

Dreamweaver 3.

Description

Adds a new event/action pair to the selected element. This function is valid only for the
active document.

Arguments
event, action, {eventBasedIndex}

■ The event argument is the JavaScript event handler that should attach the behavior to the
element (for example, onClick, onMouseOver, or onLoad).
368 Page Content

000_DW_API_Print.book Page 369 Wednesday, July 20, 2005 11:58 AM
■ The action argument is the function call that applyBehavior() returns if the action is
added using the Behaviors panel (for example, "MM_popupMsg('Hello World')").

■ The eventBasedIndex argument, which is optional, is the position at which this action
should be added. The eventBasedIndex argument is a zero-based index; if two actions
already are associated with the specified event, and you specify eventBasedIndex as 1,
this action executes between the other two. If you omit this argument, the action is added
after all existing actions for the specified event.

Returns

Nothing.

dom.getBehavior()

Availability

Dreamweaver 3.

Description

Gets the action at the specified position within the specified event. This function acts on the
current selection and is valid only for the active document.

Arguments
event, {eventBasedIndex}

■ The event argument is the JavaScript event handler through which the action is attached
to the element (for example, onClick, onMouseOver, or onLoad).

■ The eventBasedIndex argument, which is optional, is the position of the action to get.
For example, if two actions are associated with the specified event, 0 is first and 1 is
second. If you omit this argument, the function returns all the actions for the specified
event.

Returns

A string that represents the function call (for example,
"MM_swapImage('document.Image1','document.Image1','foo.gif','#933292969950'

)") or an array of strings if eventBasedIndex is omitted.

dom.reapplyBehaviors()

Availability

Dreamweaver 3.
Behavior functions 369

000_DW_API_Print.book Page 370 Wednesday, July 20, 2005 11:58 AM
Description

Checks to make sure that the functions that are associated with any behavior calls on the
specified node are in the HEAD section of the document and inserts them if they are missing.

Arguments
elementNode

■ The elementNode argument is an element node within the current document. If you omit
the argument, Dreamweaver checks all element nodes in the document for orphaned
behavior calls.

Returns

Nothing.

dom.removeBehavior()

Availability

Dreamweaver 3.

Description

Removes the action at the specified position within the specified event. This function acts on
the current selection and is valid only for the active document.

Arguments
event, {eventBasedIndex}

■ The event argument is the event handler through which the action is attached to the
element (for example, onClick, onMouseOver, or onLoad). If you omit this argument, all
actions are removed from the element.

■ The eventBasedIndex argument, which is optional, is the position of the action to be
removed. For example, if two actions are associated with the specified event, 0 is first and
1 is second. If you omit this argument, all the actions for the specified event are removed.

Returns

Nothing.

dreamweaver.getBehaviorElement()

Availability

Dreamweaver 2.
370 Page Content

000_DW_API_Print.book Page 371 Wednesday, July 20, 2005 11:58 AM
Description

Gets the DOM object that corresponds to the tag to which the behavior is being applied. This
function is applicable only in Behavior action files.

Arguments

None.

Returns

A DOM object or a null value. This function returns a null value under the
following circumstances:

■ When the current script is not executing within the context of the Behaviors panel
■ When the Behaviors panel is being used to edit a behavior in a timeline
■ When the currently executing script is invoked by dreamweaver.popupAction()
■ When the Behaviors panel is attaching an event to a link wrapper and the link wrapper

does not yet exist
■ When this function appears outside of an action file

Example

The dreamweaver.getBehaviorElement() function can be used in the same way as
dreamweaver.getBehaviorTag() to determine whether the selected action is appropriate for the
selected HTML tag, except that it gives you access to more information about the tag and its
attributes. As shown in the following example, if you write an action that can be applied only
to a hypertext link (A HREF) that does not target another frame or window, you can use the
getBehaviorElement() function as part of the function that initializes the user interface for
the Parameters dialog box:
function initializeUI(){

var theTag = dreamweaver.getBehaviorElement();
var CANBEAPPLIED = (theTag.tagName == "A" && ¬
theTag.getAttribute("HREF") != null && ¬
theTag.getAttribute("TARGET") == null);
if (CANBEAPPLIED) {

// display the action UI
} else{

// display a helpful message that tells the user
// that this action can only be applied to a
// hyperlink without an explicit target]

}
}

Behavior functions 371

000_DW_API_Print.book Page 372 Wednesday, July 20, 2005 11:58 AM
dreamweaver.getBehaviorEvent() (deprecated)

Availability

Dreamweaver 1.2; deprecated in Dreamweaver 2 because actions are now selected
before events.

Description

In a Behavior action file, this function gets the event that triggers this action.

Arguments

None.

Returns

A string that represents the event. This is the same string that is passed as an argument
(event) to the canAcceptBehavior() function.

dreamweaver.getBehaviorTag()

Availability

Dreamweaver 1.2.

Description

Gets the source of the tag to which the behavior is being applied. This function is applicable
only in action files.

Arguments

None.

Returns

A string that represents the source of the tag. This is the same string that passes as an
argument (HTMLelement) to the canAcceptBehavior() function. If this function appears
outside an action file, the return value is an empty string.

Example

If you write an action that can be applied only to a hypertext link (A HREF), you can use the
getBehaviorTag() function, as the following example shows, in the function that initializes
the user interface for the Parameters dialog box:
function initializeUI(){

var theTag = dreamweaver.getBehaviorTag().toUpperCase();
var CANBEAPPLIED = (theTag.indexOf('HREF') != -1));
372 Page Content

000_DW_API_Print.book Page 373 Wednesday, July 20, 2005 11:58 AM
if (CANBEAPPLIED) {
// display the action UI

} else{
// display a helpful message that tells the user
// that this action can only be applied to a
// hyperlink

}
}

dreamweaver.popupAction()

Availability

Dreamweaver 2.

Description

Invokes a Parameters dialog box for the specified behavior action. To the user, the effect is the
same as selecting the action from the Actions pop-up menu in the Behaviors panel. This
function lets extension files other than actions attach behaviors to objects in the user’s
document. It blocks other edits until the user dismisses the dialog box.

Arguments
actionName, {funcCall}

■ The actionName argument is a string that contains the name of a file in the
Configuration/Behaviors/Actions folder that contains a JavaScript behavior action (for
example, "Timeline/Play Timeline.htm").

■ The funcCall argument, which is optional, is a string that contains a function call for the
action that is specified in actionName; for example, "MM_playTimeline(...)". This
argument, if specified, is supplied by the applyBehavior() function in the action file.

Returns

The function call for the behavior action. When the user clicks OK in the Parameters dialog
box, the behavior is added to the current document (the appropriate functions are added to
the HEAD section of the document, HTML might be added to the top of the BODY section, and
other edits might be made to the document). The function call (for example,
"MM_playTimeline(...)") is not added to document but becomes the return value of this
function.

N
O

T
E

This function can be called within the objectTag() function or in any script in a
command file or in the Property inspector file.
Behavior functions 373

000_DW_API_Print.book Page 374 Wednesday, July 20, 2005 11:58 AM
dreamweaver.behaviorInspector.getBehaviorAt()

Availability

Dreamweaver 3.

Description

Gets the event/action pair at the specified position in the Behaviors panel.

Arguments
positionIndex

■ The positionIndex argument is the position of the action in the Behaviors panel. The
first action in the list is at position 0.

Returns

An array of two items:

■ An event handler
■ A function call or JavaScript statement

Example

Because positionIndex is a zero-based index, if the Behaviors panel displays the list, a call to
the dreamweaver.behaviorInspector.getBehaviorAt(2) function returns an array that
contains two strings: "onMouseOver" and
"MM_changeProp('document.moon','document.moon','src','sun.gif','MG')".

dreamweaver.behaviorInspector.getBehaviorCount()

Availability

Dreamweaver 3.

Description

Counts the number of actions that are attached to the currently selected element through
event handlers.

Arguments

None.
374 Page Content

000_DW_API_Print.book Page 375 Wednesday, July 20, 2005 11:58 AM
Returns

An integer that represents the number of actions that are attached to the element. This
number is equivalent to the number of actions that are visible in the Behaviors panel and
includes Dreamweaver behavior actions and custom JavaScript.

Example

A call to dreamweaver.behaviorInspector.getBehaviorCount() for the selected link <A
HREF="javascript:setCookie()" onClick="MM_popupMsg('A cookie has been

set.');parent.rightframe.location.href='aftercookie.html'"> returns 2.

dreamweaver.behaviorInspector.getSelectedBehavior()

Availability

Dreamweaver 3.

Description

Gets the position of the selected action in the Behaviors panel.

Arguments

None.

Returns

An integer that represents the position of the selected action in the Behaviors panel, or –1 if
no action is selected.

Example

If the first action in the Behaviors panel is selected, as shown in the following figure, a call to
the dreamweaver.behaviorInspector.getSelectedBehavior() function returns 0:
Behavior functions 375

000_DW_API_Print.book Page 376 Wednesday, July 20, 2005 11:58 AM
dreamweaver.behaviorInspector.moveBehaviorDown()

Availability

Dreamweaver 3.

Description

Moves a behavior action lower in sequence by changing its execution order within the scope of
an event.

Arguments
positionIndex

■ The positionIndex argument is the position of the action in the Behaviors panel. The
first action in the list is at position 0.

Returns

Nothing.

Example

If the Behaviors panel is set up as shown in the following figure, calling the
dreamweaver.behaviorInspector.moveBehaviorDown(2) function swaps the positions of
the Preload Images and the Change Property actions on the onMouseDown event. Calling the
dreamweaver.behaviorInspector.moveBehaviorDown() function for any other position
has no effect because the onClick and onFocus events each have only one associated
behavior, and the behavior at position 3 is already at the bottom of the onMouseDown event
group.
376 Page Content

000_DW_API_Print.book Page 377 Wednesday, July 20, 2005 11:58 AM
dreamweaver.behaviorInspector.moveBehaviorUp()

Availability

Dreamweaver 3.

Description

Moves a behavior higher in sequence by changing its execution order within the scope of an
event.

Arguments
positionIndex

■ The positionIndex argument is the position of the action in the Behaviors panel. The
first action in the list is at position 0.

Returns

Nothing.

Example

If the Behaviors panel is set up as shown in the following figure, calling the
dreamweaver.behaviorInspector.moveBehaviorUp(3) function swaps the positions of
the Preload Images and the Change Property actions on the onMouseOver event. Calling the
dreamweaver.behaviorInspector.moveBehaviorUp() function for any other position has
no effect because the onClick and onFocus events each have only one associated behavior,
and the behavior at position 2 is already at the top of the onMouseDown event group.
Behavior functions 377

000_DW_API_Print.book Page 378 Wednesday, July 20, 2005 11:58 AM
dreamweaver.behaviorInspector.setSelectedBehavior()

Availability

Dreamweaver 3.

Description

Selects the action at the specified position in the Behaviors panel.

Arguments
positionIndex

■ The positionIndex argument is the position of the action in the Behaviors panel. The
first action in the list is at position 0. To deselect all actions, specify a positionIndex of –
1. Specifying a position for which no action exists is equivalent to specifying –1.

Returns

Nothing.

Example

If the Behaviors panel is set up as shown in the following figure, calling the
dreamweaver.behaviorInspector.setSelection(2) function selects the Change Property
action that is associated with the onMouseDown event:
378 Page Content

000_DW_API_Print.book Page 379 Wednesday, July 20, 2005 11:58 AM
Clipboard functions
Clipboard functions are related to cutting, copying, and pasting. On the Macintosh, some
Clipboard functions can also apply to text fields in dialog boxes and floating panels. Functions
that can operate in text fields are implemented as methods of the dreamweaver object and as
methods of the DOM object. The dreamweaver version of the function operates on the
selection in the active window: the current Document window, the Code inspector, or the Site
panel. On the Macintosh, the function can also operate on the selection in a text box if it is
the current field. The DOM version of the function always operates on the selection in the
specified document.

dom.clipCopy()

Availability

Dreamweaver 3.

Description

Copies the selection, including any HTML markup that defines the selection, to the
Clipboard.

Arguments

None.

Returns

Nothing.

dom.clipCopyText()

Availability

Dreamweaver 3.

Description

Copies the selected text to the Clipboard, ignoring any HTML markup.

Arguments

None.

Returns

Nothing.
Clipboard functions 379

000_DW_API_Print.book Page 380 Wednesday, July 20, 2005 11:58 AM
Enabler

See “dom.canClipCopyText()” on page 552.

dom.clipCut()

Availability

Dreamweaver 3.

Description

Removes the selection, including any HTML markup that defines the selection, to the
Clipboard.

Arguments

None.

Returns

Nothing.

dom.clipPaste()

Availability

Dreamweaver 3.

Description

Pastes the contents of the Clipboard into the current document at the current insertion point
or in place of the current selection. If the Clipboard contains HTML, it is interpreted as such.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canClipPaste()” on page 553.
380 Page Content

000_DW_API_Print.book Page 381 Wednesday, July 20, 2005 11:58 AM
Example

If the Clipboard contains ABC Widgets, a call to dw.getDocumentDOM().clipPaste()
results in the following figure:

dom.clipPasteText() (deprecated)

Availability

Dreamweaver 3. Deprecated in Dreamweaver 8. Use the dom.clipPaste("text") function
instead.

Description

Pastes the contents of the Clipboard into the current document at the insertion point or in
place of the current selection. It replaces any linefeeds in the Clipboard content with BR tags.
If the Clipboard contains HTML, it is not interpreted; angle brackets are pasted as < and
>.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canClipPasteText()” on page 553.
Clipboard functions 381

000_DW_API_Print.book Page 382 Wednesday, July 20, 2005 11:58 AM
Example

If the Clipboard contains <code>return true;</code>, a call to
dw.getDocumentDOM().clipPasteText() results in the following figure:

dreamweaver.clipCopy()

Availability

Dreamweaver 3.

Description

Copies the current selection from the active Document window, dialog box, floating panel, or
Site panel to the Clipboard.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.canClipCopy()” on page 564.
382 Page Content

000_DW_API_Print.book Page 383 Wednesday, July 20, 2005 11:58 AM
dreamweaver.clipCut()

Availability

Dreamweaver 3.

Description

Removes the selection from the active Document window, dialog box, floating panel, or Site
panel to the Clipboard.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.canClipCut()” on page 565.

dreamweaver.clipPaste()

Availability

Dreamweaver 3. Added the strPasteOption argument in Dreamweaver 8.

Description

Pastes the contents of the Clipboard into the current document, dialog box, floating panel, or
Site panel.

Arguments
{strPasteOption}

■ The strPasteOption argument, which is optional, specifies the type of paste to perform.
Values include: "text", "structured", "basicFormat", and "fullFormat".

Returns

Nothing.

Enabler

See “dreamweaver.canClipPaste()” on page 565.
Clipboard functions 383

000_DW_API_Print.book Page 384 Wednesday, July 20, 2005 11:58 AM
Example

The following example pasts the contents of the Clipboard as text:
dw.clipPaste("text");

dreamweaver.getClipboardText()

Availability

Dreamweaver 3.

Description

Gets all the text that is stored on the Clipboard.

Arguments
{bAsText}

■ The bAsText Boolean value, which is optional, specifies whether the Clipboard content is
retrieved as text. If bAsText is a value of true, the Clipboard content is retrieved as text. If
bAsText is a value of false, the content retains formatting. This argument defaults to
false.

Returns

A string that contains the contents of the Clipboard, if the Clipboard contains text (which can
be HTML); otherwise, it returns nothing.

Example

If dreamweaver.getClipboardText() returns "text bold text",
dreamweaver.getClipboardText(true) returns "text bold text".

Library and template functions
Library and template functions handle operations that are related to library items and
templates, such as creating, updating, and breaking links between a document and a template
or library item. Methods of the dreamweaver.libraryPalette object either control or act
on the selection in the Assets panel library items, not in the current document. Likewise,
methods of the dreamweaver.templatePalette object control or act on the selection in the
Assets panel template objects.
384 Page Content

000_DW_API_Print.book Page 385 Wednesday, July 20, 2005 11:58 AM
dom.applyTemplate()

Availability

Dreamweaver 3.

Description

Applies a template to the current document. If no argument is supplied, the Select Template
dialog box appears. This function is valid only for the document that has focus.

Arguments
{templateURL}, bMaintainLink

■ The templateURL argument is the path to a template in the current site, which is
expressed as a file:// URL.

■ The bMaintainLink argument is a Boolean value that indicates whether to maintain the
link to the original template (true) or not (false).

Returns

Nothing.

Enabler

See “dom.canApplyTemplate()” on page 552.

dom.detachFromLibrary()

Availability

Dreamweaver 3.

Description

Detaches the selected library item instance from its associated LBI file by removing the
locking tags from around the selection. This function is equivalent to clicking Detach from
Original in the Property inspector.

Arguments

None.

Returns

Nothing.
Library and template functions 385

000_DW_API_Print.book Page 386 Wednesday, July 20, 2005 11:58 AM
dom.detachFromTemplate()

Availability

Dreamweaver 3.

Description

Detaches the current document from its associated template.

Arguments

None.

Returns

Nothing.

dom.getAttachedTemplate()

Availability

Dreamweaver 3.

Description

Gets the path of the template that is associated with the document.

Arguments

None.

Returns

A string that contains the path of the template, which is expressed as a file:// URL.

dom.getEditableRegionList()

Availability

Dreamweaver 3.

Description

Gets a list of all the editable regions in the body of the document.

Arguments

None.
386 Page Content

000_DW_API_Print.book Page 387 Wednesday, July 20, 2005 11:58 AM
Returns

An array of element nodes.

Example

“dom.getSelectedEditableRegion()” on page 387.

dom.getIsLibraryDocument()

Availability

Dreamweaver 3.

Description

Determines whether the document is a library item.

Arguments

None.

Returns

A Boolean value that indicates whether the document is an LBI file.

dom.getIsTemplateDocument()

Availability

Dreamweaver 3.

Description

Determines whether the document is a template.

Arguments

None.

Returns

A Boolean value that indicates whether the document is a DWT file.

dom.getSelectedEditableRegion()

Availability

Dreamweaver 3.
Library and template functions 387

000_DW_API_Print.book Page 388 Wednesday, July 20, 2005 11:58 AM
Description

If the selection or insertion point is inside an editable region, this function gets the position of
the editable region among all others in the body of the document.

Arguments

None.

Returns

An index into the array that the dom.getEditbableRegionList() function returns. For
more information, see “dom.getEditableRegionList()” on page 386.

Example

The following code shows a dialog box with the contents of the selected editable region:
var theDOM = dw.getDocumentDOM();
var edRegs = theDOM.getEditableRegionList();
var selReg = theDOM.getSelectedEditableRegion();
alert(edRegs[selReg].innerHTML);

dom.insertLibraryItem()

Availability

Dreamweaver 3.

Description

Inserts an instance of a library item into the document.

Arguments
libraryItemURL

■ The libraryItemURL argument is the path to an LBI file, which is expressed as a file://
URL.

Returns

Nothing.
388 Page Content

000_DW_API_Print.book Page 389 Wednesday, July 20, 2005 11:58 AM
dom.markSelectionAsEditable()

Availability

Dreamweaver 3.

Description

Displays the New Editable Region dialog box. When the user clicks New Region,
Dreamweaver marks the selection as editable and doesn’t change any text.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canMarkSelectionAsEditable()” on page 559.

dom.newEditableRegion()

Availability

Dreamweaver 3.

Description

Displays the New Editable Region dialog box. When the user clicks New Region,
Dreamweaver inserts the name of the region, surrounded by curly braces ({ }), into the
document at the insertion point location.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canMakeNewEditableRegion()” on page 558.
Library and template functions 389

000_DW_API_Print.book Page 390 Wednesday, July 20, 2005 11:58 AM
dom.removeEditableRegion()

Availability

Dreamweaver 3.

Description

Removes an editable region from the document. If the editable region contains any content,
the content is preserved; only the editable region markers are removed.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canRemoveEditableRegion()” on page 560.

dom.updateCurrentPage()

Availability

Dreamweaver 3.

Description

Updates the document’s library items, templates, or both. This function is valid only for the
active document.

Arguments
{typeOfUpdate}

■ The optional typeOfUpdate argument must be "library", "template", or "both". If
you omit the argument, the default is "both".

Returns

Nothing.
390 Page Content

000_DW_API_Print.book Page 391 Wednesday, July 20, 2005 11:58 AM
dreamweaver.updatePages()

Availability

Dreamweaver 3.

Description

Opens the Update Pages dialog box and selects the specified options.

Arguments
{typeOfUpdate}

■ The optional typeOfUpdate argument must be "library", "template", or "both", if
you specify it. If the argument is omitted, it defaults to "both".

Returns

Nothing.

Snippets panel functions
Using Dreamweaver, web developers can edit and save reusable blocks of code in the Snippets
panel and retrieve them as needed.

The Snippets panel stores each code snippet in a CSN file within the Configuration/Snippets
folder. Snippets that come with Dreamweaver are stored in the following folders:

■ Accessible
■ Comments
■ Content_tables
■ Filelist.txt
■ Footers
■ Form_elements
■ Headers
■ Javascript
■ Meta
■ Navigation
■ Text

Snippet files are XML documents, so you can specify the encoding in the XML directive, as
shown in the following example:
<?XML version="1.0" encoding="utf-8">
Snippets panel functions 391

000_DW_API_Print.book Page 392 Wednesday, July 20, 2005 11:58 AM
The following sample shows a snippet file:
<snippet name="Detect Flash" description="VBscript to check for Flash

ActiveX control" preview="code" factory="true" type="wrap" >
 <insertText location="beforeSelection">
 <![CDATA[------- code ---------]]>
 </insertText>
 <insertText location="afterSelection">
 <![CDATA[------- code ---------]]>
 </insertText>
</snippet>

Snippet tags in CSN files have the following attributes:

You can use the following methods to add Snippets panel functions to your extensions.

dreamweaver.snippetPalette.getCurrentSnippetPath()

Availability

Dreamweaver MX 2004.

Description

Returns the path to the snippet that is currently selected in the Snippets panel.

Arguments

None.

Returns

The path, relative to the Snippets folder, to the snippet selected in the Snippets panel. Returns
an empty string if no snippet is selected.

Attribute Description

name Name of snippet

description Snippet description

preview Type of preview: "code" to display the snippet in preview area or
"design" to display the snippet rendered in HTML in the Preview
area.

type If the snippet is used to wrap a user selection, "wrap"; if the
snippet should be inserted before the selection, "block".
392 Page Content

000_DW_API_Print.book Page 393 Wednesday, July 20, 2005 11:58 AM
dreamweaver.snippetPalette.newFolder()

Availability

Dreamweaver MX.

Description

Creates a new folder with the default name untitled and puts an text box around the default
name.

Arguments

None.

Returns

Nothing.

dreamweaver.snippetPalette.newSnippet()

Availability

Dreamweaver MX.

Description

Opens the Add Snippet dialog box and gives it focus.

Arguments

None.

Returns

Nothing.

dreamweaver.snippetPalette.editSnippet()

Availability

Dreamweaver MX.

Description

Opens the Edit Snippet dialog box and gives it focus, enabling editing for the selected
element.

Arguments

None.
Snippets panel functions 393

000_DW_API_Print.book Page 394 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

Enabler

See “dreamweaver.snippetpalette.canEditSnippet()” on page 585.

dreamweaver.snippetPalette.insert()

Availability

Dreamweaver MX.

Description

Applies the selected snippet from the Snippets panel to the current selection.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.snippetpalette.canInsert()” on page 585.

dreamweaver.snippetPalette.insertSnippet()

Availability

Dreamweaver MX.

Description

Inserts the indicated snippet into the current selection.

Arguments

■ A string that specifies the path to the snippet relative to the Snippets folder.

Returns

A Boolean value.

Enabler

See “dreamweaver.snippetpalette.canInsert()” on page 585.
394 Page Content

000_DW_API_Print.book Page 395 Wednesday, July 20, 2005 11:58 AM
Example

The following call to the dw.snippetPalette.insertSnippet() function inserts the code
snippet at the location specified by the argument into the current document at the
insertion point:
dw.snippetPalette.insertSnippet('Text\\Different_Link_Color.csn');

dreamweaver.snippetPalette.rename()

Availability

Dreamweaver MX.

Description

Activates a text box around the selected folder name or file nickname and lets you edit the
selected element.

Arguments

None.

Returns

Nothing.

dreamweaver.snippetPalette.remove()

Availability

Dreamweaver MX.

Description

Deletes the selected element or folder from the Snippets panel and deletes the file from the
disk.

Returns

Nothing.
Snippets panel functions 395

000_DW_API_Print.book Page 396 Wednesday, July 20, 2005 11:58 AM
396 Page Content

15

000_DW_API_Print.book Page 397 Wednesday, July 20, 2005 11:58 AM
CHAPTER 15

Dynamic Documents
The dynamic documents functions in Macromedia Dreamweaver 8 perform operations that
are related to web server pages. These operations include returning a property for the selected
node in the Components panel, getting a list of all data sources in the user’s document,
displaying dynamic content in Design view, applying a server behavior to a document, or
getting the names of all currently defined server models.

Server Components functions
Server Components functions let you access the currently selected node of the Server
Components tree control that appears in the Components panel. Using these functions, you
can also refresh the view of the Components tree.

dreamweaver.serverComponents.getSelectedNode()

Availability

Dreamweaver MX.

Description

Returns the currently selected ComponentRec property in the Server Components tree
control.

Arguments

None.

Returns

The ComponentRec property.
397

000_DW_API_Print.book Page 398 Wednesday, July 20, 2005 11:58 AM
dreamweaver.serverComponents.refresh()

Availability

Dreamweaver MX.

Description

Refreshes the view of the Components tree.

Arguments

None.

Returns

Nothing.

Data source functions
Data source files are stored in the Configuration/DataSources folder. Each server model has
its own folder: ASP.Net/C#, ASP.Net/VisualBasic, ASP/JavaScript, ASP/VBScript,
ColdFusion, JSP, and PHP/MySQL. Each server model subfolder contains HTML and
EDML files that are associated with the data sources for that server model.

For more information about using data sources in Dreamweaver, see “Data Sources” in
Extending Dreamweaver.

dreamweaver.dbi.getDataSources

Availability

Dreamweaver UltraDev 4.

Description

Calls the findDynamicSources() function for each file in the Configuration/DataSources
folder. You can use this function to generate a list of all the data sources in the user’s
document. This function iterates through all the files in the Configuration/DataSources
folder, calls the findDynamicSources() function in each file, concatenates all the returned
arrays, and returns the concatenated array of data sources.

Arguments

None.
398 Dynamic Documents

000_DW_API_Print.book Page 399 Wednesday, July 20, 2005 11:58 AM
Returns

An array that contains a concatenated list of all the data sources in the user’s document. Each
element in the array is an object, and each object has the following properties:

■ The title property is the label string that appears to the right of the icon for each parent
node. The title property is always defined.

■ The imageFile property is the path of a file that contains the icon (a GIF image) that
represents the parent node in Dynamic Data or the Dynamic Text dialog box or in the
Bindings panel. The imageFile property is always defined.

■ The allowDelete property is optional. If this property is set to a value of false, when
the user clicks on this node in the Bindings panel, the Minus (-) button is disabled. If it is
set to a value of true, the Minus (-) button is enabled. If the property is not defined, the
Minus (-) button is enabled when the user clicks on the item (as if the property is set to a
value of true).

■ The dataSource property is the simple name of the file in which the
findDynamicSources() function is defined. For example, the findDynamicSources()
function in the Session.htm file, which is located in the Configuration/DataSources/
ASP_Js folder, sets the dataSource property to session.htm. This property is always
defined.

■ The name property is the name of the server behavior associated with the data source,
dataSource, if one exists. The name property is always defined but can be an empty string
("") if no server behavior is associated with the data source (such as a session variable).

Extension Data Manager functions
The APIs in this section comprise the Extension Data Manager (EDM). You can
programmatically access and manipulate the data that is contained in the group and
participant files by calling these functions. The EDM performs in the following manner:

■ The EDM performs all EDML file input/output for group and participant files.
■ The EDM acts as a server model filter by performing all data requests for the current

server model.
Extension Data Manager functions 399

000_DW_API_Print.book Page 400 Wednesday, July 20, 2005 11:58 AM
dreamweaver.getExtDataValue()

Availability

Dreamweaver UltraDev 4.

Description

This function retrieves the field values from an EDML file for the specified nodes.

Arguments
qualifier(s)

■ The qualifier(s) argument is a variable-length list (depending on the level of
information you need) of comma-separated node qualifiers that includes group or
participant name, subblock (if any), and field name.

Returns

Dreamweaver expects a field value. If a value is not specified, Dreamweaver uses the default
value.

Example

The following example retrieves the location attribute value for the insertText tag of the
recordset_main participant:
dw.getExtDataValue("recordset_main", "insertText", "location");

dreamweaver.getExtDataArray()

Availability

Dreamweaver UltraDev 4.

Description

This function retrieves an array of values from an EDML file for the specified nodes.

Arguments
qualifier(s)

■ The qualifier(s) argument is a variable-length list of comma-separated node qualifiers,
including group or participant name, subblock (if any), and field name.

Returns

Dreamweaver expects an array of child-node names.
400 Dynamic Documents

000_DW_API_Print.book Page 401 Wednesday, July 20, 2005 11:58 AM
dreamweaver.getExtParticipants()

Availability

Dreamweaver UltraDev 4.

Description

This function retrieves the list of participants from an EDML group file or participant files.

Arguments
value, qualifier(s)

■ The value argument is a property value, or it is blank and is ignored. For example
dreamweaver.getExtParticipants("", "participant");

■ The qualifier(s) argument is a variable-length list of comma-separated node qualifiers
of the required property.

Returns

Dreamweaver expects an array of participant names that have the specified property, if it is
given, and the property matches the specified value, if it is given.

dreamweaver.getExtGroups()

Availability

Dreamweaver UltraDev 4.

Description

Retrieves the name of the group, which is the equivalent to the server behavior’s name, from
an EDML group file.

Arguments
value, qualifier(s)

■ The value argument is a property value or is blank to ignore.
■ The qualifier(s) argument is a variable length list of comma-separated node qualifiers

of the required property.

Returns

Dreamweaver expects an array of group names that have the specified property, if it is given,
and the property matches the specified value, if it is given.
Extension Data Manager functions 401

dreamweaver.refreshExtData()

Availability

Dreamweaver UltraDev 4.

Description

Reloads all extension data files.

Arguments

None.

Returns

Dreamweaver expects reloaded data.

Live data functions
You can use the following live data functions to mimic menu functionality:

■ The showLiveDataDialog() function is used for the View > Live Data Settings menu
item.

■ The setLiveDataMode() function is used for the View > Live Data and View > Refresh
Live Data menu items.

■ The getLiveDataMode() function determines whether Live Data mode is active.

You can use the remaining live data functions when you implement the translator API
liveDataTranslateMarkup() function.

T
IP You can make a useful command from this function, letting edits to server-behavior

EDML files be reloaded without restarting Dreamweaver.
402 Dynamic Documents

000_DW_API_Print.book Page 403 Wednesday, July 20, 2005 11:58 AM
dreamweaver.getLiveDataInitTags()

Availability

Dreamweaver UltraDev 1.

Description

Returns the initialization tags for the currently active document. The initialization tags are the
HTML tags that the user supplies in the Live Data Settings dialog box. This function is
typically called from a translator’s liveDataTranslateMarkup() function, so that the
translator can pass the tags to the liveDataTranslate() function.

Arguments

None.

Returns

A string that contains the initialization tags.

dreamweaver.getLiveDataMode()

Availability

Dreamweaver UltraDev 1.

Description

Determines whether the Live Data window is currently visible.

Arguments

None.

Returns

A Boolean value: true if the Live Data window is visible; false otherwise.

dreamweaver.getLiveDataParameters ()

Availability

Dreamweaver MX.

Description

Obtains the URL parameters that are specified as Live Data settings.
Live data functions 403

000_DW_API_Print.book Page 404 Wednesday, July 20, 2005 11:58 AM
Live Data mode lets you view a web page in the design stage (as if it has been translated by the
application server and returned). Generating dynamic content to display in Design view lets
you view your page layout with live data and adjust it, if necessary.

Before you view live data, you must enter Live Data settings for any URL parameters that you
reference in your document. This prevents the web server from returning errors for
parameters that are otherwise undefined in the simulation.

You enter the URL parameters in name-value pairs. For example, if you reference the URL
variables ID and Name in server scripts in your document, you must set these URL parameters
before you view live data.

You can enter Live Data settings through Dreamweaver in the following ways:

■ Through the Live Data Settings dialog box, which you can activate from the View menu
■ In the URL text field that appears at the top of the document when you click the Live

Data View button on the toolbar

For the ID and Name parameters, you can enter the following pairs:
ID 22
Name Samuel

In the URL, these parameters would appear as shown in the following example:
http://someURL?ID=22&Name=Samuel

This function lets you obtain these live data settings through JavaScript.

Arguments

None.

Returns

An array that contains the URL parameters for the current document. The array contains an
even number of parameter strings. Each two elements form a URL parameter name-value
pair. The even element is the parameter name and the odd element is the value. For example,
getLiveDataParameters() returns the following array for the ID and Name parameters in
the preceding example: ['ID,'22','Name','Samuel'].

Example

The following example returns the parameters that are specified as Live Data settings and
stores them in the paramsArray:
var paramsArray = dreamweaver.getLiveDataParameters();
404 Dynamic Documents

000_DW_API_Print.book Page 405 Wednesday, July 20, 2005 11:58 AM
dreamweaver.liveDataTranslate()

Availability

Dreamweaver UltraDev 1.

Description

Sends an entire HTML document to an application server, asks the server to execute the
scripts in the document, and returns the resulting HTML document. This function can be
called only from a translator’s liveDataTranslateMarkup() function; if you try to call it at
another time, an error occurs. The dreamweaver.liveDataTranslate() function performs
the following operations:

■ Makes the animated image (that appears near the right edge of the Live Data window)
play.

■ Listens for user input. If the Stop icon is clicked, the function returns immediately.
■ Accepts a single string argument from the caller. (This string is typically the entire source

code of the user’s document. It is the same string that is used in the next operation.)
■ Saves the HTML string from the user’s document as a temporary file on the live data

server.
■ Sends an HTTP request to the live-data server, using the parameters specified in the Live

Data Settings dialog box.
■ Receives the HTML response from the live data server.
■ Removes the temporary file from the live data server.
■ Makes the animated image stop playing.
■ Returns the HTML response to the caller.

Arguments

■ A single string, which typically is the entire source code of the user’s current document.

Returns

An httpReply object. This object is the same as the value that the MMHttp.getText()
function returns. If the user clicks the Stop icon, the return value’s httpReply.statusCode is
equal to 200 (Status OK) and its httpReply.data is equal to the empty string. For more
information on the httpReply object, see Chapter 2, “The HTTP API,” on page 29.
Live data functions 405

000_DW_API_Print.book Page 406 Wednesday, July 20, 2005 11:58 AM
dreamweaver.setLiveDataError()

Availability

Dreamweaver UltraDev 1.

Description

Specifies the error message that appears if an error occurs while the
liveDataTranslateMarkup() function executes in a translator. If the document that
Dreamweaver passed to liveDataTranslate() contains errors, the server passes back an
error message that is formatted using HTML. If the translator (the code that called
liveDataTranslate()) determines that the server returned an error message, it calls
setLiveDataError() to display the error message in Dreamweaver. This message appears
after the liveDataTranslateMarkup() function finishes executing; Dreamweaver displays
the description in an error dialog box. The setLiveDataError() function should be called
only from the liveDataTranslateMarkup() function.

Arguments
source

■ The source argument is a string that contains source code, which is parsed and rendered
in the error dialog box.

Returns

Nothing.

dreamweaver.setLiveDataMode()

Availability

Dreamweaver UltraDev 1.

Description

Toggles the visibility of the Live Data window.

Arguments
bIsVisible

■ The bIsVisible argument is a Boolean value that indicates whether the Live Data
window should be visible. If you pass true to this function and Dreamweaver currently
displays the Live Data window, the effect is the same as if you clicked the Refresh button.
406 Dynamic Documents

000_DW_API_Print.book Page 407 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

dreamweaver.setLiveDataParameters()

Availability

Dreamweaver MX.

Description

Sets the URL parameters that you reference in your document for use in Live Data mode.

Live Data mode lets you view a web page in the design stage (as if it has been translated by the
application server and returned). Generating dynamic content to display in Design view lets
you view your page layout with live data and adjust it, if necessary.

Before you view live data, you must enter Live Data settings for any URL parameters that you
reference in your document. This prevents the web server from returning errors for
parameters that are otherwise undefined in the simulation.

You enter the URL parameters in name-value pairs. For example, if you reference the URL
variables ID and Name in server scripts in your document, you must set these URL parameters
before you view live data.

This function lets you set Live Data values through JavaScript.

Arguments
liveDataString

■ The liveDataString argument is a string that contains the URL parameters that you
want to set, in name-value pairs.

Returns

Nothing.

Example
dreamweaver.setLiveDataParameters(“ID=22&Name=Samuel”)

dreamweaver.showLiveDataDialog()

Availability

Dreamweaver UltraDev 1.
Live data functions 407

000_DW_API_Print.book Page 408 Wednesday, July 20, 2005 11:58 AM
Description

Displays the Live Data Settings dialog box.

Arguments

None.

Returns

Nothing.

Server behavior functions
Server behavior functions let you manipulate the Server Behaviors panel, which you can
display by selecting Window > Server Behaviors. Using these functions, you can find all the
server behaviors on a page and programmatically apply a new behavior to the document or
modify an existing behavior.

dreamweaver.getParticipants()

Availability

Dreamweaver UltraDev 4.

Description

The JavaScript function, dreamweaver.getParticipants(), gets a list of participants from
the user’s document. After Dreamweaver finds all the behavior’s participants, it stores those
lists. Typically, you use this function with the findServerBehaviors() function (for more
information, see “Server Behaviors” in Extending Dreamweaver) to locate instances of a
behavior in the user’s document.

Arguments
edmlFilename

■ The edmlFilename argument is the name of the group or participant file that contains the
names of the participants to locate in the user’s document. This string is the filename,
without the .edml extension.

N
O

T
E

You can abbreviate dw.serverBehaviorInspector to dw.sbi.
408 Dynamic Documents

000_DW_API_Print.book Page 409 Wednesday, July 20, 2005 11:58 AM
Returns

This function returns an array that contains all instances of the specified participant (or, in the
case of a group file, any instance of any participant in the group) that appear in the user’s
document. The array contains JavaScript objects, with one element in the array for each
instance of each participant that is found in the user’s document. The array is sorted in the
order that the participants appear in the document. Each JavaScript object has the following
properties:

■ The participantNode property is a pointer to the participant node in the user’s
document.

■ The participantName property is the name of the participant’s EDML file (without the
.edml extension).

■ The parameters property is a JavaScript object that stores all the parameter/value pairs.
■ The matchRangeMin property defines the character offset from the participant node of the

document to the beginning of the participant content.
■ The matchRangeMax property is an integer of the participant that defines the offset from

the beginning of the participant node to the last character of the participant content.

dreamweaver.serverBehaviorInspector.getServer
Behaviors()

Availability

Dreamweaver UltraDev 1.

Description

Gets a list of all the behaviors on the page. When Dreamweaver determines that the internal
list of server behaviors might be out of date, it calls the findServerBehaviors() function for
each currently installed behavior. Each function returns an array. Dreamweaver merges all the
arrays into a single array and sorts it, based on the order that each behavior’s selectedNode
object appears in the document. Dreamweaver stores the merged array internally. The
getServerBehaviors() function returns a pointer to that merged array.

Arguments

None.

Returns

An array of JavaScript objects. The findServerBehaviors() call returns the objects in the
array. The objects are sorted in the order that they appear in the Server Behaviors panel.
Server behavior functions 409

000_DW_API_Print.book Page 410 Wednesday, July 20, 2005 11:58 AM
dreamweaver.popupServerBehavior()

Availability

Dreamweaver UltraDev 1.

Description

Applies a new server behavior to the document or modifies an existing behavior. If the user
must specify parameters for the behavior, a dialog box appears.

Arguments
{behaviorName or behaviorObject}

■ The behaviorName argument, which is optional, is a string that represents the behavior’s
name, the title tag of a file, or a filename.

■ The behaviorObject argument, which is optional, is a behavior object.

If you omit the argument, Dreamweaver runs the currently selected server behavior. If the
argument is the name of a server behavior, Dreamweaver adds the behavior to the page. If the
argument is one of the objects in the array that the getServerBehaviors() function returns,
a dialog box appears so the user can modify the parameters for the behavior.

Returns

Nothing.

Server model functions
In Macromedia Dreamweaver, each document has an associated document type. For dynamic
document types, Dreamweaver also associates a server model (such as ASP-JS, ColdFusion, or
PHP-MySQL).

Server models are used to group functionality that is specific to a server technology. Different
server behaviors, data sources, and so forth, appear based on the server model that is
associated with the document.

Using the server model functions, you can determine the set of server models that are
currently defined; the name, language, and version of the current server model; and whether
the current server model supports a named character set (such as UTF-8).

N
O

T
E

Dreamweaver reads all the information in the server model HTML file and stores this
information when it first loads the server model. So, when an extension calls functions
such as dom.serverModel.getServerName(),
dom.serverModel.getServerLanguage(), and
dom.serverModel.getServerVersion(), these functions return the stored values.
410 Dynamic Documents

000_DW_API_Print.book Page 411 Wednesday, July 20, 2005 11:58 AM
dom.serverModel.getAppURLPrefix()

Availability

Dreamweaver MX.

Description

Returns the URL for the site’s root folder on the testing server. This URL is the same as that
specified for the Testing Server on the Advanced tab in the Site Definition dialog box.

When Dreamweaver communicates with your testing server, it uses HTTP (the same way as a
browser). When doing so, it uses this URL to access your site’s root folder.

Arguments

None.

Returns

A string, which holds the URL to the application server that is used for live data and
debugging purposes.

Example

If the user creates a site and specifies that the testing server is on the local computer and that
the root folder is named "employeeapp", a call to the
dom.serverModel.getAppURLPrefix() function returns the following string:
http://localhost/employeeapp/

dom.serverModel.getDelimiters()

Availability

Dreamweaver MX.

Description

Lets JavaScript code get the script delimiter for each server model, so managing the server
model code can be separated from managing the user-scripted code.

Arguments

None.
Server model functions 411

000_DW_API_Print.book Page 412 Wednesday, July 20, 2005 11:58 AM
Returns

An array of objects where each object contains the following three properties:

■ The startPattern property is a regular expression that matches the opening script
delimiter.

■ The endPattern property is a regular expression that matches the closing script delimiter.
■ The participateInMerge pattern is a Boolean value that specifies whether the content

that is enclosed in the listed delimiters should (true) or should not (false) participate in
block merging.

dom.serverModel.getDisplayName()

Availability

Dreamweaver MX.

Description

Gets the name of the server model that appears in the user interface (UI).

Arguments

None.

Returns

A string, the value of which is the name of the server model.

dom.serverModel.getFolderName()

Availability

Dreamweaver MX.

Description

Gets the name of the folder that is used for this server model in the Configuration folder
(such as in the ServerModels subfolder).

Arguments

None.

Returns

A string, the value of which is the name of the folder.
412 Dynamic Documents

000_DW_API_Print.book Page 413 Wednesday, July 20, 2005 11:58 AM
dom.serverModel.getServerExtension() (deprecated)

Availability

Dreamweaver UltraDev 4; deprecated in Dreamweaver MX.

Description

Returns the default file extension of files that use the current server model. (The default file
extension is the first in the list.) If no user document is currently selected, the serverModel
object is set to the server model of the currently selected site.

Arguments

None.

Returns

A string that represents the supported file extensions.

dom.serverModel.getServerIncludeUrlPatterns()

Availability

Dreamweaver MX.

Description

Returns the following list of properties, which let you access:

■ Translator URL patterns
■ File references
■ Type

Arguments

None.

Returns

A list of objects, one for each searchPattern. Each object has the following three properties:

Property Description

pattern A JavaScript regular expression that is specified in the
searchPattern field of an EDML file. (A regular expression is
delimited by a pair of forward slashes (//).)
Server model functions 413

000_DW_API_Print.book Page 414 Wednesday, July 20, 2005 11:58 AM
Example

The following code snippet from a participant file shows a translator searchPatterns tag:
<searchPatterns whereToSearch="comment">
 <searchPattern paramNames=",ssi_comment_includeUrl">
 <![CDATA[/<!--\s*#include\s+(file|virtual)\s*=\s*"([^"]*)"\s*-->/i]]>
 </searchPattern>
</searchPatterns>

The search pattern contains a JavaScript regular expression that specifies two submatches
(both of which are contained within parentheses). The first submatch is for the text string
file or virtual. The second submatch is a file reference.

To access the translator URL pattern, your code should look like the following example:
var serverModel = dw.getDocumentDOM().serverModel;
var includeArray = new Array();
includeArray = serverModel.getServerIncludeUrlPatterns();

The call to serverModel.getServerIncludeUrlPatterns() returns the following three
properties:

dom.serverModel.getServerInfo()

Availability

Dreamweaver MX.

Description

Returns information that is specific to the current server model. This information is defined
in the HTML definition file for the server model, which is located in the Configuration/
ServerModels folder.

fileRef The 1-based index of the regular expression submatch that
corresponds to the included file reference.

type The portion of the paramName value that remains after removing the
_includeUrl suffix. This type is assigned to the type attribute of the
<MM:BeginLock> tag. For an example, see Server Model SSI.htm in
the Configuration/Translators folder.

Property Return value

pattern /<!--\s*#include\s+(file|virtual)\s*=\s*"([^"]*)"\s*-->/i

fileRef 2

type ssi_comment

Property Description
414 Dynamic Documents

000_DW_API_Print.book Page 415 Wednesday, July 20, 2005 11:58 AM
You can modify the information in the HTML definition file or place additional variable
values or functions in the file. For example, you can modify the serverName,
serverLanguage, and serverVersion properties. The
dom.serverModel.getServerInfo() function returns the information that the server model
author adds to the definition file.

The serverName, serverLanguage, and serverVersion properties are special because the
developer can access them directly by using the following corresponding functions:

■ dom.serverModel.getServerName()
■ dom.serverModel.getServerLanguage()
■ dom.serverModel.getServerVersion()

Arguments

None.

Returns

A JavaScript object that contains a variety of information that is specific to the current
server model.

dom.serverModel.getServerLanguage() (deprecated)

Availability

UltraDev 1; deprecated in Dreamweaver MX.

Description

Determines the server model that is associated with the document and returns that value. The
server language for a site is the value that comes from the Default Scripting Language setting
on the App Server Info tab in the Site Definition dialog box. To get the return value, this
function calls the getServerLanguage() function in the Server Models API.

N
O

T
E

The other values that are defined in the default server model files are for internal use
only.

N
O

T
E

The Default Scripting Language list exists only in Dreamweaver 4 and earlier versions.
For Dreamweaver MX or later, the Site Definition dialog box does not list supported
scripting languages. Also, for Dreamweaver MX or later, the
dom.serverModel.getServerLanguage() function reads the serverLanguage
property of the object that is returned by a call to the getServerInfo() function in the
Server Models API.
Server model functions 415

000_DW_API_Print.book Page 416 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

A string that contains the supported scripting languages.

dom.serverModel.getServerName()

Availability

Dreamweaver 1; enhanced in Dreamweaver MX.

Description

Retrieves the server name that is associated with the document and returns that value. The
server name differentiates between server technologies (such as ASP.NET and JSP), but does
not differentiate between languages on the same server technology (such as ASP.NET VB and
ASP.NET C#). Possible values include ASP, ASP.NET, Cold Fusion, JSP, and PHP.

To retrieve the server model name associated with the document, see
“dom.serverModel.getDisplayName()” on page 412 or “dom.serverModel.getFolderName()”
on page 412.

Arguments

None.

Returns

A string that contains the server name.

dom.serverModel.getServerSupportsCharset()

Availability

Dreamweaver MX.

N
O

T
E

For Dreamweaver MX, or later, dom.serverModel.getServerName() reads the
serverName property of the object that is returned by a call to the getServerInfo()
function in the Server Models API.
416 Dynamic Documents

000_DW_API_Print.book Page 417 Wednesday, July 20, 2005 11:58 AM
Description

Determines whether the server model that is associated with the document supports the
named character set.

Arguments
metaCharSetString

■ The metaCharSetString argument is a string value that names a particular character set.
This value is the same as that of the "charset=" attribute of a meta tag that is associated
with a document. Supported values for a given server model are defined in the HTML
definition file for the server model, which is located in the Configuration/ServerModels
folder.

Returns

A Boolean value: true if the server model supports the named character set; false otherwise.

dom.serverModel.getServerVersion()

Availability

UltraDev 1; enhanced in Dreamweaver MX.

Description

Determines the server model that is associated with the document and returns that value.
Each server model has a getVersionArray() function, as defined in the Server Models API,
which returns a table of name-version pairs.

N
O

T
E

In addition to letting you call this function from the JavaScript layer, Dreamweaver calls
this function when the user changes the encoding in the page Properties dialog box. If
the server model does not support the new character encoding, this function returns
false and Dreamweaver pops up a warning dialog box that asks if the user wants to do
the conversion. An example of this situation is when a user attempts to convert a
ColdFusion 4.5 document to UTF-8 because ColdFusion does not support UTF-8
encoding.

N
O

T
E

For Dreamweaver, dom.serverModel.getServerVersion() first reads the
serverVersion property of the object that is returned by a call to getServerInfo() in
the Server Models API. If that property does not exist,
dom.serverModel.getServerVersion() reads it from the getVersionArray()
function.
Server model functions 417

000_DW_API_Print.book Page 418 Wednesday, July 20, 2005 11:58 AM
Arguments
name

■ The name argument is a string that represents the name of a server model.

Returns

A string that contains the version of the named server model.

dom.serverModel.testAppServer()

Availability

Dreamweaver MX.

Description

Tests whether a connection to the application server can be made.

Arguments

None.

Returns

A Boolean value that indicates whether the request to connect to the application server was
successful.

dreamweaver.getServerModels()

Availability

Dreamweaver MX.

Description

Gets the names for all the currently defined server models. The set of names is the same as the
ones that appear in the Server Model text field in the Site Definition dialog box.

Arguments

None.

Returns

An array of strings. Each string element holds the name of a currently defined server model.
418 Dynamic Documents

16

000_DW_API_Print.book Page 419 Wednesday, July 20, 2005 11:58 AM
CHAPTER 16

Design
The Design functions in Macromedia Dreamweaver 8 perform operations related to
designing the appearance of a document. These operations include functions that apply a
specified cascading style sheet (CSS) style, split a selected frame vertically or horizontally, align
selected layers or hotspots, play a selected plug-in item, create a layout cell, or manipulate
table rows or columns.

CSS functions
CSS functions handle applying, removing, creating, and deleting CSS styles. Methods of the
dreamweaver.cssRuleTracker object either control or act on the selection in the CSS rule
tracker panel of the Selection inspector. Methods of the dreamweaver.cssStylePalette
object either control or act on the selection in the Styles panel, not in the current document.

cssStylePalette.getInternetExplorerRendering()

Availability

Dreamweaver 8.

Description

This function determines whether Dreamweaver is rendering for Internet Explorer.

Arguments

None.

Returns

A Boolean value: true if Dreamweaver is rendering for Internet Explorer; false if
Dreamweaver is rendering to the CSS specification.
419

000_DW_API_Print.book Page 420 Wednesday, July 20, 2005 11:58 AM
Example

The following example turns off rendering for Internet Explorer:
if (cssStylePalette.getInternetExplorerRendering()){

cssStylePalette.setInternetExplorerRendering(false);
}

cssStylePalette.setInternetExplorerRendering()

Availability

Dreamweaver 8.

Description

This function instructs Dreamweaver to render for Internet Explorer or the CSS specification.

Arguments
internetExplorerRendering

■ The internetExplorerRendering argument, which is required, indicates whether to
render for Internet Explorer (true) or to render for the CSS specification (false).

Returns

Nothing.

Example

See “cssStylePalette.getInternetExplorerRendering()” on page 419.

dom.applyCSSStyle()

Availability

Dreamweaver 4.

Description

Applies the specified style to the specified element. This function is valid only for the active
document.

Arguments
elementNode, styleName, {classOrID}, {bForceNesting}

■ The elementNode argument is an element node in the DOM. If the elementNode
argument is a null value or an empty string (""), the function acts on the current
selection.
420 Design

000_DW_API_Print.book Page 421 Wednesday, July 20, 2005 11:58 AM
■ The styleName argument is the name of a CSS style.
■ The classOrID argument, which is optional, is the attribute with which the style should

be applied (either "class" or "id"). If the elementNode argument is a null value or an
empty string and no tag exactly surrounds the selection, the style is applied using SPAN
tags. If the selection is an insertion point, Dreamweaver uses heuristics to determine to
which tag the style should be applied.

■ The bForceNesting argument, which is optional, is a Boolean value, which indicates
whether nesting is allowed. If the bForceNesting flag is specified, Dreamweaver inserts a
new SPAN tag instead of trying to modify the existing tags in the document. This
argument defaults to a false value if it is not specified.

Returns

Nothing.

Example

The following code applies the red style to the selection, either by surrounding the selection
with SPAN tags or by applying a CLASS attribute to the tag that surrounds the selection:
var theDOM = dreamweaver.getDocumentDOM('document');
theDOM.applyCSSStyle('','red');

dom.getElementView()

Availability

Dreamweaver 8.

Description

This function gets the Element view for the currently selected element in the document. If the
currently selected element is normal, the getElementView() function looks for the selected
element’s first ancestor that is either full or hidden.

Arguments

None.

Returns

A string that indicates the status of the selected element. Values include:

■ "hidden", which indicates that the element has CSS properties that may cause content to
be partially or completely hidden in Design view. Supported CSS properties include:
■ overflow: hidden, scroll, or auto
■ display: none
CSS functions 421

000_DW_API_Print.book Page 422 Wednesday, July 20, 2005 11:58 AM
■ "full", which indicates that the element is "hidden" by default, but is currently in
"full" view as set by the setElementView("full") function.

■ "normal", which indicates that the element is neither "hidden" nor "full".

Example

The following example changes the status of the selected element to "full" if it is "hidden":
var currentDOM = dw.getDocumentDOM();
if (currentDOM && getElementView() == "hidden"){

currentDOM.setElementView("full");
}

dom.getShowDivBackgrounds()

Availability

Dreamweaver 8.

Description

This function gets the state of the Layout Block Backgrounds visual aid.

Arguments

None.

Returns

A Boolean; true if the Layout Block Backgrounds visual aid is on; false otherwise.

Example

The following example checks whether the Layout Block Backgrounds visual aid is on and, if
not, turns it on:
var currentDOM = dw.getDocumentDOM();
if (currentDOM.getShowDivBackgrounds() == false){

currentDOM.setShowDivBackgrounds(true);
}

dom.getShowDivBoxModel()

Availability

Dreamweaver 8.

Description

This function gets the state of the Layout Block Box Model visual aid.
422 Design

000_DW_API_Print.book Page 423 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

A Boolean; true if the Layout Block Box Model visual aid is on; false otherwise.

Example

The following example checks whether the Layout Block Box Model visual aid is on and, if
not, turns it on:
var currentDOM = dw.getDocumentDOM();
if (currentDOM.getShowDivBoxModel() == false){

currentDOM.setShowDivBoxModel(true);
}

dom.getShowDivOutlines()

Availability

Dreamweaver 8.

Description

This function gets the state of the Layout Block Outlines visual aid.

Arguments

None.

Returns

A Boolean; true if the Layout Block Outlines visual aid is on; false otherwise.

Example

The following example checks whether the Layout Block Outlines visual aid is on and, if not,
turns it on:
var currentDOM = dw.getDocumentDOM();
if (currentDOM.getShowDivOutlines() == false){

currentDOM.setShowDivOutlines(true);
}

CSS functions 423

000_DW_API_Print.book Page 424 Wednesday, July 20, 2005 11:58 AM
dom.removeCSSStyle()

Availability

Dreamweaver 3.

Description

Removes the CLASS or ID attribute from the specified element, or removes the SPAN tag that
completely surrounds the specified element. This function is valid only for the active
document.

Arguments
elementNode, {classOrID}

■ The elementNode argument is an element node in the DOM. If the elementNode
argument is specified as an empty string (" "), the function acts on the current selection.

■ The classOrID argument, which is optional, is the attribute that should be removed
(either "class" or "id"). If the classOrID argument is not specified, it defaults to
"class". If no CLASS attribute is defined for the elementNode argument, the SPAN tag
that surrounds the elementNode argument is removed.

Returns

Nothing.

dom.resetAllElementViews()

Availability

Dreamweaver 8.

Description

This function resets the Element view of all elements in the document to the original view by
removing all internally generated CSS.

Arguments
forceRefresh

■ The forceRefresh argument, which is optional, is a Boolean value that specifies whether
to refresh the rendering of the entire document when there is no internal CSS to remove.
A value of true causes the refresh. The default value is false.

Returns

Nothing.
424 Design

000_DW_API_Print.book Page 425 Wednesday, July 20, 2005 11:58 AM
Example

The following example resets the Element view of all elements in the document without
forcing a refresh of the rendering:
var currentDOM = dw.getDocumentDOM();
currentDOM.resetAllElementViews(false);

dom.setElementView()

Availability

Dreamweaver 8.

Description

This function sets the Element view for the currently selected element in the document. If the
currently selected element is "normal", the setElementView() function looks for the first
ancestor of the currently selected element that is "full" or "hidden".

Arguments
view

■ The view argument, which is required, is a string that sets the currently selected element
to "full" or "hidden". If the currently selected element, is "normal", the
setElementView() function looks for the currently selected element’s first ancestor that is
either "full" or "hidden". For additional information, see “dom.getElementView()”
on page 421. Possible values are:
■ "full" — Removes the internal CSS that put the element in "full" view, so that the

element returns to its original state.
■ "hidden" — If the currently selected element is in "hidden" view, Dreamweaver

generates the CSS to cause all content to be viewed and then applies the CSS as an
internal design time style sheet.

Returns

Nothing.

Example

See “dom.getElementView()” on page 421.
CSS functions 425

000_DW_API_Print.book Page 426 Wednesday, July 20, 2005 11:58 AM
dom.setShowDivBackgrounds()

Availability

Dreamweaver 8.

Description

This function turns the Layout Block Backgrounds visual aid on or off.

Arguments
show

■ The show argument, which is required, is a Boolean value that specifies whether to turn
the Layout Block Backgrounds visual aid on. Setting show to true turns the Layout Block
Backgrounds visual aid on.

Returns

Nothing.

Example

See “dom.getShowDivBackgrounds()” on page 422.

dom.setShowDivBoxModel()

Availability

Dreamweaver 8.

Description

This function turns the Layout Block Box Model visual aid on or off.

Arguments
show

■ The show argument, which is required, is a Boolean value that specifies whether to turn
the Layout Block Box Model visual aid on. Setting show to true turns the Layout Block
Box Model visual aid on.

Returns

Nothing.

Example

See “dom.getShowDivBoxModel()” on page 422.
426 Design

000_DW_API_Print.book Page 427 Wednesday, July 20, 2005 11:58 AM
dom.setShowDivOutlines()

Availability

Dreamweaver 8.

Description

This function turns the Layout Block Outlines visual aid on or off.

Arguments
show

■ The show argument, which is required, is a Boolean value that specifies whether to turn
the Layout Block Outlines visual aid on. Setting show to true turns the Layout Block
Outlines visual aid on.

Returns

Nothing.

Example

See “dom.getShowDivOutlines()” on page 423.

dreamweaver.cssRuleTracker.editSelectedRule()

Availability

Dreamweaver MX 2004.

Description

Lets the user edit the currently selected rule in the rule tracker. This function displays the
selected rule in the CSS property grid, and if necessary, will show the property grid and its
containing floater.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.cssRuleTracker.canEditSelectedRule()” on page 574.
CSS functions 427

000_DW_API_Print.book Page 428 Wednesday, July 20, 2005 11:58 AM
dreamweaver.cssRuleTracker.newRule()

Availability

Dreamweaver MX 2004.

Description

Opens the New CSS Style dialog box, so the user can create a new rule.

Arguments

None.

Returns

Nothing.

dreamweaver.cssStylePalette.applySelectedStyle()

Availability

Dreamweaver MX.

Description

Applies the selected style to the current active document or to its attached style sheet,
depending on the selection in the Styles panel.

Arguments
{ pane }

■ The pane argument, which is optional, is a string that specifies the pane of the Styles
Panel to which this function applies. Possible values are "stylelist", which is the list of
styles in “All” mode; "cascade", which is the list of applicable, relevant rules in “Current”
mode; "summary", which is the list of properties for the current selection in “Current”
mode; and "ruleInspector", which is the editable list or grid of properties in “Current”
mode. The default value is "stylelist".

Returns

Nothing.

Enabler

See “dreamweaver.cssStylePalette.canApplySelectedStyle()” on page 575.
428 Design

000_DW_API_Print.book Page 429 Wednesday, July 20, 2005 11:58 AM
dreamweaver.cssStylePalette.attachStyleSheet()

Availability

Dreamweaver 4.

Description

Displays a dialog box that lets users attach a style sheet to the current active document or to
one of its attached style sheets, depending on the selection in the Styles panel.

Arguments

None.

Returns

Nothing.

dreamweaver.cssStylePalette.deleteSelectedStyle()

Availability

Dreamweaver 3.

Description

Deletes the style that is currently selected in the Styles panel from the document.

Arguments
{ pane }

■ The pane argument, which is optional, is a string that specifies the pane of the Styles
Panel to which this function applies. Possible values are "stylelist", which is the list of
styles in “All” mode; "cascade", which is the list of applicable, relevant rules in “Current”
mode; "summary", which is the list of properties for the current selection in “Current”
mode; and "ruleInspector", which is the editable list or grid of properties in “Current”
mode. The default value is "stylelist".

Returns

Nothing.

Enabler

See “dreamweaver.cssStylePalette.canDeleteSelectedStyle()” on page 575.
CSS functions 429

000_DW_API_Print.book Page 430 Wednesday, July 20, 2005 11:58 AM
dreamweaver.cssStylePalette.duplicateSelectedStyle()

Availability

Dreamweaver 3.

Description

Duplicates the style that is currently selected in the Styles panel and displays the Duplicate
Style dialog box to let the user assign a name or selector to the new style.

Arguments
{ pane }

■ The pane argument, which is optional, is a string that specifies the pane of the Styles
Panel to which this function applies. Possible values are "stylelist", which is the list of
styles in “All” mode; "cascade", which is the list of applicable, relevant rules in “Current”
mode; "summary", which is the list of properties for the current selection in “Current”
mode; and "ruleInspector", which is the editable list or grid of properties in “Current”
mode. The default value is "stylelist".

Returns

Nothing.

Enabler

See “dreamweaver.cssStylePalette.canDuplicateSelectedStyle()” on page 576.

dreamweaver.cssStylePalette.editSelectedStyle()

Availability

Dreamweaver 3.

Description

Opens the Style Definition dialog box for the style that is currently selected in the Styles
panel.
430 Design

000_DW_API_Print.book Page 431 Wednesday, July 20, 2005 11:58 AM
Arguments
{ pane }

■ The pane argument, which is optional, is a string that specifies the pane of the Styles
Panel to which this function applies. Possible values are "stylelist", which is the list of
styles in “All” mode; "cascade", which is the list of applicable, relevant rules in “Current”
mode; "summary", which is the list of properties for the current selection in “Current”
mode; and "ruleInspector", which is the editable list or grid of properties in “Current”
mode. The default value is "stylelist".

Returns

Nothing.

Enabler

See “dreamweaver.cssStylePalette.canEditSelectedStyle()” on page 577.

dreamweaver.cssStylePalette.editSelectedStyleInCo
deview()

Availability

Dreamweaver 8.

Description

Ths function switches to Code view and moves the mouse pointer to the code for the style
that is currently selected in the Styles panel.

Arguments
{ pane }

■ The pane argument, which is optional, is a string that specifies the pane of the Styles
Panel to which this function applies. Possible values are "stylelist", which is the list of
styles in “All” mode; "cascade", which is the list of applicable, relevant rules in “Current”
mode; "summary", which is the list of properties for the current selection in “Current”
mode; and "ruleInspector", which is the editable list or grid of properties in “Current”
mode. The default value is "stylelist".

Returns

Nothing.

Enabler

See “dreamweaver.cssStylePalette.canEditSelectedStyleInCodeview()” on page 577.
CSS functions 431

000_DW_API_Print.book Page 432 Wednesday, July 20, 2005 11:58 AM
dreamweaver.cssStylePalette.editStyleSheet()

Availability

Dreamweaver 3.

Description

Opens the Edit Style Sheet dialog box.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.cssStylePalette.canEditStyleSheet()” on page 578.

dreamweaver.cssStylePalette.getDisplayStyles()

Availability

Dreamweaver 8.

Description

This function determines whether CSS styles are being rendered. The default value is true.

Arguments

None.

Returns

A Boolean value: true if CSS styles are being rendered; false otherwise.

Example
var areStylesRendered = dw.cssStylePalette.getDisplayStyles();

dreamweaver.cssStylePalette.getMediaType()

Availability

Dreamweaver MX 2004.
432 Design

000_DW_API_Print.book Page 433 Wednesday, July 20, 2005 11:58 AM
Description

Gets target media type for rendering. The default media type is "screen".

Arguments

None.

Returns

A string value that specifies the target media type.

Example
var mediaType = dw.cssStylePalette.getMediaType();

dreamweaver.cssStylePalette.getSelectedStyle()

Availability

Dreamweaver 3; fullSelector available in Dreamweaver MX.

Description

Gets the name of the style that is currently selected in the Styles panel.

Arguments
fullSelector

■ The fullSelector argument is a Boolean value that indicates whether the full selector or
only the class should return. If nothing is specified, only the class name returns. For
instance, p.class1 is a selector that means the style is applied to any p tag of class1, but
it does not apply, for instance, to a div tag of class1. Without the fullSelector
argument, the dreamweaver.cssStylePalette.getSelectedStyle() function returns
only the class name, class1, for the selector. The fullSelector argument tells the
function to return p.class1 instead of class1.

Returns

When the fullSelector argument is a true value, the function returns either the full
selector or an empty string when the stylesheet node is selected.

When the fullSelector argument is a false value or it is omitted, a string that represents
the class name of the selected style returns. If the selected style does not have a class or a
stylesheet node is selected, an empty string returns.

Example

If the style red is selected, a call to the dw.cssStylePalette.getSelectedStyle()
function returns "red".
CSS functions 433

000_DW_API_Print.book Page 434 Wednesday, July 20, 2005 11:58 AM
dreamweaver.cssStylePalette.getSelectedTarget()
(deprecated)

Availability

Dreamweaver 3; deprecated in Dreamweaver MX because there is no longer an Apply To
Menu in the Styles panel.

Description

This function gets the selected element in the Apply To pop-up menu at the top of the Styles
panel.

Arguments

None.

Returns

A deprecated function; always returns a null value.

dreamweaver.cssStylePalette.getStyles()

Availability

Dreamweaver 3.

Description

Gets a list of all the class styles in the active document. Without arguments it just returns class
selector names. If the bGetIDs argument is true, it returns just ID selector names. In either
case, if the bGetFullSelector argument is true, it returns the full selector name.

For example, given an HTML file with the following code:

<style>
.test{ background:none };
p.foo{ background:none };
#bar {background:none };
div#hello p.world {background:none};

The calls in the following table return the values in the Result column.

Function call Result

dw.cssStylePalette.getStyles() foo,test,world

dw.cssStylePalette.getStyles(true) bar,hello

dw.cssStylePalette.getStyles(false, true) p.foo,.test,div#hello p.world

dw.cssStylePalette.getStyles(true, true) #bar,div#hello p.world
434 Design

000_DW_API_Print.book Page 435 Wednesday, July 20, 2005 11:58 AM
Arguments
{bGetIDs, bGetFullSelector}

■ The bGetIDs argument is optional. It is a Boolean value that, if true, causes the function
to return just ID selector names (the part after the "#"). Defaults to false.

■ The bGetFullSelector argument is optional. It is a Boolean value that, if true, returns
the complete selector string, instead of just the names. Defaults to false.

Returns

An array of strings that represent the names of all the class styles in the document.

Example

If the Styles panel is set up as shown in the following figure, a call to the
dreamweaver.cssStylePalette.getStyles() function returns an array that contains these
strings: "BreadcrumbEnd", "change", "doctitle", "heading", and "highlight":

dreamweaver.cssStylePalette.newStyle()

Availability

Dreamweaver 3.

Description

Opens the New Style dialog box.

Arguments

None.

Returns

Nothing.
CSS functions 435

000_DW_API_Print.book Page 436 Wednesday, July 20, 2005 11:58 AM
dreamweaver.cssStylePalette.renameSelectedStyle()

Availability

Dreamweaver 3.

Description

Renames the class name that is used in the currently selected rule in the Styles panel and all
instances of the class name in the selected rule.

Arguments
{ pane }

■ The pane argument, which is optional, is a string that specifies the pane of the Styles
Panel to which this function applies. Possible values are "stylelist", which is the list of
styles in “All” mode; "cascade", which is the list of applicable, relevant rules in “Current”
mode; "summary", which is the list of properties for the current selection in “Current”
mode; and "ruleInspector", which is the editable list or grid of properties in “Current”
mode. The default value is "stylelist".

Returns

Nothing.

Enabler

See “dreamweaver.cssStylePalette.canRenameSelectedStyle()” on page 578.

dreamweaver.cssStylePalette.setDisplayStyles()

Availability

Dreamweaver 8.

Description

This functon determines whether to render CSS styles and refreshes the rendering of all open
documents.

Arguments
display

■ The display argument is a Boolean value: true to render CSS styles; false otherwise.

Returns

Nothing.
436 Design

000_DW_API_Print.book Page 437 Wednesday, July 20, 2005 11:58 AM
Example

The following example turns off rendering of CSS styles:
dw.cssStylePalette.setDisplayStyles(false);

dreamweaver.cssStylePalette.setMediaType()

Availability

Dreamweaver MX 2004.

Description

Sets the target media type for rendering. Refreshes the rendering of all open documents.

Arguments
mediaType

■ The mediaType argument specifies the new target media type.

Returns

Nothing.

Example
dw.cssStylePalette.setMediaType("print");

dreamweaver.getBlockVisBoxModelColors()

Availability

Dreamweaver 8.

Description

This function gets the colors used to render the box model for a selected block when the
Layout Block Box Model visual aid is on.

Arguments

None.

Returns

An array of strings that contains two strings:

■ marginColor, which is the hexadecimal value of the RGB color, in the form #RRGGBB
paddingColor, which is the hexadecimal value of the RGB color, in the form #RRGGBB
CSS functions 437

000_DW_API_Print.book Page 438 Wednesday, July 20, 2005 11:58 AM
Example

The following example checks the value of the margin and padding color; if either isn’t white,
it sets them both to white:
var boxColors = dreamweaver.getBlockVisBoxModelColors();
if ((boxColors[0] != "#FFFFFF") || (boxColors[1] != "#FFFFFF)){

currentDOM.setBlockVisBoxModelColors("#FFFFFF", "#FFFFFF");
}

dreamweaver.getBlockVisOutlineProperties()

Availability

Dreamweaver 8.

Description

This function gets the outline properties for the block visualization visual aids.

Arguments
forWhat

■ The forWhat argument, which is required, is a string. Possible values are "divs",
"selectedDiv", or "layers". If the forWhat argument is "divs", the function returns
the properties used for the visual aid that outlines all layout blocks. If forWhat is
"selectedDiv", the function returns the property used for the visual aid that outlines
selected layout blocks. The layers value specifies layers.

Returns

An array of strings that contains three strings:

■ color, which is the hexadecimal value of the RGB color, in the form #RRGGBB
■ width, which indicates the width in pixels
■ style, which is "SOLID", "DOTTED", "DASHED", or "OUTSET"

Example

The following example gets the outline properties for "divs" and makes the outline style
"SOLID":
var outlineStyle = dw.getBlockVisOutlineProperties("divs");
if (outlineStyle[2] != "SOLID"){

dw.setBlockVisOutlineProperties("divs", outlineStyle[0],
outlineStyle[1], "SOLID");

}

438 Design

000_DW_API_Print.book Page 439 Wednesday, July 20, 2005 11:58 AM
dreamweaver.getDivBackgroundColors()

Availability

Dreamweaver 8.

Description

This function gets the colors used by the Layout Block Backgrounds visual aid.

Arguments

None.

Returns

An array of strings that contains the 16 colors, with each color represented by the hexadecimal
value of the RGB color, in the form #RRGGBB.

Example

The following example gets the background colors used by the Layout Block Backgrounds
visual aid:
var backgroundColors = dreamweaver.getDivBackgroundColors();

dreamweaver.setBlockVisOutlineProperties()

Availability

Dreamweaver 8.

Description

This function sets the outline properties for the block visualization visual aids.

Arguments
forWhat, color, width, {style}

■ The forWhat argument, which is required, is a string that specifies for what the specified
color and width are used. Possible values are "divs", "selectedDiv", or "layers". If the
value is "layers", the specified color and width are used to outline all layers when the
Layout Block Outlines visual aid is on. If the value is "divs", the color and width
arguments are used to outline all divs and other layout blocks. If the value is
"selectedDiv", the color and width arguments are used to outline any div or layout
block that is selected.

■ The color argument, which is required, is a string that contains the hexadecimal value
that indicates the RGB color in the form #RRGGBB.
CSS functions 439

000_DW_API_Print.book Page 440 Wednesday, July 20, 2005 11:58 AM
■ The width argument, which is required, is an integer that indicates the outline width, in
pixels.

■ The style argument, which is optional, is a string that indicates the style of the outline.
Possible values are "SOLID", "DOTTED", "DASHED", and "OUTSET". The "OUTSET" value is
applicable to layers only. This argument is ignored when the forWhat argument’s value is
"selectedDiv".

Returns

Nothing.

Example

See “dreamweaver.getBlockVisOutlineProperties()” on page 438.

dreamweaver.setDivBackgroundColors()

Availability

Dreamweaver 8.

Description

This function sets the colors used by the Layout Block Backgrounds visual aid.

Arguments
colors

■ The colors argument, which is required, is an array of strings that contains all the colors,
represented as hexadecimal values in the form #RRGGBB. The array must contain 16
colors.

Returns

Nothing.

Example

The following example makes sure there are no more than 16 colors specified as div
background colors and, if so, sets the colors used as background colors to shades of gray:
var currentDOM = dw.getDocumentDOM();
var divColors = currentDOM.getDivBackgroundColors("divs");
var shadesOfGray = new Array["#000000", "#111111", "#222222", "#333333",¬

"#444444", "#555555", "#666666", "#777777", "#888888", "#999999", ¬
"#AAAAAA", "#BBBBBB", "#CCCCCC", "#DDDDDD", "#EEEEEE", "#FFFFFF"]¬

var howManyColors = divColors.length;
if howManyColors <= 16{

for (var i = 0; i < howManyColors; i++)
440 Design

000_DW_API_Print.book Page 441 Wednesday, July 20, 2005 11:58 AM
{
currentDOM.setDivBackgroundColors("divs", shadeOfGray[i]);

}

Frame and frameset functions
Frame and frameset functions handle two tasks: getting the names of the frames in a frameset
and splitting a frame in two.

dom.getFrameNames()

Availability

Dreamweaver 3.

Description

Gets a list of all the named frames in the frameset.

Arguments

None.

Returns

An array of strings where each string is the name of a frame in the current frameset. Any
unnamed frames are skipped. If none of the frames in the frameset is named, an empty array
returns.

Example

For a document that contains four frames (two of which are named), a call to the
dom.getFrameNames() function might return an array that contains the following strings:

■ "navframe"
■ "main_content"

dom.isDocumentInFrame()

Availability

Dreamweaver 4.

Description

Identifies whether the current document is being viewed inside a frameset.
Frame and frameset functions 441

000_DW_API_Print.book Page 442 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

A Boolean value: true if the document is in a frameset; false otherwise.

dom.saveAllFrames()

Availability

Dreamweaver 4.

Description

If a document is a frameset or is inside a frameset, this function saves all the frames and
framesets from the Document window. If the specified document is not in a frameset, this
function saves the document. This function opens the Save As dialog box for any documents
that have not been previously saved.

Arguments

None.

Returns

Nothing.

dom.splitFrame()

Availability

Dreamweaver 3.

Description

Splits the selected frame vertically or horizontally.

Arguments
splitDirection

■ The splitDirection argument is a string that must specify one of the following
directions: "up", "down", "left", or "right".

Returns

Nothing.
442 Design

000_DW_API_Print.book Page 443 Wednesday, July 20, 2005 11:58 AM
Enabler

See “dom.canSplitFrame()” on page 562.

Layer and image map functions
Layer and image map functions handle aligning, resizing, and moving layers and image map
hotspots. The function description indicates if it applies to layers or to hotspots.

dom.align()

Availability

Dreamweaver 3.

Description

Aligns the selected layers or hotspots left, right, top, or bottom.

Arguments
alignDirection

■ The alignDirection argument is a string that specifies the edge to align with the layers
or hotspots ("left", "right", "top", or "bottom").

Returns

Nothing.

Enabler

See “dom.canAlign()” on page 551.

dom.arrange()

Availability

Dreamweaver 3.

Description

Moves the selected hotspots in the specified direction.

Arguments
toBackOrFront

■ The toBackOrFront argument is the direction in which the hotspots must move, either
front or back.
Layer and image map functions 443

000_DW_API_Print.book Page 444 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

Enabler

See “dom.canArrange()” on page 552.

dom.makeSizesEqual()

Availability

Dreamweaver 3.

Description

Makes the selected layers or hotspots equal in height, width, or both. The last layer or hotspot
selected is the guide.

Arguments
bHoriz, bVert

■ The bHoriz argument is a Boolean value that indicates whether to resize the layers or
hotspots horizontally.

■ The bVert argument is a Boolean value that indicates whether to resize the layers or
hotspots vertically.

Returns

Nothing.

dom.moveSelectionBy()

Availability

Dreamweaver 3.

Description

Moves the selected layers or hotspots by the specified number of pixels horizontally and
vertically.

Arguments
x, y

■ The x argument is the number of pixels that the selection must move horizontally.
■ The y argument is the number of pixels that the selection must move vertically.
444 Design

000_DW_API_Print.book Page 445 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

dom.resizeSelectionBy()

Availability

Dreamweaver 3.

Description

Resizes the currently selected layer or hotspot.

Arguments
left, top, bottom, right

■ The left argument is the new position of the left boundary of the layer or hotspot.
■ The top argument is the new position of the top boundary of the layer or hotspot.
■ The bottom argument is the new position of the bottom boundary of the layer or hotspot.
■ The right argument is the new position of the right boundary of the layer or hotspot.

Returns

Nothing.

Example

If the selected layer has the Left, Top, Width, and Height properties shown, calling
dw.getDocumentDOM().resizeSelectionBy(–10,–30,30,10) is equivalent to resetting
Left to 40, Top to 20, Width to 240, and Height to 240.

dom.setLayerTag()

Availability

Dreamweaver 3.

Description

Specifies the HTML tag that defines the selected layer or layers.
Layer and image map functions 445

000_DW_API_Print.book Page 446 Wednesday, July 20, 2005 11:58 AM
Arguments
tagName

■ The tagName argument must be "layer", "ilayer", "div", or "span".

Returns

Nothing.

Layout environment functions
Layout environment functions handle operations that are related to the settings for working
on a document. They affect the source, position, and opacity of the tracing image; get and set
the ruler origin and units; turn the grid on and off and change its settings; and start or stop
playing plug-ins.

dom.getRulerOrigin()

Availability

Dreamweaver 3.

Description

Gets the origin of the ruler.

Arguments

None.

Returns

An array of two integers. The first array item is the x coordinate of the origin, and the second
array item is the y coordinate of the origin. Both values are in pixels.

dom.getRulerUnits()

Availability

Dreamweaver 3.

Description

Gets the current ruler units.

Arguments

None.
446 Design

000_DW_API_Print.book Page 447 Wednesday, July 20, 2005 11:58 AM
Returns

A string that contains one of the following values:

■ "in"
■ "cm"
■ "px"

dom.getTracingImageOpacity()

Availability

Dreamweaver 3.

Description

Gets the opacity setting for the document’s tracing image.

Arguments

None.

Returns

A value between 0 and 100, or nothing if no opacity is set.

Enabler

See “dom.hasTracingImage()” on page 563.

dom.loadTracingImage()

Availability

Dreamweaver 3.

Description

Opens the Select Image Source dialog box. If the user selects an image and clicks OK, the
Page Properties dialog box opens with the Tracing Image field filled in.

Arguments

None.

Returns

Nothing.
Layout environment functions 447

000_DW_API_Print.book Page 448 Wednesday, July 20, 2005 11:58 AM
dom.playAllPlugins()

Availability

Dreamweaver 3.

Description

Plays all plug-in content in the document.

Arguments

None.

Returns

Nothing.

dom.playPlugin()

Availability

Dreamweaver 3.

Description

Plays the selected plug-in item.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canPlayPlugin()” on page 559.

dom.setRulerOrigin()

Availability

Dreamweaver 3.

Description

Sets the origin of the ruler.
448 Design

000_DW_API_Print.book Page 449 Wednesday, July 20, 2005 11:58 AM
Arguments
xCoordinate, yCoordinate

■ The xCoordinate argument is a value, expressed in pixels, on the horizontal axis.
■ The yCoordinate argument is a value, expressed in pixels, on the vertical axis.

Returns

Nothing.

dom.setRulerUnits()

Availability

Dreamweaver 3.

Description

Sets the current ruler units.

Arguments
units

■ The units argument must be "px", "in", or "cm".

Returns

Nothing.

dom.setTracingImagePosition()

Availability

Dreamweaver 3.

Description

Moves the upper left corner of the tracing image to the specified coordinates. If the arguments
are omitted, the Adjust Tracing Image Position dialog box appears.

Arguments
x, y

■ The x argument is the number of pixels that specify the horizontal coordinate.
■ The y argument is the number of pixels that specify the vertical coordinate.

Returns

Nothing.
Layout environment functions 449

000_DW_API_Print.book Page 450 Wednesday, July 20, 2005 11:58 AM
Enabler

See “dom.hasTracingImage()” on page 563.

dom.setTracingImageOpacity()

Availability

Dreamweaver 3.

Description

Sets the opacity of the tracing image.

Arguments
opacityPercentage

■ The opacityPercentage argument must be a number between 0 and 100.

Returns

Nothing.

Enabler

See “dom.hasTracingImage()” on page 563.

Example

The following code sets the opacity of the tracing image to 30%:
dw.getDocumentDOM().setTracingOpacity('30');

dom.snapTracingImageToSelection()

Availability

Dreamweaver 3.

Description

Aligns the upper left corner of the tracing image with the upper left corner of the
current selection.

Arguments

None.

Returns

Nothing.
450 Design

000_DW_API_Print.book Page 451 Wednesday, July 20, 2005 11:58 AM
Enabler

See “dom.hasTracingImage()” on page 563.

dom.stopAllPlugins()

Availability

Dreamweaver 3.

Description

Stops all plug-in content that is currently playing in the document.

Arguments

None.

Returns

Nothing.

dom.stopPlugin()

Availability

Dreamweaver 3.

Description

Stops the selected plug-in item.

Arguments

None.

Returns

A Boolean value that indicates whether the selection is currently being played with a plug-in.

Enabler

See “dom.canStopPlugin()” on page 562.
Layout environment functions 451

000_DW_API_Print.book Page 452 Wednesday, July 20, 2005 11:58 AM
dreamweaver.arrangeFloatingPalettes()

Availability

Dreamweaver 3.

Description

Moves the visible floating panels to their default positions.

Arguments

None.

Returns

Nothing.

dreamweaver.showGridSettingsDialog()

Availability

Dreamweaver 3.

Description

Opens the Grid Settings dialog box.

Arguments

None.

Returns

Nothing.
452 Design

000_DW_API_Print.book Page 453 Wednesday, July 20, 2005 11:58 AM
Layout view functions
Layout view functions handle operations that change the layout elements within a document.
They affect table, column, and cell settings, including position, properties, and appearance.

dom.addSpacerToColumn()

Availability

Dreamweaver 4.

Description

Creates a 1-pixel-high transparent spacer image at the bottom of a specified column in the
currently selected table. This function fails if the current selection is not a table or if the
operation is not successful.

Arguments
colNum

■ The colNum argument is the column at the bottom of which the spacer image is created.

Returns

Nothing.

dom.createLayoutCell()

Availability

Dreamweaver 4.

Description

Creates a layout cell in the current document at the specified position and dimensions, either
within an existing layout table or in the area below the existing content on the page. If the cell
is created in an existing layout table, it must not overlap or contain any other layout cells or
nested layout tables. If the rectangle is not inside an existing layout table, Dreamweaver tries
to create a layout table to house the new cell. This function does not force the document into
Layout view. This function fails if the cell cannot be created.

Arguments
left, top, width, height

■ The left argument is the x position of the left border of the cell.
■ The top argument is the y position of the top border of the cell.
Layout view functions 453

000_DW_API_Print.book Page 454 Wednesday, July 20, 2005 11:58 AM
■ The width argument is the width of the cell in pixels.
■ The height argument is the height of the cell in pixels.

Returns

Nothing.

dom.createLayoutTable()

Availability

Dreamweaver 4.

Description

Creates a layout table in the current document at the specified position and dimensions,
either within an existing table or in the area below the existing content on the page. If the
table is created in an existing layout table, it cannot overlap other layout cells or nested layout
tables, but it can contain other layout cells or nested layout tables. This function does not
force the document into Layout view. This function fails if the table cannot be created.

Arguments
left, top, width, height

■ The left argument is the x position of the left border of the table.
■ The top argument is the y position of the top border of the table.
■ The width argument is the width of the table in pixels.
■ The height argument is the height of the table in pixels.

Returns

Nothing.

dom.doesColumnHaveSpacer()

Availability

Dreamweaver 4.

Description

Determines whether a column contains a spacer image that Dreamweaver generated. It fails if
the current selection is not a table.

Arguments
colNum
454 Design

000_DW_API_Print.book Page 455 Wednesday, July 20, 2005 11:58 AM
■ The colNum argument is the column to check for a spacer image.

Returns

Returns true if the specified column in the currently selected table contains a spacer image
that Dreamweaver generated; false otherwise.

dom.doesGroupHaveSpacers()

Availability

Dreamweaver 4.

Description

Determines whether the currently selected table contains a row of spacer images that
Dreamweaver generated. It fails if the current selection is not a table.

Arguments

None.

Returns

Returns true if the table contains a row of spacer images; false otherwise.

dom.getClickedHeaderColumn()

Availability

Dreamweaver 4.

Description

If the user clicks a menu button in the header of a table in Layout view and causes the table
header menu to appear, this function returns the index of the column that the user clicked.
The result is undefined if the table header menu is not visible.

Arguments

None.

Returns

An integer that represents the index of the column.
Layout view functions 455

000_DW_API_Print.book Page 456 Wednesday, July 20, 2005 11:58 AM
dom.getShowLayoutTableTabs()

Availability

Dreamweaver 4.

Description

Determines whether the current document shows tabs for layout tables in Layout view.

Arguments

None.

Returns

Returns true if the current document displays tabs for layout tables in Layout view;
false otherwise.

dom.getShowLayoutView()

Availability

Dreamweaver 4.

Description

Determines the view for the current document; either Layout or Standard view.

Arguments

None.

Returns

Returns true if the current document is in Layout view; false if the document is in
Standard view.

dom.isColumnAutostretch()

Availability

Dreamweaver 4.

Description

Determines whether a column is set to expand and contract automatically, depending on the
document size. This function fails if the current selection is not a table.
456 Design

000_DW_API_Print.book Page 457 Wednesday, July 20, 2005 11:58 AM
Arguments
colNum

■ The colNum argument is the column to be automatically sized or fixed width.

Returns

Returns true if the column at the given index in the currently selected table is set to
autostretch; false otherwise.

dom.makeCellWidthsConsistent()

Availability

Dreamweaver 4.

Description

In the currently selected table, this function sets the width of each column in the HTML to
match the currently rendered width of the column. This function fails if the current selection
is not a table or if the operation is not successful.

Arguments

None.

Returns

Nothing.

dom.removeAllSpacers()

Availability

Dreamweaver 4.

Description

Removes all spacer images generated by Dreamweaver from the currently selected table. This
function fails if the current selection is not a table or if the operation is not successful.

Arguments

None.

Returns

Nothing.
Layout view functions 457

000_DW_API_Print.book Page 458 Wednesday, July 20, 2005 11:58 AM
dom.removeSpacerFromColumn()

Availability

Dreamweaver 4.

Description

Removes the spacer image from a specified column and deletes the spacer row if there are no
more spacer images that Dreamweaver generated. This function fails if the current selection is
not a table or if the operation is not successful.

Arguments
colNum

■ The colNum argument is the column from which to remove the spacer image.

Returns

Nothing.

dom.setColumnAutostretch()

Availability

Dreamweaver 4.

Description

Switches a column between automatically sized or fixed width. If bAutostretch is true, the
column at the given index in the currently selected table is set to autostretch; otherwise it’s set
to a fixed width at its current rendered width. This function fails if the current selection isn’t a
table or if the operation isn’t successful.

Arguments
colNum, bAutostretch

■ The colNum argument is the column to be automatically sized or set to a fixed width.
■ The bAutostretch argument specifies whether to set the column to autostretch (true) or

to a fixed width (false).

Returns

Nothing.
458 Design

000_DW_API_Print.book Page 459 Wednesday, July 20, 2005 11:58 AM
dom.getShowBlockBackgrounds()

Availability

Dreamweaver 8.

Description

This function gets the state of the visual aid that forces background coloring for all blocks or
divs.

Arguments
allblocks

■ The allblocks argument, which is required, is a Boolean. Set the value to true to apply
to div tags only. Set the value to false to apply to all block elements.

Returns

A Boolean. If true, backgrounds are being forced; if false, backgrounds are not being
forced.

Example

The following example checks whether the background coloring for all blocks is being forced,
and if not, forces background coloring for all blocks.:
var currentDOM = dw.getDocumentDOM();
if (currentDOM.getShowBlockBackgrounds(false) == false){

currentDOM.setShowBlockBackgrounds(false);
}

dom.getShowBlockBorders()

Availability

Dreamweaver 8.

Description

This function gets the state of the visual aid that draws borders for all blocks or all divs.

Arguments
allblocks

■ The allblocks argument, which is required, is a Boolean. Set the value to true to get the
state for div tags only. Set the value to false to get the state for all block elements.
Layout view functions 459

000_DW_API_Print.book Page 460 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value; if true, borders are displayed; if false, borders are not displayed.

Example

The following example checks whether the block borders visual aid is on and, if not, turns it
on:
var currentDOM = dw.getDocumentDOM();
if (currentDOM.getShowBlockBorders(false) == false){

currentDOM.setShowBlockBorders(true);
}

dom.getShowBlockIDs()

Availability

Dreamweaver 8.

Description

This function gets the state of the visual aid that displays ID and class information for all
blocks or divs.

Arguments
allblocks

■ The allblocks argument, which is required, is a Boolean. Set the value to true to display
ID and class for div tags only. Set the value to false to display the ID and class for all
block elements.

Returns

A Boolean: If true, IDs are displayed; if false IDs are not displayed.

Example

The following example checks whether the block IDs are displayed and, if not, displays them:
var currentDOM = dw.getDocumentDOM();
if (currentDOM.getShowBlockIDs(false) == false){

currentDOM.setShowBlockIDs(true);
}

460 Design

000_DW_API_Print.book Page 461 Wednesday, July 20, 2005 11:58 AM
dom.getShowBoxModel()

Availability

Dreamweaver 8.

Description

This function turns on and off the visual aid that colors the full box model for the selected
block.

Arguments

None.

Returns

Nothing.

Example

The following example checks whether the full box model for the selected box is displayed in
color, and, if not, colors it:
var currentDOM = dw.getDocumentDOM();
if (currentDOM.getShowBoxModel() == false){

currentDOM.setShowBoxModel(true);
}

dom.setShowBlockBackgrounds()

Availability

Dreamweaver 8.

Description

This function turns on and off the visual aid that forces background coloring for all blocks or
all divs.

Arguments
allblocks

■ The allblocks argument, which is required, is a Boolean. Set the value to true to apply
background coloring to div tags only. Set the value to false to apply background coloring
to all block elements.

Returns

Nothing.
Layout view functions 461

000_DW_API_Print.book Page 462 Wednesday, July 20, 2005 11:58 AM
Example

See “dom.getShowBlockBackgrounds()” on page 459.

dom.setShowBlockBorders()

Availability

Dreamweaver 8.

Description

This function turns on or off the visual aid that draws borders for all blocks or divs.

Arguments
allblocks

■ The allblocks argument, which is required, is a Boolean. Set the value to true to apply
borders to div tags only. Set the value to false to apply borders to all block elements.

Returns

Nothing.

Example

See “dom.getShowBlockBorders()” on page 459.

dom.setShowBlockIDs()

Availability

Dreamweaver 8.

Description

This function turns on or off the visual aid that displays the ID and class for all blocks or divs.

Arguments
allblocks

■ The allblocks argument, which is required, is a Boolean. Set the value to true to display
the ID and class for div tags only. Set the value to false to display the ID and class for all
block elements.

Returns

Nothing.
462 Design

000_DW_API_Print.book Page 463 Wednesday, July 20, 2005 11:58 AM
Example

See “dom.getShowBlockIDs()” on page 460.

dom.setShowBoxModel()

Availability

Dreamweaver 8.

Description

This function sets the state of the visual aid that colors the full box model for the selected
block.

Arguments

None.

Returns

A Boolean: true if the box model is displayed; false if the box model is not displayed.

Example

See “dom.getShowBoxModel()” on page 461.

dom.setShowLayoutTableTabs()

Availability

Dreamweaver 4.

Description

Sets the current document to display tabs for layout tables whenever it’s in Layout view. This
function does not force the document into Layout view.

Arguments
bShow

■ The bShow argument indicates whether to display tabs for layout tables when the current
document is in Layout view. If bShow is true, Dreamweaver displays tabs; if bShow is
false, Dreamweaver does not display tabs.

Returns

Nothing.
Layout view functions 463

000_DW_API_Print.book Page 464 Wednesday, July 20, 2005 11:58 AM
dom.setShowLayoutView()

Availability

Dreamweaver 4.

Description

Places the current document in Layout view if bShow is true.

Arguments
bShow

■ The bShow argument is a Boolean value that toggles the current document between
Layout view and Standard view. If bShow is true, the current document is in Layout view;
if bShow is false, the current document is in Standard view.

Returns

Nothing.

Zoom functions
Zoom functions zoom in and out in Design view.

dreamweaver.activeViewScale()

Availability

Dreamweaver 8.

Description

This function gets or sets a mutable floating point property. When you get the value,
Dreamweaver returns the active view’s scale as it appears in the Zoom combo box, divided by
100. For example, 100% is 1.0; 50% is 0.5, and so on. When you set the value, Dreamweaver
sets the value in the Zoom combo box. The value can be between 0.06 and 64.00, which
correspond to 6% and 6400%.

Example

The following example gets the value of the current view’s scale and zooms in if it can and if
the scale is less than or equal to 100%:
if (canZoom() && dreamweaver.activeViewScale <= 1.0) {

zoomIn();
}
464 Design

000_DW_API_Print.book Page 465 Wednesday, July 20, 2005 11:58 AM
The following example sets the value of the current view’s scale to 50%:
dreamweaver.activeViewScale = 0.50;

dreamweaver.fitAll()

Availability

Dreamweaver 8.

Description

This function zooms in or out so that the entire document fits in the currently visible portion
of the Design view.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.canZoom()” on page 574.

Example
if (canZoom()){

fitAll();
}

dreamweaver.fitSelection()

Availability

Dreamweaver 8.

Description

This function zooms in or out so that the current selection fits in the currently visible portion
of the Design view.

Arguments

None.

Returns

Nothing.
Zoom functions 465

000_DW_API_Print.book Page 466 Wednesday, July 20, 2005 11:58 AM
Enabler

See “dreamweaver.canFitSelection()” on page 568.

Example
if (canFitSeletion()){

fitSelection();
}

dreamweaver.fitWidth()

Availability

Dreamweaver 8.

Description

This function zooms in or out so that the entire document width fits in the currently visible
portion of the Design view.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.canZoom()” on page 574.

Example
if (canZoom()){

fitWidth();
}

dreamweaver.zoomIn()

Availability

Dreamweaver 8.

Description

This function zooms in on the currently active Design view. The zoom level is the next preset
value in the Magnification menu. If there is no next preset value, this function does nothing.
466 Design

000_DW_API_Print.book Page 467 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.canZoom()” on page 574.

Example
if (canZoom()){

zoomIn();
}

dreamweaver.zoomOut()

Availability

Dreamweaver 8.

Description

This function zooms out on the currently active Design view. The zoom level is the next
preset value in the Magnification menu. If there is no next preset value, this function does
nothing.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.canZoom()” on page 574.

Example
if (canZoom()){

zoomOut();
}

Zoom functions 467

000_DW_API_Print.book Page 468 Wednesday, July 20, 2005 11:58 AM
Guide functions and properties
Guide functions and properties let you display, manipulate, and delete guides that let users
measure and lay out elements on their HTML pages.

dom.clearGuides()

Availability

Dreamweaver 8.

Description

This function determines whether to delete all guides in the document.

Arguments

None.

Returns

Nothing.

Example

The following example deletes all guides in the document if the document has at least one
guide:
var currentDOM = dw.getDocumentDOM();
 if (currentDOM.hasGuides() == true) {

currentDOM.clearGuides();
}

dom.createHorizontalGuide()

Availability

Dreamweaver 8.

Description

This function creates a horizontal guide at the current location in the document.

Arguments
location
468 Design

000_DW_API_Print.book Page 469 Wednesday, July 20, 2005 11:58 AM
■ The location argument is the location of the guide with both the value and units as one
string, with no space between the value and units. The possible units are "px" for pixels
and "%" for percentage. For example, to specify 10 pixels, location = "10px"; to specify
50 percent, location = "50%".

Returns

Nothing.

Example

The following example creates a horizontal guide in the document at the current location:
var currentDOM = dw.getDocumentDOM();
currentDOM.createHorizontalGuide("10px");

dom.createVerticalGuide()

Availability

Dreamweaver 8.

Description

This function creates a vertical guide at the current location in the document.

Arguments
location

■ The location argument is the location of the guide with both the value and units as one
string, with no space between the value and units. The possible units are "px" for pixels
and "%" for percentage. For example, to specify 10 pixels, location = "10px"; to specify
50 percent, location = "50%".

Returns

Nothing.

Example

The following example creates a vertical guide in the document at the current location:
var currentDOM = dw.getDocumentDOM();
currentDOM.createVerticalGuide("10px");
Guide functions and properties 469

000_DW_API_Print.book Page 470 Wednesday, July 20, 2005 11:58 AM
dom.deleteHorizontalGuide()

Availability

Dreamweaver 8.

Description

This function deletes the horizontal guide at the specified location.

Arguments
location

■ The location argument is a string that represents the location in the document to test,
with both the value and units as one string, with no space between the value and units.
The possible units are "px" for pixels and "%" for percentage. For example, to specify 10
pixels, location = "10px"; to specify 50 percent, location = "50%".

Returns

Nothing.

Example

The following example deletes the horizontal guide at the specified location in the document:
var currentDOM = dw.getDocumentDOM();
if (currentDOM.hasHorizontalGuide("10px") == true) {

currentDOM.deleteHorizonalGuide("10px");
}

dom.deleteVerticalGuide()

Availability

Dreamweaver 8.

Description

This function deletes the vertical guide at the specified location.

Arguments
location

■ The location argument is a string that represents the location in the document to test,
with both the value and units as one string, with no space between the value and units.
The possible units are "px" for pixels and "%" for percentage. For example, to specify 10
pixels, location = "10px"; to specify 50 percent, location = "50%".
470 Design

000_DW_API_Print.book Page 471 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

Example

The following example deletes the vertical guide at the specified location in the document:
var currentDOM = dw.getDocumentDOM();
if (currentDOM.hasVerticalGuide("10px") == true) {

currentDOM.deleteVerticalGuide("10px");
}

dom.guidesColor

Availability

Dreamweaver 8.

Description

This mutable color property determines the color of guides in the document. You can set and
get this property.

Arguments

None.

Returns

Nothing.

Example

The following example makes guides gray:
var currentDOM = dw.getDocumentDOM();
if (currentDOM.guidesColor != "#444444"){

currentDOM.guidesColor = "#444444";
}

dom.guidesDistanceColor

Availability

Dreamweaver 8.

Description

This mutable color property determines the distance feedback color of guides in the
document. You can set and get this property.
Guide functions and properties 471

000_DW_API_Print.book Page 472 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

Nothing.

Example

The following example makes the distance feedback color of guides gray:
var currentDOM = dw.getDocumentDOM();
if (currentDOM.guidesDistanceColor != "#CCCCCC"){

currentDOM.guidesDistanceColor = "#CCCCCC";
}

dom.guidesLocked

Availability

Dreamweaver 8.

Description

This mutable Boolean property determines whether guides are locked in the document. You
can set and get this property.

Arguments

None.

Returns

Nothing.

Example

The following example locks guides if they are not locked:
var currentDOM = dw.getDocumentDOM();
if (currentDOM.guidesLocked == false) {

currentDOM.guidesLocked = true;
}

472 Design

000_DW_API_Print.book Page 473 Wednesday, July 20, 2005 11:58 AM
dom.guidesSnapToElements

Availability

Dreamweaver 8.

Description

This mutable Boolean property determines whether guides snap to elements in the document.
You can set and get this property.

Arguments

None.

Returns

Nothing.

Example

The following example makes guides in the document snap to elements:
var currentDOM = dw.getDocumentDOM();
if (currentDOM.guidesSnapToElements == false) {

currentDOM.guidesSnapToElements = true;
}

dom.guidesVisible

Availability

Dreamweaver 8.

Description

This mutable Boolean property determines whether guides are visible in the document. You
can set and get this property.

Arguments

None.

Returns

Nothing.
Guide functions and properties 473

000_DW_API_Print.book Page 474 Wednesday, July 20, 2005 11:58 AM
Example

The following example turns guides on if they are not visible:
var currentDOM = dw.getDocumentDOM();
if (currentDOM.guidesVisible == false) {

currentDOM.guidesVisible = true;
}

dom.hasGuides()

Availability

Dreamweaver 8.

Description

This function determines whether the document has at least one guide. You can set and get
this property.

Arguments

None.

Returns

Nothing.

Example

The following example deletes all guides in the document if the document has at least one
guide:
var currentDOM = dw.getDocumentDOM();
 if (currentDOM.hasGuides() == true) {

currentDOM.clearGuides();
}

dom.hasHorizontalGuide()

Availability

Dreamweaver 8.

Description

This function determines whether the document has a horizontal guide at the specified
location.
474 Design

000_DW_API_Print.book Page 475 Wednesday, July 20, 2005 11:58 AM
Arguments
location

■ The location argument is a string that represents the location in the document to test,
with both the value and units as one string, with no space between the value and units.
The possible units are "px" for pixels and "%" for percentage. For example, to specify 10
pixels, location = "10px"; to specify 50 percent, location = "50%".

Returns

A Boolean value: true if there is a horizontal guide at the location; false otherwise.

Example

The following example deletes all guides in the document if the document has a horizontal
guide at the specified location:
var currentDOM = dw.getDocumentDOM();
if (currentDOM.hasHorizontalGuide("10px") == true) {

currentDOM.clearGuides();
}

dom.hasVerticalGuide()

Availability

Dreamweaver 8.

Description

This function determines whether the document has a vertical guide at the current location.

Arguments
location

■ The location argument is a string that represents the location in the document to test,
with both the value and units as one string, with no space between the value and units.
The possible units are "px" for pixels and "%" for percentage. For example, to specify 10
pixels, location = "10px"; to specify 50 percent, location = "50%".

Returns

A Boolean value: true if there is a vertical guide at the location; false otherwise.
Guide functions and properties 475

000_DW_API_Print.book Page 476 Wednesday, July 20, 2005 11:58 AM
Example

The following example deletes all guides in the document if the document has a vertical guide
at the specified location:
var currentDOM = dw.getDocumentDOM();
if (currentDOM.hasVerticalGuide("10px") == true) {

currentDOM.clearGuides();
}

dom.snapToGuides

Availability

Dreamweaver 8.

Description

This mutable Boolean property determines whether elements snap to guides in the document.
You can set and get this property.

Arguments

None.

Returns

Nothing.

Example

The following example makes elements in the document snap to guides:
var currentDOM = dw.getDocumentDOM();
if (currentDOM.snapToGuides == false) {

currentDOM.snapToGuides = true;
}

476 Design

000_DW_API_Print.book Page 477 Wednesday, July 20, 2005 11:58 AM
Table editing functions
Table functions add and remove table rows and columns, change column widths and row
heights, convert measurements from pixels to percents and back, and perform other standard
table-editing tasks.

dom.convertWidthsToPercent()

Availability

Dreamweaver 3.

Description

This function converts all WIDTH attributes in the current table from pixels to percentages.

Arguments

None.

Returns

Nothing.

dom.convertWidthsToPixels()

Availability

Dreamweaver 4.

Description

This function converts all WIDTH attributes in the current table from percentages to pixels.

Arguments

None.

Returns

Nothing.
Table editing functions 477

000_DW_API_Print.book Page 478 Wednesday, July 20, 2005 11:58 AM
dom.decreaseColspan()

Availability

Dreamweaver 3.

Description

This function decreases the column span by one.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canDecreaseColspan()” on page 554.

dom.decreaseRowspan()

Availability

Dreamweaver 3.

Description

This function decreases the row span by one.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canDecreaseRowspan()” on page 555.
478 Design

000_DW_API_Print.book Page 479 Wednesday, July 20, 2005 11:58 AM
dom.deleteTableColumn()

Availability

Dreamweaver 3.

Description

This function removes the selected table column or columns.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canDeleteTableColumn()” on page 555.

dom.deleteTableRow()

Availability

Dreamweaver 3.

Description

This function removes the selected table row or rows.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canDeleteTableRow()” on page 556.
Table editing functions 479

000_DW_API_Print.book Page 480 Wednesday, July 20, 2005 11:58 AM
dom.doDeferredTableUpdate()

Availability

Dreamweaver 3.

Description

If the Faster Table Editing option is selected in the General preferences, this function forces
the table layout to reflect recent changes without moving the selection outside the table. This
function has no effect if the Faster Table Editing option is not selected.

Arguments

None.

Returns

Nothing.

dom.getShowTableWidths()

Availability

Dreamweaver MX 2004.

Description

Returns whether table widths appear in standard or expanded tables mode (non-Layout
mode). For information on whether Dreamweaver displays table tabs in Layout mode, see
“dom.getShowLayoutTableTabs()” on page 456.

Arguments

None.

Returns

A Boolean value: true if Dreamweaver shows table widths in standard or expanded tables
mode; false otherwise.
480 Design

000_DW_API_Print.book Page 481 Wednesday, July 20, 2005 11:58 AM
dom.getTableExtent()

Availability

Dreamweaver 3.

Description

This function gets the number of columns and rows in the selected table.

Arguments

None.

Returns

An array that contains two whole numbers. The first array item is the number of columns,
and the second array item is the number of rows. If no table is selected, nothing returns.

dom.increaseColspan()

Availability

Dreamweaver 3.

Description

This function increases the column span by one.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canIncreaseColspan()” on page 557.

dom.increaseRowspan()

Availability

Dreamweaver 3.

Description

This function increases the row span by one.
Table editing functions 481

000_DW_API_Print.book Page 482 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

Nothing.

Enabler

See “dom.canDecreaseRowspan()” on page 555.

dom.insertTableColumns()

Availability

Dreamweaver 3.

Description

This function inserts the specified number of table columns into the current table.

Arguments
numberOfCols, bBeforeSelection

■ The numberOfCols argument is the number of columns to insert.
■ The bBeforeSelection argument is a Boolean value: true indicates that the columns

should be inserted before the column that contains the selection; false otherwise.

Returns

Nothing.

Enabler

See “dom.canInsertTableColumns()” on page 557.

dom.insertTableRows()

Availability

Dreamweaver 3.

Description

This function inserts the specified number of table rows into the current table.
482 Design

000_DW_API_Print.book Page 483 Wednesday, July 20, 2005 11:58 AM
Arguments
numberOfRows, bBeforeSelection

■ The numberOfRows argument is the number of rows to insert.
■ The bBeforeSelection argument is a Boolean value: true indicates that the rows should

be inserted above the row that contains the selection; false otherwise.

Returns

Nothing.

Enabler

See “dom.canInsertTableRows()” on page 558.

dom.mergeTableCells()

Availability

Dreamweaver 3.

Description

This function merges the selected table cells.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canMergeTableCells()” on page 559.

dom.removeAllTableHeights()

Availability

Dreamweaver 3.

Description

This function removes all HEIGHT attributes from the selected table.

Arguments

None.
Table editing functions 483

000_DW_API_Print.book Page 484 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

dom.removeAllTableWidths()

Availability

Dreamweaver 3.

Description

This function removes all WIDTH attributes from the selected table.

Arguments

None.

Returns

Nothing.

dom.removeColumnWidth()

Availability

Dreamweaver MX 2004.

Description

This function removes all WIDTH attributes from a single, selected column.

Arguments

None.

Returns

Nothing.

dom.selectTable()

Availability

Dreamweaver 3.

Description

Selects an entire table.
484 Design

000_DW_API_Print.book Page 485 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

Nothing.

Enabler

See “dom.canSelectTable()” on page 560.

dom.setShowTableWidths()

Availability

Dreamweaver MX 2004.

Description

Toggles the display of table widths on and off in standard or Expanded Tables mode (non-
Layout mode). This function sets the value for the current document and any future
document unless otherwise specified. For information on setting the display of table tabs in
Layout mode, see “dom.setShowLayoutTableTabs()” on page 463.

Arguments
bShow

■ The bShow is a Boolean argument that indicates whether to display table widths for tables
when the current document is in standard or Expanded Tables mode (non-Layout mode).
If bShow is true, Dreamweaver displays the widths. If bShow is false, Dreamweaver does
not display the widths.

Returns

Nothing.

dom.setTableCellTag()

Availability

Dreamweaver 3.

Description

This function specifies the tag for the selected cell.
Table editing functions 485

000_DW_API_Print.book Page 486 Wednesday, July 20, 2005 11:58 AM
Arguments
tdOrTh

■ The tdOrTh argument must be either "td" or "th".

Returns

Nothing.

dom.setTableColumns()

Availability

Dreamweaver 3.

Description

This function sets the number of columns in the selected table.

Arguments
numberOfCols

■ The numberOfCols argument specifies the number of columns to set in the table.

Returns

Nothing.

dom.setTableRows()

Availability

Dreamweaver 3.

Description

This function sets the number of rows in the selected table.

Arguments
numberOfCols

■ The numberOfRows argument specifies the number of rows to set in the selected table.

Returns

Nothing.
486 Design

000_DW_API_Print.book Page 487 Wednesday, July 20, 2005 11:58 AM
dom.showInsertTableRowsOrColumnsDialog()

Availability

Dreamweaver 3.

Description

This function opens the Insert Rows or Columns dialog box.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canInsertTableColumns()” on page 557 or “dom.canInsertTableRows()”
on page 558.

dom.splitTableCell()

Availability

Dreamweaver 3.

Description

This function splits the current table cell into the specified number of rows or columns. If one
or both of the arguments is omitted, the Split Cells dialog box appears.

Arguments
{colsOrRows}, {numberToSplitInto}

■ The colsOrRows argument, which is optional, must be either "columns" or "rows".
■ The numberToSplitInto argument, which is optional, is the number of rows or columns

into which the cell will be split.

Returns

Nothing.

Enabler

See “dom.canSplitTableCell()” on page 562.
Table editing functions 487

000_DW_API_Print.book Page 488 Wednesday, July 20, 2005 11:58 AM
488 Design

17

000_DW_API_Print.book Page 489 Wednesday, July 20, 2005 11:58 AM
CHAPTER 17

Code
The Code functions let you perform operations on a document that appears in Code view.
These operations include adding new menu or function tags to a Code Hints menu, finding
and replacing string patterns, deleting the current selection from a document, printing all or
selected code, editing tags, or applying syntax formatting to selected code.

Code functions
Code Hints are menus that Macromedia Dreamweaver 8 opens when you type certain
character patterns in Code view. Code Hints provide a typing shortcut by offering a list of
strings that potentially complete the string you are typing. If the string you are typing appears
in the menu, you can scroll to it and press Enter or Return to complete your entry. For
example, when you type <, a pop-up menu shows a list of tag names. Instead of typing the rest
of the tag name, you can select the tag from the menu to include it in your text.

You can add Code Hints menus to Dreamweaver by defining them in the CodeHints.xml file.
For information on the CodeHints.xml file, see Extending Dreamweaver.

You can also add new Code Hints menus dynamically through JavaScript after Dreamweaver
loads the contents of the CodeHints.xml file. For example, JavaScript code populates the list
of session variables in the Bindings panel. You can use the same code to add a Code Hints
menu, so when a user types Session in Code view, Dreamweaver displays a menu of session
variables.

The CodeHints.xml file and the JavaScript API expose a useful subset of the Code Hints
engine, but some Dreamweaver functionality is not accessible. For example, there is no
JavaScript hook to open a color picker, so Dreamweaver cannot express the Attribute Values
menu using JavaScript. You can only open a menu of text items from which you can insert
text.
489

000_DW_API_Print.book Page 490 Wednesday, July 20, 2005 11:58 AM
Code Coloring lets you specify code color styles and to modify existing code coloring schemes
or create new ones. You can specify code coloring styles and schemes by modifying the
Colors.xml and code coloring scheme files. For more information on these files, see Extending
Dreamweaver.

The JavaScript API for Code Hints and Code Coloring consists of the following functions.

dreamweaver.codeHints.addMenu()

Availability

Dreamweaver MX.

Description

Dynamically defines a new menu tag in the CodeHints.xml file. If there is an existing menu
tag that has the same pattern and document type, this function adds items to the existing
menu.

Arguments
menuGroupId, pattern, labelArray, {valueArray}, {iconArray}, {doctypes},

{casesensitive}

■ The menuGroupId argument is the ID attribute for one of the menugroup tags.
■ The pattern argument is the pattern attribute for the new menu tag.
■ The labelArray argument is an array of strings. Each string is the text for a single menu

item in the pop-up menu.
■ The valueArray argument, which is optional, is an array of strings, which should be the

same length as the labelArray argument. When a user selects an item from the pop-up
menu, the string in this array is inserted in the user’s document. If the string to be inserted
is always the same as the menu label, this argument might have a null value.

■ The iconArray argument, which is optional, is either a string or an array of strings. If it is
a string, it specifies the URL for a single image file that Dreamweaver uses for all items in
the menu. If it is an array of strings, it must be the same length as the labelArray
argument. Each string is a URL, relative to the Dreamweaver Configuration folder, for an
image file that Dreamweaver uses as an icon for the corresponding menu item. If this
argument is a null value, Dreamweaver displays the menu without icons.

■ The doctypes argument, which is optional, specifies that this menu is active for only
certain document types. You can specify the doctypes argument as a comma-separated
list of document type IDs. For a list of Dreamweaver document types, see the
Dreamweaver Configuration/Documenttypes/MMDocumentTypes.xml file.
490 Code

000_DW_API_Print.book Page 491 Wednesday, July 20, 2005 11:58 AM
■ The casesensitive argument, which is optional, specifies whether the pattern is case-
sensitive. The possible values for the casesensitive argument are the Boolean values
true or false. The value defaults to false if you omit this argument. If the
casesensitive argument is a true value, the Code Hints menu appears only if the text
that the user types exactly matches the pattern that the pattern attribute specifies. If the
casesensitive argument is a false value, the menu appears even if the pattern is
lowercase and the text is uppercase.

Returns

Nothing.

Example

If the user creates a record set called "myRs", the following code would create a menu for myRS:
dw.codeHints.addMenu(
 "CodeHints_object_methods", // menu is enabled if object methods are

enabled
 "myRS.", // pop up menu if user types "myRS."
 new Array("firstName", "lastName"), // items in drop-down menu for myRS

new Array("firstName", "lastName"), // text to actually insert in
document
null, // no icons for this menu
"ASP_VB, ASP_JS"); // specific to the ASP doc types

dreamweaver.codeHints.addFunction()

Availability

Dreamweaver MX.

Description

Dynamically defines a new function tag. If there is an existing function tag with the same
pattern and document type, this function replaces the existing function tag.

Arguments
menuGroupId, pattern, {doctypes}, {casesensitive}

■ The menuGroupId argument is the ID string attribute of a menugroup tag.
■ The pattern argument is a string that specifies the pattern attribute for the new

function tag.
■ The doctypes argument, which is optional, specifies that this function is active for only

certain document types. You can specify the doctypes argument as a comma-separated
list of document type IDs. For a list of Dreamweaver document types, see the
Dreamweaver Configuration/Documenttypes/MMDocumentTypes.xml file.
Code functions 491

000_DW_API_Print.book Page 492 Wednesday, July 20, 2005 11:58 AM
■ The casesensitive argument, which is optional, specifies whether the pattern is case-
sensitive. The possible values for the casesensitive argument are the Boolean values
true or false. The value defaults to false if you omit this argument. If the
casesensitive argument is a true value, the Code Hints menu appears only if the text
that the user types exactly matches the pattern that the pattern attribute specifies. If
casesensitive is a false value, the menu appears even if the pattern is lowercase and
the text is uppercase.

Returns

Nothing.

Example

The following example of the dw.codeHints.addFunction() function adds the function
name pattern out.newLine() to the Code Hints menu group CodeHints_Object_Methods
and makes it active only for JSP document types:
dw.codeHints.addFunction(

"CodeHints_Object_Methods",
"out.newLine()",
"JSP")

dreamweaver.codeHints.resetMenu()

Availability

Dreamweaver MX.

Description

Resets the specified menu tag or function tag to its state immediately after Dreamweaver reads
the CodeHints.xml file. In other words, a call to this function erases the effect of previous calls
to the addMenu() and addFunction() functions.

Arguments
menuGroupId, pattern, {doctypes}

■ The menuGroupId argument is the ID string attribute of a menugroup tag.
■ The pattern argument is a string that specifies the pattern attribute for the new menu or

function tag to be reset.
■ The doctypes argument, which is optional, specifies that this menu is active for only

certain document types. You can specify the doctypes argument as a comma-separated
list of document type IDs. For a list of Dreamweaver document types, see the
Dreamweaver Configuration/Documenttypes/MMDocumentTypes.xml file.
492 Code

000_DW_API_Print.book Page 493 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

Example

Your JavaScript code might build a Code Hints menu that contains user-defined session
variables. Each time the list of session variables changes, that code needs to update the menu.
Before the code can load the new list of session variables into the menu, it needs to remove the
old list. Calling this function removes the old session variables.

dreamweaver.codeHints.showCodeHints()

Availability

Dreamweaver MX.

Description

Dreamweaver calls this function when the user opens the Edit > Show Code Hints menu
item. The function opens the Code Hints menu at the current selection location in Code
view.

Arguments

None.

Returns

Nothing.

Example

The following example opens the Code Hints menu at the current insertion point in the
document when it is in Code view.
dw.codeHints.showCodeHints()

dreamweaver.reloadCodeColoring()

Description

Reloads code coloring files from the Dreamweaver Configuration/Code Coloring folder.

Arguments

None.
Code functions 493

000_DW_API_Print.book Page 494 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

Example
dreamweaver.reloadCodeColoring()

Find/replace functions
Find/replace functions handle find and replace operations. They cover basic functionality,
such as finding the next instance of a search pattern, and complex replacement operations that
require no user interaction.

dreamweaver.findNext()

Availability

Dreamweaver 3; modified in Dreamweaver MX 2004.

Description

Finds the next instance of the search string that was specified previously by
dreamweaver.setUpFind(), by dreamweaver.setUpComplexFind(), or by the user in the Find
dialog box, and selects the instance in the document.

Arguments
{bUseLastSetupSearch}

■ The bUseLastSetupSearch argument, which is optional, is a Boolean value. If
bUseLastSetupSearch is the value true, which is the default if no argument is given, the
function does a find-next operation using the parameters specified by a previous call to
either the dreamweaver.setupComplexFind() function or the
dreamweaver.setupComplexFindReplace() function. If you set
bUseLastSetupSearch to the value false, the function ignores the previously set up
search and performs a search for the next instance of the text that is currently selected in
the document.

Returns

Nothing.

Enabler

See “dreamweaver.canFindNext()” on page 567.
494 Code

000_DW_API_Print.book Page 495 Wednesday, July 20, 2005 11:58 AM
dreamweaver.replace()

Availability

Dreamweaver 3.

Description

Verifies that the current selection matches the search criteria that was specified by
dreamweaver.setUpFindReplace(), by dreamweaver.setUpComplexFindReplace(), or by the
user in the Replace dialog box; the function then replaces the selection with the replacement
text that is specified by the search request.

Arguments

None.

Returns

Nothing.

dreamweaver.replaceAll()

Availability

Dreamweaver 3.

Description

Replaces each section of the current document that matches the search criteria that was
specified by dreamweaver.setUpFindReplace(), by dreamweaver.setUpComplexFindReplace(),
or by the user in the Replace dialog box, with the specified replacement content.

Arguments

None.

Returns

Nothing.
Find/replace functions 495

000_DW_API_Print.book Page 496 Wednesday, July 20, 2005 11:58 AM
dreamweaver.setUpComplexFind()

Availability

Dreamweaver 3.

Description

Prepares for an advanced text or tag search by loading the specified XML query.

Arguments
xmlQueryString

■ The xmlQueryString argument is a string of XML code that begins with dwquery and
ends with /dwquery. (To get a string of the proper format, set up the query in the Find
dialog box, click the Save Query button, open the query file in a text editor, and copy
everything from the opening of the dwquery tag to the closing of the /dwquery tag.)

Returns

Nothing.

Example

The first line of the following example sets up a tag search and specifies that the scope of the
search should be the current document. The second line performs the search operation.
dreamweaver.setUpComplexFind('<dwquery><queryparams matchcase="false" ¬
ignorewhitespace="true" useregexp="false"/><find>¬
<qtag qname="a"><qattribute qname="href" qcompare="="
qvalue="#">¬

</qattribute><qattribute qname="onMouseOut" qcompare="=" qvalue="" ¬
qnegate="true"></qattribute></qtag></find></dwquery>');
dw.findNext();

dreamweaver.setUpComplexFindReplace()

Availability

Dreamweaver 3.

Description

Prepares for an advanced text or tag search by loading the specified XML query.
496 Code

000_DW_API_Print.book Page 497 Wednesday, July 20, 2005 11:58 AM
Arguments
xmlQueryString

■ The xmlQueryString argument is a string of XML code that begins with the dwquery tag
and ends with the /dwquery tag. (To get a string of the proper format, set up the query in
the Find dialog box, click the Save Query button, open the query file in a text editor, and
copy everything from the beginning of the dwquery tag to the end of the /dwquery tag.)

Returns

Nothing.

Example

The first statement in the following example sets up a tag search and specifies that the scope of
the search should be four files. The second statement performs the search and replace
operation.
dreamweaver.setUpComplexFindReplace('<dwquery><queryparams ¬
matchcase="false" ignorewhitespace="true" useregexp="false"/>¬
<find><qtag qname="a"><qattribute qname="href" qcompare="=" ¬

qvalue="#"></qattribute><qattribute qname="onMouseOut" ¬
qcompare="=" qvalue="" qnegate="true"></qattribute></qtag>¬
</find><replace action="setAttribute" param1="onMouseOut" ¬
param2="this.style.color='#000000';this.style.¬

fontWeight='normal'"/></dwquery>');
dw.replaceAll();

dreamweaver.setUpFind()

Availability

Dreamweaver 3.

Description

Prepares for a text or HTML source search by defining the search parameters for a subsequent
dreamweaver.findNext() operation.

Arguments
searchObject

The searchObject argument is an object for which the following properties can be defined:

■ The searchString is the text for which to search.
■ The searchSource property is a Boolean value that indicates whether to search the

HTML source.
Find/replace functions 497

000_DW_API_Print.book Page 498 Wednesday, July 20, 2005 11:58 AM
■ The {matchCase} property, which is optional, is a Boolean value that indicates whether
the search is case-sensitive. If this property is not explicitly set, it defaults to false.

■ The {ignoreWhitespace} property, which is optional, is a Boolean value that indicates
whether white space differences should be ignored. The ignoreWhitespace property
defaults to false if the value of the useRegularExpressions property is true, and true
if the useRegularExpressions property is false.

■ The {useRegularExpressions} property is a Boolean value that indicates whether the
searchString property uses regular expressions. If this property is not explicitly set, it
defaults to a value of false.

Returns

Nothing.

Example

The following code demonstrates three ways to create a searchObject object:
var searchParams;
searchParams.searchString = 'bgcolor="#FFCCFF"';
searchParams.searchSource = true;
dreamweaver.setUpFind(searchParams);

var searchParams = {searchString: 'bgcolor="#FFCCFF"', searchSource: true};
dreamweaver.setUpFind(searchParams);

dreamweaver.setUpFind({searchString: 'bgcolor="#FFCCFF"', searchSource: ¬
true});

dreamweaver.setUpFindReplace()

Availability

Dreamweaver 3.

Description

Prepares for a text or HTML source search by defining the search parameters and the scope
for a subsequent dreamweaver.replace() or dreamweaver.replaceAll() operation.

Arguments
searchObject

The searchObject argument is an object for which the following properties can be defined:

■ The searchString property is the text for which to search.
■ The replaceString property is the text with which to replace the selection.
498 Code

000_DW_API_Print.book Page 499 Wednesday, July 20, 2005 11:58 AM
■ The searchSource property is a Boolean value that indicates whether to search the
HTML source.

■ The {matchCase} property, which is optional, is a Boolean value that indicates whether
the search is case-sensitive. If this property is not explicitly set, it defaults to a false value.

■ The {ignoreWhitespace} property, which is optional, is a Boolean value that indicates
whether white space differences should be ignored. The ignoreWhitespace property
defaults to false if the useRegularExpressions property has a value of true, and
defaults to a value of true if the useRegularExpressions property has a value of false.

■ The {useRegularExpressions} property is a Boolean value that indicates whether the
searchString property uses regular expressions. If this property is not explicitly set, it
defaults to a value of false.

Returns

Nothing.

Example

The following code demonstrates three ways to create a searchObject object:
var searchParams;
searchParams.searchString = 'bgcolor="#FFCCFF"';
searchParams.replaceString = 'bgcolor="#CCFFCC"';
searchParams.searchSource = true;
dreamweaver.setUpFindReplace(searchParams);

var searchParams = {searchString: 'bgcolor="#FFCCFF"', replaceString:
'bgcolor="#CCFFCC"', searchSource: true};

dreamweaver.setUpFindReplace(searchParams);

dreamweaver.setUpFindReplace({searchString: 'bgcolor="#FFCCFF"', ¬
replaceString: 'bgcolor="#CCFFCC"', searchSource: true});

dreamweaver.showFindDialog()

Availability

Dreamweaver 3.

Description

Opens the Find dialog box.

Arguments

None.
Find/replace functions 499

000_DW_API_Print.book Page 500 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

Enabler

See “dreamweaver.canShowFindDialog()” on page 573.

dreamweaver.showFindReplaceDialog()

Availability

Dreamweaver 3.

Description

Opens the Replace dialog box.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.canShowFindDialog()” on page 573.

General editing functions
You handle general editing functions in the Document window. These functions insert text,
HTML, and objects; apply, change, and remove font and character markup; modify tags and
attributes; and more.

dom.applyCharacterMarkup()

Availability

Dreamweaver 3.

Description

Applies the specified type of character markup to the selection. If the selection is an insertion
point, it applies the specified character markup to any subsequently typed text.
500 Code

000_DW_API_Print.book Page 501 Wednesday, July 20, 2005 11:58 AM
Arguments
tagName

■ The tagName argument is the tag name that is associated with the character markup. It
must be one of the following strings: "b", "cite", "code", "dfn", "em", "i", "kbd",
"samp", "s", "strong", "tt", "u", or "var".

Returns

Nothing.

dom.applyFontMarkup()

Availability

Dreamweaver 3.

Description

Applies the FONT tag and the specified attribute and value to the current selection.

Arguments
attribute, value

■ The attribute argument must be "face", "size", or "color".
■ The value argument is the value to be assigned to the attribute; for example, "Arial,

Helvetica, sans-serif", "5", or "#FF0000".

Returns

Nothing.

dom.deleteSelection()

Availability

Dreamweaver 3.

Description

Deletes the selection in the document.

Arguments

None.

Returns

Nothing.
General editing functions 501

000_DW_API_Print.book Page 502 Wednesday, July 20, 2005 11:58 AM
dom.editAttribute()

Availability

Dreamweaver 3.

Description

Displays the appropriate interface for editing the specified Document attribute. In most cases,
this interface is a dialog box. This function is valid only for the active document.

Arguments
attribute

■ The attribute is a string that specifies the tag attribute that you want to edit.

Returns

Nothing.

dom.exitBlock()

Availability

Dreamweaver 3.

Description

Exits the current paragraph or heading block, leaving the insertion point outside all block
elements.

Arguments

None.

Returns

Nothing.

dom.getCharSet()

Availability

Dreamweaver 4.

Description

Returns the charset attribute in the meta tag of the document.
502 Code

000_DW_API_Print.book Page 503 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

The encoding identity of the document. For example, for a Latin1 document, the function
returns iso-8859-1.

dom.getFontMarkup()

Availability

Dreamweaver 3.

Description

Gets the value of the specified attribute of the FONT tag for the current selection.

Arguments
attribute

■ The attribute argument must be "face", "size", or "color".

Returns

A string that contains the value of the specified attribute or an empty string if the attribute is
not set.

dom.getLineFromOffset()

Availability

Dreamweaver MX.

Description

Finds the line number of a specific character offset in the text (the HTML or JavaScript code)
of the file.

Arguments
offset

■ The offset argument is an integer that represents the character location from the
beginning of the file.

Returns

An integer that represents the line number in the document.
General editing functions 503

000_DW_API_Print.book Page 504 Wednesday, July 20, 2005 11:58 AM
dom.getLinkHref()

Availability

Dreamweaver 3.

Description

Gets the link that surrounds the current selection. This function is equivalent to looping
through the parents and grandparents of the current node until a link is found and then
calling the getAttribute('HREF') on the link.

Arguments

None.

Returns

A string that contains the name of the linked file, which is expressed as a file:// URL.

dom.getLinkTarget()

Availability

Dreamweaver 3.

Description

Gets the target of the link that surrounds the current selection. This function is equivalent to
looping through the parents and grandparents of the current node until a link is found and
then calling the getAttribute('TARGET') function on the link.

Arguments

None.

Returns

A string that contains the value of the TARGET attribute for the link or an empty string if no
target is specified.
504 Code

000_DW_API_Print.book Page 505 Wednesday, July 20, 2005 11:58 AM
dom.getListTag()

Availability

Dreamweaver 3.

Description

Gets the style of the selected list.

Arguments

None.

Returns

A string that contains the tag that is associated with the list ("ul", "ol", or "dl") or an empty
string if no tag is associated with the list. This value always returns in lowercase letters.

dom.getTextAlignment()

Availability

Dreamweaver 3.

Description

Gets the alignment of the block that contains the selection.

Arguments

None.

Returns

A string that contains the value of the ALIGN attribute for the tag that is associated with the
block or an empty string if the ALIGN attribute is not set for the tag. This value always returns
in lowercase letters.

dom.getTextFormat()

Availability

Dreamweaver 3.

Description

Gets the block format of the selected text.
General editing functions 505

000_DW_API_Print.book Page 506 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

A string that contains the block tag that is associated with the text (for example, "p", "h1",
"pre", and so on) or an empty string if no block tag is associated with the selection. This
value always returns in lowercase letters.

dom.hasCharacterMarkup()

Availability

Dreamweaver 3.

Description

Checks whether the selection already has the specified character markup.

Arguments
markupTagName

■ The markupTagName argument is the name of the tag that you’re checking. It must be one
of the following strings: "b", "cite", "code", "dfn", "em", "i", "kbd", "samp", "s",
"strong", "tt", "u", or "var".

Returns

A Boolean value that indicates whether the entire selection has the specified character markup.
The function returns a value of false if only part of the selection has the specified markup.

dom.indent()

Availability

Dreamweaver 3.

Description

Indents the selection using BLOCKQUOTE tags. If the selection is a list item, this function
indents the selection by converting the selected item into a nested list. This nested list is of the
same type as the outer list and contains one item, the original selection.

Arguments

None.
506 Code

000_DW_API_Print.book Page 507 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

dom.insertHTML()

Availability

Dreamweaver 3.

Description

Inserts HTML content into the document at the current insertion point.

Arguments
contentToInsert, {bReplaceCurrentSelection}

■ The contentToInsert argument is the content you want to insert.
■ The bReplaceCurrentSelection argument, which is optional, is a Boolean value that

indicates whether the content should replace the current selection. If the
bReplaceCurrentSelection argument is a value of true, the content replaces the
current selection. If the value is false, the content is inserted after the current selection.

Returns

Nothing.

Example

The following code inserts the HTML string 130 into the current document:
var theDOM = dw.getDocumentDOM();
theDOM.insertHTML('130');

The result appears in the Document window, as shown in the following figure:
General editing functions 507

000_DW_API_Print.book Page 508 Wednesday, July 20, 2005 11:58 AM
dom.insertObject()

Availability

Dreamweaver 3.

Description

Inserts the specified object, prompting the user for parameters if necessary.

Arguments
objectName

■ The objectName argument is the name of an object in the Configuration/Objects folder.

Returns

Nothing.

Example

A call to the dom.insertObject('Button') function inserts a form button into the active
document after the current selection. If nothing is selected, this function inserts the button at
the current insertion point.

dom.insertText()

Availability

Dreamweaver 3.

Description

Inserts text content into the document at the current insertion point.

Arguments
contentToInsert, {bReplaceCurrentSelection}

■ The contentToInsert argument is the content that you want to insert.
■ The bReplaceCurrentSelection argument, which is optional, is a Boolean value that

indicates whether the content should replace the current selection. If the
bReplaceCurrentSelection argument is a value of true, the content replaces the
current selection. If the value is false, the content is inserted after the current selection.

N
O

T
E

Although object files can be stored in separate folders, it’s important that these files have
unique names. If a file called Button.htm exists in the Forms folder and also in the
MyObjects folder, Dreamweaver cannot distinguish between them.
508 Code

000_DW_API_Print.book Page 509 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

Example

The following code inserts the text: 130 into the current document:
var theDOM = dreamweaver.getDocumentDOM();
theDOM.insertText('130');

The results appear in the Document window, as shown in the following figure:

dom.newBlock()

Availability

Dreamweaver 3.

Description

Creates a new block with the same tag and attributes as the block that contains the current
selection or creates a new paragraph if the pointer is outside all blocks.

Arguments

None.

Returns

Nothing.

Example

If the current selection is inside a center-aligned paragraph, a call to the dom.newBlock()
function inserts <p align="center"> after the current paragraph.
General editing functions 509

000_DW_API_Print.book Page 510 Wednesday, July 20, 2005 11:58 AM
dom.notifyFlashObjectChanged()

Availability

Dreamweaver 4.

Description

Tells Dreamweaver that the current Flash object file has changed. Dreamweaver updates the
Preview display, resizing it as necessary, preserving the width-height ratio from the original
size. For example, Flash Text uses this feature to update the text in the Layout view as the user
changes its properties in the Command dialog box.

Arguments

None.

Returns

Nothing.

dom.outdent()

Availability

Dreamweaver 3.

Description

Outdents the selection.

Arguments

None.

Returns

Nothing.

dom.removeCharacterMarkup()

Availability

Dreamweaver 3.

Description

Removes the specified type of character markup from the selection.
510 Code

000_DW_API_Print.book Page 511 Wednesday, July 20, 2005 11:58 AM
Arguments
tagName

■ The tagName argument is the tag name that is associated with the character markup. It
must be one of the following strings: "b", "cite", "code", "dfn", "em", "i", "kbd",
"samp", "s", "strong", "tt", "u", or "var".

Returns

Nothing.

dom.removeFontMarkup()

Availability

Dreamweaver 3.

Description

Removes the specified attribute and its value from a FONT tag. If removing the attribute leaves
only the FONT tag, the FONT tag is also removed.

Arguments
attribute

■ The attribute argument must be "face", "size", or "color".

Returns

Nothing.

dom.removeLink()

Availability

Dreamweaver 3.

Description

Removes the hypertext link from the selection.

Arguments

None.

Returns

Nothing.
General editing functions 511

000_DW_API_Print.book Page 512 Wednesday, July 20, 2005 11:58 AM
dom.resizeSelection()

Availability

Dreamweaver 3.

Description

Resizes the selected object to the specified dimensions.

Arguments
newWidth, newHeight

■ The newWidth argument specifies the new width to which the function will set the
selected object.

■ The newHeight argument specifies the new height to which the function will set the
selected object.

Returns

Nothing.

dom.setAttributeWithErrorChecking()

Availability

Dreamweaver 3.

Description

Sets the specified attribute to the specified value for the current selection, prompting the
user if the value is the wrong type or if it is out of range. This function is valid only for the
active document.

Arguments
attribute, value

■ The attribute argument specifies the attribute to set for the current selection.
■ The value argument specifies the value to set for the attribute.

Returns

Nothing.
512 Code

000_DW_API_Print.book Page 513 Wednesday, July 20, 2005 11:58 AM
dom.setLinkHref()

Availability

Dreamweaver 3.

Description

Makes the selection a hypertext link or changes the URL value of the HREF tag that encloses
the current selection.

Arguments
linkHREF

■ The linkHREF argument is the URL (document-relative path, root-relative path, or
absolute URL) comprising the link. If this argument is omitted, the Select HTML File
dialog box appears.

Returns

Nothing.

Enabler

See “dom.canSetLinkHref()” on page 561.

dom.setLinkTarget()

Availability

Dreamweaver 3.

Description

Sets the target of the link that surrounds the current selection. This function is equivalent to
looping through the parents and grandparents of the current node until a link is found and
then calling the setAttribute('TARGET') function on the link.

Arguments
{linkTarget}

■ The linkTarget argument, which is optional, is a string that represents a frame name,
window name, or one of the reserved targets ("_self", "_parent", "_top", or
"_blank"). If the argument is omitted, the Set Target dialog box appears.

Returns

Nothing.
General editing functions 513

000_DW_API_Print.book Page 514 Wednesday, July 20, 2005 11:58 AM
dom.setListBoxKind()

Availability

Dreamweaver 3.

Description

Changes the kind of the selected SELECT menu.

Arguments
kind

■ The kind argument must be either "menu" or "list box".

Returns

Nothing.

dom.showListPropertiesDialog()

Availability

Dreamweaver 3.

Description

Opens the List Properties dialog box.

Arguments

None.

Returns

Nothing.

Enabler

See “dom.canShowListPropertiesDialog()” on page 561.

dom.setListTag()

Availability

Dreamweaver 3.

Description

Sets the style of the selected list.
514 Code

000_DW_API_Print.book Page 515 Wednesday, July 20, 2005 11:58 AM
Arguments
listTag

■ The listTag argument is the tag that is associated with the list. It must be "ol", "ul",
"dl", or an empty string.

Returns

Nothing.

dom.setTextAlignment()

Availability

Dreamweaver 3.

Description

Sets the ALIGN attribute of the block that contains the selection to the specified value.

Arguments
alignValue

■ The alignValue argument must be "left", "center", or "right".

Returns

Nothing.

dom.setTextFieldKind()

Availability

Dreamweaver 3.

Description

Sets the format of the selected text field.

Arguments
fieldType

■ The fieldType argument must be "input", "textarea", or "password".

Returns

Nothing.
General editing functions 515

000_DW_API_Print.book Page 516 Wednesday, July 20, 2005 11:58 AM
dom.setTextFormat()

Availability

Dreamweaver 4.

Description

Sets the block format of the selected text.

Arguments
blockFormat

■ The blockFormat argument is a string that specifies one of the following formats: "" (for
no format), "p", "h1", "h2", "h3", "h4", "h5", "h6", or "pre".

Returns

Nothing.

dom.showFontColorDialog()

Availability

Dreamweaver 3.

Description

Opens the Color Picker dialog box.

Arguments

None.

Returns

Nothing.

dreamweaver.deleteSelection()

Availability

Dreamweaver 3.

Description

Deletes the selection in the active document or the Site panel; on the Macintosh, it deletes the
text box that has focus in a dialog box or floating panel.
516 Code

000_DW_API_Print.book Page 517 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.canDeleteSelection()” on page 566.

dreamweaver.editFontList()

Availability

Dreamweaver 3.

Description

Opens the Edit Font List dialog box.

Arguments

None.

Returns

Nothing.

dreamweaver.getFontList()

Availability

Dreamweaver 3.

Description

Gets a list of all the font groups that appear in the text Property inspector and in the Style
Definition dialog box.

Arguments

None.

Returns

An array of strings that represent each item in the font list.
General editing functions 517

000_DW_API_Print.book Page 518 Wednesday, July 20, 2005 11:58 AM
Example

For the default installation of Dreamweaver, a call to the dreamweaver.getFontList()
function returns an array that contains the following items:

■ "Arial, Helvetica, sans-serif"
■ "Times New Roman, Times, serif"
■ "Courier New, Courier, mono"
■ "Georgia, Times New Roman, Times, serif"
■ "Verdana, Arial, Helvetica, sans-serif"

dreamweaver.getFontStyles()

Availability

Dreamweaver 4.

Description

Returns the styles that a specified TrueType font supports.

Arguments
fontName

■ The fontName argument is a string that contains the name of the font.

Returns

An array of three Boolean values that indicates what the font supports. The first value
indicates whether the font supports Bold, the second indicates whether the font supports
Italic, and the third indicates whether the font supports both Bold and Italic.

dreamweaver.getKeyState()

Availability

Dreamweaver 3.

Description

Determines whether the specified modifier key is depressed.
518 Code

000_DW_API_Print.book Page 519 Wednesday, July 20, 2005 11:58 AM
Arguments
key

■ The key argument must be one of the following values: "Cmd", "Ctrl", "Alt", or
"Shift". In Windows, "Cmd" and "Ctrl" refer to the Control key; on the Macintosh,
"Alt" refers to the Option key.

Returns

A Boolean value that indicates whether the key is pressed.

Example

The following code checks that both the Shift and Control keys (Windows) or Shift and
Command keys (Macintosh) are pressed before performing an operation:
if (dw.getKeyState("Shift") && dw.getKeyState("Cmd")){

// execute code
}

dreamweaver.getNaturalSize()

Availability

Dreamweaver 4.

Description

Returns the width and height of a graphical object.

Arguments
url

■ The url argument points to a graphical object for which the dimensions are wanted.
Dreamweaver must support this object (GIF, JPEG, PNG, Flash, and Shockwave). The
URL that is provided as the argument to the getNaturalSize() function must be an
absolute URL that points to a local file; it cannot be a relative URL.

Returns

An array of two integers where the first integer defines the width of the object, and the second
defines the height.
General editing functions 519

000_DW_API_Print.book Page 520 Wednesday, July 20, 2005 11:58 AM
dreamweaver.getSystemFontList()

Availability

Dreamweaver 4.

Description

Returns a list of fonts for the system. This function can get either all fonts or only TrueType
fonts. These fonts are needed for the Flash Text object.

Arguments
fontTypes

■ The fontTypes argument is a string that contains either "all" or "TrueType".

Returns

An array of strings that contain all the font names; returns a value of null if no fonts are
found.

Print function
The print function lets the user print code from Code view.

dreamweaver.printCode()

Availability

Dreamweaver MX.

Description

In Windows, this function prints all or selected portions of code from the Code view. On the
Macintosh, it prints all code or a page range of code.

Arguments
showPrintDialog, document

■ The showPrintDialog argument is true or false. If this argument is set to true, in
Windows, the dreamweaver.PrintCode() function displays the Print dialog box to ask if
the user wants to print all text or selected text. On the Macintosh, the
dreamweaver.PrintCode() function displays the Print dialog box to ask if the user wants
to print all text or a page range.
If the argument is set to false, dreamweaver.PrintCode() uses the user’s previous
selection. The default value is true.
520 Code

000_DW_API_Print.book Page 521 Wednesday, July 20, 2005 11:58 AM
■ The document argument is the DOM of the document to print. For information on how
to obtain the DOM for a document, see “dreamweaver.getDocumentDOM()”
on page 311.

Returns

A Boolean value: true if the code can print; false otherwise.

Example

The following example calls dw.PrintCode() to invoke the Print dialog box for the user’s
document. If the function returns the value false, the code displays an alert to inform the
user that it cannot execute the print request.
var theDOM = dreamweaver.getDocumentDOM("document");
if(!dreamweaver.PrintCode(true, theDOM))
{

alert(“Unable to execute your print request!”);
}

Quick Tag Editor functions
Quick Tag Editor functions navigate through the tags within and surrounding the current
selection. They remove any tag in the hierarchy, wrap the selection inside a new tag, and show
the Quick Tag Editor to let the user edit specific attributes for the tag.

dom.selectChild()

Availability

Dreamweaver 3.

Description

Selects a child of the current selection. Calling this function is equivalent to selecting the next
tag to the right in the tag selector at the bottom of the Document window.

Arguments

None.

Returns

Nothing.
Quick Tag Editor functions 521

000_DW_API_Print.book Page 522 Wednesday, July 20, 2005 11:58 AM
dom.selectParent()

Availability

Dreamweaver 3.

Description

Selects the parent of the current selection. Calling this function is equivalent to selecting the
next tag to the left in the tag selector at the bottom of the Document window.

Arguments

None.

Returns

Nothing.

dom.stripTag()

Availability

Dreamweaver 3.

Description

Removes the tag from around the current selection, leaving any contents. If the selection has
no tags or contains more than one tag, Dreamweaver reports an error.

Arguments

None.

Returns

Nothing.

dom.wrapTag()

Availability

Dreamweaver 3.

Description

Wraps the specified tag around the current selection. If the selection is unbalanced,
Dreamweaver reports an error.
522 Code

000_DW_API_Print.book Page 523 Wednesday, July 20, 2005 11:58 AM
Arguments
startTag

■ The startTag argument is the source that is associated with the opening tag.

Returns

Nothing.

Example

The following code wraps a link around the current selection:
var theDOM = dw.getDocumentDOM();
var theSel = theDOM.getSelectedNode();
if (theSel.nodeType == Node.TEXT_NODE){

theDOM.wrapTag('');
}

dreamweaver.showQuickTagEditor()

Availability

Dreamweaver 3.

Description

Displays the Quick Tag Editor for the current selection.

Arguments
{nearWhat}, {mode}

■ The optional nearWhat argument, if specified, must be either "selection" or "tag
selector". If this argument is omitted, the default value is "selection".

■ The optional mode argument, if specified, must be "default", "wrap", "insert", or
"edit". If mode is "default" or omitted, Dreamweaver uses heuristics to determine the
mode to use for the current selection. The mode argument is ignored if nearWhat is "tag
selector".

Returns

Nothing.
Quick Tag Editor functions 523

000_DW_API_Print.book Page 524 Wednesday, July 20, 2005 11:58 AM
Code view functions
Code view functions include operations that are related to editing document source code (and
that have subsequent impact on the Design view). The functions in this section let you add
navigational controls to Code views within a split document view or the Code inspector
window.

dom.formatRange()

Availability

Dreamweaver MX.

Description

Applies Dreamweaver automatic syntax formatting to a specified range of characters in the
Code view, according to the settings in the Preferences > Code Format dialog box.

Arguments
startOffset, endOffset

■ The startOffset argument is an integer that represents the beginning of the specified
range as the offset from the beginning of the document.

■ The endOffset argument is an integer that represents the end of the specified range as the
offset from the beginning of the document.

Returns

Nothing.

dom.formatSelection()

Availability

Dreamweaver MX.

Description

Applies Dreamweaver automatic syntax formatting to the selected content (the same as
selecting the Commands > Apply Source Formatting to Selection option) according to the
settings in the Preferences > Code Format dialog box.

Arguments

None.
524 Code

000_DW_API_Print.book Page 525 Wednesday, July 20, 2005 11:58 AM
Returns

Nothing.

dom.getShowNoscript()

Availability

Dreamweaver MX.

Description

Gets the current state of the noscript content option (from the View > Noscript Content
menu option). On by default, the noscript tag identifies page script content that can be
rendered, or not (by choice), in the browser.

Arguments

None.

Returns

A Boolean value: true if the noscript tag content is currently rendered; false otherwise.

dom.getAutoValidationCount()

Availability

Dreamweaver MX 2004.

Description

Gets the number of errors, warnings, and information messages for the last auto-validation
(also known as an inline validation) of the document. Currently only a target-browser check is
performed during auto-validation (see “dom.runValidation()” on page 322).

Arguments

None.

Returns

An object with the following properties:

■ The numError property, which is the number of errors

N
O

T
E

This function returns only the results that are currently in the results window for the
document. If you want to make sure that the counts are up-to-date, you can call
dom.runValidation() before calling this function.
Code view functions 525

000_DW_API_Print.book Page 526 Wednesday, July 20, 2005 11:58 AM
■ The numWarning property, which is the number of warnings
■ The numInfo property, which is the number of information messages

Example
theDom = dw.getDocumentDOM();
theDom.runValidation();
theDom.getAutoValidationCount();

dom.isDesignViewUpdated()

Availability

Dreamweaver 4.

Description

Determines whether the Design view and Text view content is synchronized for those
Dreamweaver operations that require a valid document state.

Arguments

None.

Returns

A Boolean value: true if the Design view (WYSIWYG) is synchronized with the text in the
Text view; false otherwise.

dom.isSelectionValid()

Availability

Dreamweaver 4.

Description

Determines whether a selection is valid, meaning it is currently synchronized with the Design
view, or if it needs to be moved before an operation occurs.

Arguments

None.

Returns

A Boolean value: true if the current selection is in a valid piece of code; false if the
document has not been synchronized, because the selection is not updated.
526 Code

000_DW_API_Print.book Page 527 Wednesday, July 20, 2005 11:58 AM
dom.setShowNoscript()

Availability

Dreamweaver MX.

Description

Sets the noscript content option on or off (the same as selecting the View > Noscript
Content option). On by default, the noscript tag identifies page script content that can be
rendered, or not (by choice), in the browser.

Arguments
{bShowNoscript}

■ The bShowNoscript argument, which is optional, is a Boolean value that indicates
whether the noscript tag content should be rendered; true if the noscript tag content
should be rendered, false otherwise.

Returns

Nothing.

dom.source.arrowDown()

Availability

Dreamweaver 4.

Description

Moves the insertion point down the Code view document, line by line. If content is already
selected, this function extends the selection line by line.

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument, which is optional, is the number of lines that the insertion point
must move. If nTimes is omitted, the default is 1.

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
content is being selected. If bShiftIsDown is true, the content is selected.

Returns

Nothing.
Code view functions 527

000_DW_API_Print.book Page 528 Wednesday, July 20, 2005 11:58 AM
dom.source.arrowLeft()

Availability

Dreamweaver 4.

Description

Moves the insertion point to the left in the current line of the Code view. If content is already
selected, this function extends the selection to the left.

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument, which is optional, is the number of characters that the insertion
point must move. If nTimes is omitted, the default is 1.

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
content is being selected. If bShiftIsDown is true, the content is selected.

Returns

Nothing.

dom.source.arrowRight()

Availability

Dreamweaver 4.

Description

Moves the insertion point to the right in the current line of the Code view. If content is
already selected, this function extends the selection to the right.

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument, which is optional, is the number of characters that the insertion
point must move. If nTimes is omitted, the default is 1.

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
content is being selected. If bShiftIsDown is true, the content is selected; otherwise it is
not.

Returns

Nothing.
528 Code

000_DW_API_Print.book Page 529 Wednesday, July 20, 2005 11:58 AM
dom.source.arrowUp()

Availability

Dreamweaver 4.

Description

Moves the insertion point up the Code view document, line by line. If content is already
selected, this function extends the selection line by line.

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument is the number of lines that the insertion point must move. If
nTimes is omitted, the default is 1.

■ The bShiftIsDown argument is a Boolean value that indicates whether content is being
selected. If bShiftIsDown is true, the content is selected.

Returns

Nothing.

dom.source.balanceBracesTextview()

Availability

Dreamweaver 4.

Description

This function is a Code view extension that enables parentheses balancing. You can call
dom.source.balanceBracesTextview() to extend a currently highlighted selection or
insertion point from the opening of the surrounding parenthetical statement to the end of the
statement to balance the following characters: [], {} and (). Subsequent calls expand the
selection through further levels of punctuation nesting.

Arguments

None.

Returns

Nothing.
Code view functions 529

000_DW_API_Print.book Page 530 Wednesday, July 20, 2005 11:58 AM
dom.source.endOfDocument()

Availability

Dreamweaver 4.

Description

Places the insertion point at the end of the current Code view document. If content is already
selected, this function extends the selection to the end of the document.

Arguments
bShiftIsDown

■ The bShiftIsDown argument is a Boolean value that indicates whether content is being
selected. If bShiftIsDown is true, the content is selected.

Returns

Nothing.

dom.source.endOfLine()

Availability

Dreamweaver 4.

Description

Places the insertion point at the end of the current line. If content is already selected, this
function extends the selection to the end of the current line.

Arguments
bShiftIsDown

■ The bShiftIsDown argument is a Boolean value that indicates whether content is being
selected. If bShiftIsDown is true, the content is selected.

Returns

Nothing.
530 Code

000_DW_API_Print.book Page 531 Wednesday, July 20, 2005 11:58 AM
dom.source.endPage()

Availability

Dreamweaver 4.

Description

Moves the insertion point to the end of the current page or to the end of the next page if the
insertion point is already at the end of a page. If content is already selected, this function
extends the selection page by page.

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument, which is optional, is the number of pages that the insertion point
must move. If nTimes is omitted, the default is 1.

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
content is being selected. If bShiftIsDown is true, the content is selected.

Returns

Nothing.

dom.source.getCurrentLines()

Availability

Dreamweaver 4.

Description

Returns the line numbers for the specified offset locations from the beginning of the
document.

Arguments

None.

Returns

The line numbers for the current selection.
Code view functions 531

000_DW_API_Print.book Page 532 Wednesday, July 20, 2005 11:58 AM
dom.source.getSelection()

Description

Gets the selection in the current document, which is expressed as character offsets into the
document’s Code view.

Arguments

None.

Returns

A pair of integers that represent offsets from the beginning of the source document. The first
integer is the opening of the selection; the second is the closing of the selection. If the two
numbers are equal, the selection is an insertion point. If there is no selection in the source,
both numbers are -1.

dom.source.getLineFromOffset()

Availability

Dreamweaver MX.

Description

Takes an offset into the source document.

Arguments

None.

Returns

The associated line number, or -1 if the offset is negative or past the end of the file.

dom.source.getText()

Availability

Dreamweaver 4.

Description

Returns the text string in the source between the designated offsets.

Arguments
startOffset, endOffset
532 Code

000_DW_API_Print.book Page 533 Wednesday, July 20, 2005 11:58 AM
■ The startOffset argument is an integer that represents the offset from the beginning of
the document.

■ The endOffset argument is an integer that represents the end of the document.

Returns

A string that represents the text in the source code between the offsets start and end.

dom.source.getValidationErrorsForOffset()

Availability

Dreamweaver MX 2004.

Description

Returns a list of validation errors at the specified offset, or it searches from the offset for the
next error. If none are found the function, it returns null.

Arguments
offset, {searchDirection}

■ The offset argument is a number that specifies the offset in the code for which the
function will return any errors.

■ The searchDirection argument, which is optional, is a string that specifies "empty",
"forward" or "back". If specified, the function searches forward or back from the given
offset to the next characters with errors and returns them. If not specified, the function
simply checks for errors at the given offset.

Returns

An array of objects or the value null. Each object in the array has the following properties:

■ The message object is a string that contains the error message.
■ The floaterName object is a string that contains the name of the results window. You can

pass this value to the showResults() or setFloaterVisibility() functions.
■ The floaterIndex object is an index of items in the floater results list.
■ The start object is the opening index of underlined code.
■ The end object is the closing index of underlined code.

N
O

T
E

The returned floater indexes should not be stored because they can change frequently,
such as when documents are opened or closed.
Code view functions 533

000_DW_API_Print.book Page 534 Wednesday, July 20, 2005 11:58 AM
Example

The following example calls getValidationErrorsForOffset() to check for any errors at
the offset of the current selection. If the function returns an error, the code calls the alert()
function to display the error message to the user.
var offset = dw.getDocumentDOM().source.getSelection()[0];
var errors =

dw.getDocumentDOM().source.getValidationErrorsForOffset(offset);
if (errors && errors.length > 0)

alert(errors[0].message);

dom.source.indentTextview()

Availability

Dreamweaver 4.

Description

Moves selected Code view text one tab stop to the right.

Arguments

None.

Returns

Nothing.

dom.source.insert()

Availability

Dreamweaver 4.

Description

Inserts the specified string into the source code at the specified offset from the beginning of
the source file. If the offset is not greater than or equal to zero, the insertion fails and the
function returns false.

Arguments
offset, string

■ The offset argument is the offset from the beginning of the file where the string must
be inserted.

■ The string argument is the string to insert.
534 Code

000_DW_API_Print.book Page 535 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true if successful; false otherwise.

dom.source.nextWord()

Availability

Dreamweaver 4.

Description

Moves the insertion point to the beginning of the next word (or words, if specified) in the
Code view. If content is already selected, this function extends the selection to the right.

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument, which is optional, is the number of words that the insertion point
must move. If nTimes is omitted, the default is 1.

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
content is being selected. If bShiftIsDown is true, the content is selected.

Returns

Nothing.

dom.source.outdentTextview()

Availability

Dreamweaver 4.

Description

Moves selected Code view text one tab stop to the left.

Arguments

None.

Returns

Nothing.
Code view functions 535

000_DW_API_Print.book Page 536 Wednesday, July 20, 2005 11:58 AM
dom.source.pageDown()

Availability

Dreamweaver 4.

Description

Moves the insertion point down the Code view document, page by page. If content is already
selected, this function extends the selection page by page.

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument, which is optional, is the number of pages that the insertion point
must move. If nTimes is omitted, the default is 1.

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
content is being selected. If bShiftIsDown is true, the content is selected.

Returns

Nothing.

dom.source.pageUp()

Availability

Dreamweaver 4.

Description

Moves the insertion point up the Code view document, page by page. If content is already
selected, this function extends the selection page by page.

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument, which is optional, is the number of pages that the insertion point
must move. If nTimes is omitted, the default is 1.

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
content is being selected. If bShiftIsDown is true, the content is selected.

Returns

Nothing.
536 Code

000_DW_API_Print.book Page 537 Wednesday, July 20, 2005 11:58 AM
dom.source.previousWord()

Availability

Dreamweaver 4.

Description

Moves the insertion point to the beginning of the previous word (or words, if specified) in
Code view. If content is already selected, this function extends the selection to the left.

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument, which is optional, is the number of words that the insertion point
must move. If nTimes is omitted, the default is 1.

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
content is being selected. If bShiftIsDown is true, the content is selected.

Returns

Nothing.

dom.source.replaceRange()

Availability

Dreamweaver 4.

Description

Replaces the range of source text between startOffset and endOffset with string. If
startOffset is greater than endOffset or if either offset is not a positive integer, it does
nothing and returns false. If endOffset is greater than the number of characters in the file,
it replaces the range between startOffset and the end of the file. If both startOffset and
endOffset are greater than the number of characters in the file, it inserts the text at the end of
the file.

Arguments
startOffset, endOffset, string

■ The startOffset argument is the offset that indicates the beginning of the block to
replace.

■ The endOffset argument is the offset that indicates the end of the block to replace.
■ The string argument is the string to insert.
Code view functions 537

000_DW_API_Print.book Page 538 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true if successful; false otherwise.

dom.source.scrollEndFile()

Availability

Dreamweaver 4.

Description

Scrolls the Code view to the bottom of the document file without moving the insertion point.

Arguments

None.

Returns

Nothing.

dom.source.scrollLineDown()

Availability

Dreamweaver 4.

Description

Scrolls the Code view down line by line without moving the insertion point.

Arguments
nTimes

■ The nTimes argument is the number of lines to scroll. If nTimes is omitted, the default
is 1.

Returns

Nothing.
538 Code

000_DW_API_Print.book Page 539 Wednesday, July 20, 2005 11:58 AM
dom.source.scrollLineUp()

Availability

Dreamweaver 4.

Description

Scrolls the Code view up line by line without moving the insertion point.

Arguments
nTimes

■ The nTimes argument is the number of lines to scroll. If nTimes is omitted, the default
is 1.

Returns

Nothing.

dom.source.scrollPageDown()

Availability

Dreamweaver 4.

Description

Scrolls the Code view down page by page without moving the insertion point.

Arguments
nTimes

■ The nTimes argument is the number of pages to scroll. If nTimes is omitted, the default
is 1.

Returns

Nothing.

dom.source.scrollPageUp()

Availability

Dreamweaver 4.

Description

Scrolls the Code view up page by page without moving the insertion point.
Code view functions 539

000_DW_API_Print.book Page 540 Wednesday, July 20, 2005 11:58 AM
Arguments
nTimes

■ The nTimes argument is the number of pages to scroll. If nTimes is omitted, the default
is 1.

Returns

Nothing.

dom.source.scrollTopFile()

Availability

Dreamweaver 4.

Description

Scrolls the Code view to the top of the document file without moving the insertion point.

Arguments

None.

Returns

Nothing.

dom.source.selectParentTag()

Availability

Dreamweaver 4.

Description

This function is a Code view extension that enables tag balancing. You can call
dom.source.selectParentTag() to extend a currently highlighted selection or insertion
point from the surrounding open tag to the closing tag. Subsequent calls extend the selection
to additional surrounding tags until there are no more enclosing tags.

Arguments

None.

Returns

Nothing.
540 Code

000_DW_API_Print.book Page 541 Wednesday, July 20, 2005 11:58 AM
dom.source.setCurrentLine()

Availability

Dreamweaver 4.

Description

Puts the insertion point at the beginning of the specified line. If the lineNumber argument is
not a positive integer, the function does nothing and returns false. It puts the insertion point
at the beginning of the last line if lineNumber is larger than the number of lines in the source.

Arguments
lineNumber

■ The lineNumber argument is the line at the beginning of which the insertion point is
placed.

Returns

A Boolean value: true if successful; false otherwise.

dom.source.startOfDocument()

Availability

Dreamweaver 4.

Description

Places the insertion point at the beginning of the Code view document. If content is already
selected, this function extends the selection to the beginning of the document.

Arguments
bShiftIsDown

■ The bShiftIsDown argument is a Boolean value that indicates whether content is being
selected. If bShiftIsDown is true, the content is selected.

Returns

Nothing.
Code view functions 541

000_DW_API_Print.book Page 542 Wednesday, July 20, 2005 11:58 AM
dom.source.startOfLine()

Availability

Dreamweaver 4.

Description

Places the insertion point at the beginning of the current line. If content is already selected,
this function extends the selection to the beginning of the current line.

Arguments
bShiftIsDown

■ The bShiftIsDown argument is a Boolean value that indicates whether content is being
selected. If bShiftIsDown is true, the content is selected.

Returns

Nothing.

dom.source.topPage()

Availability

Dreamweaver 4.

Description

Moves the insertion point to the top of the current page or to the top of the previous page if
the insertion point is already at the top of a page. If content is already selected, this function
extends the selection page by page.

Arguments
{nTimes}, {bShiftIsDown}

■ The nTimes argument, which is optional, is the number of pages that the insertion point
must move. If nTimes is omitted, the default is 1.

■ The bShiftIsDown argument, which is optional, is a Boolean value that indicates whether
content is being selected. If bShiftIsDown is true, the content is selected.

Returns

Nothing.
542 Code

000_DW_API_Print.book Page 543 Wednesday, July 20, 2005 11:58 AM
dom.source.wrapSelection()

Availability

Dreamweaver 4.

Description

Inserts the text of startTag before the current selection and the text of endTag after the
current selection. The function then selects the entire range between, and including, the
inserted tags. If the current selection was an insertion point, then the function places the
insertion point between the startTag and endTag. (startTag and endTag don’t have to be
tags; they can be any arbitrary text.)

Arguments
startTag, endTag

■ The startTag argument is the text to insert at the beginning of the selection.
■ The endTag argument is the text to insert at the end of the selection.

Returns

Nothing.

dom.synchronizeDocument()

Availability

Dreamweaver 4.

Description

Synchronizes the Design and Code views.

Arguments

None.

Returns

Nothing.
Code view functions 543

000_DW_API_Print.book Page 544 Wednesday, July 20, 2005 11:58 AM
Tag editor and tag library functions
You can use tag editors to insert new tags, edit existing tags, and access reference information
about tags. The Tag Chooser lets users organize their tags so that they can easily select
frequently used tags. The tag libraries that come with Dreamweaver store information about
tags that are used in standards-based markup languages and most widely used tag-based
scripting languages. You can use the JavaScript tag editor, Tag Chooser, and tag library
functions when you need to access and work with tag editors and tag libraries in your
extensions.

dom.getTagSelectorTag()

Availability

Dreamweaver MX.

Description

This function gets the DOM node for the tag that is currently selected in the Tag Selector bar
at the bottom of the document window.

Arguments

None.

Returns

The DOM node for the currently selected tag; null if no tag is selected.

dreamweaver.popupInsertTagDialog()

Availability

Dreamweaver MX.

Description

This function checks the VTM files to see if a tag editor has been defined for the tag. If so, the
editor for that tag pops up and accepts the start tag. If not, the start tag is inserted unmodified
into the user’s document.

Arguments

A start tag string that includes one of the following types of initial values:

■ A tag, such as <input>
■ A tag with attributes, such as <input type='text'>
544 Code

000_DW_API_Print.book Page 545 Wednesday, July 20, 2005 11:58 AM
■ A directive, such as <%= %>

Returns

A Boolean value: true if anything is inserted into the document; false otherwise.

dreamweaver.popupEditTagDialog()

Availability

Dreamweaver MX.

Description

If a tag is selected, this function opens the tag editor for that tag, so you can edit the tag.

Arguments

None.

Returns

Nothing.

Enabler

See “dreamweaver.canPopupEditTagDialog()” on page 569.

dreamweaver.showTagChooser()

Availability

Dreamweaver MX.

Description

This function displays the Tag Chooser dialog box, brings it to the front, and sets it in focus.

Arguments

None.

Returns

Nothing.
Tag editor and tag library functions 545

000_DW_API_Print.book Page 546 Wednesday, July 20, 2005 11:58 AM
dreamweaver.showTagLibraryEditor()

Availability

Dreamweaver MX.

Description

This function opens the Tag Library editor.

Arguments

None.

Returns

None.

dreamweaver.tagLibrary.getTagLibraryDOM()

Availability

Dreamweaver MX.

Description

Given the URL of a filename.vtm file, this function returns the DOM for that file, so that
its contents can be edited. This function should be called only when the Tag Library editor is
active.

Arguments
fileURL

■ The fileURL argument is the URL of a filename.vtm file, relative to the Configuration/
Tag Libraries folder, as shown in the following example:

"HTML/img.vtm"

Returns

A DOM pointer to a new or previously existing file within the TagLibraries folder.
546 Code

000_DW_API_Print.book Page 547 Wednesday, July 20, 2005 11:58 AM
dreamweaver.tagLibrary.getSelectedLibrary()

Availability

Dreamweaver MX.

Description

If a library node is selected in the Tag Library editor, this function gets the library name.

Arguments

None.

Returns

A string, the name of the library that is currently selected in the Tag Library editor; returns an
empty string if no library is selected.

dreamweaver.tagLibrary.getSelectedTag()

Availability

Dreamweaver MX.

Description

If an attribute node is currently selected, this function gets the name of the tag that contains
the attribute.

Arguments

None.

Returns

A string, name of the tag that is currently selected in the Tag Library editor; returns an empty
string if no tag is selected.
Tag editor and tag library functions 547

000_DW_API_Print.book Page 548 Wednesday, July 20, 2005 11:58 AM
dreamweaver.tagLibrary.importDTDOrSchema()

Availability

Dreamweaver MX.

Description

This function imports a DTD or schema file from a remote server into the tag library.

Arguments
fileURL, Prefix

■ The fileURL argument is the path to DTD or schema file, in local URL format.
■ The Prefix argument is the prefix string that should be added to all tags in this tag

library.

Returns

Name of the imported tag library.

dreamweaver.tagLibrary.getImportedTagList()

Availability

Dreamweaver MX.

Description

This function generates a list of tagInfo objects from an imported tag library.

Arguments
libname

■ The libname argument is the name of the imported tag library.

Returns

Array of tagInfo objects.

A taginfo object contains information about a single tag that is included in the tag library.
The following properties are defined in a tagInfo object:

■ The tagName property, which is a string
■ The attributes property, which is an array of strings. Each string is the name of an

attribute that is defined for this tag.
548 Code

000_DW_API_Print.book Page 549 Wednesday, July 20, 2005 11:58 AM
Example:

The following example shows that using the dw.tagLibrary.getImportedTagList()
function can get an array of tags from the libName library:
// "fileURL" and "prefix" have been entered by the user.
// tell the Tag Library to Import the DTD/Schema
var libName = dw.tagLibrary.importDTDOrSchema(fileURL, prefix);

// get the array of tags for this library
// this is the TagInfo object
var tagArray = dw.tagLibrary.getImportedTagList(libName);

// now I have an array of tagInfo objects.
// I can get info out of them. This gets info out of the first one.
// note: this assumes there is at least one TagInfo in the array.
var firstTagName = tagArray[0].name;
var firstTagAttributes = tagArray[0].attributes;
// note that firstTagAttributes is an array of attributes.
Tag editor and tag library functions 549

000_DW_API_Print.book Page 550 Wednesday, July 20, 2005 11:58 AM
550 Code

18

000_DW_API_Print.book Page 551 Wednesday, July 20, 2005 11:58 AM
CHAPTER 18

Enablers
Macromedia Dreamweaver 8 Enabler functions determine whether another function can
perform a specific operation in the current context. The function specifications describe the
general circumstances under which each function returns a true value. However, the
descriptions are not intended to be comprehensive and might exclude some cases in which the
function would return a false value.

Enablers
The enabler functions in the JavaScript API include the following functions.

dom.canAlign()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform an Align Left, Align Right, Align Top, or Align
Bottom operation.

Arguments

None.

Returns

A Boolean value that indicates whether two or more layers or hotspots are selected.
551

000_DW_API_Print.book Page 552 Wednesday, July 20, 2005 11:58 AM
dom.canApplyTemplate()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform an Apply To Page operation. This function is
valid only for the active document.

Arguments

None.

Returns

A Boolean value that indicates whether the document is not a library item or a template, and
that the selection is not within the NOFRAMES tag.

dom.canArrange()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Bring to Front or Move to Back operation.

Arguments

None.

Returns

A Boolean value that indicates whether a hotspot is selected.

dom.canClipCopyText()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Copy as Text operation.

Arguments

None.
552 Enablers

000_DW_API_Print.book Page 553 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true if the opening and closing offsets of the selection are different; false
otherwise, to indicate that nothing has been selected.

dom.canClipPaste()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Paste operation.

Arguments

None.

Returns

A Boolean value: true if the Clipboard contains any content that can be pasted into
Dreamweaver; false otherwise.

dom.canClipPasteText()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Paste as Text operation.

Arguments

None.

Returns

A Boolean value: true if the Clipboard contains any content that can be pasted into
Dreamweaver as text; false otherwise.
Enablers 553

000_DW_API_Print.book Page 554 Wednesday, July 20, 2005 11:58 AM
dom.canConvertLayersToTable()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Convert Layers to Table operation.

Arguments

None.

Returns

A Boolean value: true if all the content in the BODY section of the document is contained
within layers; false otherwise.

dom.canConvertTablesToLayers()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Convert Tables to Layers operation.

Arguments

None.

Returns

A Boolean value: true if all the content in the BODY section of the document is contained
within tables, and the document is not based on a template; false otherwise.

dom.canDecreaseColspan()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Decrease Colspan operation.

Arguments

None.
554 Enablers

000_DW_API_Print.book Page 555 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true if the current cell has a COLSPAN attribute and that attribute’s value is
greater than or equal to 2; false otherwise.

dom.canDecreaseRowspan()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Decrease Rowspan operation.

Arguments

None.

Returns

A Boolean value: true if the current cell has a ROWSPAN attribute and that attribute’s value is
greater than or equal to 2; false otherwise.

dom.canDeleteTableColumn()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Delete Column operation.

Arguments

None.

Returns

A Boolean value: true if the insertion point is inside a cell or if a cell or column is selected;
false otherwise.
Enablers 555

000_DW_API_Print.book Page 556 Wednesday, July 20, 2005 11:58 AM
dom.canDeleteTableRow()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Delete Row operation.

Arguments

None.

Returns

A Boolean value: true if the insertion point is inside a cell or if a cell or row is selected;
false otherwise.

site.canEditColumns()

Description

Checks whether a site exists.

Arguments

None.

Returns

A Boolean value: true if a site exists; false otherwise.

dom.canEditNoFramesContent()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform an Edit No Frames Content operation.

Arguments

None.

Returns

A Boolean value: true if the current document is a frameset or within a frameset;
false otherwise.
556 Enablers

000_DW_API_Print.book Page 557 Wednesday, July 20, 2005 11:58 AM
dom.canIncreaseColspan()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform an Increase Colspan operation.

Arguments

None.

Returns

A Boolean value: true if there are any cells to the right of the current cell; false otherwise.

dom.canIncreaseRowspan()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform an Increase Rowspan operation.

Arguments

None.

Returns

A Boolean value: true if there are any cells below the current cell; false otherwise.

dom.canInsertTableColumns()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform an Insert Column(s) operation.

Arguments

None.
Enablers 557

000_DW_API_Print.book Page 558 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true if the selection is inside a table; false if the selection is an entire table
or is not inside a table.

dom.canInsertTableRows()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform an Insert Row(s) operation.

Arguments

None.

Returns

A Boolean value: true if the selection is inside a table; false if the selection is an entire table
or is not inside a table.

dom.canMakeNewEditableRegion()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a New Editable Region operation.

Arguments

None.

Returns

A Boolean value: true if the current document is a template (DWT) file.
558 Enablers

000_DW_API_Print.book Page 559 Wednesday, July 20, 2005 11:58 AM
dom.canMarkSelectionAsEditable()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Mark Selection as Editable operation.

Arguments

None.

Returns

A Boolean value: true if there is a selection and the current document is a DWT file;
false otherwise.

dom.canMergeTableCells()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Merge Cells operation.

Arguments

None.

Returns

A Boolean value: true if the selection is an adjacent grouping of table cells; false otherwise.

dom.canPlayPlugin()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Play operation. This function is valid only for
the active document.

Arguments

None.
Enablers 559

000_DW_API_Print.book Page 560 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true if the selection can be played with a plug-in.

dom.canRedo()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Redo operation.

Arguments

None.

Returns

A Boolean value: true if any steps remain to redo; false otherwise.

dom.canRemoveEditableRegion()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform an Unmark Editable Region operation.

Arguments

None.

Returns

A Boolean value: true if the current document is a template; false otherwise.

dom.canSelectTable()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Select Table operation.
560 Enablers

000_DW_API_Print.book Page 561 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

A Boolean value: true if the insertion point or selection is within a table; false otherwise.

dom.canSetLinkHref()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can change the link around the current selection or create one
if necessary.

Arguments

None.

Returns

A Boolean value: true if the selection is an image, text, or if the insertion point is inside a
link; false otherwise. A text selection is defined as a selection for which the text Property
inspector would appear.

dom.canShowListPropertiesDialog()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can show the List Properties dialog box.

Arguments

None.

Returns

A Boolean value: true if the selection is within an LI tag; false otherwise.
Enablers 561

000_DW_API_Print.book Page 562 Wednesday, July 20, 2005 11:58 AM
dom.canSplitFrame()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Split Frame [Left | Right | Up | Down]
operation.

Arguments

None.

Returns

A Boolean value: true if the selection is within a frame; false otherwise.

dom.canSplitTableCell()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Split Cell operation.

Arguments

None.

Returns

A Boolean value: true if the insertion point is inside a table cell or the selection is a table cell;
false otherwise.

dom.canStopPlugin()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Stop operation.

Arguments

None.
562 Enablers

000_DW_API_Print.book Page 563 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true if the selection is currently being played with a plug-in; false
otherwise.

dom.canUndo()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform an Undo operation.

Arguments

None.

Returns

A Boolean value: true if any steps remain to undo; false otherwise.

dom.hasTracingImage()

Availability

Dreamweaver 3.

Description

Checks whether the document has a tracing image.

Arguments

None.

Returns

A Boolean value: true if the document has a tracing image; false otherwise.

dreamweaver.assetPalette.canEdit()

Availability

Dreamweaver 4.

Description

Enables menu items in the Assets panel for editing.
Enablers 563

000_DW_API_Print.book Page 564 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

Returns a Boolean value: true if the asset can be edited; false otherwise. Returns a false
value for colors and URLs in the Site list, and returns a false value for a multiple selection of
colors and URLs in the Favorites list.

dreamweaver.assetPalette.canInsertOrApply()

Availability

Dreamweaver 4.

Description

Checks if the selected elements can be inserted or applied. Returns either a true or false
value so the menu items can be enabled or disabled for insertion or application.

Arguments

None.

Returns

Returns a Boolean value: true if the selected elements can be inserted or applied; false if the
current page is a template and the current category is Templates. The function also returns a
false value if no document is open or if a library item is selected in the document and the
current category is Library.

dreamweaver.canClipCopy()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Copy operation.

Arguments

None.
564 Enablers

000_DW_API_Print.book Page 565 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true if there is any content selected that can be copied to the Clipboard;
false otherwise.

dreamweaver.canClipCut()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Cut operation.

Arguments

None.

Returns

A Boolean value: true if there is any selected content that can be cut to the Clipboard;
false otherwise.

dreamweaver.canClipPaste()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Paste operation.

Arguments

None.

Returns

A Boolean value: true if the Clipboard contains any content that can be pasted into the
current document or the active window in the Site panel (on the Macintosh, a text field in a
floating panel or dialog box); false otherwise.
Enablers 565

000_DW_API_Print.book Page 566 Wednesday, July 20, 2005 11:58 AM
dreamweaver.canDeleteSelection()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can delete the current selection. Depending on the window
that has focus, the deletion might occur in the Document window or the Site panel (on the
Macintosh, in an text field in a dialog box or floating panel).

Arguments

None.

Returns

A Boolean value: true if the opening and closing offsets for the selection are different, which
indicates that there is a selection; false if the offsets are the same, indicating that there is only
an insertion point.

dreamweaver.canExportCSS()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform an Export CSS Styles operation.

Arguments

None.

Returns

A Boolean value: true if the document contains any class styles that are defined in the HEAD
section; false otherwise.
566 Enablers

000_DW_API_Print.book Page 567 Wednesday, July 20, 2005 11:58 AM
dreamweaver.canExportTemplateDataAsXML()

Availability

Dreamweaver MX.

Description

Checks whether Dreamweaver can export the current document as XML.

Arguments

None.

Returns

A Boolean value: true if you can perform an export on the current document; false
otherwise.

Example

The following example calls dw.canExportTemplateDataAsXML() to determine whether
Dreamweaver can export the current document as XML and if it returns true, calls
dw.ExportTemplateDataAsXML() to export it:
if(dreamweaver.canExportTemplateDataAsXML())
{

dreamweaver.exportTemplateDataAsXML("file:///c|/dw_temps/
mytemplate.txt")

}

dreamweaver.canFindNext()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Find Next operation.

Arguments

None.

Returns

A Boolean value: true if a search pattern has already been established; false otherwise.
Enablers 567

000_DW_API_Print.book Page 568 Wednesday, July 20, 2005 11:58 AM
dreamweaver.canFitSelection()

Availability

Dreamweaver 8.

Description

Checks whether there is a selection in an active Design view, which means that
fitSelection() can be called.

Arguments

None.

Returns

A Boolean value: true if there is a selection in an active Design view; false otherwise.

dreamweaver.canOpenInFrame()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform an Open in Frame operation.

Arguments

None.

Returns

A Boolean value: true if the selection or insertion point is within a frame; false otherwise.

dreamweaver.canPasteSpecial()

Availability

Dreamweaver 8.

Description

Checks whether Dreamweaver can perform a Paste Special operation.

Arguments

None.
568 Enablers

000_DW_API_Print.book Page 569 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true if there is text, HTML, or Dreamweaver HTML on the Clipboard and
focus is in Code View, Design View, or Code Inspector; false otherwise.

dreamweaver.canPlayRecordedCommand()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Play Recorded Command operation.

Arguments

None.

Returns

A Boolean value: true if there is an active document and a previously recorded command
that can be played; false otherwise.

dreamweaver.canPopupEditTagDialog()

Availability

Dreamweaver MX.

Description

Checks whether the current selection is a tag and whether the Edit Tag menu item is active.

Arguments

None.

Returns

The name of the currently selected tag or a null value if no tag is selected.
Enablers 569

000_DW_API_Print.book Page 570 Wednesday, July 20, 2005 11:58 AM
dreamweaver.canRedo()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Redo operation in the current context.

Arguments

None.

Returns

A Boolean value that indicates whether any operations can be undone.

dreamweaver.canRevertDocument()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Revert (to the last-saved version) operation.

Arguments
documentObject

■ The documentObject argument is the object at the root of a document’s DOM tree (the
value that the dreamweaver.getDocumentDOM() function returns).

Returns

A Boolean value that indicates whether the document is in an unsaved state and a saved
version of the document exists on a local drive.

dreamweaver.canSaveAll()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Save All operation.
570 Enablers

000_DW_API_Print.book Page 571 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

A Boolean value that indicates whether one or more unsaved documents are open.

dreamweaver.canSaveDocument()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Save operation on the specified document.

Arguments
documentObject

■ The documentObject argument is the root of a document’s DOM (the same value that
the dreamweaver.getDocumentDOM() function returns).

Returns

A Boolean value that indicates whether the document has any unsaved changes.

dreamweaver.canSaveDocumentAsTemplate()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Save As Template operation on the
specified document.

Arguments
documentObject

■ The documentObject argument is the root of a document’s DOM (the same value that
the dreamweaver.getDocumentDOM() function returns).

Returns

A Boolean value that indicates whether the document can be saved as a template.
Enablers 571

000_DW_API_Print.book Page 572 Wednesday, July 20, 2005 11:58 AM
dreamweaver.canSaveFrameset()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Save Frameset operation on the specified
document.

Arguments
documentObject

■ The documentObject argument is the root of a document’s DOM (the same value that
the dreamweaver.getDocumentDOM() function returns).

Returns

A Boolean value that indicates whether the document is a frameset with unsaved changes.

dreamweaver.canSaveFramesetAs()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Save Frameset As operation on the specified
document.

Arguments
documentObject

■ The documentObject argument is the root of a document’s DOM (the same value that
the dreamweaver.getDocumentDOM() function returns).

Returns

A Boolean value that indicates whether the document is a frameset.
572 Enablers

000_DW_API_Print.book Page 573 Wednesday, July 20, 2005 11:58 AM
dreamweaver.canSelectAll()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Select All operation.

Arguments

None.

Returns

A Boolean value that indicates whether a Select All operation can be performed.

dreamweaver.canShowFindDialog()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Find operation.

Arguments

None.

Returns

A Boolean value that is true if a Site panel or a Document window is open. This function
returns the value false when the selection is in the HEAD section.

dreamweaver.canUndo()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform an Undo operation in the current context.

Arguments

None.
Enablers 573

000_DW_API_Print.book Page 574 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value that indicates whether any operations can be undone.

dreamweaver.canZoom()

Availability

Dreamweaver 8.

Description

Checks to see if there is an active Design view, which means that basic zoom commands can
be applied.

Arguments

None.

Returns

A Boolean value: true if there is an active Design view; false otherwise.

dreamweaver.cssRuleTracker.canEditSelectedRule()

Availability

Dreamweaver MX 2004.

Description

Checks whether the Property Grid editor can be applied to the selected rule. Because the
Property Grid can display rules in locked files, a return value of true does not guarantee that
the rule can be modified.

Arguments

None.

Returns

A Boolean value: true if the Property Grid editor can be applied to the selected rule;
false otherwise.
574 Enablers

000_DW_API_Print.book Page 575 Wednesday, July 20, 2005 11:58 AM
Example

The following code checks whether the enabler function has been set to the value true before
allowing edits to the selected rule:
if(dw.cssRuleTracker.canEditSelectedRule()){

dw.cssRuleTracker.editSelectedRule();
}

dreamweaver.cssStylePalette.canApplySelectedStyle()

Availability

Dreamweaver MX.

Description

Checks the current active document to see whether the selected style can be applied.

Arguments
{ pane }

■ The pane argument, which is optional, is a string that specifies the pane of the Styles
Panel to which this function applies. Possible values are "stylelist", which is the list of
styles in “All” mode; "cascade", which is the list of applicable, relevant rules in “Current”
mode; "summary", which is the list of properties for the current selection in “Current”
mode; and "ruleInspector", which is the editable list or grid of properties in “Current”
mode. The default value is "stylelist".

Returns

A Boolean value: true if the selected style has a class selector; false otherwise.

dreamweaver.cssStylePalette.canDeleteSelectedStyle()

Availability

Dreamweaver MX.

Description

Checks the current selection to determine whether the selected style can be deleted.
Enablers 575

000_DW_API_Print.book Page 576 Wednesday, July 20, 2005 11:58 AM
Arguments
{ pane }

■ The pane argument, which is optional, is a string that specifies the pane of the Styles
Panel to which this function applies. Possible values are "stylelist", which is the list of
styles in “All” mode; "cascade", which is the list of applicable, relevant rules in “Current”
mode; "summary", which is the list of properties for the current selection in “Current”
mode; and "ruleInspector", which is the editable list or grid of properties in “Current”
mode. The default value is "stylelist".

Returns

A Boolean value: true if the selection can be deleted; false otherwise.

dreamweaver.cssStylePalette.canDuplicateSelected
Style()

Availability

Dreamweaver MX.

Description

Checks the current active document to see whether the selected style can be duplicated.

Arguments
{ pane }

■ The pane argument, which is optional, is a string that specifies the pane of the Styles
Panel to which this function applies. Possible values are "stylelist", which is the list of
styles in “All” mode; "cascade", which is the list of applicable, relevant rules in “Current”
mode; "summary", which is the list of properties for the current selection in “Current”
mode; and "ruleInspector", which is the editable list or grid of properties in “Current”
mode. The default value is "stylelist".

Returns

A Boolean value: true if the selected style can be duplicated; false otherwise.
576 Enablers

000_DW_API_Print.book Page 577 Wednesday, July 20, 2005 11:58 AM
dreamweaver.cssStylePalette.canEditSelectedStyle()

Availability

Dreamweaver MX.

Description

Checks the current active document to see whether the selected style can be edited.

Arguments
{ pane }

■ The pane argument, which is optional, is a string that specifies the pane of the Styles
Panel to which this function applies. Possible values are "stylelist", which is the list of
styles in “All” mode; "cascade", which is the list of applicable, relevant rules in “Current”
mode; "summary", which is the list of properties for the current selection in “Current”
mode; and "ruleInspector", which is the editable list or grid of properties in “Current”
mode. The default value is "stylelist".

Returns

A Boolean value: true if the selected style is editable; false otherwise.

dreamweaver.cssStylePalette.canEditSelectedStyleIn
Codeview()

Availability

Dreamweaver MX.

Description

Checks the current active document to see whether the selected style can be edited in Code
view.

Arguments
{ pane }

■ The pane argument, which is optional, is a string that specifies the pane of the Styles
Panel to which this function applies. Possible values are "stylelist", which is the list of
styles in “All” mode; "cascade", which is the list of applicable, relevant rules in “Current”
mode; "summary", which is the list of properties for the current selection in “Current”
mode; and "ruleInspector", which is the editable list or grid of properties in “Current”
mode. The default value is "stylelist".
Enablers 577

000_DW_API_Print.book Page 578 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true if the selected style is editable; false otherwise.

dreamweaver.cssStylePalette.canEditStyleSheet()

Availability

Dreamweaver MX.

Description

Checks the current selection to see whether it contains style sheet elements that can be edited.

Arguments

None.

Returns

A Boolean value: true if the selection is a style sheet node or a style definition within a style
sheet node and the style sheet is neither hidden nor this document; false if the selection is
hidden or in this document.

dreamweaver.cssStylePalette.canRenameSelected
Style()

Availability

Dreamweaver MX.

Description

Checks the current active document to see whether the selected style can be renamed.

Arguments
{ pane }

■ The pane argument, which is optional, is a string that specifies the pane of the Styles
Panel to which this function applies. Possible values are "stylelist", which is the list of
styles in “All” mode; "cascade", which is the list of applicable, relevant rules in “Current”
mode; "summary", which is the list of properties for the current selection in “Current”
mode; and "ruleInspector", which is the editable list or grid of properties in “Current”
mode. The default value is "stylelist".

Returns

A Boolean value: true if the selected style can be renames; false otherwise.
578 Enablers

000_DW_API_Print.book Page 579 Wednesday, July 20, 2005 11:58 AM
dreamweaver.isRecording()

Availability

Dreamweaver 3.

Description

Reports whether Dreamweaver is currently recording a command.

Arguments

None.

Returns

A Boolean value that indicates whether Dreamweaver is recording a command.

dreamweaver.htmlStylePalette.canEditSelection()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can edit, delete, or duplicate the selection in the HTML
Styles panel.

Arguments

None.

Returns

A Boolean value: true if Dreamweaver can edit, delete, or duplicate the selection in the
HTML Styles panel; false if no style is selected or if one of the clear styles is selected.

dreamweaver.resultsPalette.canClear()

Availability

Dreamweaver MX.

Description

Checks whether you can clear the contents of the Results panel that is currently in focus.

Arguments

None.
Enablers 579

000_DW_API_Print.book Page 580 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true if the contents can clear; false otherwise.

dreamweaver.resultsPalette.canCopy()

Availability

Dreamweaver MX.

Description

Checks whether the current Results window can display a copied message in its contents.

Arguments

None.

Returns

A Boolean value: true if the contents can display; false otherwise.

dreamweaver.resultsPalette.canCut()

Availability

Dreamweaver MX.

Description

Checks whether the current Results window can display a Cut message in its contents.

Arguments

None.

Returns

A Boolean value: true if the contents can display; false otherwise.

dreamweaver.resultsPalette.canPaste()

Availability

Dreamweaver MX.

Description

Checks whether the current Results window can display a Paste message in its contents.
580 Enablers

000_DW_API_Print.book Page 581 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

A Boolean value: true if the contents can display; false otherwise.

dreamweaver.resultsPalette.canOpenInBrowser()

Availability

Dreamweaver MX.

Description

Checks whether the current report can display in a browser.

Arguments

None.

Returns

A Boolean value: true if the contents can display; false otherwise.

dreamweaver.resultsPalette.canOpenInEditor()

Availability

Dreamweaver MX.

Description

Checks whether the current report can display in an editor.

Arguments

None.

Returns

A Boolean value: true if the contents can display; false otherwise.

dreamweaver.resultsPalette.canSave()

Availability

Dreamweaver MX.
Enablers 581

000_DW_API_Print.book Page 582 Wednesday, July 20, 2005 11:58 AM
Description

Checks whether the Save dialog box can open for the current panel. Currently, the Site
Reports, Target Browser Check, Validation, and Link Checker panels support the Save dialog
box.

Arguments

None.

Returns

A Boolean value: true if the Save dialog box can appear; false otherwise.

dreamweaver.resultsPalette.canSelectAll()

Availability

Dreamweaver MX.

Description

Checks whether a Select All message can be sent to the window that is currently in focus.

Arguments

None.

Returns

A Boolean value: true if the Select All message can be sent; false otherwise.

dreamweaver.siteSyncDialog.canCompare()

Availability

Dreamweaver 8.

Description

Ths function checks whether the Compare context menu in the Site Synchronize dialog box
can be displayed.

Arguments

None.

Returns

A Boolean value: true if the Compare context menu in the Site Synchronize dialog box can
be displayed; false otherwise.
582 Enablers

000_DW_API_Print.book Page 583 Wednesday, July 20, 2005 11:58 AM
dreamweaver.siteSyncDialog.canMarkDelete()

Availability

Dreamweaver 8.

Description

This function checks whether the Change Action to Delete context menu in the Site
Synchronize dialog box can be displayed.

Arguments

None.

Returns

A Boolean value: true if the Change Action to Delete context menu can be displayed; false
otherwise.

dreamweaver.siteSyncDialog.canMarkGet()

Availability

Dreamweaver 8.

Description

This function checks whether the Change Action to Get context menu in the Site
Synchronize dialog box can be displayed.

Arguments

None.

Returns

A Boolean value: true if the Change Action to Get context menu can be displayed; false
otherwise.
Enablers 583

000_DW_API_Print.book Page 584 Wednesday, July 20, 2005 11:58 AM
dreamweaver.siteSyncDialog.canMarkIgnore()

Availability

Dreamweaver 8.

Description

This function checks whether the Change Action to Ignore context menu in the Site
Synchronize dialog box can be displayed.

Arguments

None.

Returns

A Boolean value: true if the Change Action to Ignore context menu can be displayed; false
otherwise.

dreamweaver.siteSyncDialog.canMarkPut()

Availability

Dreamweaver 8.

Description

This function checks whether the Change Action to Put context menu in the Site Synchronize
dialog box can be displayed.

Arguments

None.

Returns

A Boolean value: true if the Change Action to Put context menu can be displayed; false
otherwise.
584 Enablers

000_DW_API_Print.book Page 585 Wednesday, July 20, 2005 11:58 AM
dreamweaver.siteSyncDialog.canMarkSynced()

Availability

Dreamweaver 8.

Description

This function checks whether the Change Action to Synced context menu in the Site
Synchronize dialog box can be displayed.

Arguments

None.

Returns

A Boolean value: true if the Change Action to Synced context menu can be displayed; false
otherwise.

dreamweaver.snippetpalette.canEditSnippet()

Availability

Dreamweaver MX.

Description

Checks whether you can edit the currently selected item and returns either a true or false
value so you can enable or disable menu items for editing.

Arguments

None.

Returns

A Boolean value: true if you can edit the currently selected item; false otherwise.

dreamweaver.snippetpalette.canInsert()

Availability

Dreamweaver MX.

Description

Checks whether you can insert or apply the selected element and returns either a true or
false value so you can enable or disable menu items for inserting or applying.
Enablers 585

000_DW_API_Print.book Page 586 Wednesday, July 20, 2005 11:58 AM
Arguments

None.

Returns

A Boolean value: true if you can insert or apply the selected element; false otherwise.

site.browseDocument()

Availability

Dreamweaver 4.

Description

Opens all selected documents in a browser window. It is the same as using the Preview in
Browser command.

Arguments
browserName

■ The browserName argument is the name of a browser as defined in the Preview in Browser
preferences. If omitted, this argument defaults to the user’s primary browser.

Returns

Nothing.

site.canAddLink()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform an Add Link to [Existing File | New File]
operation.

Arguments

None.

Returns

A Boolean value: true if the selected document in the site map is an HTML file;
false otherwise.
586 Enablers

000_DW_API_Print.book Page 587 Wednesday, July 20, 2005 11:58 AM
site.canChangeLink()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Change Link operation.

Arguments

None.

Returns

A Boolean value: true if an HTML or Flash file links to the selected file in the site map;
false otherwise.

site.canCheckIn()

Availability

Dreamweaver 3.

Description

Determines whether Dreamweaver can perform a Check In operation.

Arguments
siteOrURL

■ The siteOrURL argument must be the site keyword, which indicates that the function
should act on the selection in the Site panel or the URL for a single file.

Returns

A Boolean value: true if the following conditions are true; false otherwise:

■ A remote site has been defined.
■ If a document window has focus, the file has been saved in a local site; or, if the Site panel

has focus, one or more files or folders are selected.
■ The Check In/Check Out feature is turned on for the site.
Enablers 587

000_DW_API_Print.book Page 588 Wednesday, July 20, 2005 11:58 AM
site.canCheckOut()

Availability

Dreamweaver 3.

Description

Determines whether Dreamweaver can perform a Check Out operation on the specified file
or files.

Arguments
siteOrURL

■ The siteOrURL argument must be the site keyword, which indicates that the function
should act on the selection in the Site panel or the URL for a single file.

Returns

A Boolean value: true if all the following conditions are true; false otherwise:

■ A remote site has been defined.
■ If a document window has focus, the file is part of a local site and is not already checked

out; or, if the Site panel has focus, one or more files or folders are selected and at least one
of the selected files is not already checked out.

■ The Check In/Check Out feature is turned on for the site.

site.canCloak()

Availability

Dreamweaver MX.

Description

Determines whether Dreamweaver can perform a Cloaking operation.

Arguments
siteOrURL

■ The siteOrURL argument must be the site keyword, which indicates that the
canCloak() function should act on the selection in the Site panel or the URL of a
particular folder, which indicates that the canCloak() function should act on the
specified folder and all its contents.
588 Enablers

000_DW_API_Print.book Page 589 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true if Dreamweaver can perform the Cloaking operation on the current
site or the specified folder; false otherwise.

site.canCompareFiles()

Availability

Dreamweaver 8.

Description

This function checks whether Dreamweaver can perform the Compare function on selected
files.

Arguments

None.

Returns

A Boolean value: true if two files (one local file and one remote file, two local files, or two
remote files) are selected; false otherwise.

site.canConnect()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can connect to the remote site.

Arguments

None.

Returns

A Boolean value: true if the current remote site is an FTP site; false otherwise.
Enablers 589

000_DW_API_Print.book Page 590 Wednesday, July 20, 2005 11:58 AM
site.canFindLinkSource()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Find Link Source operation.

Arguments

None.

Returns

A Boolean value that indicates that the selected link in the site map is not the home page.

site.canGet()

Availability

Dreamweaver 3.

Description

Determines whether Dreamweaver can perform a Get operation.

Arguments
siteOrURL

■ The siteOrURL argument must be the site keyword, which indicates that the function
should act on the selection in the Site panel or the URL for a single file.

Returns

If the argument is site, a Boolean value that indicates whether one or more files or folders is
selected in the Site panel and a remote site has been defined. If the argument is a URL, a
Boolean value that indicates whether the document belongs to a site for which a remote site
has been defined.
590 Enablers

000_DW_API_Print.book Page 591 Wednesday, July 20, 2005 11:58 AM
site.canLocateInSite()

Availability

Dreamweaver 3.

Description

Determines whether Dreamweaver can perform a Locate in Local Site or Locate in Remote
Site operation (depending on the argument).

Arguments
localOrRemote, siteOrURL

■ The localOrRemote argument must be either local or remote.
■ The siteOrURL argument must be the site keyword, which indicates that the function

should act on the selection in the Site panel or the URL for a single file.

Returns

One of the following values:

■ If the first argument is the keyword local and the second argument is a URL, a Boolean
value that indicates whether the document belongs to a site

■ If the first argument is the keyword remote and the second argument is a URL, a Boolean
value that indicates whether the document belongs to a site for which a remote site has
been defined, and, if the server type is Local/Network, whether the drive is mounted

■ If the second argument is the keyword site, a Boolean value that indicates whether both
windows contain site files (not the site map) and whether the selection is in the opposite
pane from the argument

site.canMakeEditable()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Turn Off Read Only operation.

Arguments

None.
Enablers 591

000_DW_API_Print.book Page 592 Wednesday, July 20, 2005 11:58 AM
Returns

A Boolean value: true if Dreamweaver can perform a Turn Off Read Only operation; false
if one or more of the selected files is locked.

site.canMakeNewFileOrFolder()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a New File or New Folder operation in the Site
panel.

Arguments

None.

Returns

A Boolean value: true if any files are visible in the selected pane of the Site panel;
false otherwise.

site.canOpen()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can open the files or folders that are currently selected in the
Site panel.

Arguments

None.

Returns

A Boolean value: true if any files or folders are selected in the Site panel; false otherwise.
592 Enablers

000_DW_API_Print.book Page 593 Wednesday, July 20, 2005 11:58 AM
site.canPut()

Availability

Dreamweaver 3.

Description

Determines whether Dreamweaver can perform a Put operation.

Arguments
siteOrURL

■ The siteOrURL argument must be the site keyword, which indicates that the function
should act on the selection in the Site panel, or the URL for a single file.

Returns

One of the following values:

■ If the argument is the keyword site, returns the value true if any files or folders are
selected in the Site panel and a remote site has been defined; otherwise false.

■ If the argument is a URL, returns the value true if the document belongs to a site for
which a remote site has been defined; otherwise false.

site.canRecreateCache()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Recreate Site Cache operation.

Arguments

None.

Returns

A Boolean value: true if the Use Cache To Speed Link Updates option is enabled for the
current site.
Enablers 593

000_DW_API_Print.book Page 594 Wednesday, July 20, 2005 11:58 AM
site.canRefresh()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Refresh [Local | Remote] operation.

Arguments
localOrRemote

■ The localOrRemote argument must be either the local or remote keyword.

Returns

A value of true if the localOrRemote argument is the local keyword; otherwise, a Boolean
value that indicates whether a remote site has been defined.

site.canRemoveLink()

Availability

Dreamweaver 3.

Description

Checks whether Dreamweaver can perform a Remove Link operation.

Arguments

None.

Returns

A Boolean value that indicates that an HTML or Flash file links to the selected file in the
site map.
594 Enablers

000_DW_API_Print.book Page 595 Wednesday, July 20, 2005 11:58 AM
site.canSetLayout()

Availability

Dreamweaver 3.

Description

Determines whether Dreamweaver can perform a Layout operation.

Arguments

None.

Returns

A Boolean value: true if the site map is visible; false otherwise.

site.canSelectAllCheckedOutFiles()

Availability

Dreamweaver 4.

Description

Determines whether the current working site has the Check In/Check Out feature enabled.

Arguments

None.

Returns

A Boolean value: true if the site allows Check In/Check Out; false otherwise.

site.canSelectNewer()

Availability

Dreamweaver 3.

Description

Determines whether Dreamweaver can perform a Select Newer [Remote | Local] operation.
Enablers 595

000_DW_API_Print.book Page 596 Wednesday, July 20, 2005 11:58 AM
Arguments
localOrRemote

■ The localOrRemote argument must be either the local or remote keyword.

Returns

A Boolean value that indicates whether the document belongs to a site for which a remote site
has been defined.

site.canShowPageTitles()

Availability

Dreamweaver 3.

Description

Determines whether Dreamweaver can perform a Show Page Titles operation.

Arguments

None.

Returns

A Boolean value: true the site map is visible; false otherwise.

site.canSynchronize()

Availability

Dreamweaver 3.

Description

Determines whether Dreamweaver can perform a Synchronize operation.

Arguments

None.

Returns

A Boolean value that indicates whether a remote site has been defined.
596 Enablers

000_DW_API_Print.book Page 597 Wednesday, July 20, 2005 11:58 AM
site.canUncloak()

Availability

Dreamweaver MX.

Description

Determines whether Dreamweaver can perform an uncloaking operation.

Arguments
siteOrURL

■ The siteOrURL argument must be the site keyword, which indicates that the
canUncloak() function should act on the selection in the Site panel or the URL of a
particular folder, which indicates that the canUncloak() function should act on the
specified folder and all its contents.

Returns

A Boolean value: true if Dreamweaver can perform the uncloaking operation on the current
site or the specified folder; false otherwise.

site.canUndoCheckOut()

Availability

Dreamweaver 3.

Description

Determines whether Dreamweaver can perform an Undo Check Out operation.

Arguments
siteOrURL

■ The siteOrURL argument must be the site keyword, which indicates that the function
should act on the selection in the Site panel or the URL for a single file.

Returns

A Boolean value: true if the specified file or at least one of the selected files is checked out.
Enablers 597

000_DW_API_Print.book Page 598 Wednesday, July 20, 2005 11:58 AM
site.canViewAsRoot()

Availability

Dreamweaver 3.

Description

Determines whether Dreamweaver can perform a View as Root operation.

Arguments

None.

Returns

A Boolean value: true if the specified file is an HTML or Flash file; false otherwise.
598 Enablers

000_DW_API_Print.book Page 599 Wednesday, July 20, 2005 11:58 AM
Index
Symbols
() 474

A
About dialog box 157
activeViewScale() 464
addBehavior() 368
addDebugContextData() 197
addItem() 185
addLinkToExistingFile() 263
addLinkToNewFile() 263
addResultItem() 186
addSpacerToColumn() 453
alert 156
align() 443
aligning

layers 443
tracing image 450

APIs, types of
database 69
database connection dialog box 103
Design Notes 40
file I/O 17
Fireworks integration 53
Flash objects 63
HTTP 29
JavaBeans 111
Source Control Integration 119

application functions
external 147
global 155

applications
opening files 153
selecting 154

applyCharacterMarkup() 500

applycomment() 251
applyConnection() 106
applyCSSStyle() 420
applyFontMarkup() 501
applying styles 420
applySelectedStyle() 428
applyTemplate() 385
arrange() 443
arrangeFloatingPalettes() 452
arranging

floating panels 452
hotspots 443

arrowDown() 173, 527
arrowLeft() 174, 528
arrowRight() 174, 528
arrowUp() 175, 529
assetPalette.addToFavoritesFromDocument() 355
assetPalette.addToFavoritesFromSiteAssets() 356
assetPalette.addToFavoritesFromSiteWindow() 356
assetPalette.canEdit() 563
assetPalette.canInsertOrApply() 564
assetPalette.copyToSite() 357
assetPalette.edit() 357
assetPalette.getSelectedCategory() 358
assetPalette.getSelectedItems() 358
assetPalette.getSelectedView() 359
assetPalette.insertOrApply() 359
assetPalette.locateInSite() 360
assetPalette.newAsset() 360
assetPalette.newFolder() 361
assetPalette.recreateLibraryFromDocument() 361
assetPalette.refreshSiteAssets() 361
assetPalette.removeFromFavorites() 362
assetPalette.renameNickname() 362
assetPalette.setSelectedCategory() 363
assetPalette.setSelectedView() 363
Assets panel (palette) functions 355
599

000_DW_API_Print.book Page 600 Wednesday, July 20, 2005 11:58 AM
attachExternalStylesheet() 429
attributes

getting 20
of files, setting 25
snippet tag 392

audio alert 156

B
Backspace key, pressing 175
backspaceKey() 175
balanceBracesTextView() 529
beep() 156, 158, 256, 257, 294
beginning of document 180
behavior functions 368

server 408
blocks

borders 459, 462
coloring 459, 461
IDs 460, 462

borders 459
blocks 462
divs 462

box models, coloring 461
bringAttentionToFloater() 231
bringDWToFront() 53
bringFWToFront() 54
bringing Dreamweaver to front 53
bringing Fireworks to front 54
browseDocument() 147, 586
browseForFileURL() 305
browseForFolderURL() 306
browsers

checking documents in 321
list of 148
opening URL 147
primary 151
secondary 151
targets 192

C
canAddLinkToFile() 586
canAlign() 551
canApplyTemplate() 552
canArrange() 552
canChangeLink() 587
canCheckIn() 587
canCheckOut() 588

canClear() 579
canClipCopy() 564
canClipCopyText() 552
canClipCut() 565
canClipPaste() 553, 565
canClipPasteText() 553
canCloak() 588
canConnect() 589
canConvertLayersToTable() 554
canConvertTablesToLayers() 554
canCopy() 580
canCut() 580
canDecreaseColspan() 554
canDecreaseRowspan() 555
canDeleteTableColumn() 555
canDeleteTableRow() 556
canEditColumns() 556
canEditNoFramesContent() 556
canEditSelectedRule() 574
canEditSelection() 579
canExportCSS() 566
canExportTemplateDataAsXML() 567
canFindLinkSource() 590
canFindNext() 567
canGet() 590
canIncreaseColspan() 557
canIncreaseRowspan() 557
canInsertTableColumns() 557
canInsertTableRows() 558
canLocateInSite() 591
canMakeEditable() 591
canMakeNewEditableRegion() 558
canMakeNewFileOrFolder() 592
canMarkSelectionAsEditable() 559
canMergeTableCells() 559
canOpen() 592
canOpenInBrowser() 581
canOpenInEditor() 581
canOpenInFrame() 568
canPaste() 580
canPlayPlugin() 559
canPlayRecordedCommand() 569
canPopupEditTagDialog() 569
canPut() 593
canRecreateCache() 593
canRedo() 560, 570
canRefresh() 594
canRemoveEditableRegion() 560
canRemoveLink() 594
canRevertDocument() 570
600 Index

000_DW_API_Print.book Page 601 Wednesday, July 20, 2005 11:58 AM
canSave() 581
canSaveAll() 570
canSaveDocument() 571
canSaveDocumentAsTemplate() 571
canSaveFrameset() 572
canSaveFramesetAs() 572
canSelectAll() 573, 582
canSelectAllCheckedOutFiles() 595
canSelectNewer() 595
canSelectTable() 560
canSetLayout() 595
canSetLinkHref() 561
canShowFindDialog() 573
canShowListPropertiesDialog() 561
canSplitFrame() 562
canSplitTableCell() 562
canStopPlugin() 562
canSynchronize() 596
canUncloak() 597
canUndo() 563, 573
canUndoCheckOut() 597
canViewAsRoot() 598
cascade() 231
cascading document windows 231
cascading style sheets to HTML markup, converting

299
changeLink() 264
changeLinkSitewide() 264
check out names 129
checkIn() 264
checking document in browser 321
checking in 129
checking in files 129, 143
checking out 130
checking out files 130

numbers 131
undoing 130

checking spelling 321
checkLinks() 265
checkOut() 266
checkSpelling() 321
checkTargetBrowsers() 266, 321
class names, JavaBeans 111
classes

introspecting JavaBeans 114
classes, introspecting JavaBeans 112, 113, 114
cleaning up, XHTML documents 302
cleanupXHTML() 302
clear() 192
clearGuides() 468

clearing History panel 166
clearServerScriptsFolder() 30
clearSteps() 165
clearTemp() 31
Clipboard functions 379
clipCopy() 379, 382
clipCopyText() 379
clipCut() 380, 383
clipPaste() 380, 383
clipPasteText() 381
cloak() 267
closeDocument() 306
CloseNotesFile() 46
closing

Design Notes files 40, 46
documents 306

code coloring 493
code functions

code hints and coloring 489
code view 524
Snippets panel 391

Code inspector
auto-indent 216
invalid HTML 214, 216
line numbers 215
syntax coloring 215
word wrap 215, 218

Code view 230
auto-indenting 200
invalid HTML 200
line numbers 203, 210
switching to 431
syntax coloring 203
word wrap 205, 212

codeHints.addFunction() 491, 493
codeHints.addMenu() 490
codeHints.resetMenu() 492
codeHints.showCodeHints() 493
ColdFusion Administrator 83
ColdFusion Component Explorer 273, 274, 278
ColdFusion data source names 71
ColdFusion data sources 81
collapseFullTag() 245
collapseSelectedCodeFragment() 243
collapseSelectedCodeFragmentInverse() 243, 247
collpaseSelectedCodeFragment() 246
coloring

blocks 459, 461
box model 437
box models 461, 463
Index 601

000_DW_API_Print.book Page 602 Wednesday, July 20, 2005 11:58 AM
code 489, 493
divs 459, 461
guides 471
Layout Block Backgrounds 439

column span, decreasing 478
columns 87, 88, 89

getting from statements 86, 87
getting from stored procedures 92, 93
getting from tables 89
in SQL SELECT 86
names of 89
result sets 92, 93
sizing 456, 457, 458
types of 86
widths in Results window 189

Command menu functions 300
commands

executing 301
recorded 163

comments, apply 251
compare() 259
compareFiles() 258
comparing, remote and local files 136
configuration files 17
Configuration folder path 333
Configuration/Temp folder 31, 33
connecting to source control systems 120
connection definition file 109
connection handling, database 70
Connection Manager 73, 81, 83
connection names 73
connection objects 71
connection objects, properties 104
connection strings 73, 74

testing 85
connection types

creating 101
runtime 78

connection_includefile.edml 109
connections 81

defining 106
detecting 104
fenerating HTML 106
getting list of 73, 86
getting specific name 73
JDBC 75
source control systems 120, 126

connectivity overview 101
conventions, in book 13
conversion functions 299

converting
file URL to local drive path 43, 50
from percentage to pixels 477
from pixels to percentage 477
local drive path to a file URL 40
local drive path to file URL 46
local file path to site relative URI 257
site relative URI to local file path 257

converting to XHTML 303
convertLayersToTable() 299
convertTablesToLayers() 300
convertToXHTML() 303
convertWidthsToPercent() 477
convertWidthsToPixels() 477
Copy() 193
copy() 17
copying

history steps 166
copying files 18
copying selection 379
copySteps() 166
createDocument() 307
createFolder() 18
createHorzontalGuide() 468
createLayoutCell() 453
createLayoutTable() 454
createResultsWindow() 184
createVerticalGuide() 469
createXHTMLDocument() 308
createXMLDocument() 309
creating

documents 307
folders 18
Results window 184
XML files 309, 310

creating folders 124
CSS style functions 419
CSS to HTML markup, converting 299
cssRuleTracker.canEditSelectedRule() 574
cssStyle.canEditSelectedStyle() 577
cssStylePalette.canApplySelectedStyle() 575
cssStylePalette.canDeleteSelectedStyle() 575
cssStylePalette.canEditStyleSheet() 578
cssStylePalette.getInternetExplorerRendering() 419
cssStylePalette.setInternetExplorerRendering() 420
cut() 193
602 Index

000_DW_API_Print.book Page 603 Wednesday, July 20, 2005 11:58 AM
D
Data Manager 399
data property of httpReply objects 29
data source names in ColdFusion 71
data sources

ColdFusion 81
ODBC 84

database API
about 69
access functions 86
connection functions 70
MMDB.deleteConnection() 70
MMDB.getColdFusionDsnList() 71
MMDB.getColumnAndTypeList() 86
MMDB.getColumnList() 87
MMDB.getColumns() 87
MMDB.getColumnsOfTable() 89
MMDB.getConnection() 71
MMDB.getConnectionList() 73
MMDB.getConnectionName() 73
MMDB.getConnectionString() 74
MMDB.getDriverName() 75
MMDB.getDriverUrlTemplateList() 75
MMDB.getLocalDsnList() 76
MMDB.getPassword() 76
MMDB.getPrimaryKeys() 89
MMDB.getProcedures() 90
MMDB.getRdsPassword() 77
MMDB.getRdsUserName() 77
MMDB.getRemoteDsnList() 78
MMDB.getRuntimeConnectionType() 78
MMDB.getSPColumnList() 92
MMDB.getSPColumnListNamedParams() 93
MMDB.getSPParameters() 94
MMDB.getSPParamsAsString() 95
MMDB.getTables() 95
MMDB.getUserName() 79
MMDB.getViews() 96
MMDB.hasConnectionWithName() 80
MMDB.needToPromptForRdsInfo() 80
MMDB.needToRefreshColdFusionDsnList() 81
MMDB.popupConnection() 81
MMDB.setRdsPassword() 82
MMDB.setRdsUserName() 82
MMDB.showColdFusionAdmin() 83
MMDB.showConnectionMgrDialog() 83
MMDB.showOdbcDialog() 83
MMDB.showRdsUserDialog() 84
MMDB.showRestrictDialog() 84

MMDB.showResultset() 97
MMDB.showSPResultset() 98
MMDB.showSPResultsetNamedParams() 99
MMDB.testConnection() 85

database connection (MMDB) functions 70
database connection dialog box API

about 103
applyConnection() 106
definition files 109
findConnection() 104
include files, generated 107
inspectConnection() 105

database connection type definition files 109
database connections 81

deleting 70
passwords 77
testing existence 80
user names 79

database connectivity API. See database connection
dialog box API

database connectivity overview 101
databases

access functions 86
connection dialog box API 103
connection functions 70
connection type definition files 109
database API 69
views 96

decreaseColspan() 478
decreaseRowspan() 478
decreasing

column span 478
row span 478

defineSites() 268
definition file, for connection type 109
Delete key 176
deleteConnection() 70
deleteHorizontalGuide() 470
deleteKey() 176
deleteSelectedItem() 363
deleteSelectedStyle() 429
deleteSelectedTemplate() 367
deleteSelection() 268, 501, 516
deleteTableColumn() 479
deleteTableRow() 479
deleteVerticalGuide() 470
deleting

database connections 70
folders 30
Index 603

000_DW_API_Print.book Page 604 Wednesday, July 20, 2005 11:58 AM
selection 501
styles 429

deployFilesToTestingServerBin() 269
description attribute 392
design functions 419
Design Note keys 133
Design Notes

C API 45
file structure 39
length 134
source control systems 134, 135

Design Notes files
closing 46
creating key/value pairs 45, 52
getting key 41
key/value pairs 41
keys 42, 46
number of key/value pairs 48
opening 44, 51
removing keys 44, 52
saving 40
site root 42, 49

Design Notes functions
MMNotes.close() 40
MMNotes.filePathToLocalURL() 40
MMNotes.get() 41
MMNotes.getKeyCount() 41
MMNotes.getKeys() 42
MMNotes.getSiteRootForFile() 42
MMNotes.getVersionName() 43
MMNotes.getVersionNum() 43
MMNotes.localURLToFilePath() 43

Design view
set show/hide 230
visible 230

detachFromLibrary() 385
detachFromTemplate() 386
dialog boxes

About 157
Choose Folder 306
ColdFusion Administrator 83
Connection Manager 83
Convert Layers to Table 299
Convert Tables to Layers 300
Dynamic Data 158
Dynamic Text 158
Edit Command List 300
Edit Style Sheet 432
Export Editable Regions as XML 310
Export Styles as a CSS File 309

Find 499
Grid Settings 452
New CSS Style 428
New Document 314
New Style 435
ODBC Data Source Administrator 84
Open in Frame 316
Page Properties 325
Paste Special 158
Preferences 154, 156, 159
Replace 500
Restrict 84
Save As 318, 319
Save As Command 169
Save As Template 319
Select External Editor 154
Select Image Source 447
Size Definition 197
Style Definition 430
System ODBC Administration 84
Tag Chooser 160
Target Browsers 332

disconnecting from source control systems 120
displaying

key codes 181
visual aids 199

divs
borders 459, 462
coloring 459, 461
IDs 460, 462

document functions, global 321
document information 311
document selection in focus 229
documents

beginning of 180
closing 306
creating 307, 314
opening 314, 315
reverting 317
saving 318
validating 323

doDeferredTableUpdate() 480
doesColumnHaveSpacer() 454
doesGroupHaveSpacers() 455
dom

addBehavior() 368
addSpacerToColumn() 453
align() 443
applyCharacterMarkup() 500
applyCSSStyle() 420
604 Index

000_DW_API_Print.book Page 605 Wednesday, July 20, 2005 11:58 AM
applyFontMarkup() 501
applyTemplate() 385
arrange() 443
arrowDown() 173
arrowLeft() 174
arrowRight() 174
arrowUp() 175
backspaceKey() 175
canAlign() 551
canApplyTemplate() 552
canArrange() 552
canClipCopyText() 552
canClipPaste() 553
canClipPasteText() 553
canConvertLayersToTable() 554
canConvertTablesToLayers() 554
canDecreaseColspan() 554
canDecreaseRowspan() 555
canDeleteTableColumn() 555
canDeleteTableRow() 556
canEditNoFramesContent() 556
canIncreaseColspan() 557
canIncreaseRowspan() 557
canInsertTableColumns() 557
canInsertTableRows() 558
canMakeNewEditableRegion() 558
canMarkSelectionAsEditable() 559
canMergeTableCells() 559
canPlayPlugin() 559
canRedo() 560
canRemoveEditableRegion() 560
canSelectTable() 560
canSetLinkHref() 561
canShowListPropertiesDialog() 561
canSplitFrame() 562
canSplitTableCell() 562
canStopPlugin() 562
canUndo() 563
checkSpelling() 321
checkTargetBrowsers() 321
cleanupXHTML() 302
clearGuides() 468
clipCopy() 379
clipCopyText() 379
clipCut() 380
clipPaste() 380
clipPasteText() 381
collapseSelectedCodeFragment() 243
collapseSelectedCodeFragmentInverse() 243
convertLayersToTable() 299

convertTablesToLayers() 300
convertToXHTML() 303
convertWidthsToPercent() 477
convertWidthsToPixels() 477
createHorizontalGuide() 468
createLayoutCell() 453
createLayoutTable() 454
createVerticalGuide() 469
decreaseColspan() 478
decreaseRowspan() 478
deleteHorizontalGuide() 470
deleteKey() 176
deleteSelection() 501
deleteTableColumn() 479
deleteTableRow() 479
deleteVerticalGuide() 470
detachFromLibrary() 385
detachFromTemplate() 386
doDeferredTableUpdate() 480
doesColumnHaveSpacer() 454
doesGroupHaveSpacers() 455
editAttribute() 502
endOfDocument() 176
endOfLine() 177
exitBlock() 502
expandAllCodeFragments() 244
expandSelectedCodeFragments() 245
forceToolbarUpdate() 222
formatRange() 524
formatSelection() 524
getAttachedTemplate() 386
getAutoValidationCount() 525
getBehavior() 369
getCharSet() 502
getClickedHeaderColumn() 455
getEditableRegionList() 386
getEditNoFramesContent() 198
getElementView() 421
getFocus() 229
getFontMarkup() 503
getFrameNames() 441
getHideAllVisualAids() 199
getIsLibraryDocument() 387
getIsTemplateDocument() 387
getIsXHTMLDocument() 304
getLineFromOffset() 503
getLinkHref() 504
getLinkTarget() 504
getListTag() 505
getOpenPathName() 249
Index 605

000_DW_API_Print.book Page 606 Wednesday, July 20, 2005 11:58 AM
getParseMode() 322
getPreventLayerOverlaps() 199
getRulerOrigin() 446
getRulerUnits() 446
getSelectedEditableRegion() 387
getSelectedNode() 336
getSelection() 337
getShowAutoIndent() 200
getShowBlockBackgrounds() 459
getShowBlockBorders() 459
getShowBlockIDs() 460
getShowBoxModel() 461
getShowDivBackgrounds() 422
getShowDivBoxModel() 422
getShowDivOutlines() 423
getShowFrameBorders() 200
getShowGrid() 200
getShowHeadView() 201
getShowHiddenCharacters() 249
getShowImageMaps() 201
getShowInvalidHTML() 201
getShowInvisibleElements() 202
getShowLayerBorders() 202
getShowLayoutTableTabs() 456
getShowLayoutView() 456
getShowLineNumbers() 202
getShowNoscript() 525
getShowRulers() 203
getShowSyntaxColoring() 203
getShowTableBorders() 204
getShowTableWidths() 480
getShowToolbar() 204
getShowToolbarIconLabels() 223
getShowTracingImage() 204
getShowWordWrap() 205
getSnapToGrid() 205
getTableExtent() 481
getTagSelectorTag() 544
getTextAlignment() 505
getTextFormat() 505
getToolbarIdArray() 223
getToolbarItemValue() 224
getToolbarLabel() 225
getToolbarVisibility() 225
getTracingImageOpacity() 447
getView() 230
getWindowTitle() 230
guidesColor() 471
guidesDistanceColor() 471
guidesLocked 472

guidesSnapToElements 473
guidesVisible 473
hasCharacterMarkup() 506
hasGuides 474
hasHorizontalGuide() 474
hasTracingImage() 563
hasVerticalGuide() 475
hideInfoMessagePopup() 322
increaseColspan() 481
increaseRowspan() 481
indent() 506
insertFlashElement() 63, 171
insertHTML() 507
insertLibraryItem() 388
insertObject() 508
insertTableColumns() 482
insertTableRows() 482
insertText() 508
isColumnAutostretch() 456
isDesignViewUpdated() 526
isDocumentInFrame() 441
isSelectionValid() 526
loadTracingImage() 447
makeCellWidthsConsistent() 457
makeSizesEqual() 444
markSelectionAsEditable() 389
mergeTableCells() 483
moveSelectionBy() 444
newBlock() 509
newEditableRegion() 389
nextParagraph() 177
nextWord() 178
nodeToOffsets() 337
notifyFlashObjectChanged() 510
offsetsToNode() 338
outdent() 510
pageDown() 178
pageUp() 179
playAllPlugins() 448
playPlugin() 448
previousParagraph() 179
previousWord() 180
reapplyBehaviors() 369
redo() 161
removeAllSpacers() 457
removeAllTableHeights() 483
removeAllTableWidths() 484
removeBehavior() 370
removeCharacterMarkup() 510
removeColumnWidth() 484
606 Index

000_DW_API_Print.book Page 607 Wednesday, July 20, 2005 11:58 AM
removeCSSStyle() 424
removeEditableRegion() 390
removeFontMarkup() 511
removeLink() 511
removeSpacerFromColumn() 458
resetAllElementViews() 424
resizeSelection() 512
resizeSelectionBy() 445
runTranslator() 349
runValidation() 322
saveAllFrames() 442
selectAll() 339
selectChild() 521
selectParent() 522
selectTable() 484
serverModel.getAppURLPrefix() 411
serverModel.getDelimiters() 411
serverModel.getDisplayName() 412
serverModel.getFolderName() 412
serverModel.getServerExtension() 413
serverModel.getServerIncludeUrlPatterns() 413
serverModel.getServerInfo() 414
serverModel.getServerLanguage() (deprecated) 415
serverModel.getServerName() 416
serverModel.getServerSupportsCharset() 416
serverModel.getServerVersion() 417
serverModel.testAppServer() 418
setAttributeWithErrorChecking() 512
setColumnAutostretch() 458
setEditNoFramesContent() 205
setElementView() 425
setHideAllVisualAids() 206
setLayerTag() 445
setLinkHref() 513
setLinkTarget() 513
setListBoxKind() 514
setListTag() 514
setPreventLayerOverlaps() 206
setRulerOrigin() 448
setRulerUnits() 449
setSelectedNode() 339
setSelection() 340
setShowBlockBackgrounds() 461
setShowBlockBorders() 462
setShowBlockIDs() 462
setShowBoxModel() 463
setShowDivBackgrounds() 426
setShowDivBoxModel() 426
setShowDivOutlines() 427
setShowFrameBorders() 207

setShowGrid() 207
setShowHeadView() 208
setShowHiddenCharacters() 250
setShowImageMaps() 209
setShowInvalidHTML() 208
setShowInvisibleElements() 209
setShowLayerBorders() 209
setShowLayoutTableTabs() 463
setShowLayoutView() 464
setShowLineNumbers() 210
setShowNoscript() 527
setShowRulers() 210
setShowSyntaxColoring() 211
setShowTableBorders() 211
setShowTableWidths() 485
setShowToolbar() 211
setShowToolbarIconLabels() 227
setShowTracingImage() 212
setShowWordWrap() 212
setSnapToGrid() 213
setTableCellTag() 485
setTableColumns() 486
setTableRows() 486
setTextAlignment() 515
setTextFieldKind() 515
setTextFormat() 516
setToolbarItemAttribute() 226
setToolbarPosition() 227
setToolbarVisibility() 228
setTracingImageOpacity() 450
setTracingImagePosition() 449
setView() 230
showFontColorDialog() 516
showInfoMessagePopup() 324
showInsertTableRowsOrColumnsDialog() 487
showListPropertiesDialog() 514
showPagePropertiesDialog() 325
snapToGuides() 476
snapTracingImageToSelection() 450
source.applyComment() 251
source.arrowDown() 527
source.arrowLeft() 528
source.arrowRight() 528
source.arrowUp() 529
source.balanceBracesTextView() 529
source.endOfDocument() 530
source.endOfLine() 530
source.endPage() 531
source.getCurrentLines() 531
source.getLineFromOffset() 532
Index 607

000_DW_API_Print.book Page 608 Wednesday, July 20, 2005 11:58 AM
source.getSelection() 532
source.getText() 532
source.getValidationErrorsForOffset() 533
source.indentTextView() 534
source.insert() 534
source.nextWord() 535
source.outdentTextView() 535
source.pageDown() 536
source.pageUp() 536
source.previousWord() 537
source.removeComment() 251
source.replaceRange() 537
source.scrollEndFile() 538
source.scrollLineDown() 538
source.scrollLineUp() 539
source.scrollPageDown() 539
source.scrollPageUp() 539
source.scrollTopFile() 540
source.selectParentTag() 540
source.setCurrentLine() 541
source.startOfDocument() 541
source.startOfLine() 542
source.topPage() 542
source.wrapSelection() 543
splitFrame() 442
splitTableCell() 487
startOfDocument() 180
startOfLine() 181
stopAllPlugins() 451
stopPlugin() 451
stripTag() 522
synchronizeDocument() 543
undo() 162
updateCurrentPage() 390
wrapTag() 522

DOM, getting 311
doURLDecoding() 325
doURLEncoding() 344
Dreamweaver

bringing to front 53
quitting 157

dreamweaver
activeViewScale() 464
arrangeFloatingPalettes() 452
assetPalette.addToFavoritesFromDocument() 355
assetPalette.addToFavoritesFromSiteAssets() 356
assetPalette.addToFavoritesFromSiteWindow() 356
assetPalette.canEdit() 563
assetPalette.canInsertOrApply() 564
assetPalette.copyToSite() 357

assetPalette.edit() 357
assetPalette.getSelectedCategory() 358
assetPalette.getSelectedItems() 358
assetPalette.getSelectedView() 359
assetPalette.insertOrApply() 359
assetPalette.locateInSite() 360
assetPalette.newAsset() 360
assetPalette.newFolder() 361
assetPalette.recreateLibraryFromDocument() 361
assetPalette.refreshSiteAssets() 361
assetPalette.removeFromFavorites() 362
assetPalette.renameNickname() 362
assetPalette.setSelectedCategory() 363
assetPalette.setSelectedView() 363
beep() 156, 158, 256, 257, 294
behaviorInspector object 368
behaviorInspector.getBehaviorAt() 374
behaviorInspector.getBehaviorCount() 374
behaviorInspector.getSelectedBehavior() 375
behaviorInspector.moveBehaviorDown() 376
behaviorInspector.moveBehaviorUp() 377
behaviorInspector.setSelectedBehavior() 378
bringAttentionToFloater() 231
browseDocument() 147
browseForFileURL() 305
browseForFolderURL() 306
canClipCopy() 564
canClipCut() 565
canClipPaste() 565
canExportCSS() 566
canExportTemplateDataAsXML() 567
canFindNext() 567
canOpenInFrame() 568
canPlayRecordedCommand() 569
canPopupEditTagDialog() 569
canRedo() 570
canRevertDocument() 570
canSaveAll() 570
canSaveDocument() 571
canSaveDocumentAsTemplate() 571
canSaveFrameset() 572
canSaveFramesetAs() 572
canSelectAll() 573
canShowFindDialog() 573
canUndo() 573
cascade() 231
clipCopy() 382
clipCut() 383
clipPaste() 383
closeDocument() 306
608 Index

000_DW_API_Print.book Page 609 Wednesday, July 20, 2005 11:58 AM
codeHints.addFunction() 491, 493
codeHints.addMenu() 490
codeHints.resetMenu() 492
codeHints.showCodeHints() 493
compareFiles() 258
createDocument() 307
createResultsWindow() 184
createXHTMLDocument() 308
createXMLDocument() 309
cssRuleTracker.canEditSelectedRule() 574
cssRuleTracker.editSelectedRule() 427
cssRuleTracker.newRule() 428
cssStyle.canEditSelectedStyle() 577
cssStylePalette object 419
cssStylePalette.applySelectedStyle() 428
cssStylePalette.canApplySelectedStyle() 575
cssStylePalette.canDeleteSelectedStyle() 575
cssStylePalette.canDuplicateSelectedStyle() 576
cssStylePalette.canEditStyleSheet() 578
cssStylePalette.deleteSelectedStyle() 429
cssStylePalette.duplicateSelectedStyle() 430
cssStylePalette.editSelectedStyle() 430
cssStylePalette.editSelectedStyleInCodeview() 431
cssStylePalette.editStyleSheet() 432
cssStylePalette.getDisplayStyles() 432
cssStylePalette.getMediaType() 432
cssStylePalette.getSelectedStyle() 433
cssStylePalette.getSelectedTarget() 434
cssStylePalette.getStyles() 434
cssStylePalette.newStyle() 435
cssStylePalette.setDisplayStyles() 436
cssStylePalette.setMediaType() 437
dbi.getDataSources() 398
deleteSelection() 516
doURLDecoding() 325
doURLEncoding() 344
editCommandList() 300
editFontList() 517
editLockedRegions() 349
exportCSS() 309
exportEditableRegionsAsXML() 310
exportTemplateDataAsXML() 310
findNext() 494
fitAll() 465
fitSelection 465
fitWidth() 466
getActiveWindow() 232
getBehaviorElement() 370
getBehaviorEvent() 372
getBehaviorTag() 372

getBlockVisBoxModelColors() 437
getBlockVisOutlineProperties() 438
getBrowserList() 148
getClipboardText() 384
getConfigurationPath() 333
getDivBackgroundColors() 439
getDocumentDOM() 311
getDocumentList() 232
getDocumentPath() 334
getElementRef() 326
getExtDataArray() 400
getExtDataValue() 400
getExtensionEditorList() 149
getExternalTextEditor() 149
getExtGroups() 401
getExtParticipants() 401
getFlashPath() 150
getFloaterVisibility() 233
getFocus() 234
getFontList() 517
getFontStyles() 518
getHideAllFloaters() 213
getKeyState() 518
getLiveDataInitTags() 403
getLiveDataMode() 403
getLiveDataParameters() 403
getMenuNeedsUpdating() 182
getNaturalSize() 519
getNewDocumentDOM() 312
getObjectRefs() 327
getObjectTags() 328
getParticipants() 408
getPreferenceInt() 329
getPreferenceString() 330
getPrimaryBrowser() 150
getPrimaryExtensionEditor() 151
getPrimaryView() 235
getRecentFileList() 313
getRedoText() 162
getSecondaryBrowser() 151
getSelection() 340
getServerModels() 418
getShowDialogsOnInsert() 156
getShowStatusBar() 214
getSiteRoot() 334
getSnapDistance() 235
getSystemFontList() 520
getTempFolderPath() 335
getTokens() 344
getTranslatorList() 350
Index 609

000_DW_API_Print.book Page 610 Wednesday, July 20, 2005 11:58 AM
getUndoText() 163
historyPalette object 161
historyPalette.clearSteps() 165
historyPalette.copySteps() 166
historyPalette.getSelectedSteps() 166
historyPalette.getStepCount() 167
historyPalette.getStepsAsJavaScript() 167
historyPalette.getUndoState() 168
historyPalette.replaySteps() 169
historyPalette.saveAsCommand() 169
historyPalette.setSelectedSteps() 170
historyPalette.setUndoState() 170
htmlInspector.collapseFullTag() 245
htmlInspector.collapseSelectedCodeFragment() 246
htmlInspector.collapseSelectedCodeFragmentInvers

e() 247
htmlInspector.expandAllCodeFragments() 248
htmlInspector.expandSelectedCodeFragments()

248
htmlInspector.getShowAutoIndent() 214
htmlInspector.getShowHiddenCharacters() 252
htmlInspector.getShowHighlightInvalidHTML()

214
htmlInspector.getShowLineNumbers() 215
htmlInspector.getShowSyntaxColoring() 215
htmlInspector.getShowWordWrap() 215
htmlInspector.setShowAutoIndent() 216
htmlInspector.setShowHiddenCharacters() 253
htmlInspector.setShowHighightInvalidHTML()

216
htmlInspector.setShowLineNumbers() 217
htmlInspector.setShowSyntaxColoring() 217
htmlInspector.setShowWordWrap() 218
htmlStylePalette.canEditSelection() 579
importXMLIntoTemplate() 313
isRecording() 579
isReporting() 255
latin1ToNative() 345
libraryPalette object 384
libraryPalette.deleteSelectedItem() 363
libraryPalette.getSelectedItem() 364
libraryPalette.newFromDocument() 364
libraryPalette.recreateFromDocument() 365
libraryPalette.renameSelectedItem() 365
liveDataTranslate() 405
loadSitesFromPrefs() 259
mapKeyCodeToChar() 181
minimizeRestoreAll() 235
nativeToLatin1() 346
newDocument() 314

newFromTemplate() 314
nodeExists() 341
nodeToOffsets() 342
notifyMenuUpdated() 182
objectPalette.getMenuDefault() 171
objectPalette.setMenuDefault() 172
offsetsToNode() 342
openDocument() 315
openDocumentFromSite() 315
openInFrame() 316
openWithApp() 153
openWithBrowseDialog() 154
openWithExternalTextEditor() 154
openWithImageEditor() 154
playRecordedCommand() 163
popupAction() 373
popupCommand() 301
popupEditTagDialog() 545
popupInsertTagDialog() 544
popupServerBehavior() 410
PrintCode() 520
quitApplication() 157
redo() 164
referencePalette.getFontSize() 366
referencePalette.setFontSize() 366
refreshExtData() 402
relativeToAbsoluteURL() 335
releaseDocument() 316
reloadCodeColoring() 493
reloadMenus() 183
reloadObjects() 173
replace() 495
replaceAll() 495
resultsPalette.canClear() 579
resultsPalette.canCopy() 580
resultsPalette.canCut() 580
resultsPalette.canOpenInBrowser() 581
resultsPalette.canOpenInEditor() 581
resultsPalette.canPaste() 580
resultsPalette.canSave() 581
resultsPalette.canSelectAll() 582
resultsPalette.clear() 192
resultsPalette.Copy() 193
resultsPalette.cut() 193
resultsPalette.debugWindow.addDebugContextDat

a() 197
resultsPalette.openInBrowser() 194
resultsPalette.openInEditor() 195
resultsPalette.paste() 194
resultsPalette.save() 195
610 Index

000_DW_API_Print.book Page 611 Wednesday, July 20, 2005 11:58 AM
resultsPalette.selectAll() 196
revertDocument() 317
runCommand() 301
saveAll() 318
saveDocument() 318
saveDocumentAs() 319
saveDocumentAsTemplate() 319
saveFrameset() 320
saveFramesetAs() 320
saveSitesToPrefs() 259
scanSourceString() 346
selectAll() 343
serverBehaviorInspector.getServerBehaviors() 409
serverComponents.getSelectedNode() 397
serverComponents.refresh() 398
setActiveWindow() 236
setBlockVisOutlineProperties() 439
setDivBackgroundColors() 440
setFloaterVisibility() 236
setHideAllFloaters() 218
setLiveDataError() 406
setLiveDataMode() 406
setLiveDataParameters() 407
setPreferenceInt() 331
setPreferenceString() 332
setPrimaryView() 238
setShowStatusBar() 218
setSnapDistance() 238
setUpComplexFind() 496
setUpComplexFindReplace() 496
setUpFind() 497
setUpFindReplace() 498
showAboutBox() 157
showDynamicData() 157
showFindDialog() 499
showFindReplaceDialog() 500
showGridSettingsDialog() 452
showLiveDataDialog() 407
showPreferencesDialog() 159
showProperties() 239
showQuickTagEditor() 523
showReportsDialog() 256
showResults() 184
showTagChooser() 160, 545
showTagLibraryEditor() 546
showTargetBrowsersDialog() 332
siteSyncDialog.compare() 259
siteSyncDialog.markDelete() 260
siteSyncDialog.markGet() 260
siteSyncDialog.markIgnore() 261

siteSyncDialog.markPut() 261
siteSyncDialog.markSynced() 262
siteSyncDialog.toggleShowAllFiles() 262
snippetPalette.editSnippet() 393
snippetPalette.getCurrentSnippetPath() 392
snippetPalette.insert() 394
snippetPalette.insertSnippet() 394
snippetPalette.newFolder() 393
snippetPalette.newSnippet() 393
snippetPalette.remove() 395
snippetPalette.rename() 395
startRecording() 164
stopRecording() 165
stylePalette.attachExternalStylesheet() 429
tagLibrary.getImportedTagList() 548
tagLibrary.getSelectedLibrary() 547
tagLibrary.getSelectedTag() 547
tagLibrary.getTagLibraryDOM() 546
tagLibrary.importDTDOrSchema() 548
templatePalette object 384
templatePalette.deleteSelectedTemplate() 367
templatePalette.getSelectedTemplate() 367
templatePalette.renameSelectedTemplate() 368
tileHorizontally() 239
tileVertically() 240
toggleFloater() 240
undo() 165
updatePages() 391
updateReference() 241
useTranslatedSource() 350
validateFlash() 155
zoomIn() 466
zoomOut() 467

driver names 75
drivers, JDBC 75, 76
DSNs, ODBC 76, 78
duplicateSelectedStyle() 430
duplicating styles 430
DWfile DLL 17
DWfile.copy() 17
DWfile.createFolder() 18
DWfile.exists() 19
DWfile.getAttributes() 19
DWfile.getCreationDate() 21
DWfile.getCreationDateObj() 22
DWfile.getModificationDate() 20
DWfile.getModificationDateObj() 22
DWfile.getSize() 23
DWfile.listFolder() 23
DWfile.read() 24
Index 611

000_DW_API_Print.book Page 612 Wednesday, July 20, 2005 11:58 AM
DWfile.remove() 25
DWfile.setAttributes() 25
DWfile.write() 26
Dynamic Data dialog box 158
Dynamic Text dialog box 158

E
editAttribute() 502
editColumns() 269
editCommandList() 300
editFontList() 517
editLockedRegions() 349
editors, lists of 149
editSelectedRule() 427
editSelectedStyle() 430
editSnippet() 393
editStyleSheet() 432
EDML file functions 399
enabler function, about 551
endOfDocument() 176, 530
endOfLine() 177, 530
endPage() 531
errata 13
error messages 132

JavaBeans 112
lengthsource control systems 132
source control systems 133

events, JavaBeans 112
execJsInFireworks() 54
existence, database connections 80
exists() 19
exitBlock() 502
expandAllCodeFragments() 244, 248
expandSelectedCodeFragments() 245, 248
exportCSS() 309
exportEditableRegionsAsXML() 310
exportSite() 269
exportTemplateDataAsXML() 310
Extension Data Manager 399
external application functions 147
external text editor 149, 154

F
favorites list

adding to 355, 356
removing from 362

features, source control systems 127, 128

file I/O API
about 17
DWfile.copy() 17
DWfile.createFolder() 18
DWfile.exists() 19
DWfile.getAttributes() 19
DWfile.getCreationDate() 21
DWfile.getCreationDateObj() 22
DWfile.getModificationDate() 20
DWfile.getModificationDateObj() 22
DWfile.getSize() 23
DWfile.listFolder() 23
DWfile.read() 24
DWfile.remove() 25
DWfile.setAttributes() 25
DWfile.write() 26

file manipulation functions 302
file URL

converting to local drive path 43, 50
converting to local file path 40

FilePathToLocalURL() 46
files

attributes 25
checked out 132
checking in 129, 143
checking out 130
compare 258
connection_includefile.edml 109
copying 17, 18
creating (HTML files) 307
creating (non-HTML files) 26
creating (XHTML files) 308
creating (XML files) 309
deleting 31, 124
getting attributes of 20
getting contents of 34
Help 152
in passed -in folders 122
include, generated 107
number checked out 131
opening with specified application 153
opening with specified image editor 155
primary editor 151
processing 191
putting 124, 143
reading 24
reading contents into string 24
recent 313
removing 25
renaming 125
612 Index

000_DW_API_Print.book Page 613 Wednesday, July 20, 2005 11:58 AM
Results window 190
saving 31, 33
size of 23
snippets 391
source control systems 122, 123
tesing existence 126
testing existence 19
time created 21
time modified 20
undoing checking out 130
writing strings to 26
writing to 26

findConnection() 104
findLinkSource() 272
findNext() 494
Fireworks

bringing to front 54
executing JavaScript 55
optimization session 56, 57
passing JavaScript to 54
version 58

Fireworks integration API
about 53
bringDWToFront() 53
bringFWToFront() 54
execJsInFireworks() 54
getJsResponse() 55
mayLaunchFireworks() 56
optimizeInFireworks() 57
validateFireworks() 58

fitall() 465
fitSelection() 465
fitWidth() 466
Flash content, natural size of 65
Flash elements, inserting 62, 171
Flash MX, determining version 155
Flash Object file

generating 63
reading 66

Flash object type 66
Flash objects API

about 63
SWFFile.createFile() 63
SWFFile.getNaturalSize() 65
SWFFile.getObjectType() 66
SWFFile.readFile() 66

Flash, path to 150
floating panel functions 229
floating panels, arranging 452

folders
_mmServerScripts 30
checking in 129
checking in/out source control systems 130
configuration 17
Configuration/Temp 31, 33
contents of 23
creating 18, 124
deleting 124
getting attributes of 20
putting 124
removing 30
source control system 122, 123
testing existence 126

font tag 501
forceToolbarUpdate() 222
formatRange() 524
formatSelection() 524
forms, posting 35, 36
frame and frameset functions 441
frames

listing 441
splitting 442

framesets 441
saving 442

front
bring Dreamweaver to 53
bringing Fireworks to 54

FTP logging 192
functions, passing file contents to 34
FWLaunch.bringDWToFront() 53
FWLaunch.bringFWToFront() 54
FWLaunch.execJsInFireworks() 54
FWLaunch.getJsResponse() 55
FWLaunch.mayLaunchFireworks() 56
FWLaunch.optimizeInFireworks() 57
FWLaunch.validateFireworks() 58

G
generating Flash Object files 63
get() 272
getActiveWindow() 232
getAppServerAccessType() 273
getAppServerPathToFiles() 273
getAppURLPrefix() 411
getAppURLPrefixForSite() 274
getAttachedTemplate() 386
getAttributes() 19
Index 613

000_DW_API_Print.book Page 614 Wednesday, July 20, 2005 11:58 AM
getAutoValidationCount() 525
getBehavior() 369
getBehaviorAt() 374
getBehaviorCount() 374
getBehaviorElement() 370
getBehaviorEvent() 372
getBehaviorTag() 372
getBlockVisBoxModelColors() 437
getBlockVisOutlineProperties() 438
getBrowserList() 148
getCharSet() 502
getCheckOutUser() 275
getCheckOutUserForFile() 275
getClasses() 111
getClassesFromPackage() 115
getClickedHeaderColumn() 455
getClipboardText() 384
getCloakingEnabled() 276
getColdFusionDsnList() 71
getColumnAndTypeList() 86
getColumnList() 87
getColumns() 87
getColumnsOfTable() 89
getConfigurationPath() 333
getConnection() 71
getConnectionList() 73
getConnectionName() 73
getConnectionState() 276
getConnectionString() 74
getCreationDate() 21
getCreationDateObj() 22
getCurrentLines() 531
getCurrentSite() 276
getDataSources() 398
getDelimiters() 411
getDisplayName() 412
getDivBackgroundColors() 439
getDocumentDOM() 311
getDocumentList() 232
getDocumentPath() 334
getDriverName() 75
getDriverUrlTemplateList() 75
getDynamicBindings() 69
getEditableRegionList() 386
getEditNoFramesContent() 198
getElementRef() 326
getErrorMessage() 115
getEvents() 112
getExtDataArray() 400
getExtDataValue() 400

getExtensionEditorList() 149
getExternalTextEditor() 149
getExtGroups() 401
getExtParticipants() 401
getFile() 31
getFileCallback() 33
getFlashPath() 150
getFloaterVisibility() 233
getFocus() 229, 234, 277
getFolderName() 412
getFontList() 517
getFontMarkup() 503
getFontStyles() 518
getFrameNames() 441
getHideAllFloaters() 213
getHideAllVisualAids() 199
getImportedTagList() 548
getInternetExplorerRendering() 419
getIsLibraryDocument() 387
getIsTemplateDocument() 387
getIsXHTMLDocument() 304
getItem() 187
getItemCount() 188
getJsResponse() 55
getKeyState() 518
getLineFromOffset() 503, 532
getLinkHref() 504
getLinkTarget() 504
getLinkVisibility() 277
getListTag() 505
getLiveDataInitTags() 403
getLiveDataMode() 403
getLiveDataParameters() 403
getLocalDsnList() 76
getLocalPathToFiles() 278
getMediaType() 432
getMenuDefault() 171
getMenuNeedsUpdating() 182
getMethods() 113
getModificationDate() 20
getModificationDateObj() 22
getNaturalSize() 519
getNewDocumentDOM() 312
GetNote() 46
GetNoteLength() 47
GetNotesKeyCount() 48
GetNotesKeys() 48
getObjectRefs() 327
getObjectTags() 328
getOpenpathName() 249
614 Index

000_DW_API_Print.book Page 615 Wednesday, July 20, 2005 11:58 AM
getParseMode() 322
getParticipants() 408
getPassword() 76
getPreferenceInt() 329
getPreferenceString() 330
getPreventLayerOverlaps() 199
getPrimaryBrowser() 150
getPrimaryExtensionEditor() 151
getPrimaryKeys() 89
getPrimaryView() 235
getProcedures() 90
getProperties() 111
getRdsPassword() 77
getRdsUserName() 77
getRecentFileList() 313
getRedoText() 162
getRemoteDsnList() 78
getRulerOrigin() 446
getRulerUnits() 446
getRuntimeConnectionType() 78
getSecondaryBrowser() 151
getSelectedBehavior() 375
getSelectedEditableRegion() 387
getSelectedItem() 188, 364
getSelectedLibrary() 547
getSelectedNode() 336, 397
getSelectedSteps() 166
getSelectedStyle() 433
getSelectedTag() 547
getSelectedTarget() 434
getSelectedTemplate() 367
getSelection() 278, 337, 340, 532
getServerBehaviors() 409
getServerExtension() 413
getServerIncludeUrlPatterns() 413
getServerInfo() 414
getServerLanguage() (deprecated) 415
getServerModels() 418
getServerName() 416
getServerSupportsCharset() 416
getServerVersion() 417
getShowAutoIndent() 200
getShowBlockBackgrounds() 459
getShowBlockBorders() 459
getShowBlockIDs() 460
getShowBoxModel() 461
getShowDependents() 219
getShowDialogsOnInsert() 156
getShowFrameBorders() 200
getShowGrid() 200

getShowHeadView() 201
getShowHiddenCharacters() 249, 252
getShowHiddenFiles() 219
getShowImageMaps() 201
getShowInvalidHTML() 201
getShowInvisibleElements() 202
getShowLayerBorders() 202
getShowLayoutTableTabs() 456
getShowLayoutView() 456
getShowLineNumbers() 202
getShowNoscript() 525
getShowPageTitles() 220
getShowRulers() 203
getShowStatusBar() 214
getShowSyntaxColoring() 203
getShowTableBorders() 204
getShowTableWidths() 480
getShowToolbar() 204
getShowToolbarIconLabels() 223
getShowToolTips() 220
getShowTracingImage() 204
getShowWordWrap() 205
getSiteForURL() 279
getSiteRoot() 334
GetSiteRootForFile() 49
getSites() 279
getSize() 23
getSnapDistance() 235
getSnapToGrid() 205
getSPColumnList() 92
getSPColumnListNamedParams() 93
getSPParameters() 94
getSPParamsAsString() 95
getStepCount() 167
getStepsAsJavaScript() 167
getStyles() 434
getSystemFontList() 520
getTableExtent() 481
getTables() 95
getTagLibraryDOM() 546
getTagSelectorTag() 544
getTempFolderPath() 335
getText() 532
getTextAlignment() 505
getTextCallback() 34
getTextFormat() 505
getting

current DOM 311
named connection objects 71

getTokens() 344
Index 615

000_DW_API_Print.book Page 616 Wednesday, July 20, 2005 11:58 AM
getToolbarIdArray() 223
getToolbarItemValue() 224
getToolbarLabel() 225
getToolbarVisibility() 225
getTracingImageOpacity() 447
getTranslatorList() 350
getUndoState() 168
getUndoText() 163
getUserName() 79
getValidationErrorsForOffset() 533
GetVersionName() 49
GetVersionNum() 50
getView() 230
getViews() 96
getWindowTitle() 230
getXMLSchema() 351
getXMLSourceURI() 352
global application functions 155
global document functions 321
groups of files 141, 142
guide functions 468
guides

locking 472
working with 468

guidesColor() 471
guidesDistanceColor() 471
guidesLocked 472
guidesSnapToElements 473
guidesVisible 473

H
hasCharacterMarkup() 506
hasConnectionWithName() 80
hasGuides() 474
hasHorizontalGuide() 474
hasTracingImage() 563
hasVerticalGuide() 475
Help files, opening 152
hidden files 25
hide Toolbar 211
hideInfoMessagePopup() 322
hints, code 489
history functions 161
History panel 166

steps in 167
history steps

copying 166
JavaScript equivalent 167

replaying 169
selecting 170

hotspot functions 443
hotspots

arranging 443
moving 444
sizing 444, 445

HTML
cascading style sheets 299
connections 106
converting to XHTML 303
creating new documents 307
inserting 507
showing invalid 201
tag 445

htmlInspector.collapseFullTag() 245
htmlInspector.collapseSelectedCodeFragment() 246
htmlInspector.collapseSelectedCodeFragmentInverse()

247
htmlInspector.expandAllCodeFragments(248
htmlInspector.expandSelectedCodeFragments() 248
htmlInspector.getShowAutoIndent() 214
htmlInspector.getShowHiddenCharacters() 252
htmlInspector.getShowHighlightInvalidHTML() 214
htmlInspector.getShowLineNumbers() 215
htmlInspector.getShowSyntaxColoring() 215
htmlInspector.getShowWordWrap() 215
htmlInspector.setShowAutoIndent() 216
htmlInspector.setShowHiddenCharacters() 253
htmlInspector.setShowHighlightInvalidHTML() 216
htmlInspector.setShowLineNumbers() 217
htmlInspector.setShowSyntaxColoring() 217
htmlInspector.setShowWordWrap() 218
HTTP API

about 29
MMHttp.clearServerScriptsFolder() 30
MMHttp.clearTemp() 31
MMHttp.getFile() 31
MMHttp.getFileCallback() 33
MMHttp.getTextCallback() 34
MMHttp.postText() 35
MMHttp.postTextCallback() 36

HTTP post 35, 36
616 Index

000_DW_API_Print.book Page 617 Wednesday, July 20, 2005 11:58 AM
I
ID strings, removing 171
image editor 155
image map functions 443
importDTDOrSchema() 548
importSite() 280
importXMLIntoTemplate() 313
include files

connection type definition 109
generated 107

increaseColspan() 481
increaseRowspan() 481
indent 216
indent() 506
indenting 200
indentTextView() 534
InfoPrefs structure 49
information about documents 311
Insert bar

menus 172
reloading objects 173

insert object functions 171
insert() 394, 534
insertFlashElement() 63, 171
insertHTML() 507
inserting

Flash elements 62, 171
string into document 158
tags 160

insertion page 179
insertion point

beginning of document 180
beginning of line 181
beginning of next paragraph 177
down one page 178
end of document 176
end of line 177
moving 173, 174, 175
next word 178
previous paragraph 179
previous word 180

insertLibraryItem() 388
insertObject() 508
insertSnippet() 394
insertTableColumns() 482
insertTableRows() 482
insertText() 508
inspectConnection() 105
Internet Explorer rendering 420

invalid HTML 200, 201, 216
invertSelection() 281
isCloaked() 281
isColumnAutostretch() 456
isDesignViewUpdated() 526
isDocumentInFrame() 441
isRecording() 579
isReporting() 255
isSelectionValid() 526
itemInfo structure 122

J
JavaBeans

class names 111
classes 112
error messages 112
events 112
instrospecting classes 114
introspecting classes 112, 113, 114
methods 114
properties 113, 114
read-only properties 115
write-only properties 115

JavaBeans API
about 111
MMJB.getClasses() 111
MMJB.getClassesFromPackage() 115
MMJB.getErrorMessage() 115
MMJB.getEvents() 112
MMJB.getMethods() 113
MMJB.getProperties() 111

JavaScript
executing in Fireworks 55
passing to Fireworks 54

JavaScript equivalent, history steps 167
JDBC connections 75
JDBC drivers 75, 76

K
key code, translate to character 181
key/value pairs

creating 52
creating in Design Notes files 45
in Design Notes files 41
number of 48

keyboard functions 173
Index 617

000_DW_API_Print.book Page 618 Wednesday, July 20, 2005 11:58 AM
keys
Backspace 175
Delete 176
getting values 47
in Design Notes 41
in Design Notes files 42, 46
list of 48
Page Down 178
Page Up 179
primary 89
removing from Design Notes files 44

L
latin1ToNative() 345
launchXMLSourceDialog() 353
layer functions 443
layers 445

aligning 443
HTML tag 445
moving 444
sizing 444, 445

layers to tables, converting 299
layout environment functions 446
Layout view 456, 464
layout view functions 453
library and template functions 384
line numbers 203, 210, 215, 217
line, beginning of 181
link checking 192
listFolder() 23
lists of

browsers 148
editors 149
open documents 232
recent files 313

live data functions 402
liveDataTranslate() 405
loadSitesFromPrefs() 259
loadTracingImage() 447
local drive path

converting from file URL 43
converting to file URL 40, 46

local file path
converting to site relative URI 257

local file path, converting to site relative URI 257
local root folder 334
LocalURLToFilePath() 50

locateInSite() 282
locking, guides 472
login information, RDS 80, 84

M
makeCellWidthsConsistent() 457
makeEditable() 282
makeNewDreamweaverFile() 283
makeNewFolder() 283
makeSizesEqual() 444
mapKeyCodeToChar() 181
markDelete() 260
markGet() 260
markIgnore() 261
markPut() 261
markSelectionAsEditable() 389
markSynced() 262
mayLaunchFireworks() 56
menu functions

Command menu 300
mimicking with live data functions 402
optimizing and reloading menus 182

menu items
Checkin 139
Delete 140
New Folder 140
Redo 166
Rename 140
Undo 166
Undo Checkout 139

menus
Checkout 138
Connect 137
Get 137
Insert bar 172
Put 138
reloading 183
updating 182

menus.xml file 183
mergeTableCells() 483
methods, JavaBeans 114
minimizeRestoreAll() 235
minimizing windows 235
MMDB.deleteConnection() 70
MMDB.getColdFusionDsnList() 71
MMDB.getColumnAndTypeList() 86
MMDB.getColumnList() 87
MMDB.getColumns() 87
618 Index

000_DW_API_Print.book Page 619 Wednesday, July 20, 2005 11:58 AM
MMDB.getColumnsOfTable() 89
MMDB.getConnection() 71
MMDB.getConnectionList() 73
MMDB.getConnectionName() 73
MMDB.getConnectionString() 74
MMDB.getDriverName() 75
MMDB.getDriverUrlTemplateList() 75
MMDB.getLocalDsnList() 76
MMDB.getPassword() 76
MMDB.getPrimaryKeys() 89
MMDB.getProcedures() 90
MMDB.getRdsPassword() 77
MMDB.getRdsUserName() 77
MMDB.getRemoteDsnList() 78
MMDB.getRuntimeConnectionType() 78
MMDB.getSPColumnList() 92
MMDB.getSPColumnListNamedParams() 93
MMDB.getSPParameters() 94
MMDB.getSPParamsAsString() 95
MMDB.getTables() 95
MMDB.getUserName() 79
MMDB.getViews() 96
MMDB.hasConnectionWithName() 80
MMDB.needToPromptForRdsInfo() 80
MMDB.needToRefreshColdFusionDsnList() 81
MMDB.popupConnection() 81
MMDB.setRdsPassword() 82
MMDB.setRdsUserName() 82
MMDB.showColdFusionAdmin() 83
MMDB.showConnectionMgrDialog() 83
MMDB.showOdbcDialog() 83
MMDB.showRdsUserDialog() 84
MMDB.showRestrictDialog() 84
MMDB.showResultset() 97
MMDB.showSPResultset() 98
MMDB.showSPResultsetNamedParams() 99
MMDB.testConnection() 85
MMHttp.clearServerScriptsFolder() 30
MMHttp.clearTemp() 31
MMHttp.getFile() 31
MMHttp.getFileCallback() 33
MMHttp.getTextCallback() 34
MMHttp.postText() 35
MMHttp.postTextCallback() 36
MMJB.getClasses() 111
MMJB.getClassesFromPackage() 115
MMJB.getErrorMessage() 115
MMJB.getEvents() 112
MMJB.getMethods() 113
MMJB.getProperties() 111

MMNotes DLL 39
MMNotes object 40
MMNotes shared library

version name 43, 49
version number 43, 50

MMNotes.open() 44
MMNotes.remove() 44
MMNotes.set() 45
MMXSLT.getXMLSchema() 351
MMXSLT.getXMLSourceURI() 352
MMXSLT.launchXMLSourceDialog() 353
moveBehaviorDown() 376
moveBehaviorUp() 377
moveSelectionBy() 444
moving

hotspots 444
insertion point 173, 174, 175
layers 444

N
name attribute 392
named connections 74

procedures 90
named procedures 94
names

check out 129
of columns 89
source control system 119

nativeToLatin1() 346
needToPromptForRdsInfo() 80
needToRefreshColdFusionDsnList() 81
new documents 314
newBlock() 509
newDocument() 314
newEditableRegion() 389
newFromDocument() 364
newFromTemplate() 314
newHomePage() 284
newRule() 428
newSite() 284
newSnippet() 393
newStyle() 435
next paragraph 177
next word 178
nextParagraph() 177
nextWord() 178, 535
nodeExists() 341
nodeToOffsets() 337, 342
Index 619

000_DW_API_Print.book Page 620 Wednesday, July 20, 2005 11:58 AM
noise 156
_notes folder 39
notifyFlashObjectChanged() 510
notifyMenuUpdated() 182
numbers, of files checked out 131

O
object type, Flash 66
ODBC administration 84
ODBC DSNs 76, 78
offsetsToNode() 338, 342
opacity, tracing image 447
open documents, listing 232
open() 44, 284
openDocument() 315
openDocumentFromSite() 315
openInBrowser() 194
openInEditor() 195
openInFrame() 316
opening

Design Notes files 44, 51
documents 314, 315
documents in external text editor 154
files with specified applicaiton 153
files with specified application 154
files with specified image editor 155
Help files 152

OpenNotesFile() 51
OpenNotesFilewithOpenFlags() 51
openWithApp() 153
openWithBrowseDialog() 154
openWithExternalTextEditor() 154
openWithImageEditor() 154
optimization session, Fireworks 56, 57
optimizeInFireworks() 57
options, Show Dialog When Inserting Object 156
outdent() 510
outdentTextView() 535
outline properties 438, 439

P
packages, JavaBeans classes 112
page content functions 355
Page Down 178
Page Up 179
pageDown() 178, 536
pageUp() 179, 536

parameter, of stored procedures 95
passed-in folders, files in 122
passing JavaScript to Fireworks 54
passwords

database connection 76
database connections 77
RDS 77, 82, 84

Paste Special dialog box 158
paste() 194
pasting 158
path functions 333
paths

Configuration folder 333
document 334
secondary browser 151
temporary folder 335
to Flash MX application 150

playAllPlugins() 448
playing

plug-in content 448
plug-in items 448
recorded commands 163

playPlugin() 448
playRecordedCommand() 163
plug-in content

playing 448
stopping 451

plug-in items, playing 448
popupAction() 373
popupCommand() 301
popupConnection() 81
popupEditTagDialog() 545
popupInsertTagDialog() 544
popupServerBehavior() 410
posting data 35
posting text 36
postText() 35
postTextCallback() 36
Preferences dialog box 159
preview attribute 392
previous paragraph 179
previous word 180
previousParagraph() 179
previousWord() 180, 537
primary browser 151
primary key 89
PrintCode() 520
procedures, named connections 90
processing files 190, 191
620 Index

000_DW_API_Print.book Page 621 Wednesday, July 20, 2005 11:58 AM
properties, JavaBeans 113, 114, 115
put() 285
putting files 124, 143

Q
quitApplication() 157
quitting Dreamweaver 157

R
RDS

login information 80, 84
passwords 77, 82
user names 77, 82

read() 24
read-only files 25
reading, Flash Object file 66
reapplyBehaviors() 369
recorded commands 163
recording

steps 164
stopping 165

recreateCache() 286
recreateFromDocument() 365
redo 164, 170
redo() 161, 164
redoing 162
redoing step 161
referencePalette.getFontSize() 366
referencePalette.setFontSize() 366
refresh() 286, 398
refreshExtData() 402
relativeToAbsoluteURL() 335
releaseDocument() 316
reloadCodeColoring() 493
reloading 493

objects on Insert bar 173
reloadMenus() 183
reloadObjects() 173
remote files 136
remoteIsValid() 287
remove() (dreamweaver.snippetPalette.remove) 395
remove() (DWfile.remove) 25
remove() (MMNotes.remove) 44
removeAllSpacers() 457
removeAllTableHeights() 483
removeAllTableWidths() 484
removeBehavior() 370

removeCharacterMarkup() 510
removeColumnWidth() 484
removeComment() 251
removeCSSStyle() 424
removeEditableRegion() 390
removeFontMarkup() 511
removeLink() 287, 511
RemoveNote() 52
removeSpacerFromColumn() 458
removing

ID strings 171
spacers 457
styles 424

removing keys from Design Notes files 52
rename() 395
renamed sites 127
renameSelectedItem() 365
renameSelectedTemplate() 368
renameSelection() 287
renaming

files 125
styles 436

rendering
Internet Explorer 420
styles 432

replace() 495
replaceAll() 495
replaceRange() 537
replaying history steps 169
replaySteps() 169
reports

functions 255
in Results panel 192

resizeSelection() 512
resizeSelectionBy() 445
Restrict dialog box 84
result sets 92, 93, 97, 98, 99
Results floating panel 184
results panel

clearing 192
messages 193

Results panel group 192
Results window

adding 185
adding results entry 186
calling processFile() processFile() 189
column widths 189
creating 184
procesisng files 191
processing files 190
Index 621

000_DW_API_Print.book Page 622 Wednesday, July 20, 2005 11:58 AM
retrieve index of selected item 188
retrieving an array of items 187
retrieving number of items 188
set buttons 189
setting selected item 190
title 191

Results window functions 183
resultsPalette.canClear() 579
resultsPalette.canCopy() 580
resultsPalette.canCut() 580
resultsPalette.canOpenInBrowser() 581
resultsPalette.canOpenInEditor() 581
resultsPalette.canPaste() 580
resultsPalette.canSave() 581
resultsPalette.canSelectAll() 582
resultsPalette.clear() 192
resultsPalette.Copy() 193
resultsPalette.cut() 193
resultsPalette.debugWindow.addDebugContextData()

197
resultsPalette.openInBrowser() 194
resultsPalette.openInEditor() 195
resultsPalette.paste() 194
resultsPalette.save() 195
resultsPalette.selectAll() 196
resWin.addItem() 185
resWin.addResultItem() 186
resWin.setCallbackCommands() 189
resWin.setColumnWidths() 189
resWin.setFileList() 190
resWin.setTitle() 191
resWin.startProcessing() 191
resWin.stopProcessing() 191
revertDocument() 317
reverting check out 130
reverting documents 317
root folder names 121
row span, decreasing 478
ruler origin 446
ruler units 446
runCommand() 301
runtime connection types 78
runTranslator() 349
runValidation() 288, 322

S
Save As Command dialog box 169
save() 195
saveAll() 318
saveAllFrames() 442
saveAsCommand() 169
saveAsImage() 288
saveDocument() 318
saveDocumentAs() 319
saveDocumentAsTemplate() 319
saveFrameset() 320
saveFramesetAs() 320
saveSitesToPrefs() 259
saving

Design Notes files 40
documents 318
history steps 169

scale of view 464
scanSourceString() 346
scrollEndFile() 538
scrollLineDown() 538
scrollLineUp() 539
scrollPageDown() 539
scrollPageUp() 539
scrollTopFile() 540
SCS API. See Source Control Integration API
SCS_AfterPut() 142, 143
SCS_BeforeGet() 141
SCS_BeforePut() 142
SCS_canCheckin() 139
SCS_canCheckout() 138
SCS_canConnect() 137
SCS_canDelete() 140
SCS_canGet() 137
SCS_canNewFolder() 140
SCS_canPut() 138
SCS_canRename() 140
SCS_CanUndoCheckout() 139
SCS_Checkin() 129
SCS_Checkout() 130
SCS_Connect() 120
SCS_Delete() 124
SCS_Disconnect() 120
SCS_Get() 123
SCS_GetAgentInfo() 119
SCS_GetCheckoutName() 129
SCS_GetConnectionInfo() 126
SCS_GetDesignNotes() 134
SCS_GetErrorMessage() 133
622 Index

000_DW_API_Print.book Page 623 Wednesday, July 20, 2005 11:58 AM
SCS_GetErrorMessageLength() 132
SCS_GetFileCheckoutList() 132
SCS_GetFolderList() 122
SCS_GetFolderListLength() 122
SCS_GetMaxNoteLength() 134
SCS_GetNewFeatures() 128
SCS_GetNoteCount() 133
SCS_GetNumCheckedOut() 131
SCS_GetNumNewFeatures() 127
SCS_GetRootFolder() 121
SCS_GetRootFolderLength() 121
SCS_IsConnected() 120
SCS_IsRemoteNewer() 136
SCS_ItemExists() 126
SCS_NewFolder() 124
SCS_Put() 124
SCS_Rename() 125
SCS_SetDesignNotes() 135
SCS_SiteDeleted() 127
SCS_SiteRenamed() 127
SCS_UndoCheckout() 130
searches 192
secondary browser 151
SELECT 86, 87
selectAll() 196, 289, 339, 343
selectChild() 521
selectHomePage() 289
selecting, history steps 170
selection 229

deleting 501
selection functions

in open documents 336
in Site panel 256

selectNewer() 289, 290
selectParent() 522
selectParentTag() 540
selectTable() 484
server

behavior functions 408
component functions 397
debugging 196

serverdebuginfo tag 197
set() 45
setActiveWindow() 236
setAsHomePage() 291
setAttributes() 25
setAttributeWithErrorChecking() 512
setBlockVisOutlineProperties() 439
setButtons() 188
setCallbackCommands() 189

setCloakingEnabled() 291
setColumnAutostretch() 458
setColumnWidths() 189
setConnectionState() 291
setCurrentLine() 541
setCurrentSite() 292
setDivBackgroundColors() 440
setEditNoFramesContent() 205
setFileList() 190
setFloaterVisibility() 236
setFocus() 292
setHideAllFloaters() 218
setHideAllVisualAids() 206
setLayerTag() 445
setLayout() 293
setLinkHref() 513
setLinkTarget() 513
setLinkVisibility() 293
setListBoxKind() 514
setListTag() 514
setLiveDataError() 406
setLiveDataMode() 406
setLiveDataParameters() 407
setMediaType() 437
setMenuDefault() 172
SetNote() 52
setPreferenceInt() 331
setPreferenceString() 332
setPreventLayerOverlaps() 206
setPrimaryView() 238
setRdsPassword() 82
setRdsUserName() 82
setRulerOrigin() 448
setRulerUnits() 449
setSelectedBehavior() 378
setSelectedItem() 190
setSelectedNode() 339
setSelectedSteps() 170
setSelection() 294, 340, 343
setShowBlockBackgrounds() 461
setShowBlockBorders() 462
setShowBlockIDs() 462
setShowBoxModel() 463
setShowDependents() 220
setShowFrameBorders() 207
setShowGrid() 207
setShowHeadView() 208
setShowHiddenCharacters() 250, 253
setShowHiddenFiles() 221
setShowImageMaps() 209
Index 623

000_DW_API_Print.book Page 624 Wednesday, July 20, 2005 11:58 AM
setShowInvalidHTML() 208
setShowInvisibleElements() 209
setShowLayerBorders() 209
setShowLayoutTableTabs() 463
setShowLayoutView() 464
setShowLineNumbers() 210
setShowNoscript() 527
setShowPageTitles() 221
setShowRulers() 210
setShowStatusBar() 218
setShowSyntaxColoring() 211
setShowTableBorders() 211
setShowTableWidths() 485
setShowToolbar() 211
setShowToolbarIconLabels() 227
setShowToolTips() 222
setShowTracingImage() 212
setShowWordWrap() 212
setSnapDistance() 238
setSnapToGrid() 213
setTableCellTag() 485
setTableColumns() 486
setTableRows() 486
setTextAlignment() 515
setTextFieldKind() 515
setTextFormat() 516
setTitle() 191
setToolbarItemAttribute() 226
setToolbarPosition() 227
setToolbarVisibility() 228
setTracingImageOpacity() 450
setTracingImagePosition() 449
setUndoState() 170
setUpComplexFind() 496
setUpComplexFindReplace() 496
setUpFind() 497
setUpFindReplace() 498
setView() 230
Show Dialog When Inserting Object 156
show Toolbar 211
showAboutBox() 157
showColdFusionAdmin() 83
showConnectionMgrDialog() 83
showDynamicData() 157
showFindDialog() 499
showFindReplaceDialog() 500
showFontColorDialog() 516
showGridSettingsDialog() 452
showInfoMessagePopup() 324
showInsertTableRowsOrColumnsDialog() 487

showListPropertiesDialog() 514
showLiveDataDialog() 407
showOdbcDialog() 83
showPagePropertiesDialog() 325
showPreferencesDialog() 159
showProperties() 239
showQuickTagEditor() 523
showRdsUserDialog() 84
showReportsDialog() 256
showRestrictDialog() 84
showResults() 184
showResultset() 97
showSPResultset() 98
showSPResultsetNamedParams() 99
showTagChooser() 160, 545
showTagLibraryEditor() 546
showTargetBrowsersDialog() 332
site

addLinkToExistingFile() 263
addLinkToNewFile() 263
browseDocument() 586
canAddLinkToFile() 586
canChangeLink() 587
canCheckIn() 587
canCheckOut() 588
canCloak() 588
canConnect() 589
canEditColumns() 556
canFindLinkSource() 590
canGet() 590
canLocateInSite() 591
canMakeEditable() 591
canMakeNewFileOrFolder() 592
canOpen() 592
canPut() 593
canRecreateCache() 593
canRefresh() 594
canRemoveLink() 594
canSelectAllCheckedOutFiles() 595
canSelectNewer() 595
canSetLayout() 595
canSynchronize() 596
canUncloak() 597
canUndoCheckOut() 597
canViewAsRoot() 598
changeLink() 264
changeLinkSitewide() 264
checkIn() 264
checkLinks() 265
checkOut() 266
624 Index

000_DW_API_Print.book Page 625 Wednesday, July 20, 2005 11:58 AM
checkTargetBrowsers() 266
cloak() 267
defineSites() 268
deleteSelection() 268
deployFilesToTestingServerBin() 269
editColumns() 269
exportSite() 269
findLinkSource() 272
get() 272
getAppServerAccessType() 273
getAppServerPathToFiles() 273
getAppURLPrefixForSite() 274
getCheckOutUser() 275
getCheckOutUserForFile() 275
getCloakingEnabled() 276
getConnectionState() 276
getCurrentSite() 276
getFocus() 277
getLinkVisibility() 277
getLocalPathToFiles() 278
getSelection() 278
getShowDependents() 219
getShowHiddenFiles() 219
getShowPageTitles() 220
getShowToolTips() 220
getSiteForURL() 279
getSites() 279
importSite() 280
invertSelection() 281
isCloaked() 281
locateInSite() 282
makeEditable() 282
makeNewDreamweaverFile() 283
makeNewFolder() 283
newHomePage() 284
newSite() 284
open() 284
put() 285
recreateCache() 286
refresh() 286
remoteIsValid() 287
removeLink() 287
renameSelection() 287
runValidation() 288
saveAsImage() 288
selectAll() 289
selectHomePage() 289
selectNewer() 289, 290
setAsHomePage() 291
setCloakingEnabled() 291

setConnectionState() 291
setCurrentSite() 292
setFocus() 292
setLayout() 293
setLinkVisibility() 293
setSelection() 294
setShowDependents() 220
setShowHiddenFiles() 221
setShowPageTitles() 221
setShowToolTips() 222
synchronize() 295
uncloak() 295
uncloakAll() 296
undoCheckOut() 296
viewAsRoot() 297

site functions 256
Site panel selection functions 256
site reports 192
site root, Design Notes files 42, 49
site, information for all sites 259
sites

deleted 127
local root folder 334
renamed 127

siteSyncDialog.compare() 259
siteSyncDialog.markDelete() 260
siteSyncDialog.markGet() 260
siteSyncDialog.markIgnore() 261
siteSyncDialog.markPut() 261
siteSyncDialog.markSynced() 262
siteSyncDialog.toggleShowAllFiles() 262
size

Flash content 65
of files 23

sizing
hotspots 445
layers 444, 445

snapToGuides() 476
snapTracingImageToSelection() 450
snippet tag, attributes 392
snippetPalette.getCurrentSnippetPath() 392
snippetPalette.newFolder() 393
Snippets panel functions 391
Source Control Integration API

about 117
SCS_AfterGet() 142
SCS_AfterPut() 143
SCS_BeforeGet() 141
SCS_BeforePut() 142
SCS_canCheckin() 139
Index 625

000_DW_API_Print.book Page 626 Wednesday, July 20, 2005 11:58 AM
SCS_canCheckout() 138
SCS_canConnect() 137
SCS_canDelete() 140
SCS_canGet() 137
SCS_canNewFolder() 140
SCS_canPut() 138
SCS_canRename() 140
SCS_CanUndoCheckout() 139
SCS_Checkin() 129
SCS_Checkout() 130
SCS_Connect() 120
SCS_Delete() 124
SCS_Disconnect() 120
SCS_Get() 123
SCS_GetAgentInfo() 119
SCS_GetCheckoutName() 129
SCS_GetConnectionInfo() 126
SCS_GetDesignNotes() 134
SCS_GetErrorMessage() 133
SCS_GetErrorMessageLength() 132
SCS_GetFileCheckoutList() 132
SCS_GetFolderList() 122
SCS_GetFolderListLength() 122
SCS_GetMaxNoteLength() 134
SCS_GetNewFeatures() 128
SCS_GetNoteCount() 133
SCS_GetNumCheckedOut() 131
SCS_GetNumNewFeatures() 127
SCS_GetRootFolder() 121
SCS_GetRootFolderLength() 121
SCS_IsConnected() 120
SCS_IsRemoteNewer() 136
SCS_ItemExists() 126
SCS_NewFolder() 124
SCS_Put() 124
SCS_Rename() 125
SCS_SetDesignNotes() 135
SCS_SiteDeleted() 127
SCS_SiteRenamed() 127
SCS_UndoCheckout() 130

source control systems 129
adding comment 141
check out name 129
connecting to 120
connections 126
creating folders 124
deleted sites 127
deleting files 124
Design Note keys 133
Design Notes 134, 135

Design Notes length 134
disconnection from 120
error messages 133
files 123
folder items 122
groups of files 141, 142, 143
names 119
new features 127, 128
passed-in folders 122
putting files 124
remote files 136
renamed sites 127
renaming files 125
root folder name length 121
root folder names 121
testing connections 120
testing existence of files 126
versions 119

source validation 192
source.applyComment() 251
source.removeComment() 251
spacers

creating 453
removing 457

spelling, checking 321
splitFrame() 442
splitTableCell() 487
splitting frames 442
SQL SELECT 86, 87
SQL statements 97

getting columns from 86, 87
showing results of 97

Standard view 456
startOfDocument() 180, 541
startOfLine() 181, 542
startProcessing() 191
startRecording() 164
statusCode property 29
steps

in History panel 167
saving 169

stopAllPlugins() 451
stopping

plug-in content 451
recording 165

stopPlugin() 451
stopProcessing() 191
stopRecording() 165
626 Index

000_DW_API_Print.book Page 627 Wednesday, July 20, 2005 11:58 AM
stored procedures 92, 93, 94, 98, 99
about 86
getting columns from 92, 93
getting parameters for 95
parameters 95
showing results of 98, 99

strings
file contents 24
writing to files 26

stripTag() 522
style sheets 429
styles

applying 420, 428
deleting 429
duplicating 430
getting names of 433
listing 434
removing 424
renaming 436
rendering 432, 436

SWFFile.createFile() 63
SWFFile.getNaturalSize() 65
SWFFile.getObjectType() 66
SWFFile.readFile() 66
synchronize() 295
synchronizeDocument() 543
syntax coloring 217
system beep 156

T
table editing functions 477
tables

columns in 88, 89
converting to layers 299
database tables 96
getting columns of 89
getting list of 95
layout 454
spacers in 453, 455

Tag Chooser dialog box 160
tag editor and tag library functions 544
tag, layers 445
tags

font 501
inserting 160

template and library functions 384
testAppServer() 418
testConnection() 85

testing, connection strings 85
text

editing operation 163
getting 162
posting 36

text editor, external 149
tileHorizontally() 239
tileVertically() 240
time

file created 21
file modified 20

toggle functions 198
toggleFloater() 240
toggleShowAllFiles() 262
toolbar functions 222
Toolbar, show 211
topPage() 542
tracing image

aligning 450
opacity 447

translation functions 349
type attribute 392
types, columns 86
typographical conventions 13

U
uncloak() 295
uncloakAll() 296
undo 162, 163, 164, 165, 170

redoing 161
undo state 168
undo() 162, 165
undoCheckOut() 296
undoing, checking out files 130
unique identifier 89
up one page 179
updateCurrentPage() 390
updatePages() 391
updateReference() 241
updating

key/value pairs in Design Notes files 45
menus 182

URLs
absolute file URL 335
decoding 325
getting contents of files at 34
getting files at 31, 33
opening in browser 147
Index 627

000_DW_API_Print.book Page 628 Wednesday, July 20, 2005 11:58 AM
posting data to 35
relative 335
to Flash MX application 150

user names 79
checkout names 129
RDS 77, 82, 84

user’s configuration files 17
users, checking out files 132
useTranslatedSource() 350

V
validateFireworks() 58
validateFlash() 155
validating documents 323
validator method 192
version name, MMNotes shared library 43, 49
version number, MMNotes shared library 43, 50
versions

Fireworks 58
Flash MX 155
source control system 119

view
determining 230
selecting 230
visible 235

view tables 96
viewAsRoot() 297
views 96
visible 230
visible files 25
visual aids 199, 205, 438, 439

Layout Block Backgrounds 422, 426
layout Block Backgrounds 439
Layout Block Box Model 422, 426, 437
Layout Block Outlines 423, 427

W
web page content functions 355
window functions 229
windows

cascading 231
minimizing 235

word wrap 212, 215, 218
wrapSelection() 543
wrapTag() 522
writable files 25
write() 26

X
XHTML

cleaning up 302
converting to 303
creating 308
testing document 304

XHTML documents, cleaning up 302
XML files

creating 309
importing 313
snippets 391

Z
zoom 464
zoom functions 464
zoomIn() 466
zoomOut() 467
628 Index

	Contents
	Introduction
	Background
	Extending Dreamweaver
	Additional resources for extension writers
	New functions in Dreamweaver 8
	Application
	Global application

	Workspace
	Window
	Code collapse
	Code view toolbar

	Site
	Site

	Document
	File manipulation

	Page content
	Clipboard

	Design
	CSS
	Layout view
	Zoom
	Guide

	Enablers

	Removed functions
	Errata
	Conventions used in this guide

	Utility APIs
	The File I/O API
	Accessing configuration folders
	The File I/O API
	DWfile.copy()
	DWfile.createFolder()
	DWfile.exists()
	DWfile.getAttributes()
	DWfile.getModificationDate()
	DWfile.getCreationDate()
	DWfile.getCreationDateObj()
	DWfile.getModificationDateObj()
	DWfile.getSize()
	DWfile.listFolder()
	DWfile.read()
	DWfile.remove()
	DWfile.setAttributes()
	DWfile.write()

	The HTTP API
	How the HTTP API works
	The HTTP API
	MMHttp.clearServerScriptsFolder()
	MMHttp.clearTemp()
	MMHttp.getFile()
	MMHttp.getFileCallback()
	MMHttp.getText()
	MMHttp.getTextCallback()
	MMHttp.postText()
	MMHttp.postTextCallback()

	The Design Notes API
	How Design Notes work
	The Design Notes JavaScript API
	MMNotes.close()
	MMNotes.filePathToLocalURL()
	MMNotes.get()
	MMNotes.getKeyCount()
	MMNotes.getKeys()
	MMNotes.getSiteRootForFile()
	MMNotes.getVersionName()
	MMNotes.getVersionNum()
	MMNotes.localURLToFilePath()
	MMNotes.open()
	MMNotes.remove()
	MMNotes.set()

	The Design Notes C API
	void CloseNotesFile()
	BOOL FilePathToLocalURL()
	BOOL GetNote()
	int GetNoteLength()
	int GetNotesKeyCount()
	BOOL GetNotesKeys()
	BOOL GetSiteRootForFile()
	BOOL GetVersionName()
	BOOL GetVersionNum()
	BOOL LocalURLToFilePath()
	FileHandle OpenNotesFile()
	FileHandle OpenNotesFilewithOpenFlags()
	BOOL RemoveNote()
	BOOL SetNote()

	Fireworks Integration
	The FWLaunch API
	FWLaunch.bringDWToFront()
	FWLaunch.bringFWToFront()
	FWLaunch.execJsInFireworks()
	FWLaunch.getJsResponse()
	FWLaunch.mayLaunchFireworks()
	FWLaunch.optimizeInFireworks()
	FWLaunch.validateFireworks()
	A simple FWLaunch communication example

	Flash Integration
	How Flash elements work
	Inserting Flash elements
	Adding a Flash element to the Insert Bar
	Adding a Flash Element to a menu

	The Flash Objects API
	SWFFile.createFile()
	SWFFile.getNaturalSize()
	SWFFile.getObjectType()
	SWFFile.readFile()

	The Database API
	How Database API functions work
	Database connection functions
	MMDB.deleteConnection()
	MMDB.getColdFusionDsnList()
	MMDB.getConnection()
	MMDB.getConnectionList()
	MMDB.getConnectionName()
	MMDB.getConnectionString()
	MMDB.getDriverName()
	MMDB.getDriverUrlTemplateList() (deprecated)
	MMDB.getLocalDsnList()
	MMDB.getPassword()
	MMDB.getRDSPassword()
	MMDB.getRDSUserName()
	MMDB.getRemoteDsnList()
	MMDB.getRuntimeConnectionType()
	MMDB.getUserName()
	MMDB.hasConnectionWithName()
	MMDB.needToPromptForRdsInfo()
	MMDB.needToRefreshColdFusionDsnList()
	MMDB.popupConnection()
	MMDB.setRDSPassword()
	MMDB.setRDSUserName()
	MMDB.showColdFusionAdmin()
	MMDB.showConnectionMgrDialog()
	MMDB.showOdbcDialog()
	MMDB.showRdsUserDialog()
	MMDB.showRestrictDialog()
	MMDB.testConnection()

	Database access functions
	MMDB.getColumnAndTypeList()
	MMDB.getColumnList()
	MMDB.getColumns()
	MMDB.getColumnsOfTable()
	MMDB.getPrimaryKeys()
	MMDB.getProcedures()
	MMDB.getSPColumnList()
	MMDB.getSPColumnListNamedParams()
	MMDB.getSPParameters()
	MMDB.getSPParamsAsString()
	MMDB.getTables()
	MMDB.getViews()
	MMDB.showResultset()
	MMDB.showSPResultset()
	MMDB.showSPResultsetNamedParams()

	The Database Connectivity API
	How to develop a new connection type
	The Connection API
	findConnection()
	applyConnection()

	The generated include file
	ASP JavaScript
	ColdFusion
	JSP

	The definition file for your connection type

	The JavaBeans API
	The JavaBeans API
	MMJB.getClasses()
	MMJB.getClassesFromPackage()
	MMJB.getErrorMessage()
	MMJB.getEvents()
	MMJB.getIndexedProperties()
	MMJB.getMethods()
	MMJB.getProperties()
	MMJB.getReadProperties()
	MMJB.getWriteProperties()

	The Source Control Integration API
	How source control integration with Dreamweaver works
	Adding source control system functionality
	The Source Control Integration API required functions
	bool SCS_GetAgentInfo()
	bool SCS_Connect()
	bool SCS_Disconnect()
	bool SCS_IsConnected()
	int SCS_GetRootFolderLength()
	bool SCS_GetRootFolder()
	int SCS_GetFolderListLength()
	bool SCS_GetFolderList()
	bool SCS_Get()
	bool SCS_Put()
	bool SCS_NewFolder()
	bool SCS_Delete()
	bool SCS_Rename()
	bool SCS_ItemExists()

	The Source Control Integration API optional functions
	bool SCS_GetConnectionInfo()
	bool SCS_SiteDeleted()
	bool SCS_SiteRenamed()
	int SCS_GetNumNewFeatures()
	bool SCS_GetNewFeatures()
	bool SCS_GetCheckoutName()
	bool SCS_Checkin()
	bool SCS_Checkout()
	bool SCS_UndoCheckout()
	int SCS_GetNumCheckedOut()
	bool SCS_GetFileCheckoutList()
	int SCS_GetErrorMessageLength()
	bool SCS_GetErrorMessage()
	int SCS_GetNoteCount()
	int SCS_GetMaxNoteLength()
	bool SCS_GetDesignNotes()
	bool SCS_SetDesignNotes()
	bool SCS_IsRemoteNewer()

	Enablers
	bool SCS_canConnect()
	bool SCS_canGet()
	bool SCS_canCheckout()
	bool SCS_canPut()
	bool SCS_canCheckin()
	bool SCS_CanUndoCheckout()
	bool SCS_canNewFolder()
	bool SCS_canDelete()
	bool SCS_canRename()
	bool SCS_BeforeGet()
	bool SCS_BeforePut()
	bool SCS_AfterGet()
	bool SCS_AfterPut()

	JavaScript API
	Application
	External application functions
	dreamweaver.browseDocument()
	dreamweaver.getBrowserList()
	dreamweaver.getExtensionEditorList()
	dreamweaver.getExternalTextEditor()
	dreamweaver.getFlashPath()
	dreamweaver.getPrimaryBrowser()
	dreamweaver.getPrimaryExtensionEditor()
	dreamweaver.getSecondaryBrowser()
	dreamweaver.openHelpURL()
	dreamweaver.openWithApp()
	dreamweaver.openWithBrowseDialog()
	dreamweaver.openWithExternalTextEditor()
	dreamweaver.openWithImageEditor()
	dreamweaver.validateFlash()

	Global application functions
	dreamweaver.beep()
	dreamweaver.getShowDialogsOnInsert()
	dreamweaver.quitApplication()
	dreamweaver.showAboutBox()
	dreamweaver.showDynamicDataDialog()
	dreamweaver.showPasteSpecialDialog()
	dreamweaver.showPreferencesDialog()
	dreamweaver.showTagChooser()

	Workspace
	History functions
	dom.redo()
	dom.undo()
	dreamweaver.getRedoText()
	dreamweaver.getUndoText()
	dreamweaver.playRecordedCommand()
	dreamweaver.redo()
	dreamweaver.startRecording()
	dreamweaver.stopRecording()
	dreamweaver.undo()
	dreamweaver.historyPalette.clearSteps()
	dreamweaver.historyPalette.copySteps()
	dreamweaver.historyPalette.getSelectedSteps()
	dreamweaver.historyPalette.getStepCount()
	dreamweaver.historyPalette.getStepsAsJavaScript()
	dreamweaver.historyPalette.getUndoState()
	dreamweaver.historyPalette.replaySteps()
	dreamweaver.historyPalette.saveAsCommand()
	dreamweaver.historyPalette.setSelectedSteps()
	dreamweaver.historyPalette.setUndoState()

	Insert object functions
	dom.insertFlashElement()
	dreamweaver.objectPalette.getMenuDefault()
	dreamweaver.objectPalette.setMenuDefault()
	dreamweaver.reloadObjects()

	Keyboard functions
	dom.arrowDown()
	dom.arrowLeft()
	dom.arrowRight()
	dom.arrowUp()
	dom.backspaceKey()
	dom.deleteKey()
	dom.endOfDocument()
	dom.endOfLine()
	dom.nextParagraph()
	dom.nextWord()
	dom.pageDown()
	dom.pageUp()
	dom.previousParagraph()
	dom.previousWord()
	dom.startOfDocument()
	dom.startOfLine()
	dreamweaver.mapKeyCodeToChar()

	Menu functions
	dreamweaver.getMenuNeedsUpdating()
	dreamweaver.notifyMenuUpdated()
	dreamweaver.reloadMenus()

	Results window functions
	Creating a Stand-alone Results window
	dreamweaver.createResultsWindow()
	dreamweaver.showResults()
	resWin.addItem()
	resWin.addResultItem()
	resWin.getItem()
	resWin.getItemCount()
	resWin.getSelectedItem()
	resWin.setButtons()
	resWin.setCallbackCommands()
	resWin.setColumnWidths()
	resWin.setFileList()
	resWin.setSelectedItem()
	resWin.setTitle()
	resWin.startProcessing()
	resWin.stopProcessing()
	Working with the built-in Results panel group
	Working with specific child panels
	Working with the active child panel

	dreamweaver.resultsPalette.clear()
	dreamweaver.resultsPalette.Copy()
	dreamweaver.resultsPalette.cut()
	dreamweaver.resultsPalette.Paste()
	dreamweaver.resultsPalette.openInBrowser
	dreamweaver.resultsPalette.openInEditor()
	dreamweaver.resultsPalette.save()
	dreamweaver.resultsPalette.selectAll()
	Server debugging
	dreamweaver.resultsPalette.debugWindow.addDebug ContextData()

	Toggle functions
	dom.getEditNoFramesContent()
	dom.getHideAllVisualAids()
	dom.getPreventLayerOverlaps()
	dom.getShowAutoIndent()
	dom.getShowFrameBorders()
	dom.getShowGrid()
	dom.getShowHeadView()
	dom.getShowInvalidHTML()
	dom.getShowImageMaps()
	dom.getShowInvisibleElements()
	dom.getShowLayerBorders()
	dom.getShowLineNumbers()
	dom.getShowRulers()
	dom.getShowSyntaxColoring()
	dom.getShowTableBorders()
	dom.getShowToolbar()
	dom.getShowTracingImage()
	dom.getShowWordWrap()
	dom.getSnapToGrid()
	dom.setEditNoFramesContent()
	dom.setHideAllVisualAids()
	dom.setPreventLayerOverlaps()
	dom.setShowFrameBorders()
	dom.setShowGrid()
	dom.setShowHeadView()
	dom.setShowInvalidHTML()
	dom.setShowImageMaps()
	dom.setShowInvisibleElements()
	dom.setShowLayerBorders()
	dom.setShowLineNumbers()
	dom.setShowRulers()
	dom.setShowSyntaxColoring()
	dom.setShowTableBorders()
	dom.setShowToolbar()
	dom.setShowTracingImage()
	dom.setShowWordWrap()
	dom.setSnapToGrid()
	dreamweaver.getHideAllFloaters()
	dreamweaver.getShowStatusBar()
	dreamweaver.htmlInspector.getShowAutoIndent()
	dreamweaver.htmlInspector.getShowInvalidHTML()
	dreamweaver.htmlInspector.getShowLineNumbers()
	dreamweaver.htmlInspector.getShowSyntaxColoring ()
	dreamweaver.htmlInspector.getShowWordWrap()
	dreamweaver.htmlInspector.setShowAutoIndent()
	dreamweaver.htmlInspector.setShowInvalidHTML()
	dreamweaver.htmlInspector.setShowLineNumbers()
	dreamweaver.htmlInspector.setShowSyntaxColoring ()
	dreamweaver.htmlInspector.setShowWordWrap()
	dreamweaver.setHideAllFloaters()
	dreamweaver.setShowStatusBar()
	site.getShowDependents()
	site.getShowHiddenFiles()
	site.getShowPageTitles()
	site.getShowToolTips()
	site.setShowDependents()
	site.setShowHiddenFiles()
	site.setShowPageTitles()
	site.setShowToolTips()

	Toolbar functions
	dom.forceToolbarUpdate()
	dom.getShowToolbarIconLabels()
	dom.getToolbarIdArray()
	dom.getToolbarItemValue()
	dom.getToolbarLabel()
	dom.getToolbarVisibility()
	dom.setToolbarItemAttribute()
	dom.setShowToolbarIconLabels()
	dom.setToolbarPosition()
	dom.setToolbarVisibility()

	Window functions
	dom.getFocus()
	dom.getView()
	dom.getWindowTitle()
	dom.setView()
	dreamweaver.bringAttentionToFloater()
	dreamweaver.cascade()
	dreamweaver.getActiveWindow()
	dreamweaver.getDocumentList()
	dreamweaver.getFloaterVisibility()
	dreamweaver.getFocus()
	dreamweaver.getPrimaryView()
	dreamweaver.getSnapDistance()
	dreamweaver.minimizeRestoreAll()
	dreamweaver.setActiveWindow()
	dreamweaver.setFloaterVisibility()
	dreamweaver.setPrimaryView()
	dreamweaver.setSnapDistance()
	dreamweaver.showProperties()
	dreamweaver.tileHorizontally()
	dreamweaver.tileVertically()
	dreamweaver.toggleFloater()
	dreamweaver.updateReference()

	Code collapse functions
	dom.collapseFullTag()
	dom.collapseFullTagInverse()
	dom.collapseSelectedCodeFragment()
	dom.collapseSelectedCodeFragmentInverse()
	dom.expandAllCodeFragments()
	dom.expandSelectedCodeFragments()
	dreamweaver.htmlInspector.collapseFullTag()
	dreamweaver.htmlInspector.collapseFullTagInverse()
	dreamweaver.htmlInspector.collapseSelectedCode Fragment()
	dreamweaver.htmlInspector.collapseSelectedCode FragmentInverse()
	dreamweaver.htmlInspector.expandAllCodeFragments()
	dreamweaver.htmlInspector.expandSelectedCode Fragments()

	Code view toolbar functions
	dom.getOpenPathName()
	dom.getShowHiddenCharacters()
	dom.setShowHiddenCharacters()
	dom.source.applyComment()
	dom.source.removeComment()
	dreamweaver.htmlInspector.getShowHiddenCharacters()
	dreamweaver.htmlInspector.setShowHiddenCharacters()

	Site
	Report functions
	dreamweaver.isReporting()
	dreamweaver.showReportsDialog()

	Site functions
	dom.getSiteURLPrefixFromDoc()
	dom.localPathToSiteRelative()
	dom.siteRelativeToLocalPath()
	dreamweaver.compareFiles()
	dreamweaver.loadSitesFromPrefs()
	dreamweaver.saveSitesToPrefs()
	dreamweaver.siteSyncDialog.compare()
	dreamweaver.siteSyncDialog.markDelete()
	dreamweaver.siteSyncDialog.markGet()
	dreamweaver.siteSyncDialog.markIgnore()
	dreamweaver.siteSyncDialog.markPut()
	dreamweaver.siteSyncDialog.markSynced()
	dreamweaver.siteSyncDialog.toggleShowAllFiles()
	site.addLinkToExistingFile()
	site.addLinkToNewFile()
	site.changeLinkSitewide()
	site.changeLink()
	site.checkIn()
	site.checkLinks()
	site.checkOut()
	site.checkTargetBrowsers()
	site.cloak()
	site.compareFiles()
	site.defineSites()
	site.deleteSelection()
	site.deployFilesToTestingServerBin()
	site.editColumns()
	site.exportSite()
	site.findLinkSource()
	site.get()
	site.getAppServerAccessType()
	site.getAppServerPathToFiles()
	site.getAppURLPrefixForSite()
	site.getCheckOutUser()
	site.getCheckOutUserForFile()
	site.getCloakingEnabled()
	site.getConnectionState()
	site.getCurrentSite()
	site.getFocus()
	site.getLinkVisibility()
	site.getLocalPathToFiles()
	site.getSelection()
	site.getSiteForURL()
	site.getSites()
	site.getSiteURLPrefix()
	site.importSite()
	site.invertSelection()
	site.isCloaked()
	site.locateInSite()
	site.makeEditable()
	site.makeNewDreamweaverFile()
	site.makeNewFolder()
	site.newHomePage()
	site.newSite()
	site.open()
	site.put()
	site.recreateCache()
	site.refresh()
	site.remoteIsValid()
	site.removeLink()
	site.renameSelection()
	site.runValidation()
	site.saveAsImage()
	site.selectAll()
	site.selectHomePage()
	site.selectNewer()
	site.serverActivity()
	site.setAsHomePage()
	site.setCloakingEnabled()
	site.setConnectionState()
	site.setCurrentSite()
	site.setFocus()
	site.setLayout()
	site.setLinkVisibility()
	site.setSelection()
	site.siteRelativeToLocalPath()
	site.synchronize()
	site.uncloak()
	site.uncloakAll()
	site.undoCheckOut()
	site.viewAsRoot()

	Document
	Conversion functions
	dom.convertLayersToTable()
	dom.convertTablesToLayers()

	Command functions
	dreamweaver.editCommandList()
	dreamweaver.popupCommand() (deprecated)
	dreamweaver.runCommand()

	File manipulation functions
	dom.cleanupXHTML()
	dom.convertToXHTML()
	dom.getIsXHTMLDocument()
	dreamweaver.browseForFileURL()
	dreamweaver.browseForFolderURL()
	dreamweaver.closeDocument()
	dreamweaver.createDocument()
	dreamweaver.createXHTMLDocument()
	dreamweaver.createXMLDocument()
	dreamweaver.exportCSS()
	dreamweaver.exportEditableRegionsAsXML() (deprecated)
	dreamweaver.exportTemplateDataAsXML()
	dreamweaver.getDocumentDOM()
	dreamweaver.getNewDocumentDOM()
	dreamweaver.getRecentFileList()
	dreamweaver.importXMLIntoTemplate()
	dreamweaver.newDocument()
	dreamweaver.newFromTemplate()
	dreamweaver.openDocument()
	dreamweaver.openDocumentFromSite()
	dreamweaver.openInFrame()
	dreamweaver.releaseDocument()
	dreamweaver.revertDocument()
	dreamweaver.saveAll()
	dreamweaver.saveDocument()
	dreamweaver.saveDocumentAs()
	dreamweaver.saveDocumentAsTemplate()
	dreamweaver.saveFrameset()
	dreamweaver.saveFramesetAs()

	Global document functions
	dom.checkSpelling()
	dom.checkTargetBrowsers()
	dom.getParseMode()
	dom.hideInfoMessagePopup()
	dom.runValidation()
	dom.showInfoMessagePopup()
	dom.showPagePropertiesDialog()
	dreamweaver.doURLDecoding()
	dreamweaver.getElementRef()
	dreamweaver.getObjectRefs() (deprecated)
	dreamweaver.getObjectTags() (deprecated)
	dreamweaver.getPreferenceInt()
	dreamweaver.getPreferenceString()
	dreamweaver.setPreferenceInt()
	dreamweaver.setPreferenceString()
	dreamweaver.showTargetBrowsersDialog()

	Path functions
	dreamweaver.getConfigurationPath()
	dreamweaver.getDocumentPath()
	dreamweaver.getSiteRoot()
	dreamweaver.getTempFolderPath()
	dreamweaver.relativeToAbsoluteURL()

	Selection functions
	dom.getSelectedNode()
	dom.getSelection()
	dom.nodeToOffsets()
	dom.offsetsToNode()
	dom.selectAll()
	dom.setSelectedNode()
	dom.setSelection()
	dreamweaver.getSelection() (deprecated)
	dreamweaver.nodeExists()
	dreamweaver.nodeToOffsets() (deprecated)
	dreamweaver.offsetsToNode() (deprecated)
	dreamweaver.selectAll()
	dreamweaver.setSelection() (deprecated)

	String manipulation functions
	dreamweaver.doURLEncoding()
	dreamweaver.getTokens()
	dreamweaver.latin1ToNative()
	dreamweaver.nativeToLatin1()
	dreamweaver.scanSourceString()

	Translation functions
	dom.runTranslator()
	dreamweaver.editLockedRegions()
	dreamweaver.getTranslatorList()
	dreamweaver.useTranslatedSource()

	XSLT functions
	MMXSLT.getXMLSchema()
	MMXSLT.getXMLSourceURI()
	MMXSLT.launchXMLSourceDialog()

	Page Content
	Assets panel functions
	dreamweaver.assetPalette.addToFavoritesFromDoc ument()
	dreamweaver.assetPalette.addToFavoritesFromSite Assets()
	dreamweaver.assetPalette.addToFavoritesFromSite Window()
	dreamweaver.assetPalette.copyToSite()
	dreamweaver.assetPalette.edit()
	dreamweaver.assetPalette.getSelectedCategory()
	dreamweaver.assetPalette.getSelectedItems()
	dreamweaver.assetPalette.getSelectedView()
	dreamweaver.assetPalette.insertOrApply()
	dreamweaver.assetPalette.locateInSite()
	dreamweaver.assetPalette.newAsset()
	dreamweaver.assetPalette.newFolder()
	dreamweaver.assetPalette.recreateLibraryFromDoc ument()
	dreamweaver.assetPalette.refreshSiteAssets()
	dreamweaver.assetPalette.removeFromFavorites()
	dreamweaver.assetPalette.renameNickname()
	dreamweaver.assetPalette.setSelectedCategory()
	dreamweaver.assetPalette.setSelectedView()
	dreamweaver.libraryPalette.deleteSelectedItem() (deprecated)
	dreamweaver.libraryPalette.getSelectedItem() (deprecated)
	dreamweaver.libraryPalette.newFromDocument() (deprecated)
	dreamweaver.libraryPalette.recreateFromDocument() (deprecated)
	dreamweaver.libraryPalette.renameSelectedItem() (deprecated)
	dreamweaver.referencePalette.getFontSize()
	dreamweaver.referencePalette.setFontSize()
	dreamweaver.templatePalette.deleteSelected Template() (deprecated)
	dreamweaver.templatePalette.getSelected Template() (deprecated)
	dreamweaver.templatePalette.renameSelectedTemp late() (deprecated)

	Behavior functions
	dom.addBehavior()
	dom.getBehavior()
	dom.reapplyBehaviors()
	dom.removeBehavior()
	dreamweaver.getBehaviorElement()
	dreamweaver.getBehaviorEvent() (deprecated)
	dreamweaver.getBehaviorTag()
	dreamweaver.popupAction()
	dreamweaver.behaviorInspector.getBehaviorAt()
	dreamweaver.behaviorInspector.getBehaviorCount()
	dreamweaver.behaviorInspector.getSelectedBehavior()
	dreamweaver.behaviorInspector.moveBehaviorDown()
	dreamweaver.behaviorInspector.moveBehaviorUp()
	dreamweaver.behaviorInspector.setSelectedBehavior()

	Clipboard functions
	dom.clipCopy()
	dom.clipCopyText()
	dom.clipCut()
	dom.clipPaste()
	dom.clipPasteText() (deprecated)
	dreamweaver.clipCopy()
	dreamweaver.clipCut()
	dreamweaver.clipPaste()
	dreamweaver.getClipboardText()

	Library and template functions
	dom.applyTemplate()
	dom.detachFromLibrary()
	dom.detachFromTemplate()
	dom.getAttachedTemplate()
	dom.getEditableRegionList()
	dom.getIsLibraryDocument()
	dom.getIsTemplateDocument()
	dom.getSelectedEditableRegion()
	dom.insertLibraryItem()
	dom.markSelectionAsEditable()
	dom.newEditableRegion()
	dom.removeEditableRegion()
	dom.updateCurrentPage()
	dreamweaver.updatePages()

	Snippets panel functions
	dreamweaver.snippetPalette.getCurrentSnippetPath()
	dreamweaver.snippetPalette.newFolder()
	dreamweaver.snippetPalette.newSnippet()
	dreamweaver.snippetPalette.editSnippet()
	dreamweaver.snippetPalette.insert()
	dreamweaver.snippetPalette.insertSnippet()
	dreamweaver.snippetPalette.rename()
	dreamweaver.snippetPalette.remove()

	Dynamic Documents
	Server Components functions
	dreamweaver.serverComponents.getSelectedNode()
	dreamweaver.serverComponents.refresh()

	Data source functions
	dreamweaver.dbi.getDataSources

	Extension Data Manager functions
	dreamweaver.getExtDataValue()
	dreamweaver.getExtDataArray()
	dreamweaver.getExtParticipants()
	dreamweaver.getExtGroups()
	dreamweaver.refreshExtData()

	Live data functions
	dreamweaver.getLiveDataInitTags()
	dreamweaver.getLiveDataMode()
	dreamweaver.getLiveDataParameters ()
	dreamweaver.liveDataTranslate()
	dreamweaver.setLiveDataError()
	dreamweaver.setLiveDataMode()
	dreamweaver.setLiveDataParameters()
	dreamweaver.showLiveDataDialog()

	Server behavior functions
	dreamweaver.getParticipants()
	dreamweaver.serverBehaviorInspector.getServer Behaviors()
	dreamweaver.popupServerBehavior()

	Server model functions
	dom.serverModel.getAppURLPrefix()
	dom.serverModel.getDelimiters()
	dom.serverModel.getDisplayName()
	dom.serverModel.getFolderName()
	dom.serverModel.getServerExtension() (deprecated)
	dom.serverModel.getServerIncludeUrlPatterns()
	dom.serverModel.getServerInfo()
	dom.serverModel.getServerLanguage() (deprecated)
	dom.serverModel.getServerName()
	dom.serverModel.getServerSupportsCharset()
	dom.serverModel.getServerVersion()
	dom.serverModel.testAppServer()
	dreamweaver.getServerModels()

	Design
	CSS functions
	cssStylePalette.getInternetExplorerRendering()
	cssStylePalette.setInternetExplorerRendering()
	dom.applyCSSStyle()
	dom.getElementView()
	dom.getShowDivBackgrounds()
	dom.getShowDivBoxModel()
	dom.getShowDivOutlines()
	dom.removeCSSStyle()
	dom.resetAllElementViews()
	dom.setElementView()
	dom.setShowDivBackgrounds()
	dom.setShowDivBoxModel()
	dom.setShowDivOutlines()
	dreamweaver.cssRuleTracker.editSelectedRule()
	dreamweaver.cssRuleTracker.newRule()
	dreamweaver.cssStylePalette.applySelectedStyle()
	dreamweaver.cssStylePalette.attachStyleSheet()
	dreamweaver.cssStylePalette.deleteSelectedStyle()
	dreamweaver.cssStylePalette.duplicateSelectedStyle()
	dreamweaver.cssStylePalette.editSelectedStyle()
	dreamweaver.cssStylePalette.editSelectedStyleInCo deview()
	dreamweaver.cssStylePalette.editStyleSheet()
	dreamweaver.cssStylePalette.getDisplayStyles()
	dreamweaver.cssStylePalette.getMediaType()
	dreamweaver.cssStylePalette.getSelectedStyle()
	dreamweaver.cssStylePalette.getSelectedTarget() (deprecated)
	dreamweaver.cssStylePalette.getStyles()
	dreamweaver.cssStylePalette.newStyle()
	dreamweaver.cssStylePalette.renameSelectedStyle()
	dreamweaver.cssStylePalette.setDisplayStyles()
	dreamweaver.cssStylePalette.setMediaType()
	dreamweaver.getBlockVisBoxModelColors()
	dreamweaver.getBlockVisOutlineProperties()
	dreamweaver.getDivBackgroundColors()
	dreamweaver.setBlockVisOutlineProperties()
	dreamweaver.setDivBackgroundColors()

	Frame and frameset functions
	dom.getFrameNames()
	dom.isDocumentInFrame()
	dom.saveAllFrames()
	dom.splitFrame()

	Layer and image map functions
	dom.align()
	dom.arrange()
	dom.makeSizesEqual()
	dom.moveSelectionBy()
	dom.resizeSelectionBy()
	dom.setLayerTag()

	Layout environment functions
	dom.getRulerOrigin()
	dom.getRulerUnits()
	dom.getTracingImageOpacity()
	dom.loadTracingImage()
	dom.playAllPlugins()
	dom.playPlugin()
	dom.setRulerOrigin()
	dom.setRulerUnits()
	dom.setTracingImagePosition()
	dom.setTracingImageOpacity()
	dom.snapTracingImageToSelection()
	dom.stopAllPlugins()
	dom.stopPlugin()
	dreamweaver.arrangeFloatingPalettes()
	dreamweaver.showGridSettingsDialog()

	Layout view functions
	dom.addSpacerToColumn()
	dom.createLayoutCell()
	dom.createLayoutTable()
	dom.doesColumnHaveSpacer()
	dom.doesGroupHaveSpacers()
	dom.getClickedHeaderColumn()
	dom.getShowLayoutTableTabs()
	dom.getShowLayoutView()
	dom.isColumnAutostretch()
	dom.makeCellWidthsConsistent()
	dom.removeAllSpacers()
	dom.removeSpacerFromColumn()
	dom.setColumnAutostretch()
	dom.getShowBlockBackgrounds()
	dom.getShowBlockBorders()
	dom.getShowBlockIDs()
	dom.getShowBoxModel()
	dom.setShowBlockBackgrounds()
	dom.setShowBlockBorders()
	dom.setShowBlockIDs()
	dom.setShowBoxModel()
	dom.setShowLayoutTableTabs()
	dom.setShowLayoutView()

	Zoom functions
	dreamweaver.activeViewScale()
	dreamweaver.fitAll()
	dreamweaver.fitSelection()
	dreamweaver.fitWidth()
	dreamweaver.zoomIn()
	dreamweaver.zoomOut()

	Guide functions and properties
	dom.clearGuides()
	dom.createHorizontalGuide()
	dom.createVerticalGuide()
	dom.deleteHorizontalGuide()
	dom.deleteVerticalGuide()
	dom.guidesColor
	dom.guidesDistanceColor
	dom.guidesLocked
	dom.guidesSnapToElements
	dom.guidesVisible
	dom.hasGuides()
	dom.hasHorizontalGuide()
	dom.hasVerticalGuide()
	dom.snapToGuides

	Table editing functions
	dom.convertWidthsToPercent()
	dom.convertWidthsToPixels()
	dom.decreaseColspan()
	dom.decreaseRowspan()
	dom.deleteTableColumn()
	dom.deleteTableRow()
	dom.doDeferredTableUpdate()
	dom.getShowTableWidths()
	dom.getTableExtent()
	dom.increaseColspan()
	dom.increaseRowspan()
	dom.insertTableColumns()
	dom.insertTableRows()
	dom.mergeTableCells()
	dom.removeAllTableHeights()
	dom.removeAllTableWidths()
	dom.removeColumnWidth()
	dom.selectTable()
	dom.setShowTableWidths()
	dom.setTableCellTag()
	dom.setTableColumns()
	dom.setTableRows()
	dom.showInsertTableRowsOrColumnsDialog()
	dom.splitTableCell()

	Code
	Code functions
	dreamweaver.codeHints.addMenu()
	dreamweaver.codeHints.addFunction()
	dreamweaver.codeHints.resetMenu()
	dreamweaver.codeHints.showCodeHints()
	dreamweaver.reloadCodeColoring()

	Find/replace functions
	dreamweaver.findNext()
	dreamweaver.replace()
	dreamweaver.replaceAll()
	dreamweaver.setUpComplexFind()
	dreamweaver.setUpComplexFindReplace()
	dreamweaver.setUpFind()
	dreamweaver.setUpFindReplace()
	dreamweaver.showFindDialog()
	dreamweaver.showFindReplaceDialog()

	General editing functions
	dom.applyCharacterMarkup()
	dom.applyFontMarkup()
	dom.deleteSelection()
	dom.editAttribute()
	dom.exitBlock()
	dom.getCharSet()
	dom.getFontMarkup()
	dom.getLineFromOffset()
	dom.getLinkHref()
	dom.getLinkTarget()
	dom.getListTag()
	dom.getTextAlignment()
	dom.getTextFormat()
	dom.hasCharacterMarkup()
	dom.indent()
	dom.insertHTML()
	dom.insertObject()
	dom.insertText()
	dom.newBlock()
	dom.notifyFlashObjectChanged()
	dom.outdent()
	dom.removeCharacterMarkup()
	dom.removeFontMarkup()
	dom.removeLink()
	dom.resizeSelection()
	dom.setAttributeWithErrorChecking()
	dom.setLinkHref()
	dom.setLinkTarget()
	dom.setListBoxKind()
	dom.showListPropertiesDialog()
	dom.setListTag()
	dom.setTextAlignment()
	dom.setTextFieldKind()
	dom.setTextFormat()
	dom.showFontColorDialog()
	dreamweaver.deleteSelection()
	dreamweaver.editFontList()
	dreamweaver.getFontList()
	dreamweaver.getFontStyles()
	dreamweaver.getKeyState()
	dreamweaver.getNaturalSize()
	dreamweaver.getSystemFontList()

	Print function
	dreamweaver.printCode()

	Quick Tag Editor functions
	dom.selectChild()
	dom.selectParent()
	dom.stripTag()
	dom.wrapTag()
	dreamweaver.showQuickTagEditor()

	Code view functions
	dom.formatRange()
	dom.formatSelection()
	dom.getShowNoscript()
	dom.getAutoValidationCount()
	dom.isDesignViewUpdated()
	dom.isSelectionValid()
	dom.setShowNoscript()
	dom.source.arrowDown()
	dom.source.arrowLeft()
	dom.source.arrowRight()
	dom.source.arrowUp()
	dom.source.balanceBracesTextview()
	dom.source.endOfDocument()
	dom.source.endOfLine()
	dom.source.endPage()
	dom.source.getCurrentLines()
	dom.source.getSelection()
	dom.source.getLineFromOffset()
	dom.source.getText()
	dom.source.getValidationErrorsForOffset()
	dom.source.indentTextview()
	dom.source.insert()
	dom.source.nextWord()
	dom.source.outdentTextview()
	dom.source.pageDown()
	dom.source.pageUp()
	dom.source.previousWord()
	dom.source.replaceRange()
	dom.source.scrollEndFile()
	dom.source.scrollLineDown()
	dom.source.scrollLineUp()
	dom.source.scrollPageDown()
	dom.source.scrollPageUp()
	dom.source.scrollTopFile()
	dom.source.selectParentTag()
	dom.source.setCurrentLine()
	dom.source.startOfDocument()
	dom.source.startOfLine()
	dom.source.topPage()
	dom.source.wrapSelection()
	dom.synchronizeDocument()

	Tag editor and tag library functions
	dom.getTagSelectorTag()
	dreamweaver.popupInsertTagDialog()
	dreamweaver.popupEditTagDialog()
	dreamweaver.showTagChooser()
	dreamweaver.showTagLibraryEditor()
	dreamweaver.tagLibrary.getTagLibraryDOM()
	dreamweaver.tagLibrary.getSelectedLibrary()
	dreamweaver.tagLibrary.getSelectedTag()
	dreamweaver.tagLibrary.importDTDOrSchema()
	dreamweaver.tagLibrary.getImportedTagList()

	Enablers
	Enablers
	dom.canAlign()
	dom.canApplyTemplate()
	dom.canArrange()
	dom.canClipCopyText()
	dom.canClipPaste()
	dom.canClipPasteText()
	dom.canConvertLayersToTable()
	dom.canConvertTablesToLayers()
	dom.canDecreaseColspan()
	dom.canDecreaseRowspan()
	dom.canDeleteTableColumn()
	dom.canDeleteTableRow()
	site.canEditColumns()
	dom.canEditNoFramesContent()
	dom.canIncreaseColspan()
	dom.canIncreaseRowspan()
	dom.canInsertTableColumns()
	dom.canInsertTableRows()
	dom.canMakeNewEditableRegion()
	dom.canMarkSelectionAsEditable()
	dom.canMergeTableCells()
	dom.canPlayPlugin()
	dom.canRedo()
	dom.canRemoveEditableRegion()
	dom.canSelectTable()
	dom.canSetLinkHref()
	dom.canShowListPropertiesDialog()
	dom.canSplitFrame()
	dom.canSplitTableCell()
	dom.canStopPlugin()
	dom.canUndo()
	dom.hasTracingImage()
	dreamweaver.assetPalette.canEdit()
	dreamweaver.assetPalette.canInsertOrApply()
	dreamweaver.canClipCopy()
	dreamweaver.canClipCut()
	dreamweaver.canClipPaste()
	dreamweaver.canDeleteSelection()
	dreamweaver.canExportCSS()
	dreamweaver.canExportTemplateDataAsXML()
	dreamweaver.canFindNext()
	dreamweaver.canFitSelection()
	dreamweaver.canOpenInFrame()
	dreamweaver.canPasteSpecial()
	dreamweaver.canPlayRecordedCommand()
	dreamweaver.canPopupEditTagDialog()
	dreamweaver.canRedo()
	dreamweaver.canRevertDocument()
	dreamweaver.canSaveAll()
	dreamweaver.canSaveDocument()
	dreamweaver.canSaveDocumentAsTemplate()
	dreamweaver.canSaveFrameset()
	dreamweaver.canSaveFramesetAs()
	dreamweaver.canSelectAll()
	dreamweaver.canShowFindDialog()
	dreamweaver.canUndo()
	dreamweaver.canZoom()
	dreamweaver.cssRuleTracker.canEditSelectedRule()
	dreamweaver.cssStylePalette.canApplySelectedStyle()
	dreamweaver.cssStylePalette.canDeleteSelectedStyle()
	dreamweaver.cssStylePalette.canDuplicateSelected Style()
	dreamweaver.cssStylePalette.canEditSelectedStyle()
	dreamweaver.cssStylePalette.canEditSelectedStyleIn Codeview()
	dreamweaver.cssStylePalette.canEditStyleSheet()
	dreamweaver.cssStylePalette.canRenameSelected Style()
	dreamweaver.isRecording()
	dreamweaver.htmlStylePalette.canEditSelection()
	dreamweaver.resultsPalette.canClear()
	dreamweaver.resultsPalette.canCopy()
	dreamweaver.resultsPalette.canCut()
	dreamweaver.resultsPalette.canPaste()
	dreamweaver.resultsPalette.canOpenInBrowser()
	dreamweaver.resultsPalette.canOpenInEditor()
	dreamweaver.resultsPalette.canSave()
	dreamweaver.resultsPalette.canSelectAll()
	dreamweaver.siteSyncDialog.canCompare()
	dreamweaver.siteSyncDialog.canMarkDelete()
	dreamweaver.siteSyncDialog.canMarkGet()
	dreamweaver.siteSyncDialog.canMarkIgnore()
	dreamweaver.siteSyncDialog.canMarkPut()
	dreamweaver.siteSyncDialog.canMarkSynced()
	dreamweaver.snippetpalette.canEditSnippet()
	dreamweaver.snippetpalette.canInsert()
	site.browseDocument()
	site.canAddLink()
	site.canChangeLink()
	site.canCheckIn()
	site.canCheckOut()
	site.canCloak()
	site.canCompareFiles()
	site.canConnect()
	site.canFindLinkSource()
	site.canGet()
	site.canLocateInSite()
	site.canMakeEditable()
	site.canMakeNewFileOrFolder()
	site.canOpen()
	site.canPut()
	site.canRecreateCache()
	site.canRefresh()
	site.canRemoveLink()
	site.canSetLayout()
	site.canSelectAllCheckedOutFiles()
	site.canSelectNewer()
	site.canShowPageTitles()
	site.canSynchronize()
	site.canUncloak()
	site.canUndoCheckOut()
	site.canViewAsRoot()

	Index

