
By Chuck Musciano & Bill Kennedy; ISBN 1-56592-492-4, 576 pages.
Third Edition, August 1998.
(See the catalog page for this book.)

Search the text of HTML: The Definitive Guide.

Index

Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Table of Contents
Preface
Chapter 1: HTML and the World Wide Web
Chapter 2: HTML Quick Start
Chapter 3: Anatomy of an HTML Document
Chapter 4: Text Basics
Chapter 5: Rules, Images, and Multimedia
Chapter 6: Document Layout
Chapter 7: Links and Webs
Chapter 8: Formatted Lists
Chapter 9: Cascading Style Sheets
Chapter 10: Forms
Chapter 11: Tables
Chapter 12: Frames
Chapter 13: Executable Content
Chapter 14: Dynamic Documents
Chapter 15: Tips, Tricks, and Hacks

Appendix A: HTML Grammar
Appendix B: HTML Tag Quick Reference
Appendix C: Cascading Style Sheet Properties Quick Reference
Appendix D: The HTML 4.0 DTD
Appendix E: Character Entities
Appendix F: Color Names and Values

http://www.oreilly.com/catalog/html3/
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/search/hsrch.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_a.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_b.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_c.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_d.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_e.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_f.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_g.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_h.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_i.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_j.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_k.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_l.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_m.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_n.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_o.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_p.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_q.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_r.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_s.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_t.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_u.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_v.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_w.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_x.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_y.htm
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_z.htm

Copyright © 1999 O'Reilly & Associates. All Rights Reserved.

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/copyrght.htm
http://www.oreilly.com/

 Preface

Preface
Contents:
Our Audience
Text Conventions
Is HTML 4.0 Really a Big Deal?
We'd Like to Hear from You
Acknowledgments

Learning Hypertext Markup Language - most commonly known by its acronym, HTML - is like
learning any new language, computer or human. Most students first immerse themselves in examples.
Think how adept you'd become if Mom, Dad, your brothers and sisters all spoke fluent HTML.
Studying others is a natural way to learn, making learning easy and fun. Our advice to anyone wanting
to learn HTML is to get out there on the World Wide Web with a suitable browser and see for
yourself what looks good, what's effective, what works for you. Examine others' HTML source files
and ponder the possibilities. Mimicry is how many of the current webmasters have learned the
language.

Imitation can take you only so far, though. Examples can be both good and bad. Learning by example
will help you talk the talk, but not walk the walk. To become truly conversant, you must learn how to
use the language appropriately in many different situations. You could learn that by example, if you
live long enough.

Remember, too, that computer-based languages are more explicit than human languages. You've got
to get the HTML syntax correct, or it won't work. Then, too, there is the problem of "standards."
Committees of academics and industry experts try to define the proper syntax and usage of a computer
language like HTML. The problem is that HTML browser manufacturers like Netscape and Microsoft
choose what parts of the standard they will use and which parts they will ignore. They even make up
their own parts, which may eventually become standards.

To be safe, the better way to become fluent in HTML is through a comprehensive language reference:
a resource that covers the language syntax, semantics, and variations in detail, and helps you
distinguish between good and bad usage.

There's one more step leading to fluency in a language. To become a true master of HTML, you need
to develop your own style. That means knowing not only what is appropriate, but what is effective.
Layout matters. A lot. So does the order of presentation within a document, between documents, and
between document collections.

Our goal in writing this book is to help you become fluent in HTML, fully versed in the language's

syntax, semantics, and elements of style. We take the natural learning approach with examples: good
ones, of course. We cover every element of the currently accepted version (4.0) of the language in
detail, as well as all of the current "extensions" supported by the popular HTML browsers, explaining
how each element works and how it interacts with all the other elements.

And, with all due respect to Strunk and White, throughout the book we give you suggestions for style
and composition to help you decide how best to use the language and accomplish a variety of tasks,
from simple online documentation to complex marketing and sales presentations. We'll show you
what works and what doesn't; what makes sense to those who view your pages, and what might be
confusing.

In short, this book is a complete guide to creating documents using HTML, starting with basic syntax
and semantics, and finishing with broad style directions that should help you create beautiful,
informative, accessible documents that you'll be proud to deliver to your browsers.

Our Audience
We wrote this book for anyone interested in learning and using HTML, from the most casual user to
the full-time design professional. We don't expect you to have any experience in the language before
picking up this book. In fact, we don't even expect that you've ever browsed the World Wide Web,
although we'd be surprised if you haven't at least experimented with this technology. Being connected
to the Internet is not necessary to use this book, but if you're not connected, this book becomes like a
travel guide for the homebound.

The only things we ask you to have are a computer, a text editor that can create simple ASCII text
files, and copies of the latest leading World Wide Web browsers - Netscape Navigator and Internet
Explorer. Because HTML is stored in a universally accepted format - ASCII text - and because the
language is completely independent of any specific computer, we won't even make an assumption
about the kind of computer you're using. However, browsers do vary by platform and operating
system, which means that your HTML documents can and often do look quite different depending on
the computer and version of browser. We will explain how certain language features are used by
various popular browsers as we go through the book, paying particular attention to how they are
different.

If you are new to HTML, the World Wide Web, or hypertext documentation in general, you should
start by reading Chapter 1, HTML and the World Wide Web. In it, we describe how all the World
Wide Web technologies come together to create webs of interrelated documents.

If you are already familiar with the Web, but not HTML specifically, or if you are interested in the
new features in HTML, start by reading Chapter 2, HTML Quick Start. This chapter is a brief
overview of the most important features of the language and serves as a roadmap to how we approach
the language in the remainder of the book.

Subsequent chapters deal with specific language features in a roughly top-down approach to HTML.
Read them in order for a complete tour through the language, or jump around to find the exact feature
you're interested in.

 Text Conventions

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Preface

Text Conventions
Throughout the book, we use a constant-width typeface to highlight any literal element of the
HTML standard, tags, and attributes. We always use lowercase letters for HTML tags. (Although the
language standard is case-insensitive with regard to tag and attribute names, this isn't so for other
elements like source filenames, so be careful.) We use italic to indicate new concepts when they are
defined and for those elements you need to supply when creating your own documents, such as tag
attributes or user-defined strings.

We discuss elements of the language throughout the book, but you'll find each one covered in depth
(some might say nauseating detail) in a shorthand, quick-reference definition box that looks like the
following box.

<html>

Function:

Delimits a complete HTML document

Attributes:

VERSION

End tag:

</html>; may be omitted

Contains:

head_tag, body_tag

Used in:

HTML documents

The first line of the box contains the element name, followed by a brief description of its function.
Next, we list the various attributes, if any, of the element: those things that you may or must specify as
part of the element.

We use the following symbols to identify tags and attributes that are not in the HTML 4.0 standard
(the latest official version), but are additions to the language:

Netscape Navigator extension to the standard

Internet Explorer extension to the standard

The description also includes the ending tag, if any, for the tag, along with a general indication if the
end tag may be safely omitted in general use.

"Contains" names the rule in the HTML grammar that defines the elements to be placed within this
tag. Similarly, "Used in" lists those rules that allow this tag as part of their content. These rules are
defined in Appendix A, HTML Grammar.

Finally, HTML is a fairly "intertwined" language: You will occasionally use elements in different
ways depending on context, and many elements share identical attributes. Wherever possible, we
place a cross-reference in the text that leads you to a related discussion elsewhere in the book. These
cross-references, like the one at the end of this paragraph, serve as a crude paper model of hypertext
documentation, one that would be replaced with a true hypertext link should this book be delivered in
an electronic format. [The Syntax of a Tag, 3.3.1]

We encourage you to follow these references whenever possible. Often, we'll only cover an attribute
briefly and expect you to jump to the cross-reference for a more detailed discussion. In other cases,
following the link will take you to alternative uses of the element under discussion, or to style and
usage suggestions that relate to the current element.

Our Audience Is HTML 4.0 Really a Big
Deal?

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Preface

Is HTML 4.0 Really a Big Deal?
For about two years around 1996, if anyone mentioned HTML standards to us, we responded with a
groan, a bemused smile, and then uproarious laughter. Standards had become a joke. Today,
fortunately for those of us who appreciate standards, it's different. HTML 4.0 marks a new beginning.

For a time, standards had become a pawn in the browser "wars" between Netscape Communications,
Inc. and Microsoft Corp. After release of HTML 2.0, the elders of the World Wide Web Consortium
(W3C) responsible for such language-standards matters lost control. The abortive HTML+ standard
never got off the ground, and HTML 3.0 became so bogged down in debate that the W3C simply
shelved the entire draft standard. HTML 3.0 never happened, despite what some opportunistic
marketers claim in their literature.

Instead, many new innovations in the language appeared as browser-specific extensions with
frequently conflicting implementations. Most web analysts agree that Netscape's quick success in
becoming the browser of choice for an overwhelming majority of users can be attributed directly to
the company's implementation of useful and exciting additions to HTML. Today, all other browser
manufacturers - in particular, the behemoth Microsoft Corp., which appreciates the meaning of "de
facto standard" better than anyone in the business - have to implement Netscape's HTML extensions if
they expect to have any chance of competing in the web browser marketplace. By pushing the W3C to
officially release HTML standard version 3.2 in late 1996, which for all intents and purposes
standardized most of Netscape's language extensions, the other browser manufacturers gained
legitimacy for their products without having to acknowledge the leading competitor.

Fortunately for those of us who appreciate and strongly support standards, the W3C has taken back
the initiative with HTML 4.0. The standard is clearer and cleaner than any previous one, establishes
solid implementation models for consistency across browsers and platforms, provides strong supports
and incentives for the companion Cascading Style Sheets (CSS) standard for HTML-based displays,
and makes provisions for alternative (non-visual) user-agents, as well as for more universal language
supports. Don't be overly fooled, though. Many of the new standards are Microsoft inventions,
implemented in Internet Explorer 4. It was in their corporate interest to re-establish W3C's dominance
and to influence that standards body, rather than letting the browser industry at large decide standards,
as they did with HTML 3.2. (In today's computing game, there's Microsoft and then there's everybody
else.)

The paradox is that the HTML 4.0 standard is not the definitive resource. There are many more
features of the language in popular use by both Netscape and/or Internet Explorer than are included in
this latest language standard. We promise you, things can get downright confusing when trying to sort
it all out.

We've managed to sort things out, so you don't have to sweat over what works with what browser and

what doesn't work. This book, therefore, is the definitive guide to HTML. We give details for all the
elements of the HTML 4.0 standard, plus the variety of interesting and useful extensions to the
language - some proposed standards - that the popular browser manufacturers have chosen to include
in their products, such as:

Cascading Style Sheets●

Java and JavaScript●

Layers●

Multiple columns●

And while we tell you about each and every feature of the language, standard or not, we also tell you
which browsers or different versions of the same browser implement a particular extension and which
don't. That's critical knowledge when you want to create web pages that take advantage of the latest
version of Netscape Navigator versus pages that are accessible to the larger number of people using
Internet Explorer, Mosaic, or even Lynx, a popular text-only browser for Unix systems.

In addition, there are a few things that are closely related but not directly part of HTML. For example,
we touch, but do not handle CGI and Java programming. CGI and Java programs work closely with
HTML documents and run with or alongside browsers, but are not part of the language itself, so we
don't delve into them. Besides, they are comprehensive topics that deserve their own books, such as
CGI Programming on the World Wide Web and Java in a Nutshell, both published by O'Reilly &
Associates.

In short, this book is your definitive guide to HTML as it is and should be used, including every
extension we could find. Many aren't documented anywhere, even in the plethora of online guides.
But, if we've missed anything, certainly let us know and we'll put it in the next edition.

Text Conventions We'd Like to Hear from You

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Preface

We'd Like to Hear from You
We have tested and verified all of the information in this book to the best of our ability, but you may
find that features have changed (or even that we have made mistakes!). Please let us know about any
errors you find, as well as your suggestions for future editions, by writing:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international/local)
707-829-0104 (FAX)

Since the HTML standards and browser additions to the language are evolving so rapidly, some of the
information in this book may be slightly out of date by the time you read it. Please check out updates
and corrections at http://www. oreilly.com/catalog/html3/.

You can also send us messages electronically. To be put on the mailing list or request a catalog, send
email to:

nuts@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

Is HTML 4.0 Really a Big
Deal?

Acknowledgments

http://www. oreilly.com/catalog/html3
mailto:nuts@oreilly.com
mailto:bookquestions@oreilly.com
file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Preface

Acknowledgments
We did not compose, and certainly could not have composed, this book without generous
contributions from many people. Our wives Jeanne and Cindy (with whom we've just become
reacquainted) and our young children Eva, Ethan, Courtney, and Cole (they happened before we
started writing) formed the front lines of support. And there are numerous neighbors, friends, and
colleagues who helped by sharing ideas, testing browsers, and letting us use their equipment to
explore HTML. You know who you are, and we thank you all. (Ed Bond, we'll be over soon to repair
your Windows.)

We also thank our technical reviewers, Kane Scarlett, Eric Raymond, and Chris Tacy, for carefully
scrutinizing our work. We took most of your keen suggestions. And we especially thank Mike
Loukides, our editor, who had to bring to bear his vast experience in book publishing to keep us two
mavericks corralled.

We'd Like to Hear from You 1. HTML and the World Wide
Web

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 1

1. HTML and the World Wide Web
Contents:
The Internet, Intranets, and Extranets
Talking the Internet Talk
HTML: What It Is
HTML: What It Isn't
Nonstandard Extensions
Tools for the HTML Designer

Though it began as a military experiment and spent its adolescence as a sandbox for academics and
eccentrics, recent events have transformed the worldwide network of computer networks - also known
as the Internet - into a rapidly growing and wildly diversified community of computer users and
information vendors. Today, you can bump into Internet users of nearly any and all nationalities, of
any and all persuasions, from serious to frivolous individuals, from businesses to nonprofit
organizations, and from born-again evangelists to pornographers.

In many ways, the World Wide Web - the open community of hypertext-enabled document servers
and readers on the Internet - is responsible for the meteoric rise in the network's popularity. You, too,
can become a valued member by contributing: writing HTML documents and making them available
to web "surfers" worldwide.

Let's climb up the Internet family tree to gain some deeper insight into its magnificence, not only as
an exercise of curiosity, but to help us better understand just who and what it is we are dealing with
when we go online.

1.1 The Internet, Intranets, and Extranets
Although popular media accounts often are confused and confusing, the concept of the Internet really
is rather simple. It's a collection of networks - a network of networks - computers worldwide sharing
digital information via a common set of networking and software protocols. Nearly anyone can
connect their computer to the Internet and immediately communicate with other computers and users
on the Net.

Networks are not new to computers. What makes the Internet global network unique is its worldwide
collection of digital telecommunication links that share a common set of computer-network
technologies, protocols, and applications. So, whether you use a PC with Microsoft Windows 98 or a
Unix workstation, when connected to the Internet, the computers all speak the same networking

language and use functionally identical programs so that you can exchange information - even
multimedia pictures and sound - with someone next door or across the planet.

The common and now quite familiar programs people use to communicate and distribute their work
over the Internet also have found their way into private and semi-private networks. These so-called
intranets and extranets use the same software, applications, and networking protocols of the Internet.
But unlike the Internet, intranets are private networks, usually unconnected to outside institutional
boundaries and with restricted access to only members of the institution. Likewise, extranets restrict
access, but use the Internet to provide services to members.

The Internet, on the other hand, seemingly has no restrictions. Anyone with a computer and the right
networking software and connection can "get on the Net" and begin exchanging their words, sounds,
and pictures with others around the world, day or night; no membership required. And that's precisely
what is confusing about the Internet.

Like an oriental bazaar, the Internet is not well organized, there are few content guides, and it can take
a lot of time and technical expertise to tap its full potential.

That's because...

1.1.1 In the Beginning

The Internet began in the late 1960s as an experiment in the design of robust computer networks. The
goal was to construct a network of computers that could withstand the loss of several machines
without compromising the ability of the remaining ones to communicate. Funding came from the U.S.
Department of Defense, which had a vested interest in building information networks that could
withstand nuclear attack.

The resulting network was a marvelous technical success, but was limited in size and scope. For the
most part, only defense contractors and academic institutions could gain access to what was then
known as the ARPAnet (Advanced Research Projects Agency network of the Department of Defense).

With the advent of high-speed modems for digital communication over common phone lines, some
individuals and organizations not directly tied to the main digital pipelines began connecting and
taking advantage of the network's advanced and global communications. Nonetheless, it wasn't until
these last few years (around 1993, actually) that the Internet really took off.

Several crucial events led to the meteoric rise in popularity of the Internet. First, in the early 1990s,
businesses and individuals eager to take advantage of the ease and power of global digital
communications finally pressured the largest computer networks on the mostly U.S.
government-funded Internet to open their systems for nearly unrestricted traffic. (Remember, the
network wasn't designed to route information based on content - meaning that commercial messages
went through university computers that at the time forbade such activity.)

True to their academic traditions of free exchange and sharing, many of the original Internet members
continued to make substantial portions of their electronic collections of documents and software
available to the newcomers - free for the taking! Global communications, a wealth of free software
and information: who could resist?

Well, frankly, the Internet was a tough row to hoe back then. Getting connected and using the various
software tools, if they were even available for their computers, presented an insurmountable
technology barrier for most people. And most available information was plain-vanilla ASCII about

academic subjects, not the neatly packaged fare that attracts users to online services, such as America
Online, Prodigy, or CompuServe. The Internet was just too disorganized, and outside of the
government and academia, few people had the knowledge or interest to learn how to use the arcane
software or the time to spend rummaging through documents looking for ones of interest.

1.1.2 HTML and the World Wide Web

It took another spark to light the Internet rocket. At about the same time the Internet opened up for
business, some physicists at CERN, the European Particle Physics Laboratory, released an authoring
language and distribution system they developed for creating and sharing multimedia-enabled,
integrated electronic documents over the Internet. And so was born Hypertext Markup Language
(HTML), browser software, and the World Wide Web. No longer did authors have to distribute their
work as fragmented collections of pictures, sounds, and text. HTML unified those elements.
Moreover, the World Wide Web's systems enabled hypertext linking, whereby documents
automatically reference other documents, located anywhere around the world: less rummaging, more
productive time online.

Lift-off happened when some bright students and faculty at the National Center for Supercomputing
Applications (NCSA) at the University of Illinois, Urbana-Champaign wrote a web browser called
Mosaic. Although designed primarily for viewing HTML documents, the software also had built-in
tools to access the much more prolific resources on the Internet, such as FTP archives of software and
Gopher-organized collections of documents.

With versions based on easy-to-use graphical-user interfaces familiar to most computer owners,
Mosaic became an instant success. It, like most Internet software, was available on the Net for free.[1]
Millions of users snatched up a copy and began surfing the Internet for "cool web pages."

[1] Not all browsers are free, nor are all browsers free to everyone. Various client
browser and server software is commercially available, including documentation and
support. Internet "bundled" software sold through mail order or retail often contains a
licensed copy of one of the popular browsers like Netscape or Internet Explorer, possibly
customized for the package. Moreover, the browsers available for download over the
Internet typically contain licensing agreements that stipulate that the software is free only
for use by non-profit organizations.

1.1.3 Golden Threads

There you have the history of the Internet and the World Wide Web in a nutshell: from rags to riches
in just a few short years. The Internet has spawned an entirely new medium for worldwide
information exchange and commerce, and its pioneers are profiting well. For instance, when the
marketers caught on to the fact that they could cheaply produce and deliver eye-catching,
wow-and-whizbang commercials and product catalogs to those millions of web surfers around the
world, there was no stopping the stampede of blue suede shoes. Even the key developers of Mosaic
and related web server technologies sensed potential riches. They left NCSA and formed Netscape
Communications to produce the Netscape Navigator (now part of Netscape Communicator) browser
and web server software that is useful for Internet commercial activity.

Business users and marketing opportunities have helped invigorate the Internet and fuel its
phenomenal growth, particularly on the World Wide Web. According to a recent marketing survey by
ActivMedia, Inc. (Peterborough, NH), over half of Internet enterprises become profitable within a year

of launch! But do not forget that the Internet is first and foremost a place for social interaction and
information sharing, not a strip mall or direct advertising medium. Internet users, particularly the
old-timers, adhere to commonly held, but not formally codified, rules of netiquette that prohibit such
things as "spamming" special-interest newsgroups with messages unrelated to the topic at hand or
sending unsolicited email. And there are millions of users ready to remind you of those rules should
you inadvertently or intentionally ignore them.

And, certainly, the power of HTML and network distribution of information go well beyond
marketing and monetary rewards: serious informational pursuits also benefit. Publications, complete
with images and other media like executable software, can get to their intended audience in a blink of
an eye, instead of the months traditionally required for printing and mail delivery. Education takes a
great leap forward when students gain access to the great libraries of the world. And at times of
leisure, the interactive capabilities of HTML links can reinvigorate our otherwise television-numbed
minds.

Acknowledgments 1.2 Talking the Internet Talk

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 1
HTML and the World Wide

Web

1.2 Talking the Internet Talk
Every computer connected to the Internet (even a beat-up old Apple II) has a unique address: a
number whose format is defined by the Internet Protocol (IP), the standard that defines how messages
are passed from one machine to another on the Net. An IP address is made up of four numbers, each
less than 256, joined together by periods, such as 192.12.248.73 or 131.58.97.254.

While computers deal only with numbers, people prefer names. For this reason, each computer on the
Internet also has a name bestowed upon it by its owner. There are several million machines on the
Net, so it would be very difficult to come up with that many unique names, let alone keep track of
them all. Recall, though, that the Internet is a network of networks. It is divided into groups known as
domains, which are further divided into one or more subdomains. So, while you might choose a very
common name for your computer, it becomes unique when you append, like surnames, all of the
machine's domain names as a period-separated suffix, creating a fully qualified domain name.

This naming stuff is easier than it sounds. For example, the fully qualified domain name
www.oreilly.com translates to a machine named "www" that's part of the domain known as "oreilly,"
which, in turn, is part of the commercial (com) branch of the Internet. Other branches of the Internet
include educational (edu) institutions, nonprofit organizations (org), U.S. government (gov), and
Internet service providers (net). Computers and networks outside the United States have a two-letter
abbreviation at the end of their names: for example, "ca" for Canada, "jp" for Japan, and "uk" for the
United Kingdom.

Special computers, known as name servers, keep tables of machine names and their associated unique
IP numerical addresses, and translate one into the other for us and for our machines. Domain names
must be registered and sometimes paid for through the nonprofit organization InterNIC. Once
registered, the owner of the domain name broadcasts it and its address to other domain name servers
around the world. Each domain and subdomain has an associated name server, so ultimately every
machine is known uniquely by both a name and an IP address.

1.2.1 Clients, Servers, and Browsers

The Internet connects two kinds of computers: servers, which serve up documents; and clients, which
retrieve and display documents for us humans. Things that happen on the server machine are said to
be on the server side, while activities on the client machine occur on the client side.

To access and display HTML documents, we run programs called browsers on our client computers.
These browser clients talk to special web servers over the Internet to access and retrieve electronic
documents.

Several web browsers are available - most are free - each offering a different set of features. For
example, browsers like Lynx run on character-based clients and display documents only as text.
Others run on clients with graphical displays and render documents using proportional fonts and color
graphics on a 1024 × 768, 24-bit-per-pixel display. Others still - Netscape Navigator, Microsoft's
Internet Explorer, NCSA Mosaic, Netcom's WebCruiser, and InterCon's NetShark, to name a few -
have special features that allow you to retrieve and display a variety of electronic documents over the
Internet, including audio and video multimedia.

1.2.2 The Flow of Information

All web activity begins on the client side, when a user starts his or her browser. The browser begins
by loading a home page HTML document from either local storage or from a server over some
network, such as the Internet, a corporate intranet, or a town extranet. In these latter cases, the client
browser first consults a domain name system (DNS) server to translate the home page document
server's name, such as www.oreilly.com, into an IP address, before sending a request to that server
over the Internet. This request (and the server's reply) is formatted according to the dictates of the
HyperText Transfer Protocol (HTTP) standard.

A server spends most of its time listening to the network, waiting for document requests with the
server's unique address stamped on it. Upon receipt, the server verifies that the requesting browser is
allowed to retrieve documents from the server, and, if so, checks for the requested document. If found,
the server sends (downloads) the document to the browser. The server usually logs the request, the
client computer's name, document requested, and the time.

Back on the browser, the document arrives. If it's a plain-vanilla ASCII text file, most browsers
display it in a common, plain-vanilla way. Document directories, too, are treated like plain
documents, although most graphical browsers will display folder icons, which the user can select with
the mouse to download the contents of subdirectories.

Browsers also retrieve binary files from a server. Unless assisted by a helper program or specially
enabled by plug-in software or applets, which display an image or video file or play an audio file, the
browser usually stores downloaded binary files directly on a local disk for later attention by the user.

For the most part, however, the browser retrieves a special document that appears to be a plain text
file, but contains both text and special markup codes called tags. The browser processes these HTML
documents, formatting the text based upon the tags and downloading special accessory files, such as
images.

The user reads the document, selects a hyperlink to another document, and the entire process starts
over.

1.2.3 Beneath the World Wide Web

We should point out again that browsers and HTTP servers need not be part of the Internet's World
Wide Web to function. In fact, you never need to be connected to the Internet, an intranet or extranet,
or to any network, for that matter, to write HTML documents and operate a browser. You can load up
and display on your client browser locally stored HTML documents and accessory files directly. This
isolation is good: it gives you the opportunity to finish, in the editorial sense of the word, a document
collection for later distribution. Diligent HTML authors work locally to write and proof their
documents before releasing them for general distribution, thereby sparing readers the agonies of

broken image files and bogus hyperlinks.[2]

[2] Vigorous testing of the HTML documents once they are made available on the Web
is, of course, also highly recommended and necessary to rid them of various linking bugs.

Organizations, too, can be connected to the Internet and the World Wide Web, but also maintain
private webs and HTML document collections for distribution to clients on their local network, or
intranet. In fact, private webs are fast becoming the technology of choice for the paperless offices
we've heard so much about these last few years. With HTML document collections, businesses and
other enterprises can maintain personnel databases, complete with employee photographs and online
handbooks, collections of blueprints, parts, and assembly manuals, and so on - all readily and easily
accessed electronically by authorized users and displayed on a local computer.

1.1 The Internet, Intranets,
and Extranets

1.3 HTML: What It Is

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 1
HTML and the World Wide

Web

1.3 HTML: What It Is
HTML is a document-layout and hyperlink-specification language. It defines the syntax and
placement of special, embedded directions that aren't displayed by the browser, but tell it how to
display the contents of the document, including text, images, and other support media. The language
also tells you how to make a document interactive through special hypertext links, which connect your
document with other documents - on either your computer or someone else's, as well as with other
Internet resources, like FTP.

1.3.1 HTML Standards and Extensions

The basic syntax and semantics of HTML are defined in the HTML standard, currently Version 4.0.
HTML is a young language, barely five years old, but already in its fourth iteration. Don't be too
surprised if another version appears before you finish reading this book. Given the pace of these
standards matters, one never knows when or if a new standard version will come to fruition.

Browser developers rely upon the HTML standard to program the software that formats and displays
common HTML documents. Authors use the standard to make sure they are writing effective, correct
HTML documents. Nonetheless, commercial forces have pushed developers to add into their
browsers - Netscape Navigator and Internet Explorer, in particular - nonstandard extensions meant to
improve the language. Many times, these extensions are implementations of future standards still
under debate. Extensions can foretell future standards because so many people use them.

In this book, we explore in detail the syntax, semantics, and idioms of HTML Version 4.0, along with
the many important extensions that are supported in the latest versions of the most popular browsers,
so that any aspiring HTML author can create fabulous documents with a minimum of effort.

1.3.2 Standards Organizations

Like many popular technologies, HTML started out as an informal specification used by only a few
people. As more and more authors began to use the language, it became obvious that more formal
means were needed to define and manage - to standardize - HTML's features, making it easier for
everyone to create and share documents.

1.3.2.1 The World Wide Web Consortium

The World Wide Web Consortium (W3C) was formed with the charter to define the standard versions
of HTML. Members are responsible for drafting, circulating for review, and modifying the standard

based on cross-Internet feedback to best meet the needs of the many.

Beyond HTML, the W3C has the broader responsibility of standardizing any technology related to the
World Wide Web; they manage the HTTP standard, as well as related standards for document
addressing on the Web. And they solicit draft standards for extensions to existing web technologies,
such as internationalization of the HTML standard.

If you want to track HTML development and related technologies, contact the W3C at
http://www.w3c.org . Several Internet newsgroups are devoted to the Web, each a part of the
comp.infosystems.www hierarchy. These include comp.infosystems.www. authoring.html and
comp.infosystems.www.authoring.images.

1.3.2.2 The Internet Engineering Task Force

Even broader in reach than W3C, the Internet Engineering Task Force (IETF) is responsible for
defining and managing every aspect of Internet technology. The World Wide Web is just one small
part under the purview of the IETF.

The IETF defines all of the technology of the Internet via official documents known as Requests For
Comment, or RFCs. Individually numbered for easy reference, each RFC addresses a specific Internet
technology - everything from the syntax of domain names and the allocation of IP addresses to the
format of electronic mail messages.

To learn more about the IETF and follow the progress of various RFCs as they are circulated for
review and revision, visit the IETF home page, http://www.ietf.org .

1.2 Talking the Internet Talk 1.4 HTML: What It Isn't

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 1
HTML and the World Wide

Web

1.4 HTML: What It Isn't
With all its multimedia-enabling, new page layout features, and the hot technologies that give life to
HTML documents over the Internet, it is also important to understand the language's limitations:
HTML is not a word processing tool, a desktop publishing solution, or even a programming language.
That's because its fundamental purpose is to define the structure and appearance of documents and
document families so that they may be delivered quickly and easily to a user over a network for
rendering on a variety of display devices. Jack of all trades, but master of none, so to speak.

1.4.1 Content Versus Appearance

Before you can fully appreciate the power of the language and begin creating effective HTML
documents, you must yield to its one fundamental rule: HTML is designed to structure documents and
make their content more accessible, not to format documents for display purposes.

HTML does provide many different ways to let you define the appearance of your documents: font
specifications, line breaks, and multicolumn text are all features of the language. And, of course,
appearance is important, since it can have either detrimental or beneficial effects on how users access
and use the information in your HTML documents.

But with HTML, content is paramount; appearance is secondary, particularly since it is less
predictable, given the variety of browser graphics and text-formatting capabilities. Besides, HTML
contains many more ways for structuring your document content without regard to the final
appearance: section headers, structured lists, paragraphs, rules, titles, and embedded images are all
defined by HTML without regard for how these elements might be rendered by a browser.

If you treat HTML as a document-generation tool, you will be sorely disappointed in your ability to
format your document in a specific way. There is simply not enough capability built into HTML to
allow you to create the kind of documents you might whip up with tools like FrameMaker or
Microsoft Word. Attempts to subvert the supplied structuring elements to achieve specific formatting
tricks seldom work across all browsers. In short, don't waste your time trying to force HTML to do
things it was never designed to do.

Instead, use HTML in the manner for which it was designed: indicating the structure of a document so
that the browser can then render its content appropriately. HTML is rife with tags that let you indicate
the semantics of your document content, something that is missing from tools like Frame or Word.
Create your documents using these tags and you'll be happier, your documents will look better, and
your readers will benefit immensely.

1.4.2 Specific Limitations of HTML

There are limits to the kinds of formatting and document structuring HTML can provide, and no
current browser implements all of the ones the new HTML standard prescribes. Specifically, various
browser manufacturers had implemented several HTML features before the standard emerged in late
1997. These include:

Framed document layout●

Scripted dynamic documents●

Moving and layered text●

Absolute text and image positioning●

Those niceties that just aren't available in any standard version of HTML are:

Footnotes, endnotes, automatic tables of contents and indexes●

Headers and footers●

Tabs and other automatic character spacing●

Nested numbered lists●

Mathematical typesetting●

1.4.3 Yielding to the Browser

Many novice HTML authors try to get around these limitations by taking careful note of how their
browser displays the contents of certain tags and then misusing those tags to achieve formatting tricks.
For example, some authors nest certain kinds of lists several levels deep, not because they are actually
creating deeply nested lists, but because they want their text specially indented.

There are many different browsers running on many different computers and they all do things
differently. Even two different users using the same browser version on their machines can
reconfigure the software so that the same HTML document will look completely different. What looks
fabulous on your personal browser can and often does look terrible on other browsers.

Yield to the browser. Let it format your document in whatever way it deems best. Recognize that the
browser's job is to present your documents to the user in a consistent, usable way. Your job, in turn, is
to use HTML effectively to mark up your documents so that the browser can do its job effectively.
Spend less time trying to achieve format-oriented goals. Instead, focus your efforts on creating the
actual document content and adding the HTML tags to structure that content effectively.

1.3 HTML: What It Is 1.5 Nonstandard Extensions

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 1
HTML and the World Wide

Web

1.5 Nonstandard Extensions
You don't have to write in HTML for long before you realize its limitations. That's why Netscape
Navigator (the browser portion of Netscape Communicator) quickly became the most popular browser
less than a year after it was released. While others were content to implement HTML standards, the
developers at Netscape were hard at work extending the language and their browser to capture the
potentially lucrative and certainly exciting commercial markets on the Web.

With a market presence like that, Netscape led not only the market, but the standards drive as well.
Those browser features that Netscape provided and that weren't part of HTML quickly become de
facto standards because so many people use them. That's a nightmare for HTML authors. A lot of
people want you to use the latest and greatest gimmick or even useful HTML extension. But it's not
part of the standard, and not all browsers support it. In fact, on occasion, the popular browsers
supported different ways of doing the same thing in HTML.

1.5.1 Extensions: Pro and Con

Every software vendor adheres to the technological standards; it's embarrassing to be incompatible
and your competitors will take every opportunity to remind buyers of your product's failure to comply,
no matter how arcane or useless that standard might be. At the same time, vendors seek to make their
products different and better than the competition's offerings. Netscape's and Internet Explorer's
extensions to standard HTML are perfect examples of these market pressures at work.

Many HTML document authors feel safe using these extended browsers' nonstandard extensions,
because of their combined and commanding share of users. For better or worse, extensions to HTML
made by the folks at Netscape or Microsoft instantly become part of the street version of HTML,
much like English slang creeping into the vocabulary of most Frenchmen despite the best efforts of
the Académie Française.

Fortunately, with HTML version 4.0, the W3C standards have caught up with the browser
manufacturers. In fact, the tables have turned somewhat. The many extensions to HTML that
originally appeared as extensions in Netscape Navigator and Internet Explorer are now part of the
HTML 4.0 standard, and there are other parts of the new standard that are not yet features of the
popular browsers.

1.5.2 Avoiding Extensions

In general, we urge you to resist using an HTML extension unless you have a compelling and
overriding reason to do so. By using them, particularly in key portions of your documents, you run the
risk of losing a substantial portion of your potential readership. Sure, the Netscape community is large
enough to make this point moot now, but even so, you are excluding several million people without
Netscape from your pages.

Of course, there are varying degrees of dependency on HTML extensions. If you use some of the
horizontal rule extensions, for example, most other browsers will ignore the extended attributes and
render a conventional horizontal rule. On the other hand, reliance upon a number of font size changes
and text alignment extensions to control your document appearance will make your document look
terrible on many alternative browsers. It might not even display at all on browsers that don't support
the extensions.

We admit that it is a bit disingenuous of us to decry the use of HTML extensions while presenting
complete descriptions of their use. In keeping with the general philosophy of the Internet, we'll err on
the side of handing out rope and guns to all interested parties while hoping you have enough smarts to
keep from hanging yourself or shooting yourself in the foot.

Our advice still holds, though: only use an extension where it is necessary or very advantageous, and
do so with the understanding that you are disenfranchising a portion of your audience. To that end,
you might even consider providing separate, standards-based versions of your documents to
accommodate users of other browsers.

1.5.3 Beyond Extensions: Exploiting Bugs

It is one thing to take advantage of an extension to HTML, and quite another to exploit known bugs in
a particular version of a browser to achieve some unusual document effect.

A good example is the multiple-body bug in Version 1.1 of Netscape Navigator. The HTML standard
insists that an HTML document have exactly one <body> tag, containing the body of the document.
The now-obsolete browser allowed any number of <body> tags, processing and rendering each
<body> in turn. By placing several <body> tags in an HTML document, an author could achieve
crude animation effects when the document was first loaded into the browser. The most popular trick
used several <body> tags, each with a slightly different background color. This trick results in a
document fade-in effect.

The party ended when Version 1.2 of Netscape fixed the bug. Suddenly, thousands of documents lost
their fancy fade-in effect. Although faced with some rather fierce complaints, to their credit, the
people at Netscape stood by their decision to adhere to the standard, placing compliance higher on
their list of priorities than nifty rendering hacks.

In that light, we can unequivocally offer this advice: never exploit a bug in a browser to achieve a
particular effect in your documents.

1.4 HTML: What It Isn't 1.6 Tools for the HTML
Designer

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 1
HTML and the World Wide

Web

1.6 Tools for the HTML Designer
While you can use the barest of barebones text editors to create HTML documents, most HTML
authors have a bit more elaborate toolbox of software utilities than a simple word processor. You also
need, at least, a browser, so you can test and refine your work. Beyond the essentials are some
specialized software tools for HTML document preparation and editing, and others for developing and
preparing accessory multimedia files.

1.6.1 Essentials

At the very least, you'll need an editor, a browser to check your work, and ideally, a connection to the
Internet.

1.6.1.1 Word processor or HTML editor?

Some authors use the word-processing capabilities of their specialized HTML editing software.
Others use the WYSIWYG (what-you-see-is-what-you-get) composition tools that come with their
browser or latest versions of the popular word processors. Others, such as ourselves, prefer to
compose their work on a general word processor and later insert the HTML tags and their attributes.
Still others embed HTML tags as they compose.

We think the stepwise approach - compose, then mark up - is the better way. We find that once we've
defined and written the document's content, it's much easier to make a second pass to judiciously and
effectively add the HTML tags to format the text. Otherwise, the markup can obscure the content.
Note, too, that unless specially trained (if they can be), spell-checkers and thesauruses typically choke
on HTML markup tags and their various parameters. You can spend what seems to be a lifetime
clicking the Ignore button on all those otherwise valid markup tags when syntax- or spell-checking an
HTML document.

When and how you embed HTML tags into your document dictates the tools you need. We
recommend that you use a good word processor, such as WordPerfect or Word, which comes with
more and better writing tools than simple text editors or the browser-based HTML editors. You'll find,
for instance, that an outliner, spell-checker, and thesaurus will best help you craft the document's flow
and content well, disregarding for the moment its look. The latest word processors encode your
documents with HTML, too, but don't expect miracles. Except for boilerplate documents, you
probably will need to nurse those automated HTML documents to full health.

Another word of caution about automated HTML composition tools: none that we know adhere to the

HTML 4.0 standard (none yet, at least), so examine the specifications before using one, and certainly
before purchasing one. Moreover, some of the WYSIWYG HTML editors don't have up-to-date
built-in browsers, so they may erroneously decode the HTML tags and give you misleading displays.

1.6.1.2 Browser software

Obviously, you should view your newly composed HTML documents and test their functionality
before you release them for use by others. For serious HTML authors, particularly those looking to
push their documents beyond the HTML standards, we recommend that you have several browser
products, perhaps with versions running on different computers, just to be sure one's delightful display
isn't another's nightmare.

The currently popular - and so most important - browsers are Netscape Navigator and Internet
Explorer. Obtain free copies of the software via anonymous FTP from their respective servers (
ftp.netscape.com and ftp.microsoft.com), or contact your local computer software dealer for a
commercial version (about $50).

1.6.1.3 Internet connection

We think you should have bona fide access to the Internet if you are really serious about learning and
honing your HTML writing skills. Okay, it's not absolutely essential since you can compose and view
HTML documents locally. And for some, a connection is perhaps not even possible or practical, but
make the effort: there's sometimes no better way to learn than by example. HTML examples both
good and bad abound on the Internet, whose source HTML you can download and examine.

Moreover, an Internet connection is essential for development and testing if you include hypertext
links to Internet services in your HTML documents. But, most of all, an Internet connection gives you
access to a wealth of tips and ongoing updates to the language through special-interest newsgroups, as
well as much of the essential and accessory software you can use to prepare HTML document
collections.

1.6.2 An Extended Toolkit

If you're serious about creating documents, you'll soon find there are all sorts of nifty tools that make
life easier. The list of freeware, shareware, and commercial products grows daily, so it's not very
useful to provide a list here. This is, in fact, another good reason why you should get an Internet
connection; various groups keep updated lists of HTML resources on the Web. If you are really
dedicated to writing in HTML, you will visit those sites, and you will visit them regularly to keep
abreast of the language, tools, and trends.

We think the following three web sites are the most useful for HTML authors. Each contains dozens,
sometimes hundreds, of hyperlinks to detailed descriptions of products and other important
information for the HTML author. Go at it:

http://www.stars.com

http://union.ncsa.uiuc.edu/HyperNews/get/www.html

http://www.yahoo.com

http://www.stars.com/
http://union.ncsa.uiuc.edu/HyperNews/get/www.html
http://www.yahoo.com/

1.5 Nonstandard Extensions 2. HTML Quick Start

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 2

2. HTML Quick Start
Contents:
Writing Tools
A First HTML Document
HTML Embedded Tags
HTML Skeleton
The Flesh on an HTML Document
HTML and Text
Hyperlinks
Images Are Special
Lists, Searchable Documents, and Forms
Tables
Frames
Style Sheets and JavaScript
Forging Ahead

We didn't spend hours studiously poring over some reference book before we wrote our first HTML
document. You probably shouldn't, either. HTML is simple to read and understand, and it's simple to
write, too. So let's get started without first learning a lot of arcane rules.

To help you get that quick, satisfying start, we've included this chapter as a brief summary of the
many elements of HTML. Of course, we've left out a lot of details and some tricks you should know.
Read the upcoming chapters to get the essentials for becoming fluent in HTML.

Even if you are familiar with HTML, we recommend you work your way through this chapter before
tackling the rest of the book. It not only gives you a working grasp of basic HTML and its jargon,
you'll also be more productive later, flush with the confidence that comes from creating attractive
documents in such a short time.

2.1 Writing Tools
Use any text editor to create HTML documents, as long as it can save your work on disk in ASCII text
file format. That's because even though HTML documents include elaborate text layout and pictures,
they're all just plain old ASCII documents themselves. A fancier WYSIWYG editor or an HTML
translator for your favorite word processor are fine, too - although they may not support the many
nonstandard HTML features we discuss later in this book. You'll probably end up touching up the

HTML source text they produce, as well.

While not needed to compose HTML, you should have at least one version of a popular World Wide
Web browser installed on your computer to view your work, preferably Netscape Navigator or
Microsoft Internet Explorer. That's because the HTML source document you compose on your text
editor doesn't look anything like what gets displayed by a browser, even though it's the same
document. Make sure what your readers actually see is what you intended by viewing the HTML
document yourself with a browser. Besides, the popular ones are free over the Internet. If you can't
retrieve a browser copy yourself, get a friend to give you a copy.

Also note that you don't need a connection to the Internet or the World Wide Web to write and view
your HTML documents. You may compose and view your documents stored on a hard drive or floppy
disk that's attached to your computer. You can even navigate among your local documents with
HTML's hyperlinking capabilities without ever being connected to the Internet, or any other network,
for that matter. In fact, we recommend that you work locally to develop and thoroughly test your
HTML documents before you share them with others.

We strongly recommend, however, that you do get a connection to the Internet and to the World Wide
Web if you are serious about composing your own HTML documents. You may download and view
others' interesting web pages and see how they accomplished some interesting feature - good or bad.
Learning by example is fun, too. (Reusing others' work, on the other hand, is often questionable, if not
downright illegal.) An Internet connection is essential if you include in your work hyperlinks to other
documents on the Internet.

1.6 Tools for the HTML
Designer

2.2 A First HTML Document

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 2
HTML Quick Start

2.2 A First HTML Document
It seems every programming language book ever written starts off with a simple example on how to
display the message, "Hello, World!" Well, you won't see a "Hello, World!" example in this book.
After all, this is a style guide for the next millennium. Instead, ours sends greetings to the World Wide
Web:

<html>
<head>
<title>My first HTML document</title>
</head>
<body>
<h2>My first HTML document</h2>
Hello, <i>World Wide Web!</i>
 <!-- No "Hello, World" for us -->
<p>
 Greetings from

O'Reilly & Associates
<p>
Composed with care by:
<cite>(insert your name here)</cite>

©2000 and beyond
</body>
</html>

Go ahead: Type in the example HTML source on a fresh word-processing page and save it on your
local disk as myfirst.html. Make sure you select to save it in ASCII format; word processor-specific
file formats like Microsoft Word's .doc files save hidden characters that can confuse the browser
software and disrupt your HTML document's display.

After saving myfirst.html (or myfirst.htm if you are using a DOS- or Windows 3.11-based computer)
onto disk, start up your browser, locate, and then open the document from the program's File menu.
Your screen should look like Figure 2.1.

Figure 2.1: A very simple HTML document

2.1 Writing Tools 2.3 HTML Embedded Tags

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 2
HTML Quick Start

2.3 HTML Embedded Tags
You probably have noticed right away, perhaps in surprise, that the browser displays less than half of
the example source text. Closer inspection of the source reveals that what's missing is everything
that's bracketed inside a pair of less-than (<) and greater-than (>) characters. [The Syntax of a Tag,
3.3.1]

HTML is an embedded language: you insert the language's directions or tags into the same document
that you and your readers load into a browser to view. The browser uses the information inside the
HTML tags to decide how to display or otherwise treat the subsequent contents of your HTML
document.

For instance, the <i> tag that follows the word "Hello" in the simple example tells the browser to
display the following text in italic.[1] [Physical Style Tags, 4.5]

[1] Italicized text is a very simple example and one that most browsers, except the
text-only variety like Lynx, can handle. In general, the browser tries to do as it is told, but
as we demonstrate in upcoming chapters, browsers vary from computer to computer and
from user to user, as do the fonts that are available and selected by the user for viewing
HTML documents. Assume that not all are capable or willing to display your HTML
document exactly as it appears on your screen.

The first word in a tag is its formal name, which usually is fairly descriptive of its function, too. Any
additional words in a tag are special attributes, sometimes with an associated value after an equal sign
(=), which further define or modify the tag's actions.

2.3.1 Start and End Tags

Most tags define and affect a discrete region of your HTML document. The region begins where the
tag and its attributes first appear in the source document (also called the start tag) and continues until
a corresponding end tag. An end tag is the start tag's name preceded by a forward slash (/). For
example, the end tag that matches the "start italicizing" <i> tag is </i>.

End tags never include attributes. Most tags, but not all, have an end tag. And, to make life a bit easier
for HTML authors, the browser software often infers an end tag from surrounding and obvious
context, so you needn't explicitly include some end tags in your source HTML document. (We tell you
which are optional and which are never omitted when we describe each tag in later chapters.) Our
simple example is missing an end tag that is so commonly inferred and hence not included in the
source that many veteran HTML authors don't even know that it exists. Which one?

2.2 A First HTML Document 2.4 HTML Skeleton

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 2
HTML Quick Start

2.4 HTML Skeleton
Notice, too, in our simple example source that precedes Figure 2.1, the HTML document starts and
ends with <html> and </html> tags. Of course, these tags tell the browser that the entire document
is composed in HTML. The HTML standard requires an <html> tag for every HTML document, but
most browsers can detect and properly display HTML encoding in a text document that's missing this
outermost structural tag. [<html>, 3.5]

Like our example, all HTML documents have two main structures: a head and a body, each bounded
in the source by respectively named start and end tags. You put information about the document in the
head and the contents you want displayed in the browser's window inside the body. Except in rare
cases, you'll spend most of your time working on your HTML document's body content. [<head>, 3.6]
[<body>, 3.7]

There are several different document header tags you may use to define how a particular document
fits into a document collection and into the larger scheme of the Web. Some nonstandard header tags
even animate your document.

For most documents, however, the important header element is the title. Every HTML document is
required by the HTML standard to have a title. Choose a meaningful one; the title should instantly tell
the reader what the document is about. Enclose yours, as we do for the title of our example, between
the <title> and </title> tags in your document's header. The popular browsers typically
display the title at the top of the document's window onscreen. [<title>, 3.6]

2.3 HTML Embedded Tags 2.5 The Flesh on an HTML
Document

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 2
HTML Quick Start

2.5 The Flesh on an HTML Document
Except for the <html>, <head>, <body>, and <title> tags, the HTML standard has few other
required structural elements. You're free to include pretty much anything else in the contents of your
document. (The web surfers among you know that HTML authors have taken full advantage of that
freedom, too.) Perhaps surprisingly, though, there are only three main types of HTML content: tags
(which we described previously), comments, and text.

2.5.1 Comments

Like computer-programming source code, a raw HTML document, with all its embedded tags, can
quickly become nearly unreadable. We strongly encourage that you use HTML comments to guide
your composing eye.

Although it's part of your document, nothing in a comment, including the body of your comment that
goes between the special starting tag "<!--" and ending tag delimiters "-->" gets included in the
browser display of your document. Now you see a comment in the source, like in our simple HTML
example, and now you don't on the display, as evidenced by our comment's absence in Figure 2.1.
Anyone can download the source text of the HTML document and read the comments, though, so be
careful what you write. [Comments, 3.4.3]

2.5.2 Text

If it isn't a tag or a comment, it's text. The bulk of content in most of your HTML documents - the part
readers see on their browser displays - is text. Special tags give the text structure, such as headings,
lists, and tables. Others advise the browser how the content should be formatted and displayed.

2.5.3 Multimedia

What about images and other multimedia elements we see and hear as part of our web browser
displays? Aren't they part of the HTML document? No. The data that comprise digital images,
movies, sounds, and other multimedia elements that may be included in the browser display are in
documents separate from the HTML document. You include references to those multimedia elements
via special tags in the HTML document. The browser uses the references to load and integrate other
types of documents with your HTML text.

We didn't include any special multimedia references in the previous example simply because they are
separate, nontext documents you can't just type into a text processor. We do, however, talk about and

give examples on how to integrate images and other multimedia in your HTML documents later in
this chapter, as well as in extensive detail in subsequent chapters.

2.4 HTML Skeleton 2.6 HTML and Text

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 2
HTML Quick Start

2.6 HTML and Text
Text-related HTML tags comprise the richest set of all in the standard language. That's because
HTML emerged as a way to enrich the structure and organization of text.

HTML came out of academia. What was and still is important to those early developers was the
ability of their mostly academic, text-oriented documents to be scanned and read without sacrificing
their ability to distribute documents over the Internet to a wide diversity of computer display
platforms. (ASCII text is the only universal format on the global Internet.) Multimedia integration is
something of an appendage to HTML, albeit an important one.

And page layout is secondary to structure in HTML. We humans visually scan and decide textual
relationships and structure based on how it looks; machines can only read encoded markings. Because
HTML documents have encoded tags that relate meaning, they lend themselves very well to
computer-automated searches and recompilation of content - features very important to researchers.
It's not so much how something is said in HTML as what is being said.

Accordingly, HTML is not a page-layout language. In fact, given the diversity of user-customizable
browsers as well as the diversity of computer platforms for retrieval and display of electronic
documents, all HTML strives to accomplish is to advise, not dictate, how the document might look
when rendered by the browser. You cannot force the browser to display your document in any certain
way. You'll hurt your brain if you insist otherwise.

2.6.1 Appearance of Text

For instance, you cannot predict what font and what absolute size - 8- or 40-point Helvetica, Geneva,
Subway, or whatever - will be used for a particular user's text display. Okay, so the latest browsers
now support HTML style sheets and other desktop publishing-like features that let you control the
layout and appearance of your documents. But users may change their browser's display
characteristics and override your carefully laid plans at will; quite a few of the older browsers out
there don't support these new layout features; and some browsers are text-only with no nice fonts at
all. What to do? Concentrate on content. Cool pages are a flash in the pan. Deep content will bring
people back for more and more.

Nonetheless, style does matter for readability, and it is good to include it where you can, as long as it
doesn't interfere with content presentation. You can attach common style attributes to your text with
physical style tags like the italic <i> tag in the simple example. More importantly and truer to the
language's original purpose, HTML has content-based style tags that attach meaning to various text
passages. And you can alter text display characteristics, such as font style and size, color, and so on,

with Cascading Style Sheets.

All of today's graphical browsers recognize the physical and content-related text style tags and change
the appearance of their related text passage to visually convey meaning or structure. You just can't
predict exactly what that change will look like.

2.6.1.1 Content-based text styles

Content-based style tags indicate to the browser that a portion of your HTML text has a specific usage
or meaning. The <cite> tag in our simple example, for instance, means the enclosed text is some
sort of citation - the document's author, in this case. Browsers commonly, although not universally,
display the citation text in italic, not as regular text. [Content-based Style Tags, 4.4]

While it may or may not be obvious to the current reader that the text is a citation, someday, someone
might create a computer program that searches a vast collection of HTML documents for embedded
<cite> tags and compiles a special list of citations from the enclosed text. Similar software agents
already scour the Internet for HTML-embedded information to compile listings, such as the infamous
Webcrawler and the AltaVista database of web sites.

The most common content-based style used today is that of emphasis, indicated with the tag.
And if you're feeling really emphatic, you might use the content style. Other
content-based styles include <code>, for snippets of programming code; <kbd>, to denote text
entered by the user via a keyboard; <samp>, to mark sample text; <dfn>, for definitions; and
<var>, to delimit variable names within programming code samples. All of these tags have
corre-sponding end tags.

2.6.1.2 Physical styles

Even the barest of barebones text processors conform to a few traditional text styles, such as italic and
bold characters. While HTML is not a word-processing tool in the traditional sense, it does provide
tags that tell the browser explicitly to display (if it can) a character, word, or phrase in a particular
physical style.

Although you should use related content-based tags for the reasons we argue earlier, sometimes form
is more important than function. So use the <i> tag to italicize text, without imposing any specific
meaning; the tag to display text in boldface; or the <tt> tag so that the browser, if it can,
displays the text in a teletype-style monospaced typeface. [Physical Style Tags, 4.5]

It's easy to fall into the trap of using physical styles when you should really be using a content-based
style instead. Discipline yourself now to use the content-based styles, because, as we argue earlier,
they convey meaning as well as style, thereby making your documents easier to automate and
manage.

2.6.1.3 Special text characters

Not all text characters available to you for display by a browser can be typed from the keyboard. And
some characters have special meanings in HTML, such as the brackets around tags, which if not
somehow differentiated when used for plain text - the less-than sign (<) in a math equation, for
example - will confuse the browser and trash your document. HTML gives you a way to include any
of the many different characters that comprise the ASCII character set anywhere in your text through
a special encoding of its character entity.

Like the copyright symbol in our simple example, a character entity starts with an ampersand
followed by its name, and terminated with a semicolon. Alternatively, you may also use the
character's position number in the ASCII table of characters preceded by the pound or sharp sign (#)
in lieu of its name in the character entity sequence. When rendering the document, the browser
displays the proper character, if it exists in the user's font. [Character Entities, 3.4.2]

For obvious reasons, the most commonly used character entities are the greater-than (>), less-than
(<), and ampersand (&) characters. Check Appendix E, Character Entities, to find what
symbol the character entity ¦ represents.

2.6.2 Text Structures

It's not obvious in our simple example, but the common carriage returns we use to separate paragraphs
in our source document have no meaning in HTML, except in special circumstances. You could have
typed the document onto a single line in your text editor and it would still appear the same in Figure
2.1.[2]

[2] We use a computer programming-like style of indentation so that our source HTML
documents are more readable. It's not obligatory, nor are there any formal style
guidelines for source HTML document text formats. We do, however, highly recommend
that you adopt your own consistent style, so that you and others can easily follow your
source documents.

You'd soon discover, too, if you hadn't read it here first, that except in special cases, browsers
typically ignore leading and trailing spaces, and sometimes more than a few in between. (If you look
closely at the source example, the line "Greetings from" looks like it should be indented by leading
spaces, but it isn't in Figure 2.1.)

2.6.2.1 Divisions, paragraphs, and line breaks

A browser takes the text in the body of your document and "flows" it onto the computer screen,
disregarding any common carriage-return or line-feed characters in the source. The browser fills as
much of each line of the display window as possible, beginning flush against the left margin, before
stopping after the rightmost word and moving on to the next line. Resize the browser window, and the
text reflows to fill the new space; indicating HTML's inherent flexibility.

Of course, readers would rebel if your text just ran on and on, so HTML does provide both explicit
and implicit ways to control the basic structure of your document. The most rudimentary and common
ways are with the division (<div>), paragraph (<p>), and line-break (
) tags. All break the text
flow, which consequently restarts on a new line. The differences are that the <div> and <p> tags
define an elemental region of the HTML document and text, respectively, whose contents you may
specially align within the browser window, apply text styles, and other block-related features.

Without special alignment attributes, the <div> and
 tags simply break a line of text and place
subsequent characters on the next line. The paragraph tag adds more vertical space after the line break
than either the <div> or
 tags. [The <div> Tag, 4.1.1] [<p>, 4.1] [
, 4.7]

By the way, the HTML standard includes end tags for the paragraph and division tags, but not for the
line-break tag. Few authors ever include the paragraph end tag in their documents; the browser usually
can figure out where one paragraph ends and another begins.[3] Give yourself a star if you knew that

</p> even exists.

[3] The paragraph end tag is being used more commonly now that the popular browsers
support the paragraph-alignment attribute.

2.6.2.2 Headings

Besides breaking your text into divisions and paragraphs, you also can organize your documents into
sections with headings. Just as they do on this and other pages in this printed book, HTML headings
not only divide and title discrete passages of text: they also convey meaning visually. With HTML,
however, headings also lend themselves to machine-automated analyses.

There are six HTML heading tags, <h1> through <h6>, with corresponding end tags. Typically, the
browser displays their contents in, respectively, very large to very small font sizes, and sometimes in
boldface. The text inside the <h4> tag is usually the same size as the regular text. [Heading Tags,
4.2.1]

The heading tags also typically break the current text flow, standing alone on lines and separated from
surrounding text, even though there aren't any explicit paragraph or line-break tags before or after a
heading.

2.6.2.3 Horizontal rules

Besides headings, HTML also provides horizontal rule lines that help delineate and separate the
sections of your document.

When the browser encounters an <hr> tag in your document, it breaks the flow of text and draws a
line completely across the display window on a new line. The flow of text resumes immediately
below the rule. [The <hr> Tag, 5.1.1]

2.6.2.4 Preformatted text

Occasionally, you'll want the browser to display a block of text as-is: for example, with indented lines
and vertically aligned letters or numbers that don't change even though the browser window might get
resized. The HTML <pre> tag rises to those occasions. All text up to the closing </pre> end tag
appears in the browser window exactly as you type it, including carriage returns and line feeds,
leading, trailing, and intervening spaces. Although very useful for tables and forms, <pre> text turns
out pretty dull; the popular browsers render the block in a monospace typeface. Section 4.7.5, "The
<pre> Tag" in Chapter 4

2.5 The Flesh on an HTML
Document

2.7 Hyperlinks

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 2
HTML Quick Start

2.7 Hyperlinks
While text may be the meat and bones of an HTML document, its heart is hypertext. Hypertext gives
users the ability to retrieve and display a different document in your own or someone else's collection
simply by a click of the keyboard or mouse on an associated word or phrase (hyperlink) in your
HTML document. Use these interactive hyperlinks to help readers easily navigate and find
information - in your own, or others' collections - of otherwise separate documents in a variety of
formats, including multimedia, HTML, and plain ASCII text. Hyperlinks literally bring the wealth of
knowledge on the whole Internet to the tip of the mouse pointer.

To include a hyperlink to some other document in your own collection or on a server in Timbuktu, all
you need to know is the document's unique address and how to drop an anchor into your HTML
document.

2.7.1 URLs

While it is hard to believe, given the millions, perhaps billions, of them out there, every document and
resource on the Internet has a unique address known as its uniform resource locator (URL; commonly
pronounced "you-are-ell"). A URL consists of the document's name preceded by the hierarchy of
directory names in which the file is stored (pathname), the Internet domain name of the server that
hosts the file, and the software and manner by which the browser and the document's host server
communicate to exchange the document (protocol):

protocol://server_domain_name/pathname

Here are some sample URLs:

http://www.kumquat.com/docs/catalog /price_list.html
price_list.html
http://www.kumquat.com/
ftp://ftp.netcom.com/pub/

The first example is what's known as an absolute or complete URL. It includes every part of the URL
format - protocol, server, and the pathname of the document.

While absolute URLs leave nothing to the imagination, they can lead to big headaches when you
move documents to another directory or server. Fortunately, browsers also let you use relative URLs
and automatically fill in any missing portions with respective parts from the current document's base
URL. The second example is the simplest relative URL of all; with it, the browser assumes that the
price_list.html document is located on the same server, in the same directory as the current document,

and uses the same network protocol.

Relative URLs are also useful if you don't know a directory or document's name. The third URL
example, for instance, points to kumquat.com's web home page. It leaves it up to the kumquat server
to decide what file to send along. Typically, the server delivers the first file in the directory, one
named index.html, or simply a listing of the directory's contents.

Although appearances may deceive, the last FTP example URL actually is absolute; it points directly
at the contents of the /pub directory.

2.7.2 Anchors

The anchor (<a>) tag is the HTML feature for defining both the source and the destination of a
hyperlink.[4] You'll most often see and use the <a> tag with its href attribute to define a source
hyperlink. The value of the attribute is the URL of the destination.

[4] The nomenclature here is a bit unfortunate: the "anchor" tag should mark just a
destination, not the jumping off point of a hyperlink, too. You "drop anchor"; you don't
jump off one. We won't even mention the atrociously confusing terminology the HTML
standard uses for the various parts of a hyperlink except to say that someone got things
all "bass ackwards."

The contents of the source <a> tag - the words and/or images between it and its end tag - is the
portion of the HTML document that is specially activated in the browser display and that users select
to take a hyperlink. These anchor contents usually look different from the surrounding content (text in
a different color or underlined, images with specially colored borders, or other effects), and the mouse
pointer icon changes when passed over them. The <a> tag contents, therefore, should be text or an
image (icons are great) that explicitly or intuitively tells users where the hyperlink will take them.
[The <a> Tag, 7.3.1]

For instance, the browser will specially display and change the mouse pointer when it passes over the
"Kumquat Archive" text in the following example:

For more information on kumquats, visit our

Kumquat Archive

If the user clicks the mouse button on that text, the browser automatically retrieves from the server
www.kumquat.com a web (http:) page named archive.html, and then displays it for the user.

2.7.3 Hyperlink Names and Navigation

Pointing to another document in some collection somewhere on the other side of the world is not only
cool, but it also supports your own HTML documents. Yet the hyperlinks' chief duty is to help users
navigate your collection in their search for valuable information. Hence, the concept of the home page
and supporting HTML documents has arisen.

None of your HTML documents should run on and on. First, there's a serious performance issue: the
value of your work suffers, no matter how rich it is, if the document takes forever to download, and if
once retrieved, users must endlessly scroll up and down through the display to find a particular
section.

Rather, design your work as a collection of several compact and succinct pages, like chapters in a
book, each focused to a particular topic for quick selection and browsing by the user. Then use
hyperlinks to organize that collection.

For instance, use your home page - the leading document of the collection - as a master index full of
brief descriptions and respective hyperlinks to the rest of your collection.

You should also use the special attribute of the <a> tag called name. Or, when the popular browsers
come to support the new HTML 4.0 feature, use the id attribute to specially name and identify nearly
any tagged section of your document, including the <a> anchor tag. Tag ids and anchors with the
name attribute serve as internal hyperlink targets in your HTML documents. Normally, the browser
displays a freshly downloaded document at the beginning. Name anchors let you begin the display at
the section of interest further down. Simply include them anywhere that they make sense as a
hyperlink target. They do not change the appearance of enclosed or surrounding content.

Thereafter, you may append the name, after a separating pound sign (#), as a suffix in the URL of a
hyperlink that references that specific place in your document. For instance, to reference a specific
topic in an archive, such as "Kumquat Stew Recipes" in our example Kumquat Archive, you mark that
section with a name anchor:

... preceding content...

<h3>Kumquat Stew Recipes</h3>

In the same or another document, you prepare a source hyperlink that points directly to those recipes
by including the section's anchor name as a suffix to the document's URL, separated by a pound sign:

For more information on kumquats, visit our

 Kumquat Archive,
and perhaps try one or two of our

 Kumquat Stew Recipes.

If selected by the user, the latter hyperlink causes the browser to download the archive.html document
and start the display at our "Stews" anchor.

2.7.4 Anchors Beyond HTML

HTML hyperlinks are not limited to other HTML documents. Anchors let you point to nearly any type
of document available over the Internet, including other Internet services.

However, "let" and "enable" are two different things. Browsers can manage the various Internet
services, like FTP and Gopher, so that users can download non-HTML documents. They don't yet
fully or gracefully handle multimedia.

Today, there are few standards for the many types and formats of multimedia. Computer systems
connected to the Web vary wildly in their abilities to display those sound and video formats. Except
for some graphics images, standard HTML gives you no specific provision for display of multimedia

documents except the ability to reference one in an anchor. The browser, which retrieves the
multimedia document, must activate a special helper application, download and execute an associated
applet, or have a plug-in accessory installed to decode and display it for the user right within the
document's display.

Although HTML and most web browsers currently avoid the confusion by sidestepping it, that doesn't
mean you can't or shouldn't exploit multimedia in your HTML documents: just be aware of the
limitations.

2.6 HTML and Text 2.8 Images Are Special

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 2
HTML Quick Start

2.8 Images Are Special
Image files are multimedia elements you may reference with anchors in your HTML document for
separate download and display by the browser. But, unlike other multimedia, standard HTML has an
explicit provision for image display "in line" with the text,[5] and images can serve as intricate maps
of hyperlinks. That's because there is some consensus in the industry concerning image file formats -
specifically, GIF and JPEG - and the graphical browsers have built in decoders that integrate those
image types into your document.

[5] Some browsers support other multimedia besides GIF and JPEG graphics for inline
display. Internet Explorer, for instance, supports a tag that plays background audio. In
addition, the HTML 4.0 standard provides a way to display other types of multimedia
inline with HTML document text through a general tag.

2.8.1 Inline Images

The HTML tag for inline images is ; its required src attribute is the URL of the GIF or JPEG
image you want to insert in the document. [, 5.2]

The browser separately loads images and places them into the text flow as if the image were some
special, albeit sometimes very large, character. Normally, that means the browser aligns the bottom of
the image to the bottom of the current line of text. You can change that with the special
align attribute whose value you set to put the image at the top, middle, or bottom of adjacent
text. Examine Figures Figure 2.2 through Figure 2.4 for the image alignment you prefer. Of course,
wide images may take up the whole line, and hence break the text flow. Or you may place an image
by itself, by including preceding and following division, paragraph, or line-break tags.

Figure 2.2: An inline image aligned with the bottom of the text (default)

Figure 2.3: An inline image specially aligned with the middle of the text

Figure 2.4: An inline image specially aligned with the top of the text

Experienced HTML authors use images not only as supporting illustrations, but also as quite small
inline characters or glyphs, added to aid browsing readers' eyes and to highlight sections of the
documents. Veteran HTML authors commonly add custom list bullets or more distinctive section
dividers than the conventional horizontal rules. Images, too, may be included in a hyperlink, so that
users may select an inline thumbnail sketch to download a full-screen image. The possibilities with
inline images are endless.

2.8.2 Image Maps

Image maps are images within an anchor with a special attribute: they may contain more than one
hyperlink.

One way to enable an image map is by adding the ismap attribute to an tag placed inside an

anchor tag (<a>). When the user clicks somewhere in the image, the graphical browser sends the
relative x,y coordinates of the mouse position to the server that is also designated in the anchor. A
special server program then translates the image coordinates into some special action, such as
downloading another HTML document. [Server-side considerations , 7.5.1.1]

A good example of the use of an image map might be to locate a hotel while traveling. The user clicks
on a map of the region they intend to visit, for instance, and your image map's server program might
return the names, addresses, and phone numbers of local accommodations.

While very powerful and visually appealing, these standard so-called server-side image maps mean
that HTML authors must have some access to the map's coordinate-processing program on the server.
Many authors don't even have access to the server. A better solution is to take advantage of client-side
image maps.

Rather than depending on a web server, the usemap attribute for the tag and the <map> and
<area> tags allow HTML authors to embed all the information the browser needs to process an
image map in the same document as the image. Because of their reduced network bandwidth and
server independence, client-side image maps are becoming increasingly popular among HTML
authors. [Client-side Image Maps, 7.5.2]

2.7 Hyperlinks 2.9 Lists, Searchable
Documents, and Forms

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 2
HTML Quick Start

2.9 Lists, Searchable Documents, and Forms
Thought we'd exhausted HTML text elements? Headers, paragraphs, and line breaks are just the
rudimentary text-organizational elements of an HTML document. The language also provides several
advanced text-based structures, including three types of lists, "searchable" documents, and forms.
Searchable documents and forms go beyond text formatting, too; they are a way to interact with your
readers. Forms let users enter text and click checkboxes and radio buttons to select particular items
and then send that information back to the server. Once received, a special server application
processes the form's information and responds accordingly, e.g., filling a product order or collecting
data for a user survey.[6]

[6] The server-side programming required for processing forms is beyond the scope of
this book. We give some basic guidelines in the appropriate chapters, but please consult
the server documentation and your server administrator for details.

The HTML syntax for these special features and their various attributes can get rather complicated;
they're not quick-start grist. So we mention them here and urge you to read on for details in later
chapters.

2.9.1 Unordered, Ordered, and Definition Lists

The three types of HTML lists match those we are most familiar with: unordered, ordered, and
definition lists. An unordered list - one in which the order of items is not important, such as a laundry
or grocery list - gets bounded by and tags. Each item in the list, usually a word or short
phrase, is marked by the (list-item) tag and, when rendered, appears indented from the left
margin. The browser also typically precedes each item with a leading bullet symbol. [, 8.1] [,
8.3]

Ordered lists, bounded by the and tags, are identical in format to unordered ones,
including the tag for marking list items. However, the order of items is important - equipment
assembly steps, for instance. The browser accordingly displays each item in the list preceded by an
ascending number. [, 8.2]

Definition lists are slightly more complicated than unordered and ordered lists. Within a definition
list's enclosing <dl> and </dl> tags, each list item has two parts, each with a special tag: a short
name or title, contained within a <dt> tag, followed by its corresponding value or definition, denoted
by the <dd> tag. When rendered, the browser usually puts the item name on a separate line (although
not indented), and the definition, which may include several paragraphs, indented below it. [<dl>, 8.7]

The various types of lists may contain nearly any type of content normally allowed in the body of the
HTML document. So you can organize your collection of digitized family photographs into an
ordered list, for example, or put them into a definition list complete with text annotations. HTML
even lets you put lists inside of lists (nesting), opening up a wealth of interesting combinations.

2.9.2 Searchable Documents

The simplest type of user interaction provided by HTML is the searchable document. You create a
searchable HTML document by including an <isindex> tag in its header or body. The browser
automatically provides some way for the user to type one or more words into a text input box, and to
pass those keywords to a related processing application on the server.[7] [<isindex>, 7.6]

[7] Few authors have used the tag, apparently. The <isindex> tag has been
"deprecated" in HTML version 4.0; sent out to pasture, so to speak, but not yet laid to
rest.

The processing application on the server uses those keywords to do some special task, such as
perform a database search or match the keywords against an authentication list to allow the user
special access to some other part of your document collection.

2.9.3 Forms

Obviously, searchable documents are very limited - one per document and only one user input
element. Fortunately, HTML provides better, more extensive support for collecting user input though
forms.

You create one or more special form sections in your HTML document, bounded with the <form>
and </form> tags. Inside the form, you may put predefined as well as customized text-input boxes
allowing for both single and multiline input. You may also insert checkboxes and radio buttons for
single- and multiple-choice selections, and special buttons that work to reset the form or send its
contents to the server. Users fill out the form at their leisure, perhaps after reading the rest of the
document, and then click a special send button that makes the browser send the form's data to the
server. A special server-side program you provide then processes the form and responds accordingly,
perhaps by requesting more information from the user, modifying subsequent HTML documents the
server sends to the user, and so on. [<form>, 10.2]

HTML forms provide everything you might expect of an automated form, including input area labels,
integrated contents for instructions, default input values, and so on - except automatic input
verification; your server-side program or client-side applets need to perform that function.

2.8 Images Are Special 2.10 Tables

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 2
HTML Quick Start

2.10 Tables
For a language that emerged from academia - a place steeped in data - it's not surprising to find that
HTML supports a set of tags for data tables that not only align your numbers, but can specially format
your text, too.

Five tags enable tables, including the <table> tag itself and a <caption> tag for including a
description of the table. Special tag attributes let you change the look and dimensions of the table.
You create a table row by row, putting between the table row (<tr>) tag and its end tag (</tr>)
either table header (<th>) or table data (<td>) tags and their respective contents for each cell in the
table. Headers and data may contain nearly any regular HTML content, including text, images, forms,
and even another table. As a result, you can also use HTML tables for advanced text formatting, such
as for multicolumn text and sidebar headers (see Figure 2.5). For more information, see Chapter 11,
Tables.

Figure 2.5: HTML tables let you perform page layout tricks, too

2.9 Lists, Searchable
Documents, and Forms

2.11 Frames

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 2
HTML Quick Start

2.11 Frames
Anyone who has had more than one application window open on their graphical desktop at a time can
immediately appreciate the benefits of frames. Frames let you divide the browser window into
multiple display areas, each containing a different document. For more information on frames, see
Chapter 12, Frames.

Figure 2.6 is an example of a frame display. It shows how the document window may be divided into
many individual windows separated by rule lines and scroll bars. What is not immediately apparent in
the example, though, is that each frame may display an independent document, and not necessarily
HTML ones, at that. A frame may contain any valid content that the browser is capable of displaying,
including multimedia. If the frame's contents include a hypertext link the user selects, the new
document's contents, even another frame document, may replace that same frame, another frame's
content, or the entire browser window.

Figure 2.6: Frames divide the window into many document displays

Frames are defined in a special HTML document in which you replace the <body> tag with one or
more <frameset> tags that tell the browser how to divide its main window into discrete frames.
Special <frame> tags go inside the <frameset> tag and point to the documents that go inside the
frames.

The individual documents referenced and displayed in the frame document window act independently,
to a degree; the frame document controls the entire window. You can, however, direct one frame's
document to load new content into another frame. Selecting an item from a table of contents, for
example, might cause the browser to load and display the referenced document into an adjacent frame
for viewing. That way, the table of contents always is available to the user as he or she browses the
collection.

2.10 Tables 2.12 Style Sheets and
JavaScript

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 2
HTML Quick Start

2.12 Style Sheets and JavaScript
The very latest browsers also have support for two powerful innovations to HTML: style sheets and
JavaScript. Like their desktop-publishing cousins, style sheets let you control how your HTML pages
look - text font styles and sizes, colors, backgrounds, alignments, and so on. More importantly, style
sheets give you a way to impose display characteristics uniformly over the entire document and over
an entire collection of documents.

JavaScript is a programming language with functions and commands that let you control how the
browser behaves for the user. Now, this is not a programming book, but there are two reasons we
mention JavaScript here and cover the language in fair detail in later chapters. First, you embed
JavaScript programs directly into your HTML documents to achieve some very powerful and fun
effects. Second, it is through JavaScript that the folks at Netscape also implement style sheets in their
latest browser.

The World Wide Web Consortium - the putative standards organization - prefers that you use the
Cascading Style Sheets (CSS) model for HTML document design. The latest versions of Netscape and
Internet Explorer (both Version 4 at the time we wrote this book) support CSS and JavaScript, but
only Netscape supports JavaScript-based Style Sheets (JSS).

To illustrate the differences between CSS and JSS, here are the two ways you can make all the
top-level (H1) header text in your HTML document appear in the color red. First, using CSS:

<html>
<head>
<title>CSS Example</title>
<!-- Hide CSS properties within comments so old browsers
don't choke on or display the unfamiliar contents. -->
 <style type="text/CSS">
 <!--
 H1 {color: red}
 -->
 </style>
</head>
<body>
<H1>I'll be red if your browser supports CSS</H1>
Something in between.
<H1>I should be red, too!</H1>
</body>

</html>

Using JSS:

<html>
<head>
<title>JSS Example</title>
 <style type="text/javascript">
 <!--
 tags.H1.color = "red"
 //-->
 </style>
</head>
<body>
<H1> I'll be red if your browser supports JSS</H1>
Something in between.
<H1>I should be red, too!</H1>
</body>
</html>

The examples are nearly identical, but the devil is in the details. Both have their own peculiar syntax
that is unfamiliar to most everyone except programmers. The nastiest detail, however, and one that
will drive many an HTML author batty, is that JSS, like its parent JavaScript language, is
case-sensitive - type "h1" instead of "H1" in the style description and you ain't gonna see red. Type
"h1" in the CSS style description (or in the tag, for that matter) and it still works.

Frankly, we prefer the CSS way for the very reason of its forgiving nature, as we explain in Chapter 9,
Cascading Style Sheets, even though JSS is a more powerful and comprehensive accessory. And you
may otherwise become quite familiar with JavaScript by using the language to extend the capabilities
of your HTML documents. In that case, adopting JSS with its case-sensitive warts may not be all that
daunting, maybe even an easy transition (that's perhaps what Netscape is hoping).

You get a taste of the JavaScript language in the previous JSS example. It is an object-oriented
language. It views your document and the browser that displays your documents as a collection of
parts ("objects") that have certain properties that you may change or compute. This is some very
powerful stuff, but not something that most HTML authors will want to handle. Rather, most of us
probably will snatch the quick and easy, yet powerful JavaScript applets that proliferate across the
Web and embed them in our own HTML documents. We tell you how (JSS too) in Chapter 13,
Executable Content.

2.11 Frames 2.13 Forging Ahead

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 2
HTML Quick Start

2.13 Forging Ahead
Clearly, this chapter represents the tip of the iceberg. If you've read this far, hopefully your appetite
has been whetted for more. By now you've got a basic understanding of the scope and features of
HTML; proceed through subsequent chapters to expand your knowledge and learn more about each
feature of HTML.

2.12 Style Sheets and
JavaScript

3. Anatomy of an HTML
Document

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 3

3. Anatomy of an HTML Document
Contents:
Appearances Can Deceive
Structure of an HTML Document
HTML Tags
Document Content
HTML Document Elements
The Document Header
The Document Body
Editorial Markup
The <bdo> Tag

HTML documents are very simple, and writing one shouldn't intimidate even the most timid of
computer users. First, although you might use a fancy WYSIWYG editor to help you compose it, an
HTML document is ultimately stored, distributed, and read by a browser as a simple ASCII text
file.[1] That's why even the poorest user with a barebones text editor can compose the most elaborate
of HTML pages. (Accomplished webmasters often elicit the admiration of HTML "newbies" by
composing astonishingly cool pages using the crudest text editor on a cheap laptop computer and
performing in odd places like on a bus or in the bathroom.) HTML writers should, however, keep
several of the popular browsers on hand and alternate among them to view new documents under
construction. Remember, browsers differ in how they display a page; not all browsers implement all
of the HTML standards; and some have their own special extensions to the language.

[1] Informally, both the text and the markup tags in an HTML document are ASCII
characters. Technically, unless you specify otherwise, text and tags are made up of
eight-bit characters as defined in the standard ISO-8859-1 Latin character set. The
HTML standard does support alternative character encoding, including Arabic and
Cyrillic. See Appendix E, Character Entities, for details.

3.1 Appearances Can Deceive
HTML documents never look alike when displayed by a text editor and when displayed by an HTML
browser. Simply take a look at any source HTML document off the World Wide Web. At the very
least, return characters, tabs, and leading spaces, although important for readability of the source text
document, are ignored for the most part in HTML. There also is a lot of extra text in an HTML source
document, mostly from the display tags and interactivity markers and their parameters that affect

portions of the document, but don't themselves appear in the display.

Accordingly, new HTML authors are confronted with having to develop not only a presentation style
for their HTML pages, but a different style for their HTML source text. The source document's layout
should highlight the programming-like markup aspects of HTML, not its display aspects. And it
should be readable not only by you, the author, but by others, as well.

Experienced HTML document writers typically adopt a programming-like style, albeit very relaxed,
for their source HTML text. We do the same throughout this book, and that style will become
apparent as you compare our source HTML examples with the actual display of the document by a
browser.

Our formatting style is simple, but serves to create readable, easily maintained documents:

Except for the document structural tags like <html>, <head>, and <body>, any HTML
element we used to structure the content of a document is placed on a separate line and indented
to show its nesting level within the document. Such elements include lists, forms, tables, and
similar tags.

●

Any HTML element used to control the appearance or style of text is inserted in the current line
of text. This includes basic font style tags like (bold text) and document linkages like <a>
(hypertext anchor).

●

Avoid, where possible, the breaking of a URL onto two lines.●

Add extra newline characters to set apart special sections of the HTML document; for instance,
around paragraphs or tables.

●

The task of maintaining the indentation of your source HTML ranges from trivial to onerous. Some
text editors, like Emacs, manage the indentation automatically; others, like common word processors,
couldn't care less about indentation and leave the task completely up to you. If your editor makes your
life difficult, you might consider striking a compromise, perhaps by indenting the tags to show
structure, but leaving the actual text without indentation to make modifications easier.

No matter what compromises or stands you make on source code style, it's important that you adopt
one. You'll be very glad you did when you go back to that HTML document you wrote three months
ago searching for that really cool trick you did with. . . . Now, where was that?

2.13 Forging Ahead 3.2 Structure of an HTML
Document

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 3
Anatomy of an HTML

Document

3.2 Structure of an HTML Document
An HTML document consists of text, which defines the content of the document, and tags, which
define the structure and appearance of the document. The structure of an HTML document is simple,
consisting of an outer <html> tag enclosing the document head and body:

<html>
<head>
<title>Barebones HTML Document</title>
</head>
<body>
This illustrates, in a very <i>simp</i>le way,
the basic structure of an HTML document.
</body>
</html>

Each document has a head and a body, delimited by the <head> and <body> tags. The head is
where you give your HTML document a title and where you indicate other parameters the browser
may use when displaying the document. The body is where you put the actual contents of the HTML
document. This includes the text for display and document control markers (tags) that advise the
browser how to display the text. Tags also reference special-effects files, including graphics and
sound, and indicate the hot spots (hyperlinks and anchors) that link your document to other
documents.

3.1 Appearances Can Deceive 3.3 HTML Tags

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 3
Anatomy of an HTML

Document

3.3 HTML Tags
For the most part, HTML document tags are simple to understand and use, since they are made up of
common words, abbreviations, and notations. For instance, the <i> and </i> tags tell the browser
respectively to start and stop italicizing the text characters that come between them. Accordingly, the
syllable "simp" in our barebones HTML example would appear italicized on a browser display.

The HTML standard and its various extensions define how and where you place tags within a
document. Let's take a closer look at that syntactic sugar that holds together all HTML documents.

3.3.1 The Syntax of a Tag

Every HTML tag consists of a tag name, sometimes followed by an optional list of tag attributes, all
placed between opening and closing brackets (< and >). The simplest tag is nothing more than a name
appropriately enclosed in brackets, such as <head> and <i>. More complicated tags contain one or
more attributes, which specify or modify the behavior of the tag.

Tag and attribute names are not case-sensitive. There's no difference in effect between <head>,
<Head>, <HEAD>, or even <HeaD>; they are all equivalent. The values that you assign to a
particular attribute may be case-sensitive, however, depending on your browser and server. In
particular, file location and name references - universal resource locators (URLs) - are case-sensitive.
[Referencing Documents: The URL, 7.2]

Tag attributes, if any, belong after the tag name, each separated by one or more tab, space, or return
characters. Their order of appearance is not important.

A tag attribute's value, if any, follows an equal sign (=) after the attribute name. You may include
spaces around the equal sign, so that width=6, width = 6, width =6, and width= 6 all mean
the same. For readability, however, we prefer not to include spaces. That way, it's easier to pick out an
attribute/value pair from a crowd of pairs in a lengthy tag.

If an attribute's value is a single word or number (no spaces), you may simply add it after the equal
sign. All other values should be enclosed in single or double quotation marks, especially those values
that contain several words separated by spaces. The length of the value is limited to 1024 characters.

Most browsers are tolerant of how tags are punctuated and broken across lines. Nonetheless, avoid
breaking tags across lines in your source document whenever possible. This rule promotes readability
and reduces potential errors in your HTML documents.

3.3.2 Sample Tags

Here are some tags with attributes:

<ul compact>
<input type=text name=filename size=24 maxlength=80>
<link title="Table of Contents">

The first example is the <a> tag for a hyperlink to O'Reilly & Associates' World Wide Web-based
catalog of products. It has a single attribute, href, followed by the catalog's address in cyberspace -
its URL.

The second example shows a tag that formats text into an unordered list of items. Its single attribute -
compact, which limits the space between list items - does not require a value.

The third example shows a tag with multiple attributes, each with a value that does not require
enclosing quotation marks.

The last example shows proper use of enclosing quotation marks when the attribute value is more than
one word long.

Finally, what is not immediately evident in these examples is that while attribute names are not
case-sensitive (href works the same as HREF and HreF), most attribute values are case-sensitive.
The value filename for the name attribute in the <input> tag example is not the same as the
value Filename, for instance.

3.3.3 Starting and Ending Tags

We alluded earlier to the fact that most HTML tags have a beginning and an end and affect the portion
of content between them. That enclosed segment may be large or small, from a single text character,
syllable, or word, such as the italicized "simp" syllable in our barebones example, to the <html> tag
that bounds the entire document. The starting component of any tag is the tag name and its attributes,
if any. The corresponding ending tag is the tag name alone, preceded by a slash. Ending tags have no
attributes.

3.3.4 Proper and Improper Nesting

Tags can be put inside the affected segment of another tag (nested) for multiple tag effects on a single
segment of the HTML document. For example, a portion of the following text is both bold and
included as part of an anchor defined by the <a> tag:

<body>
This is some text in the body, with a
link, a portion of which
is set in bold
</body>

According to the HTML standard, you must end nested tags starting with the most recent one and
work your way back out. For instance in the example, we end the bold tag () before ending the

link tag () since we started in the reverse order: <a> tag first, then tag. It's a good idea to
follow that standard, even though most browsers don't absolutely insist you do so. You may get away
with violating this nesting rule for one browser, sometimes even with all current browsers. But
eventually a new browser version won't allow the violation and you'll be hard pressed to straighten out
your source HTML document.

3.3.5 Tags Without Ends

According to the HTML standard, only a few tags do not have an ending tag. In fact, the standard
forbids use of an end tag for these special ones, although most browsers are lenient and ignore the
errant end tag. For example, the
 tag causes a line break; it has no effect otherwise on the
subsequent portion of the document and, hence, does not need an ending tag.

The HTML tags that do not have corresponding ending tags in HTML 4.0 are:

<area>

<base>

<basefont>

<col>

<frame>

<hr>

<input>

<isindex>

<link>

<meta>

<param>

3.3.6 Omitting Tags

You often see documents in which the author seemingly has forgotten to include many ending tags in
apparent violation of the HTML standard. But your browser doesn't complain, and the documents
displays just fine. What gives? The HTML standard lets you omit certain tags or their endings for
clarity and ease of preparation. The HTML standard writers didn't intend the language to be tedious.

For example, the <p> tag that defines the start of a paragraph has a corresponding end tag </p>, but
the </p> ending tag rarely is used. In fact, many HTML authors don't even know it exists! [<p>, 4.1]

Rather, the HTML standard lets you omit a starting tag or ending tag whenever it can be
unambiguously inferred by the surrounding context. Many browsers make good guesses when
confronted with missing tags, leading the document author to assume that a valid omission was made.
When in doubt, add the ending tag: it'll make life easier for yourself, the browser, and anyone else
who might need to modify your document in the future.

3.3.7 Ignored or Redundant Tags

Browsers sometimes ignore tags. This usually happens with redundant tags whose effects merely
cancel or substitute for themselves. The best example is a series of <p> tags, one after the other with
no intervening content. Unlike the similar series of repeating return characters in a text-processing
document, most browsers skip to a new line only once. The extra <p> tags are redundant and usually
ignored by the browser.

In addition, most browsers ignore any tag that they don't understand or that was incorrectly specified
by the document author. Browsers habitually forge ahead and make some sense of a document, no
matter how badly formed and error-ridden it may be. This isn't just a tactic to overcome errors; it's
also an important strategy for extensibility. Imagine how much harder it would be to add new features
to the language if the existing base of browsers choked on them.

The thing to watch out for with nonstandard tags that aren't supported by most browsers is their
enclosed contents, if any. Browsers that recognize the new tag may process those contents differently
than those that don't support the new tag. For example, Internet Explorer and Netscape Navigator now
both support the <style> tag, whose contents serve to set the variety of display characteristics of
your document. However, most previous versions of the popular browsers, many of which are still in
use by many people today, don't support styles. Hence, older browsers ignore the <style> tag and
render its contents on the user's screen, effectively defeating the tag's purpose in addition to ruining
the document's appearance. [Document-level Style Sheets, 9.1.2]

3.2 Structure of an HTML
Document

3.4 Document Content

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 3
Anatomy of an HTML

Document

3.4 Document Content
Nearly everything else you put into your HTML document that isn't a tag is by definition content, and
the majority of that, in most HTML documents, is text. Like tags, document content is encoded using
a specific character set, the ISO-8859-1 Latin character set, by default. This character set is a superset
of conventional ASCII, adding the necessary characters to support the Western European languages.
If your keyboard does not allow you to enter directly the characters you need, you can use character
entities to insert the desired characters.

3.4.1 Advice Versus Control

Perhaps the hardest rule to remember when marking up an HTML document is that all the tags you
insert regarding text display and formatting are only advice for the browser: they do not explicitly
control how the browser will display the document. In fact, the browser can choose to ignore all of
your tags and do what it pleases with the document content. What's worse, the user (of all people!) has
control over the text-display characteristics of his or her own browser.

Get used to this lack of control. The best way to use HTML markup to control the appearance of your
documents is to concentrate on the content of the document, not on its final appearance. If you find
yourself worrying excessively about spacing, alignment, text breaks, and character positioning, you'll
surely end up with ulcers. You will have gone beyond the intent of HTML. If you focus on delivering
information to users in an attractive manner, using the tags to advise the browser as to how best to
display that information, you are using HTML effectively, and your documents will render well on a
wide range of browsers.

3.4.2 Character Entities

Besides common text, HTML gives you a way to display special text characters that you might not
normally be able to include in your source document or that have other purposes in HTML. A good
example is the less-than or opening bracket (<) symbol. In HTML, it normally signifies the start of a
tag, so if you insert it simply as part of your text, the browser will get confused and probably
misinterpret your document.

In HTML, the ampersand character instructs the browser to insert a special character, formally known
as a character entity. For example, the command < inserts that pesky less-than symbol into the
rendered text. Similarly, > inserts the greater-than symbol, and & inserts an ampersand.
There can be no spaces between the ampersand, the entity name, and the required, trailing semicolon.
(Semicolons aren't special characters; you don't need to use an ampersand sequence to display a

semicolon normally.)

You also may replace the entity name after the ampersand with a pound symbol and a decimal value
between 0 and 255 corresponding to the entity's position in the character set. Hence, the sequence
< does the same thing as < and represents the less-than symbol. In fact, you could substitute
all the normal characters within an HTML document with ampersand-special characters, such as
A for a capital "A" or a for its lowercase version, but that would be silly. A complete
listing of all characters, their names, and numerical equivalents can be found in Appendix E.

Keep in mind that not all special characters can be rendered by all browsers. Some browsers just
ignore many of the special characters; with others, the characters aren't available in the character sets
on a specific platform. Be sure to test your documents on a range of browsers before electing to use
some of the more obscure character entities.

3.4.3 Comments

Comments are another type of textual content that appear in the source HTML document, but are not
rendered by the user's browser. Comments fall between the special <!-- and --> markup elements.
Browsers ignore the text between the comment character sequences.

Here's a sample comment:

<!-- This is a comment -->
<!-- This is a
multiple line comment
that ends on this line -->

There must be a space after the initial <!-- and preceding the final -->, but otherwise you can put
nearly anything inside the comment. The biggest exception to this rule is that the HTML standard
doesn't let you nest comments.[2]

[2] Netscape does let you nest comments, but the practice is tricky; you cannot always
predict how other browsers will react to nested comments.

Internet Explorer also lets you place comments within a special <comment> tag. Everything between
the <comment> and </comment> tag is ignored by Internet Explorer, but all other browsers will
display the comment to the user. Because of this undesirable behavior, we do not recommend using
the <comment> tag for comments. Instead, always use the <!-- and --> sequences to delimit
comments.

Besides the obvious use of comments for HTML source documentation, many World Wide Web
servers use comments to take advantage of features specific to the document server software. These
servers scan the document for specific character sequences within conventional HTML comments and
then perform some action based upon the commands embedded in the comments. The action might be
as simple as including text from another file (known as a server-side include) or as complex as
executing other commands on the server to generate the document contents dynamically.

3.3 HTML Tags 3.5 HTML Document
Elements

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 3
Anatomy of an HTML

Document

3.5 HTML Document Elements
Every HTML document should conform to the HTML SGML DTD, the formal Document Type
Definition that defines the HTML standard. The DTD defines the tags and syntax that are used to
create an HTML document. You can inform the browser which DTD your document complies with by
placing a special SGML (Standard Generalized Markup Language) command in the first line of the
document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN">

This cryptic message indicates that your document is intended to be compliant with the HTML 4.0
final DTD defined by the World Wide Web Consortium (W3C). Other versions of the DTD define
more restricted versions of the HTML standard, and not all browsers support all versions of the
HTML DTD. In fact, specifying any other doctype may cause the browser to misinterpret your
document when displaying it for the user. It's also unclear what doctype to use when including in the
HTML document the various tags that are not standards, but are very popular features of a popular
browser - the Netscape extensions, for instance, or even the deprecated HTML 3.0 standard, for which
a DTD was never released.

Almost no one precedes their HTML documents with the SGML doctype command. Because of the
confusion of versions and standards, we don't recommend that you include the prefix with your
HTML documents either.

3.5.1 The <html> Tag

As we saw earlier, the <html> and </html> tags serve to delimit the beginning and end of an
HTML document. Since the typical browser can easily infer from the enclosed source that it is an
HTML document, you don't really need to include the tag in your source document.

<html>

Function:

Delimits a complete HTML document

Attributes:

DIRLANGVERSION

End tag:

</html>; may be omitted

Contains:

head_tag, body_tag, frames

That said, it's considered good form to include this tag so that other tools, particularly more mundane
text-processing ones, can recognize your document as an HTML document. At the very least, the
presence of the beginning and ending <html> tags ensures that the beginning or the end of the
document haven't been inadvertently deleted.

Inside the <html> tag and its end tag are the document's head and body. Within the head, you'll find
tags that identify the document and define its place within a document collection. Within the body is
the actual document content, defined by tags that determine the layout and appearance of the
document text. As you might expect, the document head is contained within a <head> tag and the
body is within a <body> tag, both of which are defined later.

The <body> tag may be replaced by a <frameset> tag, defining one or more display frames that,
in turn, contain actual document content. See Chapter 12, Frames, for more information.

By far, the most common form of the <html> tag is simply:

<html>
document head and body content
</html>

When the <html> tag appears without the version attribute, the HTML document server and
browser assume the version of HTML used in this document is supplied to the browser by the server.

3.5.1.1 The dir attribute

The dir attribute specifies in which direction the browser should render text within the containing
element. When used within the <html> tag, it determines how text will be presented within the entire
document. When used within another tag, it controls the text's direction for just the content of that tag.

By default, the value of this tag is ltr, indicating that text is presented to the user left-to-right. Use
the other value, rtl, to display text right-to left for languages like Chinese or Hebrew.

3.5.1.2 The lang attribute

When included within the <html> tag, the lang attribute specifies the language you've generally
used within the document. When used within other tags, the lang attribute specifies the language you
used within that tag's content. Ideally, the browser will use lang to better render the text for the user.

Set the value of the lang attribute to an ISO-639 standard two-character language code. You may
also indicate a dialect by following the ISO language code with a dash and a subcode name. For
example, "en" is the ISO language code for English; "en-US" is the complete code for US English.
Other common language codes include "fr" (French), "de" (German), "it" (Italian), "nl" (Dutch), "el"
(Greek), "es" (Spanish), "pt" (Portuguese), "ar" (Arabic), "he" (Hebrew), "ru" (Russian), "zh"
(Chinese), "ja" (Japanese), and "hi" (Hindu).

3.5.1.3 The version attribute

The version attribute defines the HTML standard version used to compose the document. Its value
should read exactly:

version="-//W3C//DTD HTML 4.0//EN"

In general, version information within the <html> tag is more trouble than it is worth, and this
attribute has been deprecated in HTML 4.0. Serious authors should instead use an SGML
<!doctype> tag at the beginning of their documents, like this:

<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0//EN"
 "http://www.w3c.org/TR/REC-html40/strict.dtd">

3.4 Document Content 3.6 The Document Header

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 3
Anatomy of an HTML

Document

3.6 The Document Header
The HTML document header describes the various properties of the document, including its title,
position within the Web, and relationship with other documents. Most of the data contained within the
document header are never actually rendered as content visible to the user.

3.6.1 The <head> Tag

The <head> tag serves to encapsulate the other header tags. Place it at the beginning of your
document, just after the <html> tag and before the <body> or <frameset> tag. Both the
<head> tag and its corresponding ending </head> can be unambiguously inferred by the browser
and so can be safely omitted from the document. Nonetheless, we do encourage you to include them
in your documents, since it promotes readability and better supports document automation.

<head>

Function:

Defines the document header

Attributes:

DIRLANGPROFILE

End tag:

</head>; rarely omitted

Contains:

head_content

Used in:

html_tag

The <head> tag may contain a number of other tags that help define and manage the document's
content. These include, in any order of appearance: <base>, <isindex>, <link>, <meta>,
<nextid>, <object>, <script>, <style>, and <title>.

3.6.1.1 The dir and lang attributes

The dir and lang attributes help extend HTML to an international audience. [The dir attribute,

3.5.1.1] [The lang attribute, 3.5.1.2]

3.6.1.2 The profile attribute

Often, the header of an HTML document contains a number of <meta> tags used to convey
additional information about the document to the browser. In the future, authors may use predefined
profiles of standard document meta-data to better describe their documents. The profile attribute
supplies the URL of the profile associated with the current document.

The format of a profile and how it might be used by a browser are not yet defined; this attribute is
primarily a placeholder for future development.

3.6.2 The <title> Tag

The <title> tag does exactly what you might expect: the words you place inside its start and end
tags define the title for your document. (We told you this stuff is pretty much self-explanatory and
easier than you might think at first glance.) The title is used by the browser in some special manner,
most often placed in the browser window's title bar or on a status line. Usually, too, the title becomes
the default name for a link to the document if the document is added to a link collection or to a user's
"hot list."

<title>

Function:

Defines the document title

Attributes:

DIRLANG

End tag:

</title>; never omitted

Contains:

plain_text

Used in:

head_content

The <title> tag is the only thing required within the <head> tag. Since the <head> tag itself and
even the <html> tag may be safely omitted, the <title> tag could be the first line within a valid
HTML document. Beyond that, most browsers will even supply a generic title for documents lacking
a <title> tag, such as the document's filename, so you don't even have to supply a title. That goes a
bit too far even for our down-and-dirty tastes. No respectable author of an HTML document should
serve up a document missing the <title> tag and a title.

Browsers do not specially format title text and ignore anything other than text inside the title start and
end tags, such as images or links to other documents.

Here's an even barer barebones example of a valid HTML document to highlight the header and title
tags:

<html>
<head>
<title>HTML: The Definitive Guide</title>
</head>
</html>

3.6.2.1 What's in a title?

Selecting the right title is crucial to defining a document and ensuring that it can be effectively used
within the World Wide Web.

Keep in mind that users can access each of your documents in a collection in nearly any order and
independently of one another. Each document's title should therefore define the document both within
the context of your other documents as well as on its own merits.

Titles that include references to document sequencing are usually inappropriate. Simple titles, like
"Chapter 2" or "Part VI" do little to help a user understand what the document might contain. More
descriptive titles, such as "Chapter 2: Advanced Square Dancing" or "Part VI: Churchill's Youth and
Adulthood," convey both a sense of place within a larger set of documents and specific content that
invites the reader to read on.

Self-referential titles also aren't very useful. A title like "My Home Page" is completely content-free,
as are titles like "Feedback Page" or "Popular Links." You want a title to convey a sense of content
and purpose so that users can decide, based upon the title alone, whether to visit that page or not. "The
Kumquat Lover's Home Page" is descriptive and likely to draw in lovers of the bitter fruit, as are
"Kumquat Lover's Feedback Page" and "Popular Links Frequented by Kumquat Lovers."

People spend a great deal of time creating documents for the Web, often only to squander that effort
with an uninviting, ineffective title. As special software that automatically collects links for users
becomes more prevalent on the Web, the only descriptive phrase associated with your pages when
they are inserted into some vast link database will be the title you choose for them. We can't
emphasize this enough: take care to select descriptive, useful, context-independent titles for each of
your HTML documents.

3.6.2.2 The dir and lang attributes

The dir and lang attributes help extend HTML to an international audience. [The dir attribute,
3.5.1.1] [The lang attribute, 3.5.1.2]

3.6.3 Related Header Tags

Other tags you may include within the <head> tag deal with specific aspects of document creation,
management, linking, automation, or layout. That's why we only mention them here, and describe
them in greater detail in other, more appropriate sections and chapters of this book.

Briefly, the special header tags are:

<base> and <link>

Define the current document's base location and relationship to other documents. [<base>, 7.7]
[<link>, 7.7]

<isindex>

Deprecated in HTML 4.0, the <isindex> tag at one time could be used to create automatic
document indexing forms, allowing users to search databases of information using the current
document as a querying tool. [<isindex>, 7.6]

<nextid>

Not supported in HTML 4.0, the <nextid> tag makes creation of unique document labels
easier when using document automation tools. [<nextid>, 7.8]

<meta>

Provides additional document data not supplied by any of the other <head> tags. [<meta>,
7.8]

<object>

Defines methods by which nonstandard objects can be rendered by the browser. [The <object>
Tag, 13.2.1]

<script>

Defines one or more scripts that can be invoked by elements within the document. [The
<script> Tag, 13.3.1]

<style>

Lets you create Cascading Style Sheet properties to control body-content display characteristics
for the entire document. [<style>, 9.1]

3.5 HTML Document
Elements

3.7 The Document Body

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 3
Anatomy of an HTML

Document

3.7 The Document Body
The document body is the meat of the matter; it's where you put the contents of your document. The
<body> tag delimits the document body.

3.7.1 The <body> Tag

Within HTML 4.0, the <body> tag has a number of attributes that control the color and background
of your document. Various browsers, as we'll see, have extended the tag to give even greater control
over your document's appearance.

<body>

Function:

Defines the document body

Attributes:

ALINK ONKEYPRESS

BACKGROUND ONKEYUP

BGCOLOR ONLOAD

BGPROPERTIES ONMOUSEDOWN

CLASS ONMOUSEMOVE

DIR ONMOUSEOUT

ID ONMOUSEOVER

LANG ONMOUSEUP

LEFTMARGIN ONUNLOAD

LINK STYLE

ONBLUR TEXT

ONCLICK TITLE

ONDBLCLICK TOPMARGIN

ONFOCUS VLINK

ONKEYDOWN

End tag:

</body>; may be omitted

Contains:

body_content

Used in:

html_tag

Anything inside the <body> tag and its ending counterpart </body> is called body content. The
simplest HTML document might have only a sequence of text paragraphs within the <body> tag.
More complex documents will include heavily formatted text, graphical figures, tables, and a variety
of special effects.

Since the position of the <body> and </body> tags can be inferred by the browser, they can safely
be omitted from the document. However, like the <html> and <head> tags, we recommend that
you include the <body> tags in your document to make them more easily readable and maintainable.

The various attributes for the <body> tag can be loosely grouped into three sets: those that give you
some control over the document's appearance, those that associate programmable functions with the
document itself, and those that label and identify the body for later reference. We address the
appearance attributes (alink, background, bgcolor, bgproperties, leftmargin, link,
text, topmargin, and vlink) in Chapter 5, Rules, Images, and Multimedia; the class and
style attributes for cascading style sheets in Chapter 9, Cascading Style Sheets; JavaScript style
sheets and the programmatic attributes (the "on-event" ones) in Chapter 13, Executable Content; the
language attributes (dir and lang) earlier in this chapter in sections 3.5.1.1 and 3.5.1.2; and the
identification attributes (id and title) in [Text Basics, 4]. [The dir attribute, 3.5.1.1] [The lang
attribute, 3.5.1.2] [The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5]

3.7.2 Frames

HTML 4.0 defines a special type of HTML document in which you replace the <body> tag with one
or more <frameset> tags. This so-called frame document divides the display window into one or
more independent windows, each displaying a different document. We thoroughly describe this
innovation in Chapter 12.

3.6 The Document Header 3.8 Editorial Markup

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 3
Anatomy of an HTML

Document

3.8 Editorial Markup
HTML 4.0 introduces two new tags that can help groups of authors collaborate in the development of
documents and maintain some semblance of editorial and version control. The new insert (<ins>)
and delete () tags let you designate portions of your document's body as either new/added
content, or old stuff that should be replaced, respectively. And with special attributes, you may
indicated when you made the change (datetime) and a reference to a document that may explain
the change (cite).

3.8.1 The <ins> and Tags

The new <ins> and tags let HTML 4.0 authors set off portions of body contents they intend
to add to or delete from the current version of their HTML document. HTML 4.0-compliant browsers
display the contents of the <ins> or tags in some special way so that readers can quickly
scan the document for the changes.

<ins> and

Function:

Defines inserted and deleted document content

Attributes:

CITE ONKEYPRESS

CLASS ONKEYUP

DATETIME ONMOUSEDOWN

DIR ONMOUSEMOVE

ID ONMOUSEOUT

LANG ONMOUSEOVER

ONCLICK ONMOUSEUP

ONDBLCLICK STYLE

ONKEYDOWN TITLE

End tag:

</ins> and ; never omitted

Contains:

body_content

Used in:

body_content

We can't tell you how browsers will display these editorially marked sections, since the standard does
not dictate how, nor are there any browsers yet available that implement the tags. Indeed, today's
popular browsers ignore the <ins> and tags and blithely render the enclosed content as a
regular part of the document.

3.8.1.1 The cite attribute

The cite attribute lets you document the reasons for the insertion or deletion. Its value must be a
URL that points to some other document that explains the inserted text.

3.8.1.2 The datetime attribute

Although the reason for the change is important, knowing when a change was made is often more
important. The datetime attribute for the <ins> and tags takes a single value: a specially
encoded date and time stamp.

The rigorous format for the datetime value is YYYY-MM-DDThh:mm:ssTZD. The components are:

YYYY is the year, such as 1998 or 2001.●

MM is the month; 01 for January through 12 for December.●

DD is the day; 01 through 31.●

T is a required character designating the beginning of the time segment of the stamp.●

hh is the hour in 24-hour format; 00 (midnight) through 23 (11 P.M.). (Add a following colon
if you include the minutes.)

●

mm are the minutes on the hour; 00 through 59. (Add a following colon if you include the
seconds.)

●

ss are the seconds; 00 through 59.●

TZD is the time zone designator. It can be one of three values: Z, indicating Greenwich Mean
Time,[3] or the hours, minutes, and seconds before (-) or after (+) Coordinated Universal Time
(UTC) where time is relative to the time in Greenwich, England.

[3] Greenwich Mean Time is also known as `Zulu,' thus the value of `Z.'

●

For example:

1998-02-22T14:26Z

decodes to February 22, 1998 at 2:26 P.M. To specify Eastern Standard Time, the code for the same
time and date is:

1998-02-22T19:26-05:00

Notice that the local time zone may change depending on where the document gets edited, whereas
the universal time will stay the same.

3.8.1.3 The class, dir, event, id, lang, style, title, and events attributes

There are several nearly universal attributes for the many HTML tags. These attributes give you a
common way to identify (title) and label (id) a tag's contents for later reference or automated
treatment; to change the contents' display characteristics (class, style); and to reference the
language used (lang) and related direction the text should flow (dir). There are also input events
that may happen in and around the tagged contents that you may react to via an on-event attribute and
some programming. [The dir attribute, 3.5.1.1] [The lang attribute, 3.5.1.2] [The id attribute, 4.1.1.4]
[The title attribute, 4.1.1.5] [Inline Styles: The style Attribute, 9.1.1] [Style Classes, 9.2.4] [JavaScript
Event Handlers, 13.3.3]

3.8.2 Using Editorial Markup

The uses of <ins> and are obvious to anyone who has used a "boilerplate" document or
form, or who has collaborated with others in the preparation of a document.

For example, law firms typically have a collection of online legal documents that are specially
completed for each client. Law clerks usually do the "fill in," and the final document gets reviewed by
a lawyer. To highlight where the clerk made changes in the document so that they are readily evident
to the reviewer, use the <ins> tag to indicate the clerk's added text and the tag to mark the
text that was replaced. Optionally use the cite and datetime attributes to indicate when and why
the changes were made.

For example, the clerk might fill in a boilerplate document with the law firm's and representative's
names, indicating the time and source for the change:

The party of the first part, as represented by
<ins datetime=1998-06-22T08:30Z
 cite="http://www.mull+dull.com/tom_duller.html">
Thomas Muller of Muller and Duller
</ins>
[insert representation here]

The editorial markup tags could also be used by HTML editing tools to denote how documents were
modified as authors make changes over a period of time. With the correct use of the cite and
datetime attributes, it would be possible to recreate a version of a document from a specific point
in time.

3.7 The Document Body 3.9 The <bdo> Tag

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 3
Anatomy of an HTML

Document

3.9 The <bdo> Tag
As we've mentioned earlier, the authors of the latest HTML standard have made a concerted effort to
include standard ways web agents (browsers) are supposed to treat and display the many different
human languages and dialects. Accordingly, the HTML 4.0 standard contains the universal dir and
lang attributes that let you explicitly advise the browser that the whole document or specific tagged
segments within it are in a particular language. These language-related attributes, then, may effect
some display characteristics; for example, the dir attribute tells the browser to write the words across
the display from either left to right (dir=ltr), as for most Western languages, or right to left
(dir=rtl), as for many Asian languages. [The dir attribute, 3.5.1.1] [The lang attribute, 3.5.1.2]

However, the various Unicode and ISO standards for language encoding and display may conflict
with your best intentions. In particular, the contents of some other documents, such as a
MIME-encoded file, you may embed in your own already may be properly formatted and your HTML
document may misadvise the browser to undo that encoding. Hence, the HTML 4.0 standard has the
<bdo> tag. With it, you override any current and inherited dir specifications. And with the tag's
required dir attribute, you definitively specify the direction by which the tag's contents should be
displayed.

Admittedly, the effects of the <bdo> tag are a bit esoteric and the opportunities to use it currently are
rare, particularly considering that no popular browser yet supports it.

<bdo>

Function:

Overrides bidirectional algorithms for content display

Attributes:

DIR

LANG

End tag:

</bdo>; never omitted

Contains:

text

Used in:

body_content

3.8 Editorial Markup 4. Text Basics

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 4

4. Text Basics
Contents:
Divisions and Paragraphs
Headings
Changing Text Appearance
Content-based Style Tags
Physical Style Tags
Expanded Font Handling
Precise Spacing and Layout
Block Quotes
Addresses
Special Character Encoding

Any successful presentation, even a thoughtful tome, should have its text organized into an attractive,
effective document. Organizing text into attractive documents is HTML's forte. The language gives
you a number of tools that help you mold your text and get your message across. HTML also helps
structure your document so that your target audience has easy access to your words.

Always keep in mind while designing your documents (here we go again!) that HTML tags,
particularly in regard to text, only advise - they do not dictate - how a browser will ultimately render
the document. Rendering varies from browser to browser. Don't get too entangled with trying to get
just the right look and layout. Your attempts may and probably will be thwarted by the browser.

4.1 Divisions and Paragraphs
Like most text processors, a browser wraps the words it finds in the HTML text to fit the horizontal
width of its viewing window. Widen the browser's window and words automatically flow up to fill the
wider lines. Squeeze the window and words wrap downwards.

Unlike most text processors, however, HTML uses explicit division (<div>), paragraph (<p>), and
line-break (
) tags to control the alignment and flow of text. Return characters, although quite
useful for readability of the source HTML document, typically are ignored by the browser - HTML
authors must use the
 to explicitly force a common text line break. The <p> tag, while also
performing the task, carries with it meaning and effects beyond a simple line break.

The <div> tag is a little different. Originally codified in the HTML 3.2 standard, <div> was
included in the language to be a simple organizational tool - divide the document into discrete

sections - whose somewhat obtuse meaning meant few authors used it. But recent innovations -
alignment, styles, and the id attribute for document referencing and automation - now let you more
distinctly label and thereby define individual sections of your HTML documents, as well as control
the alignment and appearance of those sections. These features breathe real life and meaning into the
<div> tag.

By associating an id and a class name with the various sections of your HTML document, each
delimited by a <div id=name class=name> tag and attributes (you can do the same with other
tags like <p>, too), you not only label those divisions for later reference by a hyperlink and for
automated processing and management (collect all the bibliography divisions, for instance), but you
may also define different, distinct display styles for those portions of your document. For instance,
you might define one divisional class for your document's abstract (<div class=abstract>, for
example), another for the body, a third for the conclusion, and a fourth divisional class for the
bibliography (<div class=biblio>, for example).

Each class, then, might be given a different display definition in a document-level or externally
related style sheet: the abstract indented and in an italic typeface (such as DIV.abstract
{left-margin: +0.5in; font-style: italic}); the body in a left-justified roman
typeface; the conclusion similar to the abstract; and the bibliography automatically numbered and
formatted appropriately.

We provide a detailed description of style sheets, classes, and their applications in Chapter 9,
Cascading Style Sheets.

4.1.1 The <div> Tag

As defined in the HTML 4.0 standard, the <div> tag divides your document into separate, distinct
sections. It may be used strictly as an organizational tool, without any sort of formatting associated
with it; it becomes more effective if you add the id and class attribute to label the division. The
<div> tag may also be combined with the align attribute to control the alignment of whole
sections of your document's content in the display, and with the many programmatic "on" attributes
for user interaction.

<div>

Function:

Defines a block of text

Attributes:

ALIGN ONKEYPRESS

CLASS ONKEYUP

DIR ONMOUSEDOWN

ID ONMOUSEMOVE

LANG ONMOUSEOUT

NOWRAP ONMOUSEOVER

ONCLICK ONMOUSEUP

ONDBLCLICK STYLE

ONKEYDOWN TITLE

End tag:

</div>; usually omitted

Contains:

body_content

Used in:

block

4.1.1.1 The align attribute

The align attribute for <div> positions the enclosed content to either the left (default),
center, or right of the display. In addition, you can specify justify to align both the left and
right margins of the text, although no browser currently supports this value. The <div> tag may be
nested, and the alignment of the nested <div> tag takes precedence over the containing <div> tag.
Further, other nested alignment tags, such as <center>, aligned paragraphs (see <p> in section
4.1.2), or specially aligned table rows and cells, override the effect of <div>. Like the align
attribute for other tags, it is deprecated in the HTML standard in deference to style sheet-based layout
controls.

4.1.1.2 The nowrap attribute

Supported only by Internet Explorer, the nowrap attribute suppresses automatic word wrapping of
the text within the division. Line breaks will occur where you have placed carriage returns in your
HTML source document.

While the nowrap attribute probably doesn't make much sense for large sections of text that would
otherwise be flowed together on the page, it can make things a bit easier when creating blocks of text
with many explicit line breaks: poetry, for example, or addresses. You don't have to insert all those
explicit
 tags in a text flow within a <div nowrap> tag. On the other hand, all other browsers
ignore the nowrap attribute and merrily flow your text together anyway. If you are targeting only
Internet Explorer with your documents, consider using nowrap where needed, but otherwise, we
can't recommend this attribute for general use.

4.1.1.3 The dir and lang attributes

The dir attribute lets you advise the browser as to which direction the text ought to be displayed, and
the lang attribute lets you specify the language used within the division. [The dir attribute, 3.5.1.1]
[The lang attribute, 3.5.1.2]

4.1.1.4 The id attribute

Use the id attribute to label the document division specially for later reference by a hyperlink, style
sheet, applet, or other automated process. An acceptable id value is any quote-enclosed string that
uniquely identifies the division, and that later can be to used to reference that document section

unambiguously. Although we're introducing it within the context of the <div> tag, this attribute can
be used with almost any HTML tag.

When used as an element label, the value of the id attribute can be added to a URL to address the
labelled element uniquely within the document. You can label both large portions of content (via a tag
like <div>) or small snippets of text (using a tag like <i> or). For example, you might
label the abstract of a technical report using <div id=abstract>. A URL could jump right to
that abstract by referencing report.html#abstract. When used in this manner, the value of the
id attribute must be unique with respect to all other id attributes within the document, and all the
names defined by any <a> tags with the name attribute. [Linking Within a Document, 7.3.3]

When used as a style-sheet selector, the value of the id attribute is the name of a style rule that can be
associated with the current tag. This provides a second set of definable style rules, similar to the
various style classes you can create. A tag can use both the class and id attributes to apply two
different rules to a single tag. In this usage, the name associated with the id attribute must be unique
with respect to all other style ids within the current document. A more complete description of style
classes and ids can be found in Chapter 9.

4.1.1.5 The title attribute

Use the optional title attribute and quote-enclosed string value to associate a descriptive phrase
with the division. Like the id attribute, the title attribute can be used with almost any HTML tag
and behaves similarly for all tags.

There is no defined usage for the value of the title attribute, and many browsers simply ignore it.
Internet Explorer, however, will display the title associated with any HTML element when the mouse
pauses over that element. Used correctly, the title attribute could be used in this manner to provide
spot help for the various elements within your document.

4.1.1.6 The class and style attributes

Use the style attribute with the <div> tag to create an inline style for the content enclosed by the
tag. The class attribute lets you apply the style of a predefined class of the <div> tag to the
contents of this division. The value of the class attribute is the name of a style defined in some
document-level or externally defined style sheet. In addition, class-identified divisions also lend
themselves well for computer processing of your documents, such as extraction of all divisions whose
class name is "biblio," for example, for the automated assembly of a master bibliography. [Inline
Styles: The style Attribute, 9.1.1] [Style Classes, 9.2.4]

4.1.1.7 Event attributes

The many user-related events that may happen in and around a division, such as when a user clicks or
double-clicks the mouse within its display space, are recognized by the browser if it conforms to the
HTML 4.0 specification (none do fully). With the respective "on" attribute and value, you may react
to that event by displaying a user dialog box, or activating some multimedia event. Section 13.3.3,
"JavaScript Event Handlers" in Chapter 13

4.1.2 The <p> Tag

The <p> tag signals the start of a paragraph. That's not well known even by some veteran
webmasters, because it runs counterintuitive to what we've come to expect from experience. Most
word processors we're familiar with use just one special character, typically the return character, to
signal the end of a paragraph.

<p>

Function:

Defines a paragraph of text

Attributes:

ALIGN ONKEYUP

CLASS ONMOUSEDOWN

DIR ONMOUSEMOVE

ID ONMOUSEOUT

LANG ONMOUSEOVER

ONCLICK ONMOUSEUP

ONDBLCLICK STYLE

ONKEYDOWN TITLE

ONKEYPRESS

End tag:

</p>; usually omitted

Contains:

text

Used in:

block

In the recommended HTML way, each paragraph starts with <p> and ends with the corresponding
</p> tag. And while a sequence of newline characters in a text processor-displayed document creates
an empty paragraph for each one, HTML browsers typically ignore all but the first paragraph tag.

In practice, you also can ignore the starting <p> tag at the beginning of the first paragraph, as well as
the </p> tag at the end of all paragraphs, since they can be implied from other tags that occur in the
document, and hence safely omitted. For example:

<body>
This is the first paragraph, at the very beginning of the
body of this document.
<p>

The tag above signals the start of this second paragraph.
When rendered by a browser, it will begin slightly below the
end of the first paragraph, with a bit of extra white space
between the two paragraphs.
<p>
This is the last paragraph in the example.
</body>

Notice that we haven't included the paragraph start tag (<p>) for the first paragraph or any end
paragraph tags at all in the example; they can be unambiguously inferred by the browser and are
therefore unnecessary.

In general, you'll find that human document authors tend to omit postulated tags whenever possible,
while automatic document generators tend to insert them. That may be because the software designers
didn't want to run the risk of having their product chided by competitors as not adhering to the HTML
standard, even though we're splitting letter-of-the-law hairs here. Go ahead and be defiant: omit that
first paragraph's <p> tag and don't give a second thought to paragraph ending </p> tags, provided, of
course, that your document's structure and clarity are not compromised.

4.1.2.1 Paragraph rendering

When encountering a new paragraph (<p>) tag, a browser typically inserts one blank line plus some
extra vertical space into the document before starting the new paragraph. The browser then collects all
the words and, if present, inline images into the new paragraph, ignoring leading and trailing spaces
(not spaces between words, of course) and return characters in the HTML text. The browser software
then flows the resulting sequence of words and images into a paragraph that fits within the margins of
its display window, automatically generating line breaks as needed to wrap the text within the
window. For example, compare how a browser arranges the text into lines and paragraphs (Figure 4.1)
to how the preceding HTML example is printed on the page. The browser may also automatically
hyphenate long words, and the paragraph may be full-justified to stretch the line of words out towards
both margins.

Figure 4.1: Browsers ignore common return characters in the source HTML document

The net result is that you do not have to worry about line length, word wrap, and line breaks when
composing your HTML documents. The browser will take any arbitrary sequence of words and
images and display a nicely formatted paragraph.

If you want to control line length and breaks explicitly, consider using a preformatted text block with
the <pre> tag. If you need to force a line break, use the
 tag. [<pre>, 4.7] [
, 4.7]

4.1.2.2 The align attribute

Most browsers automatically left-justify a new paragraph. To change this behavior, HTML 4.0 gives
you the align attribute for the <p> tag and provides four kinds of content justification: left, right,
center, or justify.

Figure 4.2 shows you the effect of various alignments as rendered from the following source:

<p align=right>
Right over here!

This is too.
<p align=left>
Slide back left.
<p align=center>
Smack in the middle.
<p align=justify>
Stretched to the limit.
</p>
Left is the default.

Figure 4.2: Effect of the align attribute on paragraph justification (Internet Explorer 4)

Notice in the example that the paragraph alignment remains in effect until the browser encounters
another <p> tag or an ending </p> tag. We deliberately left out a final <p> tag in the example to
illustrate the effects of the </p> end tag on paragraph justification. Other body elements may also
disrupt the current paragraph alignment and cause subsequent paragraphs to revert to the default left
alignment, including forms, headers, tables, and most other body content-related tags.

Note that the align attribute is deprecated in HTML 4.0 in deference to style sheet-based
alignments.

4.1.2.3 The dir and lang attributes

The dir lets you advise the browser as to which direction the text within the paragraph ought to be
displayed, and the lang attribute lets you specify the language used within that paragraph. The dir
and lang attributes are supported by the popular browsers, even though there are no behaviors
defined for any specific language. [The dir attribute, 3.5.1.1] [The lang attribute, 3.5.1.2]

4.1.2.4 The class, id, style, and title attributes

Use the id attribute to create a label for the paragraph that can later be to used to unambiguously
reference that paragraph in a hyperlink target, for automated searches, as a style-sheet selector, and
with a host of other applications. [The id attribute, 4.1.1.4]

Use the optional title attribute and quote-enclosed string value to provide a descriptive phrase for
the paragraph. [The title attribute, 4.1.1.5]

Use the style attribute with the <p> tag to create an inline style for the paragraph's contents. The
class attribute lets you label the paragraph with a name that refers to a predefined class of the <p>
tag declared in some document-level or externally defined style sheet. And, class-identified
paragraphs lend themselves well for computer processing of your documents, such as extraction of all
paragraphs whose class name is "citation," for example, for automated assembly of a master list of
citations. [Inline Styles: The style Attribute, 9.1.1] [Style Classes, 9.2.4]

4.1.2.5 Event attributes

Like with divisions, there are many user-initiated events, such as when a user clicks or double-clicks
within its display space, that are recognized by the browser if it conforms to the HTML 4.0
specification (none do fully). With the respective "on" attribute and value, you may react to that event
by displaying a user dialog box or activating some multimedia event. [JavaScript Event Handlers,
13.3.3]

4.1.2.6 Allowed paragraph content

An HTML paragraph may contain any element allowed in a text flow, including conventional words
and punctuation, links (<a>), images (), line breaks (
), font changes (, <i>, <tt>,
<u>, <strike>, <big>, <small>, <sup>, <sub>, and), and content-based style
changes (<acronym>, <cite>, <code>, <dfn>, , <kbd>, <samp>, , and
<var>). If any other element occurs within the paragraph, it implies that the paragraph has ended,
and the browser assumes that the closing </p> tag was not specified.

4.1.2.7 Allowed paragraph usage

You may specify a paragraph only within a block, along with other paragraphs, lists, forms, and
preformatted text. In general, this means that paragraphs can appear where a flow of text is
appropriate, such as in the body of a document, an element in a list, and so on. Technically,
paragraphs cannot appear within a header, anchor, or other element whose content is strictly text-only.
In practice, most browsers ignore this restriction and format the paragraph as a part of the containing

element.

3.9 The <bdo> Tag 4.2 Headings

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 4
Text Basics

4.2 Headings
Users have a hard enough time reading what's displayed on a screen. A long flow of text, unbroken by
title, subtitles, and other headers, crosses the eyes and numbs the mind, not to mention the fact that it
makes it nearly impossible to scan the text for a specific topic.

You should always break a flow of text into several smaller sections within one or more headings
(like this book!). HTML defines six levels of headings that can be used to structure a text flow into a
more readable, more manageable document. And, as we discuss in Chapter 5, Rules, Images, and
Multimedia, and in Chapter 9, there are a variety of graphical and text-style tricks that help divide
your HTML document and make its contents more accessible as well as more readable to users.

4.2.1 Heading Tags

The six heading tags, written as <h1>, <h2>, <h3>, <h4>, <h5>, and <h6>, indicate the highest
(<h1>) to the lowest (<h6>) precedence a heading may have in the document.

<h1>, <h2>, <h3>, <h4>, <h5>, <h6>

Function:

Define one of six levels of headers

Attributes:

ALIGN ONKEYUP

CLASS ONMOUSEDOWN

DIR ONMOUSEMOVE

ID ONMOUSEOUT

LANG ONMOUSEOVER

ONCLICK ONMOUSEUP

ONDBLCLICK STYLE

ONKEYDOWN TITLE

ONKEYPRESS

End tag:

</h1>, </h2>, </h3>, </h4>, </h5>, </h6>; never omitted

Contains:

text

Used in:

body_content

The enclosed text within a heading typically is uniquely rendered by the browser, depending upon the
display technology available to it. The browser may choose to center, embolden, enlarge, italicize,
underline, or change the color of headings to make each stand out within the document. And to thwart
the most tedious HTML writers, users, too, often can alter how a browser will render the different
headings.

Fortunately, in practice most browsers use a diminishing character point size for the sequence of
headers, so that <h1> text is quite large and <h6> text is quite minuscule (see Figure 4.3, for
example).

Figure 4.3: Browsers typically use diminishing text sizes for rendering headings

By tradition, HTML authors have come to use <h1> headers for document titles, <h2> headers for
section titles, and so on, often matching the way many of us were taught to outline our work with
heads, subheads, and sub-subheads.

Finally, don't forget to include the appropriate heading end tags in your document. The browser won't
insert one automatically for you, and omitting the ending tag for a heading can have disastrous
consequences for your document.

4.2.1.1 The align attribute

The default heading alignment for most browsers is left. Like the <div> and <p> tags, you can
alter this alignment with the align attribute and one of the values left, center, right, or
justify. Figure 4.4 shows these alternative alignments as rendered from the following source:

<h1 align=right>Right over here!</h1>
<h2 align=left>Slide back left.</h2>
<h3 align=center>Smack in the middle.</h3>

Figure 4.4: The headings align attribute in action

The justify value for align is not supported yet by any browser, and don't hold your breath. The
align attribute is deprecated in HTML 4.0 in deference to style sheet-based controls.

4.2.1.2 The dir and lang attributes

The dir attribute lets you advise the browser as to which direction the text within that paragraph
ought to be displayed, and lang lets you specify the language used within the heading. [The dir
attribute, 3.5.1.1] [The lang attribute, 3.5.1.2]

4.2.1.3 The class, id, style, and title attributes

Use the id attribute to create a label for the heading that can later be to used to unambiguously
reference that heading in a hyperlink target, for automated searches, as a style-sheet selector, and with
a host of other applications. [The id attribute, 4.1.1.4]

Use the optional title attribute and quote-enclosed string value to provide a descriptive phrase for
the heading. [The title attribute, 4.1.1.5]

Use the style attribute with the heading tags to create an inline style for the headings' contents. The
class attribute lets you label the heading with a name that refers to a predefined class declared in
some document-level or externally defined style sheet. [Inline Styles: The style Attribute, 9.1.1] [Style
Classes, 9.2.4]

4.2.1.4 Event attributes

User-initiated events that may happen in and around a heading each are recognized by the browser if
it conforms to the HTML 4.0 specification (none do fully). With the respective "on" attribute and
value, you may react to that event by displaying a user dialog box or activating some multimedia
event. [JavaScript Event Handlers, 13.3.3]

4.2.2 Appropriate Use of Headings

It's good form to repeat your document's title in the first heading tag, since the title you specify at the
beginning of your HTML document doesn't appear in the user's main display window. The title should
match the one in the document's <head>. The following HTML segment is a good example of
repeating the document's title in the header and in the body of the document:

<html>
<head>
<title>Kumquat Farming in North America</title>
</head>
<body>
<h3>Kumquat Farming in North America</h3>
<p>
Perhaps one of the most enticing of all fruits is the...

While the browser may place the title somewhere in the document window and may also use it to
create bookmarks or hotlist entries, all of which vaguely are somewhere on the user's desktop, the
level three title heading in the example will always appear at the very beginning of the document. It
serves as a visible title to the document regardless of how the browser handles the <title> tag
contents. And, unlike the <title> text, the heading title will appear at the beginning of the first
page should the user elect to print the document. [<title>, 3.6]

In the example, we chose to use a level three heading (<h3>) whose rendered font typically is just a
bit larger than the regular document text. Levels one and two are larger still and often a bit
overbearing. You should choose a level of heading that you find useful and attractive and use that
level consistently throughout your documents.

Once you have established the top-level heading for your document, use additional headings at the
same or lower level throughout to add structure and "scanability" to the document. If you use a level
three heading for the document title, break your document into several sections using level four
headings. If you have the urge to subdivide your text further, consider using a level two heading for
the title, level three for the section dividers, and level four for the subsections.

4.2.3 Using Headings for Smaller Text

For most graphical browsers, the fonts used to display <h1>, <h2>, and <h3> headers are larger,
<h4> is the same, and <h5> and <h6> are smaller than the regular text size. HTML writers typically
use the latter two sizes for boilerplate text, like a disclaimer or a copyright notice. And it's become
quite popular to use the smaller text in Tables of Contents or home pages that display a site's contents.
Experiment with <h5> and <h6> to get the effect you want. See how a typical browser renders the
copyright reference in the following sample HTML segment (see Figure 4.5):

resulting in years of successful kumquat production
throughout North America.
</p>
<h6>This document copyright 1995 by the Kumquat Growers of
America. All rights reserved. </h6>
</body>
</html>

Figure 4.5: HTML authors typically use heading level six for boilerplate text

4.2.4 Allowed Heading Content

A heading may contain any element allowed in text, including conventional text, link anchors (<a>),
images (), line breaks (
), font embellishments (, <i>, <tt>, <u>, <strike>,
<big>, <small>, <sup>, <sub>, and), and content-based style changes (<acronym>,
<cite>, <code>, <dfn>, , <kbd>, <samp>, , and <var>). In practice,
however, font or style changes may not take effect within a heading, since the heading itself
prescribes a font change within the browser.

There is widespread abuse of the heading tags as a mechanism for changing the font of an entire
document. Technically, paragraphs, lists, and other block elements are not allowed within a heading
and may be mistaken by the browser to indicate the implied end of the heading. In practice, most
browsers apply the style of the heading to all contained paragraphs. We discourage this practice since
it is not only a violation of the HTML standard, but usually ugly to look at. Imagine if your local
paper printed all the copy in headline type!

Of course, designating large sections of text as heading content defeats the purpose of the tag. If you
really want to change the entire font or type size of your document, consider instead defining a unique
style for the <body> tag of your document. This style will be applied to all the content within the
<body> and will make later modification of your document style much easier. See Chapter 9 for
details.

And we strongly recommend that you carefully test your pages with more than one browser and at
several different resolutions. As to be expected, your <h6> text may be readable at 320 × 480
resolution, but disappear on a 600 × 800 display.

4.2.5 Allowed Heading Usage

Formally, the HTML standard allows headings only within body content. In practice, most browsers
recognize headings almost anywhere, formatting the rendered text to fit within the current element. In
all cases, the occurrence of a heading signifies the end of any preceding paragraph or other text
element, so you can't use the heading tags to change font sizes in the same line. Rather, use styles to
achieve those acute display effects. [Inline Styles: The style Attribute, 9.1.1]

4.2.6 Adding Images to Headings

It is possible to insert one or more images within your headings, from small bullets or icons to
full-sized logos. Combining a consistent set of headings with corresponding icons across a family of
documents is not only visually attractive, but an effective way of aiding users' perusal of your
document collection. [, 5.2]

Adding an image to a heading is easy. For example, the following text puts an "information" icon
inside the "For More Information" heading, as you can see in Figure 4.6:

<h2>

For More Information</h2>

In general, images within headings look best at the beginning of the heading, aligned with the bottom
or middle of the heading text.

Figure 4.6: An image within a heading

4.1 Divisions and Paragraphs 4.3 Changing Text
Appearance

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 4
Text Basics

4.3 Changing Text Appearance
HTML has a number of tags that change the appearance of and can associate hidden meaning with
text. In general, these tags can be grouped into two flavors: content-based styles and physical styles.

In addition, the W3C standard for Cascading Style Sheets is now well-supported by the popular
browsers, providing another, more comprehensive way by which HTML authors may control the look
and layout of their document text. Netscape also has implemented style sheets through JavaScript. We
describe the HTML tag-based text styles in this chapter. See Chapter 9 for details about Cascading
Style Sheets, and Chapter 13, Executable Content, for JavaScript-based style sheets.

4.3.1 Content-based Styles

Content-based style tags inform the browser that the enclosed text has a specific meaning, context, or
usage. The browser then formats the text in a manner consistent with that meaning, context, or usage.

Because font style is specified via semantic clues, the browser can choose a display style that is
appropriate for the user. Since such styles vary by locale, using content-based styles helps ensure that
your documents will have meaning to a broader range of readers. This is particularly important when
a browser is targeted at blind or handicapped readers whose display options are radically different
from conventional text or are extremely limited in some way.

The HTML standard does not define a format for each of the content-based styles except that they
must be rendered in a manner different from the regular text in a document. The standard doesn't even
insist that the content-based styles be rendered differently from one another. In practice, you'll find
that many of these tags have fairly obvious relationships with conventional print, having similar
meanings and rendered styles, and are rendered in the same style and fonts by most browsers.

4.3.2 Physical Styles

We use the word "intent" a lot when we talk about content-based style tags. That's because the
meaning conveyed by the tag is more important than the way a browser displays the text. In some
cases, however, you might want the text to appear explicitly in some special way - italic or bold, for
example - perhaps for legal or copyright reasons. In those cases, use a physical style for the text.

While the tendency with other text-processing systems is to control style and appearance explicitly,
with HTML you should avoid explicit, physical tags except on rare occasions. Rather, provide the
browser with as much contextual information as possible. Use the content-based styles. Even though
current browsers may do nothing more than display their text in italic or bold, future browsers and

various document-generation tools may use the content-based styles in any number of creative ways.

4.2 Headings 4.4 Content-based Style Tags

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 4
Text Basics

4.4 Content-based Style Tags
It takes discipline to use the content-based styles, since it is easier to simply think of how your text should look, not necessarily
what it may also mean. Once you get started using content-based styles, your documents will be more consistent and better
lend themselves to automated searching and content compilation.

Content-based Style Tags

Function:

Alter the appearance of text based upon the meaning, context, or usage of the text

Attributes:

ALIGN ONKEYUP

CLASS ONMOUSEDOWN

DIR ONMOUSEMOVE

ID ONMOUSEOUT

LANG ONMOUSEOVER

ONCLICK ONMOUSEUP

ONDBLCLICK STYLE

ONKEYDOWN TITLE

ONKEYPRESS

End tag:

Never omitted

Contains:

text

Used in:

text

4.4.1 The <abbr> Tag

The <abbr> tag indicates that the enclosed text is an abbreviated form of a longer word or phrase. The browser might use this
information to change the way it renders the enclosed text. Since none of the popular browsers yet support this tag first
introduced in HTML 4.0, we can't predict how they might implement it.

4.4.2 The <acronym> Tag

The <acronym> tag indicates that the enclosed text is an acronym, an abbreviation formed from the first letter of each word
in a name or phrase, such as HTML and IBM. None of the popular browsers yet support this HTML 4.0 addition to the stable
of content-based style tags, so we can't show you how they might render <acronym>-tagged text.

4.4.3 The <cite> Tag

The <cite> tag usually indicates that the enclosed text is a bibliographic citation like a book or magazine title. By
convention, the citation text is rendered in italic. For example, see Figure 4.7 for how Internet Explorer renders this source
text:

While kumquats are not mentioned in Melville's
<cite>Moby Dick</cite>, it is nonetheless apparent
that the mighty cetacean represents the bitter
"kumquat-ness" within every man. Indeed, when Ahab
spears the beast, its flesh is tough, much like the noble fruit.

Use the <cite> tag to set apart any reference to another document, especially those in the traditional media, such as books,
magazines, journal articles, and the like. If an online version of the referenced work exists, you also should enclose the citation
within the <a> tag and make it a hyperlink to that online version.

Figure 4.7: Internet Explorer renders <cite> in italic

The <cite> tag also has a hidden feature: it enables you or someone else to automatically extract a bibliography from your
documents. It is easy to envision a browser that compiles tables of citations automatically, displaying them as footnotes or as a
separate document entirely. The semantics of the <cite> tag go far beyond changing the appearance of the enclosed text;
they enable the browser to present the content to the user in a variety of useful ways.

4.4.4 The <code> Tag

Software code warriors have become accustomed to a special style of text presentation for their source programs. The <code>
tag is for them. It renders the enclosed text in a monospaced, teletype-style font like Courier familiar to most programmers and
readers of O'Reilly's series of books, including this one.

This following bit of en<code>ed text is rendered in monospaced font style by Netscape as shown in Figure 4.8:

The array reference <code>a[i]</code> is identical to
the pointer reference <code>*(a+i)</code>.

Figure 4.8: Use <code> to present computer-speak

You should use the <code> tag only for text that represents computer source code or other machine-readable content. While
the <code> tag usually just makes text appear in a monospaced font, the implication is that it is source code and future
browsers may add other display effects. For example, a programmer's browser might look for <code> segments and perform
some additional text formatting like special indentation of loops and conditional clauses. If the only effect you desire is a
monospaced font, use the <tt> tag instead.

4.4.5 The <dfn> Tag

Use <dfn> to tag those defining instances of special terms or phrases. It may not result in any formatting changes by the
browser. Instead, <dfn> might assist in creating a document index or glossary.

For example, use the <dfn> tag to introduce a new phrase to the reader:

When analyzing annual crop yields, <dfn>rind spectroscopy</dfn> may prove useful. By
comparing the relative levels of saturated hydrocarbons in fruit from adjacent trees,
rind spectroscopy has been shown to be 87% effective in predicting an outbreak of
trunk dropsy in trees under four years old.

Notice that we delimit only the first occurrence of "rind spectroscopy" with a <dfn> tag in the example. Good style tells us
not to clutter the text with highlighted text. As with the many other content-related and physical style tags, the fewer the
better.[1] As a general style, especially in technical documentation, set off new terms when they are first introduced to help
your readers better understand the topic at hand, but resist tagging the terms thereafter.

[1] If you need convincing that less is better when applying the content-based and physical style tags, try reading
a college textbook in which someone has highlighted what they considered important words and phrases with a
yellow pen.

4.4.6 The Tag

The tag tells the client browser to present the enclosed text with emphasis. For nearly all browsers, this means the text is
rendered in italic. For example, the popular browsers will emphasize by italicizing the words "always" and "never" in the
following HTML source:

Kumquat growers must always refer to kumquats
as "the noble fruit," never as just a "fruit."

Adding emphasis to your text is a tricky business. Too little, and the emphatic phrases may be lost. Too much, and you lose the
urgency. Like any seasoning, emphasis is best used sparingly.

Although invariably displayed in italic, the tag has broader implications as well and someday browsers may render
emphasized text with a different special effect. The <i> tag explicitly italicizes text; use it if all you want is italic. Besides
emphasis, also consider using when presenting new terms or as a fixed style when referring to a specific type of term or
concept. For instance, one of O'Reilly's book styles is to specially format file and device names. In the HTML version,
might be used to differentiate those terms from simple italic for emphasis.

4.4.7 The <kbd> Tag

Speaking of special style for technical concepts, there is the <kbd> tag. As you probably already suspect, it is used to indicate
text that is typed on a keyboard. Its enclosed text typically is rendered by the browser in monospaced font style.

The <kbd> tag is most often used in computer-related documentation and manuals, such as in this example:

Type <kbd>quit</kbd> to exit the utility, or type
<kbd>menu</kbd> to return to the main menu.

4.4.8 The <samp> Tag

The <samp> tag indicates a sequence of literal characters that should have no other interpretation by the user. This tag is most
often used when a sequence of characters is taken out of its normal context. For example, the following source:

The <samp>ae</samp> character sequence may be converted
to the æ ligature if desired.

is rendered by Netscape as shown in Figure 4.9.

Figure 4.9: Setting off sample text using the <samp> tag

(The special HTML reference for the "ae" ligature entity is æ and is converted to its appropriate æ ligature character
by most browsers.) For more information, see Appendix E, Character Entities.

In general, the <samp> tag is not used very often. It should be used in those few cases where special emphasis needs to be
placed on small character sequences taken out of their normal context.

4.4.9 The Tag

Like the tag, the tag is for emphasizing text, except with more gusto. Browsers typically display the
 tag differently than the tag, usually by making the text bold (versus italic), so that users can distinguish
between the two. For example, in the following text, the emphasized "never" appears in italic with Internet Explorer, while the
 "forbidden" is rendered in bold characters (see Figure 4.10):

One should never make a disparaging remark
about the noble fruit. In particular, mentioning
kumquats in conjunction with vulgar phrases is
expressly forbidden by the Association
bylaws.

If common sense tells us that the tag should be used sparingly, the tag should appear in documents even
more infrequently. text is like shouting. text is nothing short of a scream. Like a well-chosen epithet voiced
by an otherwise taciturn person, restraint in the use of makes its use that much more noticeable and effective.

Figure 4.10: Strong and emphasized text are rendered differently by Internet Explorer

4.4.10 The <var> Tag

The <var> tag, another computer-documentation trick, indicates a variable name or a user-supplied value. The tag is most
often used in conjunction with the <code> and <pre> tags for displaying particular elements of computer programming code
samples and the like. <var>-tagged text typically is rendered in monospace font, as shown in Figure 4.11, which displays
Netscape's rendering of the following example:

The user should type
<pre>
 cp <var>source-file</var> <var>dest-file</var>
</pre>
replacing the <var>source-file</var> with the name of
the source file, and <var>dest-file</var> with the name
of the destination file.

Figure 4.11: The <var> tag typically appears in preformatted (<pre>) computer code

Like the other computer programming and documentation-related tags, the <var> tag not only makes it easy for users to
understand and browse your documentation, but automated systems might someday use the appropriately tagged text to extract
information and useful parameters mentioned in your document. Once again, the more semantic information you provide to
your browser, the better it can present that information to the user.

4.4.11 The class, id, style, and title Attributes

Although each content-based tag has a defined style, you can override that style by defining your own look for each tag. This
new look can be applied to the content-based tags using either the style or class attributes. [Inline Styles: The style
Attribute, 9.1.1] [Style Classes, 9.2.4]

You also may assign a unique id-entifier to the content-based style tag, as well as a less-rigorous title, using the respective
attributes and their accompanying quote-enclosed string values. [The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5]

4.4.12 The dir and lang Attributes

The dir attribute advises the browser as to which direction the text within the content-based style tag ought to be displayed,
and lang lets you specify the language used within the tag. [The dir attribute, 3.5.1.1] [The lang attribute, 3.5.1.2]

4.4.13 Event Attributes

Things happen in and around a content-based tags' content, and with the respective "on" attribute and value, you may react to
that event by displaying a user dialog, or activating some multimedia event. [JavaScript Event Handlers, 13.3.3]

4.4.14 Summary of Content-based Tags

The various graphical browsers render text inside content-based tags in similar fashion; text-only browsers like Lynx have
consistent styles for the tags. Table 4.1 summarizes these browsers' display styles for the native tags. However, style sheet
definitions may override these native display styles.

Table 4.1: Content-based Tags

Tag Netscape Internet Explorer Lynx

<abbr> n/a n/a n/a

<acronym> n/a n/a n/a

<cite> italic italic monospace

<code> monospace monospace monospace

<dfn> n/a italic n/a

 italic italic monospace

<kbd> monospace monospace bold monospace

<samp> monospace monospace monospace

 bold bold monospace

<var> italic monospace monospace

4.4.15 Allowed Content

Any content-based style tag may contain any item allowed in text, including conventional text, anchors, images, and line
breaks. In addition, other content-based and physical style tags can be embedded within the content.

4.4.16 Allowed Usage

Any content-based style tag may be used anywhere an item allowed in text is used. In practice, this means you can use the
, <code>, and other like tags anywhere in your HTML document except inside <title>, <listing>, or <xmp>
tagged segments. You can use text style tags in headings, too, but their effect may be overridden by the effects of the heading
tag itself.

4.4.17 Combining Content-based Styles

It may have occurred to you to combine two or more of the various content-based styles to create interesting and perhaps even
useful hybrids. Thus, an emphatic citation might be achieved with:

<cite>Moby Dick</cite>

In practice, Dr. Frankenstein, the browser usually ignores the monster; as you can test by typing and viewing the example
yourself, Moby Dick gets the citation without emphasis.

The HTML standard does not require the browser to support every possible combination of content-based styles and does not
define how the browser should handle such combinations. Someday, maybe. For now, it's best to choose one tag and be
satisfied.

4.3 Changing Text
Appearance

4.5 Physical Style Tags

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 4
Text Basics

4.5 Physical Style Tags
There are nine physical styles provided by the current HTML standard, including bold, italic, monospaced,
underlined, strike-through, larger, smaller, superscripted, and subscripted text. In addition, to our dismay,
Netscape still supports "blinking" text.[2] All physical style tags require an ending tag.

[2] Once programmed, always a feature, we guess. Internet Explorer has its warts, too.

As we discuss each physical tag in detail, keep in mind that they convey an acute styling for the immediate text.
For more comprehensive, document-wide control of text display, use style sheets (see Chapter 9).

Physical Style Tags

Function:

Specify a physical style for text

Attributes:

ALIGN ONKEYUP

CLASS ONMOUSEDOWN

DIR ONMOUSEMOVE

ID ONMOUSEOUT

LANG ONMOUSEOVER

ONCLICK ONMOUSEUP

ONDBLCLICK STYLE

ONKEYDOWN TITLE

ONKEYPRESS

End tag:

Never omitted

Contains:

text

Used in:

text

4.5.1 The Tag

The tag is the physical equivalent of the content-based style tag, but without the latter's
extended meaning. The tag explicitly boldfaces a character or segment of text that is enclosed between it
and its corresponding () end tag. If a boldface font is not available, the browser may use some other
representation, such as reverse video or underlining.

4.5.2 The <big> Tag

The <big> tag makes it easy to increase the size of text. It couldn't be simpler: The browser renders the text
between the <big> tag and its matching </big> ending tag one font size larger than the surrounding text. If
that text is already at the largest size, <big> has no effect. [, 4.6]

Even better, you can nest <big> tags to enlarge the text. Each <big> tag makes the text one size larger, up to
a limit of size seven, as defined by the font model.

Be careful with your use of the <big> tag, though. Because browsers are quite forgiving and try hard to
understand a tag, those that don't support <big> often interpret it to mean bold.

4.5.3 The <i> Tag

The <i> tag is like the content-based style tag. It and its necessary (</i>) end tag tell the browser to
render the enclosed text in an italic or oblique typeface. If the typeface is not available to the browser,
highlighting, reverse video, or underlining might be used.

4.5.4 The <small> Tag

The <small> tag works just like its <big> counterpart (see previous description), except it decreases the size
of text instead of increasing it. If the enclosed text is already at the smallest size supported by the font model,
<small> has no effect.

Like <big>, you may also nest <small> tags to sequentially shrink text. Each <small> tag makes the text
one size smaller than the containing <small> tag, down to a limit of size one.

4.5.5 The <s> Tag (Deprecated)

The <s> tag is an abbreviated form of the <strike> tag supported by both Internet Explorer and Netscape. It
is now a deprecated tag in HTML 4.0, meaning don't use it; it will eventually go away.

4.5.6 The <strike> Tag (Deprecated)

Most browsers will put a line through ("strike through") text that appears inside the <strike> tag and its
</strike> end tag. Presumably, it is an editing markup that tells the reader to ignore the text passage,
reminiscent of the days before typewriter correction tape. You'll rarely, if ever, see the tag in use today, and
probably never will: it is deprecated in HTML 4.0, just one version away from complete elimination from the
standard.

4.5.7 The <sub> Tag

The text contained between the _{tag and its} end tag gets displayed half a character's height
lower, but in the same font and size as the current text flow. Both <sub> and its <sup> counterpart are useful
for math equations and in scientific notation, as well as with chemical formulæ.

4.5.8 The <sup> Tag

The ^{tag and its} end tag superscripts the enclosed text; it gets displayed half a character's height
higher, but in the same font and size as the current text flow. This tag is useful for adding footnotes to your
documents, along with exponential values in equations. In combination with the <a> tag, you can create nice,
hyperlinked footnotes:

The larval quat
weevil^{<small>74</small>} is a

This example assumes that footnotes.html contains all your footnotes, appropriately delimited as named
document fragments.

4.5.9 The <tt> Tag

In a manner like the <code> and <kbd> tags, the <tt> tag and necessary </tt> end tag direct the browser
to display the enclosed text in a monospaced typeface. For those browsers that already use a monospaced
typeface, this tag may make no discernible change in the presentation of the text.

4.5.10 The <u> Tag (Deprecated)

This tag tells the browser to underline the text contained between the <u> and the corresponding </u> tag. The
underlining technique is simplistic, drawing the line under spaces and punctuation as well as the text. This tag is
deprecated in HTML 4.0 and will be eliminated in the next version of the standard. The same effect can be
achieved by using style sheets, covered in Chapter 9.

4.5.11 The <blink> Tag

Text contained between the <blink> tag and its end tag </blink> does just that: blink on and off. Netscape
for Macintosh, for example, simply and reiteratively reverses the background and foreground colors for the
<blink> enclosed text. The HTML standard does not include <blink>; it is supported as an extension by
Netscape.

We cannot effectively reproduce the animated effect here in these static pages, but it is easy to imagine and
probably best left to the imagination, too. That's because blinking text has two primary effects: it gets your
reader's attention, and then promptly annoys them to no end. Blinking text should be used sparingly in any
context.

4.5.12 The dir and lang Attributes

The dir attribute lets you advise the browser as to which direction the text within the physical tag ought to be
displayed, and lang lets you specify the language used within the tag. [The dir attribute, 3.5.1.1] [The lang
attribute, 3.5.1.2]

4.5.13 The class, id, style, and title Attributes

Although each physical tag has a defined style, you can override that style by defining your own look for each
tag. This new look can be applied to the physical tags using either the style or class attributes. [Inline
Styles: The style Attribute, 9.1.1] [Style Classes, 9.2.4]

You also may assign a unique id to the physical style tag, as well as a less-rigorous title, using the respective
attribute and accompanying quote-enclosed string value. [The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5]

4.5.14 Event Attributes

Like with content-based style tags, user-initiated mouse and keyboard events can happen in and around a
physical style tags' contents. Many of these events are recognized by the browser if it conforms to the HTML
4.0 specification (none do fully), and with the respective "on" attribute and value, you may react to the event by
displaying a user dialog box or activating some multimedia event. [JavaScript Event Handlers, 13.3.3]

4.5.15 Summary of Physical Style Tags

The various graphical browsers render text inside the physical style tags in similar fashion. Table 4.2
summarizes these browser's display styles for the native tags. Style sheet definitions may override these native
display styles.

Table 4.2: Physical Style Tags

Tag Meaning Display Style

 Bold contents bold

<big> Increased font size bigger text

<blink> Alternating fore and background colors blinking text

<i> Italic contents italic

<small> Decreased font size smaller text

<s>, <strike> Strike-through text strike

<sub> Subscripted text subscript

<sup> Superscripted text superscript

<tt> Teletypewriter style monospaced

<u> Underlined contents underlined

The following HTML source example illustrates some of the various physical tags as rendered by Netscape for
Figure 4.12:

Explicitly boldfaced, <i>italicized</i>, or
<tt>teletype-style</tt> text should be used
<big><big>sparingly</big></big>.
Otherwise, drink <strike>lots</strike> 1x10⁶
drops of H_{<small><small>2</small></small>}O.

Figure 4.12: Use physical text tags with caution

mailto:italic

4.5.16 Allowed Content

Any physical style tag may contain any item allowed in text, including conventional text, anchors, images, and
line breaks. You also can combine physical style tags with other content-based ones.

4.5.17 Allowed Usage

Any physical style tag may be used anywhere an item allowed in text can be used. In general, this means
anywhere within a document except in the <title>, <listing>, and <xmp> tags. You could use a physical
style tag in a heading, but the browser will probably override and ignore its effect in lieu of the heading tag.

4.5.18 Combining Physical Styles

You probably will have better luck, Dr. Frankenstein, combining physical tags than you might have combining
content-based tags to achieve multiple effects. For instance, Netscape renders the following in bold and italic
typeface:

<i>Thar she blows!</i>

In practice, other browsers may elect to ignore such nesting. The HTML 4.0 standard does require the browser
to "do their best" to support every possible combination of styles, but does not define how the browser should
handle such combinations. Although most browsers make a good attempt at doing so, do not assume that all
combinations will be available to you.

4.4 Content-based Style Tags 4.6 Expanded Font Handling

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 4
Text Basics

4.6 Expanded Font Handling
We agonized over including this section here in a prominent position within this chapter, or relegating it to
the end. It belongs here because the various tags associated with the extended font model for HTML were
part of the 3.2 standard. And they remain very popular with HTML authors, besides being well-supported
by all the popular browsers. Yet they have been deprecated in the latest HTML 4.0 standard, warranting
banishing the whole section to the end of the chapter with all the implicit red flags.

We suspect the W3C wants authors to use style sheets, not acute tags, for explicit control of font styles,
colors, and sizes of the text characters that form your HTML content. That's why these extended font tags
and related attributes have fallen into disfavor. Nonetheless, we put this section here because we doubt that
the majority of HTML authors will stop using, nor that the popular browsers will any time soon abandon
support for, tags that are in such widespread use. Just be aware of their precarious position in the language.

4.6.1 The Extended Font Size Model

Instead of absolute point values, the Extended Font Model of HTML 3.2 as supported by the popular
browsers uses a relative model for sizing fonts. Sizes range from 1, the smallest, to 7, the largest; the
default (basefont) font size is 3.

It is almost impossible to state reliably the actual font sizes used for the various virtual sizes. Most
browsers let the user change the physical font size, and the default sizes vary from browser to browser. It
may be helpful to know, however, that each virtual size is successively 20 percent larger or smaller than the
default font size 3. Thus, font size 4 is 20 percent larger, font size 5 is 40 percent larger, and so on, while
font size 2 is 20 percent smaller and font size 1 is 40 percent smaller than font size 3.

4.6.2 The <basefont> Tag (Deprecated)

The <basefont> tag lets you define the basic size for the font that the browser will use to render normal
document text. We can't recommend that you use it since it has been deprecated in the HTML 4.0 standard.

<basefont>

Function:

Define base font size for relative font size changes

Attributes:

COLOR

FACE

ID

NAME

SIZE

End tag:

</basefont>; optionally used

Contains:

Nothing

Used in:

block, head_content

The <basefont> tag has a single attribute recognized by all current browsers, size, whose value
determines the document's base font size. It may be specified as an absolute value from 1 to 7, or as a
relative value by placing a plus or minus sign before the value. In the latter case, the base font size is
increased or decreased by that relative amount. The default base font size is 3.

Internet Explorer supports two additional attributes for the <basefont> tag: color and name. HTML
4.0 also defines the face attribute as a synonym for the name attribute. These attributes control the color
and typeface used for the text in a document and are used just like the analogous color and face
attributes for the tag, described later.

HTML 4.0 also defines the id attribute for the <basefont> tag, allowing you to label the tag uniquely
for later access to its contents. [The id attribute, 4.1.1.4]

Authors typically include the <basefont> tag in the head of an HTML document, if at all, to set the base
font size for the entire document. Nonetheless, the tag may appear nearly anywhere in the document, and it
may appear several times throughout the document, each with a new size attribute. With each occurrence,
the <basefont> tag's effects are immediate and hold for all subsequent text.

In an egregious deviation from the HTML and SGML standards, the browsers interpret the ending
</basefont> tag not to terminate the effects of the most recent <basefont> tag. Instead, the
</basefont> end tag resets the base font size to the default value of 3, which is the same as writing
<basefont size=3>.

The following example source and Figure 4.13 illustrate how Netscape responds to the <basefont> tag
and </basefont> end tag, including fixed and relative attribute values:

Unless the base font size was reset above,
Netscape renders this part in font size 3.
<basefont size=7>
This text should be rather large (size 7).
<basefont size=-1> Oh,
<basefont size=-1> no!
<basefont size=-1> I'm
<basefont size=-1> shrinking!
</basefont>
Ah, back to normal.

Figure 4.13: Playing with <basefont>

We recommend against ever using </basefont>; use <basefont size=3> instead.

4.6.3 The Tag (Deprecated)

The tag lets you change the size, style, and color of text. We don't recommend that you use it
because it has been deprecated in the HTML 4.0 standard. But should you decide to ignore our advice, then
use it like any other physical or content-based style tag for changing the appearance of a short segment of
text.

Function:

Set the font size for text

Attributes:

CLASS LANG

COLOR SIZE

DIR STYLE

FACE TITLE

ID

End tag:

; always used

Contains:

text

Used in:

text

To control the color of text for the entire document, see the attributes for the <body> tag described in
section 5.3.1.

4.6.3.1 The size attribute

The value of the size attribute must be one of the virtual font sizes (1-7) described earlier, defined as an
absolute size for the enclosed text or preceded by a plus or minus sign (+ or -) to define a relative font size
that the browser adds to or subtracts from the base font size (see the <basefont> tag, section 4.6.2). The
browsers automatically round the size to 1 or 7 if the calculated value exceeds either boundary.

In general, use absolute size values when you want the rendered text to be an extreme size, either very large
or very small, or when you want an entire paragraph of text to be a specific size.

For example, using the largest font for the first character of a paragraph makes for a crude form of
illustrated manuscript (see Figure 4.14):

<p>
Call me Ishmael.

Figure 4.14: Exaggerating the first character of a sentence with the size attribute for

Also, use an absolute font when inserting a delightfully unreadable bit of "fine" print - boilerplate or
legalese - at the bottom of your documents (see Figure 4.15):

<p>

All rights reserved. Unauthorized redistribution of this document is
prohibited. Opinions expressed herein are those of the authors, not the
Internet Service Provider.

Figure 4.15: Use the tiniest font for boilerplate text

Except for the extremes, use relative font sizes to render text in a size different than the surrounding text, to
emphasize a word or phrase, for example (see Figure 4.16):

<p>
Make sure you always sign and date the form!

Figure 4.16: Use relative sizes for most Netscape text embellishments

If your relative size change results in a size greater than 7, the browser uses font 7. Similarly, font sizes less
than one are rendered with font 1.

Notice that specifying size=+1 or size=-1 is identical in effect to the <big> and <small>
respectively. However, nested relative changes to the font size are not cumulative as they are for the
alternative tags. Each tag is relative to the base font size, not the current font size. For example
(see Figure 4.17):

<p>
The ghost moaned, "oooooo<font
size=+3>oooooooo."

Contrast this with the <big> tag, which increases the size one level as you nest the tags. [The <big> Tag,
4.5.2]

Figure 4.17: Relative font sizes accumulate

4.6.3.2 The color attribute

The color attribute for the tag sets the color of the enclosed text. The value of the attribute may
be expressed in either of two ways: as the red, green, and blue (RGB) components of the desired color or as
a standard color name. Enclosing quotes are recommended, but not required.

The RGB color value, denoted by a preceding pound sign, is a six-digit hexadecimal number. The first two
digits are the red component, from 00 (no red) to FF (bright red). Similarly, the next two digits are the
green component and the last two digits are the blue component. Black is the absence of color, #000000;
white is all colors, #FFFFFF.

For example, to create basic yellow text, you might use:

Here comes the sun!

Alternatively, you may set the enclosed font color using any one of the many standard color names. See
Appendix F, Color Names and Values, for a list of common ones. For instance, you could also have made

the previous sample text yellow with the following source:

Here comes the sun!

4.6.3.3 The face attribute

Internet Explorer and Netscape also let you change the font style in a text passage with the face attribute
for the tag.[3] The quote-enclosed value of face is one or more display font names separated
with commas.

[3] For the HTML purist, for the once-powerful user, who had ultimate control over their
browser, this is egregious, indeed. Form over function; look over content - what next?
Embedded video commercials you can't stop?

The font face displayed by the browser depends on which fonts are available on the individual user's
system. The browser parses the list of font names, one after the other, until it matches one with a font name
supported by the user's system. If none match, the text display defaults to the font style set by the user in
their browser's preferences. For example:

This text is in the default font. But,

heaven only knows
what font face is this one?

If the Internet Explorer user has the Braggadocio, Machine, or none of the listed font typefaces installed in
their system, they will be able to read the "heaven only knows" message in the respective or default font
style. Otherwise, the message will be garbled because the Zapf Dingbats font contains symbols, not letters.
Of course, the alternative is true, too; you may intend that the message be a symbol-encoded secret.

4.6.3.4 The dir and lang attributes

The dir lets you advise the browser as to which direction the text within the tag ought to be displayed and
lang lets you specify the language used for the tag's contents. [The dir attribute, 3.5.1.1] [The lang
attribute, 3.5.1.2]

4.6.3.5 The class, id, style, and title Attributes

You can associate additional display rules for the tag using style sheets. The rules can be applied
to the tag using either the style or class attributes. [Inline Styles: The style Attribute, 9.1.1]
[Style Classes, 9.2.4]

You also may assign a unique id to the tag, as well as a less rigorous title, using the respective
attribute and accompanying quote-enclosed string value. Section 4.1.1.4 Section 4.1.1.5

4.5 Physical Style Tags 4.7 Precise Spacing and
Layout

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 4
Text Basics

4.7 Precise Spacing and Layout
HTML style sheets notwithstanding, the original concept of the language is for specifying document
content without indicating format; to delineate the structure and semantics of a document, not how
that document is to be presented to the user. Normally, you should leave word wrapping, character
and line spacing, and other presentation details up to the browser. That way, the document's content -
its rich information, not good looks - are what matter. When looks matter more, such as for
commercial presentations, look to style sheets for layout control (see Chapter 9).

4.7.1 The
 Tag

The
 tag interrupts the normal line filling and word wrapping of paragraphs within an HTML
document. It has no ending tag, but simply marks the point in the flow where a new line should begin.
Most browsers simply stop adding words and images to the current line, move down and over to the
left margin, and resume filling and wrapping.

Function:

Insert a line break into a text flow

Attributes:

CLASS

CLEAR

ID

STYLE

TITLE

End tag:

None

Contains:

Nothing

Used in:

text

This effect is handy when formatting conventional text with fixed line breaks, such as addresses, song
lyrics, or poetry. Notice, for example, the lyrical breaks when the following source is rendered by
Netscape:

<h3>
Heartbreak Hotel</h3>
<p>
Ever since my baby left me

I've found a new place to dwell.

It's down at the end of lonely street

Called <cite>Heartbreak Hotel</cite>.
</p>

The results are shown in Figure 4.18.

Figure 4.18: Give lyrics their breaks (
)

Also notice how the
 tag causes text simply to start a new line, while the browser, when
encountering the <p> tag, typically inserts some vertical space between adjacent paragraphs. [<p>,
4.1]

4.7.1.1 The clear attribute

Normally, the
 tag tells the browser to stop the current flow of text immediately and resume at
the left margin of the next line or against the right border of a left-justified inline graphic or table.
Sometimes you'd rather the current text flow resume below any tables or images currently blocking
the left or right margins.

HTML 4.0 provides that capability with the clear attribute for the
 tag. It can have one of
three values: left, right, or all, each related to one or both of the margins. When the specified
margin or both margins are clear of images, the browser resumes the text flow.

Figure 4.19 illustrates the effects of the clear attribute when Netscape renders the following HTML
fragment:

This text should wrap around the image, flowing between the
image and the right margin of the document.
<br clear=left>
This text will flow as well, but will be below the image,
extending across the full width of the page. There will
be white space above this text and to the right of the
image.

Figure 4.19: Clearing images before resuming text flow after the
 tag

Inline HTML images are just that - normally in line with text, but usually only a single line of text.
Additional lines of text flow below the image unless that image is specially aligned by right or
left attribute values for the tag (similarly for <table>). Hence, the clear attribute for
the
 tag only works in combination with left- or right-aligned images or tables. [The align
attribute, 5.2.6.4] [The align attribute, 11.2.1.1]

The following HTML code fragment illustrates how to use the
 tag and its clear attribute as
well as the tag's alignment attributes to place captions directly above, centered on the right,
and below an image that is aligned against the left margin of the browser window:

Paragraph tags separate leading and following
text flow from the captions.
<p>
I'm the caption on top of the image.

This one's centered on the right.
<br clear=left>
This caption should be directly below the image.
<p>

And the text just keeps flowing along....

Figure 4.20 illustrates the results of this example code.

You might also include a <br clear=all> tag just after an tag or table that is at the very
end of a section of your document. That way, you ensure that the subsequent section's text doesn't
flow up and against that image and confuse the reader. the sidebar ""

Figure 4.20: Captions placed on top, center-right, and below an image

4.7.1.2 The class, id, style, and title attributes

You can associate additional display rules for the
 tag using style sheets. The rules can be
applied to the
 tag using either the style or class attributes. [Inline Styles: The style
Attribute, 9.1.1] [Style Classes, 9.2.4]

You also may assign a unique id to the
 tag, as well as a less rigorous title, using the respective
attribute and accompanying quote-enclosed string value. [The id attribute, 4.1.1.4] [The title attribute,
4.1.1.5]

4.7.2 The <nobr> Tag

Occasionally, you may have a phrase you want to appear unbroken on a single line in the user's
browser window, even if that means the text extends beyond the visible region of the window.
Computer commands are good examples. Typically, one types in a computer command - even a
multiword one - on a single line. Because you cannot predict exactly how many words will fit inside
an individual's browser window, the HTML-based sequence of computer-command words may end
up broken into two or more lines of text. Command syntax is confusing enough; it doesn't need the

extra cross-eyed effect of being wrapped onto two lines.

With standard HTML, the way to make sure text phrases stay intact across the browser display is to
enclose those segments in a <pre> tag and format it by hand. That's acceptable and nearly universal
for all browsers. However, <pre> alters the display font from the regular text, and manual line
breaks inside the <pre> tag are not always rendered correctly. [<pre>, 4.7]

<nobr>

Function:

Create a region of non-breaking text

Attributes:

None

End tag:

</nobr>; always used

Contains:

text

Used in:

block

The modern browsers offer the <nobr> tag alternative to <pre> so you can be sure enclosed text
stays intact on a single line while retaining normal text style.[4] The effect is to make the browser
treat the tag's contents as though they were a single, unbroken word. The tag contents retain the
current font style, and you can change to another style within the tag.

[4] Be aware that <nobr> and its colleague <wbr> are extensions to the language and
not part of the HTML 4.0 standard.

Here's the <nobr> tag in action with our computer command example:

When prompted by the computer, enter
<nobr>
<tt>find . -name *.html -exec rm \{\}\;</tt>.
</nobr>
After a few moments, the load on your server will begin
to diminish and will eventually drop to zero.

Notice in the example source and its display (Figure 4.21) that we've included the special <tt> tag
inside the <nobr> tag. If the <nobr>-tagged text cannot fit on a partially filled line of text, the
extended browser precedes it with a line break, as shown in the figure. The <nobr> segment may
then extend beyond the right window boundary. [The <tt> Tag, 4.5.9]

Figure 4.21: The <nobr> extension suppresses text wrapping

The <nobr> tag does not suspend the browser's normal line-filling process; it still collects and inserts
images and - believe it, or not - asserts forced line breaks caused by the
 or <p> tags, for
example. The <nobr> tag's only action is to suppress an automatic line break when the current line
reaches the right margin.

Also, you might think this tag is needed only to suppress line breaks for phrases, not a sequence of
characters without spaces that can exceed the browser window's display boundaries. Today's browsers
do not hyphenate words automatically, but someday soon they probably will. It makes sense to protect
any break-sensitive sequence of characters with the <nobr> tag.

4.7.3 The <wbr> Tag

The <wbr> tag is the height of HTML text-layout finesse, offered as an extension to the language by
the popular browsers. Used with the <nobr> tag, <wbr> advises the extended browser when it may
insert a line break in an otherwise nonbreakable sequence of text. Unlike the
 tag, which always
causes a line break even within a <nobr>-tagged segment, the <wbr> tag works only when placed
inside a <nobr>-tagged content segment and causes a line break only if the current line already had
extended beyond the browser's display window margins.

<wbr>

Function:

Define potential line break point if needed

Attributes:

None

End tag:

None

Contains:

Nothing

Used in:

text

Now, <wbr> may seem incredibly esoteric to you, but scowl not. There may come a time when you
want to make sure portions of your document appear on a single line, but you don't want to overrun

the browser window margins so far that readers will have to camp on the horizontal scrollbar just to
read your fine prose. By inserting the <wbr> tag at appropriate points in the nonbreaking sequence,
you let the browser gently break the text into more manageable lines:

<p>
<nobr>
This is a very long sequence of text that is
forced to be on a single line, even if doing so causes
<wbr>
the browser to extend the document window beyond the
size of the viewing pane and the poor user must scroll right
<wbr>
to read the entire line.
</nobr>

You'll notice in our rendered version (Figure 4.22) that both <wbr> tags take effect. By increasing the
horizontal window size or by reducing the font size, you may fit all of the segment before the first
<wbr> tag within the browser window. In that case, only the second <wbr> would have an effect; all
the text leading up to it would extend beyond the window's margins.

Figure 4.22: Gentle line breaks with <wbr>

4.7.4 Better Line-Breaking Rules

Unlike most browsers, and to their credit, Netscape and Internet Explorer do not consider tags to be a
line-break opportunity. Consider the unfortunate consequences to your document's display if, while
rendering the example segment below, the browser puts the comma adjacent to the "du" or the period
adjacent to the word "df " on a separate line. Netscape and Internet Explorer will not:

Make sure you type <tt>du</tt>, not <tt>df</tt>.

4.7.5 The <pre> Tag

The <pre> tag and its required end tag (</pre>) define a segment inside which the browser renders
text in exactly the character and line spacing defined in the source HTML document. Normal word
wrapping and paragraph filling are disabled, and extraneous leading and trailing spaces are honored.
The browser displays all text between the <pre> and </pre> tags in a monospaced font.

<pre>

Function:

Render a block of text without any formatting

Attributes:

ALIGN ONKEYUP

CLASS ONMOUSEDOWN

DIR ONMOUSEMOVE

ID ONMOUSEOUT

LANG ONMOUSEOVER

ONCLICK ONMOUSEUP

ONDBLCLICK STYLE

ONKEYDOWN TITLE

ONKEYPRESS WIDTH

End tag:

</pre>; never omitted

Contains:

pre_content

Used in:

block

HTML authors most often use the <pre> formatting tag when the integrity of columns and rows of
characters must be retained; for instance, in tables of numbers that must line up correctly. Another
application for <pre> is to set aside a blank segment - a series of blank lines - in the document
display, perhaps to clearly separate one content section from another, or to temporarily hide a portion
of the document when it first loads and is rendered by the user's browser.

Tab characters have their desired effect within the <pre> block, with tab stops defined at every eight
character positions. We discourage their use, however, since tabs aren't consistently implemented
among the various browsers. Use spaces to ensure correct horizontal positioning of text within
<pre>-formatted text segments.

A common use of the <pre> tag is to present computer source code, as in the following example:

<p>
The processing program is:
<pre>
main(int argc, char **argv)

{ FILE *f;

 int i;

 if (argc != 2)
 fprintf(stderr, "usage: %s <file>\n",
 argv[0]);
 process(argv[1]);
 exit(0);
}
</pre>

The result is displayed by Internet Explorer as shown in Figure 4.23.

Figure 4.23: Use the <pre> tag to preserve the integrity of columns and rows

4.7.5.1 Allowable content

The text within a <pre> segment may contain physical and content-based style changes, along with
anchors, images, and horizontal rules. When possible, the browser should honor style changes, within
the constraint of using a monospaced font for the entire <pre> block.

Tags that cause a paragraph break (heading, <p>, and <address> tags, for example), must not be
used within the <pre> block. Some browsers will interpret paragraph-ending tags as simple line
breaks, but this behavior is not consistent across all browsers.

Since style markup and other tags are allowed in a <pre> block, you must use entity equivalents for
the literal characters: < for <, > for >, and & for the ampersand.

You place tags into the <pre> block as you would in any other portion of the HTML document. For
instance, study the reference to the "process" function in the previous example. It contains a hyperlink
(using the <a> tag) to its source file named process.c.

4.7.5.2 The width attribute

The <pre> tag has an optional attribute, width, that determines the number of characters to fit on a

single line within the <pre> block. The browser may use this value to select a font or font size that
fits the specified number of characters on each line in the <pre> block. It does not mean that the
browser will wrap and fill text to the specified width. Rather, lines longer than the specified width
simply extend beyond the visible region of the browser's window.

The width attribute is only advice for the user's browser; it may or may not be able to adjust the
view font to the specified width.

4.7.5.3 The dir and lang attributes

The dir attribute lets you advise the browser as to which direction the text within the <pre>
segment ought to be displayed, and lang lets you specify the language used within that tag. Section
3.5.1.1 in Chapter 3 Section 3.5.1.2 in Chapter 3

4.7.5.4 The class, id, style, and title attributes

Although the browsers usually display <pre> content in a defined style, you can override that style
and add special effects, such as a background picture, by defining your own style for the tag. This new
look can be applied to the <pre> tags using either the style or class attributes. [Inline Styles:
The style Attribute, 9.1.1] [Style Classes, 9.2.4]

You also may assign a unique id to the <pre> tag, as well as a less rigorous title, using the respective
attribute and accompanying quote-enclosed string value. [The id attribute, 4.1.1.4] [The title attribute,
4.1.1.5]

4.7.5.5 Event attributes

Like with most other tagged segments of content, user-related events can happen in and around
<pre> content, such as when a user clicks or double-clicks within its display space. Many of these
events are recognized by the browser if it conforms to the HTML 4.0 specification (none do fully).
With the respective "on" attribute and value, you may react to that event by displaying a user dialog
box or activating some multimedia event. [JavaScript Event Handlers, 13.3.3]

4.7.6 The <center> Tag (Deprecated)

The <center> tag is another of those whose effects are obvious: content, including text, graphics,
tables, and so on, are each centered inside the browser's window. For text, this means that each line,
individually, gets centered after the text flow is filled and wrapped. The <center> alignment
remains in effect until canceled with its </center> end tag.

<center>

Function:

Center a section of text

Attributes:

ALIGN ONKEYUP

CLASS ONMOUSEDOWN

DIR ONMOUSEMOVE

ID ONMOUSEOUT

LANG ONMOUSEOVER

ONCLICK ONMOUSEUP

ONDBLCLICK STYLE

ONKEYDOWN TITLE

ONKEYPRESS

End tag:

</center>; never omitted

Contains:

body_content

Used in:

block

Line-by-line is a common, albeit primitive, way to center text, and it should be used judiciously.
That's because the browsers do not attempt to balance a centered paragraph or other block-related
elements, such as elements in a list. So keep your centered text short and sweet. Titles make good
centering candidates; a centered list usually is difficult to follow.

Beyond that, you'll rarely see conventional text centered, except for some lyrical prose, so readers
may react badly to large segments of centered prose in your documents. Rather, HTML authors more
commonly use <center> to center a table or image in the display window (there is no explicit
center alignment option for inline images or tables, but there are styles-related ways to achieve the
effect).

Because users will have varying window widths, display resolutions, and so on, you may also want to
employ the <nobr> and <wbr> extension tags (see previous descriptions) to keep your centered text
intact and looking good. For example:

<center>
<nobr>
Copyright 1995 by QuatCo Enterprises.<wbr>
All rights reserved.
</nobr>
</center>

The <nobr> tags in the sample source help ensure that the text remains on a single line, and the
<wbr> tag controls where the line may be broken if it exceeds the browser's display window width.

Centering also is useful for creating distinctive section headers, although you may now achieve the
same effect with an explicit align=center attribute in the respective heading tag. You might also
center text using align=center in conjunction with the <div> or <p> tags. In general, the
<center> tag can be replaced by an equivalent <div align=center> or similar tag and its use
should be discouraged.

Indeed, like and other HTML 3.2 standard tags that have fallen in disfavor in the wake of
style sheets, the <center> tag is deprecated in the HTML 4.0 standard. Nonetheless, its use in
HTML documents is nearly universal, and the popular browsers are sure to support it for many
revisions to come. Still, be aware of its eventual demise.

4.7.6.1 The dir and lang attributes

The dir attribute lets you advise the browser as to which direction the text within the <center>
segment ought to be displayed, and lang lets you specify the language used within the tag. [The dir
attribute, 3.5.1.1] [The lang attribute, 3.5.1.2]

4.7.6.2 The class, id, style, and title attributes

Use the style attribute to specify an inline style for the <center> tag, or use the class attribute
to apply a predefined style class to the tag. [Inline Styles: The style Attribute, 9.1.1] [Style Classes,
9.2.4]

You may assign a unique id to the <center> tag, as well as a title, using the respective attribute and
accompanying quote-enclosed string value. [The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5]

4.7.6.3 Event attributes

Like with most other tagged segments of content, user-related events can happen in and around the
<center> tag, such as when a user clicks or double-clicks within its display space. Many of these
events are recognized by the browser if it conforms to the HTML 4.0 specification (none do fully).
With the respective "on" attribute and value, you may react to that event by displaying a user dialog
box or activating some multimedia event. Section 13.3.3 in Chapter 13

4.7.7 The <listing> Tag (Obsolete)

The <listing> tag is an obsolete tag, explicitly removed from the HTML 4.0 standard, meaning
that you shouldn't use it. We include it here for historical reasons, since it is supported by some
browsers and has the same effect on text formatting as the <pre> tag with a specified width of 132
characters.

<listing>

Function:

Render a block of text without any formatting

Attributes:

CLASS

STYLE

End tag:

</listing>; never omitted

Contains:

literal_text

Used in:

block

The only difference between <pre> and <listing> is that no other markup is allowed within the
<listing> tag. So you don't have to replace the literal <, >, and & characters with their entity
equivalents in a <listing> block as you must inside a <pre> block.

Since the <listing> tag is the same as a <pre width=132> tag, and because it might not be
supported in later version of the language, we recommend that you stay away from using
<listing>.

4.7.8 The <xmp> Tag (Obsolete)

Like the <listing> tag, the <xmp> tag is obsolete and should not be used. We include it here
mostly for historical reasons.

<xmp>

Function:

Render a block of text without any formatting

Attributes:

CLASS

STYLE

End tag:

</xmp>; never omitted

Contains:

literal_text

Used in:

block

The <xmp> tag formats text just like the <pre> tag with a specified width of 80 characters.
However, unlike the <pre> tag, you don't have to replace the literal <, >, and & characters with their
entity equivalents within an <xmp> block. The name <xmp> is short for "example"; the language's
designers intended that the tag be used to format examples of text originally displayed on 80-column
wide displays. Because the 80-column display has mostly gone the way of green screens and
teletypes, and since the effect of a <xmp> tag is basically the same as <pre width=80>, don't use
<xmp>; it may disappear entirely in subsequent versions of HTML.

4.7.9 The <plaintext> Tag (Obsolete)

Throw the <plaintext> tag out of your bag of HTML tricks; it's obsolete, like <listing> and
<xmp>. Included here for historical reasons, authors once used <plaintext> to tell the browser to
treat the rest of your document's text just as written with no markup allowed. There was no ending tag
for <plaintext> (of course, no markup!), but there was an end to <plaintext>. Forget about it.

<plaintext>

Function:

Render a block of text without any formatting

Attributes:

None

End tag:

None

Contains:

literal_text

Used in:

block

4.6 Expanded Font Handling 4.8 Block Quotes

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 4
Text Basics

4.8 Block Quotes
A common element in conventional documents is the block quote, a lengthy copy of text from another
document. Traditionally, short quotes are set off with quotation marks, while block quotes are made
entirely of separate paragraphs within the main document, typically with special indentation and
sometimes italicized - features that you may change through style or class definitions (see Chapter 9).

4.8.1 The <blockquote> Tag

All of the text within the <blockquote> and </blockquote> tags is set off from the regular
document text, usually with indented left and right margins, and sometimes in italicized typeface.
Actual rendering varies from browser to browser, of course.

<blockquote>

Function:

Define a block quotation

Attributes:

CITE ONKEYUP

CLASS ONMOUSEDOWN

DIR ONMOUSEMOVE

ID ONMOUSEOUT

LANG ONMOUSEOVER

ONCLICK ONMOUSEUP

ONDBLCLICK STYLE

ONKEYDOWN TITLE

ONKEYPRESS

End tag:

</blockquote>; never omitted

Contains:

body_content

Used in:

block

The HTML standard allows any and all markup within the <blockquote>, although some physical
and content-based styles may conflict with the font used by the browser for the block quote.
Experimentation will reveal those little warts.

The <blockquote> tag is often used to set off long quotations from other sources. For example:

We acted incorrectly in arbitrarily changing the Kumquat
Festival date. Quoting from the Kumquat Growers' Bylaws:
<blockquote>
 The date of the Kumquat Festival may only be changed by
 a two-thirds vote of the General Membership, provided
 that a 60 percent quorum of the Membership
 is present.
</blockquote>
(Emphasis mine) Since such a quorum was not present, the
vote is invalid.

gets displayed by Internet Explorer as an indented block of text. Figure 4.24 displays the results.

Figure 4.24: Blockquotes get their own space

4.8.1.1 The cite attribute

The cite attribute lets you indicate the source of a quote. The attribute's value should be a
quote-enclosed URL that points to the online document and, if possible, the exact location in the
document where the quote came from.

For instance, you could cite the specific section in the Kumquat Grower's Bylaws in our example.
Presumably, someday the browser may actually let you click and view that specific citation via its
embedded URL. Today, you must embed an explicit hyperlink to the document; see Chapter 7, Links
and Webs:

<blockquote cite="http://www.kumquat.com/growers/bylaws#s23.4">

4.8.1.2 The dir and lang attributes

The dir attribute lets you advise the browser as to which direction the text within the
<blockquote> segment ought to be displayed, and lang lets you specify the language used within
that tag. [The dir attribute, 3.5.1.1] [The lang attribute, 3.5.1.2]

4.8.1.3 The class, id, style, and title attributes

Use the style attribute to specify an inline style for the <blockquote> tag, or use the class
attribute to apply a predefined style class to the tag. [Inline Styles: The style Attribute, 9.1.1] [Style
Classes, 9.2.4]

You may assign a unique id to the <blockquote> tag, as well as a title, using the respective
attribute and accompanying quote-enclosed string value. [The id attribute, 4.1.1.4] [The title attribute,
4.1.1.5]

4.8.1.4 Event attributes

Like with most other tagged segments of content, user-related events can happen in and around the
<blockquote> tag, such as when a user clicks or double-clicks within its display space. Many of
these events are recognized by the browser if it conforms to the HTML 4.0 specification (none do
fully). With the respective "on" attribute and value, you may react to that event by displaying a user
dialog box or activating some multimedia event. [JavaScript Event Handlers, 13.3.3]

4.8.2 The <q> Tag

Introduced in the HTML 4.0 standard, the <q> tag is virtually identical to its <blockquote>
counterpart. The difference is in their display and application. Use <q> for short quotes that may be in
line with surrounding plain text. Although not yet supported by the popular browsers, the HTML 4.0
standard dictates that the <q>-enclosed text begin and end with double-quote marks. Use the
<blockquote> tag, on the other hand, for longer segments that the browser will set off - usually as
an indented block - from the surrounding content, such as that shown in Figure 4.24.

<q>

Function:

Define a short quotation

Attributes:

CITE ONKEYUP

CLASS ONMOUSEDOWN

DIR ONMOUSEMOVE

ID ONMOUSEOUT

LANG ONMOUSEOVER

ONCLICK ONMOUSEUP

ONDBLCLICK STYLE

ONKEYDOWN TITLE

ONKEYPRESS

End tag:

</q>; never omitted

Contains:

body_content

Used in:

text

4.8.2.1 The cite attribute

The cite attribute works with the <q> tag just like it does for the <blockquote> tag: it lets you
indicate the source of a quote. The attribute's value should be a quote-enclosed URL that points to the
online document and, if possible, the exact location in the document where the quote came from.

4.8.2.2 The dir and lang attributes

The dir attribute lets you advise the browser as to which direction the text within the <q> segment
ought to be displayed, and lang lets you specify the language used within that tag. [The dir attribute,
3.5.1.1] [The lang attribute, 3.5.1.2]

4.8.2.3 The class, id, style, and title attributes

Use the style attribute to specify an inline style for the <q> tag, or use the class attribute to apply
a predefined style class to the tag. [Inline Styles: The style Attribute, 9.1.1] [Style Classes, 9.2.4]

You may assign a unique id to the <q> tag, as well as a title, using the respective attribute and
accompanying quote-enclosed string value. [The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5]

4.8.2.4 Event attributes

Like with most other tagged segments of content, user-related events can happen in and around the
<q> tag, such as when a user clicks or double-clicks within its display space. Many of these events
are recognized by the browser if it conforms to the HTML 4.0 specification (none do fully). With the
respective "on" attribute and value, you may react to that event by displaying a user dialog box or
activating some multimedia event. Section 13.3.3 in Chapter 13

4.7 Precise Spacing and
Layout

4.9 Addresses

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 4
Text Basics

4.9 Addresses
Addresses are a very common element in text documents, and HTML provides a special tag that sets
addresses apart from the rest of a document's text. While this may seem a bit extravagant - addresses
have few formatting peculiarities that would require a special tag - it is an example of content, not
format, which is the intent and purpose of HTML markup.

By defining text that constitutes an address, the author lets the browser format that text in a different
manner, as well as process that text in ways helpful to users. It also makes the content readily
accessible to automated readers and extractors. For instance, an online directory might include
addresses the browser collects into a separate document or table, or automated tools might extract
addresses from a collection of documents to build a separate database of addresses.

4.9.1 The <address> Tag

The <address> and its required end (</address>) tag tell a browser that the enclosed text is an
address. The browser may format the text in a different manner than the rest of the document text, or
use the address in some special way. You also have control over the display properties through the
style and class attributes for the tag (see Chapter 9).

<address>

Function:

Define an address

Attributes:

CLASS ONKEYUP

DIR ONMOUSEDOWN

ID ONMOUSEMOVE

LANG ONMOUSEOUT

ONCLICK ONMOUSEOVER

ONDBLCLICK ONMOUSEUP

ONKEYDOWN STYLE

ONKEYPRESS TITLE

End tag:

</address>; never omitted

Contains:

body_content

Used in:

address_content

The text within the <address> tag may contain any element normally found in the body of an
HTML document, excluding another <address> tag. Style changes are allowed, but may conflict
with the style chosen by the browser to render the address element.

We think most, if not all, HTML documents should have their authors' addresses included somewhere
convenient to the user, usually at the end. At the very least, the address should be the author's or
webmaster's email address, along with a link to their home page. Street addresses and phone numbers
are optional; personal ones are usually not included for reasons of privacy.

For example, the address for the webmaster responsible for a collection of commercial web
documents often appears in source documents as follows, including the special mailto: URL
protocol that lets users activate the browser's email tool:

<address>
 Webmaster

 O'Reilly & Associates, Inc.

 Cambridge, Massachusetts

</address>

Figure 4-25 displays the results.

Figure 4.25: The <address> tag in action

Whether it is short and sweet or long and complete, make sure every document you create has an
address attached to it. If something is worth creating and putting on the Web, it is worth comment and
query by your readership. Anonymous documents carry little credibility on the Web.

4.9.1.1 The dir and lang attributes

The dir attribute lets you advise the browser as to which direction the text within the <address>

segment ought to be displayed, and lang lets you specify the language used within that tag. [The dir
attribute, 3.5.1.1] [The lang attribute, 3.5.1.2]

4.9.1.2 The class, id, style, and title attributes

Use the style attribute to specify an inline style for the <address> tag, or use the class
attribute to apply a predefined style class to the tag. [Inline Styles: The style Attribute, 9.1.1] [Style
Classes, 9.2.4]

You may assign a unique id to the <address> tag, as well as a title, using the respective attribute
and accompanying quote-enclosed string value. [The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5]

4.9.1.3 Event attributes

Like with most other tagged segments of content, user-related events can happen in and around the
<address> tag, such as when a user clicks or double-clicks within its display space. Many of these
events are recognized by the browser if it conforms to the HTML 4.0 specification (none do fully).
With the respective "on" attribute and value, you may react to that event by displaying a user dialog
box or activating some multimedia event. Section 13.3.3 in Chapter 13

4.8 Block Quotes 4.10 Special Character
Encoding

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 4
Text Basics

4.10 Special Character Encoding
For the most part, characters within HTML documents that are not part of a tag are rendered as is by
the browser. However, some characters have special meaning and are not directly rendered, while
other characters can't be typed into the source document from a conventional keyboard. Special
characters need either a special name or a numeric character encoding for inclusion in an HTML
document.

4.10.1 Special HTML Characters

As has become obvious in the discussion and examples leading up to this section of the book, three
characters in HTML source documents have very special meaning: the less-than sign (<), the
greater-than sign (>), and the ampersand (&). These characters delimit tags and special character
references. They'll confuse a browser if left dangling alone or with improper tag syntax. So you've got
to go out of your way to include their actual, literal characters in your HTML documents.[5]

[5] The only exception is that these characters may appear literally within the
<listing> and <xmp> tags, but this is a moot point, since the tags are obsolete in
HTML 4.0.

Similarly, you've got to use a special encoding to include double quotation mark characters within a
quoted string, or when you want to include a special character that doesn't appear on your keyboard
but is part of the ISO Latin-1 character set implemented and supported by most browsers.

4.10.2 Inserting Special Characters

To include a special character in your HTML document, enclose either its standard entity name or a
pound sign (#) and its numeric position in the Latin-1 standard character set[6] inside a leading
ampersand and an ending semicolon, without any spaces in-between. Whew. That's a long explanation
for what is really a simple thing to do, as the following example illustrates. The example shows how
to include a greater-than sign in a snippet of code by using the character's entity name. It also
demonstrates how to include a greater-than sign in your HTML text by referencing its Latin-1
numeric value:

[6] The popular ASCII character set is a subset of the more comprehensive Latin-1
character set. Composed by the well-respected International Organization for
Standardization (ISO), the Latin-1 set is a list of all letters, numbers, punctuation marks,
and so on, commonly used by Western language writers, organized by number and
encoded with special names. Appendix E contains the complete Latin-1 character set and

encoding.

if a > b, then t = 0
if a > b, then t = 0

Both examples cause the text to be rendered as:

if a > b, then t = 0

The complete set of character entity values and names are in Appendix E. You could write an entire
HTML document using character encoding, but that would be silly.

4.9 Addresses 5. Rules, Images, and
Multimedia

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 5

5. Rules, Images, and Multimedia
Contents:
Horizontal Rules
Inserting Images in Your Documents
Document Colors and Background Images
Background Audio
Animated Text
Other Multimedia Content

While the body of most HTML documents is text, an appropriate seasoning of horizontal rules,
images, and other multimedia elements make for a much more inviting and attractive document.
These features of HTML are not simply gratuitous geegaws that make your documents look pretty,
mind you. Multimedia elements bring HTML documents alive, providing a dimension of valuable
information often unavailable in other media, such as print. In this chapter, we describe in detail how
you can insert special multimedia elements into your documents, when their use is appropriate, and
how to avoid overdoing it.

You also might want to jump ahead and skim Chapter 13, Executable Content. There we describe
some catch-all tags, the HTML 4.0 standard <object> and Netscape's <embed>, which let you
insert all kinds of content and data file types, including multimedia, into your documents.

5.1 Horizontal Rules
Horizontal rules give you a way to separate sections of your document visually. That way, you give
readers a clean, consistent, visual indication that one portion of your document has ended and another
portion is beginning. Horizontal rules effectively set off small sections of text, delimit document
headers and footers, and provide extra visual punch to headings within your document.

5.1.1 The <hr> Tag

The <hr> tag tells the browser to insert a horizontal rule across the display window. Like the

tag, <hr> forces a simple line break, although unlike
, <hr> causes the paragraph alignment to
revert to the default (left-justified). The browser places the rule immediately below the current line,
and content flow resumes below the rule. the sidebar "
"

<hr>

Function:

Break a text flow and insert a horizontal rule

Attributes:

ALIGN ONKEYUP

CLASS ONMOUSEDOWN

COLOR ONMOUSEMOVE

ID ONMOUSEOUT

NOSHADE ONMOUSEOVER

NOWRAP ONMOUSEUP

ONCLICK SIZE

ONDBLCLICK STYLE

ONKEYDOWN TITLE

ONKEYPRESS WIDTH

End tag:

None

Contains:

Nothing

Used in:

body_content

The rendering of a horizontal rule is at the discretion of the browser. Typically, it extends across the
entire document. Graphical browsers may render the rule with a chiseled or embossed effect;
character-based browsers most likely use dashes or underscores to create the rule.

There is no additional space above or below a horizontal rule. If you wish to set it off from the
surrounding text, you must explicitly place the rule in a new paragraph, followed by another
paragraph containing the subsequent text. For example, note the spacing around the horizontal rules in
the following source and in Figure 5.1:

This text is directly above the rule.
<hr>
And this text is immediately below.
<p>
Whereas this text will have space before the rule.
<p>
<hr>
<p>
And this text has space after the rule.

A paragraph tag following the rule tag is necessary if you want the content beneath the rule line
aligned in any style other than the default left.

Figure 5.1: Paragraph tags give your text extra elbow room

5.1.1.1 The size attribute

Normally, browsers render horizontal rules three pixels[1] thick with a chiseled, 3D appearance,
making the rule look incised into the page. You may thicken the rules with the size attribute. The
required value is the thickness, in pixels. You can see the effects of this attribute in Figure 5.2 as
constructed from the following source:

[1] A pixel is one of the many tiny dots that make up the display on your computer.
While display sizes vary, a good rule of thumb is that one pixel equals one point on a
common 75 dot-per-inch display monitor. A point is a unit of measure used in printing
and is roughly equal to 1 / 72 of an inch (there are 72.27 points in an inch, to be exact).
Typical typefaces used by various browsers are usually 12 points tall, yielding six lines
of text per inch.

<p>
This is conventional document text,
followed by a normal, 3-pixel tall rule line.
<hr>
The next three rule lines are 12, 36, and 72 pixels tall.
<hr size=12>
<hr size=36>
<hr size=72>

The size attribute is deprecated in HTML 4.0, since its effects can be achieved with appropriate use
of style sheets.

Figure 5.2: Netscape lets you vary the horizontal rule size

5.1.1.2 The noshade attribute

You may not want a 3D rule line, preferring a flat, 2D rule. Just add the noshade attribute (no value
required) to the <hr> tag to eliminate the effect. Note the difference in appearance of a "normal" 3D
rule versus the noshade 2D one in Figure 5.3. (We've also exaggerated the rule's thickness for
obvious effect, as evident in the source HTML fragment.)

<hr size=32>
<hr size=32 noshade>

The noshade attribute is deprecated in HTML 4.0, since its effects can be achieved with appropriate
use of style sheets.

Figure 5.3: Netscape's 3D rule versus the noshade 2D option

5.1.1.3 The width attribute

The default rule is drawn across the full width of the view window. You can shorten or lengthen rules
with the width attribute, creating rule lines that are either an absolute number of pixels wide or
extend across a certain percentage of the current text flow. Most browsers automatically center
partial-width rules; see the align attribute (section 5.1.1.4) to left- or right-justify horizontal rules.

Here are some examples of width-specified horizontal rules (see Figure 5.4):

The following rules are 40 and 320 pixels wide
no matter the actual width of the browser window
<hr width=40>
<hr width=320>
Whereas these next two rules will always extend across
10 and 75 percent of the window, regardless of its width:
<hr width="10%">
<hr width="75%">

Figure 5.4: Absolute versus relative rule widths

Notice, too, that the relative (percentage) value for the width attribute is enclosed in quotation
marks; the absolute (integer) pixel value is not. In fact, the quotation marks aren't absolutely
necessary, but since the percent symbol normally means that an encoded character follows, failure to
enclose the percent width value in quotation marks may confuse other browsers and trash a portion of
your rendered document.

In general, it isn't a good idea to specify the width of a rule as an exact number of pixels. Browser
windows vary greatly in their width, and what might be a small rule on one browser might be
annoyingly large on another. For this reason, we recommend specifying rule width as a percentage of
the window width. That way, when the width of the browser window changes, the rules retain their
same relative size.

The width attribute is deprecated in HTML 4.0, since its effects can be achieved with appropriate
use of style sheets.

5.1.1.4 The align attribute

The align attribute for a horizontal rule can have one of three values: left, center, or right.
For those rules whose width is less than the current text flow, the rule will be positioned relative to the
window margins accordingly. The default alignment is center.

A varied rule alignment makes for nice section dividers. For example, the source shown below
alternates a 35 percent-wide rule from right to center to the left margin (see Figure 5.5):

<hr width="35%" align=right>
<h3>Fruit Packing Advice</h3>
...
<hr width="35%" align=center>
<h3>Shipping Kumquats</h3>
...
<hr width="35%" align=left>
<h3>Juice Processing</h3>
...

The align attribute is deprecated in HTML 4.0, since its effects can be achieved with appropriate
use of style sheets.

Figure 5.5: Varying horizontal rule alignment makes for subtle section dividers

5.1.1.5 The color attribute

Supported only by Internet Explorer, the color attribute lets you set the color of the rule line. The
value of this attribute is either the name of a color or a hexadecimal triple defining a specific color.
For a complete list of color names and values, see Appendix F, Color Names and Values.

By default, a rule is set to the same color as the document background, with the chiseled edges
slightly darker and lighter than the background color. You lose the 3D effect when you specify
another color, either in a style sheet or with the color attribute.

5.1.1.6 Combining rule attributes

You may combine the various rule attributes; their order isn't important. To create big squares, for
example, combine the size and width attributes (see Figure 5.6):

<hr size=32 width="50%" align=center>

In fact, some combinations of rule attributes are necessary - align and width, for example. Align
alone appears to do nothing because the default rule width stretches all the way across the display
window.

Figure 5.6: Combining rule attributes for special effects

5.1.1.7 The class, dir, event, id, lang, style, and title attributes

There are several nearly universal attributes for the many HTML content tags. These attributes give
you a common way to identify (title) and label (id) a tag's contents for later reference or
automated treatment; to change the contents' display characteristics (class, style); and to
reference the language (lang) used and related direction the text should flow (dir). Of course, how
language and the direction of text affect a horizontal rule is unclear. Nonetheless, they are standard
attributes for the tag. [The dir attribute, 3.5.1.1] [The lang attribute, 3.5.1.2] [The id attribute, 4.1.1.4]
[The title attribute, 4.1.1.5] [Inline Styles: The style Attribute, 9.1.1] [Style Classes, 9.2.4]

In addition, there are all the user events that may happen in and around the horizontal rule that the
browser senses and that you may react to via an on-event attribute and some programming.
[JavaScript Event Handlers, 13.3.3]

5.1.2 Using Rules to Divide Your Document

Horizontal rules provide a handy visual navigation device for your readers. To use <hr> effectively
as a section divider, first determine how many levels of headings your document has and how long
you expect each section of the document to be. Then decide which of your headings warrant being set
apart by a rule.

A horizontal rule can also delimit the front matter of a document, separating the table of contents from

the document body, for example. Use a rule also to separate the document body from a trailing index,
bibliography, or list of figures.

Experienced HTML authors also use horizontal rules to mark the beginning and end of a form. This is
especially handy for long forms that make users scroll up and down the page to view all the fields. By
consistently marking the beginning and end of a form with a rule, you help users stay within the form,
better ensuring they won't inadvertently miss a portion when filling out its contents.

5.1.3 Using Rules in Headers and Footers

A fundamental style approach to HTML document families is to have a consistent look and feel,
including a standard header and footer for each document. Typically, the header contains navigational
tools that help users easily jump to internal sections as well as related documents in the family, while
the footer contains author and document information as well as feedback mechanisms like an email
link to the webmaster.

To ensure that these headers and footers don't infringe on the main document contents, consider using
rules directly below the header and above the footer. For example (see also Figure 5.7):

<body>
Kumquat Growers Handbook - Growing Season Guidelines
<hr>
<h1>Growing Season Guidelines</h1>
Growing season for the noble fruit varies throughout the
United States, as shown in the following map:
<p>

<p>
<hr>
<i>Provided as a public service by the
Kumquat Lovers of America</i>

Figure 5.7: Clearly delineate headers and footers with horizontal rules

By consistently setting apart your headers and footers using rules, you help users locate and focus
upon the main body of your document.

4.10 Special Character
Encoding

5.2 Inserting Images in Your
Documents

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 5
Rules, Images, and Multimedia

5.2 Inserting Images in Your Documents
One of the most compelling features of HTML is its ability to include images with your document text, either as an intrinsic
component of the document (inline images), as separate documents specially selected for download via hyperlinks, or as a
background for your document. When judiciously added to the body content, images - static and animated icons, pictures,
illustrations, drawings, and so on - can make your documents more attractive, inviting, and professional looking, as well as
informative and easier to browse. You may also specially enable an image so that it becomes a visual map of hyperlinks. When
used to excess, however, images make your document cluttered, confusing, and inaccessible, as well as unnecessarily
lengthening the time it takes for users to download and view your pages.

5.2.1 Understanding Image Formats

The HTML standard does not prescribe an official format for images. However, the popular browsers specifically
accommodate only certain image formats: GIF and JPEG, in particular (see following sections for explanations). Most other
multimedia formats require special accessory applications that each browser owner must obtain, install, and successfully
operate to view the special files. So it's not too surprising that GIF and JPEG are the de facto image standards on the Web.

Both image formats were already in widespread use before the Web came into being, so there's lots of supporting software out
there to help you prepare your graphics for either format. However, each has its own advantages and drawbacks, including
features that some browsers exploit for special display effects.

5.2.1.1 GIF

The Graphics Interchange Format (GIF) was first developed for image transfer among users of the CompuServe online service.
The format has several features that make it popular for use in HTML documents. Its encoding is cross-platform, so that with
appropriate GIF decoding software (included with most browsers), the graphics you create and make into a GIF file on a
Macintosh, for example, can be loaded into a Windows-based PC, decoded, and viewed without a lot of fuss. The second main
feature is that GIF uses special compression technology that can significantly reduce the size of the image file for faster
transfer over a network. GIF compression is "lossless," too; none of an image's original data is altered or deleted, so the
uncompressed and decoded image exactly matches its original. And GIF images can be easily animated.

Even though GIF image files invariably have the .gif (or .GIF) filename suffix, there actually are two GIF versions: the
original GIF87 and an expanded GIF89a, which supports several new features, including transparent backgrounds, interlaced
storage, and animation, that are popular with HTML authors (see section 5.2.1.2). The currently popular browsers support both
GIF versions, which use the same encoding scheme that maps 8-bit pixel values to a color table, for a maximum of 256 colors
per image. Most GIF images have even fewer colors; there are special tools to simplify the colors in more elaborate graphics.
By simplifying the GIF images, you create a smaller color map and enhance pixel redundancy for better file compression and
consequently faster downloading.

However, because of the limited number of colors, a GIF-encoded image is not always appropriate, particularly for
photorealistic pictures (see JPEG discussion in section 5.2.1.3). Rather, GIFs make excellent icons, reduced color images, and
drawings.

Because most graphical browsers explicitly support the GIF format, it is currently the most widely accepted image-encoding
format on the Web. It is acceptable for both inline images and externally linked ones. When in doubt as to which image format
to use, choose GIF.[2] It will work in almost any situation.

[2] We cannot resist the temptation to point out that choosy authors choose GIF.

5.2.1.2 Interlacing, transparency, and animation

GIF images can be made to perform three special tricks: interlacing, transparency, and animation. With interlacing, a GIF

image seemingly materializes on the display, rather than progressively flowing onto it from top to bottom. Normally, a GIF
encoded image is a sequence of pixel data, in order row-by-row, from top to bottom of the image. While the common GIF
image renders onscreen like pulling down a window shade, interlaced GIFs open like a venetian blind. That's because
interlacing sequences every fourth row of the image. Users get to see a full image - top to bottom, albeit fuzzy - in a quarter of
the time it takes to download and display the remainder of the image. The resulting quarter-done image usually is clear enough
so that users with slow network connections can evaluate whether to take the time to download the remainder of the image file.

Not all graphical browsers, although able to display an interlaced GIF, are actually able to display the materializing effects of
interlacing. With those that do, users still can defeat the effect by choosing to delay image display until after download and
decoding. Older browsers, on the other hand, always download and decode images before display, and don't support the effect
at all.

Another popular effect available with GIF images - GIF89a-formatted images, actually - is the ability to make a portion of
them transparent so that what's underneath - usually the browser window's background - shows through. The transparent GIF
image has one color in its color map designated as the background color. The browser simply ignores any pixel in the image
that uses that background color, thereby letting the display window's background show through. By carefully cropping its
dimensions and by using a solid, contiguous background color, a transparent image can be made to seamlessly meld into a
page's surrounding content or float above it.

Transparent GIF images are great for any graphic you want to meld into the document and not stand out as a rectangular block.
Transparent GIF logos are very popular, as are transparent icons and dingbats - any graphic that should appear to have an
arbitrary, natural shape. You may also insert a transparent image inline with conventional text to act as a special character
glyph within conventional text.

The downside to transparency is that the GIF image will look lousy if you don't remove its border when it is included in a
hyperlink anchor (<a> tag), or is otherwise specially framed. And content flow happens around the image's rectangular
dimensions, not adjacent to its apparent shape. That can lead to unnecessarily isolated images or odd-looking sections in your
HTML pages.

The third unique trick available to the HTML author with GIF89a-formatted images is the ability to do simple frame-by-frame
animation. Using special GIF animation software utilities, you may prepare a single GIF89a file to contain a series of GIF
images. The browser displays each image in the file, one after the other, something like the page-flipping animation booklets
we had (even drew!) as kids. Special control segments between each image in the GIF file let you set the number of times the
browser runs through the complete sequence (looping), how long to pause between each image, whether the image space gets
wiped to background before the browser displays the next image, and so on. By combining these control features with those
normally available for GIF images, including individual color tables, transparency, and interlacing, you can create some very
appealing and elaborate animations.[3]

[3] Songline Studios has published an entire book dedicated to GIF animation: GIF Animation Studio, by Richard
Koman.

Although simple, GIF animation is powerful for one other important reason: You don't need to specially program your HTML
documents to achieve animation. But there is one major downside that limits their use except for small, icon-sized, or thin
bands of space in the browser window: GIF animation files get large fast, even if you are careful not to repeat static portions of
the image in successive animation cells. And if you have several animations in one document, download delays may - and
usually will - annoy the user. If there is any feature on your HTML that deserves close scrutiny for excess, it's GIF animation.

Any and all GIF tricks - interlacing, transparency, and animation - don't just happen; you need special software to prepare the
GIF file. Many image tools now save your creations or acquired images in GIF format, and most now let you enable
transparency, as well as let you make interlaced GIF files. There also are a slew of shareware and freeware programs
specialized for these tasks, as well as for creating GIF animation. Look into your favorite Internet software archives for GIF
graphics and conversion tools and also see Chapter 15, Tips, Tricks, and Hacks, for details on creating transparent images.

5.2.1.3 JPEG

The Joint Photographic Experts Group (JPEG) is a standards body that developed what is now known as the JPEG
image-encoding format. Like GIFs, JPEG images are platform-independent and specially compressed for high-speed transfer
via digital communication technologies. Unlike GIF, JPEG supports tens of thousands of colors for more detailed,
photorealistic digital images. And JPEG uses special algorithms that yield much higher data-compression ratios. It is not
uncommon, for example, for a 200-kilobyte GIF image to be reduced to a 30-kilobyte JPEG image. To achieve that amazing
compression, JPEG does lose some image data. However, you can adjust the degree of "lossiness" with special JPEG tools, so
that although the uncompressed image may not exactly match the original, it will be close enough that most people cannot tell
the difference.

Although JPEG is an excellent choice for photographs, it's not a particularly good choice for illustrations. The algorithms used
for compressing and uncompressing the image leave noticeable artifacts when dealing with large areas of one color. Therefore,
if you're trying to display a drawing, the GIF format may be preferable.

The JPEG format, usually designated by the .jpg (or .JPG) filename suffix, is nearly universally understood by today's
graphical browsers. On rare occasions, you'll come across an older browser that cannot directly display JPEG images.

5.2.2 When to Use Images

Most pictures are worth a thousand words. But don't forget that no one pays attention to a blabbermouth. First and foremost,
think of your HTML document images as visual tools, not gratuitous trappings. They should support your text content and help
readers navigate your documents. Use images to clarify, illustrate, or exemplify the contents. Content supporting photographs,
charts, graphs, maps, and drawings are all natural candidates for appropriate HTML images. Product photographs are essential
components in online catalogs and shopping guides, for example. And link-enabled icons and dingbats, including animated
images, can be effective visual guides to internal and external resources. If an image doesn't do any of these valuable services
for your document, throw it out already!

One of the most important considerations when adding images to a document is the additional delay they add to the retrieval
time for a document over the network, particularly for modem connections. While a simple text document might run, at most,
10 or 15 thousand bytes, images can easily extend to hundreds of thousands of bytes each. And the total retrieval time for a
document is not only equal to the sum of all its component parts, but also to compounded networking overhead delays since
each image requires a separate connection and download request between the client browser and the web server. Depending on
the speed of the connection (bandwidth, usually expressed as bits or bytes per second) as well as network congestion that can
delay connections, a single document containing one 100-kilobyte image may take anywhere from around 15 seconds through
a 57.6 kilobit-per-second modem connection in the wee hours of the morning when most everyone else is asleep, to well over
ten minutes with a 9600 bit-per-second modem at noontime. You get the picture?

5.2.3 When to Use Text

Text hasn't gone out of style. For some users, it is the only portion of your document they can access. We argue that, in most
circumstances, your documents should be usable by readers who cannot view images or have disabled their automatic
download in their browser to improve their low-speed connection. While the urge to add images to all of your documents may
be strong, there are times when pure text documents make more sense.

Documents being converted to the Web from other formats rarely have embedded images. Reference materials and other
serious content often is completely usable in a text-only form.

You should create text-only documents when access speed is critical and potentially slow. If you know that many users will
have only low-speed connections to your pages, you should accommodate them by avoiding the use of images within your
documents. Better yet, provide a home (leading) page that lets readers decide between duplicate collections of your work: one
containing the images, and another stripped of them. (The popular browsers include special picture icons as place holders for
yet-to-be downloaded images, which can trash and muddle your document's layout into an unreadable mess.)

Text is most appropriate - supporting images only, without frills or nonessential graphics - if your documents are to be readily
searchable by any of the many web indexing services. Images are almost always ignored by these search engines. If the major
content of your pages is provided with images, very little information about your documents will find its way into the online
web directories.

5.2.4 Speeding Image Downloads

There are several ways to ameliorate the overhead and delays inherent with images, besides being very choosy about which to
include in your documents:

Keep it simple

A full-screen, 24-bit color graphic, even when reduced in size by digital compression with one of the standard formats
like GIF or JPEG, is still going to be a network bandwidth hog. Acquire and use the various image management tools to
optimize image dimensions and number of colors into the fewest number of pixels. Simplify your drawings. Stay away
from panoramic photographs. Avoid large empty backgrounds in your images, as well as gratuitous borders and other
space-consuming elements. Also avoid dithering (blending two colors among adjacent pixels to achieve a third color);
the technique can significantly reduce the compressibility of your images. Strive for large areas of uniform colors, which
compress readily in both GIF and JPEG format.

Reuse images

This is particularly true for icons and GIF animations. Most browsers cache incoming document components in local
storage for the very purpose of quick, network connection-less retrieval of data. For smaller GIF animation files, try to
prepare each successive image to update only portions that change in the animation, rather than redraw the entire image
(this speeds up the animation, too).

Divide up large documents

This is a general rule that includes images. Many small document segments, organized through hyperlinks (of course!)
and effective tables of contents tend to be better accepted by users than a few large documents. In general, people would
rather "flip" several pages than dawdle waiting for a large one to download. (It's related to the TV channel-surfing
syndrome.) One accepted rule of thumb is to keep your documents under 50 kilobytes each, so even the slowest
connections won't overly frustrate your readers.

Isolate necessarily large graphics

Provide a special link to large images, perhaps one that includes a thumbnail of the graphic, thereby letting readers
decide if and when they want to spend the time downloading the full image. And since the downloaded image isn't
mixed with other document components like inline images, it's much easier for the reader to identify and save the image
on their system's local storage for later study. (For details on non-inline image downloads, see section Section 5.6.2,
"Referencing Audio, Video, and Images".)

Specify image dimensions

Finally, another way to improve performance is by including the image's rectangular height and width information in its
tag. By supplying those dimensions, you eliminate the extra steps the extended browsers must take to download,
examine, and calculate an image's space in the document. There is a downside to this approach, however, that we
explore in section Section 5.2.6.12, "Problems with height and width".

5.2.5 JPEG or GIF?

You may choose to use only JPEG or GIF images in your HTML documents if your sources for images or your software
toolset prefers one over the other format. Both are nearly universally supported by today's browsers, so there shouldn't be any
user-viewing problems.

Nevertheless, we recommend that you acquire the facilities to create and convert to both formats, to take advantage of their
unique capabilities. For instance, use GIF's transparency feature for icons and dingbats. Alternatively, use JPEG for large and
colorful images for faster downloading.

5.2.6 The Tag

The tag lets you reference and insert a graphic image into the current text flow of your HTML document. There is no
implied line or paragraph break before or after the tag, so images can be truly "inline" with text and other content.

Function:

Inserts an image into a document

Attributes:

ALIGN ONDBLCLICK

ALT ONERROR

BORDER ONKEYDOWN

CLASS ONKEYPRESS

CONTROLS ONKEYUP

DIR ONLOAD

DYNSRC ONMOUSEDOWN

HEIGHT ONMOUSEMOVE

HSPACE ONMOUSEOUT

ID ONMOUSEOVER

ISMAP ONMOUSEUP

LANG SRC

LONGDESC START

LOOP STYLE

LOWSRC TITLE

NAME USEMAP

ONABORT VSPACE

ONCLICK WIDTH

End tag:

None

Contains:

Nothing

Used in:

text

The format of the image itself is not defined by the HTML standard, although the popular graphical browsers support GIF and
JPEG images. The HTML standard doesn't specify or restrict the size or dimensions of the image, either. Images may have any
number of colors, but how those colors are rendered is highly browser-dependent.

Image presentation in general is very browser-specific. Images may be ignored by nongraphical browsers. Browsers operating
in a constrained environment may modify the image size or complexity. And users, particularly those with slow network
connections, may choose to defer image loading altogether. Accordingly, you should make sure your documents make sense
and are useful, even if the images are completely removed.

5.2.6.1 The src attribute

The src attribute for the tag is required (unless you use dynsrc with Internet Explorer-based movies; see section
5.2.7.1). Its value is the image file's URL, either absolute or relative to the HTML document referencing the image. To
unclutter their document storage, HTML authors typically collect image files into a separate folder they often name something
like "pics" or "images." [Referencing Documents: The URL, 7.2]

For example, this HTML fragment places an image of a famous kumquat packing plant into the narrative text (see Figure 5.8):

Here we are, on day 17 of the tour, in front of the kumquat
packing plant:
<p>

<p>
What an exciting moment, to see the boxes of fruit moving

In the example, the paragraph (<p>) tags surrounding the tag cause the browser to render the image by itself with
some vertical space after the preceding text and before the trailing text. Text may also abut the image, as we describe in section
5.2.6.4.

Figure 5.8: Image integrated with text

5.2.6.2 The lowsrc attribute

To the benefit of users, particularly those with slow Internet connections, Netscape provides the lowsrc companion to the
src attribute in the tag as a way to speed up document rendering. The lowsrc attribute's value, like src, is the URL
of an image file that the browser loads and displays when it first encounters the tag. Then, when the document has
been completely loaded and can be read by the user, Netscape goes back and retrieves the image specified by the src
attribute.

Ostensibly, the lowsrc image is a low-resolution, abbreviated version of the final src image that loads faster by comparison
to quickly give the reader an idea of its content until the final, higher-resolution image eventually replaces it onscreen. But the
lowsrc attribute can also be used for some very special effects.

Netscape uses the lowsrc image's dimensions to reserve space in the document for both the lowsrc and src images, unless
you explicitly allocate that space with the height and width attributes described later in this chapter. Hence, if the
dimensions of the image specified in the src attribute are different than those for the lowsrc image or your explicitly
included height and width values, the src image will be reduced, enlarged, stretched, and/or compressed to fit in the allotted
space. Moreover, the lowsrc and src images needn't be identical, so you might take advantage of the delayed rendering of
the src image for simple animation.

The lowsrc attribute is for Netscape only. Other browsers ignore it and only load the image specified by the src attribute.
Netscape won't load either image if the user chooses not to auto-load images. In that case, both images will load in order when
the user clicks the images button or clicks the image icon placeholder. No browser loads the lowsrc image only; you must
include a src image, otherwise nothing will appear except the missing image icon.

5.2.6.3 The alt and longdesc attributes

The alt attribute specifies alternative text the browser may show if image display is not possible or disabled by the user. It's
an option, but one we highly recommend you exercise for most images in your document. This way, if the image is not
available, the user still has some indication of what it is that's missing.

The value for the alt attribute is a text string of up to 1024 characters, enclosed in quotation marks if you include spaces or
other punctuation. The alternative text may contain entity references to special characters, but it may not contain any other sort
of markup; in particular, no style tags are allowed.

Graphical browsers ignore the alt attribute if the image is available and downloading is enabled by the user. Otherwise, they
insert the alt attribute's text as a label next to an image placeholder icon. Well-chosen alt labels thereby additionally
support those users with a graphical browser who have disabled their automatic image download because of a slow connection
to the Web.

Nongraphical, text-only browsers like Lynx put the alt text directly into the content flow just like any other text element. So,
when used effectively, the alt tag sometimes can transparently substitute for missing images. (Your text-only browser users
will appreciate not being constantly reminded of their second-class web citizenship.) For example, consider using an asterisk
as the alt attribute alternative to a special bullet icon:

<h3>Introduction</h3>

A graphical browser displays the bullet image, while in a nongraphical browser the alt asterisk takes the place of the missing
bullet. Similarly, use alt text to replace special image bullets for list items. For example, the following code:

 Kumquat recipes
 Annual harvest dates

displays the new.gif image with graphical browsers, and the text "(New!)" with text-only browsers.

The alt attribute lets you use even more complex text (see Figure 5.9):

Here we are, on day 17 of the tour, in front of the kumquat
packing plant:
<p>
<img src="pics/packing_plant.gif"
 alt="[Image of our tour group outside the main packing plant]">
<p>
What an exciting moment, to see the boxes of fruit moving

Figure 5.9: Text-only browsers like Lynx display an image's alt attribute text

The longdesc attribute is similar to the alt attribute, but allows for larger descriptions. The value of longdesc is the
URL of a document containing a description of the image. Presumably, if you absolutely must regale the user with a
description longer than 1024 characters, use the longdesc attribute to link to that description. HTML 4.0 does not specify
what the content of the description must be, nor do any browsers currently implement longdesc, so all bets are off when
deciding how to create those long descriptions.

5.2.6.4 The align attribute

The HTML standard does not define a default alignment for images with respect to other text and images in the same line of
text, so you cannot absolutely predict how the mixture of text and images will look.[4] HTML images normally appear in line
with a single line of text. Our common media like magazines typically wrap text around images, with several lines next to and
abutting the image, not just a single line.

[4] Most of the popular graphical browsers normally insert an image so that its base aligns with the baseline of the
text - the same alignment as that specified by the attribute value of bottom. Nonetheless, HTML document
designers should assume that alignment varies between browsers and always include the desired type of image
alignment.

Fortunately, HTML document designers can exert some control over the alignment of images with the surrounding text
through the align attribute for the tag. The HTML standard specifies five image-alignment attribute values: left,
right, top, middle, and bottom. The left and right values flow any subsequent text around the image, which is
moved to the corresponding margin; the remaining three align the image vertically with respect to the surrounding text.
Netscape adds four more vertical alignment attributes to that list: texttop, absmiddle, baseline, and absbottom,
while Internet Explorer adds center.

The following list contains descriptions for the inline HTML image alignments; see Figure 5.10 for examples:

Figure 5.10: HTML standard and browser-extended inline image alignments with text

top

The top of the image is aligned with the top edge of the tallest item in the current line of text. If there are no other
images in the current line, the top of the image is aligned with the top of the text.

texttop

The align=texttop attribute and value tells Netscape to align the top of the image with the top of the tallest text
item in the current line. This is slightly different from the standard HTML top option, which aligns the top of the image
with the top of the tallest item, image or text, in the current line. If the line contains no other images that extend above
the top of the text, texttop and top have the same effect.

middle

Netscape and Internet Explorer treat the middle image alignment value differently: Netscape always aligns the middle
of the image to the baseline of the text, regardless of other inline elements, such as another inline image (see Figure
5.11). Internet Explorer, on the other hand, aligns the middle of the image to the middle of the tallest item in the current
line, text or image (see Figure 5.12). Notice the alignments and differences in Figures Figure 5.11 and Figure 5.12,
particularly when only one image contains the align attribute. Both figures display the HTML fragment:

Line of text

goes on ...
<br clear=left>
<p>
Line of text

goes on ...

Also note that Internet Explorer Version 3 treats middle, absmiddle, and center the same, whereas earlier
Internet Explorer versions and the current Netscape (Version 4) distinguish between middle and absmiddle
alignments. (If you are confused as to exactly what each alignment value means, please raise your hand.)

Figure 5.11: Netscape aligns middle of image to baseline of text

Figure 5.12: Internet Explorer aligns middle of image to middle of tallest line element

absmiddle

If you set the align attribute of the tag to absmiddle, the browser will fit the absolute middle of the image
to the absolute middle of the current line. For Netscape and earlier versions of Internet Explorer, this is different from
the common middle option, which aligns the middle of the image with the baseline of the current line of text (the
bottom of the characters). Version 3 of Internet Explorer, on the other hand, treats absmiddle the same as middle
and center.

center

The center image alignment value gets treated the same as absmiddle by both Internet Explorer and Netscape, but
note that the browsers treat absmiddle and middle differently.

bottom and baseline (default)

With Netscape and earlier versions of Internet Explorer, the bottom and baseline image alignment values have the
same effect as if you didn't include any alignment attribute at all: the browsers align the bottom of the image in the same
horizontal plane as the baseline of the text. This is not to be confused with the absbottom, which takes into account
letter "descenders" like the tail on the lowercase "y." Internet Explorer Version 3, on the other hand, treats bottom the
same as absbottom. (Did we see a hand up in the audience?)

absbottom

The align=absbottom attribute tells the browsers to align the bottom of the image with the true bottom of the
current line of text. The true bottom is the lowest point in the text taking into account descenders, even if there are no
descenders in the line. A descender is the tail on a "y," for example; the baseline of the text is the bottom of the "v" in
the "y" character.

Use the top or middle alignment values for best integration of icons, dingbats, or other special inline effects with the text

content. Otherwise, align=bottom (the default) usually gives the best appearance. When aligning one or more images on a
single line, select the alignment that gives the best overall appearance to your document.

5.2.6.5 Wrapping text around images

The left and right image alignment values tell the browser to place an image against the left or right margin, respectively,
of the current text flow. The browser then renders subsequent document content in the remaining portion of the flow adjacent
to the image. The net result is that the document content following the image gets wrapped around the image.

The kumquat is the smallest of the citrus fruits, similar in appearance to a tiny
orange. The similarity ends with its appearance, however. While oranges are generally
sweet, kumquats are extremely bitter. Theirs is an acquired taste, to be sure.

Figure 5.13 shows text flow around a left-aligned image.

Figure 5.13: Text flow around a left-aligned image

You can place images against both margins simultaneously (Figure 5.14) and the text will run down the middle of the page
between them:

The kumquat is the smallest of the citrus fruits, similar in appearance to a tiny
orange. The similarity ends with its appearance, however. While oranges are generally
sweet, kumquats are extremely bitter. Theirs is an acquired taste, to be sure.

Figure 5.14: Running text between left- and right-aligned images

While text is flowing around an image, the left (or right) margin of the page is temporarily redefined to be adjacent to the
image as opposed to the edge of the page. This means that subsequent images with the same alignment will stack up against
each other. The following source fragment achieves that staggered image effect:

Marcia!

Jan!

Cindy!

The results of this example are shown in Figure 5.15.

Figure 5.15: Three very lovely girls

When the text flows beyond the bottom of the image, the margin returns to its former position, typically at the edge of the
browser window.

5.2.6.6 Centering an image

Have you noticed that you can't horizontally center an image in the browser window with the align attribute? The middle
and absmiddle values center the image vertically with the current line, but the image is horizontally justified depending on
what content comes before it in the current flow and the dimensions of the browser window.

You can horizontally center an inline image in the browser window, but only if it's isolated from surrounding content, such as
by paragraph, division, or line break tags. Then, either use the <center> tag, or use the align=center attribute or
center-justified style in the paragraph or division tag to center the image. For example:

Kumquats are tasty treats

<center>

</center>
that everyone should strive to eat!

Use the paragraph tag with its align=center attribute if you want some extra space above and below the centered image:

Kumquats are tasty treats
<p align=center>

</p>
that everyone should strive to eat!

5.2.6.7 Align is deprecated

The HTML 4.0 standard has deprecated the align attribute for all tags, including , in deference to style sheets.
Nonetheless, the attribute is very popular among HTML authors, and remains very well supported by the popular browsers. So,
while we do expect that someday align will disappear, it won't be anytime soon. Just don't say we didn't warn you.

5.2.6.8 The border attribute

Browsers normally render images that also are hyperlinks (included in an <a> tag) with a two-pixel-wide colored border,
indicating to the reader that the image can be selected to visit the associated document. Use the border attribute and a
pixel-width thickness value to remove (border=0) or widen that image border. Be aware that this attribute, too, is deprecated
in HTML 4.0 in lieu of style sheets, but continues to be well supported by the popular browsers.

Figure 5.16 shows you the thick and thin of image borders, as rendered from the following HTML source:

Figure 5.16: The thick and thin of image borders

5.2.6.9 Removing the image border

You can eliminate the border around an image hyperlink altogether with the border=0 attribute within the tag. For
some images, particularly image maps, the absence of a border can greatly improve the appearance of your pages. Images that
are clearly link buttons to other pages may also look best without a border.

Be careful, though, that by removing the border, you don't diminish your page's usability. No border means you've removed a
common visual indicator of a link, making it less easy for your readers to find the links on the page. Browsers will change the
mouse cursor as readers pass it over an image that is a hyperlink, but you should not assume they will, nor should you make
readers test your borderless images to find hidden links.

We strongly recommend that you use some additional way with borderless images to let your readers know to click the images.
Even including simple text instructions will go a long way to making your pages more accessible to readers.

5.2.6.10 The height and width attributes

Ever watch the display of a page's contents shift around erratically while the document is loading? That happens because the
browser readjusts the page layout to accommodate each loaded image. The browser determines the size of an image and,
hence, the rectangular space to reserve for it in the display window, by retrieving the image file and extracting its embedded
height and width specifications. The browser then adjusts the page's display layout to insert that picture in the display. This is
not the most efficient way to render a document, since the browser must sequentially examine each image file and calculate its
screen space before rendering adjacent and subsequent document content. That can significantly increase the amount of time it
takes to render the document and disrupt reading by the user.

A more efficient way for HTML authors to specify an image's dimensions is with the height and width attributes.
That way, the browser can reserve space before actually downloading an image, speeding document rendering and eliminating
the content shifting. Both attributes require an integer value that indicates the image size in pixels; the order in which they
appear in the tag is not important.

5.2.6.11 Resizing and flood-filling images

A hidden feature of the height and width attributes is that you don't need to specify the actual image dimensions; the
attribute values can be larger or smaller than the actual size of the image. The browser automatically scales the image to fit the
predefined space. This gives you a down-and-dirty way of creating thumbnail versions of large images and a way to enlarge
very small pictures. Be careful, though: the browser still must download the entire file, no matter what its final rendered size is,
and you will distort an image if you don't retain its original height versus width proportions.

Another trick with height and width provides an easy way to flood-fill areas of your page and can also improve document
performance. Suppose you want to insert a colored bar across your document.[5] Rather than create an image to the full
dimensions, create one that is just one pixel high and wide and set it to the desired color. Then use the height and width
attributes to scale it to the larger size:

[5] This is one way to create colored horizontal rules in Netscape 3 or earlier versions, which don't support the
color attribute of the <hr> tag.

The smaller image downloads much faster than a full-scale image, and the width and height attributes create the desired
bar after the tiny image arrives at the browser (see Figure 5.17).

Figure 5.17: This bar was made from a one-pixel image

One last trick with the width attribute is to use a percentage value instead of an absolute pixel value. This causes the browser
to scale the image to a percentage of the document window width. Thus, to create a colored bar 20 pixels high and the width of
the window, you could use:

As the document window changes size, the image will change size as well.

If you provide a percentage width and omit the height, the browser will retain the image's aspect ratio as it grows and
shrinks. This means that the height will always be in the correct proportion to the width and the image will display without
distortion.

5.2.6.12 Problems with height and width

Although the height and width attributes for the tag can improve performance and let you perform some neat
tricks, there is a particularly knotty downside to using them. The browser sets aside the specified rectangle of space to the
prescribed dimensions in the display window even if the user has turned off automatic download of images. What the user

often is left with is a page full of semi-empty frames with meaningless picture placeholder icons inside. The page looks terribly
unfinished and is mostly useless. Without accompanying dimensions, on the other hand, the browser simply inserts a
placeholder icon inline with the surrounding text, so at least there's something there to read in the display.

We don't have an answer to this dilemma, other than to insist that you use the alt attribute with some descriptive text so that
users at least know what they are missing (see section 5.2.6.3). We do recommend that you include these size attributes,
because we encourage any practice that improves network performance.

5.2.6.13 The hspace and vspace attributes

Graphical browsers usually don't give you much space between an image and the text around it. And unless you create a
transparent image border that expands the space between them, the typical two-pixel buffer between an image and adjacent
text is just too close for most designers' comfort. Add the image into a hyperlink, and the special colored border will negate
any transparent buffer space you labored to create, as well as draw even more attention to how close the adjacent text butts up
against the image.

The hspace and vspace attributes can give your images breathing room. With hspace, you specify the number of pixels
of extra space to leave between the image and text on the left and right sides of the image; the vspace value is the number of
pixels on the top and bottom:

The kumquat is the smallest of the citrus fruits, similar
in appearance to a tiny orange. The similarity ends with its
appearance, however. While oranges are generally sweet,
kumquats are extremely bitter. Theirs is an acquired taste,
to be sure. Most folks, at first taste, wonder how you could
ever eat another, let alone enjoy it!
<p>

The kumquat is the smallest of the citrus fruits, similar
in appearance to a tiny orange. The similarity ends with its
appearance, however. While oranges are generally sweet,
kumquats are extremely bitter. Theirs is an acquired taste,
to be sure. Most folks, at first taste, wonder how you could
ever eat another, let alone enjoy it!

Figure 5.18 shows the difference between two wrapped images.

Figure 5.18: Improve image/text interfaces with vspace and hspace extensions

We're sure you'll agree that the additional space around the image makes the text easier to read and the overall page more
attractive.

5.2.6.14 The ismap and usemap attributes

The ismap and usemap attributes for the tag tell the browser that the image is a special mouse-selectable visual map
of one or more hyperlinks, commonly known as an image map. The ismap style of image maps, known as a server-side
image map, may be specified only within an <a> tag hyperlink. [<a>, 7.3]

For example:

The browser automatically sends the x,y position of the mouse (relative to the upper-left corner of the image) to the server
when the user clicks somewhere on the ismap image. Special server software (the /cgi-bin/images/map2 program in the
example) may then use those coordinates to determine a response.

The usemap attribute provides a client-side image map mechanism that effectively eliminates server-side processing of the
mouse coordinates and its incumbent network delays and problems. Using special <map> and <area> tags, HTML authors
provide a map of coordinates for the hyperlink-sensitive regions in the usemap image along with related hyperlink URLs. The
value of the usemap attribute is a URL that points to that special <map> section. The browser on the user's computer
translates the coordinates of a click of the mouse on the image into some action, including loading and displaying another
document. [<map>, 7.5] [<area>, 7.5]

For example, the following source specially encodes the 100 × 100-pixel map2.gif image into four segments, each of which,
if clicked by the user, links to a different document. Also notice that we've included, validly, the ismap image map processing
capability in the example tag so that users of other, usemap-incapable browsers have access to the alternative,
server-side mechanism to process the image map:

...

<map name="map2">
 <area coords="0,0,49,49" href="link1.html">
 <area coords="50,0,99,49" href="link2.html">
 <area coords="0,50,49,99" href="link3.html">
 <area coords="50,50,99,99" href="link4.html">
</map>

Geographical maps make excellent ismap and usemap examples: browsing a nationwide company's pages, for instance, the
user might click on his or her home town on a map to get the addresses and phone numbers for nearby retail outlets. The
advantage of the usemap client-side image map processing is that it does not require a server or special server software and
so, unlike the ismap mechanism, can be used in non-web (networkless) environments, such as local files or CD-ROM.

Please read our more complete discussion of anchors and links, including image maps within links, in section 7.5.

5.2.6.15 The class, dir, event, id, lang, style, and title attributes

Several nearly universal attributes give you a common way to identify (title) and label (id) the image tag's contents for
later reference or automated treatment; to change the contents' display characteristics (class, style); and to reference the
language (lang) used and related direction the text should flow (dir). And, of course, there are all the user events that may
happen in and around the tagged contents that the browsers senses and that you may react to via an on-event attribute and some
programming. [Inline Styles: The style Attribute, 9.1.1] [Style Classes, 9.2.4]

Of these many HTML 4.0 attributes, id is the most important. It lets you label the image for later access by a program or
browser operation (see Chapter 13, Executable Content). [The id attribute, 4.1.1.4]

The remaining attributes have questionable meaning in context with . Granted, there are a few style sheet options that
may influence an image's display, and a title is good to include, although alt is better. And it's hard to imagine what the
influence of language (lang) or its presentation direction (dir) might have on an image. [The dir attribute, 3.5.1.1] [The lang
attribute, 3.5.1.2] [The title attribute, 4.1.1.5]

5.2.6.16 The name, onAbort, onError, onLoad and other event attributes

There are four attributes currently supported by Netscape that enables you to use JavaScript to manipulate the image.
The first is the name attribute. Now redundant with the HTML 4.0 standard id attribute, name lets you label the image so
that it can be referenced by a JavaScript applet. For example:

lets you later refer to that picture of a kumquat as simply "kumquat" in a JavaScript applet perhaps to erase or otherwise
modify it. You cannot individually manipulate an image with JavaScript if it is not named or doesn't have an associated id.

The other three attributes let you provide some special JavaScript event handlers. The value of the attribute is a chunk of
JavaScript code, enclosed in quotation marks; it may consist of one or more JavaScript expressions, separated by semicolons.

Netscape invokes the onAbort event handler if the user stops loading an image, usually by clicking the browser's "stop"
button. You might, for instance, use an onAbort message to warn users if they stop loading some essential image, such as an
image map (see section 6.5):

<img src="pics/kumquat.gif" usemap="#map1" onAbort="window.alert"('Caution: This
image contains important
 hyperlinks. Please load the entire image.')">

The onError attribute is invoked if some error occurs during the loading of the image, but not for a missing image or one
that the user chose to stop loading. Presumably, the applet could attempt to recover from the error or load a different image in
its place.

Netscape executes the JavaScript code associated with the tag's onLoad attribute right after the browser successfully
loads and displays the image.

See section 13.3.3 for more information about JavaScript and event handlers.

5.2.6.17 Combining attributes

You may combine any of the various standard and extension attributes for images where and when they make sense. The order

for inclusion of multiple attributes in the tag is not important, either. Just be careful not to use redundant attributes or
you won't be able to predict the outcome.

5.2.7 Video Extensions

The special controls, dynsrc, loop, and start attribute extensions for the tag are unique to Internet Explorer
and are not HTML 4.0 standard attributes. They let you embed an inline movie into the body content, just like an image.

Equivalent behavior is available in Netscape via an extension program known as a plug-in. Plug-ins place an additional burden
on the user, in that each user must find and install the appropriate plug-in before being able to view the inline video. The
Internet Explorer tag extensions, on the other hand, make video display an intrinsic part of the browser. [Embedded
Content, 13.2]

However, the Internet Explorer movie extensions currently are very limited. They are not supported by any other browser and
can be used only with Audio Video Interleave (AVI) formatted movie files, since that's the player format built into Internet
Explorer and enabled through Microsoft's Windows operating system software. Moreover, recent innovations in browser
technology, objects, and applets in particular, may make Internet Explorer's approach of extending the already overloaded
 tag obsolete.

5.2.7.1 The dynsrc attribute

Use the dynsrc attribute extension in the tag to reference an AVI movie for inline display by Internet Explorer. Its
required value is the URL of the movie file enclosed in quotation marks. For example, this text displays the tag and attribute
for an AVI movie file entitled intro.avi:

The browser sets aside a video viewport in the HTML display window and plays the movie, with audio if it's included in the
clip and if your computer is able to play audio. Internet Explorer treats dynsrc movies similar to inline images: in line with
current body content and according to the dimension of the video frame. And, like common images, the dynsrc referenced
movie file gets displayed immediately after download from the server. You may change those defaults and add some user
controls with other attributes, as described later.

Because all other browsers currently ignore the special Internet Explorer attributes for movies, they may become confused by
an tag that does not contain the otherwise required src attribute and an image URL. We recommend that you include
the src attribute and a valid image file URL in all tags, including those that reference a movie for Internet Explorer
users. The other browsers display the still image in place of the movie; Internet Explorer does the reverse and plays the movie,
but does not display the image. Note that the order of attributes does not matter. For example:

Internet Explorer loads and plays the AVI movie intro.avi; other graphical browsers will load and display the mvstill.gif image
instead.

5.2.7.2 The controls attribute

Normally, Internet Explorer plays a movie inside a framed viewport once, without any visible user controls. The user may
restart, stop, and continue the movie by clicking inside that viewport with the mouse. Use the controls attribute (no value)
to add visible controls to the movie viewport so that the user may, with the mouse, play, fast-forward, reverse, stop, and pause
the movie, like on a VCR. If the movie clip includes a sound track, Internet Explorer provides an audio volume control as well.
For example:

adds the various playback controls to the video window of the intro.avi movie clip, as shown in Figure 5.19.

Figure 5.19: The controls attribute adds movie playback controls to the video playback frame

5.2.7.3 The loop attribute

Internet Explorer normally plays a movie clip from beginning to end once after download. The loop attribute for the movie
 tag lets you have the clip play repeatedly for an integer number of times set by the attribute's value, or forever if the
value is infinite. The user may still cut the loop short by clicking on the movie image, by pressing the stop button, if given
controls (see section 5.2.7.2), or by moving on to another document.

The following intro.avi movie clip will play from beginning to end, then restart at the beginning and play through to the end
nine more times:

Whereas the following movie will play over and over again, incessantly:

Looping movies aren't necessarily meant to annoy. Some special effects animations, for instance, are a sequence of repeated
frames or segments. Rather than string the redundant segments into one, long movie that extends its download time, simply
loop the single, compact segment.

5.2.7.4 The start attribute

Normally, an Internet Explorer movie clip starts playing as soon as it's downloaded. You can modify that behavior with the
start attribute in the movie's tag. By setting its value to mouseover, you delay playback until the user passes the
mouse pointer over the movie viewport. The other valid start attribute value, fileopen, is the default: start playback just
after download. It is included because both values may be combined in the start attribute to cause the movie to play back
automatically once after download, and then whenever the user passes the mouse over its viewport. Add a value-separating
comma, with no intervening spaces, or else enclose them in quotes, when combining the start attribute values.

For example, our by-now-infamous intro.avi movie will play once when its host HTML document is loaded by the user, and
whenever he or she passes the mouse over the movie's viewport:

<img dynsrc="movies/intro.avi" start="fileopen,mouseover"
 src="pics/mvstill.gif">

5.2.7.5 Combining movie attributes

Treat Internet Explorer inline movies as you would any image, mixing and matching the various movie-specific as well as the
standard and extended tag attributes and values supported by the browser. For example, you might align the movie (or
its image alternative, if displayed by another browser) to the right of the browser window:

Combining attributes to achieve a special effect is good. We also recommend you combine attributes to give control to the
user, when appropriate. For instance, if you set up a movie to loop incessantly, you should also include the controls

attribute so the user can stop the movie without having to leave the HTML document.

As we stated in section 5.2.7.4, by combining attributes you can also delay playback until the user passes the mouse over its
viewport. Magically, the movie comes alive and plays continuously:

<img dynsrc="movies/magic.avi" start=mouseover
 loop=infinite src="pics/magic.gif">

5.1 Horizontal Rules 5.3 Document Colors and
Background Images

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 5
Rules, Images, and Multimedia

5.3 Document Colors and Background Images
The HTML 4.0 standard provides a number of attributes for the <body> tag that allow the HTML
author to define text, link, and document background colors, in addition to defining an image to be
used as the document background. Internet Explorer extends these attributes to include document
margins and better background image control. And, of course, the latest style sheet technologies
integrated into the current browsers let you manipulate all these various display parameters.

5.3.1 Additions and Extensions to the <body> Tag

The attributes that control the document background, text color, and document margins are used with
the <body> tag. [<body>, 3.7]

5.3.1.1 The bgcolor attribute

One standard way you can change the default background color in the browser window to another hue
with the bgcolor attribute for the <body> tag. Like the color attribute for the tag, the
required value of the bgcolor attribute may be expressed in either of two ways: as the red, green,
and blue (RGB) components of the desired color or as a standard color name. Appendix F, provides a
complete discussion of RGB color encoding along with a table of acceptable color names you can use
with the bgcolor attribute.

Setting the background color is easy. To get a pure red background using RGB encoding, try:

<body bgcolor="#FF0000">

For a more subtle background, try:

<body bgcolor=peach>

5.3.1.2 The background attribute

If a splash of color isn't enough, you may also place an image into the background of a document with
the background attribute in its <body> tag.

The required value of the background attribute is the URL of an image. The browser automatically
repeats (tiles) the image both horizontally and vertically to fill the entire window.

You normally should choose a small, somewhat dim image to create an interesting but unobtrusive
background pattern. Besides, a small, simple image traverses the network much faster than an intricate,

full-screen image.

Figure 5.20 shows you how the extended browsers repeatedly render a single brick to create a wall of
bricks for the document background:

<body background="pics/onebrick.gif">

Figure 5.20: One brick becomes many in a Netscape background

Background images of various dimensions and sizes create interesting vertical and horizontal effects
on the page. For instance, a tall skinny image might set off your document heading:

<body background="pics/vertical_fountain.gif">
<h3>Kumquat Lore</h3>
For centuries, many myths and legends have arisen around the kumquat.

If the vertical_fountain.gif is a narrow, tall image whose color grows lighter towards its base and
whose length exceeds the length of the document body, the resulting document might look like the one
shown in Figure 5.21.

Figure 5.21: A tall and skinny background

You can achieve a similar effect horizontally with an image that is much wider than it is long (see
Figure 5.22).

Figure 5.22: A long and skinny background

The background attribute is deprecated in HTML 4.0, since you can achieve similar effects using
style sheets.

5.3.1.3 The bgproperties attribute

The bgproperties attribute extension for the <body> tag is exclusive to Internet Explorer and
works only in conjunction with the background attribute extension. The bgproperties attribute
has a single value, fixed. It freezes the background image to the browser window, so it does not
scroll with the other window contents. Hence, the example H2Omark.gif background image servers as
a watermark for the document:

<body background="pics/H2Omark.gif" bgproperties="fixed">

5.3.1.4 The text attribute

Once you alter a document's background color or add a background image, you also might need to
adjust the text color to ensure that users can read the text. The HTML 4.0 text standard attribute for
the <body> tag does just that: it sets the color of all nonanchor text in the entire document.

Give the text attribute a color value in the same format as you use to specify a background color (see
bgcolor in section 6.3.1.1) - an RGB triplet or color name, as described in Appendix F. For example,
to produce a document with blue text on a pale yellow background, use:

<body bgcolor="#777700" text="blue">

Of course, it's best to select a text color that contrasts well with your background color or image.

The text attribute is deprecated in HTML 4.0, since you can achieve similar effects using style
sheets.

5.3.1.5 The link, vlink, and alink attributes

The link, vlink, and alink attributes of the <body> tag control the color of hypertext (<a> tag)
in your documents. All three accept values that specify a color as an RGB triplet or color name, just
like the text and bgcolor attributes.

The link attribute determines the color of all hyperlinks the user has not yet followed. The vlink
attribute sets the color of all links the extended browser user had followed at one time or another. The
alink attribute defines a color for active link text - one that is currently selected by the user and is
under the mouse cursor with the mouse button depressed.

Like text color, you should be careful to select link colors that can be read against the document
background. Moreover, the link colors should be different from the regular text as well as from each
other.

These attributes are deprecated in HTML 4.0, since you can achieve similar effects using style sheets.

5.3.1.6 The leftmargin attribute

Peculiar to Internet Explorer, the leftmargin attribute extension for the <body> tag lets you
indent the left margin relative to the left edge of the browser's window, much like a margin on a sheet
of paper. Other browsers ignore this attribute and normally left-justified body content abuts the left
edge of the document window.

The value of the leftmargin attribute is the integer number of pixels for that left-margin indent; a
value of 0 is the default. The margin is filled with the background color or image.

For example, Internet Explorer renders the following text justified against a margin 50 pixels away
from the left edge of the browser window (see Figure 5.23):

<body leftmargin=50>
Internet Explorer lets you indent the

<--left margin

away from the left edge of the window.
</body>

Figure 5.23: Internet Explorer's leftmargin attribute for indenting body content

5.3.1.7 The topmargin attribute

Like leftmargin, the topmargin attribute extension currently is exclusive to Internet Explorer. It
may be included in the <body> tag to set a margin of space at the top of the document. The margin
space is filled with the document's background color or image.

Body content begins flowing below the integer number of pixels you specify as the value for
topmargin; a value of 0 is the default.

For example, Internet Explorer renders the following text at least 50 pixels down from the top edge of
the browser window (see Figure 5.24):

<body topmargin=50>
<center>
^^^
</center>
Internet Explorer can give your documents
a little extra headroom.
</body>

Figure 5.24: Internet Explorer's topmargin attribute for lowering body content

5.3.1.8 The style and class attributes

You also can set all the various style-related <body> features and then some with HTML style sheets.
But although you may include the style attribute with the <body> tag to create an inline style for
the entire body content, we recommend that you set the styles for the entire document body at the
document level (<style> tag inside the document head) or via a collection-level (imported) style
sheet. Use the class attribute and name value to apply the appropriate style of a predefined class of
the <body> tag to the contents. (Since there can only be one body per document, what is the point of
setting a class name otherwise?) We cover the use of style and class definitions in Chapter 9,
Cascading Style Sheets.

5.3.1.9 Mixing and matching body attributes

Although background and bgcolor attributes can appear in the same <body> tag, a background
image will effectively hide the selected background color unless the image contains substantial
portions of transparent areas, as we described earlier in this chapter. But even if the image does hide
the background color, go ahead and include the bgcolor attribute and some appropriate color value.
That's because users can turn off image downloading, which includes background images, and so they
may find your page otherwise left naked and unappealing. Moreover, without a bgcolor attribute or
a downloaded (for whatever reason) background image, the browsers merrily ignore your text and link
color attributes, too, reverting instead to its own default values, or the ones chosen by the user.

5.3.2 Extending a Warning

The various color and image extensions work wonderfully, particularly the colorful ones, assuming
that all users have a 256-color display, lots of available memory, unlimited network bandwidth, and
good visual acuity. In reality, many users have monochrome or limited color displays, limited memory
for caching images, extremely restricted network bandwidth, and poor vision.

Because of these limitations, you should seriously consider not using any of these extensions in your
documents. Much like early users of the Macintosh felt compelled to create documents using
ransom-note typography ("I've got 40 fonts on this thing, and I'm going to use them all!"), many
authors cannot avoid adding some sort of textured background to every document they create ("I've got
13 wood grains and 22 kinds of marbling, and I'm going to use them all!").

In reality, except for the very clever ones, texture-mapped backgrounds add no information to your
documents. The value of your document ultimately lies in its text and imagery, not the cheesy blue
swirly pattern in the background. No matter how cool it looks, your readers are not benefiting and
could be losing readability.

We advise you not to use the color extensions except for comparatively frivolous endeavors or unless
the extension really adds to the document's value, such as for business advertising and marketing
pages.

5.3.2.1 Problems with background images

Here are some of the things that can go wrong with background images:

The time to load the document is increased by the amount of time needed to load the image.
Until the background image is completely downloaded, no further document rendering is
possible.

●

The background image takes up room in the browser's local cache, displacing other images that●

might actually contain useful information. This makes other documents, which might not even
have backgrounds, take that much longer to load.

The colors in the image may not be available on the user's display, forcing the browser to dither
the image. This replaces large areas of a single color with repeating patterns of several other
closer, but not cleaner, colors and can make the text more difficult to read.

●

Because the browser must actually display an image in the background, as opposed to filling an
area with a single color, scrolling through the document can take much longer.

●

Even if it's clear onscreen, text printed on top of an image invariably is more difficult, if not
impossible, to read.

●

Fonts vary widely between machines; the ones you use with your browser that work fine with a
background pattern often end up jagged and difficult to read on another machine.

●

5.3.2.2 Problems with background, text, and link colors

There also are a slew of problems you will encounter if you play with background colors, including:

The color you choose, while just lovely in your eyes, may look terrible to the user. Why annoy
them by changing what users most likely have already set as their own default background
color?

●

While you may be a member of the "light text on a dark background" school of document
design, many people also favor the "dark text on a light background" style that has been
consistently popular for over three thousand years. Instead of bucking the trend, assume that
users have already set their browser to a comfortable color scheme.

●

Some users are color-blind. What may be a nifty-looking combination of colors to you may be
completely unreadable to others. One combination in particular to avoid is green for unvisited
links and red for visited links. Millions of men are afflicted with red/green color blindness.

●

Your brilliant hue may not be available on the user's display, and the browser may be forced to
choose one that's close instead. For displays with very few colors (like those of several million
16-color VGA Windows-based machines currently in use) the close colors for the text and the
background might be the same color!

●

For the same reasons above, active, unvisited, and visited links may all wind up as the same
color on limited-color displays.

●

By changing text colors, particularly those for visited and unvisited links, you may completely
confuse the user. By changing those colors, you effectively force them to experiment with your
page, clicking a few links here and there to learn your color scheme.

●

Most page designers have no formal training in cognitive psychology, fine arts, graphic arts, or
industrial design, yet feel fully capable of selecting appropriate colors for their documents. If
you must fiddle with the colors, ask a professional to pick them for you.

●

5.3.2.3 And then again

There is no denying the fact that these extensions result in some very stunning HTML documents. And
they are fun to explore and play with. So, rather than leave this section on a sour note of caution, we
encourage you to go ahead and play - just play carefully.

5.2 Inserting Images in Your
Documents

5.4 Background Audio

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 5
Rules, Images, and Multimedia

5.4 Background Audio
There is one other form of inline multimedia generally available to web surfers - audio. Most
browsers treat audio multimedia as separate documents, downloaded and displayed by special helper
applications, applets, or plug-ins. Internet Explorer, on the other hand, contains a built-in sound
decoder and supports a special HTML tag that lets you integrate an audio file with your document that
plays in the background as a soundtrack for your page. [Applets and Objects, 13.1] [Embedded
Content, 13.2]

We applaud the developers of Internet Explorer for providing a mechanism that more cleanly
integrates audio into HTML documents. And the possibilities with audio are very enticing. But at the
same time, we caution authors that the special tags and attributes for audio don't work with other
browsers, and whether this is the method that the majority of browsers will eventually support is not at
all assured. So, beware.

5.4.1 The <bgsound> Tag

Use the <bgsound> tag to play a soundtrack in the background. This tag is for Internet Explorer
documents only. All other browsers ignore the tag. It downloads and plays an audio file when the host
HTML document is first downloaded by the user and displayed in their browser. The background
sound file also will replay whenever the user refreshes the browser display.

<bgsound>

Function:

Plays a soundtrack in the document background

Attributes:

LOOP

SRC

End tag:

None

Contains:

Nothing

Used in:

body_content

5.4.1.1 The src attribute

The src attribute is required for the <bgsound> tag. Its value references the URL for the related
sound file. For example, when the Internet Explorer user first downloads an HTML document
containing the tag:

<bgsound src="audio/welcome.wav">

they will hear the welcome.wav audio file - perhaps an inviting message - play once through their
computer's sound system.

Currently, Internet Explorer can handle three different sound format files: wav, the native format for
PCs; au, the native format for most Unix workstations; and MIDI, a universal music-encoding
scheme (see also Table 5.1).

Table 5.1: Common Multimedia Formats and Respective
Filename Extensions

Format Type Extension Platform of Origin

GIF Image gif Any

JPEG Image jpg, jpeg, jpe Any

XBM Image xbm Unix

TIFF Image tif, tiff Any

PICT Image pic, pict Any

Rasterfile Image ras Sun

MPEG Movie mpg, mpeg Any

AVI Movie avi Microsoft

QuickTime Movie qt, mov Apple

AU Audio au, snd Sun

WAV Audio wav Microsoft

AIFF Audio aif, aiff Apple

MIDI Audio midi, mid Any

PostScript Document ps, eps, ai Any

Acrobat Document pdf Any

5.4.1.2 The loop attribute

Like Internet inline movies, the loop attribute for the browser's <bgsound> tag lets you replay a

background soundtrack for a certain number of times (or over and over again forever), at least until
the user moves on to another page or quits the browser.

The value of the loop attribute is the integer number of times to replay the audio file, or infinite,
which makes the soundtrack repeat endlessly.

For example:

<bgsound src="audio/tadum.wav" loop=10>

repeats the ta-dum soundtrack ten times, whereas:

<bgsound src="audio/noise.wav" loop=infinite>

continuously plays the noise soundtrack.

5.4.2 Alternative Audio Support

There are other ways to include audio in your documents, using more general mechanisms that
support other embedded media as well. The most common alternative to the <bgsound> tag is the
<embed> tag, originally implemented by Netscape and supplanted by the <object> HTML
standard 4.0 tag. Take a look in Chapter 13 for details.

5.3 Document Colors and
Background Images

5.5 Animated Text

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 5
Rules, Images, and Multimedia

5.5 Animated Text
In what appears to be an effort to woo advertisers, Internet Explorer has added a form of animated text
to HTML. The animation is simple - text scrolling horizontally across the display - but effective for
moving banners and other elements that readily and easily animate an otherwise static document. On
the other hand, like the <blink> tag, animated text can easily become intrusive and abusive for the
reader. Use with caution, please, if at all.

5.5.1 The <marquee> Tag

The <marquee> tag defines the text that scrolls across the Internet Explorer user's display.

<marquee>

Function:

Create a scrolling text marquee

Attributes:

ALIGN LOOP

BEHAVIOR SCROLLAMOUNT

BGCOLOR SCROLLDELAY

DIRECTION VSPACE

HEIGHT WIDTH

HSPACE

End tag:

</marquee>; never omitted

Contains:

plain_text

Used in:

body_content

The <marquee> tag is for Internet Explorer only, and it is an extension to the HTML 4.0 standard.

The text between the <marquee> tag and its required </marquee> end tag scrolls horizontally
across the display. The various tag attributes control the size of the display area, its appearance, its
alignment with the surrounding text, and the scrolling speed.

The <marquee> tag and attributes are ignored by other browsers, but its contents are not. They are
displayed as static text, sans any alignment or special treatments afforded by the <marquee> tag
attributes.

5.5.1.1 The align attribute

Internet Explorer places <marquee> text into the surrounding body content just as if it were an
embedded image. As a result, you can align the marquee within the surrounding text.

The align attribute accepts a value of top, middle, or bottom, meaning that the specified point
of the marquee will be aligned with the corresponding point in the surrounding text. Thus:

<marquee align=top>

aligns the top of the marquee area with the top of the surrounding text. Also see the height and
width, hspace, and vspace attributes (later in this chapter), which control the dimensions of the
marquee.

5.5.1.2 The behavior, direction, and loop attributes

Together, these three attributes control the style, direction, and duration of the scrolling in your
marquee.

The behavior attribute accepts three values:

scroll (default)

The value of scroll causes the marquee to act like the grand marquee in Times Square: the
marquee area is empty initially; the text then scrolls in from one side (controlled by the
direction attribute), continues across until it reaches the other side of the marquee, and then
scrolls off until the marquee is once again empty.

slide

This value causes the marquee to start empty. Text then scrolls in from one side (controlled by
the direction attribute), stops when it reaches the other side, and remains onscreen.

alternate

Specifying alternate as the value for the behavior attribute causes the marquee to start
with the text fully visible at one end of the marquee area. The text then scrolls until it reaches
the other end, whereupon it reverses direction and scrolls back to its starting point.

If you do not specify a marquee behavior, the default behavior is scroll.

The direction attribute sets the direction for marquee text scrolling. Acceptable values are either
left (the default) or right. Note that the starting end for the scrolling is opposite to the direction:
left means that the text starts at the right of the marquee and scrolls to the left. Remember also that
rightward-scrolling text is counter-intuitive to anyone who reads left to right.

The loop attribute determines how many times the marquee text scrolls. If an integer value is

provided, the scrolling action is repeated that many times. If the value is infinite, the scrolling
repeats until the user moves on to another document within the browser.

Putting some of these attributes together:

<marquee align=center loop=infinite>
 Kumquats aren't filling
 Taste great, too!
</marquee>

The example message starts at the right side of the display window (default), scrolls leftward all the
way across and off the Internet Explorer display, and then starts over again until the user moves on to
another page. Notice the intervening periods and spaces for the "trailer"; you can't append one
marquee to another.

Also, the slide-style of scrolling looks jerky when repeated and should only be scrolled once. Other
scrolling behaviors work well with repeated scrolling.

5.5.1.3 The bgcolor attribute

The bgcolor attribute lets you change the background color of the marquee area. It accepts either an
RGB color value or one of the standard color names. See Appendix F for a full discussion of both
color-specification methods.

To create a marquee area whose color is yellow, you would write:

<marquee bgcolor=yellow>

5.5.1.4 The height and width attributes

The height and width attributes determine the size of the marquee area. If not specified, the
marquee area extends all the way across the Internet Explorer display and will be just high enough to
enclose the marquee text.

Both attributes accept either a numeric value, indicating an absolute size in pixels, or a percentage,
indicating the size as a percentage of the browser window height and width.

For example, to create a marquee that is 50 pixels tall and occupies one-third of the display window
width, use:

<marquee height=50 width="33%">

While it is generally a good idea to ensure the height attribute is large enough to contain the
enclosed text, it is not uncommon to specify a width that is smaller than the enclosed text. In this case,
the text scrolls the smaller marquee area, resulting in a kind of "viewport" marquee familiar to most
people.

5.5.1.5 The hspace and vspace attributes

The hspace and vspace attributes let you create some space between the marquee and the
surrounding text. This usually makes the marquee stand out from the text around it.

Both attributes require an integer value specifying the space needed in pixels. The hspace attribute
creates space to the left and right of the marquee; the vspace attribute creates space above and
below the marquee. To create 10 pixels of space all the way around your marquee, for example, use:

<marquee vspace=10 hspace=10>

5.5.1.6 The scrollamount and scrolldelay attributes

These attributes control the speed and smoothness of the scrolling marquee.

The scrollamount attribute value is the number of pixels needed to move text each successive
movement during the scrolling process. Lower values mean smoother, but slower scrolling; higher
numbers create faster, but jerkier text motion.

The scrolldelay attribute lets you set the number of milliseconds to wait between successive
movements during the scrolling process. The smaller this value, the faster the scrolling.

You can use a low scrolldelay to mitigate the slowness of a small, smooth scrollamount.
For example:

<marquee scrollamount=1 scrolldelay=1>

scrolls the text one pixel for each movement, but does so as fast as possible. In this case, the scrolling
speed is limited by the capabilities of the browser's computer.

5.4 Background Audio 5.6 Other Multimedia Content

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 5
Rules, Images, and Multimedia

5.6 Other Multimedia Content
The Web is completely open-minded about the types of content that can be exchanged by servers and browsers. In this
section, we look at a different way to reference images, along with audio, video, and other document formats.

5.6.1 Embedded Versus Referenced Content

Images currently enjoy a special status among the various media that can be included within an HTML document and
displayed inline with other content by all but a few browsers. Sometimes, however, as we discussed earlier in this chapter,
you may also reference images externally, particularly large ones in which details are important, but not immediately
necessary to the document content. Other multimedia elements, including digital audio and video, can be referenced as
separate documents external to the current one.

You normally use the anchor tag (<a>) to link external multimedia elements to the current document. Just like other link
elements selected by the user, the browser downloads the multimedia object and presents it to the user, possibly with the
assistance of an external application or plug-in. Referenced content is always a two-step process: present the document
that links to the desired multimedia object, then present the object if the user selects the link. [<a>, 7.3]

In the case of images, you can choose how to present images to the user: inline and immediately available via the
tag, or referenced and subsequently available via the <a> tag. If your images are small and critical to the current
document, you should provide them inline. If they are large or are only a secondary element of the current document,
make them available as referenced content via the <a> tag.

If you choose to provide images via the <a> tag, it is sometimes a courtesy to your readers to indicate the size of the
referenced image in the referencing document and perhaps provide a thumbnail sketch. Users can then determine whether
it is worth their time and expense to retrieve it.

5.6.2 Referencing Audio, Video, and Images

You reference any external document, regardless of type or format, in an HTML document via a conventional anchor
(<a>) link:

The Kumquat Grower's Anthem is a rousing tribute to
the thousands of 'quat growers around the world.

Just like any referenced document, the server delivers the desired multimedia object to the browser when the user selects
the link. If the browser finds the document is not HTML, but some other format, it automatically invokes an appropriate
rendering tool to display or otherwise convey the contents of the object to the user.

You can configure your browser with special helper applications that handle different document formats in different ways.
Audio files, for example, might be passed to an audio-processing tool, while video files are given to a video-playing tool.
If a browser has not been configured to handle a particular document format, the browser will inform you and offer to
simply save the document to disk. You can later use an appropriate viewing tool to examine the document.

Browsers identify and specially handle multimedia files from one of two different hints: either from the file's
Multipurpose Internet Mail Extension (MIME) type provided by the server or from a special suffix in the file's name. The
browser prefers MIME because of its richer description of the file and its contents, but will infer the file's contents (type
and format) of the object by the file suffix; .gif or .jpg, for GIF and JPEG encoded images, for example, or .au for a
special sound file.

Since not all browsers look for a MIME type, nor will they all be correctly configured with helper applications by their
users, you should always use the correct file suffix in the names of multimedia objects. See Table 5.1 for examples.

5.6.3 Appropriate Linking Styles

Creating effective links to external multimedia documents is critical. The user needs some indication of what the object is
and perhaps the kind of application the linked object needs to execute. Moreover, most multimedia objects are quite large,
so common courtesy tells us to provide users with some indication of the time and expense involved in downloading it.

In lieu of, or in addition to, the anchor and surrounding text, a small thumbnail of large images or a familiar icon that
indicates the referenced object's format may be useful.

5.6.4 Embedding Other Document Types

The Web can deliver nearly any type of electronic document, not just graphics, sound, and video files. To display them,
however, the client browser needs a helper application installed and referenced. Recent browsers also support plug-in
accessory software and, as described in Chapter 13, may extend the browser for some special function, including inline
display of multimedia objects.

For example, consider a company whose extensive product documentation was prepared and stored in some popular
layout application like FrameMaker, Quark XPress, or PageMaker. The Web offers an excellent way for distributing that
documentation over a worldwide network, but converting to HTML would be too costly at this time.

The solution is to prepare a few HTML documents that catalog and link the alternative files and invoke the appropriate
display applet. Or, make sure that the users' browsers have the plug-in software or are configured to invoke the appropriate
helper application - FrameMaker, for example, if the document is in FrameMaker format. Then, if a link to a FrameMaker
document is chosen, the tool is started and accordingly displays the document.

5.5 Animated Text 6. Document Layout

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 6

6. Document Layout
Contents:
Creating Whitespace
Multicolumn Layout
Layers

HTML was conceived in academia, not on Madison Avenue. It was originally intended to be an
easy-to-use markup language to help people make their documents more readable through text
embellishments like headers as well as more extensible to their own and others' work through
hyperlinks, and include other media besides text - not for pizzazz, but to better explain and illustrate
their work. HTML is not a page layout tool. Well, at least not yet.

As we discussed in Chapter 1, HTML and the World Wide Web, the language has evolved with the
Internet itself. In particular, chances are probably a hundred to one that the web user is now not a
college professor doing research, but a youngster surfing for a cool site or a buyer shopping for
product information and the best deal. Commercial interests - the driving force of the Web today -
demand increasingly complex page formats and visual displays to attract the ever-growing population
of users, emphasizing look and feel over content.

From the start of their enterprise, the developers at Netscape have been at the forefront of browser
design that addresses the needs of commercial interests. Throughout the years, they have consistently
extended HTML to provide authors with far more sophisticated page layout capabilities than previous
versions.

In this chapter, we cover three new features that are unique to Netscape Navigator: spacers, multiple
columns, and layers. These new tags are seductive in the extreme, luring the designer away from the
HTML standard with the promise of exciting new page layout capabilities. As always, we admonish
you to use these extensions only where absolutely necessary, since you alienate a portion of your
audience each time you elect to include these tags in your documents.

6.1 Creating Whitespace
One of the simplest elements in any page design is the empty space surrounding content. Empty space
is often just as important to the look and feel of a page as the areas filled with text and images.
Commonly known as whitespace, these empty areas shape and contain the content of your page.

Native HTML has no way to create empty space on your page, short of using a <pre> tag filled with
blank lines or an empty image. In fact, browsers - acting according to the HTML standard - remove

leading, trailing, and any other extra spaces in text and ignore extra linefeeds. Netscape fills this void
with the <spacer> tag. [The <pre> Tag, 4.7.5]

6.1.1 The <spacer> Tag

Use the <spacer> tag to create horizontal, vertical, and rectangular whitespace in your documents.

<spacer>

Function:

Define a blank area in a document

Attributes:

ALIGN

HEIGHT

SIZE

TYPE

WIDTH

End tag:

None

Contains:

Nothing

Used in:

text

6.1.1.1 Creating horizontal space

The most common use of the <spacer> tag is to create horizontal whitespace within a line of text.
To achieve this effect, set the value of the type attribute to horizontal and use the size
attribute to define the width, in pixels (not text characters), of the horizontal area. For example:

<spacer type=horizontal size=100>

inserts 100 pixels of space in line with the current line of text. Netscape appends subsequent content at
the end of the spacer if sufficient space remains on the current line. Otherwise, it places the next
element onto the next line, following the normal word-wrap behavior used by Netscape.

If there is not enough room to place the entire <spacer> tag's whitespace on the current line, the
browser shortens the space to fit on the current line. In a sense, the size of the spacer is soft, telling the
browser to insert up to the specified number of pixels until the end of the current line is reached.

For example, if a spacer is 100 pixels wide, and there are only 75 pixels of space remaining on the
current line within the browser's display window, Netscape will insert 75 pixels of space into the line
and place the next element at the beginning of the next line in the display. Accordingly, a horizontal

spacer will never be broken across a line, creating space at the end of one line and the beginning of
the next.

By far, the most common application of the horizontal spacer is to indent the first line of a paragraph.
Simply place a horizontal spacer at the start of a paragraph to get the desired result:

<spacer type=horizontal size=50>
The effects of cooler weather on the kumquat's ripening process
vary based upon the temperature. Temperatures above 28°
sweeten the fruit, while four or more hours below 28° will
damage the tree.

The results can be seen in Figure 6.1.

Figure 6.1: Indenting a paragraph with a horizontal spacer

Of course, you also can use horizontal spacers to insert additional space between letters or words in a
line of text. This might be useful for displaying poetry or specialized ad copy. But don't use a spacer
to create an indented block of text - you cannot predict the size of the user's browser window, font
sizes, and so forth, and, hence, where it will break a particular line of text. Instead, use the
<blockquote> tag or adjust the paragraph's left margin with an appropriate style.

6.1.1.2 Creating vertical space

You may insert extra whitespace between lines of text and paragraphs in your documents by setting
the type attribute in the <spacer> tag to vertical. The size attribute must also be included.
Make its value a positive integer equal to the amount of whitespace, in pixels.

The vertical spacer acts just like the
 tag. Both tags cause an immediate line break. The
difference is, of course, that with the vertical spacer you control how far below the current line of text
Netscape should start the subsequent line. The white space is added to - and therefore is never less
than - the normal amount of space that would appear below the current line of text as a result of the
paragraph's line spacing.

Since HTML pages are infinitely tall, the vertical space may be any number of pixels high. Of course,
it'd be sophomoric to be excessive (oh, okay, try size=100000000). Most of today's monitors have
a vertical scan of no more than 1,024 lines. So a vertical pixel size value of 1025 ensures that the next
line of text will be placed off the user's screen, if that is the effect you desire.

Vertical spacers aren't quite as common as horizontal spacers, but they can still be useful. In the
following text, we've used a vertical spacer to provide a bit more separation between the document's

header and the regular text:

<h1 align=right>Temperature Effects</h1>
<spacer type=vertical size=50>
The effects of cooler weather on the kumquat's ripening process
vary based upon the temperature. Temperatures above 28°
sweeten the fruit, while four or more hours below 28° will
damage the tree.

The results can be seen in Figure 6.2.

Figure 6.2: Using a vertical spacer to separate a header from the text

6.1.1.3 Creating blocks of space

The third spacer type creates a rectangular block of blank space, much like a blank image. Set the
type attribute to block and include three other attributes to fully define the space: width,
height, and align.

The width and height attributes specify the size of the spacer in pixels. These attributes are used
only when the type attribute is set to block and are otherwise ignored. Similarly, the size
attribute is ignored when the <spacer> type is block. You must give a positive integer value to
both the width and height attributes; their default value is zero.

The third required spacer block attribute, align, controls how Netscape places the empty block
relative to the surrounding text. The values for this attribute are identical to those for the align
attribute in the tag. Use the top, texttop, middle, absmiddle, baseline, bottom,
and absbottom values to obtain the desired vertical alignment of the block spacer. Use the left
and right values to force the block spacer to the indicated margin and cause the following text to
flow up and around the spacer. The default value is bottom. For a complete description of the
align attribute and its values, see section Section 5.2.6.4, "The align attribute" in Chapter 5.

As an example, this HTML fragment places the compass points around an empty area:

<center>

North

West
<spacer type=block width=50 height=50 align=absmiddle>
East

South
</center>

The resulting document is shown in Figure 6.3.

Figure 6.3: Using a block spacer to create space in a document

6.1.2 Mimicking the <spacer> Tag

Since only Netscape supports the <spacer> tag, other browsers ignore it, ruining your carefully
contrived layout. It is possible to completely emulate the <spacer> tag using the tag and a
special, small image. And, as we mentioned earlier, new HTML style sheet properties also let you do
much of what <spacer> does, in a more orderly and comprehensive fashion, too.

For an image to emulate <spacer>, you'll need a GIF image that is completely transparent. Since no
part of the image will ever be seen, you can make it as small as you'd like; we recommend a 1 × 1
pixel GIF image. In the following examples, our tiny 1 × 1 pixel transparent image is named small.gif.

To emulate a horizontal spacer of the form:

<spacer type=horizontal size=n>

use this tag:

Replace n with the desired pixel width, of course. Keep in mind, however, that the width of the
 tag is fixed and may not integrate into the text flow exactly like the <spacer> tag would,
especially if the tag falls at or near the end of a line of text.

To emulate a vertical spacer of the form:

<spacer type=vertical size=n>

use this HTML fragment:

The
 tags are needed to emulate the line-breaking behavior of the vertical spacer. Again, replace
n with the desired height.

To emulate a block spacer of the form:

<spacer type=block width=w height=h align=a>

use this tag:

Replace w, h, and a with the desired width, height, and alignment values.

Given that simple replacements exist for all the variants of the <spacer> tag, you might wonder
why it is needed at all. If nothing else, the <spacer> tag will render faster, since the equivalent
 tag will require that an image be retrieved from a server and scaled before it is inserted into
your text. While this is a small issue for most users, there may be cases where using the <spacer>
tag in lieu of an tag makes sense.

5.6 Other Multimedia Content 6.2 Multicolumn Layout

-->

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 6
Document Layout

6.2 Multicolumn Layout
Multicolumn text formatting is one of the most commonly used features of desktop publishing. In
addition to creating attractive pages in a variety of formats, multiple columns let you present your text
using shorter, easier-to-read lines. HTML page designers have longed for the ability to easily create
multiple text columns in a single page, but have been forced to use various tricks, such as
multicolumn tables (see Chapter 15, Tips, Tricks, and Hacks).

Netscape has neatly solved this problem by supporting the unique <multicol> tag. While fancy
unbalanced columns and straddling are not possible with this tag, as they are with tables,
conventionally balanced text columns are easy to create with <multicol>. And while this
capability is available only with Netscape, the <multicol> tag degrades nicely in other browsers.

6.2.1 The <multicol> Tag

The <multicol> tag creates multiple columns of text and lets you control the size and number of
columns.

<multicol>

Function:

Format text with multiple columns

Attributes:

CLASS

COLS

GUTTER

STYLE

WIDTH

End tag:

</multicol>; always used

Contains:

body_content

Used in:

block

The <multicol> tag can contain any other HTML content, much like the <div> tag. All of the
content within the <multicol> tag is displayed just like conventional content, except that Netscape
places the contents into multiple columns instead of just one.

The <multicol> tag creates a break in the text flow and inserts a blank line before rendering its
content into multiple columns. After the tag, another blank line is added and the text flow resumes
using the previous layout and formatting.

Netscape automatically balances the columns, making each approximately the same length. Where
possible, the browser moves text between columns to accomplish the balancing. In some cases, the
columns cannot be perfectly balanced because of embedded images, tables, or other large elements.

You can nest <multicol> tags, embedding one set of columns within another set of columns.
While infinite nesting is supported, more than two levels of nesting is generally impractical and
results in unattractive text flows.

6.2.1.1 The cols attribute

The cols attribute is required by the <multicol> tag to define the number of columns. If omitted,
Netscape creates just one column, as if the <multicol> tag isn't there at all. You may create any
number of columns, but in practice, more than three or four columns make text unreadable on most
displays.

The following example creates a three-column layout:

<h1 align=right>Temperature Effects</h1>
<multicol cols=3>
The effects of cooler weather on the kumquat's ripening process
vary based upon the temperature. Temperatures above 28°
sweeten the fruit, while four or more hours below 28° will
damage the tree. The savvy quat farmer will carefully monitor
the temperature, especially in the predawn hours when the
mercury dips to its lowest point. Smudge pots and grove heaters
may be required to keep the trees warm; many growers will spray
the trees with water to create an insulating layer of ice over
the fruit and leaves.
<p>
If a disastrous frost is predicted, below 20°, the only
recourse may be to harvest the fruit early to save it from an
assured disaster. Kumquats may subsequently be ripened using
any of the popular methane and cyanoacrylate injection systems
used for other citrus fruits. Used correctly, these systems will
produce fruit whose taste is indistinguishable from tree-ripened
kumquats.
</multicol>

The results are shown in Figure 6.4.

Figure 6.4: A three-column <multicol> document segment

You can see in Figure 6.4 how Netscape has balanced the columns to approximately equal lengths.
You also can see how several lines within the columns appear shorter, since longer words were
wrapped to the next line of text. These overly ragged right margins within the columns are
unavoidable and serve to emphasize that you shouldn't create more than four or five columns in a
flow. Our example is still barely readable if displayed as five columns; it breaks down completely and
even induces rendering errors if cols is set to 7, as shown in Figure 6.5.

Figure 6.5: Too many columns create unreadable pages

6.2.1.2 The gutter attribute

The space between columns is known as the gutter. By default, Netscape creates a gutter 10 pixels
wide between each of your columns. To change this, set the gutter attribute's value to the desired
width in pixels. Netscape will reserve this much space between your columns; the remaining space
will be used for the columns themselves.

Figure 6.6 shows the effect this can have on your columns. In this figure, we've reformatted our
sample text using <multicol cols=3 gutter=50>. Contrast this with Figure 6.4, which uses
the default 10-pixel gutters.

Figure 6.6: Gutter widths can be changed with the gutter attribute

6.2.1.3 The width attribute

Normally, the <multicol> tag fills the current width of the current text flow. To have your multiple
columns occupy a thinner space, or to extend them beyond the visible window, use the width
attribute to specify the overall width of the <multicol> tag. The columns will be resized so that the
columns plus the gutters fill the width you've specified.[1] The width may be specified as an absolute
number of pixels or as a percentage of the width of the current text flow.

[1] To be exact, each column will be (w-g (n-1))/n pixels wide, where w is the width of
the <multicol> tag, g is the width of a gutter, and n is the number of columns. Thus,
using <multicol cols=3 gutter=10 width=500> creates columns that are
160 pixels wide.

Figure 6.7 shows the effects of adding width="75%" to our column example, retaining the default
gutter width of 10 pixels.

Figure 6.7: Changing the width of the <multicol> tag

Be careful when you reduce the size of your columns if they include images or other fixed-width
elements. Netscape will not wrap text around images that extend beyond the boundaries of a column.
Instead, the image simply covers the adjacent columns, ruining your document. Always make sure
that embedded elements in columns are small enough to fit within your columns, even on fairly small
browser displays.

6.2.1.4 The style and class attributes

Use the style attribute with the <multicol> tag to create an inline style for all the content inside
the tag. The class attribute lets you label the section with a name that refers to a predefined class of
the <multicol> tag declared in some document-level or externally defined style sheet. Section
9.1.1, "Inline Styles: The style Attribute" in Chapter 9 Section 9.2.4, "Style Classes" in Chapter 9.

6.2.2 Multiple Columns and Other Browsers

As we've noted, the <multicol> tag is supported only by Netscape. Fortunately, when other
browsers encounter the <multicol> tag, they ignore it and render the enclosed text as part of the
normal text flow, usually with little consequent disruption to the document.

The only problem may be that the contents of the <multicol> tag flow up into the previous flow,
without an intervening break. For that reason, you might consider preceding every <multicol> tag
with a <p> tag. Netscape won't mind, and other browsers will at least perform a paragraph break
before rendering your multicolumn text in a single column.

It is possible emulate the <multicol> tag using tables, but the results are crude and difficult to
manage across multiple browsers. To do so, create a single row table with a cell for each column.
Place an appropriate amount of the text flow in each cell to achieve balanced columns. The difficulty,
of course, is that the "appropriate amount" varies wildly between browsers, making it almost
impossible to create multiple columns that are attractive on several different browsers.

If you must have multiple columns, and can tolerate your columns reverting to a single column on
incompatible browsers, we recommend you use <multicol>.

6.2.3 Effective Multicolumn Layouts

We've offered advice on columns throughout these sections. Here is a quick recap of our tips for
creating effective column layouts:

Use a small number of columns.●

Don't use excessively wide gutters.●

Ensure that embedded elements like images and tables fit in your columns on most displays.●

Precede each <multicol> tag with a <p> tag to improve your document's appearance on
other browsers.

●

Avoid nesting <multicol> tags more than two deep.●

6.1 Creating Whitespace 6.3 Layers

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 6
Document Layout

6.3 Layers
Spacers and multiple columns are natural extensions to conventional HTML, existing within a
document's normal flow. Netscape 4.0 took HTML into an entirely new dimension with layers. It
transforms the single-element document model into one containing many layered elements that are
combined to form the final document.

Layers supply the layout artist with a most critical element missing in standard HTML: absolute
positioning of content within the browser window. In a nutshell, layers let you define a self-contained
unit of HTML content that can be positioned anywhere in the browser window, placed above or below
other layers, and made to appear and disappear as you desire. Document layouts that were impossible
with conventional HTML are trivial with layers.

If you think of your document as a sheet of paper, layers are like sheets of clear plastic laid atop your
document. For each layer, you define the content of the layer, its position relative to the base document,
and the order in which it is placed on the document. Layers can be transparent or opaque, visible or
hidden, providing an endless combination of layout options.

6.3.1 The <layer> Tag

HTML document content layers are each defined with the <layer> tag. A layer can be thought of as a
miniature HTML document whose content is defined between the <layer> and </layer> tags.
Alternatively, the content of the layer can be retrieved from another HTML document by using the src
attribute with the <layer> tag.

<layer>

Function:

Define a layer of content within a document

Attributes:

ABOVE NAME

BACKGROUND SRC

BELOW STYLE

BGCOLOR TOP

CLASS VISIBILITY

CLIP WIDTH

LEFT Z-INDEX

End tag:

</layer>; always used

Contains:

body_content

Used in:

block

Regardless of its origin, Netscape formats a layer's content exactly like a conventional document, except
that the result is contained within that separate layer, apart from the rest of your document. You control
the position and visibility of this layer using the attributes of the <layer> tag.

Layers may be nested, too. Nested layers move with the containing layer and are visible only if the
containing layer itself is visible.

6.3.1.1 The name attribute

If you plan on creating a layer and never referring to it, you needn't give it a name. However, if you plan
to stack other layers relative to the current layer, as we demonstrate later in this chapter, or modify your
layer using JavaScript, you'll need to name your layers using the name attribute. The value you give
name is a text string, whose first character must be a letter, not a number or symbol.

Once named, you can refer to the layer elsewhere in the document, and change it while the user interacts
with your page. For example, this bit of HTML:

<layer name="warning" visibility=hide>
Warning! Your input parameters were not valid!
</layer>

creates a layer named warning that is initially hidden. If in the course of validating a form using a
JavaScript routine, you find an error and want to display the warning, you would use the command:

warning.visibility = show;

Netscape then makes the layer visible to the user.

6.3.1.2 The left and top attributes

Without attributes, a layer gets placed in the document window as if it were part of the normal document
flow. Layers at the very beginning of a document get put at the top of the Netscape window; layers that
are between conventional document content get placed in line with that content.

The power of layers, however, is that you can place them anywhere in the document. Use the top and
left attributes for the <layer> tag to specify its absolute position in the document display.

Both attributes accept an integer value equal to the number of pixels offset from the top left (0,0) edge of
the document's display space or, if nested inside another layer, the containing layer's display space. As
with other document elements whose size or position extends past the edge of the browser's window,

Netscape gives the user scrollbars so that they can access layered elements outside the current viewing
area.

Here is a simple layer example that staggers three words diagonally down the display - not something
you can do easily, and certainly not with the same precision, in conventional HTML:

<layer left=10 top=10>
 Upper left!
</layer>
<layer left=50 top=50>
 Middle!
</layer>
<layer left=90 top=90>
 Lower right!
</layer>

The result is shown in Figure 6.8.

Figure 6.8: Simple text positioning with the <layer> tag

Admittedly, this example is a bit dull. Here's a better one that creates a drop shadow behind a heading:

<layer>
 <layer left=2 top=2>
 <h1>Introduction to Kumquat Lore</h1>
 </layer>
 <layer left=0 top=0>
 <h1>Introduction to Kumquat Lore</h1>
 </layer>
</layer>
<h1> </h1>
Early in the history of man, the kumquat played a vital role in the
formation of religious beliefs. Central to annual harvest celebrations
was the day upon which kumquats ripened. Likened to the sun (<i>
sol</i>), the golden fruit was taken (<i>stisus</i>) from the trees on
the day the sun stood highest in the sky. We carry this day forward
even today, as our summer <i>solstice</i>.

Figure 6.9 shows the result.

Figure 6.9: Creating drop shadow effects with multiple layers

We used a few tricks to create the drop shadow effect for the example header. First, Netscape covers
layers created earlier in the document by later layers. Hence, we create the gray shadow first, followed
by the actual heading, so that it appears on top, above the shadow. We also enclosed these two layers in
a separate containing layer. This way, the shadow and header positions are relative to the containing
layer, not the document itself. The containing layer, lacking an explicit position, gets placed into the
document flow as if it were normal content and winds up where a conventional heading would appear in
the document.

Normal document content, however, still starts at the top of the document, and would end up behind the
fancy heading. To push it below the layered heading, we include an empty heading (save for a
nonbreaking space -) before including our conventional document text.

This is important enough to repeat: normal document content following a <layer> tag is positioned
directly under the layer it follows. This effect can be circumvented using an inline layer, described in
section Section 6.3.2, "The <ilayer> Tag".

6.3.1.3 The above, below, and z-index attributes

Layers exist in three dimensions, occupying space on the page and stacked atop one another and the
conventional document content. As we mentioned earlier, layers normally get stacked in order of their
appearance in the document - layers at the beginning get covered by later layers in the same display
area.

You can control the stacking order of the layers with the above, below, and z-index attributes for
the <layer> tag. These attributes are mutually exclusive; use only one per layer.

The value for the above or below attribute is the name of another layer in the current document. Of
course, that referenced layer must have a name attribute whose value is the same name you use with the
above or below attribute in the referring <layer> tag. You also must have created the referenced
layer earlier in the document; you cannot refer to a layer that comes later in your document.

In direct contradiction with what you might expect, Netscape puts the current layer below the above
named layer, and above the below named layer.[2] Oh, well. Note that the layers must occupy the same
display space for you to see any effects.

[2] One cannot help but wonder if the above and below attributes were implemented in
the wee hours of the morning.

Let's use our drop shadow layer example again to illustrate the above attribute:

<layer>
 <layer name=text left=0 top=0>
 <h1>Introduction to Kumquat Lore</h1>
 </layer>
 <layer name=shadow above=text left=2 top=2>
 <h1>Introduction to Kumquat Lore</h1>
 </layer>
</layer>

The above attribute in the layer named shadow tells Netscape to position the shadow layer so that the
layer named text is above it.

The above and below attributes can get confusing when you stack several layers. We find it
somewhat easier to use the z-index attribute for keeping track of which layers go over which. With
z-index, you specify the order in which Netscape stacks the layers: higher z-index value layers get
put on top of lower z-index value layers.

For example, to create our drop shadow using the z-index attribute:

<layer>
 <layer left=0 top=0 z-index=2>
 <h1>Introduction to Kumquat Lore</h1>
 </layer>
 <layer left=2 top=2 z-index=1>
 <h1>Introduction to Kumquat Lore</h1>
 </layer>
</layer>

Normally, Netscape would display the second layer - the gray one in this case - on top of the first layer.
But since we've given the gray layer a lower z-index value, it is placed behind the first layer.

The z-index values need not be sequential, although they must be integers, so we could've used the
values 99 and 2, respectively, and gotten the same result in the previous example. And you need not
specify a z-index for all the layers that occupy the same display space - only those you want to raise
or lower in relation to other layers. However, be aware that the order of precedence may get confusing if
you don't z-index all related layers.

For instance, what order of precedence by color would you predict when Netscape renders the following
sequence of layers?

<layer left=0 top=0 z-index=3>
 <h1>Introduction to Kumquat Lore</h1>
</layer>
<layer left=4 top=4>
 <h1>Introduction to Kumquat Lore</h1>
</layer>
<layer left=8 top=8 z-index=2>
 <h1>Introduction to Kumquat Lore</h1>
</layer>

Give yourself a star if you said that the green header goes on top of the red header which goes on top of
the blue header. Why? Because the red header is of lower priority than the green header based on order

of appearance, and we forced the blue layer below the red one by giving it a lower z-index value.
Netscape displays z-indexed layers according to their given order and non-z-indexed layers
according to their order of appearance in the document. Precedence based on order of appearance also
applies for layers that have the same z-index value. If you nest layers, all the layers at the same
nesting level get ordered according to their z-index attributes. This group is then ordered as a single
layer among all the layers at the containing level. In short, layers nested within a layer cannot be
interleaved among layers at a different level.

For example, consider these nested layers, with their content and end tags omitted for clarity
(indentation indicates nest level):

<layer name=a z-index=20>
 <layer name=a1 z-index=5>
 <layer name=a2 z-index=15>
<layer name=b z-index=30>
 <layer name=b1 z-index=10>
 <layer name=b2 z-index=25>
 <layer name=b3 z-index=20>
<layer name=c z-index=10>

Layers a, b, and c are at the same level, with layers a1 and a2 nested with a, and b1, b2, and b3
nested within b. Although the z-index numbers might at first glance appear to cause Netscape to
interleave the various nested layers, the actual ordering of the layers, from bottom to top, is c, a, a1,
a2, b, b1, b3, and b2.

If two layers are nested within the same layer and have the same z-index value, the layer defined later
in the document is placed on top of the previously defined layer.[3]

[3] This, of course, applies to layers inside the same containing nest only.

6.3.1.4 The background and bgcolor attributes

Like the corresponding attributes for the <body> tag, you may define the background color and an
image for the layer with the bgcolor and background attributes, respectively.[4] By default, the
background of a layer is transparent, allowing lower layers to show through.

[4] Note that you may also control the background color, as well as many other display
features of not just a single, but all <layer> tags within your document using style sheets.
See section Section 6.3.1.9, "The style and class attributes".

The bgcolor attribute accepts a color name or RGB triple as its value, as defined in Appendix F,
Color Names and Values. If specified, Netscape sets the entire background of the layer to this color,
rendering the layer opaque. This attribute is handy for creating a colored box behind text, as a
highlighting or attention-getting mechanism. It will, however, hide any layers below it, including
conventional HTML content.

The background attribute accepts the URL of an image as its value. The image is tiled to fill the area
occupied by the layer. If portions of the image are transparent, those portions of the layer will be
transparent and underlying layers will show through.

If you include both attributes, the background color will show through the transparent spots in the
background image. The whole layer will be opaque.

The background attribute is useful for placing a texture behind text, but it fails miserably when the
goal is to render text in front of a fixed image. Since the size of a layer is dictated by its contents, not the
background image, using the image as the background will cause it to be clipped or tiled, depending on
the size of the text. To place text reliably atop an image, use one layer nested within another:

<layer>

 <p>
 <layer top=75>
 <h2 align=center>And they lived happily ever after...</h2>
 </layer>
</layer>

Netscape sets aside space for the entire image in the outer layer. The inner layer occupies the same
space, except that we shift it down 75 pixels to align the text better over the image. The result is shown
in Figure 6.10.

Figure 6.10: Placing text over an image using layers

6.3.1.5 The visibility attribute

Layers, by default, are usually seen (but most often not heard). You can change that by setting the
visibility attribute to show, hide, or inherit. As expected, show forces the layer to be seen,
hide hides it from view, and inherit explicitly declares that you want the layer to inherit its parent's
visibility. The default value for this attribute is inherit. Layers that are not nested are considered to
be children of the main document, which is always visible. Thus, non-nested layers lacking the
visibility attribute are initially visible.

It makes little sense to hide layers unless you plan to reveal them later. In general, this attribute is used
only when you include some JavaScript routines with your document that will reveal the hidden layers
as a result of some user interaction. [JavaScript Event Handlers, 13.3.3]

Layers that are hidden do not block layers below them from view. Instead, a hidden layer can best be
thought of as being transparent. One way to hide content in the main document is to place an opaque
layer over the content. To display the hidden context, hide the opaque layer, revealing the content
underneath.

6.3.1.6 The width attribute

Layers are only as big as necessary to contain their content. The initial width of a layer is defined to be
the distance from the point at which the layer is created in the current text flow to the right margin.
Netscape then formats the layer's contents to that width and makes the height of the layer tall enough to
contain all of the layer's contents. If the contents of the layer wind up smaller than the initial width, the
layer's width is then reduced to this smaller amount.

You can explicitly set the width of a layer using the width attribute. The value of this attribute defines
the width of the layer in pixels. As expected, Netscape then sets the height based upon the size of the
layer's contents, wrapped to the specified width. If elements in the layer - such as images - cannot be
wrapped and instead extend past the right margin of the layer, only a portion of the element will be
shown. The remainder will be clipped by the edge of the layer and not shown. This is similar to the
behavior of an image in the main document window. If the image extends beyond the edge of the
browser window, only a portion of the image is displayed. Unlike the browser window, however, layers
cannot sport scrollbars allowing the user to scroll around in the layer's contents.

6.3.1.7 The src attribute

The contents of a layer are not restricted to what you type between its <layer> and </layer> tags;
you can also refer to and automatically load the contents of another document into the layer with the
src attribute. The value of the src attribute is the URL of the document containing the layer's content.

This document is not a full-fledged HTML document and in particular, should not contain <body> or
<head> tags. Any other HTML content is allowed.

You can combine conventional layer content with content taken from another file by using both the src
attribute and placing content within the <layer> tag. In this case, the content from the file is placed in
the layer first, followed by any inline content within the tag itself. If you choose to use the src attribute
without supplying additional inline content, you still must supply the closing </layer> tag to end the
definition of the layer.

The src attribute provides, for the first time, a source inclusion capability in HTML. Previously, to
insert content from one HTML document within another, you had to rely on a server-based capability to
read the other file and insert it into your document at the correct location. Since layers are positioned, by
default, at their defining point within the current flow, including another file in your document is simple:

...other content
<layer src="boilerplate"></layer>
...more content

Since a layer is rendered as a separate HTML entity, the contents of the included file will not be flowed
into the containing text. Instead, it is as if the inserted text were contained within a <div> tag or other
block-level HTML element.

6.3.1.8 The clip attribute

Normally, users see the entire layer unless it is obscured by a covering layer. With the clip attribute, you
can mask off portions of a layer, revealing only a rectangular portion within the layer.

The value of the clip attribute is two or four integer values, separated by commas, defining pixel offsets
into the layer corresponding to the left, top, right, and bottom edges of the clip area. If only two values
are supplied, they correspond to the right and bottom edges of the visible area, and Netscape then
assumes that the top and left values are zero. Therefore, clip="75,100" is equivalent to

clip="0,0,75,100".

The area of the layer outside the visible area is made transparent, allowing whatever is under the layer to
show through.

The clip attribute is handy for hiding portions of a layer, or for creating fade and wipe effects using
JavaScript functions to change the clipping window over time.

6.3.1.9 The style and class attributes

Use the style attribute with the <layer> tag to create an inline style for all the content inside a layer.
The class attribute lets you label the layer with a name that refers to a predefined class of the
<layer> tag declared in some document-level or externally defined style sheet. Accordingly, you may
choose to use a style sheet instead of individual and redundant bgcolor tag attributes to define a
background color for all your document layers or for a particular class of layers. Section 9.1.1 in Chapter
9 Section 9.2.4 in Chapter 9.

6.3.2 The <ilayer> Tag

While you control the position of a <layer> using top and left attribute coordinates relative to the
document's entire display space, Netscape provides a separate tag - <ilayer> - that lets you position
individual layers with respect to the current flow of content, much like an inline image.

<ilayer>

Function:

Define an inline layer of content within a text flow

Attributes:

ABOVE NAME

BACKGROUND SRC

BELOW STYLE

BGCOLOR TOP

CLASS VISIBILITY

CLIP WIDTH

LEFT Z-INDEX

End tag:

</ilayer>; always used

Contains:

body_content

Used in:

text

An <ilayer> tag creates a layer that occupies space in the containing text flow. Subsequent content is

placed after the space occupied by the <ilayer>. This is in contrast to the <layer> tag, which
creates a layer above the containing text flow, allowing subsequent content to be placed under the layer
just created.

The <ilayer> tag removes the need for an enclosing, attribute-free <layer> that serves to put a nest
of specially positioned layers inline with the content flow, much like we did in most of the examples in
the previous sections of this chapter. The attributes of the <ilayer> are the same as those for the
<layer> tag.

6.3.2.1 The top and left attributes

The only attributes that distinguish the actions of the <ilayer> tag from its <layer> sibling are the
top and left attributes: Netscape renders <ilayer> content directly in the containing text flow,
offset by the top and left attribute values from the upper-left corner of that inline position - not the
document's upper-left display corner, as with <layer>. Netscape will also accept negative values for
the top and left attributes of the <ilayer> tag, letting you shift the contents above and to the left
of the current flow.

For example, to subscript, superscript, or shift words within the current line, you could use:

This <ilayer top=4>word</ilayer> is shifted down, while
this <ilayer left=10>one</ilayer> is shifted over. With a negative
value, words can be moved <ilayer top=-4>up</ilayer> and to
the <ilayer left=-10>left</ilayer>.

The resulting effects are shown in Figure 6.11. Notice how the shifted words overlap and obscure the
surrounding text. Netscape makes no effort to make room for the shifted elements; they are simply
placed in a different spot on the page.

Figure 6.11: Moving inline layers with respect to the adjacent text

6.3.2.2 Combining <layer> and <ilayer>

Anything you can create with a regular layer can be used within an inline layer. However, do bear in
mind always that the top and left attribute offsets are indeed from the <ilayer> content's allotted
position, not from the document display space. Accordingly, use <ilayer> to position content inline
with the conventional HTML document flow, and <layer> to position elements and content precisely
in the document display space.

Also (and fortunately), Netscape does not distinguish between <ilayer> and <layer> tags when it
comes to order of appearance. You may declare that an <ilayer> appear below some <layer> by
using the name and above attributes:

<layer name=me>I'm on top</layer>

<ilayer above=me>I'm on the bottom</ilayer>

Similarly, you may reorder the appearance of both absolute and inline layers where they overlap by
assigning z-index attribute values to the various elements. Nesting rules apply, as well.

6.2 Multicolumn Layout 7. Links and Webs

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 7

7. Links and Webs
Contents:
Hypertext Basics
Referencing Documents: The URL
Creating Hyperlinks
Creating Effective Links
Mouse-Sensitive Images
Creating Searchable Documents
Establishing Document Relationships
Supporting Document Automation

Up to this point, we've dealt with HTML documents as standalone entities, concentrating on the
language elements you use for structure and to format your work. The true power of HTML, however,
lies in its ability to join collections of documents together into a full library of information, and to link
documents with other collections around the world. Just as readers have considerable control over
how the document looks onscreen, with hyperlinks they also have control over the order of
presentation as they navigate through your information. It's the "HT" in HTML - hypertext - and it's
the twist that spins the Web.

7.1 Hypertext Basics
A fundamental feature of hypertext is that you can hyperlink documents; you can point to another
place inside the current document, inside another document in the local collection, or inside a
document anywhere on the Internet. The documents thereby become an intricately woven web of
information. Get the name analogy now? The target document is usually somehow related to and
enriches the source; the linking element in the source should convey that relationship to the reader.

Hyperlinks can be used for all kinds of effects. They can be used inside tables of contents and lists of
topics. With a click of the mouse on their browser screen, readers select and automatically jump to a
topic of interest in the same document or to another document located in an entirely different
collection somewhere around the world.

Hyperlinks also point readers to more information about a mentioned topic. "For more information,
see `Kumquats on Parade,'" for example. HTML authors use hyperlinks to reduce repetitive
information. For instance, we recommend you sign your name to each of your documents. Rather than
include full contact information in each document, a hyperlink connects your name to a single place
that contains your address, phone number, and so forth.

A hyperlink, or anchor in HTML standard parlance, is marked by the <a> tag and comes in two
flavors. As we describe in detail later, one type of anchor creates a hot spot in the document that,
when activated and selected (usually with a mouse) by the user, causes the browser to link. It
automatically loads and displays another portion of the same or another document altogether, or
triggers some Internet service-related action, such as sending email or downloading a special file. The
other type of anchor creates a label, a place in an HTML document that can be referenced as a
hyperlink.[1]

[1] Both types of HTML anchors use the same tag; perhaps that's why they have the same
name. Nonetheless, we find it's easier if you differentiate them and think of the one type
that provides the hotspot and address of a hyperlink as the "link," and the other type that
marks the target portion of a document as the "anchor."

There also are some mouse-related events associated with hyperlinks, which, through the new
JavaScript technologies, let you perform some new and exciting effects.

6.3 Layers 7.2 Referencing Documents:
The URL

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 7
Links and Webs

7.2 Referencing Documents: The URL
As we discussed earlier, every document on the World Wide Web has a unique address. (Imagine the
chaos if they didn't.) The document's address is known as its uniform resource locator (URL).[2]

[2] "URL" usually is pronounced "you are ell," not "earl."

Several HTML tags include a URL attribute value, including hyperlinks, inline images, and forms. All
use the same URL syntax to specify the location of a web resource, regardless of the type or content
of that resource. That's why it's known as a uniform resource locator.

Since they can be used to represent almost any resource on the Internet, URLs come in a variety of
flavors. All URLs, however, have the same top-level syntax:

scheme:scheme_specific_part

The scheme describes the kind of object the URL references; the scheme_specific_part is, well, the
part that is peculiar to the specific scheme. The important thing to note is that the scheme is always
separated from the scheme_specific_part by a colon with no intervening spaces.

7.2.1 Writing a URL

URLs are written using the displayable characters in the US-ASCII character set. For example, surely
you have heard what has become annoyingly common on the radio for an announced business
website, "h, t, t, p, colon, slash, slash, w, w, w, widgets, dot, com." That's a simple URL, written:

http://www.widgets.com

If you need to use a character in a URL that is not part of this character set, you must encode the
character using a special notation. The encoding notation replaces the desired character with three
characters: a percent sign and two hexadecimal digits whose value corresponds to the position of the
character in the ASCII character set.

This is easier than it sounds. One of the most common encoded special characters is the space
character (Macintosh owners, take special notice), whose position in the character set is 20
hexadecimal. To encode a space in a URL, replace it with %20:

http://www.kumquat.com/new%20pricing.html

This URL actually retrieves a document named new pricing.html from the server.

7.2.1.1 Handling reserved and unsafe characters

In addition to the nonprinting characters, you'll need to encode reserved and unsafe characters in your
URLs as well.

Reserved characters are those characters that have a specific meaning within the URL itself. For
example, many URLs use the slash character to separate elements of a pathname within the URL. If
you need to include a slash in a URL that is not intended to be an element separator, you'll need to
encode it as %2f:

http://www.calculator.com/compute?3%2f4

This URL actually references the resource named compute on the www.calculator.com server and
passes the string 3/4 to it, as delineated by the question mark (?). Presumably, the resource is
actually a server-side program that performs some arithmetic function on the passed value and returns
a result.

Unsafe characters are those that have no special meaning within the URL, but may have a special
meaning in the context in which the URL is written. For example, the double quotation mark character
(") is used to delimit URLs in many HTML tags. If you were to include a double quotation mark
directly in a URL, you would probably confuse the HTML browser. Instead, encode the double
quotation mark as %22 to avoid any possible conflict.

Other reserved and unsafe characters that should always be encoded are shown in Table 7.1.

Table 7.1: Reserved and Unsafe Characters and Their URL
Encodings

Character Description Usage Encoding

;
Semicolon Reserved %3B

/
Slash Reserved %2F

?
Question mark Reserved %3F

:
Colon Reserved %3A

@
At sign Reserved %40

=
Equal sign Reserved %3D

&
Ampersand Reserved %26

<
Less than sign Unsafe %3C

>
Greater than sign Unsafe %3E

"
Double quotation mark Unsafe %22

#
Hash symbol Unsafe %23

%
Percent Unsafe %25

{
Left curly brace Unsafe %7B

}
Right curly brace Unsafe %7D

|
Vertical bar Unsafe %7C

\
Backslash Unsafe %5C

^
Caret Unsafe %5E

~
Tilde Unsafe %7E

[
Left square bracket Unsafe %5B

]
Right square bracket Unsafe %5D

`
Back single quotation mark Unsafe %60

In general, you should always encode a character if there is some doubt as to whether it can be placed
as-is in a URL. As a rule of thumb, any character other than a letter, number, or any of the characters
$-_.+!*'(), should be encoded.

It is never an error to encode a character, unless that character has a specific meaning in the URL. For
example, encoding the slashes in an http URL will cause them to be used as regular characters, not as
pathname delimiters, breaking the URL.

7.2.2 The http URL

The http URL is by far the most common within the World Wide Web. It is used to access documents
stored on an http server, and it has two formats:

http://server:port/path#fragment
http://server:port/path?search

Some of the parts are optional. In fact, the most common form of the http URL is simply:

http://server/path

designating the unique server and the directory path and name of a document.

7.2.2.1 The http server

The server is the unique Internet name or Internet Protocol (IP) numerical address of the computer
system that stores the web resource. Like us, we suspect you'll mostly use more easily remembered
Internet names for the servers in your URLs.[3] The name consists of several parts, including the
server's actual name and the successive names of its network domain, each part separated by a period.
Typical Internet names look like www.oreilly.com or hoohoo.ncsa.uiuc.edu.[4]

[3] Each Internet-connected computer has a unique address; a numeric (IP) address, of
course, because computers deal only in numbers. Humans prefer names, so the Internet
folks provide us with a collection of special servers and software (Domain Name System
or DNS) that automatically resolve Internet names into IP addresses. InterNIC, a
nonprofit agency, registers domain names mostly on a first-come, first-serve basis, and
distributes new names to DNS servers worldwide.

[4] In the United States and for some Canadian establishments, the three-letter suffix of
the domain name identifies the type of organization or business that operates that portion
of the Internet. For instance, "com" is a commercial enterprise; "edu" is an academic
institution; and "gov" identifies a government-based domain. Outside the United States, a
less-descriptive suffix is assigned; typically a two-letter abbreviation of the country
name: "jp" for Japan and "de" for Deutschland, for instance. That convention indicates
the traditional distribution of the Internet and presumably will change dramatically as the
network proliferates in the rest of the world.

It has become something of a convention that webmasters name their servers www for quick and easy
identification on the Web. For instance, O'Reilly & Associates' web server's name is www, which,
along with the publisher's domain name, becomes the very easily remembered web site
www.oreilly.com. Similarly, Sun Microsystems's web server is named www.sun.com; Apple
Computer's is www.apple.com, and even Microsoft makes their web server easily memorable as
www.microsoft.com. The naming convention has very obvious benefits, which you, too, should take
advantage of if you are called upon to create a web server for your organization.

You may also specify the address of a server using its numerical IP address. The address is a sequence
of four numbers, zero to 255, separated by periods. Valid IP addresses look like 137.237.1.87 or
192.249.1.33.

It'd be a dull diversion to tell you now what the numbers mean or how to derive an IP address from a

domain name, particularly since you'll rarely if ever use one in a URL. Rather, this is a good place to
hyperlink: pick up any good Internet networking treatise for rigorous detail on IP addressing, such as
Ed Krol's The Whole Internet User's Guide and Catalog (O'Reilly & Associates).

7.2.2.2 The http port

The port is the number of the communication port to which the client browser connects to the server.
It's a networking thing: servers do many things besides serve up web documents and resources to
client browsers: electronic mail, FTP document fetches, filesystem sharing, and so on. Although all
that network activity may come into the server on a single wire, it's typically divided into
software-managed "ports" for service-specific communications - something analogous to boxes at
your local post office.

The default URL port for web servers is 80. Special secure web servers (Secure HTTP, SHTTP or
Secure Socket Layer, SSL) run on port 443. Most web servers today use port 80; you need to include
a port number along with an immediately preceding colon in your URL if the target server does not
use port 80 for web communication.

When the Web was in its infancy many months ago, pioneer webmasters ran their Wild Wild Web
connections on all sorts of port numbers. For technical and security reasons, system-administrator
privileges are required to install a server on port 80. Lacking such privileges, these webmasters chose
other, more easily accessible, port numbers.

Now that web servers have become acceptable and are under the care and feeding of responsible
administrators, documents being served on some port other than 80 or 443 should make you wonder if
that server is really on the up and up. Most likely, the maverick server is being run by a clever user
unbeknownst to the server's bona fide system administrators.

7.2.2.3 The http path

The document path is the Unix-style hierarchical location of the file in the server's storage system.
The pathname consists of one or more names separated by slashes. All but the last name represent
directories leading down to the document; the last name is usually that of the document itself.

It has become a convention that for easy identification, HTML document names end with the suffix
.html (they're otherwise plain ASCII text files, remember?). Although Windows 95 and Windows NT
allow longer suffixes, their users usually stick to the three-letter .htm name suffix for HTML
documents.

Although the server name in a URL is not case-sensitive, the document pathname may be. Since most
web servers are run on Unix-based systems and Unix file names are case-sensitive, the document
pathname will be case-sensitive, too. Web servers running on Windows machines are not
case-sensitive, so the document pathname is not, but since it is impossible to know the operating
system of the server you are accessing, always assume that the server has case-sensitive pathnames
and take care to get the case correct when typing your URLs.

Certain conventions regarding the document pathname have arisen. If the last element of the
document path is a directory, not a single document, the server usually will send back either a listing
of the directory contents or the HTML index document in that directory. You should end the
document name for a directory with a trailing slash character, but in practice, most servers will honor
the request even if the character is omitted.

If the directory name is just a slash alone or sometimes nothing at all, you will retrieve the first
(top-level) HTML document or so-called home page in the uppermost root directory of the server.
Every well-designed http server should have an attractive, well-designed "home page"; it's a shorthand
way for users to access your web collection since they don't need to remember the document's actual
filename, just your server's name. That's why, for example, you can type http://www.oreilly. com into
Netscape's "Open" dialog box and get O'Reilly's home page.

Another twist: if the first component of the document path starts with the tilde character (~), it means
that the rest of the pathname begins from the personal HTML directory in the home directory of the
specified user on the server machine. For instance, the URL http://www.kumquat.com/~chuck / would
retrieve the top-level page from Chuck's document collection.

Different servers have different ways of locating documents within a user's home directory. Many
search for the documents in a directory named public_html. Unix-based servers are fond of the name
index.html for home pages.

7.2.2.4 The http document fragment

The fragment is an identifier that points to a specific section of a document. In URL specifications, it
follows the server and pathname and is separated by the pound sign (#). A fragment identifier
indicates to the browser that it should begin displaying the target document at the indicated fragment
name. As we describe in more detail later in this chapter, you insert fragment names into a document
with the <a> tag and the name attribute. Like pathnames, a fragment name may be any sequence of
characters.

The fragment name and the preceding hash symbol are optional; omit them when referencing a
document without defined fragments.

Formally, the fragment element only applies to target files that are HTML documents. If the target of
the URL is some other document type, the fragment name may be misinterpreted by the browser.

Fragments are useful for long documents. By identifying key sections of your document with a
fragment name, you make it easy for readers to link directly to that portion of the document, avoiding
the tedium of scrolling or searching through the document to get to the section that interests them.

As a rule of thumb, we recommend that every section header in your documents be accompanied by
an equivalent fragment name. By consistently following this rule, you'll make it possible for readers to
jump to any section in any of your documents. Fragments also make it easier to build tables of
contents for your document families.

7.2.2.5 The http search parameter

The search component of the http URL, along with its preceding question mark, is optional. It
indicates that the path is a searchable or executable resource on the server. The content of the search
component is passed to the server as parameters that control the search or execution function.

The actual encoding of parameters in the search component is dependent upon the server and the
resource being referenced. The parameters for searchable resources are covered later in this chapter,
when we discuss searchable documents. Parameters for executable resources are discussed in Chapter
10, Forms.

Although our initial presentation of http URLs indicated that a URL can have either a fragment

identifier or a search component, some browsers let you use both in a single URL. If you so desire,
you can follow the search parameter with a fragment identifier, telling the browser to begin displaying
the results of the search at the indicated fragment. Netscape, for example, supports this usage.

We don't recommend this kind of URL, though. First and foremost, it doesn't work on a lot of
browsers. Just as important, using a fragment implies that you are sure that the results of the search
will have a fragment of that name defined within the document. For large document collections, this is
hardly likely. You are better off omitting the fragment, showing the search results from the beginning
of the document, and avoiding potential confusion among your readers.

7.2.2.6 Sample http URLs

Here are some sample http URLs:

http://www.oreilly.com/catalog.html
http://www.oreilly.com/
http://www.kumquat.com:8080/
http://www.kumquat.com/planting/guide.html#soil_prep
http://www.kumquat.com/find_a_quat?state=Florida

The first example is an explicit reference to a bona fide HTML document named catalog.html that is
stored in the root directory of the www.oreilly.com server. The second references the top-level home
page on that same server. That home page may or may not be catalog.html. Sample three, too,
assumes that there is a home page in the root directory of the www.kumquat.com server, and that the
web connection is to the nonstandard port 8080.

The fourth example is the URL for retrieving the web document named guide.html from the planting
directory on the www.kumquat.com server. Once retrieved, the browser should display the document
beginning at the fragment named soil_prep.

The last example invokes an executable resource named find_a_quat with the parameter named state
set to the value Florida. Presumably, this resource generates an HTML response that is subsequently
displayed by the browser.

7.2.3 The javascript URL

The javascript URL actually is a pseudo-protocol, not usually included in discussions of URLs. Yet,
with advanced browsers like Netscape and Internet Explorer, the javascript URL can be associated
with a hyperlink and used to execute JavaScript commands when the user selects the link. Expect to
see many examples of link-related JavaScript effects in HTML documents on the Web. [JavaScript
URLs, 13.3.4]

7.2.3.1 The javascript URL arguments

What follows the javascript pseudo-protocol is one or more semicolon-separated JavaScript
expressions and methods, including references to multi-expression JavaScript functions that you
embed within the <script> tag in your HTML documents (see Chapter 13, Executable Content, for
details). For example:

javascript:window.alert('Hello, world!')

javascript:doFlash('red', 'blue'); window.alert('Do not press me!')

are valid URLs that you may include as the value for a link reference (see sections Section 7.3.1.2,
"The href attribute" and Section 7.5.4.3, "The href attribute"). The first example contains a single
JavaScript method that activates an alert dialog with the simple message.

The second javascript URL example contains two arguments: the first calls a JavaScript function,
doFlash, which presumably you have located elsewhere in the document within the <script> tag
and which perhaps flashes the background color of the document window between the red and blue.
The second expression is the same alert method as in the first example, but with a slightly different
message.

The javascript URL may appear in a hyperlink sans arguments, too. In that case, the Netscape browser
alone - not Internet Explorer - opens a special JavaScript editor wherein the user may type in and test
the various expressions and methods.

7.2.4 The ftp URL

The ftp URL is used to retrieve documents from an FTP (File Transfer Protocol) server.[5] It has the
format:

[5] FTP is an ancient Internet protocol that dates back to the Dark Ages, around 1975 or
so. It was designed as a simple way to move files between machines and remains popular
and useful to this day. Some people who are unable to run a true web server will place
their documents on a server that speaks FTP instead.

ftp://user:password@server:port/path;type=typecode

7.2.4.1 The ftp user and password

FTP is an authenticated service, meaning that you must have a valid username and password in order
to retrieve documents from a server. However, most FTP servers also support restricted,
nonauthenticated access known as anonymous FTP. In this mode, anyone can supply the username
"anonymous" and be granted access to a limited portion of the server's documents. Most FTP servers
also assume (but may not grant, of course) anonymous access if the username and password are
omitted.

If you are using an ftp URL to access a site that requires a username and password, include the user
and password components in the URL, along with the colon (:) and "at" sign (@). More commonly,
you'll be accessing an anonymous FTP server, and the user and password components can be omitted.

If you keep the user component along with the "at" sign, but omit the password and the preceding
colon, most browsers will prompt you for a password after connecting to the FTP server. This is the
recommended way of accessing authenticated resources on an FTP server, since it prevents others
from seeing your password.

We recommend you never place an ftp URL with a username and password in any HTML document.
The reasoning is simple: anyone can retrieve the document, extract the username and password from
the URL, log into the FTP server, and tamper with its documents.

7.2.4.2 The ftp server and port

The ftp server and port are bound by the same rules as the server and port in an http URL, as
described above. The server must be a valid Internet domain name or IP address of an FTP server. The
port specifies the port on which the server is listening for requests.

If the port and its preceding colon are omitted, the default port of 21 is used. It is necessary to specify
the port only if the FTP server is running on some port other than 21.

7.2.4.3 The ftp path and transfer type

The path component represents a series of directories, separated by slashes leading to the file to be
retrieved. By default, the file is retrieved as a binary file; this can be changed by adding the typecode
(and the preceding ;type=) to the URL.

If the typecode is set to d, the path is assumed to be a directory. The browser will request a listing of
the directory contents from the server and display this listing to the user. If the typecode is any other
letter, it is used as a parameter to the FTP type command before retrieving the file referenced by the
path. While some FTP servers may implement other codes, most servers accept i to initiate a binary
transfer and a to treat the file as a stream of ASCII text.

7.2.4.4 Sample ftp URLs

Here are some sample ftp URLs:

ftp://www.kumquat.com/sales/pricing
ftp://bob@bobs-box.com/results;type=d
ftp://bob:secret@bobs-box.com/listing;type=a

The first example retrieves the file named pricing from the sales directory on the anonymous FTP
server at www.kumquat.com. The second logs into the FTP server on bobs-box.com as user bob,
prompting for a password before retrieving the contents of the directory named results and displaying
them to the user. The last example logs into bobs-box.com as bob with the password secret and
retrieves the file named listing, treating its contents as ASCII characters.

7.2.5 The file URL

The file URL specifies a file stored on a machine without indicating the protocol used to retrieve the
file. As such, it has limited use in a networked environment. Its real benefit, however, is that it can
reference a file on the user's machine, and is particularly useful for referencing personal HTML
document collections, such as those "under construction" and not yet ready for general distribution, or
HTML document collections on CD-ROM. It has the following format:

file://server/path

7.2.5.1 The file server

The file server, like the http server described earlier, must be the Internet domain name or IP address
of the machine containing the file to be retrieved. No assumptions are made as to how the browser
might contact the machine to obtain the file; presumably the browser can make some connection,
perhaps via a Network File System or FTP, to obtain the file.

If the server is omitted, or the special name localhost is used, the file is assumed to reside on the
same machine upon which the browser is running. In this case, the browser simply accesses the file
using the normal facilities of the local operating system. In fact, this is the most common usage of the
file URL. By creating document families on a diskette or CD-ROM and referencing your hyperlinks
using the file://localhost/ URL, you create a distributable, standalone docu-ment collection that does
not require a network connection to use.

7.2.5.2 The file path

This is the path of the file to be retrieved on the desired server. The syntax of the path may differ
based upon the operating system of the server; be sure to encode any potentially dangerous characters
in the path.

7.2.5.3 Sample file URLs

The file URL is easy:

file://localhost/home/chuck/document.html
file:///home/chuck/document.html
file://marketing.kumquat.com/monthly_sales.html

The first URL retrieves /home/chuck/document.html from the user's local machine. The second is
identical to the first, except we've omitted the localhost reference to the server; the server name
defaults to the local server. Do notice, however, that the extra forward slash is required for this
alternate form.

The third example uses some protocol to retrieve monthly_sales.html from the
marketing.kumquat.com server.

7.2.6 The news URL

The news URL accesses either a single message or an entire newsgroup within the Usenet news
system. It has two forms:

news:newsgroup
news:message_id

An unfortunate limitation in news URLs is that they don't allow you to specify a server for the
newsgroup. Rather, users specify their news-server resource in their browser preferences. At one time,
not long ago, Internet newsgroups were nearly universally distributed; all news servers carried all the
same newsgroups and their respective articles, so one news server was as good as any. Today, the
sheer bulk of disk space needed to store the daily volume of newsgroup activity is often prohibitive
for any single news server, and there's also local censorship of newsgroups. Hence you cannot expect
that all newsgroups, and certainly not all articles for a particular newsgroup, will be available on the
user's news server.

Moreover, many users' browsers may not be correctly configured to read news. We recommend you
avoid placing news URLs in your documents except in rare cases.

7.2.6.1 Accessing entire newsgroups

There are several thousand newsgroups devoted to nearly every conceivable topic under the sun and
beyond. Each group has a unique name, composed of hierarchical elements separated by periods. For
example:

comp.infosys.www.announce

is the World Wide Web announcements newsgroup. To access this group, use the URL:

news:comp.infosys.www.announce

7.2.6.2 Accessing single messages

Every message on a news server has a unique message identifier (ID) associated with it. This ID has
the form:

unique_string@server

The unique_string is a sequence of ASCII characters; the server is usually the name of the machine
from which the message originated. The unique_string must be unique among all the messages that
originated from the server. A sample URL to access a single message might be:

news:12A7789B@news.kumquat.com

In general, message IDs are cryptic sequences of characters not readily understood by humans.
Moreover, the lifespan of a message on a server is usually measured in days, after which the message
is deleted and the message ID is no longer valid. The bottom line: single message news URLs are
difficult to create, become invalid quickly, and are generally not used.

7.2.7 The nntp URL

The nntp URL goes beyond the news URL to provide a complete mechanism for accessing articles in
the Usenet news system. It has the form:

nntp://server:port/newsgroup/article

7.2.7.1 The nntp server and port

The nntp server and port are defined similarly to the http server and port, described earlier. The server
must be the Internet domain name or IP address of a nntp server; the port is the port on which that
server is listening for requests.

If the port and its preceding colon are omitted, the default port of 119 is used.

7.2.7.2 The nntp newsgroup and article

The newsgroup is the name of the group from which an article is to be retrieved, as defined in section
Section 7.2.6, "The news URL".

The article is the numeric id of the desired article within that newsgroup. Although the article number
is easier to determine than a message id, it falls prey to the same limitations of single message

references using the news URL, described in section Section 7.2.6. Specifically, articles do not last
long on most nntp servers, and nntp URLs quickly become invalid as a result.

7.2.7.3 Sample nntp URLs

A sample nntp URL might be:

nntp://news.kumquat.com/alt.fan.kumquats/417

This URL retrieves article 417 from the alt.fan.kumquats newsgroup on news.kumquat.com. Keep in
mind that the article will be served only to machines that are allowed to retrieve articles from this
server. In general, most nntp servers restrict access to those machines on that same local area network.

7.2.8 The mailto URL

The mailto URL causes an electronic mail message to be transmitted to a named recipient. It has the
format:

mailto:address

The address is any valid email address, usually of the form:

user@server

Thus, a typical mailto URL might look like:

mailto:cmusciano@aol.com

Browsers like Netscape honor multiple recipients in the mailto URL, separated by a comma. For
example:

mailto:cmusciano@aol.com,bkennedy@activmedia.com,booktech@ora.com

will address the message to all three recipients. There should be no spaces before or after the commas
in the URL.

7.2.8.1 Defining mail header fields

Most browsers open an email composition window when the user selects a mailto URL. The
recipient's address is filled in, taken from the URL, but the message subject and various other header
fields are left blank. Many webmasters would like to fill in these fields as a courtesy to their readers,
but the URL standard provides no way to do this.

The modern browsers extend the mailto URL to fill this gap. By adding CGI-like parameters to the
mailto header, you can set the value of the subject with Netscape and Internet Explorer, and also cc
(carbon copy) and bcc (blind carbon copy) fields for the mail message with Netscape. All of these
URLs work with Netscape; only the first one works correctly with Internet Explorer. [Passing
parameters explicitly, 10.2.4.2]

mailto:cmusciano@aol.com?subject=Loved your book!
mailto:cmusciano@aol.com?cc=booktech@oreilly.com
mailto:cmusciano@aol.com?bcc=archive@myserver.com

As you can probably guess, the first URL sets the subject of the message. Note that spaces are
allowed; you don't have to replace them with the hexadecimal equivalent %20. The second URL
places the address booktech@oreilly.com in the cc field of a Netscape message. Similarly, the
last example sets the bcc field of the message. You may also set several fields in one URL by
separating the field definitions with ampersands. For example:

mailto:cmusciano@aol.com?subject=Loved your book!&cc=booktech@
oreilly.com& bcc=archive@myserver.com

sets the subject and carbon-copy address. (This line would normally appear as a single line but is
broken here due to the width of the page.)

Internet Explorer Version 3 does not recognize the bcc and cc fields in the mailto URL and will either
complain about them if they appear alone or append them to a preceding subject.

7.2.9 The telnet URL

The telnet URL opens an interactive session with a desired server, allowing the user to log in and use
the machine. Often, the connection to the machine automatically starts a specific service for the user;
in other cases, the user must know the commands to type to use the system. The telnet URL has the
form:

telnet://user:password@server:port/

7.2.9.1 The telnet user and password

The telnet user and password are used exactly like the user and password components of the ftp URL,
described previously. In particular, the same caveats apply regarding protecting your password and
never placing it within a URL.

Just like the ftp URL, if you omit the password from the URL, the browser should prompt you for a
password just before contacting the telnet server.

If you omit both the user and password, the telnet occurs without supplying a user name. For some
servers, telnet automatically connects to a default service when no username is supplied. For others,
the browser may prompt for a username and password when making the connection to the telnet
server.

7.2.9.2 The telnet server and port

The telnet server and port are defined similarly to the http server and port, described above. The
server must be the Internet domain name or IP address of a telnet server; the port is the port on which
that server is listening for requests. If the port and its preceding colon are omitted, the default port of
23 is used.

7.2.10 The gopher URL

Gopher is a web-like document retrieval system that achieved some popularity on the Internet just
before the World Wide Web took off, completely replacing Gopher. Some Gopher servers still exist,
though, and the gopher URL lets you access Gopher documents. The gopher URL has the form:

gopher://server:port/path

7.2.10.1 The gopher server and port

The gopher server and port are defined similarly to the http server and port, described previously. The
server must be the Internet domain name or IP address of a gopher server; the port is the port on
which that server is listening for requests.

If the port and its preceding colon are omitted, the default port of 70 is used.

7.2.10.2 The gopher path

The path can take one of three forms:

type/selector
type/selector%09search
type/selector%09search%09gopherplus

The type is a single character value denoting the type of the gopher resource. If the entire path is
omitted from the gopher URL, the type defaults to 1.

The selector corresponds to the path of a resource on the Gopher server. It may be omitted, in which
case the top-level index of the Gopher server is retrieved.

If the Gopher resource is actually a Gopher search engine, the search component provides the string
for which to search. The search string must be preceded by an encoded horizontal tab (%09).

If the Gopher server supports Gopher+ resources, the gopherplus component supplies the necessary
information to locate that resource. The exact content of this component varies based upon the
resources on the gopher server. This component is preceded by an encoded horizontal tab (%09). If
you want to include the gopherplus component but omit the search component, you must still supply
both encoded tabs within the URL.

7.2.11 Absolute and Relative URLs

You may write a URL in one of two ways: absolute or relative. An absolute URL is the complete
address of a resource and has everything your system needs to find a document and its server on the
Web. At the very least, an absolute URL contains the scheme and all required elements of the
scheme_specific_part of the URL. It may also contain any of the optional portions of the
scheme_specific_part.

With a relative URL, you provide an abbreviated document address that, when automatically
combined with a "base address" by the system, becomes a complete address for the document. Within
the relative URL, any component of the URL may be omitted. The browser automatically fills in the
missing pieces of the relative URL using corresponding elements of a base URL. This base URL is

usually the URL of the document containing the relative URL, but may be another document specified
with the <base> tag. [<base>, 7.7]

7.2.11.1 Relative schemes and servers

A common form of a relative URL is missing the scheme and server name. Since many related
documents are on the same server, it makes sense to omit the scheme and server name from the
relative URL. For instance, assume the base document was last retrieved from the server
www.kumquat.com. The relative URL, then:

another-doc.html

is equivalent to the absolute URL:

http://www.kumquat.com/another-doc.html

Table 7.2 shows how the base and relative URLs in the example are combined to form an absolute
URL.

Table 7.2: Forming an Absolute URL

Protocol Server Directory File

Base URL http www.kumquat.com /

Relative URL -v -v -v another-doc.html

-v -v -v -v -v

Absolute URL http www.kumquat.com / another-doc.html

7.2.11.2 Relative document directories

Another common form of a relative URL omits the leading slash and one or more directory names
from the beginning of the document pathname. The directory of the base URL is automatically
assumed to replace these missing components. It's the most common abbreviation, because most
HTML authors place their collection of documents and subdirectories of support resources in the same
directory path as the home page. For example, you might have a special/ subdirectory containing FTP
files referenced in your HTML document. Let's say that the absolute URL for that HTML document
is:

http://www.kumquat.com/planting/guide.html

A relative URL for the file README.txt in the special/ subdirectory, then, looks like this:

ftp:special/README.txt

You'll actually be retrieving:

ftp://www.kumquat.com/planting/special/README.txt

Visually, the operation looks like that in Table 7.3.

Table 7.3: Forming an Absolute FTP URL

Protocol Server Directory File

Base URL http www.kumquat.com /planting guide.html

Relative URL ftp -v special README.txt

-v -v -v -v -v

Absolute URL ftp www.kumquat.com /planting/special README.txt

7.2.11.3 Using relative URLs

Relative URLs are more than just a typing convenience. Because they are relative to the current server
and directory, you can move the entire set of documents to another directory or even another server
and never have to change a single relative link. Imagine the difficulties if you had to go into every
source HTML document and change the URL for every link every time you move it. We'd loathe
using hyperlinks! Use relative URLs wherever possible.

7.1 Hypertext Basics 7.3 Creating Hyperlinks

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 7
Links and Webs

7.3 Creating Hyperlinks
Use the HTML <a> tag to create links to other documents and to name anchors for fragment
indentifiers within documents.

7.3.1 The <a> Tag

HTML authors use the <a> tag most commonly with its href attribute to create a hypertext link, or
hyperlink, for short, to another place in the same document or to another document. In these cases, the
current document is the source of the link; the value of the href attribute, a URL, is the target.[6]

[6] You may run across the terms "head" and "tail," which reference the target and source
of a hyperlink. This naming scheme assumes that the referenced document (the head) has
many tails that are embedded in many referencing documents throughout the Web. We
find this naming convention confusing and stick to the concept of source and target
documents throughout this book.

The other way you can use the <a> tag is with the name attribute to mark a hyperlink target, or
fragment identifier, in an HTML document.

<a>

Function:

Define anchors within a text flow

Attributes:

ACCESSKEY ONKEYPRESS

CHARSET ONKEYUP

CLASS ONMOUSEDOWN

COORDS ONMOUSEMOVE

DIR ONMOUSEOUT

HREF ONMOUSEOVER

HREFLANG ONMOUSEUP

ID REL

LANG REV

NAME SHAPE

ONBLUR STYLE

ONCLICK TABINDEX

ONDBLCLICK TARGET

ONFOCUS TITLE

ONKEYDOWN TYPE

End tag:

; always present

Contains:

a_content

Used in:

text

It is possible to use both the name and href attributes within a single <a> tag, defining a link to
another document and a fragment identifier within the current document. We recommend against this,
since it overloads a single tag with multiple functions, and some browsers may not be able to handle it.

Instead, use two <a> tags when such a need arises. Your HTML source will be easier to understand
and modify, and will work better across a wider range of browsers.

7.3.1.1 Allowed content

Between the <a> tag and its required end tag, you may put only regular text, line breaks, images, and
headings. The browser renders all of these elements normally, but with the addition of some special
effects to indicate that it is a hyperlink to another document. For instance, the popular graphical
browsers typically underline and color the text and draw a colored border around images that are
enclosed by <a> tags.

While the allowed content may seem restricted (the inability to place style markup within an <a> tag
is a bit onerous, for instance), most browsers let you put just about anything within an <a> tag that
makes sense. To be compliant with the HTML standard, place the <a> tag inside other markup tags,
not the opposite. For example, while most browsers make sense of either variation on this anchor
theme:

To subscribe to
<cite>Kumquat Online</cite>,

To subscribe to
<cite>Kumquat Online</cite>,

only the first example is technically correct.

7.3.1.2 The href attribute

Use the href attribute to specify the URL of the target of the link. Its value is any valid document
URL, absolute or relative, including a fragment identifier or a JavaScript code fragment. If the user
selects the contents of the <a> tag, the browser will retrieve and display the document indicated by the
URL specified by the href attribute or execute the list of JavaScript expressions, methods, and
functions. [Referencing Documents: The URL, 7.2]

A simple <a> tag that references another document might be:

The growing
season for kumquats in the Northeast.

which appears in the Netscape display as shown in Figure 7.1.

Figure 7.1: Hyperlink to another HTML document

Notice that the phrase "growing season" is specially rendered by the browser, letting the user know that
it is a link to another document. Users also typically have the option to specially set the text color of
the link and have the color change when a link is taken; blue initially and then red after it has been
selected at least once, for instance.

More complex anchors might include images:

 New pruning tips!
 <p>

 Kumquats throughout history

Most graphical browsers like Netscape and Internet Explorer place a special border around images that
are part of an anchor, as shown in Figure 7.2. Remove that hyperlink border with the border=0
attribute and value within the tag reference for the image. [The border attribute, 5.2.6.8]

Figure 7.2: Internet Explorer puts a special border around an image that is inside an
anchor

7.3.1.3 The name and id attributes

Use the name and id attributes with the <a> tag to create a fragment identifier within an HTML
document. Once created, the fragment identifier becomes a potential target of a link.

Prior to HTML 4.0, the only way to create a fragment identifier in HTML was to use the name
attribute with the <a> tag. With the advent of the id attribute in HTML 4.0, and its ability to be used
with almost any tag, any HTML element can be a fragment identifier. The <a> tag retains the name
attribute for historic purposes and honors the id attribute as well. These attributes can be used
interchangeably, with id being the more "modern" version of the name attribute. Both name and id can
be specified in conjunction with the href attribute, allowing a single <a> to be both a hyperlink and a
fragment indentifier.

An easy way to think of a fragment identifier is as the HTML analog of the goto statement label
common in many programming languages. The name attribute within the <a> tag or the id attribute
within the <a> or other tags places a label within a document. When that label is used in a link to that
document, it is the equivalent of telling the browser to goto that label.

The value of the id or name attribute is any character string, enclosed in quotation marks. The string
must be a unique label, not reused in any other name or id attribute in the same document, although it
can be reused in different documents. Here are some name and id examples:

<h2>Pruning Your Kumquat Tree</h2>

or even more economical, when the HTML 4.0 standard id attribute becomes commonly supported:

<h2 id="Pruning">Pruning Your Kumquat Tree</h2>

Notice that we set the anchor in a section header of a presumably large document. It's a practice we
encourage you use for all major sections of your work for easier reference and future smart processing,
such as automated extraction of topics.

The following link, when taken by the user:

jumps directly to the section of the document we named in either of the previous examples.

The contents of the <a> tag are not displayed in any special way with the name or id attribute.

Technically, you do not have to put any document content within the <a> tag with the name attribute,

since it simply marks a location in the document. In practice, some browsers ignore the tag unless
some document content - a word or phrase, even an image - is between the <a> and tags. For
this reason, it's probably a good idea to have at least one displayable element in the body of any <a>
tag.

7.3.1.4 The event attributes

There are a number of event handlers built into the modern browsers. These handlers watch for certain
conditions and user actions, such as a click of the mouse or when an image finishes loading into the
browser window. With client-side JavaScript, you may include selected event handlers as attributes of
certain HTML tags and execute one or more JavaScript commands and functions when the event
occurs.

With the anchor (<a>) tag, you may associate JavaScript code with a number of mouse- and
keyboard-related events. The value of the event handler is - enclosed in quotation marks - one or a
sequence of semicolon-separated JavaScript expressions, methods, and function references that the
browser executes when the event occurs. [JavaScript Event Handlers, 13.3.3]

For example, a popular, albeit simple, use of the onMouseOver event with a hyperlink is to print an
expanded description of the tag's destination in the JavaScript-aware browser's status box (Figure 7.3).
Normally, the browser displays the frequently cryptic destination URL there whenever the user passes
the mouse pointer over an <a> tag's contents:

<a href="http://www.ora.com/kumquats/homecooking/recipes.html#quat5"
onMouseOver="window.status='A recipe for kumquat soup.';return true">

We argue that the contents of the tag itself should explain the link, but there are times when window
space is tight and an expanded explanation is helpful, such as when the link is in a table of contents.

See Chapter 13 for more about JavaScript.

Figure 7.3: Use JavaScript to display a message in the browser's status box

7.3.1.5 The rel and rev attributes

The rel and rev attributes express a formal relationship and direction between source and target
documents. The rel attribute specifies the relationship from the source document to the target, and the
rev attribute specifies the relationship from the target to the source. Both attributes can be placed in a
single <a> tag, and the browser may use them to specially alter the appearance of the anchor content

or to automatically construct document navigation menus. Other tools also may use these attributes to
build special link collections, tables of contents, and indexes.

The value of either the rel or rev attribute is a space-separated list of relationships. The actual
relationship names and their meanings are up to you: they are not formally addressed by the HTML
standard. For example, a document that is part of a sequence of documents might include its
relationship in a link:

The relationship from the source to the target is that of moving to the next document; the reverse
relationship is that of moving to the previous document.

These document relationships are also used in the <link> tag in the document <head>. The
<link> tag establishes the relationship without actually creating a link to the target document; the
<a> tag creates the link and imbues it with the relationship attributes. [<link>, 7.7]

Commonly used document relationships include:

next

Links to the next document in a collection

prev

Links to the previous document in a collection

head

Links to the top-level document in a collection

toc

Links to a collection's table of contents

parent

Links to the document above the source

child

Links to a document below the source

index

Links to the index for this document

glossary

Links to the glossary for this document

In general, few browsers take advantage of these attributes to modify the link appearance. However,
these attributes are a great way to document links you create, and we recommend that you take the
time to insert them whenever possible.

7.3.1.6 The style and class attributes

Use the style and class attributes for the <a> tag to control the display style for the content
enclosed by the tag, and to format the content according to a predefined class of the <a> tag. [Inline
Styles: The style Attribute, 9.1.1] [Style Classes, 9.2.4]

7.3.1.7 The lang and dir attributes

Like almost all other HTML tags, the <a> tag accepts the lang and dir attributes, denoting the
language used for the content within the <a> tag, and the direction in which that langauge is rendered.
[The dir attribute, 3.5.1.1] [The lang attribute, 3.5.1.2]

7.3.1.8 The target attribute

The target attribute lets you specify where to display the contents of a selected hyperlink.
Commonly used in conjunction with frames or multiple browser windows, the value of this attribute is
the name of the frame or window in which the referenced document should be loaded. If the named
frame or window exists, the document is loaded in that frame or window. If not, a new window is
created, given the specified name, and the document is loaded in that new window. For more
information, including a list of special target names, see section Section 12.7, "Named Frame or
Window Targets" in Chapter 12.

7.3.1.9 The title attribute

The title attribute lets you specify a title for the document to which you are linking. The value of
the attribute is any string, enclosed in quotation marks. The browser might use it when displaying the
link, perhaps flashing the title when the mouse passes over the link. The browser might also use the
title attribute when adding this link to a user's hotlist.

The title attribute is especially useful for referencing an otherwise unlabeled resource, such as an
image or a non-HTML document. For example, the browser might include the following title on this
otherwise wordless image display page:

<a href="pics/kumquat.gif"
 title="A photograph of the Noble Fruit">

Ideally, the value specified should match the title of the referenced document, but it's not required.

7.3.1.10 The charset, hreflang, and type attributes

According to the HTML 4.0 standard, the charset attribute lets you specify the character encoding
used in the document that is the destination of the link. The value of this attribute must be the name of
a standard character set; "euc-jp", for example. The default value is "ISO-8859-1".

The hreflang attribute may be specified only when the href attribute is used. Like the lang
attribute, its value is an ISO standard two-character language code. Unlike the lang attribute, the
hreflang attribute does not address the language used by the contents of the tag. Instead, it specifies
the language used in the document referenced by the href attribute. [The lang attribute, 3.5.1.2]

The type attribute specifies the content type of the resource referenced by the <a> tag. Its value is
any MIME encoding type. For example, you might inform the browser that you are linking to a plain
ASCII document with:

The browser might use this information when displaying the referenced document, or might even

present the link differently based upon the content type.

7.3.1.11 The coords and shape attributes

These are two more attributes defined in the HTML standard for the <a> tag that are not supported by
the current, popular browsers. Like the attributes of the same names for <area> tag, the coords and
shape attributes define a region of influence for the <a> tag. These attributes should only be used
with the <a> tag when that tag is part of the content of a <map> tag, as described later in this chapter.
[The <map> Tag, 7.5.3] [The coords attribute, 7.5.4.2] [The shape attribute, 7.5.4.7]

7.3.1.12 The accesskey and tabindex attributes

Traditionally, users of graphical browsers select and execute a hyperlink by pointing and clicking the
mouse device on the region of the browser display defined by the anchor. What is less well known is
that you may choose a hyperlink, among other objects in the browser window, by pressing the Tab key
and then activate that link by pressing the Return or Enter key. With the tabindex attribute, you may
reorder the sequence in which the browser steps through to each object when the user presses the Tab
key. The value of this attribute is an integer greater than zero. The browser starts with the object whose
tab index is 1 and moves through the other objects in increasing order.

With the accesskey attribute, you may select an alternative "hot-key" that, when pressed, activates
the specific link. The value of this attribute is a single character that is pressed in conjunction with an
"alt" or "meta" key, depending on the browser and computing platform. Ideally, this character should
appear in the content of the <a> tag; if so, the browser may choose to display the character differently
to indicate that it is a hot-key. This attribute is currently not supported by any of the popular browsers.

See an expanded description for both these attributes in Chapter 10.

7.3.2 Linking to Other Documents

You make a hyperlink to another document with the <a> tag and its href attribute, which defines
the URL of the target document. The contents of the <a> tag are presented to the user in some
distinctive manner to indicate that the link is available.

When creating a link to another document, you should consider adding the title, rel, and rev
attributes to the <a> tag. They help document the link you are creating and allow the browser to
further embellish the display anchor contents.

7.3.3 Linking Within a Document

Creating a link within the same HTML document or to a specific fragment of another document is a
two-step process. The first step is to make the target fragment; the second is to create the link to the
fragment.

Use the <a> tag with its name attribute to identify a fragment. Or label the segment using the id
attribute in a defining tag, such as with a header, <p>, or <div> tag. The value of the name or id
attribute is used in hyperlinks that point to the fragment. Here's a sample fragment identifier:

<h3>Section 7</h3>

Alternatively, when the HTML 4.0 standard becomes more completely implemented by the popular

browsers, you will be able to use the id attribute and embed the hyperlink target directly in the header
tag:

<h3 id="Section_7">Section 7</h3>

A hyperlink to the fragment is an <a> tag with the href attribute, in which the attribute's value - the
target URL - ends with the fragment's name, preceded by the pound sign (#). A reference to the
previous example's fragment identifier, then, might look like:

See Section 7
for further details.

By far the most common use of fragment identifiers is in creating a table of contents for a lengthy
document. Begin by dividing your document into several logical sections, using appropriate headers
and consistent formatting. At the start of each section, add a fragment identifier for that section,
typically as part of the section title. Finally, make a list of links to those fragment identifiers at the
beginning of your document.

Our sample document extolling the life and wonders of the mighty kumquat, for example, is quite long
and involved, including many sections and subsections of interest. It is a document to be read and read
again. To make it easy for kumquat lovers everywhere to find their section of interest quickly, we've
included fragment identifiers for each major section, and placed an ordered list of links - a hotlinked
table of contents, as it were - at the beginning of each of the Kumquat Lover's documents, a sample of
which appears below along with sample fragment identifiers that appear in the same document. The
ellipsis symbol (...) means that there are intervening segments of content, of course, and don't forget
that someday soon, you will be able to replace the <a name> tags with embedded id attributes:

...
<h3>Table of Contents</h3>

 Soil Preparation
 Digging the Hole
 Planting the Tree

...
<h3>Soil Preparation</h3>
...
<h3>Digging the Hole</h3>
...
<h3>Planting the Tree</h3>
...

The kumquat lover can thereby click the desired link in the table of contents and jump directly to the
section of interest, without lots of tedious scrolling.

Notice also that this example uses relative URLs - a good idea if you ever intend to move or rename
the document without breaking all the hyperlinks.

7.2 Referencing Documents:
The URL

7.4 Creating Effective Links

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 7
Links and Webs

7.4 Creating Effective Links
A document becomes hypertext by tossing in a few links in the same way that water becomes soup
when you throw in a few vegetables. Technically, you've met the goal, but the outcome may not be
very palatable.

Inserting anchors into your documents is something of an art, requiring good writing skills, HTML
prowess, and an architectural sense of your documents and their relationships to others on the Web.
Effective links flow seamlessly into a document, quietly supplying additional browsing opportunities
to the reader without disturbing the current document. Poorly designed links scream out, interrupt the
flow of the source document, and generally annoy the reader.

While there are as many linking styles as there are authors, here are a few of the more popular ways to
link your documents. All do two things: they give the reader quick access to related information, and
they tell the reader how the link is related to the current contents.

7.4.1 Lists of Links

Perhaps the most common way to present hyperlinks in HTML documents is in ordered or unordered
lists in the style of a table of contents or list of resources.

Two schools of style exist. One puts the entire list item into the source anchor; the other abbreviates
the item and puts a shorthand phrase in the source anchor. In the former, make sure you keep the
anchor content short and sweet; in the latter, use a direct writing style that makes it easy to embed the
link.

If your list of links becomes overly long, consider organizing it into several sublists grouped by topic.
Readers can then scan the topics (set off, perhaps, as <h3> headers) for the appropriate list and then
scan that list for the desired document.

The alternative list style is much more descriptive, but also more wordy, so you have to be careful that
it doesn't end up cluttered:

<p>
Kumquat-related documents include:

 A concise guide to
 profitable kumquat farming,
 including a variety of business plans, lists of fruit
 packing companies, and farming supply companies.

 101 different ways to
 use a kumquat, including stewed kumquats and kumquat pie!
 The kumquat is a hardy tree, but even the greenest of
 thumbs can use a few
 growing tips to increase
 their yield.
 The business of kumquats is an expanding one, as
 shown by this 10 year overview of the

 kumquat industry.

It sometimes gets hard to read a source HTML document. Imagine the clutter if we'd used anchors
with fragment identifiers for each of the subtopics in the list item explanations. Nonetheless, it all
looks pristine and easily navigable when displayed by the browser, such as with Mosaic as shown in
Figure 7.4.

Figure 7.4: Wordy but effectively descriptive link list

This more descriptive style of presenting a link list tries hard to draw readers into the linked document
by giving a fuller taste of what they can expect to find. Because each list element is longer and
requires more scanning by the reader, you should use this style sparingly and dramatically limit the
number of links.

In general, use the brief list style when presenting large numbers of links to a well-informed audience.
The second, more descriptive style is better suited to a smaller number of links for which your
readership is less well-versed in the topic at hand.

7.4.2 Inline References

If you aren't collecting links into lists, you're probably sprinkling them throughout your document.
So-called inline links are more in keeping with the true spirit of hypertext, since they enable readers to
mark their current place in the document, visit the related topic in more depth or find a better
explanation, and then come back to the original and continue reading. That's very personalized
information processing.

The biggest mistake made by novice HTML authors, however, is to overload their documents with
links and treat them as if they are panic buttons demanding to be pressed. You may have seen this
style of linking; HTML pages with the word "here" all over the place, like the panic-ridden example

in Figure 7.5 (we can't bring ourselves to show you the source HTML for this travesty).

Figure 7.5: Links should not wave and yell like first-graders, "Here! Me! Me!"

As links, phrases like "click here" and "also available" are content-free and annoying. They make the
person who is scanning the page for an important link read all the surrounding text to actually find the
reference.

The better, more refined style for an inline link is to make every one contain a noun or noun/verb
phrase relating to the topic at hand. Compare how kumquat farming and industry news references are
treated in Figure 7.6 to the "Here! Me! Me!" example in Figure 7.5.

Figure 7.6: Kinder, gentler inline links work best

A quick scan of Figure 7.6 immediately yields useful links to "kumquat farming methods" and
"kumquat industry's past ten years." There is no need to read the surrounding text to understand where
the link will take you. Indeed, the immediately surrounding content in our example, as for most inline
links, serves only as syntactic sugar in support of the embedded links.

Embedding links into the general discourse of a document takes more effort to create than link lists.
You've got to actually understand the content of the current as well as the target documents, be able to
express that relationship in just a few words, and then intelligently incorporate that link at some key
place in the source document. Hopefully this key place is where you might expect the user is ready to
interrupt their reading and ask a question or request more information. To make matters even more
difficult, particularly for the traditional tech writer, this form of author-reader conversation is most
effective when presented in active voice (he, she, or it does something to an object versus the object
having something done to it). The effort expended is worthwhile, though, resulting in more
informative, easily read documents. Remember, you'll write the document once, but it will be read
thousands, if not millions, of times. Please your readers, please.

7.4.3 Linking Do's and Don'ts

Here are some hints for creating links:

Keep the link content as concise as possible. Long links or huge inline graphic icons for links
are visually disruptive and potentially confusing.

●

Never place two links immediately adjacent to one another. Most browsers make it difficult to
tell where one link stops and the next link starts. Separate them with regular text or line breaks.

●

Be consistent. If you are using inline references, make all of your links inline references. If you
choose to use lists of links, stick to either the short or long form; don't mix styles in a single
document.

●

Try reading your document with all the nonanchor text removed. If some links suddenly make
no sense, rewrite them so that they stand on their own. (Many people scan documents looking
only for links; the surrounding text becomes little more than a gray background to the visually
more compelling links.)

●

7.4.4 Using Images and Links

It has become fashionable to use images and icons instead of words for link contents. For instance,
instead of the word "next," some HTML authors might use an icon of a little pointing hand. A link to
the home page is not complete without a picture of a little house. Links to searching tools must now
contain a picture of a magnifying glass, question mark, or binoculars.

Resist falling prey to the "Mount Everest syndrome" of inserting images simply because you can.
Again, it's a matter of context. If you or your document's readers can't tell at a glance what
relationship a link has with the current document, you've failed. Use cute images for links sparingly,
consistently, and only in ways that help readers scan your document for important information and
leads. Also be ever mindful that your pages may be read by someone from nearly anywhere on Earth
(perhaps beyond, even), and that images do not translate consistently across cultural boundaries. (Ever
hear what the "okay" hand sign common in the United States means to a Japanese person?)

Creating consistent iconography for a collection of pages is a daunting task, one that really should be
done with the assistance of someone formally schooled in visual design. Trust us, the kind of mind
that produces nifty code and does good HTML is rarely suited to creating beautiful, compelling
imagery. Find a good visual designer; your pages and readers will benefit immeasurably.

7.3 Creating Hyperlinks 7.5 Mouse-Sensitive Images

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 7
Links and Webs

7.5 Mouse-Sensitive Images
Normally, an image placed within an anchor simply becomes part of the anchor content. The browser may alter
the image in some special way (usually with a special border) to alert the reader that it is a link, but the user
clicks the image in the same way they click a textual link.

The HTML standard provides a feature that lets you embed many different links inside the same image. Clicking
different areas of the image causes the browser to link to different target documents. Such mouse-sensitive
images, known as image maps, open up a variety of creative linking styles.

There are two ways to create image maps, known as server-side and client-side image maps. The former, enabled
by the ismap attribute for the tag, requires access to a server and related image map processing
applications. The latter is created with the usemap attribute for the tag, along with corresponding
<map> and <area> tags. Since translation of the mouse position in the image to a link to another document
happens on the user's machine, client-side image maps don't require a special server connection, and even can be
implemented in non-web environments, such as on a local hard drive or on a CD-ROM-based document
collection. [<map>, 7.5] [<area>, 7.5] [The Tag, 5.2.6]

7.5.1 Server-side Image Maps

You add an image to an anchor simply by placing an tag within the body of the <a> tag. Make that
embedded image into a mouse-sensitive one by adding the ismap attribute to the tag. This special
 attribute tells the browser that the image is a special map containing more than one link. (The ismap
attribute is ignored by the browser if the tag is not within an <a> tag.) [The Tag, 5.2.6]

When the user clicks some place within the image, the browser passes the coordinates of the mouse pointer along
with the URL specified in the <a> tag to the document server. The server uses the mouse pointer coordinates to
determine which document to deliver back to the browser.

When ismap is used, the href attribute of the containing <a> tag must contain the URL of a server application
or, for some HTTP servers, a related map file that contains the coordinate and linking information. If the URL is
simply that of a conventional document, errors may result and the desired document will most likely not be
retrieved.

The coordinates of the mouse position are screen pixels counted from the upper-left corner of the image
beginning with (0,0). The coordinates are added to the end of the URL, preceded by a question mark.

For example, if a user clicks 43 pixels over and 15 pixels down from the upper-left corner of the image displayed
from the following link:

the browser sends the following search parameters to the HTTP server:

/cgi-bin/imagemap/toolbar.map?43,15

In the example, toolbar.map is a special image map file inside the cgi-bin/imagemap directory and containing
coordinates and links. A special image map process uses that file to match the passed coordinates (43,15 in the
example) and return with the selected hyperlink document.

7.5.1.1 Server-side considerations

With mouse-sensitive ismap-enabled image maps, the browser is required to pass along only the URL and
mouse coordinates to the server. Converting these coordinates into a specific document is handled by the
document server. The conversion process differs between servers and is not defined by the HTML standard.

You need to consult with your web server administrators and perhaps even read your server's documentation to
determine how to create and program an image map. Most servers come with some software utility, typically
located in a cgi-bin/imagemap directory, to handle image maps. And most of these use a text file containing the
image map regions and related hyperlinks that is referenced by your image map URL to process the image map
query.

Here's an example image map file that describes the sensitive regions in our example image:

Imagemap file=toolbar.map

default dflt.html
circ 100,30,50 link1.html
rect 180,120,290,500 link2.html
poly 80,80,90,72,160,90 link3.html

Each sensitive region of the image map is described by a geometric shape and defining coordinates in pixels,
such as the circle with its center point and radius, the rectangle's upper-left and lower-right edge coordinates, and
the loci of a polygon. All coordinates are relative to the upper-left corner of the image (0,0). Each shape has a
related URL.

An image map processing application typically tests each shape in the order it appears in the image file and
returns the document specified by the corresponding URL to the browser if the user's mouse x,y coordinates fall
within the boundaries of that shape. That means it's okay to overlap shapes; just be aware which takes
precedence. Also, the entire image need not be covered with sensitive regions: if the passed coordinates don't fall
within a specified shape, the default document gets sent back to the browser.

This is just one example for how an image map may be processed and the accessory files required for that
process. Please huddle with your webmaster and server manuals to discover how to implement a server-side
image map for your HTML documents and system.

7.5.2 Client-side Image Maps

The obvious downside to server-side image maps is that they require a server. That means you need access to the
required HTTP server or its /cgi-bin/ directory, which isn't always available. And server-side image maps limit
portability, since not all image map processing applications are the same.

Server-side image maps also mean delays for the user while browsing, since the browser must get the server's
attention to process the image coordinates. That's even if there's no action to take, such as a section of the image
that isn't hyperlinked and doesn't lead anywhere.

Client-side image maps suffer from none of these difficulties. Enabled by the usemap attribute for the
tag, and defined by special <map> and <area> extension tags, client-side image maps let HTML authors
include in their documents a map of coordinates and links that describe the sensitive regions of an image. The
browser on the client computer translates the coordinates of the mouse position within the image into an action,

such as loading and displaying another document. And special JavaScript-enabled attributes provide a wealth of
special effects for client-side image maps. [JavaScript Event Handlers, 13.3.3]

To create a client-side image map, include the usemap attribute as part of the tag.[7] Its value is the
URL of a <map> segment in an HTML document that contains the map coordinates and related link URLs. The
document in the URL identifies the HTML document containing the map; the fragment identifier in the URL
identifies the map to be used. Most often, the map is in the same document as the image itself, and the URL can
be reduced to the fragment identifier: a pound sign (#) followed by the map name.

[7] Alternatively, according to the HTML 4.0 standard but not yet implemented by any browser, you
may reference a client-side image map by including the usemap attribute with the <object> and
form <input> tags, too.

For example, the following source fragment tells the Netscape or Internet Explorer browser that the map.gif
image is a client-side image map and that its mouse-sensitive coordinates and related link URLs are found in the
map section of the document named map :

7.5.3 The <map> Tag

For client-side image maps to work, you must include somewhere in the HTML document a set of coordinates
and URLs that define the mouse-sensitive regions of a client-side image map and the hyperlink to take for each
region that is clicked by the user. Include those coordinates and links as values of attributes in conventional <a>
tags or special <area> tags; the collection of <area> specifications or <a> tags are enclosed within the
<map> tag and its end tag </map>. The <map> segment may appear anywhere in the body of any HTML
document.

<map>

Function:

Encloses client-side image map (usemap) specifications

Attributes:

CLASS ONKEYUP

DIR ONMOUSEDOWN

ID ONMOUSEMOVE

LANG ONMOUSEOUT

NAME ONMOUSEOVER

ONCLICK ONMOUSEUP

ONDBLCLICK STYLE

ONKEYDOWN TITLE

ONKEYPRESS

End tag:

</map>; always present

Contains:

map_content

Used in:

body_content

More specifically, the <map> tag may contain either a sequence of <area> tags or conventional HTML content
including <a> tags. You cannot mix and match <area> tags with conventional content. Conventional content
within the <map> tag may be displayed by the browser; <area> tags will not. If you are concerned about
compatability with older browsers, use only <map> tags containing <area> tags.

If you do place <a> tags within a <map> tag, they must include the shape and coords attributes that define a
region within the objects that reference the <map> tag.

7.5.3.1 The name attribute

The value of the name attribute in the <map> tag is the name used by the usemap attribute in an or
<object> tag to locate the image map specification. The name must be unique and not used by another <map>
in the document, but more than one image map may reference the same <map> specifications. [The ismap and
usemap attributes, 5.2.6.14]

7.5.3.2 The class, id, style, and title attributes

The style sheet display-related style and class attributes for the <map> tag are only useful when the <map>
tag contains conventional HTML content, in which case they apply to the content of the tag. [Inline Styles: The
style Attribute, 9.1.1] [Style Classes, 9.2.4]

The id and title attributes, on the other hand, are straightforward. They are standard ways to respectively
label the tag for later reference by a hyperlink or program or entitle the section for later review. [The id attribute,
4.1.1.4] [The title attribute, 4.1.1.5]

7.5.3.3 The event attributes

The various event attributes allow you to assign Javascript handlers to events that may occur within the confines
of the map. [JavaScript Event Handlers, 13.3.3]

7.5.4 The <area> Tag

The guts of a client-side image map are the <area> tags within the map segment. These <area> tags define
each mouse-sensitive region and the action the browser should take if that region is selected by the user in an
associated client-side image map.

<area>

Function:

Defines coordinates and links for a region on a client-side image map

Attributes:

ACCESSKEY ONKEYPRESS

ALT ONKEYUP

CLASS ONMOUSEDOWN

COORDS ONMOUSEMOVE

HREF ONMOUSEOUT

ID ONMOUSEOVER

LANG ONMOUSEUP

NOHREF SHAPE

NOTAB STYLE

ONBLUR TABINDEX

ONCLICK TABORDER

ONDBLCLICK TARGET

ONFOCUS TITLE

ONKEYDOWN

End tag:

None

Contains:

Nothing

Used in:

map_content

The region defined by an <area> tag acts just like any other hyperlink: when the user moves the mouse pointer
over the region of the image, the pointer icon will change and the browser may display the URL of the related
hyperlink in the status box at the bottom of the browser window.[8] Regions of the client-side image map not
defined in at least one <area> tag are not mouse-sensitive.

[8] That is, unless you activate a JavaScript event handler that writes the contents of the status box.
See the onMouse event handlers in section Section 7.5.4.6, "The event attributes".

7.5.4.1 The alt attribute

Like its cousin for the tag, the alt attribute for the <area> tag lets you attach a text label to the image,
except that in this case the label is associated with a particular area of the image. The popular browsers display
this label to the user when the mouse passes over the area, and it may also be used by a nongraphical browser to
present the client-side image map as a list of links identified by the alt labels.

7.5.4.2 The coords attribute

The required coords attribute of the <area> tag defines coordinates of a mouse-sensitive region in a
client-side image map. The number of coordinates and their meaning depend upon the region's shape as
determined by the shape attribute, discussed later in this chapter. You may define hyperlink regions as
rectangles, circles, and polygons within a client-side image map. The appropriate values for each shape are:

circle or circ

coords="x,y,r", where x and y define the position of the center of the circle (0,0 is the upper-left
corner of the image) and r is its radius in pixels.

polygon or poly

coords="x1,y1,x2,y2,x3,y3,...", where each pair of x,y coordinates define a vertex of the
polygon, with 0,0 being the upper-left corner of the image. At least three pairs of coordinates are required
to define a triangle, higher order polygons require a larger number of vertices. The polygon is
automatically closed, so it is not necessary to repeat the first coordinate at the end of the list to close the
region.

rectangle or rect

coords="x1,y1,x2,y2", where the first coordinate pair is one corner of the rectangle and the other pair
is the corner diagonally opposite, with "0,0" being the upper-left corner of the image. Note that a
rectangle is just a shortened way of specifying a polygon with four vertices.

For example, the following fragment defines a single mouse-sensitive region in the lower-right quarter of a 100 ×
100 image and another circular region smack in the middle:

<map name="map1">
 <area shape=rect coords="75,75,99,99">
 <area shape=circ coords="50,50,25">
</map>

If the coordinates in one <area> tag overlap with another region, the first <area> tag takes precedence. The
browsers ignore coordinates that extend beyond the boundaries of the image.

7.5.4.3 The href attribute

Like the href attribute for the anchor (<a>) tag, the href attribute for the <area> tag defines the URL of the
desired link if its region in the associated image map is clicked. The value of the href attribute is any valid
URL, relative or absolute, including JavaScript code.

For example, the browser will load and display the link4.html document if the user clicks in the lower-left quarter
of a 100 × 100-pixel image, as defined by the first image map <area> tag in the following example:

<map name="map">
 <area coords="75,75,99,99" href="link4.html">
 <area coords="0,0,25,25" href="javascript:window.alert
 ('Oooh, tickles!')"
 </map>

The second <area> tag in the example uses a JavaScript URL, which, when the user clicks in the upper-left
quadrant of the image map, executes a JavaScript alert method that displays the silly message in a dialog box.

7.5.4.4 The nohref attribute

The nohref attribute for the <area> tag lets you define a mouse-sensitive region in a client-side image map
for which no action is taken even though the user may select it. You must include either an href or a nohref
attribute for each <area> tag.

7.5.4.5 The notab, taborder, and tabindex attributes

As an alternative to the mouse, a user may choose an HTML document "hotspot", such as a hyperlink embedded
in an image map, by pressing their Tab key. Once chosen, the user activates the hyperlink by pressing the Return
or Enter key. By default, the browsers steps to each hotspot in the order by which they appear in the document.
Originally introduced by Internet Explorer with the taborder attribute, and now standardized as the
tabindex attribute, you may change that default order. The value of the attribute is an integer indicating the
position of this area in the overall tab sequence for the document.

Supported by Internet Explorer only and not part of the HTML 4.0 standards, notab areas get passed over as the
user presses the Tab key to move the cursor around the document. Otherwise, this area will be part of the tabbing
sequence. The attribute is useful, of course, in combination with the nohref attribute.

The tabindex attribute is not yet supported by any browser, and the notab and taborder attributes are
supported by Internet Explorer only.

7.5.4.6 The event attributes

The same mouse-related JavaScript event handlers that work for the anchor (<a>) tag also work with client-side
image map hyperlinks. The value of the event handler is - enclosed in quotation marks - one or a sequence of
semicolon-separated JavaScript expressions, methods, and function references that the browser executes when the
event occurs. [JavaScript Event Handlers, 13.3.3]

For example, a popular, albeit simple, use of the onMouseOver event is to print a more descriptive explanation
in the browser's status box whenever the user passes the mouse pointer over a region of the image map:

<area href="http://www.oreilly .com/kumquats/homecooking/recipes.html#quat5"
 onMouseOver="self.status='A recipe for kumquat soup.';return true">

We should point out that the current versions of the popular browsers automatically display the alt attribute's
string value, obstensively accomplishing the same task. So we recommend that you include the alt attribute and
value in lieu of hacking JavaScript. And, in context with a text-based hyperlink, we argue that the contents of the
tag itself should explain the link. But images can be deceptive, so we urge you to take advantage of both the alt
attribute and event handlers to provide text descriptions with your image maps.

7.5.4.7 The shape attribute

According to the HTML standard, use this attribute to define the shape of an image map's mouse-sensitive
region: a circle (circ or circle), polygon (poly or polygon), or rectangle (rect or rectangle).

The value of the shape attribute affects how the browser interprets the value of the coords attribute. If you
don't include a shape attribute, the value default is assumed. According to the standard, default means
that the area covers the entire image. In practice, the browsers default to a rectangular area and expect to find four
coords values. And if you don't specify a shape and don't include four coordinates with the tag, the browser
ignores the area altogether.

In fact, Netscape is the only browser that even recognizes the shape value default to provide a catch-all area
for clicks that fall outside all the other defined hotspots. Since areas are in a "first-come, first-served" order in the
<map> tag, you should place the default area last. Otherwise, it covers up any and all areas that follow in your
image map.

Note that the browsers are lax in their implementation of the shape names. Netscape 4, for example, doesn't
recognize "rectangle," but does recognize "rect" for a rectangular shape. For this reason, we recommend that you
use the abbreviated names.

7.5.4.8 The target attribute

The target attribute gives you a way to control where the contents of the selected hyperlink in the image map
get displayed. Commonly used in conjunction with frames or multiple browser windows, the value of this
attribute is the name of the frame or window in which the referenced document should be loaded. If the named
frame or window exists, the document is loaded in that frame or window. If not, a new window is created, given
the specified name, and the document is loaded in that new window. For more information, including a list of
special target names, see section Section 12.7 in Chapter 12.

7.5.4.9 The title attribute

The title attribute lets you specify a title for the document to which the image map's area links. The value of
the attribute is any string, enclosed in quotes. The browser might use the title when displaying the link, perhaps
flashing the title when the mouse passes over the area. The browser might also use the title attribute when
adding this link to a user's hotlist.

The title attribute is especially useful for referencing an otherwise unlabeled resource, such as an image or a
non-HTML document. Ideally, the value specified should match the title of the referenced document, but it's not
required.

7.5.4.10 The class, dir, id, lang, and style attributes

The class and style attributes allow you to supply display properties and class names to control the
appearance of the area, although their value seems limited for this tag. The id attribute allows you to create a
name for the area that might referenced by a hyperlink. [The id attribute, 4.1.1.4] [Inline Styles: The style
Attribute, 9.1.1] [Style Classes, 9.2.4]

The lang and dir attributes define the language used for this area and the direction in which text is rendered.
Again, their use is not apparent with this tag. Section 3.5.1.1 in Chapter 3 Section 3.5.1.2 in Chapter 3

7.5.5 A Client-side Image Map Example

The following example fragment draws together the various components of a client-side image map we discussed
earlier in this section. It includes the tag with the image reference and usemap attribute with a name
that points to a <map> that defines four mouse-sensitive regions (three plus a default) and related links:

<body>
...

...
<map name="map1">
 <area shape=rect coords="0,20,40,100"
 href="k_juice.html"
 onMouseOver="self.status='How to prepare kumquat juice.'
 ;return true">
 <area shape=rect coords="50,50,80,100"
 href="k_soup.html"
 onMouseOver="self.status='A recipe for hearty kumquat soup.'
 ;return true">
 <area shape=rect coords="90,50,140,100"
 href="k_fruit.html"
 onMouseOver="self.status='Care and handling of the native
 kumquat.'
 ;return true">
 <area shape=default
 href="javascript:window.alert('Choose the cup or one of the
 bowls.')"
 onMouseOver="self.status='Select the cup or a bowl for more
 information.'
 ;return true">
</map>

See Figure 7.7 for the results.

Figure 7.7: A simple client-side image map with JavaScript-enabled mouse event

7.5.6 Handling Other Browsers

Unlike its server-side ismap counterpart, the client-side image map tag () doesn't need to be
included in an <a> tag. But it may be, so that you can gracefully handle browsers that are unable to process
client-side image maps.

For example, Mosaic or early versions of Netscape simply load a document named main.html if the user clicks
the map.gif image referenced in the following source fragment. The extended browsers, on the other hand, will
divide the image into mouse-sensitive regions, as defined in the associated <map>, and link to a particular name
anchor within the same main.html document if the image map region is selected by the user:

...
<map name="map1">
 <area coords="0,0,49,49" href="main.html#link1">
 <area coords="50,0,99,49" href="main.html#link2">
 <area coords="0,50,49,99" href="main.html#link3">
 <area coords="50,50,99,99" href="main.html#link4">
</map>

To make an image map fully backward-compatible with all image map-capable browsers, you may also include
both client-side and server-side processing for the same image map. Capable browsers will honor the faster
client-side processing; all other browsers will ignore the usemap attribute in the tag and rely upon the
referenced server process to handle user selections in the traditional way. For example:

...
<map name="map2">
 <area coords="0,0,49,49" href="link1.html">
 <area coords="50,0,99,49" href="link2.html">
 <area coords="0,50,49,99" href="link3.html">
 <area coords="50,50,99,99" href="link4.html">
</map>

7.5.7 Effective Use of Mouse-Sensitive Images

Some of the most visually compelling pages we've seen on the Web have mouse-sensitive images: maps with
regions that when clicked, for example, lead to more information about a country or town, or result in more detail
about the location and who to contact at a regional branch of a business. We've even seen a mouse-sensitive
image of a fashion model whose various clothing parts lead to their respective catalog entries, complete with
detailed description and price tag for ordering.

The visual nature of mouse-sensitive images coupled with the need for an effective interface means that you
should strongly consider having an artist, a user-interface designer, and even a human-factors expert evaluate
your mouse-sensitive imagery. At the very least, engage in a bit of user testing to make sure people know where
to click to move to the desired document. Make sure the "mouseable" areas of the image indicate this to the user
using a consistent visual mechanism. Consider using borders, drop shadows, or color changes to indicate those
areas that can be selected by the user.

Finally, always remember that the decision to use mouse-sensitive images is an explicit decision to exclude
text-based and image-restricted browsers from your pages. This includes the many millions of browsers
connecting to the Internet via slow modem connections. For these people, downloading your beautiful images is
simply too expensive. To keep from disenfranchising a growing population, make sure any page that has a
mouse-sensitive image has a text-only equivalent easily accessible from a link on the image-enabled version.
Some thoughtful webmasters even provide separate pages for users preferring full graphics versus mostly text.

7.4 Creating Effective Links 7.6 Creating Searchable
Documents

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 7
Links and Webs

7.6 Creating Searchable Documents
Another extensible form of an HTML link that does not use the <a> tag is one that causes the server
to search a database for a document that contains a user-specified keyword or words. An HTML
document that contains such a link is known as a searchable document.

7.6.1 The <isindex> Tag (Deprecated)

No longer supported in the HTML 4.0 standard, authors at one time used the <isindex> tag to pass
keywords along with a search-engine's URL to the server. The server then matched the keywords
against a database of terms to select the next document for display. Today's authors mostly use forms
to pass information to the server and supporting programs. See Chapter 10 for details.

<isindex>

Function:

Indicates that a document can be searched

Attributes:

ACTION LANG

CLASS PROMPT

DIR STYLE

ID TITLE

End tag:

None

Contains:

Nothing

Used in:

head_content

When a browser encounters the <isindex> tag, it adds a standard search interface to the document
(rendered by Netscape in Figure 7.8):

<html>
<head>
<title>Kumquat Advice Database</title>
<base href="cgi-bin/quat-query">
<isindex>
</head>
<body>
<h3>Kumquat Advice Database</h3>
<p>
Search this database to learn more about kumquats!
</body>
</html>

Figure 7.8: A searchable document

The user types a list of space-separated keywords into the field provided. When the user presses the
Enter key, the browser automatically appends the query list to the end of a URL and passes the
information along to the server for further processing.

While the HTML standard only allows the <isindex> tag to be placed in the document header,
most browsers let the tag appear anywhere in the document and inserts the search field in the content
flow where the <isindex> tag appears. This convenient extension lets you add instructions and
other useful elements before presenting the user with the actual search field.

7.6.1.1 The prompt attribute

The browser provides a leading prompt just above or to the left of the user-entry field. Netscape's
default prompt, for example, is, "This is a searchable index. Enter search keywords:" (Figure 7.8).
That default prompt is not the best for all occasions, so it is possible to change it with the prompt
attribute.

When added to the <isindex> tag, the value of the prompt attribute is the string of text that
precedes the keyword entry field placed in the document by the browser.

For example, compare Figure 7.8 with Figure 7.9, in which we added the following prompt to the
previous source example:

<isindex prompt="To learn more about kumquats, enter a keyword:">

Figure 7.9: The prompt attribute creates custom prompts in searchable documents

Older browsers will ignore the prompt attribute, but there is little reason not to include a better
prompt string for your more up-to-date readership.

7.6.1.2 The query URL

Besides the <isindex> tag in the header of a searchable document, the other important element of
this special HTML tag is the query URL. By default, it is the URL of the source document itself - not
good if your document can't handle the query. Rather, most authors use the <base> attribute to point
to a different URL for the search. [<base>, 7.7]

The browser appends a question mark to the query URL, followed by the specified search parameters.
Nonprintable characters are appropriately encoded; multiple parameters are separated by a plus sign
(+).

In the previous example, if a user types "insect control" in the search field, the browser would retrieve
the URL:

cgi-bin/quat-query?insect+control

7.6.1.3 The action attribute

For Internet Explorer only, you can specify the query URL for the index with the action attribute.
The effect is exactly as if you had used the href attribute with the <base> tag: the browser links to
the specified URL with the search parameters appended to the URL.

While the action attribute provides the desirable feature of divorcing the document's base URL
from the search index URL, it will cause your searches to fail if the user is not using Internet
Explorer. For this reason, we do not recommend that you use the action attribute to specify the
query URL for the search.

7.6.1.4 The class, dir, id, lang, style, and title attributes

The class and style attributes allow you to supply display properties and class names to control
the appearance of the tag, although their value seems limited for <isindex>. The id and title
attributes allow you to create a name and title for the tag; the name might referenced by a hyperlink.
[The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5] [Inline Styles: The style Attribute, 9.1.1] [Style
Classes, 9.2.4]

The dir and lang attributes define the language used for this tag and the direction in which text is
rendered. Again, their use is not apparent with <isindex>. [The dir attribute, 3.5.1.1] [The lang

attribute, 3.5.1.2]

7.6.1.5 Server dependencies

Like image maps, searchable documents require support from the server to make things work. How
the server interprets the query URL and its parameters is not defined by the HTML standard.

You should consult your server's documentation to determine how you can receive and use the search
parameters to locate the desired document. Typically, the server breaks the parameters out of the
query URL and passes them to a program designated by the URL.

7.5 Mouse-Sensitive Images 7.7 Establishing Document
Relationships

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 7
Links and Webs

7.7 Establishing Document Relationships
Very few HTML documents stand alone. Instead, a document is usually part of a collection of
documents, each connected by the one or several of the hypertext strands we describe in this chapter.
One document may be a part of several collections, linking to some documents and being linked to by
others. Readers move between the document families as they follow the links that interest them.

You establish an explicit relationship between two documents when you link them. Conscientious
authors use the rel attribute of the <a> tag to indicate the nature of the link. In addition, two other
tags may be used within a document to further clarify the location and relationship of a document
within a document family. These tags, <base> and <link>, are placed within the body of the
<head> tag. [<head>, 3.6]

7.7.1 The <base> Header Element

As we previously explained, URLs within a document can be either absolute (with every element of
the URL explicitly provided by the author) or relative (with certain elements of the URL omitted and
supplied by the browser). Normally, the browser fills in the blanks of a relative URL by drawing the
missing pieces from the URL of the current document. You can change that with the <base> tag.

<base>

Function:

Define the base URL for other anchors in the document

Attributes:

HREF

TARGET

End tag:

None

Contains:

Nothing

Used in:

head_content

The <base> tag must appear only in the document header, not its body contents. The browser
thereafter uses the specified base URL, not the current document's URL, to resolve all relative URLs,
including those found in <a>, , <link>, and <form> tags. It also defines the URL that will
be used to resolve queries in searchable documents containing the <isindex> tag. [Referencing
Documents: The URL, 7.2]

7.7.1.1 The href attribute

The href attribute must have a valid URL as its value, which the browser then uses to define the
absolute URL against which relative URLs are based within the document. For example, the <base>
tag in this document head:

<html>
<head>
<base href="http://www.kumquat.com/">
</head>
...

tells the browser that any relative URLs within this document are relative to the top-level document
directory on www.kumquat.com, regardless of the address and directory of the machine from which
the user had retrieved the current document.

Contrary to what you may expect, you can make the base URL relative, not absolute. The browser
actually forms an absolute base URL out of this relative URL by filling in the missing pieces with the
URL of the document itself. This property can be used to good advantage. For instance, in this next
example:

<html>
<head>
<base href="/info/">
</head>
...

the browser will make the <base> URL into one that is relative to the server's /info/ directory, which
probably is not the same directory of the current document. Imagine if you had to re-address every
link in your document with that common directory. Not only does the <base> tag help you shorten
those URLs in your document that have a common root, it also lets you constrain the directory from
which relative references are retrieved without binding the document to a specific server.

7.7.1.2 The target attribute

When working with documents inside frames, the target attribute with the <a> tag ensures that a
referenced URL gets loaded into the correct frame. Similarly, the target attribute for the <base>
tag lets you establish the default name of one of the frames or windows in which the browser is to
display redirected hyperlinked documents. [An Overview of Frames, 12.1]

If you have no other default target for your hyperlinks within your frames, you may want to consider
using <base target=_top>. This will ensure that links that are not specifically targeted to a
frame or window will thereby load in the top-level browser window. This eliminates the embarrassing
and common error of having references to pages on other sites appear within a frame on your pages,

instead of within their own pages. A minor bit of HTML, to be sure, but it makes life much easier for
your readership.

7.7.1.3 Using <base>

The most important reason for using <base> is to ensure that any relative URLs within the document
will resolve into a correct document address, even if the document itself is moved or renamed. This is
particularly important when creating a document collection. By placing the correct <base> tag in
each document, you can move the entire collection between directories and even servers without
breaking all of the links within the documents.

You also need to use the <base> tag for a searchable document (<isindex>) if you want user
queries posed to a URL different from the host document.

Note that a document that contains both the <isindex> tag and other relative URLs may have
problems if the relative URLs are not relative to the desired index-processing URL. Since this is
usually the case, do not use relative URLs in searchable documents that use the <base> tag to
specify the query URL for the document.

7.7.2 The <link> Header Element

Use the <link> tag to define the relationship between the current document and another in a Web
collection.

<link>

Function:

Define a relationship between this document and another document

Attributes:

CHARSET ONKEYUP

CLASS ONMOUSEDOWN

DIR ONMOUSEMOVE

HREF ONMOUSEOUT

HREFLANG ONMOUSEOVER

ID ONMOUSEUP

LANG REL

MEDIA REV

ONCLICK STYLE

ONDBLCLICK TARGET

ONKEYDOWN TITLE

ONKEYPRESS TYPE

End tag:

None

Contains:

Nothing

Used in:

head_content

The <link> tags belongs in the <head> content, nowhere else. The attributes of the <link> tag
are used like those of the <a> tag, but their effects serve only to document the relationship between
documents. The <link> tag has no content and no closing </link> element.

7.7.2.1 The href attribute

As with its other tag applications, the href attribute specifies the URL of the target <link> tag. It is
a required attribute, too, and its value is any valid document URL. The specified document is assumed
to have a relationship to the current document.

7.7.2.2 The rel and rev attributes

The rel and rev attributes express the relationship between the source and target documents. The
rel attribute specifies the relationship from the source document to the target; the rev attribute
specifies the relationship from the target document to the source document. Both attributes can be
included in a single <link> tag.

The value of either attribute is a space-separated list of relationships. The actual relationship names
are not specified by the HTML standard, although some have come into common usage as listed in
section Section 7.3.1.5, "The rel and rev attributes". For example, a document that is part of a
sequence of documents might use:

<link href="part-14.html" rel=next rev=prev>

when referencing the next document in the series. The relationship from the source to the target is that
of moving to the next document; the reverse relationship is that of moving to the previous document.

7.7.2.3 The title attribute

The title attribute lets you specify the title of the document to which you are linking. This attribute
is useful when referencing a resource that does not have a title, such as an image or a non-HTML
document. In this case, the browser might use the <link> title when displaying the referenced
document. For example:

<link href="pics/kumquat.gif"
 title="A photograph of the Noble Fruit">

tells the browser to use the indicated title when displaying the referenced image.

The value of the attribute is an arbitrary character string, enclosed in quotation marks.

7.7.2.4 The type attribute

The type attribute provides the MIME content type of the linked document. Supported by both
Internet Explorer and Netscape, the HTML 4.0 standard type attribute can be used with any linked
document. It is often used to define the type of linked style sheets. In this context, the value of the
type attribute is usually text/css. For example:

<link href="styles/classic.css" rel=stylesheet type="text/css">

creates a link to an external style sheet within the <head> of a document. See Chapter 9, Cascading
Style Sheets for details.

7.7.2.5 How browsers might use <link>

Although the HTML standard does not require browsers to do anything with the information provided
by the <link> tag, it's not hard to envision how this information might be used to enhance the
presentation of a document.

As a simple example, suppose you consistently provide <link> tags for each of your documents that
define next, prev, and parent links. A browser could use this information to place a standard
toolbar at the top or bottom of each document containing buttons that would jump to the appropriate
related document. By relegating the task of providing simple navigational links to the browser, you
are free to concentrate on the more important content of your document.

As a more complex example, suppose a browser expects to find a <link> tag defining a glossary for
the current document, and that this glossary document is itself a searchable document. Whenever a
reader clicked on a word or phrase in the document, the browser could automatically search the
glossary for the definition of the selected phrase, presenting the result in a small pop-up window.

As the Web and HTML evolve, expect to see more and more uses of the <link> tag to define
document relationships explicitly on the Web.

7.7.2.6 Other <link> attributes

The HTML 4.0 standard also includes the ubiquitous collection of attributes related to style sheets and
user events, and language for the <link> tag. You can refer to the corresponding section describing
these attributes for the <a> tag for a complete description of their usage. [The <a> Tag, 7.3.1]

Since you put the <link> tag in the <head> section, whose contents do not get displayed, it may
seem that these attributes are useless. In fact, it is entirely possible that some future browser may find
some way to display the <link> information to the user, possibly as a navigation bar or a set of
hot-list selections. In those cases, the display and rendering information would prove useful.
Currently, no browser provides these capabilities.

7.6 Creating Searchable
Documents

7.8 Supporting Document
Automation

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 7
Links and Webs

7.8 Supporting Document Automation
There are two additional header tags whose primary function is to support document automation,
interacting with the Web server itself and document-generation tools.

7.8.1 The <meta> Header Element

Given the rich set of HTML header tags for defining a document and its relationship with others that
go unused by most HTML authors, you'd think we'd all be satisfied.

<meta>

Function:

Supply additional information about a document

Attributes:

CHARSET LANG

CONTENT NAME

DIR SCHEME

HTTP_EQUIV

End tag:

None

Contains:

Nothing

Used in:

head_content

But no. There's always someone with special needs. They want to be able to give even more
information about their precious document, information that might be used by browsers, readers of the
HTML source, or by document-indexing tools. The <meta> tag is for you who need to go beyond the
beyond.

The <meta> tag belongs in the document header and has no content. Instead, attributes of the tag
define name/value pairs that associate the document. In certain cases, these values are used by the web

server serving the document to further define the document content type to the browser.

7.8.1.1 The name attribute

The name attribute supplies the name of the name/value pair defined by the <meta> tag. The HTML
standard does not define any predefined <meta> names. In general, you are free to use any name that
makes sense to you and other readers of your HTML source.

One common name used is keywords, which defines a set of keywords for the document. When
encountered by any of the popular search engines on the Web, these keywords will be used to
categorize the document. If you want your documents to be indexed by a search engine, consider
putting this kind of tag in the <head> of each document:

<meta name="keywords" content="kumquats, cooking, peeling, eating">

If the name attribute is not provided, the name of the name/value pair is taken from the
http-equiv attribute.

7.8.1.2 The content attribute

The content attribute provides the value of the name/value pair. It can be any valid string, enclosed
in quotes, if it contains spaces. It should always be specified in conjunction with either a name or
http-equiv attribute.

As an example, you might place the author's name in a document with:

<meta name="Authors" content="Chuck Musciano & Bill Kennedy">

7.8.1.3 The http-equiv attribute

The http-equiv attribute supplies a name for the name/value pair and instructs the server to
include the name/value pair in the MIME document header that is passed to the browser before
sending the actual document.

When a server sends a document to a browser, it first sends a number of name/value pairs. While
some servers might send a number of these pairs, all servers send at least one:

content-type: text/html

This tells the browser to expect to receive an HTML document.

When you use the <meta> tag with the http-equiv attribute, the server will add your name/value
pairs to the content header it sends to the browser. For example, adding:

<meta http-equiv="charset" content="iso-8859-1">
<meta http-equiv="expires" content="31 Dec 99">

causes the header sent to the browser to contain:

content-type: text/html
charset: iso-8859-1

expires: 31 Dec 99

Of course, adding these additional header fields makes sense only if your browser accepts the fields
and uses them in some appropriate manner.

7.8.1.4 The charset attribute

Internet Explorer provides explicit support for a charset attribute in the <meta> tag. Set the value
of the attribute to the name of the character set to be used for the document. This is not the
recommended way to define a document's character set. Rather, we recommend always using the
http-equiv and content attributes to define the character set.

7.8.1.5 The scheme attribute

This attribute specifies the scheme to be used to interpret the property's value. This scheme should be
defined within the profile specified by the profile attribute of the <head> tag. Section 3.6.1, "The
<head> Tag" in Chapter 3

7.8.2 The <nextid> Header Element

This tag is not defined in the HTML 4.0 standard and should not be used. We describe it here for
historical reasons.

<nextid>

Function:

Define the next valid document entity identifier

Attributes:

n

End tag:

None

Contains:

Nothing

Used in:

head_content

The idea behind the <nextid> tag is to provide some way of automatically indexing fragment
identifiers.

7.8.2.1 The n attribute

The n attribute specifies the name of the next generated fragment identifier. Although the HTML
standard does not define the format of this name, it is typically an alphabetic string followed by a
two-digit number. A typical <nextid> tag might look like this:

<html>

<head>
<nextid n=DOC54>
</head>
...

An automatic-document generator might use the nextid information, then, to successively name
fragment identifiers DOC54, DOC55, and so forth within this document.

7.7 Establishing Document
Relationships

8. Formatted Lists

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 8

8. Formatted Lists
Contents:
Unordered Lists
Ordered Lists
The Tag
Nesting Lists
Directory Lists
Menu Lists
Definition Lists
Appropriate List Usage

Making information more accessible is the single most important quality of HTML. The language's
excellent collection of text style and formatting tools helps you organize your information into
documents readers quickly understand, scan, and extract, possibly with automated browser agents.

Beyond embellishing your text with specialized text tags, HTML also provides a rich set of tools that
help you organize content into formatted lists. There's nothing magical or mysterious about HTML
lists. In fact, the beauty of HTML lists is their simplicity. They're based on common list paradigms we
encounter every day, such as an unordered laundry list, ordered instruction lists, and dictionary-like
definition lists. All are familiar, comfortable ways of organizing content. All provide powerful means
for quickly understanding, scanning, and extracting pertinent information from your HTML
documents.

8.1 Unordered Lists
Like a laundry or shopping list, an unordered list in HTML is a collection of related items that have no
special order or sequence. The most common unordered list you'll find on the Web is a collection of
hyperlinks to other documents. Some common topic, like "Related Kumquat Lovers' Sites," allies the
items in an unordered list, but they have no order among themselves.

8.1.1 The Tag

The tag signals the browser that the following content, ending with the tag, is an
unordered list of items. Inside, each item in the unordered list is identified by a leading tag.
Otherwise, nearly anything HTML-wise goes, including other lists, text, and multimedia elements.
[, 8.3]

Function:

Define an unordered list

Attributes:

CLASS ONKEYUP

COMPACT ONMOUSEDOWN

DIR ONMOUSEMOVE

ID ONMOUSEOUT

LANG ONMOUSEOVER

ONCLICK ONMOUSEUP

ONDBLCLICK STYLE

ONKEYDOWN TITLE

ONKEYPRESS TYPE

End tag:

; never omitted

Contains:

list_content

Used in:

block

Typically, the browser adds a leading bullet character and formats each item on a new line, indented
somewhat from the left margin of the document. The actual rendering of unordered lists, although
similar for the popular browsers (see Figure 8-1), is not dictated by the HTML standard, so you
shouldn't get bent out of shape trying to attain exact positioning of the elements.

Here is an example unordered list, which Internet Explorer renders with bullets, as shown in Figure
8-1:

Popular Kumquat recipes:

 Pickled Kumquats
 'Quats and 'Kraut (a holiday favorite!)
 'Quatshakes

There are so many more to please every palate!

Figure 8.1: A simple unordered list

Tricky HTML authors sometimes use nested unordered lists, with and without -tagged items, to
take advantage of the automatic, successive indenting. You can produce some fairly slick text
segments that way. Just don't depend on it for all browsers, including future ones. Rather, it's best to
use the border property with a style definition in the paragraph (<p>) or division (<div>) tag to
indent nonlist sections of your document (see Chapter 9, Cascading Style Sheets).

8.1.1.1 The type attribute

The graphical browsers automatically bullet each -tagged item in an unordered list. Netscape
and Internet Explorer use a solid circle, for example. Browsers that support HTML 3.2 and later
versions, including 4.0, let you use the type attribute to specify which bullet symbol you'd rather
have precede items in an unordered list. This attribute may have a value of either disc, circle, or
square. All the items within that list will thereafter use the specified bullet symbol, unless an
individual item overrides the list bullet type, as described later in this chapter.

With the advent of style sheets, the type attribute has been deprecated in HTML 4.0 and may
disappear in subsequent versions.

8.1.1.2 Compact unordered lists

If you like wide open spaces, you'll hate the optional compact attribute for the tag. It tells the
browser to squeeze the unordered list into an even smaller, more compact text block. Typically, the
browser reduces the line spacing between list items. And it may reduce the indentation between list
items, if it does anything at all with indentation (usually it doesn't).

Some browsers ignore the compact attribute, so you should not depend on its formatting attributes.
Moreover, the attribute is deprecated in the HTML 4.0 standard, so it hasn't long to live.

8.1.1.3 The class and style attributes

The style and class attributes bring Cascading Style Sheet-based display control to HTML lists,
providing far more comprehensive control than you would get through individual attributes like
type. Combine the style attribute with the tag, for instance, to assign your own bullet icon
image, rather than use the default circle, disc, or square. The class attribute lets you apply the style
of a predefined class of the tag to the contents of the unordered list. The value of the class
attribute is the name of a style defined in some document-level or externally defined style sheet. For
more information, see Chapter 9. [Inline Styles: The style Attribute, 9.1.1] [Style Classes, 9.2.4]

8.1.1.4 The lang and dir attributes

The lang attribute lets you specify the language used within a list, and dir lets you advise the
browser as to which direction the text ought to be displayed. The value of the lang attribute is any of
the ISO standard two-character language abbreviations, including an optional language modifier. For
example, adding lang=en-UK tells the browser that the list is in English ("en") as spoken and
written in the United Kingdom (UK). Presumably, the browser may make layout or typographic
decisions based upon your language choice. [The lang attribute, 3.5.1.2]

The dir attribute tells the browser which direction to display the list contents, from left-to-right
(dir=ltr) like English or French, or from right-to-left (dir=rtl), such as with Hebrew or
Chinese. [The dir attribute, 3.5.1.1]

8.1.1.5 The id and title attributes

Use the id attribute to specially label the unordered list. An acceptable value is any quote-enclosed
string that uniquely identifies the list and can later be used to unambiguously reference the list in a
hyperlink target, for automated searches, as a style sheet selector, and a host of other applications.
[The id attribute, 4.1.1.4]

Use the optional title attribute and quote-enclosed string value also to identify the list. Unlike an id
attribute, a title does not have to be unique. [The title attribute, 4.1.1.5]

8.1.1.6 The event attributes

The many user-related events that may happen in and around a list, such as when a user clicks or
double-clicks within its display space, each are recognized by the browser if it conforms to the HTML
4.0 specification (none do fully). With the respective "on" attribute and value, you may react to that
event by displaying a user dialog box, or activating some multimedia event. [JavaScript Event
Handlers, 13.3.3]

7.8 Supporting Document
Automation

8.2 Ordered Lists

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 8
Formatted Lists

8.2 Ordered Lists
Use an ordered list when the sequence of the list items is important. A list of instructions is a good
example, as are tables of content and lists of document footnotes or endnotes.

8.2.1 The Tag

The typical browser formats the contents of an ordered list just like an unordered list, except that the
items are numbered instead of bulleted. The numbering starts at one and is incremented by one for
each successive ordered list element tagged with . [, 8.3]

Function:

Define an ordered list

Attributes:

CLASS ONMOUSEDOWN

COMPACT ONMOUSEMOVE

DIR ONMOUSEOUT

ID ONMOUSEOVER

LANG ONMOUSEUP

ONCLICK START

ONDBLCLICK STYLE

ONKEYDOWN TITLE

ONKEYPRESS TYPE

ONKEYUP

End tag:

; never omitted

Contains:

list_content

Used in:

block

HTML 3.2 introduced a number of features that provide a wide variety of ordered lists. You can
change the start value of the list and select any of five different numbering styles. Here is a sample
ordered list:

<h3>Pickled Kumquats</h3>
Here's an easy way to make a delicious batch of pickled 'quats:

 Rinse 50 pounds of fresh kumquats
 Bring eight gallons white vinegar to rolling boil
 Add kumquats gradually, keeping vinegar boiling
 Boil for one hour, or until kumquats are tender
 Place in sealed jars and enjoy!

This is rendered by Netscape as shown in Figure 8.2.

Figure 8.2: An ordered list

8.2.1.1 The start attribute

Normally, browsers automatically number ordered list items beginning with the Arabic numeral 1.
The start attribute for the tag lets you change that beginning value. To start numbering a list
at 5, for example:

<ol start=5>
 This is item number 5.
 This is number six!
 And so forth...

8.2.1.2 The type attribute

By default, browsers number ordered list items with a sequence of Arabic numerals. Besides being
able to start the sequence at some number other than 1, you can use the type attribute with the
tag to change the numbering style itself. With the tag, the type attribute may have a value of A
for numbering with capital letters, a for numbering with lowercase letters, I for capital Roman
numerals, i for lowercase Roman numerals, or 1 for common Arabic numerals. (See Table 8.1.)

Table 8.1: HTML Type Values for Numbering Ordered Lists

Type Value Generated Style Sample Sequence

A Capital letters A, B, C, D

a Lowercase letters a, b, c, d

I Capital Roman numerals I, II, III, IV

i Lowercase Roman numerals i, ii, iii, iv

1 Arabic numerals 1, 2, 3, 4

The start and type attribute extensions work in tandem. The start attribute sets the starting
value of the item integer counter at the beginning of an ordered list. The type attribute sets the actual
numbering style. For example, the following ordered list starts numbering items at 8, but because the
style of numbering is set to i, the first number is the lowercase Roman numeral "viii." Subsequent
items are numbered with the same style, each value incremented by 1 as shown in this example:

<ol start=8 type="i">
 This is the Roman number 8.
 The numerals increment by 1.
 And so forth...

The results are shown in Figure 8.3.

Figure 8.3: The start and type attributes work in tandem

The type and value of individual items in a list can be different from the list as a whole, as described
in section Section 8.3.1, "Changing the Style and Sequence of Individual List Items".

8.2.1.3 Compact ordered lists

Like the unordered list, the ordered list in HTML has an optional compact attribute that is
deprecated in the HTML 4.0 standard. Unless you absolutely need to use it, don't.

8.2.1.4 The class, dir, id, lang, event, style, and title attributes

These attributes are applicable as well with ordered lists and have identical effects as for unordered
lists. [The class and style attributes, 8.1.1.3] [The lang and dir attributes, 8.1.1.4] [The id and title
attributes, 8.1.1.5] [The event attributes, 8.1.1.6]

8.1 Unordered Lists 8.3 The Tag

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 8
Formatted Lists

8.3 The Tag
It should be quite obvious to you by now that the tag defines an item in a list. It's the universal
tag for HTML list items in ordered () and unordered () lists, as we discuss earlier, and for
directories (<dir>) and menus (<menu>), which we discuss in detail later in this chapter.

Function:

Define an item within an ordered, unordered, directory, or menu list

Attributes:

CLASS ONMOUSEDOWN

DIR ONMOUSEMOVE

ID ONMOUSEOUT

LANG ONMOUSEOVER

ONCLICK ONMOUSEUP

ONDBLCLICK STYLE

ONKEYDOWN TITLE

ONKEYPRESS TYPE

ONKEYUP VALUE

End tag:

; usually omitted

Contains:

flow

Used in:

list_content

Because the end of a list element can always be inferred by the surrounding document structure, most
authors omit the ending tags for their list elements. That makes sense because it becomes

easier to add, delete, and move elements around within a list. We recommend not using the
end tag.

Although universal in meaning, there are some differences and restrictions to the use of the tag
for each HTML list type. In unordered and ordered lists, what follows the tag may be nearly
anything, including other lists and multiple paragraphs. Typically, if it handles indentation at all, the
browser successively indents nested list items, and the content in those items is justified to the
innermost indented margin.

Directory and menu lists are another matter. They are lists of short items like a single word or simple
text blurb and nothing else. Consequently, items within <dir> and <menu> tags may not
contain other lists or other block elements, including paragraphs, preformatted blocks, or forms.

Clean documents, fully compliant with the HTML standard, should not contain any text or other
document item inside the unordered, ordered, directory, or menu lists that is not contained within an
 tag. Most browsers are tolerant of violations to this rule, but then you can't hold the browser
responsible for compliant rendering for exceptional cases, either.

8.3.1 Changing the Style and Sequence of Individual List Items

Just as you can change the bullet or numbering style for all of the items in an unordered or ordered
list, you also can change the style for individual items within those lists. With ordered lists, you also
can change the value of the item number. As you'll see, the combinations of changing style and
numbering can lead to a variety of useful list structures, particularly when included with nested lists.

8.3.1.1 The type attribute

Acceptable values for the type attribute in the tag are the same as the values for the
appropriate list type: items within unordered lists may have their type set to circle, square, or
disc, while items in an ordered list may have their type set to any of the values shown previously in
Table 8.1. The change affects the current item and any subsequent items in the list.

Once you use the type attribute to change the bullet or numbering, subsequent items adopt the bullet
or numbering style. There is no way to revert back to the list's default type once you have changed the
type for a single item.

Figure 8.4 shows the effect that changing the type for an individual item in an ordered list has on
subsequent items, as rendered by Netscape from the following source:

 <li type=A>Changing the numbering style
 <li type=a>Doesn't alter the order!
 <-- See? It's a "c"!
 <li type=I>Uppercase Roman numerals!
 <li type=i>Lowercase Roman numerals!
 <li type=1>Plain ol' numbers!

Figure 8.4: Changing the numbering style for each item in an ordered list

Notice how the type attribute changes the display style of the number, but not the value of the
number itself.

You may use the style sheet-related style and class attributes to effect individual type changes in
ordered and unordered lists that may or may not affect subsequent list items. Please see Chapter 9 for
details, particularly section Section 9.3.7.5, "Using list properties effectively" in Chapter 9.

8.3.1.2 The value attribute

The value attribute lets you change the number of a specific list item and the ones that follow it.
Since the ordered list is the only HTML list with sequentially numbered items, the value attribute is
valid only when used within an tag inside an ordered list.

To change the current and subsequent numbers attached to each item in an ordered list, simply set the
value attribute to any integer. For example, the following source uses the value attribute to jump
the numbering on items in an ordered list:

 Item number 1
 And the second
 <li value=9> Jump to number 9
 And continue with 10...

The results are shown as rendered by Netscape in Figure 8.5.

Figure 8.5: The value attribute lets you change individual item numbers in an ordered
list

8.3.1.3 The style and class attributes

The style attribute for the tag creates an inline style for the elements enclosed by the tag,
overriding any other style rule in effect. The class attribute lets you format the content according to
a predefined class of the tag; its value is the name of that class. [Inline Styles: The style
Attribute, 9.1.1] [Style Classes, 9.2.4]

8.3.1.4 The class, dir, id, lang, event, style, and title attributes

These attributes can be applied to individual list items and have similar effects as for ordered and
unordered lists. [The class and style attributes, 8.1.1.3] [The lang and dir attributes, 8.1.1.4] [The id
and title attributes, 8.1.1.5] [The event attributes, 8.1.1.6]

8.2 Ordered Lists 8.4 Nesting Lists

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 8
Formatted Lists

8.4 Nesting Lists
Except inside directories or menus, lists nested inside other lists are fine. Menu and directory lists can
be embedded within other lists.

Indents for each nested list are cumulative, so take care not to nest lists too much; the list contents
could quickly turn into a thin ribbon of text flush against the right edge of the browser document
window.

8.4.1 Nested Unordered Lists

The items in each nested unordered list may be preceded by a different bullet character at the
discretion of the browser. For example, Internet Explorer Version 2 for the Macintosh uses an
alternating series of hollow, solid circular, and square bullets for the various nests in the following
source HTML text as shown in Figure 8.6:

 Morning Kumquat Delicacies

 Hot Dishes

 Kumquat omelet
 Kumquat waffles

 Country style
 Belgian

 Kumquats and toast

 Cold Dishes

 Kumquats and cornflakes
 Pickled Kumquats
 Diced Kumquats

Figure 8.6: Bullets change for nested unordered list items

You can change the bullet style for each unordered list and even for individual list items (see the
type attribute discussion earlier in this chapter), but the repertoire of bullets is limited. For example,
Internet Explorer for Windows 95 uses a solid disc regardless of the nesting level.

8.4.2 Nested Ordered Lists

By default, browsers number the items in ordered lists beginning with the Arabic numeral 1, nested or
not. It would be great if the HTML standard numbered nested ordered lists in some rational,
consecutive manner. For example, the items in the second nest of the third main ordered list might be
successively numbered "3.2.1," "3.2.2," "3.2.3," and so on.

With the type and value attributes, however, you do have a lot more latitude in how you create
nested ordered lists. An excellent example is the traditional style for outlining, which uses the many
different ways of numbering items offered by the type attribute (see Figure 8.7):

<ol type=A>
 A History of Kumquats
 <ol type=1>
 Early History
 <ol type=a>
 The Fossil Record
 Kumquats: The Missing Link?

 Mayan Use of Kumquats
 Kumquats in the New World

 Future Use of Kumquats

Figure 8.7: The type attribute lets you do traditional outlining with ordered lists

8.3 The Tag 8.5 Directory Lists

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 8
Formatted Lists

8.5 Directory Lists
The directory list is a specialized form of the unordered list. It has been deprecated in the new HTML
4.0 standard. We don't recommend that you use it at all. [, 8.1]

8.5.1 The <dir> Tag (Deprecated)

The designers of HTML originally dedicated the <dir> tag for displaying lists of files. As such, the
browser, if it treats <dir> and differently at all (most don't), expects the various list elements
to be quite short, possibly no longer than 20 characters or so. Some browsers display the elements in a
multicolumn format and may not use a leading bullet.

<dir>

Function:

Define a directory list

Attributes:

CLASS ONKEYUP

DIR ONMOUSEDOWN

ID ONMOUSEMOVE

LANG ONMOUSEOUT

ONCLICK ONMOUSEOVER

ONDBLCLICK ONMOUSEUP

ONKEYDOWN STYLE

ONKEYPRESS TITLE

End tag:

</dir>; never omitted

Contains:

list_content

Used in:

block

As with the unordered list, define directory list items with the tag. When used within a
directory list, however, the tag may not contain any block element, including paragraphs, other
lists, preformatted text, or forms.

The following example puts the directory tag to its traditional task of presenting a list of filenames:

The distribution tape has the following files on it:
<dir>
 <code>README</code>
 <code>Makefile</code>
 <code>main.c</code>
 <code>config.h</code>
 <code>util.c</code>
</dir>

Notice that we use the <code> tag to ensure that the filenames would be rendered in an appropriate
manner (see Figure 8.8).

Figure 8.8: An example <dir> list

8.5.1.1 The <dir> attributes

The attributes for the <dir> tag are identical to those for and have the same effects.

8.4 Nesting Lists 8.6 Menu Lists

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 8
Formatted Lists

8.6 Menu Lists
The HTML menu list is yet another specialized form of the unordered list. It, too, like <dir> is
deprecated in the HTML 4.0 standard, so we don't recommend using it. [, 8.1]

8.6.1 The <menu> Tag (Deprecated)

The <menu> tag displays a list of short choices to the reader, such as a menu of links to other
documents. The browser may use a special (typically more compact) representation of items in a
menu list compared with the general unordered list, or even use some sort of graphical pull-down
menu to implement the menu list. If the list items are short enough, the browser may even display
them in a multicolumn format, and may not append a leading bullet with each list item.

<menu>

Function:

Define a menu list

Attributes:

CLASS ONKEYUP

DIR ONMOUSEDOWN

ID ONMOUSEMOVE

LANG ONMOUSEOUT

ONCLICK ONMOUSEOVER

ONDBLCLICK ONMOUSEUP

ONKEYDOWN STYLE

ONKEYPRESS TITLE

End tag:

</menu>; never omitted

Contains:

list_content

Used in:

block

Like an unordered list, define the menu list items with the tag. When used within a menu list,
however, the tag may not contain any block element, including paragraphs, other lists,
preformatted text, or forms.

Compare the source text below and the Mosaic display (Figure 8.9) with the directory (Figure 8.8) and
unordered (Figure 8.1) list displays we presented earlier in this chapter:

<p>
Some popular kumquat recipes include:
<menu>
 Pickled Kumquats
 'Quats and 'Kraut (a holiday favorite!)
 'Quatshakes
</menu>
There are many more to please every palate!

Figure 8.9: Sample <menu> list

8.5 Directory Lists 8.7 Definition Lists

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 8
Formatted Lists

8.7 Definition Lists
HTML also supports a list style entirely different from the ordered and unordered lists we've
discussed so far: definition lists. Like the entries you find in a dictionary or encyclopedia, complete
with text, pictures, and other multimedia elements, the definition list is the ideal way to present a
glossary, list of terms, or other name/value lists in HTML.

8.7.1 The <dl> Tag

The definition list is enclosed by the <dl> and </dl> tags. Within those tags, each item in a
definition list is composed of two parts: a term followed by its definition or explanation. Instead of
, each item name in a <dl> list is marked with the <dt> tag, followed by the item's definition
or explanation as marked by the <dd> tag.

<dl>

Function:

Define a definition list

Attributes:

CLASS ONKEYUP

COMPACT ONMOUSEDOWN

DIR ONMOUSEMOVE

ID ONMOUSEOUT

LANG ONMOUSEOVER

ONCLICK ONMOUSEUP

ONDBLCLICK STYLE

ONKEYDOWN TITLE

ONKEYPRESS

End tag:

</dl>; never omitted

Contains:

dl_content

Used in:

block

Unless you change the display attributes with style sheet rules, browsers typically render the item or
term name at the left margin and render the definition or explanation below it and indented. If the
definition terms are very short (typically less than three characters), the browser may choose to place
the first portion of the definition on the same line as the term. See how the source HTML definition
list below gets displayed by Netscape in Figure 8.10:

<h3>Common Kumquat Parasites</h3>
<dl>
 <dt>Leaf mites
 <dd>The leaf mite will ravage the Kumquat tree, stripping it
 of any and all vegetation.
 <dt>Trunk dropsy
 <dd>This microscopic larvae of the common opossum
 chigger will consume the structural elements of the
 tree trunk, causing it to collapse inward.
</dl>

Figure 8.10: A definition list as presented by Netscape

As with other list types, you can add more space between the list items by inserting paragraph <p>
tags between them or by defining a spacious style for the tag.

8.7.1.1 More compact definition lists

The <dl> tag supports has the compact attribute, advising the browser to make the list presentation
as small as possible. Few browsers, if any, honor this attribute, and it has been deprecated in HTML
4.0.

8.7.1.2 The class, dir, id, lang, style, title, and event attributes

The many other attributes for the <dl> tag should be quite familiar by now. The style and class
attributes, of course, let you control the display style; the id and title tag attributes let you
uniquely label its contents; the dir and lang attributes let you specify its native language; and the
many on-event attributes let you react to user-initiated mouse and keyboard actions on the contents.
Not all are implemented by the currently popular browsers for this tag or for many others. Section
3.5.1.1 in Chapter 3 Section 3.5.1.2 in Chapter 3 Section 4.1.1.4 in Chapter 4 Section 4.1.1.5 in
Chapter 4 Section 9.1.1 in Chapter 9 Section 9.2.4 in Chapter 9 Section 13.3.3 in Chapter 13

8.7.2 The <dt> Tag

This <dt> tag defines the term component of a definition list. It is valid only when used within a
definition <dl> list preceding the term or item, before the <dd> tag and the term's definition or
explanation.

<dt>

Function:

Define a definition list term

Attributes:

CLASS ONKEYUP

DIR ONMOUSEDOWN

ID ONMOUSEMOVE

LANG ONMOUSEOUT

ONCLICK ONMOUSEOVER

ONDBLCLICK ONMOUSEUP

ONKEYDOWN STYLE

ONKEYPRESS TITLE

End tag:

</dt>; always omitted

Contains:

text

Used in:

dl_content

Traditionally, the definition term that follows the <dt> tag is short and sweet - a word or few.
Technically, it can be any length. If long, the browser may exercise the option of extending the item
beyond the display window, or wrap it onto the next line where the definition begins.

Since the end of the <dt> tag immediately precedes the start of the matching <dd> tag, it is

unambiguous and so not required.

8.7.2.1 Formatting text with <dt>

In practice, browsers are either too lenient or too dumb to enforce the HTML rules, so some tricky
HTML authors misuse the <dt> tag to shift the left margin right and left, respectively, for fancy text
displays. (Remember, tab characters and leading spaces don't usually work with regular text.) We
don't condone violating the HTML standard and caution you once again about tricked-up documents.
Use style sheets instead.

8.7.2.2 The class, dir, id, lang, style, title, and event attributes

The <dt> tag supports the standard HTML 4.0 tag attributes. The style and class attributes, of
course, let you control the display style; the id and title tag attributes let you uniquely label its
contents; the dir and lang attributes let you specify its native language; and the many on-event
attributes let you react to user-initiated mouse and keyboard actions on the contents. Not all are
implemented by the currently popular browsers for this tag or for many others. [The dir attribute,
3.5.1.1] [The lang attribute, 3.5.1.2] [The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5] [Inline
Styles: The style Attribute, 9.1.1] [Style Classes, 9.2.4] [JavaScript Event Handlers, 13.3.3]

8.7.3 The <dd> Tag

The <dd> tag marks the start of the definition portion of an item in a definition list. According to the
HTML standard, <dd> belongs only inside a definition <dl> list, immediately following the <dt>
tag and term and preceding the definition or explanation.

<dd>

Function:

Define a definition list term

Attributes:

CLASS ONKEYUP

DIR ONMOUSEDOWN

ID ONMOUSEMOVE

LANG ONMOUSEOUT

ONCLICK ONMOUSEOVER

ONDBLCLICK ONMOUSEUP

ONKEYDOWN STYLE

ONKEYPRESS TITLE

End tag:

</dd>; always omitted

Contains:

flow

Used in:

dl_content

The content that follows the <dd> tag may be any HTML construct, including other lists, block text,
and multimedia elements. Although treating it otherwise identically as conventional content, browsers
typically indent definition list <dd> definitions. And since the start of another term and definition
(<dt>) or the required end tag of the definition (</dl>) unambiguously terminates the preceding
definition, the </dd> tag is not needed and its absence makes your source text more readable.

8.7.3.1 The class, dir, id, lang, style, title, and event attributes

The <dt> tag supports the standard HTML 4.0 tag attributes. The style and class attributes, of
course, let you control the display style; the id and title tag attributes let you uniquely label its
contents; the dir and lang attributes let you specify its native language; and the many on-event
attributes let you react to user-initiated mouse and keyboard actions on the contents. Not all are
implemented by the currently popular browsers for this tag or for many others. [The dir attribute,
3.5.1.1] [The lang attribute, 3.5.1.2] [The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5] [Inline
Styles: The style Attribute, 9.1.1] [Style Classes, 9.2.4] [JavaScript Event Handlers, 13.3.3]

8.6 Menu Lists 8.8 Appropriate List Usage

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 8
Formatted Lists

8.8 Appropriate List Usage
In general, use unordered lists for:

Hotlists and other link collections●

Short, nonsequenced groups of text●

Emphasizing the high points of a presentation●

In general, use ordered lists for:

Tables of content●

Instruction sequences●

Sets of sequential sections of text●

Assigning numbers to short phrases that can be referenced elsewhere●

In general, use definition lists for:

Glossaries●

Custom bullets (make the item after the <dt> tag an icon-sized bullet image)●

Any list of name/value pairs●

8.7 Definition Lists 9. Cascading Style Sheets

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 9

9. Cascading Style Sheets
Contents:
The Elements of Styles
Style Syntax
Style Properties
Tag-less Styles: The Tag
Applying Styles to Documents

Style sheets are the way publishing professionals manage the overall "look" of their publications -
backgrounds, fonts, colors, and so on - from a single page to huge collections of documents. Most
desktop publishing software supports style sheets, as do the popular word processors. All desktop
publishers and graphic designers worth their salt are out there making web pages. So the cry-to-arms
was inevitable: "Whaddaya mean HTML has no style sheets?!"

From its earliest origins, HTML focused on content over style. Authors are encouraged to worry about
providing high quality information, and leave it to the browser to worry about presentation. We
strongly urge you, too - as we do throughout this book - to adopt that philosophy in your HTML
documents, especially those destined for the World Wide Web. Don't mistake style for substance.

However, while use of the HTML tag and related attributes like color produce acute
presentation effects, style sheets, when judiciously applied, bring consistency and order to whole
document collections, as well as to individual documents. Remember, too, that presentation is for the
benefit of the reader. Even the original designers of HTML understood the interplay between style and
readability. For instance, readers can quickly identify section heads in a document when they are
enclosed in header tags like <h2>, which the modern browsers present in large and often bold type.
Style sheets extend that presentation with several additional effects, including colors and a wider
selection of fonts, so that readers can even better distinguish elements of your document. But most
importantly, style sheets let the HTML author control the presentation attributes for all the tags in a
document - for a single document or a whole collection of many documents, and from a single master
style sheet.

In early 1996, the World Wide Web Consortium put together a draft proposal defining Cascading
Style Sheets (CSS) for HTML. This draft proposal quickly matured into a recommended standard,
which the commercial browser manufacturers were quick to exploit. Internet Explorer 4.0, introduced
in the fall of 1997, implements most of the W3C standard. Netscape Navigator has some support for
style sheets in Version 4.0, which was introduced in the spring of 1997. Style is fast achieving parity
with content on the World Wide Web.

In keeping with our philosophy of favoring real implementations over standards, we'll start by
documenting style sheets as they currently work in the real world. At this writing, style sheets were
supported by Internet Explorer 4.0 and Netscape 4.0. We know that browser support of style sheets
will change faster than we can reprint this book, so we have created a separate "compliance
document" that you can use to determine how style sheets are implemented by the latest releases of
the browsers. You can find this document at http://www.oreilly.com/catalog/html3/. The information
in this document should always be considered more timely and accurate than the information in this
book.

Since we realize that eventual compliance with the W3C standard is likely, we'll cover all the
components of the standard in this chapter, even if they are not yet supported by any browser. As
always, we'll denote clearly what is real, what is proposed, and what is actually supported.

9.1 The Elements of Styles
At the simplest level, a style is nothing more than a rule that tells the browser how to display a
particular HTML tag. Each tag has a number of properties associated with it, whose values define how
that tag is rendered by the browser. A rule defines a specific value for one or more properties of a tag.
For example, most tags have a color property, the value of which defines the color used to display
that tag. Other properties include font attributes, line spacing, margins, borders, and the like, which
we describe in detail later in this chapter.

There are three ways to attach a style to a tag: inline styles, document-level styles, and external style
sheets. You may use one or more style types in your documents. The browser either merges the style
definitions from each style or redefines the style characteristic for a tag's contents. Styles from these
various sources are applied to your document, combining and defining style properties that cascade
from external style sheets through local document styles, ending with inline styles. This cascade of
properties and style rules gives rise to the standard's name: Cascading Style Sheets.

We cover the syntactic basics of the three style sheet techniques here. We delve more deeply into the
appropriate use of inline, document-level, and external style sheets at the end of this chapter.

9.1.1 Inline Styles: The style Attribute

The inline style is the simplest way to attach a style to a tag - just include a style attribute with the
tag along with a list of properties and their values. The browser uses those style properties and values
to render the contents of just this instance of the tag.

For instance, the following style tells the browser to display the level one header text, "I'm so
bluuuuoooo!", not only in the <h1> tag style characteristic of the browser, but also in the color blue
and italicized (if the browser is capable):

<h1 style="color: blue; font-style: italic">I'm so bluuuuoooo!</h1>

This type of style definition is called "inline" because it occurs with the tag as it appears in the
document. The scope of the style covers the contents of that tag only. Since inline styles are sprinkled
throughout your document, they can be difficult to maintain. Use the style attribute sparingly and
only in those rare circumstances when you cannot achieve the same effects otherwise.

9.1.2 Document-level Style Sheets

The real power of style sheets dawns when you place a list of presentation rules within the head of an
HTML document. Enclosed within their own <style> and </style> end tags, so-called
"document-level" style sheets affect all the same tags within that document, except for tags that
contain an overriding inline style attribute.

<style>

Function:

Defines a document-level style sheet

Attributes:

DIR

LANG

MEDIA

TITLE

TYPE

End tag:

</style>; rarely omitted

Contains:

styles

Used in:

head_content

The <style> tag must appear within the <head> of a document. Everything between the
<style> and </style> tags is considered part of the style rules to be applied to the document. To
be perfectly correct, the content of the <style> tag is not HTML and is not bound by the normal
rules for HTML content. The <style> tag, in effect, lets you insert foreign content into your HTML
document that the browser uses to format your tags.

For example, a styles-conscious browser will display the contents of all <h1> tags as blue, italic text
in a document that has the following document-level style sheet definition in its head:

<head>
<title>All True Blue</title>
<style type="text/css">
 <!--
 /* make all H1 headers blue */
 H1 {color: blue; font-style: italic}
 -->
</style>
</head>
<body>

<h1>I'm so bluuuuoooo!</h1>
...
<h1>I am ba-loooooo, tooooo!<h1>

9.1.2.1 The type attribute

The type attribute defines the types of styles you are including within the tag. Cascading style sheets
always carry the type text/css; JavaScript style sheets use the type text/javascript. You
may omit the type attribute and hope the browser will figure out the kind of styles you are using. We
prefer to include the type attribute so that there is no opportunity for confusion. [JavaScript Style
Sheets, 13.4]

9.1.2.2 The media attribute

HTML documents can wind up in the strangest places. To help the browser figure out the best way to
display your documents, you might want to include the media attribute. The value of this attribute is
the media for which this document is intended. The default value is screen; other defined values
include tty, tv, projection, handheld, print, braille, aural, and all. A document
intended for multiple media can use a quote-enclosed, comma-separated list of media types as the
value of this attribute.

No browser currently supports this attribute, so it is not clear how it might be used. Presumably, a
browser would apply the styles defined within the <style> tag only if the appropriate media was
being used. Thus, a set of styles designed for media=screen would not be used if the display
media were, in fact, print.

9.1.2.3 The dir, lang, and title attribute

As with any HTML element, you can associate a descriptive title with the <style> tag. If the
browser chose to display this title to the user, it would use the values of the dir and lang attributes
to correctly render the title. Section 3.5.1.1, "The dir attribute" in Chapter 3 Section 3.5.1.2, "The lang
attribute" in Chapter 3 Section 4.1.1.5, "The title attribute" in Chapter 4

9.1.3 External Style Sheets

You may also place style definitions, like our document-level style sheet example for the <h1> tags,
into a text file with the MIME type of text/css and import this "external" style sheet into your
HTML documents. Because an external style sheet is a file separate from the HTML document and is
loaded by the browser over the network, you can store it anywhere, reuse it often, and even use others'
style sheets. But most important, external style sheets give you the power to influence the display
styles not only of all related tags in a single document, but for an entire collection of documents.

For example, suppose we create a file named gen_styles.css containing the style rule:

H1 {color: blue; font-style: italic}

For each and every one of the HTML documents in our collections, we can tell the browser to read the
contents of the gen_styles.css file, which in turn will color all the <h1> tag contents blue and
render the text in italic. Of course, that will be true only if the user's machine is capable of these style
tricks, they are using a styles-conscious browser, and the style isn't overridden by a document-level or

inline style definition.

You can load external style sheets into your HTML document in two different ways: linked or
imported.

9.1.3.1 Linked external style sheets

One way to load an external style sheet is to use the <link> tag:

<head>
<title>Style linked</title>
<link rel=stylesheet type="text/css"
 href="http://www.kumquats.com/styles/gen_styles.css"
 title="The blues">
</head>
<body>
<h1>I'm so bluuuuoooo!</h1>
...
<h1> I am ba-loooooo, tooooo!<h1>

Recall that the <link> tag creates a relationship between the current document and some other
document on the Web. In the example, we tell the browser that the document named in the href
attribute is a stylesheet, and that its contents conform to the CSS standard, as indicated by the
type attribute. We also provide a title for the style sheet, making it available for later reference
by the browser. [The <link> Header Element, 7.7.2]

The <link> tag must appear in the <head> of a document. The URL of the style sheet may be
absolute or relative to the document's base URL. The type may also be text/javascript,
indicating (for Netscape only) that the style rules are written in JavaScript instead of the CSS syntax.
[JavaScript Style Sheets, 13.4]

9.1.3.2 Imported external style sheets

The second technique for loading an external style sheet imports the files with a special command
within the <style> tag:

<head>
<title>Imported style sheet</title>
<style>
 <!--
 @import url(http://www.kumquats.com/styles/gen_styles.css);
 @import url(http://www.kumquats.com/styles/spec_styles.css);
 BODY: {background: url(backgrounds/marble.gif)}
 -->
</style>
</head>

The @import command expects a single URL parameter that names the network path to the external
style sheet. The url keyword, parentheses, and trailing semicolon are all required elements of the
@import command. The URL may be absolute or relative to the document's base URL. The

@import command must appear before any conventional style rules, either in the <style> tag or in
an external style sheet. Otherwise, the browser ignores the preceding style definitions. This ordering
also means that subsequent style rules can override rules in the imported sheet, and indeed they do.
[URL property values, 9.3.1.4]

The @import command can appear in a document-level style definition or even in another external
style sheet, letting you create nested style sheets.

9.1.4 Linked Versus Imported Style Sheets

At first glance, it may appear that linked and imported style sheets are equivalent, using different
syntax for the same functionality. This is true if you use just one <link> tag in your document.
However, special rules come into play if you include two or more <link> tags within a single
document.

With one <link> tag, the browser should load the styles in the referenced style sheet and formats the
document accordingly, with any document-level and inline styles overriding the external definitions.
With two or more <link> tags, the browser presents the user with a list of all the <link>ed style
sheets. The user can then select one of the sheets, which is used to format the document. The other
<link>ed style sheets are ignored.

On the other hand, the styles-conscious browser merges, as opposed to separating, multiple
@imported style sheets to form a single set of style rules for your document. The last imported style
sheet takes precedence if there are duplicate definitions among the style sheets.

Hence, if gen_styles.css in our example (section Section 9.1.3.2, "Imported external style
sheets") tells the browser to make <h1> contents blue and italic, and then spec_styles.css tells
the browser to make <h1> text red, then the <h1> tag contents will appear red and italic. And if we
later define another color, say yellow, for <h1> tags in a document-level style definition, the <h1>
tags will all be yellow, and italic. Cascading effects. See?

Imported styles override linked external styles, just as document-level and inline styles override
external style definitions. To bring this all together, consider the example:

<html>
<head>
<link rel=stylesheet href=sheet1.css type=text/css>
<link rel=stylesheet href=sheet2.css type=text/css>
<style>
<!--
 @import url(sheet3.css);
 @import url(sheet4.css);
-->
</style>
</head>

Using the CSS model, the browser should prompt the user to choose between sheet1.css and
sheet2.css. It will then load the selected sheet, followed by sheet3.css and sheet4.css.
Duplicate styles defined in sheet3.css or sheet4.css and in any inline styles will override
styles defined in the selected sheet.

9.1.5 Limitations of Current Browsers

Both Internet Explorer 4.0 and Netscape 4.0 allow you to use the <link> tag to apply an external
style sheet to a document. Netscape ignores the @import command but continues to process other
style rules within the <style> tag. Internet Explorer honors the @import command, and also
supports the @import command within external sheets, allowing sheets to be nested.

Neither Netscape nor Internet Explorer support multiple <link>ed style sheets as proposed by the
CSS standard. Instead, they load all the <link>ed style sheets, with rules in later sheets possibly
overriding rules in earlier sheets.

We hope the standard will someday prevail so that style sheets, already mystifying to most, will
become that much less confusing.

9.1.6 Style Comments

Comments are welcome inside the <style> tag and in external style sheets, but don't use a standard
HTML comment; style sheets aren't HTML. Rather, enclose style comments beginning with the
sequence /* and ending with */, as we did in the previous example. (Those of you who are familiar
with the C programming language will recognize these comment markings.) Use this comment syntax
for both document-level and external style sheets. Comments may not be nested.

We recommend documenting your styles whenever possible, especially in external style sheets.
Whenever the possibility exists that your styles may be used by other authors, comments make it
much easier to understand your styles.

9.1.7 Handling Style-less Browsers

In our document-level style examples, you probably noticed that we placed the style definition inside
an HTML comment tag (<!-- and -->). That's because although the older, style-less browsers will
ignore the <style> tag itself, they will display the style definitions. Needless to say, your
documents will not go over well when the first half of the display contains all your style rules.

The newer, styles-conscious browsers ignore HTML comments within a <style> tag. Since
style-less browsers will be with us for some time to come, make sure you always place your
document-level style rules inside HTML comments. HTML comments should not be used in external
style sheets.

9.1.8 Style Precedence

You may import more than one external style sheet and combine them with document-level and inline
style effects in many different ways. Their effects cascade (hence, the name, of course). You may
specify the font type for our example <h1> tag, for instance, in an external style definition, whereas
its color may come from a document-level style sheet.

Style sheet effects are not cumulative, however: of the many styles which may define different values
for the same property - colors for the contents of our example tag, for instance - the one that takes
precedence can be found by following these rules, in order:

Sort by origin. A style defined "closer" to a tag takes precedence over a more "distant" style. So●

an inline style takes precedence over a document-level style, which takes precedence over the
effects of an external style.

If more than one applicable style exists, sort by class. Properties defined as a class of a tag (see
section Section 9.2.4, "Style Classes") take precedence over a property defined for the tag in
general.

●

If multiple styles still exist, sort by specificity. The properties for a more specific contextual
style (see section Section 9.2.3, "Contextual Selectors") take precedence over properties defined
for a less specific context.

●

If multiple styles still exist, sort by order. The property specified latest takes precedence.●

The relationship between style properties and conventional tag attributes is almost impossible to
predict. Style sheet-dictated background and foreground colors - whether defined externally, at the
document level, or inline - override the various color attributes that may appear within a tag. But
the align attribute of an inline image usually takes precedence over a style-dictated alignment.

There is an overwhelming myriad of style and tag presentation-attribute combinations. You need a
crystal ball to predict which combination wins and which loses the precedence battle. The rules of
redundancy and style vs. attribute precedence are not clearly elucidated in the W3C CSS standard, nor
is there a clear pattern of precedence implemented in the styles-conscious browsers. This is
particularly unfortunate since there will be an extended period, perhaps several years long, in which
users may or may not use a styles-conscious browser. HTML authors will have to implement both
styles and non-style presentation controls to achieve the same effects.

Nonetheless, our recommendation is to run - as fast as you can - away from one-shot, inline, localized
kinds of presentation effects like those afforded by the tag and color attribute. They have
served their temporary purpose; it's now time to bring consistency (without the pain!) back into your
document presentation. Use styles. It's the HTML way.

8.8 Appropriate List Usage 9.2 Style Syntax

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 9
Cascading Style Sheets

9.2 Style Syntax
The syntax of a style, as you may have gleaned from our previous examples, is fairly straightforward.

9.2.1 The Basics

A style rule is made up of at least three basic parts: a tag selector, which identifies the name of the tag
that the style rule affects, followed by a curly brace ({}) enclosed, semicolon-separated list of one or
more style property:value declaration pairs:

tag-selector {property1:value1; property2:value1 value2 value3; ...}

Properties require at least one value, but may include two or more values. Separate multiple values
with a space, as is done for the three values that define property2 in the example. Some properties
require that multiple values be separated with commas.

Styles-conscious browsers ignore letter case in any element of a rule. Hence, H1 and h1 are the same
selector, and COLOR, color, ColOR, and cOLor are equivalent properties. Convention dictates,
however, that tag names be all uppercase, and that properties and values be lowercase. We'll abide by
those conventions throughout this book.

Any valid HTML tag name (a tag minus its enclosing < and > characters and attributes) can be a
selector. You may include more than one tag name in the list of selectors, as we explain in the
following sections.

9.2.2 Multiple Selectors

When separated by commas, all the tags named in the selector list are affected by the property values
in the style rule. This can make life very easy for the HTML author. For instance:

H1, H2, H3, H4, H5, H6 {text-align: center}

does exactly the same thing as:

H1 {text-align: center}
H2 {text-align: center}
H3 {text-align: center}
H4 {text-align: center}
H5 {text-align: center}

H6 {text-align: center}

Both styles tell the browser to center the contents of the header tag levels 1-6. Clearly, the first version
is easier to type, understand, and modify. And it takes less time and fewer resources to transmit across
a network, as well.

9.2.3 Contextual Selectors

Normally, the styles-conscious browser applies styles to the tags wherever they appear in your
document, without regard to context. However, the CSS standard does define a way to have a style
applied only when a tag occurs within a certain context within a document, such as when it is nested
within other tags.

To create a contextual selector, list the tags in the order in which they should be nested in your
document, outermost tag first. When that nesting order is encountered by the browser, the style
properties will be applied to the last tag in the list.

For example, here's how you might use contextual styles to define the classic numbering sequence
used for outlines: capital letters for the outer level, upper-case Roman numerals for the next level,
lowercase letters for the next, and Arabic numerals for the innermost level:

OL LI {list-style: upper-alpha}
OL OL LI {list-style: upper-roman}
OL OL OL LI {list-style: lower-alpha}
OL OL OL OL LI {list-style: decimal}

According to the example style sheet, when the styles-conscious browser encounters the tag
nested within one tag, it uses the upper-alpha value for the list-style property of the
 tag. When it sees an tag nested within two tags, the same browser will use the
upper-roman list-style. Nest an tag within three and four tags, and you'll see
the lower-alpha and decimal list-style used, respectively.

Similarly, you may impose a specific style on tags related only by context. For instance, this
contextual style definition will color the emphasis tag's () contents red only when it appears
inside a level-one header tag (<h1>), not elsewhere in the document:

H1 EM {color: red}

If there is potential ambiguity between two contextual styles, the more specific context prevails. Like
individual tags, you may also have several contextual selectors mixed with individual selectors, each
and all separated by commas, sharing the same list of style declarations. For example:

H1 EM, P STRONG, ADDRESS {color: red}

means that you'll see red whenever the tag appears within an <h1> tag, or when the
 tag appears within a <p> tag, and for the contents of the <address> tag.

The nesting need not be exact to match the rule. For example, if you nest the tag within a
 tag within a <p> tag, you'll still match the rule for P STRONG that we defined above. If a
particular nesting matches several style rules, the most specific rule is used. For example, if you
defined two contextual selectors:

P STRONG {color: red}
P UL STRONG {color: blue}

and use the sequence <p> in your document, the second, more specific rule applies,
coloring the contents of the tag blue.

9.2.4 Style Classes

There is one more feature of style sheets that we haven't mentioned yet: classes. Classes let you
create, at the document level or in an external style sheet, several different styles for a single tag, each
distinguished by a class name. To apply the style class, name it as the value of the class attribute in
the tag.

9.2.4.1 Regular classes

In a technical paper you might want to define one paragraph style for the abstract, another for
equations, and a third for centered quotations. None of the paragraph tags may have an explicit
context in the HTML document so you could distinguish it from the others. Rather, you may define
each as a different style class:

<style>
<!--
P.abstract {font-style: italic;
 margin-left: 0.5cm;
 margin-right: 0.5cm}
P.equation {font-family: Symbol;
 text-align: center}
H1, P.centered {text-align: center;
 margin-left: 0.5cm;
 margin-right: 0.5cm}
-->
</style>

Notice first in the example that defining a class is simply a matter of appending a period-separated
class name as a suffix to the tag name as the selector in a style rule. The class name can be any
sequence of letters, numbers, and hyphens, but must begin with a letter.[1] And classes, like all
selectors, may be included with other selectors, separated by commas, as in the third example. The
only restriction on classes is that they cannot be nested: P.equation.centered is not allowed,
for example.

[1] Due to its support of JavaScript style sheets, Netscape cannot handle class names that
happen to match JavaScript keywords. The class "abstract," for instance, generates an
error in Netscape.

Accordingly, the first rule in the example creates a class of paragraph styles named "abstract" whose
text will be italic and indented from the left and right margins by a half-centimeter. Similarly, the
second paragraph style class "equation," instructs the browser to center the text and to use the Symbol
typeface to display the text. The last style rule creates a style with centered text and half-centimeter
margins, applying this style to all level one headers as well as creating a class of the <p> tag named

centered with that style.

To use a particular class of a tag, you add the class attribute to the tag, as in this example:

<p class=abstract>
This is the abstract paragraph. See how the margins are indented?
</p>
<h3>The equation paragraph follows</h3>
<p class=equation>
a = b + 1
</p>
<p class=centered>
This paragraph's text should be centered.
</p>

For each paragraph, the value of the class attribute is the name of the class to be used for that tag.

9.2.4.2 Generic classes

You may also define a class without associating it with a particular tag, and then apply that class
selectively through your documents for a variety of tags. For example:

.italic {font-style: italic}

creates a generic class named italic. To use it, simply include its name with the class attribute.
So, for instance, use <p class=italic> or <h1 class= italic> to create an italic paragraph
or header.

Generic classes are quite handy and make it easy to apply a particular style to a broad range of tags.
Netscape 4.0 and the latest versions of Internet Explorer (4.01) support CSS generic classes.

9.2.4.3 Using IDs as classes

Almost all HTML tags accept the id attribute, which assigns an identifier to the element that is
unique within the document. This identifier can be the target of a URL, used by automated document
processing tools, and can also be used to specify a style rule for the element.

To create a style class that can be applied with the id attribute, follow the same syntax used for style
classes, except with a # character before the class name instead of a period. This style creates such
classes:

<style>
<!--
#yellow { color : yellow}
H1#blue { color : blue}
-->
</style>

Within your document, you could use <h1 id=blue> to create a blue heading, or add id=yellow
to almost any tag to turn it yellow. You can mix and match both class and id attributes, giving you
a limited ability to apply two independent style rules to a single element.

There is a dramatic drawback to using classes defined this way: the value of the id attribute must be
unique to exactly one tag within the document. You cannot legally reuse the class, although the
browser might let you get away with it.

For this reason, we strongly discourage creating and using these kinds of classes. Stick to the
conventional style of classes to create correct, robust HTML documents.

9.2.4.4 Style pseudo-classes

In addition to conventional style classes, the CSS standard defines pseudo-classes, which allow you to
define the display style for certain tag states. Pseudo-classes are like regular classes, with two notable
differences: they are attached to the tag name with a colon instead of a period, and they have
predefined names, not arbitrary ones you may give them.

There are five pseudo-classes, three of which are associated with the <a> tag. The other two go with
the <p> tag.

The browsers distinguish three special states for the hyperlinks created by the <a> tag: not visited,
being visited, and visited. The browser may change the appearance of the tag's contents to indicate its
state, such as underlining or changing the colors. Through pseudo-classes, the HTML author can
control how these states get displayed by defining styles for A:link, A:active, and A:visited.
The link pseudo-class controls the appearance of links that are not selected by the user and have not
yet been visited. The active pseudo-class defines the appearance of links that are currently selected
by the user and are being processed by the browser. The visited pseudo-class defines those links
that have already been visited by the user.

To completely define all three states of the <a> tag, you might write:

A:link {color: blue}
A:active {color: red; font-weight: bold}
A:visited {color: green}

Unvisited links will be shown in blue. When the user clicks a link, the browser will change its text
color to red and make it bold. Once visited, the link will revert to conventional green text.

The two other pseudo-classes go with the <p> tag, and are named first-letter and
first-line. As you might expect, these pseudo-classes control the appearance of the first letter
and first line, respectively, of a paragraph and create effects commonly found in printed media, such
as initial drop-caps and bold first lines. For example:

P:first-line {font-style: small-caps}

converts the first line of a paragraph to small capital letters. Similarly,

P:first-letter {font-size: 200%; float: left}

tells the browser to make the first letter of a paragraph twice as large as the remaining text and float
the letter to the left, allowing the first two lines of the paragraph to float around the larger initial
letter.[2]

[2] The properties that can be specified for the first-letter and first-line

pseudo-classes are the font properties, color and background properties,
text-decoration, vertical-align, text-transform, line-height, and
clear. In addition, the first-letter pseudo-class accepts the margin properties,
padding properties, border properties, and float. The first-line pseudo-class also
accepts the word-spacing and letter-spacing properties.

9.2.4.5 Mixing classes

You may mix pseudo-classes with regular classes by appending the pseudo-class name to the
selector's class name. For example, here are some rules that define plain, normal, and fancy anchors:

A.plain:link, A.plain:active, A.plain:visited {color: blue}
A:link {color: blue}
A:visited {color: green}
A:active {color: red}
A.fancy:link {text-style: italic}
A.fancy:visited {text-style: normal}
A.fancy:active {text-weight: bold; font-size: 150%}

The plain version of <a> is always blue, no matter the state of the link. Normal links start out blue,
turn red when active, and convert to green when visited. The fancy link inherits the color scheme of
the normal <a> tag, but adds italic text for unvisited links, converts back to normal text after being
visited, and actually grows 50 percent in size and becomes bold when active.

A word of warning about that last property of the fancy class: specifying a font size change for a
transient display property will result in lots of browser redisplay activity when the user clicks on the
link. Given that some browsers run on slow machines, this redisplay may be annoying to your readers.
Given also that implementing that sort of display change is something of a pain, it is unlikely that
most browsers will support radical appearance changes in <a> tag pseudo-classes.

9.2.4.6 Class inheritance

Classes inherit the style properties of their generic base tag. For instance, all the properties of the plain
<p> tag apply to a specially defined paragraph class, except where the class overrides a particular
property.

Classes cannot inherit from other classes, only from the unclassed version of the tag they represent. In
general, therefore, you should put as many common styles into the rule for the basic version of a tag,
and create classes only for those properties that are unique to that class. This makes maintenance and
sharing of your style classes easier, especially for large document collections.

9.1 The Elements of Styles 9.3 Style Properties

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 9
Cascading Style Sheets

9.3 Style Properties
At the heart of the Cascading Style Sheet specification are 53 properties that let you control how the
styles-conscious browser presents your documents to the user. The standard collects these properties into six
groups: fonts, colors and backgrounds, text, boxes and layout, lists, and tag classification. We'll stick with
that taxonomy, and preface the whole shebang with a discussion of property values and inheritance before
diving into the properties themselves.

You'll find a summary of the style properties in Appendix C, Cascading Style Sheet Properties Quick
Reference.

9.3.1 Property Values

There are five distinct kinds of property values: keywords, length values, percentage values, URLs, and
colors.

9.3.1.1 Keyword property values

A property may have a keyword value that expresses action or dimension. For instance, the effects of
underline and line-through are obvious property values. And you can express property dimensions
with keywords like small and xx-large. Some keywords are even relational: bolder, for instance, is
an acceptable value for the font-weight property. Keyword values are not case sensitive: Underline,
UNDERLINE, and underline are all acceptable keyword values.

9.3.1.2 Length property values

So-called length values (a term taken from the CSS standard) explicitly state the size of a property. They
are numbers, some with decimals, too. Length values may have a leading + or - sign to indicate that the value
is to be added to or subtracted from the immediate value of the property. Length values must be followed
immediately by a two-letter unit abbreviation - with no intervening spaces.

There are three kinds of length-value units: relative, pixels, and absolute. Relative units specify a size that is
relative to the size of some other property of the content. Currently, there are only two relative units: em,
which is the height of the current font (written as em); and x-height, which is the height of the letter "x" in
the current font (abbreviated ex). The pixels unit, abbreviated px, is equal to the size of a pixel on the
browser's display. Absolute property value units are more familiar to us all. They include inches (abbreviated
in), centimeters (cm), millimeters (mm), points (pt, 1/72 of an inch), and picas (pc, twelve points).

All of the following are valid length values, although not all units are recognized by the styles-conscious
browsers:

1in

1.5cm
+0.25mm
-3pt
-2.5pc
+100em
-2.75ex
250px

9.3.1.3 Percentage property values

Similar to the relative length-value type, a percentage value describes a proportion relative to some other
aspect of the content. It has an optional sign and decimal portion to its numeric value, and must have the
percent sign (%) suffix. For example:

line-height: 120%

computes the separation between lines to be 120 percent of the current line height (usually relative to the text
font height). Note that this value is not dynamic, though: changes made to the font height after the rule has
been processed by the browser will not affect the computed line height.

9.3.1.4 URL property values

Some properties also accept, if not expect, a URL as a value. The syntax for using a URL in a style property
is different from conventional HTML:

url(service://server.com/pathname)

The keyword url is required, as are the opening and closing parentheses. Do not leave any spaces between
url and the opening parenthesis. The url value may contain either an absolute or a relative URL.
However, note that the URL is relative to the immediate style sheet's URL, the one in which it is declared.
This means that if you use a url value in a document-level or inline style, the URL is relative to the HTML
document containing the style document. Otherwise, the URL is relative to the @imported or <link>ed
external style sheet's URL.

9.3.1.5 Color property values

Color values specify colors in a property (surprised?). You can specify a color as a color name or a
hexadecimal RGB triple, as is done for common HTML attributes, or as a decimal RGB triple unique to style
properties. Both color names and hexadecimal RGB triple notation are described in Appendix F, Color
Names and Values.

Unlike regular HTML, style sheets will accept three-digit hexadecimal color values. The single digit is
doubled to create a conventional six-digit triple. Thus, the color #78C is equivalent to #7788CC. In general,
three-digit color values are handy only for simple colors.

The decimal RGB triple notation is a bit different:

rgb(red, green, blue)

The red, green, and blue intensity value are integers in the range zero to 255 or integer percentages. As
with a URL value, do not leave any spaces between rgb and the opening parenthesis.

For example, in decimal RGB convention, the color white is rgb(255, 255, 255) or rgb(100%,
100%, 100%), and a medium yellow is rgb(127, 127, 0) or rgb(50%, 50%, 0%).

9.3.2 Property Inheritance

In lieu of a specific rule for a particular tag, properties and their values for tags within tags are inherited from
the parent tag. Thus, setting a property for the <body> tag effectively applies that property to every tag in
the body of your document, except for those that specifically override it. So, to make all the text in your
document blue, you need only say:

BODY {color: blue}

rather than create a rule for every tag you use in your document.

This inheritance extends to any level. If you later created a <div> tag with text of a different color, the
styles-conscious browser will display all the text contents of the <div> tag and all its enclosed tags in that
new color. When the <div> tag ends, the color reverts to the that of the containing <body> tag.

In many of the following property descriptions, we refer to the tag containing the current tag as the "parent
element" of that tag.

9.3.3 Font Properties

The loudest complaint we hear about HTML is that the language lacks font styles and characteristics that
even the simplest of text editors implement. The various attributes address part of the problem, but
they are tedious to use since each text font change requires a different tag.

Style sheets change all that, of course. The CSS standard provides six font properties that modify the
appearance of text contained within the affected tag: font-family, font-height, font-size,
font-style, font-variant, and font-weight. In addition, there is a universal font property that
lets you declare all of the font changes with a single property.

Please be aware that style sheets cannot overcome limitations of the client system; nor can the browser
conjure effects if the fonts it uses do not provide the means.

9.3.3.1 The font-family property

The font-family property accepts a comma-separated list of font names, one of which will be selected
by the styles-conscious browser for display of the tag's text. The browser uses the first font named in the list
that also is installed and available for display on the client machine.

Font name values are for specific font styles, such as Helvetica or Courier, or a generic font style as defined
by the CSS standard: serif, sans-serif, cursive, fantasy, and monospace. Each browser
defines which actual font name is to be used for each generic font. For instance, Courier is the most popular
choice for a monospace font.

Since fonts vary wildly among browsers, when specifying a font style, you should always provide several
choices, ending with a suitable generic font. For example:

H1 {font-family: Helvetica, Univers, sans-serif}

causes the browser to look for and use Helvetica, and then Univers. If neither font is available for the client
display, the browser will use the generic sans serif typeface.

Enclose font names that contain spaces - New Century Schoolbook, for example - in quotation marks. For
example:

P {font-family: Times, "New Century Schoolbook", Palatino, serif}

That extra set of double quotation marks in an inline style rule will cause problems. Accordingly, use single
quotation marks in an inline style:

<p style="font-family: Times, 'New Century Schoolbook', Palatino, serif">

In practice, you need not use quotation marks: the browser will ignore spaces before and after the font name,
and convert multiple internal spaces to a single space. Thus:

P {font-family: Times, New Century Schoolbook, Palatino, serif}
<p style="font-family: Times, New Century Schoolbook, Palatino, serif">

are both legal, but we recommend that you use quotation marks anyway, just in case things change.

9.3.3.2 The font-size property

The font-size property lets you prescribe absolute or relative length values, percentages, and keywords
to define the font size. For example:

P {font-size: 12pt}
P {font-size: 120%}
P {font-size: +2pt}
P {font-size: medium}
P {font-size: larger}

The first rule is probably the most used because it is the most familiar: it sets the font size to a specific
number of points (12 in this example). The second example rule sets the font size to be 20 percent larger than
the parent element's font size. The third increases the font size by two points.

The fourth example selects a predefined size set by the browser, identified by the medium keyword. Valid
absolute-size keywords are xx-small, x-small, small, medium, large, x-large, and xx-large,
and usually correspond to the seven font sizes used with the size attribute of the tag.

The last font-size rule selects the next size larger than the font associated with the parent element. Thus,
if the size were normally medium, it would be changed to large. You can also specify smaller, with the
expected results.

Incremental point sizes (+2pt, for example) are not currently handled correctly by any browser.

9.3.3.3 The font-style property

Use the font-style property to slant text. The default style is normal, and may be changed to italic
or oblique. For example:

H2 {font-style: italic}

makes all level-two header text italic. As of this writing, Netscape 4 supports only the italic value for
font-style; Internet Explorer 4 supports both values.

9.3.3.4 The font-variant property

The font-variant property lets you select a variant of the desired font. The default value for this
property is normal, indicating the conventional version of the font. You may also specify small-caps to
select a version of the font in which the lowercase letters have been replaced with small capital letters.

This property is not supported by Netscape; Internet Explorer 4 incorrectly implements small-caps as all
uppercase.

9.3.3.5 The font-weight property

The font-weight property controls the weight or boldness of the font. The default value of this property
is normal. You may specify bold to obtain a bold version of a font, or use the relative bolder and
lighter values to obtain a version of the font that is bolder or lighter than the parent element's font.

To specify varying levels of lightness or boldness, set the value to a multiple of 100, between the values 100
(lightest) and 900 (boldest). The value 400 is equal to the normal version of the font, and 700 is the same
as specifying bold.

Internet Explorer 4 and Netscape 4 support the normal and bold values, with Internet Explorer 4
supporting the lighter and bolder values as well. Both browsers support the numeric boldness values.

9.3.3.6 The font property

More often than not, you'll find yourself specifying more than one font-related property at a time for a tag's
text content display. A complete font specification can get somewhat unwieldy; for example:

P {font-family: Times, Garamond, serif;
 font-weight: bold;
 font-size: 12pt;
 line-height: 14pt}

To mitigate this troublesome and potentially unreadable collection, use the comprehensive font property
and group all of these attributes into one set of declarations:

P {font: bold 12pt/14pt Times, Garamond, serif}

The grouping and ordering of font attributes is important within the font property. The font style, weight,
and variant attributes must be specified first, followed by the font size and the line height separated by a
slash character, and ending with the list of font families. Of all the properties, the size and family are
required; the others may be omitted.

Here are some more sample font properties:

EM {font: italic 14pt Times}
H1 {font: 900 24pt/48pt sans-serif}
CODE {font: 12pt Courier, monospace}

The first example tells the styles-conscious browser to emphasize text using a 14-point italic Times
face. The second rule has <h1> text displayed in the boldest 24-point sans-serif font available, with an extra
24 points of space between the lines of text. Finally, text within a <code> tag is set in 12-point Courier or
the browser-defined monospace font.

We leave it to your imagination to conjure up examples of the abuses you could foster with the font styles.
Perhaps a recent issue of Wired magazine, notorious for their avant-garde font and other print-related abuses,
would be helpful in that regard?

9.3.4 Color and Background Properties

Every element in your document has a foreground and a background color that the browser uses to render the
element. In some cases, the background is not a color, but an image. The color and background style
properties control these colors and images.

The children of an HTML element normally inherit the foreground color of their parent. For instance, if you
make <body> text red, the styles-conscious browser also will display header and paragraph text in red.

Background properties behave differently, however - they are not inherited. Instead, each element has a
default background that is transparent, allowing the parent's background to show through. Thus, setting the
background image of the <body> tag does not cause that image to be reloaded for every element within the
body tag. Instead, the browser loads the image once and displays it behind the rest of the document, serving
as the background for all elements which do not themselves have an explicit background color or image.

9.3.4.1 The background-attachment property

If you specify a background image for an element, use the background-attachment property to
control how that image is attached to the browser's display window. With the default value scroll, the
browser moves the background image with the element as the user scrolls through the document. A value of
fixed prevents the image from moving.

Netscape does not support this style property.

9.3.4.2 The background-color property

The background-color property controls the (you guessed it!) background color of an element. Set it to
a color value or to the keyword transparent. The default value is transparent. The effects should be
obvious.

While you may have become accustomed to setting the background color of an entire document through the
special attributes for the <body> tag, the background-color style property can be applied to any
HTML element. For example, to set the background color of one item in a bulleted list, you could use:

<li style="background-color: blue">

Similarly, all the table header cells in a document could be given a reverse video effect with:

TH {background-color: black; color: white}

If you really want your emphasized text to stand out, paint its background red:

EM {background-color: red}

Netscape does not support this CSS property explicitly, but you may achieve the same effects through its
support of the general background property, as discussed in section Section 9.3.4.6, "The background
property".

9.3.4.3 The background-image property

The background-image property puts an image behind the contents of an HTML element. Its value is
either a URL or the keyword none. The default value is none.

As with background colors, you can place a background image behind the entire document, or behind
selected elements of a document. With this style property, effects like placing an image behind a table or

selected text are now simple:

<table style="background-image: url(backgrounds/woodgrain.gif)">
LI.marble {background-image: url(backgrounds/marble.gif)}

The first example uses an inline style to place a woodgrain finish behind a table. The second defines a list
item class that places a marble background behind tags that use the class=marble attribute. For
example:

<h2>Here's what's for dinner tonight:</h2>

<li class=marble>Liver with Onions
<li class=marble>Mashed Potatoes and Gravy
<li class=marble>Green Beans
<li class=marble>Choice of Milk, Tea, or Coffee

<h2>And for dessert:</h2>

Creamed Quats in Milk (YUM! YUM!)

will produce a result like that in Figure 9.1.

Figure 9.1: Placing a background image behind an element

If the image is larger than the containing element, it will be clipped to the area occupied by the element. If
smaller, the image will be repeated to tile the area occupied by the element, as dictated by the value of the
background-repeat attribute.

You control the position of the image within the element with the background-position property. The
scrolling behavior of the image is managed by the background-attachment property.

While it may seem that a background color and a background image are mutually exclusive, you should
usually define a background color even if you are using a background image. That way, if the image is
unavailable, such as when the user doesn't automatically download images, the browser will display the
background color instead. In addition, if the background image has transparent areas, the background color
will be used to fill in those areas.

Netscape does not support the background-image property explicitly, but you may achieve the same
effects through its support of the general background property, as discussed in section Section 9.3.4.6.

9.3.4.4 The background-position property

By default, the styles-conscious browser renders a background image starting in the upper-left corner of the
allotted display area and tiled (if necessary) down and over to the lower-right corner of that same area. With
the background-position property, you can offset the starting position of the background image down
and to the right of that default point by an absolute (length) or relative (percentage or keyword) offset. The
resulting image fills the area from that offset starting point to the lower-right corner of the display space.

You may specify one or two values for the background-position property. If you use a single value,
it applies to both the vertical and horizontal positions. With two values, the first is the horizontal offset, and
the second is the vertical offset.

Length values (with their appropriate units; see section Section 9.3.1.2, "Length property values") indicate an
absolute distance from the upper-left corner of the element behind which you display the background image.
For instance:

TABLE {background-image: url(backgrounds/marble.gif);
 background-position: 10px 20px}

offsets the marble background 10 pixels to the right and 20 pixels down from the upper-left corner of any
<table> element in your document.

Percentage values are a bit trickier, but somewhat easier to use. Measured from 0 to 100 percent from left to
right and top to bottom, the center of the HTML element's content display space is at 50%, 50%. Similarly,
the position one-third of the way across the area and two-thirds of the way down is at 33%, 66%. So, to
offset the background for our example dinner menu to the center of the element's content display space, we
use:

background-position: 50% 50%

You'll notice that the browser places the first marble.gif tile at the center of the content display area and tiles
to the right and down the window, as shown in Figure 9.2.

Figure 9.2: Marbled background offset to the center of the display

So why use a number when a single word will do? You can use the keywords left, center, and right,

as well as top, center, and bottom, for 0%, 50%, and 100%, respectively. To center an image in the
tag's content area, then, you need only write:

background-position: center center

You can mix and match length and percentage values,[3] so that

[3] That is, if the browser supports the value units. So far, Internet Explorer and Netscape
support only a meager repertoire of length units - pixels and percents.

background-position: 1cm center

places the image one centimeter to the right of the tag's left edge, centered vertically in the tag's area.

Netscape does not support this CSS property explicitly, but you may achieve similar effects with the general
background property. See section Section 9.3.4.6.

9.3.4.5 The background-repeat property

Normally, the browser tiles a background image to fill the allotted space, repeating the image both down and
to the right. Use the background-repeat property to alter this "repeat" (default value) behavior. To
have the image repeat horizontally but not vertically, use the value repeat-x. For only vertical repetition,
use repeat-y. To suppress tiling altogether, use no-repeat.

A common use of this property is to place a watermark or logo in the background of a page without repeating
the image over and over. For instance:

BODY {background-image: url(backgrounds/watermark.gif);
 background-position: center middle;
 background-repeat: no-repeat
 }

will place the watermark image in the background at the center of the page.

Another popular trick is to create a vertical ribbon down the right-hand side of the page:

BODY {background-image: url(backgrounds/ribbon.gif);
 background-position: top right;
 background-repeat: repeat-y
 }

9.3.4.6 The background property

Like the various font properties, the many background CSS properties can get cumbersome to write and hard
to read later. So, like the font property, there also is a general background property.

The background property accepts values from any and all of the background-color,
background-image, background-attachment, background-repeat, and
background-position properties, in any order. If you do not specify values for some of the properties,
that property is explicitly set to its default value. Thus:

background: red

sets the background-color property to red and resets the other background properties to their default

values. A more complex example:

background: url(backgrounds/marble.gif) blue repeat-y fixed center

sets all the background image and color properties at once, resulting in a marble image on top of a blue
background (blue showing through any transparent areas). The image repeats vertically, starting from the
center of the content display area, and does not scroll when the user scrolls the display. Notice that we
included just a single position value (center) and the browser used it for both the vertical and horizontal
positions.

For many background effects, Netscape supports only the background property and does not honor any of
the individual background properties. For this reason, you may want to use the background property to
achieve the broadest acceptance of your background image and color properties.

9.3.4.7 The color property

The color property sets the foreground color for a tag's contents - the color of the text lettering, for
instance. Its value is either the name of a color, a hexadecimal RGB triple, or a decimal rgb triple, as outlined
in section Section 9.3.1.5, "Color property values". Thus, the following are all valid property declarations:

color: mauve
color: #ff7bd5
color: rgb(255, 125, 213)
color: rgb(100%, 49%, 84%)

Generally, you'll use the color property with text, but you may also modify non-textual content of a tag.
For example, the following example produces a green horizontal rule:

HR {color: green}

If you do not specify a color for an element, it inherits the color of its parent element.

9.3.5 Text Properties

Cascading style sheets make a distinction between font properties, which control the size, style, and
appearance of text, and text properties, which control how text is aligned and presented to the user.

9.3.5.1 The letter-spacing property

The letter-spacing property puts additional space between text letters as they are displayed by the
browser. Set the property with either a length value or the default keyword normal, indicating that the
browser should use normal letter spacing. For example:

BLOCKQUOTE {letter-spacing: 2px}

puts an additional two pixels between adjacent letters within the <blockquote> tag.

This property currently is supported only by Internet Explorer 4.

9.3.5.2 The line-height property

Use the line-height property to define the spacing between lines of a tag's text content. Normally,
browsers single-space text lines - the top of the next line is just a few points below the last line. By adding to
that line height (more commonly known as leading among typographers), you increase the amount of space

between lines.

The line-height value can be an absolute or relative length, a percentage, a scaling factor, or the
keyword normal. For example:

P {line-height: 14pt}
P {line-height: 120%}
P {line-height: 2.0}

The first example sets the line height to exactly 14 points between baselines of adjacent lines of text. The
second computes the line height to 120 percent of the font size. The last example uses a scaling factor to set
the line height to twice as large as the font size, creating double-spaced text. The value normal, the default,
is usually equal to a scaling factor of 1.0 to 1.2.

Keep in mind that absolute and percentage values for line-height compute the line height based upon
the value of the font-size property when the line-height property is defined. The computed
property value will be inherited by children of the element. Subsequent changes to font-size by either
the parent or child elements will not change the computed line-height.

Scaling factors, on the other hand, defer the line-height computation until the text is actually displayed.
Hence, varying font-sizes affect line-height locally. In general, it is best to use a scaling factor for
the line-height property so that the line height will change automatically when the font size is changed.

Although usually considered separate from font properties, you may include this text-related
line-height property's value as part of the shorthand notation of the font property. [The font property,
9.3.3.6]

9.3.5.3 The text-align property

Text justified with respect to the page margins is a rudimentary feature of nearly all text processors. The
text-align property brings that capability to HTML for any block-level tag. (The W3C standards people
prefer that you use CSS text-align styles rather than the explicit align attribute for those block-level
tags like <div> and <p>.) Use one of four values: left, right, center, or justify. The default
value is, of course, left. For example:

DIV {text-align: right}

tells the styles-conscious browser to align all the text inside <div> tags against the right margin. The
justify value tells the browser to align the text to both the left and right margins, spreading the letters and
words in the middle to fit.

9.3.5.4 The text-decoration property

The text-decoration property produces all sorts of text embellishments, some of which also are
available with the original physical style tags. Its value is one or more of the keywords underline,
overline, line-through, and blink. The value none is the default and tells the styles-conscious
browser to present text normally.

The text-decoration property is handy for defining different link appearances. For example:

A:visited A:link A:active {text-decoration: underline overline}

puts lines above and below the links in your document.

This text property is not inherited, and non-textual elements are not affected by the text-decoration

property.

Internet Explorer 4 does not support the blink value; Netscape does not support the overline value.

9.3.5.5 The text-indent property

Although less common today, it still is standard practice to indent the first line of a paragraph of text.[4] And
some text blocks, such as definitions, typically "out-dent" the first line, creating what is called a hanging
indent.

[4] But not, obviously, in this book.

The CSS text-indent property lets you apply these features to any block tag and thereby control the
amount of indentation of the first line of the block. Use length and percentage values; negative values create
the hanging indent. Percentage values compute the indentation as a percentage of the parent element's width.
The default value is zero.

To indent all the paragraphs in your document, for example:

P {text-indent: 3em}

The length unit em scales the indent as the font of the paragraph changes in size on different browsers.

Hanging indents are a bit trickier because you have to watch out for the element borders. Negative
indentation does not shift the left margin of the text; it simply shifts the first line of the element left, possibly
into the margin, border, or padding of the parent element. For this reason, hanging indents only work as
expected if you also shift the left margin of the element to the right by an amount equal to or greater than the
size of the hanging indent. For example:

P.wrong {text-indent: -3em}
P.hang {text-indent: -3em; margin-left: 3em}
P.large {text-indent: -3em; margin-left: 6em}

creates three paragraph styles. The first creates a hanging indent that extends into the left margin. The second
creates a conventional hanging indent. The third creates a paragraph whose body is indented more than the
hanging indent. All three styles are shown in use in Figure 9.3.

Figure 9.3: The effects of text-indent and margin-left on a paragraph

9.3.5.6 The text-transform property

The text-transform property changes the case for all the text within a tag. Valid values for this
property are capitalize, uppercase, lowercase, and none, which is the default. The value
capitalize ensures that the first letter of every word gets capitalized, while uppercase and
lowercase affect every letter in the text.

The actual capitalization rules used by the browser depend upon the character encoding and language used
by the browser.

In Netscape, this property is not inherited by child elements, as prescribed by the CSS standard.

9.3.5.7 The vertical-align property

The vertical-align property controls the relative position of an element with respect to the line
containing the element. Valid values for this property include:

baseline

Align the baseline of the element with the baseline of the containing element.

middle

Align the middle of the element with the middle (usually the x-height) of the containing element.

sub

Subscript the element.

super

Superscript the element.

text-top

Align the top of the element with the top of the font of the parent element.

text-bottom

Align the bottom of the element with the bottom of the font of the parent element.

top

Align the top of the element with the top of the tallest element in the current line.

bottom

Align the bottom of the element with the bottom of the lowest element in the current line.

In addition, a percentage value indicates a position relative to the current baseline, so that a position of 50%
puts the element halfway up the line height above the baseline. A position value of -100% puts the element
an entire line-height below the baseline of the current line.

Netscape 4 supports all but the sub, super, and baseline values only when this property is applied to
the tag. Internet Explorer 4 supports only sub and super when applied to text elements.

9.3.5.8 The word-spacing property

Use the word-spacing property to add additional space between words within a tag. You can specify a
length value or the keyword normal to revert to normal word spacing. For example:

H3 {word-spacing: 25px}

places an additional 25 pixels of space between words in the <h3> tag.

This property is currently not supported by any browser.

9.3.6 Box Properties

The CSS model assumes that HTML elements always fit within a rectangular box. Using the properties
defined in this section, you can control the size, appearance, and position of the boxes containing the
elements in your documents.

9.3.6.1 The CSS formatting model

Each element in an HTML document can fit in a rectangular box. The CSS authors call this box the "core
content area" and surround it with three more boxes: the padding, the border, and the margin. Figure 9.4
shows these boxes and defines some useful terminology.

Figure 9.4: The CSS formatting model and terminology

The top, bottom, left-outer, and right-outer edges bound the content area of an element and all of its padding,
border, and margin spaces. The inner-top, inner-bottom, left-inner, and right-inner edges define the sides of
the core content area. The extra space around the element is the area between the inner and outer edges,
including the padding, border, and margin. A browser may omit any and all of these extra spaces for any
HTML element, and for many, the inner and outer edges are the same.

When elements are vertically adjacent, the bottom margin of the upper elements and the top margin of the
lower elements overlap, so that the total space between the elements is the greater of the adjacent margins.
For example, if one paragraph has a bottom margin of one inch, and the next paragraph has a top margin of
one-half inch, the greater of the two margins, one inch, will be placed between the two paragraphs. This
practice is known as margin collapsing and generally results in better document appearance.

Horizontally adjacent elements do not have overlapping margins. Instead, the CSS model adds together
adjacent horizontal margins. For example, if a paragraph has a left margin of 1 inch, and is adjacent to an
image with a right margin of 0.5 inch, the total space between the two will be 1.5 inches. This rule also
applies for nested elements, so that a paragraph within a division will have a left margin equal to the sum of

the division's left margin and the paragraph's left margin.

As shown in Figure 9.4, the total width of an element is equal to the sum of seven items: the left and right
margins, the left and right borders, the left and right padding, and the element's content itself. The sum of
these seven items must equal the width of the containing element. Of these seven items, only three (the
element's width, and its left and right margins) can be given the value auto, indicating that the browser can
compute a value for that property. When this becomes necessary, the browser follows these rules:

If none of these properties is set to auto, and the total width is less than the width of the parent
element, the margin-right property will be set to auto and made large enough to make the total
width equal to the width of the parent element.

●

If exactly one property is set to auto, that property will be made large enough to make the total width
equal to the width of the parent element.

●

If width, margin-left and margin-right are all set to auto, the CSS-compliant browser will
set both margin-left and margin-right to zero, and set width large enough to make the total equal to
the width of the parent element.

●

If both the left and right margins are set to auto, they will always be set to equal values, centering the
element within its parent.

●

There are special rules for floating elements. A floating element (such as an image with align=left
specified) will not have its margins collapsed with the margins of containing or preceding elements, unless
the floating element has negative margins. This is easy to see in Figure 9.5, which shows how this bit of
HTML might be rendered:

<body>
<p>

Some sample text...
</body>

Figure 9.5: Handling the margins of floating elements

The browser moves the image, including its margins, as far as possible to the left and towards the top of the
paragraph without overlapping the left and top margins of the paragraph or the document body. The left
margins of the paragraph and the containing body are added, while their top margins are collapsed.

9.3.6.2 The border properties

The border surrounding an element has a color, a thickness, and a style. You can use various properties to
control these three aspects of the border on each of the four sides of an element. Shorthand properties make it
easy to define the same color, thickness, and style for the entire border, if desired. Border properties are not
inherited; you must explicitly set them for each element that has a border.

9.3.6.3 The border-color property

Use the border-color property to set the border color. If not specified, the browser draws the border
using the value of the element's color property.

The border-color property accepts from one to four color values. The number of values determines how
they are applied to the borders (summarized in Table 9.1). If you include just one property value, all four
sides of the border are set to the specified color. Two values set the top and bottom borders to the first value
and the left and right borders to the second value. With three values, the first is the top border, the second
sets the right and left borders, and the third color value is for the bottom border. Four values specify colors
for each side, clockwise from the top, then right, bottom, and left borders, in that order.

Table 9.1: Order of Effects for Multiple Border, Margin, and Padding Property Values

Number of Values Affected Border(s), Margin(s), or Padding

1 All same.

2 First value sets top and bottom; second value sets left and right.

3 First value sets top ; second sets both left and right; third value sets bottom.

4 First value sets top ; second sets right; third sets bottom; fourth value sets left.

9.3.6.4 The border-width property

The border-width property lets you change the width of the border. Like the border-color property,
it accepts from one to four values that are applied to the various borders in a similar manner (Table 9.1).

Besides a specific length value, you may also specify the width of a border as one of the keywords thin,
medium, or thick. The default value, if the width is not explicitly set, is medium. Some typical border
widths are:

border: 1px
border: thin thick medium
border: thick 2mm

The first example sets all four borders to exactly one pixel. The second makes the top border thin, the right
and left borders thick, and the bottom border medium. The last example makes the top and bottom
borders thick, while the right and left borders will be 2 mm wide.

If you are uncomfortable defining all four borders with one property, you can use the individual
border-top-width, border-bottom-width, border-left-width, and
border-right-width properties to define the thickness of each border. Each property accepts just one

value; the default is medium.

Netscape supports this property even when used alone; Internet Explorer 4 honors this property only if
borders are enabled through other border properties.

9.3.6.5 The border-style property

According to the CSS model, there are a number of embellishments that you may apply to your HTML
element borders.

The border-style property values include none (default), dotted, dashed, solid, double,
groove, ridge, inset, and outset. The border-style-conscious browser applies one to four values for
the property to each of the borders in the same order as for the border colors and widths, as described in
Table 9.1.

The browser draws dotted, dashed, solid, and double borders as flat lines atop the tag's background.
The groove, ridge, inset, and outset values create three-dimensional borders: The groove is an
incised line; the ridge is an embossed line; the inset border makes the entire tag area appear set into the
document; and the outset border makes the entire tag area appear raised above the document. The effect
of the three-dimensional nature of these last four styles upon the tag's background image is undefined and
left up to the browser. Netscape Communicator 4.06 is now supporting three-dimensional effects.

Neither Internet Explorer nor Netscape supports the dotted or dashed values.

9.3.6.6 Borders in shorthand

Since specifying a complex border can get tedious, the CSS standard provides five shorthand properties that
accept any or all of the width, color, and style values for one or all of the border edges. The border-top,
border-bottom, border-left, and border-right properties affect their respective borders sides;
the comprehensive border property controls all four sides of the border simultaneously. For example:

border-top: thick solid blue
border-left: 1ex inset
border-bottom: blue dashed
border: red double 2px

The first property makes the top border a thick, solid, blue line. The second sets the left border to use an inset
effect that is as thick as the x-height of the element's font, while leaving the color the same as the element's
color. The third property creates a blue dashed line at the bottom of the element, using the default medium
thickness. Finally, the last property makes all four borders a red double line two pixels thick.

That last property raises two issues. First, you cannot supply multiple values to the border property to
selectively affect certain borders like you can with the individual border-color, border-width, and
border-style properties. The border property always affects all four borders around an element.

Secondly, a bit of reflection should reveal that it is not possible to create a double-line border just two pixels
thick. In cases like this, the browser is free to adjust the thickness to render the border properly.

While we usually think of borders surrounding block elements like images, tables, and text flows, borders
can also be applied to inline tags. This lets you put a box around a word or phrase within a text flow. The
implementation of borders on inline tags that span multiple lines is undefined and left to the browser.

Both Netscape and Internet Explorer support the border property, but only Internet Explorer supports the
individual side properties.

9.3.6.7 The clear property

Like its cousin attribute for the
 tag, the clear property tells the browser whether to place a tag's
contents adjacent to a "floating" element, or on the first line below. Text flows around floating elements like
images and tables with an align=left or align=right attribute, or any HTML element with its
float property set to anything but none. [The
 Tag, 4.7.1] [The float property, 9.3.6.8]

The value of the clear property can be none, left, right, or both. A value of none, the default,
means that the browser acts normally and places the tag's contents adjacent to floating elements on either
side if there is room to do so. The value left prevents contents from being placed adjacent to a floating
element on its left; right prevents placement against a floating element on the right; and both prevents
the tag's contents from appearing adjacent to any floating element.

The effect of this style is the same as having preceded the tag with a
 tag with its clear attribute.
Hence:

H1 {clear: left}

has the same effect as preceding every <h1> tag with <br clear=left>.

9.3.6.8 The float property

The float property designates a tag's display space as a floating element and causes text to flow around it
in a specified manner. It is generally analogous to the align attribute for images and tables, but can be
applied to any element, including text, images, and tables. [The align attribute, 5.2.6.4] [The align attribute,
11.2.1.1]

The float property accepts one of three values: left, right, or none, the default. Using none disables
the float property; the others work like their align attribute-value counterparts, telling the browser to
place the content to either side of the flow and allow other content to be rendered next to it.

Accordingly, the styles-conscious browser will place a tag's contents specified with float: left against
the left margin of the current text flow, and subsequent content will flow to its right, down and below the
tag's contents. The float: right pair puts the tag contents against the right edge of the flow and flows
other content on its left, down and below the tag's contents.

Although most commonly used with tables and images, it is perfectly acceptable to apply the float
property to a text element. For example, the following would create a "run-in" header, with the text flowing
around the header text.

H1 {float: left}

This property is supported by Internet Explorer only for images. Netscape honors it for textual elements as
well.

9.3.6.9 The height property

As you might suspect, the height property controls the height of the associated tag's display region. You'll
find it most often used with images and tables, but it can be used to control the height of other HTML
document elements as well.

The value of the height property is either a length value or the keyword auto, the default. Using auto
implies that the affected tag has an initial height that should be used when displaying the tag. Otherwise, the
height of the tag is set to the desired height. If an absolute value is used, the height is set to that length value.
For example:

IMG {height: 100px}

tells the browser to display the image referenced by the tag scaled so that it is 100 pixels tall. If you
use a relative value, the base size to which it is relative is browser- and tag-dependent.

When scaling elements to a specific height, the aspect ratio of the object can be preserved by also setting the
width property of the tag to auto. Thus:

IMG {height: 100px; width: auto}

ensures that the images are always 100 pixels tall, with an appropriately scaled width. [The width property,
9.3.6.12]

This property is fully supported by Internet Explorer; Netscape honors it only when used with the
tag.

9.3.6.10 The margin properties

Like the border properties, the various margin properties let you control the margin space around an element,
just outside of its border (Figure 9.4). Margins are always transparent, allowing the background color or
image of the containing element to show through. As a result, you can specify only the size of a margin; it
has no color or rendered style.

The margin-left, margin-right, margin-top, and margin-bottom properties all accept a
length or percentage value indicating the amount of space to reserve around the element. In addition, the
keyword auto tells the styles-conscious browser to revert to the margins it normally would place around an
element. Percentage values are computed as a percentage of the containing element's width. The default
margin, if not specified, is zero.

These are all valid margin settings:

BODY {margin-left: 1in; margin-top: 0.5in; margin-right: 1in}
P {margin-left: -0.5cm}
IMG {margin-left: 10%}

The first example creates one-inch margins down the right and left edges of the entire document, and a
half-inch margin across the top of the document. The second example shifts the <p> tag one-half centimeter
left into the left margin. The last example creates a margin to the left of the tag equal to ten percent
of the parent element's width.

Like the shorthand border property, you can use the shorthand margin property to define all four
margins, using from one to four values which affect the margins in the order described in Table 9.1. Using
this notation, our <body> margins in the previous example also could have been specified as:

BODY {margin: 0.5in 1in}

The margin attribute is not supported by Netscape 4.

The margin-left and margin-right properties interact with the width property to determine the
total width of an element, as described in section Section 9.3.6.1, "The CSS formatting model".

9.3.6.11 The padding properties

Like the margin properties, the various padding properties let you control the padding space around an

element, between the element's content area and its border (Figure 9.4). Padding is always rendered using the
background color or image of the element. As a result, you can specify only the size of the padding; it has no
color or rendered style.

The padding-left, padding-right, padding-top, and padding-bottom properties all accept
a length or percentage value indicating the amount of space the styles-conscious browser should reserve
around the element. Percentage values are computed as a percentage of the containing element's width. The
default padding is zero.

These are valid padding settings:

P {padding-left: 0.5cm}
IMG {padding-left: 10%}

The first example creates half a centimeter of padding between the contents of the <p> tag and its left
border. The last example creates padding to the left of the tag equal to 10 percent of the parent
element's width.

Like the shorthand margin and border properties, you can use the shorthand padding property to
define all four padding amounts, using one to four values to effect the padding sides as described in Table
9.1. The padding property is not supported by Netscape 4.

9.3.6.12 The width property

The width property is the companion to the height property and controls the width of an associated tag.
Specifically, it defines the width of the element's content area, as shown in Figure 9.4. You'll see it most
often used with images and tables, but you could conceivably use it to control the width of other elements as
well.

The value for width property is either a length or percentage value or the keyword auto. The value auto
is the default and implies that the affected tag has an initial width that should be used when displaying the
tag. If a length value is used, the width is set to that value; percentage values compute the width to be a
percentage of the width of the containing element. For example:

IMG {width: 100px}

displays the image referenced by the tag scaled to 100 pixels wide.

When scaling elements to a specific width, the aspect ratio of the object is preserved if the height property
of the tag is set to auto. Thus:

IMG {width: 100px; height: auto}

makes the images all 100 pixels wide, and scales their heights appropriately. [The height property, 9.3.6.9]

The width property interacts with the margin-left and margin-right properties to determine the
total width of an element, as described in section Section 9.3.6.1.

9.3.7 List Properties

The CSS standard lets you also control the appearance of HTML list elements - specifically, ordered and
unordered lists.

Browsers format list items just like any other HTML block item, except that the block has some sort of

marker preceding the contents. For unordered lists, the marker is a bullet of some sort; for numbered lists, the
marker is a numeric or alphabetic character or symbol. The CSS list properties let you control the appearance
and position of the marker associated with a list item.

9.3.7.1 The list-style-image property

The list-style-image property defines the image that the browser uses to mark a list item. The value
of this property is the URL of an image file, or the keyword none. The default value is none.

The image is the preferred list marker. If it is available, the browser will display it in place of any other
defined marker. If the image is unavailable, or if the user has disabled image loading, the marker defined by
the list-style-type property (see section Section 9.3.7.3, "The list-style-type property") will be used.

Authors can use this property to define custom bullets for their unordered lists. While any image could
conceivably be used as a bullet, we recommend that you keep your marker GIF or JPEG images small to
ensure attractively rendered lists.

For example, by placing the desired bullet image in the file mybullet.gif on your server, you could use that
image:

LI {list-style-image: url(pics/mybullet.gif); list-style-type: square}

In this case, the image will be used if the browser successfully downloads mybullet.gif. Otherwise, the
browser will use a conventional square bullet.

This property is supported only by Internet Explorer 4.

9.3.7.2 The list-style-position property

There are two ways to position the marker associated with a list item: inside the block associated with the
item, or outside the block. Accordingly, the list-style-position property accepts one of two values:
inside or outside.

The default value is outside, meaning that the item marker will hang to the left of the item like this:

This is a bulleted list with an "outside" marker●

The value inside causes the marker to be drawn with the list item flowing around it, much like a floating
image:

This is a bulleted list with an "inside" marker●

Notice how the second line of text is not indented, but instead lines up with the left edge of the marker.

This property is not currently supported by any browser.

9.3.7.3 The list-style-type property

The list-style-type property serves double-duty in a sense, determining how both ordered and
unordered list items are rendered by a styles-conscious browser. This property has the same effect on a list
item as its type attribute does. [The type attribute, 8.3.1.1]

When used with items within an unordered list, the list-style-type property accepts one of four
values: disc, circle, square, or none. The browser marks the unordered list items with the
corresponding specified dingbat. The default value is disc; browsers change that default depending on the
nesting level of the list.

When used with items within an ordered list, the list-style-type property accepts one of six values:
decimal, lower-roman, upper-roman, lower-alpha, upper-alpha, or none. These values
format the item numbers as decimal values, lowercase Roman numerals, uppercase Roman numerals,
lowercase letters, or uppercase letters, respectively. Most browsers will use decimal numbering schemes if
you don't set this property.

9.3.7.4 The list-style property

The list-style property is the shorthand version for all the other list-style properties. It accepts any or
all of the values allowed for the list-style-type, list-style-position, and
list-style-image properties, in any order and with values appropriate for the type of list they are to
affect. These are valid list-style properties:

LI {list-style: disc}
LI {list-style: lower-roman inside}
LI {list-style: url(http://www.kumquat.com/images/tiny-quat.gif)
 square}

The first example creates list items that use a disc as the bullet image. The second causes numbered list items
to use lowercase Roman numerals, drawn inside the list item's block. In the last example, a square will be
used as the bullet image if the referenced image is unavailable.

9.3.7.5 Using list properties effectively

Although you may apply list properties to any HTML element, they will affect only the appearance of
elements whose display property is set to list-item. Normally, the only tag with this property is the
 tag. [The display property, 9.3.8.1]

This shouldn't deter you from using these properties elsewhere, particularly with the and tags.
Since these properties are inherited by elements whose parents have them set, modifying a list property for
the and tags will subsequently modify it for all the tags contained within that list. This
makes it much easier to define lists with a particular appearance.

For example, suppose you want to create a list style that uses lowercase Roman numerals. One way is to
define a class of the tag with the appropriate list-style-type defined:

LI.roman {list-style-type: lower-roman}

Within your list, you'll need to specify each list element using that class:

 <li class=roman>Item one
 <li class=roman>Item two
 <li class=roman>And so forth

Having to repeat the class name is tedious and error-prone. A better solution is to define a class of the
tag:

OL.roman {list-style-type: lower-roman}

Any tag within the list will inherit the property and use lowercase Roman numerals:

<ol class=roman>
 Item one
 Item two
 And so forth

This is much easier to understand and manage. If at a later date you want to change the numbering style, you
need only change the tag properties, rather than find and change each instance of the tag in the
list.

You can use these properties in a much more global sense as well. Setting a list property on the <body> tag
will change the appearance of all lists in the document; setting it on a <div> tag will change all the lists
within that division.

9.3.8 Classification Properties

Classification properties are the most esoteric of the CSS style properties. They do not directly control how a
styles-conscious browser will render HTML elements. Instead, they tell the browser how to classify and
handle various tags and their contents as they are encountered.

For the most part, you should not set these properties on an element unless you are trying to achieve a
specific effect. Even then, it is unlikely that the property will be supported by most browsers.

9.3.8.1 The display property

Every element in an HTML document can be classified, for display purposes, as a block item, an inline item,
or a list item. Block elements, like headings, paragraphs, tables, and lists, are formatted as a separate block of
text, separated from the previous and next block items. Inline items, like the physical and content-based style
tags and hyperlink anchors, are rendered within the current line of text within a containing block. List items,
specifically the tag, are rendered like a block item, along with a bullet or number known as the
marker.

The display property lets you change an element's display type to block, inline, list-item, or
none. The first three values change the element's classification accordingly; the value none turns off the
element, preventing it or its children from being displayed in the document.

Conceivably, you could wreak all sorts of havoc by switching element classifications, forcing paragraphs to
be displayed as list items and converting hyperlinks to block elements. In practice, this is just puerile
monkey business, and we don't recommend that you change element classifications without having a very
good reason to do so.

Netscape 4 fully supports this property; Internet Explorer 4 supports only the block and none values.

9.3.8.2 The white-space property

The white-space property defines how the styles-conscious browser treats whitespace (tabs, spaces, and
carriage returns) within a block tag. The keyword value normal - the default - collapses whitespace, so that
one or more spaces, tabs, and carriage returns are treated as a single space between words. The value pre
emulates the <pre> tag, in that the browser retains and displays all spaces, tabs, and carriage returns. And,
finally, the nowrap value tells the browser to ignore carriage returns and not insert automatic line breaks;
all line-breaking must be done with explicit
 tags.

Like the display property, the white-space property is rarely used for good instead of evil. Don't
change how elements handle whitespace without having a compelling reason for doing so.

This property is not supported by Internet Explorer; Netscape supports only the pre and normal values.

9.2 Style Syntax 9.4 Tag-less Styles: The
 Tag

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 9
Cascading Style Sheets

9.4 Tag-less Styles: The Tag
Up to now, we have used Cascading Style Sheets to change the appearance of content that is within a designated HTML tag. In
some cases, however, you may want to alter the appearance of only a portion of a tag's contents - usually text. Designate these
special segments with the tag.

Function:

Delimit arbitrary amount of text

Attributes:

CLASS ONKEYUP

DIR ONMOUSEDOWN

ID ONMOUSEMOVE

LANG ONMOUSEOUT

ONCLICK ONMOUSEOVER

ONDBLCLICK ONMOUSEUP

ONKEYDOWN STYLE

ONKEYPRESS TITLE

End tag:

; never omitted

Contains:

html_content

Used in:

body_content

The tag simply delimits a portion of HTML content (constrained by normal tag nesting rules, of course). Browsers
treat the tag as another physical or content-based style tag. The only difference, of course, is that the default meaning
of the tag is to leave the text alone.

Although it may serve some other function in a future version of HTML, the tag was introduced so that you can
apply style, display, and event management to an arbitrary section of document content. Display and event management are
addressed later; to define a style for the tag, treat it like any other HTML tag:

SPAN {color: purple}
SPAN.bigger {font-size: larger}

and use it like any other style tag:

Quat harvest projections are bigger than ever!

In a similar manner, the appearance of a tag can be changed using an inline style:

Quat harvest projections are bigger than ever!

Like any other physical or content-based style tag, tags can be nested and may contain other tags.

The tag also supports the standard HTML 4.0 tag attributes. The style and class attributes, of course, let you
control the display style; the id and title tag attributes let you uniquely label its contents; the dir and lang attributes let
you specify its native language; and the many on-event attributes let you react to user-initiated mouse and keyboard actions on
the contents. Not all are implemented by the currently popular browsers for this tag or for many others. [The dir attribute,
3.5.1.1] [The lang attribute, 3.5.1.2] [The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5] [Inline Styles: The style Attribute,
9.1.1] [Style Classes, 9.2.4] [JavaScript Event Handlers, 13.3.3]

9.3 Style Properties 9.5 Applying Styles to
Documents

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 9
Cascading Style Sheets

9.5 Applying Styles to Documents
There are several issues you should consider before, during, and after you use styles in your HTML
documents and document collections. The first, overarching issue is whether to use them at all.
Frankly, few of the style effects are unique; most can be achieved, albeit less easily and with much
less consistency, via the physical and content-based style tags like <i> and and the various tag
attributes like color and background.

9.5.1 To Style or Not to Style

We think CSS is a winner, not only over just JavaScript-based ones, but also for the convenience and
effectiveness of your HTML documents. Currently however, CSS style sheets are a bittersweet
solution; they can create more work than they are worth. The majority of browsers in use today do not
support all, and some not even any, styles. That means that to achieve the special effects for most
users, you have to prepare redundant collections - mixed or separate - containing both styles and
style-related tags and attributes, if you use styles at all. We're right back in the same boat we were in a
year or so ago when deciding whether to use the many new Netscape extensions to HTML. We
believe that this too will pass. The choice is not whether to use CSS style sheets, but when, and when
should be soon.

9.5.2 Which Type of Style Sheet and When

Once you have decided to use HTML cascading style sheets (for pain or pleasure), the next question is
which type of style sheet - inline, document-level, or external - should you apply and when? Each has
its pros and cons; each is best applied under certain circumstances.

9.5.2.1 The pros and cons of external styles

Since style sheets ostensibly provide consistency in the presentation of your documents, external style
sheets are the best and the easiest way to manage styles for your entire document collection. Simply
place the desired style rules in a style sheet and apply those styles to the desired documents. Since all
the documents are affected by a single style sheet, conversion of the entire collection to a new style is
as simple as changing a single rule in the corresponding external style sheet.

Even in cases where documents may differ in style, it is often possible to collect a few basic style
rules in a single sheet that can be shared among several otherwise different documents, including:

Background color●

Background image●

Font sizes and faces●

Margins●

Text alignment●

Another benefit of external style sheets is that other web authors who want to copy your style can
easily access that sheet and make their pages look like yours. Imitation being the sincerest form of
flattery, you should not be troubled when someone elects to emulate the look and feel of your pages.
More to the point, you can't stop them from linking to your style sheets, so you might as well learn to
like it. Like conventional HTML documents, it is not possible to encrypt or otherwise hide your style
sheets so that others cannot view and use them.

The biggest problem with external style sheets is that they increase the amount of time needed to
access a given web page. Not only must the browser download the page itself, it must also download
the style sheet before the page can be displayed to the user. While most style sheets are relatively
small, their existence can definitely be felt when accessing the Web over a slow connection.

Without appropriate discipline, external style sheets can become large and unwieldy. When creating
style sheets, remember to include only those styles that are common to the pages using the sheet. If a
set of styles is needed only for one or two sheets, you are better off isolating them in a separate sheet
or adding them to a document using document-level styles. Otherwise, you may find yourself
expending an exorbitant amount of effort counteracting the effects of external styles in many
individual documents.

9.5.2.2 The pros and cons of document-level styles

Document-level styles are most useful when creating a custom document. They let you easily override
one or more rules in your externally defined style to create a slightly different document.

You might also want to use document-level styles to experiment with new style rules before moving
them to your style sheets. By adding and changing rules using document-level styles, you eliminate
the risk of adding a broken style to your style sheets, breaking the appearance of all the documents
that use that sheet.

The biggest problem with document styles is that you may succumb to using them in lieu of creating a
formal, external style sheet to manage your document collection. It is easy to simply add rules to each
document, cutting and pasting as you create new documents. Unfortunately, managing a collection of
documents with document-level styles is tedious and error-prone. Even a simple change can result in
hours of editing and potential mistakes.

As a rule of thumb, any style rule that impacts three or more documents should be moved to a style
sheet and applied to those documents using the <link> tag or @import command. Adhering to this
rule as you create your document families will pay off in the long run when it is time to change your
styles.

9.5.2.3 The pros and cons of inline styles

And at the end of the cascade, inline styles override the more general styles. Get into the habit now of
using inline styles rarely and just for that purpose, too. Inline styles cannot be reused, making style

management difficult. Moreover, such changes are spread throughout your documents, making
finding and altering inline styles error-prone. (That's why we might eschew tag- and attribute-based
styles in the first place, no?)

Any time you use an inline style, think long and hard as to whether the same effect might be
accomplished using a style class definition. For instance, you are better off defining:

<style type="text/css">
<!--
 P.centered {text-align: center}
 EM.blue {color: blue}
-->
</style>

and later using:

<p class=centered>
<em class=blue>

instead of:

<p style="text-align: center">
<em style="color: blue">

Your styles are easier to find and manage and can be easily reused throughout your documents.

9.4 Tag-less Styles: The
 Tag

10. Forms

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 10

10. Forms
Contents:
Form Fundamentals
The <form> Tag
A Simple Form Example
Using Email to Collect Form Data
The <input> Tag
Multiline Text Areas
Multiple Choice Elements
General Form Control Attributes
Labeling and Grouping Form Elements
Creating Effective Forms
Forms Programming

Forms, forms, forms, forms: we fill 'em out for nearly everything, from the moment we're born, 'til the
moment we die. Pretty mundane, really. So what's to explain all the hoopla and excitement over
HTML forms? Simply this: they make HTML truly interactive.

When you think about it, HTML's interactivity is basically a lot of button pushing: click here, click
there, go here, go there - there's no real user feedback, and it's certainly not personalized. Applets
provide extensive user-interaction capability, but they can be difficult to write and are still not
standardized for all browsers. Forms, on the other hand, are supported by almost every browser and
make it possible to create documents that collect and process user input, and to formulate personalized
replies.

This powerful mechanism has far-reaching implications, particularly for electronic commerce. It
finishes an online catalog by giving buyers a way to immediately order products and services. It gives
nonprofit organizations a way to sign up new members. It gives market researchers a way to collect
user data. It gives you an automated way to interact with your HTML document readers.

Mull over the ways you might want to interact with your readers while we take a look at both the
client- and server-side details of creating forms.

10.1 Form Fundamentals
Forms are comprised of one or more text input boxes, clickable buttons, multiple-choice checkboxes,
and even pull-down menus and image maps, all placed inside the <form> tag. You can have more
than one form in a document, and within each you may also put regular body content, including text
and images. The text is particularly useful for providing instructions to the users on how to fill out the
form and for form element labels and prompts. And, within the various form elements, you can use
JavaScript event handlers for a variety of effects like testing and verifying form contents and
calculating a running sum.

Once a user fills out the various fields in the form, they click a special "Submit" button (or,
sometimes, press the Enter or Return key) to submit the form to a server. The browser packages up the
user-supplied values and choices and sends them to a server or to an email address.[1] The server
passes the information along to a supporting program or application that processes the information
and creates a reply, usually in HTML. The reply may be simply a thank you or it might prompt the
user how to fill out the form correctly or to supply missing fields. The server sends the reply to the
browser client, which then presents it to the user. With emailed forms, the information is simply put
into someone's mailbox; there is no notification of the form being sent.

[1] Some browsers, Netscape and Internet Explorer in particular, may also encrypt the
information, securing it from credit-card thieves, for example. However, the encryption
facility must also be supported on the server-side as well: contact the browser
manufacturer for details.

The server-side data-processing aspects of forms are not part of the HTML standard; they are defined
by the server's software. While a complete discussion of server-side forms programming is beyond the
scope of this book, we'd be remiss if we did not include at least a simple example to get you started.
To that end, we've included at the end of this chapter a few skeletal programs that illustrate the
common styles of server-side forms programming.

9.5 Applying Styles to
Documents

10.2 The <form> Tag

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 10
Forms

10.2 The <form> Tag
Place a form anywhere inside the body of an HTML document with its elements enclosed by the
<form> tag and its respective end tag </form>. You can, and we recommend you often do, include
regular body content inside a form to specially label user-input fields and to provide directions.

<form>

Function:

Defines a form

Attributes:

ACCEPT-CHARSET ONKEYPRESS

ACTION ONKEYUP

CLASS ONMOUSEDOWN

DIR ONMOUSEMOVE

ENCTYPE ONMOUSEOUT

ID ONMOUSEOVER

LANG ONMOUSEUP

METHOD ONRESET

NAME ONSUBMIT

ONCLICK STYLE

ONDBLCLICK TARGET

ONKEYDOWN TITLE

End tag:

</form>; never omitted

Contains:

form_content

Used in:

block

Browsers flow the special form elements into the containing paragraphs as if they were small images
embedded into the text. There aren't any special layout rules for form elements, so you need to use
other HTML elements, like tables and style sheets, to control the placement of elements within the
text flow.

You must define at least two special form attributes, which provide the name of the form's processing
server and the method by which the parameters are to be sent to the server. A third, optional attribute
lets you change how the parameters get encoded for secure transmission over the network.

10.2.1 The action Attribute

The required action attribute for the <form> tag gives the URL of the application that is to receive
and process the form's data.

Most webmasters keep their forms-processing applications in a special directory on their web server,
usually named cgi-bin, which stands for Common Gateway Interface-binaries.[2] Keeping these
special forms-processing programs and applications in one directory makes it easier to manage and
secure the server.

[2] The Common Gateway Interface (CGI) defines the protocol by which servers interact
with programs that process form data.

A typical <form> tag with the action attribute looks like this:

<form action="http://www.kumquat.com/cgi-bin/update">
...
</form>

The example URL tells the browser to contact the web server named www in the kumquat.com
domain and pass along the user's form values to the application named update located in the cgi-bin
directory.

In general, if you see a URL that references a document in a directory named cgi-bin, you can be
pretty sure that the document is actually an application that creates the desired page dynamically each
time it's invoked.

10.2.2 The enctype Attribute

The browser specially encodes the form's data before it passes that data to the server so that it does not
become scrambled or corrupted during the transmission. It is up to the server either to decode the
parameters or to pass them, still encoded, to the application.

The standard encoding format is the Internet Media Type "application/x-www-form-urlencoded." You
can change that encoding with the optional enctype attribute in the <form> tag. The only optional
encoding formats currently supported are "multipart/form-data" and "text/plain."

The multipart/form-data alternative is required for those forms that contain file-selection fields for
upload by the user. The text/plain format should be used in conjunction with a mailto URL in the
action attribute for sending forms to an email address instead of a server. Unless your forms need

file-selection fields or you must use a mailto URL in the action attribute, you probably should
ignore this attribute and simply rely upon the browser and your processing server to use the default
encoding type. [File selection controls, 10.5.1.3]

10.2.2.1 The application/x-www-form-urlencoded encoding

The standard encoding - application/x-www-form-urlencoded - converts any spaces in the form values
to a plus sign (+), nonalphanumeric characters into a percent sign (%) followed by two hexadecimal
digits that are the ASCII code of the character, and the line breaks in multiline form data into
%0D%0A.

The standard encoding also includes a name for each field in the form. (A "field" is a discrete element
in the form, whose value can be nearly anything from a single number to several lines of text - the
user's address, for example.) If there is more than one value in the field, the values are separated by
ampersands.

For example, here's what the browser sends to the server after the user fills out a form with two input
fields labeled name and address; the former field has just one line of text, while the latter field has
several lines of input:

name=O'Reilly+and+Associates&address=103+Morris+Street%0D%0A
Sebastopol,%0D%0ACA+95472

We've broken the value into two lines for clarity in this book, but in reality, the browser sends the data
in an unbroken string. The name field is "O'Reilly and Associates" and the value of the address
field, complete with embedded newline characters, is:

103 Morris Street
Sebastopol,
CA 95472

10.2.2.2 The multipart/form-data encoding

The multipart/form-data encoding encapsulates the fields in the form as several parts of a single
MIME-compatible compound document. Each field has its own section in the resulting file, set off by
a standard delimiter. Within each section, one or more header lines define the name of the field,
followed by one or more lines containing the value of the field. Since the value part of each section
can contain binary data or otherwise unprintable characters, no character conversion or encoding
occurs within the transmitted data.

This encoding format is by nature more verbose and longer than the
application/x-www-form-urlencoded format. As such, it can be used only when the method attribute
of the <form> tag is set to post, as described in section Section 10.2.4, "The method Attribute".

A simple example makes it easy to understand this format. Here's our previous example, when
transmitted as multipart/form-data:

------------------------------146931364513459
Content-Disposition: form-data; name="name"

O'Reilly and Associates
------------------------------146931364513459
Content-Disposition: form-data; name="address"

103 Morris Street
Sebastopol,
CA 95472
------------------------------146931364513459--

The first line of the transmission defines the delimiter that will appear before each section of the
document. It always consists of thirty dashes and a long random number that distinguishes it from
other text that might appear in actual field values.

The next lines contain the header fields for the first section. There will always be a
Content-Disposition field indicating that this section contains form data and providing the
name of the form element whose value is in this section. You may see other header fields; in
particular, some file-selection fields include a Content-Type header field that indicates the type of
data contained in the file being transmitted.

After the headers, there is a single blank line followed by the actual value of the field on one or more
lines. The section concludes with a repeat of the delimiter line that started the transmission. Another
section follows immediately, and the pattern repeats until all of the form parameters have been
transmitted. The end of the transmission is indicated by an extra two dashes at the end of the last
delimiter line.

As we pointed out earlier, use multipart/form-data encoding only when your form contains a
file-selection field. Here's an example of how the transmission of a file-selection field might look:

------------------------------146931364513459
Content-Disposition: form-data; name="thefile"; filename="test"
Content-Type: text/plain

First line of the file
...
Last line of the file
------------------------------146931364513459--

The only notable difference is that the Content-Disposition field contains an extra element,
filename, that defines the name of the file being transmitted. There might also be a
Content-Type field to further describe the file's contents.

10.2.2.3 The text/plain encoding

Use this encoding only when you don't have access to a form-processing server and need to send the
form information by email (the form's action attribute is a mailto URL). The conventional
encodings are designed for computer consumption; text/plain is designed with people in mind.

In this encoding, each element in the form is placed on a single line, with the name and value
separated by an equal sign. Returning to our name and address example, the form data would be
returned as:

name=O'Reilly and Associates
address=103 Morris Street%0D%0ASebastopol,%0D%0ACA 95472

As you can see, the only characters still encoded in this form are the carriage return and line feed
characters in multiline text input areas. Otherwise, the result is easily readable and generally parsable
by simple tools.

10.2.3 The accept-charset Attribute

An additional encoding-related attribute has been introduced in the HTML 4.0, and consequently is
not yet supported by the popular browsers. The accept-charset attribute lets you specify a list of
character sets that the server must support to properly interpret the form data. The value of this
attribute is a quote-enclosed list of one or more ISO character set names. The browser may chose to
disregard the form or handle it differently if the acceptable character sets do not match the character
set in use by the user. The default value of this attribute is unknown, implying that form character set
is the same as the document containing the form.

10.2.4 The method Attribute

The other required attribute for the <form> tag sets the method by which the browser sends the
form's data to the server for processing. There are two ways: the POST method and the GET method.

With the POST method, the browser sends the data in two steps: the browser first contacts the
form-processing server specified in the action attribute, and, once contact is made, sends the data to
the server in a separate transmission.

On the server side, POST-style applications are expected to read the parameters from a standard
location once they begin execution. Once read, the parameters must be decoded before the application
can use the form values. Your particular server will define exactly how your POST-style applications
can expect to receive their parameters.

The GET method, on the other hand, contacts the form-processing server and sends the form data in a
single transmission step: the browser appends the data to the form's action URL, separated by the
question mark character.

The common browsers transmit the form information by either method; some servers receive the form
data by only one or the other method. You indicate which of the two methods - POST or GET - your
forms-processing server handles with the method attribute in the <form> tag. Here's the complete
tag including the GET transmission method attribute for the previous form example:

<form method=GET
 action="http://www.kumquat.com/cgi-bin/update">
 ...
</form>

10.2.4.1 POST or GET?

Which one to use if your form-processing server supports both the POST and GET methods? Here are
some rules of thumb:

For best form-transmission performance, send small forms with a few short fields via the GET●

method.

Because some server operating systems limit the number and length of command-line
arguments that can be passed to an application at once, use the POST method to send forms that
have many fields or that have long text fields.

●

If you are inexperienced in writing server-side form-processing applications, choose GET. The
extra steps involved in reading and decoding POST-style transmitted parameters, while not too
difficult, may be more than you are willing to tackle.

●

If security is an issue, choose POST. GET places the form parameters directly in the application
URL where they easily can be captured by network sniffers or extracted from a server log file.
If the parameters contain sensitive information like credit card numbers, you may be
compromising your users without their knowledge. While POST applications are not without
their security holes, they can at least take advantage of encryption when transmitting the
parameters as a separate transaction with the server.

●

If you want to invoke the server-side application outside the realm of a form, including passing
it parameters, use GET because it lets you include form-like parameters as part of a URL.
POST-style applications, on the other hand, expect an extra transmission from the browser after
the URL, something you can't do as part of a conventional <a> tag.

●

10.2.4.2 Passing parameters explicitly

The foregoing bit of advice warrants some explanation. Suppose you had a simple form with two
elements named x and y. When the values of these elements are encoded, they look like this:

x=27&y=33

If the form uses method=GET, the URL used to reference the server-side application looks
something like this:

http://www.kumquat.com/cgi-bin/update?x=27&y=33

There is nothing to keep you from creating a conventional <a> tag that invokes the form with any
parameter value you desire, like so:

The only hitch is that the ampersand that separates the parameters is also the character-entity insertion
character. When placed within the href attribute of the <a> tag, the ampersand will cause the
browser to replace the characters following it with a corresponding character entity.

To keep this from happening, you must replace the literal ampersand with its entity equivalent, either
& or &. With this substitution, our example of the nonform reference to the server-side
application looks like this:

Because of the potential confusion that arises from having to escape the ampersands in the URL,
server implementors are encouraged to also accept the semicolon as a parameter separator. You might

want to check your server's documentation to see if they honor this convention. See Appendix E,
Character Entities.

10.2.5 The target Attribute

With the advent of frames, it is possible to redirect the results of a form to another window or frame.
Simply add the target attribute to your <form> tag and provide the name of the window or frame
to receive the results.

Like the target attribute used in conjunction with the <a> tag, you can use a number of special
names with the target attribute in the <form> tag to create a new window or to replace the
contents of existing windows and frames. [The target Attribute for the <a> Tag, 12.7.1]

10.2.6 The id, name, and title Attributes

The id attribute lets you attach a unique string label to the form for reference by programs (applets)
and hyperlinks. Before id was introduced in HTML 4.0, Netscape used the name attribute to achieve
similar effects, although it cannot not be used in a hyperlink. To be compatible with the broadest
range of browsers, we recommend that for now you include both name and id with <form>, if
needed. In the future, you should use only the id attribute for this purpose.

The title attribute defines a quote-enclosed string value to label the form. However, it entitles only
the form segment; its value cannot be used in an applet reference or hyperlink. [The id attribute,
4.1.1.4] [The title attribute, 4.1.1.5]

10.2.7 The class, style, lang, and dir Attributes

The style attribute creates an inline style for the elements enclosed by the form, overriding any
other style rule in effect. The class attribute lets you format the content according to a predefined
class of the <form> tag; its value is the name of that class. [Inline Styles: The style Attribute, 9.1.1]
[Style Classes, 9.2.4]

The actual effects of style with <form> is hard to predict, however. In general, style properties
affect the body content - text, in particular - that you may include as part of the form's contents, but
<form> styles do affect the display characteristics of the form elements.

For instance, you may create a special font face and background color style for the form. The form's
text labels, but not the text inside a text input form element, will appear in the specified font face and
background color. Similarly, the text labels you put beside a set of radio buttons will be in the
form-specified style, but not radio buttons themselves.

The lang attribute lets you specify the language used within the form, with its value being any of the
ISO standard two-character language abbreviations, including an optional language modifier. For
example, adding lang=en-UK tells the browser that the list is in English ("en") as spoken and
written in the United Kingdom (UK). Presumably, the browser may make layout or typographic
decisions based upon your language choice.

Similarly, the dir attribute tells the browser which direction to display the list contents, from left to
right (dir=ltr) like English or French, or from right to left (dir=rtl), such as with Hebrew or
Chinese.

The dir and lang attributes are supported by the popular browsers, even though there are no
behaviors defined for any specific language. [The dir attribute, 3.5.1.1] [The lang attribute, 3.5.1.2]

10.2.8 The Event Attributes

As for most other elements in an HTML 4.0 standard document, the <form> tag honors the standard
mouse and keyboard event-related attributes that the HTML 4.0-compliant browser will recognize.
We describe the majority of these attributes in detail in Chapter 13, Executable Content. [JavaScript
Event Handlers, 13.3.3]

Forms have two special event-related attributes: onSubmit and onReset. The value of these event
attributes is - enclosed in quotation marks - one or a sequence of semicolon-separated JavaScript
expressions, methods, and function references. With onSubmit, the browser executes these
commands before it actually submits the form's data to the server or sends it to an email address.

You may use the onSubmit event for a variety of effects. The most popular is for a client-side
form-verification program that scans the form data and prompts the user to complete one or more
missing elements. Another popular and much simpler use is to inform users when a mailto URL
form is being processed via email.

The onReset attribute is used just like the onSubmit attribute, except that the associated program
code is executed only if the user presses a "Reset" button in the form.

10.1 Form Fundamentals 10.3 A Simple Form Example

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 10
Forms

10.3 A Simple Form Example
In a moment we'll examine each of the many form controls in detail. Let's first take a quick look at a
simple example to see how forms are put together. This one (shown in Figure 10.1) gathers basic
demographic information about a user:

<form method=POST action="http://www.kumquat.com/demo">
 Name:
 <input type=text name=name size=32 maxlength=80>
 <p>
 Sex:
 <input type=radio name=sex value="M"> Male
 <input type=radio name=sex value="F"> Female
 <p>
 Income:
 <select name=income size=1>
 <option>Under $25,000
 <option>$25,001 to $50,000
 <option>$50,001 and higher
 </select>
 <p>
 <input type=submit>
</form>

The first line of the example starts the form and indicates that we'll be using the POST method for
data transmission to the form-processing server. The form's user-input controls follow, each defined
by an <input> tag and type attribute. There are three controls in the simple example, each
contained within its own paragraph.

Figure 10.1: A simple form

The first control is a conventional text entry field, letting the user type up to 80 characters, but
displaying only 32 of them at a time. The next one is a multiple-choice option, which lets the user
select only one of two radio buttons. This is followed by a pull-down menu for choosing one of three
options. The final control is a simple submission button, which, when clicked by the user, sets the
form's processing in motion.

10.2 The <form> Tag 10.4 Using Email to Collect
Form Data

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 10
Forms

10.4 Using Email to Collect Form Data
It is becoming increasingly common to find authors who have no access to a web server other than to
upload their HTML documents. Consequently, they have no ability to create or manage CGI
programs. In fact, some Internet Service Providers (ISPs), particularly those hosting space for
hundreds or even thousands of sites, typically disable CGI services to limit their server's processing
load or as a security precaution.

If you are working with one of the many sites where you cannot get a form processed to save your
life, all is not lost: You can use a mailto URL as the value of the form's action attribute. The latest
browsers automatically will email the various form parameters and values to the address supplied in
the URL. The recipient of the mail can then process the form and take action accordingly.

For example, by substituting the following for the <form> tag in our previous example:

<form method=POST action="mailto:chuckandbill@oreilly.com"
enctype="text/plain"
 onSubmit="window.alert('This form is being sent by email, even
 though it may not appear that anything has happened...')">

the form data gets emailed to chuckandbill when submitted by the user, not otherwise processed
by a server. Notice, too, that we have a simple JavaScript alert message that appears when the browser
gets ready to send out the form data. The alert tells the user not to expect confirmation that the form
data was sent (see Figure 10.2). Also, unless disabled by the user or if you omit the method=POST
attribute, the browser typically will warn the user that they are about to send unencrypted
("text/plain") and thereby unsecure information over the network, and gives them the option to cancel
the submission. Otherwise, the form is sent via email without incident or notification.

Figure 10.2: A warning about a mailto form submission

The body of the resulting emailed form message looks something like this:

name=Bozo the Clown
sex=M
income=$50,001 and higher

10.4.1 Problems with Email Forms

If you choose to use either mailto or a form-to-email facility, there are several problems you may have
to deal with:

Your forms won't work on browsers that don't support a mailto URL as a form action.●

Some browsers, including as some versions of Internet Explorer, do not properly place the form
data into the email message body and may even open an email dialog box, confusing the user.

●

A mailto doesn't present users with a confirmation page to assure them that their form has been
processed. After executing the mailto form, the user is left looking at the form, as if nothing had
happened. (Use JavaScript to overcome this dilemma with an onSubmit or onClick event
handler.) [JavaScript Event Handlers, 13.3.3]

●

Your data may arrive in a form that is difficult, if not impossible, to read, unless you use a
readable enctype, such as text/plain.

●

You will lose whatever security protections that may have been provided by the server with the
form.

●

The last problem deserves additional explanation. Some web providers support special "secure" web
servers that attach an encryption key to your web page when sent to the user browser. The popular
browsers then use that key to encrypt any data that your document may send back to that same server,
including the user's form data. Since only the client's browser and the server know the key, only that
server will be able to decipher the information coming back to it from the client browser, effectively
securing the information from nefarious eavesdroppers and hackers.

However, if you use email to retrieve the form data, the server decrypts it before packaging the form
information into the body of an email message and sending it to you. Email normally is highly
susceptible to eavesdropping and other types of snooping. Its contents are very insecure.

So, please, if you use an email method to retrieve sensitive form data, such as credit cards and
personal information, be very aware of the potential consequences. And don't be fooled or fool your
users with a "secure" server when insecure email comes out the back end.

In spite of all these problems, email forms present an attractive alternative to the web author
constrained by a restricted server. Our advice: use CGI scripts if at all possible, and fall back to mailto
URLs if all else fails.

10.3 A Simple Form Example 10.5 The <input> Tag

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 10
Forms

10.5 The <input> Tag
Use the <input> tag to define any one of a number of common form "controls," as they are called in the HTML 4.0 standard, including text fields, multiple-choice lists, clickable images, and submission buttons. Although there are many attributes for the <input> tag, only the type and
name attributes are required for each element (only type for a submission or reset button; see following explanation). And as we describe in detail later, each type of input control uses only a subset of the allowed attributes. Additional <input> attributes may be required based upon which
type of form element you specify.

Table 10.1 summarizes the various form <input> types and attributes, required and optional.

Table 10.1: Required and Optional Form Element Attributes

Form Tag or
<input> Type

Attributes
(× =
required;
^ =

optional;
blank = not
supported)

accept accesskey align alt border cols checked disabled maxlength multiple name notab onBlur onChange onClick onFocus onSelect readonly rows size src tabindex taborder usemap value wrap

button ^ ^ × ^ ^ ^ ^ ^ ^ ×

checkbox ^ ^ ^ × ^ ^ ^ ^ ^ ×

file ^ ^ ^ ^ × ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

hidden × ×

image ^ ^ ^ ^ ^ ^ ^ ^ × ^ ^ ^

password ^ ^ ^ × ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ×

radio ^ ^ ^ × ^ ^ ^ ^ ^ ×

reset ^ ^ ^ ^ ^ ^ ^

submit ^ ^ ^ ^ ^ ^ ^ ^

text ^ ^ ^ × ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

<button> ^ ^ × ^ ^ ^ ^ ^

<select> ^ ^ × ^ ^ ^ ^ ^ ^

<textarea> ^ ^ ^ × ^ ^ ^ ^ ^ ^ ^ ^

<input>

Function:

Create an input element within a form

Attributes:

ACCEPT ONFOCUS

ACCESSKEY ONKEYDOWN

ALIGN ONKEYPRESS

ALT ONKEYUP

BORDER ONMOUSEDOWN

CHECKED ONMOUSEMOVE

CLASS ONMOUSEOUT

DIR ONMOUSEUP

DISABLED ONSELECT

ID READONLY

LANG SIZE

MAXLENGTH SRC

NAME STYLE

NOTAB TABINDEX

OMMOUSEOVER TABORDER

ONBLUR TITLE

ONCHANGE TYPE

ONCLICK USEMAP

ONDBLCLICK VALUE

End tag:

None

Contains:

Nothing

Used in:

form_content

You select the type of control to include in the form with the <input> tag's required type attribute, and you name the field (used during the form-submission process to the server; see earlier description) with the name attribute. Although the value of the name attribute is technically an
arbitrary string, we recommend that you use a name without embedded spaces or punctuation. If you stick to just letters and numbers (but no leading digits) and represent spaces with the underscore (_) character, you'll have fewer problems. For example, "cost_in_dollars" and
"overhead_percentage" are good choices for element names; "$cost" and "overhead %" might cause problems.

Notice, too, that the name you give to a form control is directly associated with the data that the u ser inputs to that control and which gets passed to the form-processing server. It is not the same, and does not share the same name space, as the name attribute for a hyperlink fragment or a
frame document.

10.5.1 Text Fields in Forms

The HTML standard lets you include four types of text entry controls in your forms: a conventional text entry field, a masked field for secure data entry, a field that names a file to be transmitted as part of your form data, and a special multiline text entry <textarea> tag. The first three
types are <input>-based controls; the fourth is a separate tag that we describe in section Section 10.6, "Multiline Text Areas".

10.5.1.1 Conventional text fields

The most useful as well as the most common form input control is the text entry field. A text entry field appears in the browser window as an empty box on one line and accepts a single line of user input that becomes the value of the control when the user submits the form to the server. To
create a text entry field inside a form in your HTML document, set the type of the <input> form element to text. Include a name attribute as well; it's required.

What constitutes a line of text differs among the various browsers. Fortunately, HTML gives us a way, with size and maxlength attributes, to dictate the width, in characters, of the text input display box, and how many total characters to accept from the user, respectively. The value for
either attribute is an integer equal to the maximum number of characters you'll allow the user to see and type in the field. If maxlength exceeds size, then text scrolls back and forth within the text entry box. If maxlength is smaller than size, there will be extra blank space in the text
entry box to make up the difference between the two attributes.

The default value for size is dependent upon the browser; the default value for maxlength is unlimited. We recommend that you set them yourself. Adjust the size attribute so that the text entry box does not extend beyond the right margin of a typical browser window (about 60
characters with a very short prompt). Set maxlength to a reasonable number of characters; for example, 2 for state abbreviations, 12 for phone numbers, and so on.

A text entry field is usually blank at first until the user types something into it. You may, however, specify an initial default value for the field with the value attribute. The user may modify the default, of course. If the user presses a form's reset button, the value of the field is reset to this
default value. [Reset buttons, 10.5.4.2]

These are all valid text entry form controls:

<input type=text name=comments>
<input type=text name=zipcode size=10 maxlength=10>
<input type=text name=address size=30 maxlength=256>
<input type=text name=rate size=3 maxlength=3 value="100">

The first example creates a text entry field set to the browser's default width and maximum length. As we argued, this is not a good idea, because defaults vary widely among browsers, and your form layout is sure to look bad with some of them. Rather, fix the width and maximum number of
acceptable input characters as we do in the second example: it lets the user type in up to ten characters inside an input box ten characters wide. Its value will be sent to the server with the name "zipcode" when the user submits the form.

The third example control tells the browser to display a text input box 30 characters wide into which the user may type up to 256 characters. The browser automatically scrolls text inside the input box to expose the extra characters.

The last text input control is three characters wide, lets the user type in only three characters, and sets its initial value to 100.

Notice in the second and fourth examples, it is implied that certain kinds of data are to be entered by the user - a postal code or a numeric rate, respectively. Except for limiting how many, HTML provides no way for you to dictate what characters may be typed into a text input field. For
instance, in the last example field, the user may type "ABC" even though you intend it to be a number less than 1,000. Your server-side application or an applet must trap erroneous or mistaken input, as well as check for incomplete forms, and send the appropriate error message to the user
when things aren't right. That can be a tedious process, so we emphasize again: provide clear and precise instructions and prompts. Make sure your forms tell users what kinds of input you expect from them, thereby reducing the number of mistakes they may make when filling it out.

10.5.1.2 Masked text controls

Like the Lone Ranger, the mask is on the good guys in a masked text field. It behaves just like a conventional text control in a form, except that the user-typed characters don't appear onscreen. Rather, the browser obscures the characters in a masked text to keep such things as passwords and
other sensitive codes from prying eyes.

To create a masked text control, set the value of the type attribute to password. All other attributes and semantics of the conventional text control apply to the masked one. Hence, you must provide a name, and you may specify a size and maxlength for the field, as well as an initial
value (we recommend it).

Don't be misled: a masked text control is not all that secure. The typed-in value is only obscured onscreen; the browser transmits it unencrypted when the form is submitted to the server, unless you are using a special secure-forms server. So, while prying eyes may not see them onscreen,
devious bad guys may steal the information electronically.

10.5.1.3 File selection controls

As its name implies, the file-selection control lets users select a file stored on their computer and send it to the server when they submit the form. The browser presents the file-selection form control to the user like other text fields, and accompanied by a button labeled "Browse" to its right.
Users either type the pathname of the file directly as text into the field, or, with the Browse option, select the name of a locally stored file from a system-specific dialog box.

Create a file-selection control in a form by setting the value of the type attribute to file. Like other text controls, the size and maxlength of a file-selection field should be set to appropriate values, with the browser creating a field 20 characters wide, if not otherwise directed. Since file
and directory names differ widely among systems, it makes no sense to provide a default value for this control. As such, the value attribute should not be used with this kind of text control.

The Browse button opens a platform-specific file-selection dialog box that allows users to select a value for the field. In this case, the entire pathname of the selected file is placed into the field, even if the length of that pathname exceeds the control's specified maxlength.

Use the accept attribute to constrain the types of files that the browser lets the user select. Its value is a comma-separated list of MIME encodings; users can select only files whose type matches one of those in the list. For example, to restrict the selection to images, you might add
accept="image/*" to the file selection <input> tag.

Unlike other form input controls, the file-selection field works correctly only with a specific form data encoding and transmission method. If you include one or more file-selection fields in your form, you must set the enctype attribute of the <form> tag to multipart/form-data and
the <form> tag's method attribute to post. Otherwise, the file-selection field behaves like a regular text field, transmitting its value (that is, the file's pathname) to the server instead of the contents of the file itself.

This is all easier than it may sound. For example, here is a form that collects a person's name and favorite file:

<form enctype="multipart/form-data" method=post
 action="cgi-bin/save_file">
Your name: <input type=text size=20 name=the_name>
<p>
Your favorite file: <input type=file size=20 name=fav_file>
</form>

The data transmitted from the browser to the server for this example form has two parts. The first contains the value for the name field, and the second contains the name and contents of the specified file:

-----------------------------6099238414674
Content-Disposition: form-data; name="the_name"

One line of text field contents
-----------------------------6099238414674
Content-Disposition: form-data; name="fav_file"; filename="abc"

First line of file
...
Last line of file
-----------------------------6099238414674--

The browsers don't check that a valid file has been specified by the user. If no file is specified, the filename portion of the Content-Disposition header will be empty. If the file doesn't exist, its name appears in the filename subheader, but there will be no Content-Type header or
subsequent lines of file content. Valid files may contain nonprintable or binary data; there is no way to restrict user-selectable file types. In light of these potential problems, the form-processing application on the server should be robust enough to handle missing files, erroneous files,
extremely large files, and files with unusual or unexpected formats.

10.5.2 Checkboxes

The checkbox form control gives users a way to select or deselect an item quickly and easily in your form. Checkboxes may also be grouped to create a set of choices, any of which may be selected or deselected by the user.

Create individual checkboxes by setting the type attribute for each <input> tag to checkbox. Include the required name and value attributes. If the item is selected by the user, it will contribute a value when the form is submitted. If it is not selected, that element will not contribute a
value. The optional checked attribute (no value) tells the browser to display a checked checkbox and include the value when submitting the form to the server unless the user specifically clicks the mouse to deselect (uncheck) the box.

The popular browsers include the value of selected (checked) checkboxes with other form parameters when they are submitted to the server. The value of the checked checkbox is the text string you specify in the required value attribute. For example:

<form>
 What pets do you own?
 <p>
 <input type=checkbox name=pets value="dog"> Dog

 <input type=checkbox checked name=pets value="cat"> Cat

 <input type=checkbox name=pets value="bird"> Bird

 <input type=checkbox name=pets value="fish"> Fish
</form>

creates a checkbox group as shown in Figure 10.3.

Figure 10.3: A checkbox group

Although part of the group, each checkbox control appears as a separate choice onscreen. Notice too, with all due respect to dog, bird, and fish lovers, that we've preselected the cat checkbox with the checked attribute in its tag. We've also provided text labels; the similar value attributes
don't appear in the browser's window, but are the values included in the form's parameter list if the checkbox is selected and the form is submitted to the server by the user. Also, you need to use paragraph or line-break tags to control the layout of your checkbox group, as you do for other
form controls.

In the example, if "Cat" and "Fish" are checked when the form is submitted, the values included in the parameter list sent to the server would be:

pets=cat
pets=fish

10.5.3 Radio Buttons

Radio-button form controls are similar in behavior to checkboxes, except that only one in the group may be selected by the user.[3] Create a radio button by setting the type attribute of the <input> tag to radio. Like checkbox controls, radio buttons each require a name and value
attribute. Radio buttons with the same name are members of a group. One of them may be initially checked by including the checked attribute with that element. If no element in the group is checked, the browser automatically checks the first element in the group.

[3] Some of us are old enough, while not yet senile, to recall when automobile radios had mechanical pushbuttons for selecting a station. Pushing in one button popped out the previously depressed one, implementing a mechanical one-of-many choice mechanism.

You should give each radio button element a different value, so that the form-processing server can sort them out after submission of the form.

Here's the previous example reworked so that now you get to choose only one animal as a favorite pet (see Figure 10.4):

<form>
 Which type of animal is your favorite pet?
 <p>
 <input type=radio name=favorite value="dog"> Dog

 <input type=radio checked name=favorite value="cat"> Cat

 <input type=radio name=favorite value="bird"> Bird

 <input type=radio name=favorite value="fish"> Fish
</form>

Again, like the previous example with checkboxes, we've tipped our hat toward felines, making the "Cat" radio button the default choice. If you select an alternative - "Bird," for instance - the browser automatically deselects "Cat." When the user submits the form to the server, the browser
includes only one value with the name "favorite" in the list of form parameters; favorite=bird, if that was your choice.

Since one of the controls in a group of radio buttons is always selected, it makes no sense to create a single radio button; they should appear in your documents as groups of two or more. (Use checkboxes for on/off, yes/no types of form controls.)

Figure 10.4: Radio buttons allow only one selection per group

10.5.4 Action Buttons

Although the terminology is potentially confusing, there is another class of buttons for HTML forms. Unlike the radio buttons and checkboxes described previously, these special types of form controls act immediately, their effects cannot be reversed, and they affect the entire contents of the
form, not just the value of a single field. These "action" buttons (for lack of a better term) include submit, reset, regular, and clickable image buttons. When selected by the user, both the submit and image buttons cause the browser to submit all of the form's parameters to the form-processing
server. A regular button does not submit the form, but can be used to invoke an applet to manipulate or validate the form. The reset button acts locally to return a partially filled-out form to its original (default) state. [JavaScript Event Handlers, 13.3.3]

In this section we describe the action buttons that you may create with the standard form <input> element. In the next section, we describe in detail the new HTML 4.0 <button> tag that achieves identical effects, and allows you greater control over the presentation and display of your
form buttons.

10.5.4.1 Submission buttons

The submit button (<input type=submit>) does what its name implies, setting in motion the form's submission to the server from the browser. You may have more than one submit button in a form. You may also include name and value attributes with the submit type of input form
button.

With the simplest submit button (that without a name or value attribute), the browser displays a small rectangle or oval with the default label "Submit". Otherwise, the browser labels the button with the text you include with the tag's value attribute. If you provide a name attribute, the
value attribute for the submit button is added to the parameter list the browser sends along to the server. That's good, because it gives you a way to identify which button in a form was pressed, letting you process any one of several different forms with a single form-processing application.

The following are all valid submission buttons:

<input type=submit>
<input type=submit value="Order Kumquats">
<input type=submit value="Ship Overnight" name="ship_style">

The first one is also the simplest: the browser displays a button, labeled "Submit," which activates the form-processing sequence when clicked by the user. It does not add an element to the parameter list that the browser passes to the form-processing server and application.

The second example button has the value attribute that makes the displayed button label "Order Kumquats," but like the first example does not include the button's value in the form's parameter list.

The last example sets the button label and makes it part of the form's parameter list. When clicked by the user, that last example of the submission button adds the parameter ship_style="Ship Overnight" to the form's parameter list.

10.5.4.2 Reset buttons

The reset type of form <input> button is nearly self-explanatory: it lets the user reset - erase or set to some default value - all elements in the form. Unlike the other buttons, a reset button does not initiate form processing. Instead, the browser does the work of resetting the form elements.
The server never knows (or cares, for that matter) if or when the user might have pressed a reset button.

By default, the browser displays a reset button with the label "Reset." You can change that by specifying a value attribute with your own button label.

Here are two sample reset buttons:

<input type=reset>
<input type=reset value="Use Defaults">

The first one creates a reset button labeled "Reset"; the browser labels the second example reset button with "Use Defaults." They both initiate the same reset response in the browser.

10.5.4.3 Custom image buttons

The image type of <input> form element creates a custom button that is a "clickable" image. It's a special button made out of your specified image that, when clicked by the user, tells the browser to submit the form to the server, and includes the x,y coordinates of the mouse pointer in the
form's parameter list, much like the mouse-sensitive image maps we discuss in Chapter 7, Links and Webs. Image buttons require a src attribute with the URL of the image file, and you can include a name attribute and a descriptive alt attribute for non-graphical browsers. You may also
use align and border (Netscape only) attributes to control image alignment within the current line of text and the width of the frame that Netscape places around the image, respectively, much like the align and border attributes for the tag (Internet Explorer doesn't place a
border on form <input> images).

Here are a couple of valid image buttons:

<input type=image src="pics/map.gif" name=map>
<input type=image src="pics/xmap.gif" align=top name=map>

The browser displays the designated image within the form's content flow. The second button's image will be aligned with the top of the adjacent text, as specified by the align attribute. Some browsers (Netscape, for instance) also add a border, as it does when an image is part of an anchor
(<a> tag), to signal that the image is a form button.

When the user clicks the image, the browser sends the horizontal offset, in pixels, of the mouse from the left edge of the image and the vertical offset from the top edge of the image to the server. These values are assigned the name of the image as specified with the name attribute, followed
by .x and .y, respectively. Thus, if someone clicked the image specified earlier in the example, the browser would send parameters named map.x and map.y to the server.

Image buttons behave much like mouse-sensitive image maps (usemaps), and, like the programs or client-side <map> tags that process image maps, your form-processor may use the x,y mouse-pointer parameters to choose a special course of action. You should use an image button when
you need additional form information to process the user's request. If an image map of links is all you need, use a mouse-sensitive image map. Mouse-sensitive images also have the added benefit of providing server-side support for automatic detection of shape selection within the image,
letting you deal with the image as a selectable collection of shapes. Buttons with images require you to write code that determines where the user clicked on the image and how this position can be translated to an appropriate action by the server.

Oddly, the HTML 4.0 standard allows the use of the usemap attribute with an image button, but does not explain how such a use might conflict with normal server processing of the x,y coordinates of the mouse position. We recommend not mixing the two, using mouse-sensitive images
outside of forms and image buttons within forms.

10.5.4.4 Push buttons

Using the <input type=button> tag (or the <button> tag, described in section Section 10.5.6, "The <button> Tag"), you can create a button that can be clicked by the user but that does not submit or reset the form. The value attribute can be used to set the label on the button; the
name attribute, if specified, will cause the supplied value to be passed to the form processing script.

You might wonder what value such buttons provide: little or none, unless you supply one or more of the event attributes along with a snippet of JavaScript to be executed when the user interacts with the button. Thus empowered, regular buttons can be used to validate form contents, update
fields, manipulate the document, and initiate all sorts of client-side activity. [JavaScript Event Handlers, 13.3.3]

10.5.4.5 Multiple buttons in a single form

You can have several buttons of the same or different types in a single form. Even simple forms have both reset and submit buttons, for example. To distinguish between them, make sure each has a different value attribute, which the browser uses for the button label. Depending on the way
you program the form-processing application, you might also make the name of each button different, but it is usually easier to name all similarly acting buttons the same and let the button handling subroutine sort them out by value. For instance:

<input type=submit name=action value="Add">
<input type=submit name=action value="Delete">
<input type=submit name=action value="Change">
<input type=submit name=action value="Cancel">

When the user selects one of these example buttons, a form parameter named action will be sent to the server. The value of this parameter will be one of the button names. The server-side application gets the value and behaves accordingly.

Since an image button doesn't have a value attribute, the only way to distinguish between several image buttons on a single form is to ensure that they all have different names.

10.5.5 Hidden Fields

The last type of form input control we describe in this chapter is hidden from view. No, we're not trying to conceal anything. It's a way to embed information into your forms that cannot be ignored or altered by the browser or user. Rather, the <input type=hidden> tag's required name
and value attributes automatically get included in the submitted form's parameter list. These serve to label the form and can be invaluable when sorting out different forms or form versions from a collection of submitted and saved forms.

Another use for hidden fields is to manage user/server interactions. For instance, it helps the server to know that the current form has come from a person who made a similar request a few moments ago. Normally, the server does not retain this information and each transaction between the
server and client is completely independent from all other transactions.

For example, the first form submitted by the user might have asked for some basic information, such as the user's name and where they live. Based on that initial contact, the server might create a second form asking more specific questions of the user. Since it is tedious for users to re-enter
the same basic information from the first form, the server can be programmed to put those values in the second form in hidden fields. When the second form comes back, all the important information from both forms is there, and the second form can be matched to the first one, if necessary.

Hidden fields may also direct the server towards some specific action. For example, you might embed the hidden field:

<input type=hidden name=action value=change>

Therefore, if you have one server-side application that handles the processing of several forms, each form might contain a different action code to help that server application sort things out.

10.5.6 The <button> Tag

As we described in detail earlier, you create an action button with traditional HTML by including its type value in the standard <input> tag. For instance, the <input type=submit> form control creates a button that, when selected by the user, tells the browser to send the form's
contents to the processing server or to an email address (mailto option). Display-wise, you don't have any direct control over what that submit button looks like, beyond changing the default label "Submit" to some other word or short phrase like "Hit me" or "Outta here!"

The new HTML 4.0 standard introduces the <button> tag, which acts the same as to the <input> button, but gives you more control over how the element gets displayed by the browser. In particular, all of the attributes you might use with the <input type=button> element are
acceptable with the <button> tag.

<button>

Function:

Create an button element within a form

Attributes:

ACCESSKEY ONKEYDOWN

CLASS ONKEYPRESS

DIR ONKEYUP

DISABLED ONMOUSEDOWN

ID ONMOUSEMOVE

LANG ONMOUSEOUT

NAME ONMOUSEUP

OMMOUSEOVER STYLE

ONBLUR TABINDEX

ONCLICK TITLE

ONDBLCLICK TYPE

ONFOCUS VALUE

End tag:

</button>; never omitted

Contains:

button_content

Used in:

form_content

10.5.6.1 The <button> button

The HTML 4.0 standard is not overly clear as to what display enhancements to a form button control the <button> element should provide, other than to suggest that the contents should be 3D and visually appear to react like a push button when selected by the user; that is, go in and back
out when pressed. No browser yet supports <button>; hence we cannot show you any examples.

The <button> control does provide for a greater variety and richer contents over its <input> analogues. Everything between the <button> and </button> tags becomes the content of the button, including any acceptable body content, such as text or multimedia. For instance, you
could include an image and related text within a button, creating attractive labelled icons in your buttons. The only verboten element is an image map, since its mouse- and keyboard-sensitive actions interfere with the form button.

10.5.6.2 The type attribute

Use the type attribute for the <button> tag to define the button's action. Its value should be set to submit, reset, or button. Like its <input> analog, a <button type=submit>, when selected by the user, tells the browser to package and send the contents of the form to the
form-processing server or email it to the mailto recipient. Using type=reset creates a conventional reset button, and using type=button creates a conventional push button.

For example, an HTML 4.0-compliant browser might display the following sendit.gif icon inset on a 3D button that pushes in and pops back out when the user clicks it with the mouse. In doing so, the browser will then submit the form to the server:

<button type=submit>

Send it
</button>

Notice that you can exploit the rich set of tag attributes, including align and alt, for this <button> style of form control.

Since the <button> tag is so similar to the <input type=button> element, why have it at all? The only reason is to provide far richer content for buttons. If your buttons are conventional text buttons, the <input> tag will suffice. If you want to create fancy mixed-content buttons,
you'll need to use the <button> tag.

10.4 Using Email to Collect
Form Data

10.6 Multiline Text Areas

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 10
Forms

10.6 Multiline Text Areas
The conventional and hidden-text types for forms restrict user input to a single line of characters. The
<textarea> form tag sets users free.

10.6.1 The <textarea> Tag

As part of a form, the <textarea> tag creates a multiline text entry area in the user's browser
display. In it, the user may type a nearly unlimited number of lines of text. Upon submission of the
form, the browser collects all the lines of text, each separated by "%0D%0A" (carriage return/line
feed), and sends them to the server as the value of this form element, using the name specified by the
required name attribute.

<textarea>

Function:

Create a multiline text input area

Attributes:

ACCESSKEY ONKEYPRESS

CLASS ONKEYUP

COLS ONMOUSEDOWN

DIR ONMOUSEMOVE

DISABLED ONMOUSEOUT

ID ONMOUSEOVER

LANG ONMOUSEUP

NAME ONSELECT

ONBLUR READONLY

ONCHANGE ROWS

ONCLICK STYLE

ONDBLCLICK TABINDEX

ONFOCUS TITLE

ONKEYDOWN WRAP

End tag:

</textarea>; never omitted

Contains:

plain_text

Used in:

form_content

You may include plain text inside the <textarea> tag and its end tag. That default text must be
plain text - no tags or other special HTML elements. The contents may be modified by the user, and
the browser uses that text as the default value if the user presses a reset button for the form. Hence, the
text content is most often included for instructions and examples:

Tell us about yourself:
<textarea name=address cols=40 rows=4>
 Your Name Here
 1234 My Street
 Anytown, State Zipcode
</textarea>

10.6.1.1 The rows and cols attributes

A multiline text input area stands alone onscreen: body content flows above and below, but not
around it. You can control its dimensions, however, by defining the cols and rows attributes for the
visible rectangular area set aside by the browser for multiline input. We suggest you do set these
attributes. The common browsers have a habit of setting aside the smallest, least readable region
possible for <textarea> input, and the user can't resize it. Both attributes require integer values for
the respective dimension's size in characters. The browser automatically scrolls text that exceeds
either dimension.

10.6.1.2 The wrap attribute

Normally, text typed in the text area by the user is transmitted to the server exactly as typed, with
lines broken only where the user pressed the Enter key. Since this is often not the desired action by the
user, you can enable word wrapping within the text area. When the user types a line that is longer than
the width of the text area, the browser automatically moves the extra text down to the next line,
breaking the line at the nearest point between words in the line.

With the wrap attribute set to virtual, the text is wrapped within the text area for presentation to
the user, but the text is transmitted to the server as if no wrapping had occurred, except where the user
pressed the Enter key.

With the wrap attribute set to physical, the text is wrapped within the text area and is transmitted
to the server as if the user had actually typed it that way. This the most useful way to use word wrap,
since the text is transmitted exactly as the user sees it in the text area.

To obtain the default action, set the wrap attribute to off.

As an example, consider the following 60 characters of text being typed into a 40-character-wide text
area:

Word wrapping is a feature that makes life easier for users.

With wrap=off, the text area will contain one line and the user will have to scroll to the right to see
all of the text. One line of text will be transmitted to the server.

With wrap=virtual, the text area will contain two lines of text, broken after the word "makes."
Only one line of text will be transmitted to the server: the entire line with no embedded newline
characters.

With wrap=physical, the text area will contain two lines of text, broken after the word "makes."
Two lines of text will be sent to the server, separated by a newline character after the word "makes."

10.5 The <input> Tag 10.7 Multiple Choice
Elements

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 10
Forms

10.7 Multiple Choice Elements
Checkboxes and radio buttons give you powerful means for creating multiple-choice questions and
answers, but they can lead to long forms that are tedious to write and put a fair amount of clutter
onscreen. The <select> tag gives you two compact alternatives: pull-down menus and scrolling
lists.

10.7.1 The <select> Tag

By placing a list of <option>-tagged items inside the <select> tag of a form, you magically
create a pull-down menu of choices.

<select>

Function:

Create single- and multiple-choice menus

Attributes:

CLASS ONKEYPRESS

DIR ONKEYUP

DISABLED ONMOUSEDOWN

ID ONMOUSEMOVE

LANG ONMOUSEOUT

MULTIPLE ONMOUSEOVER

NAME ONMOUSEUP

ONBLUR ONSELECT

ONCHANGE SIZE

ONCLICK STYLE

ONDBLCLICK TABINDEX

ONFOCUS TITLE

ONKEYDOWN

End tag:

</select>; never omitted

Contains:

select_content

Used in:

form_content

As with other form tags, the name attribute is required and used by the browser when submitting the
<select> choices to the server. Unlike radio buttons, however, no item is preselected, so if none is
selected, no values are sent to the server when the form is submitted. Otherwise, the browser submits
the selected item or collects multiple selections, each separated with commas, into a single parameter
list and includes the name attribute when submitting <select> form data to the server.

10.7.1.1 The multiple attribute

To allow more than one option selection at a time, add the multiple attribute to the <select>
tag. This causes the <select> to behave like an <input type=checkbox> element. If
multiple is not specified, exactly one option can be selected at a time, just like a group of radio
buttons.

10.7.1.2 The size attribute

The size attribute determines how many options are visible to the user at one time. The value of
size should be a positive integer. The default value is 1 when size isn't specified. At size=1, if
multiple is not specified, the browser typically displays the <select> list as a pop-up menu.
Size values greater than one or specification of the multiple attribute cause the <select> to be
displayed as a scrolling list.

In the following example, we've converted our previous checkbox example into a scrolling,
multiple-choice menu. Notice also that the size attribute tells the browser to display three options at
a time:

What pets do you own?
 <select name=pets size=3 multiple>
 <option>Dog
 <option>Cat
 <option>Bird
 <option>Fish
 </select>

The result is shown in Figure 10.5, along with the change in appearance when the size attribute is
set to 1 and multiple is not specified.

Figure 10.5: A <select> element, formatted with size=1 (left) and size=3 (right)

10.7.2 The <option> Tag

Use the <option> tag to define each item within a <select> form control.

<option>

Function:

Define available options within a <select> menu

Attributes:

CLASS ONMOUSEDOWN

DIR ONMOUSEMOVE

DISABLED ONMOUSEOUT

ID ONMOUSEOVER

LABEL ONMOUSEUP

LANG ONSELECT

ONCLICK SELECTED

ONDBLCLICK STYLE

ONKEYDOWN TITLE

ONKEYPRESS VALUE

ONKEYUP

End tag:

</option>; always omitted

Contains:

plain_text

Used in:

select_content

The browser displays the <option> tag's contents as an element within the <select> tag's menu
or scrolling list, so the content must be plain text only, without any other sort of markup.

10.7.2.1 The value attribute

Use the value attribute to set a value for each option the browser sends to the server if that option is
selected by the user. If the value attribute has not been specified, the value of the option is set to the
content of the <option> tag.

As an example, consider these options:

<option value=Dog>Dog
<option>Dog

Both have the same value. The first is explicitly set within the <option> tag; the second defaults to
the content of the <option> tag itself.

10.7.2.2 The selected attribute

By default, all options within a multiple-choice <select> tag are unselected. Include the
selected attribute (no value) inside the <option> tag to preselect one or more options, which the
user may then deselect. Single-choice <select> tags will preselect the first option if no option is
explicitly preselected.

10.7.2.3 The label attribute

Normally, the contents of the <option> tag are used to create the label for that element when it is
displayed to the user. If the label attribute is supplied, its value is used as a label instead.

10.7.3 The <optgroup> Tag

Menus of choices in forms can be quite large, making them difficult to display and use. In these cases,
it is helpful to group related choices, which can then be presented as a set of nested, cascading menus
to the user. New in HTML 4.0, the <optgroup> tag brings this capability to HTML forms, albeit
limited.

<optgroup>

Function:

Group related <option> elements within a <select> menu

Attributes:

CLASS ONKEYUP

DIR ONMOUSEDOWN

DISABLED ONMOUSEMOVE

ID ONMOUSEOUT

LABEL ONMOUSEOVER

LANG ONMOUSEUP

ONCLICK ONSELECT

ONDBLCLICK STYLE

ONKEYDOWN TITLE

ONKEYPRESS

End tag:

</optgroup>; may be omitted

Contains:

optgroup_contents

Used in:

select_content

Use the <optgroup> tag only within a <select> tag, and it may only contain <option> tags.
The browser creates submenus for each <optgroup> tag within the main <select> menu. For
example, you might use <optgroup> to present a form menu of states organized by region:

<select name=state>
 <optgroup label=Northeast>
 <option>Maine
 <option>New Hampshire
 ...
 </optgroup>
 <optgroup label=South>
 <option>Georgia
 <option>Florida
 ...
 </optgroup>
 ...
</select>

Since no browser yet supports the <optgroup> tag, we can't show you what this menu might look
like. However, it will probably look and feel much like the familiar pull-down menus that are a
common feature of most graphical user interfaces. When selected with the mouse or keyboard, the
optgroup probably will open into one or more menus. For instance, our "state" example probably
will have submenus labeled "Northeast," "South," and so on, each of which can be pulled open to
reveal a list of included states.

Regrettably, the biggest drawback to the <optgroup> tag is that it cannot be nested, limiting you to
one level of submenus. Presumably this restriction will be lifted in a future version of HTML.

10.7.3.1 The label attribute

Use the label attribute to define an optgroup's submenu title to the user. You should keep the label

short and to the point, to ensure that the menu can be displayed easily on a large variety of displays.

10.6 Multiline Text Areas 10.8 General Form Control
Attributes

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 10
Forms

10.8 General Form Control Attributes
The many form control tags contain common attributes that, like most other HTML 4.0 tags, generally
serve to label, set up the display, extend the text language, and make the tag extensible
programmatically.

10.8.1 The id and title Attributes

The id attribute, like most other HTML 4.0 standard tags, lets you attach a unique string label to the
form control and its contents for reference by programs (applets) and hyperlinks. This name is distinct
from the name assigned to a control element with the name attribute. Names assigned with the id
attribute are not passed to the server when the form is processed.

The title attribute is similar to id in that it uses a quote-enclosed string value to label the form
control. However, it entitles only the form segment; its value cannot be used in an applet reference or
hyperlink. Browsers may use the title as pop-up help for the user, or in non-visual presentation of the
form. [The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5]

10.8.2 The event Attributes

Like most other elements in an HTML 4.0 standard document, most of the form controls support a
number of user mouse and keyboard event-related attributes that the HTML 4.0-compliant browser
will recognize and let you specially process with an applet, such as a JavaScript program. We describe
the majority of these events in detail in Chapter 13, Executable Content.

10.8.3 The class, style, lang, and dir Attributes

The style attribute for the various form controls creates an inline style for the elements enclosed by
the tag, overriding any other style rule in effect. The class attribute lets you format the content
according to a predefined class of the <form> tag; its value is the name of that class. [Inline Styles:
The style Attribute, 9.1.1] [Style Classes, 9.2.4]

The lang attribute lets you specify the language used within a control, accepting as its value any of
the ISO standard two-character language abbreviations, including an optional language modifier. For
example, adding lang=en-UK tells the browser that the list is in English ("en") as spoken and
written in the United Kingdom (UK). Presumably, the browser may make layout or typographic
decisions based upon your language choice. [The lang attribute, 3.5.1.2]

Similarly, the dir attribute tells the browser which direction to display the control contents, from left
to right (dir=ltr) like English or French, or from right to left (dir=rtl), such as with Hebrew or
Chinese. [The dir attribute, 3.5.1.1]

The dir and lang attributes are supported by the popular browsers, even though there are no
behaviors defined for any specific language.

10.8.4 The notab, tabindex, and taborder Attributes

By default, every element (except hidden elements) is part of the form's tab order. As the user presses
the Tab key, the browser shifts the input focus from element to element in the form. For most
browsers, the tabbing order of the elements matches the order of the elements within the <form> tag.
With HTML 4.0's tabindex attribute, you can change the order and the position of those elements
within the tab order.

To reposition an element within the tab order, set the value of the attribute to the element's desired
position in the tab order, with the first element in the order being number one. If you really want to
change a form's tab order, we suggest you include the tabindex attribute with every element in the
form, with an appropriate value for each element. In this way, you'll be sure to place every element
explicitly in the tab order, and there will be no surprises when the user tabs through the form.

The value of the tabindex attribute is a positive integer indicating the position of the tagged
contents in the overall tab sequence for the document. The tabbing order begins with elements with
explicit tabindex values, starting from the lowest to the highest numbers. Same-valued tags get
tab-selected in the order in which they appear in the document. All other tabable tags, such as the
various form controls and hyperlinks, are the last to get tabbed, in the order in which they appear in
the document. To exclude an element from the tab order, set the value of tabindex to zero. The
element will be skipped when the user tabs around the form.

Internet Explorer introduced the concept of tab-order management with its proprietary taborder
and notab attributes. The taborder attribute functions exactly like the HTML 4.0 tabindex
attribute, while notab is equivalent to tabindex=0. In general, we suggest using the tabindex
attribute instead of taborder, ensuring that your documents, while not tab-sensitive with the current
browsers, will most certainly be so with future releases.

10.8.5 The accesskey Attribute

Many user interfaces promote the idea of shortcut keys, short sequences of keystrokes that gives you
quick access to an element in the user interface. HTML 4.0 provides support for this capability with
the accesskey attribute. The value of the accesskey attribute is a single character that, when
pressed in conjunction with some other special key, causes focus to shift immediately to the
associated form element. This special key varies with each user interface: Windows users might press
the Alt key, while Unix users would press Meta, for example.

For example, adding accesskey=T to a <textarea> element would cause focus to shift to that
text area when a Windows user pressed Alt-T. Note that the value of the accesskey attribute is a
single character and is case-sensitive.

Currently, no browser supports the accesskey attribute.

10.8.6 The readonly and disabled Attributes

The new HTML 4.0 standard lets you define but otherwise disable a form control by simply inserting
the disabled attribute within the tag. A disabled form control appears in the display, but cannot be
accessed via the Tab key, nor are its parameters passed to the server when the form gets submitted by
the user. Browsers may gray out or otherwise change the appearance of disabled elements, and may
similarly alter any labels associated with disabled elements.

Similarly, a text-related <input> or <textarea> form control that specifies the readonly
attribute may not be altered by the user. These elements are still part of the tab order, and may be
selected with the mouse, and the value of the control gets sent to the server when the user submits the
form. The user just can't alter the value. So, in a sense, a form control rendered readonly is the
visible analog of the <input type=hidden> control.

10.7 Multiple Choice
Elements

10.9 Labeling and Grouping
Form Elements

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 10
Forms

10.9 Labeling and Grouping Form Elements
The common text and other content you may use to label and otherwise explain a form are static.
Other than by their visual relationship to the form's input areas, these labels and instructions otherwise
are unassociated with the form control that they serve. Because of this, forms are not easily
understood and navigable, particularly by people with impaired vision. Try it. Get a simple personal
information HTML form on screen, close your eyes, and find the place to enter your name.

The HTML 4.0 standard introduces three new tags that make navigation of HTML forms easier for
users, particularly those with disabilities. They include a way to group and caption regions of the
form, and a way to individually label form controls. All are supposed to get special treatment by the
browser, such as being rendered by a speech-synthesizer as well as specially displayed, and can be
easily accessed from the user keyboard. That is, when browsers become HTML 4.0-compliant.

10.9.1 The <label> Tag

Use the <label> tag to define relationships between a form control, such as a text input field and
one or more text labels. According to the new standard, the text in a label is to receive special
treatment by the browser. Browsers may choose a special display style for the label (you can, too,
with style sheets). And when selected by the user, the browser automatically transfers focus to a
label's associated form control.

<label>

Function:

Creates a label for a form element

Attributes:

ACCESSKEY ONKEYDOWN

CLASS ONKEYPRESS

DIR ONKEYUP

FOR ONMOUSEDOWN

ID ONMOUSEMOVE

LANG ONMOUSEOUT

ONBLUR ONMOUSEOVER

ONCLICK ONMOUSEUP

ONDBLCLICK STYLE

ONFOCUS TITLE

End tag:

</label>; never omitted

Contains:

label_contents

Used in:

form_content

10.9.1.1 Explicit and implicit associations

One or more labels get associated with a form control in one of two ways: implicitly by including the
form control as contents of the label tag, or explicitly by naming the id of the target form control in
the <label> tag's for attribute.

For example:

<label for="SSN">Social Security Number:</label>
<input type=text name="SocSecNum" id="SSN">
<label>Date of birth: <input type=text name="DofB"></label>

The first label explicitly relates the text "Social Security Number:" with the form's Social Security
Number text-input control (SocSecNum) since its for attribute's value is identical to the control's id,
"SSN." The second label ("Date of birth") does not require a for attribute, nor does its related control
require an id attribute, since they are implicitly joined by placing the <input> tag within the
<label> tag.

Be careful not to confuse the name and id attributes. The former creates a name for an element that
is used by the server-side form processor; the latter creates a name that can be used by <label> tags
and URLs. Note also that although a label may reference only a single form control, a single control
may be referenced by several labels. This gives you the ability to steer users to a particular form input
region from several places in a document.

10.9.1.2 Other label attributes

Labels also share many of the general display, access, and event-related HTML 4.0 tag attributes
described in section Section 10.8, "General Form Control Attributes". In addition to the standard
HTML 4.0 event attributes, labels also support the onfocus and onblur attributes.

10.9.2 Forming a Group

Beyond individual labels, you may group a set of form controls and label the group with the
<fieldset> and <legend> tags. Again, the HTML 4.0 standard's intention is to make forms
more readily accessible by users, particularly those with disabilities. Grouping form controls into
explicit sections gives you the opportunity to specially display and otherwise manage the form
contents.

10.9.2.1 The <fieldset> tag

Use the <fieldset> tag to encapsulate a section of form contents, thereby creating a group of
related form fields. A <fieldset> does not have any required or unique attributes.

<fieldset>

Function:

Group related elements within a form

Attributes:

CLASS ONKEYUP

DIR ONMOUSEDOWN

ID ONMOUSEMOVE

LANG ONMOUSEOUT

ONCLICK ONMOUSEOVER

ONDBLCLICK ONMOUSEUP

ONKEYDOWN STYLE

ONKEYPRESS TITLE

End tag:

</fieldset>; never omitted

Contains:

form_content

Used in:

form_content

When a group of form elements are placed within a <fieldset> tag, the browser may display them
in a special manner. This might include a special border, 3D effects, or even creating a subform to
handle the elements. Since no browser currently supports fieldsets, we cannot predict nor provide an
example of how they might be handled by a browser.

10.9.2.2 The <legend> tag

Use the <legend> tag to create a label for a fieldset in a form. The tag may appear only inside a

<fieldset>. Like <label>, the <legend> contents are to be specially treated by the HTML
4.0-compliant browser, transferring focus to associated form elements when selected and serving to
improve accessibility of users to a <fieldset>.

<legend>

Function:

Create a legend for a field set within a form

Attributes:

ACCESSKEY ONKEYPRESS

ALIGN ONKEYUP

CLASS ONMOUSEDOWN

DIR ONMOUSEMOVE

ID ONMOUSEOUT

LANG ONMOUSEOVER

ONCLICK ONMOUSEUP

ONDBLCLICK STYLE

ONKEYDOWN TITLE

End tag:

</optgroup>; may be omitted

Contains:

optgroup_contents

Used in:

select_content

In addition to supporting many of the form element attributes described in section Section 10.8, the
<legend> tag accepts the accesskey attribute and the align attribute. The value of align may
be top, bottom, left, or right, instructing the browser as to where the legend should be placed
with respect to the field set.

Bringing all these tags together, here is a field set and legend containing a few form elements,
individually labelled:

<fieldset>
 <legend>Personal information</legend>
 <label>Name:<input type=text></label>
 <label>Address:<input type=text></label>
 <label>Phone:<input type=text></label>
</fieldset>

10.8 General Form Control
Attributes

10.10 Creating Effective
Forms

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 10
Forms

10.10 Creating Effective Forms
Properly done, a form can provide an effective user interface for your readers. With some server-side
programming tricks, you can use forms to personalize the HTML documents you present to readers,
and thereby significantly increase the value of your pages on the Web.

10.10.1 Browser Constraints

Unlike other graphical user interfaces, browser displays are static. They have little or no capability for
real-time data validation, for example, or to update the values in a form based upon user input, giving
users help and guidance.[4] Hence, poorly designed web forms can be difficult to fill out.

[4] This is not entirely true. While HTML does not provide for data validation and user
guidance, it is possible to attach Java or JavaScript applets to your form elements that do a
very nice job of validating form data, updating form fields based upon user input, and
guiding users through your forms.

Make sure your forms assist the user as much as possible in getting their input correct. Adjust the size
of text input fields to give clues on acceptable input; five-character (or the new nine-character) Zip
Code fields, for instance. Use checkboxes, radio buttons, and selection lists whenever possible to
narrow the list of choices the user must make.

Make sure you also adequately document your forms. Explain how to fill them out, supplying
examples for each field. Provide appropriate hyperlinks to documentation that describes each field, if
necessary.

When the form is submitted, make sure that the server-side application exhaustively validates the user's
data. If an error is discovered, present the user with intelligent error messages and possible corrections.
One of the most frustrating aspects of filling out forms is having to start over from scratch whenever
the server discovers an error. To alleviate this ugly redundancy and burden on your readers, consider
spending extra time and resources on the server side that returns the user's completed form with the
erroneous fields flagged for changes.

While all of these suggestions require significant effort on your part, they will pay off many times over
by making life easier for your users. Remember, you'll write the HTML for the form just once, but it
may be used thousands or even millions of times by users.

10.10.2 Handling Limited Displays

Although most PCs have been upgraded to provide resolution significantly better than the 600 × 480
that was common when we wrote the first edition of this book, many devices (laptops with poor
screens, WebTV, cell phones with built-in browsers) dictate that form design should be conservative.
The best compromise is to assume a document-viewing window roughly 75 readable characters wide
and 30 to 50 lines tall. You should design your forms (and all your documents) so that they are
effective when viewed through a window of this size.

You should structure your form to scroll naturally into two or three logical sections. The user can fill
out the first section, page down; fill out the second section, page down; and so forth.

You should also avoid wide input elements. It is difficult enough to deal with a scrolling-text field or
text area without having to scroll the document itself horizontally to see additional portions of the input
element.

10.10.3 User Interface Considerations

When you elect to create a form, you immediately assume another role: that of a user-interface
designer. While a complete discussion of user interface design is beyond the scope of this book, it
helps to understand a few basic design rules to create effective, attractive forms.

Any user interface is perceived at several levels simultaneously. Forms are no different. At the lowest
level, your brain recognizes shapes within the document, attempting to categorize the elements of the
form. At a higher level, you are reading the text guides and prompts, trying to determine what input is
required of you. At the highest level, you are seeking to accomplish a goal with the interface as your
tool.

A good form accommodates all three of these perceptive needs. Input elements should be organized in
logical groups so that your brain can process the form layout in chunks of related fields. Consistent,
well-written prompts and supporting text assist and lead the user to enter the correct information. Text
prompts also remind users of the task at hand and reinforce the form's goal.

10.10.4 Creating Forms That Flow

Users process forms in a predictable order, one element after another, seeking to find the next element
as they finish the previous one. To accommodate this searching process, you should design your forms
so that one field leads naturally to another, and related fields are grouped together. Similarly, groups
should lead naturally to one another and should be formatted in a consistent manner.

Simply stringing a number of fields together does not constitute an effective form. You must put
yourself in the place of your users, who are using the form for the first time. Test your form on
unsuspecting friends and colleagues before you release it on the general public. Is it easy to determine
the purpose of the form? Where do you start filling things out? Can the user find a button to push to
submit the form? Is there an opportunity to confirm decisions? Do readers understand what is expected
of them for each field?

Your forms should lead the user naturally through the process of supplying the necessary data for the
application. You wouldn't ask for a street address before asking for the user's name; other rules may
dictate the ordering of other groups of input elements. To see if your form really works, make sure you
view it on several browsers and have several people fill it out and comment on its effectiveness.

10.10.5 Good Form, Old Chap

At first glance, the basic rule of HTML - content, not style - seems in direct opposition to the basic rule
of good interface design - precise, consistent layout. Even so, it is possible to use some HTML
elements to greatly improve the layout and readability of most forms.

Traditional page layout uses a grid of columns to align common elements within a page. The resulting
implied vertical and horizontal "edges" of adjacent elements give a sense of order and organization to
the page, and makes it easy for the eye to scan and follow.

HTML makes it hard, but you can accomplish the same sort of layout for your forms. For example,
you can group related elements and separate groups with empty paragraphs or horizontal rules.

Vertical alignment is more difficult, but not impossible. In general, forms are easier to use if you
arrange the input elements vertically and aligned to a common margin. One popular form layout keeps
the left edge of the input elements aligned, with the element labels immediately to the left of the
elements. This is done by using tables to place and align each form element and its label. Here is our
previous form example, with the labels placed in the first column and the corresponding elements in
the second:

<form method=POST action="http://www.kumquat.com/demo">
 <table border=0>
 <tr valign=top>
 <td align=right>Name:</td>
 <td align=left><input type=text name=name size=32 maxlength=80>
 </td>
 </tr>
 <tr valign=top >
 <td align=right>Sex:</td>
 <td align=left>
 <input type=radio name=sex value="M"> Male

 <input type=radio name=sex value="F"> Female
 </td>
 </tr>
 <tr valign=top >
 <td align=right>Income:</td>
 <td align=left>
 <select name=income size=1>
 <option>Under $25,000
 <option>$25,001 to $50,000
 <option>$50,001 and higher
 </select>
 </td>
 </tr>
 <tr valign=top>
 <td colspan=2 align=center>
 <input type=submit value="Submit Query">
 </td>
 </tr>

 </table>
</form>

Notice in the resulting rendered form shown in Figure 10.6 that the table has placed each input element
in its own row. The align attributes in the table cells force the labels to the right and the elements to
the left, creating a vertical margin through the form. By spanning the cell in the last row, the
submission button is centered with respect to the entire form. In general, using tables in this manner
makes form layout much easier and consistent throughout your documents.

Figure 10.6: Using a consistent vertical margin to align form elements

You may find other consistent ways to lay out your forms. The key is to find a useful layout style that
works well across most browsers and stick with it. Even though HTML has limited tools to control
layout and positioning, take advantage of what is available to make your forms more attractive and
easier to use.

10.9 Labeling and Grouping
Form Elements

10.11 Forms Programming

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 10
Forms

10.11 Forms Programming
If you create forms, sooner or later you'll need to create the server-side application that processes your
form. Don't panic. There is nothing magic about server-side programming, nor is it overly difficult.
With a little practice and some perseverance, you'll be cranking out forms applications.

The most important advice we can give about forms programming is easy to remember: copy others'
work. Writing a forms application from scratch is fairly hard; copying a functioning forms application
and modifying it to support your form is far easier.

Fortunately, server vendors know this, and they usually supply sample forms applications with their
server. Rummage about for a directory named cgi-src, and you'll discover a number of useful
examples you can easily copy and reuse.

We can't hope to replicate all the useful stuff that came with your server, nor can we provide a
complete treatise on forms programming. What we can do is offer a simple example of both GET and
POST applications, giving you a feel for the work involved and hopefully getting you moving you in
the right direction.

Before we begin, keep in mind that not all servers invoke these applications in the same manner. Our
examples cover the broad class of servers derived from the original NCSA HTTP server. They also
should work with the Netscape Communications family of server products and the public-domain
Apache server. In all cases, consult your server documentation for complete details. You will find
more detailed information in CGI Programming for the World Wide Web and Webmaster in a
Nutshell, both published by O'Reilly & Associates.

An alternative to CGI programming is the Java Servlet model, covered in Java Servlet Programming
(O'Reilly & Associates). Servlets can be used to process GET and POST form submissions, although
they are actually much more general objects. We don't have any examples of servlets in this book.

10.11.1 Returning Results

Before we begin, we need to discuss how server-side applications end. All server-side applications
pass their results back to the server (and on to the user) by writing that result to the application's
standard output as a MIME-encoded file. Hence, the first line of the application's output must be a
MIME content-type descriptor. If your application returns an HTML document, the first line is:

Content-type: text/html

The second line must be completely empty. Your application can return some other content type, too -

just include the correct MIME type. A GIF image, for example, is preceded with:

Content-type: image/gif

Generic text that is not to be interpreted as HTML can be returned with:

Content-type: text/plain

This is often useful for returning the output of other commands that generate plain text instead of
HTML.

10.11.2 Handling GET Forms

One of two methods for passing form parameters from client to server is the GET method. In that
way, parameters are passed as part of the URL that invokes the server-side forms application. A
typical invocation of a GET-style application might use a URL like this:

http://www.kumquat.com/cgi-bin/dump_get?name=bob&phone=555-1212

When the server processes this URL, it invokes the application named dump_get stored in the
directory named cgi-bin. Everything after the question mark is passed to the application as parameters.

Things diverge a bit at this point, due to the nature of the GET-style URL. While forms place
name/value pairs in the URL, it is possible to invoke a GET-style application with only values in the
URL. Thus,

http://www.kumquat.com/cgi-bin/dump_get?bob+555-1212

is a valid invocation as well, with parameters separated by a plus sign (+). This is a common
invocation when the application is referenced by a searchable document with the <isindex> tag.
The parameters typed by the user into the document's text entry field are passed to the server-side
application as unnamed parameters separated by plus signs.

If you invoke your GET application with named parameters, your server will pass those parameters to
the application in one way; unnamed parameters are passed differently.

10.11.2.1 Using named parameters with GET applications

Named parameters are passed to GET applications by creating an environment variable named
QUERY_STRING and setting its value to the entire portion of the URL following the question mark.
Using our previous example, the value of QUERY_STRING would be set to:

name=bob&phone=555-1212

Your application must retrieve this variable and extract from it the parameter name/value pairs.
Fortunately, most servers come with a set of utility routines that performs this task for you, so a
simple C program that just dumps the parameters might look like:

#include <stdio.h>
#include <stdlib.h>

#define MAX_ENTRIES 10000

typedef struct {char *name;
 char *val;
 }entry;

char *makeword(char *line, char stop);
char x2c(char *what);
void unescape_url(char *url);
void plustospace(char *str);

main(int argc, char *argv[])

{ entry entries[MAX_ENTRIES];
 int num_entries, i;
 char *query_string;

/* Get the value of the QUERY_STRING environment variable */
 query_string = getenv("QUERY_STRING");

/* Extract the parameters, building a table of entries */
 for (num_entries = 0; query_string[0]; num_entries++) {
 entries[num_entries].val = makeword(query_string, '&');

 plustospace(entries[num_entries].val);
 unescape_url(entries[num_entries].val);
 entries[num_entries].name =
 makeword(entries[num_entries].val, '=');
 }

/* Spit out the HTML boilerplate */
 printf("Content-type: text/html\n");
 printf("\n");

 printf("<html>");
 printf("<head>");
 printf("<title>Named Parameter Echo</title>\n");
 printf("</head>");
 printf("<body>");
 printf("You entered the following parameters:\n");
 printf("\n");

/* Echo the parameters back to the user */
 for(i = 0; i < num_entries; i++)
 printf(" %s = %s\n", entries[i].name,
 entries[i].val);

/* And close out with more boilerplate */

 printf("\n");
 printf("</body>\n");
 printf("</html>\n");
}

The example program begins with a few declarations that define the utility routines that scan through
a character string and extract the parameter names and values.[5] The body of the program obtains the
value of the QUERY_STRING environment variable using the getenv() system call, uses the utility
routines to extract the parameters from that value, and then generates a simple HTML document that
echo those values back to the user.

[5] These routines are usually supplied by the server vendor. They are not part of the
standard C or UNIX libraries.

For real applications, you should insert your actual processing code after the parameter extraction and
before the HTML generation. Of course, you'll also need to change the HTML generation to match
your application's functionality.

10.11.2.2 Using unnamed parameters with GET applications

Unnamed parameters are passed to the application as command-line parameters. This makes writing
the server-side application almost trivial. Here is a simple shell script that dumps the parameter values
back to the user:

#!/bin/csh -f
#
Dump unnamed GET parameters back to the user

echo "Content-type: text/html"
echo
echo '<html>'
echo '<head>'
echo '<title>Unnamed Parameter Echo</title>'
echo '</head>'
echo '<body>'
echo 'You entered the following parameters:'
echo ''

foreach i ($*)
 echo '' $i
end

echo ''
echo '</body>'

exit 0

Again, we follow the same general style: output a generic document header, including the MIME
content type, followed by the parameters and some closing boilerplate. To convert this to a real
application, replace the foreach loop with commands that actually do something.

10.11.3 Handling POST Forms

Applications that use POST-style parameters expect to read encoded parameters from their standard
input. Like GET-style applications with named parameters, they can take advantage of the server's
utility routines to parse these parameters.

Here is a program that echoes the POST-style parameters back to the user:

#include <stdio.h>
#include <stdlib.h>

#define MAX_ENTRIES 10000

typedef struct {char *name;
 char *val;
 } entry;

char *makeword(char *line, char stop);
char *fmakeword(FILE *f, char stop, int *len);
char x2c(char *what);
void unescape_url(char *url);
void plustospace(char *str);

main(int argc, char *argv[])

{ entry entries[MAX_ENTRIES];
 int num_entries, i;

/* Parse parameters from stdin, building a table of entries */
 for (num_entries = 0; !feof(stdin); num_entries++) {
 entries[num_entries].val = fmakeword(stdin, '&', &cl);
 plustospace(entries[num_entries].val);
 unescape_url(entries[num_entries].val);
 entries[num_entries].name =
 makeword(entries[num_entries].val, '=');
 }

/* Spit out the HTML boilerplate */
 printf("Content-type: text/html\n");
 printf("\n");
 printf("<html>");
 printf("<head>");
 printf("<title>Named Parameter Echo</title>\n");
 printf("</head>");
 printf("<body>");
 printf("You entered the following parameters:\n");
 printf("\n");

/* Echo the parameters back to the user */
 for(i = 0; i < num_entries; i++)
 printf(" %s = %s\n", entries[i].name,
 entries[i].val);

/* And close out with more boilerplate */
 printf("\n");
 printf("</body>\n");
 printf("</html>\n");
}

Again, we follow the same general form. The program starts by declaring the various utility routines
needed to parse the parameters, along with a data structure to hold the parameter list. The actual code
begins by reading the parameter list from the standard input and building a list of parameter names
and values in the array named entries. Once this is complete, a boilerplate document header is
written to the standard output, followed by the parameters and some closing boilerplate.

Like the other examples, this program is handy for checking the parameters being passed to the server
application while you are early in the forms and application debugging process. You can also use it as
a skeleton for other applications by inserting appropriate processing code after the parameter list is
built up and altering the output section to send back the appropriate results.

10.10 Creating Effective
Forms

11. Tables

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 11

11. Tables
Contents:
The HTML Table Model
Table Tags
New HTML 4.0 Table Tags
Beyond Ordinary Tables

Of all the extensions that originally had found their way into the HTML 3.2 standard and remain fully
supported in the new HTML 4.0 standard, none is more welcome than tables. While HTML tables are
useful for the general display of tabular data, they also serve an important role in managing document
layout. Creative use of tables, as we'll show in this chapter, can go a long way to enliven an otherwise
dull document layout. And you may apply all the HTML styles to the various elements of a table to
achieve a desktop-published look and feel.

11.1 The HTML Table Model
The standard HTML model for tables is fairly straightforward: a table is a collection of numbers and
words arranged and related in rows and columns of cells. Most cells contain the data values; others
contain row and column headers that describe the data.

Define a table and include all of its elements between the <table> tag and its corresponding
</table> end tag. Table elements, including data items, row and column headers, and captions,
each have their own markup tag. Working from top to bottom and left to right, you define, in
sequence, the header and data for each column cell across the table, and progress down row by row.

The latest HTML standard also provides an extended collection of tag attributes, which once were
popular extensions to the language supported by the major browsers. They make your tables look
good, including special alignment of the table values and headers, borders, and table rule lines, and
automatic sizing of the data cells to accommodate their content. The various popular browsers have
slightly different sets of table attributes; we'll point out those variations as we go.

11.1.1 Table Contents

You can put nearly anything you might have within the body of an HTML document inside a table
cell, including images, forms, rules, headings, and even another table. The browser treats each cell as
a window unto itself, flowing the cell's content to fill the space, but with some special formatting
provisions and extensions.

11.1.2 An Example Table

Here's a quick example that should satisfy your itching curiosity to see what an HTML table looks
like in source code and when finally rendered as in Figure 11.1. More importantly, it shows you the
basic structure of a table from which you can infer many of the elements, tag syntax and order,
attributes, and so on, and to which you may refer as you read the following various detailed
descriptions:

<table border cellspacing=0 cellpadding=5>
 <caption align=bottom>
 Kumquat versus a poked eye, by gender</caption>
 <tr>
 <td colspan=2 rowspan=2></td>
 <th colspan=2 align=center>Preference</th>
 </tr>
 <tr>
 <th>Eating Kumquats</th>
 <th>Poke In The Eye</th>
 </tr>
 <tr align=center>
 <th rowspan=2>Gender</th>
 <th>Male</th>
 <td>73%</td>
 <td>27%</td>
 </tr>
 <tr align=center>
 <th>Female</th>
 <td>16%</td>
 <td>84%</td>
 </tr>
</table>

Figure 11.1: HTML table example rendered by Netscape (top) and by Mosaic (bottom)

11.1.3 Missing Features

At one time, standard HTML tables didn't have all the features of a full-fledged table-generation tool
you might find in a popular word processor. Rather, the popular browsers, Internet Explorer and
Netscape in particular, provided extensions to the language.

What was missing was support for running headers and footers, particularly useful when printing a
lengthy table. Another was control over table rules and divisions.

Today, the browsers are behind; HTML 4.0 has standardized the many extensions and introduced new
solutions. It's the browsers that now need to catch up.

10.11 Forms Programming 11.2 Table Tags

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 11
Tables

11.2 Table Tags
A wide variety of tables can be created with only five tags: the <table> tag, which encapsulates a
table and its elements in the HTML document's body content; the <tr> tag, which defines a table
row; the <th> and <td> tags, which define the table's headers and data cells; and the <caption>
tag, which defines a title or caption for the table. Beyond these core tags, you may also define and
control whole sections of tables, including adding running headers and footers, with the
<colgroup>, <col>, <tbody>, <thead>, and <tfoot> tags. Each tag has one or more
required and optional attributes, some of which affect not only the tag itself, but also related tags.

11.2.1 The <table> Tag

The <table> tag and its </table> end tag define and encapsulate a table within the body of your
HTML document. Unless otherwise placed within the browser window by style sheet-, paragraph-,
division-level, or other alignment options, the browser stops the current text flow, breaks the line,
inserts the table beginning on a new line, and then restarts the text flow on a new line below the table.

<table>

Function:

Define a table

Attributes:

ALIGN ONCLICK

BACKGROUND ONDBLCLICK

BGCOLOR ONKEYDOWN

BORDER ONKEYPRESS

BORDERCOLOR ONKEYUP

BORDERCOLORDARK ONMOUSEDOWN

BORDERCOLORLIGHT ONMOUSEMOVE

CELLPADDING ONMOUSEOUT

CELLSPACING ONMOUSEOVER

CLASS ONMOUSEUP

COLS RULES

DIR STYLE

FRAME SUMMARY

HEIGHT TITLE

HSPACE VALIGN

ID VSPACE

LANG WIDTH

NOWRAP

End tag:

</table>; never omitted

Contains:

table_content

Used in:

block

The only content allowed within the <table> is one or more <tr> tags, which define each row of
table contents, along with the various table sectioning tags: <thead>, <tfoot>, <tbody>,
<col>, and <colgroup>.

11.2.1.1 The align attribute

The HTML 4.0 standard has deprecated this attribute in lieu of the align property provided by
Cascading Style Sheets. Yet it remains popular and is currently well-supported by the popular
browsers.

Like images, tables are rectangular objects that float in the browser display, aligned according to the
current text flow: Normally, the browser left-justifies a table, abutting its left edge to the left margin
of the display window. Or the table may be centered if under the influence of the <center> tag,
centered paragraph, or centered division. Unlike images, however, tables are not inline objects. Text
content normally flows above and below a table, not beside it. You can change that display behavior
with the align attribute for the <table> tag.

The align attribute accepts a value of either left, center, or right, indicating that the table
should be placed flush against the left or right margin of the text flow, with the text flowing around
the table, or in the middle with text flowing above and below.

Note that the align attribute within the <table> tag is different than when appearing within a
table's element tags <tr>, <td>, and <th>. In those tags, the attribute controls text alignment
within the table's cells, not alignment of the table within the containing text flow.

11.2.1.2 The bgcolor and background attributes

You can make the background of a table a different color than the document's background with the
bgcolor attribute for the <table> tag. The color value for the bgcolor attribute must be set to
either an RGB color value or a standard color name. Both the syntax of color values and the
acceptable color names are provided in Appendix F, Color Names and Values.

The popular browsers give every cell in the table (including the caption) this background color. You
may also set individual row and cell colors by providing the bgcolor attribute or a style attribute for
those rows or cells.

The background attribute, a nonstandard extension supported by Internet Explorer, supplies the
URL of an image that is tiled to fill the background of the table. The image will be clipped if the table
is smaller than the image. By using this attribute with a borderless table, you can put text over an
image contained within a document.

11.2.1.3 The border attribute

The optional border attribute for the <table> tag tells the browser to draw lines around the table
and the rows and cells within it. The default is no borders at all. You may specify a value for
border, but you don't have to. Alone, the attribute simply enables borders and a set of default
characteristics different for each of the popular browsers (re-examine the Figure 11.1 table; it has
borders). Otherwise, supply an integer value for border equal to the pixel width of the 3D
chiseled-edge lines that surround the outside of the table and make it appear to be embossed onto the
page.

11.2.1.4 The frame and rules attributes

With the current version of Netscape (4.0), the border attribute is all or nothing, affecting the
appearance and spacing both of the frame around the table and the rule lines between data cells.
Internet Explorer and future HTML 4.0-compliant browsers, on the other hand, let you individually
modify the various line segments that make up the borders around the table (frame), as well as
around the data cells (rules).

The HTML 4.0 standard frame attribute modifies border's effects for the lines that surround the
table. The default value - what you get if you don't use frame at all - is box, which tells the browser
to draw all four lines around the table. The value border does the same thing as box. The value
void removes all four of the frame segments. The frame values above, below, lhs, and rhs
draw the various border segments on the top, bottom, left, and right side, respectively, of the table.
The value hsides draws borders on the top and bottom (horizontal) sides of the table; vsides
draws borders on the left and right (vertical) sides of the table.

With HTML 4.0 standard tables (currently supported in Internet Explorer 4.0), you also may control
the thickness of a table's internal cell borders via the rules attribute. The default behavior,
represented by the value of all, is to draw borders around all cells. Specifying groups places
thicker borders between row and column groups defined by the <thead>, <tbody>, <tfoot>,
<col>, and <colgroup> tags. Using rows or cols places borders only between every row or
column, respectively, while using none removes borders from every cell in the table.

11.2.1.5 The bordercolor, bordercolorlight, and bordercolordark attributes

The popular browsers normally draw a table border in three colors, using light and dark variations on
the document's background color to achieve a 3D effect. The nonstandard bordercolor attribute
lets you set the color of the table borders and rules to something other than the background (if borders
are enabled, of course). The bordercolor attribute's value can be either an RGB hexadecimal color
value or a standard color name, both of which are described fully in Appendix F.

Internet Explorer also lets you set the border edge colors individually with special extension
attributes: the bordercolorlight and bordercolordark colors shade the lighter and darker
edges of the border.

The effectiveness of the 3D beveled-border effect is tied directly to the relationship of these two
colors. In general, the light color should be about 25 percent brighter than the border color, and the
dark color should be about 25 percent darker.

11.2.1.6 The cellspacing attribute

The cellspacing attribute controls the amount of space placed between adjacent cells in a table
and along the outer edges of cells along the edges of a table.

Browsers normally put two pixels of space between cells and along the outer edges of the table. If you
include a border attribute in the <table> tag, the cell spacing between interior cells grows by two
more pixels (four total) to make space for the chiseled edge on the interior border. The outer edges of
edge cells grow by the value of the border attribute.

By including the cellspacing attribute you can widen or reduce the interior cell borders. For
instance, to make the thinnest possible interior cell borders, include the border and
cellspacing=0 attributes in the table's tag.

11.2.1.7 The cellpadding attribute

The cellpadding attribute controls the amount of space between the edge of a cell and its
contents, which by default is one pixel. You may make all the cell contents in a table touch their
respective cell borders by including cellpadding=0 in the table tag. You may also increase the
cellpadding space by setting its value greater than 1.

11.2.1.8 Combining border, cellspacing, and cellpadding attributes

The interactions between the border, cellpadding, and cellspacing attributes of the
<table> tag combine in ways that can be confusing. Figure 11.2 summarizes how these attributes
interact to create interior and exterior borders of various widths.

Figure 11.2: The border, cellspacing, and cellpadding attributes of a table

While all sorts of combinations of the border and cellspacing attributes are possible, these are
the most common:

border=1 and cellspacing=0 produces the narrowest possible interior and exterior
borders: two pixels wide.

●

border=n and cellspacing=0 makes the narrowest possible interior borders (two pixels
wide), with an external border that is n plus one pixels wide.

●

border=1 and cellspacing=n tables have equal-width exterior and interior borders, all
with chiseled edges just one pixel wide. All borders will be n plus two pixels wide.

●

11.2.1.9 The cols attribute

To format a table, the browser must first read the entire table contents, determining the number and
width of each column in the table. This can be a lengthy process for long tables, forcing users to wait
to see your pages. The nonstandard cols attribute tells the browser, in advance, how many columns
to expect in the table. The value of this attribute is an integer value defining the number of columns in
the table.

This cols attribute only advises the browser. If you define a different number of columns, the
browser is free to ignore the cols attribute in order to render the table correctly. In general, it is good
form to include this attribute with your <table> tag, if only to help the browser do a faster job of
formatting your tables.

11.2.1.10 The hspace and vspace attributes

Just as with inline images, the hspace and vspace attributes tell the browser to add some extra
room on the left and right sides (for hspace) and the top and bottom (for vspace) of a table,
thereby setting it off from the window edge and surrounding content. The attribute value is the integer
number of pixels for that padding; a value of 0 is the default.

Figure 11.3 illustrates the effect of the hspace and vspace attribute spacing around a left-justified

table with wraparound text. Neither attribute is in the HTML 4.0 standard, but both are supported by
Netscape.

Figure 11.3: The hspace and vspace attributes give a table some breathing room

11.2.1.11 The valign and nowrap attributes

The valign attribute sets the default vertical alignment of data in their cells for the entire table.
Acceptable values for the valign attribute in <table> are top, bottom, middle, or
baseline; the default vertical position is the center of the cell.

Browsers treat each table cell as though it's a browser window unto itself, flowing contents inside the
cell as they would common body contents (although subject to special table-cell alignment
properties). Accordingly, the browsers automatically wrap text lines to fill the allotted table cell space.
The nowrap attribute, when included in the <table> tag, stops that normal word wrapping in all
rows in the table. With nowrap, the browser assembles the contents of the cell onto a single line,
unless you insert a
 or <p> tag, which then forces a break so that the contents continue on a new
line inside the table cell.

The valign and nowrap attributes for the <table> tag currently are supported only by Internet
Explorer. You achieve similar effects in Netscape by including a valign or nowrap attribute within

the individual <tr>, <td>, and <th> tags.

11.2.1.12 The width and height attributes

Browsers will automatically make a table only as wide as needed to correctly display all of the cell
contents. If necessary, you can make a table wider with the width attribute.

The value of the width attribute is either an integer number of pixels or a relative percentage of the
screen width, including values greater than 100 percent. For example:

<table width=400>

tells the extended browser to make the table 400 pixels wide, including any borders and cell spacing
that extend into the outer edge of the table. If the table is wider than 400 pixels, the browser ignores
the attribute.

Alternatively:

<table width="50%">

tells the browser to make the table half as wide as the display window. Again, this width includes any
borders or cell spacing that extend into the outer edge of the table, and has no effect if the table
normally is more than half the user's current screen width.

Use relative widths for tables you want to resize automatically to the user's window; for instance,
tables you always want to extend across the entire window (<table width="100%">). Use an
absolute width value for carefully formatted tables whose contents will become hard to read in wide
display windows.

For Netscape and Internet Explorer, you can use the nonstandard height attribute to suggest a
recommended height for the table. The browser will make the table no shorter than this height, but
may make the table taller if needed to contain the table's contents. This attribute is useful when trying
to stretch tables to fit in a frame or some specific area of a document, but is of little use otherwise,
particularly since it is not a standard attribute.

11.2.1.13 The summary attribute

The summary attribute is introduced to HTML in the 4.0 standard. Its value is a quote-enclosed
string which describes the purpose and summarizes the contents of the table. Its intended use,
according to the standard, is to provide extended access to non-visual browsers, particularly for users
with disabilities.

11.2.2 Common Table Attributes

The HTML 4.0 standard, combined with standard Cascading Style Sheets (CSS), provides a number
of attributes common not only to the <table> tag and the other table creation tags, but for most
other HTML tags, as well. Except for the CSS-related attributes class and style for controlling
the table display, none of the other HTML 4.0 standard attributes are yet fully supported by any of the
popular browsers.

11.2.2.1 The id and title attributes

Use the id attribute with a quote-enclosed string value to uniquely label a table tag for later reference
by a hyperlink or an applet. Use the title attribute with a string value to optionally entitle the table
or any of its segments for general reference. A title's value need not be unique, and it may or may not
be used by the browser. Internet Explorer, for example, displays the title attribute's text value
whenever the user passes the mouse pointer over the element's contents. [The id attribute, 4.1.1.4]
[The title attribute, 4.1.1.5]

11.2.2.2 The dir and lang attributes

Although its contents are predominantly in English, the Web is world-wide. The HTML 4.0 standard
takes pains to extend the language to all cultures. We support that effort wholeheartedly. The dir and
lang attributes are just small parts of that process.

The dir attribute advises the browser as to the direction the text of the contents should flow, from
left to right (dir=ltr), as for common Western languages like English and German, or right to left
(dir=rtl), as for common Eastern language like Hebrew and Chinese.

The lang attribute lets you explicitly indicate the language used in the table or even individual cell
contents. Its value should be an ISO standard two-letter primary code followed by an optional dialect
subcode with a hyphen (-) between the two.

Neither dir nor lang are yet supported by the popular browsers. [The dir attribute, 3.5.1.1] [The
lang attribute, 3.5.1.2]

11.2.2.3 The class and style attributes

The Cascading Style Sheets (CSS) standard is the sanctioned way to define display attributes for
HTML elements, and it is rapidly becoming the only way, too. Use the style attribute to define
display characteristics for the table and its elements that take immediate effect and override the
display styles that may be currently in effect for the document as a whole. Use the class attribute to
reference a style sheet that defines the unique display characteristics for the table and its elements.

We discuss the class and style attributes and the CSS standard in detail in the Chapter 9,
Cascading Style Sheets. [Inline Styles: The style Attribute, 9.1.1] [Style Classes, 9.2.4]

11.2.2.4 The event attributes

The popular browsers have internal mechanisms that detect the various user-initiated mouse and
keyboard events that can happen in and around your tables and their elements. For instance, the user
might click the mouse pointer in one of the table cells, or highlight the caption and then press the
Return or Enter key.

With the various event attributes, you can react to these events, such as onClick and onKeyDown, by
having the browser execute one or more JavaScript commands or applets that you reference as the
value to the respective event attribute. See Chapter 13, Executable Content, for details.

11.2.3 The <tr> Tag

Make a new row in a table with the <tr> tag. Place within the <tr> tag one or more cells containing
headers, each defined with the <th> tag, and data, each defined with the <td> tag (see section
Section 11.2.4, "The <th> and <td> Tags"). The <tr> tag accepts a number of special attributes that
control its behavior, along with the common table attributes described in section 11.2.2.

<tr>

Function:

Define a row within a table

Attributes:

ALIGN ONDBLCLICK

BGCOLOR ONKEYDOWN

BORDERCOLOR ONKEYPRESS

BORDERCOLORDARK ONKEYUP

BORDERCOLORLIGHT ONMOUSEDOWN

CHAR ONMOUSEMOVE

CHAROFF ONMOUSEOUT

CLASS ONMOUSEOVER

DIR ONMOUSEUP

ID STYLE

LANG TITLE

NOWRAP VALIGN

ONCLICK

End tag:

</tr>; may be omitted

Contains:

tr_content

Used in:

table_content

Every row in a table has the same number of cells as the longest row; the browser automatically
creates empty cells to pad rows with fewer defined cells.

11.2.3.1 The align and valign attributes

The align attribute for <table> tag may be deprecated for the HTML 4.0 standard, but it is alive and
kicking for <tr> and other table elements. The align attribute for the <tr> tag lets you change the
default horizontal alignment of all the contents of the cells in a row. The attribute affects all the cells
within the current row, but not subsequent rows.

An align attribute value of left, right, center, justify, or char causes the browser to
align the contents of each cell in the row against the left or right edge, in the center of the cell, spread
across the cell, or to a specified character in the cell, respectively.

Similarly, change the default vertical alignment for the contents of data cells contained within a table
row with the valign attribute. Normally, the browsers render cell contents centered vertically. By
including the valign attribute in the <tr> tag with a value of top, bottom, or baseline, you
tell the browser to place the table row's contents flush against the top or bottom of their cells or
aligned to the baseline of the top line of text in other cells in the row (Figure 11.4). The value
middle, although acceptable, has no real effect since it simply reiterates the default vertical
alignment:

<table border>
 <tr>
 <th>Alignment</th>
 <th>Top</th>
 <th>Baseline</th>
 <th>Center</th>
 <th>Bottom</th>
 </tr>
 <tr align=center>
 <th><h1>Baseline__
Another line</h1></th>
 <td valign=top>AAyy</td>
 <td valign=baseline>_AAyy_</td>
 <td valign=center>AAyy</td>
 <td valign=bottom>AAyy</td>
 </tr>
</table>

Figure 11.4: Effects of the valign attribute on table cell content alignment

You also may respecify the horizontal and vertical alignments for individual cells within a row
(section Section 11.2.4.1, "The align and valign attributes"). Use the alignment attributes in the <tr>

tag to specify the most common cell content justifications for the row (if not the default), and use a
different align or valign attribute for those individual cells that deviate from the common
alignment.

Table 11.1 contains the horizontal (align) and vertical (valign) table cell-content attribute values
and options. Values in parentheses are the defaults for the popular browsers.

Table 11.1: Horizontal and Vertical Table Cell-Content
Attribute Values and Options

Attribute Netscape and Internet Explorer

Headers Data

Left (Left)

align (Center) Center

Right Right

Justify[1] Justifya

Chara Chara

Top Top

valign (Center) (Center)

Bottom Bottom

Baseline Baseline

[1] Value not yet supported.

11.2.3.2 The char and charoff attributes

Even simple word processors let you line up decimal points for numbers in a table. Up until the
advent of the HTML 4.0 standard, the language was deficient in this feature. Now you may include
the char attribute to indicate which letter in each of the table row's cells should be the axis for that
alignment. You need not include a value with char. If you don't, the default character is
language-based: it's a period in English, for example, and the comma in French. Include the char
attribute and a single letter as its value to specify a different alignment character.

Use the charoff attribute and an integer number to specify the offset to the first occurrence of the
alignment character on each line. If a line doesn't include the alignment character, it should be
horizontally shifted to end at the alignment position.

The char and charoff attributes are new with HTML 4.0, and consequently not yet supported by
any of the popular browsers. Nonetheless, you may someday use them to line up your decimals.

11.2.3.3 The bgcolor attribute

Like its relative for the <table> tag, the bgcolor attribute for the <tr> tag sets the background
color of the entire row.[2] Its value is either an RGB color value or a standard color name. Both the

syntax of color values and the acceptable color names are provided in Appendix F.

[2] Unlike <table> with Internet Explorer though, <tr> does not support a
background image.

Every cell in the row will be given this background color. Individual cell colors can be changed by
providing the bgcolor attribute for those cells.

11.2.3.4 The bordercolor, bordercolorlight, and bordercolordark attributes

Like their nonstandard brethren for the <table> tag, Internet Explorer lets you use these attributes
to set the color of the borders within the current row.

Their values override any values set by the corresponding attribute in the containing <table> tag.
See the corresponding description of these extensions in Section 11.2.1.5, "The bordercolor,
bordercolorlight, and bordercolordark attributes" for details. Color values can be either an RGB color
value or a standard color name, both of which are described fully in Appendix F.

11.2.3.5 The nowrap attribute

Browsers treat each table cell as though it were a browser window unto itself, flowing contents inside
the cell as they would common body contents (although subject to special table-cell alignment
properties). Accordingly, the browsers automatically wrap text lines to fill the allotted table cell space.
The nowrap attribute, when included in a table row, stops that normal word wrapping in all cells in
that row. With nowrap, the browser assembles the contents of the cell onto a single line, unless you
insert a
 or <p> tag, which then forces a break so that the contents continue on a new line inside
the table cell.

11.2.4 The <th> and <td> Tags

The <th> and <td> tags go inside the <tr> tags of an HTML table to create the cells and contents
within the row. The tags operate similarly; the only real differences are that the browsers render
header text - meant to entitle or otherwise describe table data - in boldface font style and that the
default alignment of their respective contents may be different than for data. Data typically gets
left-justified by default; headers get centered (Table 11.1).

<th> and <td>

Function:

Define table data and header cells

Attributes:

ABBR NOWRAP

ALIGN ONCLICK

AXIS ONDBLCLICK

BACKGROUND ONKEYDOWN

BGCOLOR ONKEYPRESS

BORDERCOLOR ONKEYUP

BORDERCOLORDARK ONMOUSEDOWN

BORDERCOLORLIGHT ONMOUSEMOVE

CHAR ONMOUSEOUT

CHAROFF ONMOUSEOVER

CLASS ONMOUSEUP

COLSPAN ROWSPAN

DIR SCOPE

HEADERS STYLE

HEIGHT TITLE

ID VALIGN

LANG WIDTH

End tag:

</th> or </td>; may be omitted

Contains:

body_content

Used in:

tr_content

Like those available for the table row (<tr>) tag, the table cell tags support a rich set of style and
content-alignment attributes you may apply to a single data or header cell. These attributes override
the default values for the current row. There are also special attributes that control the number of
columns or rows a cell may span in the table. The <th> and <td> tags also accept the common table
attributes described in section Section 11.2.2, "Common Table Attributes".

The contents of the <th> and <td> tags can be anything you might put in the body of an HTML
document, including text, images, forms, and so on - even another table. And, as described earlier, the
browser automatically creates a table large enough, both vertically and horizontally, to display all the
contents of any and all the cells.

If a particular row has fewer header or data items than other rows, the browser adds empty cells at the
end to fill the row. If you need to make an empty cell before the end of a row, for instance, to indicate
a missing data point, create a header or data cell with no content.

Empty cells look different than those containing data or headers if the table has borders: the empty
cell will not be seemingly embossed onto the window, but instead is simply left blank. If you want to
create an empty cell that has incised borders like all the other cells in your table, be sure to place a
minimal amount of content in the cell: a single
 tag, for instance.

11.2.4.1 The align and valign attributes

The align and valign attributes are identical to those of the same name for the table row tag
(<tr>; see section Section 11.2.3, "The <tr> Tag"), except that when used with a <th> or <td> tag,
they control the horizontal or vertical alignment of content in just the current cell. Their value
overrides any alignment established by the respective align or valign attribute of the <tr> tag,
but does not affect the alignment of subsequent cells. See Table 11.1 for alignment details.

You may set the align attribute's value to left, right, or center, causing the browsers to align
the cell contents against the left or right edge, or in the center of the cell, respectively. In addition,
Internet Explorer supports a value of justify to fill each line of text so that it is flush to both sides
of the cell. The valign attribute may have a value of top, bottom, middle, or baseline,
telling the browser to align the cell's contents to the top or bottom edge, or in the center of the cell, or
(Netscape only) to the baseline of the first line of text in other cells in the row.

11.2.4.2 The width attribute

Like its twin in the <table> tag that lets you widen a table, the width attribute for table cell tags
lets you widen an individual cell and hence the entire column it occupies. You set the width to an
integer number of pixels, or a percentage indicating the cell's width as a fraction of the table as a
whole.

For example:

<th width=400>

sets the current header cell's width, and hence the entire column of cells, to 400 pixels wide.
Alternatively:

<td width="40%">

creates a data cell whose column will occupy 40 percent of the entire table's width.

Since the extended browsers make all cells in a column the same width, you should place a width
attribute in only one cell within a column, preferably the first instance of the cell in the first row, for
source readability. If two or more cells in the same column happen to have width attributes, the
widest one is honored. You can't make a column thinner than the minimum needed to display all of
the cells in the column. So, if the browser determines that the column of cells needs to be at least 150
pixels wide to accommodate all the cells' contents, it will ignore a width attribute in one of the
column's cell tags that attempts to make the cell only 100 pixels wide.

11.2.4.3 The height attribute

The height attribute lets you specify a minimum height, in pixels, for the current cell. Since all cells
in a row have the same height, this attribute need only be specified on one cell in the row, preferably
the first. If some other cell in the row needs to be taller to accommodate its contents, this attribute is
ignored and all the cells in the row will be set to the larger size.

By default, all the cells in a row are the height of the largest cell in the row that just accommodates its
contents.

11.2.4.4 The colspan attribute

It's common to have a table header that describes several columns beneath it, like the headers we use
in Table 11.1. Use the colspan attribute in a table header or data tag to extend an HTML table cell
across two or more columns in its row. Set the value of the colspan attribute to an integer value
equal to the number of columns you want the header or data cell to span. For example:

<td colspan=3>

tells the browser to make the cell occupy the same horizontal space as three cells in rows above or
below it. The browser flows the contents of the cell to occupy the entire space.

What happens if there aren't enough extra cells on the right? The browser just extends the cell over as
many columns as exist to the right; it doesn't add extra empty cells to each row to accommodate an
over-extended colspan value. You may defeat that limitation by adding the needed extra, but
content-less, cells to a single row. (Give them a single
 tag as their contents if you want
Netscape's embossed border around them.)

11.2.4.5 The rowspan attribute

Just as the colspan attribute layers a table cell across several columns, the rowspan attribute
stretches a cell down two or more rows in the table.

Include the rowspan attribute in the <th> or <td> tag of the uppermost row of the table where you
want the cell to begin and set its value equal to the number of rows you want it to span. The cell then
occupies the same space as the current row and an appropriate number of cells below that row. The
browser flows the contents of the cell to occupy the entire extended space. For example:

<td rowspan=3>

creates a cell that occupies the current row plus two more rows below that.

Like the colspan attribute, the browser ignores over-extended rowspan attributes and will only
extend the current cell down rows you've explicitly defined by other <tr> tags following the current
row. The browsers will not add empty rows to a table to fill a rowspan below the last defined row in a
table.

11.2.4.6 Combining colspan and rowspan

You may extend a single cell both across several columns and down several rows by including both
the colspan and rowspan attributes in its table header or data tag. For example:

<th colspan=3 rowspan=4>

creates a header cell that, as you might expect, spans across three columns and down four rows,
including the current cell and extending two more cells to the right and three more cells down. The
browser flows the contents of the cell to occupy the entire space, aligned inside according to the
current row's alignment specifications or to those you may explicitly include in the same tag, as
described earlier.

11.2.4.7 The nowrap attribute

Browsers treat each table cell as though it were a browser window unto itself, flowing contents inside
the cell as they would common body contents (although subject to special table-cell alignment
properties). Accordingly, the browsers automatically wrap text lines to fill the allotted table cell space.
The nowrap attribute, when included in a table header or data tag, stops that normal word wrapping.
With nowrap, the browser assembles the contents of the cell onto a single line, unless you insert a

 or <p> tag, which then forces a break so that the contents continue on a new line inside the
table cell.

11.2.4.8 The bgcolor and background attributes

Yet again, you can change the background color - this time for an individual data cell. This attribute's
value is either an RGB hexadecimal color value or a standard color name. Both the syntax of color
values and the acceptable color names are provided in Appendix F.

The background attribute, supported only by Internet Explorer, supplies the URL of an image that
is tiled to fill the background of the cell. The image will be clipped if the cell is smaller than the
image.

Neither background nor bgcolor will override a related style sheet property.

11.2.4.9 The bordercolor, bordercolorlight, and bordercolordark attributes

Internet Explorer lets you alter the colors that make up an individual cell's border - if table borders are
turned on with the border attribute, of course. See the respective attributes' descriptions under the
<table> tag in section Section 11.2.1.5 for details.

The values for these three attributes override any values set for the containing <table> or <tr> tag.
Their values can be either an RGB color value or a standard color name, both of which are described
fully in Appendix F.

11.2.4.10 The char and charoff attributes

Just as for the <tr> tag, you may use the char attribute with <th> or <td> to indicate which letter
in the table cell should be the axis for alignment, such as for decimal numbers. You need not include a
value with char. If you don't, the default character is language-based: it's a period in English, for
example, and a comma in French. Include the char attribute and a single letter as its value to specify
a different alignment character.

Use the charoff attribute and a integer number to specify the offset to the first occurrence of the
alignment character in the cell. If a cell doesn't include the alignment character, it should be
horizontally shifted to end at the alignment position.

The char and charoff attributes are new with HTML 4.0, and consequently not supported by any
of the popular browsers (yet).

11.2.4.11 The headers and scope attributes

The headers attribute associates header cells with a data cell in the table. The value of this attribute
is a quote-enclosed list of names that have been defined for various header cells using the id
attribute. The headers attribute is especially useful for nonvisual browsers, which might speak the

contents of a header cell before presenting the associated data cell contents.

Use the scope attribute to associate data cells with a header cell. With a value of row, all cells in the
header's row are associated with the header cell. Specifying col binds all the cells in the current
column to the cell. Using rowgroup or colgroup binds all the cells in the cell's row group
(defined by a <thead>, <tbody>, or <tfoot> tag) or column group (defined by a <col> or
<colgroup> tag) with the header cell.

Neither attribute is supported by any of the popular browsers.

11.2.4.12 The abbr attribute

The value of this attribute should be an abbreviated description of the cell's contents. When short on
space, browsers might choose to render the abbreviation instead, or to use it in nonvisual contexts.
This attribute is not supported by any of the popular browsers.

11.2.4.13 The axis attribute

Tables are usually chock-full of data, prompting the reader to ask questions. A tabular expense report,
for example, naturally leads to queries like "How much did I spend on meals?" or "What did my cab
fares total?" In the future, browsers may support such queries with the help of the axis attribute.

The value of this attribute is a quote-enclosed list of category names that might be used to form a
query. Thus, if you used axis=meals on the cells containing meal purchases, the browser could
locate those cells, extract their values, and produce a sum. This capability is not yet supported by any
of the popular browsers.

11.2.5 The <caption> Tag

A table commonly needs a caption to explain its contents, so the extended browsers provide a
table-caption tag. Authors typically place the <caption> tag and its contents immediately after the
<table> tag, but it can be placed nearly anywhere inside the table and between the row tags. The
caption may contain any body content, much like a cell within a table.

<caption>

Function:

Define a table caption

Attributes:

ALIGN ONKEYUP

CLASS ONMOUSEDOWN

DIR ONMOUSEMOVE

ID ONMOUSEOUT

LANG ONMOUSEOVER

ONCLICK ONMOUSEUP

ONDBLCLICK STYLE

ONKEYDOWN TITLE

ONKEYPRESS VALIGN

End tag:

</caption>; never omitted

Contains:

body_content

Used in:

table_content

11.2.5.1 The align and valign attributes

By default, browsers place the caption's contents centered above the table. You may place it below the
table with the align attribute set to the value bottom (the value top, of course, is equivalent to the
default).

With Internet Explorer, you may alternatively use the align attribute to control the horizontal
position of the caption and use the valign attribute to change the caption's vertical position. Set the
align attribute to left, center (the default), or right to position the caption to the respective
location relative to the table. Use the valign attribute to place a caption at the top or bottom of
the table. The other browsers ignore Internet Explorer's different caption-align values and attributes.

11.2.5.2 The many other attributes

Like the other table tags, <caption> supports the many and various language-, event-, and
styles-related attributes, which are described in section Section 11.2.2. Use them in good health. Just
be sure to use the contextual selector TABLE CAPTION when referring to caption styles at the
document level or in external style sheets.

11.1 The HTML Table Model 11.3 New HTML 4.0 Table
Tags

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 11
Tables

11.3 New HTML 4.0 Table Tags
While it is possible to build a simple table quickly, complex HTML tables with varying border styles,
running headers and footers, and column-based layout were not easily constructed from the old HTML
3.2 table model. Microsoft had rectified this inadequacy somewhat by adding a number of table layout
controls into Internet Explorer Version 3.0. These very useful extensions have now found their way into
the new HTML 4.0 standard. They provide row-based grouping and running headers and footers, along
with column-based layout features.

There is good news and bad news about these new table features, of course. They provide a nice way to
make your tables more attractive and presentable, but they currently work only within Internet Explorer.
If you choose to use them, make sure your tables stand up with the older, non-HTML 4.0-compliant
browsers, too.

11.3.1 Defining Table Sections

Within HTML 4.0 tables, all rows are created equal. In real tables, some rows are more equal than others.
And most tables have header and footer rows that repeat from page to page. In large tables, adjacent rows
are grouped and delineated with different rules to make the table easier to read and understand. HTML 4.0
and Internet Explorer support all of these features with the <thead>, <tfoot>, and <tbody> tags.

11.3.2 The <thead> Tag

Use the <thead> tag to define a set of table header rows. The <thead> tag may appear once within a
<table> tag, at the beginning. Within the <thead> tag, you may place one or more <tr> tags,
defining the rows within the table header. If given the opportunity, the HTML 4.0-compliant browser will
replicate these heading rows when the table is printed or displayed in multiple sections. Thereafter, it will
repeat these headings on each printed page if the table appears on more than one page.

<thead>

Function:

Define a table header

Attributes:

ALIGN ONKEYPRESS

CHAR ONKEYUP

CHAROFF ONMOUSEDOWN

CLASS ONMOUSEMOVE

DIR ONMOUSEOUT

ID ONMOUSEOVER

LANG ONMOUSEUP

ONCLICK STYLE

ONDBLCLICK TITLE

ONKEYDOWN VALIGN

End tag:

</thead>; may be omitted

Contains:

table_content

Used in:

table_content

The ending </thead> tag is optional. Since the <thead> tag only appears in tables where,
presumably, other rows will be designated as the table body or footer, the <thead> tag is automatically
closed when the browser encounters a <tbody> or <tfoot> tag or when the table ends.

The many attributes of the <thead> tag operate identically, take the same values, and affect all the
enclosed <tr> contents as if you had specified them individually for each <tr> entry. For example, the
align attribute accepts values of left, right, center, or justify, controlling the horizontal
alignment of text in all the heading's rows. Similarly, the valign attribute accepts values of top,
middle, baseline, or bottom, dictating the vertical alignment of text in all of the heading rows.

If you don't specify any alignments or styles, the browser centers the heading text vertically and
horizontally within their respective cells, equivalent to specifying align=center and
valign=middle for each. Of course, individual row and cell or style sheet specifications may override
these attributes.

11.3.3 The <tfoot> Tag

Use the <tfoot> tag to define a footer for HTML 4.0 tables. The <tfoot> tag may appear only once,
just before the end of a table. Like <thead>, it may contain one or more <tr> tags that let you define
those rows that Internet Explorer or an HTML 4.0-compliant browser uses as the table footer. Thereafter,
the browser repeats these rows if the table is broken across multiple physical or virtual pages. Most often,
the browser repeats the table footer at the bottom of each portion of a table printed on multiple pages.

<tfoot>

Function:

Define a table footer

Attributes:

ALIGN ONKEYPRESS

CHAR ONKEYUP

CHAROFF ONMOUSEDOWN

CLASS ONMOUSEMOVE

DIR ONMOUSEOUT

ID ONMOUSEOVER

LANG ONMOUSEUP

ONCLICK STYLE

ONDBLCLICK TITLE

ONKEYDOWN VALIGN

End tag:

</tfoot>; may be omitted

Contains:

table_content

Used in:

table_content

The closing </tfoot> tag is optional, since the footer ends when the table ends.

The HTML 4.0 standard specifies many different attributes for the <tfoot> tag as for <thead> and the
other table tags. Unfortunately, no browser yets supports them, including Internet Explorer. If you have
special alignment attributes for your table footer, you'll need to specify them for each row within the
<tfoot> tag.

11.3.4 The <tbody> Tag

Use the <tbody> tag to divide your HTML 4.0 table into discrete sections. The <tbody> tag collects
one or more rows into a group within a table. It is perfectly acceptable to have no <tbody> tags within a
table, although where you might include one, you probably will have two or more <tbody> tags within a
table. So identified, you can give each <tbody> group different rule line sizes above and below the
section. Within a <tbody> tag, only table rows may be defined using the <tr> tag.

<tbody>

Function:

Define a section within a table

Attributes:

ALIGN ONKEYPRESS

CHAR ONKEYUP

CHAROFF ONMOUSEDOWN

CLASS ONMOUSEMOVE

DIR ONMOUSEOUT

ID ONMOUSEOVER

LANG ONMOUSEUP

ONCLICK STYLE

ONDBLCLICK TITLE

ONKEYDOWN VALIGN

End tag:

</tbody>; may be omitted

Contains:

table_content

Used in:

table_content

The closing </tbody> tag is optional, since the section ends at the next <tbody> or <tfoot> tag, or
when the table ends. Like <tfoot>, there are many attributes for the <tbody> tag, but none supported,
even by Internet Explorer. If you have special alignment attributes for this section, you'll need to specify
them for each row within the <tbody> tag.

11.3.5 Using Table Sections

From a presentation standpoint, the most important thing you can do with the <thead>, <tfoot>, and
<tbody> tags is divide your table into logical sections that are delimited by different borders. By
default, Internet Explorer does not do anything special with the borders around the headers, footers, and
sections within your table. By adding the rules attribute to the <table> tag, however, you can draw
thicker rule lines between your <thead>, one or more <tbody>, and <tfoot> table sections, helping
readers better understand your table's organization. [The align attribute, 11.2.1.1]

For example, here is the simple table you saw earlier in this chapter augmented with a header and footer.
Notice that we've omitted many of the unnecessary closing tags for brevity and readability:

<table border cellspacing=0 cellpadding=5 rules=groups>
 <caption align=bottom>Kumquat versus a poked eye, by gender</caption>
 <thead>
 <tr>
 <td colspan=2 rowspan=2>
 <th colspan=2 align=center>Preference
 </tr>
 <tr>
 <th>Eating Kumquats
 <th>Poke In The Eye
 </tr>
 </thead>
 <tbody>
 <tr align=center>
 <th rowspan=2>Gender

 <th>Male
 <td>73%
 <td>27%
 </tr>
 <tr align=center>
 <th>Female
 <td>16%
 <td>84%
 </tr>
 </tbody>
 <tfoot>
 <tr>
 <td colspan=4 align=center>
 Note: eye pokes did not result in permanent injury
</table>

The resulting HTML table as rendered by Internet Explorer is shown in Figure 11.5. Notice how the rules
after the table header and before the footer are thinner than the borders around the other table rows? This
happened because we included the special rules=groups attribute to the <table> tag. Similar
effects may be obtained by specifying rules=rows or rules=all (see later).

Figure 11.5: Use new HTML 4.0 table tags to specially section your tables

Long tables often benefit from thicker rules every few rows, making it easier to read the table. Do this by
grouping the rules in your table with several <tbody> tags. Each set of rows contained in a single
<tbody> tag will have thicker rules before and after it.

Here is an expanded version of our table example, with additional sections set off as separate groups:

<table border cellspacing=0 cellpadding=5 rules=groups>
 <caption align=bottom>Kumquat versus a poked eye, by gender</caption>
 <thead>
 <tr>
 <td colspan=2 rowspan=2>
 <th colspan=2 align=center>Preference
 <tr>

 <th>Eating Kumquats
 <th>Poke In The Eye
 <tbody>
 <tr align=center>
 <th rowspan=4>Gender
 <th>Males under 18
 <td>94%
 <td>6%
 <tr align=center>
 <th>Males over 18
 <td>73%
 <td>27%
 <tbody>
 <tr align=center>
 <th>Females under 18
 <td>34%
 <td>66%
 <tr align=center>
 <th>Females over 18
 <td>16%
 <td>84%
 <tfoot>
 <tr>
 <td colspan=4 align=center>
 Note: eye pokes did not result in permanent injury
</table>

The result is shown in Figure 11.6.

Figure 11.6: Multiple <tbody> segments further divide a table

In this case, we wind up with four rows in the table, separated into two groups by a thicker rule between
them. Any number of groups could be created within the table by adding more <tbody> tags.

11.3.6 Defining Column Groups

The basic HTML table model is row-centric. Sometimes, though, it is easier to deal with your table as a
collection of columns. Using the <colgroup> and <col> tags, HTML 4.0, as originally implemented
by Internet Explorer through table extensions, helps you turn the tables and think in columns.

Unlike the sectioning tags we describe in the previous sections, which are interspersed with the rows of a
table to define headers, footers, and sections within the table, the column-related tags cannot be
intermingled with the content of a table. Instead, you must place them at the very beginning of a table,
before the content. They define the model by which HTML 4.0-compliant browsers render the columns.

11.3.7 The <colgroup> Tag

The <colgroup> tag defines a column group. You can use the <colgroup> tag in two ways: as a
single definition of several identical columns or as a container for several dissimilar columns. The
<colgroup> tag may appear only within a <table> tag, but you may define one or more column
groups within a table. The ending </colgroup> tag is rarely used; instead, the <colgroup> ends at
the next <colgroup>, <thead>, <tbody>, <tfoot>, or <tr> tag.

Currently, only Internet Explorer supports <colgroup>.

11.3.7.1 The span attribute

Use the span attribute with the <colgroup> tag to achieve the first type of column grouping. The
value of the span attribute is the integer number of columns affected by the <colgroup> tag. For
example, a table with six columns - four in the first group and two in the other - would appear in the
source code as:

<colgroup span=4>
<colgroup span=2>

When an HTML 4.0-compliant browser collects the table cells into columns by the example definition, it
groups the first four cells in each row as the first column group and the next two cells into a second
column group. Any other attributes of the individual <colgroup> tags then are applied to the columns
contained within that group.

11.3.7.2 When to span and col

To use the <colgroup> tag as a container for dissimilar columns, leave out the span attribute, but
include within each <colgroup> tag an individual <col> tag for each column within the group. For
instance:

<colgroup>
 <col>
 <col>
 <col>
 <col>
<colgroup>
 <col>
 <col>

This method creates the same number of columns in each group as we had with the span attribute, but
lets you specify column attributes individually. You can still supply attributes for all the columns via the
<colgroup> tag, but they will be overridden by the attributes in the <col> tags, as appropriate.

<colgroup>

Function:

Define a column group within a table

Attributes:

ALIGN ONKEYUP

CHAR ONMOUSEDOWN

CHAROFF ONMOUSEMOVE

CLASS ONMOUSEOUT

DIR ONMOUSEOVER

ID ONMOUSEUP

LANG SPAN

ONCLICK STYLE

ONDBLCLICK TITLE

ONKEYDOWN VALIGN

ONKEYPRESS WIDTH

End tag:

</colgroup>; usually omitted

Contains:

column_content

Used in:

table_content

For instance, suppose we want our first example group of four columns to each occupy 20 percent of the
table, with the remaining two columns taking up 10 percent each of the total table width. That's easy with
the span attribute:

<colgroup span=4 width="20%">
<colgroup span=2 width="10%">

The structure also can be done with individually specified columns:

<colgroup width="20%">
 <col>
 <col>
 <col>
 <col>

<colgroup width="10%">
 <col>
 <col>

There is no reason not to use both methods in the same table. For instance, we could specify our example
column groupings, complete with width attributes:

<colgroup span=4 width="20%" align=right>
<colgroup width="10%">
 <col align=left>
 <col align=right>

Notice that this lets us align the contents of the two columns of the second group individually (the default
alignment is centered).

11.3.7.3 The other <colgroup> attributes

The many attributes common to tables control the familiar aspects of each column in the
<colgroup>-encapsulated column group. These attributes accept the same values and behave exactly
like the equivalent attributes for the <td> tag.

11.3.8 The <col> tag

Use the <col> tag to control the appearance of one or more columns within a column group.

<col>

Function:

Define a column within a column group

Attributes:

ALIGN ONKEYUP

CHAR ONMOUSEDOWN

CHAROFF ONMOUSEMOVE

CLASS ONMOUSEOUT

DIR ONMOUSEOVER

ID ONMOUSEUP

LANG SPAN

ONCLICK STYLE

ONDBLCLICK TITLE

ONKEYDOWN VALIGN

ONKEYPRESS WIDTH

End tag:

None

Contains:

Nothing

Used in:

column_content

The <col> tag may appear only within a <colgroup> tag within a table. It has no content, and thus
has no ending tag. Rather, it represents one or more columns within a <colgroup> to which an HTML
4.0-compliant browser applies the <col> tag's attributes.

Currently, only Internet Explorer support the <col> tag.

11.3.8.1 The span attribute

The span attribute for the <col> tag, like for the <colgroup> tag, lets you specify how many
successive columns are affected by this <col> tag. By default, only one is affected. For example, let's
create a <colgroup> that has five columns. We align the first and last columns to the left and right,
respectively, while the middle three are centered:

<colgroup>
 <col align=left>
 <col align=center span=3>
 <col align=right>

The <col> tag should only be used within <colgroup> tags that do not themselves use the span
attribute. Otherwise, Internet Explorer or a future HTML 4.0-compliant browser ignores the individual
<col> tags and their attributes.

11.3.8.2 The other <col> attributes

The many attributes common to tables control the familiar aspects of the column defined by the <col>
tag. These attributes accept the same values and behave exactly like the equivalent attributes for the <td>
tag.

11.3.9 Using Column Groups

Column groups are easier to use than they first appear. Think of them as a template of how to format your
table columns. Their main purpose is to create groups that can be separated by thicker rules within your
table, and to streamline the process of applying formatting attributes to all the cells in one or more
columns.

Returning to our original table example, we can place a thicker rule between the column labels and the
data cells by placing the column labels in one column group and the data cells in another:

<table border cellspacing=0 cellpadding=5 rules=groups>
 <caption align=bottom>Kumquat versus a poked eye, by gender</caption>
 <colgroup span=2>
 <colgroup span=2>
 <thead>
 <tr>
 <td colspan=2 rowspan=2>

 <th colspan=2 align=center>Preference
 <tr>
 <th>Eating Kumquats
 <th>Poke In The Eye
 <tbody>
 <tr align=center>
 <th rowspan=4>Gender
 <th>Males under 18
 <td>94%
 <td>6%
 <tr align=center>
 <th>Males over 18
 <td>73%
 <td>27%
 <tbody>
 <tr align=center>
 <th>Females under 18
 <td>34%</td>
 <td>66%</td>
 <tr align=center>
 <th>Females over 18
 <td>16%
 <td>84%
 <tfoot>
 <tr>
 <td colspan=4 align=center>
 Note: eye pokes did not result in permanent injury
</table>

The results are shown in Figure 11.7. All we added were the two <colgroup> tags; the additional
borders were drawn by the rules=groups attribute in the <table> tag. For borders between column
groups to be drawn, the rules attribute must be set to groups, cols, or all.

Figure 11.7: Example demonstrating the various Internet Explorer table extensions

11.2 Table Tags 11.4 Beyond Ordinary Tables

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 11
Tables

11.4 Beyond Ordinary Tables
On the face of it, HTML tables are ordinary: just a way for academics and other like-minded data
crunchers to format items into columns and rows for easy comparison. Scratch below the surface,
though, and you will see that tables are really extraordinary. Besides <pre>, the <table> tag and
related attributes provide the only way for you to easily control the layout of your document in
HTML. The content inside a <pre> tag, of course, is very limited. Tables, on the other hand, may
contain nearly anything allowed in normal body content, including multimedia and forms. And the
table structure lets you explicitly control where those elements appear in the users' browser window.
With the right combinations of attributes, tables provide a way for you to create multicolumn text, and
side and straddle heads in HTML. They also enable you to make your forms easier to read,
understand, and fill out. That's just for starters.

We don't know that we can recommend you get too caught up with page layout - tables or beyond.
Remember, HTML is not about looks, but about content. But ...

It's easy to argue that at least tables of information benefit from some controlled layout, and that
HTML forms follow a close second. Tables provide the only way to create predictable,
browser-independent layouts for your web pages. Used in moderation and filled with quality content,
tables are a tool that every HTML author should be able to wield.

And now that we've whetted your appetite for page layout with tables, don't despair that we've let you
down by ending this chapter without examples - we have several in Chapter 15, Tips, Tricks, and
Hacks.

11.3 New HTML 4.0 Table
Tags

12. Frames

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 12

12. Frames
Contents:
An Overview of Frames
Frame Tags
Frame Layout
Frame Contents
The <noframes> Tag
Inline Frames
Named Frame or Window Targets

Beginning with Netscape Navigator 2.0, HTML authors have been able to divide the browser's main
display window into independent window frames, each simultaneously displaying a different
document - something like a wall of monitors in a TV control room. Instantly popular, frames were
soon adopted (and extended) by Microsoft for Internet Explorer, and are now standard features for the
language in HTML 4.0 frames.

12.1 An Overview of Frames
Figure 12.1 is a simple example of a frame display. It shows how the document window may be
divided into columns and rows of individual frames separated by rules and scroll bars. Although it is
not immediately apparent in the example, each frame in the window is displaying an independent
document. We use different HTML documents in the example, but the individual documents may
contain any valid content the browser is capable of displaying, including multimedia. If the frame's
contents include a hyperlink that the user selects, the new document's contents - even another frame
document - may replace that same frame, another frame's content, or the entire browser window.

Figure 12.1: A simple six-panel frame layout for Netscape

Frames are enabled with a special frame document. Its contents do not get displayed. Rather, the
frame document contains extension HTML tags that tell the browser how to divide its main display
window into discrete frames, and what documents go inside the frames.

The individual documents referenced and displayed in the frame document window act independently,
to a degree; the frame document controls the entire window. You can, however, direct one frame's
document to load new content into another frame. That's done by attaching a name to a frame and
targeting the named frame with a special attribute for the hyperlink <a> tag.

11.4 Beyond Ordinary Tables 12.2 Frame Tags

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 12
Frames

12.2 Frame Tags
You need to know only three HTML tags to create a frame document: <frameset>, <frame>, and
<noframes>. In addition, the HTML 4.0 standard and Internet Explorer provide the <iframe>
tag, which you may use to create inline, or floating, frames.

A frameset is simply the collection of frames that make up a browser's window. Column- and
row-definition attributes for the <frameset> tag let you define the number and initial sizes for the
columns and rows of frames. The <frame> tag defines which document - HTML or otherwise -
initially goes into the frames within those framesets, and is where you may give the frame a name to
use for document hypertext links.

Here is the HTML source that was used to generate Figure 12.1:

<html>
<head>
<title>Frames Layout</title>
</head>
<frameset rows="60%,*" cols="65%,20%,*">
 <frame src="frame1.html">
 <frame src="frame2.html">
 <frame src="frame3.html" name="fill_me">
 <frame scrolling=yes src="frame4.html">
 <frame src="frame5.html">
 <frame src="frame6.html">
 <noframes>
 Sorry, this document can be viewed only with a
 frames-capable browser.
 Take this link
 to the first HTML document in the set.
 </noframes>
</frameset>
</html>

Notice a few things in the simple frame example and its rendered image (Figure 12.1). First, the order
in which the browser fills the frames in a frameset goes across each row. Second, frame 4 sports a
scrollbar because we told it to, even though the contents may otherwise fit without scrolling.
(Scrollbars automatically appear if the contents overflow the frame's dimensions, unless explicitly

disabled with the scrolling attribute in the <frame> tag.) [<frame>, 12.4]

Another item of interest is the name attribute in one of the frame tags. Once named, you can reference
a particular frame as the location in which to display a hypertext-linked document. To do that, you
add a special target attribute to the anchor (<a>) tag of the source hypertext link. For instance, to
link a document called new.html for display in frame 3, which we've named "fill_me", the anchor
looks like this:

If the user chooses the link, say in frame 1, the new.html document will replace the original
frame3.html contents in frame 3. [The target Attribute for the <a> Tag, 12.7.1]

Finally, although Netscape and Internet Explorer both support frames, it is possible that some other
browser users will try and view your frame documents. That's why each of your key frame documents
should provide a back door to your HTML document collection with the <noframes> tag.
Frame-capable browsers display your frames; non-frame-capable browsers display the alternative
<noframes> content.

12.2.1 What's in a Frame?

Anyone who has opened more than one window on their desktop display to compare contents or
operate interrelated applications knows instinctively the power of frames.

One simple use for frames is to put content that is common in a collection, such as copyright notices,
introductory material, and navigational aids, into one frame, with all other document content in an
adjacent frame. As the user visits new pages, each loads into the scrolling frame, while the
fixed-frame content persists.

A richer frame document-enabled environment provides navigational tools for your document
collections. For instance, assign one frame to hold a table of contents and various searching tools for
the collection. Have another frame hold the user-selected document contents. As users visit your
pages in the content frame, they never lose sight of the navigational aids in the other frame.

Another beneficial use of frame documents is to compare a returned HTML form with its original for
verification of the content by the submitting user. By placing the form in one frame and its submitted
result in another, you let the user quickly verify that the result corresponds to the data entered in the
form. If the results are incorrect, the form is readily available to be filled out again.

12.1 An Overview of Frames 12.3 Frame Layout

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 12
Frames

12.3 Frame Layout
Frame layout is similar to table layout. Using the <frameset> tag, you can arrange frames into rows and columns
while defining their relative or absolute sizes.

12.3.1 The <frameset> Tag

The <frameset> tag lets you define a collection of frames and control their spacing and borders. Use the
<frameset> tag to define a collection of frames and other framesets. Framesets also may be nested, allowing for a
richer set of layout capabilities.

<frameset>

Function:

Define a collection of frames

Attributes:

BORDER ONBLUR

BORDERCOLOR ONFOCUS

CLASS ONLOAD

COLS ONUNLOAD

FRAMEBORDER ROWS

FRAMESPACING STYLE

ID TITLE

End tag:

</frameset>; never omitted

Contains:

frameset_content

Used in:

html_content

Use the <frameset> tag in lieu of a <body> tag in the frame document. You may not include any other content
except valid <head> and <frameset> content in a frame document. Combining frames with a conventional
document containing a <body> section may result in unpredictable browser behavior.

12.3.1.1 The rows and cols attributes

The <frameset> tag has one required attribute: either cols or rows - your choice. They define the size and
number of columns (cols) or rows of either frames or nested framesets for the document window. Both attributes

accept a quote-enclosed, comma-separated list of values that specify either the absolute (pixels) or relative
(percentage or remaining space) width (for columns) or height (for rows) for the frames. The number of attribute
values determines how many rows or columns of frames the browser will display in the document window.

As with tables, the browser will match the size you give a frameset as closely as possible. The browser will not,
however, extend the boundaries of the main document window to accommodate framesets that would otherwise
exceed those boundaries or fill the window with empty space if the specified frames don't fill the window. Rather, the
browsers allocate space to a particular frame relative to all other frames in the row and column and resolutely fills the
entire document window. (Did you notice that a frame document window does not have scrollbars?)

For example:

<frameset rows="150,300,150">

creates three rows of frames, each extending across the entire document window. The first and last frames are set to
150 pixels tall, the second to 300 pixels. In reality, unless the browser window is exactly 600 pixels tall, the browser
automatically and proportionately stretches or compresses the first and last frames so that each occupies one quarter
of the window space. The center row occupies the remaining half of the window space.

Frame row and column size values expressed as a percentage of the window dimensions are more sensible. For
instance, the following example is effectively identical to the previous one:

<frameset rows="25%,50%,25%">

Of course, if the percentages don't add up to 100 percent, the browser automatically and proportionally resizes each
row to make up the difference.

If you are like us, making things add up is not a strength. Perhaps some of the frame designers suffer the same
difficulty, which would explain why they included the very nifty asterisk option for <frameset> rows and cols
values. It tells the browser to size the respective column or row to whatever space is left over after putting adjacent
frames into the frameset.

For example, when the browser encounters the following frame tag:

<frameset cols="100,*">

it makes a fixed-sized column 100 pixels wide, and then creates another frame column that occupies all of the
remaining space in the frameset.

Here's a fancier layout example:

<frameset cols="10,*,10">

This one creates two very thin columns down the edges of the frameset and gives the remaining center portion to the
middle column.

You may also use the asterisk for more than one row- or column-attribute value. In that case, the corresponding rows
or columns equally divide the available space. For example:

<frameset rows="*,100,*">

creates a 100-pixel tall row in the middle of the frameset and equal-sized rows above and below it.

If you precede the asterisk with an integer value, the corresponding row or column gets proportionally more of the
available space. For example:

<frameset cols="10%,3*,*,*">

creates four columns: the first column occupies 10 percent of the overall width of the frameset. The browser then
gives the second 3/5 of the remaining space, and the third and the fourth are each given 1/5 of the remaining space.

Using asterisks (especially with the numeric prefix) makes it easy to divide up the remaining space in a frameset.

Be aware, too, that unless you explicitly tell it not to, the browser lets users manually resize the individual frame
document's columns and rows, and hence change the relative proportions each frame occupies in their frames display.
To prevent this, see the noresize attribute for the <frame> tag. the sidebar "<frame>"

12.3.1.2 Controlling frame borders and spacing

The popular browsers provide attribute extensions that you may use to generally define and change the borders
surrounding the frames in a frameset. The HTML 4.0 standard prefers instead that you include these border-related
display features via <frame> tag attributes.

Both Internet Explorer and Netscape use the frameborder attribute to disable or explicitly enable frame borders.
(By default, every frame in a frameset as well as the frameset window itself is rendered with a 3D border; see Figure
12.1.) The two browsers' documentation disagree about the particular values for the frameborder attribute, but
both acknowledge the other's conventions. Hence, setting the value of frameborder to 0 or no turns borders off
(see Figure 12.2); 1 or yes turns borders on.

Figure 12.2: The frameborder attribute lets you remove the borders between frames

Internet Explorer and Netscape do disagree, however, as to how you may control the thickness of the borders. Internet
Explorer supports the framespacing attribute, whose value is the number of pixels you want between frames (see
Figure 12.2). The attribute affects all frames and framesets nested within the current frameset as displayed by Internet
Explorer. In practice, you should set it once on the outermost <frameset> to create a consistent border appearance
for all of the frames in a single page.

Netscape accepts only the border attribute to define the border width, with an integer value in pixels. Like Internet
Explorer, Netscape lets you include the frameborder attribute with any <frameset> tag, affecting all nested
frames and framesets. Unlike Internet Explorer, Netscape lets you include the border attribute only in the outermost
<frameset>, ensuring that all frame borders are the same width within that <frameset>.

Since browsers ignore unsupported attributes, it is possible to define frame borders so that both browsers do the right
thing. Just make sure to use the same framespacing and border values.

Finally, with Netscape you can control the color of the frame borders using the bordercolor attribute (Figure
12.3). It accepts a color name or hexadecimal triple as its value. A complete list of color names and values can be
found in Appendix F, Color Names and Values.

Figure 12.3: Netscape accepts border and bordercolor attributes to control the color and spacing
between frames

12.3.1.3 Frames and JavaScript

Internet Explorer and Netscape, as well as the new HTML 4.0 standard, support JavaScript-related event handlers that
let your frame documents react when they are first loaded and when the frame window gets resized (onLoad);
unloaded from the browser by the user (onUnload); when the window containing the frameset loses focus, such as
when the user selects another window (onBlur); or when the frameset becomes the active window (onFocus).
Included as <frameset> attributes, these event handlers take quote-enclosed lists of JavaScript commands and
function calls as their value. For example, you might notify the user when all the contents have been loaded into their
respective frames of a lengthy frameset:

<frameset onLoad="window.alert('Everything is loaded. You may now continue.')">

These four attributes may also be used with the <body> tag. We cover JavaScript Event handlers in more detail in
section Section 13.3.3, "JavaScript Event Handlers" in Chapter 13.

12.3.1.4 Other <frameset> attributes

Like most of the other HTML 4.0 standard tags, the <frameset> tag honors four of the standard attributes: class,
style, title, and id.

Use the class attribute to associate a predefined style class with this frame and, via style inheritance, its content.
Alternatively, use the style attribute to define a style inline with the <frameset> tag. We cover styles more
completely in Chapter 9, Cascading Style Sheets.

The id attribute creates a unique identifier for the frame, while title creates a title for the frame that might be
presented to the user or used by a nonvisual browser. [The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5]

12.3.2 Nesting <frameset> Tags

You can create some elaborate browser displays with a single <frameset>, but the frame layout is unimaginative.
Instead, create staggered frames and other more complex layouts with multiple <frameset> tags nested within a
top-level <frameset> in the frame document.

For example, create a layout of two columns, the first with two rows and the second with three rows (Figure 12.4), by
nesting two <frameset> tags with row specifications within a top-level <frameset> that specifies the columns:

<frameset cols="50%,*">
 <frameset rows="50%,*">
 <frame src="frame1.html">
 <frame src="frame2.html">
 </frameset>
 <frameset rows ="33%,33%,*">
 <frame src="frame3.html">
 <frame src="frame4.html">
 <frame src="frame5.html">

 </frameset>
</frameset>

Figure 12.4: Staggered frame layouts use nested <frameset> tags

12.2 Frame Tags 12.4 Frame Contents

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 12
Frames

12.4 Frame Contents
A frame document contains no displayable content, except perhaps a message for non-frame-enabled
browsers (see <noframes> in section Section 12.5, "The <noframes> Tag"). Instead, <frame>
tags inside the one or more <frameset> tags (which encapsulate the contents of a frame document)
provide URL references to the individual documents that occupy each frame. [<noframes>, 12.5]

12.4.1 The <frame> Tag

The <frame> tag appears only within a <frameset>. Use it to set, via its associated src attribute,
the URL of the document content that initially gets displayed inside the respective frame.

<frame>

Function:

Define a single frame in a <frameset>

Attributes:

BORDERCOLOR NAME

CLASS NORESIZE

FRAMEBORDER SCROLLING

ID SRC

LONGDESC STYLE

MARGINHEIGHT TITLE

MARGINWIDTH

End tag:

</frame>; rarely included

Contains:

Nothing

Used in:

frameset_content

Frames are placed into a frameset column by column, from left to right, and then row by row, from
top to bottom, so the sequence and number of <frame> tags inside the <frameset> tag are
important.

The browser displays empty frames for <frame> tags that do not have a src attribute. It also
displays empty frames if the <frameset> tag calls for more frames than the corresponding
<frame> tags define. Such orphans remain empty; you cannot put content into them later, even if
they have a target "name" for display redirection. [The name attribute, 12.4.1.2]

12.4.1.1 The src attribute

The value of the src attribute for the <frame> tag is a URL of the document that is to be displayed
in the frame. There is no other way to provide content for a frame. You shouldn't, for instance, include
any <body> content within the frame document; the browser will ignore the frame tags and display
just the contents of a <body> tag if it comes first, or vice versa.

The document referenced by the src attribute may be any valid HTML document or displayable
object, including images and multimedia. In particular, the referenced document may itself be
composed of one or more frames. The frames are displayed within the referencing frame, providing
yet another way of achieving complex layouts using nested frames.

Since the source may be a complete HTML document, all the features of HTML apply within a frame,
including backgrounds and colors, tables, fonts, and the like. Unfortunately, this also means that
multiple frames in a single browser window may conflict with each other. Specifically, if each nested
frame document (not a regular HTML document) has a different <title> tag, the title of the overall
browser window will be the title of the most recently loaded frame document. The easiest way to
avoid this problem is to ensure that all related frame documents use the same title.

12.4.1.2 The name attribute

The optional name attribute for the <frame> tag labels that frame for later reference by the target
attribute for the hypertext link anchor <a> tag and the <form> tag. This way, you can alter the
contents of a frame using a link in another frame. Otherwise, like normal browser windows,
hypertext-linked documents replace the contents of the source frame. We discuss names and targets in
greater length later in this chapter. [The target Attribute for the <a> Tag, 12.7.1]

The value of the name attribute is a text string enclosed in quotation marks.

12.4.1.3 The noresize attribute

Even though you may explicitly set their dimensions with attributes in the <frameset> tag, users
can manually alter the size of a column or row of frames. To suppress this behavior, add the
noresize attribute to the frame tags in the row or column whose relative dimensions you do not
want users fiddling with. For a two-by-two frame document, a noresize attribute in any one of the
four associated frame tags will effectively freeze the relative proportions of all the frames, for
example.

The noresize attribute is especially useful for frames that contain fixed images serving as
advertisements, a button bar, or a logo. By fixing the size of the frame to contain just the image and
setting the noresize attribute, you guarantee that the image will be displayed in the intended
manner and that the remainder of the browser window will always be given over to the other frames in

the document.

12.4.1.4 The scrolling attribute

The browser will display vertical and horizontal scrollbars with frames whose contents are larger than
the allotted window space. If there is sufficient room for the content, the scrollbars disappear. The
scrolling attribute for the <frame> tag gives you explicit control over whether the scroll bars
appear or disappear.

With scrolling="yes", the browser adds scroll bars to the designated frame even if there is
nothing to scroll. If you set the scrolling attribute value to no, scrollbars will never be added to
the frame, even if the frame contents are larger than the frame itself. The value auto, supported only
by Netscape, works as if you didn't include the scrolling attribute in the tag; Netscape adds
scrollbars as needed. To achieve auto behavior in Internet Explorer, simply omit the scrolling
attribute altogether.

12.4.1.5 The marginheight and marginwidth attributes

The browser normally places a small amount of space between the edge of a frame and its contents.
You can change those margins with the marginheight and marginwidth attributes, each
including a value for the exact number of pixels to place around the frame contents.

You cannot make a margin less than one pixel, or make it so large there is no room for the frame
contents. That's because these attributes, like most other HTML ones, advise; they do not dictate to
the browser. If your desired margin values cannot be accommodated, the browser ignores them and
renders the frame as best it can.

12.4.1.6 The frameborder and bordercolor attributes

You can add or remove borders from a single frame with the frameborder attribute. Values of
yes or 1 and no or 0 respectively enable or disable borders for the frame and override the value of
the frameborder attribute for any frameset containing the frame.

Note that the browsers do react somewhat differently to border specifications. Netscape, for instance,
removes an individual border only if adjacent frames sharing that border have borders turned off.
Internet Explorer, in the other hand, will remove those adjacent borders, but only if they are not
explicitly turned on in those adjacent frames. Our advice is to explicitly control the borders for each
frame if you want to consistently control the borders for all frames across both browsers.

With Netscape only, you also can change the color of the individual frame's borders with the
bordercolor attribute. Use a color name or hexadecimal triple as its value. If two adjacent frames
have different bordercolor attributes, the resulting border color is undefined. A complete list of
color names and values can be found in Appendix F.

12.4.1.7 The title and longdesc attributes

Like most other HTML 4.0 tags, you can provide a title for a frame with the title attribute. The
value of the attribute is a quote-enclosed string that describes the contents of the frame. Browsers
might display the title, for instance, when the mouse passes over the frame.

If the title attribute isn't quite enough for you, the longdesc attribute can be used. Its value is the

URL of a document that describes the frame. Presumably, this long description might be of some
alternative media, suitable for use by a nonvisual browser.

12.3 Frame Layout 12.5 The <noframes> Tag

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 12
Frames

12.5 The <noframes> Tag
A frame document has no <body>. In fact, it must not, since the browser will ignore any frame tags
if it finds any <body> content before it encounters the first <frameset> tag. A frame document,
therefore, is all but invisible to any non-frame-capable browser. The <noframes> tag gives some
relief to the frame-disabled.

<noframes>

Function:

Supply content for non-frame-capable browsers

Attributes:

CLASS ONKEYUP

DIR ONMOUSEDOWN

ID ONMOUSEMOVE

LANG ONMOUSEOUT

ONCLICK ONMOUSEOVER

ONDBLCLICK ONMOUSEUP

ONKEYDOWN STYLE

ONKEYPRESS TITLE

End tag:

</noframes>; sometimes omitted

Contains:

body_content

Used in:

frameset_content

Use the <noframes> tag only within the outermost <frameset> tag of a frame document. The
content inside the <noframes> tag and its required end tag (</noframes>) is not displayed by
any frame-capable browser, but is displayed in lieu of other contents in the frame document by

browsers that do not handle frames. The contents of the <noframes> tag can be any normal HTML
body content, including the <body> tag itself.

Although this tag is optional, experienced HTML authors typically include the <noframes> tag in
their frame documents with content that warns a non-frame-capable browser user that they're missing
the show. And smart authors will give those users a way out, if not direct access to the individual
documents that make up the frame document contents. Remember our first frame example in this
chapter? Figure 12.5 shows what happens when that frame document gets loaded into an old version
of Mosaic.

Figure 12.5: A <noframes> message in a non-frame-capable browser

<noframes>
 Sorry, this document can be viewed only with Netscape
 Navigator version 1.2 or later.
 Take this link
 to the first HTML document in the set.
</noframes>

The reason <noframes> works is that most browsers are extremely tolerant of erroneous tags and
incorrect documents. A nonframe browser simply ignores the frame tags. What's left, then, is the
content of the <noframes> tag, which the browser dutifully displays.

If your browser strictly enforces some version of HTML that does not support frames, it may simply
display an error message and refuse to display the document, even if it contains a <noframes> tag.

12.5.1 <noframes> Attributes

There are no attributes specific to the <noframes> tag, but you can use any of the sixteen standard
HTML 4.0 attributes: class and style for style management, lang and dir for language type
and display direction, title and id for titling and naming the enclosed content, and any of the event
attributes for user-activated JavaScript processing within the <noframes> tag. [The dir attribute,
3.5.1.1] [The lang attribute, 3.5.1.2] [The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5] [Inline
Styles: The style Attribute, 9.1.1] [Style Classes, 9.2.4] [JavaScript Event Handlers, 13.3.3]

12.4 Frame Contents 12.6 Inline Frames

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 12
Frames

12.6 Inline Frames
To this point, our discussion has centered around frames that are defined as part of a frameset. A
frameset, in turn, replaces the conventional <body> of a document and supplies content to the user
via its contained frames.

Internet Explorer and the new HTML 4.0 standard let you do things a bit differently: You also can
define a frame that exists within a conventional document, displayed as part of that document's text
flow. These frames behave a lot like inline images, which is why they are known as inline frames.

12.6.1 The <iframe> Tag

Define an inline frame with the <iframe> tag. The <iframe> tag is not used within a
<frameset> tag. Instead, it appears anywhere in your HTML document that an tag might
appear. The <iframe> tag defines a rectangular region within the document in which the browser
displays a separate HTML document, including scrollbars and borders.

<iframe>

Function:

Define an inline frame within a text flow

Attributes:

ALIGN MARGINWIDTH

CLASS NAME

FRAMEBORDER SCROLLING

HEIGHT SRC

ID STYLE

LONGDESC TITLE

MARGINHEIGHT WIDTH

End tag:

</iframe>; never omitted

Contains:

body_content

Used in:

text

Use the src attribute with <iframe> to specify the URL of the HTML document that occupies the
inline frame. All of the other, optional attributes for the <iframe> tag, including the class,
frameborder, id, longdesc, marginheight, marginwidth, name, scrolling, style,
and title, behave exactly as the corresponding attributes for the <frame> tag. [The <frame> Tag,
12.4.1]

Use the content of the <iframe> tag to provide information to users of browsers that do not support
inline frames. Compliant browsers will ignore these contents whereas all other browsers ignore the
<iframe> tag and therefore display its contents as if it were regular body content. For instance, use
the <iframe> content to explain to non-Internet Explorer users what they are missing:

...other document content
<iframe src="sidebar.html" width=75 height=200 align=right>
Your browser does not support inline frames. To view this
document correctly, you'll need
a copy of Internet Explorer.
</iframe>
...subsequent document content

In this example, we let the user know that they were accessing an unsupported feature, and provided a
link to the missing content.

12.6.1.1 The align attribute

Like the align attribute for the <table> tag, this inline frame attribute lets you control where the
frame gets placed inline with the adjacent text or moved to the edge of the document, allowing text to
flow around the frame.

For inline alignment, use top, middle, or bottom as the value of this attribute. The frame will be
aligned with the top, middle, or bottom of the adjacent text, respectively.

To allow text to flow around the inline frame, use the left or right values for this attribute. The
frame will be moved to the left or right edge of the text flow, respectively, and the remaining content
of the document will be flowed around the frame. A value of center places the inline frame in the
middle of the display, with text flowing above and below.

12.6.1.2 The height and width attributes

Currently, Internet Explorer puts the contents of an inline frame into a predefined, 150-pixel-tall,
300-pixel-wide box. Use the height and width attributes with values as the number of pixels to
change those dimensions.

12.6.2 Using Inline Frames

Although you probably will shy away from them for most of your web pages (at least until most
browsers become HTML 4.0-compliant), inline frames can be useful, particularly for providing
information related to the current document being viewed, similar to the sidebar articles you'd find in
a conventional printed publication.

Except for their location within conventional document content, inline frames are treated exactly like
regular frames. You can load other documents into the inline frame using its name (see following
section) and link to other documents from within the inline frame.

12.5 The <noframes> Tag 12.7 Named Frame or
Window Targets

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 12
Frames

12.7 Named Frame or Window Targets
As we discussed in the <frame> tag description section, you can label a frame by adding the name
attribute to its <frame> tag. The new HTML 4.0 id attribute provides the same unique labeling.
Once named or identified, the frame may become the destination display window for a
hypertext-linked document selected within a document displayed in some other frame. You
accomplish this redirection by adding the special target attribute to the anchor that references the
document.

12.7.1 The target Attribute for the <a> Tag

If you include a target attribute within an <a> tag, the browser will load and display the document
named in the tag's href attribute in a frame or window whose name matches the target. If the named
or id'd frame or window doesn't exist, the browser will open a new window, give it the specified
label, and load the new document into that window. Thereafter, hypertext-linked documents can target
the new window.

Targeted hypertext links makes it easy to create effective navigational tools. A simple table of
contents document, for example, might redirect documents into a separate window:

<h3>Table of Contents</h3>

 Preface
 Chapter 1
 Chapter 2
 Chapter 3

The first time the user selects one of the table of contents hypertext links, the browser will open a new
window, label it "view_window," and display the desired document's contents inside it. If the user
selects another link from the example table of contents and the "view_window" is still open, the
browser will again load the selected document into that window, replacing the previous document.

Throughout the whole process, the window containing the table of contents is accessible to the user.
By clicking on a link in one window, the user causes the contents of the other window to change.

Rather than open an entirely new browser window, a more common use of target is to direct
hyperlink contents to one or more frames in a <frameset> display. For instance, you might place
the table of contents into one frame of a two-frame document and use the adjacent frame for display

of the selected documents:

<frameset cols="150,*">
 <frame src="toc.html">
 <frame src="pref.html" name="view_frame">
</frameset>

When the browser initially displays the two frames, the left frame contains the table of contents, and
the right frame contains the preface (see Figure 12.6).

Figure 12.6: Table of contents frame controls content of adjacent frame

When a user selects a link from the table of contents in the left frame (for example, Chapter 1), the
browser loads and displays the associated document into the "view_frame" frame on the right side
(Figure 12.7). As other links are selected, the right frame's contents change, while the left frame
continuously makes the table of contents available to the user.

Figure 12.7: Chapter 1's contents are displayed in the adjacent frame

12.7.2 Special Targets

There are four reserved target names for special document redirection actions:

_blank

The browser always loads a target="_blank" linked document into a newly opened,
unnamed window.

_self

This target value is the default for all <a> tags that do not specify a target, causing the target
document to be loaded and displayed in the same frame or window as the source document.
This target is redundant and unnecessary unless used in combination with the target attribute
in the <base> tag in a document's head (see section Section 12.7.3, "The <base> Default

Target").

_parent

The _parent target causes the document to be loaded into the parent window or frameset
containing the frame containing the hypertext reference. If the reference is in a window or
top-level frame, it is equivalent to the target _self.

A brief example may help clarify how this link works. Consider a link in a frame that is part of
a three-column frameset. This frameset, in turn, is a row in the top-level frameset being
displayed in the browser window. This arrangement is shown in Figure 12.8.

If no target is specified for the hypertext link, it is loaded into the containing frame. If a target
of _parent is specified, the document is loaded into the area occupied by the three-column
frameset containing the frame that contains the link.

_top

This target causes the document to be loaded into the window containing the hypertext link,
replacing any frames currently displayed in the window.

Continuing with the frame hierarchy shown in Figure 12.8, using a target of _top would
remove all the contained frames and load the document into the entire browser window.

Figure 12.8: Using special hypertext targets in nested frames and framesets

All four of these target values begin with the underscore character. Any other window or target

beginning with an underscore is ignored by the browser, so don't use the underscore as the first
character of any frame name or id you define in your documents.

12.7.3 The <base> Default Target

It can be tedious to specify a target for every hypertext link in your documents, especially when most
are targeted at the same window or frame. To alleviate this problem, you can add a target attribute
to the <base> tag. [<base>, 7.7]

The target attribute in the <base> tag sets the default target for every hypertext link in the current
document that does not contain an explicit target attribute. For example, in our example table of
contents document, almost every link causes the document to be displayed in another window named
"view_frame." Rather than include that target in each hypertext link, you should place the common
target in the table of contents' <base> tag within its <head>:

<html>
<head>
<title>Table of Contents</title>
<base target="view_frame">
</head>
<body>
<h3>Table of Contents</h3>

 Preface
 Chapter 1
 Chapter 2
 Chapter 3

</body>
</html>

Notice that we don't include any other target references in the list of hyperlinks, because the browser
will load and display all the respective documents in the base target "view_frame."

12.7.3.1 Traditional link behavior

Before the onset of frames, each time you selected a hyperlink, the corresponding document replaced
the contents of the browser window. With frames, this behavior is modified so that the corresponding
document replaces the content of the referencing frame. This is often not the desired behavior and can
be disconcerting to people browsing your documents.

For example, suppose you have arranged all of the documents on your site to present themselves in
three frames: a navigational frame at the top of the browser window, a scrolling content frame in the
middle, and a feedback form at the bottom. You named the content frame with the name attribute of
the <frame> tag in the top-level document for your collection and used the target attribute of the
<base> tag in every document on your site to ensure that all links will be loaded into the center
content frame.

This arrangement works perfectly for all the documents on your site, but what happens when a user
selects a link that takes them to a different site? The referenced document will still be loaded into the

center content frame. Now the user is confronted by a document from some other site, surrounded by
your navigation and feedback frames![1] Very impolite.

[1] Check out Chapter 15, Tips, Tricks, and Hacks, on how to step out into the forefront
when your pages happen to be on the other end of a targetless hyperlink.

The solution is to make sure that every hypertext link that references a remote document has a
target of _top. This way, when someone selects a link that takes them away from your site, the
remote document will replace the contents of the entire browser window, including your navigation
and feedback frames. If the majority of the links in your documents are to other sites, you might
consider adding target="_top" to a <base> tag in your document, and using explicit target
attributes in the links to your local documents.

12.6 Inline Frames 13. Executable Content

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 13

13. Executable Content
Contents:
Applets and Objects
Embedded Content
JavaScript
JavaScript Style Sheets

One of the most exciting recent developments in Web technologies is the ability to deliver
applications directly to the user's browser. These typically small programs known as applets perform
simple tasks on the client computer, from responding to user mouse- or keyboard-actions to spicing up
your HTML page displays with multimedia-enabling software.

You may embed applets in your HTML document using a special programming language known as
JavaScript. Or you can load and execute Java-based, platform-independent applets over the Internet.
During execution, these programs may generate dynamic HTML content, interact with the user,
validate form data, or even create windows and run entire applications independent of your HTML
pages. The possibilities are endless, and go far beyond the document model originally envisioned for
HTML.

In this chapter, we show you, with simple examples, how to embed and include executable content -
scripts and applets - in your HTML documents. We won't, however, even begin to pretend to teach
you how to write and debug your own applet programs. This is a book about HTML, after all. Rather,
get an expert opinion: turn to any of the many excellent texts from O'Reilly, including JavaScript: The
Definitive Guide, Java in a Nutshell, and Exploring Java.

13.1 Applets and Objects
Applets, like client-side image maps, represent a shift in the basic model of web communications.
Until recently, servers performed most of the computational work on the Web; client browsers being
not much more than glorified terminals. With applets, Web technology is shifting toward the client,
distributing some or all of the computational load from the server to the client and its browser.

Applets also represent a way of extending a browser's features without forcing users to purchase or
otherwise acquire a new browser, as is the case when developers implement new tag and attribute
extensions to HTML. Nor do users have to acquire and install a special application, as is required for
helper or plug-in applications. This means that once users have a browser that supports applets
(Netscape and Internet Explorer do), you can deliver applets immediately, including HTML display

and multimedia innovations.

13.1.1 The HTML 4.0 Object Model

Java-based applets - web page-referenced programs retrieved from a network server and executed on
the user's client computer - actually are a subset of what the HTML 4.0 standard calls inclusions. Like
with images, the browser first loads the HTML document, then examines it for inclusions - additional,
separate, and discrete content that are to be handled by the client browser. A GIF image is one type of
inclusion. A .wav sound file is another; an MPEG movie is another; a Java-based clock program is
another.

HTML 4.0 generally calls the inclusion contents objects. In fact, in your HTML document you may
identify and load nearly any object file over the network through a universal <object> tag, which
we discuss in detail later in this chapter. [The <object> Tag, 13.2.1]

Once downloaded, the HTML standard dictates that the browser somehow render the object, by
internal or external mechanisms. The popular graphical browsers, for instance, have integrated
software for displaying GIF and JPEG images. Otherwise, plug-ins and other helper applications may
provide the necessary rendering mechanism.

13.1.1.1 The applet model

With applet-based objects, the browser sets aside a portion of the document display space. You may
control the size and position of this display area; the applet controls what is presented inside.

The applet object is software; an executable program. Accordingly, besides providing a display space,
the browser, in tandem with the client computer environment and resources, provides the applet
runtime environment - typically Java.

During execution, the applet has access to a restricted environment within the user's computer. For
instance, applets have access to the mouse and keyboard, and may receive input from the user. They
can initiate network connections and retrieve data from other servers on the Internet. In sum, applets
are full-fledged programs, complete with a variety of input and output mechanisms, along with a full
suite of network services.

Several applets may be placed in a single document; they all execute in parallel and may communicate
with each other. While the browser may limit their access to its computer system, applets have
complete control of their virtual environment within the browser.

13.1.1.2 The applet advantage

There are several advantages of applets, not the least of which is providing more compelling user
interfaces within a web page. For instance, an applet might create a unique set of menus, choices, text
fields, and similar user-input tools different from those available through the browser. When the user
clicks a button within the applet's interaction/display region, the applet might respond by displaying
results within the region, signaling another applet, or even by loading a completely new page into the
browser.

We don't mean to imply that the only use of applets is to enhance the user interface. An applet is a
full-fledged program that can perform any number of computational and user-interactive tasks on the
client computer. An applet might implement a real-time video display, or perform circuit simulation,

or engage the user in a game, and so on.

13.1.1.3 Using applets correctly

An applet is nothing more than another tool you may use to produce compelling and useful web
pages. Keep in mind that an applet uses computational resources on the client to run, and therefore
places a load on the user's computer. It can degrade system performance.

Similarly, if an applet uses a lot of network bandwidth to accomplish its task (a real-time video feed,
for example), it may make other network communication unbearably slow. While such applications
are fun, they do little more than annoy your target audience.

To use an applet correctly, balance the load between the browser and the server. For each page, decide
which tasks are best left to the server (forms processing, index searches, and the like) and which tasks
are better suited for local processing (user interface enhancements, real-time data presentation, small
animations, input validation, and so on). Divide the processing accordingly. Remember that many
users have slower network connections and computers than you do and design your applets to satisfy
the majority of your audience.

Used the right way, applets seamlessly enhance your pages and provide a satisfying experience for
your audience. Used improperly, applets are just another annoying bandwidth waster, alienating your
users and hurting your pages.

13.1.1.4 Writing applets

Creating applets is a programming task, not usually a job for the HTML author, and certainly way
beyond the scope of this book. For details, we recommend you consult any of the many applet
programming texts that have recently appeared on bookshelves everywhere, including those from
O'Reilly & Associates.

Today, one language dominates the applet programming world: Java. Developed by Sun
Microsystems of Mountain View, California, Java supports an object-oriented programming style
wherein classes of applets can be used and reused to build complex applications.

By invention, applets built from the same language should run with any browser that supports them.
In reality, certain Microsoft implementation decisions have caused some valid Java applets to fail
when running on Internet Explorer. Hopefully, Microsoft will fix these problems and Java will remain
a universal programming language for the Web. In any case, the conscientious Java programmer
should keep abreast of the latest technology and create applets that are certifiably 100% pure Java.
Microsoft, in particular, is trying to get programmers to use proprietary extensions to Java that will
work on only Microsoft platforms and refusing to support key parts of the standard. We recommend
avoiding any vendor extensions to Java that deviate from the standard Java 1.1 version currently in
widespread use.

You can shield yourself from platform dependencies by using the Java Plugin from Sun; see
http://java.sun.com/products/plugin. There are versions for both Internet Explorer and Netscape.

We should take this opportunity to mention also ActiveX, an alternative applet programming
technology available only from Microsoft. ActiveX is proprietary, closely coupled to various versions
of Microsoft Windows, and is fully functional only when used with Internet Explorer. ActiveX applets
will run on versions of Internet Explorer targeted to various versions of Windows, but a single
ActiveX applet will not run on these different versions without recompilation. This is in contrast with

http://java.sun.com/products/plugin

Java applets, where a single Java applet can be written and compiled once and immediately run on a
broad range of browsers and operating systems.

ActiveX also presents an unacceptably high security risk to any user whose browser supports ActiveX
technology. It is ridiculously easy to penetrate and damage a computer running a browser that allows
ActiveX applets to be executed. For this reason, we cannot recommend ActiveX as a viable applet
implementation technology and we go so far as to recommend that users disable ActiveX capability
within their browser - specifically, Internet Explorer.

12.7 Named Frame or
Window Targets

13.2 Embedded Content

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 13
Executable Content

13.2 Embedded Content
In this section, we cover three tags that support embedded content. The <object> tag is in the HTML
4.0 standard. It is a generalized hybrid of the deprecated <applet> tag for embedding applets,
particularly Java, and the <embed> tag extension that lets you include an object whose MIME type
references the plug-in needed to process and possibly display that object.

The HTML 4.0 standard strongly encourages you to use the <object> tag to include applets as well as
the variety of discrete inclusions in your documents, even images (although the standard did not go so far
as to deprecate the tag). Use <object> with the classid attribute to insert Java and other
applets into a document, along with their execution parameters as contents of the associated <param>
tag. And with <object>, use the data attribute to download and display non-HTML content, such as
multimedia, in the user's computing environment. Object data may be processed and rendered by an
included applet, by utilities that come with your browser, or by a plug-in ("helper") application that the
user supplies.

For applets, the browser creates a display region in the containing text flow exactly like an inline image:
without line breaks and as a single large entity. The browser then downloads and executes the applet's
program code, if specified, and downloads and renders any included data just after download and display
of the HTML document. Execution of the applet continues until the code terminates itself or when the
user stops viewing the page containing the applet.

With data, the browser decodes the object's data type and will either handle its rendering directly, such as
with GIF and JPEG images, or invoke an associated plug-in application for the job.

13.2.1 The <object> Tag

The <object> tag was originally implemented by Microsoft to support their ActiveX applets and only
later added Java support. In a similar manner, Netscape initially supported the alternative <embed> and
<applet> tags for inclusion objects and later provided limited support for the <object> tag.

All that jostling for position by the browser giants made us nervous, and we were hesitant in previous
editions of this book to even suggest that you use <object> at all. We now heartily endorse it, based on
the strength of the HTML 4.0 standard. Although not fully supported yet, expect <object> to be well
supported soon by the popular browsers, and expect the alternative <embed> and <applet> tags to be
less supported, if not completely ignored, by future HTML 4.0-compliant browsers.

<object>

Function:

Embed an object or applet in a document

Attributes:

ALIGN ONKEYDOWN

ARCHIVE ONKEYPRESS

BORDER ONKEYUP

CLASS ONMOUSEDOWN

CLASSID ONMOUSEMOVE

CODEBASE ONMOUSEOUT

CODETYPE ONMOUSEOVER

DATA ONMOUSEUP

DECLARE SHAPES

DIR STANDBY

HEIGHT STYLE

HSPACE TABINDEX

ID TITLE

LANG TYPE

NAME USEMAP

NOTAB VSPACE

ONCLICK WIDTH

ONDBLCLICK

End tag:

</object>; never omitted

Contains:

object_content

Used in:

text

The contents of the <object> tag may be any valid HTML content, along with <param> tags that pass
parameters to an applet. If the browser can retrieve the requested object and successfully process it, either
by executing the applet or by processing the object's data with a plug-in (helper) application, the contents
of the <object> tag, except for the <param> tags, are ignored. If any problem occurs during the
retrieval and processing of the object, the browser won't insert the object into the document, but instead
will display the contents of the <object> tag, except for the <param> tags. In short, you should
provide alternative content for browsers that cannot handle the <object> tag or if the object cannot be
successfully loaded.

13.2.1.1 The classid attribute

Use the classid attribute to specify the location of the object, typically a Java class, that you want
included by the browser. The value may be an absolute or relative URL of the desired object. Relative
URLs are considered to be relative to the URL specified by the codebase attribute if it is provided;
otherwise they are relative to the current document URL.

For example, to execute a clock Java applet contained in a file named clock.class, you might include in
your HTML document the code:

<object classid=clock.class>
</object>

The browser will locate the code for the applet using the current document's base URL. Hence, if the
current document's URL is:

http://www.kumquat.com/harvest_time.html

the browser will retrieve the applet code for our clock class example as:

http://www.kumquat.com/clock.class

13.2.1.2 The codebase attribute

Use the codebase attribute to provide an alternative base URL from which the browser will retrieve an
object. The value of this attribute is a URL pointing to a directory containing the object referenced by the
classid attribute. The codebase URL overrides, but does not permanently replace, the document's
base URL, which is the default if you don't use codebase. [Referencing Documents: The URL, 7.2]

Continuing with our previous examples, suppose your document comes from http://www.kumquat.com,
but the clock applet is kept in a separate directory named classes. You cannot retrieve the applet by
specifying classid= classes/clock.class. Rather, include the codebase attribute and new
base URL:

<object classid=clock.class codebase="http://www.kumquat.com/classes/">
</object>

which resolves to the URL:

http://www.kumquat.com/classes/clock.class

Although we used an absolute URL in this example, you also can use a relative URL. For instance,
applets typically get stored on the same server as the host HTML documents, so we'd usually be better
off, for relocation's sake, specifying a relative URL for the codebase, such as:

<object code=clock.class codebase="/classes/">
</object>

The classid attribute is similar to the code attribute of the <applet> tag, providing the name of the
file containing the object, and is used in conjunction with the codebase attribute to determine the full
URL of the object to be retrieved and placed in the document.

13.2.1.3 The archive attribute

For performance reasons, you may choose to preload collections of objects contained in one or more
archives. This particularly true of Java-based applications, where one Java class will rely on many other
classes to get its work done. The value of the archive attribute is a quote-enclosed list of URLs, each
pointing to an archive to be loaded by the browser before rendering or executing the object.

13.2.1.4 The codetype attribute

The HTML 4.0 standard codetype attribute is required only if the browser cannot determine an applet's
MIME type from the classid attribute, or if the server does not deliver the correct MIME type when
downloading an object. This attribute is nearly identical with type (section 13.2.1.6), except that it is
used to identify program code type, whereas type should be used to identify data file types.

The following example explicitly tells the browser that the object's code is Java:

<object code=clock.class codetype="application/java">
</object>

13.2.1.5 The data attribute

Use the data attribute to specify the data file, if any, that is to be processed by the object. The data
attribute's value is the URL of the file, either absolute or relative to the document's base URL or to that
which you provide with the codebase attribute. The browser determines the data type by the type of
object that is being inserted in the document.

This attribute is similar to the src attribute of the tag in that it downloads data to be processed by
the included object. The difference, of course, is that the data attribute lets you include just about any
file type, not just an image file. In fact, the <object> tag expects, but doesn't require, that you explicitly
name an enabling application for the object with the classid attribute, or indicate the MIME type of the
file via the type attribute to help the browser decide how to process and render the data.

For example, here is an image included as an object, rather than as an file:

<object data="pics/kumquat.gif" type="image/gif">
</object>

13.2.1.6 The type attribute

The type attribute lets you explicitly define the MIME type of the data that appear in the file you declare
with the data attribute. (Use codetype to indicate an applet's MIME type.) If you don't provide data,
or if the MIME type of the data is apparent from the URL or is provided by the server, you may omit this
attribute. We recommend you include it anyway, to ensure that your data is handled correctly by the
browser and the included object.

For examples of data MIME types, look in your browser preferences for applications. There you'll find a
list of the many file data types your browser will recognize and the application, if not the browser itself,
that will process and render that file type.

13.2.1.7 The align, class, border, height, hspace, style, vspace, and width attributes

There are several attributes that let you control the appearance of the <object> display region exactly
like the corresponding attributes for the tag. The height and width attributes control the size
of the viewing region. The hspace and vspace attributes define a margin around the viewing region.

The value for each of these dimension attributes should be in pixels.

The align attribute (deprecated in the HTML 4.0 standard here as well as for and all other tags
in lieu of style sheets) determines how the browser aligns the region in context with the surrounding text.
Use top, texttop, middle, absmiddle, baseline, bottom, or absbottom to align the object
display space with adjacent text, or left and right alignments for wraparound content.

The display region's dimensions often must match some other applet requirement, so be careful to check
these values with the applet programmer. Sometimes, the applet may scale its display output to match
your specified region.

For example, suppose our example clock applet should grow or shrink to fit nearly any size display
region. Hence, we might create a square clock 100×100 pixels:

<object classid=clock.class height=100 width=100>
</object>

As with , use the border attribute to control the width of the frame that surrounds the object's
display space when you include it as part of a hyperlink. The null value (border=0) removes the frame.
[The Tag, 5.2.6]

Use the class and style attributes, of course, to control the display style for the content enclosed by
the tag, and to format the content according to a predefined class of the <object> tag. [Inline Styles:
The style Attribute, 9.1.1] [Style Classes, 9.2.4]

13.2.1.8 The declare attribute

The declare attribute lets you define an object, but restrains the browser from downloading and
processing it. Used in conjunction with the name attribute, this facility is similar to a forward declaration
in a more conventional programming language that lets you defer download of an object until it actually
gets used in the document.

13.2.1.9 The id, name, and title attributes

Use the id and name attributes to uniquely label an object. Use the title attribute to simply entitle the
tag. Each attribute's value is a text string. The browser may choose to display a title to the user or may use
it in some other manner while rendering the document. Use id and name to reference the object in other
elements of your HTML document, including hyperlinks and other objects.

For example, suppose you have two clock applets in your document, along with two applets the user
operates to set those clocks. Provide unique labels for the clock applets using the name or id attribute,
then pass those labels to the setting applets using the <param> tag, which we discuss later in this
chapter:

<object classid=clock.class name=clock1>
</object>
<object classid=clock.class name=clock2>
</object>
<object classid=setter.class>
 <param name=clockToSet value=clock1>
</object>
<object classid=setter.class>

 <param name=clockToSet value=clock2>
</object>

Since we have no need to distinguish between the setter applets, we choose not to name their instances.

Currently, only Netscape supports the id attribute for <object>, while only Internet Explorer supports
the name and title attributes. Consequently, to be safe, you should label your objects with both id and
name attributes, since the browsers will ignore attributes they do not support. Use a quote-enclosed string
for either attribute value.

13.2.1.10 The shapes and usemap attributes

Recall from our detailed discussion of hyperlinks in Chapter 7, Links and Webs, that you can divide a
picture into geometric regions and attach a hyperlink to each, creating a so-called image map. The
shapes and usemap attributes for the <object> tag generalize that feature to include other object
types.

The standard shapes attribute informs the browser that the <object> tag's contents are a series of
hyperlinks and shape definitions. The usemap attribute and required URL value point to a <map> where
you define the shapes and associated hyperlinks identical to the client-side imagemap we discussed in
detail in section Section 7.5.2, "Client-side Image Maps" in Chapter 7.

For example, here is the image map we described in Chapter 7, rewritten as a "shaped" object:

<object data="pics/map.gif" shapes>

</object>

and as the more familiar image map:

<object data="pics/map.gif" usemap="#map1">
</object>
...
<map name="map1">
 <area coords="0,0,49,49" href="main.html#link1">
 <area coords="50,0,99,49" href="main.html#link2">
 <area coords="0,50,49,99" href="main.html#link3">
 <area coords="50,50,99,99" href="main.html#link4">
</map>

You also may take advantage of all the attributes associated with the hyperlink, map, and <area> tags to
define and arrange the image map regions. For instance, we recommend that you include alternative (alt
attribute) text descriptions for each sensitive region of the image map.

13.2.1.11 The standby attribute

The standby attribute lets you display a message - the attribute's value text string - during the time the
browser is downloading the object data. If your objects are large or if you expect slow network response,
add this attribute as a courtesy to your users.

13.2.1.12 The tabindex and notab attributes

For Internet Explorer with ActiveX objects only, the notab attribute excludes the object from the
document tabbing order.

As an alternative to the mouse, users also may press the Tab key to select and the Return or Enter key to
activate a hyperlink or to access a form control. Normally, each time the user presses the Tab key, the
browser steps to the next hyperlink or form control in the order that they appear in the document. Use the
HTML 4.0-standard tabindex and an integer value to modify the position the object occupies in the
sequence of tab-selected elements on the HTML page.

13.2.1.13 The dir and lang attributes

Use the dir and lang attributes, like their counterparts for most other HTML 4.0 standard tags, to
specify the language and dialect of the <object>-enclosed contents as well as the direction by which
the browser adds the text characters to the display. [The dir attribute, 3.5.1.1] [The lang attribute, 3.5.1.2]

13.2.1.14 Object event handling

As user-initiated mouse and keyboard events occur within the object, you may want to perform special
actions. Accordingly, you can use the ten standard event attributes to catch these events and execute
JavaScript code. We describe JavaScript event handlers more fully in section Section 13.3.3, "JavaScript
Event Handlers".

13.2.1.15 Supporting incompatible browsers

Since some browsers may not support applets or the <object> tag, sometimes you may need to tell
readers what they are missing. You do this by including HTML body content between the <object>
and </object> tags.

Browsers that support the <object> tags ignore the HTML content inside. Of course, browsers that
don't support objects don't recognize the <object> tags. Being generally tolerant of apparent HTML
mistakes, they will usually ignore the unrecognized tag and blithely go on to display whatever content
may appear inside. It's as simple as that. The following fragment tells object-incapable browser users they
won't see our clock example:

<object classid=clock.class>
 If your browser were capable of handling applets, you'd see
 a nifty clock right here!
</object>

More importantly, object-capable browsers will display the contents of the <object> tag if they cannot
load, execute, or render the object. If you have several objects of similar intent but with differing
capabilities, you can nest their object tags. The browser will try each object in turn, stopping with the first
one it can handle. Thus, the outmost object might be a full-motion video. Within that <object> tag, you
might include a simpler MPEG video, and within that <object>, a simple GIF image. If the browser
can handle full-motion video, your users get the full effect. If that level of video isn't available, the
browser can try the simpler MPEG video stream. If that fails, the browser can just display the image. If
images aren't possible, that innermost <object> might contain a textual description of the object.

13.2.2 The <param> Tag

The <param> tag supplies parameters for a containing <object> or <applet> tags. (We discuss the
deprecated <applet> tag in section Section 13.2.3, "The <applet> Tag (Deprecated)".)

<param>

Function:

Supply a parameter to an embedded object

Attributes:

ID

NAME

TYPE

VALUE

VALUETYPE

End tag:

None

Contains:

Nothing

Used in:

applet_content

The <param> tag has no content and no end tag. It appears, perhaps with other <param> tags, only
between an <object> or <applet> tag and its end tag. Use the <param> tag to pass parameters to
the embedded object, such as a Java applet, as required for it to function correctly.

13.2.2.1 The name and value attributes

The <param> tag has two required attributes: name and value. You've seen these before with HTML
forms. Together, they define a name/value pair that the browser passes to the applet.

For instance, our clock applet example might let users specify the time zone by which it sets its hour
hand. To pass the parameter named "timezone" with the value "EST" to our example applet, specify the
parameters as:

<object classid=clock.class>
 <param name=timezone value=EST>
</object>

Since both attributes had simple strings for values, we did not enclose the values in quotation marks. For
values with embedded punctuation and spaces, be sure to include quotes.

The browser will pass the name/value pairs to the applet, but that is no guarantee that the applet is
expecting the parameters, that the names and values are correct, or that the applet will even use the
parameters. Correct parameter names, including capitalization, and acceptable values are determined by

the applet author. The wise HTML document author will work closely with the applet author or have
detailed documentation to ensure that the applet parameters are named correctly and assigned valid
values.

13.2.2.2 The type and valuetype attributes

Use the type and valuetype attributes to define the type of the parameter the browser passes to the
embedded object and how that object is to interpret the value. The valuetype attribute can have one of
three values: data, ref, or object. The value data indicates that the parameter value is a simple
string. This is the default value. Using ref indicates that the value is a URL of some other resource on
the web. Finally, object indicates that the value is the name of another embedded object in the current
document. This may be needed to support inter-object communication within an HTML document.

The value of the type attribute is the MIME media type of the value of the parameter. This is usually of
no significance when the parameter value is a simple string, but can be important when the value is
actually a URL pointing to some other object on the Web. In those cases, the embedded object may need
to know the MIME type of the object in order to use it correctly. For example, this parameter tells the
embedded object that the parameter is actually the URL of a Microsoft Word document:

<param name=document value=http://kumquats.com/quat.doc
 type=application/msword valuetype=url>

13.2.3 The <applet> Tag (Deprecated)

Use the <applet> tag within your HTML document to download and execute an applet. Also, use the
tag to define a region within the document display for the applet's display area. You may supply
alternative content within the <applet> tag for display by browsers that do not support applets.

<applet>

Function:

Insert an application into the current text flow

Attributes:

ALIGN ID

ALT MAYSCRIPT

ARCHIVE NAME

CLASS OBJECT

CODE STYLE

CODEBASE TITLE

HEIGHT VSPACE

HSPACE WIDTH

End tag:

</applet>; never omitted

Contains:

applet_content

Used in:

text

Most applets require one or more parameters that you supply in the HTML document to control their
execution. Put these parameters between the <applet> tag and its corresponding </applet> end tag
using the <param> tag. The browser passes the document-specific parameters to the applet at time of
execution. [The <param> Tag, 13.2.2]

The <applet> tag has been deprecated in the HTML 4.0 standard in deference to the generalized
<object> tag, which can do the same as <applet> and much more. Nonetheless, <applet> is a
popular tag and remains well supported by the popular browsers. Don't expect that it will go away any
time soon, but do realize that <applet> will go away.

13.2.3.1 Applet rendering

The browser creates an applet's display region in the containing text flow exactly like an inline image:
without line breaks and as a single large entity. The browser downloads and executes the applet just after
download and display of the HTML document, and continues execution until the code terminates itself or
when the user stops viewing the page containing the applet.

13.2.3.2 The align attribute

Like an image, you may control the alignment of an applet's display region with respect to its surrounding
text. Like with the tag, set the align attribute's value to top, texttop, middle, absmiddle,
baseline, bottom, or absbottom, as well as left and right alignments for wraparound content.
[The Tag, 5.2.6]

13.2.3.3 The alt attribute

The alt attribute gives you a way to tell users gracefully that something is missing if, for some reason,
the applet cannot or will not execute on their computer. Its value is a quote-enclosed message string that,
like the alt attribute for images, gets displayed in lieu of the applet itself.

The alt message is only for browsers that support applets. See section 13.2.1.15 to find out how to
inform users of applet-incapable browsers why they can't view an applet.

13.2.3.4 The archive attribute

The archive attribute lets you collect common Java classes into a single library that is cached on the
user's local disk. Once cached, the browser doesn't need to use the network to access an applet; it retrieves
the software from the local cache, thereby reducing the inherent delays of additional network activity to
load the class.

The value of the archive attribute is a URL identifying the archive file. The suffix of the archive
filename may be either .zip or .jar. Archived .zip files are in the familiar ZIP archive format, generated by
PKZIP and many other utilities. Archived .jar files are in the new Java archive format; currently, support
for .jar files is spotty at best, but they will become more widespread. Archived .jar files support
compression and some advanced features like digital signatures.

You may use the archive attribute with any <applet> tag, even if the class referenced by the tag's
code attribute does not exist in the archive. If the class is not found in the archive, the browser simply

attempts to retrieve the class relative to the document URL or the codebase URL, if specified.

13.2.3.5 The code and codebase attributes

The code attribute is required. Use code to specify the filename, not the URL, of the Java class to be
executed by the browser. Like <object>, make the search relative to another storage location by using
the codebase attribute described in section Section 13.2.1.2, "The codebase attribute" or an archive, as
described in section Section 13.2.3.4, "The archive attribute". Also, the extension suffix of the filename
should be .class. If you don't include the suffix, some browsers will append .class automatically when
searching for the applet.

Here is our infamous clock example rewritten as an <applet>:

<applet code=clock.class codebase="http://www.kumquat.com/classes/">
</applet>

which the browser will retrieve and display from:

http://www.kumquat.com/classes/clock.class

13.2.3.6 The name attribute

The name attribute lets you supply a unique name for this instance of the code class - the copy of the
applet that runs on the individual user's computer. Like other named elements in your HTML document,
providing a name for the applet lets other parts of your HTML document, including other applets,
reference and interact with this one, such as sharing computed results.

13.2.3.7 The height, hspace, vspace, and width attributes

Use the height and width attributes (identical to the counterparts for the and <object>
tags) to define the size of the applet's display region in the document. Use hspace and vspace to
interpose some empty space around the applet region and thereby set it off from the text. They all accept
values indicating the size of the region in pixels. [The height and width attributes, 5.2.6.10]

13.2.3.8 The mayscript attribute

The mayscript attribute, supported only by Netscape, indicates that the Java applet will be accessing
JavaScript features within the browser. Normally, Java applets attempting to access JavaScript cause a
browser error. If your applets access JavaScript, you must specify mayscript in the <applet> tag.

13.2.3.9 The title attribute

The value of this attribute is a quoted string, which is used by Internet Explorer to provide a title, if
necessary, for the applet. This attribute is not supported by Netscape.

13.2.3.10 The object attribute

This unfortunately named attribute and its string value reference the name of the resource that contains a
serialized version of the applet. How and what it does is an enigma; none of the popular browsers support
it.

13.2.4 The <embed> Tag

Use the <embed> tag to include a reference in your HTML document to some special plug-in application
and perhaps data for that application. The standard analog for <embed> is the <object> tag with the
data attribute.

<embed>

Function:

Embed an object in a document

Attributes:

ALIGN PLUGINSPAGE

BORDER SRC

HEIGHT TYPE

HIDDEN UNITS

HSPACE VSPACE

NAME WIDTH

PALETTE

End tag:

None

Contains:

Nothing

Used in:

text

With <embed>, reference the data object via the src attribute and URL value for download by the
browser. The browser uses the MIME type of the src'd object to determine the plug-in required to
process the object. Alternatively, you may also use the type attribute to specify a MIME type without an
object, and thereby initiate execution of a plug-in application, if it exists on the user's computer.

Like all other tags, the nonstandard <embed> tag extension has a set of predefined attributes that define
parameters and modify the tag's behavior. Unlike most other tags, however, the browsers let you include
plug-in-specific name/value attribute pairs in <embed> that, instead of altering the action of the tag
itself, get passed to the plug-in application for further processing.

For example, this tag:

<embed src=movie.avi width=320 height=200 autostart=true loop=3>

has attributes that are processed by the <embed> tag (src, width, and height) and two that are not
recognized, but rather passed to the plug-in associated with AVI video clips: autostart and loop.

It is not possible to document all the possible attributes that the many different plug-ins might need with

their associated <embed> tag. Instead, you must turn to the plug-in developer to learn about all their
required and optional attributes for each particular plug-in you plan to use in your pages.

13.2.4.1 The align, border, height, width, hspace, and vspace attributes

The browser invariably displays embedded objects to the user in a region set aside within the document
window. The <embed> tag's align, border, height, width, hspace, and vspace attributes let
you control the appearance of that region exactly as they do for the tag, so we won't belabor them
here. [The Tag, 5.2.6]

Briefly, the height and width attributes control the size of the viewing region. Normally, you should
specify the height and width in pixels, but you may also use some other units of measure if you also
specify the units attribute (see section Section 13.2.4.8, "The units attribute"). The hspace and
vspace attributes define a margin, in pixels, around the viewing region. The align attribute determines
how the browser aligns the region within surrounding text, while the border attribute determines the
width of the border surrounding the viewing region.

Only Netscape supports the align, border, hspace, and vspace attributes for the <embed> tag.

13.2.4.2 The hidden attribute

The hidden attribute makes an object invisible to the user, forcing it to have a height and width of zero.
Note that setting hidden does not cause the browser to display an empty region within the document,
but rather completely removes the object from the containing text flow.

This attribute is useful for audio streams placed within HTML documents. The HTML entry:

<embed src=music.wav hidden autostart=true loop=true>

embeds an audio object in the page. The browser does not show anything to the user, but rather plays
background music for the page. By contrast, the plug-in associated with:

<embed src=music.wav>

might present an audio control panel to users so that they might start and stop the audio playback, adjust
the volume, and so forth.

13.2.4.3 The name attribute

Like other name attributes, this one also lets your label the embedded object for later reference by other
elements in your document, including other objects. The value of the attribute is a character string.

13.2.4.4 The palette attribute

The palette attribute is supported by both Netscape and Internet Explorer, but in completely different
ways. With Netscape, the value of the palette attribute is either foreground or background,
indicating which palette of window system colors the plug-in uses for its display.

With Internet Explorer, the value of palette is instead a pair of hexadecimal color values, separated by
a vertical bar. The first value determines the foreground color used by the plug-in; the second sets the
background color. Thus, specifying this palette:

palette=#ff0000|#00ff00

causes the plug-in to use red as its foreground color and green as its background color. For a complete
description of hexadecimal color values, see Appendix F, Color Names and Values.

13.2.4.5 The pluginspage attribute

The pluginspage attribute, supported only by Netscape, specifies the URL of a web page that
provides instruction on where to obtain and how to install the plug-in associated with the embedded
object.

13.2.4.6 The src attribute

Like its document-referencing counterparts for a myriad of other tags, the src attribute supplies the URL
of the data object that you embed in the HTML document. The server providing the object must be
configured so that it notifies the browser of the correct MIME type of the object. If not, the browser will
use the suffix of the last element of the src value - the object's filename in the URL path - to determine
the type of the object. The browser uses this MIME type to determine which plug-in it will execute to
process the object.

If you don't include a src attribute with the <embed> tag, you've got to include a type attribute to
explicitly reference the MIME type and hence the plug-in application.

13.2.4.7 The type attribute

Use the type attribute in addition to or in lieu of the src attribute. Its value explicitly indicates the
MIME type of the embedded object, which in turn determines which plug-in the browser will invoke to
process the object. This attribute is not required if you include the src attribute and the browser can
determine the object type from the object's URL or server. You must supply a type attribute if you don't
include the src attribute.

It may seem odd to use an <embed> tag without a src attribute reference to some object, but this is
common if the plug-in requires no data or retrieves its data dynamically after it is started. In these cases,
the type attribute is required so that the browser knows which plug-in to invoke.

13.2.4.8 The units attribute

The default units of measure for the height and width attributes that control the <embed> display
space is pixels. The units attribute lets you explicitly state that the absolute measure is pixels, or
change it to the relative en, which is one-half the current point size of text in the document. With the en
units, you tailor the object's viewing area (viewport) to be proportional to its immediately surrounding
content, the size of which is varied by the user.

For example:

<embed src=movie.avi height=200 width=320 units=pixels>

creates a view port for the window 200×320 pixels. By changing units to en, that same view port,
when included within a flow of 12-point text, will become 1200×1920 pixels.

13.2.5 The <noembed> Tag

Some browsers do not support the <embed> tag. The <noembed> tag makes it easy to supply
alternative content that tells users what they are missing.

<noembed>

Function:

Supply content to <embed>-incompatible browsers

Attributes:

None

End tag:

None

Contains:

Nothing

Used in:

text

The popular browsers ignore the contents of the <noembed> tag, whereas browsers that do not support
the <embed> tag will display the contents of the <noembed> tag. Normally, use the contents of the
<noembed> tag to display some sort of message placating users of inadequate browsers:

<embed src=cool.mov autostart=true loop=true>
<noembed>To view the cool movie, you need to upgrade to a browser
that supports the <embed> tag!</noembed>

We recommend using a <noembed> message only in those cases where the object is crucial for the user
to comprehend and use your HTML document. And, in those cases, provide a link to a document that can
stand alone without the embedded object, or nicely explain the difficulty.

13.1 Applets and Objects 13.3 JavaScript

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 13
Executable Content

13.3 JavaScript
All the executable content elements we've talked about so far have had one common trait: they are
separate from the browser and the HTML document - separate data, separate execution engine.

JavaScript is different. It is a scripting language that taps the native functionality of the browser. You may
sprinkle JavaScript statements throughout your documents, either as blocks of code or single statements
attached to individual tags. The JavaScript-enabled browsers, including both Netscape and Internet
Explorer, interpret and act upon the JavaScript statements you provide to do such things as alter the
appearance of the document, control the display, validate and manipulate form elements, and perform
general computational tasks.

Like with Java, we will not pretend to teach JavaScript programming in this book. We'll show you how to
embed and execute JavaScript within your documents, and ask that you turn to books like JavaScript: The
Definitive Guide (O'Reilly & Associates) for a complete definition of the JavaScript language.

13.3.1 The <script> Tag

One way to place JavaScript code in your document is via the HTML standard <script> tag.

Everything between the <script> and </script> tags is processed by the browser as executable
JavaScript statements and data. You cannot place HTML within this tag; it will be flagged as an error by
the browser.

Browsers that do not support the <script> tag will process contents of the tag as regular HTML, to the
confusion of the user. For this reason, we recommend that you include the contents of the <script> tag
inside HTML comments:

<script language="JavaScript">
<!--
 JavaScript statements go here
// -->
</script>

For browsers that ignore the <script> tag, the contents are masked by the HTML comments delimiters
<!-- and -->. JavaScript-enabled browsers, on the other hand, automatically recognize and interpret the
JavaScript statements delimited by the comment tags. By using this skeleton for all your <script> tags,
you can be sure that all browsers will handle your document gracefully, if not completely.

You may include more than one <script> tag in a document, located in either the <head> or the
<body>. The JavaScript-enabled browser executes the statements in the order as they occur. Variables
and functions defined within one <script> tag may be referenced by JavaScript statements in other

<script> tags. In fact, one common JavaScript programming style is to use a single <script> in the
document <head> to define common functions and global variables for the document, and then to call
those functions and reference their variables in other JavaScript statements sprinkled throughout the
document.

<script>

Function:

Define an executable script within a document

Attributes:

CHARSET

DEFER

LANGUAGE

SRC

TYPE

End tag:

</script>; never omitted

Contains:

scripts

Used in:

head_content, body_content

13.3.1.1 The language and type attributes

Use the language or type attribute in the <script> tag to declare the scripting language that you
used to compose the contents of the tag. The language attribute is deprecated by the HTML 4.0
standard in favor of the type attribute. Regrettably, the value for each attribute is different.

If you are using JavaScript - by far the most common HTML scripting language on the Web - use
language=JavaScript or use type=text/javascript. You may occasionally see the
language value VBScript (text/vbscript for type), indicating that the enclosed code is
written in Microsoft's Visual Basic Script.

With JavaScript, you may also use the language value "JavaScript 1.1", indicating that the
enclosed script is to be processed only by Netscape 3.0 or later. Netscape 2.0, which supports JavaScript
1.0, will not process scripts identified as "JavaScript 1.1".

13.3.1.2 The src and charset attributes

For particularly large JavaScript programs or ones you reuse often, you might want to store the code in a
separate file. In these cases, have the browser load that separate file through the src attribute. The value
of the src attribute is the URL of the file containing the JavaScript program. The stored file should have
a MIME type of application/x-javascript; but will also be properly handled automatically by a
properly configured server if the filename suffix is .js.

For example:

<script language=JavaScript src="http://www.kumquat.com/quatscript.js">
</script>

tells the <script>-able browser to load a JavaScript program named quatscript.js from the server. Even
though there are no <script> contents, the ending </script> is still required.

Used in conjunction with the src attribute, the charset attribute tells the browser the character set
used to encode the JavaScript program. Its value is the name of any ISO standard character set encoding.

13.3.1.3 The defer attribute

Some JavaScript scripts are used to create actual document content using the document.write
method; others are not. If your scripts do not alter the contents of the document, add the defer attribute
to the <script> tag to speed processing of your document. Since the browser knows that it can safely
read the remainder of the document without executing your scripts, it will defer interpretation of the script
until after the document has been rendered for the user.

13.3.2 The <noscript> Tag

So that you can tell users of browsers that do not support the <script> tag that they are missing
something, HTML 4.0 provides the <noscript> tag.

<noscript>

Function:

Supply content to <script>-challenged browsers

Attributes:

CLASS ONKEYUP

DIR ONMOUSEDOWN

ID ONMOUSEMOVE

LANG ONMOUSEOUT

ONCLICK ONMOUSEOVER

ONDBLCLICK ONMOUSEUP

ONKEYDOWN STYLE

ONKEYPRESS TITLE

End tag:

</noscript>; never omitted

Contains:

body_content

Used in:

text

Unfortunately, only Netscape 3.0 and later versions ignore the contents of the <noscript> tag. So even
<script>-able browsers like Internet Explorer and Netscape 2.0 will display the contents of the
<noscript> tag, to the confusion of their users.

So, in reality, the <noscript> tag has limited usefulness due to its inconsistent support among
browsers. There are other ways to detect and handle <script>-challenged browsers, detailed in any
good JavaScript book.

The <noscript> tag supports the sixteen standard HTML 4.0 attributes: class and style for style
management, lang and dir for language type and display direction, title and id for titling and
naming the enclosed content, and the event attributes for user-initiated processing. [The dir attribute,
3.5.1.1] [The lang attribute, 3.5.1.2] [The id attribute, 4.1.1.4] [The title attribute, 4.1.1.5] [Inline Styles:
The style Attribute, 9.1.1] [Style Classes, 9.2.4] [JavaScript Event Handlers, 13.3.3]

13.3.3 JavaScript Event Handlers

One of the most important features provided by JavaScript is the ability to detect and react to events that
occur while a document is loaded, rendered, and used. The JavaScript code that handles these events may
be placed within the <script> tag, but more commonly, it is associated with a specific tag via one or
more special tag attributes.

For example, you might want to invoke a JavaScript function when the user passes the mouse over a
hyperlink in a document. The JavaScript-aware browsers support a special "mouse over" event-handler
attribute for the <a> tag called onMouseOver to do just that:

<a href=doc.html onMouseOver="document.status='Click me!';
return true">

When the mouse passes over this example link, the browser executes the JavaScript statements. (Notice
that the two JavaScript statements are enclosed in quotes and separated by a semicolon, and that single
quotes surround the text-message portion of the first statement.)

While a complete explanation of this code is beyond our scope, the net result is that the browser places
the message "Click me!" in the status bar of the browser window. Commonly, HTML authors use this
simple JavaScript function to display a more descriptive explanation of a hyperlink, in place of the often
cryptic URL that the browser traditionally displays in the status window.

HTML supports a rich set of event handlers through related "on" event tag attributes. The value of any of
the JavaScript event handler attributes is a quoted string containing one or more JavaScript statements
separated by semicolons. Extremely long statements can be broken across several lines, if needed. Care
should also be taken in using entities for embedded double quotes in the statements, to avoid a syntax
error when processing the attribute value.

13.3.3.1 Standard event handler attributes

Table 13.1 presents the current set of event handlers as tag attributes. Most are supported by the popular
browsers, which also support a variety of nonstandard event handlers as well, tagged with asterisks in the
table.

We put the event handlers into two categories: user- and document-related. The user-related ones are the
mouse and keyboard events that occur when the user handles either device on the computer. User-related
events are quite ubiquitous, appearing as standard attributes in nearly all the HTML tags (even though
they may not yet be supported by any browser), so we don't list their associated tags in Table 13-1.

Instead, we'll tell you which HTML 4.0 standard tags do not accept these event attributes: <applet>,
<base>, <basefont>, <bdo>,
, , <frame>, <frameset>, <head>, <html>,
<iframe>, <isindex>, <meta>, <param>, <script>, <style>, and <title>.

Some events, however, occur rarely and with special tags. These relate to the special events and states that
occur during the display and management of an HTML document and its elements by the browser.

13.3.3.2 The mouse-related events

The onClick, onDblClick, onMouseDown and onMouseUp attributes refer to the mouse button.
The onClick event happens when the user presses down and then quickly releases the mouse button,
unless the user quickly clicks the mouse button for a second time. In that latter case, the onDblClick
event gets triggered in the browser.

If you need to detect both halves of a mouse click as separate events, use onMouseDown and
onMouseUp. When the user presses the mouse button, the onMouseDown event occurs. The
onMouseUp event happens when the user releases the mouse button.

The onMouseMove, onMouseOut, and onMouseOver events happen when the user drags the mouse
pointer. The onMouseOver event occurs when the mouse first enters the display region occupied by the
associated HTML element. After entry, onMouseMove events are generated as the mouse moves about
within the element. Finally, when the mouse exits the element, onMouseOut occurs.

For some elements, the onFocus event corresponds to onMouseOver, and onBlur corresponds to
onMouseOut.

13.3.3.3 The keyboard events

Only three events currently are supported by the HTML 4.0 standard relating to user keyboard actions:
onKeyDown, onKeyPress, and onKeyUp. The onKeyDown event occurs when the user depresses a
key on the keyboard; onKeyUp happens when the key is released. The onKeyPress attribute is
triggered when a key is pressed and released. Usually, you'll have handlers for either the up and down
events, or the composite keypress event, but not for both.

13.3.3.4 Document events

Most of the document-related event handlers relate to the actions and states of HTML form controls. For
instance, onReset and onSubmit happen when the user activates the respective reset or submit
button. Similarly, onSelect and onChange occur as users interact with certain form elements. Please
consult Chapter 10, Forms, for a detailed discussion of these HTML forms-related events.

There also are some document-related event handlers that occur when various document elements get
handled by the browser. For instance, the onLoad event may happen when a frameset is complete, or
when the body of an HTML document gets loaded and displayed by the browser. Similarly, onUnload
occurs when a document is removed from a frame or window.

Table 13.1: Event Handlers

Event Handler HTML Tags

onAbort*

onBlur <a>

<area>

<body>*

<button>

<frameset>*

<input>

<label>

<select>

<textarea>

onChange <input>

<select>

<textarea>

onClick most tags

onDblClick most tags

onError*

onFocus <a>

<area>

<body>*

<button>

<frameset>*

<input>

<label>

<select>

<textarea>

onKeyDown most tags

onKeyPress most tags

onKeyUp most tags

onLoad <body>

<frameset>

*

onMouseDown most tags

onMouseMove most tags

onMouseOut most tags

onMouseOver most tags

onMouseUp most tags

onReset <form>

onSelect <input>

<textarea>

onSubmit <form>

onUnload <body>

<frameset>

13.3.4 JavaScript URLs

You can replace any conventional URL reference in a document with one or more JavaScript statements.
The browser then executes the JavaScript code, rather than downloading another document, whenever the
browser references the URL. The result of the last statement is taken to be the "document" referenced by
the URL and is displayed by the browser accordingly. The result of the last statement is not the URL of a
document; it is the actual content to be displayed by the browser.

To create a JavaScript URL, use javascript as the URL's protocol:

In the example, the JavaScript function generate_document() gets executed whenever the
hyperlink gets selected by the user. The value returned by the function, presumably a valid HTML
document, is rendered and displayed by the browser.

It may be that the executed statement returns no value. In these cases, the current document is left
unchanged. For example, this JavaScript URL:

pops up an alert dialog box, and does nothing else. The document containing the hyperlink would still be
visible after the dialog box gets displayed and is dismissed by the user.

13.3.5 JavaScript Entities

Character entities in HTML consist of an ampersand (&), an entity name or number, and a closing
semicolon. For instance, to insert the ampersand character itself in a document text flow, use the character
sequence &. Similarly, JavaScript entities consist of an ampersand, one or more JavaScript
statements enclosed in curly braces, and a closing semicolon. For example:

&{document.fgColor};

More than one statement must be separated by semicolons within the curly braces. The value of the last
(or only) statement is converted to a string and replaces the entity in the document.

Normally, HTML entities can appear anywhere in a document. JavaScript entities are restricted to values
of tag attributes. This lets you write "dynamic tags" whose attributes are not known until the document is
loaded and the JavaScript executed. For example:

<body text=&{favorite_color()};>

will set the text color of the document to the color value returned by the individual's
favorite_color() function.

13.3.6 The <server> Tag

The <server> tag is a strange beast. It is processed by the web server, and never seen by the browser.
So what you can do with this tag depends on the server you are using, not the reader's browser.

Netscape's server (not to be confused with the Netscape Navigator browser) uses the <server> tag to let
you to place JavaScript statements within an HTML document that get processed by the server. The
results of the executed JavaScript then get inserted into the document, replacing the <server> tag. A
complete discussion of this so-called "server-side" JavaScript is completely beyond this book; we include
this brief reference only to document the <server> tag.

<server>

Function:

Define server-side JavaScript

Attributes:

None

End tag:

</server>; never omitted

Contains:

JavaScript

Used in:

head_content

Like the <script> tag, the <server> tag contains JavaScript code. However, the latter tag and
content code must appear inside the document <head>. It is extracted from the document and executed
by the server when the document is requested for download.

Obviously, server-side JavaScript is tightly coupled to the server, not to the browser. To fully exploit this
tag and the benefits of server-side JavaScript or other server-side programming languages, consult your
web server's documentation for complete details.

13.2 Embedded Content 13.4 JavaScript Style Sheets

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 13
Executable Content

13.4 JavaScript Style Sheets
Much of a browser's work is manipulating the display, and much of their display code already had
been exposed for JavaScripting. So it seemed only natural, perhaps even relatively easy, for the
developers at Netscape to implement JavaScript Style Sheets. Based on the W3C recommended
Cascading Style Sheet model (CSS; see Chapter 9, Cascading Style Sheets), this alternative document
style technology lets you prescribe display properties for all the various HTML elements, either inline
as tag attributes, at the document level, or for an entire document collection.

JavaScript Style Sheets (JSS) are a Netscape invention. In fact, for a short time in the fall of 1996,
Netscape appeared ready to eschew the CSS methodology, which Internet Explorer already had
implemented, and use JSS exclusively for HTML document designers with their new browser,
Netscape Navigator 4.0. Fortunately, Netscape now supports both JSS and CSS technologies.

We are strong proponents of reasonable standards, and now that the CSS model is fully supported in
HTML 4.0, we can't recommend that you use anything but CSS-standard style sheets.

The CSS model is a good one, and it is good that Netscape has decided to support it. Whether Internet
Explorer will someday support JSS is not known, but we doubt it. It is clear that Microsoft intends
continued support for the CSS standard and the HTML 4.0 standard (they haven't had good results
bucking web standards in the past).

But standards aren't the whole story. We can't imagine that the HTML author, let alone the page
layout designer, is going to abide the rigid programming syntax of JavaScript, starting with the
importance of letter case in property names. Very un-HTML. Nonetheless, there are some advantages
to JSS that some authors will find useful, even though it restricts their document's full potential to the
select Netscape 4.0 user.

We thoroughly discuss the concepts and ideas behind HTML style sheets - specifically, Cascading
Style Sheets - in Chapter 9, so we won't repeat ourselves here. Rather, we address only how to create
and manipulate styles with JavaScript. Before forging ahead in this section, we recommend that you
first absorb the information in Chapter 9.

13.4.1 JavaScript Style Sheet Syntax

Netscape (versions 4.0 and later) implements JSS by extending several existing HTML tags and
defining a few new objects that store your document's styles.

13.4.1.1 External, document-level, and inline JSS

As with CSS, you can reference and load external JSS files with the <link> tag. For example:

<link href="styles.js" rel=stylesheet type=text/JavaScript>

The only real difference between this one and the one for a CSS external style sheet is that the type
attribute of the <link> tag is set to text/JavaScript instead of text/CSS. The referenced
file, styles.js, contains JavaScript statements that define styles and classes that Netscape will then use
to control display of the current document.

Document-level JSS is defined within a <style> tag in the <head> of the document, just like CSS.
Again, there is only one real difference in that the type attribute of the <style> tag is set to
text/JavaScript instead of text/CSS.

The contents of the <style> tag for JSS are quite different from those for CSS, however. For
example:

<style type=text/JavaScript>
<!--
 tags.BODY.marginLeft = "20px";
 tags.P.fontWeight = "bold";
 // -->
</style>

First, notice that we use the standard JavaScript and HTML comments to surround our JSS
definitions, preventing noncompliant browsers from processing them as HTML content. Also notice
that the syntax of the style definition is that of JavaScript, where letter case does make a difference,
amongst other things.

You associate inline JavaScript-based style rules with a specific tag using the style attribute, just
like CSS inline styles. The value of the attribute is a list of JSS assignments, separated by semicolons.
For example:

<p style="color = 'green'; fontWeight = 'bold'">

creates a green, bold-faced text paragraph. Notice first that you need to enclose inline style values
within single quotation marks, not double quotation marks, as you might use for document-level and
in external JSS styles. This is reasonable, since the style attribute value itself must be enclosed in
double quotation marks.

Also note that inline JSS definitions use only the property name, not the containing tag object that
owns the property. This makes sense, since inline JSS styles affect only the current tag, not all
instances of the tag.

13.4.1.2 JSS values

In general, all of the values you may use for CSS may also be used in JSS definitions. For keyword,
length, and percentage values, simply enclose the value in quotes and use it as you would any string
value in JavaScript. Thus, the CSS value bold becomes "bold" or 'bold' for JSS
document-level or inline styles, respectively; 12pt in CSS becomes '12pt' or "12pt" in JSS.

Specify color values as the color name or a hexadecimal color value, enclosed in single or double

quotes. The CSS decimal rgb notation is not supported in JSS.

JSS URL values are strings containing the desired URL. Thus, the CSS URL value
url(http://www.kumquat.com) becomes 'http://www.kumquat.com' for a JSS inline
style; or "http://www.kumquat.com" at the document level.

One unique power of JSS is that any value can be computed dynamically when the document is
processed by the browser. Instead of statically specifying the font size, for example, you can compute
it on the fly:

tags.P.fontSize = favorite_font_size();

We assume that the JavaScript function favorite_font_size() somehow determines the
desired font size and returns a string value containing that size. This, in turn, is assigned to the
fontSize property for the <p> tag, defining the font size for all paragraphs in the document.

13.4.1.3 Defining styles for tags

JavaScript defines a new document property, tags, that contains the style properties for all HTML
tags. To define a style for a tag, simply set the appropriate property of the desired style property
within the tag property of the document object. For example:

document.tags.P.fontSize = '12pt';
document.tags.H2.color = 'blue';

These two JSS definitions set the font size for the <p> tag to 12 points and render all <h2> tags in
blue. The equivalent CSS definitions are:

P {font-size : 12pt}
H2 {color : blue}

Since the tags property always refers to the current document, you may omit document from any
JSS tag style definition. We could have written the previous two styles as:

tags.P.fontSize = '12pt';
tags.H2.color = 'blue';

Moreover, as we mentioned previously, you may omit the tag name, as well as the document and
tags properties for inline JSS using the style attribute.

Capitalization and case are significant in JSS. The tag names within the tags property must always
be fully capitalized. The embedded capital letters within the tag properties are significant: any
deviation from the exact lettering produces an error, and Netscape won't honor your JSS declaration.
All of the following JSS definitions are invalid, though the reason is not overly apparent:

tags.p.fontsize = '12pt';
tags.Body.Color = 'blue';
tags.P.COLOR = 'red';

The correct versions are:

tags.P.fontSize = '12pt';
tags.BODY.color = 'blue';
tags.P.color = 'red';

It can be very tedious to specify a number of properties for a single tag, so you can take advantage of
the JavaScript with statement to reduce your typing burden. These styles:

tags.P.fontSize = '14pt';
tags.P.color = 'blue';
tags.P.fontWeight = 'bold';
tags.P.leftMargin = '20%';

can be more easily written as:

with (tags.P) {
 fontSize = '14pt';
 color = 'blue';
 fontWeight = 'bold';
 leftMargin = '20%';
 }

You can apply similar styles to diverse tags just as easily:

with (tags.P, tags.LI, tags.H1) {
 fontSize = '14pt';
 color = 'blue';
 fontWeight = 'bold';
 leftMargin = '20%';
 }

13.4.1.4 Defining style classes

Like CSS, JSS lets you target styles for specific ways in which a tag may be used in your document.
JSS uses the classes property to define separate styles for the same tag. There are no predefined
properties within the classes property; instead, any property you reference is defined as a class to
be used by the current document. For example:

classes.bold.P.fontWeight = 'bold';
with (classes.abstract.P) {
 leftMargin = '20pt';
 rightMargin = '20pt';
 fontStyle = 'italic';
 textAlign = 'justify';
 }

The first style defines a class of the <p> tag named bold whose font weight is set to bold. The next
style uses the with statement to create a class of the <p> tag named abstract with the specified
properties. The equivalent CSS rules would be the following:

P.bold {font-weight : bold}
P.abstract {left-margin : 20pt;
 right-margin : 20pt;
 font-style : italic;
 text-align : justify
 }

Once defined, use a JSS class just like any CSS class: with the class attribute and the class name.

Like CSS, JSS also lets you define a class without defining the tag that will use the class. This lets you
define generic classes that you can later apply to any tag. To create a generic style class in JSS, use
the special tag property all:

classes.green.all.color = "green";

You can then add class="green" to any tag to have Netscape render its contents in green. The
equivalent CSS is:

.green {color : green}

13.4.1.5 Using contextual styles

One of the most powerful aspects of CSS is its contextual style capability, wherein the browser
applies a style to tags only if they appear in the document in a certain nesting. JSS supports contextual
styles as well, through the special contextual() method within the tags property. The
parameters to this method are the tags and classes that define the context in which Netscape will apply
the style. For example:

tags.contextual(tags.UL, tags.UL, tags.LI).listStyleType = 'disc';

defines a context wherein the elements (tags.LI) of an unordered list nested within another
unordered list (tags.UL, tags.UL) use the disc as their bullet symbol. The CSS equivalent is:

UL UL LI {list-style-type : disc}

You can mix tags and classes in the contextual() method. For instance:

tags.contextual(classes.abstract.P, tags.EM).color = 'red';

tells the browser to display in red tags that appear within paragraphs that are of the abstract
class. The CSS equivalent is:

P.abstract EM {color : red}

Since the tags object is unambiguously included within the contextual() method, you may
omit them from the definition. Hence, our nested list example may be rewritten as:

tags.contextual(UL, UL, LI).listStyleType = 'disc';

13.4.2 JavaScript Style Sheet Properties

A subset of the CSS style properties are supported in JSS. The JSS style properties, their CSS
equivalents, and the sections in which those properties are fully documented are shown in Table 13.2.

Table 13.2: JSS Properties and Cascading Style Sheet Equivalents

JSS Property CSS Property See Section

align float 9.3.6.8

backgroundImage background-image 9.3.4.3

backgroundColor background-color 9.3.4.2

borderBottomWidth border-bottom-width 9.3.6.4

borderLeftWidth border-left-width 9.3.6.4

borderRightWidth border-right-width 9.3.6.4

borderStyle border-style 9.3.6.5

borderTopWidth border-top-width 9.3.6.4

clear clear 9.3.6.7

display display 9.3.8.1

fontSize font-size 9.3.3.2

fontStyle font-style 9.3.3.3

height height 9.3.6.9

lineHeight line-height 9.3.5.2

listStyleType list-style-type 9.3.7.3

marginBottom margin-bottom 9.3.6.10

marginLeft margin-left 9.3.6.10

marginRight margin-right 9.3.6.10

marginTop margin-top 9.3.6.10

paddingBottom padding-bottom 9.3.6.11

paddingLeft padding-left 9.3.6.11

paddingRight padding-right 9.3.6.11

paddingTop padding-top 9.3.6.11

textDecoration text-decoration 9.3.5.4

textTransform text-transform 9.3.5.6

textAlign text-align 9.3.5.3

textIndent text-indent 9.3.5.5

verticalAlign vertical-align 9.3.5.7

whiteSpace white-space 9.3.8.2

width width 9.3.6.12

JSS also defines three methods that allow you to define margins, padding, and border widths within a
single style property. The three methods, margins(), paddings(), and borderWidths(),
accept four parameters, corresponding to the top, right, bottom, and left margin, padding or border
width, respectively. Unlike their CSS counterparts (margin, 9.3.6.10; padding, 9.3.6.11; and
border-width, 9.3.6.4), these JSS methods require that you always specify all four parameters.
There is no shorthand way in JSS to set multiple margins, paddings, or border widths with a single
value.

13.3 JavaScript 14. Dynamic Documents

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 14

14. Dynamic Documents
Contents:
An Overview of Dynamic Documents
Client-Pull Documents
Server -Push Documents

The standard HTML document model is static. Once displayed on the browser, a document does not
change until the user initiates some activity like selecting a hyperlink with the mouse.[1] The
developers at Netscape Communications found that limitation unacceptable and built in some special
features to their Netscape Navigator browser that let you change HTML document content
dynamically. In fact, they provide for two different mechanisms for dynamic documents, which we
describe in detail in this chapter. Internet Explorer supports some of these mechanisms, which we'll
discuss as well.

[1] Of course you could embed animated GIFs or applets that dynamically update the
display, but the underlying HTML document itself doesn't change.

We should mention that many of the features of dynamic documents have been displaced by plug-in
browser accessories and in particular applets. Nonetheless, Netscape and Internet Explorer continue to
support dynamic documents, and we believe the technology has virtues you should be aware of, if not
take advantage of, in your HTML documents. [Applets and Objects, 13.1]

14.1 An Overview of Dynamic Documents
If you remember from our discussion in Chapter 1, HTML and the World Wide Web, the client
browser initiates data flow on the Web by contacting a server with a document request. The server
honors the request by downloading the document. The client subsequently displays the document's
contents to the user. For normal web documents, a single transaction initiated from the client side is
all that is needed to collect and display the document. Once displayed, however, it does not change.

Dynamic documents, on the other hand, are the result of multiple transactions initiated from either or
both the server side and the client side. A client-pull document is one that initiates multiple
transactions from the client side. When the server is the instigator, the dynamic document is known as
a server-push document.

In a client-pull document, special HTML codes tell the client to periodically request and download
another document from one or more servers on the network, dynamically updating the display.

Server-push documents also advance the way servers communicate with clients. Normally, over the
Web, the client stays connected with a server for only as long as it takes to retrieve a single
document.[2] With server-push documents, the connection remains open and the server continues to
send data periodically to the client, adding to or replacing the previous contents.

[2] One connection per document is true even for inline images browsers may
automatically download from the server. If you don't believe us, just watch the status line
at the bottom of your browser while you download an HTML document with several
images. You should see many "Contacting the server" and "Reading the file..." or similar
messages.

Netscape is currently the only browser able to handle server-push dynamic HTML documents
correctly; both Internet Explorer and Netscape support client-pull documents. With other browsers,
you might see only part of the dynamic document at best. At worst, the browser will completely reject
the document. Unfortunately, because dynamic documents are client-server processes, they don't work
without an HTTP server. That means you can't develop and test your dynamic HTML documents
stored as local files, unless you have a server running locally, as well.

14.1.1 Another Word of Caution

As always, we tell you exactly how to use these exciting but nonstandard features, and we admonish
you not to use them unless you have a compelling and overriding reason to do so. We are particularly
strident with that admonition for dynamic documents, not only because they aren't part of the HTML
standard, but because dynamic documents can hog the network. They require larger, longer
downloads than their static counterparts. And they require many more (in the case of client-pull) or
longer-term (for server-push) client-server connections. Multiple connections on a single server are
limited to a few of the vast millions of web users at a time. We'd hate to see your readers miss out
because you've created a jiggling image in a dynamic HTML document that would otherwise have
been an effective and readily accessible static document more people could enjoy.

13.4 JavaScript Style Sheets 14.2 Client-Pull Documents

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 14
Dynamic Documents

14.2 Client-Pull Documents
Client-pull documents are relatively easy to prepare. All you need to do is embed a <meta> tag in the
header of your HTML document. The special tag tells the client Netscape browser to display the
current document for a specified period of time, and then load and display an entirely new one just as
if the user had selected the new document from a hyperlink. (Note that currently there is no way to
change just a portion of an HTML document dynamically using client-pull.) [<meta>, 7.8]

14.2.1 Uniquely Refreshing

Client-pull dynamic documents work with Netscape and Internet Explorer because the browsers
respond to a special HTTP header field called "Refresh."

You may recall from previous discussions that whenever an HTTP server sends a document to the
client browser, it precedes the document's data with one or more header fields. One header field, for
instance, contains a description of the document's content type, used by the browser to decide how to
display the document's contents. For example, the server precedes HTML documents with the header
"Content-type: text/html," whose meaning should be fairly obvious.

As we discussed at length in Chapter 7, Links and Webs, you may add your own special fields to an
HTML document's HTTP header by inserting a <meta> tag into its <head>. [<meta>, 7.8]

The HTTP Refresh field implements client-pull dynamic HTML documents, enabled by the <meta>
tag format:

<meta http-equiv="Refresh" content="field value">

The tag's http-equiv attribute tells the HTTP server to include the Refresh field, with a value
specified by the content attribute (if any, carefully enclosed in quotation marks), in the string of
headers it sends to the client browser just before it sends the rest of the document's content. The
browser recognizes the Refresh header as the mark of a dynamic HTML document and responds
accordingly, as we discuss next.

14.2.2 The Refresh Header Contents

The value of the content attribute in the special <meta> Refresh tag determines when and how the
browser updates the current document. Set it to an integer, and the browser will delay that many
seconds before automatically loading another document. You may set the content field value to zero,
meaning no delay at all. In that case, the browser loads the next document immediately after it

finishes rendering the current one, by which you may achieve some very crude animation effects.
[The content attribute, 7.8.1.2]

14.2.2.1 Refreshing the same document

If the Refresh field's content value is the number of seconds alone, the browser reloads that same
document over and over again, delaying the specified time between each cycle, until the user goes to
another document or shuts down the browser.

For example, the browser will reload the following client-pull HTML document every 15 seconds:

<html>
<head>
<meta http-equiv="Refresh" content="15">
<title>Kumquat Market Prices</title>
</head>
<body>
<h3> Kumquat Market Prices</h3>
Kumquats are currently trading at $1.96 per pound.
</body>
</html>

The financial wizards among you may have noticed that with some special software tricks on the
server side, you can update the price of kumquats in the HTML document so that it acts like a
ticker-tape machine: the latest kumquat commodity price updated every 15 seconds.

14.2.2.2 Refreshing with a different document

Rather than reload the same document repeatedly, you can tell the browser to load a different
document dynamically. You do so by adding that document's absolute URL after the delay time and
an intervening semicolon in the <meta> tag's content attribute. For example:

<meta http-equiv="Refresh"
 content="15; URL=http://www.kumquat.com/next.html">

would cause the browser to retrieve the next.html document from the www.kumquat.com web server
after having displayed the current document for 15 seconds.

The URL must be an absolute one, including server type and full pathname; relative URLs don't work.

14.2.2.3 Cycling among documents

Keep in mind that the effects of the Refresh <meta> tag apply only to the document in which it
appears. Hence, to cycle among several documents, you must include a Refresh <meta> tag in each
one. The content value for each document in the cycle must contain an absolute URL that points to
the next document, with the last document pointing back to the first one to complete the cycle.

For example, the following are the <meta> tags for the headers of each in a three HTML-document
cycle.

The document first.html contains:

<meta http-equiv="Refresh"
 content="30; URL=http://www.kumquat.com/second.html">

The document second.html contains:

<meta http-equiv="Refresh"
 content="30; URL=http://www.kumquat.com/third.html">

And the third.html document has in its <head> (besides other crazy ideas):

<meta http-equiv="Refresh"
 content="30; URL=http://www.kumquat.com/first.html">

Left alone, the browser will endlessly loop among the three documents at 30-second intervals.

Cycling documents make excellent attractors, catching the attention of passers-by to a web-driven
kiosk, for example. Users may then navigate through the wider collection of kiosk documents by
clicking hyperlinks in one of the kiosk's attractor pages and subsequent ones.[3]

[3] This brings up a good point: the user may override the Refresh dynamic action at any
time; for instance, by clicking a hyperlink before the client-pull timeout expires. The
browser always ignores the Refresh action in lieu of user interaction.

To return to the cycling set of attractors, each document in the rest of the collection should have their
own Refresh fields that eventually point back to the attractor. You should specify a fairly long delay
period for the nonattractor pages - 120 to 300 seconds or more - so that the kiosk doesn't automatically
reset while a user is reading the current document. However, the delay period should be short enough
so that the kiosk resets to the attractor mode in a reasonable period of time after the user finishes.

14.2.3 Pulling non-HTML Content

Netscape's and Internet Explorer's client-pull feature is not restricted to HTML documents, although it
is certainly easiest to create dynamic documents with HTML. With a bit of server-side programming,
you can add a Refresh field to the HTTP header of any sort of document from audio files to images to
video clips.

For example, create a real-time video feed by adding a Refresh header field in each of a sequence of
images grabbed and digitized from a camera. Include a delay of zero with the URL that points to the
next image, so that as quickly as the browser displays one image, it retrieves the next. Assuming that
the network keeps up, the result is a crude (really crude) TV.

Since the browser clears the window before presenting each subsequent image, the resulting flicker
and flash make it almost impossible to present a coherent sequence of images. This technique is more
effective when presenting a series of images designed to be viewed as a slide show, where the user
expects some sort of display activity between each of the images.

Perhaps a better use of the client-pull feature is with long-playing multimedia documents for which
Netscape and Internet Explorer use special helper applications to display. On a multitasking computer,
such as one running Unix or Windows 95, the browser downloads one document, while a helper
application plays another. Combine the client-pull capabilities with that multitasking to improve

multimedia document performance. Rather than wait for a single, large document like a movie or
audio file to download before playing, break it into smaller segments, each automatically downloaded
by the previous segment via the Refresh header. The browser will play the first segment while
downloading the second, then third, then fourth, and so on.

14.2.4 Combining Refresh with Other HTTP Header Fields

You can have your client-pull dynamic HTML documents perform some neat tricks by combining the
effects of the Refresh field with other HTTP header fields. One combination in particular, is most
useful: Refresh with a "Redirect" field.

The Redirect field lets the server tell the browser to retrieve the requested document elsewhere at the
field's accompanying URL value. The client browser automatically redirects its request to the new
URL and gets the document from the new location, usually without telling the user. We retrieve
redirected documents all the time and may never notice.

The most common cause for redirection is when someone moves their HTML document collection to
a new directory or to a new server. As a courtesy, the webmaster programs the original host server to
send an HTTP header field containing the Redirect field and new URL (without a document body) to
any and all browsers that request the document from the original location. That way, the new
document location is transparent to users, and they won't have to reset their browser bookmarks.

But sometimes you want the user to reset their bookmarks to the new location because the old one
won't be redirecting browsers forever, perhaps because it's being taken out of service. One way to
notify users of the new location is to have the redirection URL point to some HTML document other
than the home page of the new collection that contains a message about the new location. Once noted,
users then take a "Continue" hyperlink to the new home page location and set their bookmarks
accordingly.

By combining the Redirect and Refresh fields, you can make that notification screen automatically
move to the new home page. If the browser receives an HTTP header with both fields, it will honor
both; it immediately fetches the redirected URL and displays it, and it sets the refresh timer and
replacement URL, if specified. When the time expires, the browser retrieves the next URL - your new
home page location - automatically.

14.2.4.1 A random URL generator

Another application for the combination of Redirect and Refresh HTTP header fields is a perpetual,
random URL generator. You'll need some programming skills to create a server-side application that
selects a random URL from a prepared list and outputs a Redirect field that references that URL along
with a Refresh field that reinvokes the random-URL application after some delay.

When Netscape or Internet Explorer receives the complete header, it immediately loads and displays
the randomly selected document specified in the Redirect field's URL. After the delay specified in the
Refresh field, the browser reruns the random-URL generator on the server (as specified in the Refresh
URL), and the cycle starts over. The result is an endless cycle of random URLs displayed at regular
intervals.

14.2.5 Performance Considerations

Client-pull documents consume extra network resources, especially when the refresh delay is small,
since each refresh involves a completely new connection to a server. It may take a browser several
seconds to contact the server and begin retrieving the document. As a result, rapid updates generally
are not feasible, especially over slow network connections.

Use client-pull dynamic documents for low-frequency updates of entire documents, or for cycling
among documents without user intervention.

14.1 An Overview of
Dynamic Documents

14.3 Server -Push Documents

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 14
Dynamic Documents

14.3 Server -Push Documents
Server-push dynamic documents are driven from the server side. The client-server connection remains
open after an initial transfer of data, and the server periodically sends new data to the client, updating
the document's display. Server-push is made possible by some special programming, not special
HTML embedded tags, on the server side, and is enabled by the multipart mixed-media type feature of
Multipurpose Internet Mail Extensions (MIME), the computer industry's standard for multimedia
document transmission over the Internet.

Server-push documents currently are not supported by Internet Explorer.

14.3.1 The Multipart/Mixed Media Type

As we mentioned earlier in this chapter in the discussion of client-pull dynamic documents, the HTTP
server sends a two-part transmission to the client browser: a header describing the document followed
by the document itself. The document's MIME type is part of the HTTP header field. Normally, the
server includes Content-type: text/html in an HTML document's header before sending its
actual contents. By changing that content type to multipart/mixed-media, you can send an HTML
document or several documents in several pieces, rather than in a single chunk. Only Netscape,
though, understands and responds to the multipart header field; the other browsers either ignore
additional parts or refuse the document altogether.

The general form of the MIME multipart mixed-media content type header looks like this:

Content-type: multipart/mixed;boundary="SomeRandomString"

This HTTP header component tells the Netscape client to expect the document to follow in several
parts and to look for SomeRandomString, which separates the parts. That boundary string should
be unique and not appear anywhere in any of the individual parts. The content of the server-to-client
transmission looks like this:

--SomeRandomString
Content-type: text/plain

Data for the first part
--SomeRandomString
Content-type: text/plain

Data for the second part

--SomeRandomString--

The above example has two document parts, both plain text. The server sends each part preceded by
our SomeRandomString document-boundary delimiter preceded by two dashes, followed by the
Content-type field, and then the data for each part. The last transmission from server to client is a
single reference to the boundary string followed by two more dashes indicating that this was the last
part of the document.

Upon receipt of each part, the Netscape browser automatically adds the incoming data to the current
document display.

You've got to write a special HTTP server application to enable this type of server-push dynamic
document; one that creates the special HTTP MIME multipart/mixed header and sends the various
documents separated by the boundary delimiter.

14.3.2 Multipart Mixed-Replace Media Type

Server-push dynamic document authors may also use an experimental variant of the MIME multipart
mixed-media content known as multipart mixed-replace-media. The difference between this special
content-type and its predecessor is that rather than simply adding content to the current display, the
"replace" version has each subsequent part replace the preceding one.

The format of the mixed-replace HTTP header is very similar to its multipart mixed counterpart; the
only difference is in the Content-type:

multipart/x-mixed-replace;boundary=SomeRandomString

All other rules regarding the format of the multipart content are the same, including the boundary
string used to separate the parts and the individual Content-type fields for each part of the
content.

14.3.3 Exploiting Multipart Documents

It is easy to see how you can use the two special MIME multipart content types to create server-push
dynamic documents. By delaying the time between parts, you might create an automatically scrolling
message in the Netscape browser window. Or by replacing portions of the document through the
x-mixed-replace MIME type, you might include a dynamic billboard in your document, perhaps even
animation.

Note in particular that server-push multipart documents need not apply only to HTML or other plain
text documents. Images, too, are a MIME-encoded content type, so you can have the HTTP server
transmit several images in sequence as parts of a multipart transmission. Since you may also have
each new image replace the previous one, the result is crude animation. Done correctly over a network
of sufficient bandwidth, the effect can be quite satisfying.

14.3.3.1 Efficiency considerations

Server-push documents keep a connection open between the client and server for the duration of the
dynamic document's activity. For some servers, this may consume extra network resources and may
also require that several processes remain active, servicing the open connection. Make sure the

server-push process (and, hence, the client-server connection) expire upon completion or after some
idle period. Otherwise, someone will inadvertently camp on an endlessly cycling server-push
document and choke off other users' access to the server.

Before choosing to implement server-push documents, make sure that your server can support the
added processing and networking load. Keep in mind that many simultaneous server-push documents
may be active, multiplying the impact on the server and seriously affecting overall server
performance.

14.3.4 Creating a Server-Push Document

Create a special application that runs with the HTTP server to enable server-push dynamic documents.
The application must create the special MIME Content-type header field that notifies the
Netscape browser that the following document comes in several parts - added to or replacing a portion
of the current document. The application must also create the appropriate boundary delimiter and send
the Content-type header and data for each part, perhaps also delaying transmission of each part
by some period of time. You will need to consult your server's documentation to learn how to create a
server-side application that can be invoked by accessing a specific URL on the server. With some
servers this may be as simple as placing the application in a certain directory on the server. With
others, you may have to bend over backwards and howl at the moon on certain days.

14.3.4.1 Server-push example application for NCSA and Apache httpd

The NCSA and Apache httpd servers run on most Unix systems. Administrators usually configure the
server to run server-side applications stored in a directory named cgi-bin.

The following is a simple Unix shell script that illustrates how to send a multipart document to a
Netscape client via NCSA or Apache httpd:[4]

[4] It is an idiosyncrasy of NCSA httpd that no spaces are allowed in the
Content-type field that precedes your multipart document. Some authors like to
place a space after the semicolon and before the boundary keyword. Don't do this with
NCSA httpd; run the whole Content-type together without spaces to get the server to
recognize the correct multipart content type.

#!/bin/sh
#
Let the client know we are sending a multipart document
with a boundary string of "NEXT"
#
echo "HTTP/1.0 200"
echo "Content-type: multipart/x-mixed-replace;boundary=NEXT"
echo ""
echo "--NEXT"
while true
do
#
Send the next part, followed by a boundary string
Then sleep five seconds before repeating
#

 echo "Content-type: text/html"
 echo ""
 echo "<html>"
 echo "<head>"
 echo "<title>Processes On This Server</title>"
 echo "</head>"
 echo "<body>"
 echo "<h3> Processes On This Server</h3>"
 echo "Date:"
 date
 echo "<p>"
 echo "<pre>"
 ps -el
 echo "</pre>"
 echo "</body>"
 echo "</html>"
 echo "--NEXT"
 sleep 5
done

In a nutshell, this example script updates a list of the processes running on the server machine every
five seconds. The update continues until the browser breaks the connection by moving on to another
document, or after completing 60 cycles (about five minutes).

We offer this shell script example to illustrate the basic logic behind any server-push document
generator. In reality, you should create your server-side applications using a more conventional
programming language like Perl or C. The applications run more efficiently and can better detect
when the client has severed the connection to the server.

14.2 Client-Pull Documents 15. Tips, Tricks, and Hacks

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 15

15. Tips, Tricks, and Hacks
Contents:
Top of the Tips
Trivial or Abusive?
Custom Bullets
Tricks with Tables
Transparent Images
Tricks with Windows and Frames

We've sprinkled a number of tips, tricks, and hacks throughout this book, along with style guidelines,
examples, and instructions. So why have a special chapter on tips, tricks, and hacks of HTML?
Because it's where many readers will leaf to when they pick up this book for the first time. HTML is
the language, albeit constrained, that makes the World Wide Web on the Internet the exciting place
that it is. And interested readers want to know, "How do I do the cool stuff?"

15.1 Top of the Tips
The most important tip for even veteran HTML authors is to surf for yourself. We can show and
explain a few neat tricks to get you started, but there are thousands of HTML authors out there
combining and recombining HTML tags and juggling content to create compelling and useful
documents.

Get a bona fide Internet account; get copies of Netscape, Internet Explorer, and whatever other
browser you feel comfortable operating; get connected; and get cruising. Collect web site URLs from
friends, business associates, and the traditional media. Even local TV and radio stations have taken to
announcing some of their sponsors' web site URLs. And consult the many different Internet web
directories like Yahoo and AltaVista for new and up-to-date addresses for the web sites that suit your
lifestyle or business niche.

Examine (don't steal) their pages for eye-catching and effective pages and use them to guide your own
creations. Capture and examine the source HTML documents for the juicy bits. Get a feel of the more
effective web collections. How are their documents organized? How large is each document? And so
on.

We all learn from experience, so go get it.

15.1.1 Design for Your Audience

We continuously argue throughout the book that, with HTML documents, content matters most, not
look. That doesn't mean that presentation doesn't matter.

Effective HTML documents match your target audience's expectations, giving them a familiar
environment in which to explore and gather information. Serious academicians expect a treatise on the
physiology of the kumquat to appear journal-like: long on meaningful words, figures, and diagrams
and short on frivolous trappings like cute bullets and font abuse. Don't insult the reader's eye, except
when exercising artistic license to jar or attack your reader's sensibilities.

By anticipating your audience and by designing your documents to appeal to their tastes, you also
subtly deflect unwanted surfers from your pages. Undesirables, such as penniless college students[1]
surfing your commercial site, may hog your server's resources and prevent the buying audience you
desire from ready access to your pages.

[1] Not that there's anything wrong with that. We both started out as penniless college
students and years later, wound up writing for O'Reilly & Associates.

For example, you can use subtle colors and muted text transitions between sections for a classical art
museum's collection to mimic the hushed environment of a real classical art museum. The typical
rock-'n'-roll crazed web surfer maniac probably won't spend more than a glance at your site, but the
millionaire arts patron might.

Also, use effective layout to gently guide your readers' eyes to areas of interest in your documents. Do
that by adhering to the basic rules of document layout and design, such as placing figures and
diagrams nearby - if not inline - with their content reference. Nothing's worse than having to scroll up
and down the browser window in a desperate search for a picture that can explain everything.

We won't lie and suggest that we're design experts. We aren't, but they're not hard to find. So, another
tip for the serious web page author: seek professional help. The best situation is to have design
experience yourself. Next best is to have a pro looking over your shoulder, or at least somewhere
within earshot.

Make a trip to your local library and do some reading on your own, too. Even better yet, browse the
various online HTML guides. Check out Designing for the Web (O'Reilly & Associates). Your
readers will be glad you did. [Tools for the HTML Designer, 1.6]

15.1.2 Boilerplate HTML Documents

The next best tip we can give you is to reuse your documents. Don't start from scratch each time.
Rather, develop a consistent framework, even to the point of a content outline into which you add the
detail and character for each page. You might even endevour to create style sheets, so that the look
and feel of your documents remain consistent.

Here's our contribution to help start your boilerplate HTML document collection. The following
source contains what the HTML standard currently tells us is the minimum content that should appear
in every HTML document (regardless of what the browsers might let you get away with) and then
some added for document clarity. Use it as a skeleton for your own HTML documents:

<html>

<head>
<title>Required--replace this title with your own</title>
</head>
<body>
<h3>Reiterate the title here</h3>
...Insert your document's contents here...
<address>Include your name and contact information
usually at the end of the document</address>
</body>
</html>

14.3 Server -Push Documents 15.2 Trivial or Abusive?

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 15
Tips, Tricks, and Hacks

15.2 Trivial or Abusive?
There is perhaps no more abused or abusive HTML document device than the <blink> tag
extension for text content currently supported by, thank heaven, only the Netscape browser.[2]

[2] Internet Explorer is just as guilty; be thankful you don't find many HTML documents
using the browser's equally tacky <marquee> feature.

It works by alternating the color of the text enclosed between the <blink> tag and its end tag
(</blink>) - incessantly! It's not only ugly (reminiscent of the very bad video-text displays on a
hotel TV), but it's excruciatingly annoying. The reader can't turn it off except to scroll beyond that
portion of the document or hyperlink out of the document altogether. [Physical Style Tags, 4.5]

Okay, so it grabs readers' attention to make an important point. Just make sure it's a very important
point. And here's a tip: Make it easy for the reader to get by the blinking segment in your document.
Surround it with empty space or with pleasant, but vacuous content that they don't have to read.

15.1 Top of the Tips 15.3 Custom Bullets

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 15
Tips, Tricks, and Hacks

15.3 Custom Bullets
One common use of the definition list has nothing to do with definitions, but instead deals with adding
custom bullets to an otherwise unordered list. In this trick, leave the <dt> tag empty, and add an
 tag that references the desired bullet image at the beginning of each <dd> tag. the sidebar
"<dl>" For example:

<dl>
 <dt><dd> Pickled Kumquats
 <dt><dd> 'Quats and 'Kraut
 <dt><dd> 'Quatshakes
 <dt><dd> Liver with Fried 'Quats
</dl>

The fancier list is shown in Figure 15.1.

Figure 15.1: Custom bullets for unordered lists

Keep in mind that this trick works well only if your list items are short enough to not wrap within the
browser window. If the item does wrap, the next line will start aligned with the left edge of the bullet,
not the left edge of the text, as you might hope.

15.2 Trivial or Abusive? 15.4 Tricks with Tables

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 15
Tips, Tricks, and Hacks

15.4 Tricks with Tables
Enough with the cheap tricks. On to some really good ones: tricks with the HTML <table> tag and attributes that add some
attractive features to your documents.

By design, HTML tables let authors create appealing, accessible tables of information. But the HTML table tags also can be
exploited to create innovative, attractive page designs that are otherwise unobtainable in standard HTML.

15.4.1 Multicolumn Pages

One very common and popular page-layout element missing from HTML until recently is multiple columns of text. Although
Netscape now supports the <multicol> extension, for a more universal solution (at least until the majority of your audience
gets the latest version of Netscape), place your document content inside a table of one row with two or more columns.
[Multicolumn Layout, 6.2]

15.4.1.1 Basic multicolumn layout

The basic two-column layout using <table> has a single table row with three data cells: one each for the columns of text and
an intervening empty cell to more attractively separate the two columns. We've also added a large cellspacing attribute
value to create additional intervening space between the columns.

The following example table is an excellent template for a simple two-column text layout:

<table border=0 cellspacing=7>
 <tr>
 <td>Copy for column 1...
 <td>

 <td>Copy for column 2...
 </table>

See Figure 15.2 for the results.

Figure 15.2: A simple two-column layout

The one thing the browsers won't do is automatically balance the text in the columns, resulting in adjacent columns of
approximately the same length. You'll have to experiment with your document, manually shifting text from one column to
another until you achieve a nicely balanced page.

Keep in mind, though, that users may resize their display windows and the columns' contents will shift accordingly. So don't
spend a lot of time getting the last sentences of each column to line up exactly; they're bound to be skewed in other browser
window widths.

Of course, you can easily convert the example layout to three or more columns by dividing the text among more cells in the
table. But keep in mind that pages with more than three columns may prove difficult to read on small displays where the actual
column width might be quite small.

15.4.1.2 Straddle heads

The basic multicolumn format is just the start. By adding cells that span across the columns, you create headlines. Similarly,
you can make figures span across more than one column: simply add the colspan attribute to the cell containing the headline
or figure. Figure 15.3 shows an attractive three-column layout with straddle heads and a spanning figure, created from the
following HTML source with table tags:

<table border=0 cellspacing=7>
 <tr>
 <th colspan=5><h2>The History of the Kumquat</h2>
 <tr valign=top>
 <td rowspan=2>Copy for column 1...
 <td rowspan=2 width=24>

 <td >Copy for column 2...
 <td width=24>

 <td >Copy for column 3...
 <tr>
 <td colspan=3 align=center>
 <p>
 <i>The Noble Fruit</i>
</table>

To achieve this nice layout, we used the colspan attribute on the cell in the first row to span all five table columns (three
with copy and the two intercolumn spaces). We use the rowspan attribute on the first column and its adjacent column spacer
to extend the columns down beside the figure. The figure's cell has a colspan attribute so that the contents span the other
two columns and intervening spaces.

Figure 15.3: Fancy straddle heads and spanning figures with HTML table tags

15.4.2 Side Heads

The only text-heading features available in HTML are the <h1> through <h6> tags. These tags are always embedded in the
text flow, separating adjacent paragraphs of text. Through multiple columns, you can achieve an alternative style that places
headings into a separate side column, running vertically alongside the document text.

Figure 15.4 shows you a fairly fancy pair of side heads, the result of the following bit of source HTML table code:

<table>
 <tr>
 <th width="30%" align=right>
 <h3>Section 1</h3>
 <td>
 <td>
 Copy for section 1 goes on and on a bit
 so that it will take up more than one line in the
 table cell window...
 <tr>
 <th align=right>
 <h3>Section 2</h3>
 <td>
 <td>
 Copy for section 2 goes on and on a bit
 so that it will take up more than one line in the
 table cell window...
</table>

Notice how we create reasonably attractive side heads set off from the left margin of the browser window by adjusting the first
header cell's width and right-justifying the cell contents.

Figure 15.4: Table tags created these side heads

Just as in our multicolumn layout, the example side-head layout uses an empty column to create a space between the narrow
left column containing the heading and the wider right column containing the text associated with that heading. It's best to
specify that column's width as a percentage of the table width, rather than explicitly in numbers of pixels to make sure that the
heading column scales to fit both wide and narrow display windows.

15.4.2.1 When tables aren't implemented

One of the dangers of being overly dependent on tables is that your documents are usually unreadable when viewed with
browsers that don't support tables. In the case of side heads, though, your document will come out just fine on a
"table-challenged" browser.

Most browsers follow one of the Internet's basic tenets: be liberal in what you accept and strict in what you create. This usually
means the browser will ignore tags that don't make sense, including all of the markup that creates a table.

In the case of our side-head layout, the browsers that can't do tables ignore the table tags and only see this part of the
document:

<h3>Section 1</h3>
 Copy for section 1 goes on and on a bit
 so that it will take up more than one line in the
 table cell window...
<h3>Section 2</h3>
 Copy for section 2 goes on and on a bit
 so that it will take up more than one line in the
 table cell window...

Of course, this is a perfectly valid sequence of HTML that generates a conventional document with sections divided by <h3>
headers. Your document will look fine, regardless of the browser, table-capable or not.

15.4.3 Better Forms Layout

Of all the features in HTML, it's forms that cry out for better layout control. Unlike other structured elements in HTML, forms
look best when rendered in a fixed layout with precise margins and vertical alignment of elements. However, except for
carefully planned <pre> formatted form segments, the common language just doesn't give us any special tools to better
control forms layout.

15.4.3.1 Basic form layout

Your forms will almost always look better and be easier for your readers to follow if you use a table to structure and align the
form's elements. For example, you might use a vertical alignment to your forms, with field labels to the left and their
respective form elements aligned to an adjacent vertical margin on the right. Don't try that with just standard HTML.

Rather, prepare a form that contains a two-column table. The following HTML source does just that, as shown in Figure 15.5:

<form method=post action="http:/cgi-bin/process">
 <table>
 <tr>
 <th align=right>Name:
 <td><input type=text size=32>
 <tr>
 <th align=right>Address:
 <td><input type=text size=32>

 <tr>
 <th align=right>Phone:
 <td><input type=text size=12>
 <tr>
 <td colspan=2 align=center>
 <input type=submit value="Register">
 </table>
</form>

Of course, more complex form layouts can be managed with tables. We recommend you first sketch the form layout on paper
and then plan how various combinations of table elements, including row- and column-straddled table cells might be used to
effect the layout.

Figure 15.5: Align your forms nicely with tables

15.4.3.2 Building forms with nested tables

As we mentioned earlier, you may place a table inside the cell of another table. While this alone can lead to some elaborate
table designs, nested tables also are useful for managing a subset of form elements within the larger table containing the entire
form. The best application for using a nested table in a form is for laying out checkboxes and radio buttons.

For example, insert the following row containing a table into the form table in the previous example. It creates a checkbox with
four choices:

<tr>
 <th align=right valign=top>Preferences:
 <td>
 <table>
 <tr>
 <td><input type=checkbox name=pref>Lemons
 <td><input type=checkbox name=pref>Limes
 <tr>
 <td><input type=checkbox name=pref>Oranges
 <td><input type=checkbox name=pref>Kumquats
 </table>

Figure 15.6 shows you how this nested table attractively formats the checkboxes, which browsers would otherwise render on a
single line and not well aligned.

Figure 15.6: Nesting tables to format elements of a form

15.4.4 Embedded Guides

We generally argue for subtlety when you include hyperlinks in your documents, embedding them within the content and
within context. But there are times when prominent guides to additional content are appropriate, like street signs in a crowded
neighborhood.

Traditionally, HTML authors have placed their street signs (arrow icons with text labels) between major sections or at the
beginning and end of the document to guide users back to a home page or on to the next page in the document series. Using
<table> and its align attribute, you also can embed those guideposts within the document flow, but distinct from the content.
And tables help you align the signpost elements for a more pleasing and concise presentation.

The following HTML segment, for example, uses a two-column table to set a hyperlink guide apart from the document
content. The technique also nicely aligns the guide's graphical and textual elements, thereby giving the reader a clear and
distinct option to jump to another section of the document, as shown in Figure 15.7:

The role of the kumquats in earthly and cosmic affairs has been well documented.
Nearly from the moment that humankind began recording history -- even as
oral tradition -- historians have reported the extraordinary and
omnipresent influences of kumquats.
<p>
<table align=right>
 <tr>
 <td>
 <td><h6>Kumquat influence
in the Arts</h6>
 </tr>
</table>
For instance, early in the history of man, the kumquat played a vital role in the
formation of religious beliefs. Central to annual harvest celebrations was the day
upon which kumquats ripened. Likened to the sun (<i>sol</i>), the golden fruit was
taken (<i>stisus</i>) from the trees on the day the sun stood highest in the sky. We
carry this day forward even today, as our summer <i>solstice</i>.

Figure 15.7: Tables let you embed signposts in your content flow

15.3 Custom Bullets 15.5 Transparent Images

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 15
Tips, Tricks, and Hacks

15.5 Transparent Images
One of the most popular tricks you'll find on everyone's HTML pages is the transparent image. They
let the background show through, giving the remainder of the image the appearance of floating on the
page. The effect is clever and is the only way to put nonrectangular images in your HTML document
displays. [Understanding Image Formats, 5.2.1]

Creating a transparent image is easy, once you understand how the process works and which images
are candidates for transparency.

15.5.1 Colors, Maps, and Indexes

Images represent their colors in one of two ways: directly, or through a colormap.

In the direct method, each pixel in the image contains the actual RGB values that define the color of
that pixel. Such images are often called true color images, since the number of distinct colors in the
image is generally quite large. It is often the case that very few pixels in a true color image share the
same color, with many pixels having subtly different variations of the same color. The most popular
image format using this representation method is the JPEG format.

Colormap-based images keep all the different colors used in the image in a table known as the
colormap. Each pixel in the image contains an index into the table of that pixel's color. In general, the
table is fairly small, usually less than 256 colors. This means that many pixels share the same color,
and that whole groups of pixels can have their color changed by simply altering the appropriate entry
in the colormap. The most common image format using colormaps is the GIF format.

Image transparency is only possible with images containing a colormap, and is currently defined only
for images using the GIF89a format. In this format, one entry in the colormap is tagged as the
transparent color. All pixels containing the index of that entry will be made transparent when the
image is displayed.

For example, consider an image containing eight colors. The colormap is eight entries long, with
indices numbered zero through seven. Each pixel in the image contains a value from zero to seven,
corresponding to its color in the colormap. If you indicate that the second entry in the color map,
whose index is one, will be transparent, all pixels with the value one will be made transparent when
the image is rendered.

15.5.2 Creating a Potentially Transparent Image

The cookbook way to create a transparent image is easy: take a conventional image, determine the
color to be made transparent, and convert the image to GIF89a format, marking that color as
transparent.

The most difficult part for most people is finding a conventional image that is suitable for conversion.
To make the background of an image transparent, the entire background must be one color.
Unfortunately, many images do not meet this simple criteria. Scanned images, for example, usually
have backgrounds that are a mix of several slightly different shades of one color. Since only one color
can be made transparent, the result is a mottled background, part transparent and part opaque.

Many image-editing tools use a process known as dithering to create certain colors in an image.
Dithered colors are not pure, but are a mix of several other colors. This mixture is not amenable to
transparency. You'll often find dithering used on systems with small colormaps, like conventional
16-color VGA displays on some PCs.

Finally, some images have a pure background color, but that color is also used in parts of the image
you want to keep opaque. Since every pixel having the appropriate colormap index is made
transparent, these portions of the image become transparent as well.

In all cases, the problem can be solved by loading the image into an image editor, turning off
dithering, and painting the background areas, usually by hand, to be a single color not used anywhere
else in the image. Make sure you save the result as a GIF image, so that the colormap and pixel
indexes will be retained.

15.5.3 Converting the Image

Once you have an acceptable image, and you've determined the color you wish to make transparent,
you'll need to convert the image to GIF89a format.

For PC and Unix users, a public-domain utility called giftrans does the job nicely. To convert an
image, use this command:

giftrans -t index original.gif > new.gif

Replace index with the numeric index of the color to be made transparent. Original.gif and new.gif are
the original nontransparent image and the resulting transparent image.

Apple Macintosh users have the advantage, though: they can use a single tool named Transparency to
accomplish the conversion. It was written by Aaron Giles at Cornell University, who generously
makes it available at no charge over the Internet. Check Yahoo! or your favorite Archie resource to
locate it on a server near you.

These tools can do far more than simply convert transparent images. For a complete discussion of
transparency and image conversion, including links to the actual tools, visit:

http://members.aol.com/htmlguru/transparent_images.html

http://members.aol.com/htmlguru/transparent_images.html

15.4 Tricks with Tables 15.6 Tricks with Windows
and Frames

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Chapter 15
Tips, Tricks, and Hacks

15.6 Tricks with Windows and Frames
For the vast majority of links in your documents, you'll want the newly loaded document displayed in the same window,
replacing the previous one. That makes sense, since your users usually follow a sequential path through your collection.

But sometimes it makes sense to open a document in a new window, so that the new document and the old document are
both directly accessible on the user's screen. If the new document is related to the original, for instance, it makes sense to
have both in view. Other times, you might want to open more than one document in multiple windows in a frameset. More
commonly, the new document starts the user down a new web of documents, and you want them to see and remember
where they came from.

Regardless of the reason, it is easy to open a new browser window from your HTML document. All you need to do is add
the target attribute in the appropriate hyperlink (<a>) tag.

15.6.1 Targeting Windows

We normally use the target attribute to load a document into a specific frame that you've named in a frameset. It also
serves to create a new window by one of two methods:

Reference a new name. If you haven't previously defined a name and then use that new name as the value for the
target attribute of a hyperlink, Netscape and Internet Explorer automatically create a new window with that name
and load the referenced document into that window. This is the preferred way to create new windows, since you can
subsequently use the name to load other documents into the same window. Using this technique, you can control
which document gets loaded where.

●

Create an unnamed window. Some browsers like Netscape and Internet Explorer support a special target named
_blank[3] that lets you create a new window. The _blank window has limited use, though, because it is
nameless - you cannot direct any other documents into that window. (New documents loaded via hyperlinks
selected by the user within the window get displayed in that same window, of course.)

[3] Some browsers also accept the name _new. If you can't get _blank to work with your browser,
try _new.

●

15.6.2 Overriding Others' Targets

Ever visited a site whose homepage is a frame document that never gives up? You know, the kind that leave their great big
logo on the top of the window and their site TOC running down the side of the display, staring you in the face long after
you've hyperlinked away from their site? What if your site's frameset gets trapped into one of their window frames? What
to do? (Apparently their webmasters hadn't heard about the _blank target.)

The short answer is to use JavaScript to force open a new window for your documents. But that, too, is potentially
confusing for users, since they may already have a full window ready for your document. So, to embellish, let JavaScript
discover whether your page is destined for a corner frame, or for the whole window.

Here is an example script that loads a webpage called index2.html into its own full window. Note that the
JavaScript-enabled browsers won't let you clear a previously loaded document display unless your document owns it. So,
in the case where the target is not the whole window ("self" is not "window.top"), the example script opens a new window
that becomes the target for your pages. The user may choose to close your document window and return to the other one,
or vice versa:

<html>
<head>
<title>I need a window of my own</title>
<script language="JavaScript">
<!--
 if (self != window.top)
 window.open("http://www.kumquats.com/index2.html");
 else
 self.location.href = "http://www.kumquats.com/index2.html";
//-->
</script>
</head>
<body>
Your browser apparently doesn't support JavaScript. Please
 hyperlink to our site manually.
</body>
</html>

15.6.3 Multiple Frames in One Link

Loading a new document from a hyperlink is a snap, even if you put the new document into an alternative frame or
window from its hyperlink parent. Occassionally, though, you'll want to load documents into two frames when the user
clicks just one link. With a bit of trickery you can load two or more frames at one time, provided they are arranged a
certain way in the browser window.

Consider this frame layout:

<frameset rows=2>
 <frameset cols=2>
 <frame name=A>
 <frame name=B>
 </frameset>
 <frameset>
 <frame name=C>
 <frame name=D>
 </frameset>
</frameset>

If someone clicks a link in frame A, the only thing you can do is update one of the four frames. Suppose you wanted to
update frames B and D at the same time?

The trick is to replace frames B and D with a single frame, like this:

<frameset cols=2>
 <frameset rows=2>
 <frame name=A>
 <frame name=C>
 </frameset>
 <frame name=BD>
</frameset>

Ahah! Now you have a single target in which to load a single document, frame BD. The document you load should
contain the original frames B and D in one column, like this:

<frameset cols=2>
 <frame name=B>
 <frame name=D>
</frameset>

The two frames will fill frame BD. When you update frame BD, both frames will be replaced, giving the appearance of

two frames being updated at one time.

The drawback to this is that the frames must be adjacent and able to be grouped into a single document. For most pages,
though, this solution works fairly well.

We've only scratched the surface of HTML tips and tricks here. Our advice: keep hacking!

15.5 Transparent Images A. HTML Grammar

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Appendix A

A. HTML Grammar
Contents:
Grammatical Conventions
The Grammar

For the most part, the exact syntax of an HTML document is not rigidly enforced by a browser. This
gives authors wide latitude in creating documents and gives rise to documents that work on most
browsers, but are actually incompatible with the standard. Stick to the standards unless your
documents are fly-by-night affairs.

The HTML standard explicitly defines the ordering and nesting of tags and document elements. This
syntax is embedded within the HTML Document Type Definition and is not readily understood by
those not versed in SGML (see Appendix D, The HTML 4.0 DTD). Accordingly, we provide an
alternate definition of the allowable HTML syntax, using a fairly common tool called a "grammar."

Grammar, whether it defines English sentences or HTML documents, is just a set of rules that indicate
the order of language elements. These language elements can be divided into two sets: terminal (the
actual words of the language) and nonterminal (all other grammatical rules). In HTML, the words
correspond to the embedded markup tags and text in a document.

To use the grammar to create a valid HTML document, follow the order of the rules to see where the
tags and text may be placed to create a valid HTML document.

A.1 Grammatical Conventions
We use a number of typographic and punctuation conventions to make our grammar easy to
understand.

A.1.1 Typographic and Naming Conventions

For our HTML grammar, we denote the terminals with a bold, monospaced Courier typeface. The
nonterminals appear in italicized text.

We also use a simple naming convention for the majority of our nonterminals: if one defines the
syntax of a specific HTML tag, its name will be the tag name followed by _tag. If a nonterminal
defines the various language elements that may be nested within a certain tag, its name will be the tag
name followed by _content.

For example, if you are wondering exactly which elements are allowed within an <a> tag, you can
look for the a_content rule within the grammar. Similarly, to determine the correct syntax of a
definition list created with the <dl> tag, look for the dl_tag rule.

A.1.2 Punctuation Conventions

Each rule in the grammar starts with the rule's name, followed by the replacement symbol (::=) and
the rule's value. We've intentionally kept the grammar simple, but we do use three punctuation
elements to denote alternation, repetition, and optional elements in the grammar.

A.1.2.1 Alternation

Alternation indicates that a rule may actually have several different values, and you must choose
exactly one of them. Vertical bars (|) separate the alternatives for the rule.

For example, the heading rule is equivalent to any one of six HTML heading tags, and so appears in
the table as:

heading ::= h1_tag

| h2_tag

| h3_tag

| h4_tag

| h5_tag

| h6_tag

The heading rule tells us that wherever the heading nonterminal appears in a rule, you can replace it
with exactly one of the actual heading tags.

A.1.2.2 Repetition

Repetition indicates that an element within a rule may be repeated some number of times. Repeated
elements are enclosed in curly braces ({...}). The closing brace has a subscripted number other than
one if the element must be repeated a minimum number of times.

For example, the tag may only contain tags, or it may actually be empty. The rule,
therefore, is:

ul_tag ::=

{li_tag }0

The rule says that the syntax of the tag requires the tag, zero or more tags,
followed by a closing tag.

We spread this rule across several lines and indented some of the elements to make it more readable
only; it does not imply that your documents must actually be formatted this way.

A.1.2.3 Optional elements

Some elements may appear in a document, but are not required. Optional elements are enclosed in
square brackets ([and]).

The <table> tag, for example, has an optional caption:

table_tag ::= <table>

[caption_tag]

{tr_tag }0

</table>

In addition, the rule says that a table begins with the <table> tag, followed by an optional caption,
zero or more table-row tags, and ends with the </table> tag.

A.1.3 More Details

Our grammar stops at the tag level; it does not delve further to show the syntax of each tag, including
tag attributes. For these details, refer to the HTML Quick Reference card included with this book.

A.1.4 Predefined Nonterminals

The HTML standard defines a few specific kinds of content that correspond to various types of text.
We use these content types throughout the grammar. They are:

literal_text

Text is interpreted exactly as specified; no character entities or style tags are recognized.

plain_text

Regular characters in the document character encoding, along with character entities denoted by
the ampersand character.

style_text

Like plain_text, with physical- and content-based style tags allowed.

15.6 Tricks with Windows
and Frames

A.2 The Grammar

-->

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Appendix A
HTML Grammar

A.2 The Grammar
The grammar is a composite of the HTML 4.0 standard tags and special extensions to the language as
enabled by the latest versions of NCSA Mosaic, Netscape Communication's Netscape Navigator, and
Microsoft's Internet Explorer.

The rules are in alphabetical order. The starting rule for an entire document is named html_document.

a_tag ::= <a>

{a_content }0

a_content[1] ::= heading

| text

abbr_tag ::= <abbr> text </abbr>

acronym_tag ::= <acronym> text </acronym>

address_tag ::= <address>

{address_content }0

</address>

address_content ::= p_tag

| text

applet_content ::= {<param>}0

body_content

applet_tag ::= <applet>

applet_content

</applet>

b_tag ::= text

basefont_tag ::= <basefont>

body_content

</basefont>

bdo_tag ::= <bdo> text </bdo>

big_tag ::= <big> text </big>

blink_tag ::= <blink> text </blink>

block ::= {block_content }0

block_content ::= <isindex>

| basefont_tag

| blockquote_tag

| center_tag

| dir_tag

| div_tag

| dl_tag

| form_tag

| listing_tag

| menu_tag

| multicol_tag

| nobr_tag

| ol_tag

| p_tag

| pre_tag

| table_tag

| ul_tag

| xmp_tag

blockquote_tag ::= <blockquote>

body_content

</blockquote>

body_content ::= <bgsound>

| <hr>

| address_tag

| block

| del_tag

| heading

| ins_tag

| layer_tag

| map_tag

| marquee_tag

| text

body_tag ::= <body>

{body_content }0

</body>

caption_tag ::= <caption>

body_content

</caption>

center_tag ::= <center>

body_content

</center>

cite_tag ::= <cite> text </cite>

code_tag ::= <code> text </code>

colgroup_content ::= {<col>}0

colgroup_tag ::= <colgroup>

colgroup_content

content_style ::= abbr_tag

| acronym_tag

| cite_tag

| code_tag

| dfn_tag

| em_tag

| kbd_tag

| kbd_tag

| q_tag

| strong_tag

| var_tag

dd_tag ::= <dd>

flow

</dd>

del_tag ::=

flow

dfn_tag ::= <dfn> text </dfn>

dir_tag[2] ::= <dir>

{ li_tag }

</dir>

div_tag ::= <div>

body_content

</div>

dl_content ::= dt_tag dd_tag

dl_tag ::= <dl>

{dl_content }

</dl>

dt_tag ::= <dt>

text

</dt>

em_tag ::= text

fieldset_tag ::= <fieldset>

[legend_tag]

{ form_content }0

</fieldset>

flow ::= {flow_content }0

flow_content ::= block

| text

font_tag ::= style_text

form_content[3] ::= <input>

| <keygen>

| body_content

| fieldset_tag

| label_tag

| select_tag

| textarea_tag

form_tag ::= <form>

{form_content }0

</form>

frameset_content ::= <frame>

| noframes_tag

frameset_tag ::= <frameset>

{frameset_content }0

</frameset>

h1_tag ::= <h1> text </h1>

h2_tag ::= <h2> text </h2>

h3_tag ::= <h3> text </h3>

h4_tag ::= <h4> text </h4>

h5_tag ::= <h5> text </h5>

h6_tag ::= <h6> text </h6>

head_content ::= <base>

| <isindex>

| <link>

| <meta>

| <nextid>

| style_tag

| title_tag

head_tag ::= <head>

{head_content }0

</head>

heading ::= h1_tag

| h2_tag

| h3_tag

| h4_tag

| h5_tag

| h6_tag

html_content ::= head_tag body_tag

| head_tag frameset_tag

html_document ::= html_tag

html_tag ::= <html>

html_content

</html>

i_tag ::= <i> text </i>

ilayer_tag ::= <ilayer>

body_content

</ilayer>

ins_tag ::= <ins>

flow

</ins>

kbd_tag ::= <kbd> text </kbd>

label_content[4] ::= <input>

| body_content

| select_tag

| textarea_tag

form_tag ::= <form>

{form_content }0

</form>

layer_tag ::= <layer>

body_content

</layer>

legend_tag ::= <legend> text </legend>

li_tag ::=

flow

listing_tag ::= <listing>

literal_text

</listing>

map_content ::= {<area>}0

map_tag ::= <map>

map_content

</map>

marquee_tag ::= <marquee>

style_text

</marquee>

menu_tag[5] ::= <menu>

{li_tag }0

</menu>

multicol_tag ::= <multicol>

body_content

</multicol>

nobr_tag ::= <nobr> text </nobr>

noembed_tag ::= <noembed> text </noembed>

noframes_tag ::= <noframes>

{body_content }0

</noframes>

noscript_tag ::= <noscript> text </noscript>

object_content ::= {<param>}0

body_content

object_tag ::= <object>

object_content

</object>

ol_tag ::=

{li_tag }

optgroup_tag ::= <optgroup>

{option_tag }0

</optgroup>

option_tag ::= <option>

plain_text

</option>

p_tag ::= <p>

text

</p>

physical_style ::= b_tag

| bdo_tag

| big_tag

| blink_tag

| font_tag

| i_tag

| s_tag

| small_tag

| span_tag

| strike_tag

| sub_tag

| sup_tag

| tt_tag

| u_tag

pre_content ::=

| <hr>

| a_tag

| style_text

pre_tag ::= <pre>

{pre_content }0

</pre>

q_tag ::= <q> text </q>

s_tag ::= <s> text </s>

samp_tag ::= <samp> text </samp>

script_tag[6] ::= <script> plain_text </script>

select_content ::= optgroup_tag

| option_tag

select_tag ::= <select>

{select_content}0

</select>

server_tag[7] ::= <server> plain_text </server>

small_tag ::= <small> text </small>

span_tag ::= text

strike_tag ::= <strike> text </strike>

strong_tag ::= text

style_tag ::= <style> plain_text </style>

sub_tag ::= _{text}

sup_tag ::= ^{text}

table_cell ::= td_tag

| th_tag

table_content ::= <tbody>

| <tfoot>

| <thead>

| tr_tag

table_tag ::= <table>

[caption_tag]

{colgroup_tag }0

{table_content }0

</table>

td_tag ::= <td>

body_content

</td>

text ::= {text_content }0

text_content ::=

| <embed>

| <iframe>

|

| <spacer>

| <wbr>

| a_tag

| applet_tag

| content_style

| ilayer_tag

| noembed_tag

| noscript_tag

| object_tag

| plain_text

| physical_style

textarea_tag ::= <textarea> plain_text </textarea>

th_tag ::= <th>

body_content

</th>

title_tag ::= <title> plain_text </title>

tr_tag ::= <tr>

{table_cell }0

</tr>

tt_tag ::= <tt> text </tt>

u_tag ::= <u> text </u>

ul_tag ::=

{li_tag }

var_tag ::= <var> text </var>

xmp_tag ::= <xmp>

literal_text

</xmp>

[1] a_content may not contain a_tags; you may not nest <a> tags within other <a> tags.

[2] The li_tag within the dir_tag may not contain any element found in a block.

[3] form_content may not contain form_tags; you may not nest one <form> within
another <form>.

[4] As with the <form> tag, you cannot imbed <form> or <label> tags within a
<label> tag.

[5] The li_tag within the menu_tag may not contain any element found in a block.

[6] A script_tag may be placed anywhere within an HTML document, without regard to
syntactic rules.

[7] A server_tag may be placed anywhere within an HTML document, without regard to
syntactic rules.

A.1 Grammatical Conventions B. HTML Tag Quick
Reference

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Appendix B

B. HTML Tag Quick Reference
Contents:
HTML 4.0 Core Attributes
HTML Quick Reference

In this appendix, we list in alphabetical order all the known and some undocumented HTML tags and
attributes currently supported by one or more of today's popular browsers.

B.1 HTML 4.0 Core Attributes
Prior to HTML 4.0, there were few attributes that could be used consistently for all the HTML tags.
HTML 4.0 changes this, defining a set of sixteen core attributes that can be applied to almost all the
tags in the language. For brevity, we list these core attributes in this section and spare you the
redundancies in the table that follows:

class=name Specify a style class controlling the appearance of the tag's contents

dir=dir Specify the rendering direction for text, either left-to-right (ltr) or
right-to-left (rtl)

id=name Define a reference name for the tag that is unique in the document

lang=language Specify the human language for the tag's contents with an ISO639
standard two-character name and optional dialect subcode

onclick=applet Specify an applet to be executed when the user clicks the mouse on the
tag's contents display area

ondblclick=applet Specify an applet to be executed when the user double-clicks the mouse
button on the tag's contents display area

onkeydown=applet Specify an applet to be executed when the user presses down on a key
while the tag's contents have input focus

onkeypress=applet Specify an applet to be executed when the user presses and releases a
key while the tag's contents have focus

onkeyup=applet Specify an applet to be executed when the user releases a pressed key
while the tag's contents have focus

onmousedown=applet Specify an applet to be executed when the user presses down on the
mouse button when pointing to the tag's contents display area

onmousemove=applet Specify an applet to be executed when the user moves the mouse in the
tag's contents display area

onmouseout=applet Specify an applet to be executed when the user moves the mouse off the
tag's contents display area

onmouseover=applet Specify an applet to be executed when the user moves the mouse into
the tag's contents display area

onmouseup=applet Specify an applet to be executed when the user releases the mouse
button when in the tag's contents display area

style=style Specify an inline style for the tag

title=string Specify a title for the tag

Only a small handful of tags accept none or only some, but not all, of these attributes. They are:

<applet>
<base>
<basefont>
<bdo>

<comment>
<embed>

<frame>
<frameset>
<head>
<hr>
<html>
<iframe>
<ilayer>
<isindex>
<keygen>
<layer>
<marquee>
<meta>
<multicol>
<nobr>
<noembed>
<param>
<script>
<server>
<spacer>
<style>
<title>
<wbr>

For convenience, we've marked each of these tags with an asterisk (*) in the following table, and list
all of the attributes supported by these special tags, including the common ones. For all other tags
(those without an asterisk), assume the common attributes listed above apply. Do note, however, that
the popular browsers do not support all the HTML standard 4.0 attributes, common or not. Please
refer to the main text for details.

A.2 The Grammar B.2 HTML Quick Reference

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Appendix B
HTML Tag Quick Reference

B.2 HTML Quick Reference
As with the other sections of this book, we use the Netscape and Internet Explorer icons to the far
right of each item to indicate tags and attributes that are extensions to the HTML 4.0 standard. If no
icon is shown, the tag or attribute is part of the HTML 4.0 standard.

We include each tag's possible attributes (some required) indented below their respective tags. In the
description, we give possible attribute values as either a range of integer numbers or a definitive list of
options, where possible.

<a> ... Create a hyperlink anchor (href
attribute) or fragment identifier
(name attribute)

accesskey=char Define the hot-key character for this
anchor

charset=encoding Specify the character set used to
encode the target

coords=list Specify a list of shape-dependent
coordinates

href=url Specify the URL of a hyperlink target

hreflang=language Specify the language encoding for the
target

name=name Specify the name of a fragment
identifier

rel=relationship Indicate the relationship from this
document to the target

rev=relationship Indicate the reverse relationship of
the target to this document

shape=shape Define the region's shape to be circ,
circle, poly, polygon, rect,
or rectangle

tabindex=value Define the position of this anchor
inthe document's tabbing order

target=name Define the name of the frame or
window to receive the referenced
document

type=type Specify the MIME type of the target

<abbr> ... </abbr> The enclosed text is an abbreviation

<acronym> ... </acronym> The enclosed text is an acronym

<address> ... </address> The enclosed text is an address

<applet> ... </applet> Define an executable applet within a
text flow

*

align=position Align the <applet> region to either
the top, middle, bottom
(default), left, right,
absmiddle, baseline, or
absbottom of the text in the line

alt=string Specify alternative text to replace the
<applet> region within browsers
that support the <applet> tag, but
cannot execute the application

archive=url Specify a class archive to be
downloaded to the browser and then
searched for code class

class=name Specify a style class controlling the
appearance of this tag

code=class Specify the class name of the code to
be executed (required)

codebase=url URL from which the code is retrieved

height=n Specify the height, in pixels, of the
<applet> region

hspace=n Specify additional space, in pixels, to
allow to the left and right of the
<applet> region

id=name Define a name for this applet that is
unique to this document

mayscript If present, allows the applet to access
JavaScript within the page

Graphic

name=name Specify the name of this particular
instance of the <applet>

object=data Specify a representation of the
object's execution state

style=style Specify an inline style for this tag

title=string Provide a title for the applet

vspace=n Specify additional space, in pixels, to
allow above and below the
<applet> region

width=n Specify the width, in pixels, of the
<applet> region

<area> Define a mouse-sensitive area in a
client-side image map

accesskey=char Define the hot-key character for this
area

alt=string Provide alternative text to be
displayed by nongraphical browsers

coords=list Specify a comma-separated list of
shape-dependent coordinates that
define the edge of this area

href=url Specify the URL of a hyperlink target
associated with this area

nohref Indicate that no document is
associated with this area; clicking in
the area has no effect

notab Do not include this area in the tabbing
order

Graphic

onblur=applet Specify an applet to be run when the
mouse leaves the area

onfocus=applet Specify an applet to be run when the
mouse enters the area

shape=shape Define the region's shape to be circ,
circle, poly, polygon, rect,
or rectangle

tabindex=value Define the position of this anchor
inthe document's tabbing order

taborder=n Specify this area's position in the
tabbing order

Graphic

target=name Specify the frame or window to
receive the document linked by this
area

Graphic

 ... Format the enclosed text using a bold
typeface

<base> Specify the base URL for all relative
URLs in this document

*

href=url Specify the base URL (required)

target=name Define the default target of all <a>
links in the document

<basefont> Specify the font size for subsequent
text

*

color=color Specify the base font's color

face=name Specify local font to be used for the
base font

id=name Define a name for this tag that is
unique to this document

name=name Specify local font to be used for the
base font

Graphic

size=value Set the basefont size of 1 to 7
(required; default is 3)

<bdo> ... </bdo> Bidirectional override, changing the
rendering direction of the enclosed
text

*

class=name Specify a style class controlling the
appearance of this tag

dir=dir Specify the rendering direction for
text, either left-to-right (ltr) or
right-to-left (rtl)

id=name Define a name for this tag that is
unique to this document

lang=language Specify the language used for this
tag's contents using a standard
two-character ISO language name

style=style Specify an inline style for this tag

title=string Specify a title for this tag

<bgsound> Define background audio for the
document

Graphic

loop=value Set the number of times to play the
audio; value may be an integer or the
value infinite

Graphic

src=url Provide the URL of the audio file to
be played

Graphic

<big> ... </big> Format the enclosed text using a
bigger typeface

<blink> ... </blink> Cause the enclosed content to blink Graphic

<blockquote> ... </blockquote> The enclosed text is a block quotation

cite=url Specify the URL of source of the
quoted material

<body> ... </body> Delimit the beginning and end of the
document body

alink=color Set the color of active hypertext links
in the document

background=url Specify the URL of an image to be
tiled in the document background

bgcolor=color Set the background color of the
document

bgproperties=value With value set to fixed, prevent the
background image from scrolling
with the document content

Graphic

leftmargin=value Set the size, in pixels, of the
document's left margin

Graphic

link=color Set the color of unvisited hypertext
links in the document

onblur=applet Specify an applet to be run when the
mouse leaves the document window

Graphic

Graphic

onfocus=applet Specify an applet to be run when the
mouse enters the document window

Graphic

Graphic

onload=applet Specify an applet to be run when the
document is loaded

onunload=applet Specify an applet to be run when the
document is unloaded

text=color Set the color of regular text in the
document

topmargin=value Set the size, in pixels, of the
document's top margin

Graphic

vlink=color Set the color of visited links in the
document

 Break the current text flow, resuming
at the beginning of the next line

*

class=name Specify a style class controlling the
appearance of this tag

clear=margin Break the flow and move downward
until the desired margin, either left,
right, none, or all, is clear

id=name Define a name for this tag that is
unique to this document

style=style Specify an inline style for this tag

title=string Specify a title for this tag

<button> Create a pushbutton element within a
<form>

accesskey=char Define the hot-key character for this
button

disabled Disable the button, preventing the
user from clicking it

name=name Specify the name of the parameter to
be passed to the form-processing
application if the input element is
selected (required)

onblur=applet Specify an applet to be run when the
mouse moves into the button

onfocus=applet Specify an applet to be run when the
mouse moves out of the button

type=type Specify the button type, either
button, submit, or reset

tabindex=n Specify this element's position in the
tabbing order

value=string Specify the value of the parameter
sent to the form-processing
application if this form element is
selected (required)

<caption> ... </caption> Define a caption for a table

align=position For Netscape, set the vertical position
of the caption to either top or
bottom. For Internet Explorer, set
the horizontal alignment of the
caption to either left, center, or
right.

valign=position Set the vertical position of the caption
to either top or bottom

Graphic

<center> ... </center> Center the enclosed text

<cite> ... </cite> The enclosed text is a citation

<code> ... </code> The enclosed text is a code sample

<col> Define a column within a
<colgroup>

align=position Set the column alignment to left,
center, or right

char=character Specify the alignment character for
text in these cells

charoff=value Set the offset within the cell at which
the alignment character will be placed

span=n Define the number of columns
affected by this <col> tag

valign=position Set the vertical alignment of text
within the column to either top,
middle, or bottom

width=n Set the width, in pixels or as a
percentage, of the column

<colgroup> Define a column group within a table

align=position Set the horizontal alignment of text
within the columns to either left,
center, or right

char=character Specify the alignment character for
text in these cells

charoff=value Set the offset within the cell at which
the alignment character will be placed

span=n Define the number of columns in the
group

valign=position Set the vertical alignment of text
within the columns to either top,
middle, or bottom

width=n Set the width, in pixels or as a
percentage, of each column in the
group

<comment> ... </comment> Place a comment in the document
(comments will be visible in all other
browsers)

Graphic *

<dd> ... </dd> Define the definition portion of an
element in a definition list

 ... Delineate a deleted section of a
document

cite=url Cite a document justifying the
deletion

datetime=date Specify the date and time of the
deletion

<dfn> ... </dfn> Format the enclosed text as a
definition

<dir> ... </dir> Create a directory list containing
 tags

compact Make the list more compact if
possible

type=bullet Set the bullet style for this list to
either circle, disc (default), or
square

Graphic

Graphic

<div> ... </div> Create a division within a document

align=type Align the text within the division to
left, center, or right

nowrap Suppress word wrapping within this
division

Graphic

<dl> ... </dl> Create a definition list containing
<dt> and <dd> tags

compact Make the list more compact if
possible

<dt> ... </dt> Define the definition term portion of
an element in a definition list

 ... Format the enclosed text with
additional emphasis

<embed> Embed an application in a document Graphic

Graphic *

align=position Align the applet area to either the
top or bottom of the adjacent text,
or to the left or right margin of
the page, with subsequent text
flowing around the applet

Graphic

border=n Specify the size, in pixels, of the
border around the applet

Graphic

height=n Specify the height, in pixels, of the
applet

Graphic

Graphic

hidden If present, hide the applet on the page Graphic

Graphic

hspace=n Define, in pixels, additional space to
be placed to the left and right of the
applet

Graphic

name=name Provide a name for the applet Graphic

Graphic

palette=value In Netscape, a value of
foreground causes the applet to
use the foreground palette in
Windows only; background uses
the background palette. In Internet
Explorer, provides the foreground and
background colors for the applet,
specified as two color values
separated by a vertical bar (|)

Graphic

Graphic

pluginspage=url Provide the URL of the page
containing instructions for installing
the plug-in associated with the applet

Graphic

src=url Supply the URL of the data to be fed
to the applet

Graphic

Graphic

type=type Specify the MIME type of the plug-in
to be used

Graphic

units=type Set the units for the height and width
attributes to either pixels (the
default) or en (half the text point
size)

Graphic

Graphic

vspace=n Define, in pixels, additional space to
be placed above and below the applet

Graphic

width=n Specify the width, in pixels, of the
applet

Graphic

Graphic

<fieldset> ... </fieldset> Create a group of elements in a form

 ... Set the size or color of the enclosed
text

*

class=name Specify a style class controlling the
appearance of this tag

color=color Set the color of the enclosed text to
the desired color

dir=dir Specify the rendering direction for
text, either left-to-right (ltr) or
right-to-left (rtl)

face=list Set the typeface of the enclosed text
to the first available font in the
comma-separated list of font
names

id=name Define a name for this tag that is
unique to this document

lang=language Specify the language used for this
tag's contents using a standard
two-character ISO language name

size=value Set the size to absolute size 1 to 7, or
relative to the <basefont> size
using +n or -n (required)

style=style Specify an inline style for this tag

title=string Specify a title for this tag

<form> ... </form> Delimit a form

accept-charset=list Specify a list of character sets
accepted by the server processing this
form

action=url Specify the URL of the application
that will process the form (required)

enctype=encoding Specify how the form element values
will be encoded

method=style Specify the parameter-passing style,
either get or post (required)

name=name Supply a name for this form for use
by JavaScript

Graphic

onreset=applet Specify an applet to be run when the
form is reset

onsubmit=applet Specify an applet to be run when the
form is submitted

target=name Specify the name of the frame or
window to receive the results of the
form after submission

<frame> ... </frame> Define a frame within a frameset *

bordercolor=color Set the color of the frame's border to
color

Graphic

class=name Specify a style class controlling the
appearance of this tag

frameborder=n If value is yes (Netscape only) or 1
(Netscape and Internet Explorer),
enable frame borders. If value is no
(Netscape only) or 0 (Netscape and
Internet Explorer), disable frame
borders.

id=name Define a name for this tag that is
unique to this document

longdesc=url Provide the URL of a document
describing the contents of the frame

marginheight=n Place n pixels of space above and
below the frame contents

marginwidth=n Place n pixels of space to the left and
right of the frame contents

name=name Define the name of the frame

noresize Disable user resizing of the frame

scrolling=type Always add scrollbars (yes), never
add scrollbars (no), or for Netscape
only, add scrollbars when needed
(auto)

src=url Define the URL of the source
document for this frame

style=style Specify an inline style for this tag

title=string Specify a title for this tag

<frameset> ... </frameset> Define a collection of frames or other
framesets

border=n Set the thickness of the frame borders
in this frameset

Graphic

bordercolor=color Define the color of the borders in this
frameset

Graphic

cols=list Specify the number and width of
frames within a frameset

frameborder=value If value is yes (Netscape only) or 1
(Netscape and Internet Explorer),
enable frame borders. If value is no
(Netscape only) or 0 (Netscape and
Internet Explorer), disable frame
borders.

Graphic

Graphic

framespacing=n Define the thickness of the frame
borders in this frameset

Graphic

onblur=applet Define an applet to be run when the
mouse leaves this frameset

Graphic

onfocus=applet Define an applet to be run when the
mouse enters this frameset

Graphic

onload=applet Define an applet to be run when this
frameset is loaded

onunload=applet Define an applet to be run when this
frameset is removed from the display

rows=list Specify the number and height of
frames within a frameset

<hn> ... </hn> The enclosed text is a level n header;
for level n from 1 to 6

align=type Specify the heading alignment as
either left (default), center, or
right

<head> ... </head> Delimit the beginning and end of the
document head

*

dir=dir Specify the rendering direction for
text, either left-to-right (ltr) or
right-to-left (rtl)

lang=language Specify the language used for this
tag's contents using a standard
two-character ISO language name

profile=url Provide the URL of a profile for this
document

<hr> Break the current text flow and insert
a horizontal rule

*

align=type Specify the rule alignment as either
left, center (default), or right

class=name Specify a style class controlling the
appearance of the rule

color=color Define the color of the rule Graphic

id=name Define a name for this tag that is
unique to this document

noshade Do not use 3D shading to render the
rule

onclick=applet Specify an applet to be executed
when the mouse button is clicked on
this tag

ondblclick=applet Specify an applet to be executed
when the mouse button is
double-clicked on this tag

onkeydown=applet Specify an applet to be executed
when a key is pressed down while this
tag has input focus

onkeypress=applet Specify an applet to be executed
when a key is pressed and released
while this tag has focus

onkeyup=applet Specify an applet to be executed
when a key is released while this tag
has focus

onmousedown=applet Specify an applet to be executed
when a mouse button is pressed down
on this tag

onmousemove=applet Specify an applet to be executed
when the mouse is moved over this
tag

onmouseout=applet Specify an applet to be executed
when the mouse out of this tag's
display area

onmouseover=applet Specify an applet to be executed
when the mouse moves into this tag's
display area

onmouseup=applet Specify an applet to be executed
when a mouse button is released
while over this tag

size=pixels Set the thickness of the rule to an
integer number of pixels

style=style Specify an inline style for this tag

title=string Specify a title for this tag

width=value or % Set the width of the rule to either an
integer number of pixels or a
percentage of the page width

<html> ... </html> Delimit the beginning and end of the
entire HyperText Markup Language
document

*

dir=dir Specify the rendering direction for
text, either left-to-right (ltr) or
right-to-left (rtl)

lang=language Specify the language used for this
tag's contents using a standard
two-character ISO language name

version=string Indicate the HTML version used to
create this document

<i> ... </i> Format the enclosed text in an italic
typeface

<iframe> ... </iframe> Define an inline frame *

align=position Set the position of the frame aligned
to the top, center, or bottom of
the surrounding text, or flush against
the left or right margins with
subsequent text flowing around the
frame

class=name Specify a style class controlling the
appearance of the rule

frameborder=value If value is 1, enable frame borders. If
value is 0, disable frame borders.

height=n Set the height, in pixels, of the frame

id=name Define a name for this tag that is
unique to this document

longdesc=url Provide the URL of a document
describing the contents of the frame

marginheight=n Place n pixels of space above and
below the frame contents

marginwidth=n Place n pixels of space to the left and
right of the frame contents

name=name Define the name of the frame

scrolling=type Always add scrollbars (yes) or never
add scrollbars (no)

src=url Define the URL of the source
document for this frame

style=style Specify an inline style for this tag

title=string Specify a title for this tag

width=n Set the width, in pixels, of the frame

<ilayer> ... </ilayer> Define an inline layer Graphic *

above=name Place this layer above the named
layer

Graphic

background=url Specify a background image for the
layer

Graphic

below=name Place this layer below the named
layer

Graphic

bgcolor=color Specify the background color for the
layer

Graphic

class=name Specify a style class controlling the
appearance of this tag

Graphic

clip=edge Define the layer's clipping region, in
pixels. If left and top are 0, they may
be omitted

Graphic

left=n Define, in pixels, the position of the
layer's left edge from the containing
line of text

Graphic

name=name Provide a name for the layer Graphic

src=url Supply the content of the layer from
another document

Graphic

style=style Specify an inline style for this tag Graphic

top=n Define, in pixels, the position of the
layer's top edge from the containing
line of text

Graphic

visibility=value Determine whether to show the layer,
hide the layer, or inherit the
visibility attribute from a containing
layer

Graphic

width=n Define the width, in pixels, of the
layer

Graphic

z-index=n Specify the layer's position in the
stacking order

Graphic

 Insert an image into the current text
flow

align=type Align the image to either the top,
middle, bottom (default), left,
or right of the text in the line. For
Netscape Navigator, additionally to
the absmiddle, baseline, or
absbottom of the text.

alt=text Provide alternative text for
non-image-capable browsers

border=n Set the pixel thickness of the border
around images contained within
hyperlinks

controls Add playback controls for embedded
video clips

Graphic

dynsrc=url Specify the URL of a video clip to be
displayed

Graphic

height=n Specify the height of the image in
scan lines

hspace=n Specify the space, in pixels, to be
added to the left and right of the
image

ismap Indicate that the image is
mouse-selectable when used within
an <a> tag

longdesc=url Provide the URL of a document
describing the image

loop=value Set the number of times to play the
video; value may be an integer or the
value infinite

Graphic

lowsrc=url Specify a low-resolution image to be
loaded by the browser first, followed
by the image specified by the src
attribute

Graphic

name=name Provide a name for the image for use
by JavaScript

Graphic

onabort=applet Provide an applet to be run if the
loading of the image is aborted

Graphic

onerror=applet Provide an applet to be run if the
loading of the image is unsuccessful

Graphic

onload=applet Provide an applet to be run if the
loading of the image is successful

Graphic

src=url Specify the source URL of the image
to be displayed (required)

start=start Specify when to play the video clip,
either fileopen or mouseover

Graphic

usemap=url Specify the map of coordinates and
links that define the hypertext links
within this image

vspace=n Specify the vertical space, in pixels,
added at the top and bottom of the
image

width=n Specify the width of the image in
pixels

<input type=button> Create a pushbutton element within a
<form>

accesskey=char Define the hot-key character for this
element

disabled Disable this control, making it
inactive

name=name Specify the name of the parameter to
be passed to the form-processing
application if the input element is
selected (required)

notab Specify that this element is not part of
the tabbing order

Graphic

onblur=applet Specify an applet to be run when the
mouse leaves this control

onfocus=applet Specify an applet to be run when the
mouse enters this control

tabindex=n Specify this element's position in the
tabbing order

taborder=n Specify this element's position in the
tabbing order

Graphic

value=string Specify the value of the parameter
sent to the form-processing
application if this form element is
selected (required)

<input type=checkbox> Create a checkbox input element
within a <form>

accesskey=char Define the hot-key character for this
element

checked Mark the element as initially selected

disabled Disable this control, making it
inactive

name=string Specify the name of the parameter to
be passed to the form-processing
application if the input element is
selected (required)

notab Specify that this element is not part of
the tabbing order

Graphic

readonly Prevent user modification of this
element

tabindex=n Specify this element's position in the
tabbing order

taborder=n Specifu this element's position in the
tabbing order

Graphic

value=string Specify the value of the parameter
sent to the form-processing
application if this form element is
selected (required)

<input type=file> Create a file-selection element within
a <form>

accept=list Specify list of MIME types that can
accepted by this element

accesskey=char Define the hot-key character for this
element

disabled Disable this control, making it
inactive

maxlength=n Specify the maximum number of
characters to accept for this element

name=name Specify the name of the parameter
that is passed to the form-processing
application for this input element
(required)

notab Specify that this element is not part of
the tabbing order

Graphic

onblur=applet Specify an applet to be run when the
mouse leaves this control

onchange=applet Specify an applet to be run when the
user changes the value of this element

onfocus=applet Specify an applet to be run when the
mouse enters this control

readonly Prevent user modification of this
element

size=n Specify the number of characters to
display for this element

tabindex=n Specify this element's position in the
tabbing order

taborder=n Specify this element's position in the
tabbing order

Graphic

value=string Specify the value of the parameter
sent to the form-processing
application if this form element is
selected (required)

<input type=hidden> Create a hidden element within a
<form>

name=name Specify the name of the parameter
that is passed to the form-processing
application for this input element
(required)

value=string Specify the value of this element that
is passed to the form-processing
application

<input type=image> Create an image input element within
a <form>

accesskey=char Define the hot-key character for this
element

align=type Align the image to either the top,
middle, or bottom of the form
element's text

alt=string Provide an alternative description for
the image

border=n Set the pixel thickness of the border
of the image

disabled Disable this control, making it
inactive

name=name Specify the name of the parameter to
be passed to the form-processing
application for this input element
(required)

notab Specify that this element is not part of
the tabbing order

Graphic

src=url Specify the source URL of the image
(required)

tabindex=n Specify this element's position in the
tabbing order

taborder=n Specify this element's position in the
tabbing order

Graphic

usemap=url Specify the URL of a map to be used
withi this image

<input type=password> Create a content-protected text-input
element within a <form>

accesskey=char Define the hot-key character for this
element

disabled Disable this control, making it
inactive

maxlength=n Specify the maximum number of
characters to accept for this element

name=name Specify the name of the parameter to
be passed to the form-processing
application for this input element
(required)

notab Specify that this element is not part of
the tabbing order

Graphic

onblur=applet Specify an applet to be run when the
mouse leaves this element

onchange=applet Specify an applet to be run when the
user changes the value of this element

onfocus=applet Specify an applet to be run when the
mouse enters this element

onselect=applet Specify an applet to be run if the user
clicks this element

readonly Prevent user modification of this
element

size=n Specify the number of characters to
display for this element

tabindex=n Specify this element's position in the
tabbing order

taborder=n Specify this element's position in the
tabbing order

Graphic

value=string Specify the initial value for this
element

<input type=radio> Create a radio-button input element
within a <form>

accesskey=char Define the hot-key character for this
element

checked Mark the element as initially selected

disabled Disable this control, making it
inactive

name=string Specify the name of the parameter to
be passed to the form-processing
application if the input element is
selected (required)

notab Specify that this element is not part of
the tabbing order

Graphic

readonly Prevent user modification of this
element

tabindex=n Specify this element's position in the
tabbing order

taborder=n Specify this element's position in the
tabbing order

Graphic

value=string Specify the value of the parameter
sent to the form-processing
application if this form element is
selected (required)

<input type=reset> Create a reset button within a
<form>

accesskey=char Define the hot-key character for this
element

disabled Disable this control, making it
inactive

notab Specify that this element is not part of
the tabbing order

Graphic

tabindex=n Specify this element's position in the
tabbing order

taborder=n Specify this element's position in the
tabbing order

Graphic

value=string Specify an alternate label for the reset
button (default is "Reset")

<input type=submit> Create a submit button within a
<form>

accesskey=char Define the hot-key character for this
element

disable Disable this control, making it
inactive

name=name Specify the name of the parameter
that is passed to the form-processing
application for this input element
(required)

notab Specify that this element is not part of
the tabbing order

Graphic

tabindex=n Specify this element's position in the
tabbing order

taborder=n Specify this element's position in the
tabbing order

Graphic

value=string Specify an alternate label for the
submit button, as well as the value
passed to the form-processing
application for this parameter if this
button is clicked

<input type=text> Create a text input element within a
<form>

accesskey=char Define the hot-key character for this
element

disabled Disable this control, making it
inactive

maxlength=n Specify the maximum number of
characters to accept for this element

name=name Specify the name of the parameter
that is passed to the form-processing
application for this input element
(required)

notab Specify that this element is not part of
the tabbing order

Graphic

onblur=applet Specify an applet to be run when the
mouse leaves this element

onchange=applet Specify an applet to be run when the
user changes the value of this element

onfocus=applet Specify an applet to be run when the
mouse enters this element

onselect=applet Specify an applet to be run if the user
clicks this element

readonly Prevent user modification of this
element

size=n Specify the number of characters to
display for this element

tabindex=n Specify this element's position in the
tabbing order

taborder=n Specify this element's position in the
tabbing order

Graphic

value=string Specify the initial value for this
element

<ins> ... </ins> Delineate an inserted section of a
document

cite=url Cite a document justsifying the
insertion

datetime=date Specify the date and time of the
insertion

<isindex> Create a "searchable" HTML
document

*

action=url For Internet Explorer only, provide
the URL of the program that will
perform the searching action

Graphic

class=name Specify a style class controlling the
appearance of this tag

dir=dir Specify the rendering direction for
text, either left-to-right (ltr) or
right-to-left (rtl)

id=name Define a name for this tag that is
unique to this document

lang=language Specify the language used for this
tag's contents using a standard
two-character ISO language name

prompt=string Provide an alternate prompt for the
input field

style=style Specify an inline style for this tag

title=string Specify a title for this tag

<kbd> ... </kbd> The enclosed text is keyboard-like
input

<keygen> Generate key information in a form Graphic *

challenge=string Provide a challenge string to be
packaged with the key

Graphic

name=name Provide a name for the key Graphic

<label> ... </label> Define a label for a form control

accesskey=char Define the hot-key character for this
label

for=name Specify the form element associated
with this label

onblur=applet Specify an applet to be run when the
mouse leaves this label

onfocus=applet Specify an applet to be run when the
mouse enters this label

<layer> ... </layer> Define a layer Graphic *

above=name Place this layer above the named
layer

Graphic

background=url Specify a background image for the
layer

Graphic

below=name Place this layer below the named
layer

Graphic

bgcolor=color Specify the background color for the
layer

Graphic

class=name Specify a style class controlling the
appearance of this tag

Graphic

clip=edge Define the layer's clipping region, in
pixels. If left and top are 0, they may
be omitted

Graphic

left=n Define, in pixels, the position of the
layer's left edge from the containing
document or layer

Graphic

name=name Provide a name for the layer Graphic

src=url Supply the content of the layer from
another document

Graphic

style=style Specify an inline style for this tag Graphic

top=n Define, in pixels, the position of the
layer's top edge from the containing
document or layer

Graphic

visibility=value Determine whether to show the layer,
hide the layer, or inherit the
visibility attribute from a containing
layer

Graphic

width=n Define the width, in pixels, of the
layer

Graphic

z-index=n Specify the layer's position in the
stacking order

Graphic

<legend> ... </legend> Define a legend for a form field set

accesskey=char Define the hot-key character for this
legend

align=position Align the legend to the top,
bottom, left, or right of the
field set

 ... Delimit a list item in an ordered
() or unordered () list

type=format Set the type of this list element to the
desired format. For within
: A (capital letters), a
(lowercase letters), I (capital Roman
numerals), i (lowercase Roman
numerals), or 1 (Arabic numerals;
default). For within :
circle, disc (default), or
square.

value=n Set the number for this list item to n

<link> Define a link between this document
and another document in the
document <head>

charset=charset Specify the character set used to
encode the target of this link

href=url Specify the hypertext reference URL
of the target document

hreflang=url Specify the language used for the
target's contents using a standard
two-character ISO language name

media=list Specify a list of media types upon
which this object can be rendered

rel=relation Indicate the relationship from this
document to the target

rev=relation Indicate the reverse relationship from
the target to this document

type=string Specify the MIME type for the linked
document. Usually used in
conjunctionwith links to stylesheets,
when the type is set to text/css

<listing> ... </listing> Same as <pre width=132> ...
</pre>; deprecated, do not use

<map> ... </map> Define a map containing hotspots in a
client-side image map

name=name Define the name of this map
(required)

<marquee> ... </marquee> Create a scrolling-text marquee
(Internet Explorer only)

Graphic *

align=position Align the marquee to the top,
middle, or bottom of the
surrounding text

Graphic

behavior=style Define marquee style to be scroll,
slide, or alternate

Graphic

bgcolor=color Set the background color of the
marquee

Graphic

class=name Specify a style class controlling the
appearance of this tag

Graphic

direction=dir Define the direction, left or
right, the text is to scroll

Graphic

height=n Define the height, in pixels, of the
marquee area

Graphic

hspace=n Define the space, in pixels, to be
inserted left and right of the marquee

Graphic

loop=value Set the number of times to animate
the marquee; value is an integer or
infinite

Graphic

scrollamount=value Set the number of pixels to move the
text for each scroll movement

Graphic

scrolldelay=value Specify the delay, in milliseconds,
between successive movements of the
marquee text

Graphic

style=style Specify an inline style for this tag Graphic

vspace=n Define the space, in pixels, to be
inserted above and below of the
marquee

Graphic

width=n Define the width, in pixels, of the
marquee area

Graphic

<menu> ... </menu> Define a menu list containing
tags

compact Make the list more compact if
possible

type=bullet Set the bullet style for this list to
either circle, disc (default), or
square

Graphic

Graphic

<meta> Provides additional information about
a document

*

charset=name Specify the character set to be used
with this document

Graphic

content=string Specify the value for the
meta-information (required)

dir=dir Specify the rendering direction for
text, either left-to-right (ltr) or
right-to-left (rtl)

http-equiv=string Specify the HTTP equivalent name
for the meta-information and cause
the server to include the name and
content in the HTTP header for this
document when it is transmitted to the
client

lang=language Specify the language used for this
tag's contents using a standard
two-character ISO language name

name=string Specify the name of the
meta-information

scheme=scheme Specify the profile scheme used to
interpret this property

<multicol> ... </multicol> Define a multi-column text flow Graphic *

class=name Specify a style class controlling the
appearance of this tag

Graphic

cols=n Specify the number of columns Graphic

gutter=n Define the spacing, in pixels, between
columns

Graphic

style=style Specify an inline style for this tag Graphic

width=n Define the width of the entire column
group

Graphic

<nobr> ... </nobr> No breaks allowed in the enclosed
text

Graphic

Graphic *

<noembed> ... </noembed> Define content to be presented by
browsers that do not support the
<embed> tag

Graphic *

<noframes> ... </noframes> Define content to be presented by
browsers that do not support frames

<noscript> ... </noscript> Define content to be presented by
browsers that do not support the
<script> tag

<object> Insert an object into a document

align=position Align the object with the surrounding
text (texttop, middle,
textmiddle, baseline,
textbottom, and center) or
against the margin with subsequent
text flowing around the applet (left
and right)

archive=list Specify a list of URLs of archives
containing resources used by this
object

border=n Define, in pixels, the object's border
width

classid=url Supply the URL of the object

codebase=url Supply the URL of the object's code
base

codetype=type Specify the MIME type of the code
base

data=url Supply data for the object

declare Declare this object without
instantiating it

height=n Define, in pixels, the height of the
object

hspace=n Provide extra space, in pixels, to the
right and left of the object

name=name Define the name of this object

notab Do not make this object part of the
tabbing order

Graphic

shapes Specify that this object has shaped
hyperlinks

Graphic

standby=string Define a message to display while the
object loads

tabindex=n Specify this object's position in the
document tab order

type=type Specify the MIME type for the object
data

usemap=url Define an image map for use with this
object

vspace=n Provide extra space, in pixels, above
and below of the object

width=n Define, in pixels, the width of the
object

 ... Define an ordered list containing
numbered (ascending) elements

compact Present the list in a more compact
manner

start=n Start numbering the list at n, instead
of 1

type=format Set the numbering format for this list
to either A (capital letters), a
(lowercase letters), I (capital Roman
numerals), i (lowercase Roman
numerals), or 1 (Ararbic numerals;
default)

<optgroup> ... </optgroup> Define a group of options within a
<select> element

disabled Disable this group, making it inactive

label=string Provide a label for this group

<option> ... </option> Define an option within a <select>
item in a <form>

disabled Disable this group, making it inactive

label=string Provide a label for this option

selected Make this item initially selected

value=string Return the specified value to the
form-processing application instead
of the <option> contents

<p> ... </p> Start and end a paragraph

align=type Align the text within the paragraph to
left, center, or right

<param> ... </param> Supply a parameter to a containing
<applet>

*

id=name Define the unique identifier for this
parameter

name=name Define the name of the parameter

type=type Specify the MIME type of the
parameter

value=string Define the value of the parameter

valuetype=type Define the type of the value attribute,
either as data, ref (the value is a
URL pointing to the data), or
object (the value is the name of an
object in this document)

<plaintext> Render the remainder of the
document as preformatted plain text

<pre> ... </pre> Render the enclosed text in its
original, preformatted style, honoring
line breaks and spacing verbatim

width=n Size the text, if possible, so that n
characters fit across the display
window

<q> ... </q> The enclosed text is an inline
quotation

cite=url Specify the URL of source of the
quoted material

<s> ... </s> Same as <strike>. The enclosed
text is struck through with a
horizontal line

<samp> ... </samp> The enclosed text is a sample

<script> ... </script> Define a script within a document *

charset=encoding Specify the character set used to
encode the script

defer Defer execution of this script

language=encoding Specify the language used to create
the script

src=url Provide the URL of the document
containing the scripts

type=encoding Specify the MIME type of the script

<select> ... </select> Define a multiple-choice menu or
scrolling list within a <form>,
containing one or more <option>
tags

disabled Disable this control, making it
inactive

multiple Allow user to select more than one
<option> within the <select>

name=name Define the name for the selected
<option> values that, if selected,
are passed to the form-processing
application (required)

onblur=applet Specify an applet to be run when the
mouse leaves this element

onchange=applet Specify an applet to be run when the
user changes the value of this element

onfocus=applet Specify an applet to be run when the
mouse enters this element

size=n Display n items using a pulldown
menu for size=1 (without
multiple specified) and a scrolling
list of n items otherwise

tabindex=n Specify this element's position in the
tabbing order

<server> ... </server> Define a LiveWire script Graphic *

<small> ... </small> Format the enclosed text using a
smaller typeface

<spacer> Create blank space in a document Graphic *

align=position Align a block spacer with either the
surrounding text (top, texttop,
middle, absmiddle, baseline,
bottom, absbottom) or against a
margin with subsequent text flowing
around the spacer (left and right)

Graphic

height=n Define the height, in pixels, of a block
spacer

Graphic

size=n Define the length, in pixels, of a
horizontal or vertical spacer

Graphic

type=type Set spacer type to one of block,
horizontal, or vertical

Graphic

width=value Define the width, in pixels, of a block
spacer

Graphic

 ... Define a span of text for style
application

<strike> ... </strike> The enclosed text is struck through
with a horizontal line

 ... Strongly emphasize the enclosed text

<style> ... </style> Define one or more document level
styles

*

dir=dir Specify the rendering direction for the
title text, either left-to-right (ltr) or
right-to-left (rtl)

lang=language Specify the language used for this
tag's title using a standard
two-character ISO language name

media=list Specify a list of media types upon
which this object can be rendered

title=string Specify a title for this tag

type=type Define the format of the styles
(always text/css)

_{...} Format the enclosed text as subscript

^{...} Format the enclosed text as
superscript

<table> ... </table> Define a table

align=position Align the table either left or
right and flow the subsequent text
around the table

background=url Define a background image for the
table

Graphic

bgcolor=color Define the background color for the
entire table

border=n Create a border n pixels wide

bordercolor=color Define the border color for the entire
table

Graphic

bordercolordark=color Define the dark border-highlighting
color for the entire table

Graphic

bordercolorlight=color Define the light border-highlighting
color for the entire table

Graphic

cellpadding=n Place n pixels of padding around each
cell's contents

cellspacing=n Place n pixels of spacing between
cells

cols=n Specify the number of columns in this
table

Graphic

Graphic

frame=type Define where table borders are
displayed, either border (default),
void, above, below, hsides,
lhs, rhs, vsides, or box

height=n Define the height of the table in pixels Graphic

hspace=n Specify the horizontal space, in
pixels, added at the left and right of
the table

Graphic

nowrap Suppress text wrapping in table cells Graphic

rules=edges Determine where inner dividers are
drawn, either all (default), groups
(only around row and column
groups), rows, cols, or none.

summary=string Provide a summary description of this
table

valign=position Align text in the table to either the
top, center, bottom, or
baseline

Graphic

vspace=n Specify the vertical space, in pixels,
added at the top and bottom of the
table

Graphic

width=n Set the width of the table to n pixels
or a percentage of the window width

<tbody> ... </tbody> Create a row group within a table

align=position Align the table body cell contents to
the left, center, or right

char=char Specify the body group cell alignment
character

charoff=value Specify the offset within the cells of
the alignment position

valign=position Vertically align the body group cells'
contents to the top, center,
bottom, or baseline of the cell

<td> ... </td> Define a table data cell

abbr=string Specify an abbreviation for the cell's
contents

align=position Align the cell contents to the left,
center, or right

axis=string Provide a name for a related group of
cells

background=url Define a background image for this
cell

Graphic

bgcolor=color Define the background color for the
cell

bordercolor=color Define the border color for the cell Graphic

bordercolordark=color Define the dark border highlighting
color for the cell

Graphic

bordercolorlight=color Define the light border highlighting
color for the cell

Graphic

char=char Specify the cell alignment character

charoff=value Specify the offset of the alignment
position within the cell

colspan=n Have this cell straddle n adjacent
columns

headers=list Provide a list of header cell names
associated with this cell

height=n Define the height, in pixels, for this
cell

nowrap Do not automatically wrap and fill
text in this cell

rowspan=n Have this cell straddle n adjacent
rows

scope=scope Define the scope of this header cell,
either row, col, rowgroup, or
colgroup

valign=position Vertically align this cell's contents to
the top, center, bottom, or
baseline of the cell

width=n Set the width of this cell to n pixels or
a percentage of the table width

<textarea> ... </textarea> Define a multiline text input area
within a <form>; content of the
<textarea> tag is the initial,
default value

accesskey=char Define the hot-key character for this
element

cols=n Display n columns (characters) of text
within the text area

disabled Disable this control, making it
inactive

name=string Define the name for the text-area
value that is passed to the
form-processing application
(required)

onblur=applet Specify an applet to be run when the
mouse leaves this element

onchange=applet Specify an applet to be run when the
user changes the value of this element

onfocus=applet Specify an applet to be run when the
mouse enters this element

onselect=applet Specify an applet to be run if the user
clicks this element

readonly Prevent user modification of this
element

rows=n Display n rows of text within the text
area

tabindex=n Specify this element's position in the
tabbing order

wrap=style Set word wrapping within the text
area to off, virtual (display
wrap, but do not transmit to server),
or physical (display and transmit
wrap)

Graphic

<tfoot> ... </tfoot> Define a table footer

align=position Align the footer cell contents to the
left, center, or right

char=char Specify the cell alignment character

charoff=value Specify the offset within the cell of
the alignment position

valign=position Vertically align the footer cells'
contents to the top, center,
bottom, or baseline of the cell

<th> ... </th> Define a table header cell

abbr=string Specify an abbreviation for the cell's
contents

align=position Align the cell contents to the left,
center, or right

axis=string Provide a name for a related group of
cells

background=url Define a background image for this
cell

Graphic

bgcolor=color Define the background color for the
cell

bordercolor=color Define the border color for the cell Graphic

bordercolordark=color Define the dark border highlighting
color for the cell

Graphic

bordercolorlight=color Define the light border highlighting
color for the cell

Graphic

char=char Specify the cell alignment character

charoff=value Specify the offset of the alignment
position within the cell

colspan=n Have this cell straddle n adjacent
columns

headers=list Provide a list of header cell names
associated with this cell

height=n Define the height, in pixels, for this
cell

nowrap Do not automatically wrap and fill
text in this cell

rowspan=n Have this cell straddle n adjacent
rows

scope=scope Define the scope of this header cell,
either row, col, rowgroup, or
colgroup

valign=position Vertically align this cell's contents to
the top, center, bottom, or
baseline of the cell

width=n Set the width of this cell to n pixels or
a percentage of the table width

<thead> ... </thead> Define a table heading

align=position Define the horizontal text alignment
in the heading, either left,
center, right, or justify

char=char Specify the cell alignment character
for heading cells

charoff=value Specify the offset within the cells of
the alignment position

valign=position Define the vertical text alignment in
the heading, either left, center,
right, or justify

<title> ... </title> Define the HTML document's title *

dir=dir Specify the rendering direction for
text, either left-to-right (ltr) or
right-to-left (rtl)

lang=language Specify the language used for this
tag's contents using a standard
two-character ISO language name

<tr> ... </tr> Define a row of cells within a table

align=type Align the cell contents in this row to
the left, center, or right

bgcolor=color Define the background color for this
row

Graphic

Graphic

bordercolor=color For Internet Explorer, define the
border color for this row

Graphic

bordercolordark=color For Internet Explorer, define the dark
border-highlighting color for this row

Graphic

bordercolorlight=color For Internet Explorer, define the light
border-highlighting color for this row

Graphic

char=char Specify the cell alignment character
for this row

charoff=value Specify the offset of the alignment
position within the cells of this row

nowrap Disable word wrap for all cells in this
row

Graphic

valign=position Vertically align the cell contents in
this row to the top, center,
bottom, or baseline of the cell

<tt> ... </tt> Format the enclosed text in
teletype-style (monospaced) font

<u> ... </u> The enclosed text is underlined

 ... Define an unordered list of bulleted
 elements

compact Display the list in a more compact
manner, if possible

type=bullet Set the bullet style for this list to
either circle, disc (default), or
square

<var> ... </var> The enclosed text is a variable's name

<wbr> Indicate a potential word break point
within a <nobr> section

Graphic

Graphic *

<xmp> ... </xmp> Same as <pre width=80> ...
</pre>; deprecated, do not use

B.1 HTML 4.0 Core
Attributes

C. Cascading Style Sheet
Properties Quick Reference

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Appendix C

C. Cascading Style Sheet Properties
Quick Reference
In the following table, we list in alphabetical order all the properties defined in the World Wide Web
Consortium's Recommended Specification for Cascading Style Sheets, Level 1
(http://www.w3.org/pub/WWW/TR/REC-CSS1).

NOTE: Graphic We know that browser support of style sheets will change faster than
we can reprint this book, so we have created a separate "compliance document" that you
can use to determine how style sheets are implemented by the latest releases of the
browsers. You can find this document at http://www.oreilly.com/catalog/html3/ .
Whenever that document and this appendix differ, the document should be considered
more accurate. In this printing, we cover Netscape Navigator 4.05 and Internet Explorer

4.0. Graphic

As in other sections of this book, we use the Netscape and Internet Explorer icons to the far right of
each property to show which browser supports that property. Properties with no icons are not
currently supported by any browser.

We also include the number of the section in this book that fully defines the property.

We include each property's possible values, defined as either an explicit keyword (shown in
constant width) or as one of these values:

color

Either a color name or hexadecimal RGB value, as defined in Appendix F, Color Names and
Values, or an RGB triple of the form:

 rgb(red, green, blue)

where red, green, and blue are either numbers in the range 0 to 255 or percentage values
indicating the brightness of that color component. Values of 255 or 100% indicate that the
corresponding color component is at its brightest; values of 0 or 0% indicate that the
corresponding color component is turned completely off. For example:

 rgb(27, 119, 207)
 rgb(50%, 75%, 0%)

http://www.oreilly.com/catalog/html3/

are both valid color specifications.

length

An optional sign (either + or -) immediately followed by a number (with or without a decimal
point) immediately followed by a two-character unit identifier. For values of zero, the unit
identifier may be omitted.

The unit identifiers em and ex refer to the overall height of the font and to the height of the
letter "x", respectively. The unit identifier px is equal to a single pixel on the display device.
The unit identifiers in, cm, mm, pt, and pc refer to inches, centimeters, millimeters, points,
and picas, respectively. There are 72.27 points per inch, and 12 points in a pica.

number

An optional sign, immediately followed by a number (with or without a decimal point).

percent

An optional sign, immediately followed by a number (with or without a decimal point),
immediately followed by a percent sign. The actual value is computed as a percentage of some
other element property, usually the element's size.

url

The keyword url, immediately followed (no spaces) by a left parenthesis, followed by a URL
optionally enclosed in single or double quotes, followed by a matching right parenthesis. For
example:

 url("http://members.aol.com/htmlguru")

is a valid URL value.

Finally, some values are lists of other values and are described as a "list of" some other value. In these
cases, a list consists of one or more of the allowed values, separated by commas.

If there are several different values allowed for a property, these alternative choices are separated by
vertical bars (|).

If the standard defines a default value for the property, that value is underlined.

background Composite property for the
background-attachment,
background-color,
background-image,
background-position, and
background-repeat
properties; value is any of these
properties' values, in any order

9.3.4.6 Graphic

Graphic

background-attachment scroll | fixed Determines if the background
image is fixed in the window or
scrolls as the document scrolls

9.3.4.1 Graphic

background-color color |
transparent

Sets the background color of an
element

9.3.4.2 Graphic

Graphic

background-image url | none Sets the background image of an
element

9.3.4.3 Graphic

Graphic

background-position percent | length |
top | center |
bottom | left |
right

Sets the initial position of the
element's background image, if
specified; values are normally
paired to provide x, y positions.
Default position is 0% 0%

9.3.4.4 Graphic

background-repeat repeat |
repeat-x |
repeat-y |
no-repeat

Determines how the background
image is repeated (tiled) across
an element

9.3.4.5 Graphic

Graphic

border Sets all four borders on an
element; value is one or more of
a color, a value for
border-width, and a value
for border-style

9.3.6.6 Graphic

Graphic

border-bottom Sets the bottom border on an
element; value is one or more of
a color, a value for
border-bottom-width, and
a value for border-style

9.3.6.6 Graphic

border-bottom-width length | thin |
medium | thick

Sets the thickness of an element's
bottom border

9.3.6.4 Graphic

Graphic

border-color color Sets the color of all four of an
element's borders; default is the
color of the element

9.3.6.3 Graphic

border-left Sets the left border on an
element; value is one or more of
a color, a value for
border-left-width, and a
value for border-style

9.3.6.6 Graphic

border-left-width length | thin |
medium | thick

Sets the thickness of an element's
left border

9.3.6.4 Graphic

Graphic

border-right Sets the right border on an
element; value is one or more of
a color, a value for
border-right-width, and a
value for border-style

9.3.6.6 Graphic

border-right-width length | thin |
medium | thick

Sets the thickness of an element's
right border

9.3.6.4 Graphic

Graphic

border-style dashed |
dotted |
double |
groove | inset
| none | outset
| ridge | solid

Sets the style of all four of an
element's borders

9.3.6.5 Graphic

Graphic

border-top Sets the top border on an
element; value is one or more of
a color, a value for
border-top-width, and a
value for border-style

9.3.6.6 Graphic

border-top-width length | thin |
medium | thick

Sets the thickness of an element's
top border

9.3.6.4 Graphic

Graphic

border-width length | thin |
medium | thick

Sets the thickness of all four of
an element's borders

9.3.6.4 Graphic

Graphic

clear both | left |
none | right

Sets which margins of an
element must not be adjacent to a
floating element; the element
will be moved down until that
margin is clear

9.3.6.7 Graphic

Graphic

color color Sets the color of an element 9.3.4.7 Graphic

Graphic

display block | inline
| list-item |
none

Controls how an element is
displayed

9.3.8.1 Graphic

float left | none |
right

Determines if an element will
float to the left or right, allowing
text to wrap around it, or be
displayed inline (using none)

9.3.6.8 Graphic

Graphic

font Sets all the font attributes for an
element; value is any of the
values for font-style,
font-variant,
font-weight, font-size,
line-height, and
font-family, in that order

9.3.3.6 Graphic

Graphic

font-family list of font names Define the font for an element,
either as a specific font or as one
of the generic fonts serif,
sans-serif, cursive,
fantasy, and monospace

9.3.3.1 Graphic

Graphic

font-size xx-small |
x-small |
small | medium
| large |
x-large |
xx-large |
larger |
smaller | length
| percent

Define the font size 9.3.3.2 Graphic

Graphic

font-style normal |
italic |
oblique

Define the style of the face,
either normal or some type of
slanted style

9.3.3.3 Graphic

Graphic

font-variant normal |
small-caps

Define a font to be in small caps 9.3.3.4 Graphic

font-weight normal | bold |
bolder |
lighter |
number

Define the font weight. If a
number is used, it must be a
multiple of 100 between 100 and
900; 400 is normal, 700 is the
same as the keyword bold.

9.3.3.5 Graphic

Graphic

height length | auto Define the height of an element 9.3.6.9 Graphic

letter-spacing length | normal Inserts additional space between
text characters

9.3.5.1 Graphic

line-height length | number |
percent | normal

Sets the distance between
adjacent text baselines

9.3.5.2 Graphic

Graphic

list-style Defines list-related styles using
any of the values for
list-style-image,
list-style-position, and
list-style-type

9.3.7.4 Graphic

Graphic

list-style-image url | none Define an image to be used as a
list item's marker, in lieu of the
value for list-style-type

9.3.7.1 Graphic

list-style-position inside |
outside

Indents or extends (default) a list
item's marker with respect to the
item's content

9.3.7.2

list-style-type circle | disc |
square |
decimal |
lower-alpha |
lower-roman |
none |
upper-alpha |
upper-roman

Define a list item's marker for
either unordered lists (circle,
disc, or square) or for
ordered lists (decimal,
lower-alpha,
lower-roman, none,
upper-alpha, or
upper-roman)

9.3.7.3 Graphic

Graphic

margin length | percent |
auto

Define all four of an element's
margins

9.3.6.10 Graphic

margin-bottom length | percent |
auto

Define the bottom margin of an
element; default value is 0

9.3.6.10 Graphic

Graphic

margin-left length | percent |
auto

Define the left margin of an
element; default value is 0

9.3.6.10 Graphic

Graphic

margin-right length | percent |
auto

Define the right margin of an
element; default value is 0

9.3.6.10 Graphic

Graphic

margin-top length | percent |
auto

Define the top margin of an
element; default value is 0

9.3.6.10 Graphic

Graphic

padding Define all four padding amounts
around an element

9.3.6.4 Graphic

padding-bottom length | percent Define the bottom padding of an
element; default value is 0

9.3.6.4 Graphic

Graphic

padding-left length | percent Define the left padding of an
element; default value is 0

9.3.6.4 Graphic

Graphic

padding-right length | percent Define the right padding of an
element; default value is 0

9.3.6.4 Graphic

Graphic

padding-top length | percent Define the top padding of an
element; default value is 0

9.3.6.4 Graphic

Graphic

text-align center |
justify | left
| right

Set the text alignment style for
an element

9.3.5.3 Graphic

Graphic

text-decoration blink |
line-through
| none |
overline |
underline

Define any decoration for the
text; values may be combined

9.3.5.4 Graphic

Graphic

text-indent length | percent Define the indentation of the first
line of text in an element; default
value is 0

9.3.5.5 Graphic

Graphic

text-transform capitalize |
lowercase |
none |
uppercase

Transform the text in the element
accordingly

9.3.5.6 Graphic

Graphic

vertical-align percent | baseline |
bottom |
middle | sub |
super |
text-bottom |
text-top | top

Set the vertical positioning of an
element

9.3.5.7 Graphic

Graphic

word-spacing length | normal Insert additional space between
words

9.3.5.8

white-space normal |
nowrap | pre

Define how whitespace within an
element is handled

9.3.8.2 Graphic

width length | percent |
auto

Define the width of an element 9.3.6.12 Graphic

Graphic

B.2 HTML Quick Reference D. The HTML 4.0 DTD

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Appendix D

D. The HTML 4.0 DTD
The HTML 4.0 standard is formally defined as three SGML Document Type Definitions (DTDs): the Strict DTD, the
Transitional DTD, and the Frameset DTD. The Strict DTD defines only those elements that are not deprecated in the 4.0
standard. Ideally, everyone would create HTML documents that conform to the Strict DTD. The Transitional DTD includes all
those deprecated elements and more accurately reflects the HTML in use today, with many older elements still in common use.
The Frameset DTD is identical to the Transitional DTD, with the exception that the document <body> is replaced by the
<frameset> tag.

Since the Transitional DTD provides the broadest coverage of all HTML elements currently in use, it is the DTD upon which
this book is based and the one we reproduce here. Note that we have reprinted this DTD verbatim and have not attempted to
add extensions to it. Where our description and the DTD deviate, assume the DTD is correct:

<!--
 This is the HTML 4.0 Transitional DTD, which includes
 presentation attributes and elements that W3C expects to phase out
 as support for style sheets matures. Authors should use the Strict
 DTD when possible, but may use the Transitional DTD when support
 for presentation attribute and elements is required.
 HTML 4.0 includes mechanisms for style sheets, scripting,
 embedding objects, improved support for right to left and mixed
 direction text, and enhancements to forms for improved
 accessibility for people with disabilities.
 Draft: $Date: 2000/02/11 18:30:23 $
 Authors:
 Dave Raggett <dsr@w3.org>
 Arnaud Le Hors <lehors@w3.org>
 Ian Jacobs <ij@w3.org>
 Further information about HTML 4.0 is available at:
 http://www.w3.org/TR/REC-html40
 -->
 <!ENTITY % HTML.Version "-//W3C//DTD HTML 4.0 Transitional//EN"
 -- Typical usage:
 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC-html40/loose.dtd">
 <html>
 <head>
 ...
 </head>
 <body>
 ...
 </body>
 </html>
 The URI used as a system identifier with the public identifier allows
 the user agent to download the DTD and entity sets as needed.
 The FPI for the Strict HTML 4.0 DTD is:
 "-//W3C//DTD HTML 4.0//EN"
 and its URI is:
 http://www.w3.org/TR/REC-html40/strict.dtd
 Authors should use the Strict DTD unless they need the

 presentation control for user agents that don't (adequately)
 support style sheets.
 If you are writing a document that includes frames, use
 the following FPI:
 "-//W3C//DTD HTML 4.0 Frameset//EN"
 with the URI:
 http://www.w3.org/TR/REC-html40/frameset.dtd
 The following URIs are supported in relation to HTML 4.0
 "http://www.w3.org/TR/REC-html40/strict.dtd" (Strict DTD)
 "http://www.w3.org/TR/REC-html40/loose.dtd" (Loose DTD)
 "http://www.w3.org/TR/REC-html40/frameset.dtd" (Frameset DTD)
 "http://www.w3.org/TR/REC-html40/HTMLlat1.ent" (Latin-1 entities)
 "http://www.w3.org/TR/REC-html40/HTMLsymbol.ent" (Symbol entities)
 "http://www.w3.org/TR/REC-html40/HTMLspecial.ent" (Special entities)
 These URIs point to the latest version of each file. To reference
 this specific revision use the following URIs:
 "http://www.w3.org/TR/1998/REC-html40-19980424/strict.dtd"
 "http://www.w3.org/TR/1998/REC-html40-19980424/loose.dtd"
 "http://www.w3.org/TR/1998/REC-html40-19980424/frameset.dtd"
 "http://www.w3.org/TR/1998/REC-html40-19980424/HTMLlat1.ent"
 "http://www.w3.org/TR/1998/REC-html40-19980424/HTMLsymbol.ent"
 "http://www.w3.org/TR/1998/REC-html40-19980424/HTMLspecial.ent"
 -->
 <!--================== Imported Names ====================================-->
 <!ENTITY % ContentType "CDATA"
 -- media type, as per [RFC2045]
 -->
 <!ENTITY % ContentTypes "CDATA"
 -- comma-separated list of media types, as per [RFC2045]
 -->
 <!ENTITY % Charset "CDATA"
 -- a character encoding, as per [RFC2045]
 -->
 <!ENTITY % Charsets "CDATA"
 -- a space separated list of character encodings, as per [RFC2045]
 -->
 <!ENTITY % LanguageCode "NAME"
 -- a language code, as per [RFC1766]
 -->
 <!ENTITY % Character "CDATA"
 -- a single character from [ISO10646]
 -->
 <!ENTITY % LinkTypes "CDATA"
 -- space-separated list of link types
 -->
 <!ENTITY % MediaDesc "CDATA"
 -- single or comma-separated list of media descriptors
 -->
 <!ENTITY % URI "CDATA"
 -- a Uniform Resource Identifier,
 see [URI]
 -->
 <!ENTITY % Datetime "CDATA" -- date and time information. ISO date format -->
 <!ENTITY % Script "CDATA" -- script expression -->
 <!ENTITY % StyleSheet "CDATA" -- style sheet data -->
 <!ENTITY % FrameTarget "CDATA" -- render in this frame -->
 <!ENTITY % Text "CDATA">
 <!-- Parameter Entities -->
 <!ENTITY % head.misc "SCRIPT|STYLE|META|LINK|OBJECT" -- repeatable head elements -->
 <!ENTITY % heading "H1|H2|H3|H4|H5|H6">
 <!ENTITY % list "UL | OL | DIR | MENU">

 <!ENTITY % preformatted "PRE">
 <!ENTITY % Color "CDATA" -- a color using sRGB: #RRGGBB as Hex values -->
 <!-- There are also 16 widely known color names with their sRGB values:
 Black = #000000 Green = #008000
 Silver = #C0C0C0 Lime = #00FF00
 Gray = #808080 Olive = #808000
 White = #FFFFFF Yellow = #FFFF00
 Maroon = #800000 Navy = #000080
 Red = #FF0000 Blue = #0000FF
 Purple = #800080 Teal = #008080
 Fuchsia= #FF00FF Aqua = #00FFFF
 -->
 <!ENTITY % bodycolors "
 bgcolor %Color; #IMPLIED -- document background color --
 text %Color; #IMPLIED -- document text color --
 link %Color; #IMPLIED -- color of links --
 vlink %Color; #IMPLIED -- color of visited links --
 alink %Color; #IMPLIED -- color of selected links --
 ">
 <!--================ Character mnemonic entities =========================-->
 <!ENTITY % HTMLlat1 PUBLIC
 "-//W3C//ENTITIES Latin1//EN//HTML"
 "http://www.w3.org/TR/1998/REC-html40-19980424/HTMLlat1.ent">
 %HTMLlat1;
 <!ENTITY % HTMLsymbol PUBLIC
 "-//W3C//ENTITIES Symbols//EN//HTML"
 "http://www.w3.org/TR/1998/REC-html40-19980424/HTMLsymbol.ent">
 %HTMLsymbol;
 <!ENTITY % HTMLspecial PUBLIC
 "-//W3C//ENTITIES Special//EN//HTML"
 "http://www.w3.org/TR/1998/REC-html40-19980424/HTMLspecial.ent">
 %HTMLspecial;
 <!--=================== Generic Attributes ===============================-->
 <!ENTITY % coreattrs
 "id ID #IMPLIED -- document-wide unique id --
 class CDATA #IMPLIED -- space separated list of classes --
 style %StyleSheet; #IMPLIED -- associated style info --
 title %Text; #IMPLIED -- advisory title/amplification --"
 >
 <!ENTITY % i18n
 "lang %LanguageCode; #IMPLIED -- language code --
 dir (ltr|rtl) #IMPLIED -- direction for weak/neutral text --"
 >
 <!ENTITY % events
 "onclick %Script; #IMPLIED -- a pointer button was clicked --
 ondblclick %Script; #IMPLIED -- a pointer button was double clicked--
 onmousedown %Script; #IMPLIED -- a pointer button was pressed down --
 onmouseup %Script; #IMPLIED -- a pointer button was released --
 onmouseover %Script; #IMPLIED -- a pointer was moved onto --
 onmousemove %Script; #IMPLIED -- a pointer was moved within --
 onmouseout %Script; #IMPLIED -- a pointer was moved away --
 onkeypress %Script; #IMPLIED -- a key was pressed and released --
 onkeydown %Script; #IMPLIED -- a key was pressed down --
 onkeyup %Script; #IMPLIED -- a key was released --"
 >
 <!-- Reserved Feature Switch -->
 <!ENTITY % HTML.Reserved "IGNORE">
 <!-- The following attributes are reserved for possible future use -->
 <![%HTML.Reserved; [
 <!ENTITY % reserved
 "datasrc %URI; #IMPLIED -- a single or tabular Data Source --

 datafld CDATA #IMPLIED -- the property or column name --
 dataformatas (plaintext|html) plaintext -- text or html --"
 >
]]>
 <!ENTITY % reserved "">
 <!ENTITY % attrs "%coreattrs; %i18n; %events;">
 <!ENTITY % align "align (left|center|right|justify) #IMPLIED"
 -- default is left for ltr paragraphs, right for rtl --
 >
 <!--=================== Text Markup ======================================-->
 <!ENTITY % fontstyle
 "TT | I | B | U | S | STRIKE | BIG | SMALL">
 <!ENTITY % phrase "EM | STRONG | DFN | CODE |
 SAMP | KBD | VAR | CITE | ABBR | ACRONYM" >
 <!ENTITY % special
 "A | IMG | APPLET | OBJECT | FONT | BASEFONT | BR | SCRIPT |
 MAP | Q | SUB | SUP | SPAN | BDO | IFRAME">
 <!ENTITY % formctrl "INPUT | SELECT | TEXTAREA | LABEL | BUTTON">
 <!-- %inline; covers inline or "text-level" elements -->
 <!ENTITY % inline "#PCDATA | %fontstyle; | %phrase; | %special; | %formctrl;">
 <!ELEMENT (%fontstyle;|%phrase;) - - (%inline;)*>
 <!ATTLIST (%fontstyle;|%phrase;)
 %attrs; -- %coreattrs, %i18n, %events --
 >
 <!ELEMENT (SUB|SUP) - - (%inline;)* -- subscript, superscript -->
 <!ATTLIST (SUB|SUP)
 %attrs; -- %coreattrs, %i18n, %events --
 >
 <!ELEMENT SPAN - - (%inline;)* -- generic language/style container -->
 <!ATTLIST SPAN
 %attrs; -- %coreattrs, %i18n, %events --
 %reserved; -- reserved for possible future use --
 >
 <!ELEMENT BDO - - (%inline;)* -- I18N BiDi over-ride -->
 <!ATTLIST BDO
 %coreattrs; -- id, class, style, title --
 lang %LanguageCode; #IMPLIED -- language code --
 dir (ltr|rtl) #REQUIRED -- directionality --
 >
 <!ELEMENT BASEFONT - O EMPTY -- base font size -->
 <!ATTLIST BASEFONT
 id ID #IMPLIED -- document-wide unique id --
 size CDATA #REQUIRED -- base font size for FONT elements --
 color %Color; #IMPLIED -- text color --
 face CDATA #IMPLIED -- comma separated list of font names --
 >
 <!ELEMENT FONT - - (%inline;)* -- local change to font -->
 <!ATTLIST FONT
 %coreattrs; -- id, class, style, title --
 %i18n; -- lang, dir --
 size CDATA #IMPLIED -- [+|-]nn e.g. size="+1", size="4" --
 color %Color; #IMPLIED -- text color --
 face CDATA #IMPLIED -- comma separated list of font names --
 >
 <!ELEMENT BR - O EMPTY -- forced line break -->
 <!ATTLIST BR
 %coreattrs; -- id, class, style, title --
 clear (left|all|right|none) none -- control of text flow --
 >
 <!--================== HTML content models ===============================-->
 <!--

 HTML has two basic content models:
 %inline; character level elements and text strings
 %block; block-like elements e.g. paragraphs and lists
 -->
 <!ENTITY % block
 "P | %heading; | %list; | %preformatted; | DL | DIV | CENTER |
 NOSCRIPT | NOFRAMES | BLOCKQUOTE | FORM | ISINDEX | HR |
 TABLE | FIELDSET | ADDRESS">
 <!ENTITY % flow "%block; | %inline;">
 <!--=================== Document Body ====================================-->
 <!ELEMENT BODY O O (%flow;)* +(INS|DEL) -- document body -->
 <!ATTLIST BODY
 %attrs; -- %coreattrs, %i18n, %events --
 onload %Script; #IMPLIED -- the document has been loaded --
 onunload %Script; #IMPLIED -- the document has been removed --
 background %URI; #IMPLIED -- texture tile for document
 background --
 %bodycolors; -- bgcolor, text, link, vlink, alink --
 >
 <!ELEMENT ADDRESS - - ((%inline;)|P)* -- information on author -->
 <!ATTLIST ADDRESS
 %attrs; -- %coreattrs, %i18n, %events --
 >
 <!ELEMENT DIV - - (%flow;)* -- generic language/style container -->
 <!ATTLIST DIV
 %attrs; -- %coreattrs, %i18n, %events --
 %align; -- align, text alignment --
 %reserved; -- reserved for possible future use --
 >
 <!ELEMENT CENTER - - (%flow;)* -- shorthand for DIV align=center -->
 <!ATTLIST CENTER
 %attrs; -- %coreattrs, %i18n, %events --
 >
 <!--================== The Anchor Element ================================-->
 <!ENTITY % Shape "(rect|circle|poly|default)">
 <!ENTITY % Coords "CDATA" -- comma separated list of lengths -->
 <!ELEMENT A - - (%inline;)* -(A) -- anchor -->
 <!ATTLIST A
 %attrs; -- %coreattrs, %i18n, %events --
 charset %Charset; #IMPLIED -- char encoding of linked resource --
 type %ContentType; #IMPLIED -- advisory content type --
 name CDATA #IMPLIED -- named link end --
 href %URI; #IMPLIED -- URI for linked resource --
 hreflang %LanguageCode; #IMPLIED -- language code --
 target %FrameTarget; #IMPLIED -- render in this frame --
 rel %LinkTypes; #IMPLIED -- forward link types --
 rev %LinkTypes; #IMPLIED -- reverse link types --
 accesskey %Character; #IMPLIED -- accessibility key character --
 shape %Shape; rect -- for use with client-side image maps --
 coords %Coords; #IMPLIED -- for use with client-side image maps --
 tabindex NUMBER #IMPLIED -- position in tabbing order --
 onfocus %Script; #IMPLIED -- the element got the focus --
 onblur %Script; #IMPLIED -- the element lost the focus --
 >
 <!--================== Client-side image maps ============================-->
 <!-- These can be placed in the same document or grouped in a
 separate document although this isn't yet widely supported -->
 <!ELEMENT MAP - - ((%block;)+ | AREA+) -- client-side image map -->
 <!ATTLIST MAP
 %attrs; -- %coreattrs, %i18n, %events --
 name CDATA #REQUIRED -- for reference by usemap --

 >
 <!ELEMENT AREA - O EMPTY -- client-side image map area -->
 <!ATTLIST AREA
 %attrs; -- %coreattrs, %i18n, %events --
 shape %Shape; rect -- controls interpretation of coords --
 coords %Coords; #IMPLIED -- comma separated list of lengths --
 href %URI; #IMPLIED -- URI for linked resource --
 target %FrameTarget; #IMPLIED -- render in this frame --
 nohref (nohref) #IMPLIED -- this region has no action --
 alt %Text; #REQUIRED -- short description --
 tabindex NUMBER #IMPLIED -- position in tabbing order --
 accesskey %Character; #IMPLIED -- accessibility key character --
 onfocus %Script; #IMPLIED -- the element got the focus --
 onblur %Script; #IMPLIED -- the element lost the focus --
 >
 <!--================== The LINK Element ==================================-->
 <!--
 Relationship values can be used in principle:
 a) for document specific toolbars/menus when used
 with the LINK element in document head e.g.
 start, contents, previous, next, index, end, help
 b) to link to a separate style sheet (rel=stylesheet)
 c) to make a link to a script (rel=script)
 d) by stylesheets to control how collections of
 html nodes are rendered into printed documents
 e) to make a link to a printable version of this document
 e.g. a postscript or pdf version (rel=alternate media=print)
 -->
 <!ELEMENT LINK - O EMPTY -- a media-independent link -->
 <!ATTLIST LINK
 %attrs; -- %coreattrs, %i18n, %events --
 charset %Charset; #IMPLIED -- char encoding of linked resource --
 href %URI; #IMPLIED -- URI for linked resource --
 hreflang %LanguageCode; #IMPLIED -- language code --
 type %ContentType; #IMPLIED -- advisory content type --
 rel %LinkTypes; #IMPLIED -- forward link types --
 rev %LinkTypes; #IMPLIED -- reverse link types --
 media %MediaDesc; #IMPLIED -- for rendering on these media --
 target %FrameTarget; #IMPLIED -- render in this frame --
 >
 <!--=================== Images ===-->
 <!-- Length defined in strict DTD for cellpadding/cellspacing -->
 <!ENTITY % Length "CDATA" -- nn for pixels or nn% for percentage length -->
 <!ENTITY % MultiLength "CDATA" -- pixel, percentage, or relative -->
 <!ENTITY % MultiLengths "CDATA" -- comma-separated list of MultiLength -->
 <!ENTITY % Pixels "CDATA" -- integer representing length in pixels -->
 <!ENTITY % IAlign "(top|middle|bottom|left|right)" -- center? -->
 <!-- To avoid problems with text-only UAs as well as
 to make image content understandable and navigable
 to users of non-visual UAs, you need to provide
 a description with ALT, and avoid server-side image maps -->
 <!ELEMENT IMG - O EMPTY -- Embedded image -->
 <!ATTLIST IMG
 %attrs; -- %coreattrs, %i18n, %events --
 src %URI; #REQUIRED -- URI of image to embed --
 alt %Text; #REQUIRED -- short description --
 longdesc %URI; #IMPLIED -- link to long description
 (complements alt) --
 height %Length; #IMPLIED -- override height --
 width %Length; #IMPLIED -- override width --
 usemap %URI; #IMPLIED -- use client-side image map --

 ismap (ismap) #IMPLIED -- use server-side image map --
 align %IAlign; #IMPLIED -- vertical or horizontal alignment --
 border %Length; #IMPLIED -- link border width --
 hspace %Pixels; #IMPLIED -- horizontal gutter --
 vspace %Pixels; #IMPLIED -- vertical gutter --
 >
 <!-- USEMAP points to a MAP element which may be in this document
 or an external document, although the latter is not widely supported -->
 <!--==================== OBJECT ======================================-->
 <!--
 OBJECT is used to embed objects as part of HTML pages
 PARAM elements should precede other content. SGML mixed content
 model technicality precludes specifying this formally ...
 -->
 <!ELEMENT OBJECT - - (PARAM | %flow;)*
 -- generic embedded object -->
 <!ATTLIST OBJECT
 %attrs; -- %coreattrs, %i18n, %events --
 declare (declare) #IMPLIED -- declare but don't instantiate flag --
 classid %URI; #IMPLIED -- identifies an implementation --
 codebase %URI; #IMPLIED -- base URI for classid, data, archive--
 data %URI; #IMPLIED -- reference to object's data --
 type %ContentType; #IMPLIED -- content type for data --
 codetype %ContentType; #IMPLIED -- content type for code --
 archive %URI; #IMPLIED -- space separated archive list --
 standby %Text; #IMPLIED -- message to show while loading --
 height %Length; #IMPLIED -- override height --
 width %Length; #IMPLIED -- override width --
 usemap %URI; #IMPLIED -- use client-side image map --
 name CDATA #IMPLIED -- submit as part of form --
 tabindex NUMBER #IMPLIED -- position in tabbing order --
 align %IAlign; #IMPLIED -- vertical or horizontal alignment --
 border %Length; #IMPLIED -- link border width --
 hspace %Pixels; #IMPLIED -- horizontal gutter --
 vspace %Pixels; #IMPLIED -- vertical gutter --
 %reserved; -- reserved for possible future use --
 >
 <!ELEMENT PARAM - O EMPTY -- named property value -->
 <!ATTLIST PARAM
 id ID #IMPLIED -- document-wide unique id --
 name CDATA #REQUIRED -- property name --
 value CDATA #IMPLIED -- property value --
 valuetype (DATA|REF|OBJECT) DATA -- How to interpret value --
 type %ContentType; #IMPLIED -- content type for value
 when valuetype=ref --
 >
 <!--=================== Java APPLET ==================================-->
 <!--
 One of code or object attributes must be present.
 Place PARAM elements before other content.
 -->
 <!ELEMENT APPLET - - (PARAM | %flow;)* -- Java applet -->
 <!ATTLIST APPLET
 %coreattrs; -- id, class, style, title --
 codebase %URI; #IMPLIED -- optional base URI for applet --
 archive CDATA #IMPLIED -- comma separated archive list --
 code CDATA #IMPLIED -- applet class file --
 object CDATA #IMPLIED -- serialized applet file --
 alt %Text; #IMPLIED -- short description --
 name CDATA #IMPLIED -- allows applets to find each other --
 width %Length; #REQUIRED -- initial width --

 height %Length; #REQUIRED -- initial height --
 align %IAlign; #IMPLIED -- vertical or horizontal alignment --
 hspace %Pixels; #IMPLIED -- horizontal gutter --
 vspace %Pixels; #IMPLIED -- vertical gutter --
 >
 <!--=================== Horizontal Rule ==================================-->
 <!ELEMENT HR - O EMPTY -- horizontal rule -->
 <!ATTLIST HR
 %coreattrs; -- id, class, style, title --
 %events;
 align (left|center|right) #IMPLIED
 noshade (noshade) #IMPLIED
 size %Pixels; #IMPLIED
 width %Length; #IMPLIED
 >
 <!--=================== Paragraphs =======================================-->
 <!ELEMENT P - O (%inline;)* -- paragraph -->
 <!ATTLIST P
 %attrs; -- %coreattrs, %i18n, %events --
 %align; -- align, text alignment --
 >
 <!--=================== Headings ===-->
 <!--
 There are six levels of headings from H1 (the most important)
 to H6 (the least important).
 -->
 <!ELEMENT (%heading;) - - (%inline;)* -- heading -->
 <!ATTLIST (%heading;)
 %attrs; -- %coreattrs, %i18n, %events --
 %align; -- align, text alignment --
 >
 <!--=================== Preformatted Text ================================-->
 <!-- excludes markup for images and changes in font size -->
 <!ENTITY % pre.exclusion "IMG|OBJECT|APPLET|BIG|SMALL|SUB|SUP|FONT|BASEFONT">
 <!ELEMENT PRE - - (%inline;)* -(%pre.exclusion;) -- preformatted text -->
 <!ATTLIST PRE
 %attrs; -- %coreattrs, %i18n, %events --
 width NUMBER #IMPLIED
 >
 <!--===================== Inline Quotes ==================================-->
 <!ELEMENT Q - - (%inline;)* -- short inline quotation -->
 <!ATTLIST Q
 %attrs; -- %coreattrs, %i18n, %events --
 cite %URI; #IMPLIED -- URI for source document or msg --
 >
 <!--=================== Block-like Quotes ================================-->
 <!ELEMENT BLOCKQUOTE - - (%flow;)* -- long quotation -->
 <!ATTLIST BLOCKQUOTE
 %attrs; -- %coreattrs, %i18n, %events --
 cite %URI; #IMPLIED -- URI for source document or msg --
 >
 <!--=================== Inserted/Deleted Text ============================-->
 <!-- INS/DEL are handled by inclusion on BODY -->
 <!ELEMENT (INS|DEL) - - (%flow;)* -- inserted text, deleted text -->
 <!ATTLIST (INS|DEL)
 %attrs; -- %coreattrs, %i18n, %events --
 cite %URI; #IMPLIED -- info on reason for change --
 datetime %Datetime; #IMPLIED -- date and time of change --
 >
 <!--=================== Lists ==-->
 <!-- definition lists - DT for term, DD for its definition -->

 <!ELEMENT DL - - (DT|DD)+ -- definition list -->
 <!ATTLIST DL
 %attrs; -- %coreattrs, %i18n, %events --
 compact (compact) #IMPLIED -- reduced interitem spacing --
 >
 <!ELEMENT DT - O (%inline;)* -- definition term -->
 <!ELEMENT DD - O (%flow;)* -- definition description -->
 <!ATTLIST (DT|DD)
 %attrs; -- %coreattrs, %i18n, %events --
 >
 <!-- Ordered lists (OL) Numbering style
 1 arablic numbers 1, 2, 3, ...
 a lower alpha a, b, c, ...
 A upper alpha A, B, C, ...
 i lower roman i, ii, iii, ...
 I upper roman I, II, III, ...
 The style is applied to the sequence number which by default
 is reset to 1 for the first list item in an ordered list.
 This can't be expressed directly in SGML due to case folding.
 -->
 <!ENTITY % OLStyle "CDATA" -- constrained to: "(1|a|A|i|I)" -->
 <!ELEMENT OL - - (LI)+ -- ordered list -->
 <!ATTLIST OL
 %attrs; -- %coreattrs, %i18n, %events --
 type %OLStyle; #IMPLIED -- numbering style --
 compact (compact) #IMPLIED -- reduced interitem spacing --
 start NUMBER #IMPLIED -- starting sequence number --
 >
 <!-- Unordered Lists (UL) bullet styles -->
 <!ENTITY % ULStyle "(disc|square|circle)">
 <!ELEMENT UL - - (LI)+ -- unordered list -->
 <!ATTLIST UL
 %attrs; -- %coreattrs, %i18n, %events --
 type %ULStyle; #IMPLIED -- bullet style --
 compact (compact) #IMPLIED -- reduced interitem spacing --
 >
 <!ELEMENT (DIR|MENU) - - (LI)+ -(%block;) -- directory list, menu list -->
 <!ATTLIST DIR
 %attrs; -- %coreattrs, %i18n, %events --
 compact (compact) #IMPLIED
 >
 <!ATTLIST MENU
 %attrs; -- %coreattrs, %i18n, %events --
 compact (compact) #IMPLIED
 >
 <!ENTITY % LIStyle "CDATA" -- constrained to: "(%ULStyle;|%OLStyle;)" -->
 <!ELEMENT LI - O (%flow;)* -- list item -->
 <!ATTLIST LI
 %attrs; -- %coreattrs, %i18n, %events --
 type %LIStyle; #IMPLIED -- list item style --
 value NUMBER #IMPLIED -- reset sequence number --
 >
 <!--================ Forms ===-->
 <!ELEMENT FORM - - (%flow;)* -(FORM) -- interactive form -->
 <!ATTLIST FORM
 %attrs; -- %coreattrs, %i18n, %events --
 action %URI; #REQUIRED -- server-side form handler --
 method (GET|POST) GET -- HTTP method used to submit the form--
 enctype %ContentType; "application/x-www-form-urlencoded"
 onsubmit %Script; #IMPLIED -- the form was submitted --
 onreset %Script; #IMPLIED -- the form was reset --

 target %FrameTarget; #IMPLIED -- render in this frame --
 accept-charset %Charsets; #IMPLIED -- list of supported charsets --
 >
 <!-- Each label must not contain more than ONE field -->
 <!ELEMENT LABEL - - (%inline;)* -(LABEL) -- form field label text -->
 <!ATTLIST LABEL
 %attrs; -- %coreattrs, %i18n, %events --
 for IDREF #IMPLIED -- matches field ID value --
 accesskey %Character; #IMPLIED -- accessibility key character --
 onfocus %Script; #IMPLIED -- the element got the focus --
 onblur %Script; #IMPLIED -- the element lost the focus --
 >
 <!ENTITY % InputType
 "(TEXT | PASSWORD | CHECKBOX |
 RADIO | SUBMIT | RESET |
 FILE | HIDDEN | IMAGE | BUTTON)"
 >
 <!-- attribute name required for all but submit & reset -->
 <!ELEMENT INPUT - O EMPTY -- form control -->
 <!ATTLIST INPUT
 %attrs; -- %coreattrs, %i18n, %events --
 type %InputType; TEXT -- what kind of widget is needed --
 name CDATA #IMPLIED -- submit as part of form --
 value CDATA #IMPLIED -- required for radio and checkboxes --
 checked (checked) #IMPLIED -- for radio buttons and check boxes --
 disabled (disabled) #IMPLIED -- unavailable in this context --
 readonly (readonly) #IMPLIED -- for text and passwd --
 size CDATA #IMPLIED -- specific to each type of field --
 maxlength NUMBER #IMPLIED -- max chars for text fields --
 src %URI; #IMPLIED -- for fields with images --
 alt CDATA #IMPLIED -- short description --
 usemap %URI; #IMPLIED -- use client-side image map --
 tabindex NUMBER #IMPLIED -- position in tabbing order --
 accesskey %Character; #IMPLIED -- accessibility key character --
 onfocus %Script; #IMPLIED -- the element got the focus --
 onblur %Script; #IMPLIED -- the element lost the focus --
 onselect %Script; #IMPLIED -- some text was selected --
 onchange %Script; #IMPLIED -- the element value was changed --
 accept %ContentTypes; #IMPLIED -- list of MIME types for file upload --
 align %IAlign; #IMPLIED -- vertical or horizontal alignment --
 %reserved; -- reserved for possible future use --
 >
 <!ELEMENT SELECT - - (OPTGROUP|OPTION)+ -- option selector -->
 <!ATTLIST SELECT
 %attrs; -- %coreattrs, %i18n, %events --
 name CDATA #IMPLIED -- field name --
 size NUMBER #IMPLIED -- rows visible --
 multiple (multiple) #IMPLIED -- default is single selection --
 disabled (disabled) #IMPLIED -- unavailable in this context --
 tabindex NUMBER #IMPLIED -- position in tabbing order --
 onfocus %Script; #IMPLIED -- the element got the focus --
 onblur %Script; #IMPLIED -- the element lost the focus --
 onchange %Script; #IMPLIED -- the element value was changed --
 %reserved; -- reserved for possible future use --
 >
 <!ELEMENT OPTGROUP - - (OPTION)+ -- option group -->
 <!ATTLIST OPTGROUP
 %attrs; -- %coreattrs, %i18n, %events --
 disabled (disabled) #IMPLIED -- unavailable in this context --
 label %Text; #REQUIRED -- for use in hierarchical menus --
 >

 <!ELEMENT OPTION - O (#PCDATA) -- selectable choice -->
 <!ATTLIST OPTION
 %attrs; -- %coreattrs, %i18n, %events --
 selected (selected) #IMPLIED
 disabled (disabled) #IMPLIED -- unavailable in this context --
 label %Text; #IMPLIED -- for use in hierarchical menus --
 value CDATA #IMPLIED -- defaults to element content --
 >
 <!ELEMENT TEXTAREA - - (#PCDATA) -- multi-line text field -->
 <!ATTLIST TEXTAREA
 %attrs; -- %coreattrs, %i18n, %events --
 name CDATA #IMPLIED
 rows NUMBER #REQUIRED
 cols NUMBER #REQUIRED
 disabled (disabled) #IMPLIED -- unavailable in this context --
 readonly (readonly) #IMPLIED
 tabindex NUMBER #IMPLIED -- position in tabbing order --
 accesskey %Character; #IMPLIED -- accessibility key character --
 onfocus %Script; #IMPLIED -- the element got the focus --
 onblur %Script; #IMPLIED -- the element lost the focus --
 onselect %Script; #IMPLIED -- some text was selected --
 onchange %Script; #IMPLIED -- the element value was changed --
 %reserved; -- reserved for possible future use --
 >
 <!--
 #PCDATA is to solve the mixed content problem,
 per specification only whitespace is allowed there!
 -->
 <!ELEMENT FIELDSET - - (#PCDATA,LEGEND,(%flow;)*) -- form control group -->
 <!ATTLIST FIELDSET
 %attrs; -- %coreattrs, %i18n, %events --
 >
 <!ELEMENT LEGEND - - (%inline;)* -- fieldset legend -->
 <!ENTITY % LAlign "(top|bottom|left|right)">
 <!ATTLIST LEGEND
 %attrs; -- %coreattrs, %i18n, %events --
 accesskey %Character; #IMPLIED -- accessibility key character --
 align %LAlign; #IMPLIED -- relative to fieldset --
 >
 <!ELEMENT BUTTON - -
 (%flow;)* -(A|%formctrl;|FORM|ISINDEX|FIELDSET|IFRAME)
 -- push button -->
 <!ATTLIST BUTTON
 %attrs; -- %coreattrs, %i18n, %events --
 name CDATA #IMPLIED
 value CDATA #IMPLIED -- sent to server when submitted --
 type (button|submit|reset) submit -- for use as form button --
 disabled (disabled) #IMPLIED -- unavailable in this context --
 tabindex NUMBER #IMPLIED -- position in tabbing order --
 accesskey %Character; #IMPLIED -- accessibility key character --
 onfocus %Script; #IMPLIED -- the element got the focus --
 onblur %Script; #IMPLIED -- the element lost the focus --
 %reserved; -- reserved for possible future use --
 >
 <!--======================= Tables =======================================-->
 <!-- IETF HTML table standard, see [RFC1942] -->
 <!--
 The BORDER attribute sets the thickness of the frame around the
 table. The default units are screen pixels.
 The FRAME attribute specifies which parts of the frame around
 the table should be rendered. The values are not the same as

 CALS to avoid a name clash with the VALIGN attribute.
 The value "border" is included for backwards compatibility with
 <TABLE BORDER> which yields frame=border and border=implied
 For <TABLE BORDER=1> you get border=1 and frame=implied. In this
 case, it is appropriate to treat this as frame=border for backwards
 compatibility with deployed browsers.
 -->
 <!ENTITY % TFrame "(void|above|below|hsides|lhs|rhs|vsides|box|border)">
 <!--
 The RULES attribute defines which rules to draw between cells:
 If RULES is absent then assume:
 "none" if BORDER is absent or BORDER=0 otherwise "all"
 -->
 <!ENTITY % TRules "(none | groups | rows | cols | all)">

 <!-- horizontal placement of table relative to document -->
 <!ENTITY % TAlign "(left|center|right)">
 <!-- horizontal alignment attributes for cell contents -->
 <!ENTITY % cellhalign
 "align (left|center|right|justify|char) #IMPLIED
 char %Character; #IMPLIED -- alignment char, e.g. char=':' --
 charoff %Length; #IMPLIED -- offset for alignment char --"
 >
 <!-- vertical alignment attributes for cell contents -->
 <!ENTITY % cellvalign
 "valign (top|middle|bottom|baseline) #IMPLIED"
 >
 <!ELEMENT TABLE - -
 (CAPTION?, (COL*|COLGROUP*), THEAD?, TFOOT?, TBODY+)>
 <!ELEMENT CAPTION - - (%inline;)* -- table caption -->
 <!ELEMENT THEAD - O (TR)+ -- table header -->
 <!ELEMENT TFOOT - O (TR)+ -- table footer -->
 <!ELEMENT TBODY O O (TR)+ -- table body -->
 <!ELEMENT COLGROUP - O (col)* -- table column group -->
 <!ELEMENT COL - O EMPTY -- table column -->
 <!ELEMENT TR - O (TH|TD)+ -- table row -->
 <!ELEMENT (TH|TD) - O (%flow;)* -- table header cell, table data cell-->
 <!ATTLIST TABLE -- table element --
 %attrs; -- %coreattrs, %i18n, %events --
 summary %Text; #IMPLIED -- purpose/structure for speech output--
 width %Length; #IMPLIED -- table width --
 border %Pixels; #IMPLIED -- controls frame width around table --
 frame %TFrame; #IMPLIED -- which parts of frame to render --
 rules %TRules; #IMPLIED -- rulings between rows and cols --
 cellspacing %Length; #IMPLIED -- spacing between cells --
 cellpadding %Length; #IMPLIED -- spacing within cells --
 align %TAlign; #IMPLIED -- table position relative to window --
 bgcolor %Color; #IMPLIED -- background color for cells --
 %reserved; -- reserved for possible future use --
 datapagesize CDATA #IMPLIED -- reserved for possible future use --
 >
 <!ENTITY % CAlign "(top|bottom|left|right)">
 <!ATTLIST CAPTION
 %attrs; -- %coreattrs, %i18n, %events --
 align %CAlign; #IMPLIED -- relative to table --
 >
 <!--
 COLGROUP groups a set of COL elements. It allows you to group
 several semantically related columns together.
 -->
 <!ATTLIST COLGROUP

 %attrs; -- %coreattrs, %i18n, %events --
 span NUMBER 1 -- default number of columns in group --
 width %MultiLength; #IMPLIED -- default width for enclosed COLs --
 %cellhalign; -- horizontal alignment in cells --
 %cellvalign; -- vertical alignment in cells --
 >
 <!--
 COL elements define the alignment properties for cells in
 one or more columns.
 The WIDTH attribute specifies the width of the columns, e.g.
 width=64 width in screen pixels
 width=0.5* relative width of 0.5
 The SPAN attribute causes the attributes of one
 COL element to apply to more than one column.
 -->
 <!ATTLIST COL -- column groups and properties --
 %attrs; -- %coreattrs, %i18n, %events --
 span NUMBER 1 -- COL attributes affect N columns --
 width %MultiLength; #IMPLIED -- column width specification --
 %cellhalign; -- horizontal alignment in cells --
 %cellvalign; -- vertical alignment in cells --
 >
 <!--
 Use THEAD to duplicate headers when breaking table
 across page boundaries, or for static headers when
 TBODY sections are rendered in scrolling panel.
 Use TFOOT to duplicate footers when breaking table
 across page boundaries, or for static footers when
 TBODY sections are rendered in scrolling panel.
 Use multiple TBODY sections when rules are needed
 between groups of table rows.
 -->
 <!ATTLIST (THEAD|TBODY|TFOOT) -- table section --
 %attrs; -- %coreattrs, %i18n, %events --
 %cellhalign; -- horizontal alignment in cells --
 %cellvalign; -- vertical alignment in cells --
 >
 <!ATTLIST TR -- table row --
 %attrs; -- %coreattrs, %i18n, %events --
 %cellhalign; -- horizontal alignment in cells --
 %cellvalign; -- vertical alignment in cells --
 bgcolor %Color; #IMPLIED -- background color for row --
 >
 <!-- Scope is simpler than axes attribute for common tables -->
 <!ENTITY % Scope "(row|col|rowgroup|colgroup)">
 <!-- TH is for headers, TD for data, but for cells acting as both use TD -->
 <!ATTLIST (TH|TD) -- header or data cell --
 %attrs; -- %coreattrs, %i18n, %events --
 abbr %Text; #IMPLIED -- abbreviation for header cell --
 axis CDATA #IMPLIED -- names groups of related headers--
 headers IDREFS #IMPLIED -- list of id's for header cells --
 scope %Scope; #IMPLIED -- scope covered by header cells --
 rowspan NUMBER 1 -- number of rows spanned by cell --
 colspan NUMBER 1 -- number of cols spanned by cell --
 %cellhalign; -- horizontal alignment in cells --
 %cellvalign; -- vertical alignment in cells --
 nowrap (nowrap) #IMPLIED -- suppress word wrap --
 bgcolor %Color; #IMPLIED -- cell background color --
 width %Pixels; #IMPLIED -- width for cell --
 height %Pixels; #IMPLIED -- height for cell --
 >

 <!--================== Document Frames ===================================-->
 <!--
 The content model for HTML documents depends on whether the HEAD is
 followed by a FRAMESET or BODY element. The widespread omission of
 the BODY start tag makes it impractical to define the content model
 without the use of a marked section.
 -->
 <!-- Feature Switch for frameset documents -->
 <!ENTITY % HTML.Frameset "IGNORE">
 <![%HTML.Frameset; [
 <!ELEMENT FRAMESET - - ((FRAMESET|FRAME)+ & NOFRAMES?) -- window subdivision-->
 <!ATTLIST FRAMESET
 %coreattrs; -- id, class, style, title --
 rows %MultiLengths; #IMPLIED -- list of lengths,
 default: 100% (1 row) --
 cols %MultiLengths; #IMPLIED -- list of lengths,
 default: 100% (1 col) --
 onload %Script; #IMPLIED -- all the frames have been loaded --
 onunload %Script; #IMPLIED -- all the frames have been removed --
 >
]]>
 <![%HTML.Frameset; [
 <!-- reserved frame names start with "_" otherwise starts with letter -->
 <!ELEMENT FRAME - O EMPTY -- subwindow -->
 <!ATTLIST FRAME
 %coreattrs; -- id, class, style, title --
 longdesc %URI; #IMPLIED -- link to long description
 (complements title) --
 name CDATA #IMPLIED -- name of frame for targetting --
 src %URI; #IMPLIED -- source of frame content --
 frameborder (1|0) 1 -- request frame borders? --
 marginwidth %Pixels; #IMPLIED -- margin widths in pixels --
 marginheight %Pixels; #IMPLIED -- margin height in pixels --
 noresize (noresize) #IMPLIED -- allow users to resize frames? --
 scrolling (yes|no|auto) auto -- scrollbar or none --
 >
]]>
 <!ELEMENT IFRAME - - (%flow;)* -- inline subwindow -->
 <!ATTLIST IFRAME
 %coreattrs; -- id, class, style, title --
 longdesc %URI; #IMPLIED -- link to long description
 (complements title) --
 name CDATA #IMPLIED -- name of frame for targetting --
 src %URI; #IMPLIED -- source of frame content --
 frameborder (1|0) 1 -- request frame borders? --
 marginwidth %Pixels; #IMPLIED -- margin widths in pixels --
 marginheight %Pixels; #IMPLIED -- margin height in pixels --
 scrolling (yes|no|auto) auto -- scrollbar or none --
 align %IAlign; #IMPLIED -- vertical or horizontal alignment --
 height %Length; #IMPLIED -- frame height --
 width %Length; #IMPLIED -- frame width --
 >
 <![%HTML.Frameset; [
 <!ENTITY % noframes.content "(BODY) -(NOFRAMES)">
]]>
 <!ENTITY % noframes.content "(%flow;)*">
 <!ELEMENT NOFRAMES - - %noframes.content;
 -- alternate content container for non frame-based rendering -->
 <!ATTLIST NOFRAMES
 %attrs; -- %coreattrs, %i18n, %events --
 >

 <!--================ Document Head =======================================-->
 <!-- %head.misc; defined earlier on as "SCRIPT|STYLE|META|LINK|OBJECT" -->
 <!ENTITY % head.content "TITLE & ISINDEX? & BASE?">
 <!ELEMENT HEAD O O (%head.content;) +(%head.misc;) -- document head -->
 <!ATTLIST HEAD
 %i18n; -- lang, dir --
 profile %URI; #IMPLIED -- named dictionary of meta info --
 >
 <!-- The TITLE element is not considered part of the flow of text.
 It should be displayed, for example as the page header or
 window title. Exactly one title is required per document.
 -->
 <!ELEMENT TITLE - - (#PCDATA) -(%head.misc;) -- document title -->
 <!ATTLIST TITLE %i18n>
 <!ELEMENT ISINDEX - O EMPTY -- single line prompt -->
 <!ATTLIST ISINDEX
 %coreattrs; -- id, class, style, title --
 %i18n; -- lang, dir --
 prompt %Text; #IMPLIED -- prompt message -->
 <!ELEMENT BASE - O EMPTY -- document base URI -->
 <!ATTLIST BASE
 href %URI; #IMPLIED -- URI that acts as base URI --
 target %FrameTarget; #IMPLIED -- render in this frame --
 >
 <!ELEMENT META - O EMPTY -- generic metainformation -->
 <!ATTLIST META
 %i18n; -- lang, dir, for use with content --
 http-equiv NAME #IMPLIED -- HTTP response header name --
 name NAME #IMPLIED -- metainformation name --
 content CDATA #REQUIRED -- associated information --
 scheme CDATA #IMPLIED -- select form of content --
 >
 <!ELEMENT STYLE - - %StyleSheet -- style info -->
 <!ATTLIST STYLE
 %i18n; -- lang, dir, for use with title --
 type %ContentType; #REQUIRED -- content type of style language --
 media %MediaDesc; #IMPLIED -- designed for use with these media --
 title %Text; #IMPLIED -- advisory title --
 >
 <!ELEMENT SCRIPT - - %Script; -- script statements -->
 <!ATTLIST SCRIPT
 charset %Charset; #IMPLIED -- char encoding of linked resource --
 type %ContentType; #REQUIRED -- content type of script language --
 language CDATA #IMPLIED -- predefined script language name --
 src %URI; #IMPLIED -- URI for an external script --
 defer (defer) #IMPLIED -- UA may defer execution of script --
 event CDATA #IMPLIED -- reserved for possible future use --
 for %URI; #IMPLIED -- reserved for possible future use --
 >
 <!ELEMENT NOSCRIPT - - (%flow;)*
 -- alternate content container for non script-based rendering -->
 <!ATTLIST NOSCRIPT
 %attrs; -- %coreattrs, %i18n, %events --
 >
 <!--================ Document Structure ==================================-->
 <!ENTITY % version "version CDATA #FIXED '%HTML.Version;'">
 <![%HTML.Frameset; [
 <!ENTITY % html.content "HEAD, FRAMESET">
]]>
 <!ENTITY % html.content "HEAD, BODY">
 <!ELEMENT HTML O O (%html.content;) -- document root element -->

 <!ATTLIST HTML
 %i18n; -- lang, dir --
 %version;
 >

C. Cascading Style Sheet
Properties Quick Reference

E. Character Entities

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Appendix E

E. Character Entities
The following table collects the defined standard, proposed, and several nonstandard, but generally
supported, character entities for HTML.

Entity names, if defined, appear for their respective characters and can be used in the HTML
character-entity sequence &name; to define any character for display by the browser. Otherwise, or
alternatively for named characters, use the character's three-digit numeral value in the sequence
&#nnn; to specially define an HTML character entity. Actual characters, however, may or may not be
displayed by the browser depending on the computer platform and user-selected font for display.

Not all 256 characters in the ISO character set appear in the table. Missing ones are not recognized by
the browser as either named or numeric entities.

To be sure that your documents are fully compliant with the HTML 4.0 standard, use only those
named character entities whose conformance column is blank. Characters whose conformance column
contains "!!!" are not formally defined by the HTML standard; use them at your own risk.

Numeric Entity Named Entity Symbol Description Conformance

	 Horizontal tab

 Line feed

 Carriage return

 Space

! ! Exclamation point

" " " Quotation mark

Hash mark

$ $ Dollar sign

% % Percent sign

& & & Ampersand

' ' Apostrophe

((Left parenthesis

)) Right parenthesis

* * Asterisk

+ + Plus sign

, , Comma

- - Hyphen

. . Period

/ / Slash

0 - 9 0-9 Digits 0-9

: : Colon

; ; Semicolon

< < < Less than

= = Equals sign

> > > Greater than

? ? Question mark

@ @ Commercial at sign

A - Z A-Z Letters A-Z

[[Left square bracket

\ \ Backslash

]] Right square bracket

^ ^ Caret

_ _ Underscore

` ` Gravè accent

a - z a-z Letters a-z

{ { Left curly brace

| | Vertical bar

} } Right curly brace

~ ~ Tilde

‚ , !!!

ƒ f Florin !!!

„ " Right double quote !!!

… ... Ellipsis !!!

† [dagger] Dagger !!!

‡ [dbldag] Double dagger !!!

ˆ ^ Circumflex !!!

‰ %0 Permil !!!

Š _ !!!

‹ < Less than sign !!!

Œ OE Capital OE ligature !!!

‘ ` Left single quote !!!

’ ' Right single quote !!!

“ " Left double quote !!!

” " Right double quote !!!

• · Bullet !!!

– - En dash !!!

— - Em dash !!!

˜ ~ Tilde !!!

™ (TM) Trademark !!!

š _ !!!

› > Greater than sign !!!

œ oe Small oe ligature !!!

Ÿ Y Capital Y, umlaut !!!

 Nonbreaking space

¡ ¡ ¡ Inverted exclamation point

¢ ¢ ¢ Cent sign

£ £ £ Pound sign

¤ ¤ ¤ General currency sign

¥ ¥ ¥ Yen sign

¦ ¦ | Broken vertical bar

§ § § Section sign

¨ ¨ ¨ Umlaut

© © © Copyright

ª ª ª Feminine ordinal

« « « Left angle quote

¬ ¬ ¬ Not sign

­ ­ - Soft hyphen

® ® ® Registered trademark

¯ ¯ ¯ Macron accent

° ° ° Degree sign

± ± ± Plus or minus

² ² 2 Superscript 2

³ ³ 3 Superscript 3

´ ´ ´ Acute accent

µ µ [mu] Micro sign (Greek mu)

¶ ¶ ¶ Paragraph sign

· · · Middle dot

¸ ¸ , Cedilla

¹ ¹ 1 Superscript 1

º º º Masculine ordinal

» » » Right angle quote

¼ ¼ 1/4 Fraction one-fourth

½ ½ 1/2 Fraction one-half

¾ ¾ 3/4 Fraction three-fourths

¿ ¿ ¿ Inverted question mark

À À À Capital A, grave accent

Á Á Á Capital A, acute accent

Â Â Â Capital A, circumflex accent

Ã Ã Ã Capital A, tilde

Ä Ä Ä Capital A, umlaut

Å Å Å Capital A, ring

Æ Æ Æ Capital AE ligature

Ç Ç Ç Capital C, cedilla

È È È Capital E, grave accent

É É É Capital E, acute accent

Ê Ê Ê Capital E, circumflex accent

Ë Ë Ë Capital E, umlaut

Ì Ì Ì Capital I, grave accent

Í Í Í Capital I, acute accent

Î Î Î Capital I, circumflex accent

Ï Ï Ï Capital I, umlaut

Ð Ð OE Capital eth, Icelandic

Ñ Ñ Ñ Capital N, tilde

Ò Ò Ò Capital O, grave accent

Ó Ó Ó Capital O, acute accent

Ô Ô Ô Capital O, circumflex accent

Õ Õ Õ Capital O, tilde

Ö Ö Ö Capital O, umlaut

× × × Multiply sign

Ø Ø Ø Capital O, slash

Ù Ù Ù Capital U, grave accent

Ú Ú Ú Capital U, acute accent

Û Û Û Capital U, circumflex accent

Ü Ü Ü Capital U, umlaut

Ý Ý Y Capital Y, acute accent

Þ Þ Graphic Capital thorn, Icelandic

ß ß ß Small sz ligature, German

à à à Small a, grave accent

á á á Small a, acute accent

â â â Small a, circumflex accent

ã ã ã Small a, tilde

ä ä ä Small a, umlaut

å å å Small a, ring

æ æ æ Small ae ligature

ç ç ç Small c, cedilla

è è è Small e, grave accent

é é é Small e, acute accent

ê ê ê Small e, circumflex accent

ë ë ë Small e, umlaut

ì ì ì Small i, grave accent

í í í Small i, acute accent

î î î Small i, circumflex accent

ï ï ï Small i, umlaut

ð ð Graphic Small eth, Icelandic

ñ ñ ñ Small n, tilde

ò ò ò Small o, grave accent

ó ó ó Small o, acute accent

ô ô ô Small o, circumflex accent

õ õ õ Small o, tilde

ö ö ö Small o, umlaut

÷ ÷ ÷ Division sign

ø ø ø Small o, slash

ù ù ù Small u, grave accent

ú ú ú Small u, acute accent

û û û Small u, circumflex accent

ü ü ü Small u, umlaut

ý ý y Small y, acute accent

þ þ pb Small thorn, Icelandic

ÿ ÿ ÿ Small y, umlaut

D. The HTML 4.0 DTD F. Color Names and Values

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Appendix F

F. Color Names and Values
Contents:
Color Values
Color Names
The Standard Color Map

With the popular browsers and according to the Cascading Style Sheets (CSS) standard, you may
prescribe the display color for various elements in your HTML document. You do so by specifying a
color value or a standard name. The user may override these color specifications through their
browser preferences.

F.1 Color Values
In all cases, you may set the color value for an HTML element, such as <body> text, <table>
background, and so on, as a six-digit hexadecimal number that represents the red, green, and blue
(RGB) components of the color. The first two digits correspond to the red component of the color, the
next two are the green component, and the last two are the blue component. A value of 00 corresponds
to a component being completely off; the hexadecimal value of FF (decimal 255) corresponds to the
component being completely on. Thus, bright red is FF0000, bright green is 00FF00, and bright blue
is 0000FF. Other primary colors are mixtures of the components, such as yellow (FFFF00), magenta
(FF00FF), and cyan (00FFFF). White (FFFFFF) and black (000000) are also easy to figure out.

You use these values in a tag by replacing the color with the RGB triple, preceded by a pound sign
(#). Thus, to make all visited links display as magenta, use this body tag:

<body vlink="#FF00FF">

E. Character Entities F.2 Color Names

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Appendix F
Color Names and Values

F.2 Color Names
Determining the RGB-triple value for other than the simplest colors (you try figuring out esoteric
colors like "papaya whip" or "navajo white") is not easy. You can go crazy trying to adjust the RGB
triple for a color to get the shade just right, especially when each adjustment requires loading a
document into your browser to view the result.

To make life easier, the HTML 4.0 standard defines sixteen standard color names that can be used
anywhere a numeric color value can be used. For example, you can make all visited links in the
display magenta with the following attribute and value for the body tag:

<body vlink="magenta">

The color names and RGB values defined in the HTML standard are:

aqua (#00FFFF) gray (#808080) navy (#000080) silver (#C0C0C0)

black (#000000) green (#008000) olive (#808000) teal (#008080)

blue (#0000FF) lime (#00FF00) purple (#800080) yellow (#FFFF00)

fuchsia (#FF00FF) maroon (#800000) red (#FF0000) white (#FFFFFF)

The popular browsers go well beyond the HTML 4.0 standard and support the several hundred color
names defined for use in the X Window System. Note that these color names may contain no spaces;
also, the word "gray" may be spelled "grey" in any color name.

Those colors marked with an asterisk (*) actually represent a family of colors numbered one through
four. Thus, there are actually four variants of blue, named "blue1," "blue2," "blue3," and "blue4,"
along with plain old "blue." Blue1 is the lightest of the four; blue4 the darkest. The unnumbered color
name is the same color as the first; thus, blue and blue1 are identical.

Finally, if all that isn't enough, there are one hundred variants of gray (and grey) numbered 1 through
100. "Gray1" is the darkest, "gray100" is the lightest, and "gray" is very close to "gray75."

The extended color names are:

aliceblue darkturquoise lightseagreen palevioletred*

antiquewhite* darkviolet lightskyblue* papayawhip

aquamarine* deeppink* lightslateblue peachpuff*

azure* deepskyblue* lightslategray peru

beige dimgray lightsteelblue* pink*

bisque* dodgerblue* lightyellow* plum*

black firebrick* limegreen powderblue

blanchedalmond floralwhite linen purple*

blue* forestgreen magenta* red*

blueviolet gainsboro maroon* rosybrown*

brown* ghostwhite mediumaquamarine royalblue*

burlywood* gold* mediumblue saddlebrown

cadetblue* goldenrod* mediumorchid* salmon*

chartreuse* gray mediumpurple* sandybrown

chocolate* green* mediumseagreen seagreen*

coral* greenyellow mediumslateblue seashell*

cornflowerblue honeydew* mediumspringgreen sienna*

cornsilk* hotpink* mediumturquoise skyblue*

cyan* indianred* mediumvioletred slateblue*

darkblue ivory* midnightblue slategray*

darkcyan khaki* mintcream snow*

darkgoldenrod* lavender mistyrose* springgreen*

darkgray lavenderblush* moccasin steelblue*

darkgreen lawngreen navajowhite* tan*

darkkhaki lemonchiffon* navy thistle*

darkmagenta lightblue* navyblue tomato*

darkolivegreen* lightcoral oldlace turquoise*

darkorange* lightcyan* olivedrab* violet

darkorchid* lightgoldenrod* orange* violetred*

darkred lightgoldenrodyellow orangered* wheat*

darksalmon lightgray orchid* white

darkseagreen* lightgreen palegoldenrod whitesmoke

darkslateblue lightpink* palegreen* yellow*

darkslategray* lightsalmon* paleturquoise* yellowgreen

F.1 Color Values F.3 The Standard Color Map

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

Appendix F
Color Names and Values

F.3 The Standard Color Map
Supporting hundreds of color names and millions of RGB triples is nice, but the reality is that a large,
albeit shrinking population of users can display only 256 colors on their system. When confronted
with a color not defined in this set of 256, the browser has two choices: convert the color to one of the
existing colors, or dither the color using the available colors in the color map.

Conversion is easy; the color is compared to all the other colors in the color map and is replaced by
the closest color found. Dithering is more difficult. Using two or more colors in the color map, the
errant color is approximated by mixing different ratios of the available colors. Viewed up close, you'll
see a pattern of alternating pixels using the available colors. At a distance, the pixels blend to form a
color close to the original color.

In general, your images will look best if you can avoid both conversion and dithering. Conversion will
make your colors appear "off"; dithering makes them look fuzzy. How to avoid these problems? Easy:
use colors in the standard color map when creating your images.

The standard color map actually has 216 values in it. There are six variants of red, six of green, and
six of blue that are combined in all possible ways to create these 216 (6 × 6 × 6) colors. These variants
have decimal brightness values of 0, 51, 102, 153, 204, and 255, corresponding to hexadecimal values
of 00, 33, 66, 99, CC, and FF. Colors like 003333 (dark cyan) and 999999 (medium gray) exist
directly in the color map and won't be converted or dithered.

Keep in mind that many of the extended color names are not in the standard color map and will be
converted or dithered to a (hopefully) similar color. Using color names, while convenient, does not
guarantee that the desired color will be used by the browser.

When creating images, try to use colors in the standard color map. When selecting colors for text,
links, or backgrounds, make sure you select colors in the standard color map. Your pages will look
better and will be more consistent when viewed with different browsers.

F.2 Color Names

file:///C|/My Intranet/books/online-books.ora.com/mod-bin/books.mod/webref/updates/html3/index/idx_0.htm

	Lokale Festplatte
	HTML: The Definitive Guide
	Preface
	[Preface] Text Conventions
	[Preface] Is HTML 4.0 Really a Big Deal?
	[Preface] We'd Like to Hear from You
	[Preface] Acknowledgments
	[Chapter 1] HTML and the World Wide Web
	[Chapter 1] 1.2 Talking the Internet Talk
	[Chapter 1] 1.3 HTML: What It Is
	[Chapter 1] 1.4 HTML: What It Isn't
	[Chapter 1] 1.5 Nonstandard Extensions
	[Chapter 1] 1.6 Tools for the HTML Designer
	[Chapter 2] HTML Quick Start
	[Chapter 2] 2.2 A First HTML Document
	[Chapter 2] 2.3 HTML Embedded Tags
	[Chapter 2] 2.4 HTML Skeleton
	[Chapter 2] 2.5 The Flesh on an HTML Document
	[Chapter 2] 2.6 HTML and Text
	[Chapter 2] 2.7 Hyperlinks
	[Chapter 2] 2.8 Images Are Special
	[Chapter 2] 2.9 Lists, Searchable Documents, and Forms
	[Chapter 2] 2.10 Tables
	[Chapter 2] 2.11 Frames
	[Chapter 2] 2.12 Style Sheets and JavaScript
	[Chapter 2] 2.13 Forging Ahead
	[Chapter 3] Anatomy of an HTML Document
	[Chapter 3] 3.2 Structure of an HTML Document
	[Chapter 3] 3.3 HTML Tags
	[Chapter 3] 3.4 Document Content
	[Chapter 3] 3.5 HTML Document Elements
	[Chapter 3] 3.6 The Document Header
	[Chapter 3] 3.7 The Document Body
	[Chapter 3] 3.8 Editorial Markup
	[Chapter 3] 3.9 The <bdo> Tag
	[Chapter 4] Text Basics
	[Chapter 4] 4.2 Headings
	[Chapter 4] 4.3 Changing Text Appearance
	[Chapter 4] 4.4 Content-based Style Tags
	[Chapter 4] 4.5 Physical Style Tags
	[Chapter 4] 4.6 Expanded Font Handling
	[Chapter 4] 4.7 Precise Spacing and Layout
	[Chapter 4] 4.8 Block Quotes
	[Chapter 4] 4.9 Addresses
	[Chapter 4] 4.10 Special Character Encoding
	[Chapter 5] Rules, Images, and Multimedia
	[Chapter 5] 5.2 Inserting Images in Your Documents
	[Chapter 5] 5.3 Document Colors and Background Images
	[Chapter 5] 5.4 Background Audio
	[Chapter 5] 5.5 Animated Text
	[Chapter 5] 5.6 Other Multimedia Content
	[Chapter 6] Document Layout
	[Chapter 6] 6.2 Multicolumn Layout
	[Chapter 6] 6.3 Layers
	[Chapter 7] Links and Webs
	[Chapter 7] 7.2 Referencing Documents: The URL
	[Chapter 7] 7.3 Creating Hyperlinks
	[Chapter 7] 7.4 Creating Effective Links
	[Chapter 7] 7.5 Mouse-Sensitive Images
	[Chapter 7] 7.6 Creating Searchable Documents
	[Chapter 7] 7.7 Establishing Document Relationships
	[Chapter 7] 7.8 Supporting Document Automation
	[Chapter 8] Formatted Lists
	[Chapter 8] 8.2 Ordered Lists
	[Chapter 8] 8.3 The Tag
	[Chapter 8] 8.4 Nesting Lists
	[Chapter 8] 8.5 Directory Lists
	[Chapter 8] 8.6 Menu Lists
	[Chapter 8] 8.7 Definition Lists
	[Chapter 8] 8.8 Appropriate List Usage
	[Chapter 9] Cascading Style Sheets
	[Chapter 9] 9.2 Style Syntax
	[Chapter 9] 9.3 Style Properties
	[Chapter 9] 9.4 Tag-less Styles: The Tag
	[Chapter 9] 9.5 Applying Styles to Documents
	[Chapter 10] Forms
	[Chapter 10] 10.2 The <form> Tag
	[Chapter 10] 10.3 A Simple Form Example
	[Chapter 10] 10.4 Using Email to Collect Form Data
	[Chapter 10] 10.5 The <input> Tag
	[Chapter 10] 10.6 Multiline Text Areas
	[Chapter 10] 10.7 Multiple Choice Elements
	[Chapter 10] 10.8 General Form Control Attributes
	[Chapter 10] 10.9 Labeling and Grouping Form Elements
	[Chapter 10] 10.10 Creating Effective Forms
	[Chapter 10] 10.11 Forms Programming
	[Chapter 11] Tables
	[Chapter 11] 11.2 Table Tags
	[Chapter 11] 11.3 New HTML 4.0 Table Tags
	[Chapter 11] 11.4 Beyond Ordinary Tables
	[Chapter 12] Frames
	[Chapter 12] 12.2 Frame Tags
	[Chapter 12] 12.3 Frame Layout
	[Chapter 12] 12.4 Frame Contents
	[Chapter 12] 12.5 The <noframes> Tag
	[Chapter 12] 12.6 Inline Frames
	[Chapter 12] 12.7 Named Frame or Window Targets
	[Chapter 13] Executable Content
	[Chapter 13] 13.2 Embedded Content
	[Chapter 13] 13.3 JavaScript
	[Chapter 13] 13.4 JavaScript Style Sheets
	[Chapter 14] Dynamic Documents
	[Chapter 14] 14.2 Client-Pull Documents
	[Chapter 14] 14.3 Server -Push Documents
	[Chapter 15] Tips, Tricks, and Hacks
	[Chapter 15] 15.2 Trivial or Abusive?
	[Chapter 15] 15.3 Custom Bullets
	[Chapter 15] 15.4 Tricks with Tables
	[Chapter 15] 15.5 Transparent Images
	[Chapter 15] 15.6 Tricks with Windows and Frames
	[Appendix A] HTML Grammar
	[Appendix A] A.2 The Grammar
	[Appendix B] HTML Tag Quick Reference
	[Appendix B] B.2 HTML Quick Reference
	[Appendix C] Cascading Style Sheet Properties Quick Reference
	[Appendix D] The HTML 4.0 DTD
	[Appendix E] Character Entities
	[Appendix F] Color Names and Values
	[Appendix F] F.2 Color Names
	[Appendix F] F.3 The Standard Color Map

