
 1-1

© KIDware (206) 721-2556

Visual Basic and Databases

1. Introducing Visual Basic and Databases

Preview

 In this first chapter, we will do a quick overview of what the course entails. We
will discuss what you need to complete the course. We’ll take a brief look at
what databases are, where they are used, and how Visual Basic is used with
databases. And, we’ll review the Visual Basic development environment and
the steps followed to build an application in Visual Basic.

 Visual Basic and Databases

© KIDware (206) 721-2556

1-2

Course Objectives

 Understand the benefits of using Microsoft Visual Basic to build a ‘front-end’
interface as a database programming tool

 Learn database structure, terminology, and proper database design

 Learn how to connect to a database using the Visual Basic DAO (data access
object) control

 Use the ADO (ActiveX data object) data control and data environment to
connect to a database (Visual Basic 6 only)

 Learn the use of Visual Basic data bound controls

 Learn to make database queries using SQL (structured query language)

 Understand proper database search techniques

 Learn how to use the Visual Basic Data Manager to create a database

 Learn database management techniques

 Learn to create and produce database reports

 Learn how to distribute a Visual Basic database application

 Understand connection to remote databases

 Introduce multiple-user and database security concepts

 Introducing Visual Basic and Databases 1-3

© KIDware (206) 721-2556

Course Requirements

 An obvious requirement is a Windows-based computer with Windows 95,
Windows 98, or Windows NT installed, as well as Visual Basic. The student
should be familiar with the basics of using the Windows operating system.

 Visual Basic and Databases requires some edition of Visual Basic 5 or

Visual Basic 6. There are two controls used by Visual Basic to interact with

databases: the DAO (data access object) control and the ADO (ActiveX data
object) control. Both controls will be discussed in this course. You should be
aware, however, that the ADO control is available only with Visual Basic 6

 Most examples presented in the course notes are done using the Professional
Edition of Visual Basic 6. Hence, if you are using Visual Basic 5 or another
edition of Visual Basic 6, some of your screens may differ from the ones seen
in the notes.

 No knowledge of databases or how to work with databases is presumed.
Adequate introductory material is presented. Even if you’ve worked with
databases before, it is suggested you read through this introductory
information to become acquainted with the nomenclature used by the author
for databases and their component parts.

 This course does not teach you how to build a Visual Basic application. It is
assumed that the student has a basic understanding of the Visual Basic
development environment and knows the steps involved in building a Visual
Basic application. You should feel quite comfortable with building the example
application at the end of this first chapter. If not, our company, KIDware, offers
several tutorials that teach this information. Please visit our web site or contact
us for more information.

 Visual Basic and Databases

© KIDware (206) 721-2556

1-4

What is a Database?

 A database is a collection of information. This information is stored in a very
structured manner. By exploiting this known structure, we can access and
modify the information quickly and correctly.

 In this information age, databases are everywhere:

 When you go to the library and look up a book on their computer,

you are accessing the library’s book database.

 When you go on-line and purchase some product, you are accessing

the web merchant’s product database.

 Your friendly bank keeps all your financial records on their database.
When you receive your monthly statement, the bank generates a

database report.

 When you call to make a doctor appointment, the receptionist looks

into their database for available times.

 When you go to your car dealer for repairs, the technician calls up

your past work record on the garage database.

 At the grocery store, when the checker scans each product, the price

is found in the store’s database, where inventory control is also
performed.

 When you are watching a baseball game on television and the
announcer tells you that “the batter is hitting .328 against left-handed
pitchers whose mother was born in Kentucky on a Tuesday
morning,” that useless information is pulled from the team’s

database.

 You can surely think of many more places that databases enter your life. The
idea is that they are everywhere. And, each database requires some way for a
user to interact with the information within. Such interaction is performed by a

database management system (DBMS).

 The tasks of a DBMS are really quite simple. In concept, there are only a few
things you can do with a database:

1. View the data
2. Find some data of interest
3. Modify the data
4. Add some data
5. Delete some data

There are many commercial database management systems that perform
these tasks. Programs like Access (a Microsoft product) and Oracle are used

world-wide. In this course, we look at using Visual Basic as a DBMS.

 Introducing Visual Basic and Databases 1-5

© KIDware (206) 721-2556

 Examples where you might use Visual Basic as a DBMS:

 Implementing a new application that requires management of a
database

 Connecting to an existing database

 Interacting with a database via the internet

 In a DBMS, the database may be available locally on your (or the user’s)

computer, available on a LAN (local area network) shared by multiple users, or

only available on a web server via the Internet. In this course, we spend most
of our time looking at local databases, but access with remote databases is
addressed.

 We will look at databases in more depth in the next chapter. You will see that
databases have their own vocabulary. Now, let’s take a look at how Visual
Basic fits into the database management system.

 Visual Basic and Databases

© KIDware (206) 721-2556

1-6

Where Does Visual Basic Fit In?

 For database management, we say our Visual Basic application acts as a

front-end to the database. This means the Visual Basic application provides

the interface between the user and the database. This interface allows the
user to tell the database what he or she needs and allows the database to
respond to the request displaying the requested information in some manner.

 A Visual Basic application cannot directly interact with a database. There are
two intermediate components between the application and the database: the

data control and the database engine:

 The data control is a Visual Basic object that connects the application to the
database via the database engine. It is the conduit between the application
and the engine, passing information back and forth between the two.

 The database engine is the heart of a Visual Basic database management
system. It is the actual software that does the management. Having this
engine saves programmers a lot of work. The database engine native to

Visual Basic is known as the Jet engine. It is the same engine used by
Microsoft Access for database management. Hence, it is primarily used to
work with Access databases, but it can also work with others.

 Introducing Visual Basic and Databases 1-7

© KIDware (206) 721-2556

 As mentioned, the Jet engine will save us lots of work. An observation that
illustrates the power of using Visual Basic as a front-end for database
management systems:

Using Visual Basic, it requires less code to connect to an existing
database, view all information within that database, and modify any
and all information within that database, than it does to add two
numbers together.

That’s right - all the database tasks mentioned above can be done without
writing one line of code! That’s the power of the Jet database engine!

 So, if the Jet engine is so powerful and is the same engine used by Microsoft
Access, why not just use Access as a DBMS instead of writing a custom
Visual Basic application? There are two primary advantages to using Visual
Basic as a DBMS instead of Access:

1. Your users don’t need to have Access installed on their computers

or know how to use Access.

2. By building a custom front-end, you limit what your user can do with

the information within the database. Under normal operation,
Access provides no such limits.

 So, in this course, we will look at how to build Visual Basic applications that
operate as front-ends to databases. Research has shown that over half of all
Visual Basic applications involve working with databases. We will look at how
to make our applications into complete database management systems, being
able to view, search, modify, add, and/or delete database information.

 Before going any further, let’s review the steps in building a Visual Basic
application and then build a simple application for practice.

 Visual Basic and Databases

© KIDware (206) 721-2556

1-8

Control 1

Control 3

Control 2

Form 2 (.FRM)

Control 1

Control 3

Control 2

Form 3 (.FRM) Module 1 (.BAS)

Building a Visual Basic Application

 In the remainder of this chapter, we will provide an overview of a Visual Basic
application and how the Visual Basic development environment is used to
develop an application. This should provide you with some idea of what
knowledge you need to possess to proceed in this course and introduce the
terminology used by the author to describe a Visual Basic application.

Structure of a Visual Basic Application

Project (.VBP)

Application (Project - saved as a file with a .VBP extension) is made up of:

 Forms - Windows that you create for user interface (saved as a file with a
.FRM extension).

 Controls - Graphical features drawn on forms to allow user interaction (text
boxes, labels, scroll bars, command buttons, etc.) (Forms and Controls are

also called objects.)

 Properties - Every characteristic of a form or control is specified by a
property. Example properties include names, captions, size, color, position,
and contents. Visual Basic applies default properties. You can change
properties at design time or run time.

 Methods - Built-in procedure that can be invoked to impart some action to a
particular object.

 Event Procedures - Code related to some object. This is the code that is
executed when a certain event occurs.

 General Procedures - Code not related to objects. This code must be
invoked by the application.

 Modules - Collection of general procedures, variable declarations, and
constant definitions used by application (saved as a file with a .BAS
extension).

Control 1

Control 3

Control 2

Form 1 (.FRM)

 Introducing Visual Basic and Databases 1-9

© KIDware (206) 721-2556

Steps in Developing Application

 There are three primary steps involved in building a Visual Basic application:

1. Draw the user interface

2. Assign properties to controls

3. Write code for event procedures. Develop any needed general procedures.

We’ll look at each step.

Drawing the User Interface and Setting Properties

 Visual Basic operates in three modes.

 Design mode - used to build application

 Run mode - used to run the application

 Break mode - application halted and debugger is available

We focus here on the design mode.

 Six windows should appear when you start Visual Basic. If any of these
windows do not appear, they may be accessed using the main window menu

View item.

 The Main Window consists of the title bar, menu bar, and toolbar.
The title bar indicates the project name, the current Visual Basic
operating mode, and the current form. The menu bar has drop-
down menus from which you control the operation of the Visual
Basic environment. The toolbar has buttons that provide shortcuts
to some of the menu options (ToolTips indicate their function). The
main window also shows the location of the current form relative to
the upper left corner of the screen (measured in twips) and the width
and length of the current form.

 Visual Basic and Databases

© KIDware (206) 721-2556

1-10

 The Form Window is central to developing Visual Basic
applications. It is where you draw your application.

 The Toolbox is the selection menu for controls (objects) used in
your application.

Pointer

Label

Frame

Check Box

Combo Box

Horizontal Scroll Bar

Timer

Directory List Box

Shapes

Image Box

Object Linking Embedding

Picture Box

Text Box

Command Button

Option Button

List Box

Vertical Scroll Bar

Drive List Box

File List Control

Line Control

DAO Data Control

 Introducing Visual Basic and Databases 1-11

© KIDware (206) 721-2556

 The Properties Window is used to establish initial property values
for objects. The drop-down box at the top of the window lists all

objects in the current form. Two views are available: Alphabetic

and Categorized. Under this box are the available properties for the
currently selected object.

 The Form Layout Window shows where (upon program execution)
your form will be displayed relative to your monitor’s screen:

 Visual Basic and Databases

© KIDware (206) 721-2556

1-12

 The Project Explorer Window displays a list of all forms and
modules making up your application. You can also obtain a view of

the Form or Code windows (window containing the actual Basic
coding) from the Project Explorer window.

 As mentioned, the user interface is ‘drawn’ in the form window. There are two
ways to place controls on a form:

1. Double-click the tool in the toolbox and it is created with a default size

on the form. You can then move it or resize it.

2. Click the tool in the toolbox, and then move the mouse pointer to the

form window. The cursor changes to a crosshair. Place the crosshair
at the upper left corner of where you want the control to be, press the
left mouse button and hold it down while dragging the cursor toward the
lower right corner. When you release the mouse button, the control is
drawn. This approach must be used to place controls in a frame or
picture box control.

 To move a control you have drawn, click the object in the form window and
drag it to the new location. Release the mouse button.

 To resize a control, click the object so that it is select and sizing handles
appear. Use these handles to resize the object.

 Introducing Visual Basic and Databases 1-13

© KIDware (206) 721-2556

Setting Properties of Controls at Design Time

 Each form and control has properties assigned to it by default when you start
a new project. There are two ways to display the properties of an object. The
first way is to click on the object (form or control) in the form window. Then,
click on the Properties Window or the Properties Window button in the tool bar.
The second way is to first click on the Properties Window. Then, select the

object from the Object box in the Properties Window. Shown is the Properties
Window for a new application:

The drop-down box at the top of the

Properties Window is the Object box. It
displays the name of each object in the
application as well as its type. This display

shows the Form object. The Properties
list is directly below this box. In this list,
you can scroll through the list of properties
for the selected object. You may select a
property by clicking on it. Properties can
be changed by typing a new value or
choosing from a list of predefined settings
(available as a drop down list). Properties

can be viewed in two ways: Alphabetic

and Categorized.

A very important property for each object is

its name. The name is used by Visual
Basic to refer to a particular object in code.

 A convention has been established for naming Visual Basic objects. This
convention is to use a three-letter prefix (depending on the object) followed by
a name you assign. A few of the prefixes are (we’ll see more as we progress
in the course):

Object Prefix Example
Form frm frmWatch
Command Button cmd, btn cmdExit, btnStart
Label lbl lblStart, lblEnd
Text Box txt txtTime, txtName
Menu mnu mnuExit, mnuSave
Check box chk chkChoice
Data control dat datExample

 Visual Basic and Databases

© KIDware (206) 721-2556

1-14

 Object names can be up to 40 characters long, must start with a letter, must
contain only letters, numbers, and the underscore (_) character. Names are
used in setting properties at run time and also in establishing procedure names
for object events.

Setting Properties at Run Time

 In addition to setting control properties in design mode, you can set or modify
properties while your application is running (run mode). To do this, you must
write some code. The code format is:

ObjectName.Property = NewValue

Such a format is referred to as dot notation. For example, to change the

BackColor property of a form name frmStart, we'd type:

frmStart.BackColor = vbBlue

 Using the three-letter prefix when naming an object and using an appropriate
name makes reading such code easier and more meaningful.

How Names are Used in Object Events

 The names you assign to objects are used by Visual Basic to set up a
framework of event-driven procedures for you to add code to. The format for
each of these subroutines (all object event procedures in Visual Basic are
subroutines) is:

Sub ObjectName_Event (Optional Arguments)

 .

 .

End Sub

Visual Basic provides the Sub line with its arguments (if any) and the End Sub
statement. You provide any needed code.

 Using the three-letter prefix when naming an object and using a meaningful
name makes finding appropriate event procedures a simpler task.

 Introducing Visual Basic and Databases 1-15

© KIDware (206) 721-2556

Writing Code

 The last step in building a Visual Basic application is to write code using the

BASIC language. This is the most time consuming task in any Visual Basic
application, not just ones involving databases. As objects are added to the
form, Visual Basic automatically builds a framework of all event procedures.
We simply add code to the event procedures we want our application to
respond to. And, if needed, we write general procedures.

 Code is placed in the code window. At the top of the code window are two

boxes, the object (or control) list and the procedure list. Select an object
and the corresponding event procedure. A blank procedure will appear in the
window where you write BASIC code.

Review of Variables

 Variables are used by Visual Basic to hold information needed by your
application. Rules used in naming variables:

 No more than 40 characters

 They may include letters, numbers, and underscore (_)

 The first character must be a letter

 You cannot use a reserved word (word needed by Visual Basic)

Visual Basic Data Types

 Boolean (True or False)

 Integer (Whole numbers)

 Long (Large whole numbers)

 Single (Floating point numbers)

 Double (Large floating point numbers)

 Currency

 Date

 Object (yes, objects can be variables!)

 String (Used for many control properties)

 Variant (A chameleon, becomes what it needs to be)

 Visual Basic and Databases

© KIDware (206) 721-2556

1-16

Variable Declaration

 There are three ways for a variable to be typed (declared):

1. Default (Variant type)
2. Implicit (old technology)
3. Explicit

 There are many advantages to explicitly typing variables. Primarily, we insure
all computations are properly done, mistyped variable names are easily
spotted, and Visual Basic will take care of insuring consistency in upper and
lower case letters used in variable names. Because of these advantages, and
because it is good programming practice, we will explicitly type all variables.

 To explicitly type a variable, you must first determine its scope. There are
four levels of scope:

 Procedure level

 Procedure level, static

 Form and module level

 Global level

 Within a procedure, variables are declared using the Dim statement:

Dim MyInt As Integer

Dim MyDouble As Double

Dim MyString As String, YourString As String

Procedure level variables declared in this manner do not retain their value
once a procedure terminates.

 To make a procedure level variable retain its value upon exiting the procedure,

replace the Dim keyword with Static:

Static MyInt As Integer

Static MyDouble As Double

 Form (module) level variables retain their value and are available to all
procedures within that form (module). Form (module) level variables are

declared in the declarations part of the general object in the form's (module's)

code window. The Dim keyword is used:

Dim MyInt As Integer

Dim MyDate As Date

 Introducing Visual Basic and Databases 1-17

© KIDware (206) 721-2556

 Global level variables retain their value and are available to all procedures

within an application. Module level variables are declared in the declarations

part of the general object of a module's code window. (It is advisable to keep

all global variables in one module.) Use the Global keyword:

Global MyInt As Integer

Global MyDate As Date

 What happens if you declare a variable with the same name in two or more

places? More local variables shadow (are accessed in preference to) less
local variables. For example, if a variable MyInt is defined as Global in a
module and declared local in a routine MyRoutine, while in MyRoutine, the
local value of MyInt is accessed. Outside MyRoutine, the global value of MyInt
is accessed.

 Example of Variable Scope:

 Module1
Global X As Integer

Form1 Form2
Dim Y As Integer Dim Z As Single

Sub Routine1() Sub Routine3()
 Dim A As Double Dim C As String
 . .
 . .
End Sub End Sub

Sub Routine2()
 Static B As Double
 .
 .
End Sub

Procedure Routine1 has access to X, Y, and A (loses value upon
termination)
Procedure Routine2 has access to X, Y, and B (retains value)
Procedure Routine3 has access to X, Z, and C (loses value)

 Visual Basic and Databases

© KIDware (206) 721-2556

1-18

Example 1

Mailing List Application

In this example, we will build a Visual Basic application that could function as a
database interface. The application allows the entry of information (names and
addresses) to build a mailing list. An added feature is a timer that keeps track of
the time spent entering addresses. After each entry, rather than write the
information to a database (as we would normally do), the input information is
simply displayed in a Visual Basic message box. We present this example to
illustrate the steps in building an application. If you feel comfortable building this
application and understanding the corresponding code, you probably possess the
Visual Basic skills needed to proceed with this course.

1. Start a new project. Place two frames on the form (one for entry of address

information and one for the timing function). In the first frame, place five
labels, five text boxes, and two command buttons. In the second frame, place
a label control, a timer control and three command buttons. Remember you
need to ‘draw’ controls into frames. Resize and position controls so your form
resembles this:

2. Set properties for the form and controls (these are just suggestions – make

any changes you might like):

Form1:
 Name frmMailingList
 BorderStyle 1-Fixed Single
 Caption Mailing List Application

 Introducing Visual Basic and Databases 1-19

© KIDware (206) 721-2556

Frame1:
 Name fraMail
 Caption Address Information
 Enabled False

Label1:
 Caption Name

Label2:
 Caption Address

Label3:
 Caption City

Label4:
 Caption State

Label5:
 Caption Zip

Text1:
 Name txtInput
 Index 0 (a control array)
 TabIndex 1
 Text [blank it out]

Text2:
 Name txtInput
 Index 1
 TabIndex 2
 Text [blank it out]

Text3:
 Name txtInput
 Index 2
 TabIndex 3
 Text [blank it out]

Text4:
 Name txtInput
 Index 3
 TabIndex 4
 Text [blank it out]

 Visual Basic and Databases

© KIDware (206) 721-2556

1-20

Text5:
 Name txtInput
 Index 4
 TabIndex 5
 Text [blank it out]

Command1:
 Name cmdAccept
 Caption &Accept
 TabIndex 6

Command2:
 Name cmdClear
 Caption &Clear

Frame1:
 Name fraTime
 Caption Elapsed Time

Label6:
 Name lblElapsedTime
 Alignment 2-Center
 Backcolor White
 BorderStyle 1-Fixed Single
 Caption 00:00:00
 FontBold True
 FontSize 14

Timer1:
 Name timSeconds
 Enabled False
 Interval 1000

Command3:
 Name cmdStart
 Caption &Start

Command4:
 Name cmdPause
 Caption &Pause
 Enabled False

 Introducing Visual Basic and Databases 1-21

© KIDware (206) 721-2556

Command5:
 Name cmdExit
 Caption E&xit

When done, the form should appear something like this:

3. Put these lines in the General Declarations area of the code window:

Option Explicit

Dim ElapsedTime As Variant

Dim LastNow As Variant

4. Put these lines in the Form_Load event procedure:

Private Sub Form_Load()

ElapsedTime = 0

End Sub

5. Put this code in the txtInput_KeyPress event procedure:

Private Sub txtInput_KeyPress(Index As Integer, KeyAscii

As Integer)

'Check for return key

If KeyAscii = vbKeyReturn Then

 If Index = 4 Then

 cmdAccept.SetFocus

 Else

 txtInput(Index + 1).SetFocus

 End If

End If

 Visual Basic and Databases

© KIDware (206) 721-2556

1-22

'In Zip text box, make sure only numbers or backspace

pressed

If Index = 4 Then

 If (KeyAscii >= Asc("0") And KeyAscii <= Asc("9")) Or

KeyAscii = vbKeyBack Then

 Exit Sub

 Else

 KeyAscii = 0

 End If

End If

End Sub

Note the line beginning with ‘If (KeyAscii >= Asc(“0”) And ...’ is so

long that the word processor wraps the line around at the margin. Type this as
one long line, not two separate lines or review the use of the Visual Basic line
continuation character (_). Be aware this happens quite often in these notes
when actual code is being presented.

6. Put this code in the cmdAccept_Click event procedure:

Private Sub cmdAccept_Click()

Dim S As String, I As Integer

'Accept button clicked - form label and output in message

box

'Make sure each text box has entry

For I = 0 To 4

 If txtInput(I).Text = "" Then

 MsgBox "Each box must have an entry!", vbInformation +

vbOKOnly, "Error"

 Exit Sub

 End If

Next I

S = txtInput(0).Text + vbCrLf + txtInput(1).Text + vbCrLf

S = S + txtInput(2).Text + ", " + txtInput(3).Text + " " +

txtInput(4).Text

MsgBox S, vbOKOnly, "Mailing Label"

Call cmdClear_Click

End Sub

 Introducing Visual Basic and Databases 1-23

© KIDware (206) 721-2556

7. Put this code in the cmdClear_Click event procedure:

Private Sub cmdClear_Click()

Dim I As Integer

'Clear all text boxes

For I = 0 To 4

 txtInput(I).Text = ""

Next I

txtInput(0).SetFocus

End Sub

8. Put this code in the cmdStart_Click event procedure:

Private Sub cmdStart_Click()

'Start button clicked

'Disable start and exit buttons

'Enabled pause button

cmdStart.Enabled = False

cmdExit.Enabled = False

cmdPause.Enabled = True

'Establish start time and start timer control

LastNow = Now

timSeconds.Enabled = True

'Enable mailing list frame

fraMail.Enabled = True

txtInput(0).SetFocus

End Sub

9. Put this code in the cmdPause_Click event procedure:

Private Sub cmdPause_Click()

'Pause button clicked

'Disable pause button

'Enabled start and exit buttons

cmdPause.Enabled = False

cmdStart.Enabled = True

cmdExit.Enabled = True

'Stop timer

timSeconds.Enabled = False

'Disable editing frame

fraMail.Enabled = False

End Sub

 Visual Basic and Databases

© KIDware (206) 721-2556

1-24

10. Put this code in the cmdExit_Click event procedure:

Private Sub cmdExit_Click()

'Exit button clicked

End

End Sub

11. Put this code in the timSeconds_Timer event procedure:

Private Sub timSeconds_Timer()

'Increase elapsed time and display

ElapsedTime = ElapsedTime + Now - LastNow

lblElapsedTime.Caption = Format(ElapsedTime, "hh:mm:ss")

LastNow = Now

End Sub

12. Save the application. Run the application. Make sure it functions as designed.

Note that you cannot enter mailing list information unless the timer is running.

 Introducing Visual Basic and Databases 1-25

© KIDware (206) 721-2556

Summary

 In this chapter, we introduced databases in general terms and how Visual
Basic can be used to develop a front-end application to interact with the
database. And, we reviewed the steps involved in building a Visual Basic
application.

 In the second chapter, we take a closer look at databases. We look at their
structure, their terminology, and how they are constructed. You may be asking
- when do we get to do some programming? The answer - in a couple more
chapters. We want to make sure we have a firm foundation in place before
diving into actual coding.

 Visual Basic and Databases

© KIDware (206) 721-2556

1-26

This page intentionally not left blank.

