
Visual Basic 6 Database How-To

Table of Contents:

Introduction●

Chapter 1: - Accessing a Database with Bound Controls●

Chapter 2: - Accessing a Database with Data Access Objects●

Chapter 3: - Creating Queries with SQL●

Chapter 4: - Designing and Implementing a Database●

Chapter 5: - Microsoft Access Database●

Chapter 6: - Connecting to an ODBC Server●

Chapter 7: - SQL Server Databases and Remote Data Objects●

Chapter 8: - Using ActiveX Data Objects●

Chapter 9: - Microsoft Data Report●

Chapter 10: - Security and Multiuser Access●

Chapter 11: - The Windows Registry and State Information●

Chapter 12: - ActiveX and Automation●

Chapter 13: - Advanced Database Techniques●

Appendix A: - SQL Reference●

Appendix B: - Data Access Object Reference●

Appendix C: - Remote Data Object Reference●

Appendix D: - ActiveX Data Objects Reference●

Appendix E: - A Short Introduction to Visual Basic Objects●

http://adforce.imgis.com/?adlink|2.0|34|9019|1|1|SITE=ic9;loc=300;

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To
About This Book●

What You Need to Use This Book●

Introduction

About This Book
Since version 3, Visual Basic has been the tool of choice for database programmers everywhere. First
came DAO with version 3, RDO with version 4, and then the ability to build robust ActiveX components
in version 5. With each successive version, Microsoft adds more functionality to make database
programming easier for you.

Visual Basic's powerful database feature set has continued to grow with version 6. New tools and
technologies like ADO, OLE-DB, and the Microsoft Data Reporter vie for your attention. What does it
all mean, what can it do for you, and most importantly, how do you quickly get up to speed?

That's why this book was created. Visual Basic 6 Database How-To gives an in-depth view of each major
method of data access, with real-life examples with which to work. Like all books in the successful
How-To series, Visual Basic 6 Database How-To emphasizes a step-by-step problem-solving approach
to Visual Basic programming. Each How-To follows a consistent format that guides you through the
issues and techniques involved in solving a specific problem. Each section contains the steps to solve a
problem, as well as a discussion of how and why the solution works. In most cases, you can simply copy
the provided code or objects into your application and be up and running immediately. All the code
described in the book is available on the accompanying CD-ROM.

The book's concepts and examples are useful to Visual Basic programmers of all skill levels. Each
How-To is graded by complexity level, with information on additional uses and enhancements to fit your
needs exactly. Additionally, each chapter contains an introduction that summarizes each How-To and
covers the chapter's techniques and topics so that you can zero in on just the solution you need without
having to go through hundreds of pages to find it.

Visual Basic 6 Database How-To -- Introduction

http://www.pbs.mcp.com/ebooks/1571691529/fm/fm.htm (1 of 4) [9/22/1999 1:56:43 AM]

What You Need to Use This Book
You need Visual Basic 6, Professional or Enterprise Edition. This book was written using Visual Basic 6
Enterprise Edition, but most sections will work with the Professional Edition. Many of the sections will
also work with Visual Basic 5, but specific references to menu selections and windows may have
changed between versions. You may have to improvise the How-To's to make the samples work with
Visual Basic 5.

Most chapters avoid using controls or tools not included with Visual Basic 6, Professional or Enterprise
Edition. However, much of Visual Basic's strength is its extensibility using third-party tools and controls.
You are encouraged to explore third-party offerings; they can often cut significant time from the
development cycle.

About the Authors
Eric Winemiller is a principal software developer for Visteon Corporation in Maitland, Florida, where
he builds BackOffice- and Visual Basic-based medical applications. The project he helped develop for
Orlando Health Care Group and Visteon Corporation placed 10th in Info World's 1995 Top 100 client
server sites. Eric has previously published in Visual Basic Developer, SQL Server Professional, and the
Visual Basic 5 SuperBible. He has a bachelor's degree in computer science from the University of Central
Florida. His family considers the Commodore 64 they gave him for his 13th birthday the best 200 bucks
they ever spent. In his spare time he can be found trying to be a digital artist, puttering around his wood
shop, or renovating his old house. He can be reached at winemill@visteon.com.

Jason T. Roff currently works for Isogon Corporation, a company that provides asset management
solutions to Fortune 500 companies. Here he develops C/C++ client/server applications that are designed
to run on heterogeneous networks. Jason holds a bachelor's degree from the University at Albany, New
York, in computer science with applied mathematics. Jason can be reached at jroff@earthlink.net.

Bill Heyman specializes in custom software development for Windows 98 and Windows NT in Visual
Basic, C++, and Java. As founder and president of Heyman Software, Inc., Bill uses his skills and
experience to engineer innovative software for his clients. He can be reached at
heyman@heymansoftware.com and http://www. heymansoftware.com/~heyman/.

Ryan Groom has been a computer addict since getting a Commodore 64 for Christmas back in 1985.
After graduation he started work for a local school board where he cut his teeth on various computer
topics from administering OS/2 and Novell servers to creating attendance management software. In
1996, he co-founded Gulliver Software in Saint John, New Brunswick, Canada. Gulliver Software
develops Internet-based software, including its retail package Gulliver's Guardian, an Internet filtering
suite for families. Currently Ryan (and Gulliver Software) is working with National Electronic
Technologies on a releasing a public Internet access terminal called VideoNet. Ryan can be reached at
ryan@gulliver.nb.ca, or you can visit him at http://www.gulliver.nb.ca or http://www.natel.ca.

Visual Basic 6 Database How-To -- Introduction

http://www.pbs.mcp.com/ebooks/1571691529/fm/fm.htm (2 of 4) [9/22/1999 1:56:43 AM]

Dedication
To my parents, who got me started down the path.

Eric Winemiller

To my sister Tammi, who has put up with all my beatings, has kept all my secrets, and can drink me
under the table. I love you.

Jason Roff

To my parents, for giving me an Apple II+ and the start to a wonderful career.

Bill Heyman

For Kristy. Our new life has just begun.

Ryan Groom

Acknowledgements
I want to thank my wife Judy for again putting up with the grumpy foul beast who possesses me when I
don't get enough sleep. I would also like to thank the Clinical and Clinical beta teams at Visteon who had
to put up with that same beast.

Eric Winemiller

I would like to thank everybody at Macmillan who was gracious enough to give me another opportunity
to do what I love, write. I would especially like to thank Brian Gill, Ron Gallagher, and Chris Nelson. I
would also like to thank my other half, Kimberly, for putting up with many nights of not seeing me so
that I could work to finish projects such as this book. I love you so very much, and I cannot wait to spend
the rest of my life with you.

Jason Roff

I want to extend my thanks to the kind folks at Macmillan Computer Publishing for assisting me in
contributing to this book. In addition, I would like to acknowledge the continuing love and support that
my wife, Jodi, and toddler daughter, Cassie, give to me. Certainly I would not be where I am today
without them.

Bill Heyman

To the staff at Macmillan Computer Publishing for providing the opportunity and patience for allowing
me write about one of my favorite topics. It is very fulfilling to not only to be involved in such an
exciting industry but also to have an opportunity to create documentation that may let others understand a
topic I so enjoy. The gang at Gulliver Software and National Electronics for providing a fun and
innovative atmosphere in which to work. Rory, a brother in arms, "You know what I mean, man!" Mom,
Dad, Michael, and Peter, for your eternal support for every step I take. Steven and Dawn for providing a

Visual Basic 6 Database How-To -- Introduction

http://www.pbs.mcp.com/ebooks/1571691529/fm/fm.htm (3 of 4) [9/22/1999 1:56:43 AM]

great get away from the woes of computerdom. Kristy, only with your support, patience, and
understanding can any project be completed.

Ryan Groom

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value your opinion
and want to know what we're doing right, what we could do better, what areas you'd like to see us
publish in, and any other words of wisdom you're willing to pass our way.

As the Executive Editor for the Programming team at Macmillan Computer Publishing, I welcome your
comments. You can fax, email, or write me directly to let me know what you did or didn't like about this
book--as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and that due
to the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and phone or
fax number. I will carefully review your comments and share them with the authors and editors who
worked on the book.

Fax: 317-817-7070

Email: prog@mcp.com

Mail: Executive Editor Programming Macmillan Computer Publishing 201 West 103rd Street
Indianapolis, IN 46290 USA

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Introduction

http://www.pbs.mcp.com/ebooks/1571691529/fm/fm.htm (4 of 4) [9/22/1999 1:56:43 AM]

mailto:prog@mcp.com

Visual Basic 6 Database How-To

- 1 -
Accessing a Database with Bound Controls

How do I...

1.1 Browse a recordset using bound controls?❍

1.2 Validate data entered into bound controls?❍

1.3 Allow users to undo changes they've made in bound controls?❍

1.4 Add and delete records using bound controls?❍

1.5 Create and use bound lists?❍

1.6 Display many detail records for a single master record?❍

1.7 Change data in data-bound grid cells from code?❍

1.8 Gracefully handle database errors?❍

●

The Microsoft Jet database engine, supplied with Visual Basic, gives you the ability to access many types of
databases--Microsoft Access databases; other PC-based databases such as dBASE, FoxPro, Paradox, and Btrieve;
and any relational database that supports the open database connectivity (ODBC) standard. Visual Basic provides
two basic techniques for working with the Jet database engine: the data control and the data access objects
(DAO). The data control requires less code, but data access objects are much more flexible. This chapter shows
you how to use the data control to perform common database operations. Chapter 2, "Accessing a Database with
Data Access Objects," describes the use of data access objects.

VISUAL BASIC TERMINOLOGY PRIMER

If you're new to database programming, many Visual Basic terms might be new to you. Visual Basic
works with all databases through a recordset consisting of all the records in a table or all the records
satisfying a particular Structured Query Language (SQL) SELECT statement. A SELECT statement
asks the database to retrieve specified database fields from one or more database tables in which
record fields meet certain criteria. SQL itself is discussed in Chapter 3, "Creating Queries with
SQL."

The programmer's interaction with the user is through visual controls placed on the form for data

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (1 of 37) [9/22/1999 1:56:52 AM]

entry, command buttons, menus, labels, list boxes, and so on. The most common controls are text
boxes for entering data, command buttons for getting the program to do useful work, menus, and
labels to describe the other controls. List boxes and combo boxes allow the program to provide the
user with multiple selections for text entry.

Most visual controls, including text, list, and combo boxes, can be bound to a data source for
automatic display of data or have a special data-bound version. Binding is the process of connecting
the data in a visual control to a field in a recordset. The most common binding method is the data
control. The data control has a visual interface to support data movement through the records and a
recordset object to manage the interface to the database engine. The data control component also
supports several methods and properties for programmatic or design-time control. A component is
simply a "piece part" used to build a Visual Basic application. A method is equivalent to a function
call to the component to get the component to do useful work. A property is a data element of the
component that helps control its behavior. For example, the data control has a DatabaseName
property to tell it where the database can be found and a Move method to move the visual control
around on the form. In addition, the data control exposes all the methods and properties of its
contained recordset object.

All examples in this chapter use existing Microsoft Access database files delivered with Visual Basic (later
chapters demonstrate how to create a database with Visual Basic). The techniques, however, apply to all the
databases that Visual Basic can access through the Jet engine. In addition, the Enterprise Edition remote data
control uses very similar techniques for direct use with ODBC databases. The remote data control bypasses the
Jet engine and usually delivers faster performance than access through the Jet engine.

1.1 Browse a Recordset Using Bound Controls

One of the most fundamental operations in database work is the user's ability to browse through records in an
existing database and modify data. In this How-To, you'll use the data control, bind its fields to some text boxes,
and write one line of executable code to browse a database.

1.2 Validate Data Entered into Bound Controls

People make data entry errors, and an industrial-strength application anticipates and traps those errors before the
data entry errors corrupt the integrity of the database. This How-To shows how to trap and respond to entry errors
when you're using the data control and bound visual controls.

1.3 Allow People to Undo Changes They've Made in Bound Controls

Sometimes people catch their own mistakes. In this How-To, you'll learn how to enable them to undo those
mistakes when the application uses the data control.

1.4 Add and Delete Records Using Bound Controls

A database is fairly useless without some means of adding and deleting records. In this How-To, you'll see how
to add and delete records with bound controls.

1.5 Create and Use Bound Lists

One way to reduce data entry errors--and make people's lives a bit easier--is to provide people with lists from
which they can choose appropriate values for database fields. Visual Basic 6 provides the DBCombo and DBList

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (2 of 37) [9/22/1999 1:56:52 AM]

controls that make this easy to do. In this How-To, you'll use the DBCombo control to display suggested field
values.

1.6 Display Many Detail Records for a Single Master Record

Frequently, you need to work with related records at the same time in a master-detail relationship. You might
want to show an invoice header and all its detail lines or show all the orders for a particular product. This
How-To shows how the DBGrid control can place multiple detail records on a form for each master record.

1.7 Change Data in Data-Bound Grid Cells from Code

The master-detail grid looks great, but some applications require the capability to expand and edit grid data from
the main form. This How-To walks through a form that edits DBGrid data from the form's code.

1.8 Gracefully Handle Database Errors

Whenever you're working with disk files, unanticipated errors can occur. Your Visual Basic database program
should handle errors gracefully. This How-To shows how.

FINDING THE SAMPLES

All the How-To's in this book are on the accompanying CD-ROM. After you install the source code,
you will find a directory for each chapter; and within each chapter directory there is a directory for
each How-To. The steps of each How-To start with an opportunity to preview the completed
How-To from your installation directory. If you decide to work through a How-To in its entirety, we
assume that you are working in a separate work area on your computer.

1.1 How do I...

BROWSE A RECORDSET USING BOUND CONTROLS?

Problem

I need to see the records in a database, but I don't want to write a lot of code. How can I do this with Visual
Basic?

Technique

The Visual Basic data control object, in conjunction with data-bound controls, allows you to browse records in a
supported database without writing a single line of code.

To use the data control, place it on your form and set two properties: DatabaseName, which specifies the
database to which it will be linked, and RecordSource, which designates the source of data within the
database. Add a text box to your form for every database field you want to access from the RecordSource,
and bind each text box to the data control object and RecordSource field.

COMPATIBLE DATABASES

Databases that are compliant with the Visual Basic data control--and with Visual Basic data access
objects, discussed in Chapter 2--include Microsoft Access, dBASE, FoxPro, Paradox, Btrieve, and

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (3 of 37) [9/22/1999 1:56:52 AM]

any other database products that support the ODBC standard. Most relational database products for
desktop systems and multiuser systems support ODBC. The examples throughout this book use
Microsoft Access databases, except for those in Chapters 6, "Connecting to an ODBC Server," and
7, "SQL Server Databases and Remote Data Objects," which relate specifically to other database
products. Virtually all the examples in the book (except for those in Chapters 6 and 7) can be applied
to any of the database products.

When you work with Microsoft Access databases, DatabaseName is the name of a Microsoft Access database
file. When you work with other database products, what constitutes "the database" depends on the type of
database--for dBASE, Paradox, and FoxPro databases, for example, DatabaseName is the name of the
directory in which data files are stored. RecordSource can also be a table or a SQL SELECT statement.
Microsoft Access also allows you to specify the name of a query stored within the database as the
RecordSource.

The data control not only provides the link between your form and the database, but it also provides tools for
navigating through the database. Figure 1.1 shows a data control. The Next Record and Previous Record buttons
move you through the database one record at a time. The First Record and Last Record buttons move you quickly
to the beginning or end of the database.

Figure 1.1 The data control.

Steps

To preview this How-To, open the project BrowseBound.VBP in the Chapter01\HowTo01 directory. Change
the DatabaseName property of the data control datEmployees to point to the copy of NWind.MDB
installed on your system (probably in the directory where VB6.EXE is installed). Then run the project. The form
shown in Figure 1.2 appears. Use the buttons on the data control to view records in the Titles table of
NWind.MDB.

Figure 1.2 The Bound Browser form.

1. Create a new project in your work area called BrowseBound.VBP. Use Form1 to create the objects and
properties listed in Table 1.1, and save the form as BrowseBound.FRM. Substitute the path to your copy of
NWIND.MDB for the DatabaseName property of datEmployees.

Table 1.1 Objects and properties for the Bound Browser form.

OBJECT Property Setting

Form Name Form1

Caption "Bound Browser"

Data Name datEmployees

Caption "Employees"

DatabaseName "D:\Program Files\Microsoft Visual
Studio\VB6\NWIND.MDB"

RecordSource "Employees"

TextBox Name txtEmpLastName

DataField "LastName"

DataSource "datEmployees"

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (4 of 37) [9/22/1999 1:56:53 AM]

javascript:popUp('01fig01.gif')
javascript:popUp('01fig02.gif')

TextBox Name txtEmpFirstName

DataField "FirstName"

DataSource "datEmployees"

TextBox Name txtBirthDate

DataField "BirthDate"

DataSource "datEmployees"

TextBox Name txtEmployeeId

DataField "EmployeeID"

DataSource "datEmployees"

Enabled False

Label Name Label1

Caption "Employee:"

Label Name Label2

Caption "Birth Date:"

Label Name Label3

Caption "Employee ID:"

2. Use the Visual Basic Menu Editor to create the menu shown in Table 1.2.

Table 1.2 Menu specifications for the Bound Browser.

CAPTION Name Shortcut Key

&File mnuFile

----E&xit mnuFileExit

3. Enter the following code as the Click event for mnuExit:

Private Sub mnuFileExit_Click()
 Unload Me
End Sub

How It Works

When the application starts, the data control opens the NWind.MDB database, creates a recordset from the Titles
table, and displays values from the first record of the recordset in the form's bound controls. A recordset is a
Visual Basic object used to manipulate the contents of a database. Bound controls are visual interface controls
such as text boxes that people can see on the screen but that are also linked, or bound, to fields managed by a data
control's recordset. Recordsets provide methods for moving between records, as well as for adding, updating, and
deleting records. When users click on one of the data control's record navigation buttons, the data control
positions the record pointer to the selected record and updates the bound controls with the values from the new
record.

Under the covers, the data control is working hard. You see a screen form with text boxes. Figure 1.3 shows the
main interactions between bound text boxes, the data control, and the data control's recordset. Every time the data
control moves to a different record, it checks for changed data between the bound controls and the recordset
fields. If changes are found, the data control moves the data to the fields and performs an automatic update to the

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (5 of 37) [9/22/1999 1:56:53 AM]

recordset and the underlying database. Finally, the data control retrieves the desired record from the database and
copies the field data to text controls for display. In the remainder of this chapter, you'll explore the data control's
events and methods to build solid applications with very little work.

Figure 1.3 Under the data control's covers.

Comments

This is truly code-free development. The only executable line of code closes the application. However, this is a
very limited application; there's no way to validate entries, add records, or delete records. To perform these
operations, some code is necessary--not a lot of code, but some code nonetheless. The following How-To's show
how to add these functions to this simple beginning.

1.2 How do I...

Validate data entered into bound controls?

Problem

The data control and bound controls provide low-code database access. But I need to verify that entered form
data is valid before I update the database. How can I check entered data when I'm using bound controls?

Technique

Each time you change the current record in a recordset attached to a data control--by moving to a different record,
deleting the current record, or closing the recordset--Visual Basic triggers the data control's Validate event.
You can write an event subroutine to check any changes made to data in bound controls.

The Validate event subroutine receives two arguments:

Action, an integer which describes the event that caused the Validate event.●

Save, a Boolean value that is True if data in any bound control has changed and False if the data hasn't
changed.

●

In your event subroutine, you can check the value of Save. If it is True, you can then check each entry to verify
that it falls within the bounds of what is legal in your application. If any entry is not legal, you can set the
Action argument to the built-in constant dbDataActionCancel, which cancels the event that caused the
Validate event. For example, if the Validate event was triggered by clicking on the data control to move to
a different record, setting Action to dbDataActionCancel cancels the Move event and leaves the data
control positioned on the original record. Your Validate event subroutine should also display a problem
message so that the entry can be corrected.

Steps

Open the project ValidateBound.VBP in the Chapter01\HowTo02 directory to preview the results of this
How-To. Change the DatabaseName property of the data control datEmployees to point to the copy of
NWind.MDB installed on your system (probably in the directory where VB6.EXE is installed). Then run the
project. A form similar to that shown previously in Figure 1.2 appears. Use the buttons on the data control to
view records in the Employees table of NWind.MDB. Select all the text in the Employee and Birth Date boxes
and delete it; then try to move to another record. You'll see an error message like the one shown in Figure 1.4,
informing you that you must enter a last name, first name, and birth date. Choose the File | Exit menu option to
close the project.

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (6 of 37) [9/22/1999 1:56:53 AM]

javascript:popUp('01fig03.gif')

1. Create a new project called ValidateBound.VBP in your work area. Use Form1 to create the objects and
properties listed earlier in Table 1.1, and save the form as ValidateBound.FRM. (Note that this is the same
form used for How-To 1.1.) Substitute the path to your copy of NWind.MDB for the DatabaseName
property of datEmployees. Use the Visual Basic Menu Editor to create the menu shown earlier in Table
1.2.

2. Add the file clsUtility.cls to your project from the Chapter01\HowTo02 directory by selecting
Project | Add File from the main menu or by pressing Ctrl+D on the keyboard. Use the File common dialog
to select the file.

Figure 1.4 The Validate Bound form.

3. Add the following code to the declarations section of Form1. The Utility class is used to tie MsgBox
strings together in a common place.

Private Utility As New clsUtility
Private mblnValidationFailed As Boolean

4. Enter the following code into Form1 as the Validate event for the datEmployees data control.
This code checks to make sure that valid data have been entered into all controls. If there are any invalid
data, the subroutine displays an error message, cancels the Validate event, and sets the form-level
variable mblnValidationFailed to True.

Private Sub datEmployees_Validate(Action As Integer, Save As Integer)
 Dim strMsg As String
 Dim enumMsgResult As VbMsgBoxResult
 If Save = True Or Action = vbDataActionUpdate _
 Or Action = vbDataActionUnload Then
 ` One or more bound controls has changed or the form
 ` is being unloaded, so verify that all fields have
 ` legal entries. If a field has an incorrect value,
 ` append a string explaining the error to strMsg and
 ` set the focus to that field to facilitate correcting
 ` the error. We explain all errors encountered in a
 ` single message box.
 strMsg = ""
 If txtEmpLastName.Text = "" Then
 Utility.AddToMsg strMsg, _
 "You must enter a last name."
 txtEmpLastName.SetFocus
 End If
 If txtEmpFirstName.Text = "" Then
 Utility.AddToMsg strMsg, _
 "You must enter a first name."
 txtEmpFirstName.SetFocus
 End If
 If Not IsDate(txtBirthDate.Text) Then
 Utility.AddToMsg strMsg, _
 "You must enter a birth date."
 txtBirthDate.SetFocus
 Else
 If CDate(txtBirthDate.Text) >= Date Then
 Utility.AddToMsg strMsg, _

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (7 of 37) [9/22/1999 1:56:53 AM]

javascript:popUp('01fig04.gif')

 "Birth date must be in the past."
 txtBirthDate.SetFocus
 End If
 End If
 If strMsg <> "" Then
 ` We have something in the variable strMsg, which
 ` means that an error has occurred. Display the
 ` message. The focus is in the last text box where
 ` an error was found.
 MsgBox strMsg, vbExclamation
 ` Cancel the Validate event
 Action = vbDataActionCancel
 ` Deny form Unload until fields are corrected
 mblnValidationFailed = True
 Else
 mblnValidationFailed = False
 End If
 End If
End Sub

5. Enter the following code into Form1 as the Unload event. If the Validate event has set the
UpdateCancelled flag, this procedure cancels the Unload event.

Private Sub Form_Unload(Cancel As Integer)
 ` Don't allow the unload until the data is validated.
 If mblnValidationFailed Then Cancel = True
End Sub

6. Enter the following code as the Click event for mnuExit:

Private Sub mnuExit_Click()
 Unload Me
End Sub

How It Works

Each time the Validate event is called, the contents of the controls are checked to make sure that they contain
valid data. If they do not, the Validate event is cancelled. This prevents the record from being saved with
invalid data. The validation event procedure makes use of a "helper" utility class to append multiple messages
from each error check to the displayed results. Displaying all validation errors at once is a good design technique
because it reduces frustration for the user.

When the form is unloaded, the contents of bound controls are automatically saved through the data control. And
that means that the Validate event gets called. If a control has invalid data, the Validate event is cancelled,
but that does not in itself cancel the Form Unload event. Therefore, the Validate event sets a form-level flag
variable, mblnValidationFailed, which the Form Unload procedure checks. If
mblnValidationFailed is true, the Form Unload event is cancelled and the application does not
terminate.

Comments

The validating browse form helps control data entry errors, but it is unforgiving without a cancellation option to
undo form changes. After a field has been changed on this form, valid data must be entered before the user can
change records or exit the application. Clearly, there should be a better way--and there is.

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (8 of 37) [9/22/1999 1:56:53 AM]

1.3 How do I...

Allow users to undo changes they've made in bound controls?

Problem

I want my form to have the capability to undo changes made to a record before the record is saved. How can I
accomplish this when I'm using bound controls?

Technique

Your form gains the capability to undo changes to the current record by using the UpdateControls method of
the data control. This method causes Visual Basic to reread the current record from the database file and refresh
the value of each bound control with the respective field value from the database. Simply execute this method
and any bound control changes are overwritten with the original data from the database.

Steps

Open the project UndoBound.VBP to preview this How-To. Change the DatabaseName property of the data
control datEmployees to point to the copy of NWind.MDB installed on your system (probably in the
directory where VB6.EXE is installed). Then run the project. The form shown in Figure 1.5 appears. Use the
buttons on the data control to view records in the Employees table of NWind.MDB. Make a change in a record.
Before you move to another record, select Edit | Undo. You'll see your changes "backed out" of the form.

Figure 1.5 The Undo Bound form.

1. Create a new project called UndoBound.VBP. Use Form1 to create the objects and properties listed
earlier in Table 1.1, and save the form as UndoBound.FRM. (Note that this is the same form used for
How-To's 1.1 and 1.2.) Substitute the path to your copy of NWind.MDB for the DatabaseName property
of datEmployees. Use the Visual Basic menu editor to create the menu shown in Table 1.3.

Table 1.3 Menu specifications for UndoBound.FRM.

CAPTION Name Shortcut Key

&File mnuFile

----E&xit mnuFileExit

&Edit mnuEdit

----&Undo mnuEditUndo Ctrl+Z

2. Add the file clsUtility.cls to your project from the Chapter01\HowTo03 directory by selecting
Project | Add File from the main menu or by pressing Ctrl+D on the keyboard. Use the File common dialog
to select the file.

3. Add the following code to the declarations section of Form1:

Private Utility As New clsUtility
Private mblnValidationFailed As Boolean

4. Enter the following code into Form1 as the Validate event for the datEmployees data control.
(Note the changes from How-To 1.2 highlighted in bold.) This code checks to make sure that valid data
have been entered into all controls. If there are any invalid data, the subroutine displays an error message
and asks for an OK or a Cancel response. An OK response cancels the Validate event and sets the

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (9 of 37) [9/22/1999 1:56:53 AM]

javascript:popUp('01fig05.gif')

form-level variable mblnValidationFailed to True. A Cancel response retrieves the database
values to the bound form controls and backs out the changes.

Private Sub datEmployees_Validate(Action As Integer, Save As Integer)
 Dim strMsg As String
 Dim enumMsgResult As VbMsgBoxResult
 If Save = True Or Action = vbDataActionUpdate _
 Or Action = vbDataActionUnload Then
 ` One or more bound controls has changed or the form
 ` is being unloaded, so verify that all fields have
 ` legal entries. If a field has an incorrect value,
 ` append a string explaining the error to strMsg and
 ` set the focus to that field to facilitate correcting
 ` the error. We explain all errors encountered in a
 ` single message box.
 strMsg = ""
 If txtEmpLastName.Text = "" Then
 Utility.AddToMsg strMsg, _
 "You must enter a last name."
 txtEmpLastName.SetFocus
 End If
 If txtEmpFirstName.Text = "" Then
 Utility.AddToMsg strMsg, _
 "You must enter a first name."
 txtEmpFirstName.SetFocus
 End If
 If Not IsDate(txtBirthDate.Text) Then
 Utility.AddToMsg strMsg, _
 "You must enter a birth date."
 txtBirthDate.SetFocus
 Else
 If CDate(txtBirthDate.Text) >= Date Then
 Utility.AddToMsg strMsg, _
 "Birth date must be in the past."
 txtBirthDate.SetFocus
 End If
 End If
 If strMsg <> "" Then
 ` We have something in the variable strMsg, which
 ` means that an error has occurred. Display the
 ` message. The focus is in the last text box where
 ` an error was found
 enumMsgResult = MsgBox(strMsg, _
 vbExclamation + vbOKCancel +
 vbDefaultButton1)
 If enumMsgResult = vbCancel Then
 ` Restore the data to previous values using the
 ` data control
 datEmployees.UpdateControls
 ` Allow form unload.

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (10 of 37) [9/22/1999 1:56:53 AM]

 mblnValidationFailed = False
 Else
 ` Cancel the Validate event
 Action = vbDataActionCancel
 ` Deny form unload until fields are corrected
 mblnValidationFailed = True
 End If
 Else
 mblnValidationFailed = False
 End If
 End If
End Sub

5. Enter the following code into Form1 as the Unload event. (This code is the same as that for the
identically named procedure in How-To 1.2.) If the Validate event has set the UpdateCancelled
flag, this procedure cancels the Unload event.

Private Sub Form_Unload(Cancel As Integer)
 ` Don't allow the unload until the data is validated or the
 ` update is cancelled
 If mblnValidationFailed Then Cancel = True
End Sub

6. Enter the following code as the Click eventfor mnuEditUndo:

Private Sub mnuEditUndo_Click()
 ` Undo all pending changes from form by copying recordset
 ` values to form controls
 datEmployees.UpdateControls
End Sub

7. Enter the following code as the Click event for mnuExit. (This code is the same as that for the
identically named procedure in How-To 1.2.)

Private Sub mnuExit_Click()
 Unload Me
End Sub

How It Works

The mnuEditUndo_Click procedure allows for removing any pending changes from the database by using
the data control's UpdateControls method. This method takes the copy of the field data from the data
control's recordset and "updates" the displayed bound controls. Remember from Figure 1.3 that there are
constantly two copies of all data in a data control application--the copy on the screen fields (in the bound
controls) and the copy in the data control's recordset fields. Data is moved from the bound controls to the
recordset fields during an update but only after validation is successful. So no matter how much the data on the
screen has changed, nothing happens until the recordset gets updated. (In this application so far, a recordset is
updated only when the data control is moved from one record to another.)

Another useful enhancement in this version of the program is the use of a Cancel response from the validation
error message box to refresh the screen display automatically without making the user make a menu selection.
Figure 1.6 shows the modified error message box. If the response indicates a cancellation, the validation is
cancelled and the data values are restored from the database to the bound controls.

Figure 1.6 The Cancel button added to an error message box.

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (11 of 37) [9/22/1999 1:56:53 AM]

javascript:popUp('01fig06.gif')

The validation event procedure (in step 4) makes extensive use of Visual Basic constants such as
vbDataActionCancel and vbCancel rather than numeric constants to improve the ability of programmers
to understand the code. Values for constants can easily be found by pressing the F2 key from within Visual Basic
to bring up the Object Browser window from which constants can be copied and pasted into your code. Declaring
enumMsgResult as a VbMsgBoxResult type shows the use of strong typing to help make the program's
meaning clearer to subsequent programmers.

Comments

Even though you can update, validate, and undo changes to your employee records, you still can't hire or fire
anyone with the information you have so far. Let's complete the core application by adding the add and delete
functions.

1.4 How do I...

Add and delete records using bound controls?

Problem

How do I add and delete records when I'm using bound controls?

Technique

To add a record to the recordset of a data control, use the AddNew method of the recordset established by the
data control. Visual Basic sets all bound controls to their default values (as determined by the table definition in
the database you're accessing) and makes the new record the current record. After all data has been entered into
the bound controls, Visual Basic creates a new record in the table and fills it with the values from the controls.
Visual Basic knows that data entry is complete when you move to a different record, you add another new record,
or your code executes the recordset's Update method. All records get added to the end of the data control's
recordset.

If you make changes to an existing record and then unload the form, Visual Basic automatically updates the
recordset with your changes. When you add a record, enter data into the record, and then either add another
record or move to an existing record, Visual Basic automatically saves the new record. However, if you add a
record, enter data into the new record, and then unload the form--before you move to another record--Visual
Basic does not automatically save the new record. If you want to save the new record, you can invoke the
Recordset object's Update method from the form's Unload event. The Update method saves the data in
the form's bound controls to the corresponding fields in the recordset.

To delete the currently displayed record from the database, use the data control recordset's Delete method.
Visual Basic deletes the current record from the database. It does not, however, move to a new record or update
the controls. You must do this through your code by using one of the four Move methods: MoveFirst,
MoveLast, MovePrevious, or MoveNext. If you do not move to a new record after executing the Delete
method, there will be no current record. Visual Basic will, therefore, generate an error when you try to perform
any operation on the current record.

Steps

Preview the project AddDeleteBound.VBP. Change the DatabaseName property of the data control
datEmployees to point to the copy of NWind.MDB installed on your system (probably in the directory where
VB6.EXE is installed). Then run the project. The form shown in Figure 1.7 appears. Select Data | Add Record.

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (12 of 37) [9/22/1999 1:56:53 AM]

Enter some representative values into the fields. Move to another record or select Data | Save Record from the
main menu. Move to the last record in the recordset by clicking the >| button on the data control. You should see
the record you just added. Select Data | Delete Record. Move to the last record in the recordset again. The record
you added should be gone.

1. Create a new project called AddDeleteBound.VBP. Use Form1 to create the objects and properties
listed earlier in Table 1.1, and save the form as AddDeleteBound.FRM. Substitute the path to your copy of
NWind.MDB for the DatabaseName property of datEmployees. You might find it easier to start
from the UndoBound.VBP form from How-To 1.3. Use the Visual Basic menu editor to create the menu
shown in Table 1.4.

Figure 1.7 The Bound Add/Delete/Update form.

Table 1.4 Menu specifications for the Bound Add/Delete form.

CAPTION Name Shortcut Key

&File mnuFile

----E&xit mnuFileExit

&Edit mnuEdit

----&Undo mnuEditUndo Ctrl+Z

&Data mnuData

----&Add Record mnuDataAdd

----&Delete Record mnuDataDelete

----&Save Record mnuDataSave

2. Add the file clsUtility.cls to your project from the Chapter01\HowTo03 directory by selecting
Project | Add File from the main menu or by pressing Ctrl+D on the keyboard. Use the File common dialog
to select the file.

3. Add the following code to the declarations section of Form1:

Private Utility As New clsUtility
Private mblnValidationFailed As Boolean

4. Add the following code as the Validate event of the data control datEmployees. (This code is the
same as that for the identically named procedure in How-To 1.3, except for the code in bold.) The
Validate event is called every time the current record changes, when the form is unloaded, and when
the Update method is invoked. This procedure verifies that all entries meet the requirements of the
application when data in bound controls have been changed. If an entry is incorrect, the routine cancels the
Validate event and sets the form-level flag variable mblnValidationFailed.

Private Sub datEmployees_Validate(Action As Integer, _
 Save As Integer)
 Dim strMsg As String
 Dim enumMsgResult As VbMsgBoxResult
 If Save = True Or Action = vbDataActionUpdate _
 Or Action = vbDataActionUnload _
 Or Action = vbDataActionAddNew Then
 ` One or more bound controls has changed or the form
 ` is being unloaded, so verify that all fields have
 ` legal entries. If a field has an incorrect value,

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (13 of 37) [9/22/1999 1:56:53 AM]

javascript:popUp('01fig07.gif')

 ` append a string explaining the error to strMsg and
 ` set the focus to that field to facilitate correcting
 ` the error. We explain all errors encountered in a
 ` single message box.
 strMsg = ""
 If txtEmpLastName.Text = "" Then
 Utility.AddToMsg strMsg, _
 "You must enter a last name."
 txtEmpLastName.SetFocus
 End If
 If txtEmpFirstName.Text = "" Then
 Utility.AddToMsg strMsg, _
 "You must enter a first name."
 txtEmpFirstName.SetFocus
 End If
 If Not IsDate(txtBirthDate.Text) Then
 Utility.AddToMsg strMsg, _
 "You must enter a birth date."
 txtBirthDate.SetFocus
 Else
 If CDate(txtBirthDate.Text) >= Date Then
 Utility.AddToMsg strMsg, _
 "Birth date must be in the past."
 txtBirthDate.SetFocus
 End If
 End If
 If strMsg <> "" Then
 ` We have something in the variable strMsg, which
 ` means that an error has occurred. Display the
 ` message. The focus is in the last text box where an
 ` error was found
 enumMsgResult = MsgBox(strMsg, _
 vbExclamation + vbOKCancel + vbDefaultButton1)
 If enumMsgResult = vbCancel Then
 ` Restore the data to previous values using
 ` the data control
 datEmployees.UpdateControls
 mblnValidationFailed = False
 Else
 ` Cancel the Validate event
 Action = vbDataActionCancel
 ` Deny form Unload until fields are corrected
 mblnValidationFailed = True
 End If
 Else
 ` Allow form unload
 mblnValidationFailed = False
 ` Disable the Save menu
 mnuDataSave.Enabled = False

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (14 of 37) [9/22/1999 1:56:53 AM]

 End If
 End If
End Sub

5. Enter the following code as the Click method of the Edit | Undo menu item. If the user chooses Undo
while adding a new record, the subroutine uses the Recordset object's CancelUpdate method to cancel
the pending AddNew operation. If the user clicks the menu item while editing an existing record, the
procedure updates the form's controls by filling them with the current values from the recordset.

Private Sub mnuEditUndo_Click()
 ` Undo all pending changes from form by copying recordset
 ` values to form controls
 datEmployees.UpdateControls
 If datEmployees.Recordset.EditMode = dbEditAdd Then
 ` Disable the menu save and cancel the update
 datEmployees.Recordset.CancelUpdate
 mnuDataSave.Enabled = False
 End If
End Sub

6. Add the following code as the Click event of the Data menu's Add Record item. This subroutine uses
the Recordset object's AddNew method to prepare the form and the recordset for the addition of a new
record.

Private Sub mnuDataAdd_Click()
 ` Reset all controls to the default for a new record
 ` and make space for the record in the recordset copy
 ` buffer.
 datEmployees.Recordset.AddNew
 `Enable the Save menu choice
 mnuDataSave.Enabled = True
 ` Set the focus to the first control on the form
 txtEmpLastName.SetFocus
End Sub

7. Add the following code as the Click event of the Data menu's Delete Record item. The procedure
confirms that the user wants to delete the record and then deletes it. It then ensures that the record pointer
is pointing at a valid record.

Private Sub mnuDataDelete_Click()
 Dim strMsg As String
 `Verify the deletion.
 strMsg = "Are you sure you want to delete " _
 & IIf(txtEmpLastName.Text <> "", _
 txtEmpLastName.Text, _
 "this record") & "?"
 If MsgBox(strMsg, vbQuestion + vbYesNo + vbDefaultButton2) = _
 vbYes Then
 ` We really want to delete
 datEmployees.Recordset.Delete
 ` Make a valid record the current record and
 ` update the display.
 datEmployees.Recordset.MoveNext
 ` If we deleted the last record, move to the new last

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (15 of 37) [9/22/1999 1:56:53 AM]

 ` record because the current record pointer is not defined
 ` afterdeleting the last record, even though EOF is
 ` defined.
 If datEmployees.Recordset.EOF Then
 datEmployees.Recordset.MoveLast
 End If
End Sub

8. Add the following code as the Click event of the Data menu's Save Record item. The Save Record
subroutine uses the Update method of the Recordset object to write the values in the form's bound
controls to their respective fields in the recordset. The If statement prevents a recordset Update without
a preceding AddNew or Edit.

Private Sub mnuDataSave_Click()
 ` Invoke the update method to copy control contents to
 ` recordset fields and update the underlying table
 datEmployees.Recordset.Update
 If datEmployees.Recordset.EditMode <> dbEditAdd Then
 ` If we added move to the new record
 datEmployees.Recordset.MoveLast
 End If
End Sub

9. Add the following code as the Click event of the File menu's Exit item. (This code is the same as that
for the identically named procedure in How-To 1.2.)

Private Sub mnuFileExit_Click()
 Unload Me
End Sub

10. Add the following code as the form's Unload event. If the data currently in the bound controls is
invalid, the procedure cancels the Unload event. If the data is valid and an add-record operation is in
progress, the code invokes the Update event to save the data.

Private Sub Form_Unload(Cancel As Integer)
 ` Don't allow the unload until the data is valid or the
 ` update is cancelled
 If mblnValidationFailed Then Cancel = True
End SubEnd Sub

How It Works

Including record addition and deletion has made the data control program more complex, but it now looks like a
real database application. A Data menu allows the user to explicitly control the data control's recordset activities
through the appropriate click procedures. The Data Add Record procedure (step 6) adds a new, blank record to
the data control's recordset. The data control is automatically positioned on the new record. The Data Save
procedure (step 8) updates the recordset and moves to the last record (the new record) if the current action is a
record addition. The Data Save Record menu choice is also managed explicitly by the program during record
additions to provide clear feedback from the programmer about what is happening within the program.

Notice in the record deletion processing (step 7) that you have to manage the deletion of the last record carefully
because the recordset object does not handle all changes without an error. In particular, deleting the last record
can leave the recordset with "No current record." In this state, any update actions (potentially caused by a record
movement) can cause an error in your application.

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (16 of 37) [9/22/1999 1:56:53 AM]

RUNTIME ERRORS

You should also note that you will receive a runtime error if you attempt to delete certain default
records contained in the Employees database. The Employees table has a relationship with the
Orders table within the same database, and the employee records you cannot delete have at least one
entry in the Orders table. A runtime error will occur if you delete an employee record that has other
data in the database because you would have entries in the Orders table that do not have a
corresponding Employees record--which would result in a loss of data integrity in the database. To
properly delete these records, you must delete the corresponding data in any other tables in the
database. Refer to How-To 4.4 for information on defining and using relations between tables.

Comments

A Visual Basic data control maintains a record pointer into its RecordSource. The record pointer keeps track
of where you are within the RecordSource. It always points to the current record--except when you move past
the end or the beginning of the RecordSource.

You can move past the end of the RecordSource by clicking the Next Record button when the record pointer
is positioned on the last record; similarly, you can move past the beginning of the RecordSource by clicking
the Previous Record button when you are on the first record. The record pointer then points at a special location,
known as the end of file (EOF) or the beginning of file (BOF). When you are on EOF or BOF, there is no current
record. If you try to delete or edit the record when you are on EOF or BOF, Visual Basic generates an error
message. EOF and BOF are useful when you use data access objects for checking to see when you've reached the
end or beginning of a RecordSource; but when you use the data control, you generally don't want to stay on
EOF or BOF.

For this reason, Visual Basic gives you a choice of what to do when your data control reaches EOF or BOF. You
execute this choice by setting the BOFAction and EOFAction properties. The possible settings for each
property are shown in Table 1.5.

Table 1.5 The EOFAction and BOFAction properties of the data control.

PROPERTY Description Result

BOFAction 0 - MoveFirst (default) Positions the record pointer on the first record.

1 - BOF Positions the record pointer on BOF.

EOFAction 0 - MoveLast (default) Positions the record pointer on the last record.

1 - EOF Positions the record pointer on EOF.

2 - AddNew Adds a new record at the end of the RecordSource and positions
the record pointer on it.

The Visual Basic data control does not handle empty recordsets well; trying to move to another record generates
an error. The only thing you can do with a bound, empty recordset is to add a new record. When you open an
empty recordset, its EOF property is initially set to True. If you have the data control's EOFAction property
set to AddNew, when you open an empty recordset Visual Basic immediately adds a record. This is a low-cost,
no-code way to prevent empty recordset errors when working with bound controls.

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (17 of 37) [9/22/1999 1:56:53 AM]

1.5 How do I...

Create and use bound lists?

Problem

Many tables in my database have fields that are related to other tables. I need to restrict entry into these fields to
values that exist in the related tables. At the same time, I'd like to make it easy to select valid entries for these
fields. How do I accomplish this when I'm using bound controls?

Technique

Assume that you have a warehouse application. You have two tables: Products and Categories. The Products
table defines available products:

ProductID

ProductName

SupplierID

CategoryID

QuantityPerUnit

UnitPrice

UnitsInStock

UnitsOnOrder

ReorderLevel

Discontinued

The Categories table defines product categories and is related to the Products table via the CategoryID field:

CategoryID

CategoryName

Description

Picture

You have a form that displays basic product information from the Products table and its related category.
Because almost everybody has trouble remembering customer ID numbers, you want to provide the capability to
designate the category by name. With a DBCombo or DBList control, people can choose a category name and
have the control insert the category ID number corresponding to that category name into the Products table.

The DBList and DBCombo controls both display values in a list format. The DBList control creates a list box,
with several lines always visible. The DBCombo control can create a drop-down list. They are both bound
controls. Unlike with most bound controls, however, you bind them not to a single data control but to two data
controls. The first data control maintains the recordset represented by the form as a whole--the data records you
are browsing or editing. The second data control refers to the validation recordset, the recordset that is displayed
in the list box or combo box. (You normally make the second data control--the data control that displays the

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (18 of 37) [9/22/1999 1:56:53 AM]

values in the list--invisible, because people do not need to access it.)

In the example, one data control is linked to the Products table--the table into which category ID numbers are
inserted. The other data control is linked to the Categories table--the source of the list. The table that is the source
of the list must include both the information to be displayed (in this case, the information in the
CategoryName field) and the value to be inserted into the other table (in this case, the CategoryID).

You link the DBCombo or DBList control to its recordsets by setting five properties. Two properties describe
the recordset to be updated; they are shown in Table 1.6. The other three properties define the recordset that
makes up the list; these appear in Table 1.7.

Table 1.6 DBList/DBCombo properties that describe the recordset to be updated.

PROPERTY Description

DataSource Name of the data control with the recordset to be updated

DataField Name of the field to be updated

Table 1.7 DBList/DBCombo properties that create the list.

PROPERTY Description

RowSource Name of the data control that provides the values to display in the list

ListField Name of the field with the values to display in the list

BoundColumn Name of the field with the value to be inserted in the table being updated

DBCOMBO STYLE

If you set the Style property of the DBCombo control to 2 (Dropdown List), the control acts
exactly like a DBList control--except, of course, that it displays only a single item until you drop it
down. You can't add new items to the list through the control.

If you want to give the user the opportunity to add new items, set Style to 0 (Dropdown Combo)
or 1 (Simple Combo). Your code must handle the addition of the user's entry to the underlying row
source; the control does not do this automatically for you.

Open the project ListBound.VBP to preview this How-To. Change the DatabaseName property of the data
control datEmployees to point to the copy of NWind.MDB installed on your system (probably in the
directory where VB6.EXE is installed). Then run the project. The form shown in Figure 1.8 appears. Select Data |
Add Record, and enter some representative values into the fields. Use the drop-down list to enter the publisher.
When you move to another record, your new record is automatically saved.

1. Create a new project called ListBound.VBP. Use Form1 to create the objects and properties listed in
Table 1.8, and save the form as LISTBND.FRM. Substitute the path to your copy of NWind.MDB for the
DatabaseName property of datEmployees and datPublishers.

Table 1.8 Objects and properties for the Bound Lister form.

OBJECT Property Setting

Form Name Form1

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (19 of 37) [9/22/1999 1:56:53 AM]

Caption " Bound Lister "

Data Name datProducts

Caption "Products"

DatabaseName "D:\Program Files\Microsoft Visual
Studio\VB6\Nwind.mdb"

RecordSource "Products"

Data Name datCategories

Caption "Categories"

DatabaseName "D:\Program Files\Microsoft Visual
Studio\VB6\Nwind.mdb"

RecordSource "Categories"

TextBox Name txtProductName

DataField "ProductName"

DataSource "datProducts"

DBCombo Name dbcCategory

BoundColumn "CategoryID"

DataField "CategoryID"

DataSource "datProducts"

ListField "CategoryName"

RowSource "datCategories"

Label Name Label2

Caption "Category:"

Label Name Label1

Caption "Product Name:"

2. Use the Visual Basic menu editor to create the menu shown in Table 1.9.

Figure 1.8 The Bound Lister form.

Table 1.9 Menu specifications for the Bound Lister.

CAPTION Name Shortcut Key

&File mnuFile

----E&xit mnuFileExit

&Edit mnuEdit

----&Undo mnuEditUndo Alt+Backspace

&Data mnuData

----&Add Record mnuDataAdd

----&Delete Record mnuDataDelete

----&Save Record mnuDataSave

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (20 of 37) [9/22/1999 1:56:53 AM]

javascript:popUp('01fig08.gif')

3. Add the following code to the declarations section of Form1:

Private Utility As New clsUtility
Private mblnValidationFailed As Boolean

4. Add the following code as the Validate event of the data control datProducts. (This code is very
similar to the Validate Event code for How-To 1.4 with the exceptions of data control name and
actual field-checking logic.) The Validate event is called every time the current record changes, when
the form is unloaded, and when the Update method is invoked. This procedure verifies that when data in
bound controls have been changed, all entries meet the requirements of the application. If an entry is
incorrect, the routine cancels the Validate event and sets the form-level flag variable
mblnValidationFailed.

Private Sub datProducts_Validate(Action As Integer, Save As Integer)
 Dim strMsg As String
 Dim enumMsgResult As VbMsgBoxResult
 If Save = True Or Action = vbDataActionUpdate _
 Or mblnValidationFailed Or Action = vbDataActionAddNew Then
 ` One or more bound controls has changed or a previous
 ` validation failed, so verify that all fields have legal
 ` entries. If a field has an incorrect value, append a
 ` string explaining the error to strMsg and set the focus
 ` to that field to facilitate correcting the error. We
 ` explain all errors encountered in a single message box.
 strMsg = ""
 If txtProductName.Text = "" Then
 Utility.AddToMsg strMsg, _
 "You must enter a Product name."
 txtProductName.SetFocus
 End If
 If strMsg <> "" Then
 ` We have something in the variable strMsg, which
 ` means that an error has occurred. Display the
 ` message. The focus is in the last text box where an
 ` error was found
 enumMsgResult = MsgBox(strMsg, vbExclamation + _
 vbOKCancel + vbDefaultButton1)
 If enumMsgResult = vbCancel Then
 ` Restore the data to previous values using the
 ` data control
 datProducts.UpdateControls
 mblnValidationFailed = False
 Else
 ` Cancel the Validate event
 Action = vbDataActionCancel
 ` Deny form Unload until fields are corrected
 mblnValidationFailed = True
 End If
 Else
 mblnValidationFailed = False
 End If

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (21 of 37) [9/22/1999 1:56:53 AM]

 End If
End Sub

5. Enter the following code as the Click method of the Edit | Undo menu item. (This code is very similar
to that for the identically named procedure in How-To 1.4, except for the reference to a different data
control.) The procedure updates the form's controls by filling them with the current values from the
recordset. If the user chooses Undo while adding a new record, the subroutine uses the Recordset
object's CancelUpdate method to cancel the pending AddNew operation and turns off the data save
menu item.

Private Sub mnuEditUndo_Click()
 ` Undo all pending changes from form by copying recordset
 ` values to form controls
 datProducts.UpdateControls
 If datProducts.Recordset.EditMode = dbEditAdd Then
 ` Disable the menu save and cancel the update
 datProducts.Recordset.CancelUpdate
 mnuDataSave.Enabled = False
 End If
End Sub

6. Add the following code as the Click event of the Data menu's Add Record item. (This code is very
similar to that for the identically named procedure in How-To 1.4.) This subroutine uses the Recordset
object's AddNew method to prepare the form and the recordset for the addition of a new record. It also
enables the Data | Save menu.

Private Sub mnuDataAdd_Click()
 ` Reset all controls to the default for a new record
 ` and make space for the record in the recordset copy
 ` buffer.
 datProducts.Recordset.AddNew
 `Enable the Save menu choice
 mnuDataSave.Enabled = True
 ` Set the focus to the first control on the form
 txtProductName.SetFocus
End Sub

7. Add the following code as the Click event of the Data menu's Delete Record item. (This code is very
similar to that for the identically named procedure in How-To 1.4.) The procedure confirms that the user
wants to delete the record, deletes the record, and then ensures that the record pointer is pointing at a valid
record.

Private Sub mnuDataDelete_Click()
 Dim strMsg As String
 `Verify the deletion.
 strMsg = "Are you sure you want to delete " _
 & IIf(txtProductName.Text <> "", _
 txtProductName.Text, _
 "this record") & "?"
 If MsgBox(strMsg, vbQuestion + vbYesNo + vbDefaultButton2) = _
 vbYes Then
 ` We really want to delete
 datProducts.Recordset.Delete
 ` Make a valid record the current record and update the

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (22 of 37) [9/22/1999 1:56:53 AM]

 ` display.
 datProducts.Recordset.MoveNext
 ` If we deleted the last record, move to the new last
 ` record because the current record pointer is not defined
 ` after deleting the last record, even though EOF is
 ` defined.
 If datProducts.Recordset.EOF Then
 datProducts.Recordset.MoveLast
 End If
End Sub

8. Add the following code as the Click event of the Data menu's Save Record item. (This code is very
similar to that for the identically named procedure in How-To 1.4.) The Save Record subroutine uses
the Update method of the Recordset object to write the values in the form's bound controls to their
respective fields in the recordset.

Private Sub mnuDataSave_Click()
 ` Invoke the update method to copy control contents to
 ` recordset fields and update the underlying table
 datProducts.Recordset.Update
 If datProducts.Recordset.EditMode <> dbEditAdd Then
 ` If we added move to the new record
 datProducts.Recordset.MoveLast
 End IfEnd Sub

9. Add the following code as the Click event of the File menu's Exit item. (This code is the same as that
for the identically named procedure in How-To 1.4.)

Private Sub mnuFileExit_Click()
 Unload Me
End Sub

10. Add the following code as the form's Unload event. (This code is the same as that for the identically
named procedure in How-To 1.4.) If the data currently in the bound controls is invalid, the procedure
cancels the Unload event.

Private Sub Form_Unload(Cancel As Integer)
 ` Don't allow the unload until the data is valid or the
 ` update is cancelled
 If mblnValidationFailed Then Cancel = True
End Sub

When the form is loaded, the combined actions of datCategories and dbcCategories fill the Category
combo box with a list of category names from the Categories table in NWind.MDB. When a category is chosen
from the list, the category ID associated with the chosen category is inserted into the CategoryID field in the
Products table.

Unlike the unbound list box and combo box controls, their bound cousins DBList and DBCombo do not have a
Sorted property. If you want to provide a sorted list, therefore, you must make sure that the recordset providing
the list itself is sorted on the appropriate field. You can accomplish this by setting the RecordSource property
of the data control named in the DBList or DBCombo's RowSource property to a SQL statement with an
ORDER BY clause. In the example cited in the "Technique" section of this How-To, you could provide a sorted
list of customers by setting the RecordSource property of the data control to this:

SELECT * FROM Categories ORDER BY CategoryID

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (23 of 37) [9/22/1999 1:56:53 AM]

With DBList and DBCombo, you can designate how the list reacts to characters typed at the keyboard when the
control has the focus. If the control's MatchEntry property is set to vbMatchEntrySimple, the control
searches for the next match for the character entered using the first letter of entries in the list. If the same letter is
typed repeatedly, the control cycles through all the entries in the list beginning with that letter. If you set the
MatchEntry property to vbMatchEntryExtended, the control searches for an entry matching all the
characters typed by the user. As you type additional characters, you are further refining the search.

Comments

The DBCombo and DBList controls are powerful additions to your programming arsenal, but be careful about
the performance implications in everyday use. Each DBCombo and DBList control requires a data control, and
the data control is a fairly large bit of code. In one experiment, replacing eight DBCombo controls with plain
Combo Box controls loaded from a database reduced the form load time by more than 40%.

1.6 How do I...

Display many detail records for a single master record?

Problem

I want to display product inventory and order detail information for a displayed product. How do I build a form to
display "master-detail" information showing products and order quantities?

Technique

A "master-detail" display is frequently used to show a hierarchical relationship between two tables such as
invoice headers and invoice lines. In this How-To, you build a form to display all the orders for a particular
product.

Assume you have a warehouse application. The Products table contains the following fields:

ProductID

ProductName

SupplierID

CategoryID

QuantityPerUnit

UnitPrice

UnitsInStock

UnitsOnOrder

ReorderLevel

Discontinued

The Order Details table defines the quantity of the product included on each order:

OrderID

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (24 of 37) [9/22/1999 1:56:53 AM]

ProductID

UnitPrice

Quantity

Discount

You have a form that displays product and stock information together with order quantities for the displayed
product. This master-detail relationship requires two data controls to display a single product and multiple order
lines. The master data control has a recordset tied to the Products table, and the detail recordset is tied to the
Order Details table. Master table information is usually displayed in text boxes or other appropriate controls;
detail information is displayed in a DBGrid control.

The DBGrid control displays multiple rows from a recordset in a scrolling table that looks much like a
spreadsheet. The DBGrid control allows recordset scrolling, column width changes, display formatting, and
other useful capabilities. It is most useful as a display-only tool, but the DBGrid control can provide recordset
maintenance functions as well. Table 1.10 describes important properties that control DBGrid runtime behavior.

Table 1.10 Important DBGrid design-time properties.

PROPERTY Description

AllowAddNew Controls ability to add new records (default is False)

AllowDelete Controls ability to delete records displayed by the grid (default is False)

AllowUpdate Controls ability to update records through the grid (default is True)

ColumnHeaders Controls display of column headers (default is True)

You specify a recordset at design time for DBGrid so that you can design the initial column layout and
formatting. The DBGrid control can retrieve the field names from a linked recordset at design time to populate
the initial column display. You then edit the column properties to set headers, formats, and default values.

Steps

Open the project GridLister.VBP to preview this How-To. Change the DatabaseName property of the data
controls datProducts and datOrderDetails to point to the copy of NWind.MDB installed on your
system (probably in the directory where VB6.EXE is installed). Then run the project. The form shown in Figure
1.9 appears. Navigate through the records using the product data control. Observe how the order detail
information changes. Experiment with the grid's sliders to control the data display. Use the mouse to select rows
or columns. Drastically change a column's display width, and observe how the horizontal scrollbar appears and
disappears.

1. Create a new project called GridLister.VBP. Use Form1 to create the objects and properties listed in
Table 1.11 and save the form as GridLister.FRM. Substitute the path to your copy of NWind.MDB for the
DatabaseName property of datProducts and datOrderDetails.

Figure 1.9 The Grid Lister form.

Table 1.11 Objects and properties for the Grid Lister form.

OBJECT Property Setting

Form Name Form1

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (25 of 37) [9/22/1999 1:56:54 AM]

javascript:popUp('01fig09.gif')

Caption "Grid Lister"

TextBox Name txtProductName

DataField "ProductName"

DataSource "datProducts"

TextBox Name txtUnitsInStock

DataField "UnitsInStock"

DataSource "datProducts"

TextBox Name txtProductId

DataField "ProductID"

DataSource "datProducts"

Data Name datProducts

Caption "Products"

Connect "Access"

DatabaseName "D:\Program Files\Microsoft Visual
Studio\VB6\Nwind.mdb"

RecordSource "Products"

Data Name datOrderDetails

Caption "Order Details"

DatabaseName "D:\Program Files\Microsoft Visual
Studio\VB6\Nwind.mdb"

RecordSource "Order Details"

Visible False

DBGrid Name dbgOrderDetails

AllowAddNew False

AllowDelete False

AllowUpdate False

DataSource "datOrderDetails"

Label Name Label1

Caption "Product Name:"

Label Name Label2

Caption "Units in Stock"

Label Name Label3

Caption "Product ID"

2. Use the Visual Basic menu editor to create the menu shown in Table 1.12.

Table 1.12 Menu specifications for the Grid Lister.

CAPTION Name Shortcut Key

&File mnuFile

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (26 of 37) [9/22/1999 1:56:54 AM]

----E&xit mnuFileExit

3. Use the DBGrid design-time controls to define the columns. Right-click the grid to display the menu
shown in Figure 1.10, and then select the Retrieve Fields option. The DBGrid column information will be
retrieved from the datOrderDetails recordset. Right-click the DBGrid again and select Edit to make
on-screen modifications to column widths and row heights.

4. Right-click the DBGrid and select the Properties menu item to adjust the column formats. Figure 1.11
shows the Columns tab of the DBGrid design-time properties page.

Figure 1.10 The DBGrid right-click design-time menu.

Figure 1.11 The DBGrid design-time properties.

5. Add the following code to the Reposition event of the data control datProducts:

Private Sub datProducts_Reposition()
 Dim strSql As String
 If datProducts.Recordset.RecordCount = 0 Then
 ` Don't re-query the Order Details if there are
 ` no products displayed.
 Exit Sub
 End If
 ` Re-query the Order Detail grid by SQL SELECT statement.
 ` The WHERE clause picks up only the order details for
 ` the displayed product.
 strSql = "SELECT * FROM [Order Details] WHERE ProductID = " _
 & datProducts.Recordset.Fields("ProductID")
 ` Assign the desired SQL statement as the record source.
 datOrderDetails.RecordSource = strSql
 ` Re-query the database to bring new data to the recordset.
 datOrderDetails.Refresh
 ` Set the default value for ProductID for any possible future
 ` Order Details inserts to the displayed product ID.
 dbgOrderDetails.Columns("ProductID").DefaultValue = _
 datProducts.Recordset.Fields("ProductID")
End Sub

6. Add the following code as the Click event of the File menu's Exit item. (This code is the same as that
for the identically named procedure in How-To 1.5.)

Private Sub mnuFileExit_Click()
 Unload Me
End Sub

How It Works

When the form is loaded, the datProducts data control retrieves the first Products record and fires the
Reposition event. The event procedure creates a SQL statement to query only those order detail records you
want to see by using a WHERE clause.

SELECT * FROM [Order Details] WHERE ProductID = <displayed product ID>

When the data control is refreshed, the DBGrid is populated with only the order detail records for the displayed
product. A more complicated SQL statement (see Chapter 3, "Creating Queries with SQL") could also retrieve

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (27 of 37) [9/22/1999 1:56:54 AM]

javascript:popUp('01fig10.gif')
javascript:popUp('01fig11.gif')

the order number and customer information for display on the form.

Comments

DBGrid is a powerful control well worth exploring in the Visual Basic 6 help files and books online. It provides
powerful display capabilities as well as add, update, and delete capabilities. When your program is running, users
can resize columns and rows to suit their display needs.

The DBGrid is also useful as the display for a master query in any database that requires logical partitioning. A
multiple warehouse inventory application might use a DBGrid to select a "master" warehouse before browsing
through "detail" items in order to limit inventory item display to a particular location. Logical partitioning is often
required in service bureau applications to prevent making incorrect changes to a customer's account. Telephone
companies and Internet service providers frequently need to see individual accounts but restrict the view to a
particular corporate customer. DBGrid can help partition at the high level and provide "drill-down" capability
through hierarchies.

1.7 How do I...

Change data in data-bound grid cells from code?

Problem

I want to display product inventory and order detail information; I also want to restrict editing to the
quantity-ordered information. How do I edit a single DBGrid cell?

Technique

Assume you have the same warehouse application as you did in How-To 1.6. Product information and order
detail information are stored in two different tables, the structures of which are also shown in the preceding
How-To. You have a form that displays product and stock information together with order quantities for the
displayed product. Your management team wants to have a secure editing function to allow adjustment of order
quantities for particular products.

The DBGrid control can allow data updates, but all columns shown on the grid then become available for
updates. You don't want to let the warehouse supervisor adjust prices or discounts--only the order quantity. You
will have to directly manipulate the DBGrid cells to update the order quantity only.

Steps

Open the project GridChange.VBP. Change the DatabaseName property of the data controls datProducts
and datOrderDetails to point to the copy of NWind.MDB installed on your system (probably in the
directory where VB6.EXE is installed). Then run the project. The form shown in Figure 1.12 appears. Navigate
through the product records and observe how the order detail information changes. Highlight an order detail row,
enter a new quantity in the text box, and press the Change Qty command button. The quantity will be updated in
the DBGrid control and the underlying recordset and database table.

Figure 1.12 The Grid Change form.

1. Create a new project called GridChange.VBP. Use Form1 to create the objects and properties listed in
Table 1.13, and save the form as GridChange.FRM. Substitute the path to your copy of NWind.MDB for
the DatabaseName property of datProducts and datOrderDetails.

Table 1.13 Objects and properties for the Grid Lister form.

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (28 of 37) [9/22/1999 1:56:54 AM]

javascript:popUp('01fig12.gif')

OBJECT Property Setting

Form Name Form1

Caption "Grid Lister"

TextBox Name txtProductName

DataField "ProductName"

DataSource "datProducts"

TextBox Name txtUnitsInStock

DataField "UnitsInStock"

DataSource "datProducts"

TextBox Name txtProductId

DataField "ProductID"

DataSource "datProducts"

TextBox Name txtChangeQuantity

DataField ""

DataSource ""

Data Name datProducts

Caption "Products"

Connect "Access"

DatabaseName "D:\Program Files\Microsoft
Visual
Studio\VB6\Nwind.mdb"

RecordSource "Products"

Data Name datOrderDetails

Caption "Order Details"

DatabaseName "D:\Program Files\Microsoft
Visual
Studio\VB6\Nwind.mdb"

RecordSource "Order Details"

Visible False

DBGrid Name dbgOrderDetails

AllowAddNew False

AllowDelete False

AllowUpdate False

DataSource "datOrderDetails"

Label Name Label1

Caption "Product Name:"

Label Name Label2

Caption "Units in Stock"

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (29 of 37) [9/22/1999 1:56:54 AM]

Label Name Label3

Caption "Product ID"

2. Use the Visual Basic menu editor to create the menu shown in Table 1.14.

Table 1.14 Menu specifications for the Grid Lister.

CAPTION Name Shortcut Key

&File mnuFile

----E&xit mnuFileExit

3. Use the DBGrid design-time controls to define the columns. Right-click the grid to display the menu
shown earlier in Figure 1.10, and then select Retrieve Fields. The DBGrid column information will be
retrieved from the datOrderDetails recordset. Right-click the DBGrid again and select Edit to make
on-screen modifications to column widths and row heights.

4. Right-click the DBGrid and select the Properties menu item to adjust column formats.

5. Add the following code to the Reposition event of the data control datProducts. The
Reposition event is called when the current record changes. To handle this event, query the database
for the new data.

Private Sub datProducts_Reposition()
 Dim strSql As String
 If datProducts.Recordset.RecordCount = 0 Then
 ` Don't re-query the Order Details if there are
 ` no products displayed.
 Exit Sub
 End If
 ` Re-query the Order Detail grid by SQL SELECT statement.
 ` The WHERE clause picks up only the order details for
 ` the displayed product.
 strSql = "SELECT * FROM [Order Details] WHERE ProductID = " _
 & datProducts.Recordset.Fields("ProductID")
 ` Assign the desired SQL statement as the record source.
 datOrderDetails.RecordSource = strSql
 ` Re-query the database to bring new data to the recordset.
 datOrderDetails.Refresh
 ` Set the default value for ProductID for any possible future
 ` Order Details inserts to the displayed product ID.
 dbgOrderDetails.Columns("ProductID").DefaultValue = _
 datProducts.Recordset.Fields("ProductID")
End Sub

6. Add the following code as the Click event of cmdChangeGridCell. This code validates the
entered amount as a positive number and updates the displayed grid cell.

Private Sub cmdChangeGridCell_Click()
 ` Change the selected grid cell value to the entered value
 If Not IsNumeric(txtChangeQuantity.Text) Then
 MsgBox "Change quantity must be a positive number", _
 vbInformation

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (30 of 37) [9/22/1999 1:56:54 AM]

 ElseIf CInt(txtChangeQuantity.Text) < 0 Then
 MsgBox "Change quantity must be a positive number", _
 vbInformation
 Else
 dbgOrderDetails.Columns("Quantity").Text = _
 txtChangeQuantity.Text
 End If
End Sub

7. Add the following code as the Click event of the File menu's Exit item. (This code is the same as that
for the identically named procedure in How-To 1.5.)

Private Sub mnuFileExit_Click()
 Unload Me
End Sub

How It Works

When the Change Qty button is pressed, the event procedure validates the entered number and updates the cell
value in the grid. The heart of the code is the following statement:

dbgOrderDetails.Columns("Quantity").Text = txtChangeQuantity.Text

The data contents of the DBGrid control can be addressed directly, just as the data contents of any other visual
control can be. The currently selected grid row is available to have its columns directly manipulated by code. The
data control will update the recordset field and table when the record pointer is repositioned.

Comments

Another useful DBGrid trick with a bound grid is to make the data control visible and allow recordset movement
with the data control. The DBGrid control automatically shows database positions. It can also be used as a
record selector because it can function as a multicolumn list box.

1.8 How do I...

Gracefully handle database errors?

Problem

When I access a database through Visual Basic, I have limited control over the environment. A user might move
a database file or another program might have made unexpected changes to the database. I need my programs to
be able to detect errors that occur and handle them in the context of the program. How do I accomplish this task
with Visual Basic?

Technique

When an error occurs during execution of a Visual Basic program, control passes to error-handling logic. If you
have not made provisions in your program to trap errors, Visual Basic calls its default error-handling process.
When a compiled Visual Basic program is running, the default error-handling process displays a message
describing the cause of the error--sometimes a helpful message, but often not--and terminates the program.

That's never a good solution, but fortunately Visual Basic gives you a choice. You can build error-trapping and
error-handling logic into your Visual Basic code. Every Visual Basic program should make provisions for
trapping and handling errors gracefully, but it's especially important in database work, in which many potential

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (31 of 37) [9/22/1999 1:56:54 AM]

error conditions can be expected to exist at runtime.

Trapping Errors

Visual Basic error-trapping is accomplished through the On Error statement. When an On Error statement is
in effect and an error occurs, Visual Basic performs the action specified by the On Error statement. You
therefore avoid Visual Basic's default error-handling behavior.

An On Error statement is "in effect" when it has been executed before the occurrence of the error in the same
function or subroutine where the error occurred or in a function or subroutine that called the function or
subroutine where the error occurred. For example, assume that you have these five subroutines (subroutines are
used here for the example; exactly the same principles apply for functions):

Sub First()
 .
 .
 .
 Second
 Third
 .
 .
 .
End Sub
Sub Second()
 `On Error Statement here
 .
 .
 .
End Sub
Sub Third()
 `On Error Statement here
 .
 .
 Fourth
 Fifth
 .
 .
 .
End Sub
Sub Fourth()
 .
 .
 .
End Sub
Sub Fifth()
 `On Error Statement here
 .
 .
 .
End Sub

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (32 of 37) [9/22/1999 1:56:54 AM]

The subroutine First calls the subroutines Second and Third. The subroutine Third calls the subroutines
Fourth and Fifth. Second, Third, and Fourth have On Error statements; First does not. If an error
occurs during the execution of First, Visual Basic will use its default error handling because no On Error
statement has been executed. This will be true even after the calls to Second and Third have completed; the
On Error statements in Second and Third have no effect on the procedure that calls them.

If an error occurs during the execution of Second, Visual Basic will take whatever action is specified by the On
Error statement at the beginning of Second. Likewise, if an error occurs during Third, the error handling
specified by Third applies.

What happens if an error occurs during Fourth? There is no On Error statement in Fourth. However,
because Fourth is called by Third, and because there is an On Error statement in Third (that is executed
before Fourth is called), an error in Fourth will cause the error handling specified by the On Error
statement in Third to execute.

Fifth is also called by Third, but Fifth has an On Error statement of its own. If an error occurs in
Fifth, the error handling specified in its local On Error statement overrides that specified in Third's.

The On Error Statement

These are the two forms of the On Error statement that you will use routinely:

On Error Goto label
On Error Resume Next

The On Error Goto label form tells Visual Basic this: When an error occurs, transfer execution to the line
following the named label. A label is any combination of characters that starts with a letter and ends with a colon.
An error-handling label must begin in the first column, must be in the same function or subroutine as the On
Error statement, and must be unique within the module. In the code that follows the label, you take whatever
action is appropriate to deal with the specific error that occurred. Most of the time, you will use the On Error
Goto label form of the On Error statement because you normally want to respond to errors in a
predetermined way.

On Error Resume Next tells Visual Basic this: If an error occurs, simply ignore it and go to the next
statement you would normally execute. Use this form when you can reasonably expect an error to occur but are
confident that the error will not cause future problems. For example, you might need to create a temporary table
in your database. Before you create the temporary table, you need to delete any existing table with the same
name, so you execute a statement to delete the table. If you try to delete a table that does not exist, Visual Basic
will create an error. In this case, you don't care that the error occurred, so you insert an On Error Resume
Next statement before the delete table statement. After the delete table statement, you would probably insert an
On Error Goto label statement to restore the previous error-handling routine.

Determining the Error Type

Errors generated by Visual Basic or the Jet database engine are associated with error numbers. There are
hundreds of error types, each with a specific error number. When an error occurs, Visual Basic puts the error
number into the Number property of the Err object. You can determine the error that occurred by looking at
that property.

After you know the error type, you can take a specific action based on that information. This is most often
accomplished through a Select Case statement.

Assume that your application will be used in a multiuser environment and that you need to trap errors caused by
more than one user working with the same record at the same time. (A full list of trappable data access object

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (33 of 37) [9/22/1999 1:56:54 AM]

errors can be found in Visual Basic Help file JetErr.HLP, located in the VB6 Help directory.) In your
error-handling routine, you might include code similar to what's shown in Listing 1.1.

Listing 1.1 Multiuser error handler.

Select Case Err.Number
 Case 3197
 ` Another user has updated this record since the last time
 ` the Dynaset was updated. Display a meaningful error message
 ` and give the user the chance to overwrite the other user's
 ` change.
 strMsg = "The data in this record have already been modified "
 strMsg = strMsg & " by another user. Do you want to overwrite "
 strMsg = strMsg & " those changes with your own?"
 If MsgBox(strMsg, vbQuestion + vbYesNo + vbDefaultButton2) = vbYes Then
 ` The user said yes, so reexecute the Update method.
 ` This time it should "take."
 Resume
 Else
 ` The user said no, so refresh the dynaset with the
 ` current data and display that data. Then display a
 ` message explaining what's happened.
 rs.Requery
 DisplayRecord
 strMsg = "The current values of the record are now displayed."
 MsgBox strMsg, vbInformation
 ` Exit from the procedure now to bypass the code after
 ` the End Select statement.
 Exit Sub
 End If
 Case 3020
 ` The user clicked Update without previously having clicked
 ` Edit. The default error message is "Update without AddNew
 ` or Edit." Create an error that is more meaningful in the
 ` current context. (The message gets displayed after the
 ` End Select statement).
 strMsg = "You must click Edit before you click Update!"
 Case 3260
 ` Another user has the page locked. Create a meaningful
 ` message. (The message gets displayed after the End Select
 ` statement.)
 strMsg = "Locking error " & Str$(Err) & " on Update."
 strMsg = strMsg & " Optimistic locking must be enabled!"
 Case Else
 ` An unanticipated error, so just pass through Visual Basic's
 ` message.
 strMsg = Err.Description
End Select
 MsgBox strMsg, vbExclamation

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (34 of 37) [9/22/1999 1:56:54 AM]

Determining the Error Location

If your error handler needs to determine where in the code the error occurs, you can use old-fashioned line
numbers. When an error occurs, the built-in Erl function returns the line number of the line that generated the
error. If the line that generated the error has no number, the Erl function returns the line number of the most
recent numbered line. If there are no numbered lines preceding the line that caused the error, Erl returns 0.

THE Err OBJECT The Err object incorporates the functionality of the Err statement, Err
function, Error statement, Error function, and Error$ function from earlier versions of Visual
Basic. (These older techniques are still supported for purposes of backward compatibility in Visual
Basic 6.0.)

Terminating an Error Handler

Error handling code must terminate with a statement that clears the error. If it does not, the error handler itself
will generate an error when it reaches the next End Sub, End Function, or End Property statement. The
statements listed in Table 1.15 are those that clear an error.

Table 1.15 Statements that clear an error.

STATEMENT Effect

Resume Next Resumes execution at the line that follows the line that generated the error

Resume Reexecutes the line that generated the error

Resume label Resumes execution at the line following the named label

Resume number Resumes execution at the line with the indicated number

Exit Sub Exits immediately from the current subroutine

Exit Function Exits immediately from the current function

Exit Property Exits immediately from the current property

On Error Resets error-handling logic

Err.Clear Clears the error without otherwise affecting program execution

End Terminates execution of the program

OPENING NWIND.MDB FOR HOW-TO'S

In many of the How-To's that use data access objects to work with NWIND.MDB, you will see
directions to add READINI.BAS to the project. (READINI.BAS is a module that is installed in the
main VB6DBHT directory.) In the code for the project you will see the following lines:

 ` Get the database name and open the database.
strName = strNWindDb()
Set db = DBEngine.Workspaces(0).OpenDatabase(strName)

strNWindDb() is a function in READINI.BAS that reads the VB6DBHT.INI file and returns the
fully qualified filename (that is, the directory, path, and name) of NWIND.MDB. The code assigns
that fully qualified filename to the string variable strName and uses strName as the argument to
the OpenDatabase method.

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (35 of 37) [9/22/1999 1:56:54 AM]

Steps

Open and run the project Errors.VBP. Three errors will occur in succession. For each, the message box reporting
the error gives you the error number, error description, and line number where the error occurred. Figure 1.13
shows the first of these errors.

Figure 1.13 One of the errors.

1. Create a new project called Errors.VBP. Use Form1 to create the objects and properties listed in Table
1.16, and save the form as Errors.FRM.

Table 1.16 Objects and properties for the Errors form.

OBJECT Property Setting

Form Name Form1

Caption "Errors"

2. Add the file READINI.BAS to your project from the Chapter01\HowTo08 directory.

3. Add the following code as the Load event of Form1. This code generates three errors:

Line 20 generates an error because there is no such table as No Such Table.●

Line 40 generates an error because there is no such field as No Such Field.●

Line 60 generates an error because the Year Published field requires a numeric value.●

Each error causes execution to branch to the label LoadError. The code beginning with LoadError
displays an informative message and then executes a Resume Next. The Resume Next transfers
execution back to the line following the line that caused the error.

Private Sub Form_Load()
 Dim dbErrors As Database
 Dim strDbName As String
 Dim rsTest As Recordset
 Dim strTmp As String
 On Error GoTo LoadError
 ` Get the database name and open the database.
 strDbName = strNWindDb() ` NWindPath is a function in
 ` READINI.BAS
10 Set dbErrors = DBEngine.Workspaces(0).OpenDatabase(strDbName)
 ` This statement will cause an error, because there's no such
 ` table as No Such Table.
20 Set rsTest = dbErrors.OpenRecordset("No Such Table", _
 dbOpenTable)
 ` There is a table named Products, so this one should work.
30 Set rsTest = dbErrors.OpenRecordset("Products", dbOpenTable)
 ` There's no such field as No Such Field, so here's another
 ` error.
40 strTmp = rsTest![No Such Field]
 ` This causes an error because UnitPrice only takes currency
 ` values.
50 rsTest![UnitPrice] = "XYZ"

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (36 of 37) [9/22/1999 1:56:54 AM]

javascript:popUp('01fig13.gif')

 ` Finally!
60 End
Exit Sub
LoadError:
 MsgBox "Error #" & Str$(Err.Number) & _
 " at Line " & Str$(Erl) & _
 " - " & Err.Description & " - reported by " & Err.Source
Resume Next
End Sub

How It Works

This simple example merely shows the error-handling logic that is possible using Visual Basic. The key to this
sample is the use of the MsgBox function to show the various Err Object properties on the screen.
Meaningful error handling has to be written into your application as you discover the most common problems
with your applications.

Comments

As you work with DAO, be forewarned that you might get some unexplainable errors. You can't assume that
anything as complex as the data control will always behave the way you would have written it, so you sometimes
have to learn parts of the data control's behavior through a process of discovery. The best way to trap elusive
errors is to eliminate controls from your form and code from your program until the errors stop occurring. The
last thing deleted before the program works again is, no matter how unlikely, the part of the code or control
causing the problem. The multiple cascading of events between the data control, its recordset object, and your
event handlers can have unforeseen consequences that result in inexplicable errors. The most common of these
data control errors is referencing invalid recordset fields during a reposition event because the recordset has
moved to the "No current record" area.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Ch 1 --Accessing a Database with Bound Controls

http://www.pbs.mcp.com/ebooks/1571691529/ch01/ch01.htm (37 of 37) [9/22/1999 1:56:54 AM]

Visual Basic 6 Database How-To

- 2 -
Accessing a Data-base with Data Access

Objects
How do I...

2.1 Browse and update a recordset with Data Access Objects?❍

2.2 Validate data entered into Data Access Objects?❍

2.3 Allow users to undo changes they've made in Data Access Objects?❍

2.Add and delete records by using Data Access Objects?❍

2.5 Use unbound controls to update fields in Data Access Objects?❍

2.6 Find records by using index values in Data Access Objects?❍

2.7 Determine how many records are in a dynaset- or snapshot-type recordset?❍

2.8 Handle Data Access Object errors?❍

2.9 Access Excel worksheets by using Data Access Objects?❍

●

The Data control provides a means of quickly developing database applications with little or no code, but it limits
your access to the underlying database. The Microsoft Jet database engine exposes another method of working with
data-bases: Data Access Objects (DAO). Although using DAO requires more coding than using the Data control, it
offers complete programmatic access to every-thing in the database, as well as significantly greater flexibility. This
chapter shows you how to use Jet Data Access Objects to perform common database operations.

All the examples in this chapter use Microsoft Access (.MDB) database files. The Jet engine can also access other
PC-based databases such as dBASE, FoxPro, Paradox, and Btrieve, as well as Open Database Connectivity
(ODBC) data sources. The techniques shown can be used with any database that Visual Basic can access through
Jet. Chapter 6, "Connecting to an ODBC Server," and Chapter 7, "SQL Server Databases and Remote Data
Objects," show how to access ODBC and SQL Server databases.

2.1 Browse and Update a Recordset with Data Access Objects

Browsing and updating records are two of the most basic database operations. In this How-To, you will use

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (1 of 53) [9/22/1999 1:57:11 AM]

unbound controls and Data Access Objects to browse and update a recordset.

2.2 Validate Data Entered into Data Access Objects

Users make data entry errors, and robust applications anticipate and trap those errors. This How-To shows how to
trap and respond to user errors when you're using Data Access Objects.

2.3 Allow Users to Undo Changes They've Made in Data Access Objects

Users expect to be able to undo changes they make while they are working. In this How-To, using Data Access
Objects and unbound controls, you will learn how to enable users to undo changes.

2.Add and Delete Records by Using Data Access Objects

Inserting and deleting records are common database activities. In this How-To, you will learn to use Data Access
Objects to add and delete records.

2.5 Use Unbound Controls to Update Fields in Data Access Objects

Simple text boxes are not the only user interface tools available when you're using unbound controls. In this
How-To, you will build a generic form that can run an ad hoc query, display the results, and enable the user to
select a record.

2.6 Find Records by Using Index Values in Data Access Objects

Indexes can substantially speed up access to records. This How-To shows how you can leverage indexes for
performance.

2.7 Determine How Many Records Are in a Dynaset- or Snapshot-Type Recordset

If you need to know how many records are in your recordset, this How-To will show you how to get that number.

2.8 Handle Data Access Object Errors

Although Jet is a robust database engine, many things can go wrong when working with a database. This How-To
shows you how to handle Data Access Object errors gracefully.

2.9 Access Excel Worksheets by Using Data Access Objects

An interesting capability of the Microsoft Jet engine is used to access Excel worksheets. In this How-To, we view
and manipulate an Excel worksheet as if it were an ordinary database file.

2.1 How do I...

Browse and update records by using Data Access Objects?

PROBLEM

Bound recordsets with Data controls are fine for many purposes, but the Data control has significant limitations. I
can't use indexes with bound controls, and I can't refer to the Data control's recordset if the Data control's form is
not loaded. How can I browse a recordset without using bound controls?

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (2 of 53) [9/22/1999 1:57:11 AM]

Technique

Visual Basic and the Microsoft Jet database engine provide a rich set of Data Access Objects that give you
complete control over your database and provide capabilities beyond what you can accomplish with bound
controls.

If you've worked with other databases, and in particular Structured Query Language (SQL), you might be
accustomed to dividing the database programming language into Data Definition Language (DDL) and Data
Manipulation Language (DML). Although Jet provides programmatic access to both structure and data, DAO
makes no clear distinction between the two. Some objects, such as the Recordset, are used strictly for data
manipulation, whereas others, such as the TableDef object, act in both data definition and data manipulation roles.
Figure 2.1 shows the DAO hierarchy.

Figure 2.1. The Data Access Object hierarchy.

In most cases, you will be using DAO to manage data. There are four general types of data operations:

Retrieve records●

Insert new records●

Update existing records●

Delete records●

DAO provides the recordset object for retrieving records and both the recordset object and the Execute method for
inserting, updating, and deleting records.

Before you can do anything useful with DAO, you must open a database. In most cases, this is as simple as using
the OpenDatabase method of the default workspace. The following code fragment shows some typical code used to
open an Access .MDB file and create a recordset:

` Declare database variable
Dim db As Database
Dim rs As Recordset
` Open a database file and assign it to db
Set db = DBEngine.Workspaces(0).OpenDatabase(App.Path & "\MyDB.MDB")
` Create a recordset
Set rs = db.OpenRecordset("MyQuery", dbOpenDynaset, , dbOptimistic)

If you are working with a secured database, you will need to take a few extra steps to provide a valid username and
password to the database engine so that a secured workspace object can be created. Refer to Chapter 11, "The
Windows Registry and State Information," for more information.

Moving Within an Unbound Recordset

When you use the Data control on a bound form, you rarely have to code in order to move operations. The user
clicks on the navigational buttons, and the Data control executes a move internally. Only in the case of a delete do
you need to code a move operation (see How-To 1.4).

When you use unbound controls, you must refresh the data displayed on the form with your code. The recordset
object provides four methods to facilitate this task: MoveFirst, MovePrevious, MoveNext, and MoveLast.

When you use MovePrevious, you should always check to make sure that the movement has not placed the record
pointer before the first record in the recordset. Do this by checking the value of the recordset's BOF property. If
BOF is True, you're not on a valid record. The usual solution is to use MoveFirst to position the pointer on the first
record. Similarly, when you use MoveNext, you should check to make sure that you're not past the last record in
the recordset by checking the EOF property. If EOF is True, use MoveLast to move to a valid record. It's also a

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (3 of 53) [9/22/1999 1:57:11 AM]

javascript:popUp('02fig01.gif')

good idea to ensure that the recordset has at least one record by making sure that the value of the recordset's
RecordCount property is greater than zero.

Updating Records

You can update the values in table-type or dynaset-type recordsets. Updating records in a recordset is a four-step
procedure:

1. Position the record pointer to the record you want to update.

2. Copy the record's values to an area of memory known as the copy buffer by invoking the recordset object's
Edit method.

3. Change the desired fields by assigning values to the Field objects.

4. Transfer the contents of the copy buffer to the database by invoking the recordset object's Update method.

Steps

Open and run the project HT201.VBP. The form shown in Figure 2.2 appears. Use the navigation buttons at the
bottom of the form to browse through the records in the recordset. You can change the data by typing over the
existing values.

1. Create a new project called HT201.VBP. Use Form1 to create the objects and properties listed in Table
2.1, and save the form as HT201.FRM.

Table 2.1. Objects and properties for Form1.

OBJECT Property Setting

Form Name Form1

Caption Unbound Browser

CommandButton Name cmdMove

Caption |<

Index 0

CommandButton Name cmdMove

Caption <

Index 1

CommandButton Name cmdMove

Caption >

Index 2

CommandButton Name cmdMove

Caption >|

Index 3

TextBox Name txt

Index 0

TextBox Name txt

Index 1

TextBox Name txt

Index 2

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (4 of 53) [9/22/1999 1:57:11 AM]

TextBox Name txt

Index 3

Label Name Label1

Caption &Title

Label Name Label2

Caption &Year Published

Label Name Label3

Caption &ISBN

Label Name Label4

Caption &Publisher ID

2. Create the menu shown in Table 2.2.

Table 2.2. Menu specifications for Form1.

CAPTION Name Shortcut Key

&File mnuFile

----E&xit mnuFileExit

&Data mnuData

----&Save Record mnuDataSaveRecord Ctrl+S

Figure 2.2. The Unbound Browser form.

3. Add READINI.bas to your project. READINI.bas looks for a file named VBDBHT.ini in the Windows
directory with the following text:

[Data Files]
BIBLIO=<path to biblio directory>

The path should point to the Chapter 2 subdirectory of the directory where you installed the files from the
CD setup program. The standard module uses the GetPrivateProfileString API function to obtain the path to
the sample database.

You can also use the copy of Biblio.mdb that was installed with Visual Basic, although it is possible that
there are differences in the file. If your copy has the same database structure, you can update the .ini file to
point to your existing copy and delete the copy in the Chapter 2 subdirectory.

4. Add a class module to the project, name it CTitles, and save the file as HT201.CLS.

5. Add the following code to the declarations section of CTitles. Several private variables are declared,
including database and recordset object variables, a flag to track changes to the record, strings to hold the
property values, and public enumerations for record movement and class errors.

Option Explicit
` The CTitles class provides a light wrapper
` around the database and record for the
` Titles table in the Biblio database
` Note: It's up to the client to save
` Database and recordset objects
Private mdb As Database
Private mrs As Recordset

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (5 of 53) [9/22/1999 1:57:11 AM]

javascript:popUp('02fig02.gif')

` Flags
` dirty flag
Private mblnIsDirty As Boolean
` Fields
` title
Private mstrTitle As String
` year - note use of string for
` assignment to text box
Private mstrYearPublished As String
` ISBN number
Private mstrISBN As String
` PubID - also a string
Private mstrPubID As String
` Move method constants
Public Enum CTitlesMove
 FirstRecord = 1
 LastRecord = 2
 NextRecord = 3
 PreviousRecord = 4
End Enum
` Error constants
` Note: RaiseClassError method provides the strings
` because you cannot assign a string to an Enum
Public Enum CTitlesError
 ErrInvalidMoveType = vbObjectError + 1000 + 11
 ErrNoRecords = vbObjectError + 1000 + 12
End Enum

ENUMERATIONS

Enumerations are a feature in Visual Basic that enables you to define publicly available constants
within a class module. If you did any work with class modules in Visual Basic 4.0 or earlier, you
might have been frustrated by the need to provide a standard "helper" module for any class that used
public constants. This type of workaround has been replaced with public enumerations. Note,
however, that you can assign only long integer values in an enumeration. No means exist for making
strings or other types of constants public in classes.

6. Add the following code to the Class_Initialize and Class_Terminate event procedures in CTitles.
Class_Initialize opens the database and creates a recordset, generating an error if no records exist.
Class_Terminate closes the object variables opened by Class_Initialize.

Private Sub Class_Initialize()
 ` open the database and recordset
 Dim strDBName As String
 ` Get the database name and open the database.
 ` BiblioPath is a function in READINI.BAS
 strDBName = BiblioPath()
 Set mdb = DBEngine.Workspaces(0).OpenDatabase(strDBName)
 ` Open the recordset.
 Set mrs = mdb.OpenRecordset(_
 "Titles", dbOpenDynaset, dbSeeChanges, dbOptimistic)

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (6 of 53) [9/22/1999 1:57:11 AM]

 ` Raise an error if there is no data
 If mrs.BOF Then
 RaiseClassError ErrNoRecords
 End If
 ` fetch the first record to the properties
 GetCurrentRecord
End Sub
Private Sub Class_Terminate()
` cleanup - note that since a Class_Terminate error
` is fatal to the app, this proc simply traps and
` ignores any shutdown errors
` that's not a great solution, but there's not much
` else that can be done at this point
` in a production app, it might be helpful to log
` these errors
 ` close and release the recordset object
 mrs.Close
 Set mrs = Nothing
 ` close and release the database object
 mdb.Close
 Set mdb = Nothing

End Sub

7. Add the private RaiseClassError method to CTitles. This is a simple switch that sets the Description and
Source properties for errors raised by the class.

Private Sub RaiseClassError(lngErrorNumber As CTitlesError)
` Note: DAO errors are passed out as-is
 Dim strDescription As String
 Dim strSource As String
 ` assign the description for the error
 Select Case lngErrorNumber
 Case ErrInvalidMoveType
 strDescription = "Invalid move operation."
 Case ErrNoRecords
 strDescription = _
 "There are no records in the Titles table."
 Case Else
 ` If this executes, it's a coding error in
 ` the class module, but having the case is
 ` useful for debugging.
 strDescription = _
 "There is no message for this error."
 End Select
 ` build the Source property for the error
 strSource = App.EXEName & ".CTitles"
 ` raise it
 Err.Raise lngErrorNumber, strSource, strDescription
End Sub

8. Add the GetCurrentRecord method. This procedure fetches the data from the recordset and writes the

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (7 of 53) [9/22/1999 1:57:11 AM]

values to the private module-level variables used by the property procedures.

Private Sub GetCurrentRecord()
` Get current values from the recordset
 ` a zero length string is appended to
 ` each variable to avoid the Invalid use of Null
 ` error if a field is null
 ` although current rules don't allow nulls, there
 ` may be legacy data that doesn't conform to
 ` existing rules
 mstrISBN = mrs![ISBN] & ""
 mstrTitle = mrs![Title] & ""
 mstrYearPublished = mrs![Year Published] & ""
 mstrPubID = mrs![PubID] & ""
End Sub

9. Add the private UpdateRecord method. This procedure writes the module-level variables to the recordset.
The error handler in this procedure clears any changes that were made to the field values.

Private Sub UpdateRecord()
` DAO Edit/Update
On Error GoTo ProcError
 ` inform DAO we will edit
 mrs.Edit
 mrs![ISBN] = mstrISBN
 mrs![Title] = mstrTitle
 mrs![Year Published] = mstrYearPublished
 mrs![PubID] = mstrPubID
 ` commit changes
 mrs.Update
 ` clear dirty flag
 mblnIsDirty = False
 Exit Sub
ProcError:
 ` clear the values that were assigned
 ` and cancel the edit method by
 ` executing a moveprevious/movenext
 mrs.MovePrevious
 mrs.MoveNext
 ` raise the error again
 Err.Raise Err.Number, Err.Source, Err.Description, _
 Err.HelpFile, Err.HelpContext
End Sub

10. Add the Property Let and Property Get procedures for the Title, YearPublished, ISBN, and PubID
properties of the class. The Property Get procedures simply return the values of the module-level variables.
The Property Let procedures assign the new values to the module level variables and set the mblnIsDirty
flag.

Public Property Get Title() As String
 Title = mstrTitle
End Property
Public Property Let Title(strTitle As String)
 mstrTitle = strTitle

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (8 of 53) [9/22/1999 1:57:11 AM]

 ` set the dirty flag
 mblnIsDirty = True
End Property
Public Property Get YearPublished() As String
 YearPublished = mstrYearPublished
End Property
Public Property Let YearPublished(strYearPublished As String)
 mstrYearPublished = strYearPublished
 ` set the dirty flag
 mblnIsDirty = True
End Property
Public Property Get ISBN() As String
 ISBN = mstrISBN
End Property
Public Property Let ISBN(strISBN As String)
 mstrISBN = strISBN
 ` set the dirty flag
 mblnIsDirty = True
End Property
Public Property Get PubID() As String
 PubID = mstrPubID
End Property
Public Property Let PubID(strPubID As String)
 mstrPubID = strPubID
 ` set the dirty flag
 mblnIsDirty = True
End Property

11. Add the IsDirty Property Get procedure. This property returns the current value of the mblnIsDirty flag.
Note that this is a read-only property. There is no corresponding Property Let procedure.

Public Property Get IsDirty() As Boolean
` pass out the dirty flag
 IsDirty = mblnIsDirty
End Property

12. Add the Move method. This method moves the current pointer for the recordset based on the
lngMoveType parameter. The values for lngMoveType are defined by the CTitlesMove enumeration in the
header section. This method is a simple wrapper around the various move methods of the underlying
recordset object.

Public Sub Move(lngMoveType As CTitlesMove)
` Move and refresh properties
 Select Case lngMoveType
 Case FirstRecord
 mrs.MoveFirst
 Case LastRecord
 mrs.MoveLast
 Case NextRecord
 mrs.MoveNext
 ` check for EOF
 If mrs.EOF Then
 mrs.MoveLast

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (9 of 53) [9/22/1999 1:57:11 AM]

 End If
 Case PreviousRecord
 mrs.MovePrevious
 ` check for BOF
 If mrs.BOF Then
 mrs.MoveFirst
 End If
 Case Else
 ` bad parameter, raise an error
 RaiseClassError ErrInvalidMoveType
 End Select
 GetCurrentRecord
End Sub

More on Enumerations

Declaring the lngMoveType parameter as CTitlesMove instead of as a long integer illustrates another benefit
of using enumerations. If a variable is declared as the type of a named enumeration, the code editor provides
a drop-down list of available constants wherever the variable is used.

13. Add the SaveRecord method. This method tests the mblnIsDirty flag and updates the current record if
necessary.

Public Sub SaveRecord()
` save current changes
 ` test dirty flag
 If mblnIsDirty Then
 ` update it
 UpdateRecord
 Else
 ` record is already clean
 End If
End Sub

14. Add the following code to the declarations section of Form1. A private object variable is created for the
CTitles class, as well as constants for the control arrays and a status flag used to prevent the txt_Change
events from writing the property values in the class during a refresh of the data.

Option Explicit
` CTitles object
Private mclsTitles As CTitles
` These constants are used for the various control arrays
` command button constants
Const cmdMoveFirst = 0
Const cmdMovePrevious = 1
Const cmdMoveNext = 2
Const cmdMoveLast = 3
` text box index constants
Const txtTitle = 0
Const txtYearPublished = 1
Const txtISBN = 2
Const txtPubID = 3
` refresh flag

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (10 of 53) [9/22/1999 1:57:11 AM]

Private mblnInRefresh As Boolean

15. Add the Form_Load event procedure. Form_Load creates the mclsTitles object and loads the first record.
If an error occurs, the error handler displays a message and unloads the form, which terminates the
application.

Private Sub Form_Load()
` create the mclsTitles object and display the first record
On Error GoTo ProcError
 Dim strDBName As String
 Screen.MousePointer = vbHourglass
 ` create the CTitles object
 Set mclsTitles = New CTitles
 ` fetch and display the current record
 GetData
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 ` An error was generated by Visual Basic or CTitles.
 ` Display the error message and terminate gracefully.
 MsgBox Err.Description, vbExclamation
 Unload Me
 Resume ProcExit
End Sub

16. Add the Query_Unload event procedure. This saves the current record before unloading the form. If an
error occurs, the error handler gives the user the option of continuing (with loss of data) or returning to the
form.

Private Sub Form_QueryUnload(Cancel As Integer, UnloadMode As Integer)
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 ` save the current record
 mclsTitles.SaveRecord
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 ` an error here means the record won't be saved
 ` let the user decide what to do
 Dim strMsg As String
 strMsg = "The following error occurred while _
 "attempting to save:"
strMsg = strMsg & vbCrLf & Err.Description & vbCrLf
 strMsg = strMsg & "If you continue the current operation, " _
 strMsg = strMsg & "changes to your data will be lost."
 strMsg = strMsg & vbCrLf
 strMsg = strMsg & "Do you want to continue anyway?"
 If MsgBox(strMsg, _
 vbQuestion Or vbYesNo Or vbDefaultButton2) = vbNo Then
 Cancel = True
 End If

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (11 of 53) [9/22/1999 1:57:11 AM]

 Resume ProcExit
End Sub

17. Add the cmdMove_Click event procedure. This event saves the current record, requests the record
indicated by the Index parameter from the mclsTitles object, and refreshes the form.

Private Sub cmdMove_Click(Index As Integer)
` move to the desired record, saving first
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 ` save the record
 mclsTitles.SaveRecord
 ` move to the indicated record
 Select Case Index
 Case cmdMoveFirst
 mclsTitles.Move FirstRecord
 Case cmdMoveLast
 mclsTitles.Move LastRecord
 Case cmdMoveNext
 mclsTitles.Move NextRecord
 Case cmdMovePrevious
 mclsTitles.Move PreviousRecord
 End Select
 ` refresh display
 GetData
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox Err.Description, vbExclamation
 Resume ProcExit
End Sub

18. Add the txt_Change event procedure. This event writes the control values to the properties unless the
mblnInRefresh flag is set. The flag tells the event procedure that the form is being refreshed and that the
property values in mclsTitles do not need to be set.

Private Sub txt_Change(Index As Integer)
` update property values if required
On Error GoTo ProcError
 Dim strValue As String
 Screen.MousePointer = vbHourglass
 ` fetch the value from the control
 strValue = txt(Index).Text
 ` check first to see if we're in a GetData call
 ` assigning the property values while refreshing
 ` will reset the dirty flag again so the data will
 ` never appear to have been saved
 If Not mblnInRefresh Then
 ` update the clsTitles properties
 Select Case Index
 Case txtTitle
 mclsTitles.Title = strValue

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (12 of 53) [9/22/1999 1:57:11 AM]

 Case txtYearPublished
 mclsTitles.YearPublished = strValue
 Case txtISBN
 mclsTitles.ISBN = strValue
 Case txtPubID
 mclsTitles.PubID = strValue
 End Select
 End If
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox Err.Description, vbExclamation
 Resume ProcExit
End Sub

19. Add the mnuFileExit_Click event. This procedure unloads the form. The rest of the unload logic is
contained in the QueryUnload event procedure.

Private Sub mnuFileExit_Click()
 ` shut down
 ` work is handled by the Query_Unload event
 Unload Me
End Sub

20. Add the mnuData_Click and mnuDataSaveRecord_Click event pro-cedures. The mnuData_Click event
toggles the enabled flag for the mnuDataSaveRecord menu control based on the IsDirty flag of the
mclsTitles object. The mnuDataSaveRecord_Click procedure saves
the current record.

Private Sub mnuData_Click()
` set enabled/disabled flags for menu commands
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 ` save enabled only when dirty
 mnuDataSaveRecord.Enabled = mclsTitles.IsDirty
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox Err.Description, vbExclamation
 Resume ProcExit
End Sub
Private Sub mnuDataSaveRecord_Click()
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 ` save it
 mclsTitles.SaveRecord
 ` refresh display
 GetData
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (13 of 53) [9/22/1999 1:57:11 AM]

ProcError:
 MsgBox Err.Description, vbExclamation
 Resume ProcExit
End Sub

21. Add the private GetData procedure. GetData is used to refresh the controls based on the property values
in mclsTitles and sets the mblnInRefresh flag so that the properties aren't changed again by txt_Change.

Private Sub GetData()
` display the current record
 ` set the mblnInRefresh flag so that the txt_Change event
 ` doesn't write the property values again
 mblnInRefresh = True
 ` assign the values to the controls from the properties
 txt(txtTitle).Text = mclsTitles.Title
 txt(txtYearPublished).Text = mclsTitles.YearPublished
 txt(txtISBN).Text = mclsTitles.ISBN
 txt(txtPubID).Text = mclsTitles.PubID
 ` clear the refresh flag
 mblnInRefresh = False
End Sub

How It Works

When the form loads, it creates the object variable for the CTitles class and displays the first record. The user can
navigate among the records by clicking the move buttons, and the logic in the form and the CTitles class saves
changes if the record is dirty.

With placement of the data management logic in the class module and the user interface logic in the form, a level
of independence between the database and the user interface is created. Several different forms can be created that
all use the same class without duplicating any of the data management logic. Additionally, changes made to the
underlying database can be incorporated into the class without requiring changes to the forms based on it.

Comments

The beauty of encapsulating all the data access code in a class module isn't fully revealed until you have an
application that enables the user to edit the same data using more than one interface. If, for example, you display a
summary of detail records in a grid and also provide a regular form for working with the same data, most of the
code for managing that data will be shared in the class modules. Each form that presents the data will only need to
have code that controls its own interface.

2.2 How do I...

Validate data entered into Data Access Objects?

Problem

I need to verify that data entered is valid before I update the database. How can I do this with Data Access Objects
and unbound controls?

Technique

Databases, tables, and fields often have various business rules that apply to the data. You can apply rules by writing
code to check the values of the data in unbound controls before you write the changes to the underlying tables.

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (14 of 53) [9/22/1999 1:57:11 AM]

Class modules are most often used to handle the data-management logic for unbound data--adding a layer of
separation between the database schema and the user interface logic. Normally, class modules should not handle
any user interaction (unless, of course, the class is specifically designed to encapsulate user interface components),
so instead of generating messages, classes raise errors if a validation rule is violated. The error is trapped by the
user interface and handled in whatever manner is appropriate.

Steps

Open and run HT202.VBP. Tab to the Year Published text box, delete the year, and attempt to save the record.
Because the Year Published is required, an error message is displayed, as shown in Figure 2.3. Experiment with
some of the other fields to examine other rules and the messages that are displayed.

Figure 2.3. The Validating Browser form.

1. Create a new project called HT202.VBP. This project adds to the project developed for How-To 2.1 by
adding validation code to the CTitles class module. The form and the READINI.bas module for this project
are unchanged from the previous How-To, with the exception of the form caption, which was changed to
Validating Browser. Changes to the class module are shown in the steps that follow.

2. Add the following code to the declarations section of the class module. The modified enumeration, shown
in bold, defines the errors that can be raised by the class. The rest of the declarations section is unchanged
from the previous How-To.

Option Explicit
` The CTitles class provides a light wrapper
` around the database and record for the
` Titles table in the Biblio database
` Database and recordset objects
Private mdb As Database
Private mrs As Recordset
` Flags
` dirty flag
Private mblnIsDirty As Boolean
` Fields
` title
Private mstrTitle As String
` year - note use of string for
` assignment to text box
Private mstrYearPublished As String
` ISBN number
Private mstrISBN As String
` PubID - also a string
Private mstrPubID As String
` Move method constants
Public Enum CTitlesMove
 FirstRecord = 1
 LastRecord = 2
 NextRecord = 3
 PreviousRecord = 4
End Enum
` Error constants
` Note: RaiseClassError method provides the strings
` because you cannot assign a string to an Enum

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (15 of 53) [9/22/1999 1:57:11 AM]

javascript:popUp('02fig03.gif')

Public Enum CTitlesError
 ErrMissingTitle = vbObjectError + 1000 + 1
 ErrMissingYear = vbObjectError + 1000 + 2
 ErrMissingISBN = vbObjectError + 1000 + 3
 ErrInvalidYear = vbObjectError + 1000 + 4
 ErrMissingPubID = vbObjectError + 1000 + 5
 ErrNonNumericPubID = vbObjectError + 1000 + 6
 ErrRecordNotFound = vbObjectError + 1000 + 10
 ErrInvalidMoveType = vbObjectError + 1000 + 11
 ErrNoRecords = vbObjectError + 1000 + 12
End Enum

3. Modify the RaiseClassError procedure, as shown. This is a simple switch that sets the Description and
Source properties for errors raised by the class. Several new cases in the Select Case block are dedicated to
assigning descriptions to validation errors.

Private Sub RaiseClassError(lngErrorNumber As CTitlesError)
` Note: DAO errors are passed out as-is
 Dim strDescription As String
 Dim strSource As String
 ` assign the description for the error
 Select Case lngErrorNumber
 Case ErrMissingTitle
 strDescription = "The Title is required."
 Case ErrMissingYear
 strDescription = "The Year Published is required."
 Case ErrMissingISBN
 strDescription = "The ISBN number is required."
 Case ErrInvalidYear
 strDescription = "Not a valid year."
 Case ErrMissingPubID
 strDescription = "The Publisher ID is required."
 Case ErrNonNumericPubID
 strDescription = "The Publisher ID must be numeric."
 Case ErrRecordNotFound
 strDescription = "The record was not found."
 Case ErrInvalidMoveType
 strDescription = "Invalid move operation."
 Case ErrNoRecords
 strDescription = _
 "There are no records in the Titles table."
 Case Else
 ` If this executes, it's a coding error in
 ` the class module, but having the case is
 ` useful for debugging.
 strDescription = "There is no message for this error."
 End Select
 ` build the Source property for the error
 strSource = App.EXEName & ".CTitles"
 ` raise it
 Err.Raise lngErrorNumber, strSource, strDescription

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (16 of 53) [9/22/1999 1:57:12 AM]

End Sub

4. Add the IsValid property. This property takes an optional argument, blnRaiseError, which defaults to
False and controls the procedure logic. If the flag is True, an error is generated when a validation rule is
violated. Code within the class sets the flag to True so that errors are raised when rules are violated. Forms
would normally ignore this optional parameter and simply test for a True or False value in the property.

Public Property Get IsValid _
 (Optional blnRaiseError As Boolean = False) As Boolean
` test the data against our rules
` the optional blnRaiseError flag can be used to have the
` procedure raise an error if a validation rule is
` violated.
 Dim lngError As CTitlesError
 If mstrISBN = "" Then
 lngError = ErrMissingISBN
 ElseIf mstrTitle = "" Then
 lngError = ErrMissingTitle
 ElseIf mstrYearPublished = "" Then
 lngError = ErrMissingYear
 ElseIf Not IsNumeric(mstrYearPublished) Then
 lngError = ErrInvalidYear
 ElseIf mstrPubID = "" Then
 lngError = ErrMissingPubID
 ElseIf Not IsNumeric(mstrPubID) Then
 lngError = ErrNonNumericPubID
 End If
 If lngError <> 0 Then
 If blnRaiseError Then
 RaiseClassError lngError
 Else
 IsValid = False
 End If
 Else
 IsValid = True
 End If
End Property

5. Modify the SaveRecord method to call IsValid. This method tests the mblnIsDirty flag and updates the
current record if necessary. Before UpdateRecord is called, the procedure calls the IsValid procedure, setting
the blnRaiseError parameter to True so that any rule violations are raised as errors in the form. The only
difference between this version of SaveRecord and the version shown in How-To 2.1 is the call to IsValid
and the relocation of the call to UpdateRecord so that it is called only if IsValid returns True.

Public Sub SaveRecord()
` save current changes
 ` test dirty flag
 If mblnIsDirty Then
 ` validate, raise an error
 ` if rules are violated
 If IsValid(True) Then
 ` update it
 UpdateRecord

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (17 of 53) [9/22/1999 1:57:12 AM]

 End If
 Else
 ` record is already clean
 End If
End Sub

How It Works

Data validation logic is handled entirely within the CTitles class--no special coding is required in the form beyond
the normal error handlers that trap errors and display a simple message about the error. The rules applied for
validation can be as simple or as complex as the application requires.

Only minor modifications to the class were required to implement data validation. The error enumeration and the
corresponding RaiseClassError procedure were expanded to include validation errors, the IsValid procedure was
added to perform the validation tests, and a few lines of code were changed in the SaveRecord procedure.

Comments

Not all database rules require you to write code to perform data validation. The Jet database engine can enforce
some--or possibly all--of your rules for using the properties of tables and fields or relational constraints. How-To
4.5 shows you how to use these objects and properties to supplement or replace validation code.

2.3 How do I...

Allow users to undo changes they've made in Data Access Objects?

Problem

Users sometimes make data entry errors while working. How can I allow users to undo changes they've made to
data in unbound controls using Data Access Objects?

Technique

A few additional lines of code in the class module handling data management for your database can implement an
undo feature. Because data is not updated in bound controls until you explicitly update it with your code, you can
restore the original values by reloading them from the underlying recordset. The class module handles restoring the
original values from the recordset and assigning them to the property values. The form only needs to read the data
from the property procedures and write the property values to the controls.

Steps

Open and run the project HT203.VBP and the form shown in Figure 2.4 appears. Change the data in any control on
the form, and use the Undo command on the Edit menu to restore the original value.

Figure 2.4. The Undo Browser form.

1. Create a new project called HT203 .VBP. This project is based on the example developed for How-To 2.1
and also includes the READINI.bas module and CTitles.cls module. Menu controls and supporting code
have been added to the form developed for How-To 2.1 to support the undo operation, and a public method
has been added to the class module. If you have worked through How-To 2.1, you can copy or modify your
existing files. If not, refer to the steps in that example to create the foundation for this project.

2. Change the caption of Form1 to Undo Browser, and add the menu shown in Table 2.3.

Table 2.3. Menu specifications for the Edit menu.

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (18 of 53) [9/22/1999 1:57:12 AM]

javascript:popUp('02fig04.gif')

CAPTION Name Shortcut Key

&Edit mnuEdit

----&Undo mnuEditUndo Ctrl+Z

NOTE By convention, the Edit menu is placed to the immediate right of the File menu.

3. Add the mnuEdit_Click and mnuEditUndo_Click events to Form1.
The mnuEdit_Click event checks the current record state and toggles the enabled property of the
mnuEditUndo control based on the value of the IsDirty property of mclsTitles. The mnuEditUndo_Click
procedure calls the UndoRecord method of the mclsTitles object and refreshes the form. This is the only new
code in the form.

Private Sub mnuEdit_Click()
` enable/disable undo command based on current dirty flag
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 ` toggle based on dirty flag
 mnuEditUndo.Enabled = mclsTitles.IsDirty
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox Err.Description, vbExclamation
 Resume ProcExit
End Sub
Private Sub mnuEditUndo_Click()
` undo changes
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 ` undo changes
 mclsTitles.UndoRecord
 ` refresh the display
 GetData
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox Err.Description, vbExclamation
 Resume ProcExit
End Sub

4. Add the UndoRecordmethod to the CTitles class. UndoRecord clears the mblnIsDirty flag and restores the
original values from the recordset to
the private variables used for the property procedures by calling the GetCurrentRecord procedure.

Public Sub UndoRecord()
` clear changes and refresh properties
 ` clear dirty flag
 ` but do not clear new flag
 mblnIsDirty = False

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (19 of 53) [9/22/1999 1:57:12 AM]

 ` refresh the current values from the recordset
 GetCurrentRecord
End Sub

How It Works

Each of the property procedures that represent fields in the CTitles class sets the module-level mblnIsDirty flag.
This flag is then used to toggle the enabled property of the Undo command on the Edit menu. When the user selects
Undo, the form calls the UndoRecord method of the class and refreshes the controls on the form. The UndoRecord
method needs only to restore the private module-level variables with the data that is still unchanged in the
recordset.

Comments

The standard TextBox control supports a field level undo capability with the built-in context menu. By adding
some code, you could also implement a field-level undo command for any field you display, regardless of the type
of control that is used.

2.How do I...

Add and delete records by using Data Access Objects?

Problem

Viewing and editing existing records are only half of the jobs my users need to do. How do I add and delete records
using unbound controls and Data Access Objects?

Technique

The recordset object provides the AddNew and Delete methods for inserting and deleting records. When you are
using unbound controls on a form, adding a record is a five-step process:

1. Clear (and if necessary save) the current record so that the user can enter data for the new record.

2. Call the AddNew method of the recordset.

3. Write the values from the controls to the Fields.

4. Call the Update method of the recordset.

5. Restore the record pointer to the newly added record.

Deleting a record is a two-step process:

1. Call the Delete method of the recordset.

2. Move to a valid record and display it.

ADD AND DELETE USER INTERFACES

Microsoft Access and (if properly configured) the Data control enable users to add new records by
navigating to the end of the recordset and clicking the Next Record button. Although this two-step
procedure might seem obvious to most programmers and database developers, it is not at all obvious
to most users. Users will be looking for something clearly labeled as a command that will give them a
new record with which to work. Rather than emulate this confusing idiom, this example uses a New
Record command on the Data menu.

The same reasoning applies to deleting records. Provide a clearly labeled menu command or button the

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (20 of 53) [9/22/1999 1:57:12 AM]

user can click to perform a delete.
In short, don't aggravate your users by burying common operations with obscure procedures in the
interface.

Steps

Open and run the project HT204 .VBP. To add a new record, select the Data | New Record menu command, as
shown in Figure 2.5. To delete a record, choose the Delete Record command.

Figure 2.5. The Add and Delete form.

1. Create a new project called HT204.VBP. This project is based on the example developed for How-To 2.1.
Only the changes to that project are described here. Refer to the steps in the original project for the complete
details of creating the form, the CTitles class module, and the READINI.bas module.

2. Change the caption of Form1 to Add and Delete, and add the New Record and Delete Record commands
(shown in bold) to the Data menu, as shown in Table 2.4.

Table 2.4. Menu specifications for Form1.

CAPTION Name Shortcut Key

&File mnuFile

----E&xit mnuFileExit

&Data mnuData

----&New Record mnuDataNewRecord Ctrl+N

----&Save Record mnuDataSaveRecord Ctrl+S

----&Delete Record mnuDataDeleteRecord Ctrl+X

3. Modify the Form_Load event procedure to enable the user to create a new record if the table is empty
when the form is initially loaded. Only the code in the error handler has changed.

Private Sub Form_Load()
` create the mclsTitles object and display the first record
On Error GoTo ProcError
 Dim strDBName As String
 Screen.MousePointer = vbHourglass
 ` create the CTitles object
 Set mclsTitles = New CTitles
 ` fetch and display the current record
 GetData
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 ` An error was generated by Visual Basic or CTitles.
 ` Check for the "No Records" error and if so
 ` just provide a new record.
 Select Case Err.Number
 Case ErrNoRecords
 mclsTitles.NewRecord
 Resume Next

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (21 of 53) [9/22/1999 1:57:12 AM]

javascript:popUp('02fig05.gif')

 Case Else
 ` Some other error
 ` Display the error message and terminate gracefully.
 MsgBox Err.Description, vbExclamation
 Unload Me
 Resume ProcExit
 End Select
End Sub

4. Add the event procedures for mnuData_Click and its submenu items mnuDataNewRecord_Click,
mnuDataSaveRecord_Click, and mnuDataDeleteRecord_Click. The mnuData_Click event toggles the
enabled flag for the mnuDataSaveRecord menu control based on the IsDirty flag of the mclsTitles object.
The mnuDataNewRecord_Click event calls the NewRecord method of the mclsTitles object. The
mnuDataSaveRecord_Click procedure saves the current record by calling the mclsTitles.SaveRecord
method. The DeleteRecord method of mclsTitles is called by mnuDataDeleteRecord_Click. A special trap is
used in the error handler. If the delete leaves the recordset empty, a new record is created.

Private Sub mnuData_Click()
` set enabled/disabled flags for menu commands
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 ` save enabled only when dirty
 mnuDataSaveRecord.Enabled = mclsTitles.IsDirty
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox Err.Description, vbExclamation
 Resume ProcExit
End Sub

The mnuData_Click event procedure is unchanged from the example in How-To 2.1.

Private Sub mnuDataNewRecord_Click()
` set up a new record
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 ` save existing first
 mclsTitles.SaveRecord
 ` get a new record
 mclsTitles.NewRecord
 ` refresh display
 GetData
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox Err.Description, vbExclamation
 Resume ProcExit
End Sub
Private Sub mnuDataSaveRecord_Click()
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (22 of 53) [9/22/1999 1:57:12 AM]

 ` save it
 mclsTitles.SaveRecord
 ` refresh display
 GetData
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox Err.Description, vbExclamation
 Resume ProcExit
End Sub
Private Sub mnuDataDeleteRecord_Click()
` delete the current record
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 mclsTitles.DeleteRecord
 ` refresh display
 GetData
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 Select Case Err.Number
 Case ErrNoRecords
 ` last record was deleted
 ` Create a new record
 mclsTitles.NewRecord
 Resume Next
 Case Else
 ` inform
 MsgBox Err.Description, vbExclamation
 Resume ProcExit
 End Select
End Sub

5. Revise the declarations section of CTitles to include the new mblnIsNew flag, shown in bold in the
following listing. This flag is True if the current data is a new record and False if it is an existing record.

Option Explicit
` The CTitles class provides a light wrapper
` around the database and record for the
` Titles table in the Biblio database
` Note: It's up to the client to save
` Database and recordset objects
Private mdb As Database
Private mrs As Recordset
` Flags
` dirty flag
Private mblnIsDirty As Boolean
` new record flag
Private mblnIsNew As Boolean

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (23 of 53) [9/22/1999 1:57:12 AM]

` Fields
` title
Private mstrTitle As String
` year - note use of string for
` assignment to text box
Private mstrYearPublished As String
` ISBN number
Private mstrISBN As String
` PubID - also a string
Private mstrPubID As String
` Move method constants
Public Enum CTitlesMove
 FirstRecord = 1
 LastRecord = 2
 NextRecord = 3
 PreviousRecord = 4
End Enum
` Error constants
` Note: RaiseClassError method provides the strings
` because you cannot assign a string to an Enum
Public Enum CTitlesError
 ErrInvalidMoveType = vbObjectError + 1000 + 11
 ErrNoRecords = vbObjectError + 1000 + 12
End Enum

6. Create the AddNewRecord method. This sub does the real work of inserting the record into the database.
First the AddNew method is called, then the values from the properties are written to the fields, and finally
the Update method is called to commit the changes. After a record is inserted using AddNew and Update, the
current record is undefined. Setting the recordset's Bookmark property to the special LastModified bookmark
restores the current record pointer to the new record.

Private Sub AddNewRecord()
` DAO AddNew/Update
 ` inform DAO we are going to insert
 mrs.AddNew
 ` write the current values
 mrs![ISBN] = mstrISBN
 mrs![Title] = mstrTitle
 mrs![Year Published] = mstrYearPublished
 mrs![PubID] = mstrPubID
 ` update the record
 mrs.Update
 ` return to the new record
 mrs.Bookmark = mrs.LastModified
 ` clear new flag
 mblnIsNew = False
 ` clear dirty flag
 mblnIsDirty = False
End Sub

7. Add the IsNew property. This flag indicates whether the current record is a new record (one that has not
been added to the recordset) by returning the value of the private mblnIsNew flag.

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (24 of 53) [9/22/1999 1:57:12 AM]

Public Property Get IsNew() As Boolean
` pass out the new flag
 IsNew = mblnIsNew
End Property

8. Add the NewRecord method. This method clears the current values of the private variables used for the
field properties and sets the mblnIsNew flag used by the IsNew property.

Public Sub NewRecord()
` clear the current values for an insert
` NOTE: the flags work so that if a new
` record is added but not changed, you
` can move off of it or close with no
` prompt to save
 ` assign zero-length strings to the properties
 mstrISBN = ""
 mstrTitle = ""
 mstrYearPublished = ""
 mstrPubID = ""
 ` set the new flag
 mblnIsNew = True
End Sub

9. Add the DeleteRecord method. DeleteRecord calls the Delete method of the recordset object and then uses
the MovePrevious method to reset the current record to a valid record pointer. If MovePrevious takes the
recordset to BOF (before the first record) a MoveFirst is executed.

Public Sub DeleteRecord()
` DAO delete
 ` delete the record
 mrs.Delete
 ` clear new and dirty flags
 mblnIsDirty = False
 mblnIsNew = False
 ` reposition to a valid record
 mrs.MovePrevious
 ` check for BOF
 If mrs.BOF Then
 ` could be empty, check EOF
 If Not mrs.EOF Then
 mrs.MoveFirst
 Else
 ` empty recordset, raise error
 ` the client must decide how to
 ` handle this situation
 RaiseClassError ErrNoRecords
 End If
 End If
 GetCurrentRecord
End Sub

10. Add the SaveRecord method. This method tests the mblnIsDirty flag and updates the current record, if
necessary. If the record is new, the data is committed to the table using the AddNewRecord procedure.
Existing records are updated using the UpdateRecord procedure.

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (25 of 53) [9/22/1999 1:57:12 AM]

Public Sub SaveRecord()
` save current changes
 ` test dirty flag
 If mblnIsDirty Then
 ` test new flag
 If mblnIsNew Then
 ` add it
 AddNewRecord
 Else
 ` update it
 UpdateRecord
 End If
 Else
 ` record is already clean
 End If
End Sub

How It Works

The CTitles class handles all the data processing with the database engine and provides a lightweight wrapper
around the AddNew, Update, and Delete methods of the Recordset object. The form exposes these features in the
user interface by providing menu commands for each data operation and handling save and error trapping logic.

Encapsulating all the recordset management logic in the class module means that all that code can be easily reused
in other forms based on the same data.

Comments

A complete application might not necessarily have a one-to-one correspondence between tables and class modules.
The classes should reflect the object model for the application and its data, not the database schema itself. The
database underlying a complex application might have tables that are not reflected in the object model, such as
tables used only for supplying lookup values to lists, or tables that are not directly represented, such as junction
tables in many-to-many relationships.

2.5 How do I...

Use unbound controls to update fields in Data Access Objects?

Problem

Using Data Access Objects to build data entry forms with unbound controls works well in most situations, but
sometimes the data is difficult for the user to work with. I need to extend the user interface of my application to
provide alternative methods of finding and choosing records.

TECHNIQUE

The nature of database applications is that users must often deal with less-than-obvious values, such as foreign keys
and coded data. Instead of forcing the user to remember arbitrary key values and data codes, you can alter the user
interface to provide lists of values rather than simple text boxes.

NOTE Chapter 4, "Designing and Implementing a Database," discusses foreign keys and table

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (26 of 53) [9/22/1999 1:57:12 AM]

relationships.

Foreign key values can represent a special problem because the lookup tables for the keys are often quite large.
Populating a list with all the available values can seriously damage the performance of the application.
Additionally, because this is such a common operation, a generic tool for working with this type of data saves
significant coding effort.

Using a simple form and a ListView control, you can build a generic tool that can display the results of an ad hoc
query and return a key value for the record selected by the user.

Steps

Open and run the project HT205.VBP. Select Data|Find Publisher and enter SAMs. Click OK to display the results.
The form shown in Figure 2.6 appears.

Figure 2.6. The Lookup Browser form.

1. Create a new project called HT205 .VBP. This example extends the project developed for How-To 2.1 to
provide a means for the user to search for an identifier value for a publisher. Refer to the steps in How-To
2.1 for complete details on building the base application. Only the changes to the original project are shown
in the steps that follow.

2. Change the caption of Form1 to Lookup Browser. Modify the Data menu as shown in Table 2.5, adding
the Find Publisher command (shown in bold).

Table 2.5. Menu specifications for Form1.

CAPTION Name Shortcut Key

&File mnuFile

----E&xit mnuFileExit

&Data mnuData

----&Save Record mnuDataSaveRecord Ctrl+S

----&Find Publisher mnuDataFindPublisher Ctrl+F

3. Add the following code to Form1 as the mnuDataFindPublisher_Click event. This event uses an input box
and the FSearchResults form to build and display the results of an ad hoc query. The user is prompted
to enter all or part of the name of a publisher. The value entered is used to build a SQL statement that is
passed to the FSearchResults form. The FSearchResults form handles the balance of the selection process
and sets its KeyValue property before it returns control to the mnuDataFindPublisher_Click event.

Private Sub mnuDataFindPublisher_Click()
` Use the FSearchResults form to find a pub id
On Error GoTo ProcError
 Dim strPrompt As String
 Dim strInput As String
 Dim strSQL As String
 Dim fSearch As FSearchResults
 strPrompt = "Enter all or the beginning of _
 "the publisher name:"
 strInput = InputBox$(strPrompt, "Search for Publishers")
 If strInput <> "" Then
 ` search

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (27 of 53) [9/22/1999 1:57:12 AM]

javascript:popUp('02fig06.gif')

 strSQL = "SELECT * FROM Publishers " & _
 "WHERE Name LIKE `" & strInput & "*';"
 Set fSearch = New FSearchResults
 ` Note: Search method does not return
 ` until the user dismisses the form
 fSearch.Search "PubID", strSQL, Me
 If Not fSearch.Cancelled Then
 txt(txtPubID).Text = fSearch.KeyValue
 End If
 End If
ProcExit:
 ` release the search form reference
 Set fSearch = Nothing
 Exit Sub
ProcError:
 MsgBox Err.Description, vbExclamation
 Resume ProcExit

End Sub

4. Create a new form, name it FSearchResults, and save the form. Table 2.6 shows the objects and properties
for the form.

Table 2.6. Objects and properties for the FSearchResults form.

OBJECT Property Value

ListView Name lvwResults

View 3 - lvwReport

LabelEdit 1 - lvwManual

CommandButton Name cmd

Index 0

Caption OK

Default True

CommandButton Name cmd

Index 1

Caption Cancel

Cancel True

5. Add the following code to the declarations section of FSearchResults. The two constants are used for the
index to the CommandButton control array. The mblnCancelled flag is used to indicate that the user chose
the Cancel button. The mvntKeyValue holds the value (typically the primary key field, but any field can be
specified when the Search method is called) for the key field. The mintItemIdx holds the index into the
SubItems collection of the ListView control for the key value.

Option Explicit
` This form will run an ad hoc query and
` display the results in the list view control
` command button array constants

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (28 of 53) [9/22/1999 1:57:12 AM]

Const cmdOK = 0
Const cmdCancel = 1
` cancel property
Private mblnCancelled As Boolean
` selected key value
Private mvntKeyValue As Variant
` subitem index for key value
Private mintItemIdx As Integer

6. Add the cmd_Click event procedure for the CommandButton control array. This event procedure sets the
private flag indicating whether the user chose OK or Cancel and hides the form. Because the form is
displayed modally, control returns to whatever procedure created the form after this procedure exits.

Private Sub cmd_Click(Index As Integer)
 If Index = cmdOK Then
 mblnCancelled = False
 Else
 mblnCancelled = True
 End If
 Me.Hide
End Sub

7. Add the lvwResults_ItemClick event procedure. When Visual Basic fires the ItemClick event for a
ListView control, it passes the clicked ListItem object as a parameter. The mintItemIdx variable set by the
Search method is used to retrieve the value of the key field from the SubItems collection and assign it to the
mvntKeyValue variable, where it can be read by the KeyValue property procedure.

Private Sub lvwResults_ItemClick(ByVal Item As ComctlLib.ListItem)
On Error GoTo ProcError
 mvntKeyValue = Item.SubItems(mintItemIdx)
ProcExit:
 Exit Sub
ProcError:
 MsgBox Err.Description, vbExclamation
 Resume ProcExit
End Sub

8. Add the Cancelled and KeyValue property procedures. Each procedure returns the values assigned to the
module-level variables. These properties are checked by the procedure that created the instance of the form
to see what button the user chose and the key value of the record selected.

Public Property Get Cancelled()
 Cancelled = mblnCancelled
End Property
Public Property Get KeyValue() As Variant
 KeyValue = mvntKeyValue
End Property

9. Add the following code to FSearchResults as the Search method. The method takes three parameters: a
key field name used to return a value in the KeyValue property, a SQL statement used to create the list of
results, and a parent form reference used by the Show method. The method builds the results list by first
creating a recordset object based on the SQL statement provided. If there are records to display, it iterates the
Fields collection of the recordset to generate a set of column headers for lvwResults (determining the index
of the key field in the process). After the column headers for the list have been created, the method enters a
Do loop and iterates the records in the recordset. For each record, the fields are iterated and their values are

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (29 of 53) [9/22/1999 1:57:12 AM]

placed into the appropriate SubItem of the ListView. In addition to the list of fields, the lvwResults ListView
control shows the ordinal position in the results for each record.

Public Sub Search(_
 strKeyField As String, _
 strSQLStatement As String, _
 frmParent As Form)
` run the specified query and populate the
` listview with the results
 Dim strDBName As String
 Dim lngOrdRecPos As Long
 Dim db As Database
 Dim rs As Recordset
 Dim fld As Field
 strDBName = BiblioPath()
 Set db = DBEngine(0).OpenDatabase(strDBName)
 Set rs = db.OpenRecordset(strSQLStatement, _
 dbOpenDynaset, dbReadOnly)
 ` test for no records
 If Not rs.EOF Then
 ` create the ordinal position column
 lvwResults.ColumnHeaders.Add , "Ordinal", "Record"
 ` set width
 lvwResults.ColumnHeaders("Ordinal").Width = 600
 ` create the columns in the listview
 For Each fld In rs.Fields
 lvwResults.ColumnHeaders.Add , fld.Name, fld.Name
 ` best guess column width
 lvwResults.ColumnHeaders(fld.Name).Width _
 = 150 * Len(fld.Name)
 If fld.Name = strKeyField Then
 ` mark the item index for later retrieval
 mintItemIdx = fld.OrdinalPosition + 1
 End If
 Next ` field
 ` populate the list
 Do
 ` increment the ordinal position counter
 lngOrdRecPos = lngOrdRecPos + 1
 ` add the item
 lvwResults.ListItems.Add _
 lngOrdRecPos, , CStr(lngOrdRecPos)
 ` add the fields to the rest of the columns
 For Each fld In rs.Fields
 lvwResults.ListItems(lngOrdRecPos). _
 SubItems(fld.OrdinalPosition + 1) = _
 fld.Value & ""
 Next ` field
 ` go to next record
 rs.MoveNext
 Loop While Not rs.EOF

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (30 of 53) [9/22/1999 1:57:12 AM]

 ` clean up
 rs.Close
 Set rs = Nothing
 db.Close
 Set db = Nothing
 ` show modally
 Me.Show vbModal, frmParent
 Else
 ` no data, treat as a cancel
 mblnCancelled = True
 MsgBox "No matching records found.", vbInformation
 Me.Hide
 End If
End Sub

How It Works

The FSearchResults form provides a generic tool for running an ad hoc query, displaying its results, and returning a
key value selected by the user. The benefit of using a generic search form is that the form can be easily reused in
any situation in which this type of lookup is required. This form can be added with minimal impact on the original
design or performance of the main data entry form, but it still provides the user with a more advanced method of
entering the PubID foreign key field.

The form works by filling a ListView control using a completely generic population routine in the Search method.
When the user selects a record and dismisses the form by clicking OK, a private module-level variable retains the
selected item, which can then be read from the KeyValue property.

Comments

Over time, you might build a significant library of generic components such as this lookup form. If the tools are
properly designed and not coupled too tightly to any particular application or database, you might be able to bundle
them together in an ActiveX DLL, which can then be included in future applications without having to return to the
source code.

2.6 How do I...

Find records by using index values in Data Access Objects?

Problem

I know that indexes can be used to speed up database operations. How can I take advantage of indexes in my
application?

Technique

When a table-type recordset has a current index (either the primary key or another index you have designated), you
can use the Seek method to find records based on the indexed values. To use the Seek method, provide it with an
argument that matches each field in the index. When the Seek method executes, if it finds at least one record
matching the index values, it positions the record pointer to the first matching record and sets the NoMatch
property of the recordset to False. If Seek does not find a matching record, it sets the NoMatch property to True;
the current record is then undefined, which means that you can't be sure where the record pointer is pointing.

When you use Seek, specify not only the values for the key index fields but also the comparison criterion that Seek

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (31 of 53) [9/22/1999 1:57:12 AM]

is to use. You provide the comparison criterion as the first argument to the Seek method, and you provide it as a
string value. In the majority of cases, you will specify that Seek is to match the index value exactly; you do this by
specifying a comparison criterion of =. You can also specify < > for not equal, > for greater than, < for less than,
>= for greater than or equal to, or <= for less than or equal to.

Steps

Open and run the project HT206.VBP. Use the Index command on the Data menu to select the ISBN index.
Browse forward in the recordset a few records, and copy the ISBN number from the form to the clipboard. Using
the MoveFirst button, return to the first record; then select Data|Seek to display the input box shown in Figure 2.7.
Paste the value you copied into the input box, and click OK. The record with the matching ISBN number is
displayed.

Figure 2.7. The Seek form.

1. Create a new project called HT206 .VBP. This example adds the capability to find records using the Seek
method to the basic browser application developed in How-To 2.1. The form and class module contain minor
changes and some added code to support the Seek operation. The READINI.bas module is unchanged. Only
the code that has been added or modified for this project is shown in the steps that follow.

2. Change the caption of Form1 to Seek, and modify the Data menu as shown in Table 2.7. The Index
command, its submenu items, and the Seek command (all shown in bold) are new in this project.

Table 2.7. Menu specifications for Form1.

CAPTION Name Shortcut Key

&File mnuFile

----E&xit mnuFileExit

&Data mnuData

----&Save Record mnuDataSaveRecord Ctrl+S

----&Index mnuDataIndex

--------&ISBN mnuDataIndexName

--------&Title mnuDataIndexName

----S&eek mnuDataSeek

3. Modify the declarations section of Form1 as shown. Index constants have been added for the
mnuDataIndexName control array.

Option Explicit
` CTitles object
Private mclsTitles As CTitles
` These constants are used for the various control arrays
` command button constants
Const cmdMoveFirst = 0
Const cmdMovePrevious = 1
Const cmdMoveNext = 2
Const cmdMoveLast = 3
` text box index constants
Const txtTitle = 0
Const txtYearPublished = 1
Const txtISBN = 2

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (32 of 53) [9/22/1999 1:57:12 AM]

javascript:popUp('02fig07.gif')

Const txtPubID = 3
` index constants
Const idxISBN = 0
Const idxTitle = 1
` refresh flag
Private mblnInRefresh As Boolean

4. Modify the mnuData_Click event procedure to toggle the enabled flag for the mnuDataSeek menu control
if an index has been chosen.

Private Sub mnuData_Click()
` set enabled/disabled flags for menu commands
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 ` seek enabled only if index is set
 If Len(mclsTitles.IndexName) Then
 mnuDataSeek.Enabled = True
 Else
 mnuDataSeek.Enabled = False
 End If
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox Err.Description, vbExclamation
 Resume ProcExit
End Sub

5. Add the following code to Form1 as the mnuDataIndexName_Click and mnuDataSeek_Click events. The
mnuDataIndexName_Click procedure assigns the index to use for the Seek operation and manages the check
marks on the menu. The mnuDataSeek_Click procedure prompts the user for search criteria and attempts to
locate the value provided by calling the Seek method of mclsTitles.

Private Sub mnuDataIndexName_Click(Index As Integer)
` set the current index
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 ` set the index
 Select Case Index
 Case idxISBN
 ` assign the index
 mclsTitles.Index = IndexISBN
 ` set up menu check marks
 mnuDataIndexName(idxTitle).Checked = False
 mnuDataIndexName(idxISBN).Checked = True
 Case idxTitle
 ` assign the index
 mclsTitles.Index = IndexTitle
 ` set up menu check marks
 mnuDataIndexName(idxTitle).Checked = True
 mnuDataIndexName(idxISBN).Checked = False
 End Select
 ` refresh display

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (33 of 53) [9/22/1999 1:57:12 AM]

 GetData
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox Err.Description, vbExclamation
 Resume ProcExit
End Sub
Private Sub mnuDataSeek_Click()
` seek a record
On Error GoTo ProcError
 Dim strMsg As String
 Dim strResult As String
 Screen.MousePointer = vbHourglass
 ` prompt for a value
 strMsg = "Enter a value to search for:"
 strResult = InputBox$(strMsg)
 ` seek for the record
 mclsTitles.SeekRecord strResult
 ` refresh display
 GetData
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox Err.Description, vbExclamation
 Resume ProcExit
End Sub

6. Modify the declarations section of the CTitles class to include the new enumeration for the index and to
modify the error enumeration for new error messages.

Option Explicit
` The CTitles class provides a light wrapper
` around the database and record for the
` Titles table in the Biblio database
` Database and recordset objects
Private mdb As Database
Private mrs As Recordset
` Fields
` title
Private mstrTitle As String
` year - note use of string for
` assignment to text box
Private mstrYearPublished As String
` ISBN number
Private mstrISBN As String
` PubID - also a string
Private mstrPubID As String
` Move method constants
Public Enum CTitlesMove

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (34 of 53) [9/22/1999 1:57:12 AM]

 FirstRecord = 1
 LastRecord = 2
 NextRecord = 3
 PreviousRecord = 4
End Enum
` Index constants
Public Enum CTitlesIndex
 IndexISBN = 0
 IndexTitle = 1
End Enum
` Error constants
` Note: RaiseClassError method provides the strings
` because you cannot assign a string to an Enum
Public Enum CTitlesError
 ErrRecordNotFound = vbObjectError + 1000 + 10
 ErrInvalidMoveType = vbObjectError + 1000 + 11
 ErrNoRecords = vbObjectError + 1000 + 12
 ErrInvalidIndex = vbObjectError + 1000 + 13
End Enum

7. Change the Class_Initialize procedure so that a table-type recordset is created rather than a dynaset-type
recordset. Only the table-type recordset supports the Seek method. The only thing required to change to a
table-type recordset is to change the dbOpenDynaset constant to dbOpenTable.

Private Sub Class_Initialize()
 ` open the database and recordset
 Dim strDBName As String
 ` Get the database name and open the database.
 ` BiblioPath is a function in READINI.BAS
 strDBName = BiblioPath()
 Set mdb = DBEngine.Workspaces(0).OpenDatabase(strDBName)
 ` Open the recordset.
 Set mrs = mdb.OpenRecordset(_
 "Titles", dbOpenTable, dbSeeChanges, dbOptimistic)
 ` Raise an error if there is no data
 If mrs.BOF Then
 RaiseClassError ErrNoRecords
 End If
 ` fetch the first record to the properties
 GetCurrentRecord
End Sub

8. The RaiseClassError procedure has had new sections added to the Select...Case block for the newly added
errors.

Private Sub RaiseClassError(lngErrorNumber As CTitlesError)
` Note: DAO errors are passed out as-is
 Dim strDescription As String
 Dim strSource As String
 ` assign the description for the error
 Select Case lngErrorNumber
 Case ErrRecordNotFound
 strDescription = "The record was not found."

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (35 of 53) [9/22/1999 1:57:12 AM]

 Case ErrInvalidMoveType
 strDescription = "Invalid move operation."
 Case ErrNoRecords
 strDescription = "There are no records " _
 & "in the Titles table."
 Case ErrInvalidIndex
 strDescription = "Invalid Index Name."
 Case Else
 ` If this executes, it's a coding error in
 ` the class module, but having the case is
 ` useful for debugging.
 strDescription = "There is no message for this error."
 End Select
 ` build the Source property for the error
 strSource = App.EXEName & ".CTitles"
 ` raise it
 Err.Raise lngErrorNumber, strSource, strDescription
End Sub

9. Add the IndexName and Index properties. The IndexName property is used to determine the current index
for the recordset. The Index property changes the index based on the value provided in the lngIndex
parameter.

Public Property Get IndexName() As String
 IndexName = mrs.Index
End Property
Public Property Let Index(lngIndex As CTitlesIndex)
` unlike the field values, this is validated when assigned
 Dim vntBookmark As Variant
 ` save a bookmark
 vntBookmark = mrs.Bookmark
 ` assign the index
 Select Case lngIndex
 Case IndexISBN
 mrs.Index = "PrimaryKey"
 Case IndexTitle
 mrs.Index = "Title"
 Case Else
 ` invalid, raise an error
 RaiseClassError ErrInvalidIndex
 End Select
 ` return to old record
 mrs.Bookmark = vntBookmark
End Property

10. Add the SeekRecord method. This method stores a bookmark and seeks for the value passed in the
strValue parameter. If a matching record is found, it is fetched. If no matching record is found, the saved
bookmark is used to restore the record pointer to the original position.

Public Sub SeekRecord(strValue As String)
` seek to the indicated record based on the current index
 Dim vntBookmark As Variant
 ` mark the current record

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (36 of 53) [9/22/1999 1:57:12 AM]

 vntBookmark = mrs.Bookmark
 ` seek, the first operator is the comparison,
 ` the following represent the field(s) in the index
 mrs.Seek "=", strValue
 ` check for match
 If Not mrs.NoMatch Then
 ` found it, now fetch it
 GetCurrentRecord
 Else
 ` not found, return to prior location
 mrs.Bookmark = vntBookmark
 ` raise the not found error
 RaiseClassError ErrRecordNotFound
 End If
End Sub

How It Works

The Seek method takes two or more parameters. The first parameter specifies the comparison operator (normally
=), and the following parameters are the values for the fields in the index. The Index Property Let procedure in the
CTitles class enables you to assign the current index for the recordset, and SeekRecord searches for a value. Both
procedures use bookmarks to store records and, if necessary, return to the original record.

Comments

You cannot set indexes or use the Seek method with dynaset- or snapshot-type Recordset objects. To find a record
in a dynaset or snapshot recordset, use one of the Find methods: FindFirst, FindNext, FindPrevious, or FindLast.
Because these methods do not use indexes, they are much slower than Seek operations with table-type recordsets.
You also cannot use Seek on remote server tables because these cannot be opened as table-type recordsets.

In most cases, it is much faster to create a new dynaset- or snapshot-type recordset than to use either a Find or the
Seek method. You do this by building a SQL statement that includes a WHERE clause specifying the records you
want to retrieve. If the database engine can find a useful index for the query, it uses that index to speed up the
query.

See Chapter 3, "Creating Queries with SQL," for details on creating SQL statements, and Chapter 4, "Designing
and Implementing a Database," for more information on choosing and defining indexes.

2.7 How do I...

Determine how many records are in a dynaset- or snapshot-type recordset?

Problem

I need to know how many records are in a recordset I've created. For table-type recordsets, this is easy--I just use
the value of the RecordCount property. But when I try this with a dynaset- or snapshot-type recordset, I can't
predict what value will be returned. Sometimes it's the correct count, while other times it's not. How can I reliably
determine the number of records in a dynaset- or snapshot-type recordset?

Technique

The system tables in a Microsoft Access database include information about the number of records in every table in
the database. As records are added or deleted, the table is continuously updated by the Jet engine. You can

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (37 of 53) [9/22/1999 1:57:12 AM]

determine the number of records in the table at any time by checking the RecordCount property of the TableDef.
Unlike a table, dynaset- and snapshot-type recordsets are temporary recordsets. You can't obtain a record count by
checking a TableDef.

You can retrieve the RecordCount property of a dynaset- or snapshot-type recordset, but the value it returns
depends on several factors in addition to the number of records actually in the recordset. The only way the Jet
engine can determine how many records are in a dynaset- or snapshot-type recordset is by counting them. To count
them, the Jet engine has to move through the records, one by one, until it reaches the end of the recordset. When
the Jet engine creates a dynaset- or snapshot-type recordset, however, it does not automatically count the records
because counting the records in a large recordset could take a long time. If you retrieve the RecordCount property
immediately after you create a dynaset- or snapshot-type recordset, therefore, you're guaranteed to get back one of
two values: 0 if the recordset is empty or 1 if the recordset has at least one record.

To get an accurate count, your code must tell the Jet engine to count the records. Do this by executing the
recordset's MoveLast method. After a MoveLast, you can retrieve the RecordCount with the confidence that the
value is accurate. In the case of a dynaset-type recordset, if you add or delete records, the Jet engine keeps track of
them for you, and any subsequent looks at RecordCount will give you the correct current count.

Steps

Open and run the project HT207.VBP. You will see the form shown in Figure 2.8. This form shows the number of
records in the BIBLIO.MDB Authors table. The first box reports the number of records reported immediately after
Authors is opened as a table-type recordset. The second box shows the number of records reported immediately
after a dynaset is opened with the SQL statement SELECT Au_ID FROM Authors--a statement that returns a
dynaset consisting of the entire table, the same set of records that are in the table-type recordset reported in the first
box. The third box shows the record count from the dynaset after its MoveLast method has been used. Note that the
first and third boxes have the same number (which might be different on your system). The second box, reporting
the dynaset record count before the MoveLast, shows a count
of 1.

Figure 2.8. The Record Counts form.

1. Create a new project called HT207 .VBP. Create the objects and properties listed in Table 2.8, and save
the form as HT207.FRM.

Table 2.8. Objects and properties for Form1.

OBJECT Property Setting

Form Name Form1

Caption Record Counter

CommandButton Name cmdExit

Cancel True

Default True

Caption Exit

Label Name lblTable

Alignment 2 (Center)

BorderStyle 1 (Fixed Single)

Label Name lblDynasetCreate

Alignment 2 (Center)

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (38 of 53) [9/22/1999 1:57:12 AM]

javascript:popUp('02fig08.gif')

BorderStyle 1 (Fixed Single)

Label Name lblDynasetMoved

Alignment 2 (Center)

BorderStyle 1 (Fixed Single)

Label Name Label1

Caption Records reported in the

BIBLIO.MDB Authors table

recordset:

Label Name Label2

Caption Records in the BIBLIO.MDB SELECT

Au_ID FROM Authors dynaset immediately after creation.

Label Name Label3

Caption Records in the BIBLIO.MDB SELECT

Au_ID FROM Authors dynaset after using the MoveLast method.

2. Add READINI.BAS to your project.

3. Add the Form_Load event procedure. Form_Load opens the database, opens table and dynaset recordsets,
and gets record counts for both recordsets. It then uses MoveLast to go to the end of the dynaset and gets the
record count again. Finally, Form Load inserts each of the record counts into Label controls on the form.

Private Sub Form_Load()
On Error GoTo ProcError
 Dim strDBName As String
 Dim strSQL As String
 Dim db As Database
 Dim rsTable As Recordset
 Dim rsDynaset As Recordset
 ` Get the database name and open the database.
 ` BiblioPath is a function in READINI.BAS
 strDBName = BiblioPath()
 Set db = DBEngine.Workspaces(0).OpenDatabase(strDBName)
 Set rsTable = db.OpenRecordset("Authors", dbOpenTable)
 lblTable = rsTable.RecordCount
 strSQL = "SELECT Au_ID FROM Authors"
 Set rsDynaset = db.OpenRecordset(strSQL, dbOpenDynaset)
 lblDynasetCreate = rsDynaset.RecordCount
 rsDynaset.MoveLast
 lblDynasetMoved = rsDynaset.RecordCount
ProcExit:
 On Error Resume Next
 ` clean up
 rsDynaset.Close
 rsTable.Close
 db.Close
 Exit Sub
ProcError:
 MsgBox Err.Description

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (39 of 53) [9/22/1999 1:57:12 AM]

 Resume ProcExit
End Sub

4. Insert the following code as the Click event of cmdExit:

Private Sub cmdExit_Click()
 Unload Me
End Sub

How It Works

The table-type recordset enables you to check the RecordCount property immediately after it is created, but with a
snapshot- or dynaset-type recordset, you must first access all the records before you can obtain an accurate count.
This is typically done via the MoveLast method.

Comments

One common reason for wanting an accurate record count is to use the count as the control for a For...Next loop to
cycle through the entire recordset, as in this code fragment:

myRecordset.MoveLast
n = myRecordset.RecordCount
myRecordset.MoveFirst
for i = 1 to n
 ` do something
 myRecordset.MoveNext
next i

The difficulties with getting and keeping accurate record counts make it inadvisable to use code like
this--especially in shared data environments where the record count of a table can change the instant after you
retrieve it. This fragment illustrates a more reliable way to accomplish the same goal:

myRecordset.MoveFirst
Do While Not myRecordset.EOF
 ` do something
 myRecordset.MoveNext
Loop

This loop executes until the last record in the recordset has been processed (when myRecordset.EOF becomes
True), and it does not depend on a potentially unstable record count.

2.8 How do I...

Handle Data Access Object errors?

Problem

When I access a database through Visual Basic, I have limited control over the environment. A user might move a
database file, or another program might have made unexpected changes to the database. I need my programs to be
able to detect errors that occur and handle them in the context of the program. How do I accomplish this task with
Visual Basic?

Technique

When an error occurs in a Visual Basic program, control passes to error-handling logic. Unless you have enabled

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (40 of 53) [9/22/1999 1:57:12 AM]

an error handler, Visual Basic uses its default handler, which displays a message about the error--one that is
sometimes useful, but often not--and terminates the application.

Clearly, the default handling is not acceptable. Fortunately, Visual Basic provides tools that you can use to build
your own error traps and handlers. Although any Visual Basic application should trap and handle runtime errors, it
is especially important in database applications in which many error conditions can be expected to occur. Visual
Basic error-trapping is enabled with the On Error statement. The On Error statement takes two basic forms:

On Error Goto label
On Error Resume Next

In the first form, when a runtime error occurs, Visual Basic transfers control of the application to the location
specified by label. In the second form, Visual Basic continues execution with the line following the line in which
the error occurred. When an error trap is enabled and an error occurs, Visual Basic performs the action indicated by
the most recent On Error statement in the execution path. Listing 2.1 shows a hypothetical call tree and several
variations of how error handlers are enabled and activated.

Listing 2.1. Trapping errors.

Sub SubA()
 ...other code
 SubB
End Sub
Sub SubB()
On Error Goto ProcError
 SubC
ProcExit:
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub
SubC
 ...other code
 SubD
End Sub
SubD()
On Error Resume Next
 ...code
End Sub

Understanding the path of execution in this code fragment is important to comprehending how error handlers are
activated:

In SubA no error handler exists. If an error occurs before the call to SubB, Visual Basic's default handler
displays a message and terminates the application.

●

SubB uses the On Error Goto form. If an error occurs in this routine, control is transferred to the statement
following the ProcError label.

●

SubC has no error handler. However, when it is called from SubB, the error handler in SubB is still enabled,
so an error in SubC also transfers control to the statement following the ProcError label in SubB.

●

SubD uses the On Error Resume Next form. If an error occurs in this procedure, code within the procedure
needs to detect and handle the error.

●

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (41 of 53) [9/22/1999 1:57:12 AM]

WARNING Errors in Class_Terminate events and most form and control events are fatal to your
application if untrapped, so it is especially important that you include error-handling logic in these
procedures.

Errors generated by Visual Basic and by components of an application--including the Jet database engine--are
associated with error numbers. You can obtain the error number, which tells you the nature of the error, by reading
the Number property of the Err object. You can read additional information about the error from the Description
property. After you know the type of error, you can take appropriate action to handle it. This is typically done with
a Select Case block.

NOTE For backward compatibility, Visual Basic still supports the outdated Err and Error statements
and functions. However, any new code should use the Err object.

The code fragment in Listing 2.2 illustrates how you might handle some common errors that occur in a multiuser
environment. (See Chapter 11, "The Windows Registry and State Information," for a complete discussion of
working with a multiuser database application.)

Listing 2.2. Error handling.

Sub DAOCode()
On Error Goto ProcError
 ...code
ProcExit:
 Exit Sub
ProcError
 Dim strMsg As String
 Select Case Err.Number
 Case 3197
 ` Another user changed the data since the last time
 ` the recordset was updated
 strMsg = "The data in this record was changed by " & _
 "another user." & _
 vbCrLf & "Do you want to overwrite those changes?"
 If MsgBox(strMsg, vbYesNo or vbQuestion or vbDefaultButton2) _
 = vbYes Then
 ` VB only generates the error on the first attempt
 ` Resume re-executes the line that caused the error
 Resume
 Else
 ` refresh the existing data
 rs.Requery
 DisplayData
 Resume ProcExit
 End If
 Case 3260
 ` locked by another user
 strMsg = "The record is currently locked by another user."
 ` control continues at end of block
 Case Else

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (42 of 53) [9/22/1999 1:57:12 AM]

 ` default
 strMsg = "Error: " & Err.Number & vbCrLf & Err.Description
 End Select
 MsgBox strMsg, vbExclamation
 Resume ProcExit
End Sub

An error handler must execute a statement that clears the error. Table 2.9 list the methods of clearing an error.

Table 2.9. Statements that clear an error.

STATEMENT Effect

Resume Re-executes the line that generated the error

Resume Next Resumes execution at the line that follows the line that generated the error

Resume label Resumes execution at the line following the named label

Resume number Resumes execution at the line with the indicated number

Exit Sub Exits immediately from the current subroutine

Exit Function Exits immediately from the current function

Exit Property Exits immediately from the current property

On Error Resets error-handling logic

Err.Clear Clears the error without otherwise affecting program execution

End Terminates execution of the program

ERRORS IN CLASS MODULES

It is good programming practice to separate data management code in class modules from user
interface code in forms. To maintain this separation, it is important that you do not simply display a
message if an error occurs in a class module. Two types of error situations can occur in a class
module.

A class can detect an error condition (such as the violation of a validation rule). In this case, the class
module should call the Raise method of the Err object and set the Number, Description, Source,
and--if a help file is available--the appropriate help properties.

A class can also trap errors raised by the database engine. These can be much more difficult to handle.
The sheer number of possible errors makes it impractical in most applications to reassign and describe
these errors, so most applications simply regenerate them.

In either case, the code in the class module should, if possible, attempt to correct the error before raising it.

Steps

Open and run the project HT208.VBP. Three errors will occur in succession. For each, the message reporting the
error gives you the error number, error description, and line number where the error occurred. Figure 2.9 shows the
first of these errors.

Figure 2.9. The HT208 error message.

1. Create a new project called HT208.VBP. Use Form1 to create the objects and properties listed in Table

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (43 of 53) [9/22/1999 1:57:12 AM]

javascript:popUp('02fig09.gif')

2.10, and save the form as HT208.FRM.

Table 2.10. Objects and properties for Form1.

OBJECT Property Setting

Form Name Form1

Caption Errors

2. Add the file READINI.BAS to your project.

3. Add the following code as the Load event of Form1. This code generates three errors. Line 20 generates
an error because there is no such table as No Such Table. Line 40 generates an error because there is no such
field as No Such Field. Line 60 generates an error because the Year Published field requires a numeric value.
Each error causes execution to branch to the label LoadError. The code beginning with LoadError displays
an informative message and then executes a Resume Next. The Resume Next transfers execution back to the
line following the line that caused the error.

Private Sub Form_Load()
On Error GoTo ProcError
 Dim db As Database
 Dim dbName As String
 Dim rs As Recordset
 Dim s As String
 ` Get the database name and open the database.
 ` BiblioPath is a function in READINI.BAS
5 dbName = BiblioPath()
10 Set db = DBEngine.Workspaces(0).OpenDatabase(dbName)
20 Set rs = db.OpenRecordset("No Such Table", dbOpenTable)
30 Set rs = db.OpenRecordset("Titles", dbOpenTable)
40 s = rs![No Such Field]
50 rs.Edit
60 rs![Year Published] = "XYZ"
70 rs.Update
80 End
Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & _
 "Line: " & Erl & vbCrLf & _
 Err.Description, vbExclamation
Resume Next
End Sub

NOTE Line numbers are used here to help illustrate the error handler. Few programmers actually use
them in production code, although they can be helpful for debugging.

How It Works

When Visual Basic encounters a runtime error, it transfers control of the application to the error-handling code you
specify by using the On Error statement. You have a choice of inline handling using On Error Resume Next or
centralized handling using On Error Goto. Either way, it's up to you to determine the type of error generated and
the appropriate action to take for that error.

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (44 of 53) [9/22/1999 1:57:12 AM]

ERRORS COLLECTION

It is possible for a single statement in DAO code to generate several errors. You can examine these
errors by iterating the DAO Errors collection, as shown in the following code fragment:

For Each Error In Errors
 Debug.Print Err.Number & " - " & Err.Description
Next ` Error

Comments

Hundreds of potential runtime errors can occur in a Visual Basic application, and you are unlikely to be able to
anticipate all of them. With experience and careful coding, you can be prepared for the most common problems,
but you should expect that from time to time your application will encounter a situation for which you did not
explicitly plan. In this situation it is important for your general error-handling code to offer as much information as
possible to the user and to provide the opportunity to correct the problem.

You might also find it useful to write errors to a log file. Examining an error log provides you with information you
can use to build more robust error-handling procedures.

2.9 How do I...

Access Excel worksheets by using Data Access Objects?

Problem

I have Excel worksheets that my company created. I need to incorporate this data into my own applications. I want
to both display and manipulate the data from these Excel worksheets. How do I work with these Excel files in my
Visual Basic projects?

Technique

By using the Microsoft Jet engine, you can access Excel worksheets as if they were actually Access databases. As
with accessing other types of ISAM files with the Jet engine, there are a few restrictions with accessing Excel
worksheets:

You cannot delete rows.●

You cannot delete or modify cells that contain formulas.●

You cannot create indexes.●

You cannot read encrypted Excel files, even when using the correct password (PWD parameter) in the
Connect string.

●

You can add records to a worksheet or edit standard cells (those without formulas).

When opening an ISAM database with the OpenDatabase method, you must provide a valid ISAM type. In addition
to this, if you want to use the first row of the Excel document as field names, you can specify a parameter HDR
equal to Yes. (HDR stands for header.) If you set HDR to No, the first row of the Excel worksheet is included as a
record in the recordset, as in this example:

Set db = DBEngine.Workspaces(0).OpenDatabase("C:\VB6DBHT\" & _
 "CHAPTER02\HowTo09\WidgetOrders.XLS", _
 False, False, "Excel 8.0; HDR=NO;")

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (45 of 53) [9/22/1999 1:57:12 AM]

Notice that when accessing Excel worksheets, unlike with other ISAM formats, you must specify the filename in
the OpenDatabase method.

When opening a recordset from an Excel ISAM, you must specify the sheet name as the recordset name, followed
by a dollar sign ($), as in this example:

WorkSheetName = "Sheet1"
Set rs = db.OpenRecordset(WorkSheetName & "$", dbOpenTable)

Here, rs is a recordset variable.

Steps

Open and run the ExcelDAO project. You should see a form that looks like the one shown in Figure 2.10. This
application enables you to view a Microsoft Excel worksheet file in a ListView control. If you click the Add or Edit
buttons, the form expands so that you can edit the contents. Clicking OK or Cancel when editing a record either
saves or discards your changes, respectively. By clicking the View in Excel button, you can view the worksheet in
Microsoft Excel (assuming that you have Microsoft Excel; it is not included on the distribution CD-ROM with this
book). If you make changes in Excel and click the Refresh button on the form, the ListView control repopulates
with the updates.

Figure 2.10. The ExcelDAO project.

1. If you have not already installed the Excel IISAM, reinstall Visual Basic with the Custom Setup option,
and specify the Excel IISAM in setup.

2. Create a new project and call it ExcelDAO.

3. Go to the Project|Components menu item in Visual Basic, and select Microsoft Windows Common
Controls 6.0 from the list. This selection enables you to use the ListView common control that comes with
Windows 95.

4. Add the appropriate controls so that the form looks like that shown in Figure 2.11.

5. Edit the objects and properties of Form1, as shown in Table 2.11, and then save it as frmWidgetOrders.

Figure 2.11. The ExcelDAO form in design mode.

Table 2.11. Objects and properties for the Widget Orders project.

OBJECT Property Setting

Form Name frmWidgetOrders

Caption Widget Orders

Height 3390

List view Name lstvWidgetOrders

View 3 `vwReport

Command button Name cmdAdd

Caption &Add

Command button Name cmdEdit

Caption &Edit

Command button Name cmdView

Caption &View in Excel

Command button Name cmdRefresh

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (46 of 53) [9/22/1999 1:57:12 AM]

javascript:popUp('02fig10.gif')
javascript:popUp('02fig11.gif')

Caption &Refresh

Command button Name cmdClose

Caption &Close

Cancel True

Default True

Command button Name cmdOk

Caption &Ok

Command button Name cmdCancel

Caption &Cancel

Text box Name txtOrderNum

Text box Name txtProductID

Text box Name txtProductDesc

Text box Name txtQuantity

Text box Name txtUnitPrice

Label Name lblOrderNum

Caption Order Num

Label Name lblProductID

Caption Product ID

Label Name lblProductDesc

Caption Product Description

Label Name lblQuantity

Caption Quantity

Label Name lblUnitPrice

Caption Unit Price

6. Enter the following code in the declarations section of your project. The variables and constants included
here are form level and can be accessed by any code within this form. The integer, m_nState, holds the value
of one of the two constants defined. This variable states whether the user has selected to add a new record or
edit the current one. The m_oSelItem object variable of type ComctlLib.ListItem is an object that holds the
value of a selected item in the list view. The last two variables hold the path, filename, and worksheet name
of the Excel file to be used in this project.

Option Explicit
` form-level variables used to hold the database and recordset
Private db As Database
Private rs As Recordset
` form-level constant values used to indicate the current state
Private Const ADD_RECORD = 0
Private Const EDIT_RECORD = 1
` form-level variables used to save the current state, and
` selected list item
Private m_nState As Integer
Private m_oSelItem As ComctlLib.ListItem
` form-level variables used to store the file path and sheet name

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (47 of 53) [9/22/1999 1:57:13 AM]

` of the Excel file used in the app
Private m_sFilePath As String
Private m_sSheetName As String

7. Add the following code to the Form_Activate event to get the path and filename of the Excel XLS file to
be used. This information is stored in the form-level variable m_sFilePath. The worksheet name is stored in
the m_sSheetName form-level variable. Finally, the PopulateListView routine is called. The file is opened
and read here.

Private Sub Form_Activate()
 ` allow app to paint screen
 DoEvents
 ` get paths and names of files used in app
 m_sFilePath = DataPath & "\Chapter02\WidgetOrders.xls"
 m_sSheetName = "Sheet1$"
 ` populate the list view control
 PopulateListView
End Sub

8. Add the following code to clear the text boxes and display the lower portion of the form for editing, or in
this case, adding a new record. The last line of code sets the m_nState variable to ADD_RECORD,
indicating that the user is adding a new record.

Private Sub cmdAdd_Click()
 ` clear all the text boxes
 txtOrderNum = ""
 txtProductID = ""
 txtProductDesc = ""
 txtQuantity = ""
 txtUnitPrice = ""
 ` show the bottom of the form and set the state to add so we
 ` know how to save the record later
 ShowBottomForm
 m_nState = ADD_RECORD
End Sub

9. The cmdEdit_Click event is used when the user wants to edit the current record. The database will already
be open from the PopulateListView routine. This event walks through each record in the recordset until the
selected item's order number matches the record's order number. After the record is found, the text boxes on
the lower portion of the form are populated with the values in the corresponding fields. The Total Price field
is left out because we will calculate it ourselves from the given information. After the text boxes are
populated, the form is lengthened by the call to ShowBottomForm, and the m_nState variable is set to
EDIT_RECORD, indicating that the user has chosen to edit the current record.

Private Sub cmdEdit_Click()
 ` we cannot use indexes with Excel files, so we must
 ` transverse the recordset until the record matches the
 ` selected item, then populate the text boxes with the records
 ` values
 With rs
 .MoveFirst
 While (.Fields("Order Number") <> m_oSelItem.Text)
 .MoveNext
 Wend

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (48 of 53) [9/22/1999 1:57:13 AM]

 txtOrderNum = .Fields("Order Number")
 txtProductID = .Fields("Product ID")
 txtProductDesc = .Fields("Product Description")
 txtQuantity = .Fields("Quantity")
 txtUnitPrice = .Fields("Unit Price")
 End With
 ` show the bottom of the form and set the state to editing so
 ` we know how to save the record later
 ShowBottomForm
 m_nState = EDIT_RECORD
End Sub

10. With the cmdView command button, the user can view the worksheet used in this project in Excel. To
enable the user to view the file in Excel, the database must be closed first. This is done by setting the rs and
db objects to nothing. The Shell command then calls Excel with the m_sFilePath variable, which holds the
path and filename of the Excel worksheet. The ExcelPath function is included in the ReadINIFile module
installed from the distribution CD-ROM.

Private Sub cmdView_Click()
 ` set the recordset and database to nothing because Excel will
 ` not be able to successfully open the file if not
 Set rs = Nothing
 Set db = Nothing
 ` open Excel with the file
 Shell ExcelPath & " """ & m_sFilePath & """", vbNormalFocus
End Sub

11. If the user edits the worksheet in Excel while the Widget Orders project is open, the changes will not be
apparent in the application. Use the Refresh button to repopulate the information from the worksheet. Enter
the code for cmdRefresh_Click:

Private Sub cmdRefresh_Click()
 ` force a repopulation of the list view (use when the user has
 ` made changes in Excel to the file)
 PopulateListView
End Sub

12. Now enter the following code for the Close button and the Form_Unload event to successfully end the
application:

Private Sub cmdClose_Click()
 ` always use Unload Me instead of End
 Unload Me
End Sub
Private Sub Form_Unload(Cancel As Integer)
 ` it is good practice to set all objects to nothing
 Set m_oSelItem = Nothing
 ` this is equivalent to closing the recordset and the database
 Set db = Nothing
 Set rs = Nothing
End Sub

13. The OK button is used to save the information after a user has edited the current record or added a new
one. The event can determine the proper recordset method to use from the m_nState variable, either AddNew
or Edit. The information for each field is saved, and the Total Price field is calculated from the Unit Price

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (49 of 53) [9/22/1999 1:57:13 AM]

and the Quantity. After the save, the list view is repopulated, and the bottom of the form is hidden from the
user. The code for the button is as follows:

Private Sub cmdOk_Click()
 ` edit or add new is confirmed, save the values of the text
 ` boxes this would be a good place to code validation for each
 ` field
 With rs
 If (m_nState = ADD_RECORD) Then
 .AddNew
 Else
 .Edit
 End If
 .Fields("Order Number") = txtOrderNum
 .Fields("Product ID") = txtProductID
 .Fields("Product Description") = txtProductDesc
 .Fields("Quantity") = txtQuantity
 .Fields("Unit Price") = txtUnitPrice
 .Fields("Total Price") = txtUnitPrice * txtQuantity
 .Update
 End With
 ` repopulate the listview with the changes; then hide the
 ` bottom of the form
 PopulateListView
 HideBottomForm
End Sub

14. The cmdCancel_Click event simply hides the bottom half of the form so that the user cannot edit the
record. Because the recordset has not been set to AddNew or Edit yet, we need do nothing further.

Private Sub cmdCancel_Click()
 ` edit or add new was canceled, hide the bottom of the form
 HideBottomForm
End Sub

15. The following routines show the bottom of the form, hide the bottom of the form, and set the Enabled
property of all input controls but the ListView to the appropriate state:

Private Sub ShowBottomForm()
 ` lengthen the height of the form and enable the proper
 ` controls
 Me.Height = 4350
 SetObjects False
End Sub
Private Sub HideBottomForm()
 ` shorten the height of the form and enable the proper
 ` controls
 Me.Height = 3390
 SetObjects True
End Sub
Private Sub SetObjects(StateIn As Boolean)
 ` set Enabled property for controls on top of form
 cmdAdd.Enabled = StateIn
 cmdEdit.Enabled = StateIn

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (50 of 53) [9/22/1999 1:57:13 AM]

 cmdRefresh.Enabled = StateIn
 cmdView.Enabled = StateIn
 cmdClose.Enabled = StateIn
 ` set Enabled property for controls on bottom of form
 txtOrderNum.Enabled = Not StateIn
 txtProductID.Enabled = Not StateIn
 txtProductDesc.Enabled = Not StateIn
 txtQuantity.Enabled = Not StateIn
 txtUnitPrice.Enabled = Not StateIn
 cmdOk.Enabled = Not StateIn
 cmdCancel.Enabled = Not StateIn
End Sub

16. The PopulateListView routine is the core of this project because it opens the database and sets the
worksheet to a recordset. This routine also reads the database TableDefs collection to define the column
headers for the list view, as well as populate the entire list view with the recordset. This first part of the
routine adds a column for each field in the TableDefs(m_sSheetName).Fields collection. The second part of
the routine steps through each record in the recordset and adds a list item for each record. Enter the code for
the PopulateListView routine:

Private Sub PopulateListView()
 Dim oField As Field
 Dim nFieldCount As Integer
 Dim nFieldAlign As Integer
 Dim nFieldWidth As Single
 Dim oRecItem As ListItem
 Dim sValFormat As String
 ` this might take a noticeable amount of time, so before we do
 ` anything change the mouse pointer to an hourglass and then
 ` hide the bottom of the form
 Screen.MousePointer = vbHourglass
 HideBottomForm
 ` open the database (this might already be open; however, if
 ` the user has just started the app or selected the `View in
 ` Excel' button, then the database and recordset would be set
 ` to nothing
 Set db = OpenDatabase(m_sFilePath, False, False, _
 "Excel 8.0;HDR=YES;")
 Set rs = db.OpenRecordset(m_sSheetName)
 With lstvWidgetOrders
 ` clear the list view box in case this is a refresh of the
 ` records
 .ListItems.Clear
 .ColumnHeaders.Clear
 ` using the For Each statement as compared to the For To
 ` statement is technically faster, as well as being
 ` easier to understand and use
 For Each oField In db.TableDefs(m_sSheetName).Fields
 ` align currency fields to the right, all others to
 ` the left
 nFieldAlign = IIf((oField.Type = dbCurrency), _

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (51 of 53) [9/22/1999 1:57:13 AM]

 vbRightJustify, vbLeftJustify)
 ` our product description field is text, and the
 ` values in this field are generally longer than their
 ` field name, so increase the width of the column
 nFieldWidth = TextWidth(oField.Name) _
 + IIf(oField.Type = dbText, 500, 0)
 ` add the column with the correct settings
 .ColumnHeaders.Add , , oField.Name, _
 nFieldWidth, _
 nFieldAlign
 Next oField
 End With
 ` add the records
 With rs
 .MoveFirst
 While (Not .EOF)
 ` set the new list item with the first field in the
 ` record
 Set oRecItem = lstvWidgetOrders.ListItems.Add(, , _
 CStr(.Fields(0)))
 ` now add the rest of the fields as subitems of the
 ` list item
 For nFieldCount = 1 To .Fields.Count - 1
 ` set a currency format for fields that are
 ` dbCurrency type
 sValFormat = IIf(.Fields(nFieldCount).Type =
 dbCurrency, _
 "$#,##0.00", _
 "")
 ` set the subitem
 oRecItem.SubItems(nFieldCount) = _
 Format$("" & .Fields(nFieldCount), _
 sValFormat)
 Next nFieldCount
 .MoveNext
 Wend
 End With
 ` by setting the last record item to the selected record item
 ` form variable, we can assure ourselves that a record
 ` is selected for editing later
 Set m_oSelItem = oRecItem
 ` remember to set object variables to nothing when you are
 ` done
 Set oRecItem = Nothing
 Set oRecItem = Nothing
 Screen.MousePointer = vbDefault
End Sub

How It Works

In this project, an Excel worksheet file is opened and used to create a recordset object to populate a ListView

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (52 of 53) [9/22/1999 1:57:13 AM]

control. The code for accessing the recordset is the same as that of accessing Microsoft Access databases, using
AddNew and Edit to alter the underlying ISAM data file. However, Excel worksheet rows cannot be deleted;
therefore, the Delete method of a recordset is unavailable.

In the PopulateListView routine, the project uses the TableDef object of the database object to access the table
definition of the Excel worksheet. Within this object, there is a collection of fields through which the project loops,
adding a column header for each, using the fields' Name, Width, and Align properties.

After the column header collection of the list view is populated with the field names in the Excel worksheet, the
ListView control is populated with the records. Accessing these records is the same as accessing other Jet database
records. A list item is set for each record with the first field of the record. After this, the subitems of the list item
are populated with the remaining fields in the current record.

This application also uses a trick to gain more space when necessary. The form is elongated when either the Add
button or the Edit button is clicked, allowing room for a record editing area. After the record is saved or canceled,
the form resumes its normal size.

Another feature of this project is that the user can view the worksheet in Excel by using the Shell method to start
another application. By using this option, the user can load a worksheet, edit its changes, and then switch to Excel
to see the results. Even if the user changes the worksheet within Excel while the project is still running (as long as
the file is saved and the user clicks the Refresh button), the ListView control will be repopulated with the correct,
up-to-date information.

Comments

It is possible to open ranges of an Excel worksheet using the Microsoft Jet Engine. To do this, replace the
worksheet name in the OpenRecordset method with the range of cells you want returned, as in this example:

Set rs = db.OpenRecordset("B1:H12")

In this example, "B1:H12" is the range on which you want to create a recordset, from the specified Excel
worksheet.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Ch 2 -- Accessing a Data-base with Data Access Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch02/ch02.htm (53 of 53) [9/22/1999 1:57:13 AM]

Visual Basic 6 Database How-To

- 3 -
Creating Queries with SQL

How Do I...

3.1 Create recordsets by selecting records from single tables?❍

3.2 Select unique field values in a SQL query?❍

3.3 Use variables and Visual Basic functions in a SQL query?❍

3.4 Use wildcards and ranges of values in a SQL query?❍

3.5 Define and use a parameter query?❍

3.6 Create recordsets by joining fields from multiple tables?❍

3.7 Find records in a table without corresponding entries in a related table?❍

3.8 Retrieve information such as counts, averages, and sums and display it by binding it to a Data control?❍

3.9 Create a recordset consisting of records with duplicate values?❍

3.10 Use Visual Basic functions within a SQL statement?❍

3.11 Make bulk updates to database records?❍

3.12 Create and delete tables?❍

3.13 Append and delete records?❍

3.14 Create a new table with data from existing tables?❍

3.15 Modify a table's structure?❍

3.16 Create a crosstab query?❍

●

The Structured Query Language (SQL) is a standard language for defining and manipulating relational databases. Virtually all
relational database products on the market today support SQL. The Jet database engine, the heart of Visual Basic and Microsoft
Access, uses SQL as its primary definition and manipulation method.

For truly flexible, powerful database programming, SQL is a vital element. You can work with Visual Basic databases without
SQL, of course; the Jet database engine provides a robust set of objects and capabilities to enable you to accomplish in Visual
Basic almost anything you could accomplish in SQL.

Because of the versatility of the Jet database engine, the benefits of SQL are not readily apparent. To help you visualize the power
that SQL can add to your database applications, examine the following example. Assume that you want to delete all the records
with a ShipmentDate earlier than January 1, 1993, from the Orders table in your ACCOUNTS.MDB database. Your program
could delete the records this way by using Jet Data Access Objects (commonly known as DAO objects):

Dim dbfAccounts as Database
Dim recOrders as Recordset

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (1 of 66) [9/22/1999 1:57:47 AM]

Set dbfAccounts = DBEngine.Workspaces(0).OpenDatabase("ACCOUNTS.MDB")
Set recOrders = dbfAccounts.OpenRecordset("Orders", dbOpenTable)
If recOrders.RecordCount > 0 Then
 recOrders.MoveFirst
 Do Until recOrders.EOF
 If recOrders("ShipmentDate") < #1/1/1993# Then recOrders.Delete
 recOrders.MoveNext
 Loop
End If
recOrders.Close
dbfAccounts.Close

Now, examine the following SQL example. (For an explanation of the dbfAccounts.Execute statement in this example, see
How-To 3.13.)

Dim dbfAccounts as Database
Set dbfAccounts = DBEngine.Workspaces(0).OpenDatabase("ACCOUNTS.MDB")
dbfAccounts.Execute("DELETE Orders.* FROM Orders " & _
 "WHERE Orders.ShipmentDate < #1/1/1993#")
dbfAccounts.Close

Both examples achieve the same result. However, the SQL result not only uses less code but also, in most cases, provides faster
results than the Jet database example. The first example, employing Data Access Object (DAO) techniques, is forced to retrieve
the entire table and then check each record one by one, deleting it if necessary. The second example, however, selects, checks, and
deletes in one step, allowing the database, rather than Visual Basic, to manage the deletion.

Although the prospect of learning another language might be disquieting, you'll find that you can accomplish most SQL
programming tasks with a very basic level of SQL training. The How-To's in this chapter illustrate the most important SQL
statements and techniques. Furthermore, if you have a copy of Microsoft Access, you don't need to learn SQL to use SQL in
Visual Basic. Access can write even the most difficult SQL for you by way of the various query design tools and wizards
packaged with the application.

3.1 Create Recordsets by Selecting Records from Single Tables

The SELECT statement is the basic building block for retrieving records from a database with SQL. In this How-To, you'll learn
how to create a SELECT statement that specifies fields, records, and a sort order.

3.2 Select Unique Field Values in a SQL Query

The SELECT statement normally returns one record for every record in the source table that meets the designated criteria. This
How-To shows you how to modify the basic SELECT statement to ensure that the resulting recordset contains no duplicated
records.

3.3 Use Variables and Visual Basic Functions in a SQL Query

The choice between SQL and regular Visual Basic code is not an either-or proposition. You can combine Visual Basic variables
with SQL statements to create a powerful data management environment. In this How-To, you'll extend the basic SELECT
statement with variables.

3.4 Use Wildcards and Ranges of Values in a SQL Query

Much of the power of SQL comes from the many ways you can specify recordsets. This How-To demonstrates the use of
wildcards and the Between operator in SQL SELECT statements.

3.5 Define and Use a Parameter Query

The optimization process Microsoft Access uses on queries is more effective if the query is stored in the database and used
multiple times. That can be difficult, however, when the query's parameters change often. A parameter query can bridge that
difficult gap to give you both speed and flexibility, with remarkable ease of programming. This How-To demonstrates how to

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (2 of 66) [9/22/1999 1:57:47 AM]

create and use a parameter query involving a single parameter.

3.6 Create Recordsets by Joining Fields from Multiple Tables

A properly designed relational database splits data into multiple tables and then relates those tables through key fields. Visual
Basic SQL can "cement" fields from multiple tables together into dynaset- and snapshot-type recordsets. This How-To shows the
technique for joining fields from multiple tables into unified recordsets through SQL INNER JOIN operations.

3.7 Find Records in a Table Without Corresponding Entries in a Related Table

You might need to identify records that have no corresponding entries in a related table--perhaps you're looking for Customer
table records with no records in the Orders table, for example. This How-To shows how to use a SQL OUTER JOIN statement to
locate these orphans.

3.8 Retrieve Information such as Counts, Averages, and Sums and Display It by Binding It to a Data Control

Sometimes you don't need the records themselves, just some statistics on records that meet certain criteria. This How-To shows
you how to use SQL aggregate functions in SELECT statements to retrieve record counts, averages, sums, and other statistics.

3.9 Create a Recordset Consisting of Records with Duplicate Values

It's often useful to find duplicated values in a table--for example, you might want to find all cases in which the same customer was
invoiced more than once on the same day. This How-To shows how to find the duplicate values in a table.

3.10 Use Visual Basic Functions Within a SQL Statement

Although SQL is a flexible and powerful method of database manipulation, sometimes you need extra power. Access and Visual
Basic can make use of Visual Basic functions directly in a SQL query, ensuring your complete control over your data. This
How-To illustrates how to employ Visual Basic functions in a SELECT query.

3.11 Make Bulk Updates to Database Records

In addition to SELECT statements, which retrieve recordsets from a database, SQL also provides a rich set of action statements.
Action statements let you modify the contents of database tables. In this How-To, you'll see how to change values in existing
records through SQL.

3.12 Create and Delete Tables

You can use SQL to create empty tables with a list of fields you specify. You can also use SQL to delete tables from your
database. This How-To shows you how to accomplish both of these operations.

3.13 Append and Delete Records

Another type of action statement enables you to create a recordset and then append the records in that recordset to an existing
table. In this How-To, you'll see how to accomplish this useful task, as well as how to delete records from a table.

3.14 Create a New Table with Data from Existing Tables

SQL action statements can also create new tables from records in existing tables. In this How-To, you'll create a new table from a
recordset that you specify through SQL.

3.15 Modify a Table's Structure

SQL's capabilities don't stop at data manipulation. The data definition capabilities of SQL allow a great deal of control over a
database's structure, as well as its data. This How-To demonstrates several ways a table can easily be modified with SQL
statements.

3.16 Create a Crosstab Query

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (3 of 66) [9/22/1999 1:57:47 AM]

A crosstab report allows data to be cross-indexed in a compact, spreadsheet-like format. Once a difficult report to design, crosstab
reports are now quick and easy. In this How-To, you'll receive an introduction in the ways of crosstab query design.

3.1 How do I...

Create recordsets by selecting records from single tables?

Problem

I want to select a subset of the records in a table, based on criteria I specify. I don't need to see all the fields for each record, but I
do want to specify the order in which the records appear. How can I accomplish this task in Visual Basic by using SQL?

Technique

You create recordsets from data in tables through the SQL SELECT statement. You can embed the SQL statement in your Visual
Basic code, or you can use it as the RecordSource for a Data control.

THE SQL SELECT STATEMENT

A basic single-table SQL SELECT statement has four basic parts, as shown in Table 3.1. Parts 1 and 2 are required in every
SELECT statement. Parts 3 and 4 are optional. If you omit Part 3, the record-selection criteria, your recordset will consist of all the
records in the table. If you omit Part 4, the sort order, the records will be ordered as they are in the table.

Table 3.1. The four parts of a basic SQL SELECT statement.

PURPOSE EXAMPLE

1. Specify which fields you want to see SELECT [Name], [Telephone]

2. Specify the table FROM [Publishers]

3. Specify the record-selection criteria WHERE [State] = "NY"

4. Specify the sort order ORDER BY [Name]

Combining the four example lines in the table produces this complete SQL SELECT statement:

SELECT [Name], [Telephone] FROM [Publishers] WHERE [State] = "NY" ORDER BY [Name]

This example is from the BIBLIO.MDB database supplied with Visual Basic. This database has a table named Publishers. Among
the fields in the Publishers table are Name, Telephone, and State.

In the example, the field names and the table name are surrounded by square brackets, and the text NY is enclosed within quotation
marks. These syntax requirements help the Jet database engine interpret the SQL statement. Table 3.2 lists the enclosure syntax
requirements for SQL statements.

Table 3.2. The enclosure syntax requirements for SQL statements.

ELEMENT ENCLOSURES EXAMPLES WHEN REQUIRED

Numeric data None

Text data Single or double "NY" or `NY' Always quotation marks

Date data Pound signs #6/11/1996# Always

Field names Square brackets [Name], [Zip Code] When name has spaces or punctuation

Table names Square brackets [Publisher Comments] When name has spaces or punctuation

CAPITALIZATION DOESN'T MATTER

In the Table 3.1 example, the SQL keywords (SELECT, FROM, WHERE, and ORDER BY) appear in capital letters.
This is a convention, and it is completely optional. Neither Visual Basic nor the Jet database engine cares about the

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (4 of 66) [9/22/1999 1:57:47 AM]

capitalization of SQL keywords or about the capitalization of table names and field names.

Note that in the example from Table 3.1, the field and table names do not require brackets because all the names consist of a
single word with no spaces or punctuation characters. The brackets are optional when there are no spaces or punctuation.

Multiple Fields and Multiple Criteria

If you need more than one field in the returned recordset, specify the fields by separating the field names with commas. Do the
same to designate multiple-field sorts. The following example returns three fields sorted first by the State field and then by the
City field:

SELECT [Name], [City], [State], FROM [Publishers]
ORDER BY [State], [City]

Specify multiple criteria through the AND and OR keywords. Assume that you have a table consisting of invoices with the fields
shown in Table 3.3.

Table 3.3. Fields for a hypothetical Invoices table.

FIELD TYPE

Invoice Number Numeric

Issue Date Date

Amount Currency

Customer Number Numeric

You want to create a recordset consisting of invoices to customer number 3267 that were dated on or after August 1, 1995. Your
SQL SELECT statement might look like this:

SELECT [Invoice Number], [Issue Date], [Amount] FROM [Invoices]
WHERE [Customer Number] = 3267 AND [Issue Date] >= #8/1/95#
ORDER BY [Issue Date]

Notice the use of the greater-than-or-equal-to operator (>=) in that statement. SQL comparison operators mimic those available in
Visual Basic. Also notice that because the customer number is a numeric field, not a text field, the customer number is not
enclosed in quotation marks.

In another situation, perhaps you want to find all invoices issued to customers 3267 and 3396. Your statement might be this:

SELECT [Invoice Number], [Issue Date], [Amount] FROM [Invoices]
WHERE [Customer Number] = 3267 OR [Customer Number] = 3396
ORDER BY [Issue Date]

You can combine AND and OR to select the invoices to customers 3267 and 3396 that were issued on or after August 1, 1995:

SELECT [Invoice Number], [Issue Date], [Amount] FROM [Invoices]
WHERE ([Customer Number] = 3267 OR [Customer Number] = 3396)
AND [Issue Date] >= #8/1/95# ORDER BY [Issue Date]

In the last example, the OR'd criteria are enclosed in parentheses. You do this to specify to the Jet engine the order in which it
should evaluate the criteria. In this situation, "the ORs go together." You want to select the invoices that were sent to both
customers after the specified date.

Using SQL Statements with the Data Control

When you use the Data control, you set the control's RecordSource property to specify the records that the control will display.
The RecordSource property can be set to a table, to a stored query, or to a SQL SELECT statement. When you use a SQL
SELECT statement as the RecordSource, you can specify records within a table by criteria you specify, and you can specify
the order in which the records are presented. Because you cannot use indexes with the Data control, the ability to define the sort
order is an important one.

Using SQL Statements with OpenRecordset

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (5 of 66) [9/22/1999 1:57:47 AM]

The Database object includes a method called OpenRecordset, with which you can create a dynaset or snapshot by using a
SQL statement as the first argument. The SQL statement must be in the form of a string (that is, enclosed in quotation marks).

Assume that you have declared dbfTemp to be a Database object and recTemp to be a Recordset object and that you have
set dbfTemp to point to a database. You can then create the recordset with the following statement (the statement must be all on
one line, of course):

Set recTemp = dbfTemp.OpenRecordset("SELECT [Name], [Telephone] FROM [Publishers]
ÂWHERE [State] = `NY' ORDER BY [Name]")

After this statement has executed, recTemp represents a set of records that meet the criteria specified in the SQL statement. You
can use any of the Recordset object's methods to work with these records.

Notice in the previous example that because the entire SQL statement is enclosed in double quotation marks, the text data within
the SQL statement requires single quotation marks. If the text being enclosed contains single quotation marks, you should use a
pair of double quotation marks. For example, assume that you are looking for records in which the company name is Joe's
Beanery. The WHERE clause in your SQL statement would be this:

WHERE [Company Name] = "Joe's Beanery"

You can also assign the SELECT statement to a string variable and then use the string variable as the argument to the
OpenRecordset method. Assume that sqlStmt has been declared as a string and that the following assignment statement
appears all on one line:

sqlStmt = "SELECT [Name], [Telephone] FROM [Publishers] WHERE [State] = `NY'
ÂORDER BY [Name]" Set recTemp = dbfTemp.OpenRecordset(sqlStmt)

Because SQL statements can get very long--and you can't use Visual Basic's line-continuation feature in the middle of a quoted
string--assigning SQL statements to strings often produces more readable code. You can build the string with the concatenation
operator:

sqlStmt = "SELECT [Invoice Number], [Issue Date], [Amount] FROM [Invoices]"
sqlStmt = sqlStmt & " WHERE ([Customer Number] = 3267 OR [Customer Number] = 3396)"
sqlStmt = sqlStmt & " AND [Issue Date] >= #8/1/95# ORDER BY [Issue Date]"
Set recTemp = dbfTemp.OpenRecordset(sqlStmt)

Steps

Open the project SELECT1.VBP. Change the DatabaseName property of the Data control Data1 to point to the copy of
BIBLIO.MDB installed on your system (probably in the directory where VB6.EXE is installed). Then run the project. The form
shown in Figure 3.1 appears. Scroll the top list to see the publishers in the database. Scroll the bottom list to see the titles in the
database.

Figure 3.1. The SQL Select Form.

1. Create a new project called SELECT1.VBP. Use Form1 to create the objects and properties listed in Table 3.4, and save
the form as SELECT1.FRM.

Table 3.4. Objects and properties for the Simple SELECTer form.

OBJECT PROPERTY SETTING

Form Name Form1

Caption Chapter 3.1 Example

CommandButton Name cmdClose

Caption Close

Default True

ListBox Name lstTitles

Data Name dtaData

Caption dtaData

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (6 of 66) [9/22/1999 1:57:47 AM]

javascript:popUp('03fig01.gif')

RecordSource SELECT [Company Name] FROM [Publishers] WHERE STATE
= `NY' ORDER BY [Company Name]

Visible False

DBList Name dlstPublishers

RowSource dtaData

ListField Company Name

2. Add the following code to the declarations section of Form1. Ensure that your BIBLIO_PATH constant points to the
location of your copy of BIBLIO.MDB, shipped with Visual Basic.

Option Explicit
`Change the following to point to your copy of BIBLIO.MDB.
Private Const BIBLIO_PATH = _
"D:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"

3. Add the following code to the Load event of Form1. The Form_Load event will set the dtaData Data control's
DatabaseName property, allowing it to retrieve data. Then, a snapshot-type Recordset object containing records from
the Titles table where the [Years Published] field is equal to 1993 or 1994 is created, and the titles are added to the
lstTitles list box. More detail about types of recordsets is provided in Chapter 2, "Accessing a Database with Data
Access Objects."

PPrivate Sub Form_Load()
 Dim dbfBiblio As Database, recSelect As Recordset
 Dim strSQL As String
 `Set up the error handler.
 On Error GoTo FormLoadError
 `Get the database name and open the database.
 dtaData.DatabaseName = BIBLIO_PATH
 dtaData.Refresh
 Set dbfBiblio = _
DBEngine.Workspaces(0).OpenDatabase(BIBLIO_PATH)
 `Open a snapshot-type recordset on the [Titles] table,
 ` selecting only those titles published in 1993 or 1994,
 ` sorting by the ISBN number. Note the use of the line
 ` continuation character (_), used throughout the
 ` examples, to make code more readable. " & _
 strSQL = "SELECT [Title], [ISBN] FROM [Titles] " & _
 "WHERE [Year Published] = 1993"
 Or [Year Published] = 1994 " & _
 "ORDER BY [ISBN]"
 `Create the recordset.
 Set recSelect = dbfBiblio.OpenRecordset(strSQL, _
 dbOpenSnapshot)
 `Iterate through the recordset until the end of the file
 `(EOF) is reached. Display each record in the unbound
 `list box lstTitles.
 If recSelect.RecordCount > 0 Then
 recSelect.MoveFirst
 Do Until recSelect.EOF
 lstTitles.AddItem recSelect![ISBN] & ": " & _
 recSelect![Title]
 recSelect.MoveNext
 Loop
 End If
 Exit Sub
FormLoadError:
 `If an error occurs, display it with a MsgBox command.
 MsgBox Err.Description, vbExclamation

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (7 of 66) [9/22/1999 1:57:47 AM]

 Exit Sub
End Sub

4. Add the following code to the Click event of cmdClose. The code in the cmdClose_Click event will end the application.

Private Sub cmdClose_Click()
 End
End Sub

How It Works

This How-To displays two lists, each showing the records in a recordset generated by a SQL SELECT statement. The top list is a
DBList control bound to the Data control dtaData. The SQL statement that generates the recordset is supplied as the
RecordSource property of the Data control. The bottom list is an unbound ListBox. Its recordset is generated by the
OpenRecordset method called from the Form_Load event.

Comments

As basic as the code for this example might seem, it becomes the foundation for data access in Visual Basic using SQL. No matter
which method you use (Data controls, Data Access Objects, or some of the other methods this book explores), SQL is the
foundation on which these methods stand.

3.2 How do I...

Select unique field values in a SQL query?

Problem

I know that records in my table contain duplicate values in a particular field. How can I create a list of the unique values in the
field?

Technique

By default, a SQL statement returns one row for each row in the table that meets the criteria specified in the statement's WHERE
clause. If this action results in duplicate rows, these duplications are reproduced in the output recordset. For example, assume that
your company provides products in several colors but uses the same product number for all colors of an otherwise identical
product. You might have a [Products] table with this structure:

Product Number Color
AGD44523 Green
AGD44523 Red
AGD44527 Red

You have two records with the [Product Number] field equal to AGD44523, each with a different entry in [Color]. Query
the table with this SQL statement:

SELECT [Product Number] FROM [Products]

Included in your resulting recordset will be two identical rows, each with the value AGD44523.

Perhaps you want a list of unique product numbers, with no duplication. You can tell the Jet engine to filter duplicates out of the
resulting recordset by inserting the keyword DISTINCT immediately after the word SELECT. You would rewrite your SQL
statement like this:

SELECT DISTINCT [Product Number] FROM [Products]

That statement would result in a recordset with just one occurrence of the value AGD44523.

WHICH IS FASTER: SQL OR PROCEDURAL?

The question "Is SQL or the procedural approach faster when interfacing with the database?" is a complex one. In
most cases, SQL methods will be faster than traditional procedural approaches. If an operation is time critical, it will
probably be profitable to benchmark both the SQL approach and the procedural approach before making a decision
on which to use in your production code.

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (8 of 66) [9/22/1999 1:57:47 AM]

An important class of exceptions to the generalization that "SQL is usually faster" is random access into an indexed
table using the Seek method when each Seek operation is followed by operations on a small number of records.
This code fragment provides an example:

Set recSelect = dbfTest.OpenRecordset("MyTable", dbOpenTable)
recSelect.Index = "MyIndex"
recSelect.Seek "=", intSomeValue
If Not recSelect.NoMatch Then
 ` Perform an action on the record sought
End If
` If needed, perform another Seek, or close the recordset and
` move on.

In such cases, the traditional procedural methods are usually faster than SQL statements.

Steps

The BIBLIO.MDB database (supplied with Visual Basic) contains multiple publishers from the same state. Open the project
SELECT2.VBP and run it. Initially, the list box on the form is blank. Click the Show All button, and the form then appears as
shown in Figure 3.2; notice the occurrence of multiple CA entries. Click the Show Unique button, and the form appears as shown
in Figure 3.3, with only one entry for each state.

Figure 3.2. The SQL Select Unique form after the Show All button is clicked.

Figure 3.3. The SQL Select Unique form after the Show Unique button is clicked.

1. Create a new project called SELECT2.VBP. Use Form1 to create the objects and properties listed in Table 3.5, and save
the form as SELECT2.FRM.

Table 3.5. Objects and properties for the Distinct SELECTer form.

OBJECT PROPERTY SETTING

Form Name Form1

Caption Chapter 3.2 Example

CommandButton Name cmdClose

Caption &Close Form

CommandButton Name cmdShowUnique

Caption Show &Unique

CommandButton CommandButton cmdShowAll

Caption Show &All

Data Name dtaData

DBList Name dlstData

DataSource State

RowSource dtaData

2. Add the following code to the declarations section of Form1:

Option Explicit
`Ensure that the following points to your copy of BIBLIO.MDB.
Private Const BIBLIO_PATH = _
"D:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"

3. Add the following code to the Click event of cmdShowAll. This code builds a SQL statement that creates a
recordset with one record for every [Publishers] table row with a non-NULL [State] field and passes the SQL
statement to the RefreshControls subroutine.

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (9 of 66) [9/22/1999 1:57:47 AM]

javascript:popUp('03fig02.gif')
javascript:popUp('03fig03.gif')

Private Sub cmdShowAll_Click()
 Dim strSQL As String
 `Perform the simple SELECT query. Note the lack of the
 `DISTINCT keyword (see the cmdShowUnique_Click event
 `for more info.)
 strSQL = "SELECT [State] FROM [Publishers] " & _
 "WHERE [State] IS NOT NULL " & _
 "ORDER BY [State]"
 `Set the RecordSource and refresh the Data control and
 `DBList control
 RefreshControls strSQL
End Sub

4. Add the following code to the Click event of cmdShowUnique. This code builds a SQL statement that creates a
recordset with one record for every unique value in the [State] field of the [Publishers] table and passes the SQL
statement to the RefreshControls subroutine.

Private Sub cmdShowUnique_Click()
Dim strSQL As String
 `Perform the SELECT DISTINCT query.
 `Since the DISTINCT keyword is present, only
 `the first instance of a given [State] value is represented
 `in the result set.
 strSQL = "SELECT DISTINCT [State] FROM [Publishers] " & _
 "WHERE [State] IS NOT NULL " & _
 "ORDER BY [State]"
 `Set the RecordSource and refresh the Data control and
 `DBList control
 RefreshControls strSQL
End Sub

5. Create the RefreshControls subroutine by entering the following code into Form1. This routine assigns the SQL
statement received as the argument to the RecordSource property of the Data control. It then refreshes the Data control
and the bound list box.

Private Sub RefreshControls(strSQL as string)
 dtaData.RecordSource = strSQL
 dtaData.Refresh
 dlstData.Refresh
End Sub

6. Add the following code to the Click event of cmdClose:

Private Sub cmdClose_Click()
 End
End Sub

How It Works

The RecordSource property of the Data control dtaData is set to an empty string in the Properties window. At form load,
therefore, the Recordset object of dtaData will be empty, and it will remain empty until the RecordSource property is set
to something that will return a valid recordset and the Data control is refreshed. Because the DBList control is bound to the Data
control, it will be empty while the Data control remains empty.

The Click routines of cmdShowAll and cmdShowUnique both perform the same basic function: They build a SQL statement
to select the [State] field from the [Publishers] table and then pass the SQL statement to the RefreshControls subroutine.
The difference in the Click routines is that cmdShowUnique includes the DISTINCT keyword in its SELECT statement and,
therefore, returns only one record for each unique [State] value in the table.

Comments

In addition to the DISTINCT keyword described in this How-To, the Jet database engine also supports DISTINCTROW
operations. When you use DISTINCTROW rather than DISTINCT, the database engine looks not only at the fields you've

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (10 of 66) [9/22/1999 1:57:47 AM]

specified in your query but at entire rows in the table specified by the query. It returns one record in the dynaset for each unique
row in the table, whether or not the output recordset row is unique.

Here's a simple example to illustrate the difference. Assume that the table [Cities] consists of these records:

CITY STATE
Chicago IL
Rockford IL
Madison WI
Madison WI
Dubuque IA

Here are two SQL queries:

SELECT DISTINCT [State] FROM [Cities]
SELECT DISTINCTROW [State] FROM [Cities]

The first SQL statement would return the following recordset. The DISTINCT statement ensures that each row in the output
recordset is unique.

IL
WI
IA

The second SQL statement would return the following recordset. The IL entry appears twice because there are two unique records
in the underlying table with a value of IL in the [State] field. The WI entry, on the other hand, appears only once because
there is only one unique record in the underlying table.

IL
IL
WI
IA

In a well-designed database, a table will have no duplicate records because each record will have a primary key, and primary keys
are by definition unique. If you have primary keys on all your tables, therefore, you have no need for DISTINCTROW.

3.3 How do I...

Use variables and Visual Basic functions in a SQL query?

Problem

SQL SELECT statements are useful tools. But if I have to hard-code the criteria into the statement, it limits my flexibility because
I can't change the criteria at runtime. I'd like to be able to use variables in the criteria clauses of my SELECT statements or--even
better--use Visual Basic functions that return values. How can I accomplish this?

Technique

The SQL statement that you pass to the OpenRecordset method of the Database object or that you assign as the
RecordSource property of a Data control is a string. Because it is a string, you can insert the values of variables into it using
Visual Basic's concatenation operator. You can use the same technique to insert the value returned by a call to a function (a
built-in Visual Basic function or one you write yourself) into the string.

Steps

Open the project SELECT3.VBP and run the project. The form shown in Figure 3.4 appears. Scroll the top list to see the
publishers in the database. Click on a publisher, and the titles for that publisher appear in the bottom list. Enter a year in the Year
Published box, and click on a publisher to restrict the display to titles published by a specific publisher in a specific year.

Figure 3.4. The Variable SELECTer form at startup.

1. Create a new project called SELECT3.VBP. Use Form1 to create the objects and properties listed in Table 3.6, and save
the form as SELECT3.FRM.

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (11 of 66) [9/22/1999 1:57:47 AM]

javascript:popUp('03fig04.gif')

Table 3.6. Options and properties for the Variable SELECTer form.

OBJECT PROPERTY SETTING

Form Name Form1

Caption Chapter 3.3 Example

CommandButton Name cmdClose

Caption Close

Default True

ListBox Name lstTitles

Data Name dtaData

Caption dtaData

RecordsetType Snapshot

RecordSource SELECT [Company
Name] FROM
[Publishers] ORDER
BY [Company Name]

Visible False

DBList Name dlstPublishers

RowSource dtaData

ListField Company Name

Label Name lblYearPublished

AutoSize True

Caption Year Published:

TextBox Name txtYearPublished

Text ""

2. Add the following code to the declarations section of Form1:

Option Explicit
Private Const BIBLIO_PATH = _
"D:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"
Dim dbfBiblio As Database

3. Add the following code to the Load event of Form1:

Private Sub Form_Load()
On Error GoTo FormLoadError
 `Set the Data control and load the Database object
 `dbfBiblio.
 dtaData.DatabaseName = BIBLIO_PATH
 dtaData.Refresh
 Set dbfBiblio = DBEngine.Workspaces(0).OpenDatabase(BIBLIO_PATH)
 On Error GoTo 0
Exit Sub
FormLoadError:
 MsgBox Err.Description, vbExclamation
 Exit Sub
End Sub

4. Add the following code to the Click event of dlstPublishers:

Private Sub dlstPublishers_Click()
Dim recSelect As Recordset
 Dim strSQL As String

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (12 of 66) [9/22/1999 1:57:47 AM]

 Dim intYearPublished As Integer
 On Error GoTo PublishersClickError
 `Clear the list box
 lstTitles.Clear
 `Confirm that the year is numeric; if so, set the
 `intYearPublished variable to its numeric value.
 If IsNumeric(txtYearPublished) Then intYearPublished = _
 Val(txtYearPublished)
 `Build the SQL statement
 strSQL = "SELECT [Title], [ISBN] FROM [Titles] " & _
 "WHERE [PubID] = " & GetPubID()
 `If the year published selection is greater than zero,
 `modify the SQL to search for it.
 If intYearPublished > 0 Then
 strSQL = strSQL & " AND [Year Published] = " & _
 intYearPublished
 End If
 `Sort the results by the ISBN number.
 strSQL = strSQL & " ORDER BY [ISBN]"
 `Get the recordset from our SQL statement.
 Set recSelect = dbfBiblio.OpenRecordset(strSQL, _
 dbOpenSnapshot)
 `If we have obtained results, add the ISBN
 `and Title fields to the list box.
 If recSelect.RecordCount > 0 Then
 recSelect.MoveFirst
 Do Until recSelect.EOF
 lstTitles.AddItem recSelect![ISBN] & ": " _
 & recSelect![Title]
 recSelect.MoveNext
 Loop
 End If
 On Error GoTo 0
Exit Sub
PublishersClickError:
 MsgBox Err.Description, vbExclamation
 Exit Sub
End Sub

When the user clicks on a publisher name, this subroutine opens a snapshot-type Recordset object created from the
Titles table, selecting only those titles published by the selected publishing company and, if the user has entered a
publication year in txtYearPublished, in the designated year. It sorts the records in the snapshot by the ISBN number.

The WHERE clause in the SQL statement includes the value returned from the function GetPubID. GetPubID returns a
numeric value corresponding to the Publishers table's PubID field for the currently selected publisher in
dlstPublishers. Its value can be inserted into the SQL string by concatenating the function call to the string.

If the user has entered a publication year into txtYearPublished, its value is assigned to the numeric variable
yrPublished and then inserted into the SQL string by concatenating the variable yrPublished to the string. Note that
both values added to the string (the return value of GetPubID and the value of yrPublished) represent numeric fields
in the database. Therefore, neither value is delimited by quotation marks in the SQL statement.

5. Create the following function in Form1. This function creates a recordset consisting of the PubID field of the record
from the Publishers table with the company name value of the current selection in the dlstPublishers list. (This code
assumes that each record in Publishers has a unique company name.) It then returns the value of that PubID field. In the
SQL statement, the value dblPublishers.Text is used as the criterion of the WHERE clause. Because this value is a
string (text) value, it must be delimited by quotation marks in the SQL statement. A single pair of double quotation
marks--one at the beginning of the variable name and one at the end--won't do because the entire SQL statement is in
quotation marks. You could use single quotation marks, like this:

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (13 of 66) [9/22/1999 1:57:47 AM]

strSQL = strSQL & " WHERE [Company Name] = `" & dblPublishers.Text _
 & "`"

This would work if you could be sure that the value dblPublishers.Text would never include an apostrophe. But
because you can't be sure of that (in fact, BIBLIO.MDB does contain one publisher, O'Reilly & Associates, with an
apostrophe), a double quotation mark is the safest course.

Function GetPubID() As Long
Dim recPubID As Recordset
 Dim strSQL As String
 `This subquery, once constructed, selects the publisher ID
 `given a company name.
 strSQL = "SELECT [PubID] FROM [Publishers] " & _
 "WHERE [Company Name] = """ & dblPublishers.Text & """"
 `Construct the recordset from our SQL statement.
 Set recPubID = dbfBiblio.OpenRecordset(strSQL, dbOpenSnapshot)
 `If we have a record, get the ID. If not, return zero.
 If recPubID.RecordCount > 0 Then
 GetPubID = recPubID![PubID]
 Else
 GetPubID = 0
 End If
End Function

6. Add the following code to the Click event of cmdClose:

Private Sub cmdClose_Click()
 End
End Sub

How It Works

When the form loads, it opens the database by setting the value of the Database object variable dbfBiblio to BIBLIO.MDB.
The Publishers list is a bound list and is filled on startup by the records specified in the RecordSource property of Data1
(see How-To 3.1 for a discussion of this bound list and Data control). The Titles list is initially empty, and it remains so until
the user clicks on the name of a publisher. Then the dlstPublisher_Click event code fills the Titles list with the titles
published by the selected publisher. It does this by building a SQL statement that includes the PubID of the selected publisher. If
the user enters a year in the Year Published text box, its value is appended to the WHERE clause as an additional criterion.

Because the dlstPublishers list does not include the PubID field, its Click event needs to retrieve the value of the PubID
field for the selected record. It does this by a call to the GetPubID function. GetPubID returns a numeric value, which is
inserted directly into the SQL string.

Comments

You can also use built-in Visual Basic functions in your SQL statement. The functions are evaluated at runtime and their return
values inserted into the SQL statement passed to the Jet engine. For example, if you have an integer variable named intIndex,
you could use the built-in Choose function to build a SQL statement like this:

strSQL = SELECT * FROM Orders WHERE [Delivery Service] = `" & _
Choose(intIndex, "Speedy", "Rapid", "Quick", "Rabbit", "Tortoise") & "`"

3.4 How do I...

Use wildcards and ranges of values in a SQL query?

Problem

I need to create recordsets where the records returned fall within a range of values or contain certain text strings. How can I do this
with SQL?

Technique

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (14 of 66) [9/22/1999 1:57:48 AM]

You might need to create recordsets that consist of records that fall within a range of values. Or perhaps you need to create
recordsets consisting of records in which a given field contains a certain text string. You can accomplish both of these tasks with
SQL.

Finding Records Within Criteria Ranges

You can use the standard comparison operators to find records that have a field value within a range of values. For example, to
find all records in the Invoices table with Invoice Date values between January 1, 1996, and January 15, 1996, you can use
this statement:

SELECT * FROM [Invoices]
WHERE [Invoice Date] >= #1/1/1996# AND [Invoice Date] <= #1/15/1996#

As an alternative, you can use the SQL Between operator. This statement returns the same recordset as the preceding one:

SELECT * FROM [Invoices]
WHERE [Invoice Date] Between #1/1/1996# AND #1/15/1996#

Using Wildcards in String Criteria

You can find records containing designated strings of text within text fields by using the wildcard characters * and ? with the
SQL Like operator. The asterisk matches any combination of characters. The question mark matches a single character.

This statement retrieves all records that have the Company field beginning with mcgraw:

SELECT * FROM [Publishers] WHERE [Company] LIKE "mcgraw*"

This statement retrieves all records with the last name Hansen or Hanson:

SELECT * FROM [Authors] WHERE [Last Name] LIKE "hans?n"

You can use more than one wildcard character in a string. This statement retrieves all the records in which the [Company
Name] field includes the word hill:

SELECT * FROM [Publishers] WHERE [Company Name] LIKE "*hill*"

Steps

Open and run the project SELECT4.VBP. The form shown in Figure 3.5 appears. Enter *visual basic* in the text box
labeled Title Includes Text, and click the Look Up button. Enter 1992 and 1993 in the Published Between boxes, and click Look
Up again. Delete the values from the Published Between boxes; then change the entry in the Title Includes Text box to visual
basic* and click Look Up. Change the text in the Title Includes Text box to *visual basic and click Look Up.

Figure 3.5. The Wildcard SELECTer form on startup.

1. Create a new project called SELECT4.VBP. Use Form1 to create the objects and properties listed in Table 3.7, and save
the form as SELECT4.FRM.

Table 3.7. Options and properties for the Wildcard SELECTer form.

OBJECT PROPERTY SETTING

Form Name Form1

Caption Chapter 3.4 Example

ListBox Name lstTitles

TextBox Name txtPartialTitle

TextBox Name txtStartYear

TextBox Name txtEndYear

Label Name lblPartialTitle

AutoSize True

Caption Title includes text:

Label Name lblStartYear

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (15 of 66) [9/22/1999 1:57:48 AM]

javascript:popUp('03fig05.gif')

AutoSize True

Caption Published between:

Label Name lblEndYear

AutoSize True

Caption and

CommandButton Name cmdLookup

Caption &Look Up

Default True

CommandButton Name cmdClose

Caption &Close

2. Add the following code to the declarations section of Form1:

Option Explicit
Private Const BIBLIO_PATH = "D:\Program Files\Microsoft Visual Studio\
ÂVB6\Biblio.MDB"

3. Add the following code to the Click event of cmdLookup. This sets the values of the three variables to be inserted into
the SQL statement to
the contents of the three text boxes. It uses the IIf function to set the variables to default values if a text box is blank or if
one of the Year text boxes contains a nonnumeric value. It then builds the SQL statement, inserting the variable values into
the WHERE clause, opens the recordset, and fills the list with the recordset contents. (See How-To 3.3 for a discussion of
using Visual Basic variables in SQL statements.)

Private Sub cmdLookup_Click()
Dim dbfBiblio As Database, recSelect As Recordset
 Dim strName As String, strSQL As String
 Dim strTitleText As String, strStartYear As String, strEndYear As String
 On Error GoTo LookupError
 `Clear the list box
 lstTitles.Clear
 `Construct the search strings, using wildcards where
 `appropriate. For example, if the txtPartialTitle field is
 `blank, the * wildcard is substituted.
 strTitleText = IIf(txtPartialTitle <> "", _
 txtPartialTitle, "*")
 strStartYear = IIf(IsNumeric(txtStartYear), _
 txtStartYear, "1")
 strEndYear = IIf(IsNumeric(txtEndYear), _
 txtEndYear, "9999")
 `Open the database
 Set dbfBiblio = _
 DBEngine.Workspaces(0).OpenDatabase(BIBLIO_PATH)
 `Build the SQL statement, substituting our search strings,
 `built above, in the appropriate locations.
 strSQL = "SELECT [Title] FROM [Titles] " & _
 "WHERE [Title] LIKE `*" & strTitleText & "*' " & _
 "AND [Year Published] BETWEEN " & strStartYear & _
 " AND " & strEndYear & _
 " ORDER BY [Title]"
 `Construct the SQL statement.
 Set recSelect = _
 dbfBiblio.OpenRecordset(strSQL, dbOpenSnapshot)
 `If we get results, load the Title field of each record
 `into the list box.
 If recSelect.RecordCount > 0 Then

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (16 of 66) [9/22/1999 1:57:48 AM]

 recSelect.MoveFirst
 Do Until recSelect.EOF
 lstTitles.AddItem recSelect![Title]
 recSelect.MoveNext
 Loop
 End If
 On Error GoTo 0
Exit Sub
LookupError:
 MsgBox Err.Description, vbExclamation
 Exit Sub
End Sub

4. Add the following code as the Click event of cmdClose:

Private Sub cmdClose_Click()
 End
End Sub

How It Works

The true action of this sample application occurs in the cmdLookup_Click event. After clearing the contents of the
lstTitles list box, the code uses the values supplied in the text boxes to construct a SQL statement to run against the
dbfBiblio Database object. If records were retrieved after the statement was run with the OpenRecordset method, the
lstTitles list box would be populated with the contents of the [Title] field from each record.

Comments

A Visual Basic database stores a date field as a number. In the WHERE clause of a SQL statement, you can treat it like a number;
using the Between operator or comparison operators like >= or <= returns the results you would expect.

However, you can treat the date field like text in the WHERE clause of a SQL statement. This method enables you to use wildcard
characters for any of the three values in a standard date.

For example, this WHERE clause returns all records with an invoice date in January 1996:

WHERE [Invoice Date] LIKE "1/*/1996"

The following WHERE clause returns all records with an invoice date in 1996:

WHERE [Invoice Date] LIKE "*/*/1996"

Notice that when you use the Like operator and wildcard characters, you delimit the date with quotation marks--not pound signs.
Quotation marks tell the Jet database engine, "Treat this date like a string." The pound signs tell it, "Treat this date like a number."

3.5 How do I...

Define and use a parameter query?

Problem

I need to create recordsets with search criteria based on a parameter that will change often and reload quickly each time the
parameter changes.

Technique

Normally, when using SQL to search for a specific value or values, you would specify which values you wanted in the statement.
For example, to retrieve names and telephone numbers from the [Publishers] table in which the [State] field was equal to
"NY", you would use this SQL statement:

SELECT [Name], [Telephone] FROM [Publishers] WHERE [State] = "NY" _
 ORDER BY [Name]

But this limits you. If you wanted all the names and telephone numbers from a different state, you would create a new query.

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (17 of 66) [9/22/1999 1:57:48 AM]

There is, however, a faster way. A parameter query is a special SQL query in which replaceable parameters are used. Think of a
parameter in SQL as a variable in Visual Basic. This allows your query to be flexible, and it also allows an increase in
performance because the SQL precompiler doesn't have to completely build a new query every time you change a parameter.

To use a parameter in your SQL statement, you first have to specify the parameter--like declaring a variable in Visual Basic. You
do this in the PARAMETERS section of your query, which usually precedes the SELECT statement. The declaration, as in Visual
Basic, consists of a name and a data type, although the data types vary slightly from the names you might be accustomed to in
Visual Basic. The PARAMETERS section is separated from the SELECT section by a semicolon (;) so that the SQL precompiler
can tell the difference between the two sections.

To rewrite the preceding query for use with parameters, you might use something like this:

PARAMETERS prmState String; SELECT [Name], [Telephone] FROM [Publishers] _

 WHERE [State] = [prmState] ORDER BY [Name]

The parameter is substituted for the search value but in all other respects does not alter the SQL statement.

Steps

Open and run the project SELECT5.VBP. The form shown in Figure 3.6 appears. Enter NY in the State Abbreviation text box and
click Search. Enter any other value in the State Abbreviation text box and click Search again.

Figure 3.6. The SQL Parameter Query form on startup.

1. Create a new project called SELECT5.VBP. Use Form1 to create the objects and properties listed in Table 3.8, and save
the form as SELECT5.FRM.

Table 3.8. Options and properties for the Parameter SELECTer form.

OBJECT PROPERTY SETTING

Form Name Form1

Caption Chapter 3.5 Example

Label Name lblParameter

Caption State abbreviation:

TextBox Name txtParameter

Label Name lblResults

Caption Results:

ListBox Name lstResults

CommandButton Name cmdSearch

Caption &Search

CommandButton Name cmdClose

Caption &Close

2. Add the following code to the declarations section of Form1:

Option Explicit
Private Const BIBLIO_PATH = _
 "D:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"
Private mdbfBiblio As Database, mrecSelect As Recordset, _
 mqdfTemp As QueryDef

3. Add the following code to the Load method of Form1. The CreateQueryDef method is used on the database to
create a QueryDef object, which will hold the parameter query. Later, the QueryDef will be used to create a recordset
for display.

Private Sub Form_Load()
 `Open a Database object first - the familiar BIBLIO.MDB
 Set mdbfBiblio =
 DBEngine.Workspaces(0).OpenDatabase(BIBLIO_PATH)

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (18 of 66) [9/22/1999 1:57:48 AM]

javascript:popUp('03fig06.gif')

 `Use the CreateQueryDef method to create a temporary QueryDef
 `object that will store our parameter query. The best way to
 `use a parameter query in DAO is with the QueryDef object.
 Set mqdfTemp = mdbfBiblio.CreateQueryDef("")
 `Set the SQL property to our parameter query SQL statement.
 mqdfTemp.SQL = "PARAMETERS pstrState String;SELECT " & _
 "[Name],[Telephone] " & _
 "FROM [Publishers] WHERE [State] = [pstrState] " & _
 "ORDER By [Name]"
End Sub

4. Add the following code to the Click event of cmdSearch. Now that you have a possible value for your parameter,
you reference the pstrState parameter of the QueryDef object you created in the Form_Load routine. Then, using
the QueryDef, you create a recordset. Now, the best part of this is when you change the parameter; instead of recreating
the recordset, you use the Requery method provided by the Recordset object. Using this method is much faster
because the recordset has an existing connection to the database and has its SQL already defined; you're just changing a
parameter.

Private Sub cmdSearch_Click()
 Dim lstrTemp As String
 `Set the parameter to the contents of our text box
 mqdfTemp![pstrState] = txtParameter.Text
 `If we haven't run this query yet, we'll need to
 `create it. If we have, we don't need to create it,
 `just to requery it.
 If mrecSelect Is Nothing Then
 Set mrecSelect = mqdfTemp.OpenRecordset()
 Else
 mrecSelect.Requery mqdfTemp
 End If
 `Clear the list box
 lstResults.Clear
 `Populate the list box with names & phone numbers
 If mrecSelect.RecordCount > 0 Then
 mrecSelect.MoveFirst
 Do Until mrecSelect.EOF
 lstResults.AddItem mrecSelect![Name] & " (Phone: " _
 & mrecSelect![Telephone] & ")"
 mrecSelect.MoveNext
 Loop
 End If
End Sub

5. Add the following code to the Click event of cmdClose:

Private Sub cmdClose_Click()
 End
End Sub

How It Works

When the application is started, Form1 loads. The Form_Load event creates a Database object instance and then uses object's
CreateQueryDef method to create a temporary QueryDef object. At this point, your parameter query is created by placing
the SQL statement for the query into the SQL property of the newly created QueryDef object.

When the cmdSearch_Click event is triggered, you first populate the QueryDef's Parameter object with information
from the txtParameter field. Then the routine checks whether the Recordset object it's about to populate is set to
Nothing. If so, the query hasn't been run yet, so the routine constructs a Recordset object by running the OpenRecordset
method from the QueryDef object. If not, it uses the Requery method, which simply re-executes the query without having to
make a new connection to the database, compile the SQL, and so on.

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (19 of 66) [9/22/1999 1:57:48 AM]

After it does so, if the query has returned records, the lstResults list box is populated with the information.

Comments

One of the benefits of using a parameter query is the Requery method. The Requery method allows you to re-issue a query
with different parameters; Microsoft Access will actually reuse the existing connection, running the query faster. Also, the
optimization engine built into Jet works best on static SQL (that is, SQL stored in the database, as opposed to the SQL statements
stored in code), so you can get even more benefit from the use of a parameter query that is saved to a Microsoft Access database.
For more information on how to use a stored parameter query, examine How-To 5.7 in Chapter 5, "Microsoft Access Database."

3.6 How do I...

Create recordsets by joining fields from multiple tables?

Problem

I've designed my database using good relational database design principles, which means that I have data in multiple tables that
are related through key fields. How can I use SQL to return recordsets with data from multiple tables in each recordset record?

Technique

In BIBLIO.MDB, the Publishers table contains information about publishers, and the Titles table contains information about titles.
Each publisher is assigned a unique publisher ID, which appears in the PubID field in the Publishers table. In the Titles table, the
publisher is indicated by the publisher number as well as in a field named PubID. Figure 3.7 shows this relationship. If you were
using procedural coding and wanted to find the name of the publisher of a given title, you would find the title in the Titles table,
store the value of the PubID for that title, and then find the matching PubID in the Publishers table.

This job is a lot easier with SQL. When you have a link like the one in Figure 3.7, you can use the keywords INNER JOIN in the
FROM clause of a SQL SELECT statement to create a single recordset with fields from both tables. To continue the example, you
could create a recordset with the Title field from the Titles table and the Name field from the Publishers table with this SQL
statement:

SELECT Titles.Title, Publishers.Name
FROM Publishers INNER JOIN Titles ON Publishers.PubID = Titles.PubID

In a single-table SELECT statement, the FROM clause is simple--it just gives the name of the table. A multitable statement FROM
clause consists of one (or more) subclauses, each based on an INNER JOIN. The syntax of each INNER JOIN is as follows:

<table 1 name> INNER JOIN <table 2 name>
ON <table 1 linking field name> = <table 2 linking field name>

Figure 3.7. The BIBLIO.MDB Publishers and Titles table relationship.

Note that the field names in both the SELECT clause and the FROM clause are fully qualified with their table names, with the
period operator separating the table name from the field name. Strictly speaking, this is necessary only when both tables have
fields with identical names. In the example, the table names are required in the FROM clause because both tables have a field
named PubID; they are optional in the SELECT clause because only the Titles table has a field named Title and only the
Publishers table has a field named Name. It's good practice, however, to fully qualify all field names in multitable SQL
statements. This not only makes the code easier to interpret but also makes it less likely that your code will be broken by
subsequent changes to the structure of the database.

MULTIFIELD JOINS

It's quite common to have relationships based on multiple fields within each table. For example, assume that you
have an Employees table and an Hours Worked table. You identify each employee by two fields, [Last Name]
and [First Name]. These two fields appear in each table and are used to link Employee records to Hours Worked
records.
Code these multifield joins by creating an INNER JOIN subclause, with multiple ON expressions tied together with
the AND keyword. Each ON expression links one pair of common fields. The FROM clause you'd use to link the tables
in the example would be this:

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (20 of 66) [9/22/1999 1:57:48 AM]

javascript:popUp('03fig07.gif')

FROM Employees INNER JOIN [Hours Worked]
ON Employees.[Last Name] = [Hours Worked].[Last Name]
AND Employees.[First Name] = [Hours Worked].[First Name]

Steps

Open the project SELECT6.VBP. The form shown in Figure 3.8 appears. Use the Data control's record navigation buttons to page
through the records in the recordset.

Figure 3.8. The SQL Inner Join form on startup.

1. Create a new project called SELECT6.VBP. Use Form1 to create the objects and properties listed in Table 3.9.

Table 3.9. Options and properties for the INNER JOINer form.

OBJECT PROPERTY SETTING

Form Name Form1

Caption Chapter 3.6 Example

TextBox Name txtYearPublished

DataField Year Published

DataSource dtaData

TextBox Name txtPublisher

DataField Name

DataSource dtaData

TextBox Name txtTitle

DataField Title

DataSource dtaData

CommandButton Name cmdClose

Caption &Close

Data Name dtaData

Caption dtaData

RecordSource SELECT DISTINCTROW Titles.Title, Publishers.Name,
Titles.[Year Published] FROM Publishers INNER JOIN
Titles ON Publishers.PubID = Titles.PubID ORDER BY
Titles.Title

Label Name lblYearPublished

AutoSize True

Caption Year Published:

Label Name lblPublisher

AutoSize True

Caption Publisher:

Label Name lblTitle

AutoSize True

CAPTION TITLE:

2. Add the following code to the declarations section of Form1:

Option Explicit
Private Const BIBLIO_PATH = _
"D:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"

3. Add the following code as the Load event of Form1:

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (21 of 66) [9/22/1999 1:57:48 AM]

javascript:popUp('03fig08.gif')

Private Sub Form_Load()
 `Set the DatabaseName for the Data control.
 dtaData.DatabaseName = BIBLIO_PATH
End Sub

4. Add the following code as the Click event of cmdClose:

Private Sub cmdClose_Click()
 End
End Sub

How It Works

This program makes use of the innate capabilities of bound controls (discussed in more detail in Chapter 1, "Accessing a Database
with Bound Controls") to illustrate the use of an INNER JOIN. When the program is started, the Form_Load event will set the
DatabaseName property of the dtaData Data control to the location of BIBLIO.MDB. At this point, the dtaData Data
control will run the SQL statement stored in its RecordSource property. The Data control will then handle the rest.

Comments

The INNER JOIN can be extremely useful in databases, but don't go "whole hog" with it. The more tables you add to a JOIN, no
matter what type, the slower the SQL statement will execute. Consider this a database developer's maxim: Retrieve only the data
you need; if you don't need it, don't include it. That goes for JOINs as well. If you don't need the table, don't JOIN it.

3.7 How do I...

Find records in a table without corresponding entries in a related table?

Problem

I have an Orders table and a Customers table, related on the Customer Number field. I'd like to find all the customers who have
not placed an order in the past six months. How can I do this?

Technique

The INNER JOIN, discussed in the preceding How-To, allows you to find all the records in a table that have matching records in
another table, when the two tables are related on a key field and when "matching" means that values in the key fields match. SQL
also provides an outer join, which lets you list all the records in one of the related tables whether or not they have matching
records in the other table.

For example, assume that you have two tables, Customers and Invoices, with these entries:

Customers Table Invoices Table
 Customer Number Customer Name Customer Number Invoice Date Invoice Amount
 100 ABC Company 102 12/12/1996 $589.31
 101 MNO Company 100 12/15/1996 $134.76
 102 XYZ Company 102 12/22/1996 $792.13

Create a recordset using the following SQL statement with an INNER JOIN in the FROM clause:

SELECT Customers.[Customer Name], Customers.[Customer Number],
 Invoices.[Customer Number], Invoices.[Invoice Date],
 Invoices.[Invoice Amount]
FROM Customers INNER JOIN Invoices
ON Customers.[Customer Number] = Invoices.[Customer Number]
ORDER BY Customers.[Customer Number], Invoices.[Invoice Date]

Executing that statement returns this recordset:

 Customers Invoices
Customer Name Customer Number Customer Number Invoice Date Invoice Amount
ABC Company 100 100 12/15/1996 $134.76
XYZ Company 102 102 12/12/1996 $589.31

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (22 of 66) [9/22/1999 1:57:48 AM]

XYZ Company 102 102 12/22/1996 $792.13

MNO Company, customer number 101, would not appear at all in the recordset because there are no records in the Invoices table
for customer number 101, and an INNER JOIN returns only records with matching key field values in both tables. But see what
happens when you change the join type in the FROM to a LEFT JOIN, one of the two types of outer joins:

SELECT Customers.[Customer Name], Customers.[Customer Number],
 Invoices.[Customer Number], Invoices.[Invoice Date],
 Invoices.[Invoice Amount]
FROM Customers LEFT JOIN Invoices
ON Customers.[Customer Number] = Invoices.[Customer Number]
ORDER BY Customers.[Customer Number], Invoices.[Invoice Date]

Executing this SQL statement returns this recordset:

 Customers Invoices
Customer Name Customer Number Customer Number Invoice Date Invoice Amount
ABC Company 100 100 12/15/1996 $134.76
MNO Company 101
XYZ Company 102 102 12/12/1996 $589.31
XYZ Company 102 102 12/22/1996 $792.13

The recordset consists of all the records that the INNER JOIN version produced, and one additional record for each record in the
table on the left side of the FROM clause that has no matching records in the table on the right side of the FROM clause.

LEFT JOINS AND RIGHT JOINS

There are two outer joins: LEFT JOIN and RIGHT JOIN. The direction of the join refers to the relative position of
the table names in the FROM clause of the SQL statement. A LEFT JOIN returns a record from the table on the left
side of the FROM clause, whether or not a matching record exists on the right side. A RIGHT JOIN returns a record
from the table on the right side of the FROM clause, whether or not a matching record exists on the left side. These
two FROM clauses, therefore, have identical results:

FROM Customers LEFT JOIN Invoices
ON Customers.[Customer Number] = Invoices.[Customer Number]
FROM Invoices RIGHT JOIN Customers
ON Invoices.[Customer Number] = Customers.[Customer Number]

The "missing" fields on the right side of the recordset all have the value NULL. You can use this fact to modify the SQL statement
to select only the records from the left table that do not have matching records in the right table:

SELECT Customers.[Customer Name], Customers.[Customer Number],
 Invoices.[Customer Number], Invoices.[Invoice Date],
 Invoices.[Invoice Amount]
FROM Customers LEFT JOIN Invoices
ON Customers.[Customer Number] = Invoices.[Customer Number]
WHERE Invoice.[Customer Number] IS NULL
ORDER BY Customers.[Customer Number], Invoices.[Invoice Date]

This statement returns the following recordset:

 Customers Invoices
Customer Name Customer Number Customer Number Invoice Date Invoice Amount
MNO Company 101

The field used in the WHERE clause can be any field from the right-side table because all right-side fields will be NULL when there
is no record to match a left-side table record.

Steps

Open the project SELECT7.VBP. The form shown in Figure 3.9 appears. The list shows all the publishers in the Publishers table
that do not have entries in the Publisher Comments table.

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (23 of 66) [9/22/1999 1:57:48 AM]

Figure 3.9. The SQL Left Join form on startup.

1. Create a new project called SELECT7.VBP. Use Form1 to create the objects and properties listed in Table 3.10.

Table 3.10. Options and properties for the Outer JOINer form.

OBJECT Property Setting

Form Name Form1

Caption Chapter 3.7 Example

Data Name dtaData

Caption dtaData

RecordSource SELECT Publishers.[Company
Name] FROM Publishers LEFT
JOIN [Publisher Comments]
ON Publishers.PubID =
[Publisher Comments].PubID
WHERE [Publisher
Comments].PubID IS NULL
ORDER BY [Company Name]

Visible False

DBList Name dlstAuthors

RowSource dtaData

ListField Author

CommandButton Name cmdClose

Caption &Close

Label Name lblAuthors

Caption Authors without Title
records:

2. Add the following code to the declarations section of Form1:

Option Explicit
Private Const BIBLIO_PATH = _
"D:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"

3. Add the following code to the Load event of Form1:

Private Sub Form_Load()
 `Set the DatabaseName of the Data control.
 dtaData.DatabaseName = BIBLIO_PATH
End Sub

4. Add the following code as the Click event of cmdClose:

Private Sub cmdClose_Click()
 End

End Sub

How It Works

The dtaData recordset is built by the following SQL statement:

SELECT Publishers.[Company Name]
FROM Publishers LEFT JOIN [Publisher Comments]
ON Publishers.PubID = [Publisher Comments].PubID
WHERE [Publisher Comments].PubID IS NULL
ORDER BY [Company Name]

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (24 of 66) [9/22/1999 1:57:48 AM]

javascript:popUp('03fig09.gif')

The WHERE clause of that SQL statement creates a LEFT JOIN between the left-side table (Publishers) and the right-side table
(Publisher Comments). Ignoring the WHERE clause for a moment, this LEFT JOIN would create a snapshot with one record for
each record in the Publisher Comments table, plus one record for every record in the Publishers table that does not have a
matching record in Publisher Comments.

The WHERE clause eliminates from the snapshot all records in which there is a Publisher Comment, because the [Publisher
Comments].PubID field will not be NULL where there is a record in Publisher Comments. For snapshot records created by
records in Publishers without matching records in Publisher Comments, [Publisher Comments].PubID is NULL; the
WHERE clause causes these records to be included in the output snapshot.

Comments

Like the INNER JOIN, explained in the preceding How-To, this can be a powerful tool if used well. You should experiment with
the behavior of all sorts of joins--you might be surprised at what you get. Use this How-To's code as a basic example, and go from
there, trying out different SQL joins to get a feel for what to expect with other SQL queries involving JOIN statements.

3.8 How do I...

Retrieve information such as counts, averages, and sums and display it by binding it
to a Data control?

Problem

I'd like to extract descriptive statistics about the data in a table (for example, averages and sums or numeric fields, minimum and
maximum values, and counts of records that meet certain criteria). How can I use SQL to accomplish this task?

Technique

SQL includes a rich set of aggregate functions--functions you can embed in SQL statements to return descriptive statistics about
the data in your database. Table 3.11 lists the aggregate functions available and shows what each function returns. Note that all
functions ignore NULL values in the recordset.

Table 3.11. SQL aggregate functions.

AGGREGATE FUNCTION Returns

Sum Sum of the values in a designated numeric field

Avg Average of the non-NULL values in a designated numeric field

Count Count of non-NULL values in one or more designated fields

Min Minimum value in a designated numeric or text field

Max Maximum value in a designated numeric or text field

First Value of a designated field in the first record in the recordset

Last Value of a designated field in the last record in the recordset

StDev Sample standard deviation of the non-NULL values in a designated field

StDevP Population standard deviation of the non-NULL values in a designated field

Var Sample variance of the non-NULL values in a designated field

VarP Population variance of the non-NULL values in a designated field

The syntax for using these functions in the SELECT clause of a SQL statement is the same for all functions:

<functionname>(<fieldname>) AS <outputfieldname>

The <fieldname> is the name of the field in the table whose records you are examining. The <outputfieldname> is the
name you give to the result column in the recordset created by the SQL statement. The two field names must be different, and the
<outputfieldname> cannot duplicate the name of a field in any table referenced in the SQL statement.

For example, assume that you want to get a total of the Invoice Amount field for all Invoice Table records with Invoice

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (25 of 66) [9/22/1999 1:57:48 AM]

Dates between January 1, 1996, and January 31, 1996. Your SQL statement could be this:

SELECT SUM([Invoice Amount]) AS SumOfInvoices
FROM Invoices

WHERE [Invoice Date] BETWEEN #1/1/1996# AND #1/31/1996#

That statement would return a recordset consisting of one record with one field, with a field name of SumOfInvoices. The
field's value would be the total of all the invoices between the specified dates.

You can include more than one aggregate function in a SQL statement. The following statement would return a single record with
two fields, SumOfInvoices and AverageInvoice. SumOfInvoices would be the sum of all invoices for the designated
customer. AverageInvoice would be the average invoice amount for that customer (disregarding any fields for which the
Invoice Amount is NULL).

SELECT SUM([Invoice Amount]) AS SumOfInvoices, AVG([Invoice Number])
 as AverageInvoice
FROM Invoices
WHERE [Customer Number] = 12345

Steps

Open the project SELECT8.VBP. The form shown in Figure 3.10 appears. The labels on the form show several statistics about the
authors in the Authors table of BIBLIO.MDB.

Figure 3.10. The SQL Aggregate form.

1. Create a new project called SELECT8.VBP. Use Form1 to create the objects and properties listed in Table 3.12. Save
the form as SELECT8.FRM.

Table 3.12. Options and properties for the Author Statistics form.

OBJECT Property Setting

Form Name Form1

Caption Chapter 3.8 Example

Data Name dtaData

Caption dtaData

RecordSource SELECT Count(*) AS CountOfAuthor, Avg([Year Born])
AS [AvgOfYear Born], Min([Year Born]) AS
[MinOfYear Born], Max([Year Born]) AS [MaxOfYear
Born] FROM Authors

Visible False

RecordsetType Snapshot

CommandButton Name cmdClose

Cancel True

Caption &Close

Default True

Label Name dlblCount

BorderStyle Fixed Single

DataField CountOfAuthor

DataSource dtaData

Label Name dlblMin

BorderStyle Fixed Single

DataField MinOfYear Born

DataSource dtaData

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (26 of 66) [9/22/1999 1:57:48 AM]

javascript:popUp('03fig10.gif')

Label Name dlblMax

BorderStyle Fixed Single

DataField MaxOfYear Born

DataSource dtaData

Label Name dlblAvg

BorderStyle Fixed Single

DataField AvgOfYear Born

DataSource dtaData

Label Name lblCount

AutoSize True

Caption Number of authors:

Label Name lblMin

AutoSize True

Caption Earliest year born:

Label Name lblMax

AutoSize True

Caption Latest year born:

Label Name lblAvg

AutoSize True

CAPTION AVERAGE YEAR BORN:
2. Add the following code to the declarations section of Form1:

Option Explicit
Private Const BIBLIO_PATH = _
"D:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"

3. Add the following code to the Load event of Form1:

Private Sub Form_Load()
 `Set the DatabaseName of the Data control.
 dtaData.DatabaseName = BIBLIO_PATH
End Sub

4. Add the following code as the Click event of cmdClose:

Private Sub cmdClose_Click()
 End
End Sub

How It Works

The Data control creates a one-record recordset with this SQL statement:

SELECT Count(*) AS CountOfAuthor, Avg([Year Born]) AS [AvgOfYear Born],
Min([Year Born]) AS [MinOfYear Born], Max([Year Born]) AS [MaxOfYear Born]
FROM Authors

The single record contains four fields, each reporting one statistic about the records in the Authors table. The four bound labels on
the form are each bound to one of the recordset fields.

Comments

The SQL statement used in the example for this How-To included this expression in its SELECT clause:

Count(*) as CountOfAuthor

Using the wildcard character * as the argument to the Count aggregate function indicates that you want the count of all the

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (27 of 66) [9/22/1999 1:57:49 AM]

records in the table. You can achieve the same thing by using a field that you know to be non-NULL in every record (for example,
the primary key of the table, which must by definition be non-NULL):

Count ([AuthorID]) as CountOfAuthor

However, it's better to use the wildcard character *, because the Jet database engine is optimized to perform Count queries with
the wildcard. You get the same answer either way, but you get it faster with the wildcard.

3.9 How do I...

Create a recordset consisting of records with duplicate values?

Problem

I need to create a recordset that shows records with duplicate values. How can I do this with SQL?

TECHNIQUE
Three features of SQL--the GROUP BY clause, the HAVING clause, and SQL IN subqueries--facilitate the identification of
duplicate values in a table.

The GROUP BY Clause

SQL provides the GROUP BY clause, which combines records with identical values into a single record. If you include a SQL
aggregate function (such as COUNT) in the SELECT statement, the GROUP BY clause applies that function to each group of
records to create a summary value.

For example, to return a recordset with one record for each unique state/city pair from the Publishers table in BIBLIO.MDB, you
can use this SQL statement:

SELECT State, City, COUNT(*) AS CountByCityAndState FROM Publishers
GROUP BY State, City

The HAVING Clause

The HAVING clause is similar to the WHERE clause, but you use HAVING with GROUP BY. The argument to HAVING specifies
which grouped records created by GROUP BY should be included in the output recordset. For example, this SQL statement returns
one record for each unique state/city pair from the Publishers table in BIBLIO.MDB, restricting the records to those in which the
state is CA:

SELECT [State],[City] FROM [Publishers]
GROUP BY [State],[City]
HAVING [State] = `CA'

You can use HAVING with the aggregate COUNT function (see the preceding How-To for information on aggregate functions) to
restrict the output recordset to records in which the values grouped by the GROUP BY clause have a specified range of
occurrences. This example selects only city/state pairs that occur more than once in the table:

SELECT [State],[City] FROM [Publishers]
GROUP BY [State],[City]
HAVING COUNT(*) > 1

The SELECT and GROUP BY clauses in this example create a recordset to which the HAVING clause applies the COUNT
aggregate function. The HAVING COUNT(*) > 1 clause eliminates from the final output recordset record groups that occur
only once.

You can use multiple criteria with the HAVING clause. This example selects only city/state pairs that occur more than once in the
table where the state is CA:

SELECT [State],[City] FROM [Publishers]
GROUP BY [State],[City]
HAVING COUNT(*) > 1 AND [State] = `CA'

SQL IN Subqueries

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (28 of 66) [9/22/1999 1:57:49 AM]

An IN subquery is a SELECT statement nested inside the WHERE clause of another SELECT statement. The subquery returns a set
of records, each consisting of a single field. The WHERE clause then compares a field from the "main" SELECT statement to the
field returned by the subquery. The resultant recordset consists of those records from the main recordset where the main field
equals the subquery field.

Consider this simple SELECT query:

SELECT [City], [Company Name] FROM [Publishers]
ORDER BY [City]

This query creates a recordset consisting of one record for every record in the [Publishers] table, sorted by [City]. Now add a
WHERE clause containing an IN subquery:

SELECT [City], [Company Name] FROM [Publishers]
WHERE [City] IN
 (SELECT [City] FROM [Publishers]
 GROUP BY [City]
 HAVING COUNT(*) > 1)
ORDER BY [City]

The subquery in the example is parenthesized and indented. (The parentheses are required; the indenting is not.) The subquery
returns one record for every [City] value that occurs more than one time in the [Publishers] table. If a [City] value occurs
only once, it is not included in the subquery output.

The WHERE clause of the main query compares the [City] field of every record in the table to the set of [City] values
returned by the subquery. If there is a match, the record is included in the main query's output recordset. If there is no match, the
record is excluded from the output recordset. Because the subquery [City] values include only those occurring more than once
in the table, the WHERE clause includes in the output recordset only those records with a [City] value that occurs more than
once.

If you need a recordset based on a single duplicated field, the last illustration is sufficient. If you need to compare multiple fields
to find duplicate values, additional steps are required. For example, your [Publishers] table contains records in which the [City]
field is duplicated but in which the [State] field differs, as in the following table:

CITY STATE
Springfield IL
Springfield MA
Springfield OH

(The BIBLIO.MDB database supplied with Visual Basic does not have any records in which this condition exists, but a real-life
example might.)

Finding the true duplicates here requires additions to the subquery. The additions to the original subquery are shown here in bold:

(SELECT [City] FROM [Publishers] AS Tmp
GROUP BY [City], [State]
HAVING COUNT(*) > 1 AND [State] = Publishers.[State])

The addition of the State field to the GROUP BY clause creates a record for every unique combination of City and State; the
three Springfields will now each appear in the recordset returned by the GROUP BY. The additional criterion, State =
Publishers.State, in the HAVING clause compares the State field in each GROUP BY record output to the State field
in the original Publishers table and selects only those in which the fields are equal; note that the table name on the right side of the
equal sign is mandatory. Because of the additional criterion in the HAVING clause, it is necessary to assign the output of the
subquery to a temporary variable--arbitrarily called Tmp--but any legal name that does not duplicate an existing field name will
do.

You can use up to 10 criteria in a subquery. For additional criteria, simply append them to the GROUP BY clause with a comma
and to the HAVING clause with the AND keyword.

Steps

Open and run the project SELECT9.VBP. The form shown in Figure 3.11 appears. The grid control on the form shows records
from the Publishers table for which the city and state appear more than once in the table.

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (29 of 66) [9/22/1999 1:57:49 AM]

Figure 3.11. The duplicate SELECTer form on startup.

1. Create a new project called SELECT9.VBP. Use Form1 to create the objects and properties listed in Table 3.13, and
save the form as SELECT9.FRM.

Table 3.13. Objects and properties for the Duplicate SELECTer form.

OBJECT Property Setting

Form Name Form1

Caption Chapter 3.9 Example

Label Name lblCount

Alignment 2 - Center

BorderStyle 1 - Fixed Single

Label Name lblDupValues

Caption Duplicated values:

Grid Name grdValues

Cols 3

FixedCols 0

Scrollbars 2 - Vertical

CommandButton Name cmdClose

Cancel True

Caption &Close

2. Add the following code to the declarations section of Form1:

Option Explicit
Private Const BIBLIO_PATH = _
"D:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"

3. Enter the following code as the Load event for Form1. For the Form_Load event, the routine first creates a
Database object. Then it starts creating the SQL statement from the inside out by first creating the subquery in the
strSubQuery string and then "wrapping" the rest of the query around it inside the strSQL string. After execution, if
records are present, the grdValues grid is configured and populated with the contents of the [State], [City], and
[Company Name] fields.

Private Sub Form_Load()
 Dim dbfBiblio As Database, recSelect As Recordset
 Dim strSQL As String, strSubQuery As String
 Dim intCount As Integer, intGridRow As Integer
 ` Get the database name and open the database.
 Set dbfBiblio = DBEngine.Workspaces(0).OpenDatabase(BIBLIO_PATH)
 ` Build the subquery, starting with its SELECT statement.
 strSubQuery = "SELECT City FROM Publishers AS Tmp " & _
 "GROUP BY City, State " & _
 "HAVING COUNT(*) > 1 AND State = Publishers.State "
 ` Build the SQL statement
 ` Start by designating the fields to be included in the
 ` recordset and the WHERE IN clause
 strSQL = "SELECT City, State, [Company Name]" & _
 "FROM Publishers "
 "WHERE City IN (" & strSubQuery & ") " & _
 "ORDER BY State, City"
 ` Run the query.
 Set recSelect = dbfBiblio.OpenRecordset(strSQL, _
 dbOpenSnapshot)

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (30 of 66) [9/22/1999 1:57:49 AM]

javascript:popUp('03fig11.gif')

 ` Make sure the query returned at least one record
 If recSelect.RecordCount > 0 Then
 ` Get a count of records in the recordset and display it
 ` on the form.
 recSelect.MoveLast
 intCount = recSelect.RecordCount
 lblCount.Caption = intCount
 ` Initialize the grid
 With grdValues
 .Rows = intCount + 1
 .ColWidth(0) = 700: .ColWidth(1) = 2000:
 .ColWidth(2) = 4000
 .Row = 0: .Col = 0: .Text = "State"
 .Col = 1: .Text = "City"
 .Col = 2: .Text = "Publisher"
 End With
 `Populate the grid
 recSelect.MoveFirst
 For intGridRow = 1 To intCount
 With grdValues
 .Row = intGridRow
 .Col = 0: .Text = recSelect![State]
 .Col = 1: .Text = recSelect![City]
 .Col = 2: .Text = recSelect![Company Name]
 End With
 recSelect.MoveNext
 Next intGridRow
 End If
End Sub

4. Enter the following code as the Click event of cmdClose. This event ends the application.

Private Sub cmdClose_Click()
 End
End Sub

How It Works

The Form_Load() event subroutine creates a SQL statement, first by building the subquery and then by creating the main query
with the inserted subquery. (Refer to the "Technique" section for an explanation of the syntax of the SQL statement.) The
subroutine then executes the query and creates a Recordset object. If the recordset contains at least one record, the subroutine
initializes the grid control and inserts each record into the grid.

Comments

If you insert the word NOT in front of the word IN, a SELECT statement containing an IN subquery returns a recordset consisting
of records that do not meet the criteria of the subquery. Assume that you changed the query in the example by inserting the word
NOT:

SELECT [City], [Company Name] FROM [Publishers]
WHERE [City] NOT IN
 (SELECT [City] FROM [Publishers] AS Tmp
 GROUP BY [City], [State]
 HAVING COUNT(*) > 1 AND [State] = Publishers.[State])
ORDER BY [City]

This query would produce a recordset consisting of records with a city/state combination that occur only once in the table.

complexity

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (31 of 66) [9/22/1999 1:57:49 AM]

3.10 How do I...

Use Visual Basic functions within a SQL statement?

Problem

I need to create a recordset with special formatting based on the contents of a field, but I can't find any standard SQL function to
use for the formatting.

Technique

One of the benefits of using the Jet database engine and Data Access Objects is the capability of embedding Visual Basic for
Applications (VBA) functions in Access SQL for various tasks that SQL by itself could not accomplish easily.

Steps

Open and run the project SELECT10.VBP. The form shown in Figure 3.12 appears. The grid control on the form shows records
from the Publishers table, before and after the execution of the LCase() function to convert the case from uppercase to
lowercase.

Figure 3.12. The Visual Basic code with SQL form, showing Publishers data.

1. Create a new project called SELECT10.VBP. Use Form1 to create the objects and properties listed in Table 3.14, and
save the form as SELECT10.FRM.

Table 3.14. Objects and properties for the Duplicate SELECTer form.

OBJECT Property Setting

Form Name Form1

Caption Chapter 3.10 Example

Label Name lblPublishers

Caption Publisher Names

MSFlexGrid Name grdValues

Cols 3

FixedCols 1

AllowUserResizing 1 - flexResizeColumns

Scrollbars 2 - Vertical

Width 5655

CommandButton Name cmdClose

Cancel True

Caption &Close

2. Add the following statements to the declarations section of Form1. Ensure that the BIBLIO_PATH constant is set to the
location of BIBLIO.MDB on your workstation.

Option Explicit
Private Const BIBLIO_PATH = _
"D:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"

3. Enter the following code as the Load event for Form1. As with the preceding How-To, the event starts by creating a
Database object, opening BIBLIO.MDB for use. Then a SQL statement is created, using the VBA function LCase to
convert the string to lowercase, as denoted by the second parameter in the command. (For more information on the LCase
command, search for LCase in the Visual Basic Help Index.) Note that the constant for the second parameter,
vbProperCase, was not used here--some constants might not be accessible by the SQL precompiler used by the DAO
library.

Private Sub Form_Load()

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (32 of 66) [9/22/1999 1:57:49 AM]

javascript:popUp('03fig12.gif')

 Dim dbfBiblio As Database, recSelect As Recordset
 Dim strSQL As String
 Dim intCount As Integer, intGridRow As Integer
 Set dbfBiblio = DBEngine.Workspaces(0).OpenDatabase(BIBLIO_PATH)
 ` Build the query, starting with its SELECT statement.
 ` Note the LCase() function; a VBA function, NOT a SQL
 ` function.
 strSQL = "SELECT Publishers.PubID, Publishers.Name, " & _
 "LCase([Publishers].[Name],3) AS CheckedName " & _
 "FROM Publishers;"
 ` Run the query to create the recordset.
 Set recSelect = _
 dbfBiblio.OpenRecordset(strSQL, dbOpenSnapshot)
 ` Make sure the query returned at least one record
 If recSelect.RecordCount > 0 Then
 `Get the record count & display it on the form
 recSelect.MoveLast
 intCount = recSelect.RecordCount
 lblPublishers.Caption = "Publisher Names (" & _
CStr(intCount) & "records)"
 `Initialize the grid
 With grdValues
 .Rows = intCount + 1
 .ColWidth(0) = 700: .ColWidth(1) = 2000:
 .ColWidth(2) = 4000
 .Row = 0: .Col = 0: .Text = "Pub ID"
 .Col = 1: .Text = "Name"
 .Col = 2: .Text = "Name After LCase()"
 End With
 `Populate the grid
 recSelect.MoveFirst
 For intGridRow = 1 To intCount
 With grdValues
 .Row = intGridRow
 .Col = 0: .Text = recSelect![PubID]
 .Col = 1: .Text = recSelect![Name]
 .Col = 2: .Text = recSelect![CheckedName]
 End With
 recSelect.MoveNext
 Next intGridRow
 End If
End Sub

4. Enter the following code as the Click event of cmdClose:

Private Sub cmdClose_Click()
 End
End Sub

How It Works

The Form_Load() event creates a SQL statement, showing both the raw data in the [Name] field and the same data after
processing by the LCase() VBA function to "scrub" the raw data. The recordset data is placed directly into the grid with no
further processing.

Comments

VBA functionality can expand DAO query power enormously, allowing for everything from math functions to string processing
within the SQL. Rather than the tedious and time-consuming process of performing the same action by looping through a

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (33 of 66) [9/22/1999 1:57:49 AM]

recordset and using the same VBA function to modify the data field by field, the ease of using a single SQL statement should
strongly encourage you to experiment with VBA functions in Access SQL.

3.11 How do I...

Make bulk updates to database records?

Problem

I need to make an identical change to a number of records that meet certain criteria. How can I accomplish this task with a single
SQL statement?

TECHNIQUE
In addition to SELECT queries, which create recordsets based on criteria you specify, SQL provides a group of action query
statements. One type of action query is the UPDATE query, which makes specified changes to a set of records that meet designated
criteria.

An UPDATE query contains the clauses shown in Table 3.15. The example shown in Table 3.15 increases the [Price Each]
field by 3% for each record in the [Parts List] table that has a [Part Number] beginning with the string "XYZ7".

Table 3.15. The UPDATE statement.

CLAUSE Purpose Example

UPDATE Names the table UPDATE [Parts List]

SET Designates the fields to be updated and their new values SET [Price Each] = [Price Each] * 1.03

WHERE Specifies the records to be updated WHERE [Part Number] LIKE "XYZ7*"

You run a SQL action query statement using the Execute method of the Database object. Assuming that you have a
Database object db, you would run the query shown in the table using this Visual Basic code (the entire statement would
normally appear on one line):

db.Execute("UPDATE [Parts List] SET [Price Each] = " & _
 "[Price Each] * 1.03 WHERE [Part Number] LIKE `XYZ7'")

Steps

The BIBLIO.MDB file distributed with Visual Basic contains outdated information about four publishers. These publishers were
formerly located on College Ave. in Carmel, IN. They have moved to an address in Indianapolis. The UPDATE.VBP project
updates all four publishers' records to show their new address. It also provides the capability to restore the firms' original Carmel
address.

Open the project UPDATE.VBP and run the project. Click the Update button and the form appears as shown in Figure 3.13. Click
the Restore button, and the addresses change to show the Carmel address.

Figure 3.13. The SQL Update form after the update.

1. Create a new project called UPDATE.VBP. Use Form1 to create the objects and properties listed in Table 3.16, and save
the form as UPDATE.FRM.

Table 3.16. Objects and properties for the UPDATEr form.

OBJECT Property Setting

Form Name Form1

Caption UPDATEr

CommandButton Name cmdClose

Cancel True

Caption &Close

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (34 of 66) [9/22/1999 1:57:49 AM]

javascript:popUp('03fig13.gif')

CommandButton Name cmdRestore

Caption &Restore

CommandButton Name cmdUpdate

Caption &Update

ListBox Name lstData

2. Add the following statements to the declarations section of Form1:

Option Explicit
Private Const BIBLIO_PATH = _
"D:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"
Private dbfBiblio As Database

3. Add the following code as the Click event of cmdUpdate.

Private Sub cmdUpdate_Click()
Dim strSQL As String
 On Error GoTo UpdateError
 `Build the UPDATE statement.
 strSQL = "UPDATE Publishers " & _
 "SET City = `Indianapolis', " & _
 Address = `201 W. 103rd St.', " & _
 "Zip = `46290' " & _
 "WHERE ([City] = `Carmel') AND " & _
 (Address LIKE `*11711*College*')"
 `Execute the update query.
 dbfBiblio.Execute strSQL
 ListRecords "Indianapolis"
 On Error GoTo 0
Exit Sub
UpdateError:
 MsgBox Err.Description, vbExclamation
Exit Sub
End Sub

This procedure builds a SQL UPDATE statement that changes the contents of the [City], [Address], and [Zip] fields
for each record that meets the criteria. The criteria are the city being equal to "Carmel" and the address containing the
strings "11711" and "College". The LIKE clause in the address is necessary because BIBLIO.MDB, as supplied, uses
a different form of the same address for each of the four publishers at 11711 N. College Ave.

The procedure executes the SQL statement, using the Execute method of the Database object. It then calls the
ListRecords subroutine to display the records.

4. Add the following code as the Click event of cmdRestore. The cmdRestore routine reverses the action of
cmdUpdate, using the same methodology.

Private Sub cmdRestore_Click()
Dim strSQL As String
 On Error GoTo RestoreError
 `Build the UPDATE statement.
 strSQL = "UPDATE Publishers " & _
 "SET City = `Carmel', " & _
 "Address = `11711 N. College Ave.', " & _
 "Zip = `46032' " & _
 " WHERE ([City] = `Indianapolis') AND " & _
 "(Address = `201 W. 103rd St.')"
 `Execute the update query.
 dbfBiblio.Execute strSQL
 ListRecords "Carmel"
 On Error GoTo 0
Exit Sub

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (35 of 66) [9/22/1999 1:57:49 AM]

RestoreError:
 MsgBox Error$, vbExclamation
Exit Sub
End Sub

5. Create the subroutine ListRecords by entering the following code. ListRecords builds a SQL SELECT statement
that selects records, based on the city name passed as the parameter, and then lists these records in the list box on the form.

Private Sub ListRecords(cityName As String)
 Dim recSelect As Recordset
 Dim strSQL As String, strAddress As String
 On Error GoTo ListError
 ` Set the correct street address based on the city name.
 strAddress = IIf(strCity = "Indianapolis", _
 "201 W. 103rd St.", _
 "11711 N. College Ave.")
 ` Create the recordset for the list box.
 strSQL = "SELECT [Company Name], [Address], [City], " & _
 "[State], [Zip] " & _
 "FROM Publishers " & _
 "WHERE [City] = `" & strCity & "`" & _
 "AND [Address] = `" & _
 strAddress & "`"
 `Construct the recordset.
 Set recSelect = _
 dbfBiblio.OpenRecordset(strSQL, dbOpenSnapshot)
 `Clear the list box
 lstData.Clear
 `Show each record in the list box.
 If recSelect.RecordCount > 0 Then
 recSelect.MoveFirst
 Do
 lstData.AddItem
 Left$(recSelect![Company Name], 10) _
 & ", " & recSelect![Address] & ", " & _
 recSelect![City] _
 & ", " & recSelect![State] & " " & _
 recSelect![Zip]
 recSelect.MoveNext
 Loop While Not recSelect.EOF
 End If
 On Error GoTo 0
Exit Sub
ListError:
 MsgBox Err.Description, vbExclamation
Exit Sub
End Sub

6. Add the following code as the Click event of cmdClose:

Private Sub cmdClose_Click()
 End
End Sub

How It Works

Until the user clicks either the Update or the Restore button, the form just lies in wait. If the user clicks the Update button, the
form executes a SQL statement, modifying any record the statement finds with specific [City] and [Address] field contents,
changing the [City], [Address], and [Zip] fields. The Restore performs exactly the same action but reverses the actions
taken by the Update button, searching for the newly altered records and restoring them to their previous values.

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (36 of 66) [9/22/1999 1:57:49 AM]

Comments

This method is usually the best way to make bulk updates to records in any database; it gets the database to do the work rather
than the calling application, usually in a more efficient fashion. But, as with any powerful tool, this method can be misused.
Ensure that your WHERE clause incorporates only those records to be changed. Have too "loose" a selection, and records might be
mistakenly altered; this might happen much too quickly for the error to be stopped. Be cautious, and your caution will serve you
well.

3.12 How do I...

Create and delete tables?

Problem

I need to create a temporary table, use it for a while, and then get rid of it. How can I accomplish this using SQL?

Technique

SQL provides two statements that allow you to create and delete tables. CREATE TABLE creates a new table, using a name and
field list that you specify. DROP TABLE deletes a named table.

To create a table with CREATE TABLE, you need to pass it two arguments: the name of the table to be created and a field list,
with the field list enclosed in parentheses. The field list consists of a set of field descriptions separated by commas. Each field
description has two parts: a field name and a data type. The field name and data type are separated by a space.

Execute the CREATE TABLE statement by passing it as the parameter of the Execute method of the Database object. The
following Visual Basic statement creates a new table in the database represented by the Database object variable dbfTest.
The new table is named My Parts and has two fields: [Part Name], which is a text field, and [Quantity], which is a long
integer.

dbfTest.Execute("CREATE TABLE [My Parts] ([Part Name] TEXT, " & _
 "[Quantity] LONG)")

As with any table or field name, the brackets are required if the name contains a space, and they are optional if there is no space.
The convention is to capitalize the data type, but this capitalization is not required.

The data type names used by the Jet database engine do not exactly match the names required by SQL. Table 3.17 shows the SQL
data types and the corresponding Jet data type for each.

Table 3.17. SQL data types used by CREATE TABLE and their corresponding Jet database engine
data types.

SQL DATA TYPE Equivalent Jet Data Type

BINARY N/A--for queries on attached tables that define a BINARY data type

BIT Yes/No

BYTE Numeric--Byte

COUNTER Counter

CURRENCY Currency

DATETIME Date/Time

SINGLE Numeric--Single

DOUBLE Numeric--Double

SHORT Numeric--Integer

LONG Numeric--Long

LONGTEXT Memo

LONGBINARY OLE objects

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (37 of 66) [9/22/1999 1:57:49 AM]

TEXT Text

The DROP TABLE requires just one argument--the name of the table to be removed from the database. Like CREATE TABLE,
the DROP TABLE statement is executed through the Execute method of the Database object. The following Visual Basic
statement deletes the table My Parts from the database represented by dbfTest:

dbfTest.Execute("DROP TABLE [My Parts]")

Steps

The NEWTABLE.VBP project lets you create tables in BIBLIO.MDB and assign the table's fields using any data type. Open the
project NEWTABLE.VBP and run the project. The form shown in Figure 3.14 appears.

Figure 3.14. The SQL Create Table form at startup.

Click the List Tables button, and the form shown in Figure 3.15 appears. This form lists the tables currently in BIBLIO.MDB.
Click Close to return to the Table Creator form.

In the Table Name text box, type any legal table name. In the Field Name text box, type a field name; then select a field type from
the drop-down list. Click Add Field to create the field. Create several additional fields; for each field, type a field name, select a
field type, and click Add Field. When you have several fields defined, the form will appear as shown in Figure 3.16. Click Create
Table to add the table to BIBLIO.MDB. The table name and field names will disappear to prepare the Table Creator form to create
another table. You can click List Tables to see your table BIBLIO.MDB.

After you've created several tables, click List Tables. Select one of the tables you created and click Delete. (The program will not
let you delete a table with data in it, so you will not be able to delete any of the original BIBLIO.MDB tables.) The table
disappears from the table list.

Figure 3.15. The Table List form, showing table names.

Figure 3.16. The SQL Create Table form, with new fields added.

1. Create a new project called NEWTABLE.VBP. Rename Form1 to frmMain, create the objects and properties listed in
Table 3.18, and save the form as NEWTABLE.FRM.

Table 3.18. Objects and properties for the Table Creator form.

OBJECT Property Setting

Form Name frmMain

Caption Chapter 3.12 Example - Table Creator

CommandButton Name cmdListTables

Caption &List Tables

CommandButton Name cmdCreateTable

Caption Create &Table

CommandButton Name cmdRemoveField

Caption &Remove Field

CommandButton Name cmdAddField

Caption &Add Field

Default True

CommandButton Name cmdClose

Cancel True

Caption &Close

ComboBox Name cboFieldTypes

Style 2 - Dropdown List

ListBox Name lstFields

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (38 of 66) [9/22/1999 1:57:49 AM]

javascript:popUp('03fig14.gif')
javascript:popUp('03fig15.gif')
javascript:popUp('03fig16.gif')

TextBox Name txtFieldName

TextBox Name txtTableName

Label Name lblTableName

Caption &Table Name:

Label Name lblFieldName

Caption &Field Name:

Label Name lblFieldType

Caption Field T&ype:

Label Name lblFieldList

Caption Field Li&st:

2. Insert a new form into the project. Rename it frmTableList, create the objects and properties listed in Table 3.19, and
save the form as TABLIST.FRM.

Table 3.19. Objects and properties for the Current Tables form.

OBJECT Property Setting

Form Name frmTableList

BorderStyle 3 - Fixed Dialog

Caption Chapter 3.12 Example - Table List

MaxButton False

MinButton False

CommandButton Name cmdDelete

Caption &Delete

CommandButton Name cmdClose

Caption Close

ListBox Name lstTables

Sorted True

3. Add the following statements to the declarations section of frmMain:

Option Explicit
Private Const IllegalCharacters = "[].!'"
Private Const FIELDNAME = 1
Private Const TABLENAME = 2
Private Const BIBLIO_PATH = _
"D:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"

4. Enter the following code for the Form_Load event for frmMain:

Private Sub Form_Load()
 `Fill the Field Type combo box.
 FillTypeList
End Sub

5. Create the FillTypeList subroutine in frmMain with the following code. This procedure fills the drop-down list
with the available data types, using the Jet database engine names.

Sub FillTypeList()
`Fill the Field Type combo box with types of available fields
 With cboFieldTypes
 .AddItem "Counter"
 .AddItem "Currency"
 .AddItem "Date/Time"

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (39 of 66) [9/22/1999 1:57:50 AM]

 .AddItem "Memo"
 .AddItem "Number: Byte"
 .AddItem "Number: Integer"
 .AddItem "Number: Long"
 .AddItem "Number: Single"
 .AddItem "Number: Double"
 .AddItem "OLE Object"
 .AddItem "Text"
 .AddItem "Yes/No"
 End With
End Sub

6. Enter the following code as the Click event of frmMain's cmdListTables. This subroutine displays the List
Tables form modally.

Private Sub cmdListTables_Click()
 ` Display the Table List form modally.
 frmTableList.Show vbModal
End Sub

7. Enter the following code as the Click event of frmMain's cmdAddField. The cmdAddField routine first calls the
LegalName function to verify that the user has entered a legal field name and verifies that the user has selected a field
type. It then translates the data type shown in the drop-down list from the Jet name to the SQL name. It formats the field
name and data type and adds it to the field list. It then clears the field name and field type for entry of the next field.

Private Sub cmdAddField_Click()
Dim strFieldType As String
 `Check first if the Field Name text box contains a legal name
 If LegalName(FIELDNAME) Then
 `If it does, check if the Field Type has been selected.
 If cboFieldTypes.ListIndex > -1 Then
 `If both criteria are satisfied, store the SQL field
 `type in the strFieldType string.
 Select Case cboFieldTypes.Text
 Case "Counter"
 strFieldType = "COUNTER"
 Case "Currency"
 strFieldType = "CURRENCY"
 Case "Date/Time"
 strFieldType = "DATETIME"
 Case "Memo"
 strFieldType = "LONGTEXT"
 Case "Number: Byte"
 strFieldType = "BYTE"
 Case "Number: Integer"
 strFieldType = "SHORT"
 Case "Number: Long"
 strFieldType = "LONG"
 Case "Number: Single"
 strFieldType = "SINGLE"
 Case "Number: Double"
 strFieldType = "DOUBLE"
 Case "OLE Object"
 strFieldType = "LONGBINARY"
 Case "Text"
 strFieldType = "TEXT"
 Case "Yes/No"
 strFieldType = "BIT"
 End Select

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (40 of 66) [9/22/1999 1:57:50 AM]

 `Add the new field to the Field List list box.
 lstFields.AddItem "[" & txtFieldName & "] " & _
 strFieldType
 `Reset the Field Name and Field Type controls.
 txtFieldName = ""
 cboFieldTypes.ListIndex = -1
 Else
 MsgBox "You must select a field type.", vbExclamation
 End If
 End If
End Sub

8. Create the LegalName function in frmMain by entering the following code. The function performs a number of
checks to verify that the name entered by the user as a table name or field name is acceptable to the Jet engine. For each
check, it generates a user-defined error if the name fails the test. The error-handling code displays a message that explains
to the user what the problem is and then returns False to the calling routine. If the name passes all the tests, the
error-handling code is never called, and the function returns True.

Function LegalName(intNameType As Integer) As Boolean
 Dim i As Integer
 Dim strObjectName As String
 Dim dbfBiblio As Database, tdfNewTable As TableDef
 On Error GoTo IllegalName
 `Depending on the type of name being checked, store either
 `the field or table name text box contents.
 If intNameType = FIELDNAME Then
 strObjectName = txtFieldName
 Else
 strObjectName = txtTableName
 End If
 `If blank, raise an error.
 If Len(strObjectName) = 0 Then Err.Raise 32767
 `If it has a leading space, raise an error.
 If Left$(strObjectName, 1) = " " Then Err.Raise 32766
 `If it contains any of the characters in the
 `IllegalCharacters constant, raise an error
 For i = 1 To Len(IllegalCharacters)
 If InStr(strObjectName, Mid(IllegalCharacters,
 i, 1)) > 0 Then Err.Raise 32765
 Next i
 `If it contains any ANSI character from Chr$(0) to
 `Chr$(31), (you guessed it) raise an error.
 For i = 0 To 31
 If InStr(strObjectName, Chr(i)) > 0 _
 Then Err.Raise 32764
 Next i
 `Check if the field or table name already exists. If so,
 `raise an error.
 If intNameType = FIELDNAME Then
 For i = 0 To lstFields.ListCount - 1
 If strObjectName = lstFields.List(i) _
 Then Err.Raise 32763
 Next i
 ElseIf intNameType = TABLENAME Then
 Set dbfBiblio =
 DBEngine.Workspaces(0).OpenDatabase(BIBLIO_PATH)
 For Each tdfNewTable In dbfBiblio.TableDefs
 If tdfNewTable.Name = strObjectName _

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (41 of 66) [9/22/1999 1:57:50 AM]

 Then Err.Raise 32762
 Next
 End If
 `If they've managed to get through all that validation,
 `the function should be True, to indicate success.
 LegalName = True
 On Error GoTo 0
Exit Function
IllegalName:
 Dim strErrDesc As String, context As String
 `Note the use of an IIf statement to reduce code size.
 context = IIf(intNameType = FIELDNAME, "field name", _
 "table name")
 `Build an error message based on the user-defined error that
 `occurred.
 Select Case Err.Number
 Case 32767
 strErrDesc = "You must enter a " & context & "."
 Case 32766
 strErrDesc = "The " & context & _
 " cannot begin with a space."
 Case 32765
 strErrDesc = "The " & context & _
 " contains the illegal character " & _
 Mid(IllegalCharacters, i, 1) & "."
 Case 32764
 strErrDesc = "The " & context & _
 " contains the control character " & _
 "with the ANSI value" & Str$(i) & "."
 Case 32763
 strErrDesc = "The field name " & strObjectName & _
 " already exists in the field name list."
 Case 32762
 strErrDesc = "The table name " & strObjectName & _
 " already exists in the database " & _
 BIBLIO_PATH & "."
 Case Else
 ` Visual Basic's default error message.
 strErrDesc = Err.Description
 End Select
 MsgBox strErrDesc, vbExclamation
 `The function indicates False, or failure.
 LegalName = False
Exit Function
End Function

9. Enter the following code as the Click event of frmMain's cmdRemoveField. This procedure deletes the field
selected by the user.

Private Sub cmdRemoveField_Click()
 ` If the user has selected a field, remove it from the list.
 ` Otherwise, just ignore the click.
 If lstFields.ListIndex > -1 Then lstFields.RemoveItem _
 lstFields.ListIndex
End Sub

10. Enter the following code as the Click event of frmMain's cmdCreateTable. This procedure calls LegalName to
verify that the table name is acceptable and verifies that the user has defined at least one field. It creates the field list for the

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (42 of 66) [9/22/1999 1:57:50 AM]

SQL statement by reading through the data in lstFields and building a comma-delimited string from the entries in that
list box. It then builds the SQL statement and uses the Execute method of the Database object to create the table.

Private Sub cmdCreateTable_Click()
 Dim strSQL As String, strFieldList As String
 Dim i As Integer
 Dim dbfBiblio As Database
 On Error GoTo CreateTableError
 Screen.MousePointer = vbHourglass
 If LegalName(TABLENAME) Then
 If lstFields.ListCount > 0 Then
 strFieldList = " (" & lstFields.List(0)
 For i = 1 To lstFields.ListCount - 1
 strFieldList = strFieldList & ", " & _
 lstFields.List(i)
 Next i
 strFieldList = strFieldList & ") "
 strSQL = "CREATE TABLE [" & txtTableName & "]" _
 & strFieldList
 Set dbfBiblio = DBEngine.Workspaces(0). _
 OpenDatabase(BIBLIO_PATH)
 dbfBiblio.Execute (strSQL)
 Screen.MousePointer = vbDefault
 MsgBox "Table created successfully."
 txtTableName = ""
 lstFields.Clear
 Else
 Screen.MousePointer = vbDefault
 MsgBox "You must define at least one field.", _
 vbExclamation
 End If
 End If
 On Error GoTo 0
Exit Sub
CreateTableError:
 Screen.MousePointer = vbDefault
 MsgBox Error$, vbExclamation
Exit Sub
End Sub

11. Enter the following code as the Click event of frmMain's cmdClose. Unlike most of the cmdClose_Click
events in previous How-To's, this one has a bit more to it. If the user has entered a partial table definition (as determined by
a table name or one or more created fields), a message box appears, asking the user whether to abandon the current creation,
and it requires a Yes or No answer. If the user answers Yes, the program ends. If there is no partial table definition, the
program ends without showing the message box.

Private Sub cmdClose_Click()
 Dim strErrDesc As String
 ` If the user has entered a partial table definition, make
 ` sure that the user wants to abandon it. If so, end the
 ` program.
 If txtTableName <> "" Or lstFields.ListCount > 0 Then
 strErrDesc = "Do you want to abandon operations on " & _
 "the current table?"
 If MsgBox(strErrDesc, vbQuestion + vbYesNo +
 vbDefaultButton2) = vbYes Then
 End
 End If
 Else

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (43 of 66) [9/22/1999 1:57:50 AM]

 ` No partial table definition, so just end the program
 End
 End If
End Sub

12. Switch to frmTableList. Enter the following code into the declarations section of frmTableList, modifying the
path in the Const statement to point to your copy of BIBLIO.MDB.

Option Explicit
Private Const BIBLIO_PATH = _
"D:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"

13. Enter the following code as frmTableList's Form_Load event. This calls the ListTables subroutine, explained
in the next step, to fill the lstTables list box with the database's tables.

Private Sub Form_Load()
 ` Fill the list box with the current non-system tables in
 ` BIBLIO.MDB.
 ListTables
End Sub

14. Create the ListTables subroutine in frmTableList by entering the following code. ListTables is called when
the form loads and when the user deletes a table. It uses the TableDefs collection of the Database object to build a list
of tables in the BIBLIO.MDB database. The TableDefs collection contains one record for each table in the database,
including the (normally hidden) system tables. Because the Name property of all system table TableDef objects begins
with the string "MSys", this procedure assumes that any table starting with that string is a system table and ignores it. The
names of all other tables get added to the lstTables list box.

Private Sub ListTables()
Dim dbfBiblio As Database, tdfTableList As TableDef
 On Error GoTo ListError
 Screen.MousePointer = vbHourglass
 `Clear the list box, then open the database.
 lstTables.Clear
 Set dbfBiblio = _
 DBEngine.Workspaces(0).OpenDatabase(BIBLIO_PATH)
 ` Cycle through the table definitions in BIBLIO_PATH.
 ` If the table is a system table (name begins with MSys),
 ` ignore it. Otherwise, add it to the list.
 For Each tdfTableList In dbfBiblio.TableDefs
 If Left$(tdfTableList.Name, 4) <> "MSys" Then _
 lstTables.AddItem tdfTableList.Name
 Next
 Screen.MousePointer = vbDefault
 On Error GoTo 0
Exit Sub
ListError:
 Screen.MousePointer = vbDefault
 MsgBox Err.Description, vbExclamation
 Unload frmTableList
Exit Sub
End Sub

15. Enter the following code as the Click event frmTableList's cmdDelete. DROP TABLE deletes a table whether
or not the table contains data. Because you do not want to delete any tables with data, this procedure checks to make sure
that the table is empty and then deletes it.

Private Sub cmdDelete_Click()
Dim dbfBiblio As Database
 On Error GoTo DeleteError
 Screen.MousePointer = vbHourglass
 `If a table is selected, then continue

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (44 of 66) [9/22/1999 1:57:50 AM]

 If lstTables.ListIndex > -1 Then
 `Confirm that the table has no records
 If TableIsEmpty() Then
 ` Delete the selected table from BIBLIO_PATH.
 Set dbfBiblio = DBEngine.Workspaces(0). _
 OpenDatabase(BIBLIO_PATH)
 dbfBiblio.Execute ("DROP TABLE [" & _
 lstTables.Text & "]")
 ` Display the modified list of tables.
 ListTables
 Screen.MousePointer = vbDefault
 Else
 `The table has records, so inform the user.
 Screen.MousePointer = vbDefault
 MsgBox lstTables.Text & " is not empty.", _
 vbExclamation
 End If
 Else
 `No table has been chosen, so inform the user.
 Screen.MousePointer = vbDefault
 MsgBox "You have not selected a table to delete.", _
 vbExclamation
 End If
 On Error GoTo 0
Exit Sub

DeleteError:
 Screen.MousePointer = vbDefault
 MsgBox Err.Description, vbExclamation
 Unload frmTableList
Exit Sub
End Sub

16. Create the TableIsEmpty function by entering the following code into frmTableList. This function returns
True if the table currently selected in lstTables is empty.

Function TableIsEmpty() As Boolean
Dim dbfBiblio As Database, tdfTableList As TableDef
 On Error GoTo TableIsEmptyError
 Set dbfBiblio =
 DBEngine.Workspaces(0).OpenDatabase(BIBLIO_PATH)
 ` Cycle through the table definitions in BIBLIO_PATH.
 ` When the table currently selected in lstTables is found,
 ` check to see whether it has records. If it does not,
 ` return True; otherwise, return False.
 For Each tdfTableList In dbfBiblio.TableDefs
 If tdfTableList.Name = lstTables.Text Then
 TableIsEmpty = IIf(tdfTableList.RecordCount = 0, _
 True, False)
 Exit For
 End If
 Next
 On Error GoTo 0
Exit Function
TableIsEmptyError:
 MsgBox Err.Description, vbExclamation
 Unload frmTableList
Exit Function
End Function

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (45 of 66) [9/22/1999 1:57:50 AM]

17. Enter the following code as the Click event of frmTableList's cmdClose:

Private Sub cmdClose_Click()
 Unload frmTableList
End Sub

How It Works

The frmMain form essentially builds a CREATE TABLE SQL statement by using the table name listed in the lstTables
control, with the fields listed in the lstFields list box. This might seem greatly simplified, but it guides all the reasoning
behind the code added in this How-To.

The main action occurs in the cmdCreateTable_Click event of frmMain. Here, based on the choices the user made
regarding the name of the table and the name and type of the fields to be added, the CREATE TABLE SQL statement is
concatenated and executed. Clicking the cmdListTables button displays a list of existing tables in the Access database in case
the user wants to rewrite an existing empty table. (The TableIsEmpty function is used to ensure that valu-able data is not
overwritten; the program will destroy only an empty table.) The cboFieldTypes combo box allows the program to filter the
various field types in a manner accessible to the user.

Comments

One of the key items to remember in this How-To is the destructive behavior of the CREATE TABLE statement, as mentioned in
step 15. If a CREATE TABLE statement is issued defining a table with the same name as one that already exists in the Access
database, it destroys the existing table. Although this behavior is not true across all database platforms, it's usually better to be safe
than sorry and include a routine similar to the TableIsEmpty function in this How-To.

3.13 How do I...

Append and delete records?

Problem

I have a table to which I'd like to add records that are built from records in other tables. I'd also like to delete records based on
criteria I specify. How can I accomplish these tasks with SQL?

Technique

SQL provides two statements, the INSERT INTO and DELETE statements, that append records to a table and delete records from
a table, respectively.

THE INSERT INTO STATEMENT
SQL's INSERT INTO statement is used to append records to an existing table. The INSERT INTO statement has three clauses,
shown in Table 3.20.

Table 3.20. The syntax of the INSERT INTO statement.

CLAUSE Purpose Example

INSERT INTO Names the table and fields
into which data are to be
inserted

INSERT INTO [Publisher Titles] ([Name], [Title])

SELECT Names the fields from
which data are to be taken

SELECT Publishers.Name, Titles.Title

FROM Names the table or other
source of the data

FROM Publishers INNER JOIN Titles ON Publishers.PubID =
Titles.PubID

The INSERT INTO clause takes two parameters, the table name ([Publisher Titles] in the example) and the field names into
which data are to be inserted. The field names are enclosed in parentheses and delimited by commas.

The SELECT clause statement consists of a list of fields from which the data to be inserted into the fields named in the INSERT

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (46 of 66) [9/22/1999 1:57:50 AM]

INTO clause will be drawn. There must be a one-to-one correspondence between the fields in the INSERT INTO clause and the
fields in the SELECT clause. If you have more INSERT INTO fields than SELECT fields, or vice versa, an error will result. If
the field names are from multiple tables--as in the example--and if the names are ambiguous (that is, both tables have fields with
the same names), they must be qualified with the table names.

The FROM clause statement names the table or other source of the fields named in the SELECT clause. In the example, the FROM
clause names not a single table but a pair of tables linked by an INNER JOIN. (See How-To 3.6 for details on INNER JOINs.)

As with other SQL action queries, you run the INSERT INTO clause by using it as the argument for the Execute method of the
Database object. To execute the query shown in the table against a database object represented by the variable dbfTest, you
would create the following Visual Basic statement (note the continuation character):

dbfTest.Execute("INSERT INTO [Publisher Titles] ([Name], " & _
 "[Title]) SELECT Publishers.Name, " & _
 "Titles.Title FROM Publishers INNER JOIN Titles ON " & _
 "Publishers.PubID = Titles.PubID")

The DELETE Statement

Use the SQL DELETE statement to delete records from a table, based on criteria you specify in the DELETE statement. The
DELETE statement has the syntax shown in Table 3.21.

Table 3.21. The syntax of the DELETE statement.

CLAUSE Purpose Example

DELETE FROM Names the table from which records are to be deleted DELETE FROM [Publisher Titles]

WHERE Criteria that select records for deletion WHERE [Publication Date]

Execute the DELETE statement by passing it as the parameter to the Execute method statement of the Database object. If you
have a Database object variable named dbfTest, this Visual Basic statement executes the SQL shown in the table:

dbfTest.Execute("DELETE FROM [Publisher Titles] WHERE [Publication Date] <= 1990")

Steps

Open and run the project UPDATE.VBP. Click the Create Table button and then the Append Records button. These two actions
create a table named [Publisher Titles], fill it with records, and display the records in the form, as shown in Figure 3.17. Notice the
titles from Addison-Wesley on your screen. (You might need to scroll down to see them.)

Figure 3.17. The SQL Insert Into form, showing appended records.

Click the Delete Records button. The Select Publisher form shown in Figure 3.18 appears. Select Addison-Wesley and click OK.
The previous form reappears with the list refreshed to show the records currently in the [Publisher Titles] table. Notice that the
Addison-Wesley titles are missing.

Figure 3.18. The Publisher List form, showing publisher names.

1. Create a new project called APPEND.VBP. Rename Form1 to frmMain, create the objects and properties listed
in Table 3.22, and save the form as APPEND.FRM.

Table 3.22. Objects and properties for the Append and Delete form.

OBJECT Property Setting

Form Name frmMain

Caption Chapter 3.13 - Example

ListBox Name lstData

Sorted True

CommandButton Name cmdDeleteRecords

Caption &Delete Records

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (47 of 66) [9/22/1999 1:57:50 AM]

javascript:popUp('03fig17.gif')
javascript:popUp('03fig18.gif')

CommandButton Name cmdClose

Caption &Close

CommandButton Name cmdDropTable

Caption D&rop Table

CommandButton Name cmdAppendRecords

Caption &Append Records

CommandButton Name cmdCreateTable

Caption Create &Table

2. Insert a new form into the project. Rename it to frmSelectPublisher, create the objects and properties listed in
Table 3.23, and save the form as PublisherSelect.FRM.

Table 3.23. Objects and properties for the Select Publisher form.

OBJECT Property Setting

Form Name frmSelectPublisher

BorderStyle 3 - Fixed Dialog

Caption Chapter 3.13 - Publisher List

MaxButton False

MinButton False

CommandButton Name cmdOK

Caption &OK

Default True

CommandButton Name cmdCancel

Caption &Cancel

CheckBox Name chkDeleteAll

Caption &Delete All

ListBox Name lstPublishers

Sorted True

3. Add the following statements to the declarations section of frmMain:

Option Explicit
Private Const BIBLIO_PATH = _
"D:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"
Private strPublisherToDelete As String
Private dbfBiblio As Database

4. Enter the following code as in the Load event of frmMain. The Form_Load code checks to see whether the [Publisher
Titles] table exists in the database and, if it exists, whether it has any records. It then enables and disables the appropriate
command buttons.

Private Sub Form_Load()
Dim tdfTable As TableDef
 Dim blnTableFound As Boolean
 On Error GoTo LoadError
 blnTableFound = False
 `Open the database.
 Set dbfBiblio =
 DBEngine.Workspaces(0).OpenDatabase(BIBLIO_PATH)
 `Iterate through the TableDefs collection. If the table
 `"Publisher Titles" is found, configure the
 `form's buttons appropriately.

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (48 of 66) [9/22/1999 1:57:50 AM]

 For Each tdfTable In dbfBiblio.TableDefs
 If tdfTable.Name = "Publisher Titles" Then
 blnTableFound = True
 cmdDropTable.Enabled = True
 cmdCreateTable.Enabled = False
 If tdfTable.RecordCount > 0 Then
 cmdDeleteRecords.Enabled = True
 cmdAppendRecords.Enabled = False
 FillList
 Else
 cmdDeleteRecords.Enabled = False
 cmdAppendRecords.Enabled = True
 End If
 Exit For
 End If
 Next
 `If the table is not found, configure the form's buttons
 `appropriately.
 If blnTableFound = False Then
 cmdDropTable.Enabled = False
 cmdCreateTable.Enabled = True
 cmdAppendRecords.Enabled = False
 cmdDeleteRecords.Enabled = False
 End If
 On Error GoTo 0
Exit Sub
LoadError:
 MsgBox Err.Description, vbExclamation
 Unload Me
Exit Sub
End Sub

5. Create the FillList subroutine in frmMain by entering the following code. The FillList routine fills the list box
lstData with the records from the [Publisher Titles] table.

Sub FillList()
Dim recSelect As Recordset
 Dim strSQL As String
 On Error GoTo FillListError
 `Clear the list box.
 lstData.Clear
 `Get all the records from the Publisher Titles table.
 Set recSelect = dbfBiblio.OpenRecordset(_
 "SELECT * FROM " & _
 "[Publisher Titles]", _
 dbOpenSnapshot)
 `Put the records into the list box.
 If recSelect.RecordCount > 0 Then
 recSelect.MoveFirst
 Do Until recSelect.EOF
 lstData.AddItem recSelect![Name] & ": " & _
 recSelect![Title]
 recSelect.MoveNext
 Loop
 End If
 On Error GoTo 0
Exit Sub
FillListError:

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (49 of 66) [9/22/1999 1:57:50 AM]

 MsgBox Err.Description, vbExclamation
Exit Sub
End Sub

6. Enter the following code as the Click event for frmMain's cmdCreateTable. This code creates the [Publisher
Titles] table. Refer to the preceding How-To for information on the CREATE TABLE statement.

Private Sub cmdCreateTable_Click()
 Dim strSQL As String

 On Error GoTo CreateTableError
 `Build the CREATE TABLE statement.
 strSQL = "CREATE TABLE [Publisher Titles] " & _
 "([Name] TEXT, [Title] TEXT)"
 `Execute the statement. Since it's an action query,
 `you don't use the OpenRecordset command. It would
 `fail, since an action query does not return a recordset.
 dbfBiblio.Execute (strSQL)
 `Configure the form's buttons appropriately.
 cmdCreateTable.Enabled = False
 cmdDropTable.Enabled = True
 cmdAppendRecords.Enabled = True
 On Error GoTo 0
Exit Sub
CreateTableError:
 MsgBox Err.Description, vbExclamation
Exit Sub
End Sub

7. Enter the following code as the Click event for frmMain's cmdDropTable. This code deletes the [Publisher Titles]
table. Refer to the preceding How-To for information on the DROP TABLE statement.

Private Sub cmdDropTable_Click()
Dim dbName As String
 On Error GoTo DropTableError
 `Build & execute the DROP TABLE statement.
 dbfBiblio.Execute ("DROP TABLE [Publisher Titles]")
 `Configure the form's buttons appropriately.
 cmdDropTable.Enabled = False
 cmdCreateTable.Enabled = True
 cmdAppendRecords.Enabled = False
 cmdDeleteRecords.Enabled = False
 `Clear the list box.
 lstData.Clear
 On Error GoTo 0
Exit Sub
DropTableError:
 MsgBox Err.Description, vbExclamation
Exit Sub
End Sub

8. Enter the following code as the Click event for frmMain's cmdAppendRecords. This command builds the SQL
statement that will append the records to the database and then executes the statement. The SQL statement is identical to
that shown in Table 3.20.

Private Sub cmdAppendRecords_Click()
 Dim strSQL As String
 On Error GoTo AppendRecordsError
 Screen.MousePointer = vbHourglass
 `Build the INSERT INTO statement
 strSQL = _
 "INSERT INTO [Publisher Titles] ([Name], Title) " & _

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (50 of 66) [9/22/1999 1:57:50 AM]

 "SELECT Publishers.Name, Titles.Title " & _
 "FROM Publishers INNER JOIN Titles " & _
 "ON Publishers.PubID = Titles.PubID"
 `Execute the statement.
 dbfBiblio.Execute (strSQL)
 `Fill the list box via the FillList subroutine.
 FillList
 `Configure the form's buttons appropriately.
 cmdDeleteRecords.Enabled = True
 cmdAppendRecords.Enabled = False
 Screen.MousePointer = vbDefault
 On Error GoTo 0
Exit Sub
AppendRecordsError:
 Screen.MousePointer = vbDefault
 MsgBox Err.Description, vbExclamation
Exit Sub
End Sub

9. Enter the following code as the Click event for frmMain's cmdDeleteRecords. This procedure deletes the
designated records from the database. It calls the GetPublisher function of frmSelectPublisher, returning
a value to be placed in strPublisherToDelete. Then it examines the public variable
strPublisherToDelete; if strPublisherToDelete is an empty string, it indicates that the user wants to
cancel the deletion, so no records are deleted. If strPublisherToDelete is "*", the user wants to delete all the
records. Otherwise, frmSelectPublisher contains the name of the publisher whose titles the user wants to
delete. The procedure builds the appropriate SQL DELETE statement and then executes the statement.

Private Sub cmdDeleteRecords_Click()
 Dim strSQL As String
 On Error GoTo DeleteRecordsError
 `Use the GetPublisher function on frmSelectPublisher to return
 `a publisher to delete.
 strPublisherToDelete = frmSelectPublisher.GetPublisher
 `If one is selected, then delete it.
 If strPublisherToDelete <> "" Then
 `Build the DELETE statement.
 strSQL = "DELETE FROM [Publisher Titles]"
 `If the publisher to delete isn't the * wildcard, then
 `modify the SQL to choose the selected publisher(s).
 If strPublisherToDelete <> "*" Then
 strSQL = strSQL & _
 " WHERE [Publisher Titles].[Name] = " & _
 """" & strPublisherToDelete & """"
 End If
 `Execute the statement.
 dbfBiblio.Execute (strSQL)
 `Fill the list box.
 FillList
 End If
 cmdAppendRecords.Enabled = (lstData.ListCount = 0)
 cmdDeleteRecords.Enabled = (lstData.ListCount > 0)
Exit Sub
DeleteRecordsError:
 MsgBox Err.Description, vbExclamation
Exit Sub
End Sub

10. Enter the following code as the Click event for frmMain's cmdClose:

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (51 of 66) [9/22/1999 1:57:50 AM]

Private Sub cmdClose_Click()
 End
End Sub

11. Switch to frmPublisherSelect and enter the following code into the declarations section. Modify the path in the
Const statement to point to your copy of BIBLIO.MDB.

Option Explicit
Private Const BIBLIO_PATH = _
 "D:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"
Private strPublisherToDelete As String

12. Enter the following code as the Load event for frmSelectPublisher. On loading, the form builds a recordset of
publisher names in the [Publisher Titles] table through a SQL SELECT statement with the DISTINCT keyword. (See
How-To 3.2 for information on the DISTINCT keyword.) It uses that recordset to fill the lstPublishers list box.

Private Sub Form_Load()
 Dim dbfBiblio As Database, recSelect As Recordset
 Dim strSQL As String
 On Error GoTo LoadError
 Set dbfBiblio = _
 DBEngine.Workspaces(0).OpenDatabase(BIBLIO_PATH)
 strSQL = "SELECT DISTINCT [Name] FROM [Publisher Titles]"
 Set recSelect = dbfBiblio.OpenRecordset(strSQL)
 If recSelect.RecordCount > 0 Then
 recSelect.MoveFirst
 Do Until recSelect.EOF
 lstPublishers.AddItem recSelect![Name]
 recSelect.MoveNext
 Loop
 End If
 On Error GoTo 0
Exit Sub
LoadError:
 MsgBox Err.Description, vbExclamation
 strPublisherToDelete = ""
 Me.Hide
Exit Sub
End Sub

13. Enter the following code as the Click event for frmSelectPublisher's cmdOK. This procedure sets the public
variable strPublisherToDelete. If the user has clicked the Delete All button, strPublisherToDelete is set to
the string "*". Otherwise, strPublisherToDelete is set to the name of the selected publisher.

Private Sub cmdOK_Click()
If chkDeleteAll Then
 strPublisherToDelete = "*"
 Me.Hide
 ElseIf lstPublishers.ListIndex > -1 Then
 strPublisherToDelete = lstPublishers.Text
 Me.Hide
 End If
End Sub

14. Enter the following code as the DblClick event for frmSelectPublisher's lstPublishers. This allows the
program to call the cmdOK_Click event, preventing duplication of code. A double-click of the Publishers list brings about
exactly the same result as if the user had selected a publisher with a single left-click and then clicked the OK button.

Private Sub lstPublishers_DblClick()
 cmdOK_Click
End Sub

15. Enter the following code as the Click event for frmSelectPublisher's cmdCancel. This code ensures that the

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (52 of 66) [9/22/1999 1:57:50 AM]

strPublisherToDelete string is blank, preventing the calling form's code from inadvertently deleting a publisher.
Note that the form is hidden (as opposed to unloaded) here. This form is called by the GetPublisher public function and
is unloaded by that function.

Private Sub cmdCancel_Click()
 strPublisherToDelete = ""
 Me.Hide
End Sub

16. Enter the following code to create the GetPublisher method for frmSelectPublisher. This is a public
function, allowing you to use this form like a dialog box, resulting in this function being sent back to the calling form. You
will find that this method for using forms is preferable to the "one use" form in many situations, especially when a "generic"
form is used for multiple purposes.

Public Function GetPublisher() As String
 Me.Show vbModal
 GetPublisher = strPublisherToDelete
 Unload Me
End Function

How It Works

When the user clicks the cmdCreateTable button, a CREATE TABLE statement is executed (for more information on the
CREATE TABLE statement, see the preceding How-To) to create an empty table in BIBLIO.MDB. The cmdAppendRecords
button, when clicked, fills that empty table by executing the INSERT...INTO statement, creating the information from a
SELECT query run on two other tables in the database. When the table is fully populated, the list box lstTitles fills from the
new table's data via the FillList subroutine. The cmdDeleteRecords button, which deletes the newly created records, first
calls the GetPublisher public function on the frmSelectPublisher form. The form presents a dialog box with options to
delete records from either a single publisher or all publishers in the table. Based on this selection, the GetPublisher function
returns either a publisher's name or the asterisk wildcard character. Using this information, the cmdDeleteRecords button
builds and executes a DELETE statement. Last, but not least, the cmdDropTable button simply executes a DROP TABLE
statement on the new table.

Comments

One of the more interesting capabilities of Visual Basic is its capacity for public functions and subroutines on forms. This allows
for a wide degree of flexibility in the way you can use forms, including your ability to use a form in a manner similar to that of,
say, a common dialog, by calling a public function on the form. This functionality serves well in this How-To because it makes
the selection process for deletion of a group of records much easier and cleaner in terms of design and user interface.

The INSERT...INTO and DELETE statements are useful for creating and emptying temporary tables. Temporary tables,
although not always the most efficient way to go, do have their purposes, and these two new tools in your arsenal should go a long
way toward their proper and efficient management.

3.14 How do I...

Create a new table with data from existing tables?

Problem

I know I can use CREATE TABLE and INSERT INTO to create a table and add records to it. But in my application, I do this
many times, and I'd like to accomplish it all with a single SQL operation. How can I do this?

Technique

The SELECT...INTO statement lets you create a new table with data from existing tables in a single operation. Table 3.24
shows its syntax. Similar to INSERT...INTO and DELETE statements, both covered in the preceding How-To, this tool
provides an excellent way to work with temporary tables.

Table 3.24. The syntax of the SELECT...INTO statement.

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (53 of 66) [9/22/1999 1:57:50 AM]

CLAUSE Purpose Example

SELECT Names the fields in the existing
table that will be re-created in the
new table

SELECT Publishers.Name, Titles.Title

INTO Names the new table INTO [Publisher Titles]

FROM Names the table (or other source)
of the data

FROM Publishers INNER JOIN Titles ON Publishers.PubID =
Titles.PubID

To run the SELECT...INTO query, use the Execute method of the Database object. The following Visual Basic statement
(on one line) executes the query shown in the table on the database represented by the variable dbfTest:

dbfTest.Execute("SELECT Publishers.Name, " & _
 "Titles.Title INTO [Publisher Titles]" & _
 " FROM Publishers INNER JOIN Titles ON Publishers.PubID = Titles.PubID")

With the example presented previously, a new table, titled [Publisher Titles], is created in the database, constructed from
information gleaned from two other tables, connected by an INNER JOIN. The difference between the SELECT...INTO
command and the INSERT...INTO command is simple: the INSERT...INTO command creates new records and performs an
INSERT on the existing recipient table, whereas the SELECT...INTO creates a new recipient table before performing an
INSERT. The SELECT...INTO statement, because of this behavior, is the ideal method of creating a temporary table in one
step. In the preceding How-To, you needed two steps--one to create the table and one to add the records. SELECT...INTO
combines these two steps into one, making it simpler to use and simpler to debug if problems arise. Note that the behavior on
some databases differs as to exactly what happens when a SELECT...INTO statement is executed, with the recipient table
having the same name as an existing table in the database. In a Microsoft Access database, the SELECT...INTO command
deletes the existing table first. Some databases, however, might trigger an error in performing this action. To examine this
behavior, you should create a sample table with data, execute a SELECT...INTO statement with that sample table as recipient,
and note the results.

Steps

Open and run the project MAKETABL.VBP. Click the Create Table button; the list box fills with the records added to the newly
created table (see Figure 3.19). Click the Drop Table button to delete the table.

Figure 3.19. The SQL Select Into form, with new table and records.

1. Create a new project called MAKETABL.VBP. Use Form1 to create the objects and properties listed in Table 3.25, and
save the form as MAKETABL.FRM.

Table 3.25. Objects and properties for the Table Maker form.

OBJECT Property Setting

Form Name Form1

Caption Chapter 3.14 Example

ListBox Name lstData

Sorted True

CommandButton Name cmdClose

Caption &Close

CommandButton Name cmdDropTable

Caption D&rop Table

CommandButton Name cmdCreateTable

Caption Create &Table

2. Add the following statements to the declarations section of Form1:

Option Explicit

Private Const BIBLIO_PATH = _

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (54 of 66) [9/22/1999 1:57:50 AM]

javascript:popUp('03fig19.gif')

"D:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"
Private dbfBiblio As Database

3. Enter the following code as the Load event for Form1. On loading, this procedure looks for the [Publisher Titles] table
in the database. If it finds the table, it fills the list box with the table's data and enables the Drop Table button. If it does not
find the table, it enables the Create Table button.

Private Sub Form_Load()
Dim tdfTable As TableDef
 Dim blnTableFound As Boolean
 On Error GoTo LoadError
 blnTableFound = False
 `Open the database
 Set dbfBiblio = _
 DBEngine.Workspaces(0).OpenDatabase(BIBLIO_PATH)
 `Check each table in the TableDefs collection;
 `if the name matches, then allow the user to drop the
 `table, and populate the list box.
 For Each tdfTable In dbfBiblio.TableDefs
 If tdfTable.Name = "Publisher Titles" Then
 blnTableFound = True
 cmdDropTable.Enabled = True
 cmdCreateTable.Enabled = False
 FillList
 Exit For
 End If
 Next
 `If no table was found, allow the user to create the
 `table.
 If blnTableFound = False Then
 cmdDropTable.Enabled = False
 cmdCreateTable.Enabled = True
 End If
 On Error GoTo 0
Exit Sub
LoadError:
 MsgBox Err.Description, vbExclamation
 Unload Me
Exit Sub
End Sub

4. Create the FillList subroutine by entering the following code into Form1. This subroutine fills the list box with the
contents of the [Publisher Titles] table.

Sub FillList()
Dim recSelect As Recordset
 Dim strSQL As String
 On Error GoTo FillListError
 `Clear the list box
 lstData.Clear
 `Get the [Publisher Titles] table in a recordset
 Set recSelect = dbfBiblio.OpenRecordset(_
 "SELECT * FROM " & _
 "[Publisher Titles]", dbOpenSnapshot)
 `If there are any records, fill the list box
 If recSelect.RecordCount > 0 Then
 recSelect.MoveFirst
 Do Until recSelect.EOF
 lstData.AddItem recSelect![Name] & ": " & _

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (55 of 66) [9/22/1999 1:57:50 AM]

 recSelect![Title]
 recSelect.MoveNext
 Loop
 End If
 On Error GoTo 0
Exit Sub
FillListError:
 MsgBox Err.Description, vbExclamation
Exit Sub
End Sub

5. Enter the following code as the Click event for cmdCreateTable. This procedure builds the SELECT...INTO
SQL statement, building the [Publisher Titles] table from the combination of the [Name] field from the [Publishers] table
and the [Title] field from the [Titles] table, as described in the "Technique" section of this How-To. When built, it then
executes the statement and calls the FillList subroutine to fill the list box on the form. Finally, this step enables the
Delete Records button, because (you hope) you now have records to delete.

Private Sub cmdCreateTable_Click()
Dim strSQL As String
 On Error GoTo CreateTableError
 Screen.MousePointer = vbHourglass
 `Build the SELECT INTO statement.
 strSQL = "SELECT Publishers.Name, Titles.Title " & _
 "INTO [Publisher Titles] " & _
 "FROM Publishers INNER JOIN Titles " & _
 "ON Publishers.PubID = Titles.PubID"
 `Create the new table by executing the SQL statement.
 dbfBiblio.Execute (strSQL)
 `Fill the list box with records.
 FillList
 `Set the command buttons.
 cmdCreateTable.Enabled = False
 cmdDropTable.Enabled = True
 Screen.MousePointer = vbDefault
 On Error GoTo 0
Exit Sub
CreateTableError:
 Screen.MousePointer = vbDefault
 MsgBox Err.Description, vbExclamation
Exit Sub
End Sub

6. Enter the following code as the Click event for cmdDropTable. The routine executes a DROP TABLE statement
against the newly created [Publisher Titles] table and reenables the Create Table button.

Private Sub cmdDropTable_Click()
On Error GoTo DropTableError
 `Execute the DROP TABLE statement
 dbfBiblio.Execute ("DROP TABLE [Publisher Titles]")
 `Set the command buttons
 cmdDropTable.Enabled = False
 cmdCreateTable.Enabled = True
 `Clear the list box.
 lstData.Clear
 On Error GoTo 0
Exit Sub
DropTableError:
 MsgBox Err.Description, vbExclamation
Exit Sub

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (56 of 66) [9/22/1999 1:57:50 AM]

End Sub

7. Enter the following code as the Click event for cmdClose:

Private Sub cmdClose_Click()
 End
End Sub

How It Works

When Form1 loads, it first attempts to find the [Publisher Titles] table. If it finds the table, it loads the table's information into the
list box by calling the FillList subroutine, disables the Create Table button, and then enables the Drop Table buttons. If it
doesn't find the table, it enables the Create Table button and disables the Drop Table button.

If the Create Table button is enabled, when clicked, it constructs and executes a SELECT...INTO statement, creating the
[Publisher Titles] table and pulling in information from both the [Publishers] and the [Titles] table to populate it in one step. When
complete, it loads the data into the list box by using the FillList subroutine.

The Drop Table button, if enabled, issues a DROP TABLE statement when clicked, destroying your [Publisher Titles] table in one
fell swoop.

Comments

When you use SELECT...INTO to create the table, the fields in the new table inherit only the data type and field size of the
corresponding fields in the query's source table. No other field or table properties are picked up from the existing table.

3.15 How do I...

Modify a table's structure?

Problem

I need to be able to add or drop columns from a table without having to use Access or go through the lengthy process of working
with TableDef and Field objects. Can I do this with a simple SQL statement?

Technique

The ALTER TABLE statement lets you add or drop columns or indexes as needed, with a single SQL operation. The syntax is
explained in Table 3.26, with a sample statement.

Table 3.26. The syntax of the ALTER TABLE statement.

CLAUSE Purpose Example

ALTER TABLE Selects the table to be altered ALTER TABLE [Publisher Titles]

ADD COLUMN Adds a column, defining its data type at the same time ADD COLUMN [Notes] MEMO NOT NULL

The ALTER TABLE statement uses several other keywords, as listed in Table 3.27.

Table 3.27. Additional syntax for the ALTER TABLE statement.

CLAUSE Purpose Example

DROP COLUMN Removes a column DROP COLUMN [Notes]

ADD CONSTRAINT Adds an index to the table ADD CONSTRAINT [Key1] [Notes]

DROP CONSTRAINT Removes an index statement DROP CONSTRAINT [Key1]

The Execute method is used on a Database object to perform an ALTER TABLE statement. The following example executes
the queries shown in Table 3.26 on the database represented by the variable dbfTest:

dbfTest.Execute("ALTER TABLE [Publisher Titles] ADD COLUMN [Notes]
 MEMO NOT NULL")

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (57 of 66) [9/22/1999 1:57:51 AM]

Steps

Open and run the project ADDFIELD.VBP. Type a valid field name into the Field Name text box. Select a field type from the
Field Type drop-down list and then click the Add Field button; the list box fills with the fields added to the newly created table
(see Figure 3.20). Highlight one of the newly created fields and click the Remove Field button to delete the field. Note that this
example is similar in appearance to the example in How-To 3.12.

1. Create a new project called ADDFIELD.VBP. Use Form1 to create the objects and properties listed in Table 3.28, and
save the form as MAKETABL.FRM.

Figure 3.20. The SQL Alter Table form on startup.

Table 3.28. Objects and properties for the Table Maker form.

OBJECT Property Setting

Form Name Form1

Caption Chapter 3.14 Example

ListBox Name lstFields

Sorted True

Label Name lblTableName

Caption Table &Name:

Label Name lblFieldName

Caption &Field Name:

Label Name lblFieldType

Caption Field T&ype:

Label Name lblFieldList

Caption Field Li&st:

TextBox Name txtTableName

Enabled False

TextBox Name txtFieldName

ComboBox Name cboFieldType

Style 2 - Dropdown List

CommandButton Name cmdClose

Caption &Close

CommandButton Name cmdAddField

Caption &Add Field

CommandButton Name cmdRemoveField

Caption &Remove Field

2. Add the following statements to the declarations section of Form1:

Option Explicit
Private Const BIBLIO_PATH = _
"D:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"
Private Const IllegalCharacters = "[].!'"
Private dbfBiblio As Database

3. Add the following statements to the Load event of Form1. The FillTypeList and FillFieldList routines,
detailed next, are called to prepare the form for use.

Private Sub Form_Load()
 `Open the database
 Set dbfBiblio = _

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (58 of 66) [9/22/1999 1:57:51 AM]

javascript:popUp('03fig20.gif')

 DBEngine.Workspaces(0).OpenDatabase(BIBLIO_PATH)
 `Set the txtTableName control to the table that will be
 `edited.
 txtTableName = "Title Author"
 `Fill the Field Type combo box
 FillTypeList
 `Fill the Field List list box
 FillFieldList
End Sub

4. Create the following subroutine in Form1. The FillFieldList subroutine will iterate through the Fields
collection of the [Title Author] table, including the names and data types in the lstFields list box.

Sub FillFieldList()
 Dim tbfTemp As TableDef, fldTemp As Field
 Dim strFieldType As String
 `Iterate through the TableDefs collection of the database,
 `searching for the table name specified in the txtTableName
 `edit control.
 For Each tbfTemp In dbfBiblio.TableDefs
 `If we find the table, iterate through the Fields
 `collection, adding each field and its field type to the
 `Field List list box
 If tbfTemp.Name = txtTableName.Text Then
 For Each fldTemp In tbfTemp.Fields
 Select Case fldTemp.Type
 Case dbBigInt
 strFieldType = "BIGINT"
 Case dbBinary
 strFieldType = "BINARY"
 Case dbBoolean
 strFieldType = "BOOLEAN"
 Case dbByte
 strFieldType = "BYTE"
 Case dbChar
 strFieldType = "CHAR(" _
 & fldTemp.FieldSize & ")"
 Case dbCurrency
 strFieldType = "CURRENCY"
 Case dbDate
 strFieldType = "DATE"
 Case dbDecimal
 strFieldType = "DECIMAL"
 Case dbDouble
 strFieldType = "DOUBLE"
 Case dbFloat
 strFieldType = "FLOAT"
 Case dbGUID
 strFieldType = "GUID"
 Case dbInteger
 strFieldType = "INTEGER"
 Case dbLong
 strFieldType = "LONG"
 Case dbLongBinary
 strFieldType = "LONGBINARY"
 Case dbMemo
 strFieldType = "LONGTEXT"
 Case dbNumeric

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (59 of 66) [9/22/1999 1:57:51 AM]

 strFieldType = "NUMERIC"
 Case dbSingle
 strFieldType = "SINGLE"
 Case dbText
 strFieldType = "TEXT"
 Case dbTime
 strFieldType = "TIME"
 Case dbTimeStamp
 strFieldType = "TIMESTAMP"
 Case dbVarBinary
 strFieldType = "VARBINARY"
 End Select
 lstFields.AddItem fldTemp.Name & _
 " [" & strFieldType & "]"
 Next
 Exit For
 End If
 Next
End Sub

5. Create the following subroutine in Form1. The FillTypeList subroutine adds the various data types to the
cboFieldType drop-down combo box.

Sub FillTypeList()
 `Fill the Field Type combo box with types of available fields
 With cboFieldTypes
 .AddItem "Counter"
 .AddItem "Currency"
 .AddItem "Date/Time"
 .AddItem "Memo"
 .AddItem "Number: Byte"
 .AddItem "Number: Integer"
 .AddItem "Number: Long"
 .AddItem "Number: Single"
 .AddItem "Number: Double"
 .AddItem "OLE Object"
 .AddItem "Text"
 .AddItem "Yes/No"
 End With
End Sub

6. Add the following code to the Click event of cmdAddField. The routine checks for a field name, ensures that the
name is legal (no invalid characters, no leading spaces, and so on), determines its data type from the Field Type combo box,
and finally builds the SQL needed to send the ALTER TABLE command to the database.

Private Sub cmdAddField_Click()
 Dim strFieldType As String, strSQL As String
 `Check first if the Field Name text box contains a legal name
 If LegalName(True) Then
 On Error GoTo BadAdd
 `If it does, check if the Field Type has been
 `selected.
 If cboFieldTypes.ListIndex > -1 Then
 `If both criteria are satisfied, store the SQL
 `field type in the strFieldType string.
 Select Case cboFieldTypes.Text
 Case "Counter"
 strFieldType = "COUNTER"
 Case "Currency"

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (60 of 66) [9/22/1999 1:57:51 AM]

 strFieldType = "CURRENCY"
 Case "Date/Time"
 strFieldType = "DATETIME"
 Case "Memo"
 strFieldType = "LONGTEXT"
 Case "Number: Byte"
 strFieldType = "BYTE"
 Case "Number: Integer"
 strFieldType = "SHORT"
 Case "Number: Long"
 strFieldType = "LONG"
 Case "Number: Single"
 strFieldType = "SINGLE"
 Case "Number: Double"
 strFieldType = "DOUBLE"
 Case "OLE Object"
 strFieldType = "LONGBINARY"
 Case "Text (25 chars)"
 strFieldType = "TEXT(25)"
 Case "Yes/No"
 strFieldType = "BIT"
 End Select
 `Crate the ALTER TABLE statement
 strSQL = "ALTER TABLE [" & txtTableName.Text & _
 "] ADD COLUMN " _
 & "[" & txtFieldName & "] " & strFieldType
 `Execute the SQL
 dbfBiblio.Execute (strSQL)
 `Add the new field to the Field List list box.
 lstFields.AddItem txtFieldName & " [" & _
 strFieldType & "]"
 `Reset the Field Name and Field Type controls.
 txtFieldName = ""
 cboFieldTypes.ListIndex = -1
 Else
 MsgBox "You must select a field type.", _
 vbExclamation
 End If
 On Error GoTo 0
 End If
Exit Sub
BadAdd:
 MsgBox Err.Description, vbExclamation
End Sub

7. Create the LegalName function in Form1 with the following code. This function checks for a valid field name
containing at least one character, without trailing spaces, that doesn't contain an illegal character. If it passes all that, it
performs one more check, depending on the value of intAction. If intAction is True, indicating that the field is to
be added, the function checks whether a field already exists. If intAction is False, indicating that the field is to be
deleted, it ensures that there is no data in the field anywhere in the table.

Function LegalName(intAction As Boolean) As Boolean
 Dim i As Integer
 Dim recNameCheck As Recordset
 On Error GoTo IllegalName
 `If blank, raise an error.
 If Len(txtFieldName.Text) = 0 Then Err.Raise 32767
 `If it has a leading space, raise an error.

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (61 of 66) [9/22/1999 1:57:51 AM]

 If Left$(txtFieldName.Text, 1) = " " Then Err.Raise 32766
 `If it contains any of the characters in the
 `IllegalCharacters constant, raise an error
 For i = 1 To Len(IllegalCharacters)
 If InStr(txtFieldName.Text, Mid(IllegalCharacters, _
 i, 1)) _
 > 0 Then Err.Raise 32765
 Next i
 `If it contains any ANSI character from Chr$(0) to
 `Chr$(31), (you guessed it) raise an error.
 For i = 0 To 31
 If InStr(txtFieldName.Text, Chr(i)) > 0 _
 Then Err.Raise 32764
 Next i
 If intAction Then
 `It's an add field; ensure that the name doesn't
 `already exist. If so, raise an error.
 For i = 0 To lstFields.ListCount - 1
 If txtFieldName.Text = lstFields.List(i) _
 Then Err.Raise 32763
 Next i
 Else
 `It's a drop field; ensure that the field being erased
 `contains no data. If so, raise an error
 Set recNameCheck = dbfBiblio.OpenRecordset(_
 "SELECT [" & _
 txtFieldName.Text & "] FROM [" _
 & txtTableName.Text & _
 "] WHERE [" & txtFieldName.Text & "] IS NOT NULL")
 If recNameCheck.RecordCount Then Err.Raise 32762
 End If

 `If they've managed to get through all that validation,
 `the function should be True, to indicate success.
 LegalName = True
 On Error GoTo 0
Exit Function
IllegalName:
 Dim strErrDesc As String
 `Build an error message based on the user-defined error that
 `occurred.
 Select Case Err.Number
 Case 32767
 strErrDesc = "You must enter a field name."
 Case 32766
 strErrDesc = _
 "The field name cannot begin with a space."
 Case 32765
 strErrDesc = _
 "The field name contains the illegal character " & _
 Mid(IllegalCharacters, i, 1) & "."
 Case 32764
 strErrDesc = _
 "The field name contains the control character " & _
 "with the ANSI value" & Str$(i) & "."
 Case 32763
 strErrDesc = "The field name " & txtFieldName.Text & _

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (62 of 66) [9/22/1999 1:57:51 AM]

 " already exists in the field name list."
 Case 32762
 strErrDesc = "The field name " & txtFieldName.Text & _
 " has data; it cannot be deleted."
 Case Else
 ` Visual Basic's default error message.
 strErrDesc = Err.Description
 End Select
 MsgBox strErrDesc, vbExclamation
 `The function indicates False, or failure.
 LegalName = False
Exit Function
End Function

8. Add the following code to the Click event of cmdRemoveField:

Private Sub cmdRemoveField_Click()
 Dim strSQL As String, strTemp As String
 ` If the user has selected a field, remove it from the list.
 ` Otherwise, just ignore the click.
 If lstFields.ListIndex > -1 Then
 `Call the lstFields_Click event, to ensure that
 `txtFieldName is still populated. The user might have
 `erased it after selecting a
 `field to delete.
 Call lstFields_Click
 If LegalName(False) Then
 `Build the ALTER TABLE statement
 strSQL = "ALTER TABLE [" & txtTableName.Text & _
 "] DROP COLUMN [" & _
 txtFieldName.Text & "]"
 `Execute the SQL
 dbfBiblio.Execute (strSQL)
 `Delete the field from the Field List
 lstFields.RemoveItem lstFields.ListIndex
 End If
 End If
End Sub

9. Add the following code to the Click event of lstFields. This code extracts the name of the field selected in
lstFields and passes it to the txtFieldName text box.

Private Sub lstFields_Click()
 Dim strTemp As String
 `If a field has been selected, extract the field's name from
 `the list entry and display it in the txtFieldName control.
 If lstFields.ListIndex > -1 Then
 strTemp = lstFields.List(lstFields.ListIndex)
 strTemp = Left(strTemp, InStr(strTemp, "[") - 2)
 txtFieldName.Text = strTemp
 End If
End Sub

10. Add the following code to the Click event of cmdClose:

Private Sub cmdClose_Click()
 End
End Sub

How It Works

When you load Form1, it prepares for use by running the FillTypeList routine, which loads the cboFieldTypes combo

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (63 of 66) [9/22/1999 1:57:51 AM]

box with the various field types allowed by Visual Basic, and the FillFieldList routine, which loads all the field information
from a given table into the lstFields list box. The Form_Load event defaults the table name for this routine to the [Title
Author] table.

Each time the user adds a field to the table, an ALTER TABLE statement is concatenated in the cmdAddField_Click routine.
Several steps are performed to ensure that the entered field is valid and meets the criteria for the statement. The routine uses the
LegalName function to determine whether the field name specified is legal for use--doesn't have any illegal characters, has at
least one character, and doesn't start with a space (ASCII 32). After that step, the routine fetches the field's type from the
cboFieldTypes combo box and translates the English-readable selection into a valid SQL data type. After the translation is
complete, it builds and executes the ALTER TABLE statement, using the ADD COLUMN keywords to create the field. If run
successfully, it adds the newly created field to the lstFields list box.

Removing a field, however, is much less involved. Given the selected field name from the lstFields list box, and after the
LegalName function is called to ensure that the selected field contains no data, another ALTER TABLE statement is issued, this
time utilizing the DROP COLUMN keywords to remove the field from the table. After execution is complete, the field is then
removed from the lstFields list box.

Comments

The ALTER TABLE has different behaviors depending on the database platform. Microsoft SQL Server, for example, won't allow
a field-level constraint (for example, restricting a field's data to a certain range of values) to be added to an already existing field.
As with the SELECT...INTO statement (covered previously in How-To 3.14), the best way to ensure that you get a complete
understanding of how the database reacts to the ALTER TABLE statement is to experiment and observe the results.

3.16 How do I...

Create a crosstab query?

Problem

I need to be able to supply a worksheet-style query showing cross-referenced information easily. How do I do this?

Technique

The new features of the Microsoft Jet (3.5 and above) engines include the capability to create crosstab, or cross-tabulated, queries.
Think of a crosstab query as a spreadsheet, with the information provided by the query read by referencing the row and column of
the spreadsheet. For example, using your old familiar friend BIBLIO.MDB, you need to get a count of all the titles published since
1975, year by year, listed by publisher. Normally, this job would take a couple of queries, but the crosstab query allows you to use
some SQL "sleight of hand" in performing this action by adding a couple of new SQL keywords to your arsenal.

In the following sample query, notice the TRANSFORM and PIVOT keywords. These new additions allow Jet to construct a
crosstab query.

TRANSFORM Count(Titles.Title) AS [TitlesCount]
 SELECT Publishers.Name FROM Publishers INNER JOIN Titles ON
 (Titles.PubID = Publishers.PubID) WHERE Titles.[Year Published]
 > 1975 GROUP BY Publishers.Name
PIVOT Titles.[Year Published]

Table 3.29 lists the TRANSFORM and PIVOT keywords, used to create a crosstab query.

Table 3.29. The syntax of the crosstab query.

CLAUSE Purpose Example

TRANSFORM Selects the data to be shown in
the body of the query

TRANSFORM Count(Titles.Title) AS [TitlesCount]

SELECT Chooses the row information for
the query, in a crosstab query

SELECT Publishers.Name FROM Publishers INNER JOIN
Titles ON(Titles.PubID = Publishers.PubID) WHERE
Titles.[Year Published] > 1975

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (64 of 66) [9/22/1999 1:57:51 AM]

PIVOT SELECTS THE COLUMN INFORMATION FOR THE QUERY PIVOT TITLES.[YEAR PUBLISHED]
To better understand the results of this query, visualize the results as a spreadsheet. The SELECT creates the rows of the
spreadsheet; in the preceding example, a row is created for each publisher with a title published after 1975. The PIVOT creates the
columns of the spreadsheet--a column for each year a title was published after 1975. The TRANSFORM statement creates the
information on the spreadsheet where each row and column intersect--in the preceding query, a count of titles.

Steps

Open and run the project CROSSTAB.VBP. When the form appears, a grid displays the count of all the titles published after
1975, listed by publisher, as shown in Figure 3.21.

Figure 3.21. The SQL Transform form, displaying crosstab data.

1. Create a new project called CROSSTAB.VBP. Use Form1 to create the objects and properties listed in Table 3.30, and
save the form as CROSSTAB.FRM.

Table 3.30. Objects and properties for the Crosstab form.

OBJECT Property Setting

Form Name Form1

Caption Chapter 3.16
Example

Data Name dtaData

MSFlexGrid Name grdCrossTab

DataSourcw dtaData

Label Name lblCrossTab

Caption Titles per
year published
after 1975,
sorted by
Publisher ID

CommandButton Name cmdClose

Caption &Close

2. Add the following statements to the declarations section of Form1:

Option Explicit
Private Const BIBLIO_PATH = _
"D:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"

3. Add the following statements to the Load event of Form1. At this point, the event constructs the SQL statement used
for the crosstab query (explained earlier in this How-To) and places it in the RecordSource property of the dtaData
Data control. After it's added, the Data control is refreshed to execute the query and return the needed records, which will
automatically display in the bound MSFlexGrid control, grdCrossTab.

Private Sub Form_Load()
 Dim strSQL As String
 `Construct the crosstab query statement. Note the use of
 `several new SQL keywords, including TRANSFORM and PIVOT.
 `These two keywords are the building blocks of the crosstab
 `query.
 strSQL = "TRANSFORM Count(Titles.Title) AS [TitlesCount] " & _
 "SELECT Publishers.Name FROM Publishers "& _
 INNER JOIN Titles " & _
 "ON (Titles.PubID " & _
 "= Publishers.PubID) " & _

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (65 of 66) [9/22/1999 1:57:51 AM]

javascript:popUp('03fig21.gif')

 WHERE Titles.[Year Published] > 1975 " & _
 "GROUP BY Publishers.Name " & _
 "PIVOT Titles.[Year Published]"
 `Set up the Data control
 With dtaData
 .DatabaseName = BIBLIO_PATH
 .RecordSource = strSQL
 .Refresh
 End With
End Sub

4. Add the following statements to the Click event of cmdClose:

Private Sub cmdClose_Click()
 End
End Sub

How It Works

When Form1 loads, it constructs the sample crosstab query detailed earlier in the How-To. It then uses the dtaData Data
control to execute it and retrieve the records for display in grCrossTab.

Comments

The crosstab query is a powerful tool for generating tabular data, especially aggregate or arithmetically derived information such
as counts or statistical data, for a quick summary. Normally, without the TRANSFORM or PIVOT keywords, performing a query
like the one you used would require two or three queries and possibly a temporary table, making it a complex task not only to
execute but also to maintain. A crosstab query takes all that work and hands it to the database to perform, making the tedious job
of cross-indexing information that much faster and easier.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Ch 3 -- CREATING QUERIES WITH SQL

http://www.pbs.mcp.com/ebooks/1571691529/ch03/ch03.htm (66 of 66) [9/22/1999 1:57:51 AM]

Visual Basic 6 Database How-To

- 4 -
Designing and Implementing a Database

How Do IÖ

Create a new database?❍

Define tables and fields?❍

Define the primary key and other indexes?❍

Define relations between tables?❍

Use the Jet database engine ...❍

●

No amount of Visual Basic coding skill can overcome the problems of a poorly designed database. This chapter introduces
some fundamental principles of relational database design. You'll see how you can use Visual Basic code to create
databases and database objects, including tables, fields, indexes, and relationships. You'll also see how you can use the
properties of these database objects to enforce business rules for your application.

4.1 Create a New Database

Creating a database with Data Access Object (DAO) code can be done with a single method. This How-To shows you
how.

4.2 Define Tables and Fields

Every database design starts with tables and fields. This How-To examines time-tested principles of table design and
demonstrates how you can use DAO code to create your database objects.

4.3 Define the Primary Key and Other Indexes

Indexes are the key to establishing relationships between tables and improving database application performance. This
How-To introduces several types of indexes and shows you how to create indexes with Visual Basic code.

4.Define Relations Between Tables

This How-To shows you how to use Visual Basic to create the relations for your database.

4.5 Use the Jet Database Engine to Enforce Business Rules

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (1 of 46) [9/22/1999 1:58:30 AM]

There are two ways to enforce business rules in your database applications. You can write Visual Basic code to enforce
your rules, or you can build the rules right into the database schema. This How-To shows you how to use the properties of
the objects in your database to enforce business rules.

4.1 How do I...

Create a new database?

Problem

My application needs to create a database at a location chosen by the user. How can I do this with Visual Basic?

Technique

The CreateDatabase method of the Workspace object creates a database and returns a database object you can use
in your application. The CreateDatabase method takes three arguments:

name. The database name. VB appends mdb if you do not supply an extension. You can also use a UNC name in
the form \\server\share\path\file if your network supports it.

●

locale. The language used for the sort order. You can also use the locale argument to create a
password-protected database by appending a password string to the locale constant. Locale constants are shown in
Table 4.1.

●

option. An optional constant or a combination of constants you can use to specify a database version or to encrypt
the database. If you want to specify a version and encrypt the database, use the bitwise Or operator to combine the
constants. Option constants are shown in Table 4.2.

●

Table 4.1. Locale constants for the CreateDatabase method.

CONSTANT Collating Order

dbLangGeneral Western European: English, German, French, Portuguese, Italian, and modern
Spanish

dbLangArabic Arabic

dbLangChineseSimplified Simplified Chinese

dbLangChineseTraditional Traditional Chinese

dbLangCyrillic Russian

dbLangCzech Czech

dbLangDutch Dutch

dbLangGreek Greek

dbLangHebrew Hebrew

dbLangHungarian Hungarian

dbLangIcelandic Icelandic

dbLangJapanese Japanese

dbLangKorean Korean

dbLangNordic Nordic languages (Microsoft Jet database engine version 1.0 only)

dbLangNorwDan Norwegian and Danish

dbLangPolish Polish

dbLangSlovenian Slovenian

dbLangSpanish Traditional Spanish

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (2 of 46) [9/22/1999 1:58:30 AM]

dbLangSwedFin Swedish and Finnish

dbLangThai Thai

dbLangTurkish Turkish

Table 4.2. Options constants for the CreateDatabase method.

CONSTANT DESCRIPTION

dbEncrypt Creates an encrypted database

dbVersion10 Creates a database that uses the Microsoft Jet database engine version 1.0 file format

dbVersion11 Creates a database that uses the Microsoft Jet database engine version 1.1 file format

dbVersion20 Creates a database that uses the Microsoft Jet database engine version 2.0 file format

dbVersion30 (Default) Creates a database that uses the Microsoft Jet database engine version 3.0 file format
(compatible with version 3.51)

Steps

Open and run HT401.VBP. Click the Create Database button. Choose a directory and filename using the common dialog,
and click Save to create the database, as shown in Figure 4.1.

Figure 4.1. Creating a database.

1. Create a new Standard EXE project, and save it as HT401.VBP. Create the objects and properties listed in Table
4.3, and save the form as FCreateDB.frm.

Table 4.3. Objects and properties for the Database Creator form.

OBJECT PROPERTY SETTING

Form Name FCreateDB

Caption Create Database

CommonDialog Name dlgCreateDB

CommandButton Name cmdCreate

Caption Create Database

2. Add Option Explicit to the declarations section.

3. Create the GetDBName() function. This function sets up the Common Dialog control with the appropriate
filters and flags and returns the file selected by the user as the return value of the function.

Private Function GetDBName() As String
` Get the desired name using the common dialog
On Error GoTo ProcError
 Dim strFileName As String
 ` set up the file save dialog file types
 dlgCreateDB.DefaultExt = "mdb"
 dlgCreateDB.DialogTitle = "Create Database"
 dlgCreateDB.Filter = "VB Databases (*.mdb)|*.mdb"
 dlgCreateDB.FilterIndex = 1
 ` set up flags
 dlgCreateDB.Flags = _
 cdlOFNHideReadOnly Or _
 cdlOFNOverwritePrompt Or _
 cdlOFNPathMustExist

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (3 of 46) [9/22/1999 1:58:30 AM]

javascript:popUp('04fig01.gif')

 ` setting CancelError means the control will
 ` raise an error if the user clicks Cancel
 dlgCreateDB.CancelError = True
 ` show the SaveAs dialog
 dlgCreateDB.ShowSave
 ` get the selected name
 strFileName = dlgCreateDB.filename
 ` dialog prompted for overwrite,
 ` so kill file if it exists
 On Error Resume Next
 Kill strFileName
ProcExit:
 GetDBName = strFileName
 Exit Function
ProcError:
 strFileName = ""
 Resume ProcExit
End Function

4. Create the CreateDB() procedure. This procedure takes a filename as a parameter and creates a database using
the CreateDatabase method of the Workspace object.

Private Sub CreateDB(strDBName As String)
` create the database
 Dim db As Database
 ` if desired, you can specify a version or encrypt
 ` the database as the optional third parameter to
 ` the CreateDatabase method
 Set db = DBEngine(0).CreateDatabase(strDBName, dbLangGeneral)
End Sub

5. Add the following code as the cmdCreateDB_Click event procedure. This procedure calls the GetDBName
function to obtain a filename and passes it to CreateDB to create the database.

Private Sub cmdCreateDB_Click()
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 Dim strDBName As String
 strDBName = GetDBName()
 If Len(strDBName) > 0 Then
 CreateDB strDBName
 End If
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox Err.Description
 Resume ProcExit
End Sub

How It Works

Two simple procedures--GetDBName and CreateDB--do all the work. The first obtains a filename from the user via the
Common Dialog control, and the second creates the database using the filename provided.

THE SQL CREATE DATABASE STATEMENT

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (4 of 46) [9/22/1999 1:58:30 AM]

Some database engines provide a CREATE DATABASE statement as a command in their SQL dialects. Jet,
however, does not. Although you can create tables, fields, indexes, relationships, and queries using Jet SQL,
you must use the CreateDatabase method to create.

Comments

You might be able to avoid creating a database in code by using a model database. If you will be distributing an
application that will always use the same database structure, you can create an empty version of the database and have the
setup program install the empty model.

Although this approach will work in many cases, two common scenarios preclude the use of this technique:

1. If the database schema is not constant, a model will serve little or no purpose.

2. If the database must be secured at the installation point, you will need to have your code create the database using
the account that will be the database owner. Although you can change the owner of database objects, you cannot
change the owner of the database itself. See Chapter 11, "The Windows Registry and State Information," for
additional information about working with secured databases.

4.2 How do I...

Define tables and fields?

Problem

I need a database that is flexible, accurate, and reliable. How do I design my table and column structure to ensure that this
is what I get?

Technique

RECORDS AND ROWS--FIELDS AND COLUMNS

The terms row and record are interchangeable, as are the terms column and field. Referring to tables in terms
of rows and columns is the generally accepted terminology for most literature on database design and for
most database engines, except Jet. The Data Access Objects (DAO) object model and most of the Visual
Basic documentation use the terms record and field. This kind of variation in terminology doesn't stop at the
database design level. Most server databases, for example, describe the data returned by a query as a result
set, whereas the Jet engine named its object a Recordset. Don't let the terminology confuse you. Whether
you are dealing with records, rows, columns, or fields, the concepts are still the same.

Building a database structure is a process of examining the data that is useful and necessary for an application, and then
breaking it down into a relatively simple row-and-column format. You should understand two points about tables and
columns that are the essence of any database:

Tables store data about an object.●

An object, in this case, could be something tangible (such as a physical object) or intangible (such as an idea), but
the primary consideration is that a table must contain data about only one thing.

●

Columns contain the attributes of the object.●

Just as a table contains data about a single type of object, each column should contain only one item of data about
that object. If, for example, you're creating a table of addresses, there's no point in having a single column contain
the city, state, and postal code when it is just as easy to create three columns and record each attribute separately.

●

The simplest model for any database is a flat table. The trouble with flat files is that they waste storage space and are
problematic to maintain. Table 4.4 shows a flat table design that could be used to store information about students and
classes at a school

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (5 of 46) [9/22/1999 1:58:30 AM]

Table 4.4. A flat table.

STUDENT ADVISOR COURSE1 DESCRIPTION1 INSTRUCTOR1 COURSE2 DESCRIPTION2 INSTRUCTOR2

B.
Williams

H.
Andrews

VB1 Intro to VB C. MacDonald DAO1 Intro to DAO S. Garrett

L. Duncan P. Lowell DAO1 Intro to DAO S. Garrett SQL1 Jet SQL K. Olson

H. Johnson W. Smith API1 API Basics W. Smith OOP1 VB Objects T. Carter

F. Norris J. Carter VB1 Intro to VB C. MacDonald API1 API Basics W. Smith

Several problems arise with this flat table:

Repeating groups. The course ID, description, and instructor are repeated for each course. If a student wanted to
take a third course, you would need to modify the table design. Although you could add columns for Course3,
Course4, and so on, no matter how many columns you initially add, one day a student might need one more.
Additionally, in most cases all the extra columns would be a waste of storage. What is required is a means of
associating a student with any number of courses.

●

Inconsistent data. If after entering the data, you discover that the SQL1 course should be titled "Transact-SQL"
rather than "Jet SQL," you would need to examine two columns in each row to make all the necessary changes. You
should be able to update this by changing only a single entry.

●

Delete anomalies. If you want to remove S. Garrett's Intro to DAO course from the course list, you would need to
delete two students, two advisors, and one additional instructor to do it. The data for each of these objects (students,
advisors, instructors, and courses) should be independent of each other.

●

Insert anomalies. Imagine that the department head wants to add a new course titled "Advanced Client/Server
Programming" but has not yet created a schedule or even assigned an instructor. What do you enter in the other
columns to record this information? You need to be able to add rows for each of the objects independently of the
others.

●

The solution to these problems is a technique known in relational database parlance as normalization. Normalization is the
process of taking a wide table with lots of columns but few rows and redesigning it as several narrow tables with fewer
columns but more rows. A properly normalized design enables you to use storage space efficiently, eliminate redundant
data, reduce or eliminate inconsistent data, and ease the data maintenance burden.

Several forms of normalization will be discussed shortly, but one cardinal rule absolutely must be followed:

YOU MUST BE ABLE TO RECONSTRUCT THE ORIGINAL FLAT VIEW OF THE DATA.

If you violate this rule, you will have defeated the purpose of normalizing the design.

NORMALIZATION IS NOT A PANACEA

Don't be misled into thinking that all database design woes can be cured with proper normalization. In fact,
the opposite can be true. Taken to extremes, normalization can cause as many problems as it cures. Although
you might be able to cure every type of data anomaly that could possibly occur, you will send performance
on a downward spiral if your design requires more than two or three relational joins in a query to reconstruct
a flat view of your data.

Consider this scenario:

You are designing a customer database. It's a well-known fact that in the United States, a postal zip code
defines a specific city and state, and a nine-digit zip code defines a specific delivery point. You could, then,
store only a zip code in the customer table and eliminate the city and state columns that would typically be
required. However, every time the city and state needed to be retrieved, the database engine would have to
perform an additional join. This might or might not be acceptable in your situation.

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (6 of 46) [9/22/1999 1:58:30 AM]

Now take this scenario to an additional level of detail. It's also true that although millions of people live in the
United States, there are a limited number of first and last names and only 26 possible middle initials.
Theoretically, you could create a foreign key column in place of the normal last name column and do the
same for the first name. This level of normalization, however, steps into the realm of the ridiculous. It is
pointless complexity that adds no real benefit for data accuracy.

Forms of Normalization

Relational database theorists have divided normalization into several rules, called normal forms:

First normal form. No repeating groups.●

Second normal form. No nonkey attributes depend on a portion of the primary key.●

Third normal form. No attributes depend on other nonkey attributes.●

Additionally, for a database to be in second normal form, it must be in first normal form, and so on. Fourth and fifth
normal forms also exist, but these are rarely applied. In fact, it might be practical at times to violate even the first three
forms of normalization (see the sidebar "Normalization Is Not a Panacea").

First Normal Form

First normal form requires that a table does not contain repeating groups. A repeating group is a set of columns, such as
the CourseID, Description, and Instructor columns in Table 4.4. Repeating groups are removed by creating a
separate table from the columns that repeat.

NOTE If you have a set of columns with names that end in numbers, such as the CourseID1 and
CourseID2 columns in the example, it's a clear sign that you have encountered repeating groups. At this
point, you need to think about removing the columns to a separate table.

Table 4.5 is a revised version of the sample table, with the repeating groups for the course moved to their own table. (Note
that in this table and the following several tables, primary key columns have been put in bold type. The primary key
concept is explained a little later in the chapter.)

Table 4.5. First normal form.

STUDENTS STUDENTCOURSES

SCStID

StID SCCourseID

StName SCCourseDesc

StAdvisorName SCCourseInstrName

The repeating group has been eliminated by creating a second table. The student can now enroll in any number of courses
(including no courses). Although the repeating group is gone, we can still reconstruct the original table by joining the two
via the new SCStID column in the StudentCourses table. This column is a foreign key that matches the value of the
StID column in the Students table.

TABLE AND COLUMN NAMING CONVENTIONS

A naming convention has been applied to these table and column names:

Names are restricted to 30 characters and can contain only letters, numbers, and the underscore character. A letter
must be the first character. The 30-character limit provides compatibility with Microsoft SQL Server. The other
restrictions eliminate the need to use square brackets as delimiters around column names in SQL statements and VB
code.

●

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (7 of 46) [9/22/1999 1:58:30 AM]

Tables are named using the plural form of the objects they represent.●

Columns are named to represent the attribute they record.●

Each table is assigned a unique column name prefix. With the addition of a prefix to the column names, all columns
within the name space of a database have a unique name. This eliminates the need to fully qualify the column with
the table name in SQL statements.

●

Naming conventions have an annoying tendency to start religious wars among programmers, but nearly all
programmers will--perhaps grudgingly--admit their usefulness. You can adopt this convention or any other
convention that suits you or your company. What's important is not the particular convention you choose but
that you choose one and follow it faithfully.

Second Normal Form

Second normal form requires that no nonkey attributes depend on a portion of the primary key. To understand this rule,
you need to understand the concept of a primary key. A primary key is a column, or set of columns, in a table that
uniquely identifies a single record. The primary key for a table is most often an arbitrary value, such as an autoincrement
column (Jet refers to this as a counter), although the primary key can be any type of data.

NOTE Proceed with caution if you decide to use anything other than an arbitrary value as the primary key for
a table. Even seemingly reliable data such as a social security number can fail if used as a primary key. An
arbitrary value provided by the database engine is guaranteed to be unique and independent of the data in the
table.

Second normal form really applies only to tables in which the primary key is defined by two or more columns. The
essence is that if certain columns can be identified by only part of the primary key, they must be in their own table. The
StudentCourses table in Table 4.5 violates second normal form because the course information can be identified without
using the SCStID column. Table 4.6 shows the same data reorganized so that it meets the requirements for second normal
form.

Table 4.6. Second normal form.

STUDENTS STUDENTCOURSES COURSES

SCStID

StID SCCourseID CourseID

StName CourseDesc

StAdvisorName CourseInstrName

The partial dependence on the primary key has been eliminated by moving the course information to its own table. The
relationship between students and courses has at last revealed itself to be a many-to-many relationship (see the following
section,"Advanced Design Techniques"). Each student can take many courses, and each course can have many students.
The StudentCourses table now contains only the two foreign keys to Students and Courses.

Third Normal Form

Third normal form requires that no attributes depend on other nonkey attributes. This means that all the columns in the
table contain data about the entity that is defined by the primary key. The columns in the table must contain data about
only one thing. Like second normal form, this is used to remove columns that belong in their own table.

Table 4.7 shows a revised version of these tables, with a few columns added to help illustrate third normal form.

Table 4.7. Detail columns added.

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (8 of 46) [9/22/1999 1:58:30 AM]

STUDENTS StID STUDENTCOURSES
SCStID
SCCourseID

COURSES CourseID

StFirstName CourseDesc

StLastName CourseInstrName

StAddress CourseInstrPhone

StCity

StState

StZIP

StAdvisorName

StAdvisorPhone

To complete the normalization, we need to look for columns that are not dependent on the primary key of the table. In the
Students table, we have two data items about the student's advisor: the name and phone number. The balance of the data
pertains only to the student and so is appropriate in the Students table. The advisor information, however, is not dependent
on the student. If the student leaves the school, the advisor and the advisor's phone number remain the same. The same
logic applies to the instructor information in the Courses table. The data for the instructor is not dependent on the primary
key CourseID because the instructor is unaffected if the course is dropped from the curriculum (unless school officials
fire the instructor when they drop the course). Table 4.8 shows the revised schema in third normal form.

Table 4.8. Third normal form.

STUDENTS
StID

ADVISORS
AdvID

INSTRUCTORS
InstrID

STUDENTCOURSES
SCStID

COURSES
CourseID
SCCourseID

StAdvID AdvFirst InstrFirst CourseInstrID

StFirst AdvLast InstrLast CourseDesc

StLast AdvPhone InstrPhone

StAddress

StCity

StState

StZIP

The database is now in third normal form:

It is in first normal form because there are no repeating groups in any table.●

It is in second normal form because it is in first normal form and because there are no nonkey attributes that depend
on a portion of the primary key in any table.

●

It is in third normal form because it is in first and second normal form and because no attributes depend on other
nonkey attributes in any table.

●

Advanced Design Techniques

Look again at Table 4.8. You can see two types of relationships between tables:

One-to-many. A row in one table can have zero or more related rows in another table. The relationship between
advisors and students, for example, is a one-to-many relationship. Any advisor can have no students, one student, or
more than one student.

●

Many-to-many. Rows in one table can have many related rows in a second table, and the second table can have
many related rows in the first table. The relationship between students and courses is a many-to-many relationship.

●

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (9 of 46) [9/22/1999 1:58:30 AM]

Each student can be enrolled in zero or more courses, and each course can have zero or more students enrolled.

A third possible type of relationship exists between tables: a one-to-one relationship. Table 4.8 reveals a possible use of a
one-to-one relational design. Both the Advisors table and the Instructors table contain identical lists of columns. In a
real-world database, each of these tables would contain additional columns specific to the role of advisor or instructor and
would also contain additional information about the individual faculty member who has that role. If you examine Table
4.4, you will notice that faculty members can act in both roles--as advisors and instructors. Table 4.9 shows a more
detailed view of the advisor and instructor data.

Table 4.9. Advisors and instructors.

ADVISORS INSTRUCTORS

AdvID InstrID

AdvFirst InstrFirst

AdvLast InstrLast

AdvPhone InstrPhone

AdvGradeLevel InstrSpecialty

For this example, it is assumed that advisors handle students by grade level (undergraduate or graduate) and that
instructors have a specialty area that they teach. For example, in a computer science department, an instructor might
specialize in teaching classes related to a particular language.

Much of the data in these two tables is shared. You could duplicate the columns in both tables, or you could further
subdivide these tables, as shown in Table 4.10.

Table 4.10. The school faculty.

FACULTY ADVISORS INSTRUCTORS

FacID AdvFacID InstrFacID

FacFirst AdvGradeLevel InstrSpecialty

FacLast

FacPhone

The columns that are shared by both tables have been removed to the Faculty table. The Advisors and Instructors tables
now contain only a foreign key to the faculty table and the columns that relate specifically to the role of advisor or
instructor. The foreign key columns in this case also act as the primary key for these tables because there must be one (and
only one) row in the Faculty table for any advisor or instructor. This is a one-to-one relationship. The Advisors and
Instructors tables define extensions to the Faculty table for subsets of the data in that table.

Designing the tables so that they use the shared Faculty table allows for the reuse of the code required to manage that data
and common querying of all members of the school staff.

The design of the database for the mythical school is nearly complete, but one set of data is still missing. All but the
smallest of organizations generally employ a hierarchical management structure. If the school is a large university, it
probably has several campuses, each of which have several colleges. Each college is probably further divided into several
departments, and even those departments might be subdivided. The trouble with hierarchical organizations is that you
often can't know in advance how many levels will exist within the hierarchy. A solution to this problem does exist,
however. Table 4.11 expands the view of the faculty information.

Table 4.11. The school faculty.

FACULTY DEPARTMENTS

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (10 of 46) [9/22/1999 1:58:30 AM]

FacID DeptID

FacDeptID DeptName

FacFirst DeptParentDeptID

FacLast

FacPhone

A foreign key to the Departments table has been added to the Faculty table. This enables a faculty member to be assigned
to a department. The Departments table has three columns: DeptID, the primary key; DeptName, the department name;
and the key to establishing the hierarchical relationship, the DeptParentDeptID column. This column is a foreign key,
but the key points back into the Departments table. This relationship might be easier to understand if you look at some
sample data, as shown in Table 4.12.

Table 4.12. The Departments table.

DEPTID DEPTNAME DEPTPARENTDEPTID

1 Minnesota State University Null

2 Institute of Technology 1

3 College of Liberal Arts 1

4 College of Medicine 1

5 Department of Internal Medicine 4

6 Oncology Department 5

Looking at the sample data, you can see that the College of Medicine is directly under the university, the Department of
Internal Medicine is under the College of Medicine, and the Oncology Department is under the Department of Internal
Medicine. This type of structure can be reassembled as a flat table using a self-join. In a self-join, a table is included twice
in the same query.

NOTE The TreeView control is an excellent choice as a tool for displaying hierarchical data.

Creating Tables and Columns with Visual Basic

A well-designed database schema is critical, but that's only half the work of creating a database. You still need to create
the actual database objects. You can use two methods to create database objects in a Jet database:

SQL statements. You can use SQL CREATE TABLE and ALTER TABLE statements to create tables. Using a SQL
statement is fast and easy, but it limits the control you have over the database objects. Many of the properties
available for tables and columns cannot be set using SQL alone. You can also use the SQL DROP statement to
delete tables. Chapter 3, "Creating Queries with SQL," provides detailed instructions for using SQL statements to
create database objects.

●

Data Access Objects. The TableDef object and TableDefs collection are used to create tables, and the Field
object and Fields collection are used to create columns. In this How-To, you use DAO code to create database
objects. Using the Delete method of the TableDefs collection is also demonstrated.

●

Creating a table with DAO code is a three-step process:●

1. Create the TableDef object by using the CreateTableDef method.

2. Create the Field objects by using the CreateField method, and add them to the TableDef object using
the Append method.

3. Add the TableDef object to the collection by using the Append method.

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (11 of 46) [9/22/1999 1:58:30 AM]

Steps

Open and run project HT402.vbp. A sample database based on the tables shown in Table 4.8 and Table 4.10 has been
created and saved as HT402.mdb. You can open the sample database and inspect it, or you can create a new database by
using the File | New menu command. First, create the Students, Courses, and StudentCourses tables (as shown in Table
4.8) and then create the Faculty, Advisors, and Instructors tables (as shown in Table 4.10). To create the tables, select
Table | Add. Figure 4.2 shows the Create TableDef form with the Students table in progress.

Figure 4.2. Creating the Students table.

NOTE This example and the two examples that follow in How-To 4.3 and How-To 4.4 use the Microsoft
Windows Common Dialog 6.0, the Microsoft Windows Common Controls 6.0, and the Microsoft DAO 3.51
Object Library components.

1. Create a new project called HT402.vbp. Add BMain.bas to the project. This standard module contains procedures
to open an existing database and create a new database. These procedures are based in large part on the example
presented in How-To 4.1.

2. Add frmMain.frm to the project. This is based on a form created by the VB Application Wizard. The
wizard-generated code manages the split view for the tree and list panes of the main form. For simplicity, a
considerable amount of the wizard-generated code was removed. The right pane supports only the report view, and
all the toolbar buttons and menu controls were removed, along with their associated event procedures. Menu
controls and associated code were then added for the File and Table menus. Table 4.13 shows the menu controls
that were added for the example. In the declarations section, an object variable is declared for the CDBExplorer
class:

Private mcdbExp As CDBExplorer

Table 4.13. Menu controls for frmMain.

NAME CAPTION

mnuFile &File

mnuFileOpen &Open

mnuFileNew &New

mnuFileBar1 -

mnuFileClose &Close

NOTE Because of space limitations, all the wizard-generated code that manages the split Explorer view for
the left and right panes of the main form has not been included here.

3. The following code controls the File menu for the main form. The mnuFileOpen_Click and
mnuFileNew_Click event procedures call routines in BMain.bas to open or create a database and then create
and initialize the mcdbExp object variable. When initialized using the ExploreDatabase method, the
CDBExplorer class accepts a database name, a reference to a TreeView control, and a reference to a ListView
control as parameters. Code within the class then handles most of the management of the tree and list panes of the
form.

Private Sub mnuFileOpen_Click()
` open a database
On Error GoTo ProcError
 Dim strDBName As String
 Screen.MousePointer = vbHourglass
 strDBName = GetOpenDBName(dlgCommonDialog)

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (12 of 46) [9/22/1999 1:58:30 AM]

javascript:popUp('04fig02.gif')

 If Len(strDBName) Then
 Set mcdbExp = Nothing
 Set mcdbExp = New CDBExplorer
 mcdbExp.ExploreDatabase strDBName, tvTreeView, lvListView
 End If
 ` no node is selected by default, so we
 ` select the root node here
 SelectRootNode
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox Err.Description
 Resume ProcExit
End Sub
Private Sub mnuFileNew_Click()
` create a new database
On Error GoTo ProcError
 Dim strDBName As String
 Screen.MousePointer = vbHourglass
 ` get the filename
 strDBName = GetNewDBName(dlgCommonDialog)
 ` kill it if it exists
 ` note that GetDBName prompts to confirm overwrite
 On Error Resume Next
 Kill strDBName
 ` create the database
 CreateDB strDBName
 ` explore it
 Set mcdbExp = New CDBExplorer
 mcdbExp.ExploreDatabase strDBName, tvTreeView, lvListView
 SelectRootNode
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox Err.Description
 Resume ProcExit
End Sub
Private Sub mnuFileClose_Click()
 `unload the form
 Unload Me
End Sub

4. The following code passes the Expand and NodeClick events for the tree pane on to the CDBExplorer
class:

Private Sub tvTreeView_Expand(ByVal Node As ComctlLib.Node)
` Expand the node
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 ` the class does the work
 mcdbExp.ExpandNode Node
ProcExit:

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (13 of 46) [9/22/1999 1:58:30 AM]

 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub
Private Sub tvTreeView_NodeClick(ByVal Node As ComctlLib.Node)
` Display the properties of the selected node in the listview
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 ` the class does the work
 mcdbExp.ListProperties Node
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

5. Add the CDBExplorer.cls class module to the project. Code in this class module does most of the work of
mapping database objects to nodes in the tree pane of the form. This was developed as a class module to provide a
degree of isolation between the database engine and the user interface in the form. The class presents a hierarchical
view of a database, including tables, fields, indexes, queries, and relationships in a tree.

The class works by examining the Expand and NodeClick events of a TreeView control. When a node in the
tree is expanded, the class populates that branch of the tree (empty dummy nodes are initially written to unexpanded
nodes so that the node will be expandable on the form). After a node is selected by the user, the class determines
what database object is associated with the node by examining the position of the node in the tree; then the class
displays the properties of the associated object in the list pane. The property list works by iterating the
Properties collection common to all DAO objects (except collections) and adding them as items in the
ListView control. In this How-To, mnuTableAdd and mnuTableDelete call the AddTable and
DeleteTable methods of the class. These methods add or remove a TableDef object and refresh the
TableDefs branch of the tree on frmMain.

Public Sub AddTable()
 Load frmCreateTableDef
 Set frmCreateTableDef.Database = mdb
 frmCreateTableDef.Show vbModal
 ` refresh the tabledefs node
 ExpandNode mtvw.Nodes("TableDefs")
End Sub
Public Sub DeleteTable(strTableDefName As String)
 ` delete the TableDef
 mdb.TableDefs.Delete strTableDefName
 ` refresh the tree
 ExpandNode mtvw.Nodes("TableDefs")
End Sub

NOTE Because of the length of the code in the CDBExplorer class, it was not possible to present all of it
here. Source code comments in the class and the CDBExplorer.html file included in the project as a related
file on the CD-ROM provide additional details about the class.

6. Add a new form to the project and save it as frmCreateTableDef.frm. Add the objects and properties shown in
Table 4.14. Except for lblTableDefName, txtTableDefName, and the cmd command button array, all

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (14 of 46) [9/22/1999 1:58:31 AM]

controls should be drawn within the fraFields frame.

Table 4.14. frmCreateTableDef objects and properties.

OBJECT PROPERTY VALUE

Form Name frmCreateTableDef

Caption Create TableDef

BorderStyle 3-Fixed Dialog

Label Name lblTableDefName

Caption &Table Name

TextBox Name txtTableDefName

Frame Name fraFields

Caption Fields

Label Name lblFieldName

Caption &Name

TextBox Name txtFieldName

Label Name lblFieldType

Caption &Data Type

ComboBox Name cboFieldDataType

Style 2-Dropdown List

Label Name lblFieldSize

Caption Field &Size

TextBox Name txtFieldSize

CommandButton Name cmdAdd

Caption &Add

ListView Name lvwFields

CommandButton Name cmd

Index 0

Caption OK

Default True

CommandButton Name cmd

Index 1

Caption Cancel

Cancel True

7. Add the following code to the declarations section. The database object is used to create the TableDef object.
The two constants are indexes into the cmd CommandButton control array.

Option Explicit
` database object
Private mdb As Database
` command button array index constants
Private Const cmdOK = 0
Private Const cmdCancel = 1

8. Add the Form_Load event procedure. This procedure populates the field type list, sets up the list view headers,

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (15 of 46) [9/22/1999 1:58:31 AM]

and disables the frame and OK button. The frame is enabled after a table name is provided. OK is enabled when a
table name is provided and at least one field has been added to the field list.

Private Sub Form_Load()
` set up form
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 ` set up fields controls
 cmdAdd.Enabled = False
 ` fill the data types combo
 With cboFieldDataType
 ` Note: not all field types are
 ` included here
 .Clear
 .AddItem "Boolean"
 .AddItem "Counter"
 .AddItem "Date/Time"
 .AddItem "Long Integer"
 .AddItem "Text"
 .AddItem "Memo"
 End With
 cboFieldDataType.Text = "Text"
 ` set up list view
 lvwFields.View = lvwReport
 With lvwFields.ColumnHeaders
 .Add , "Name", "Name"
 .Item("Name").Width = 2000
 .Add , "Type", "Data Type"
 .Add , "Size", "Size"
 End With
 ` disable the entire fields frame
 fraFields.Enabled = False
 ` disable OK button
 cmd(cmdOK).Enabled = False
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

9. Add the cboFieldDataType_Click procedure. This enables or disables the field size text box, depending
on the type of field selected.

Private Sub cboFieldDataType_Click()
 If cboFieldDataType.Text = "Text" Then
 lblFieldSize.Enabled = True
 txtFieldSize.Enabled = True
 Else
 txtFieldSize.Text = ""
 lblFieldSize.Enabled = False
 txtFieldSize.Enabled = False
 End If
End Sub

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (16 of 46) [9/22/1999 1:58:31 AM]

10. Add the cmdAdd_Click event procedure. This procedure uses the data in the FieldName, DataType, and Size
controls to add the field to the field list in the ListView control. It then enables the OK button and returns focus to
the FieldName control.

Private Sub cmdAdd_Click()
` add to the listview
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 Dim li As ListItem
 Dim strFieldName As String
 Dim strFieldDataType As String
 strFieldName = txtFieldName.Text
 strFieldDataType = cboFieldDataType.Text
 Set li = lvwFields.ListItems.Add _
 (, strFieldName, strFieldName)
 With li
 .SubItems(1) = strFieldDataType
 ` only add size if applicable
 If strFieldDataType = "Text" Then
 .SubItems(2) = txtFieldSize.Text
 Else
 .SubItems(2) = "N/A"
 End If
 End With
 ` prep for new entry
 txtFieldName.Text = ""
 txtFieldName.SetFocus
 ` enable the OK button
 cmd(cmdOK).Enabled = True
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

11. Add the Change event procedures for the txtTableDefName and txtFieldName controls. These enable
or disable other controls on the form based on the current values.

Private Sub txtTableDefName_Change()
` Enable/disable controls
 cmd(cmdOK).Enabled = False
 fraFields.Enabled = False
 If Len(txtTableDefName) > 0 Then
 fraFields.Enabled = True
 If lvwFields.ListItems.Count > 0 Then
 cmd(cmdOK).Enabled = True
 End If
 End If
End Sub
Private Sub txtFieldName_Change()
 If Len(txtFieldName.Text) > 0 Then
 cmdAdd.Enabled = True
 Else

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (17 of 46) [9/22/1999 1:58:31 AM]

 cmdAdd.Enabled = False
 End If
End Sub

12. Add the cmd_Click event procedure. This procedure adds the table if OK is chosen or unloads the form if
Cancel is chosen.

Private Sub cmd_Click(Index As Integer)
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 Select Case Index
 Case cmdOK
 ` add the table
 AddTable
 Case cmdCancel
 ` just unload the form
 End Select
 Unload Me
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

13. Create the AddTable procedure. AddTable creates the TableDef object, then extracts the field information
from the ListView to create and add each Field object. After the fields have been added to the table, the table is
added to the database using the Append method of the TableDefs collection.

Private Sub AddTable()
 Dim li As ListItem
 Dim td As TableDef
 Dim fld As Field
 Dim lngType As Long
 Dim strFieldName As String
 Dim strFieldDataType As String
 Set td = mdb.CreateTableDef(txtTableDefName.Text)
 ` add the fields
 For Each li In lvwFields.ListItems
 ` get the name
 strFieldName = li.Text
 ` get the data type
 strFieldDataType = li.SubItems(1)
 Select Case strFieldDataType
 Case "Boolean"
 lngType = dbBoolean
 Case "Counter"
 lngType = dbLong
 Case "Date/Time"
 lngType = dbDate
 Case "Long Integer"
 lngType = dbLong
 Case "Text"
 lngType = dbText
 Case "Memo"

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (18 of 46) [9/22/1999 1:58:31 AM]

 lngType = dbMemo
 End Select
 ` check field type
 If lngType = dbText Then
 ` text, create with size
 Set fld = td.CreateField _
 (strFieldName, dbText, CInt(li.SubItems(2)))
 Else
 ` other, create without size
 Set fld = td.CreateField(strFieldName, lngType)
 If strFieldDataType = "Counter" Then
 fld.Attributes = fld.Attributes Or dbAutoIncrField
 End If
 End If
 td.Fields.Append fld
 Set fld = Nothing
 Next ` ListItem
 ` append the tabledef
 mdb.TableDefs.Append td
End Sub

14. Add the Database property. This is used by the AddTable procedure and must be set before the form is
shown.

Public Property Set Database(db As DAO.Database)
 Set mdb = db
End Property

How It Works

The AddTable procedure in frmCreateTableDef is the critical procedure for this How-To. This routine creates the
table using the name provided on the form, then iterates the items in the list to create and append the fields. When all the
fields have been added, the table is appended to the database. The balance of the code on the form serves only to manage
and coordinate the user interface.

Comments

Much of the code provided on the CD-ROM supports the main Explorer form and class module, but the code in
frmCreateTableDef does all the work of creating a table and its fields. It is helpful, but not necessary, to fully
understand the code in the class module and the wizard-generated code in the main form.

The sample application is not limited to creating the sample database described in this How-To. You can inspect or
modify any Jet database using the project.

4.3 How do I...

Define the primary key and other indexes?

Problem

I know that a primary key is an important component in a proper relational database design and that indexes can
significantly improve database performance. How do I choose fields to index and create the indexes for those fields?

Technique

Database indexes can be broadly grouped into two categories:

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (19 of 46) [9/22/1999 1:58:31 AM]

Constraints. The primary key and other unique indexes place constraints on the data that can be entered into the
columns bound to the indexes.

●

Performance indexes. Some, perhaps most, indexes are added strictly for performance reasons. An index speeds
access to data by enabling the database engine to more quickly retrieve rows from the tables. (Of course, the
additional performance gain for the query operation occurs at the expense of modifying the index during the insert,
update, and delete operations.)

●

Many developers consider indexes--particularly indexes that act as constraints--to be part of the database schema or
overall table design. In reality, however, indexes serve only to enforce the constraints that must be applied to the data. The
constraints, or rules, form the database design. Indexes serve as a tool to implement those constraints. It is possible
(although not recommended) to create tables that do not have primary keys or unique indexes and still have a fully
functional relational design, but it is much more efficient to have the database engine enforce rules at that level.

Establishing indexes on tables is a two-step process. First you must determine what columns need to be indexed and the
type of indexes the columns require, and then you must create the indexes using the properties and methods provided by
the database engine.

Constraints

In How-To 4.2, you learned about primary keys and relationships between tables, including one-to-many, many-to-many,
and one-to-one relationships. Although you can create a table without a primary key, this technique is not recommended.
In most situations, it is also recommended that an arbitrary value, such as a number provided by the database engine, be
used as the primary key. For those tables that act as the junction table of a many-to-many relationship between tables, the
combination of the two foreign key columns typically acts as the primary key. In a one-to-one relationship, the foreign key
column alone is the primary key. Only one primary key can be defined for a table, although you can define additional
unique indexes.

A primary key imposes some constraints on the data in the columns included in the index:

Each entry in the index must be unique. For single-column indexes, every value in the column must be unique. In
multiple-column indexes, each combination of values must be unique.

●

Every column in the index must contain a value. You cannot have nulls in columns included in the primary key.●

Indexing for Performance

In addition to imposing constraints on your data, indexes can be added strictly to improve performance. The database
engine can optimize SELECT queries if it has useful indexes available. Determining what constitutes a useful index can be
more of an art than a science, but the following guidelines are appropriate in most situations:

Index foreign key columns. These are almost always excellent candidates for indexes.●

Index columns that are frequently used for restrictive criteria in the WHERE clause of SELECT queries.●

Index columns that are used for sorting in the ORDER BY clause of SELECT queries.●

If you frequently do multiple field sorts, create a multiple field index ordered using the same order used in the sort.
Sorts are normally ascending but can be descending.

●

To obtain the best performance in your own applications, you should experiment with various indexing strategies and use
profiling techniques to determine which indexes provide the greatest advantage.

WHEN NOT TO INDEX

Don't think that you can index every column to gain optimum performance. Although indexes accelerate data
retrieval, they slow inserts, updates, and deletes because the database engine not only has to update the tables
but also must update the indexes.

Additionally, the database engine might not find all indexes useful, especially on small tables. If you have
tables with very few rows (such as lookup tables of coded values, tables of United States states, and the like),

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (20 of 46) [9/22/1999 1:58:31 AM]

it is likely that the database engine can perform a table scan (read every row in the table) faster than it can
find a row using an index.

Finally, some situations can force a table scan, in which case all indexes are ignored.

Defining Indexes

Indexes are created by using the CreateIndex method of the TableDef object in a three-step process:

1. Call CreateIndex to create an Index object.

2. Create the fields in the index by using the CreateField method, and then use the Append method to add
them to the Fields collection of the index.

3. Use the Append method of the Indexes collection to add the index to the TableDef object.

NOTE If you think this process looks remarkably similar to that of creating a table using DAO code, you're
right--the processes are nearly identical.

Steps

Open and run HT403.vbp. You can create the indexes shown in Table 4.15 by choosing the Index | Add command and
using the form shown in Figure 4.3.

Figure 4.3. The Create Index form.

NOTE The database file HT403.mdb contains the tables without the indexes. Also included is HT403A.mdb.
This is the same file with all the indexes already created for you. You can examine this file with the Explorer
form if you don't want to create all the indexes shown in Table 4.15.

Table 4.15. Indexes in HT403.mdb.

TABLE INDEX PROPERTIES FIELDS

Advisors apkAdvisors Primary AdvFacID

Courses apkCourses Primary CourseID

idxCourseIstrID

CourseInstrID

Faculty apkFaculty Primary FacID

idxFacLast FacLast

Instructors apkInstructors Primary InstrFacID

StudentCourses apkStudentCourses Primary SCStID

SCCourseID

idxSCStID SCStID

idxSCCourseID SCCourseID

Students apkStudents Primary StID

idxStAdvID StAdvID

idxStLast StLast

idxStState StState

The indexes shown in Table 4.15 are recommended based on the guidelines listed in this How-To. Each table has a

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (21 of 46) [9/22/1999 1:58:31 AM]

javascript:popUp('04fig03.gif')

primary key, all foreign key columns are indexed, and several additional columns are indexed as likely candidates for use
as query selection or sort columns.

INDEX NAMES

The following naming convention was used to determine the index names shown in Table 4.15:

Primary keys are named using the prefix apk, followed by the table name. This convention provides forward
compatibility if the database is later upsized to a database server such as SQL Server or Oracle. With remote server
tables, the Jet engine assumes that the first index in an alphabetical list is the primary key. The apk prefix places the
primary key first in the list.

●

Unique nonprimary indexes use the prefix udx, followed by the name of the indexed column or columns. (No
unique, nonprimary indexes are present in Table 4.15.)

●

Other indexes use the prefix idx, followed by the column name or names.●

This project is an extended version of the project developed in How-To 4.2. Code was added to the main form and class
module to launch frmCreateIndex, which handles the balance of the code to create indexes.

1. Create a new Standard EXE project, and save it as HT403.vbp. Add BMain.bas to the project. This module
contains code used to open or create a new database and is based largely on the code developed in How-To 4.1.

2. Add frmMain to the project. This form is based on an Explorer-style form generated by the VB Application
Wizard. The wizard form was modified for this project, as described in How-To 4.2. In addition to the
modifications added for How-To 4.2, the menu controls in Table 4.16 were added to create the Index menu.

Table 4.16. The Index menu controls.

NAME CAPTION

mnuIndex &Index

mnuIndexAdd &Add

mnuIndexDelete &Delete

3. Three event procedures support the Index menu. The top-level menu mnuIndex_Click event enables or
disables the delete command based on the currently selected object. The add command calls on the services of the
CDBExplorer class via the mcdbExp module-level object variable to create a new index, and the delete
command uses the same object to delete an index.

Private Sub mnuIndex_Click()
On Error GoTo ProcError
 If mcdbExp Is Nothing Then
 ` no database open
 mnuIndexAdd.Enabled = False
 mnuIndexDelete.Enabled = False
 Else
 ` enable add
 mnuIndexAdd.Enabled = True
 ` only enable delete if an Index is selected
 If mcdbExp.NodeType(tvTreeView.SelectedItem) = _
 "Index" Then
 mnuIndexDelete.Enabled = True
 Else
 mnuIndexDelete.Enabled = False
 End If
 End If
ProcExit:

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (22 of 46) [9/22/1999 1:58:31 AM]

 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub
Private Sub mnuIndexAdd_Click()
On Error GoTo ProcError
 mcdbExp.AddIndex
ProcExit:
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub
Private Sub mnuIndexDelete_Click()
` Note: mnuIndex_Click already determined
` that an index is selected in the tree
On Error GoTo ProcError
 Dim strTableDefName As String
 Dim strIndexName As String
 ` get the index name
 strIndexName = tvTreeView.SelectedItem.Text
 ` get its parent table name
 strTableDefName = tvTreeView.SelectedItem.Parent.Parent.Text
 mcdbExp.DeleteIndex strTableDefName, strIndexName
ProcExit:
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

4. Add the CDBExplorer.cls class module to the project. This is the same class as that developed in How-To 4.2,
with methods added to support creating and deleting indexes. The class manages the population of the items in the
tree and list views of the Explorer-style main form. Additional information about the class module can be found in
CDBExplorer.html, which is included as a related file in the project on the CD. The two procedures added to this
class to support the creation and deletion of indexes are the AddIndex and DeleteIndex methods. AddIndex
uses the frmCreateIndex form to create the index, but it first attempts to determine whether the current item in the
tree is located within the branch of a table. If so, it passes the table name to the index creation form, saving the user
a step in data entry. The DeleteIndex method accepts a table name and an index name as parameters and
constructs a call to the Delete method of the Indexes collection of the appropriate TableDef object. Both
procedures also refresh the tree.

Public Sub AddIndex()
 Dim obj As Object
 Set obj = GetDAOObjectFromNode(mtvw.SelectedItem)
 Select Case TypeName(obj)
 Case "TableDef"
 ` initialize the form with a table name
 frmCreateIndex.Initialize mdb, obj.Name
 Case "Indexes"
 frmCreateIndex.Initialize _
 mdb, mtvw.SelectedItem.Parent.Text
 Case "Index"

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (23 of 46) [9/22/1999 1:58:31 AM]

 frmCreateIndex.Initialize mdb, _
 mtvw.SelectedItem.Parent.Parent.Text
 Case "Field"
 ` if it's a table field, get the table name
 ` the great-grandparent node tells the type
 If mtvw.SelectedItem.Parent.Parent.Parent.Text _
 = "TableDefs" Then
 ` get the name from the grandparent node
 frmCreateIndex.Initialize _
 mdb, _
 mtvw.SelectedItem.Parent.Parent.Text
 Else
 frmCreateIndex.Initialize mdb
 End If
 Case Else
 frmCreateIndex.Initialize mdb
 End Select
 frmCreateIndex.Show vbModal
 ` check cancel flag
 If Not frmCreateIndex.Cancelled Then
 ` expand the tabledef node
 ExpandNode _
 mtvw.Nodes(frmCreateIndex.TableDefName)
 ` now expand the index node for the tabledef
 ExpandNode _
 mtvw.Nodes(frmCreateIndex.TableDefName & "Indexes")
 End If
End Sub
Public Sub DeleteIndex(_
 strTableDefName As String, _
 strIndexName As String)
 ` delete the index from the indexes collection of the
 ` tabledef provided
 mdb.TableDefs(strTableDefName).Indexes.Delete strIndexName
 ` refresh the tree
 ExpandNode mtvw.Nodes(strTableDefName & "Indexes")
End Sub

5. Add a new form to the project, create the objects and properties shown in Table 4.17, and save the form as
frmCreateIndex.frm.

Table 4.17. Objects and properties of frmCreateIndex.

OBJECT PROPERTY VALUE

Form Name frmCreateIndex

Caption Create Index

BorderStyle 3-Fixed Dialog

Label Name lblTableDefName

Caption &Table Name

ComboBox Name cboTableDefName

Style 2-Dropdown List

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (24 of 46) [9/22/1999 1:58:31 AM]

Label Name lblIndexName

Caption &Index Name

TextBox Name txtIndexName

Frame Name fraIndex

Caption Index

Draw the following controls within the fraIndex frame:

Label Name lblFieldName

Caption &Field Name

ComboBox Name cboFieldName

Style 2-Dropdown List

CommandButton Name cmdAddField

Caption &Add

Label Name lblFields

Caption Field &List

ListBox Name lstFields

CheckBox Name chkPrimary

Caption &Primary

CheckBox Name chkUnique

Caption &Unique

Draw the following two command buttons below the fraIndex frame at the
lower-right corner of the form:

CommandButton Name cmd

Index 0

Caption OK

Default True

CommandButton Name cmd

Index 1

Caption Cancel

Cancel True

NOTE Figure 4.3, which appears at the beginning of this section, shows the visual layout of the completed
form.

6. Add the following code to the declarations section of the form. Several module-level variables are created. The
database object mdb is used to create the index. The mblnCancel flag is used to mark that the user cancelled the
addition of the index. Several flag variables are used to control when the OK button should be enabled or
disabled--each of the flags must be true before OK can be enabled and the index created. The
mstrTableDefName variable stores the name of the table in which the index was created so that when control
returns to the class module and the main form, the proper collection can be refreshed. Finally, the two constants are
the indexes into the cmd CommandButton control array.

Option Explicit
` database object
Private mdb As Database
` cancel flag

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (25 of 46) [9/22/1999 1:58:31 AM]

Private mblnCancel As Boolean
` flags for controlling the OK button
Private mblnHasTableDefName As Boolean
Private mblnHasIndexName As Boolean
Private mblnHasFields As Boolean
` tabledefname for property get
Private mstrTableDefName As String
` command button array constants
Private Const cmdOK = 0
Private Const cmdCancel = 1

7. Add the Initialize method. This procedure is used when the form is loaded, but before it is shown, to set up
module-level variables and populate controls on the form.

Public Sub Initialize(_
 db As DAO.Database, _
 Optional strTableDefName As String = "")
 ` initialize the form
 ` NOTE: must be called before the form is shown
 Set mdb = db
 ` populate the table combo
 GetTables
 ` set an initial table name if provided
 If strTableDefName <> "" Then
 cboTableDefName.Text = strTableDefName
 ` fill the field list
 GetFields (strTableDefName)
 End If
End Sub

8. Add the public TableDefName and Cancelled properties. These are used after the form is dismissed and
control returns to the main form and class to determine which, if any, branch of the tree should be refreshed.

Public Property Get TableDefName() As String
 TableDefName = mstrTableDefName
End Property
Public Property Get Cancelled() As Boolean
 Cancelled = mblnCancel
End Property

9. The EnableOK and EnableIndex procedures check several flags and enable or disable the OK button and the
index frame, based on the current status of the form.

Private Sub EnableOK()
 If mblnHasTableDefName _
 And mblnHasIndexName And mblnHasFields Then
 cmd(cmdOK).Enabled = True
 Else
 cmd(cmdOK).Enabled = False
 End If
End Sub
Private Sub EnableIndex()
 If mblnHasTableDefName And mblnHasIndexName Then
 fraIndex.Enabled = True
 Else
 fraIndex.Enabled = False
 End If

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (26 of 46) [9/22/1999 1:58:31 AM]

End Sub

10. Add the GetTables and GetFields procedures. These routines populate the table and field list combo
boxes.

Private Sub GetTables()
` fill the table list combo
 Dim td As TableDef
 With cboTableDefName
 ` clear what (if anything) is there
 .Clear
 For Each td In mdb.TableDefs
 ` check for system table
 If (td.Attributes And dbSystemObject) = 0 Then
 ` not a system table, add it
 .AddItem td.Name
 End If
 Next ` TableDef
 End With
End Sub
Private Sub GetFields(strTableDefName As String)
` fill the field list combo
 Dim fld As Field
 With cboFieldName
 ` clear it
 .Clear
 For Each fld In mdb.TableDefs(strTableDefName).Fields
 ` add it
 .AddItem fld.Name
 Next ` Field
 End With
End Sub

11. Add the Form_Load event procedure. This routine performs some initial setup of the controls on the form.

Private Sub Form_Load()
` set up controls
 ` disabled until a name is set and
 ` at list one field is in the field list
 cmd(cmdOK).Enabled = False
 ` disabled until a field is chosen
 cmdAddField.Enabled = False
 ` disable the entire fraIndex frame
 ` until a table and index name are chosen
 fraIndex.Enabled = False
End Sub

12. The Click and Change event procedures for the table name, IndexName, FieldName, and CheckBox controls
set module-level variables and enable or disable the index frame and OK button depending on the status of the data.
Before the index frame is enabled, a table name and an index name must be provided. To create an index, at least
one field must have been added.

Private Sub cboTableDefName_Click ()
` set up controls and status
 ` copy it to the module-level variable
 ` for later property get
 mstrTableDefName = cboTableDefName.Text

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (27 of 46) [9/22/1999 1:58:31 AM]

 ` text it and set flags
 If mstrTableDefName <> "" Then
 ` enable the Index frame
 mblnHasTableDefName = True
 Else
 mblnHasTableDefName = False
 End If
 EnableIndex
 EnableOK
End Sub
Private Sub txtIndexName_Change()
` set control and status flags
 If txtIndexName.Text <> "" Then
 mblnHasIndexName = True
 Else
 mblnHasIndexName = False
 End If
 EnableIndex
 EnableOK
End Sub
Private Sub cboFieldName_Click()
` enable/disable add field button
 If cboFieldName.Text <> "" Then
 ` enable the add field button
 cmdAddField.Enabled = True
 Else
 cmdAddField.Enabled = False
 End If
End Sub
Private Sub chkPrimary_Click()
` if it's primary, it must be unique
` set control status to indicate the
` user doesn't need to deal with the
` unique check box if primary is set
 If chkPrimary Then
 chkUnique = 1
 chkUnique.Enabled = False
 Else
 chkUnique.Enabled = True
 End If
End Sub

13. Create the Click event procedure for the cmdAddField button. This code adds the current field in the
combo box to the list, removes it from the combo box, and returns the focus to the combo box.

Private Sub cmdAddField_Click()
` add to list and remove from combo
 lstFields.AddItem cboFieldName.Text
 cboFieldName.RemoveItem cboFieldName.ListIndex
 ` set status flag
 mblnHasFields = True
 EnableOK
 ` return to field name combo
 cboFieldName.SetFocus

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (28 of 46) [9/22/1999 1:58:31 AM]

End Sub

14. Add the cmd_Click event procedure. This procedure creates the index if the OK button is clicked, or it
unloads the form (setting the Cancelled flag) if the Cancel button is clicked.

Private Sub cmd_Click(Index As Integer)
` add the index or unload the form
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 Select Case Index
 Case cmdOK
 ` add the index
 CreateIndex
 ` set cancel flag
 mblnCancel = False
 Unload Me
 Case cmdCancel
 ` set cancel flag and unload
 mblnCancel = True
 Unload Me
 End Select
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

15. Add the CreateIndex procedure. This code creates the index object by reading the data entered on the form.
The index is created by first calling the CreateIndex method, then looping through the fields in the list box,
calling CreateField and Append for each. Finally, the Append method adds the index to the table.

Private Sub CreateIndex()
` create the index
` called only from cmd(cmdOK) click
 Dim td As TableDef
 Dim idx As Index
 Dim fld As Field
 Dim intListIndex As Integer
 ` get a reference to the tabledef and
 ` create the index
 Set td = mdb.TableDefs(cboTableDefName.Text)
 Set idx = td.CreateIndex(txtIndexName.Text)
 ` add the fields
 For intListIndex = 0 To lstFields.ListCount - 1
 lstFields.ListIndex = intListIndex
 Set fld = idx.CreateField(lstFields.Text)
 idx.Fields.Append fld
 Set fld = Nothing
 Next ` item in list
 ` set primary or unique flags
 If chkPrimary = 1 Then
 idx.Primary = True
 ElseIf chkUnique = 1 Then
 idx.Unique = True

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (29 of 46) [9/22/1999 1:58:31 AM]

 End If
 ` append the index
 td.Indexes.Append idx
End Sub

HOW IT WORKS

Although additional code was added to the main Explorer form to coordinate the user interface, the CreateIndex
procedure in frmCreateIndex does all the work of creating the index objects in this example. The procedure extracts
the data provided on the form to create an index, adds the fields from the list box, and then appends the index to the
Indexes collection of the selected table.

The only information that must be provided to the form is supplied by the Initialize procedure as the db parameter.
The optional strTableDefName parameter is a convenience added for the benefit of the users (so that they don't need
to select the table name again if they have already chosen one on the Explorer form). Because the interaction between the
forms takes place through a public interface, this form could be plugged into any database management application.

Comments

If you worked through this How-To and How-To 4.2, you probably discovered that the procedures for creating an index
using DAO code are nearly identical to those for creating a table. As you will see in the next How-To, the procedure for
creating a relation is also very similar.

ANOTHER WAY TO CREATE AN INDEX

You can use SQL statements rather than DAO code to create indexes for your tables. Constraints can be
created using the CREATE TABLE statement or the ALTER TABLE...ADD CONSTRAINT statement.
Indexes can also be created using the CREATE INDEX statement. SQL statements are simple to use and
require only a single line of code to execute, but they do not expose all the available properties of an index.
Chapter 2, "Accessing a Database with Data Access Objects," provides the details of using SQL statements to
create and manage database objects.

4.How do I...

Define relations between tables?

Problem

I know that if I define relations for my database, the Jet engine will enforce referential integrity. How do I define relations
with Visual Basic?

Technique

Like indexes, defined relationships are a tool you can use to enforce rules and improve application performance. How-To
4.2 described the different types of relationships between tables: one-to-one, one-to-many, and many-to-many. Building
the database schema with related tables is only the first step. You also need to enforce those relationships. The best way to
do that is to let the database engine do it for you by creating Relation objects.

Defining a Relation enforces three rules to maintain referential integrity between tables:

No row on the many side of a relationship may reference a primary key value on the one side that does not exist.●

No row on the one side of a relationship can be deleted if related rows exist on the many side.●

The primary key values on the one side cannot be changed if related rows exist on the many side.●

Creating the Relation

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (30 of 46) [9/22/1999 1:58:32 AM]

Creating a Relation object with DAO code is similar to creating a table or index. The creation is carried out in four
steps:

1. Use the CreateRelation method to obtain a reference to a Relation object.

2. Assign the Table and ForeignTable properties.

3. Create and add each of the Field objects to the Fields collection of the Relation object. For each field,
you must set the Name and ForeignName properties.

4. Add the Relation to the Relations collection of the database by using the Append method.

In addition to creating the relationship and adding the fields, you can specify some additional properties that affect how
the database engine treats the relationship:

Cascading updates. If cascading updates are specified, changes to the primary key values on the one side of a
relationship are propagated through the related records on the many side.

●

Cascading deletes. If cascading deletes are specified, deleting a record on the one side of a relationship will also
delete all records on the many side.

●

BE CAREFUL WITH CASCADING UPDATES AND DELETES

The concept of specifying cascading updates and deletes seems powerful and convenient at first glance, but it
can be dangerous if not used with caution. Consider the following scenario:

You have a lookup table of United States states that includes the state name and two-letter postal code. A
unique index is defined on the postal code so that it can be used as the one side of a relationship. This table is
then used to enforce that any value entered for a state as part of a set of address columns in another table is
valid. This setup is good so far--the database engine will now validate any state postal code entered in the
database. If, however, you created this relationship with cascading updates and deletes, you could
inadvertently change every address in one state to another state with a single update, or delete every address
in a state with a single delete. If you were to run the query DELETE FROM States;, you would delete
every row in your database that has a state column!

This is a somewhat contrived and extreme example. But the point is that by using cascading updates and
deletes, you hand off work to the database engine, and you might forget later that the database engine is doing
the work for you. An alternative to this approach is to define the relationship without specifying cascading
updates or deletes. When you try to perform an operation that violates referential integrity constraints, a
trappable error will be raised. You can then examine that error and decide whether to cancel the change or
manually perform the cascade by running additional update or delete queries. See Chapter 3, "Creating
Queries with SQL," for additional information on building and executing update or delete queries.

In addition to specifying cascading updates and deletes, you can also indicate that the relationship is one-to-one or
one-to-many. Don't let yourself be confused by the difference. One-to-one relationships are really just a special case of
one-to-many relationships. Instead of allowing multiple rows on the many side, the database engine allows only one.
Many-to-many relationships are defined using two one-to-many relationships.

STEPS

Open and run project HT404.vbp. Open the database HT404.mdb. You can use the Relation | Add menu command to
create the relationships shown in Table 4.18. Figure 4.4 shows the form used to create a relationship.

Figure 4.4. The Create Relation form.

NOTE File HT404A.mdb is identical to HT404.mdb except that all the relations have already been created
for you. If you do not want to create all the relationships shown in the table, you can open HT404A.mdb and
inspect the objects using the Explorer form.

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (31 of 46) [9/22/1999 1:58:32 AM]

javascript:popUp('04fig04.gif')

Table 4.18. Relations in HT404.mdb.

NAME TABLE FOREIGN TABLE FIELD NAME FOREIGN NAME TYPE CASCADE

fkAdvFacID Faculty Advisors FacID AdvFacID 1-1 Deletes

fkInstrFacID Faculty Instructors FacID InstrFacID 1-1 Deletes

fkCourse- Instructors Courses InstrFacID CourseInstrID 1-Many N/A

InstrID

fkSCStID Students StudentCourses StID SCStID 1-Many N/A

fkSCCourseID Courses StudentCourses CourseID SCCourseID 1-Many N/A

fkStAdvID Advisors Students AdvFacID StAdvID 1-Many N/A

1. Create a new Standard EXE project and save it as HT404.vbp. Add BMain.bas to the project. This module
contains code derived from the example in How-To 4.1 used to open or create a database.

2. Add frmMain.frm to the project. This is the same form used for How-To 4.3. Add the menu controls shown in
Table 4.19 for the Relation menu.

Table 4.19. The Relation menu controls.

NAME CAPTION

mnuRelation &Relation

mnuRelationAdd &Add

mnuRelationDelete &Delete

3. Three event procedures control the Relation menu. The top-level mnuRelation_Click event procedure
determines which of the other menu controls should be enabled based on the currently selected object in the
TreeView control on the form. The Add command uses the mcdbExp object to show the form used to create a
relationship and update the TreeView control. The Delete command calls on the DeleteRelation method of
the mcdbExp object to delete the currently selected relationship.

Private Sub mnuRelation_Click()
On Error GoTo ProcError
 If mcdbExp Is Nothing Then
 ` no database open
 mnuRelationAdd.Enabled = False
 mnuRelationDelete.Enabled = False
 Else
 ` enable add
 mnuRelationAdd.Enabled = True
 ` only enable delete if an Index is selected
 If mcdbExp.NodeType(tvTreeView.SelectedItem) = _
 "Relation" Then
 mnuRelationDelete.Enabled = True
 Else
 mnuRelationDelete.Enabled = False
 End If
 End If
ProcExit:
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (32 of 46) [9/22/1999 1:58:32 AM]

 Resume ProcExit
End Sub
Private Sub mnuRelationAdd_Click()
On Error GoTo ProcError
 mcdbExp.AddRelation
ProcExit:
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub
Private Sub mnuRelationDelete_Click()
On Error GoTo ProcError
 Dim strRelationName As String
 ` get the name
 strRelationName = tvTreeView.SelectedItem.Text
 mcdbExp.DeleteRelation strRelationName
ProcExit:
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

4. Add the class module CDBExplorer.cls to the project. This is the same class module used in How-To 4.3, but
with code added to support creating and deleting relationships in the database. The AddRelation method loads,
initializes, and shows frmCreateRelation and then refreshes the node in the Explorer form tree for
relationships. The DeleteRelation method takes the name of a Relation object as a parameter and deletes
the Relation object from the Relations collection of the database.

Public Sub AddRelation()
` load the form to create a relation
 Load frmCreateRelation
 ` pass it the database reference
 Set frmCreateRelation.Database = mdb
 frmCreateRelation.Show vbModal
 ` refresh the tabledefs node
 ExpandNode mtvw.Nodes("Relations")
End Sub
Public Sub DeleteRelation(strRelationName As String)
` delete a relation
 ` delete it
 mdb.Relations.Delete strRelationName
 ` refresh the relations node
 ExpandNode mtvw.Nodes("Relations")
End Sub

5. Add a new form to the project, create the objects and properties shown in Table 4.20, and save the form as
frmCreateRelation.frm.

Table 4.20. Objects and properties of frmCreateRelation.

OBJECT PROPERTY VALUE

Form Name frmCreateRelation

Caption Create Relation

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (33 of 46) [9/22/1999 1:58:32 AM]

Border Style 3-Fixed Dialog

Label Name lblTableDefName

Caption Table

ComboBox Name cboTableDefName

Style 2-Dropdown List

Label Name lblForeignTableDefName

Caption Foreign Table

ComboBox Name cboForeignTableDefName

Style 2-Dropdown List

Frame Name fraRelation

Caption Relation

Draw the following controls within the
fraRelation frame:

Label Name lblRelationName

Caption Relation Name

TextBox Name txtRelationName

Label Name lblFieldName

Caption Field Name

ComboBox Name cboFieldName

Style 2-Dropdown List

Label Name lblForeignName

Caption Foreign Name

ComboBox Name cboForeignName

Style 2-Dropdown List

Label Name lblOneTo

Caption One To:

Line Name Line1

OptionButton Name optOneTo

Caption One

Index 0

OptionButton Name optOneTo

Caption Many

Index 1

Label Name lblReferentialIntegrity

Caption Referential Integrity

Line Name Line2

CheckBox Name chkRef

Caption Cascade Updates

Index 0

CheckBox Name chkRef

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (34 of 46) [9/22/1999 1:58:32 AM]

Caption Cascade Deletes

Index 1

Draw the following two command buttons at the
bottom right of the form below the fraRelation
frame:

CommandButton Name cmd

Caption OK

Default True

Index 0

CommandButton Name cmd

Caption Cancel

Cancel True

Index 1

Figure 4.4 shows the visual design of the form at runtime.

6. Add the following code to the declarations section of the form. Module-level variables are defined to store the
database object, the table and foreign table names, and the field name and foreign name properties.

Three pairs of constants are also defined as indexes into the three control arrays on the form.

Option Explicit
` database
Private mdb As Database
` table
Private mstrTableDefName As String
` foreign table
Private mstrForeignTableDefName As String
` relation name
Private mstrRelationName As String
` field name
Private mstrFieldName As String
` foreign name
Private mstrForeignName As String
` control array constants
Private Const optOneToOne = 0
Private Const optOneToMany = 1
Private Const chkRefCascadeUpdates = 0
Private Const chkRefCascadeDeletes = 1
Private Const cmdOK = 0
Private Const cmdCancel = 1

7. Add the Database property procedure. This property is used to enable the CDBExplorer class to pass a
database object to the form. After the database has been provided, the table and foreign table combo boxes are
populated with lists of table names.

Public Property Set Database(db As DAO.Database)
` set database object and set up form
 ` assign the database object
 Set mdb = db
 ` populate the table combo boxes
 GetTables cboTableDefName
 GetTables cboForeignTableDefName

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (35 of 46) [9/22/1999 1:58:32 AM]

End Property

8. Add the EnableOK and EnableRelation procedures. These procedures examine the current state of the data
on the form to determine whether the fraRelation frame and the OK button should be enabled or disabled.

Private Sub EnableOK()
` to create a relation, you need the following
` a table name
` a foreign table name
` a relation name
` a field name
` a foreign name for the field
` additionally, CreateRelation will fail if the
` field data types do not match correctly
 If mstrTableDefName = "" Or _
 mstrForeignTableDefName = "" Or _
 mstrRelationName = "" Or _
 mstrFieldName = "" Or _
 mstrForeignName = "" Then
 cmd(cmdOK).Enabled = False
 Else
 cmd(cmdOK).Enabled = True
 End If
End Sub
Private Sub EnableRelation()
` enable/disable the relation frame
 If _
 mstrTableDefName = "" Or _
 mstrForeignTableDefName = "" _
 Then
 fraRelation.Enabled = False
 Else
 fraRelation.Enabled = True
 End If
End Sub

9. Add the GetTables and GetFields procedures. These procedures populate a combo box with a list of tables
or fields by examining the TableDefs collection of the database or the Fields collection of a table.

Private Sub GetTables(cbo As ComboBox)
` fill the table list combo
 Dim td As TableDef
 With cbo
 ` clear what (if anything) is there
 .Clear
 For Each td In mdb.TableDefs
 ` check for system table
 If (td.Attributes And dbSystemObject) = 0 Then
 ` not a system table, add it
 .AddItem td.Name
 End If
 Next ` TableDef
 End With
End Sub
Private Sub GetFields(cbo As ComboBox, strTableDefName As String)
` fill the field list combo

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (36 of 46) [9/22/1999 1:58:32 AM]

 Dim fld As Field
 With cbo
 ` clear it
 .Clear
 For Each fld In mdb.TableDefs(strTableDefName).Fields
 ` add it
 .AddItem fld.Name
 Next ` Field
 End With
End Sub

10. Add the Form_Load event procedure. The relation frame and OK button are disabled by this procedure.

Private Sub Form_Load()
On Error GoTo ProcError
 ` disable the relations frame
 fraRelation.Enabled = False
 ` disable the OK button
 cmd(cmdOK).Enabled = False
ProcExit:
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

11. Add the Click event procedures for the cboTableDefName and cboForeignTableDefName
ComboBox controls. These procedures store the values of the combo boxes in the module-level variables and call
the GetFields procedure to populate the field lists. They then call both EnableOK and EnableRelation to
enable or disable both the relationship frame container and the OK button.

Private Sub cboTableDefName_Click()
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 mstrTableDefName = cboTableDefName.Text
 If mstrTableDefName <> "" Then
 GetFields cboFieldName, mstrTableDefName
 End If
 EnableOK
 EnableRelation
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub
Private Sub cboForeignTableDefName_Click()
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 mstrForeignTableDefName = cboForeignTableDefName.Text
 If mstrForeignTableDefName <> "" Then
 GetFields cboForeignName, mstrForeignTableDefName
 End If
 EnableOK
 EnableRelation

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (37 of 46) [9/22/1999 1:58:32 AM]

ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

12. Add the Click events for the cboFieldName and cboForeignName controls. The current values in the
combo boxes are passed to the module-level variables, and the EnableOK procedure is called to enable or disable
the OK button.

Private Sub cboFieldName_Click()
On Error GoTo ProcError
 mstrFieldName = cboFieldName.Text
 EnableOK
ProcExit:
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub
Private Sub cboForeignName_Click()
On Error GoTo ProcError
 mstrForeignName = cboForeignName.Text
 EnableOK
ProcExit:
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

13. Add the txtRelation_Change event. This procedure passes the contents of the text box to the
module-level variable and calls the EnableOK procedure to enable or disable the OK button.

Private Sub txtRelationName_Change()
On Error GoTo ProcError
 mstrRelationName = txtRelationName
 EnableOK
ProcExit:
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

14. Add the cmd_Click procedure. This procedure either calls the CreateRelation procedure and unloads
the form, or it simply unloads the form.

Private Sub cmd_Click(Index As Integer)
` create the relation or unload
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 Select Case Index
 Case cmdOK
 ` create relation and unload

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (38 of 46) [9/22/1999 1:58:32 AM]

 CreateRelation
 Unload Me
 Case cmdCancel
 ` just unload
 Unload Me
 End Select
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

15. Add the CreateRelation procedure. This procedure uses the steps described earlier in this How-To to
create the Relation object based on the values saved in the module-level variables. The procedure calls
CreateRelation, creates and appends a Field object to the Fields collection, and finally uses the Append
method to add the Relation to the Relations collection.

Private Sub CreateRelation()
` create the relation
` called only from cmd(cmdOK) click event
 Dim rel As Relation
 Dim fld As Field
 Dim lngAttributes As Long
 ` set up attributes
 If optOneTo(optOneToOne) Then
 lngAttributes = dbRelationUnique
 End If
 If chkRef(chkRefCascadeUpdates) Then
 lngAttributes = lngAttributes Or dbRelationUpdateCascade
 End If
 If chkRef(chkRefCascadeDeletes) Then
 lngAttributes = lngAttributes Or dbRelationDeleteCascade
 End If
 ` create the relation
 Set rel = mdb.CreateRelation(_
 mstrRelationName, _
 mstrTableDefName, _
 mstrForeignTableDefName, _
 lngAttributes)
 Set fld = rel.CreateField(mstrFieldName)
 ` set the foreign name
 fld.ForeignName = mstrForeignName
 ` append the field to the relation
 rel.Fields.Append fld
 ` append the relation to the database
 mdb.Relations.Append rel
End Sub

How It Works

If you've worked through the previous examples in this chapter, the method and the code used to create relationships will
look quite familiar. Again, a single procedure--in this case, the CreateRelation procedure in
frmCreateRelation--does all the real work of creating the relationship. Based on values entered by the user, the

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (39 of 46) [9/22/1999 1:58:32 AM]

procedure creates the Relation object. It then adds the desired field and assigns the ForeignName property, and
finally it appends the field and the relation to their respective collections. The rest of the code in the form coordinates the
user interface.

NOTE This example does not implement the capability to create relationships with multiple fields. If you
need to create such a relationship, just repeat the code that creates and appends the field for each field in the
relationship.

Comments

The Jet database engine also enables you to use SQL statements to create relationships between tables by using a
CONSTRAINT clause in a CREATE TABLE or ALTER TABLE statement. See Chapter 3, "Creating Queries with SQL,"
for details on using SQL statements to create relationships with SQL statements.

4.5 How do I...

Use the Jet database engine to enforce business rules?

Problem

I need to make sure that certain rules are followed when data is entered into my database. How do I get the database
engine to enforce these rules for me?

Technique

Various rules can be applied against tables and columns in a database:

Values for columns can be restricted to a specific list of values, or the value can be restricted by a formula. For
example, a numeric column can be required to be greater than zero.

●

Columns can require an entry.●

Values for one column can be dependent on the values for another column.●

The collective term for these types of restrictions on data is business rules. You can enforce rules in your database in two
ways:

Write Visual Basic code to examine the data and apply the rules before inserts, updates, or deletes are completed.●

Build the rules into the design of the tables and columns and let the database engine enforce them for you.●

Although in certain situations the rules will be too complex to be entered using the available properties for TableDef
and Field objects, you should allow the database engine to enforce as many of your rules as it is capable of enforcing.

If you have worked through the examples in How-To 4.2 through 4.4, you have already been enforcing some simple rules
in your database:

When a column is defined, the data type restricts the data that can be entered in the column.●

Defining a primary key or unique index restricts the data in a column to unique entries.●

Defining a relationship between tables restricts the values in foreign key columns to the available values in the
primary key from the table on the other side of the relationship.

●

In addition to these constraints on data, you can specify an additional property for tables and three additional properties for
columns that further restrict the data that can be entered:

The Required property for Field objects can be used to disallow Null values in the column. Setting this
property to True means that a value is required.

●

The ValidationRule property applies to both tables and columns and can be used to force the data to conform
to an expression. The partner of the ValidationRule property is the ValidationText property. This

●

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (40 of 46) [9/22/1999 1:58:32 AM]

property can be used to provide the text of the error message that is generated when the rule is violated.

The AllowZeroLength property can be used to allow or disallow zero-length strings as valid entries for a
column. The Jet engine treats zero-length strings and nulls separately. Developers can use the two to distinguish
between values that are unknown (most often using Null) and values that are known to be nothing (using a
zero-length string). For example, if a middle name column allows a zero-length string, a Null would indicate that
the data was not available, whereas a zero-length string would indicate that the person has no middle name.
Although this is a potentially useful tool, the subtle difference between these values will probably be lost on most
users. Additionally, not all types of databases support this differentiation.

●

Required and AllowZeroLength are both Boolean properties. If the Required property is set to True, Null
values will not be allowed. If the AllowZeroLength property is set to True, the column will allow a zero-length
string as a valid value.

The ValidationRule property is a string and can be any valid Visual Basic expression. It cannot, however, contain a
reference to a user-defined function, SQL aggregate functions, a query, or, in the case of a table, columns in another table.

The ValidationText property can be any string expression and is provided as the description of the trappable error
that results when the rule is violated.

Steps

Open and run project HT405 .vbp. The form shown in Figure 4.5 appears. Choose File | Open and open database
HT405.mdb. This is the school database developed and refined in How-To 4.2 through How-To 4.4. Click the Add Rules
button to apply the rules shown in Table 4.21 to the database.

Figure 4.5. The Create Rules form.

Table 4.21. Business rules for HT405.mdb.

TABLE FIELD PROPERTY VALUE

Advisors AdvGradeLevel Required True

Advisors ValidationRule IN (`Freshman', `Sophomore',
`Junior', `Senior')

ValidationText Grade level must be Freshman,
Sophomore, Junior, or Senior

Courses CourseDesc Required True

Faculty FacFirst Required True

FacLast Required True

Students StFirst Required True

Students StLast Required True

In addition to the field-level rules in Table 4.21, the following rule applies to the Students table:

ValidationRule
 IIf(
 (
 (Not IsNull([StAddress])) Or
 (Not IsNull([StCity])) Or
 (Not IsNull([StState])) Or
 (Not IsNull([StZIP]))
),
 (
 IIf(

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (41 of 46) [9/22/1999 1:58:32 AM]

javascript:popUp('04fig05.gif')

 (
 (Not IsNull([StAddress])) And
 (Not IsNull([StCity])) And
 (Not IsNull([StState])) And
 (Not IsNull([StZIP])
)
), True, False)
), True)
ValidationText
 If provided, the address must be complete.

This rather cumbersome-looking expression enforces the rule that if any of the address columns (StAddress, StCity,
StState, StZIP) contain data, they all must contain data. Because Jet restricts the ValidationRule property to a
single expression, the nested IIf statements must be used. The outer IIf returns True if any of the columns contains
data; the inner IIf returns True only if they all contain data.

A MISLEADING STATEMENT IN THE HELP FILE

The following statement appears in the Visual Basic help file topic for the ValidationRule property:

For an object not yet appended to the Fields collection, this
property is read/write.

This would seem to imply that after the field has been created, the property can no longer be assigned. In fact,
the ValidationRule and ValidationText properties for both tables and fields can be assigned after
the objects have been created, and the Required property can be assigned after a field has been created--all
as demonstrated in the sample application.

1. Create a new Standard EXE project and name it HT405.vbp.

2. Change the name of Form1 to frmMain, and create the objects and properties shown in Table 4.22.

Table 4.22. Objects and properties for frmMain.

OBJECT PROPERTY VALUE

Form BorderStyle 3-Fixed Dialog

Caption Create Rules

CommonDialog Name dlg

CommandButton Name cmdAddRules

Caption Add Rules

Menu Name mnuFile

Caption &File

Menu Name mnuFileOpen

Caption &Open

Shortcut Ctrl-O

Menu Name mnuFileBar

Caption -

Menu Name mnuFileExit

Caption E&xit

Shortcut Ctrl-Q

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (42 of 46) [9/22/1999 1:58:32 AM]

3. Add the following code to the declarations section of the form:

Option Explicit
Private mdb As Database

4. Add the cmdAddRules_Click event procedure. This procedure calls the AddRules subroutine described
here.

Private Sub cmdAddRules_Click()
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 AddRules
 MsgBox "Rules Added"
 cmdAddRules.Enabled = False
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

5. Add the mnuFileOpen_Click procedure. This procedure calls the GetOpenDBName function show next,
opens the database using the filename returned, and enables the cmdAddRules button.

Private Sub mnuFileOpen_Click()
On Error GoTo ProcError
 Dim strDBName As String
 Screen.MousePointer = vbHourglass
 ` use the common dialog to get the db name
 strDBName = GetOpenDBName(dlg)
 If Len(strDBName) Then
 Set mdb = DBEngine(0).OpenDatabase(strDBName)
 cmdAddRules.Enabled = True
 End If
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

6. Create the mnuFileExit_Click event. This procedure unloads the form, ending the application.

Private Sub mnuFileExit_Click()
On Error GoTo ProcError
 Screen.MousePointer = vbHourglass
 ` close the database and unload the form
 mdb.Close
 Unload Me
ProcExit:
 Screen.MousePointer = vbDefault
 Exit Sub
ProcError:
 MsgBox "Error: " & Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (43 of 46) [9/22/1999 1:58:32 AM]

7. Create the GetOpenDBName function. This function sets up the Common Dialog control and returns the
filename selected by the user as its return value.

Private Function GetOpenDBName(dlg As CommonDialog) As String
` Get the desired name using the common dialog
On Error GoTo ProcError
 Dim strFileName As String
 ` set up the file save dialog file types
 dlg.InitDir = App.Path
 dlg.DefaultExt = "mdb"
 dlg.DialogTitle = "Open Database"
 dlg.Filter = "VB Databases (*.mdb)|*.mdb"
 dlg.FilterIndex = 1
 ` set up flags
 dlg.Flags = _
 cdlOFNHideReadOnly Or _
 cdlOFNFileMustExist Or _
 cdlOFNPathMustExist
 ` setting CancelError means the control will
 ` raise an error if the user clicks Cancel
 dlg.CancelError = True
 ` show the SaveAs dialog
 dlg.ShowOpen
 ` get the selected name
 strFileName = dlg.filename
ProcExit:
 GetOpenDBName = strFileName
 Exit Function
ProcError:
 strFileName = ""
 Resume ProcExit
End Function

8. Create the AddRules routine. This routine assigns the Required, ValidationRule, and
ValidationText properties described previously. Each of the values is directly assigned to the property. The
various With...End With blocks add some efficiency by eliminating extra object references.

Private Sub AddRules()
 Dim td As TableDef
 Dim fld As Field
 ` Advisors table
 ` AdvGradeLevel field
 Set fld = mdb.TableDefs("Advisors").Fields("AdvGradeLevel")
 With fld
 ` require entry
 .Required = True
 ` require a value in a list
 .ValidationRule = _
 "IN (`Freshman', `Sophomore', `Junior', `Senior')"
.ValidationText = _
 "Grade level must be Freshman, " & _
 "Sophomore, Junior or Senior"
End With
 Set fld = Nothing
 ` Courses table

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (44 of 46) [9/22/1999 1:58:33 AM]

 ` CourseDesc field
 mdb.TableDefs("Courses").Fields("CourseDesc").Required = True
 ` Faculty table
 Set td = mdb.TableDefs("Faculty")
 With td
 ` FacFirst required
 .Fields("FacFirst").Required = True
 ` FacLast required
 .Fields("FacLast").Required = True
 End With
 Set td = Nothing
 ` Students table
 Set td = mdb.TableDefs("Students")
 With td
 ` first and last names are required
 .Fields("StFirst").Required = True
 .Fields("StLast").Required = True
 ` table rule - if any part of the
 ` address is provided, all of it
 ` must be provided
 ` the outer IIf evaluates if any field is not null
 ` the inner IIf evaluates if all fields are not null
 .ValidationRule = _
 "IIf(" & _
 "(" & _
 "(Not IsNull([StAddress])) Or " & _
 "(Not IsNull([StCity])) Or " & _
 "(Not IsNull([StState])) Or " & _
 "(Not IsNull([StZIP])) " & _
 "), " & _
 "(IIf(" & _
 "(" & _
 "(Not IsNull([StAddress])) And " & _
 "(Not IsNull([StCity])) And " & _
 "(Not IsNull([StState])) And " & _
 "(Not IsNull([StZIP])) " & _
 "), " & _
 "True, False)" & _
 "), " & _
 "True)"
 .ValidationText = _
 "If provided, the address must be complete."
 End With
 Set td = Nothing
End Sub

How It Works

This How-To provides the final refinement to the database that has been developed throughout the chapter by adding some
basic business-rule enforcement at the level of the database engine. The rules are established by obtaining references to the
appropriate table and field objects and by setting the ValidationRule, ValidationText, and Required
properties.

As you can see in the examples, it can be difficult to implement even relatively simple rules due to the limitations of these

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (45 of 46) [9/22/1999 1:58:33 AM]

properties. Thus, you might need to supplement the properties provided by the database engine with additional validation
code. Chapter 1, "Accessing a Database with Bound Controls," and Chapter 2, "Accessing a Database with Data Access
Objects," provide additional information on using Visual Basic code to enforce rules on the data in your database.

Comments

Unless you specify otherwise, field validation rules are applied when the record is updated. If you want the rule to be
applied as soon as the entry is applied to the field, set the ValidateOnSet property of the Field object to True.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Ch 4 -- Designing and Implementing a Database

http://www.pbs.mcp.com/ebooks/1571691529/ch04/ch04.htm (46 of 46) [9/22/1999 1:58:33 AM]

Visual Basic 6 Database How-To

- 5 -
Microsoft Access Databases

How do I...

5.1 Determine the number of records in a table and the table's creation and last-modified dates?❍

5.2 Attach a table from another database file?❍

5.3 Import a text file?❍

5.4 Save graphics in a database file?❍

5.5 Make sure that an operation involving multiple tables is not left partially completed?❍

5.6 Compact a database or repair a corrupted database?❍

5.7 Use parameter queries stored in Microsoft Access databases?❍

●

Although you have a choice of database formats, such as indexed sequential access method (ISAM) or Open Database
Connectivity (ODBC) drivers, you will find it easiest to work with Visual Basic's "native" database format, Microsoft
Access. Because Visual Basic and Microsoft Access have been created to work in tandem, you have a rich feature set
available to you. This chapter shows you how to use many of the unique features of Microsoft Access database files.

5.1 Determine the number of records in a table and the table's creation and last-modified dates

A Microsoft Access database contains information about each table in the database--including, among other items, when
the table was created, when it was last modified, and the number of records it currently contains. This How-To consists
of a tool for extracting and displaying that information.

5.2 Attach a table from another database file

In some cases, it is necessary or desirable to make the contents of a table available to more than one Microsoft Access
database. A database can access a table from another database by attaching the table to itself. This How-To shows you
how to attach Microsoft Access tables to Microsoft Access databases through Visual Basic.

5.3 Import a text file

The source of your application's data might be files consisting of delimited ASCII or ANSI text. This How-To shows
how to use Visual Basic classes and collections to convert text files into records that you can add to Microsoft Access
tables.

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (1 of 47) [9/22/1999 1:59:25 AM]

5.Save graphics in a database file

The capability to store graphics in a database can be very useful, but sometimes challenging. This How-To explains two
methods of saving graphics, as well as providing an example of one of them.

5.5 Make sure that an operation involving multiple tables is not left partially completed

A well-designed relational database uses multiple tables that are related. A single "logical" add, delete, or update
operation often requires making a change to more than one table. If an error occurs during a multitable operation, you
generally want to abort the entire operation and return all the tables to the condition in which they existed at the start of
the operation. This How-To shows how to use the transaction features of the Jet database engine to ensure the integrity of
your tables.

5.6 Compact a database or repair a corrupted database

The Jet database engine has the capability to recover space after deletion of data, but it does not perform the operation
automatically. The Jet engine also can repair certain types of database damage--but again, it will not make the attempt
unless it is instructed to do so. This How-To shows how to use Visual Basic to initiate the Jet engine's database-compact
and database-repair capabilities.

5.7 Use Parameter Queries Stored in Microsoft Access Databases

Microsoft Access queries can be designed to use replaceable parameters. A query with a replaceable parameter must be
provided with a value for that parameter each time the query is run. This How-To shows how to use stored queries with
replaceable parameters from Visual Basic.

5.1 How do I...

Determine the number of records in a table and the table's creation and
last-modified dates?

Problem

I have an application that periodically adds records to a table. No other user or application ever modifies this table. To
make sure that I don't perform the same update twice, I'd like to check the current record count and the date the last
changes were made to the table's recordset. How can I do this from Visual Basic?

Technique

The TableDefs collection of the Database object consists of TableDef objects, each of which represents one table from
the database. The properties of the TableDef object describe the table. Table 5.1 lists the properties of TableDef objects
applicable to native Microsoft Access database tables.

Table 5.1. Properties of a TableDef object applicable to Microsoft Access tables.

PROPERTY DESCRIPTION

Attributes Characteristics of the table, including whether the table is an attached table

DateCreated The date and time the table was created

LastUpdated The date and time the table was most recently changed

Name The name of the table

RecordCount The number of records in the table

SourceTableName The name of the base table, if the TableDef is for an attached table

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (2 of 47) [9/22/1999 1:59:25 AM]

Updatable Specification of whether SourceTableName, ValidationRule, and ValidationText properties of the
TableDef can be modified

ValidationRule An expression used to set the criteria for accepting a new record or a modification to an existing
record

ValidationText The message returned if a change fails to meet the ValidationRule criteria

Steps

The Table Status application displays four of the most useful properties for each user table in a database. Open and run
TableData.VBP. You'll see a standard Windows File Open dialog box. Choose a Microsoft Access (*.MDB) file, and
click OK. The form shown in Figure 5.1 appears with a list of the tables in the database shown in the list box. After you
select a table, the table's creation date, last modification date, and current record count appear in the boxes on the form,
similar to Figure 5.2.

Figure 5.1. The table statistics form on startup.

Figure 5.2. The table statistics form with the statistics from the Title Author table shown.

1. Create a new project called TableData.VBP. Create the objects and properties listed in Table 5.2, and save the
form as TableData.FRM.

Table 5.2. Objects and properties for the Table Status form.

OBJECT PROPERTY SETTING

Form Name Form1

Caption "Chapter 5.1 Example"

CommandButton Name cmdChangeFile

Caption "Change &File"

CommandButton Name cmdExit

Cancel True

Caption "E&xit"

ListBox Name lstTables

Sorted True

CommonDialog Name cdlTableData

CancelError True

DefaultExt "MDB"

DialogTitle "Database File"

FileName "*.MDB"

Filter "*.MDB"

Label Name lblCreated

Alignment 2 (Center)

BorderStyle 1 (Fixed Single)

Label Name lblModified

Alignment 2 (Center)

BorderStyle 1 (Fixed Single)

Label Name lblRecords

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (3 of 47) [9/22/1999 1:59:25 AM]

javascript:popUp('05fig01.gif')
javascript:popUp('05fig02.gif')

Alignment 2 (Center)

BorderStyle 1 (Fixed Single)

Label Name lblTableData

Index 0

Caption "Created:"

Label Name lblTableData

Index 1

Caption "Last Modified:"

Label Name lblTableData

Index 2

Caption "Records:"

2. Add the following code to the declarations section of Form1. The Collection object created by the declaration is
used by several procedures within the form, so it is declared at form level to give all of the procedures access to it.

Option Explicit

Private colTableData As Collection

3. Add the following code to the Form_Load event of Form1. Form_Load calls the GetDatabase subroutine, which
controls the rest of the application.

Private Sub Form_Load()
 GetDatabase
End Sub

4. Create the GetDatabase subroutine with the following code. This procedure gets a database selection from the
user, retrieves information from its nonsystem table definitions into clsTableStatus objects, and puts the
clsTableData objects into colTableData. (The clsTableData class is discussed later in this section.) It then lists the
table names in the form's list box.

Private Sub GetDatabase()
 Dim dbfTableData As Database
 Dim tdfTables As TableDefs, tdfSelectedTable As TableDef
 Dim objTable As clsTableData
 Dim strDatabaseName As String
 On Error GoTo NoDatabaseError
 `Call the ShowOpen method of the CommonDialog control, so
 `the user can select a database.
 cdlTableData.ShowOpen
 On Error GoTo GetDatabaseError
 strDatabaseName = cdlTableData.filename
 Screen.MousePointer = vbHourglass
 `Open the chosen database
 Set dbfTableData = _
 DBEngine.Workspaces(0).OpenDatabase(_
 strDatabaseName, False, True)
 `Fetch the TableDefs collection & place in a local
 `variable. This has the benefit of slightly faster
 `processing
 Set tdfTables = dbfTableData.TableDefs
 `Set up the collection class we're using, so new
 `instances of our clsTableData class can be stored in
 `it.

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (4 of 47) [9/22/1999 1:59:25 AM]

 Set colTableData = New Collection
 `For each TableDef in TableDefs, use the clsTableData
 `to get the needed info from the table, and place the
 `table's name and its index within the collection in
 `the list box.
 For Each tdfSelectedTable In tdfTables
 If Left$(tdfSelectedTable.Name, 4) <> "MSys" Then
 Set objTable = New clsTableData
 objTable.ExtractStatusData tdfSelectedTable
 colTableData.Add objTable
 With lstTables
 .AddItem objTable.Name
 .ItemData(lstTables.NewIndex) = _
 colTableData.Count
 End With
 End If
 Next
 `Now that it's not needed, close the database.
 dbfTableData.Close
 On Error GoTo 0
 Screen.MousePointer = vbDefault
 On Error GoTo 0
Exit Sub
NoDatabaseError:
 `If the user didn't select a database, end the application.
 End
GetDatabaseError:
 Screen.MousePointer = vbDefault
 MsgBox Err.Description, vbExclamation
 End
End Sub

5. Add the following code to the Click event of lstTables. When the user clicks on a table name in the list box, this
procedure extracts the properties from the selected clsTableData object and displays those properties in the boxes
on the form.

Private Sub lstTables_Click()
 Dim objTable As clsTableData, intPosition As Integer
 `Get the ItemData from the list, the index of the selected
 `clsTableData stored in our collection.
 intPosition = lstTables.ItemData(lstTables.ListIndex)
 `Using this index, fetch our selected instance of
 `clsTableData.
 Set objTable = colTableData.Item(intPosition)
 `Read the properties of our class into the labels
 lblCreated = Format$(objTable.WhenCreated, "General Date")
 lblModified = Format$(objTable.WhenModified, "General Date")
 lblRecords = objTable.NumRecords
End Sub

6. Add the following code to the Click event of cmdChangeFile. This procedure first clears the data from the
controls on the form and empties the Collection object. It then resets the common dialog default filename to
*.MDB and calls GetDatabase.

Private Sub cmdChangeFile_Click()
 `Clear out the form, and flush the existing collection.

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (5 of 47) [9/22/1999 1:59:25 AM]

 lstTables.Clear
 lblCreated = "": lblModified = "": lblRecords = ""
 Set colTableData = Nothing
 `Reset our CommonDialog control, and get another database.
 cdlTableData.filename = "*.MDB"
 GetDatabase
End Sub

7. Add the following code to the Click event of cmdExit:

Private Sub cmdExit_Click()
 End
End Sub

8. Insert a new class module into the project and name it clsTableData; then add the following code to the
declarations section of the class module. The four private variables represent the properties of the class. As private
class-module-level variables, they are accessible to all routines within the class but accessible to outside
procedures only through the methods defined for the class.

Option Explicit
`Module-level variables used to hold property values. They are
`not accessible, or not "exposed," outside of the class directly.
`Property Get statements are used to "expose" this data to other
`objects that may request it.
Private mlngNumRecords As Long
Private mdatWhenModified As Date
Private mdatWhenCreated As Date
Private mstrName As String

9. Add the following code to clsTableData as the ExtractStatusData method. This public method sets the class
properties to the values of the table definition object passed as an argument.

Public Sub ExtractStatusData(tblDef As TableDef)
 `This subroutine retrieves the property data from a given
 `TableDef.
 mstrName = tblDef.Name
 mdatWhenModified = tblDef.LastUpdated
 mdatWhenCreated = tblDef.DateCreated
 mlngNumRecords = tblDef.RecordCount
End Sub

10. Add the following four Property Get methods to clsTableData. Each of these methods returns the value of a
property to the requesting procedure.

Property Get Name() As String
 Name = mstrName
End Property
Property Get NumRecords() As Long
 NumRecords = mlngNumRecords
End Property
Property Get WhenModified() As Date
 WhenModified = mdatWhenModified
End Property
Property Get WhenCreated() As Date
 WhenCreated = mdatWhenCreated
End Property

How It Works

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (6 of 47) [9/22/1999 1:59:25 AM]

When the application's only form loads, it calls the GetDatabase procedure, which uses the Windows common dialog to
prompt the user to enter the name of the database to be examined. It then opens the database and the TableDefs collection
of the database, cycling through the TableDefs collection and examining each TableDef object in the collection to see
whether it represents a system table or a user-defined table. If it is a user-defined table, GetDatabase creates a new
clsTableData object and points the variable objTable to the object. The clsTableData object extracts four properties from
the TableDef object. These TableDef properties become the properties of the clsTableData object. GetDatabase then adds
the clsTableData object to the colTableData. When all the TableDef objects in the TableDefs collection have been
examined, GetDatabase closes the database. It then cycles through the clsTableData objects in the colTableData and adds
the name of each table in the collection to the list box.

When the user clicks on a table name in the list box, the Click routine extracts the information about the chosen table
from the clsTableData object in colTableData and displays the information on the form.

Comments

Each Microsoft Access database includes a set of system tables that maintain information about the objects in the
database. These tables all have names beginning with "MSys." You can access some of these tables directly. The tables
are not documented and, therefore, are subject to change in a new release of Access, so it's generally not a good idea to
build an application that relies on direct access to the MSys tables. Fortunately, the TableDefs object described in this
How-To gives you a documented way to get at much of the most useful information in these system tables, including
status information on each table in the database.

5.2 How do I...

Attach a table from another database file?

Question

My application has a Microsoft Access database file with several tables that it "owns." But it also needs to work with data
in a table that resides in another Microsoft Access file, a table that my application must share with other applications.
How can I use a table in a different Microsoft Access file?

Technique

A "database" in older PC database products (such as dBASE, FoxPro, and Paradox products) consists of multiple
files--data files, index files, form files, report files, procedure files, and so on. Microsoft Access, on the other hand, uses a
single file, into which it incorporates multiple objects--data objects (tables), queries, indexes, forms, reports, macros, and
Access Basic code modules. The "database" is a single file.

In most situations, the Microsoft Access way is better. This method eases system administration and makes it less likely
that a needed file will be inadvertently moved or deleted. But it's not an advantage when multiple applications each
maintain separate databases--and, therefore, separate database files--and the applications also need to share some
common data.

Microsoft Access provides the capability to share data between separate databases through the use of attached tables.
Attaching a table creates a link between a database file and a table that physically resides in a different file. When you
attach a table to a Microsoft Access database, you can treat that table very much like you treat the internal tables of the
database--with a few restrictions.

The major restriction in working with attached tables is that you cannot use them with table-type recordsets--you can use
only dynaset- or snapshot-type recordsets. Because you cannot work with attached table-type recordsets, you cannot use
the Seek method to access data. The Seek method is usually the fastest way to randomly access data from a single table,
so this might or might not be a significant restriction, depending on the needs of your application. (See the introduction to
Chapter 3, "Creating Queries with SQL," for a discussion of the conditions under which the Seek method provides faster
access than the use of SQL SELECT queries.)

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (7 of 47) [9/22/1999 1:59:25 AM]

Attaching Tables

Each Microsoft Access database file contains a set of table definitions. When you create a Database object and connect a
database file to that object, the file's table definitions constitute the TableDefs collection of the Database object. If tables
have been attached to the database, the TableDefs collection includes TableDef objects for each attached table; one of the
properties of the TableDef object indicates that it is an attached table. For more detailed information on the steps needed
to attach a table in a Microsoft Access database, be sure to closely follow step 5 in this How-To.

Steps

Open the project ATTACH.VBP and then run the project. The form shown in Figure 5.3 appears. Click Attach a Table
and a standard File Open dialog box appears. Select a Microsoft Access database file to which you want to attach a table
(the destination file), and then select the source file for the table (you must select different files). After you have selected
both files, the form shown in Figure 5.4 appears with a list of the tables in the source file. Select a table from the list and
click OK. A message appears indicating successful attachment, and then the form shown in Figure 5.3 reappears.

Figure 5.3. The attach and detach table example on startup.

Click Detach a Table and select the same file you used as the destination file when you attached a table. The form shown
in Figure 5.4 appears again, this time listing the attached tables in the selected file. Select the table you just attached, and
click OK.

Figure 5.4. The project's Table List form, showing table names.

1. Create a new project called ATTACH.VBP. Rename Form1 to frmAttach and use it to create the objects and
properties listed in Table 5.3. Save the form as frmAttach.FRM.

Table 5.3. Objects and properties for frmAttach.

OBJECT PROPERTY SETTING

Form Name frmAttach

Caption "Chapter 5.2 Example"

CommandButton Name cmdAttach

Caption "&Attach a Table"

CommandButton Name cmdDetach

Caption "&Detach a Table"

CommandButton Name cmdClose

Caption "&Close"

CommonDialog Name cdlFile

2. Add a new form to the project, and create the objects and properties shown in Table 5.4.

Table 5.4. Objects and properties for frmSelector.

OBJECT PROPERTY SETTING

Form Name frmSelector

ListBox Name lstBox

Label Name lblList

Caption ""

CommandButton Name cmdOK

Caption "&OK"

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (8 of 47) [9/22/1999 1:59:25 AM]

javascript:popUp('05fig03.gif')
javascript:popUp('05fig04.gif')

Default True

CommandButton Name cmdCancel

Cancel True

Caption "&Cancel"

3. Add a new module to the project, name it basAttach, and add the following code. The GetFileName function,
given a full path and filename string, extracts and returns just the name of the file. It does so in an inefficient but
workable manner, by stepping backward through the string, checking each character until it finds a backslash.
When the backslash is found, the function retrieves everything to the right of that backslash and returns it as the
filename.

Public Function GetFileName(ByVal strFullPath As String) As String
 Dim I As Integer, strTemp As String
 If Len(strFullPath) Then
 For I = Len(strFullPath) To 1 Step -1
 If Mid(strFullPath, I) = "\" Then strTemp = _
 Right(strFullPath, Len(strFullPath) - I)
 Next
 If strTemp = "" Then strTemp = strFullPath
 End If
 GetFileName = strTemp
End Function

4. Add the following code to the declarations section of frmAttach. These constants will be used later for the
GetMDBFile function.

Option Explicit
Const SOURCE_FILE = 1
Const DESTINATION_FILE = 2
Const DETACH_FILE = 3

5. Enter the following code in frmAttach as the Click event of cmdAttach. This routine gets the user's choices of
the destination and source files for the table to be attached. It then gets the user's selection of the table to be
attached. If a table is selected, it performs several steps--it creates a TableDef object with the name of the table to
be attached, and provides a Connect string with the name of the source database and then providing the
SourceTableName property. All three items are needed to attach an external table. After all these items have been
provided, the Attach method is called to attach the new TableDef to our Database object.

Private Sub cmdAttach_Click()
 Static strSourceFile As String, strDestFile As String
 Dim strTableName As String
 Dim dbfAttach As Database, tdfAttach As TableDef
 strDestFile = GetMDBFile(DESTINATION_FILE)
 If Len(strDestFile) Then strSourceFile = _
 GetMDBFile(SOURCE_FILE)
 If Len(strSourceFile) Then
 `Call the custom method, Display, from frmSelector. This
 `will return either "" or the name of a selected table.
 strTableName = frmSelector.Display(True, strSourceFile)
 On Error GoTo BadAttach
 If Len(strTableName) Then
 `If we have a table, let's attach it.
 Set dbfAttach = _
 Workspaces(0).OpenDatabase(strDestFile)
 `Generate a TableDef object
 Set tdfAttach = _

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (9 of 47) [9/22/1999 1:59:25 AM]

 dbfAttach.CreateTableDef(strTableName)
 `Provide the connection info
 tdfAttach.Connect = ";DATABASE=" & strSourceFile
 `Provide the table's name
 tdfAttach.SourceTableName = strTableName
 `Append it to the database's TableDefs collection
 dbfAttach.TableDefs.Append tdfAttach
 `And it's good!
 MsgBox "Table " & strTableName & _
 " attached to " & _
 GetFileName(strDestFile) & "."
 End If
 On Error GoTo 0
 End If
Exit Sub
BadAttach:
 MsgBox Err.Description, vbExclamation
End Sub

6. Enter the following code in frmAttach as the Click event of cmdDetach. This routine gets the user's choices of
the file from which the table is to be detached, and then the user's selection of the table to be detached from the
file. After these items have been retrieved, the routine finds the appropriate TableDef in our Database object and
runs the Delete method to remove it from the database.

Private Sub cmdDetach_Click()
 Static strDetachFile As String
 Dim strTableName As String
 Dim dbfDetach As Database
 strDetachFile = GetMDBFile(DETACH_FILE)
 `Call frmSelector's Display method
 If Len(strDetachFile) Then strTableName = _
 frmSelector.Display(False, strDetachFile)
 On Error GoTo BadDetach
 If Len(strTableName) Then
 `If we have a table, then detach it.
 Set dbfDetach = _
 Workspaces(0).OpenDatabase(strDetachFile)
 dbfDetach.TableDefs.Delete strTableName
 MsgBox "Table " & strTableName & " detached from " & _
 GetFileName(strDetachFile) & "."
 End If
 On Error GoTo 0
Exit Sub
BadDetach:
 MsgBox Err.Description, vbExclamation
End Sub

7. Enter the following code in frmAttach as the GetMDBFile subroutine. This subroutine is used for three related
purposes: to get a source file for an attached table, to get a destination file for an attached table, and to get the file
from which a table is to be attached. This subroutine uses the Windows File Open common dialog box for all three
purposes. It sets the defaults for the common dialog box to facilitate the opening of an existing Microsoft Access
(MDB) file. If the user selects a file, the routine returns the name and path of that file. If the user does not select a
file (that is, the user clicks Cancel when the common dialog box appears), the function returns an empty string.

Private Function GetMDBFile(intPurpose As Integer) As String

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (10 of 47) [9/22/1999 1:59:25 AM]

 On Error GoTo GetMDBFileError
 Select Case intPurpose
 Case SOURCE_FILE
 cdlFile.DialogTitle = _
 "Select Source File For Attach"
 Case DESTINATION_FILE
 cdlFile.DialogTitle = _
 "Select Destination File For Attach"
 Case DETACH_FILE
 cdlFile.DialogTitle = _
 "Select Source File For Detach"
 End Select
 With cdlFile
 .DefaultExt = "*.MDB"
 .Filter = "Access Files *.MDB|*.MDB|All Files *.*|*.*"
 `The user must select an existing file.
 .Flags = cdlOFN_FILEMUSTEXIST
 .CancelError = True
 .filename = "*.MDB"
 .ShowOpen
 End With
 GetMDBFile = cdlFile.filename
 On Error GoTo 0
Exit Function
GetMDBFileError:
 Exit Function
End Function

8. Enter the following code in frmAttach as the ExtractPath function of frmAttach. This function extracts the
pathname from a fully qualified filename (drive, path, and file) and returns the drive and path to the calling routine.

Private Function ExtractPath(fileName As String, fullPath As String)
 ExtractPath = Left$(fullPath, _
Len(fullPath) - (Len(fileName) + 1))
End Function

9. Enter the following code in frmAttach as the Click event of cmdClose:

Private Sub cmdClose_Click()
 End
End Sub

10. That completes frmAttach. Now turn your attention to frmSelector and add the following line to its declarations
section:

Option Explicit

11. Add the following new function to frmSelector. This function is used for two purposes: to list the tables that
are candidates for attachment and to list the already-attached tables. The method that displays frmSelector
determines the reason for which the form is being displayed by providing a Boolean variable. This method,
Display, sets the form's captions appropriately and then calls ListTables to fill the list box. The arguments to
ListTables specify the file and what kind of tables to list.

Private Function ListTables(blnAttach As Boolean, _
strFileSpec As String) _
As Integer
 Dim dbfTemp As Database, tdfTemp As TableDef
 Dim intTablesAdded As Integer
 lstBox.Clear

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (11 of 47) [9/22/1999 1:59:25 AM]

 On Error GoTo ListTablesError
 Screen.MousePointer = vbHourglass
 Set dbfTemp = _
 DBEngine.Workspaces(0).OpenDatabase(strFileSpec)
 intTablesAdded = 0
 For Each tdfTemp In dbfTemp.TableDefs
 If blnAttach Then
 If Left$(tdfTemp.Name, 4) <> "MSys" And _
 tdfTemp.Attributes <> dbAttachedTable And _
 tdfTemp.Attributes <> dbAttachSavePWD And _
 tdfTemp.Attributes <> dbAttachExclusive Then
 lstBox.AddItem tdfTemp.Name
 intTablesAdded = intTablesAdded + 1
 End If
 ElseIf tdfTemp.Attributes = dbAttachedTable Or _
 tdfTemp.Attributes = dbAttachSavePWD Or _
 tdfTemp.Attributes = dbAttachExclusive Then
 lstBox.AddItem tdfTemp.Name
 intTablesAdded = intTablesAdded + 1
 End If
 Next
 Screen.MousePointer = vbDefault
 ListTables = intTablesAdded
Exit Function
ListTablesError:
 Screen.MousePointer = vbDefault
 MsgBox Err.Description, vbExclamation
 ListTables = 0
Exit Function
End Function

12. Enter the following code in frmSelector as the Display function. This is the public function that is called by
frmAttach to provide a table name to attach or detach. The blnAttach Boolean determines the form's purpose when
called: if set to True, it configures for attachment; otherwise, it configures for detachment. The strFileSpec is the
name of the database that was provided in frmAttach via the GetMDBFile function.

Public Function Display(ByVal blnAttach As Boolean, _
 ByVal strFileSpec As String) As String
 With Me
 .Caption = "Table to " & IIf(blnAttach, "Attach", _
"Detach")
 .lblList = "Select table to " & _
 IIf(blnAttach, "attach:", "detach:")
 End With
 If ListTables(blnAttach, strFileSpec) Then
 Me.Show vbModal
 Else
 MsgBox "There are no attached tables in " & _
 GetFileName(strFileSpec) & "."
 End If
 If lstBox.ListIndex > -1 Then Display = lstBox.Text
End Function

13. Enter the following code in frmSelector as the Click event of cmdOK. If the user has made a selection, the
routine hides the form. Because the form is opened modally, this allows the Display function to complete, passing

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (12 of 47) [9/22/1999 1:59:25 AM]

back the selected table name.

Private Sub cmdOK_Click()
 If lstBox.ListIndex > -1 Then
 frmSelector.Hide
 Else
 MsgBox "You have not yet made a selection.", vbExclamation
 End If
End Sub

14. Enter the following code in frmSelector as the DblClick event of lstBox. If the user has made a selection, the
routine updates the Public variable TableName and hides the form.

Private Sub lstBox_DblClick()
 cmdOK_Click
End Sub

15. Enter the following code in frmSelector as the Click event of cmdCancel. The user does not want to designate a
table, so set the list box's ListIndex to -1 and then hide the form.

Private Sub cmdCancel_Click()
 lstBox.ListIndex = -1
 frmSelector.Hide
End Sub

How It Works

When the user clicks the Attach a Table button, the Click event uses the Windows File Open common dialog box to get
the destination and source files for the attachment. It then calls the Display method of frmSelector, setting blnAttach to
True to indicate that frmSelector is to display those tables eligible for attachment from the designated source file. When
the user makes a selection in frmSelector, the subroutine creates a new TableDef object and appends it to the destination
file's TableDefs collection.

When the user clicks Detach a Table, the Click event uses the Windows File Open common dialog box to get the file
from which the table is to be detached. It then calls the Display method of frmSelector again, setting blnAttach to False to
indicate that frmSelector is to display the attached tables in the designated file. When the user makes a selection in
frmSelector, the subroutine removes the selected TableDef object from the designated file's TableDefs collection.

Comments

The capability to attach external tables opens a lot of possibilities for the Visual Basic database application developer.
The DAO engine is capable of providing many services that would otherwise be inconvenient to duplicate with extensive
ODBC-related code, with a familiar object hierarchy. Also, when you need to import and export data, the capability to
attach tables comes in very handy, making a sometimes tedious process of reading from one database and writing to
another a snap. At a client/server level, the flexibility granted by the capability to attach tables from several different
external database platforms allows for an ease of data access, whether for mainframe databases, server databases, or even
several locally accessed workstation databases, without having to program for each database platform.

5.3 How do I...

Import a text file?

Problem

I periodically get downloads from a mainframe database (or other source) as delimited text files that I need to import into
my database. If I could be sure that users had Microsoft Access installed, my program could use OLE to invoke the
import capability of Access--but some users might not have a copy of Access. How can I use Visual Basic to import text
files into a database file?

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (13 of 47) [9/22/1999 1:59:25 AM]

Technique

Visual Basic has a rich variety of features for working with text files. You can employ these capabilities to open the text
file and read the text data. From that point, the problem resolves to using the delimiters in the text file to split the text into
records and fields and storing the data in the appropriate database tables. You need to be prepared to handle errors, both
the normal data access errors and any errors that incorrect input text might cause.

Steps

This How-To uses text data from the text files VENDORS.DAT and INVOICES.DAT imported into a Microsoft Access
database, ACCTSPAY.MDB. The text files use an end-of-line sequence (a carriage return followed by a line feed) as a
record delimiter and a tab character as a field delimiter. The Vendors table in the ACCTPAY.MDB has the following
fields, with [Vendor Number] as the primary key:

Vendor Number●

Name●

Address●

FEIN (Federal Employer Identification Number, required for tax reporting purposes)●

The Invoices table in the database has the following fields. The primary key is a composite of [Vendor Number] and
[Invoice Number].

Vendor Number●

Invoice Number●

Date●

Amount●

The tables are related on the [Vendor Number] field; every record in the Invoices table must have a corresponding record
in the Vendors table.

Open and run TextImport.VBP. You'll see the form shown in Figure 5.5. Click the Import Data button, and the
application imports the contents of the text files VENDORS.DAT and INVOICES.DAT into the Vendors and Invoices
tables of ACCTSPAY.MDB. Click List Vendors, and a list of the vendors imported appears in the list box at the top of
the form. Select a vendor name; if any invoices for that vendor were imported, a list of the invoices appears in the grid
control at the bottom of the form. With a vendor selected, click Vendor Details, and you'll see the vendor details form
shown in Figure 5.6.

Figure 5.5. The program's Text Import form on startup.

Figure 5.6. The program's Vendor Details form, showing vendor information.

1. Create a new project called TextImport.VBP. Rename Form1 to frmVendorDetails, and then create the objects
and properties listed in Table 5.5. Save the form as Vendors.FRM.

Table 5.5. Objects and properties for the Vendor Details form.

OBJECT PROPERTY SETTING

Form Name frmVendorDetails

Caption "Chapter 5.3 Example - Vendor Details "

Label Name lblNumber

BorderStyle 1 (Fixed Single)

Caption ""

Label Name lblName

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (14 of 47) [9/22/1999 1:59:25 AM]

javascript:popUp('05fig05.gif')
javascript:popUp('05fig06.gif')

BorderStyle 1 (Fixed Single)

Caption ""

Label Name lblAddress

BorderStyle 1 (Fixed Single)

Caption ""

Label Name lblFEIN

BorderStyle 1 (Fixed Single)

Caption ""

Label Name lblVendor

Index 0

Caption "Vendor Number:"

Label Name lblVendor

Index 1

Caption "Vendor Name:"

Label Name lblVendor

Index 2

Caption "Vendor Address:"

Label Name lblVendor

Index 3

Caption "Vendor FEIN:"

CommandButton Name cmdClose

Caption "&Close"

Default True

2. Insert the following code into the Click event of cmdClose on frmVendorDetails (this is the only code needed
for this form):

Private Sub cmdClose_Click()
 Unload frmVendorDetails
End Sub

3. Insert a second form into the project. Change its name to frmMain, and then create the objects and properties
listed in Table 5.6. Save the form as TextImp.FRM.

Table 5.6. Objects and properties for the main Text Import form.

OBJECT PROPERTY SETTING

Form Name frmMain

Caption "Chapter 5.3 Example"

ListBox Name lstVendors

Sorted True

MSFlexGrid Name grdInvoices

Cols 4

Scrollbars 2 - flexScrollBarVertical

CommandButton Name cmdImport

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (15 of 47) [9/22/1999 1:59:26 AM]

Caption "&Import Data"

CommandButton Name cmdListVendors

Caption "&List Vendors"

CommandButton Name cmdVendorDetails

Caption "&Vendor Details"

CommandButton Name cmdExit

Cancel True

Caption "Exit"

4. Insert the following code into the declarations section of frmMain. Edit the pathnames in the Const declarations
to point to the locations of the indicated files on your system.

Option Explicit
`Change this constant to whatever path you have installed the
`CD contents into.
Const DATA_PATH = "D:\VB6DBHT"
Private VendorFile As String, InvoiceFile As String, DatabaseFile As String

5. Add the following code to the Load event of frmMain. When the form loads, it calls the InitializeGrid
subroutine to set up the grid and then deletes all existing data from the Vendors and Invoices tables in the database.
You wouldn't ordinarily delete all the existing data before importing new data, but with this demonstration
program, this step is necessary if you want to run it more than once using the same input files. Otherwise, you'll get
primary key errors when you try to add new records that duplicate existing primary key values.

Private Sub Form_Load()
 Dim dbfTemp As Database
 `Assign fully qualified pathnames to the form level data file
 `variables.
 VendorFile = DATA_PATH & "\CHAPTER05\VENDORS.DAT"
 InvoiceFile = DATA_PATH & "\CHAPTER05\INVOICES.DAT"
 DatabaseFile = DATA_PATH & "\CHAPTER05\ACCTSPAY.MDB"
 ` Initialize the grid control.
 InitializeGrid
 ` Delete any existing data in the Vendors and Invoices tables.
 Set dbfTemp = _
 DBEngine.Workspaces(0).OpenDatabase(DatabaseFile)
 dbfTemp.Execute ("DELETE Vendors.* from Vendors")
 dbfTemp.Execute ("DELETE Invoices.* from Invoices")
End Sub

6. Create the following subroutine in frmMain. This code sets the grid column widths and alignments and inserts
the column titles. Because the initial state of the grid (before a vendor is selected) shows no invoices, it is
initialized with only the title row visible.

Private Sub InitializeGrid()
 With grdInvoices
 .ColWidth(0) = 0:
 .ColWidth(1) = 1300
 .ColWidth(2) = 1300
 .ColWidth(3) = 1300
 .ColAlignment(1) = flexAlignLeftCenter
 .ColAlignment(2) = flexAlignCenterCenter
 .ColAlignment(3) = flexAlignRightCenter
 .FixedAlignment(1) = flexAlignLeftCenter

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (16 of 47) [9/22/1999 1:59:26 AM]

 .FixedAlignment(2) = flexAlignCenterCenter
 .FixedAlignment(3) = flexAlignRightCenter
 .Row = 0
 .Col = 1: .Text = "Inv #"
 .Col = 2: .Text = "Date"
 .Col = 3: .Text = "Amount"
 .Rows = 1
 End With
End Sub

7. Add the following code to the Click event of cmdImport. This procedure imports vendor and invoice records
from the text files named by the form-level variables VendorFile and InvoiceFile, respectively. As the procedure
imports the file, it creates from each record an object of the class clsVendor or clsInvoice. (These classes are
defined by vendor and invoice class modules, which are discussed later.) The cmdImport_Click subroutine then
adds each clsVendor or clsInvoice object to a Collection object. One Collection object receives all the clsVendor
objects, and a second Collection object receives all clsInvoice objects. After both collections have been built, the
subroutine appends the objects in each collection to the Vendors table or Invoices table, as is appropriate.

Private Sub cmdImport_Click()
 Dim dbfTemp As Database, tblVendors As Recordset, tblInvoices _
 As Recordset
 Dim objVendor As clsVendor, objInvoice As clsInvoice
 Dim colVendors As New Collection, colInvoices _
 As New Collection
 Dim strInputLine As String, strErrMsg As String
 Dim blnNeedRollback As Boolean
 Dim intFileHandle As Integer
 On Error GoTo ImportTextError
 Screen.MousePointer = vbHourglass
 `Get the vendor text file, and create an instance
 `of objVendor for each line found in the text file,
 `passing the line to the DelimitedString property
 `of the instance of objVendor.
 intFileHandle = FreeFile
 Open VendorFile For Input As intFileHandle
 Do Until EOF(intFileHandle)
 Line Input #intFileHandle, strInputLine
 Set objVendor = New clsVendor
 objVendor.DelimitedString = strInputLine
 colVendors.Add objVendor
 Loop
 Close intFileHandle
 `Same as above, but with the invoice text file.
 intFileHandle = FreeFile:
 Open InvoiceFile For Input As intFileHandle
 Do Until EOF(intFileHandle)
 Line Input #intFileHandle, strInputLine
 Set objInvoice = New clsInvoice
 objInvoice.DelimitedString = strInputLine
 colInvoices.Add objInvoice
 Loop
 Close intFileHandle
 `Prepare for addition
 Set dbfTemp = _

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (17 of 47) [9/22/1999 1:59:26 AM]

 DBEngine.Workspaces(0).OpenDatabase(DatabaseFile)
 Set tblVendors = _
 dbfTemp.OpenRecordset("Vendors", dbOpenTable)
 Set tblInvoices = _
 dbfTemp.OpenRecordset("Invoices", dbOpenTable)
 `This is where we start the transaction processing. None
 `of the changes we make will be committed to the database
 `until the CommitTrans line, some lines below.
 Workspaces(0).BeginTrans
 blnNeedRollback = True
 `Iterate through our collection of clsVendor objects,
 `calling the StoreNewItem method and passing our newly
 `opened table.
 If colVendors.Count Then
 For Each objVendor In colVendors
 If objVendor.StoreNewItem(tblVendors) = False Then
 strErrMsg = _
 "An error occurred while importing vendor #" & _
 CStr(objVendor.Number)
 Err.Raise 32767
 End If
 Next
 End If
 `Same as above, but for invoices. (Deja vu...?)
 If colInvoices.Count Then
 For Each objInvoice In colInvoices
 If objInvoice.StoreNewItem(tblInvoices) = False
 Or objInvoice.VendorNumber = 0 Then
 strErrMsg = _
 "An error occurred while importing invoice #" & _
 objInvoice.InvoiceNumber
 Err.Raise 32767
 End If
 Next
 End If
 `Here's where the data is committed to the database.
 `Had an error occurred, we would never reach this point;
 `instead, the Rollback command in our error
 `trapping routine would have removed our changes.
 Workspaces(0).CommitTrans
 Screen.MousePointer = vbDefault
 On Error GoTo 0
Exit Sub
ImportTextError:
 Screen.MousePointer = vbDefault
 If strErrMsg = "" Then strErrMsg = _
 "The following error has occurred:" & vbCr _
 & Err.Description
 strErrMsg = strErrMsg & _
 " No records have been added to the database."
 MsgBox strErrMsg, vbExclamation
 `Here's the Rollback method; if the blnNeedRollback variable
 `is still set to True, we undo our uncommitted changes.

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (18 of 47) [9/22/1999 1:59:26 AM]

 If blnNeedRollback Then Workspaces(0).Rollback
Exit Sub
End Sub

The error handling in this subroutine requires comment. If the error is due to faulty input data, you want to give the
user enough information to identify the specific record that caused the problem. For import data errors, therefore,
the error message that will be displayed for the user is built into the body of the code. Error messages for errors
encountered when importing vendors include the vendor number; error messages for errors encountered when
importing invoices include both the vendor and the invoice numbers. Other types of errors, those not due to input
data problems, have a standard error message built into the error-handling routine.

In this application, it's highly likely that you don't want to import some of the records--you want to import all of
them or, if an error occurs, none of them. You accomplish this task by enclosing the code that actually appends the
records to the database tables between BeginTrans and CommitTrans statements. This converts all the database
modifications into a single atomic transaction. Any changes made within an atomic transaction (that is, changes
made after BeginTrans and before CommitTrans) are not irrevocably committed to the database until
CommitTrans. In this subroutine, if an error occurs between BeginTrans and CommitTrans, control is transferred
to the error-handling routine, which executes a Rollback statement. The Rollback statement tells the Jet engine,
"Back out all the changes made since the BeginTrans statement."

Rollback is executed only when the value of the Boolean variable blnNeedRollback is True. Initially,
blnNeedRollback is False and is set to True at the beginning of the transaction in the statement immediately
following BeginTrans. This provision is needed to ensure that Rollback doesn't get executed by an error that occurs
before BeginTrans--because trying to execute a Rollback outside a transaction is itself an error.

8. Add the following code to the Click event of cmdListVendors. This procedure lists the vendors in the database
and in the list box on the form. It uses the ItemData property of the list box to attach the vendor number to the
vendor name. Other procedures in the application use ItemData to uniquely identify the vendor.

Private Sub cmdListVendors_Click()
 Dim dbfTemp As Database, tblVendors As Recordset
 On Error GoTo ListVendorsError
 Set dbfTemp = _
 DBEngine.Workspaces(0).OpenDatabase(DatabaseFile, _
 False, True)
 Set tblVendors = dbfTemp.OpenRecordset("Vendors", dbOpenTable)
 If tblVendors.RecordCount <> 0 Then
 tblVendors.MoveFirst
 Do Until tbl.EOF
 lstVendors.AddItem tblVendors!Name
 lstVendors.ItemData(lstVendors.NewIndex) = _
 tblVendors![Vendor Number]
 tblVendors.MoveNext
 Loop
 End If
 tblVendors.Close
Exit Sub
ListVendorsError:
 lstVendors.Clear
 MsgBox Err.Description
End Sub

9. Add the following code to the Click event of lstVendors. This procedure retrieves the vendor number from the
selected item's ItemData value and passes that value to the FillInvoiceList routine, which fills the grid with
invoices linked to this vendor.

Private Sub lstVendors_Click()
 FillInvoiceList lstVendors.ItemData(lstVendors.ListIndex)

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (19 of 47) [9/22/1999 1:59:26 AM]

End Sub

10. Create the FillInvoiceList subroutine by entering the following code into frmMain. This list box Click event
calls FillInvoiceList when the user clicks on a vendor name. This subroutine fills the grid with information about
the invoices for the selected vendor by creating a collection of all the invoice objects with vendor numbers that
match the argument passed to the subroutine. It then cycles though the collection and adds each invoice to the grid.

Private Sub FillInvoiceList(intVendor As Integer)
 Dim dbfTemp As Database, recInvoices As Recordset
 Dim intRow As Integer, strSQL As String
 Dim colInvoices As New Collection, objInvoice As clsInvoice
 On Error GoTo FillInvoiceListError
 `Open the database & recordset used to fill the list box
 Set dbfTemp =
 DBEngine.Workspaces(0).OpenDatabase(DatabaseFile, _
 False, True)
 strSQL = "SELECT [Invoice Number] FROM Invoices " & _
 "WHERE [Vendor Number] = " & intVendor
 Set recInvoices = _
 dbfTemp.OpenRecordset(strSQL, dbOpenSnapshot)
 If recInvoices.RecordCount > 0 Then
 recInvoices.MoveFirst
 Do Until recInvoices.EOF
 Set objInvoice = New clsInvoice
 If objInvoice.Retrieve(dbfTemp, intVendor, _
 recInvoices("Invoice Number")) _
 Then colInvoices.Add objInvoice
 recInvoices.MoveNext
 Loop
 grdInvoices.Rows = colInvoices.Count + 1
 For intRow = 1 To colInvoices.Count
 Set objInvoice = colInvoices(intRow)
 objInvoice.AddToGrid grdInvoices, intRow
 Next intRow
 Else
 grdInvoices.Rows = 1
 End If
 On Error GoTo 0
Exit Sub
FillInvoiceListError:
 grdInvoices.Rows = 1: lstVendors.ListIndex = -1
 MsgBox Err.Description, vbExclamation
Exit Sub
End Sub

11. Add the following code to the Click event of cmdVendorDetails. This procedure displays a form with
information about the currently selected vendor in the list box.

Private Sub cmdVendorDetails_Click()
 Dim dbfTemp As Database
 Dim tblVendors As Recordset
 Dim intVendorNumber As Integer
 On Error GoTo VendorDetailsError
 If lstVendors.ListIndex > -1 Then
 intVendorNumber =
 lstVendors.ItemData(lstVendors.ListIndex)

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (20 of 47) [9/22/1999 1:59:26 AM]

 Set dbfTemp =
 DBEngine.Workspaces(0).OpenDatabase(DatabaseFile, _
 False, True)
 Set tblVendors = dbfTemp.OpenRecordset("Vendors", _
 dbOpenTable)
 tblVendors.Index = "PrimaryKey"
 tblVendors.Seek "=", intVendorNumber
 With frmVendorDetails
 .lblNumber = tblVendors![Vendor Number]
 .lblName = IIf(IsNull(tblVendors!Name), "", _
 tblVendors!Name)
 .lblAddress = IIf(IsNull(tblVendors!Address), "", _
 tblVendors!Address)
 .lblFEIN = IIf(IsNull(tblVendors!FEIN), "", _
 tblVendors!FEIN)
 End With
 tblVendors.Close
 frmVendorDetails.Show vbModal
 Else
 Beep
 MsgBox "You haven't selected a vendor.", vbExclamation
 End If
 On Error GoTo 0
Exit Sub
VendorDetailsError:
 MsgBox Error(Err)
Exit Sub
End Sub

12. Add the following code to the Click event of cmdExit:

Private Sub cmdExit_Click()
 End
End Sub

13. Insert a new class module into the project. Name the module clsVendor. Each object of the clsVendor class
will represent one vendor record.

14. Insert the following code into the declarations section of clsVendor. The class has five properties, maintained
in five private variables, each starting with the prefix prop. One property, propDelimitedString, is set to the "raw"
vendor data as read from the text file. The other four properties each hold a value that corresponds to a field in the
Vendors table. Because these are private variables, they are not directly accessible to routines outside the class
module, but can be accessed only through methods of the class.

Option Explicit
Private mintNumber As Integer
Private mstrCompany As String
Private mstrAddress As String
Private mstrFEIN As String
Private mstrDelimitedString As String

15. Create the following Property Let method in clsVendor. This method is passed a delimited string representing
one vendor record. It stores the passed argument as the DelimitedString property by assigning it to the private
variable mstrDelimitedString. The Property Let DelimitedString method also parses the string into fields and stores
the individual field values as the appropriate object properties.

Property Let DelimitedString(strInput As String)
 Dim strDelimiter As String, strTextNumber As String

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (21 of 47) [9/22/1999 1:59:26 AM]

 Dim intEnd As Integer, intField As Integer, intStart As _
 Integer
 Dim I As Integer
 strDelimiter = Chr$(9): mstrDelimitedString = strInput
 intStart = 1: intField = 1
 Do
 intEnd = InStr(intStart, strInput, strDelimiter)
 If intEnd = 0 Then intEnd = Len(strInput) + 1
 Select Case intField
 Case 1
 strTextNumber = ExtractField(intStart, intEnd)
 If IsNumeric(strTextNumber) Then
 If strTextNumber >= 1 And _
 strTextNumber <= 32767 Then
 mintNumber = Val(strTextNumber)
 Else
 mintNumber = 0
 End If
 Else
 mintNumber = 0
 End If
 Case 2
 mstrCompany = ExtractField(intStart, intEnd)
 Case 3
 mstrAddress = ExtractField(intStart, intEnd)
 Case 4
 mstrFEIN = ExtractField(intStart, intEnd)
 End Select
 intStart = intEnd + 1: intField = intField + 1
 Loop While intEnd < Len(strInput) And intField <= 4
End Property

16. Create ExtractField as a private function in clsVendor. As a private function, it can be called only by other
procedures within the class module. ExtractField returns a selection of text from the private variable
mstrDelimitedString. The text to return is defined by the start and end positions received as arguments.

Private Function ExtractField(intStart As Integer, intEnd As
 Integer)
 ExtractField = Mid$(mstrDelimitedString, intStart, _
 (intEnd - intStart))
End Function

17. Create the public method StoreNewItem in clsVendor. This method inserts the object into the database as a
new record. It returns True if it successfully stores the object, it returns False otherwise. StoreNewItem calls a
private function, WriteItem, to actually assign property values to fields. Splitting the code into two functions
allows the WriteItem code to be shared with another routine that would update an existing record. (This
demonstration program does not include such a routine, but an actual application might.)

Public Function StoreNewItem(rs As Recordset) As Boolean
 On Error GoTo StoreNewError
 rs.AddNew
 If WriteItem(rs) Then
 rs.Update
 Else
 GoTo StoreNewError
 End If

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (22 of 47) [9/22/1999 1:59:26 AM]

 StoreNewItem = True
 On Error GoTo 0
Exit Function
StoreNewError:
 StoreNewItem = False
 Exit Function
End Function

18. Create the private function WriteItem in clsVendor with the following code. It assigns the current property
values to the Vendor table fields in the current record. WriteData returns True unless an error occurs.

Private Function WriteItem(recTemp As Recordset) As Boolean
 On Error GoTo WriteItemError
 recTemp("Vendor Number") = mintNumber
 recTemp("Name") = mstrCompany
 recTemp("Address") = mstrAddress
 recTemp("FEIN") = mstrFEIN
 WriteItem = True
 On Error GoTo 0
Exit Function
WriteItemError:
 WriteItem = False
 Exit Function
End Function

19. Create the following four Property Get methods in clsVendor. These methods allow outside routines to access
the values of the record represented by the object.

Property Get Number() As Integer
 Number = mintNumber
End Property
Property Get Company() As String
 Company = mstrCompany
End Property
Property Get Address() As String
 Address = mstrAddress
End Property
Property Get FEIN() As String
 FEIN = mstrFEIN
End Property

20. Insert a new class module into the project. Name the module clsInvoice. Each object of the clsInvoice class
will represent one invoice record.

21. Insert the following code into the declarations section of clsInvoice. Like clsVendor, clsInvoice has five
properties maintained in five private variables, each starting with the prefix prop. One property,
mstrDelimitedString, is set to the "raw" invoice data as read from the text file. The other four properties each
contain a value that corresponds to a field in the Invoices table. Because these are all private variables, they are not
directly accessible to routines outside the class module but can be accessed only through public methods of the
class.

Option Explicit
Const FLD_VENNUMBER = 1
Const FLD_INVNUMBER = 2
Const FLD_DATE = 3
Const FLD_AMOUNT = 4
Private mintVendorNumber As Integer
Private mstrInvoiceNumber As String

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (23 of 47) [9/22/1999 1:59:26 AM]

Private mdatDate As Date
Private mcurAmount As Currency
Private mstrDelimitedString As String

22. Copy these four routines from the clsVendor class module and paste them into clsInvoice: Let DelimitedString,
ExtractField, StoreNewItem, and WriteItem. (In the following steps, you will modify Let Delimited String and
WriteItem. ExtractField and StoreNewItem require no modifications.)

23. In clsInvoice, modify the six program lines shown in bold in the following listing. (All the statements to be
modified are in the Select Case structure.)

Property Let DelimitedString(strInput As String)
 Dim strDelimiter As String
 Dim intEnd As Integer, intField As Integer, intStart As _
 Integer
 Dim I As Integer
 Dim strTextNumber As String
 strDelimiter = Chr$(9): mstrDelimitedString = strInput
 intStart = 1: intField = 1
 Do
 intEnd = InStr(intStart, strInput, strDelimiter)
 If intEnd = 0 Then intEnd = Len(strInput) + 1
 Select Case intField
 Case 1
 strTextNumber = ExtractField(intStart, intEnd)
 If IsNumeric(strTextNumber) Then
 If strTextNumber >= 1 And strTextNumber <= _
 32767 Then
 mintVendorNumber = Val(strTextNumber)
 Else
 mintVendorNumber = 0
 End If
 Else
 mintVendorNumber = 0
 End If
 Case 2
 mstrInvoiceNumber = ExtractField(intStart, intEnd)
 Case 3
 mdatDate = CDate(ExtractField(intStart, intEnd))
 Case 4
 mcurAmount = CCur(ExtractField(intStart, intEnd))
 End Select
 intStart = intEnd + 1: intField = intField + 1
 Loop While intEnd < Len(strInput) And intField <= 4
End Property

24. Make the four modifications shown in bold to the WriteItem function of clsInvoice:

Private Function WriteItem(recTemp As Recordset) As Boolean
 On Error GoTo WriteItemError
 recTemp("Vendor Number") = mintVendorNumber
 recTemp("Invoice Number") = mstrInvoiceNumber
 recTemp("Date") = mdatDate
 recTemp("Amount") = mcurAmount
 WriteItem = True
 On Error GoTo 0

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (24 of 47) [9/22/1999 1:59:26 AM]

Exit Function
WriteItemError:
 WriteItem = False
Exit Function
End Function

25. Create the public Retrieve method in clsInvoice. This method retrieves the invoice with the primary key values
named in the arguments from the Invoices table and assigns the field values to the object's properties. It returns
True if a corresponding record is located and successfully read; it returns False otherwise.

Public Function Retrieve(dbfTemp As Database, VendorNumber As _
 Integer, _
InvoiceNumber As String) As Boolean
 Dim recTemp As Recordset
 On Error GoTo RetrieveError
 Set recTemp = dbfTemp.OpenRecordset("Invoices", _
 dbOpenTable, dbReadOnly)
 recTemp.Index = "PrimaryKey"
 recTemp.Seek "=", VendorNumber, InvoiceNumber
 DBEngine.Idle dbFreeLocks
 If Not recTemp.NoMatch Then
 mintVendorNumber = VendorNumber
 mstrInvoiceNumber = InvoiceNumber
 mdatDate = recTemp("Date")
 mcurAmount = recTemp("Amount")
 Retrieve = True
 Else
 Retrieve = False
 End If
 On Error GoTo 0
Exit Function
RetrieveError:
 Retrieve = False
Exit Function
End Function

26. Create the AddToGrid method in clsInvoice. This method receives a grid and grid row as its arguments and
inserts the object's property values into the grid row.

Public Sub AddToGrid(grdTemp As MSFlexGrid, intGridRow As Integer)
 With grdTemp
 .Row = intGridRow
 .Col = 1: .Text = mstrInvoiceNumber
 .Col = 2: .Text = Format$(mdatDate, "Short Date")
 .Col = 3: .Text = Format$(mcurAmount, "Currency")
 End With
End Sub

27. Create the following four Property Get methods in clsInvoice. These public methods allow outside routines to
access the values of the record represented by the object.

Property Get VendorNumber() As Integer
 VendorNumber = mintVendorNumber
End Property
Property Get InvoiceNumber() As String
 InvoiceNumber = mstrInvoiceNumber
End Property

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (25 of 47) [9/22/1999 1:59:26 AM]

Property Get InvoiceDate() As Date
 InvoiceDate = mdatDate
End Property
Property Get Amount() As Currency
 Amount = mcurAmount
End Property

How It Works

The Form_Load event of frmMain initializes the grid and deletes any existing values from the database tables. (As noted
in the discussion for step 5, you probably would not delete the records in a real production application.) When the user
clicks the Import Data button, the data is imported from the text files into objects of the clsVendor and clsInvoice classes,
and these objects are collected into Collection classes. The contents of each Collection class are then written to the
database tables.

The cmdImport_Click routine controls the import process and does the portion of the work that does not require
knowledge of the structure of the database tables or the format of the individual records within the imported text strings.
The processing that does require such knowledge is encapsulated into the objects by providing methods within the
objects to perform the needed operations.

Each line in the vendor and invoice input files represents one record. The cmdImport_Click routine reads a line, creates a
new clsVendor or clsInvoice object, and passes the record to the object through the object's Property Let DelimitedString
method. Property Let DelimitedString parses the text string into individual fields and assigns the field values to the
object's property variables. Later, cmdImport_Click cycles through each of the collection objects and causes each object
to store itself into the database by invoking the object's StoreNewItem method.

When the user clicks the List Vendors button, cmdListVendors_Click retrieves the vendor list from the Vendors table and
displays it in the list box. When the user then clicks on a vendor name, the list box Click routine passes the vendor
number of the selected vendor to frmMain's FillInvoiceList subroutine. FillInvoiceList creates a snapshot consisting of
the invoice numbers of invoices for which the vendor numbers match the selected vendor. It then creates a clsInvoice
object for each invoice, causes each object to retrieve itself from disk by invoking the object's Retrieve method, and adds
the invoice object to a Collection object. When all the matching invoices have been retrieved, the list box Click
subroutine cycles through the collection, causing each invoice object in the collection to display itself in a grid row.

Comments

A significant amount of code is duplicated, or duplicated with minor changes, between the two classes in this How-To. If
Visual Basic were a full object-oriented programming language that supported class hierarchies with inheritance, this
duplication would be unnecessary. The common code could be put into a parent object from which both clsVendor and
clsInvoice would inherit. Each class would then add methods and override inherited methods as necessary to implement
its unique needs.

Because Visual Basic doesn't have this feature, another approach would be to put the identical and nearly identical
routines in code modules as Public procedures and let the class routines call them as needed. This option would certainly
reduce code size, but it would also introduce two problems:

Using Public procedures in code modules violates the object-oriented programmer's principle of encapsulation.
Class methods have privileged access to the object's private data (that is, its properties). Converting class methods
to Public procedures in a code module means that any data that the "methods" share can also be accessed by other
routines in the same code module.

●

The more a shared routine deviates from a common form, the harder it is to implement this option. In the example
in this How-To, you have two record types, and each has four fields; so a four-option Select Case structure in the
Property Let DelimitedString procedure fits both. What if you had 15 records, varying in size from 2 fields to 40?
Yes, it could be done by passing parameters and lots of convoluted If...Then logic. No, you wouldn't want to write
it, and you surely wouldn't want to maintain it.

●

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (26 of 47) [9/22/1999 1:59:26 AM]

The bottom line: If encapsulation and simple code are more important to you than the smallest possible code size, use the
technique described in this How-To. If minimizing the amount of code is more important, consider using Public
procedures in code modules.

5.How do I...

Save graphics in a database file?

Problem

I have an application that tracks employee information for generating company ID cards, and I need to include a picture
of the employee in the database. How can I do this from Visual Basic?

Technique

There are two basic techniques, each with its benefits and detriments, for saving graphical data in a Microsoft Access
database. One method, the easier but more limiting of the two, is to use a PictureBox control as a data-bound control and
link it to an OLE Object field in the Access database (the data type is represented by the constant dbLongBinary),
allowing direct loading and saving of data to the database by use of the LoadPicture and SavePicture commands. This
technique makes it simple to import pictures in common formats, such as the Windows bitmap (.BMP) format, the
Graphic Interchange Format (.GIF), or the JPEG (.JPG) format, used by many graphics-processing software packages.
However, the data is saved as raw binary information and is difficult to use outside of your application without allowing
for an import/export feature in your Visual Basic code.

The second technique, which is more versatile, but much more complex, is to use an OLE Container control as a
data-bound control, linking it to an OLE Object field in a manner similar to that used by the PictureBox control discussed
in the first technique. The data, however, is stored as an OLE object, available for export by any application that can
employ OLE Automation techniques for importing the data. This technique has its own problems. The data is linked to a
specific OLE class; your user might not be able to work with the data from another application if he does not have that
specific OLE class registered by the external application. Also, it assumes that the external application, in most instances,
will be used to edit the object; this adds overhead to your application that might not be needed.

The first technique tends to be more commonly employed, but the second technique is used enough to make it
worthwhile to provide further information on the subject. The Microsoft Knowledge Base, an excellent tool for
programming research, provides several articles on the subject. Table 5.7 provides the names and article IDs of several
relevant Knowledge Base entries.

Table 5.7. Knowledge Base entries.

ARTICLE ID NAME AND DESCRIPTION

Q147727 "How To View Photos from the NWIND.MDB Database in VB 4.0." Although the article is for VB 4.0,
its code is still up-to-date. The code provides a complete but complex method of loading the stored
graphics in NWIND.MDB, a database provided with Visual Basic, into a PictureBox control with some
API prestidigitation. Very educational.

Q103115 "PRB: Invalid Picture Error When Trying To Bind Picture Control." If you have ever attempted to bind a
PictureBox to an OLE Object database field and received this error, it's due to the fact that the control
expects bitmap information, not an OLE object. The article explains in more detail.

Q153238 "HOW TO: Use GetChunk and AppendChunk Methods of RDO Object." This article describes how to
interact with Binary Large Objects (BLOBs) with certain RDO data sources, such as Microsoft SQL
Server.

Steps

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (27 of 47) [9/22/1999 1:59:26 AM]

Open and run PicLoad.VBP. You'll see a form appear, similar to the one displayed in Figure 5.7. Click the Load Picture
button, and a File Open common dialog appears. Select a bitmap file, and click the Open button. That bitmap now
displays in the center of the form, and it is added to the database. Move forward, then back, with the data control and the
graphic reappears, loaded from the database.

Figure 5.7. The saving graphics form at startup.

1. Create a new project called PicLoad.VBP. Create the objects and properties listed in Table 5.8, and save the
form as PicLoad.FRM.

Table 5.8. Objects and properties for the Picture Load form.

OBJECT PROPERTY SETTING

Form Name Form1

Caption "Chapter 5.4 Example"

Data Name dtaData

Caption "Publishers"

RecordSource "Publishers"

Label Name lblPublishers

Caption "Publisher: "

Label Name lblPublisherName

Caption ""

BorderStyle 1 - Fixed Single

DataSource dtaData

DataField "Name"

PictureBox Name picPicture

DataSource dtaData

DataField "Logo"

CommandButton Name cmdLoad

Caption "&Load Picture"

CommandButton Name cmdClose

Caption "&Close"

Cancel True

CommonDialog Name cdlPicture

Filter "Bitmap files (*.bmp)|*.bmp|JPEG files (*.jpg, *.jpeg)|*.jpg;*.jpeg|GIF
Files (*.gif)|*.gif|All Files (*.*)|*.*"

DefaultExt "BMP"

Flags &H1000

2. Add the following code to the declarations section of Form1:

Option Explicit
Const BIBLIO_PATH = _
 "C:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"

3. Add the following subroutine to Form1. The CheckForLogoField subroutine checks our beloved BIBLIO.MDB
and adds a new field to the Publishers table, called Logo. Our graphics loading and saving will be done from and to
that field when run.

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (28 of 47) [9/22/1999 1:59:26 AM]

javascript:popUp('05fig07.gif')

Private Sub CheckForLogoField()
 Dim dbfTemp As Database, tdfTemp As TableDef, fldTemp As Field
 Dim blnLogoFieldExists As Boolean
 On Error GoTo BadCheck
 Set dbfTemp = Workspaces(0).OpenDatabase(BIBLIO_PATH)
 For Each tdfTemp In dbfTemp.TableDefs
 If tdfTemp.Name = "Publishers" Then
 For Each fldTemp In tdfTemp.Fields
 If fldTemp.Name = "Logo" Then
 blnLogoFieldExists = True
 Exit For
 End If
 Next
 Exit For
 End If
 Next
 If blnLogoFieldExists = False Then
 If tdfTemp.Updatable Then
 Set fldTemp = New Field
 With fldTemp
 .Name = "Logo"
 .Type = dbLongBinary
 End With
 tdfTemp.Fields.Append fldTemp
 Else
 MsgBox "The database needs to be updated " & _
 to Jet 3.0 format. " & _
 "See How-To 5.7 for more information.", " & _
 vbExclamation
 End If
 End If
 On Error GoTo 0
Exit Sub
BadCheck:
 MsgBox Err.Description, vbExclamation
 End
End Sub

4. Add the following code to the Load event of Form1. The form will, when loading, check the BIBLIO.MDB
database for the existence of our graphics field via the CheckForLogoField subroutine, constructed in the
preceding step.

Private Sub Form_Load()
 dtaData.DatabaseName = BIBLIO_PATH
 CheckForLogoField
End Sub

5. Add the following code to the Click event of cmdLoad. The Load Picture button uses the CommonDialog
control cdlPicture to enable the user to select a graphics file to load into the database. When a file is selected, the
LoadPicture method is used to copy the information from the file to the PictureBox control, picPicture. Because
picPicture is data-bound, the database field Logo now contains that graphics information. When the data control is
moved to a different record, that information is committed to the database.

Private Sub cmdLoad_Click()
 On Error GoTo CancelLoad
 cdlPicture.ShowOpen

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (29 of 47) [9/22/1999 1:59:26 AM]

 On Error GoTo BadLoad
 picPicture = LoadPicture(cdlPicture.filename)
 On Error GoTo 0
 On Error GoTo 0
Exit Sub
CancelLoad:
 If Err.Number <> cdlCancel Then
 MsgBox Err.Description, vbExclamation
 Else
 Exit Sub
 End If
BadLoad:
 MsgBox Err.Description, vbExclamation
 Exit Sub
End Sub

6. Add the following code to the Click event of cmdClose:

Private Sub cmdClose_Click()
 End
End Sub

How It Works

When Form1 loads, it sets up the dtaData data control, using the BIBLIO_PATH constant to set the DatabaseName
property and point it at BIBLIO.MDB. Then, using the CheckForLogoField routine, it confirms that the [Logo] field
exists in the [Publishers] table; if the [Logo] field does not exist, it adds the field. Because the PictureBox control is
bound to the data control, all aspects of displaying the data from the [Logo] field are handled as any other bound control,
including field updates. The cmdLoad button allows new data to be added to the field using the LoadPicture method.
Because the new data is added to the bound control, the loaded picture is saved to the database and is automatically
displayed when the record is again shown.

Comments

The method previously detailed is quick to implement and makes ensuring security easy. The data stored in the Logo
field is stored as raw binary data; as such, it's not recognized as an OLE object and is not easily edited. This is also the
primary drawback to this method, making it less portable (not easily used by other applications). This method does
conserve space, because the OLE object requires other information stored with it to describe what it is, how it can be
processed, and so on. But for sheer flexibility, the OLE object approach is superior, and the articles mentioned in Table
5.8 should be reviewed. Be warned, however, that the information covered in those articles is advanced and should be
reviewed only when you are confident in your understanding of the technique demonstrated in this How-To.

5.5 How do I...

Make sure that an operation involving multiple tables is not left partially
completed?

Question

I have an operation that requires that several tables be updated. Because of the nature of the operation, I want all the
tables to be updated--or, if an error occurs, none of the tables to be updated. How can I ensure that only complete
operations are applied to my database?

Technique

In database parlance, a transaction is a single logical operation that can involve multiple physical operations. Take, for

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (30 of 47) [9/22/1999 1:59:26 AM]

example, a simple transaction in a banking environment, one in which money is withdrawn from a checking account and
deposited to a savings account. If the money is withdrawn from the checking account but not applied to the savings
account, the depositor will be unhappy. If the money is deposited to the savings account but never withdrawn from the
checking account, the bank will be equally unhappy.

Various things might go wrong to cause the update to either account to fail. There might be a power failure or an error in
the program. In a multiuser environment, the table representing one of the accounts might be locked by another user.
Because it is important that both accounts be updated--or that neither account be updated--there needs to be some way to
ensure that if any part of the transaction fails, the entire transaction is abandoned.

To tell Visual Basic and the Jet database engine to enforce transaction integrity, you enclose (or "wrap") all the program
code implementing the transaction between two statements. The statement BeginTrans tells the database engine, "The
transaction starts here. From here on, don't actually update the database. Make sure that it's possible to perform every
operation I specify, but instead of actually changing the database, write the changes to a memory buffer." The statement
CommitTrans tells the engine, "There have been no errors since the last BeginTrans, and this is the end of the transaction.
Go ahead and write the changes to the database." The process of "making the changes permanent" is known as
committing the transaction.

You can cancel the transaction in one of two ways. One method is to close the Workspace object without executing the
CommitTrans statement--that automatically cancels the transaction. Another way, the preferred way, is to execute a
Rollback statement. Rollback simply tells the database engine, "Cancel the transaction." Upon calling Rollback, the
database is set back to the untouched state it was in before the transaction occurred.

The normal way to use these statements is to turn on error trapping before executing the BeginTrans statement. Wrap the
operations that implement the transaction between a BeginTrans...CommitTrans pair. If an error occurs, execute the
Rollback statement as part of your error routine.

Here's an example. Assume that WithdrawFromChecking is a subroutine that withdraws funds from a checking account,
and that DepositToSaving deposits funds to a savings account. Both take two arguments: the account number and the
amount.

Sub CheckingToSaving(strAccountNumber as String, curAmount as Currency)
 On Error Goto CheckingToSavingError
 BeginTrans
 WithdrawFromChecking strAccountNumber, curAmount
 DepositToSaving strAccountNumber, curAmount
 CommitTrans
 Exit Sub
CheckingToSavingError:
 Rollback
 MsgBox Err.Description, vbExclamation
 Exit Sub
End Sub

If an error occurs in either the WithdrawFromChecking or the DepositToSaving routine, the error trapping causes
execution to branch to the CheckingToSavingError label. The code there executes the Rollback statement to terminate the
transaction, displays an error message, and then exits from the subroutine. You can, of course, implement more
sophisticated error handling, but the principle illustrated is the same--in the error routine, cancel the pending transaction
with a Rollback.

Steps

Open and run the project TRANSACT.VBP. The form shown in Figure 5.8 appears. Enter the following record:

Author: Heyman, Bill [type this in as a new entry]
Title: Visual Basic 6.0 Database How-To
Publisher: Sams [select from the list]

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (31 of 47) [9/22/1999 1:59:26 AM]

ISBN: 0-0000000-0-0 [not the actual ISBN!]
Year Published: 1998

Click Save. The record is saved and the form is cleared, ready for another entry. Enter the same data again, this time
choosing the author's name from the author list. Be sure to enter exactly the same ISBN. Click Save, and an error
message should appear. The ISBN number is the primary key of the Titles table, and you cannot save two records with
identical primary keys. Because this application uses the transaction protection features of the Jet engine and the error
occurred within the transaction, no changes were made to the database.

Figure 5.8. The Transactor form on startup.

1. Create a new project called Transact.VBP. Use Form1 to create the objects and properties listed in Table 5.9,
and save the form as TRANSACT.FRM.

Table 5.9. Objects and properties for the Transactor form.

OBJECT PROPERTY SETTING

Form Name Form1

Caption "Chapter 5.5 Example"

ComboBox Name cboAuthor

Sorted True

ComboBox Name cboPublisher

Sorted True

TextBox Name txtYearPublished

Text ""

TextBox Name txtISBN

Text ""

TextBox Name txtTitle

Text ""

CommandButton Name cmdSave

Caption "&Save"

Default True

CommandButton Name cmdClose

Cancel True

Caption "&Close"

Label Name lblTransact

Index 0

Caption "Author:"

Label Name lblTransact

Index 1

Caption "Title:"

Label Name lblTransact

Index 2

Caption "Publisher:"

Label Name lblTransact

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (32 of 47) [9/22/1999 1:59:26 AM]

javascript:popUp('05fig08.gif')

Index 3

Caption "ISBN:"

Label Name lblTransact

Index 4

Caption "Year Published:"

2. Add the following code to the declarations section of Form1:

Option Explicit
Const BIBLIO_PATH = "C:\Program Files\Microsoft Visual Studio\VB6\Biblio.MDB"
Const AUTHOR_LIST = 1
Const PUBLISHER_LIST = 2
Private blnFormIsDirty As Boolean
Private blnRefillAuthorList As Boolean
Private blnRefillPublisherList As Boolean

3. Enter the following code as the Load event of Form1. The event makes use of the FillList subroutine, explained
in the next step, to populate the Authors and Publishers combo boxes. It then sets the blnFormIsDirty variable to
False, meaning that no data has yet been changed in the form.

Private Sub Form_Load()
 FillList AUTHOR_LIST: FillList PUBLISHER_LIST
 blnFormIsDirty = False
End Sub

4. Create the FillList subroutine in Form1 with the following code. This subroutine, depending on the list type,
retrieves a list of authors or publishers and loads them into their respective combo boxes.

Sub FillList(intListType As Integer)
 Dim cboTemp As ComboBox
 Dim dbfTemp As Database, recTemp As Recordset
 On Error GoTo FillListError
 Set dbfTemp = DBEngine.Workspaces(0).OpenDatabase(BIBLIO_PATH)
 Select Case intListType
 Case AUTHOR_LIST
 Set cboTemp = cboAuthor
 Set recTemp = dbfTemp.OpenRecordset(_
 "SELECT [Au_ID], " & _
 "[Author] FROM [Authors]")
 Case PUBLISHER_LIST
 Set cboTemp = cboPublisher
 Set recTemp = dbfTemp.OpenRecordset(_
 "SELECT [PubID], " & _
 "[Name] FROM [Publishers]")
 End Select
 cboTemp.Clear
 If recTemp.RecordCount Then
 recTemp.MoveFirst
 Do
 cboTemp.AddItem recTemp.Fields(1)
 cboTemp.ItemData(cboTemp.NewIndex) = recTemp.Fields(0)
 recTemp.MoveNext
 Loop Until recTemp.EOF
 End If
Exit Sub

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (33 of 47) [9/22/1999 1:59:26 AM]

FillListError:
 Dim strErrMsg As String
 strErrMsg = "Error while filling " & _
 IIf(intListType = AUTHOR_LIST, "Author", "Publisher") & _
 " list."
 strErrMsg = strErrMsg & vbCr & Err.Number & " - " & _
 Err.Description
 MsgBox strErrMsg, vbCritical
 End
End Sub

5. Create the SaveRecord function in Form1 with the following code. SaveRecord creates a transaction by
wrapping a series of database-updating statements between BeginTrans and CommitTrans statements. If an error
occurs anywhere within the transaction, the SaveError error-handling routine is called. SaveError uses a Rollback
statement to cancel the transaction and then informs the user of the specific error.

Function SaveRecord() As Boolean
 Dim lngAuthorID As Long, lngPublisherID As Long
 Dim dbfTemp As Database, recTemp As Recordset
 On Error GoTo SaveError
 Workspaces(0).BeginTrans
 If cboAuthor.ListIndex = -1 Then
 If cboAuthor.Text = "" Then Error 32767
1000 lngAuthorID = CreateAuthor(cboAuthor.Text)
 blnRefillAuthorList = True
 Else
 lngAuthorID = cboAuthor.ItemData(cboAuthor.ListIndex)
 End If
 If cboPublisher.ListIndex = -1 Then
 If cboPublisher.Text = "" Then Error 32766
1050 lngPublisherID = CreatePublisher(cboPublisher.Text)
 blnRefillPublisherList = True
 Else
 lngPublisherID = _
 cboPublisher.ItemData(cboPublisher.ListIndex)
 End If
 If txtTitle <> "" And txtISBN <> "" Then
 Set dbfTemp = _
 DBEngine.Workspaces(0).OpenDatabase(BIBLIO_PATH)
1100 Set recTemp = dbfTemp.OpenRecordset(_
 "Titles", dbOpenTable)
 With recTemp
 .AddNew
 ![PubID] = lngPublisherID
 ![ISBN] = txtISBN
 ![Title] = txtTitle
 ![Year Published] = txtYearPublished
 .Update
 End With
1150 Set recTemp = dbfTemp.OpenRecordset(_
 "Title Author", dbOpenTable)
 With recTemp
 .AddNew
 ![Au_ID] = lngAuthorID

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (34 of 47) [9/22/1999 1:59:26 AM]

 ![ISBN] = txtISBN
 .Update
 End With
 Else
 If txtTitle = "" Then Error 32765 Else Error 32764
 End If
 Workspaces(0).CommitTrans
 On Error GoTo SaveErrorNoRollback
 ClearForm
 blnFormIsDirty = False
 SaveRecord = True
 On Error GoTo 0
Exit Function
SaveError:
 Dim strErrMsg As String
 Workspaces(0).Rollback
 Select Case Err
 Case 32767
 strErrMsg = "You have not entered an author name"
 Case 32766
 strErrMsg = "You have not entered a publisher name"
 Case 32765
 strErrMsg = "You have not entered a title"
 Case 32764
 strErrMsg = "You have not entered an ISBN number"
 Case Else
 Select Case Erl
 Case 1000
 strErrMsg = "Error " & Err.Number & _
 " (" & Err.Description & _
 "} encountered creating new Authors " & _
 "record."
 Case 1050
 strErrMsg = "Error " & Err.Number &
 " (" & Err.Description & _
 "} encountered creating new Publishers " _
 "& record."
 Case 1100
 strErrMsg = "Error " & Err.Number & _
 " (" & Err.Description & _
 "} encountered creating new Titles " & _
 "record."
 Case 1150
 strErrMsg = "Error " & Err.Number
 & " (" & Err.Description & _
 "} encountered creating new Title Author " _
 "& record."
 Case Else
 strErrMsg = Err.Description
 End Select
 End Select
 MsgBox strErrMsg, vbExclamation
 SaveRecord = False

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (35 of 47) [9/22/1999 1:59:27 AM]

Exit Function
SaveErrorNoRollback:
 MsgBox Err.Description, vbExclamation
 Resume Next
End Function

Errors are generated by Visual Basic (or the Jet engine) for various reasons. To enable the display of an
informative error message, line numbers are used within the transaction, and the error-handling routine uses these
line numbers to tell the user where the error occurred.

The function also employs user-generated errors--the Error statement followed by an error number in the 32000
range. User-handler errors are set when the application detects that the user has entered data the application
"knows" is incorrect--for example, if the user has failed to enter an author. These user errors have the same effect
as the Visual Basic-generated errors: They call the error handler, which cancels the transaction. The error handler
uses the user error number to display an informative error message; this lets the user correct the error and try to
save again.

After CommitTrans has been executed, a different error routine must be used, because the original error routine
contains a Rollback statement. The CommitTrans closes the pending transaction, and trying to execute a Rollback
when there is no pending transaction will cause an error.

6. Enter the following code in Form1 as the CreateAuthor function. CreateAuthor creates a new record in the
Authors table and returns the Au_ID assigned to the new author.

Function CreateAuthor(strAuthorName As String) As Long
 Dim dbfTemp As Database, recTemp As Recordset
 Set dbfTemp = DBEngine.Workspaces(0).OpenDatabase(BIBLIO_PATH)
 Set recTemp = dbfTemp.OpenRecordset("Authors", dbOpenTable)
 With recTemp
 .AddNew
 ![Author] = strAuthorName
 .Update
 .Bookmark = .LastModified
 End With
 CreateAuthor = recTemp![Au_ID]
End Function

7. Enter the following code in Form1 as the CreatePublisher function. CreatePublisher creates a new record in the
Publishers table and returns the PubID assigned to the new publisher.

Function CreatePublisher(strPublisherName As String) As Long
 Dim dbfTemp As Database, recTemp As Recordset
 Dim lngLastID As Long
 Set dbfTemp = DBEngine.Workspaces(0).OpenDatabase(BIBLIO_PATH)
 Set recTemp = dbfTemp.OpenRecordset("Publishers", dbOpenTable)
 With recTemp
 .Index = "PrimaryKey"
 .MoveLast
 lngLastID = ![PubID]
 .AddNew
 ![PubID] = lngLastID + 1
 ![Name] = strPublisherName
 .Update
 End With
 CreatePublisher = lngLastID + 1
End Function

8. Enter the following code in Form1 as the ClearForm subroutine. ClearForm clears the text and combo boxes on

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (36 of 47) [9/22/1999 1:59:27 AM]

the form. If the previous record resulted in a new author or publisher being added, ClearForm refreshes the
appropriate combo box to put the new author or publisher into the list.

Sub ClearForm()
 If blnRefillAuthorList Then
 FillList AUTHOR_LIST
 blnRefillAuthorList = False
 Else
 cboAuthor.ListIndex = -1
 End If
 If blnRefillPublisherList Then
 FillList PUBLISHER_LIST
 blnRefillPublisherList = False
 Else
 cboPublisher.ListIndex = -1
 End If
 ` Clear the text boxes.
 txtTitle = ""
 txtISBN = ""
 txtYearPublished = ""
End Sub

9. Enter the following code into Form1 as the Click event of cmdClose. If the form has an unsaved record, the
subroutine gives the user a chance to save the record or cancel the close event.

Private Sub cmdClose_Click()
 If blnFormIsDirty Then
 Select Case MsgBox("Do you want to save the current " & _
 record?", _
 vbQuestion + vbYesNoCancel)
 Case vbYes
 If SaveRecord() = False Then Exit Sub
 Case vbNo
 End
 Case vbCancel
 Exit Sub
 End Select
 End If
 End
End Sub

10. Enter the following five subroutines into Form1 as the Change events for txtISBN, txtTitle, txtYearPublished,
cboAuthor, and cboPublisher. Each of these event routines sets the blnFormIsDirty flag when the user types an
entry into the control.

Private Sub txtISBN_Change()
 blnFormIsDirty = True
End Sub
Private Sub txtTitle_Change()
 blnFormIsDirty = True
End Sub
Private Sub txtYearPublished_Change()
 blnFormIsDirty = True
End Sub
Private Sub cboAuthor_Change()
 blnFormIsDirty = True

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (37 of 47) [9/22/1999 1:59:27 AM]

End Sub
Private Sub cboPublisher_Change()
 blnFormIsDirty = True
End Sub

11. Enter the following two subroutines into Form1. These subroutines set the blnFormIsDirty flag when the user
changes the entry in one of the combo boxes by selecting an item from the list.

Private Sub cboAuthor_Click()
 If cboAuthor.ListIndex <> -1 Then blnFormIsDirty = True
End Sub
Private Sub cboPublisher_Click()
 If cboPublisher.ListIndex <> -1 Then blnFormIsDirty = True
End Sub

How It Works

When the user clicks Save, the cmdSave_Click event calls SaveRecord, which does most of the work. If the user has
entered a new author or new publisher (instead of selecting an existing item from the author or publisher list),
SaveRecord calls a function (CreateAuthor or CreatePublisher) to create the new record. It then saves the record. If an
error occurs (either a Visual Basic error or a user-generated error), the error handler in SaveRecord rolls back the
transaction.

Comment

The main use of transactions is to maintain integrity when you're updating more than one table as part of a single logical
operation. You can also use BeginTrans, CommitTrans, and Rollback when you're performing multiple operations on a
single table and you want to make sure that all the operations are performed as a unit.

Transactions can also speed up some database operations. Under normal conditions, every time you use the Update
method, the Jet engine writes the changes to disk. Multiple small disk writes can significantly slow down an application.
Executing a BeginTrans holds all the operations in memory until CommitTrans executes, which can noticeably improve
execution time.

The transaction features described in this How-To work when you are using Microsoft Access database files and most of
the other file types supported by the Jet engine. Some database types--Paradox is one example--do not support
transactions. You can check whether the database supports transactions by reading the Transactions property of the
database object:

Dim dbfTemp as Database
Dim blnSupportsTransactions as Boolean
...
blnSupportsTransactions = dbfTemp.Transactions
...

Using the transactions statements BeginTrans, CommitTrans, and Rollback with a database that does not support
transactions does not generate an error--but you need to be aware that you won't get the transaction integrity protection
these statements would normally provide.

5.6 How do I...

Compact a database or repair a corrupted database?

Question

I know that Microsoft Access provides the capability to make a database smaller by compacting it. Microsoft Access also
enables me to repair a database that has been corrupted. How can I perform these operations from my Visual Basic

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (38 of 47) [9/22/1999 1:59:27 AM]

program?

Technique

When you delete data (or database objects) from a Microsoft Access database file, the Jet engine does not automatically
shrink the size of the file to recover the no-longer-needed space. If the user deletes a significant amount of data, the file
size can grow very large, and include a lot of wasted space. You can use the CompactDatabase method of the DBEngine
object to recover this space.

Occasionally, a database file becomes corrupted by a General Protection Fault, a power failure, a bug in the database
engine, or some other cause. Most corrupted databases can be restored by the RepairDatabase method of the DBEngine
object.

Steps

Open the project REPAIR.VBP and run it. The form shown in Figure 5.9 appears. Choose Compact a database and click
OK. The application asks you to designate an existing database and to supply a new filename for the compacted version
of the database. When you have done so, the application compacts the database and displays a message indicating
completion.

Figure 5.9. The Database Maintenance form on startup.

Choose Repair a database and click OK. The application asks you to designate a database to be repaired. When you have
done so, the application repairs the database and displays a message indicating success.

1. Create a new project called Repair.VBP. Use Form1 to create the objects and properties listed in Table 5.10, and
save the form as Repair.FRM.

Table 5.10. Objects and properties for the Database Maintenance form.

OBJECT PROPERTY SETTING

Form Name Form1

Caption "Chapter 5.6 Example"

Frame Name grpOperation

Caption "Operation"

OptionButton Name optCompact

Caption "Compact a database"

OptionButton Name optRepair

Caption "Repair a database"

CommandButton Name cmdOK

Caption "OK"

Default True

CommandButton Name cmdClose

Cancel True

Caption "&Close"

2. Add the following code to the declarations section of Form1: Option Explicit

3. Enter the following code into Form1 as the Click event of cmdOK. The setting of optCompact determines
whether the user wants to compact or repair the database. This procedure uses the Windows File Open common
dialog box to get the name of the file to compact or repair. In the case of a compact operation, it then uses the File
Save common dialog box to get the name of the output file. It then uses the DBEngine's CompactDatabase or

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (39 of 47) [9/22/1999 1:59:27 AM]

javascript:popUp('05fig09.gif')

RepairDatabase method to perform the operation.

Private Sub cmdOK_Click()
 Dim strInput As String, strOutput As String
 On Error GoTo OKError
 With cdlDatabase
 .DialogTitle = "Select File To " & _
 IIf(optCompact, "Compact", "Repair")
 .ShowOpen
 End With
 strInput = cdlDatabase.filename
 If optCompact Then
 With cdlDatabase
 .DialogTitle = "Repaired Filename"
 .filename = ""
 .ShowSave
 End With
 strOutput = cdlDatabase.filename
 Screen.MousePointer = vbHourglass
 DBEngine.CompactDatabase strInput, strOutput
 Screen.MousePointer = vbDefault
 MsgBox "Database " & strInput & _
 " compacted to " & strOutput
 Else
 Screen.MousePointer = vbHourglass
 DBEngine.RepairDatabase strInput
 Screen.MousePointer = vbDefault
 MsgBox "Repair of " & strInput & " successful."
 End If
 On Error GoTo 0
Exit Sub
OKError:
 Screen.MousePointer = vbDefault
 If Err <> 32755 Then MsgBox Err.Description
Exit Sub
End Sub

4. Enter the following into Form1 as the Click event of cmdClose:

Private Sub cmdClose_Click()
 End
End Sub

How It Works

The cmdOK button supplies almost all the project's action. Depending on the selected option button, the cmdOK_Click
event code first uses the CommonDialog control to retrieve the name of a valid Access database. After a name is
returned, it issues either a CompactDatabase method or a RepairDatabase method, depending on the selected option
button. If a CompactDatabase is required, the routine will again use the CommonDialog control to get the desired name
for the compacted database. It has to do this because the CompactDatabase command cannot compact a database back
into itself; instead, it rebuilds the database from the ground up, so to speak, into another Access database file. The
RepairDatabase method, however, does not write to another database file and is instead called directly on the selected
database.

Comments

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (40 of 47) [9/22/1999 1:59:27 AM]

It is strongly recommended that CompactDatabase be performed on Access databases regularly, because it reclaims
wasted space and re-indexes tables to enable faster, more efficient use. RepairDatabase, on the other hand, should be used
only when an Access database is indicated as corrupt. In Visual Basic, a trappable error is triggered when an Access
database is corrupt, so automating this process is relatively easy. By setting up an On Error trap in your function and
checking if Err is equal to 3049, you can make a call to the RepairDatabase method.

5.7 How do I...

Use parameter queries stored in Microsoft Access databases?

Question

I'd like to use stored QueryDef objects to reduce the execution time for my program. But I need to change one or two
values each time I run my SELECT query. How can I use stored queries with replaceable parameters from Visual Basic?

Technique

Microsoft Access provides the parameter query as a variation of the standard SELECT query. The definition of a
parameter query specifies one or more replaceable parameters--values to be supplied each time the query executes. Each
replaceable parameter is represented by a name, which is used much like a field name. The name can be any legal object
name, provided that the name has not already been used as a field name in any of the tables in the query.

For example, you have a query that extracts information about customer accounts from several tables. Each time the
query runs, it requires a value for the [Customer Number] field in the Customers table. If the name of the replaceable
parameter was CustNum, the WHERE clause of the query would be this:

WHERE Customers.[Customer Number] = [CustNum]

When run from Microsoft Access, a parameter query pops up an input box for the user at runtime. The user types a value,
and this value is used as the replaceable parameter. When you use a stored parameter query from Visual Basic, your code
must provide the value for the replaceable parameter before you execute the query.

You provide the replaceable value through the QueryDef object. Each QueryDef object owns a Parameters collection,
which consists of a set of Parameter objects, each with a name. When you assign a value to a Parameter object, the
QueryDef object uses that as the replaceable value when you run the query.

Following is the full syntax for assigning a value to a QueryDef Parameter object (where myQueryDef is an object
variable assigned to a QueryDef object and CustNum is the name of a Parameter object):

qdfTempQueryDef.Parameters("CustNum") = 141516

This can be abbreviated using the bang operator like so:

qdfTempQueryDef![CustNum] = 141516

The sequence for using a stored parameter query from your Visual Basic code, therefore, is this:

1. Declare the appropriate variables:

Dim dbfTemp as Database
Dim qdfTemp as QueryDef
Dim recTemp as Recordset

2. Set the Database and QueryDef variables to valid objects:

Set dbfTemp = DBEngine.Workspaces(0).OpenDatabase("ACCOUNTS.MDB")
Set qdfTemp = dbfTemp.OpenQueryDef("Customer Data")

3. Assign an appropriate value to each replaceable parameter of the QueryDef object. If the Customer Data
QueryDef has two parameters, CustNum and Start Date, this would be your code:

qdfTemp![CustNum] = 124151

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (41 of 47) [9/22/1999 1:59:27 AM]

qdfTemp![Start Date] = #1/1/97# ` the # signs delimit a date

4. Use the OpenRecordset method of the QueryDef object to create the recordset:

Set recTemp = qdfTemp.OpenRecordset()

Steps

Open and run the project ParameterQuery.VBP. The form shown in Figure 5.10 appears. Select a publisher and then click
OK. Then the form shown in Figure 5.11 appears with the first record in BIBLIO.MDB belonging to that publisher. If the
publisher has no titles in the database, the form is blank. Browse through the records by using the browse buttons. To
select a different publisher, click the Publisher button.

Figure 5.10. The project's Publisher Parameters form, showing publisher names.

Figure 5.11. The project's Publisher Titles form, showing publisher title information.

1. Create a new project called ParameterQuery.VBP. Rename Form1 to frmMain. Then create the objects and
properties listed in Table 5.11, and save the form as ParameterQuery.FRM.

Table 5.11. Objects and properties for the Query User form.

OBJECT PROPERTY SETTING

Form Name frmMain

Caption "Publisher Information"

Data Name dtaData

Caption "Publisher's Titles By Author"

TextBox Name txtPublisher

DataSource dtaData

DataField "Name"

TextBox Name txtYearPublished

DataSource dtaData

DataField "Year Published"

TextBox Name txtISBN

DataSource dtaData

DataField "ISBN"

TextBox Name txtTitle

DataSource dtaData

DataField "Title"

TextBox Name txtAuthor

DataSource dtaData

DataField "Author"

Label Name lblQuery

Index 0

Caption "Author:"

Label Name lblQuery

Index 1

Caption "Title:"

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (42 of 47) [9/22/1999 1:59:27 AM]

javascript:popUp('05fig10.gif')
javascript:popUp('05fig11.gif')

Label Name lblQuery

Index 2

Caption "ISBN:"

Label Name lblQuery

Index 3

Caption "Published:"

Label Name lblQuery

Index 4

Caption "by:"

CommandButton Name cmdPublisher

Caption "&Publisher"

CommandButton Name cmdClose

Cancel True

Caption "&Close"

2. Add a new form to the project. Name it frmSelectPublisher. Create the objects and properties listed in Table
5.12, and save the form as Publishers.FRM.

Table 5.12. Objects and properties for the Query User form.

OBJECT PROPERTY SETTING

Form Name frmSelectPublisher

Caption "Chapter 5.7 Example - Publishers"

ListBox Name lstPublishers

CommandButton Name cmdOK

Caption "&OK"

Default True

CommandButton Name cmdCancel

Cancel True

Caption "&Cancel"

3. Enter the following code into the declarations section of frmMain:

Option Explicit
`NOTE: The constant does NOT include the database name this time.
Const BIBLIO_PATH = "C:\Program Files\Microsoft Visual Studio\VB6"
`Because the variable is public (exposed for use by other
`objects), the naming conventions for variables do not apply
`here - treat as a property.
Public SelectedPubID As Integer

4. Enter the following code into frmMain as its Load event. The CheckDatabaseVersion routine, called in this
event, ensures that the BIBLIO.MDB database is Jet 3.0 compatible; if the database was created with an earlier
version of Access, there could be some difficulties.

Private Sub Form_Load()
 `Older versions of BIBLIO.MDB must be converted to the Jet 3.0
 `format before a parameter query can be saved to it.

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (43 of 47) [9/22/1999 1:59:27 AM]

 CheckDatabaseVersion
 dtaData.DatabaseName = BIBLIO_PATH & "\Biblio.MDB"
 cmdPublisher_Click
End Sub

5. Enter the following code into frmMain as the Click event for cmdPublisher. If a publisher's ID has been
selected, the RunQuery subroutine is called. If not, the form is still displayed, but with a different title and no data.

Private Sub cmdPublisher_Click()
 frmSelectPublisher.Show vbModal
 If SelectedPubID > 0 Then
 RunQuery
 Else
 frmMain.Caption = "Chapter 5.7 Example - No Titles"
 End If
End Sub

6. Enter the following code into frmMain as the CheckDatabaseVersion subroutine. This subroutine checks the
version of the Access database to ensure that it's compatible with Jet 3.0. It does so by creating a Database object
and then checking the Version property, which supplies a formatted string indicating the major and minor number
of the database version. If less than 3.0, the program uses the CompactDatabase method to convert the database to
Jet 3.0 format, backing it up in the process, just in case.

Private Sub CheckDatabaseVersion()
 Dim dbfTemp As Database, sngVersion As Single
 Set dbfTemp = Workspaces(0).OpenDatabase(BIBLIO_PATH & _
 "\Biblio.MDB")
 `If the database's Version property is less than 3.0, then it
 `needs to be converted before we can save a parameter query to
 `it from 32-bit Visual Basic.
 sngVersion = Val(dbfTemp.Version)
 dbfTemp.Close: DBEngine.Idle dbFreeLocks
 If Val(sngVersion) < 3 Then
 `First, we'll back up the old database
 FileCopy BIBLIO_PATH & "\Biblio.MDB", BIBLIO_PATH & _
 "\BiblioBackup.MDB"
 `Then, we'll use the CompactDatabase method to convert it
 `to the version 3.0 format
 CompactDatabase BIBLIO_PATH & "\Biblio.MDB", _
 BIBLIO_PATH & "\BiblioNew.MDB", , dbVersion30
 `Next, we'll delete the old database after we're sure the
 `new one exists.
 If Len(Dir("BiblioNew.MDB")) Then Kill BIBLIO_PATH & _
 "\Biblio.MDB"
 `Finally, we'll rename the new database to the old name,
 `"Biblio.MDB".
 If Len(Dir(BIBLIO_PATH)) = 0 Then
 Name BIBLIO_PATH & "\BiblioNew.MDB" As BIBLIO_PATH & _
 "\Biblio.MDB"
 End If
 End If
End Sub

7. Enter the following code into frmMain as the RunQuery subroutine. This subroutine searches for the query
definition [Publisher's Titles By Author]. If it doesn't find what it's seeking, it creates the query and saves that
query in BIBLIO.MDB. It next inserts the PubID code of the selected publisher into the Publisher parameter of the

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (44 of 47) [9/22/1999 1:59:27 AM]

query definition. Then it runs the query and uses DisplayRecord to display the data.

Sub RunQuery()
 Dim dbfTemp As Database, recTemp As Recordset
 Dim qdfTemp As QueryDef
 Dim strSQL As String
 Dim blnFoundQuery As Boolean
 On Error GoTo QueryError
 Set dbfTemp = Workspaces(0).OpenDatabase(BIBLIO_PATH & _
 "\Biblio.MDB")
 For Each qdfTemp In dbfTemp.QueryDefs
 If qdfTemp.Name = "Publisher's Titles By Author" Then
 blnFoundQuery = True
 Exit For
 End If
 Next
 If blnFoundQuery = False Then
 strSQL = "PARAMETERS pintPubID Long; " & _
 "SELECT Authors.Author, Titles.Title, " & _
 "Titles.ISBN, " & _
 "Titles.[Year Published], Publishers.Name " & _
 "FROM (Publishers INNER JOIN Titles ON "
 strSQL = strSQL & "Publishers.PubID = " _
 "Titles.PubID) " & _
 "INNER JOIN " & _
 "(Authors INNER JOIN [Title Author] ON " & _
 "Authors.Au_ID = [Title Author].Au_ID) ON " & _
 "Titles.ISBN = [Title Author].ISBN WHERE " & _
 "Publishers.PubID " & _
 "= pintPubID ORDER by Authors.Author;"
 Set qdfTemp = dbfTemp.CreateQueryDef(_
 "Publisher's Titles By " & _
 "Author", strSQL)
 Else
 Set qdfTemp = dbfTemp.QueryDefs(_
 "Publisher's Titles By Author")
 End If
 qdfTemp.Parameters![pintPubID] = SelectedPubID
 Set dtaData.Recordset = qdfTemp.OpenRecordset()
 If dtaData.Recordset.RecordCount > 0 Then
 frmMain.Caption = "Chapter 5.7 Example - " & _
 Str$(dtaData.Recordset.RecordCount) & _
 IIf(dtaData.Recordset.RecordCount = 1, _
 " Title", " Titles")
 Else
 frmMain.Caption = frmMain.Caption = "Chapter 5.7 _
 Example - No Titles"
 End If
 On Error GoTo 0
Exit Sub
QueryError:
 MsgBox Err.Description, vbExclamation
Exit Sub

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (45 of 47) [9/22/1999 1:59:27 AM]

End Sub

8. Enter the following code into frmMain as the Click event of cmdClose:

Private Sub cmdClose_Click()
 End
End Sub

9. Now that frmMain is complete, let's move on to frmSelectPublisher. Add the following code to its declarations
section:

Option Explicit

10. Enter the following code as the Load event of frmSelectPublisher:

Private Sub Form_Load()
 Dim dbfTemp As Database, recTemp As Recordset
 Dim strSQL As String
 On Error GoTo LoadError
 Set dbfTemp = Workspaces(0).OpenDatabase(BIBLIO_PATH)
 strSQL = "SELECT [PubID], [Company Name] FROM " & _
 "[Publishers]"
 Set recTemp = dbfTemp.OpenRecordset(strSQL)
 If recTemp.RecordCount Then
 recTemp.MoveFirst
 Do Until recTemp.EOF
 If Not IsNull(recTemp![Company Name]) Then
 lstPublishers.AddItem recTemp![Company Name]
 Else
 lstPublishers.AddItem ""
 End If
 lstPublishers.ItemData(lstPublishers.NewIndex) = _
 recTemp![PubID]
 recTemp.MoveNext
 Loop
 Else
 MsgBox "There are no publishers in the database.", _
 vbCritical
 End
 End If
 On Error GoTo 0
Exit Sub
LoadError:
 MsgBox Err.Description, vbCritical
 End
End Sub

11. Enter the following code into frmSelectPublisher as the Click event of cmdOK. This routine gets the PubID of
the selected publisher from the list box ItemData property, puts that value into the public variable SelectedPubID,
and then hides the form.

If lstPublishers.ListIndex > -1 Then
 frmMain.SelectedPubID = _
 lstPublishers.ItemData(lstPublishers.ListIndex)
 Me.Hide
 Else
 MsgBox "You have not selected a publisher", vbExclamation
 End If
End Sub

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (46 of 47) [9/22/1999 1:59:27 AM]

12. Enter the following code into frmSelectPublisher as the DblClick event of lstPublishers:

Private Sub lstPublishers_DblClick()
 cmdOK_Click
End Sub

13. Enter the following code into frmSelectPublisher as the Click event of cmdCancel. This routine puts the value
0 into the public variable SelectedPubID and then hides the form.

Private Sub cmdCancel_Click()
 frmMain.SelectedPubID = 0
 Hide
End Sub

How It Works

When frmMain loads, it immediately generates a Click event for cmdPublisher to display the Select Publisher form.
When the user makes a selection from the publisher list and clicks OK, the PubID of the selected publisher is used to set
the Public variable SelectedPubID. The value of SelectedPubID is then used as the parameter passed to the [Publisher's
Titles by Author] query definition. After its parameter has been set, the QueryDef is used to create the recordset of title
information.

Comments

The parameter query allows for the flexibility of dynamically built SQL statements, but with the optimized speed of static
SQL. One of the other benefits to using a parameter query is the Requery method, which enables you to re-execute a
parameter query with different values. Access will actually reuse the existing connection and be able to run the query
faster. Also, the optimization engine built into Jet works best on static SQL (that is, SQL stored in the database, as
opposed to the SQL statements stored in code), so you can get even more benefit from the use of a parameter query that
is saved to a Microsoft Access database. For a similar example on the use of a parameter query, How-To 3.5 is another
good reference, especially with the use of the Requery method.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Ch 5 --MICROSOFT ACCESS DATABASES

http://www.pbs.mcp.com/ebooks/1571691529/ch05/ch05.htm (47 of 47) [9/22/1999 1:59:27 AM]

Visual Basic 6 Database How-To

- 6 -
Connecting to an ODBC Server

How do I...

6.1 Use the ODBC Administrator to maintain data sources?❍

6.2 Use ODBC with the Visual Basic Data control?❍

6.3 Create an ODBC-accessible data source by using RegisterDatabase?❍

6.Prevent the login dialog box from being displayed when I open an ODBC database?❍

6.5 Determine what services an ODBC server provides?❍

6.6 Use ODBCDirect to connect to database servers?❍

●

The Open Database Connectivity (ODBC) standard has made accessing disparate database formats much easier
than in older versions of Visual Basic. Starting with version 3.0, Visual Basic data access methods and properties
include built-in support for ODBC data sources. This means you can use Visual Basic and ODBC together, either
through the Jet database engine that comes with Visual Basic or through direct calls to the ODBC Application
Programming Interface (API) or by using both together.

When using Visual Basic to completely handle the connection to the ODBC system, just make a few changes to
the Visual Basic OpenDatabase method. This is the syntax of the statement:

Set database = workspace.OpenDatabase(dbname[, exclusive[, read-only[, _
 source]]])

The source argument is the main difference when you're using ODBC. In the How-To's throughout this chapter,
you'll see how an ODBC connect string is used in the source to specify to which ODBC data source to connect. If
you're not sure which data source you want to use, just make the source argument "ODBC" and Visual Basic will
team up with ODBC and automatically present a list of the available data sources. Few things in Visual Basic are
as straightforward as this.

You can perform many ODBC tasks--including running Structured Query Language (SQL) queries, retrieving
results, looping through recordsets, and sending pass-through queries--in Visual Basic without getting any more
involved in ODBC than making this change to the OpenDatabase method. Essentially, if Visual Basic has a data
access method or property to do what you want, you can almost always use Visual Basic directly without

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (1 of 45) [9/22/1999 2:00:33 AM]

knowing anything about ODBC beyond the existence of the data source you want to use.

ODBC can add a whole new dimension to your application's database access, going far beyond the functionality
of Visual Basic's data access function. You can retrieve a wealth of information about a database and manipulate
it to your heart's--or client's--content.

Through the How-To's in this chapter, you'll get the details of using straight Visual Basic to access the ODBC
API, using the ODBC API directly and bypassing Visual Basic, and combining the two techniques to get the job
done.

The guiding philosophy of this chapter is that if there is a way to do it in Visual Basic, that's the way it should be
done--unless there is a good reason not to do it that way. The main reason for going straight to the ODBC API is
when Visual Basic can't perform the particular task by itself. But there are a few other reasons you'll see along the
way.

Using Visual Basic and ODBC Together

If you are going to do any serious work with ODBC, get a copy of Microsoft ODBC 3.0 Programmer's Reference
and SDK Guide, published by Microsoft Press. The Software Development Kit (SDK) has all the detailed
information you need and a list of all the ODBC functions. This section covers most of the details you'll need in
order to use ODBC with Visual Basic.

The ODBC system has four components. Figure 6.1 shows the relationship of these four elements in a Visual
Basic ODBC application.

Figure 6.1. An overview of ODBC architecture.

Application: This is your application program. Whether it makes calls through the Visual Basic data access
methods and properties or makes direct calls to the ODBC API, the application sends SQL statements to
ODBC and receives data as the results of those statements.

●

ODBC Driver Manager: The ODBC Driver Manager is the layer of the ODBC system that sits between
your application and the database driver. Some of the ODBC API calls are handled directly by the Driver
Manager, but many are passed on to the driver. For some functions, the Driver Manager passes the call on
to the driver if the function is implemented in the driver; if not, the Driver Manager handles the task itself.

●

Driver: An ODBC driver is software, virtually always a dynamic link library (DLL), that handles the
connection between the ODBC Driver Manager and the database server. A driver is usually written by the
manufacturer of a database system, but many drivers are available from third parties.

●

Data source: A data source is an installed database server that ODBC has associated with a particular
ODBC driver and a specific database with its location on your local hard drive or network.

●

Following are a few other terms you'll encounter when reading about the ODBC system:

Connect string: To make a connection to an ODBC data source, the ODBC system needs certain
information. The first piece of information it always needs is the data source name (DSN). This is the
descriptive name ODBC uses to keep track of installed databases, and it is used any time you are presented
with a list of data sources. The connect string varies by database, driver, and network setup, but a typical
string would be the data source name, user ID, password, and authorization string. The particular database
server might have other required and optional items. In How-To 6.5, you'll learn exactly what connect
string a database requires.

●

Translator: When you've worked with ODBC for a while, you'll probably encounter the term translator. A
translator translates data flowing through the ODBC system. A common use is to translate between
different character sets, such as between ASCII and EBCDIC on IBM mainframes and minis.

●

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (2 of 45) [9/22/1999 2:00:33 AM]

javascript:popUp('06fig01.gif')

ODBC input and output buffers: ODBC requires the use of input and output buffers to hold data it passes
back and forth between the database and your application. The good news is that in most cases in Visual
Basic, you won't be calling any ODBC API functions directly that need to have a buffer allocated. More
good news is that a NULL pointer to a buffer sometimes works. The really good news is that Visual Basic,
through the Jet engine, manages all this for you most of the time.

●

ODBC Handles

Before making any direct calls to functions in the ODBC API, you must allocate memory and receive a handle
from ODBC for the particular operation. All this means is that ODBC is setting aside a small chunk of memory,
through its DLL, to hold information about some aspect of the ODBC system. The handle is essentially a pointer
in the Windows environment. As usual, if you are using ODBC through Visual Basic methods only, without
direct calls to the ODBC API, you don't need to know or worry about handles at all.

Three handles are necessary for calls to the different ODBC functions:

Environment handle (hEnv): Your application needs to allocate and use one environment handle. The
environment handle manages the overall connection between your application and ODBC.

●

Connection handle (hDbc): For each connection you make to a database, you must allocate and use one
connection handle. Your application can have virtually any number of connection handles at any given
time, and many databases can even have multiple simultaneous handles to a single data source.

●

Statement handle (hStmt): For each SQL statement you send to a database, you must allocate and use a
statement handle. The statement handle is how ODBC keeps straight what statement you are referring to for
information. You can also have multiple statement handles active at any given time.

●

All ODBC handles must be released before terminating your application. Otherwise, there is no guarantee that the
allocated memory will be released at the end of the application, and that is just not good Windows program
manners! Eventually, the program will "leak" enough memory to cause performance problems with Windows or
even disrupt the operating system entirely.

The handles form a hierarchy. All connection handles in your application are associated with a single
environment handle, and all statement handles are associated with one and only one connection handle. In
general, all the lower-level handles in the hierarchy must be freed before the next handle in the hierarchy is freed.
All the handles can be released and then reused.

ODBC API Conformance Levels

In response to the wide variety of database system capabilities available on every hardware and software
platform, ODBC breaks its function list into three levels of conformance. A driver must support, at minimum, the
Core-level conformance to be considered an ODBC driver. ODBC also specifies SQL grammar conformance
levels, which are not directly related to the API conformance level, as listed here:

Core: The Core level is the minimum API conformance level a driver and database must support. This
level corresponds to the X/Open and SQL Access Group Call Level Interface specification of 1992.

●

Level 1: Conformance Level 1 adds significant functionality to ODBC's capabilities. All drivers used with
Visual Basic's data access object must be Level 1 compliant because Visual Basic assumes that certain
services are available for it to use with the database. You can use a Core-level driver, however, if you limit
the use of ODBC strictly to direct Level 1 ODBC API calls.

●

Level 2: Conformance Level 2 is the highest conformance level. It adds another large jump in functionality.●

It is important to understand that just because a driver calls itself, say, a Level 1 ODBC driver doesn't necessarily
mean that it supports all the options of every function at that level. The amount of support is usually tied directly
to the capabilities of the underlying database, its limitations, and how aggressively a driver manufacturer is in

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (3 of 45) [9/22/1999 2:00:33 AM]

building capabilities into its driver.

WARNING No independent body certifies drivers as meeting the requirements of an ODBC
conformance level. The developer of each driver makes the conformance claim. Buyer beware!

The ODBC API: Visual Basic Declare Statements and ODBC Constants

Because ODBC is implemented in Windows as a DLL, you must include a Declare statement for any ODBC
functions you call from a Visual Basic application. By requiring a Declare statement, Visual Basic knows what
DLL file to load and the types of parameters each function uses so that it can perform type checking and flag any
incorrect types you try to use in a function. The ODBCAPI.BAS file, on the CD-ROM that accompanies this
book, contains these ODBC Declare statements and other ODBC constants and user-defined types, ready to be
copied to your application.

Debugging ODBC Applications

Even if you don't have access to the ODBC SDK, ODBC provides one valuable tool for debugging applications:
the trace log (sometimes called the trace file). This is a log of all calls made by your application and Visual Basic
through the ODBC system. The log can be quite educational about how ODBC works, and it lets you see exactly
what is being done.

Data Type Conversions Between ODBC and Visual Basic

The correspondence between ODBC and Visual Basic data types is not one-to-one. Fortunately, with Visual
Basic's slightly expanded list of data types, the correspondence is a bit closer. Table 6.1 lists the available ODBC
data types and the Visual Basic equivalents.

Table 6.1. Data type conversions between ODBC and Visual Basic.

ODBC DATA TYPE Grammar Level Visual Basic Data Type

SQL_BIT Extended Boolean

SQL_TINYINT Extended Byte

SQL_SMALLINT Core Integer

SQL_INTEGER Core Long

SQL_BIGINT Extended No equivalent

SQL_REAL Core Single

SQL_FLOAT, SQL_DOUBLE Core Double

SQL_TIMESTAMP, SQL_DATE Extended DateTime

SQL_TIME Extended Time

SQL_CHAR Minimum String

SQL_VARCHAR Minimum String

SQL_BINARY Extended Binary

SQL_VARBINARY Extended Binary

SQL_LONGVARBINARY Extended Binary

SQL_LONGVARCHAR Minimum String

SQL_DECIMAL Core Refer to Table 6.3.

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (4 of 45) [9/22/1999 2:00:33 AM]

SQL_NUMERIC Core Refer to Table 6.3.

As reflected in Table 6.2, special handling is required for the SQL_DECIMAL and SQL_NUMERIC data types.
Both data types supply a scale and precision to determine what range of numbers the fields can handle. Using this
scale and precision, you can make a good determination of variable scope for Visual Basic. In addition, there are
two exceptions to this rule because SQL Server can employ a Currency field. ODBC interprets this with two
different scope and precision combinations, as mentioned in Table 6.2.

Table 6.2. Numeric precision conversion between ODBC and Visual Basic.

SCALE Precision Visual Basic Data Type

0 1 to Integer

0 5 to 9 Long

0 10 to 15 Double

0 16+ Text

1 to 3 1 to 15 Double

1 to 15 Double

16+ Text

10 or 19 Currency (SQL Server only)

ODBC data types correspond to the SQL grammar level that a driver and database support, similar to the
conformance levels that ODBC's functions support. These are the SQL grammar conformance levels:

Minimum: This is the minimum SQL grammar that a driver must support to be compliant with the ODBC
standard. Only three data types are specified: SQL_CHAR, SQL_VARCHAR, and
SQL_LONGVARCHAR. You won't be limited to these data types very often.

●

Core: The Core SQL grammar expands the number of data types available to a far more workable number,
and it includes many of the more common variable types.

●

Extended: The Extended SQL grammar expands the list of variables to all the data types listed in Table 6.1.
As with the Minimum level, you won't see a database that supports the full Extended level very often.

●

A database is not necessarily required to support all the data types at a given level, so an application should check
to see what variables are available for a given data source by using the SQLGetTypeInfo function (an ODBC
Conformance Level 1 function). See How-To 6.5 for a discussion of retrieving such information about an ODBC
database.

ODBC Catalog Functions and Search Pattern Arguments

There are certain ODBC functions, called catalog functions, that return information about a data source's system
tables or catalog. Most of the catalog functions are Conformance Level 2, so you probably won't encounter them
when using Visual Basic and ODBC. Four of the functions, however, are Level 1: SQLColumns,
SQLSpecialColumns, SQLStatistics, and SQLTables.

All the catalog functions allow you to specify a search pattern argument, which can contain the metacharacters
underscore (_) and percent (%), as well as a driver-defined escape character. A metacharacter in this context is
nothing more than a character that has a meaning other than just the character itself. Following is a detailed
explanation of the search pattern characters:

Use the underscore to represent any single character. This is equivalent to an MS-DOS question mark (?)●

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (5 of 45) [9/22/1999 2:00:33 AM]

when searching for files.

Use the percent character to represent any sequence of zero or more characters. This is analogous to the
asterisk (*) in MS-DOS.

●

The driver-defined escape characters allow you to search for one of the two metacharacters as a literal
character (that is, to search for a string with either an underscore or a percent character in the string).

●

All other characters represent themselves.●

For example, to search for all items with a P, use the search pattern argument %P%. To search for all table names
having exactly four characters with a B in the second and last positions, use _B_B. Similarly, if the driver-defined
escape character is a backslash, use %_\% to find all strings of any length with an underscore in the
second-to-last position and a percent in the last position of the string.

The driver-defined escape character can be found for any ODBC driver using the SQLGetInfo technique
demonstrated in How-To 6.6.

Miscellaneous ODBC Topics

This section covers a few miscellaneous details that will make using ODBC and Visual Basic together a bit easier.

Some ODBC databases support default drivers and data sources. A [Default] section in ODBCINST.INI
(default driver) and/or ODBC.INI (default data source) is created during installation of the ODBC system
or driver. In general, you won't want a default driver; you usually want to connect with one and only one
specific data source and/or driver.

●

If the driver uses a translator, it will be installed with the driver, and the usage should be transparent to you
and your Visual Basic application.

●

Get the Microsoft ODBC 3.0 Programmer's Reference and SDK Guide! If you are going to do any
continuing work with ODBC at almost any level, buy the SDK. It has detailed references for all the
functions, including various functions for installing ODBC drivers and systems. It also comes with some
very useful debugging tools, including ODBC Test, which lets you interactively test various function calls,
and ODBC Spy, which gives you a detailed record of which ODBC calls are being made. ODBC Spy also
provides the capability to emulate either an application or a driver, letting you test applications without a
driver. The SDK is highly recommended, and it is a must-have if you plan to develop your own drivers.

●

In Windows NT and Windows 95, information on ODBC data sources, configuration, and tuning
parameters is stored in the system registry, as is configuration information for Visual Basic. You should
never need to modify that by hand, but if you do, at least now you know where to look.

●

Any default installation of ODBC installs the ODBC Administrator. This is a handy utility you can use to
set up drivers and data sources, as well as to get information about installed ODBC drivers. Everything you
can do with the ODBC Administrator you can do in code with the ODBC API, but the utility simplifies
some of the tasks.

●

Assumptions

This chapter assumes some things about what you are doing and the tools you are using:

You are using ODBC version 2 or later. Many things changed between versions 1 and 2. You can take
advantage of these changes even if you are working with a driver that supports only a previous version, as
long as ODBC itself is the latest version.

●

ODBC is installed on your development system. It would be quite difficult to develop ODBC applications
with no access to ODBC.

●

There are no heavy-duty data conversion issues. Most data conversions, if they go beyond those listed in
Table 6.1 and 6.2, require some very specialized processing and will be very unusual. If you have such a

●

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (6 of 45) [9/22/1999 2:00:33 AM]

situation, definitely get the ODBC SDK.

6.1 Use the ODBC Administrator to Maintain Data Sources

Under Windows 95 and Windows NT, ODBC data sources, explained in greater detail in this How-To, have
become more complex entities, especially when it comes to issues such as security and network administration.
This How-To explains how a simple Control Panel applet turns the administration of these data sources into a
simple task.

6.2 Use ODBC with the Visual Basic Data Control

Using Visual Basic's Data control to access ODBC demonstrates the power of both Visual Basic and ODBC.
Accessing databases through ODBC without using the ODBC API is a simple matter, whether that data is on your
own hard disk in a format Visual Basic doesn't directly support or half a world away on your network. This
How-To shows how easy it is to make the connection.

6.3 Create an ODBC-Accessible Data Source by Using RegisterDatabase

Even though ODBC might install the driver you need for your application, a data source name must exist before
the database can be used by any application. The RegisterDatabase method provides a way to enter a new data
source if one doesn't exist (or even if it does!) so that your application can use the database through ODBC.

6.Prevent the Login Dialog Box from Being Displayed When I Open an ODBC Database

As long as you have the correct and complete connect string to feed to ODBC, you should be able to connect with
any database to which you have access. But how do you discover the exact connect string for each database?
ODBC pro-vides the functionality and Visual Basic makes it easy to use, as discussed in this How-To.

6.5 Determine What Services an ODBC Server Provides

Even though ODBC makes connecting with databases through a standard interface much easier, and provides
some of the services itself, it still relies on database systems to do most of the work. Not all databases are created
equal, with equal capabilities. You'll discover how you can find out what services a database provides, all within
your applications.

6.6 Use ODBCDirect to Connect to Database Servers

ODBCDirect, like DAO (Data Access Objects) and RDO (Remote Data Objects), is a way to access databases.
Unlike DAO and RDO, however, ODBCDirect is just a thin, but well-behaved, wrapper around the ODBC API.
This How-To shows the first step in using this new technology by connecting to a data source and providing
detailed information on the ODBCDirect Connection object.

6.1 How do I...

Use the ODBC Administrator to maintain data sources?

Problem

My Visual Basic program needs access to a Microsoft SQL Server database on another computer. How do I use
the ODBC Administrator to connect to that database?

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (7 of 45) [9/22/1999 2:00:33 AM]

Technique

Visual Basic is a very powerful tool when it comes to quick database application development. At times,
however, Visual Basic's native database tools are simply not enough, such as whenever a connection to SQL
Server or Oracle databases is needed. ODBC makes the gap between Visual Basic and these databases easy to
navigate by providing a way to bridge the two resources with an ODBC connection.

ODBC connections usually start with a data source, an alias used by ODBC to refer an ODBC driver to a
specified database so that an ODBC connection can happen. Although you can create an ODBC data source with
code, it's much easier to use the ODBC Administrator, a tool specifically designed to perform data source-related
tasks.

Data sources under Windows 95 and Windows NT are divided into three major types, as explained in Table 6.3.
These three types make a difference in your application; the user DSN, for example, won't work with another user
logged in to the same machine. The system DSN assumes that all users on the same machine have security access,
and the file DSN is used on a case-by-case basis.

Table 6.3. Data source name types.

TYPE Purpose

System DSN This DSN is usable by all users on a workstation, regardless of user security.

User DSN The default, this DSN is usable only by certain users on a workstation (usually the user who
created it).

File DSN A "portable" data source, this DSN can be very useful with network-based applications. The DSN
can be used by any user who has the correct ODBC driver(s) installed.

Steps

The ODBC Administrator is a Control Panel applet, so the first step is to locate the ODBC Administrator icon.

1. Double-click your Control Panel icon. You should see a window appear similar to the one shown in
Figure 6.2. In that window, you should find an icon like the one highlighted in the figure.

Figure 6.2. The Control Panel, with ODBC Administrator highlighted.

2. Double-click the ODBC Administrator icon (usually titled "32bit ODBC") to start the Administrator
applet. A dialog box similar to the one shown in Figure 6.3 should appear, displaying several property
pages. The first three property pages deal with DSN entries, with each page representing a level of security.
The User DSN property page provides ODBC access for a data source to a given user on a given
workstation only; the System DSN allows ODBC access for a data source to a given workstation only, but
to any user on that workstation. A File DSN entry is a file-based data source, usable by any and all who
have the needed ODBC drivers installed, and it does not need to be local to a user or a workstation

Also, you'll notice three more property pages. The ODBC Drivers property page allows the display of all
installed ODBC drivers, including the version and file information. The Tracing property page offers the
capability of tracking all ODBC activity for a given data source and saving it to a log file for debugging
purposes. And, last of all, the About property page gives version and file information on the core
components that compose the ODBC environment.

3. For your needs, you are going to create a User DSN. Click the Add button to start the process of adding a
new data source. The first dialog box that appears gives you the list of available ODBC drivers from which
to choose. One thing you'll want to note is the helpful information on each dialog box and property page,
summarizing its purpose.

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (8 of 45) [9/22/1999 2:00:33 AM]

javascript:popUp('06fig02.gif')

Figure 6.3. ODBC Data Source Administrator property pages.

4. Select the Microsoft Access Driver from the list of drivers and then click the Finish button. The next step
is to provide the database-related infor-mation for the data source, and to that end a dialog box appears,
similar to that displayed in Figure 6.4. The dialog box that appears is driver specific; that is, if you had
selected a different ODBC driver, you would probably have gotten a dialog box with a completely different
set of properties.

5. Type Biblio in the Data Source Name field. Then click the Select button in the Database frame and
choose your copy of BIBLIO.MDB. Then click the OK button.

How It Works

Based on your selections, the ODBC Administrator adds entries to the Registry (or to a file, if you are creating a
File DSN.) These Registry entries are vital to the ODBC drivers that require them; in many cases, the entries can
determine not only the database that the driver will access but also how and by whom it will be accessed. The
only other recommended method for adding ODBC information to the Registry is the RegisterDatabase method,
which is covered later in this chapter. Avoid attempting to manually edit ODBC driver Registry entries without
first researching the settings to ensure that you fully understand how they work.

Figure 6.4. The ODBC Microsoft Access 97 Setup dialog box.

Comments

It is important to emphasize the fact that each ODBC driver's setup dialog box will be different; if you're creating
data sources by hand and using only one driver, this isn't a difficult thing to support. If, however, you really want
to ensure a wide degree of compatibility for your programs, you might want to use the method detailed in
How-To 6.3 to create your data sources. This technique uses the RegisterDatabase method to create data sources,
and it can support a wide variety of options (even running "silently," displaying nothing to the user, if all the
information needed for the data source is supplied.)

6.2 How do I...

Use ODBC with the Visual Basic Data control?

Problem

I'm using the Visual Basic Data control to process and display data in my application. However, the data I need to
access is on the network, in a format that Visual Basic doesn't directly support. How can I get the data and display
it in a form? Can I use the Data control?

Technique

The steps necessary to bind the Visual Basic Data control and other bound controls are simple--not that much
different from connecting to one of Visual Basic's native data formats using the Jet database engine. This How-To
shows exactly what is necessary to set up the controls to make the connection.

Steps

Open the Person.VBP project file. Modify the project to use an existing ODBC data source, or use the database on
the CD-ROM included with this book. Having your OBDC source point to that database might make this How-To
easier to follow. Run the project. Use the Visual Basic Data control's navigation buttons at the bottom of the form,
as shown in Figure 6.5, to move through the database, and then click Quit when you are finished.

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (9 of 45) [9/22/1999 2:00:33 AM]

javascript:popUp('06fig03.gif')
javascript:popUp('06fig04.gif')

Figure 6.5. Chapter 6.2 example.

1. Create a new project, name it Person.VBP, and add a new form with property settings as listed in Table
6.4. Save the form as PERSON.FRM.

Private Sub Form_Load()
 `Set up the form and connect to data source
 Dim dbfTemp As Database, recTemp As Recordset
 `Connect to the database
 `Change this to your data source
 dtaData.Connect = "ODBC;DSN=Personnel Database"
 `Set the Data control's RecordSource property
 `Change this to your table name
 dtaData.RecordSource = "SELECT * FROM Contacts"
 `Connect each of the text boxes with the appropriate fieldname
 txtContact.DataField = "Contact"
 txtName.DataField = "Name"
 txtAddress1.DataField = "Addr1"
 txtAddress2.DataField = "Addr2"
 txtCity.DataField = "City"
 txtState.DataField = "State"
 txtZip.DataField = "Zip"
End Sub

Table 6.4. Objects and properties for PERSON.FRM.

OBJECT Property Setting

Form Name frmODBC

Caption Chapter 6.2 Example

StartUpPosition 2 - CenterScreen

CommandButton Name cmdQuit

Caption &Quit

Default True

TextBox Name txtZip

DataSource dtaData

TextBox Name txtState

DataSource dtaData

TextBox Name txtCity

DataSource dtaData

TextBox Name txtAddress2

DataSource dtaData

TextBox Name txtAddress1

DataSource dtaData

TextBox Name txtName

DataSource dtaData

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (10 of 45) [9/22/1999 2:00:33 AM]

javascript:popUp('06fig05.gif')

TextBox Name txtContact

DataSource dtaData

Data Name dtaData

Align 2 - Align Bottom

Caption Personnel Database

RecordSource ""

DefaultType 1 - UseODBC

Label Name lblPerson

Caption Zip:

Alignment 1 - Right Justify

Index 5

Label Name lblPerson

Alignment 1 - Right Justify

Caption State:

Index 4

Label Name lblPerson

Alignment 1 - Right Justify

Index 3

Caption City:

Label Name lblPerson

Alignment 1 - Right Justify

Index 2

Caption Address:

Label Name lblPerson

Alignment 1 - Right Justify

Index 1

Caption Company:

Label Name lblPerson

Alignment 1 `Right Justify

Index 0

Caption Contact:

2. Add the following code to the declarations section of the form. To avoid naming problems, Option
Explicit tells Visual Basic to make sure that you declare all variables and objects before using them.

Option Explicit

3. Add the following code to the form's Load event procedure. After centering the form, set the Connect
and RecordSource properties of the Data control, as well as the DataField properties of the text boxes that
will hold the fields of the database. This step links each needed field with the text boxes that hold each
record's data.

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (11 of 45) [9/22/1999 2:00:34 AM]

Change the data source name in the Connect property statement indicated to an available name in
ODBC--or leave the DSN part of the Connect string out, and ODBC will prompt you for the information it
needs. Also, set the SQL statement to a table in that data source, and change the text boxes to actual fields
in that table.

4. Add the following code to the Click event of the cmdQuit command button. This is the exit point that
terminates the program.

Private Sub cmdQuit_Click()
 End
End Sub

How It Works

The preceding code is all that is required to use ODBC with Visual Basic's Data control. With the built-in
navigation controls, you can move about the database.

Several important details are involved in setting up this procedure for use with ODBC. Note that in this How-To
most of the setup and initialization is done in code, but you can easily set the properties of the Data control and
bound text boxes when designing the form and then simply load the form. In this case, Visual Basic will make the
connection for you and display the data directly, and you won't need any code in the form's Load event. To ensure
that this happens smoothly, follow the steps outlined here:

1. Leave the Data control's DatabaseName property blank to use an ODBC data source. If you enter a
database name here, Visual Basic attempts to open the database using its native data formats.

2. Set the Connect property of the Data control to the connect string that ODBC needs to connect to the
database. This is the same connect string that other How-To's in this chapter use for defining a QueryDef,
in RegisterDatabase, and in setting up other uses of ODBC directly. You can also simply set this property
to ODBC, and ODBC will prompt the user at runtime for information it needs in order to make the
connection.

3. Set the Data control's RecordSource property to a SQL statement or the name of a table you want to use
to select the data from the database. Any SQL statement that creates a resultset can be used by Visual Basic
to populate the bound text boxes.

4. Set each text box's DataSource to the name of the Data control--dtaData in this example. This is the
normal Visual Basic way of binding a control to a Data control. Remember too that you can have as many
Data controls on a form as you want, with different sets of controls bound to different bound controls and,
therefore, to different databases.

5. Set the Data control's DefaultType to 1 - UseODBC. If this property is not set, trying to access an ODBC
database with the Data control will cause Visual Basic to hang.

6. Lastly, set each text box's DataField property to the particular field name in the resultset of data records.
This might be the name of the field in the database itself, but it is actually the name of the field that is
returned in the resultset. The two can be the same, but the SQL statement can rename the fields or even
return calculated fields that don't exist in the database.

Comments

The method for ODBC access presented previously is usually the first, and simplest, method employed by
programmers when delving into the ODBC library. You will find, however, that for more complex applications,
your needs will quickly outstrip the capabilities of the Data control. For a quick application or basic database
access, though, this is a great way to start.

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (12 of 45) [9/22/1999 2:00:34 AM]

6.3 How do I...

Create an ODBC-accessible data source by using RegisterDatabase?

Problem

ODBC provides a program, ODBC Administrator, to make manual changes to a data source, but how can I install
a new ODBC data source name using code? I can't make the users of the application do it, and I can't expect them
to have the information to give to ODBC. Does this mean that I have to make direct calls to the ODBC API?

Technique

The RegisterDatabase method of Visual Basic is a quick and easy way to register a new data source with ODBC.
The method takes four arguments: dbname, driver, silent, and attributes, which are discussed more fully later in
this section. After a data source name is created, it becomes available to any application using ODBC, whether it's
a Visual Basic application or not.

Steps

Open the REGISTER.VBP file. The ODBC Data Sources form loads, shown in Figure 6.6, getting the list of
currently installed drivers and data source names through direct calls to the ODBC system. Enter a name for the
new data source, an optional description, and the driver that ODBC will use to connect with the database. Click
the New Data Source command button to add it to the ODBC system. If any additional information is necessary
to make a connection to the database, another dialog box appears, prompting for any missing items. (Figure 6.4
shows the dialog box for adding a Microsoft Access data source.) The list of data sources then updates to show a
current list of installed data sources.

1. Create a new project named REGISTER.VBP. Add the form ODBCErrors.FRM and the code module
ODBC API Declarations.BAS, using Visual Basic's File | Add menu command. The code module contains
all the declarations needed for the ODBC API functions and the constants used in many of the functions,
and the form makes it easier to examine ODBC errors.

Figure 6.6. The project's ODBC Data Sources form, displaying the data source list.

2. Make sure that the Microsoft Common Controls components are available to this project. To add, select
the Project | Components menu item. When the dialog box appears, look for a component titled Microsoft
Windows Common Controls 6.0, and ensure that it is checked. Click OK. The ODBCErrors.FRM form
uses the TreeView control to display ODBC errors in a hierarchical fashion.

3. Name the new project's default form frmODBC and save the file as REGISTER.FRM. Add the controls
shown in Figure 6.6, setting the properties as given in Table 6.5.

Table 6.5. Objects and properties for REGISTER.FRM.

OBJECT Property Setting

Form Name frmODBC

Caption ODBC Data Sources

CommandButton Name cmdCreateDSN

Caption &New Data Source

Frame Name fraRegister

Caption New Data Source

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (13 of 45) [9/22/1999 2:00:34 AM]

javascript:popUp('06fig06.gif')

TextBox Name txtDSNdesc

TextBox Name txtDSNname

ComboBox Name lstODBCdrivers

Sorted True

Style 2 - Dropdown List

Label Name lblRegister

Alignment 1 `Right Justify

Index 2

Caption Select ODBC Driver:

Label Name lblRegister

Alignment 1 `Right Justify

Index 1

Caption Description:

Label Name lblRegister

Alignment 1 `Right Justify

Index 0

Caption Name:

CommandButton Name cmdQuit

Caption &Quit

ListBox Name lstODBCdbs

Sorted True

TabStop 0 `False

Label Name lblRegister

Index 3

Caption Installed ODBC Data Sources:

4. Put the following code in the declarations section of frmODBC. Option Explicit tells Visual Basic to
check the variables for you. The dynamic arrays hold the information about installed drivers and data
sources retrieved from calls to the ODBC API.

Option Explicit
`Dynamic arrays to hold data
Dim strDBNames() As String
Dim strDBDescs() As String
Dim strDvrDescs() As String
Dim strDvrAttr() As String

5. Add the following code to the Load event of frmODBC. This code handles all the setup chores, including
centering the form on the screen and allocating an ODBC environment handle. Each ODBC application
that calls the API needs to have one, and only one, environmental handle. ODBC keeps track of what
information goes where through the use of this handle, along with the connection and statement handles.
The actual work of extracting the lists of data sources and drivers is handled in other procedures in this
form, but called from here.

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (14 of 45) [9/22/1999 2:00:34 AM]

Private Sub Form_Load()
 `Allocate the ODBC environment handle
 If SQLAllocEnv(glng_hEnv) = SQL_SUCCESS Then
 `Load the current list of data sources to list box
 GetODBCdbs
 `Get the list of installed drivers
 GetODBCdvrs
 lstODBCdrivers.ListIndex = 0
 frmODBC.Show
 txtDSNname.SetFocus
 End If
End Sub

6. Insert these procedures into frmODBC. The first procedure, cmdCreateDSN_Click, calls the procedure
that validates data and actually creates the data source name in ODBC. The second procedure,
cmdQuit_Click, creates an exit point in the application.

Private Sub cmdCreateDSN_Click()
 CreateNewDSN
End Sub
Private Sub cmdQuit_Click()
 End
End Sub

7. Add the following subroutine to frmODBC. Here is the first of two subroutines that extract the existing
lists of data sources and drivers from ODBC. GetODBCdbs obtains the list of data source names and the
descriptions of each, employing a function named ODBCDSNList in the ODBC API Declarations.BAS as
a wrapper for the SQLDataSources API call. The ODBCDSNList function does all the work; the Do While
loop extracts one data source name at a time with a call to SQLDataSources. If no error is returned from the
function call, the data source name and its description are concatenated and added to the lstODBCdbs list
box, showing all the data sources that are already installed. When the last data source has been returned to
this function, the SQLDataSources function returns the SQL_NO_DATA_FOUND result, and the loop
terminates. The function returns a variant array, if successful, or nothing, if unsuccessful.

Private Sub GetODBCdbs()
 Dim varTemp As Variant, I As Integer
 lstODBCdbs.Clear
 `Call the ODBCDSNList function in ODBC API Declarations.BAS.
 varTemp = ODBCDSNList(glng_hEnv, True)
 `If the ODBCDSNList function returns an array, populate
 `the list box.
 If IsArray(varTemp) Then
 For I = LBound(varTemp) To UBound(varTemp)
 lstODBCdbs.AddItem varTemp(I)
 Next
 End If
End Sub

8. The next function, GetODBCdvrs, gets a list of the drivers that ODBC has installed. Put the following
code in frmODBC. This function operates very similarly to GetODBCdbs, calling a function named
ODBCDriverList, which loops through calls to the ODBC SQLDrivers function, returning one driver name
at a time, and returning the names and descriptions in a local variant array to be added to the
cboODBCdrivers drop-down list.

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (15 of 45) [9/22/1999 2:00:34 AM]

Private Sub GetODBCdvrs()
 Dim varTemp As Variant, I As Integer
 cboODBCdrivers.Clear
 varTemp = ODBCDriverList(glng_hEnv, True)
 `If the ODBCDriverList function returns an array,
 `populate the list box. If not, let the user know.
 If IsArray(varTemp) Then
 For I = LBound(varTemp) To UBound(varTemp)
 cboODBCdrivers.AddItem varTemp(I)
 Next
 Else
 MsgBox "No ODBC drivers installed or available.", _
 vbExclamation
 End If
End Sub

9. Add the following code to frmODBC. The CreateNewDSN procedure sets up and calls RegisterDatabase
so that the new data source name is recorded in the ODBC system. The procedure first checks to make sure
that a name is entered in the txtDSNname text box so that a descriptive name will be in the list (the
description is optional). If all is well, the procedure assembles the following set of variables to pass to
RegisterDatabase:

The new data source name●

The driver to be used to connect to the physical data●

Connection information●

Before actually making the call to RegisterDatabase, the Visual Basic error handler is set to go to the
CantRegister error-handling routine if there is any problem registering the data source. If there is an error, a
MsgBox informs the user of what the trouble is and continues the procedure--giving the user the
opportunity to rectify any problems and try again. If the error is anything other than error 3146, it is passed
on to the default Visual Basic error-handling routines.

Sub CreateNewDSN()
 `Add a new data source name to the ODBC system
 Dim strDSNname As String, strDSNattr As String, strDSNdriver _
 As String
 Dim intResult As Integer, intSaveCursor As Integer
 If txtDSNname = "" Then
 MsgBox "You must enter a name for the new data source."
 txtDSNname.SetFocus
 Else
 intSaveCursor = Screen.MousePointer
 Screen.MousePointer = vbHourglass
 `Format the arguments to RegisterDatabase
 strDSNname = txtDSNname.text
 strDSNattr = "Description=" & txtDSNdesc.text
 strDSNdriver = _
 cboODBCdrivers.List(cboODBCdrivers.ListIndex)
 On Error GoTo CantRegister
 `Trap any errors so we can respond to them
 DBEngine.RegisterDatabase strDSNname, strDSNdriver, _
 False, strDSNattr

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (16 of 45) [9/22/1999 2:00:34 AM]

 On Error GoTo 0
 `Now, rebuild the list of data source names
 GetODBCdbs
 Screen.MousePointer = intSaveCursor
 End If
 Exit Sub
CantRegister:
 If Err.Number = 3146 Then
 `ODBC couldn't find the setup driver specified
 `for this database in ODBCINST.INI.
 MsgBox "Cannot find driver installation DLL.", vbCritical
 Resume Next
 Else
 MsgBox Err.Number, vbExclamation
 End If
End Sub

10. Add this code in the Unload event of frmODBC. This code makes cleanup calls to ODBC functions,
releasing the memory and handles allocated to make the calls to the ODBC API. The first call is to
ODBCDisconnectDS, which releases and then frees the connection handle and memory. The second call,
SQLFreeEnv, releases the ODBC environment handle and memory.

Private Sub Form_Unload(Cancel As Integer)
 Dim intResult As Integer
 `Clean up the ODBC connections that we allocated
 `and opened.
 intResult = ODBCDisconnectDS(glng_hEnv, glng_hDbc, glng_hStmt)
 intResult = SQLCFreeEnv(ghEnv)
End Sub

How It Works

By providing the RegisterDatabase method, Visual Basic takes care of many details involved in establishing a
new data source in ODBC. This is the syntax for the method:

DBEngine.RegisterDatabase dbname, driver, silent, attributes

The first argument is dbname. The Visual Basic Help file describes dbname as "a string expression that is the
name used in the OpenDatabase method that refers to a block of descriptive information about the data source."
All true, of course, but dbname is just a descriptive name that you chose to call the data source. The name could
reflect the origins of the data (such as being from an Oracle database) or the nature of the data (such as Corporate
Marketing Research Data).

The driver argument is the name of the ODBC driver used to access the database. This is not the same as the
name of the DLL file comprising the driver, but is instead a short, descriptive name that the author of the driver
gave to it. SQL Server, Btrieve data, and Oracle are names of widely used drivers.

The third argument is silent. No, the argument isn't silent, but it is your opportunity to control whether ODBC
prompts the user for more information when ODBC doesn't have enough information to make the requested
connection. The options are True for no dialog boxes and False for ODBC to prompt for the missing information.
If silent is set to True and ODBC can't make the connection because of a lack of information, your application
will need to trap the error that will occur.

The fourth argument is attributes. Each database system you connect to has its own requirements for the

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (17 of 45) [9/22/1999 2:00:34 AM]

information it needs in order to make a connection. For some items there is a default; for others there isn't. The
more attributes you specify here, the fewer the user will need to specify. The attributes string is the string
returned from the Connect property of the Data control or the Database, QueryDef, or TableDef objects after a
connection is made. How-To 6.5 discusses this information in more detail and shows a way to easily obtain the
exact information needed to connect with a particular database. In fact, this How-To and How-To 6.5 give you all
the information you need to make an ODBC connection.

Essentially, all RegisterDatabase does is add information to the ODBC.INI file usually located in your
\WINDOWS directory--with some validation routines thrown in by ODBC. It checks to make sure that you
provide all the information needed to make a connection and that the database is out there someplace and is
accessible.

One error that might be returned from ODBC when you use the RegisterDatabase method is The configuration
DLL ([file name]) for the [driver name] could not be loaded. When you request that a new data source be
established, ODBC looks in an ODBCINST.INI file, located in the same place as the ODBC.INI file, for the name
of the DLL that contains the setup routines for that driver. Here are some sample lines for different drivers (there
is additional information in each section for each driver):

 [Microsoft Access Driver (*.mdb)]
Driver=C:\WINDOWS\SYSTEM\odbcjt16.dll
Setup=C:\WINDOWS\SYSTEM\odbcjt16.dll
[Microsoft Dbase Driver (*.dbf)]
Driver=C:\WINDOWS\SYSTEM\odbcjt16.dll
Setup=C:\WINDOWS\SYSTEM\oddbse16.dll
[SQL Server Driver]
Driver=C:\WINDOWS\SYSTEM\sqlsrvr.dll
Setup=C:\WINDOWS\SYSTEM\sqlsrvr.dll

As you can see, sometimes the setup driver is the same as the driver used for data access, but more commonly the
two are different. If that driver is not available at the location specified, ODBC returns an error for the
RegisterDatabase call.

Comments

One of the nice things about using ODBC is that it goes out of its way to give you the information you need in
order to make the connections to databases. In this How-To, you have seen how ODBC prompts with its own
dialog box if you don't give it enough information to make the connection. This is one area in which using Visual
Basic to handle the conversation with ODBC doesn't hide any details from you. You'll see another example of
using this ODBC feature to good advantage in How-To 6.5, in which the dialog box is used to construct connect
strings that you can use directly in an application.

Perhaps, to state the obvious, it is necessary for the ODBC driver to be installed before RegisterDatabase is used.
If this method only added entries to the .INI file, the driver wouldn't need to be installed before a data source was
created using that driver. But because ODBC does some validation from Visual Basic in response to this method,
the driver needs to be available along with the information stored in ODBC.INI and ODBCINST.INI by the driver
setup program.

In response to the availability of RegisterDatabase in Visual Basic, it is logical to wonder whether there is an
equivalent UnRegisterDatabase or DeleteDatabase. Alas, there is not. For that you would need to make a call to
an ODBC Installer DLL function, SQLConfigDataSource, available since ODBC version 1.0. Some other
interesting installation functions that were introduced with version 2.0 (SQLCreateDataSource,
SQLGetAvailableDrivers, SQLGetInstalledDrivers, and SQLManageDataSources) give finer control over the
ODBC setup. Driver manufacturers use these and other functions to install drivers and ODBC itself if necessary,

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (18 of 45) [9/22/1999 2:00:34 AM]

but any application can use them. Information about these functions is available in the Microsoft ODBC 3.0
Programmer's Reference and SDK Guide.

Another Visual Basic property that is useful in connection with RegisterDatabase is the Version property. Version
is a property of both the Database object and the DBEngine object. When returned from the Database object,
Version identifies the data format version of the object, usually as a major and minor version number, such as
4.03. This gives you one more piece of information about the different components making up your applications.

6.How do I...

Prevent the login dialog box from being displayed when I open an ODBC
database?

Problem

I'm trying to use an ODBC driver to open a data source that is on the network, but the driver documentation is not
very helpful regarding the information needed to make a connection. I need my application to make the
connection (if it is at all possible) without requiring users to make decisions or respond to dialog boxes. How can
I get the right connect string without wasting time by guessing? If the connection can't be made, why not?

Technique

As long as you are able to tell Visual Basic that you want to make some sort of connection through ODBC, all
you need to do is make a call to Visual Basic's OpenDatabase method with certain default arguments. ODBC
responds by prompting for information about what data source you want (from those data sources installed on the
system). Then you can define a temporary QueryDef, make the connection, and examine the Visual Basic
Connect property. The Connect property at that point contains the fully formed connect string required to make a
connection to that data source. The string stored in the Connect property can be copied and used directly in future
attempts to connect to the database.

Steps

Open and run the CONNECT.VBP Visual Basic project file. The Retrieve ODBC Connect String window opens,
as shown in Figure 6.7. Click on the Connect to Data Source command button, and the ODBC SQL Data Sources
window appears, prompting you to select an installed data source name. Visual Basic and ODBC obtain from that
data source a list of available tables and put them in the Tables Available list box on the main form. Either
double-click on one of the tables or select one and click the Get Connect String command button. The application
establishes a connection to that database table and returns the complete connect string, placing it in the Connect
String text box, as shown in Figure 6.8. Click the Copy Connect String command button to put the string on the
Windows clipboard, and then paste it into your application.

Figure 6.7. The project's main form on startup.

Figure 6.8. The project's main form, after ODBC connect string retrieval.

1. Create a new project named CONNECT.VBP. Add the form ODBCErrors.FRM and the code module
ODBC API Declarations.BAS, using Visual Basic's File | Add menu command. The code module contains
all the declarations needed for the ODBC API functions and the constants used in many of the functions.

2. Name the default form frmODBC, and save the file as CONNECT.FRM. Add the controls as shown in
Figure 6.7, setting the properties as listed in Table 6.6.

Table 6.6. Objects and properties for CONNECT.FRM.

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (19 of 45) [9/22/1999 2:00:34 AM]

javascript:popUp('06fig07.gif')
javascript:popUp('06fig08.gif')

OBJECT Property Setting

Form Name frmODBC

Caption Chapter 6.4 Example

CommandButton Name cmdCopyConnect

Caption Cop&y Connect String

Enabled 0 - False

CommandButton Name cmdGetConnect

Caption &Get Connect String

Enabled 0 - False

CommandButton Name cmdQuit

Caption &Quit

TextBox Name txtConnect

MultiLine True

ScrollBars 2 - Vertical

TabStop False

CommandButton Name cmdConnect

Caption &Connect to Data Source

ListBox Name lstTables

Sorted True

Label Name lblConnect

Index 0

Caption Connect String:

Label Name lblConnect

Index 1

Caption &Tables Available:

3. Add the following code to the declarations section of frmODBC. To avoid naming problems, Option
Explicit tells Visual Basic to make sure that you declare all variables and objects before using them.

Option Explicit
`Module level globals to hold connection info
Dim dbfTemp As Database, recTemp As Recordset

4. Add this code to the form's Load event. After the form is loaded, memory and a handle for the ODBC
environment and connection are allocated. If either of these fails, there is no need to proceed, so the
program is exited.

Private Sub Form_Load()
 `Log on to an ODBC data source
 `First, allocate ODBC memory and get handles
 Dim intResult As Integer
 `Allocate the ODBC environment handle
 If SQLAllocEnv(glng_hEnv) <> SQL_SUCCESS Then End

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (20 of 45) [9/22/1999 2:00:34 AM]

 intResult = SQLAllocConnect(glng_hEnv, glng_hDbc)
 If intResult <> SQL_SUCCESS Then
 intResult = frmODBCErrors.ODBCError("Dbc", glng_hEnv, & _
 glng_hDbc, 0, intResult, "Error allocating connection _
 handle.")
 End
 End If
 frmODBC.Show
End Sub

5. Add the following code to the Click event of cmdConnect. Before you can get connection data, you need
to select a data source name for the connection information you want. For this procedure, let the built-in
ODBC dialog boxes do the work. The line

Set dbfTemp = OpenDatabase("", False, False, "ODBC;")

tells Visual Basic to open a database but gives no information about which one, other than it is an ODBC
database. ODBC responds by opening its Select Data Source dialog box for selection of a data source, as
shown in Figure 6.9.

Private Sub cmdConnect_Click()
 `Connect to a data source and populate lstTables
 Dim I As Integer
 Dim strConnect As String
 Dim tbfTemp As TableDef
 Screen.MousePointer = vbHourglass
 lstTables.Clear
 On Error GoTo ErrHandler
 Set dbfTemp = OpenDatabase("", False, False, "ODBC;")
 On Error GoTo 0
 For Each tbfTemp In dbfTemp.TableDefs
 lstTables.AddItem tbfTemp.Name
 Next
 Screen.MousePointer = vbDefault
 If lstTables.ListCount Then
 cmdGetConnect.Enabled = True
 Else
 MsgBox "No tables are available. " & _
 "Please connect to another data source."
 End If
Exit Sub
ErrHandler:
 Screen.MousePointer = vbDefault
 Select Case Err.Number
 Case 3423
 `This data source can't be attached, (or the
 `user clicked Cancel, so use ODBC API
 APIConnect
 Case 3059
 `The user clicked on Cancel
 Exit Sub
 Case Else

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (21 of 45) [9/22/1999 2:00:34 AM]

 `The error is something else, so send it back to
 `the VB exception handler
 MsgBox Err.Number, vbExclamation
 End Select
End Sub

Figure 6.9. The Select Data Source selection dialog box.

After the user selects a data source name, the procedure loops through the TableDefs collection using a
Visual Basic For Each...Next loop, retrieves the table name of each table available in that data source, and
adds each table name to the lstTables list box. If a connection is made and any tables are available, the
cmdGetConnect command button is Enabled for the next step, which is retrieving the connection
information. The error-handling routine is important in this procedure and is discussed with the
APIConnect procedure code.

6. Add the following code to the cmdGetConnect's Click event. This command button is enabled only when
a connection is made and tables are available for selection. After you select a table name, a connection is
made to that table by creating a dynaset. This makes the connection information available. The connection
information is retrieved by copying the value of the dynaset's Connect property to the txtConnect text box,
running it through the AddSpaces function as discussed in the following text. Finally, the cmdCopyConnect
command button is enabled.

Screen.MousePointer = vbHourglass
 txtConnect.text = ""
 If Len(lstTables.text) Then
 Set recTemp = dbfTemp.OpenRecordset(lstTables.text)
 txtConnect.text = AddSpaces(dbfTemp.Connect)
 Else
 MsgBox "Please select a table first."
 End If
 cmdCopyConnect.Enabled = True
 Screen.MousePointer = vbDefault
End Sub

7. Add the following code to frmODBC. When you receive the raw connect string back from ODBC after
making the connection to the database table, it is strung together with no spaces, unless a space happens to
be in any of the strings enclosed in quotation marks. Sometimes the connect string can become lengthy, so
use a text box with the MultiLine property set to True. Even with that, an unbroken string with no spaces
can exceed any width you make the text box. So this function simply loops through the length of the string,
replacing all the semicolon separators with a semicolon-space pair of characters. ODBC uses semicolons to
separate the different phrases in a connect string.

Function AddSpaces (strC As String)
 Dim I As Integer
 Dim strNewStr As String, strNextChar As String
 Dim strNextChar As String
 For I = 1 To Len(strC)
 strNextChar = Mid$(strC, I, 1)
 If strNextChar = ";" Then
 strNewStr = strNewStr & strNextChar & " "
 Else
 strNewStr = strNewStr & strNextChar
 End If

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (22 of 45) [9/22/1999 2:00:34 AM]

javascript:popUp('06fig09.gif')

 Next
 AddSpaces = strNewStr
End Function

8. Add the code for cmdCopyConnect's Click event as shown here. This is added as a convenience for the
programmer. When you have connected to the data source and have received the connect string, just click
the Copy Connect String command button, and the full string is copied to the Windows Clipboard, ready to
paste into your application.

Private Sub cmdCopyConnect_Click()
 `Select the text in txtConnect
 With txtConnect
 .SetFocus: .SelStart = 0: .SelLength = _
 Len(txtConnect.text)
 End With
 ` Copy selected text to Clipboard.
 Clipboard.SetText Screen.ActiveControl.SelText
End Sub

9. Add the following code to the form's Unload event and the cmdQuit command button's event. The
cmdQuit command button ends the program, triggering the form's Unload event. As usual for Visual Basic
applications that make direct calls to the ODBC API, the code needs to clean up after itself, releasing the
memory and handles needed for connection to ODBC.

Private Sub cmdQuit_Click()
 End
End Sub
Private Sub Form_Unload(Cancel As Integer)
 Dim intResult As Integer
 intResult = ODBCDisconnectDS(glng_hEnv, glng_hDbc, glng_hStmt)
 intResult = ODBCFreeEnv(glng_hEnv)
End Sub

10. Add the following code to the DblClick event procedure of the lstTables list box. This code simply adds
the convenience of being able to double-click on a table in lstTables to retrieve the connect string, saving
the work of also clicking the cmdGetConnect command button.

Private Sub lstTables_DblClick()
 cmdGetConnect_Click
End Sub

11. Add the following code to the code section of the form. Sometimes it is necessary to handle errors
generated by Visual Basic but caused by the ODBC system. This is one example of such a situation.

There are two sorts of Visual Basic errors that need to be handled in the cmdConnect_Click procedure. The
first sort of error is when, for any of a number of reasons, there is a problem making the connection to the
data source (for example, the database is not available, the connection couldn't be made because of network
traffic, and so on). One common error is the attempt to open an ODBC database that is one of the databases
Visual Basic handles natively, such as an Access .MDB file or one of the ISAM databases.

This is where the APIConnect procedure comes in. Even though the error is generated by the Visual Basic
error handler, there is some reason lurking in ODBC for why the connection can't be made, and a call to the
ODBC SQLError function will usually (but not always) give more information about the problem.
SQLError doesn't always have information to give, for whatever internal reason. Basically, APIConnect
just calls SQLError from within the error procedure, gets whatever additional information it can obtain,
disconnects the ODBC connection (but not the handle--you might need that again for another attempt to

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (23 of 45) [9/22/1999 2:00:34 AM]

make a connection), and returns to frmODBC.

Sub APIConnect()
 `Can't connect through VB, so go direct
 Dim intResult As Integer
 Dim strConnectIn As String
 Dim strConnectOut As String * SQL_MAX_OPTION_STRING_LENGTH
 Dim intOutCount As Integer
 strConnectIn = ""
 intResult = SQLDriverConnect(glng_hDbc, Me.hWnd, _
 strConnectIn,
 Len(strConnectIn), strConnectOut, Len(strConnectOut), _
 intOutCount, SQL_DRIVER_PROMPT)
 If intResult <> SQL_SUCCESS Then
 intResult = frmODBCErrors.ODBCError("Dbc", glng_hEnv, _
 glng_hDbc, 0, _
 intResult, "Problem with call to SQLDriverConnect.")
 Exit Sub
 End If
 txtConnect.text = AddSpaces(strConnectOut)
 `Free the connection, but not the handle
 intResult = SQLDisconnect(glng_hDbc)
 If intResult <> SQL_SUCCESS Then
 intResult = frmODBCErrors.ODBCError("Dbc", glng_hEnv, _
 glng_hDbc, 0, _
 intResult, "Problem with call to SQLDriverConnect.")
 End If
 cmdCopyConnect.Enabled = True
End Sub

The other error that must be handled is one that occurs when the user clicks Cancel when ODBC's Select
Data Source dialog box is shown. If this happens, the Sub procedure is exited and the user is returned to the
main form.

How It Works

Three functions are available in the ODBC API for making a connection to a data source: SQLConnect,
SQLBrowseConnect, and SQLDriverConnect. Table 6.7 explains these functions in more detail.

Table 6.7. ODBC functions for establishing data source connections.

FUNCTION Version Conformance Primary Arguments

SQLConnect 1.0 Core hDbc, data source name, user ID, authorization string

SQLDriverConnect 1.0 1 hDbc, Windows handle (hwnd), connect string in, connect string
out, completion option

SQLBrowseConnect 1.0 2 hDbc, connect string in, connect string out

SQLConnect

SQLConnect is the standard way of connecting to an ODBC data source. All the arguments must be complete and
correct because if anything is wrong, ODBC generates an error. If everything is right, a connection is established.

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (24 of 45) [9/22/1999 2:00:34 AM]

Valid
return codes are SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, and
SQL_INVALID_HANDLE. Because this function is in the Core conformance level, all ODBC drivers are
guaranteed to support it (or as guaranteed as possible with drivers written by third-party developers attempting to
adhere to a standard), so it is always available. The only flexibility that SQLConnect provides is when the
specified data source name can't be found. In that case, the function looks for a default driver and loads that one if
it is defined in ODBC.INI. If not, SQL_ERROR is returned, and you can obtain more information about the
problem with a call to SQLError. This is the workhorse function of ODBC connections.

SQLDriverConnect

SQLDriverConnect offers a bit more flexibility for making ODBC connections. This function can handle data
sources that require more information than the three arguments of SQLConnect (other than the connection handle
hDbc, which all three functions require). SQLDriverConnect provides dialog boxes to prompt for any missing
information needed for the connection, and it can handle connections not defined in the ODBC.INI file or
registry. SQLDriverConnect provides three connection options:

A connection string provided in the function call that contains all the data needed, including data source
name, multiple user IDs, multiple passwords, and any other custom information required by the database.

●

A connection string that provides only some of the data required to make the connection. The ODBC
Driver Manager and the driver can prompt for any information that either of them needs in order to make
the connection.

●

A connection that is not defined in ODBC.INI or the registry. If any partial information is provided, the
function uses it however it can.

●

When a connection is successfully made, the function returns SQL_SUCCESS and returns a completed
connection string that can be used to make future connections to that database. It is a pretty safe bet that
SQLDriverConnect is the function that Visual Basic uses when this How-To is employed to discover the connect
string.

SQLDriverConnect can return SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE. Valid choices for the completion option argument are
SQL_DRIVER_PROMPT, SQL_DRIVER_COMPLETE, SQL_DRIVER_COMPLETE_REQUIRED, and
SQL_DRIVER_NOPROMPT, as described here:

SQL_DRIVER_PROMPT: This option displays dialog boxes (whether needed or not) to prompt for
connection information. Any initial values included in the function call are used to fill in the appropriate
controls in the dialog box.

●

SQL_DRIVER_COMPLETE: If the connection information provided in the function call is sufficient to
make the connection, ODBC goes ahead and makes the connection. If anything is missing, this option acts
like SQL_DRIVER_PROMPT.

●

SQL_DRIVER_COMPLETE_REQUIRED: This is the same as SQL_DRIVER_COMPLETE, except that
any information not needed to make the connection is grayed out in the dialog box.

●

SQL_DRIVER_NOPROMPT: If the information in the connect string is sufficient to make the connection,
it goes ahead and makes the connection. If anything is missing, it makes no connection, and the function
returns SQL_ERROR.

●

SQLBrowseConnect

The third function, SQLBrowseConnect, is perhaps the most interesting of the three functions. A call to this
function initiates an interactive method of discovering what it takes to connect to a particular database. Each time
SQLBrowseConnect is called, the function returns additional attributes that are needed to make a connection. An

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (25 of 45) [9/22/1999 2:00:34 AM]

application making the call can parse out the resulting string containing missing attributes (which are marked as
required or optional) and return successively more complete connect strings. Attributes that involve selection
from a fixed list of items are returned as that full list so that an application can present a list box of choices to the
user.

The bad news, for Visual Basic anyway, is that SQLBrowseConnect is a Conformance Level 2 function. Because
Visual Basic is designed to require only Level 1 drivers, it doesn't have any functions that can directly use this
function. But it is available to any application, including those written in Visual Basic, through direct calls to the
ODBC API, if the driver supports Level 2 conformance.

Comments

As mentioned in the introduction to the chapter, you can't make an ODBC connection through an attached table to
a database that Visual Basic natively supports, such as a Microsoft Access .MDB file or the ISAM databases
Btrieve and dBASE. There normally isn't any reason to do so, although you can always do it by using the ODBC
API directly.

6.5 How do I...

Determine what services an ODBC server provides?

Problem

I'd like to be able to connect with the different data sources scattered throughout our network. But all the various
drivers have different capabilities, even though they are all accessible through ODBC. How can I find out through
code which services are available for each server and keep the code as flexible and portable as possible?

Technique

This example develops a useful ODBC viewer that gathers in one place much of the information needed to
evaluate the data sources and drivers available to a particular workstation. You can use the same techniques
whether the data is located on a single computer with one hard disk or connected to a network with data of widely
varying formats on different hardware.

Steps

Open and run the Visual Basic SERVICES.VBP project. Select an ODBC data source name from the Installed
ODBC Data Sources list, and then click the Get Functions command button. After a moment, a list of the
functions that can be used with the data source appears in the bottom half of the form, similar to the form shown
later in Figure 6.11. Scroll through the list to see the functions available. Then, with the same data source
highlighted, click the Get Properties command button. The Get Info window appears, as shown in Figure 6.10.
Make the selections you want (from one to all the items in the list), and click the Get Info command button. The
list of properties and their current values appears in the Biblio Properties window, as shown in Figure 6.11.

Figure 6.10. The project's Get Info form, showing the selected properties.

Figure 6.11. The project's Details form, showing the available functions.

1. Create a new project called SERVICES.VBP. Add the form ODBCErrors.FRM and the code module
ODBC API Declarations.BAS using Visual Basic's File | Add menu command. The code module contains
all the declarations necessary for the ODBC API functions and the constants used in many of the functions,
and the form allows for an easy-to-read display of ODBC errors.

2. Add a new form, frmODBC, and save the file as SERVICES.FRM. Add the controls shown in Figure

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (26 of 45) [9/22/1999 2:00:34 AM]

javascript:popUp('06fig10.gif')
javascript:popUp('06fig11.gif')

6.11, setting the properties as given in Table 6.8. The area under the Properties label is the MSFlexGrid
control, grdResults.

Table 6.8. Objects and properties for SERVICES.FRM.

OBJECT Property Setting

Form Name frmODBC

Caption Chapter 6.5 Example - Details

CommandButton Name cmdProperties

Caption Get Properties

CommandButton Name cmdFunctions

Caption Get Functions

CommandButton Name cmdQuit

Caption Quit

ListBox Name lstODBCdbs

Sorted True

Label Name lblGrid

Caption Properties

BorderStyle 1 - Fixed Single

Grid Name grdResults

Visible False

Scrollbars 2 - flexScrollBarVertical

Highlight 0 - flexHighlightNever

Label Name lblServices

Caption Installed ODBC Data Sources:

3. Put the following code in the declarations section of the form. This code declares the dynamic array that
will be used to hold the names of the data sources and drivers available to ODBC. To avoid naming
problems, Option Explicit tells Visual Basic to make sure you declare all variables and objects before using
them.

Option Explicit
`Dynamic arrays to hold data
Dim strDBNames() As String

4. Add the following code to the form's Load event. First, the form is centered onscreen so that all the
controls and information can be seen. Then, as with all applications that make direct calls to the ODBC
API, the ODBC wrapper functions are called to allocate memory and assign a handle for the ODBC
environment and for the database connection. This is followed by a call to the GetODBCdbs Sub
procedure, which the following text explains.

Private Sub Form_Load()
 `Log on to an ODBC data source
 `First, allocate ODBC memory and get handles
 Dim intResult As Integer
 `Allocate the ODBC environment handle

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (27 of 45) [9/22/1999 2:00:35 AM]

 If ODBCAllocateEnv(glng_hEnv) = SQL_SUCCESS Then
 `Load the current list of data sources to list box
 GetODBCdbs
 `Show the form
 frmODBC.Show
 Else
 End
 End If
End Sub

5. Add the following routine to frmODBC. This procedure extracts the existing lists of data sources and
drivers from ODBC. GetODBCdbs obtains the list of data source names and the descriptions of each. The
Do While loop extracts one data source name at a time with a call to SQLDataSources. If no error is
returned from the function call, the data source name is added to the lstODBCdbs list box, showing all the
data sources that are already installed. When the last data source has been returned to this function, the
SQLDataSources function returns the SQL_NO_DATA_FOUND result, and the loop terminates.

Private Sub GetODBCdbs()
 Dim varTemp As Variant, I As Integer
 lstODBCdbs.Clear
 varTemp = ODBCDSNList(glng_hEnv, False)
 If IsArray(varTemp) Then
 For I = LBound(varTemp) To UBound(varTemp)
 lstODBCdbs.AddItem varTemp(I)
 Next
 Else
 MsgBox "No ODBC data sources to load!", vbCritical
 End
 End If
End Sub

6. Add the following routine to frmODBC. This procedure first determines whether a data source name has
been selected in the lstODBCdbs list box. If none has been selected, a message box lets the user know that
and then exits the procedure.

Assuming that a data source is selected, a call is made to ODBCConnectDS to allocate connection memory
and a handle, which is required for a later call to SQLGetFunctions. If a connection is made successfully,
the call to SQLGetFunctions is made, which does the actual work of retrieving the function list. The list is
put into the FuncList array, which has 100 elements. An element of this array is set to true (-1) or false (0)
if the referenced ODBC function is available with this data source. See the "How It Works" section for a
discussion about how this array is used to identify available functions.

To set the number of rows in the grdResults grid, the number of array elements that are True must be
counted. The first For...Next loop handles that, so that j is the number of true elements at the end of the
loop. Then, after setting up the grid with the numbers of rows and columns to fit the data, the intFuncList
array is looped through once again, to put the function names into each row of the grid.

Private Sub cmdFunctions_Click()
 Dim strDataSource As String
 Dim strUserName As String, strPassword As String
 Dim intResult As Integer, intErrResult As Integer
 ReDim intFuncList(100) As Integer
 Dim I As Integer, j As Integer
 `First, check to see if anything is selected

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (28 of 45) [9/22/1999 2:00:35 AM]

 `If not, notify user, then return to form.
 If lstODBCdbs.ListIndex >= 0 Then
 Screen.MousePointer = vbHourglass
 strDataSource = lstODBCdbs.List(lstODBCdbs.ListIndex)
 If SQLAllocStmt(glng_hDbc, glng_hStmt) Then _
 intResult = ODBCConnectDS(glng_hEnv, glng_hDbc, _
 glng_hStmt, strDataSource, strUserName, _
 strPassword)
 If intResult = SQL_SUCCESS Then _
 intResult = SQLGetFunctions(glng_hDbc, _
 SQL_API_ALL_FUNCTIONS, intFuncList(0))
 If intResult <> SQL_SUCCESS Then
 intErrResult = frmODBCErrors.ODBCError("Dbc", _
 glng_hEnv,
 glng_hDbc, 0, intResult, _
 "Error getting list of ODBC functions")
 Else
 `Run through the array and get the number of functions
 j = 0
 For I = 0 To 99
 If intFuncList(I) Then j = j + 1
 Next
 `Start by clearing the frmODBC grid
 With frmODBC.grdResults
 .Rows = j
 .Cols = 3
 .FixedCols = 1
 .FixedRows = 0
 .ColWidth(0) = 8
 .ColWidth(1) = 0.65 * frmODBC.grdResults.Width
 .ColWidth(2) = 0.35 * frmODBC.grdResults.Width
 End With
 lblGrid.Caption = lstODBCdbs.text & ": " & _
 Trim(Val(j)) & _
 " Functions"
 `Populate the grid with the function names
 j = 0
 For I = 0 To 99
 If intFuncList(I) <> 0 Then
 With frmODBC.grdResults
 .Row = j
 .Col = 0: .text = j
 .Col = 1: .text = ODBCFuncs(0, I)
 .Col = 2: .text = ODBCFuncs(1, I)
 End With
 j = j + 1
 End If
 Next
 `Move to the top row

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (29 of 45) [9/22/1999 2:00:35 AM]

 frmODBC.grdResults.Row = 0
 frmODBC.grdResults.Col = 1
 `free the data source connection
 intResult = ODBCDisconnectDS(glng_hEnv, glng_hDbc, _
 SQL_NULL_HSTMT)
 Screen.MousePointer = vbDefault
 frmODBC.grdResults.Visible = True
 End If
 Else
 MsgBox "Please select a data source name first.", _
 vbCritical, "ODBC Functions"
 End If
End Sub

7. Put the following code in the cmdProperties_Click event subroutine. After the program checks to make
sure that a data source is selected, it attempts to allocate a connection handle; then it loads the frmGetInfo
form to continue obtaining information.

Private Sub cmdProperties_Click()
 Dim intResult As Integer
 If lstODBCdbs.ListIndex < 0 Then
 MsgBox "Please select a data source name first.", _
 vbCritical, "ODBC Properties"
 Else
 intResult = ODBCConnectDS(glng_hEnv, glng_hDbc, _
 glng_hStmt, lstODBCdbs.text, "", "")
 If intResult = SQL_SUCCESS Then Load frmGetInfo
 End If
End Sub

8. Enter the following two procedures to the code section of the form. The first procedure establishes a
command button to quit the application. The Unload event then cleans up and releases the memory and
handles that were necessary for making calls to the ODBC API.

Private Sub cmdQuit_Click()
 End
End Sub
Private Sub Form_Unload(Cancel As Integer)
 Dim intResult As Integer
 intResult = ODBCDisconnectDS(glng_hEnv, glng_hDbc, glng_hStmt)
 intResult = ODBCFreeEnv(glng_hEnv)
End Sub

9. Add the following code to the code section of the form. This function provides a convenient way to
convert some of the results of the properties to a more user-friendly and understandable form.

Private Function convCh(inChar As String, num As Variant)
 inChar = LTrim$(Left$(inChar, num))
 Select Case inChar
 Case "Y"
 convCh = "Yes"
 Case "N"
 convCh = "No"
 Case Else

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (30 of 45) [9/22/1999 2:00:35 AM]

 convCh = inChar
 End Select
End Function

10. Add a new form, frmGetInfo, and save the file as GETINFO.FRM. Add the controls shown in Figure
6.10, setting the properties as shown in Table 6.9.

Table 6.9. Objects and properties for GETINFO.FRM.

OBJECT Property Setting

Form Name frmGetInfo

Caption Chapter 6.5 Example - Get Info

TextBox Name txtStatus

Text Select the options you want to include.

CommandButton Name cmdCancel

Cancel True

Caption Cancel

CommandButton Name cmdGetInfo

Caption Get Info

CommandButton Name cmdSelection

Caption Unselect All

CommandButton Name cmdSelection

Caption Select All

ListBox Name lstGetInfoData

MultiSelect Extended

Sorted True

Label Name lblGetInfo

11. Add the following line of code to the declarations section of the GETINFO.FRM form. Option Explicit
tells Visual Basic to make sure that you declare all variables and objects before using them, to avoid
naming problems.

Option Explicit

12. Add the following code to the form's Load event. The main job of this procedure is to load the
lstGetInfoData list box with all the available ODBC functions. All the function names are loaded into the
ODBCGetInfo array in the LoadGetInfo Sub procedure in ODBC API Declarations.BAS. That array is an
array of GetInfo types, defined in ODBC API as this:

Type GetInfo
 InfoType As String
 ReturnType As String
End Type

The array has SQL_INFO_LAST number of elements, as defined in ODBC API Declarations.BAS in the
declarations section:

Private Sub Form_Load()
 `Load the list box with the ODBCGetInfo array

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (31 of 45) [9/22/1999 2:00:35 AM]

 Dim I As Integer
 For I = 0 To SQL_INFO_LAST
 If ODBCGetInfo(I).InfoType <> "" Then
 lstGetInfoData.AddItem ODBCGetInfo(I).InfoType
 End If
 Next
 frmGetInfo.Show
End Sub

13. Add the following code to the cmdGetInfo's Click event procedure. Although this procedure looks
foreboding, it is really doing only two main jobs: getting a count and a list of the SQLGetInfo options that
have been selected in the list box and then looping through to get their current settings, populating the grid
control on the frmODBC form with the results. For more information on this procedure, review the "How It
Works" section later in this How-To.

Private Sub cmdGetInfo_Click()
 Dim intSelCount As Integer `count of selected items
 Dim I As Integer, j As Integer
 Dim ri As Integer
 Dim rs As String * 255
 Dim rb As Long, rl As Long
 Dim lngInfoValue As Long
 Dim lngInfoValueMax As Integer, intInfoValue As Integer, _
 intResult As Integer
 Dim intConnIndex As Integer
 Dim strTemp As String, strID As String, strErrMsg As String
 Dim strRowData() As String
 lngInfoValueMax = 255
 `Get the number of rows selected and the type of data
 intSelCount = 0
 For I = 0 To lstGetInfoData.ListCount - 1
 If lstGetInfoData.Selected(I) Then
 ReDim Preserve strRowData(intSelCount + 1)
 strRowData(intSelCount) = lstGetInfoData.List(I)
 intSelCount = intSelCount + 1
 End If
 Next
 If intSelCount = 0 Then
 MsgBox "No attributes were selected. Please select " & _
 "at least one and try again.", vbExclamation
 Exit Sub
 End If
 `Start by clearing the frmODBC grid
 With frmODBC.grdResults
 .Rows = intSelCount + 1: .Cols = 3
 .FixedCols = 1: .FixedRows = 1
 .ColWidth(0) = 8
 .ColWidth(1) = 0.45 * frmODBC.grdResults.Width
 .ColWidth(2) = 0.55 * frmODBC.grdResults.Width
 .Row = 0
 .Col = 1: .text = "Attribute Constant"

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (32 of 45) [9/22/1999 2:00:35 AM]

 .Col = 2: .text = "Value"
 End With
 frmODBC.lblGrid.Caption = frmODBC.lstODBCdbs.text & " " & _
 "Properties"
 For I = 0 To intSelCount - 1
 With frmODBC.grdResults
 .Row = I + 1
 .Col = 0: .text = I + 1
 .Col = 1: .text = strRowData(I)
 .Col = 2
 End With

 `Get the index of ODBConn - have to do it this way
 `because there are gaps in the ODBC constants
 For j = LBound(ODBCGetInfo) To UBound(ODBCGetInfo)
 If strRowData(I) = ODBCGetInfo(j).InfoType Then Exit _
 For
 Next
 `Format the data according the return type of
 `ODBCGetInfo
 Select Case Left$(ODBCGetInfo(j).ReturnType, 1)
 Case "S" `String
 intResult = SQLGetInfo(glng_hDbc, j, ByVal rs, _
 Len(rs), intInfoValue)
 If Len(Trim$(ODBCGetInfo(j).ReturnType)) > 1 Then
 frmODBC.grdResults.text = _
 SpecialStr(strRowData(I), _
 Trim$(rs))
 Else
 frmODBC.grdResults.text = Trim$(rs)
 End If
 Case "B" `32-bit Bitmask
 intResult = SQLGetInfo(glng_hDbc, j, rb, 255, _
 intInfoValue)
 frmODBC.grdResults.text = BitMask(rb)
 Case "I" `Integer
 intResult = SQLGetInfo(glng_hDbc, j, ri, 255, _
 intInfoValue)
 If Len(Trim$(ODBCGetInfo(j).ReturnType)) > 1 Then
 frmODBC.grdResults.text = _
 SpecialInt(strRowData(I), _
 Trim$(ri))
 Else
 frmODBC.grdResults.text = ri
 End If
 Case "L" `Long
 intResult = SQLGetInfo(glng_hDbc, j, rl, 255, _
 intInfoValue)
 If Len(Trim$(ODBCGetInfo(j).ReturnType)) > 1 Then
 frmODBC.grdResults.text = _

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (33 of 45) [9/22/1999 2:00:35 AM]

 SpecialLong(strRowData(I), _
 Trim$(rl))
 Else
 frmODBC.grdResults.text = rl
 End If
 Case Else
 `Error in array
 frmODBC.grdResults.text = "Error processing _
 return value."
 End Select
 If intResult <> SQL_SUCCESS Then
 frmODBC.grdResults.text = "Error getting data."
 End If
 Next
 frmODBC.grdResults.Visible = True
 Unload Me
End Sub

14. Add the code for SpecialStr to the code section of the module. This is the first of the "special"
processing functions that make the results of the call to SQLGetInfo more meaningful. Most of the Select
Case options simply convert a "Y" or "N" to "Yes" or "No." Another processing function,
SQL_KEYWORDS, returns a long list of keywords you can use. To keep things from getting too complex,
this How-To just indicates that a list is available; you could easily put the list into a TextBox or List control
to allow closer examination, or it could be used by the application.

The return value of the SpecialStr function is the string that is actually displayed in the grid.

Private Function SpecialStr(Opt As String, RetStr As String)
 `Do any special processing required for a SQLGetInfo string
 Select Case Opt
 Case "SQL_ODBC_SQL_OPT_IEF"
 SpecialStr = IIf(RetStr = "Y", "Yes", "No")
 Case "SQL_COLUMN_ALIAS"
 SpecialStr = IIf(RetStr = "Y", "Yes", "No")
 Case "SQL_KEYWORDS"
 SpecialStr = "List of keywords." `&&&
 Case "SQL_ORDER_BY_COLUMNS_IN_SELECT"
 SpecialStr = IIf(RetStr = "Y", "Yes", "No")
 Case "SQL_MAX_ROW_SIZE_INCLUDES_LONG"
 SpecialStr = IIf(RetStr = "Y", "Yes", "No")
 Case "SQL_EXPRESSIONS_IN_ORDERBY"
 SpecialStr = IIf(RetStr = "Y", "Yes", "No")
 Case "SQL_MULT_RESULT_SETS"
 SpecialStr = IIf(RetStr = "Y", "Yes", "No")
 Case "SQL_OUTER_JOINS"
 Select Case RetStr
 Case "N"
 SpecialStr = "No outer joins."
 Case "Y"
 SpecialStr = "Yes, left-right segregation."
 Case "P"
 SpecialStr = "Partial outer joins."

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (34 of 45) [9/22/1999 2:00:35 AM]

Case "F"

 SpecialStr = "Full outer joins."
 Case Else
 SpecialStr = "Missing data."
 End Select
 Case "SQL_NEED_LONG_DATA_LEN"
 SpecialStr = IIf(RetStr = "Y", "Yes", "No")
 Case "SQL_LIKE_ESCAPE_CLAUSE"
 SpecialStr = IIf(RetStr = "Y", "Yes", "No")
 Case "SQL_ACCESSIBLE_PROCEDURES"
 SpecialStr = IIf(RetStr = "Y", "Yes", "No")
 Case "SQL_ACCESSIBLE_TABLES"
 SpecialStr = IIf(RetStr = "Y", "Yes", "No")
 Case "SQL_DATA_SOURCE_READ_ONLY"
 SpecialStr = IIf(RetStr = "Y", "Yes", "No")
 Case "SQL_PROCEDURES"
 SpecialStr = IIf(RetStr = "Y", "Yes", "No")
 Case "SQL_ROW_UPDATES"
 SpecialStr = IIf(RetStr = "Y", "Yes", "No")
 Case Else
 SpecialStr = "Missing special processing."
 End Select
End Function

15. Add the code for the SpecialInt function to the code section of the form. This function handles special
integer return values from SQLGetInfo. In all of these special cases, the return value is an index to a
keyword defined in ODBCAPI.BAS. Simply use a Select Case nested within the overall Select Case
structure to translate the value into a more meaningful string.

Private Function SpecialInt(Opt As String, RetInt As Integer)
 `Do any special processing required for a SQLGetInfo integer
 Select Case Opt
 Case "SQL_CORRELATION_NAME"
 Select Case RetInt
 Case SQL_CN_NONE
 SpecialInt = "Not supported."
 Case SQL_CN_DIFFERENT
 SpecialInt = "Supported but names vary."
 Case SQL_CN_ANY
 SpecialInt = "Any valid user name."
 Case Else
 SpecialInt = "Missing data."
 End Select
 Case "SQL_NON_NULLABLE_COLUMNS"
 Select Case RetInt
 Case SQL_NNC_NULL
 SpecialInt = "All columns nullable."
 Case SQL_NNC_NON_NULL
 SpecialInt = "May be non-nullable."
 Case Else

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (35 of 45) [9/22/1999 2:00:35 AM]

 SpecialInt = "Missing data."
 End Select
 Case "SQL_FILE_USAGE"
 Select Case RetInt
 Case SQL_FILE_NOT_SUPPORTED
 SpecialInt = "Not a single tier driver."
 Case SQL_FILE_TABLE
 SpecialInt = "Treats data source as table."
 Case SQL_FILE_QUALIFIER
 SpecialInt = "Treats data source as" _
 "qualifier."
 Case Else
 SpecialInt = "Missing data."
 End Select
 Case "SQL_NULL_COLLATION"
 Select Case RetInt
 Case SQL_NC_END
 SpecialInt = "NULLs sorted to end."
 Case SQL_NC_HIGH
 SpecialInt = "NULLs sorted to high end."
 Case SQL_NC_LOW
 SpecialInt = "NULLs sorted to low end."
 Case SQL_NC_START
 SpecialInt = "NULLs sorted to start."
 Case Else
 SpecialInt = "Missing data."
 End Select
 Case "SQL_GROUP_BY"
 Select Case RetInt
 Case SQL_GB_NOT_SUPPORTED
 SpecialInt = "Group By not supported."
 Case SQL_GB_GROUP_BY_EQUALS_SELECT
 SpecialInt = _
 "All non-aggregated columns, no others."
 Case SQL_GB_GROUP_BY_CONTAINS_SELECT
 SpecialInt = _
 "All non-aggregated columns, some others."
 Case SQL_GB_NO_RELATION
 SpecialInt = "Not related to select list."
 Case Else
 SpecialInt = "Missing data."
 End Select
 Case "SQL_IDENTIFIER_CASE"
 Select Case RetInt
 Case SQL_IC_UPPER
 SpecialInt = "Upper case."
 Case SQL_IC_LOWER
 SpecialInt = "Lower case."
 Case SQL_IC_SENSITIVE

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (36 of 45) [9/22/1999 2:00:35 AM]

 SpecialInt = "Case sensitive."
 Case SQL_IC_MIXED
 SpecialInt = "Mixed case."
 Case Else
 SpecialInt = "Missing data."
 End Select
 Case "SQL_QUOTED_IDENTIFIER_CASE"
 Select Case RetInt
 Case SQL_IC_UPPER
 SpecialInt = "Upper case."
 Case SQL_IC_LOWER
 SpecialInt = "Lower case."
 Case SQL_IC_SENSITIVE
 SpecialInt = "Case sensitive."
 Case SQL_IC_MIXED
 SpecialInt = "Mixed case."
 Case Else
 SpecialInt = "Missing data."
 End Select
 Case "SQL_ODBC_API_CONFORMANCE"
 Select Case RetInt
 Case SQL_OAC_NONE
 SpecialInt = "No conformance."
 Case SQL_OAC_LEVEL1
 SpecialInt = "Level 1 supported."
 Case SQL_OAC_LEVEL2
 SpecialInt = "Level 2 supported."
 Case Else
 SpecialInt = "Missing data."
 End Select
 Case "SQL_CURSOR_COMMIT_BEHAVIOR"
 Select Case RetInt
 Case SQL_CB_DELETE
 SpecialInt = "Close and delete statements."
 Case SQL_CB_CLOSE
 SpecialInt = "Close cursors."
 Case SQL_CB_PRESERVE
 SpecialInt = "Preserve cursors."
 Case Else
 SpecialInt = "Missing data."
 End Select
 Case "SQL_CURSOR_ROLLBACK_BEHAVIOR"
 Select Case RetInt
 Case SQL_CB_DELETE
 SpecialInt = "Close and delete statements."
 Case SQL_CB_CLOSE
 SpecialInt = "Close cursors."
 Case SQL_CB_PRESERVE
 SpecialInt = "Preserve cursors."

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (37 of 45) [9/22/1999 2:00:35 AM]

 Case Else
 SpecialInt = "Missing data."
 End Select
 Case "SQL_TXN_CAPABLE"
 Select Case RetInt
 Case SQL_TC_NONE
 SpecialInt = "Transactions not supported."
 Case SQL_TC_DML
 SpecialInt = _
 "DML statements only, DDL cause error."
 Case SQL_TC_DDL_COMMIT
 SpecialInt = _
 "DML statements, DDL commit transaction."
 Case SQL_TC_DDL_IGNORE
 SpecialInt = "DML statements, DDL ignored."
 Case SQL_TC_ALL
 SpecialInt = "Both DML and DDL statements."
 Case Else
 SpecialInt = "Missing data."
 End Select
 Case "SQL_QUALIFIER_LOCATION"
 Select Case RetInt
 Case SQL_QL_START
 SpecialInt = "Start of name."
 Case SQL_QL_END
 SpecialInt = "End of name."
 Case Else
 SpecialInt = "Missing data."
 End Select
 Case "SQL_CONCAT_NULL_BEHAVIOR"
 Select Case RetInt
 Case SQL_CB_NULL
 SpecialInt = "Result is NULL valued."
 Case SQL_CB_NON_NULL
 SpecialInt = _
 "Result is non-NULL concatenation."
 Case Else
 SpecialInt = "Missing data."
 End Select
 Case Else
 SpecialInt = "Missing special integer processing."
 End Select
End Function

16. Add the code for the BitMask function to the code section of the form. One form of return value from
the SQLGetInfo function is a 32-bit bitmask. A bitmask is a way of packing lots of information into a
relatively compact variable because each of the 32 bits can be "on" or "off" (1 or 0) to indicate the value of
some option. This function simply converts the bitmask into a string of 32 1s and 0s to show their content.
You could expand this function (in a way similar to the nested Select Case SpecialInt function) to test for
the various values of the different options, and you could present a list or otherwise use the information in

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (38 of 45) [9/22/1999 2:00:35 AM]

your application.

In practical use in an application, you would be interested in checking for one or two characteristics
contained in the bitmask and would check for that condition instead of just listing the contents of the
bitmask.

Private Function BitMask(RetBit As Long)
 `Do processing required for a SQLGetInfo bit mask return
 Dim i As Long, bin As String
 Const maxpower = 30 ` Maximum number of binary digits
 ` supported.
 bin = "" `Build the desired binary number in this string,
 `bin.
 If RetBit > 2 ^ maxpower Then
 BitMask = "Error converting data."
 Exit Function
 End If
 ` Negative numbers have "1" in the 32nd left-most digit:
 If RetBit < 0 Then bin = bin + "1" Else bin = bin + "0"
 For i = maxpower To 0 Step -1
 If RetBit And (2 ^ i) Then ` Use the logical "AND"
 ` operator.
 bin = bin + "1"
 Else
 bin = bin + "0"
 End If
 Next
 BitMask = bin ` The bin string contains the binary number.
End Function

17. Add the code for SpecialLong to the code section of the form. This is the last of the Special functions,
and it is used with return type Long. The single case that must be handled here is for the
SQL_DEFAULT_TXN_ISOLATION attribute, and it is handled similarly to the SpecialInt function. The
same nested Select Case structure has been used to allow easy expansion of this function for future versions
of ODBC and handle the error condition if an unexpected Long is sent to the function.

Private Function SpecialLong(Opt As String, RetInt As Integer)
 `Do any special processing required for a SQLGetInfo long
 Select Case Opt
 Case "SQL_DEFAULT_TXN_ISOLATION"
 Select Case RetInt
 Case SQL_TXN_READ_UNCOMMITTED
 SpecialLong = _
 "Dirty reads, nonrepeatable, phantoms."
 Case SQL_TXN_READ_COMMITTED
 SpecialLong = _
 "No dirty reads, but nonrepeatable " & _
 "and phantoms."
 Case SQL_TXN_REPEATABLE_READ
 SpecialLong = _
 "No dirty or nonrepeatable reads." &
 "Phantoms okay."

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (39 of 45) [9/22/1999 2:00:35 AM]

 Case SQL_TXN_SERIALIZABLE
 SpecialLong = "Serializable transactions."
 Case SQL_TXN_VERSIONING
 SpecialLong = _
 "Serializable transactions with higher " &
 "concurrency."
 Case Else
 SpecialLong = "Missing data."
 End Select
 Case Else
 SpecialLong = "Missing special Long processing."
 End Select
End Function

18. Add the code for the cmdSelection control array Click event. The Select All and Unselect All command
buttons are provided for convenience in selecting items in the list. This procedure simply loops through the
lstGetInfoData list box, selecting all items if the Index is 1 (Select All was clicked) and deselecting all
items if the Index is 0 (Unselect All was clicked).

Private Sub cmdSelection_Click(Index As Integer)
 `Select all of the items in the list
 Dim I As Integer
 For I = 0 To lstGetInfoData.ListCount - 1
 lstGetInfoData.Selected(I) = (Index > -1)
 Next
End Sub

19. Add the code for the cmdCancel Click event. Even though SQLGetInfo uses an hDbc handle, the
memory was allocated in the frmODBC form, so no special cleanup is necessary in this form. Therefore, no
form Unload procedure is required.

Private Sub cmdCancel_Click()
 Unload Me
End Sub

How It Works

The SQLGetInfo function is a versatile way to get lots of information about an ODBC data source. In a typical
application, you would check for a small number of properties, or if a particular function is implemented, instead
of retrieving bulk results as in this How-To, you would use the techniques shown here.

Step 13 of this How-To performs and deciphers the SQLGetInfo through a procedure that appears daunting, but in
fact is really doing only two main jobs: getting a count and a list of the SQLGetInfo options that have been
selected in the list box and then looping through to get their current settings, populating the grid control on the
frmODBC form with the results. Let's break this procedure down into more manageable chunks because this
procedure is important for you to understand.

After the variables used in the procedure are declared, the lstGetInfoData list box is looped through to find out
what selections have been made by the user. For each selection, the RowData dynamic array is expanded by one
element, and the name of the option is added. That way, the array will be fully populated with the names of the
options selected. The variable selCount keeps a running count of how many options have been selected.

After that process is complete, the options are checked to see whether any were selected. If not, the user is asked

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (40 of 45) [9/22/1999 2:00:35 AM]

to make at least one selection and then try again. There is no reason to proceed if there is nothing to do.

Next, the code clears the grdResults grid control in the frmODBC form, setting it up with three columns and rows
equal to intSelCount + 1. One additional row is necessary for column headings.

The real work of the procedure begins, looping through each of the options and actually making the call to the
SQLGetInfo ODBC function. This function returns the current setting for the data source for a selected option.
Two things make the code a bit more complex. First, an integer needs to be passed to SQLGetInfo representing an
index into the attribute or option to be checked. To get that index, loop through the ODBCGetInfo array,
comparing the InfoType member to the name in strRowData, until there is a match. Because the names in
strRowData came from ODBCInfo in the first place, there will be a match somewhere.

The second complexity arises from the types of values returned from SQLGetInfo. Table 6.10 lists the possible
return types.

Table 6.10. SQLGetInfo return types.

TYPE InfoType Description

String S C type NULL-terminated string

Bitmask B 32-bit, usually with multiple meanings

Integer I Standard Visual Basic 16-bit number

Long L Standard Visual Basic 32-bit number

The InfoType column refers to the InfoType member of the GetInfo structure defined in ODBCAPI.BAS. This is
simply an arbitrarily chosen code for use in the Select Case in this procedure so that SQLGetInfo can be called
with the right variable type to receive the results.

The InfoType member can be either one or two characters long. The second character, if present, means that some
special processing is necessary to make the result meaningful when it is put in the grid on the frmODBC form.

The Select Case structure then puts the results directly into the frmODBC grid.

Some of the property values returned might not be available, in which case the cmdGetInfo Click event procedure
places a value of Error Getting Data in the results grid. You might get this result for many reasons, but the
primary reason exposes one of the quirks of the ODBC system. Although ODBC has some rather specific
demarcations between conformance levels (drivers must be at a Conformance Level 1 to be usable with Visual
Basic), there is no guarantee that a driver will implement all the functionality of a given function. SQLGetInfo is
no exception to this rule, unfortunately.

One way to determine whether this is the case is to make a call to SQLError (or the ODBCError wrapper
function) to obtain more information about the error. In any event, it is safe to assume in most cases that the
particular attribute should not be used with the particular data source.

As noted in step 13 of this How-To, the syntax of the SQLGetInfo function is this:

SQLGetInfo(hDbc, fInfoType, rgbInfoValue, cbInfoValueMax, pcbInfoValue)

Table 6.11 shows the arguments to the function.

Table 6.11. Arguments for the SQLGetInfo ODBC function.

ARGUMENT Description

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (41 of 45) [9/22/1999 2:00:35 AM]

hDbc Connection handle

fInfoType Type of information (in this How-To, from the ODBCGetInfo array)

rgbInfoValue Variable of the proper type to store results

cbInfoValueMax Maximum length of the rgbInfoValue buffer

pcbInfoValue Total number of bytes available to return in rgbInfoValue

The syntax of SQLGetFunctions is this:

SQLGetFunctions(hDbc, fFunction, pfExists)

Table 6.12 shows the arguments to the function.

Table 6.12. Arguments for the SQLGetFunctions ODBC function.

ARGUMENT Description

hDbc Connection handle

fFunction The particular function or, in this How-To, SQL_API_ALL_FUNCTIONS

pfExists For SQL_API_ALL_FUNCTIONS, an array with 100 elements for output

If you look at the contents of the ODBCAPI.BAS file, you'll see two functions, LoadGetInfo and
ODBCLoadFuncs, that load global arrays with information about the SQLGetInfo property options and the list of
functions available in ODBC. These two arrays are used to provide selection lists for the program in this How-To
and loop through to make the actual calls to SQLGetInfo. The SQLGetInfo function has many property options,
too numerous to describe here--see the ODBC SDK for a more detailed description of the property options and in
which ODBC version they first appeared.

What if a driver is written only to the Core conformance level? Well, in a way, that isn't a problem because you
won't be using that driver with Visual Basic anyway: Visual Basic counts on Level 1 conformance to interact with
ODBC. Running the program in this How-To will provide an ODBC error, and you are finished. You can still use
the driver, but only by making direct calls to the ODBC API from Visual Basic. In that situation, you'll need to
consult the driver's documentation to find out what it can and cannot do. As a practical matter, by far and away
most drivers are at least Level 1 conformance, so this will rarely be a problem.

The nice thing about the SQLGetFunctions function is that, even though it is a conformance Level 1 function, it is
implemented in the ODBC Driver Manager, which sits between all applications using ODBC and the ODBC
driver. That way, if the driver doesn't implement SQLGetFunctions, the Driver Manager will still give a list. If the
driver does implement the function, the Driver Manager passes the call to the driver.

Comments

Understanding the SQLGetInfo and SQLGetFunctions functions is an extremely important part of understanding
the ODBC API. Before moving to another How-To, experiment with the use of these functions, especially
between different ODBC drivers, to get a better understanding of how varied different drivers can be in terms of
functionality.

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (42 of 45) [9/22/1999 2:00:35 AM]

6.6 How do I...

Use ODBCDirect to connect to database servers?

Problem

My large application has been recently converted from DAO to ODBC, and the design specifications call for
direct ODBC access. How can I get the power of ODBC with the ease of DAO programming in Visual Basic?

Technique

Well, here's good news. An extension of the DAO, called ODBCDirect, allows direct ODBC connection
capability, with most of the flexibility of the DAO objects intact. ODBCDirect provides a Connection object,
analogous to the DAO's Database object. It even has a Database property to simulate the Database object for your
needs. The Connection object is the most important piece of the ODBCDirect object hierarchy, so that will be the
focus of this example.

Steps

Open and run the ODBCDirect.VBP Visual Basic project file. Click the Open DSN button, and choose an ODBC
data source. The form then opens a Connection object and displays the object's properties for the data source,
similar to those shown in Figure 6.12.

Figure 6.12. Chapter 6.6 example.

1. Create a new project, and save it as ODBCDirect.VBP.

2. Name the default form Form1, and save the file as TRANS.FRM. Add the controls shown in Figure 6.12,
setting the properties as listed in Table 6.13.

Table 6.13. Objects and properties for the ODBCDirect form.

OBJECT Property Setting

Form Name frmODBC

Caption Chapter 6.6 Example

TextBox Name txtProperties

ScrollBars 2 - Vertical

MultiLine True

Locked True

Font Courier

Font.Size 10

CommandButton Name cmdOpen

Caption &Open DSN

CommandButton Name cmdClose

Caption &Close

Label Name lblTables

Caption No information available

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (43 of 45) [9/22/1999 2:00:35 AM]

javascript:popUp('06fig12.gif')

3. Add the following code to the declarations section of Form1:

Option Explicit
Dim conTemp As Connection

4. Add the following code to the form's Load event. The brevity of this routine doesn't explain its
importance--the DefaultType property determines whether the DAO will construct a DAO or an
ODBCDirect object. In this case, you are instructing the DBEngine that all objects created under it are
ODBCDirect objects. If you planned to mix DAO and ODBCDirect access in the same application, you
would perform this step at the workspace or database level, depending on your needs.

Private Sub Form_Load()
 `Notice the dbUseODBC parameter; this determines that DBEngine
 `will create an ODBCDirect workspace by default.
 DBEngine.DefaultType = dbUseODBC
End Sub

5. Add the following code to the Click event of cmdOpen. This routine first attempts to open an
ODBCDirect Connection object by forcing the user to select an ODBC driver from the ODBC Data
Sources dialog box. After it is selected, the Connection object is created and its properties concatenated
into the txtProperties text box for display.

Private Sub cmdOpen_Click()
 `Let's create a Connection object. This line will force
 `the ODBC driver to prompt the user.
 `The ODBCDirect Connection object is identical, in terms of
 `DAO object hierarchy, to the Database object.
 Set conTemp = Workspaces(0).OpenConnection("", , False, _
 "ODBC;")
 `If open, let's get the TableDefs from the Database
 `property of the Connection object.
 If IsObject(conTemp) Then
 `Since the Connection object does not support a
 `Properties collection, we must iterate through
 `each property manually.
 lblTables = "Information - ODBCDirect connection to " & _
 conTemp.Name & ":"
 With conTemp
 txtProperties = "Connect " & .Connect
 ` Property actually returns a Database object.
 txtProperties = txtProperties & vbCrLf & _
 "Database[.Name]: " & .Database.Name
 txtProperties = txtProperties & vbCrLf & _
 "Name: " & .Name
 txtProperties = txtProperties & vbCrLf & _
 "QueryTimeout: " & .QueryTimeout
 txtProperties = txtProperties & vbCrLf & _
 "RecordsAffected: " & .RecordsAffected
 txtProperties = txtProperties & vbCrLf & _
 "StillExecuting: " & .StillExecuting
 txtProperties = txtProperties & vbCrLf & _
 "Transactions: " & .Transactions
 txtProperties = txtProperties & vbCrLf & _

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (44 of 45) [9/22/1999 2:00:35 AM]

 "Updatable: " & .Updatable
 End With
 End If
End Sub

6. Add the following code to the Click event of cmdClose:

Private Sub cmdClose_Click()
 End
End Sub

How It Works

The DBEngine is initialized with the dbUseODBC flag, which tells DAO that all the workspaces, connections,
and so on will be generated via ODBCDirect, rather than through the DAO. Note that it's not an either-or
situation; the same property exists on Workspace objects. A Workspace object can be created and then flagged for
use with ODBCDirect, so DAO and ODBCDirect workspaces can exist together. This, by the way, proves very
useful for projects involving data conversion or for communication with server and mainframe databases. After
the DBEngine is initialized and the user presses the Open DSN button, the Connection object is created. After
successful creation, the form prints each property of the Connection object (laboriously--the Connection object
supports neither the Properties nor TableDefs collection) to the text box for your perusal.

The lack of a TableDefs collection can make it difficult to maneuver around a database, but this can be
surmounted by workarounds. For example, Microsoft SQL Server allows a user to query the SysTables table,
which maintains a list of tables in the database. It might take some doing, but you can find workarounds for many
database systems to supply this information.

Comments

One good use of ODBCDirect is in the scaling of an application--if you see the need to move your DAO-based
workstation application into the client/server arena, you can do so with a minimum of recoding and still apply the
flexibility of ODBC at the same time with the use of ODBCDirect.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Ch 6 -- Connecting to an ODBC Server

http://www.pbs.mcp.com/ebooks/1571691529/ch06/ch06.htm (45 of 45) [9/22/1999 2:00:35 AM]

Visual Basic 6 Database How-To

- 7 -
SQL Server Databases and Remote Data

Objects
How do I...

7.1 Browse a SQL Server database by using the RemoteData control?❍

7.2 Add and delete records in a SQL Server database by using the RemoteData control?❍

7.3 Connect to a SQL Server database by using Remote Data Objects?❍

7.4 Browse records in a SQL Server database by using Remote Data Objects?❍

7.5 Add, update, and delete records in a SQL Server database by using Remote Data Objects?❍

7.6 Execute a SQL Server stored procedure by using Remote Data Objects?❍

7.7 Execute a parameterized SQL Server stored procedure with Remote Data Objects?❍

7.8 Handle Remote Data Objects errors?❍

●

If you're building large, high-volume database applications for many users, working with a database server such as
Oracle, Sybase, or Microsoft SQL Server is probably in your future. This chapter focuses on Microsoft SQL Server.
Although the techniques can often be applied to other server databases, each database can have its own particular
feature set and SQL dialect.

Unless you've been away on a trip to another planet for the past couple of years, you've undoubtedly noticed that
various new technologies have been introduced for accessing server databases. Developers now have a choice of
using the Data control, the RemoteData control (RDC), Data Access Objects (DAO), ODBC Direct Data Access
Objects (still DAO), Remote Data Objects (RDO), the open database connectivity (ODBC) API, the VBSQL control
and the native server API, or Microsoft's newest entries into remote server connectivity: OLEDB, and ADO. Each of
these technologies can be a suitable candidate for any given task.

The Data Control--This is the traditional entry point for new database developers and is often used for
low-volume (and sometimes even high-volume) applications. However, the Data control is really best suited
for access to desktop database engines like Jet. If you're scaling a database from Jet to SQL Server, the Data
control will continue to work, but for optimum performance you should consider using another data access
strategy.

●

The RemoteData Control--The RemoteData control (RDC) is the companion to the Data control for remote●

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (1 of 36) [9/22/1999 2:01:30 AM]

server databases. Although convenient for many applications, it imposes some of the same restrictions and
lack of control that come with the Data control.

Data Access Objects--DAO is the first step beyond the Data control for most developers. It's a flexible and
powerful object model for database application development. Using linked tables or SQL Passthrough, you
can accomplish almost all server database tasks.

●

ODBC Direct--With the latest release of DAO, Microsoft unbundled the Jet engine from the object model.
ODBC Direct uses the DAO model but sends queries directly through to the database server using RDO (and
via the RDO proxy by ODBC) bypassing Jet entirely. This enables you to use existing DAO code (with minor
modifications) but gain the performance benefits of RDO. The limitations of DAO, however, still apply,
meaning that many server database features will be unavailable or difficult to work with.

●

Remote Data Objects--RDO is the remote server equivalent to DAO. It provides a similar (although not
identical) object model but is optimized to work with intelligent server databases. Unlike DAO, which is
bundled with the Jet engine, RDO does not contain a query engine; it expects all query processing to take
place on the server. Because RDO is really just a thin object layer over the ODBC API, it exposes nearly all
the capabilities of the database server with almost no impact on performance.

●

The ODBC API--ODBC was designed to be a database-independent server programming interface.
Cumbersome and complex to work with, it is the data access strategy for the hard-core programmer. Despite
its difficulties, it might offer a minor performance advantage over RDO.

●

VBSQL--Built on DBLib, the native programming interface to SQL Server, VBSQL is a time-tested and
reliable data access strategy. However, although other technologies have continued to advance, VBSQL has
not, and it has become an outdated technology. Many development shops are continuing to build new
applications and update existing applications based on VBSQL despite its "lame duck" status--in part because
it is still the only technology that provides access to all the features of SQL Server.

●

This is the new kid on the block:

OLEDB/ADO--OLEDB is currently being touted as the new native interface to SQL Server. Originally
targeted at Web based applications, OLEDB/ADO is expected to replace DAO and RDO.

●

That's a wide array of choices--at times you might feel as if you've joined the technology-of-the-month club--but for
most applications, RDO is an excellent option. RDO is now in its second release and is a proven technology. It offers
the simplicity of a DAO-like object model but performance equal to the ODBC API or VBSQL. For those techniques
available only with the ODBC API, RDO also exposes the necessary handles so you can go directly to the API when
you need it.

Along with all the new data access technologies comes a plethora of SQL Server specific and general concepts and
buzzwords. Rather than dealing with database files, SQL Server gives you database devices, dump devices,
databases, transaction logs, and so on. Instead of a simple user and group list for security, you have logins, users, and
groups that can be set up using standard, integrated, or mixed security models. The list goes on to concepts like n-tier
design, the use of transaction servers and object brokers, Web connectivity technologies, and more. All this goes far
beyond the scope of this chapter, and many excellent books have been written that address some or all of these tools
and technologies. Fortunately, SQL Server also comes with excellent documentation.

NOTE Consider yourself lucky if you have a seasoned dba (database administrator) on staff to help
handle the details of creating devices, databases, users, and so forth for you on the server. A good dba
can save you days or weeks of work. If you don't have a veteran dba available, dive into the SQL Server
documentation. There's a lot to cover, but you will learn it in time. Rome wasn't built in a day, and your
client/server application won't be either.

This chapter assumes that you have already successfully installed Microsoft SQL Server 6.5, the pubs sample
database, Visual Basic 6.0 Enterprise Edition, and the SQL Server client utilities. You will need to have the authority

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (2 of 36) [9/22/1999 2:01:30 AM]

necessary to create a database on your server or access to a dba who can do it for you. You will also need to be able
to execute SQL statements on the server using either SQL Enterprise Manager or ISQL/w. Consult the SQL Server
documentation for more information on the installation and use of these utilities.

7.1 Browse a SQL Server Database by Using the RemoteData Control

This How-To introduces the most basic of operations on a database server: browsing the results of a query with the
RemoteData control.

7.2 Add and Delete Records in a SQL Server Database by Using the RemoteData Control

In this How-To, you learn to use the RemoteData control to perform inserts and deletes on the remote SQL Server
database.

7.3 Connect to a SQL Server Database by Using Remote Data Objects

Before you can do anything with remote server data, you must establish a connection to the server. This How-To
shows you how to open an RDO Connection.

7.Browse Records in a SQL Server Database by Using Remote Data Objects

The RemoteData control, like the Data control, has its limitations. In this How-To, you learn to use Remote Data
Objects to read SQL Server data.

7.5 Add, Update, and Delete Records in a SQL Server Database by Using Remote Data Objects

This How-To shows you how to insert, update, and delete records using RDO.

7.6 Execute a SQL Server Stored Procedure by Using Remote Data Objects

Most server databases rely heavily on stored procedures for database operations. This How-To teaches you to
execute a simple, stored procedure that returns a result set.

7.7 Execute a Parameterized SQL Server Stored Procedure with Remote Data Objects

SQL Server stored procedures, like Visual Basic procedures, can have input and output parameters and return values.
This How-To shows you how to execute a stored procedure with parameters.

7.8 Handle Remote Data Objects Errors

Despite your best efforts, things can go wrong on the remote database. In this How-To, you learn to trap and handle
errors delivered to RDO by SQL Server.

7.1 How do I...

Browse a SQL Server database by using the RemoteData control?

Problem

My data is on a SQL Server database. How do I access this data using the RemoteData control?

Technique

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (3 of 36) [9/22/1999 2:01:30 AM]

Accessing data from a SQL Server database need not be complex. With the RemoteData control (RDC), you can
build a simple form based on SQL Server data in minutes. Building forms with the RDC is the ultimate in visual
design--no code whatsoever is required.

Building a form with the RDC requires only a few simple steps:

1. Create an ODBC data source for your database.

2. Draw a RemoteData control on your form and set the DataSourceName and SQL properties.

3. Add controls to the form for the columns you need to display and set the DataSource and DataField
properties.

That's all there is to it. The RDC handles everything else for you in conjunction with the ODBC drivers. Like the
Data control, the RemoteData control handles updating the tables as well as providing navigation buttons for the
rows in the query.

NOTE This example and the rest of the examples in this chapter require that the pubs sample database
be installed on your SQL Server and that an ODBC data source named pubs has been configured to
connect to your server and the pubs sample database. See Chapter 6, "Connecting to an ODBC Server,"
for more information on configuring ODBC data sources.

Steps

Open and run project HT701.vbp. You can browse and update the rows returned by the query using the form shown
in Figure 7.1.

Figure 7.1. The Publishers form.

NOTE Depending on the configuration of your SQL Server and network, you might or might not be
prompted to provide a user name and password when connecting to the server. All of these examples
were created using integrated security, which uses your network logon to validate your connection to
the database server. SQL Server integrated security is available only if the server is a member of a
Windows NT domain.

1. Create a new Standard EXE project, add the Microsoft RemoteData Control 6.0 to the toolbox, and save the
project as HT701.vbp. Change the name of Form1 to FMain and create the objects and properties shown in
Table 7.1.

Table 7.1. Objects and properties for FMain.

OBJECT Property Value

Form Caption Publishers

RemoteData Control Name rdc

Caption Publishers

Align 2 - vbAlignBottom

DataSourceName pubs

SQL SELECT pub_id, pub_name, city,
state,country FROM publishers

Label Name lbl

Caption ID

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (4 of 36) [9/22/1999 2:01:30 AM]

javascript:popUp('07fig01.gif')

Index 0

TextBox Name txtID

DataSource rdc

DataField pub_id

Label Name lbl

Caption Name

Index 1

TextBox Name txtName

DataSource rdc

DataField pub_name

Label Name lbl

Caption City

Index 2

TextBox Name txtCity

DataSource rdc

DataField city

Label Name lbl

Caption State

Index 3

TextBox Name txtState

DataSource rdc

DataField state

Label Name lbl

Caption Country

Index 4

TextBox Name txtCountry

DataSource rdc

DataField country

2. Using the menu editor, create the menu shown in Table 7.2.

Table 7.2. Menu controls for FMain.

CAPTION Name

&File mnuFile

----E&xit mnuFileExit

3. Create the declarations section of the form:

Option Explicit

NOTE You can and should set up Visual Basic to always use Option Explicit by checking the
box marked Require Variable Declaration on the Editor tab of the Options dialog box.

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (5 of 36) [9/22/1999 2:01:30 AM]

4. Create the mnuFileExit_Click event procedure:

Private Sub mnuFileExit_Click()
 Unload Me
End Sub

How It Works

The RDC handles all the work for you in this application. When the application starts, the control opens a connection
to the SQL Server, submits the query, and presents the results on the form. The navigation buttons provided by the
control enable you to navigate among the rows returned by the query.

Comments

This simple application exemplifies the visual part of Visual Basic. The single line of executable code unloads the
form and ends the program. Everything else required to enable live editing of data in the database is designed using
visual tools.

7.2 How do I...

Add and delete records in a SQL Server database by using the RemoteData
control?

Problem

My users need to be able to add and delete rows in my SQL Server tables as well as view and update existing rows.
How do I add and delete rows using the RemoteData control?

Technique

Writing just a small amount of code enables you to implement the ability to insert and delete rows with the
RemoteData control. The RemoteData control's Resultset object provides the AddNew and Delete methods.
You can implement both with just a few lines of code and a user interface mechanism to invoke the procedures.

Inserting a row is a two-step process:

1. Call the AddNew method of the RemoteData control's Resultset to set the row buffer to a blank new
row.

2. Call the Update method of the Resultset to insert the row into the table.

Deleting a row requires only a single call to the Delete method of the Resultset; but after the delete has been
performed, the current row will be undefined, so you need to add code to move to a valid row. This example uses the
Microsoft Access convention of moving to the previous row, but you could just as easily move to the next row.

Steps

Open and run project HT702.vbp. This is the same as the project created for How-To 7.1, with code and controls
added to support inserts and deletes. You can browse, update, insert, and delete rows in the Publishers table using the
RemoteData control's navigation buttons and the commands on the Data menu, as shown in Figure 7.2.

Figure 7.2. The Publishers form's New, Delete, and Save functions.

INSERTING AND DELETING ROWS IN THE PUBLISHERS TABLE

The Publishers table in the sample database has a rather unusual rule for the pub_id column:

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (6 of 36) [9/22/1999 2:01:30 AM]

javascript:popUp('07fig02.gif')

(pub_id = `1756' or (pub_id = `1622' or
(pub_id = `0877' or (pub_id = `0736' or (pub_id = `1389')))) or
 (pub_id like `99[0-9][0-9]'))

This rule requires that the pub_id value be one of the five specific values shown (1756, 1622,
0877, 0736, or 1389) or that it be a four-digit number between 9900 and 9999. Don't be surprised if
you see strange-looking rules like this appearing from time to time. This sort of thing is occasionally
necessary to maintain compliance with legacy code, data, or both.

If you add rows to the table while working with the sample application, you need to make sure the
pub_id column meets this rule. In a production application, you would probably want to add code to
automatically generate a valid value for this column.
Additionally, there are other tables in the database that contain foreign key references to the Publishers
table, so you might not be able to delete some of the existing rows. A complete application based on the
pubs database would need to implement methods of dealing with these foreign key references.
Alternately, you could write a delete trigger for the Publishers table that would delete any related rows
in related tables.

1. Create a new Standard EXE project, add the Microsoft RemoteData Control 2.0 to the toolbox, and save the
project as HT702.vbp.

2. FMain.frm is the same form developed for How-To 7.1. You can add
the existing file from the previous How-To, or refer to Table 7.1 to add the RemoteData control, labels, text
boxes, and refer to Table 7.2 to create the File menu controls.

3. Use the Menu Editor to add the menu controls for the Data menu as shown in Table 7.3.

Table 7.3. Specifications for the Data menu.

CAPTION Name Shortcut Key

&Data mnuData

----&Save mnuDataSave Ctrl+S

----- mnuDataBar

----&New mnuDataNew Ctrl+N

----&Delete mnuDataDelete

4. Add Option Explicit to the declarations section.

5. Create the Form_Unload event procedure. This procedure sets up an error handler and calls the
SaveRecord procedure described in step 10.

Private Sub Form_Unload(Cancel As Integer)
On Error GoTo ProcError
 SaveRecord
ProcExit:
 Exit Sub
ProcError:
 MsgBox Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

6. Create the mnuFileExit_Click event procedure. This code is identical to the code in How-To 7.1.

Private Sub mnuFileExit_Click()

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (7 of 36) [9/22/1999 2:01:30 AM]

On Error Resume Next
 Unload Me
 If Err.Number <> 0 Then
 MsgBox Err.Number & vbCrLf & Err.Description
 End If
End Sub

7. Add code for the Data menu controls. The New, Delete, and Save commands call the corresponding
AddRecord, DeleteRecord, and SaveRecord procedures described in steps 8, 9, and 10.

Private Sub mnuDataNew_Click()
On Error GoTo ProcError
 AddRecord
ProcExit:
 Exit Sub
ProcError:
 MsgBox Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub
Private Sub mnuDataDelete_Click()
On Error GoTo ProcError
 DeleteRecord
ProcExit:
 Exit Sub
ProcError:
 MsgBox Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub
Private Sub mnuDataSave_Click()
On Error GoTo ProcError
 SaveRecord
ProcExit:
 Exit Sub
ProcError:
 MsgBox Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

8. Create the AddRecord procedure. This procedure calls the AddNew method of the RemoteData control's
Resultset to create the new record. The new row is inserted into the table later by the SaveRecord
procedure.

Private Sub AddRecord()

 ` add it
 rdc.Resultset.AddNew
 txtID.SetFocus
End Sub

9. Add the DeleteRecord procedure. This procedure uses the Delete method of the RemoteData
control's Resultset to remove the row from the table, then repositions the row pointer to a valid row in the
table. The code first moves to the previous row, then checks for the beginning of the Resultset and, if
necessary, moves to the first row.

Private Sub DeleteRecord()

 ` delete the row

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (8 of 36) [9/22/1999 2:01:30 AM]

 rdc.Resultset.Delete
 ` back up one row
 rdc.Resultset.MovePrevious
 ` check for beginning of set
 If rdc.Resultset.BOF Then
 rdc.Resultset.MoveFirst
 End If
End Sub

10. The SaveRecord procedure uses the EditMode property of the RemoteData control's Resultset to
determine how to save the current row using a Select Case block. If the row has not been changed, no
action is necessary. If an existing row has been changed, the UpdateRow method is used to commit the
changes. New rows are added to the table by calling the Update method of the Resultset.

Private Sub SaveRecord()

 Select Case rdc.Resultset.EditMode
 Case rdEditNone
 ` clean record, do nothing
 Case rdEditInProgress
 ` the control handles regular edits
 rdc.UpdateRow
 Case rdEditAdd
 ` use the Update method of the
 ` resultset
 rdc.Resultset.Update
 End Select
End Sub

How It Works

This is a basic bound control application. The only thing that differentiates the techniques from an application based
on the Data control is the use of the RemoteData control and a few minor variations in the code syntax. The control
handles most of the work of displaying and updating data, with a little help from a few lines of code.

Comments

The RemoteData control is a convenient, but limiting, method of working with remote server databases. In the
following How-To's, you'll learn to use Remote Data Objects to connect to and manage data in SQL Server
databases.

7.3 How do I...

Connect to a SQL Server database by using Remote Data Objects?

Problem

My application needs to connect to a SQL Server database without using the RemoteData control. How can I create a
connection with Remote Data Objects?

Technique

If an ODBC data source has been configured, you can establish a connection to a SQL Server database with as little
as a single line of code using the OpenConnection method of the rdoEnvironment object. By adding an extra
line of code or two, you can also create a so-called "DSN-less" connection with no preconfigured ODBC data source

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (9 of 36) [9/22/1999 2:01:30 AM]

name.

Using a preconfigured ODBC data source adds one additional required step in configuring the workstation but also
enables you to share the connection among multiple applications. If you embed the connection information in the
source code for the application, you eliminate one step in setting up the workstation.

The following example demonstrates both methods. Additionally, RDO 2.0 enables you to create an
rdoConnection object without an explicit physical connection to a remote database. After you have assigned the
necessary properties to the rdoConnection object, use the EstablishConnection method to open the
connection.

Steps

Open project HT703.vbp. Before running this project using a DSN-less connection, you will need to change the
values used in creating the connect string in the OpenConnection routine to reflect the correct user name (UID=),
password (PWD=), and SQL Server machine name (SERVER=). If you check the box marked Use pubs DSN, the
application will open a connection using an ODBC data source named pubs (which you should have already created
using the 32-bit ODBC control panel applet). If the check box is cleared, a DSN-less connection will be created. The
connection form is shown in Figure 7.3.

1. Create a new Standard EXE project, add a reference to Microsoft Remote Data Object 2.0, and save the
project as HT703.vbp.

2. Change the name of Form1 to FMain and add the objects and properties shown in Table 7.4.

Figure 7.3. The RDO Connect form.

Table 7.4. Objects and properties for FMain.

OBJECT Property Value

CheckBox Name chkUseDSN

Caption Use pubs DSN

CommandButton Name cmdConnect

Caption Connect

3. Add the following code to the declarations section. The module level variable mcon is used later by the
OpenConnection routine.

Option Explicit
Private mcon As rdoConnection

4. Create the cmdConnect_Click event procedure. This routine sets up an error handler, calls
OpenConnection, and displays a message indicating the success or failure of the connection.

Private Sub cmdConnect_Click()
On Error GoTo ProcError

 If OpenConnection() Then
 MsgBox "Connection Opened"
 Else
 MsgBox "Connection Failed"
 End If
ProcExit:
 Exit Sub
ProcError:
 MsgBox Err.Number & vbCrLf & Err.Description

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (10 of 36) [9/22/1999 2:01:30 AM]

javascript:popUp('07fig03.gif')

 Resume ProcExit
End Sub

5. Create the OpenConnection function. This function uses the value of the check box to determine
whether it should use the pubs DSN or create a DSN-less connection; it then calls the OpenConnection
method of the default rdoEnvironment object to establish the connection to the remote server. The
function returns true if the connection was successfully established.

Private Function OpenConnection() As Boolean
On Error GoTo ProcError
 Dim sConnect As String
 If chkUseDSN = vbChecked Then
 ` use pubs DSN
 Set mcon = rdoEnvironments(0).OpenConnection("pubs")
 Else
 ` use DSN-less connection
 sConnect = _
 "UID=sa;" & _
 "PWD=MyPassword;" & _
 "DATABASE=pubs;" & _
 "SERVER=MyServer;" & _
 "DRIVER={SQL SERVER};" & _
 "DSN='';"
 Set mcon = rdoEnvironments(0).OpenConnection(_
 "", rdDriverNoPrompt, False, sConnect, rdAsyncEnable)
 End If
 OpenConnection = True
ProcExit:
 Exit Function
ProcError:
 OpenConnection = False
 Resume ProcExit
End Function

How It Works

A single line of code is all that's required to connect to a remote server. The OpenConnection method (or
alternately the EstablishConnection method) connects you to the SQL Server database. You can then use the
connection to execute SQL statements and create other RDO objects.

Comments

If you're familiar with the DAO object model, the rdoConnection object is the rough equivalent of the
Database object. Many of the properties and methods are similar. In fact, you'll find the entire Remote Data
Objects hierarchy very similar to the Data Access Objects hierarchy. The similarities in the two models make it
easier to not only learn to use RDO but also to convert existing code from DAO to RDO.

7.4 How do I...

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (11 of 36) [9/22/1999 2:01:30 AM]

Browse records in a SQL Server database by using Remote Data Objects?

Problem

How can I use Remote Data Objects to browse rows in a SQL Server database?

Technique

Remote Data Objects (RDO) provide the rdoResultset object --similar to the DAO Recordset object--that you
can use to capture and browse the results of a SELECT query. If you've programmed with DAO, you'll find the
rdoResultset familiar. The various Move methods work the same as the methods of the Recordset, and you still
use AddNew, Edit, and Update to make changes to the data in a row. Many of the properties are also the same as
those of the DAO Recordset. In fact, much of the code written for rdoResultsets is so similar that you could
change the declaration and the Set statement and use your existing DAO code.

Despite the code similarities, there are differences in the techniques used to access SQL Server data with
rdoResultsets:

The SQL statements used to retrieve data must be written in syntax that the remote server will understand.
Unlike DAO, which uses the Jet database engine, RDO does not have its own query processor. All processing
takes place on the remote server.

●

There are no Find methods. You are expected to run a new query and select only the rows you need if the
criteria for searching the data changes. You can also move through the resultset testing for the desired values
on individual rows and columns.

●

There's no equivalent to the table-type recordset and its associated methods, such as Seek.●

The types of rdoResultsets available are somewhat different from the types of Recordsets available. You
can create a forward-only, keyset, dynamic, and static cursor.

●

There are more locking strategies at your disposal. You can use read-only, pessimistic, optimistic based on
row ID, optimistic based on row values, and batch updates.

●

A single SQL Server query can return more than one set of results.●

You can't modify the structure of the database with RDO. SQL Enterprise manager provides visual tools for
that purpose, and the Transact-SQL language also enables you to manipulate the database design.

●

A NOTE ON CURSORS

Don't be confused by all the new terminology. A cursor is essentially just a set of pointers to rows in a
resultset that enables you to browse the results.

You create a resultset by using the OpenResultset method of an rdoConnection. You typically will provide
a SQL statement to the method that specifies the rows to return. You can additionally specify the type of cursor,
which by default is forward-only, and the type of locking which by default is read-only.

After you have created the resultset, you can browse the rows using the various navigation methods: MoveFirst,
MovePrevious, MoveNext, MoveLast, and Move. Like the DAO Recordset, the rdoResultset object
provides the BOF and EOF properties that you can use to test for the ends of the resultset.

NOTE SQL Server queries can return more than one set of results. Use the MoreResults method to
test for additional resultsets from the query.

Values for individual columns in the rows retrieved are obtained from the rdoColumns collection. This is the
default collection for a resultset. You can use the same syntax styles for columns in a resultset that you use for fields

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (12 of 36) [9/22/1999 2:01:30 AM]

in a DAO recordset:

rdoResultset.rdoColumns("column0")●

rdoResultset("column0")●

rdoResultset!column0●

Depending on the query, the type of cursor, and the type of locking, the data might be read-only or might be
updatable.

Steps

Before you can use this example, you need to install the States table in the pubs sample database. Using SQL
Enterprise Manager or I-SQL/W, load the States.sql script, select the pubs database, and run the script. The script
creates and populates the States table with a list of the 50 states in the U.S. as well as the District of Columbia and
Puerto Rico. After you have installed this table, you can run the sample application.

NOTE You can run this script against any database where you need this table.

Open and run project HT704.vbp. You can use the form shown in Figure 7.4 to browse and update the rows in the
sample table from the pubs database. This project makes a simple extension to the project used for How-To 7.2. The
text box used for the state column in the Publishers table has been replaced with a combo box that contains a list
of state postal codes, using a query and
an rdoResultset object. This is a commonly implemented user interface convenience. Unless people work all day
every day with a data entry application, few will remember the postal codes for all the states, so the combo box
enables the user to pick a value from a list on the form.

Figure 7.4. The modified Publishers form.

1. Create a new Standard EXE project, add a reference to Microsoft Remote Data Object 2.0, and save the
project as HT704.vbp. Rename the default Form1 to FMain, save it as FMain.frm, and add the object and
properties shown in Table 7.5. The menu controls for this example are identical to those in How-To 7.2.

Table 7.5. Objects and properties for FMain.

OBJECT Property Value

Form Caption Publishers

RemoteData
Control

Name rdc

Caption Publishers

Align 2 -
vbAlignBottom

DataSourceName pubs

SQL SELECT pub_id,
pub_name, city,
state, country
FROM publishers

Label Name lbl

Caption ID

Index 0

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (13 of 36) [9/22/1999 2:01:30 AM]

javascript:popUp('07fig04.gif')

TextBox Name txtID

DataSource rdc

DataField pub_id

Label Name lbl

Caption Name

Index 1

TextBox Name txtName

DataSource rdc

DataField pub_name

Label Name lbl

Caption City

Index 2

TextBox Name txtCity

DataSource rdc

DataField city

Label Name lbl

Caption State

Index 3

ComboBox Name cboState

DataSource rdc

DataField state

Label Name lbl

Caption Country

Index 4

TextBox Name txtCountry

DataSource rdc

DataField country

2. Add the following code to the declarations section. The rdoConnection object is used later to populate
the state combo box.

Option Explicit

Private mcon As rdoConnection

3. Create the Form_Load event procedure. This procedure calls the OpenConnection procedure to
connect to the remote server and then calls GetStates to populate the combo box.

Private Sub Form_Load()
On Error GoTo ProcError
 OpenConnection
 GetStates
ProcExit:
 Exit Sub
ProcError:
 MsgBox Err.Number & vbCrLf & Err.Description

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (14 of 36) [9/22/1999 2:01:31 AM]

 Resume ProcExit
End Sub

4. Add the following procedures to handle the click events for the menu controls. These procedures are
identical to those developed in How-To 7.2.

Private Sub mnuDataDelete_Click()
On Error GoTo ProcError
 DeleteRecord
ProcExit:
 Exit Sub
ProcError:
 MsgBox Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub
Private Sub mnuDataNew_Click()
On Error GoTo ProcError
 AddRecord
ProcExit:
 Exit Sub
ProcError:
 MsgBox Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub
Private Sub mnuDataSave_Click()
On Error GoTo ProcError
 SaveRecord
ProcExit:
 Exit Sub
ProcError:
 MsgBox Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub
Private Sub mnuFileExit_Click()
On Error Resume Next
 Unload Me
 If Err.Number <> 0 Then
 MsgBox Err.Number & vbCrLf & Err.Description
 End If
End Sub

5. Create the AddRecord, NewRecord, and SaveRecord procedures. These procedures are also identical
to those in How-To 7.2.

Private Sub AddRecord()

 rdc.Resultset.AddNew
 txtID.SetFocus
End Sub
Private Sub DeleteRecord()
 ` delete the row
 rdc.Resultset.Delete
 ` back up one row
 rdc.Resultset.MovePrevious

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (15 of 36) [9/22/1999 2:01:31 AM]

 ` check for beginning of set
 If rdc.Resultset.BOF Then
 rdc.Resultset.MoveFirst
 End If
End Sub
Private Sub SaveRecord()
 Select Case rdc.Resultset.EditMode
 Case rdEditNone
 ` clean record, do nothing
 Case rdEditInProgress
 ` the control handles regular edits
 rdc.UpdateRow
 Case rdEditAdd
 ` use the Update method of the
 ` resultset
 rdc.Resultset.Update
 End Select
End Sub

6. Create the OpenConnection procedure. This is based on How-To 7.3 and uses the pubs ODBC DSN to
create the connection to the SQL Server.

Private Sub OpenConnection()

 Dim sConnect As String
 ` default using a configured DSN
 Set mcon = rdoEnvironments(0).OpenConnection("pubs")
End Sub

7. Create the GetStates subroutine. This code uses an rdoResultset to populate the cboState
combo box. It creates a forward-only, read-only cursor based on the States table. Because only one pass
through the results is required, a forward-only cursor is sufficient. The rdExecDirect option bypasses
ODBC's normal step of creating a prepared statement and directly executes the query on the SQL Server.

Private Sub GetStates()
` populate the states combo box
 Dim sSQL As String
 Dim rsStates As rdoResultset
 sSQL = "SELECT StateCode FROM States"
 ` we only need one pass through this data,
 ` and will only need to do it once, so we
 ` use a read only, forward only cursor and
 ` the exec direct option
 Set rsStates = mcon.OpenResultset(sSQL, _
 rdOpenForwardOnly, rdConcurReadOnly, rdExecDirect)
 ` populate the combo box
 Do While Not rsStates.EOF
 cboState.AddItem rsStates!StateCode
 rsStates.MoveNext
 Loop
 ` clean up
 rsStates.Close
End Sub

How It Works

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (16 of 36) [9/22/1999 2:01:31 AM]

The primary object you will use in the Remote Data Objects hierarchy is the rdoResultset object. The
rdoResultset object enables you to submit a SQL query (over an rdoConnection object) and process the
results. Depending on the type of query, you might also be able to add, delete, and update the rows in the resultset.

In this example, the resultset in the GetStates procedure is used only to populate the combo box and avoid the
use of a data bound ComboBox control.

Comments

Many of the objects in the Remote Data Objects hierarchy have events in addition to properties and methods. You
can use these events by declaring the objects using the WithEvents keyword and write event procedures for these
events. For example, the rdoResultset object provides the RowStatusChanged event that you can use to
trigger code that should run if a row is updated or deleted.

7.5 How do I...

Add, update, and delete records in a SQL Server database by using Remote
Data Objects?

Problem

Bound controls use a database connection for each Data control; large applications based on bound controls would
use too many connections. How can I create an unbound form based on SQL Server data using Remote Data
Objects?

Technique

Building unbound applications with Remote Data Objects is no different from building unbound applications using
any other data access approach, including Data Access Objects or standard Visual Basic file I/O techniques. Here are
the steps:

1. Retrieve the data from the data source; in this example you will use an rdoResultset to manage the
data.

2. Display the values in the controls on the form.

3. Update the tables in the database when the user moves to a new row, unloads the form, or explicitly
requests that the data be saved.

If you've already read Chapter 2, "Accessing a Database with Data Access Objects," you will be familiar with these
techniques. The only thing that has changed is the object model used to manage the data. In the previous How-To,
you were introduced to using an rdoResultset to retrieve data from a SQL Server database. In this How-To, you
will extend the use of the rdoResultset to inserting, updating, and deleting rows.

How-To 7.4 used a forward-only, read-only cursor--the default for rdoResultset objects created using the
OpenResultset method of an rdoConnection object. Because you will now be making changes to the data as
well as providing the capability to navigate both forward and backward through the rows, you will need a more
flexible type of cursor. Using a keyset-type cursor enables you to add, update, or delete rows with minimal coding
complexity and lower resource requirements than a dynamic cursor.

NOTE If you did not install the States table in How-To 7.4, do so now by running the States.sql SQL
script, using SQL Enterprise Manager or I-SQL/W. This script creates and populates a table of state
names and postal codes for U.S. states.

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (17 of 36) [9/22/1999 2:01:31 AM]

Steps

Open and run project HT705.vbp. Use the form shown in Figure 7.5 to browse, add, update, or delete rows in the
Publishers table. In this example, the RemoteData control has been replaced with Visual Basic code. Toolbar buttons
created with a Toolbar control replace the navigation buttons provided by the RemoteData control. With the
commands on the Data menu, you can create new rows, save changes to an existing row, or delete the current row.

Figure 7.5. The unbound Publishers form.

1. Create a new Standard EXE project, add a reference to Microsoft Remote Data Object 2.0, and save the
project as HT705.vbp. Rename Form1 to FMain, save it as FMain.frm, and add the objects and properties
shown in Table 7.6.

Table 7.6. Objects and properties for FMain.

OBJECT Property Value

Form Caption Publishers

Toolbar Name tb

Label Name lbl

Caption ID

Index 0

TextBox Name txtID

Label Name lbl

Caption Name

Index 1

TextBox Name txtName

Label Name lbl

Caption City

Index 2

TextBox Name txtCity

Label Name lbl

Caption State

Index 3

ComboBox Name cboState

Label Name lbl

Caption Country

Index 4

TextBox Name txtCountry

2. Use the Menu Editor to create the menu controls shown in Table 7.7.

Table 7.7. Menu controls for FMain.

CAPTION Name Shortcut Key

&File mnuFile

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (18 of 36) [9/22/1999 2:01:31 AM]

javascript:popUp('07fig05.gif')

----E&xit mnuFileExit

&Data mnuData

----&Save mnuDataSave Ctrl+S

----- mnuDataBar

----&New mnuDataNew Ctrl+N

----&Delete mnuDataDelete

3. Add the following code to the declarations section. The rdoConnection and rdoResultset objects
are used by the form to manage the data in the sample database. The enumeration and the mlRowState
variable are used to track the current state of the data on the form.

Option Explicit
` connection
Private mcon As rdoConnection
` resultset
Private mrsPublishers As rdoResultset
` record state
Private Enum RowState
 RowStateClean = 1
 RowStateDirty = 2
 RowStateNew = 3
End Enum
Private mlRowState As RowState

4. Create the Form_Load and Form_Unload event procedures. In the Load event, the form sets up the
toolbar, opens the resultset for the Publishers table upon which the form is based, and populates the
cboState combo box. In the unload event, the form saves any changes and closes and releases the object
variables created in the declarations section. The Initialize, GetStates, and SetupToolbar
procedures are described in steps 9, 11, and 20.

Private Sub Form_Load()
On Error GoTo ProcError
 SetupToolbar
 Initialize
 GetStates
ProcExit:
 Exit Sub
ProcError:
 MsgBox Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub
Private Sub Form_Unload(Cancel As Integer)
` save before exiting
On Error GoTo ProcError
 ` save the current row
 SaveRow
 ` close down resultset and connection
 Terminate
ProcExit:
 Exit Sub
ProcError:

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (19 of 36) [9/22/1999 2:01:31 AM]

 MsgBox Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

5. Create the tb_ButtonClick event procedure. This procedure calls procedures to navigate among the
rows in the resultset.

Private Sub tb_ButtonClick(ByVal Button As ComctlLib.Button)
` toolbar handles navigation
 Select Case Button.Key
 Case "First"
 MoveFirst
 Case "Previous"
 MovePrevious
 Case "Next"
 MoveNext
 Case "Last"
 MoveLast
 End Select
End Sub

6. Add the following event procedures to track the edit state of the data on the form. Each procedure changes
the module level mlRowState variable to RowStateDirty if the current value is RowStateClean.
This enables later code to determine whether current changes should be sent to the SQL Server as an update or
an insert.

Private Sub cboState_Click()
` mark row dirty
 If mlRowState = RowStateClean Then
 mlRowState = RowStateDirty
 End If
End Sub
Private Sub cboState_Change()
` mark row dirty
 If mlRowState = RowStateClean Then
 mlRowState = RowStateDirty
 End If
End Sub
Private Sub txtCity_Change()
` mark row dirty
 If mlRowState = RowStateClean Then
 mlRowState = RowStateDirty
 End If
End Sub
Private Sub txtCountry_Change()
` mark row dirty
 If mlRowState = RowStateClean Then
 mlRowState = RowStateDirty
 End If
End Sub
Private Sub txtID_Change()
` mark row dirty
 If mlRowState = RowStateClean Then
 mlRowState = RowStateDirty

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (20 of 36) [9/22/1999 2:01:31 AM]

 End If
End Sub
Private Sub txtName_Change()
` mark row dirty
 If mlRowState = RowStateClean Then
 mlRowState = RowStateDirty
 End If
End Sub

7. Create the mnuFileExit_Click event procedure. This procedure unloads the form, ending the
application.

Private Sub mnuFileExit_Click()
On Error Resume Next
 Unload Me
 If Err.Number <> 0 Then
 MsgBox Err.Number & vbCrLf & Err.Description
 End If
End Sub

8. Add the following event procedures for the commands on the Data menu. Each menu command event
procedure calls a corresponding subroutine in the form module to perform the requested operation. The
NewRow, SaveRow, and DeleteRow procedures are described in steps 12, 13, and 14.

Private Sub mnuDataNew_Click()
On Error GoTo ProcError
 NewRow
ProcExit:
 Exit Sub
ProcError:
 MsgBox Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub
Private Sub mnuDataSave_Click()
On Error GoTo ProcError
 SaveRow
ProcExit:
 Exit Sub
ProcError:
 MsgBox Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub
Private Sub mnuDataDelete_Click()
On Error GoTo ProcError
 DeleteRow
ProcExit:
 Exit Sub
ProcError:
 MsgBox Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

9. Create the Initialize procedure. This subroutine is called from the Form_Load event procedure. It
opens a connection to the SQL Server database, creates a resultset using the same query used in the previous

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (21 of 36) [9/22/1999 2:01:31 AM]

RemoteData control examples, and then calls the ColumnsToControls procedure to display the first row
in the resultset on the form. A keyset cursor with optimistic locking based on row values is used so that the
resultset will be updatable.

Private Sub Initialize()
` connect and open the publishers resultset
 Dim sConnect As String
 Dim sSQL As String
 ` default using a configured DSN
 Set mcon = rdoEnvironments(0).OpenConnection(_
 "pubs")
 ` initialize the publishers resultset
 ` create the SQL statement
 sSQL = "SELECT pub_id, pub_name, city, state, country " & _
 "FROM publishers"
 ` use a keyset cursor
 Set mrsPublishers = _
 mcon.OpenResultset(sSQL, rdOpenKeyset, rdConcurValues)
 ` display the first row
 ColumnsToControls
 ` mark it clean
 mlRowState = RowStateClean
End Sub

10. The Terminate procedure, called from the Form_Unload event, performs a cleanup operation by
closing the module level rdoConnection and rdoResultset objects:

Private Sub Terminate()
` clean up
 mrsPublishers.Close
 mcon.Close
End Sub

11. The GetStates procedure is the same code used in How-To 7.4:

Private Sub GetStates()
` populate the states combo box
 Dim sSQL As String
 Dim rsStates As rdoResultset
 sSQL = "SELECT StateCode FROM States ORDER BY StateCode"
 ` we only need one pass through this data,
 ` and will only need to do it once, so we
 ` use a read only, forward only cursor and
 ` the exec direct option
 Set rsStates = mcon.OpenResultset(sSQL, _
 rdOpenForwardOnly, rdConcurReadOnly, rdExecDirect)
 ` populate the combo box
 Do While Not rsStates.EOF
 cboState.AddItem rsStates!StateCode
 rsStates.MoveNext
 Loop
 ` clean up
 rsStates.Close
End Sub

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (22 of 36) [9/22/1999 2:01:31 AM]

12. Create the NewRow procedure. This code saves the current data, clears the controls, and sets the module
level mlRowState state variable to RowStateNew, in preparation for the creation of a new row in the
table.

Private Sub NewRow()
` create a new row
 ` save current data
 SaveRow
 ClearControls
 mlRowState = RowStateNew
End Sub

13. Create the SaveRow subroutine. The code uses either the Edit or AddNew method of the
rdoResultset object to update an existing row or insert a new row, based on the value of the
mlRowState module level state flag.

Private Sub SaveRow()
` save current data
 Select Case mlRowState
 Case RowStateDirty
 mrsPublishers.Edit
 ControlsToColumns
 mrsPublishers.Update
 mlRowState = RowStateClean
 Case RowStateNew
 mrsPublishers.AddNew
 ControlsToColumns
 mrsPublishers.Update
 mlRowState = RowStateClean
 mrsPublishers.Move 0
 Case Else
 ` nothing to do
 End Select
End Sub

14. The DeleteRow procedure uses the Delete method of the mrsPublishers rdoResultset object
to delete the current row; the procedure then calls MovePrevious to back up to the previous row:

Private Sub DeleteRow()
` delete the current row
 mrsPublishers.Delete
 MovePrevious
End Sub

15. Create the MoveFirst and MoveLast subroutines. Each routine saves the current row, performs the
appropriate move operation, displays the new row, and marks it as being clean.

Private Sub MoveFirst()
` goto first row
 SaveRow
 mrsPublishers.MoveFirst
 ColumnsToControls
 mlRowState = RowStateClean
End Sub
Private Sub MoveLast()
` goto last row

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (23 of 36) [9/22/1999 2:01:31 AM]

 SaveRow
 mrsPublishers.MoveLast
 ColumnsToControls
 mlRowState = RowStateClean
End Sub

16. Create the MovePrevious and MoveNext procedures. These are similar to the MoveFirst and
MoveLast routines, but with code added to test for BOF and EOF conditions so that a valid row will always
be displayed by the form.

Private Sub MovePrevious()
` goto previous row
 SaveRow
 mrsPublishers.MovePrevious
 If mrsPublishers.BOF Then
 mrsPublishers.MoveFirst
 End If
 ColumnsToControls
 mlRowState = RowStateClean
End Sub
Private Sub MoveNext()
` MoveNext w/ EOF handling
 SaveRow
 mrsPublishers.MoveNext
 If mrsPublishers.EOF Then
 mrsPublishers.MoveLast
 End If
 ColumnsToControls
 mlRowState = RowStateClean
End Sub

17. Create the ColumnsToControls routine. This procedure copies the values from the current row in the
resultset to the controls on the form. In order to eliminate the possibility of writing Null values to the Text
property of the text boxes, a zero-length string is appended to the value of the column.

Private Sub ColumnsToControls()
` load the current row in mrsPublishers to the controls
 txtID = mrsPublishers!pub_id & ""
 txtName = mrsPublishers!pub_name & ""
 txtCity = mrsPublishers!city & ""
 cboState = mrsPublishers!state & ""
 txtCountry = mrsPublishers!country & ""
End Sub

18. Create the ControlsToColumns procedure. This procedure compares the values on the form to the
values in the columns and--if they have changed--copies the new values to the columns.

Private Sub ControlsToColumns()
` copy controls to current row
 Dim sID As String
 Dim sName As String
 Dim sCity As String
 Dim sState As String
 Dim sCountry As String
 ` get the values

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (24 of 36) [9/22/1999 2:01:31 AM]

 sID = txtID
 sName = txtName
 sCity = txtCity
 sState = cboState
 sCountry = txtCountry
 ` copy to columns only if changed
 With mrsPublishers
 If !pub_id <> sID Then
 !pub_id = sID
 End If
 If !pub_name <> sName Then
 !pub_name = sName
 End If
 If !city <> sCity Then
 !city = sCity
 End If
 If !state <> sState Then
 !state = sState
 End If
 If !country <> sCountry Then
 !country = sCountry
 End If
 End With
End Sub

19. The ClearControls subroutine writes zero-length strings to each of the controls and is called when
creating a new row:

Private Sub ClearControls()
` clear existing values from controls
 txtID = ""
 txtName = ""
 txtCity = ""
 cboState = ""
 txtCountry = ""
End Sub

20. Enter the following code as the SetupToolbar subroutine. This procedure is called at startup and adds
the four navigation buttons to the Toolbar control.

Private Sub SetupToolbar()
` setup toolbar buttons
 With tb.Buttons
 .Add , "First", "First"
 .Add , "Previous", "Previous"
 .Add , "Next", "Next"
 .Add , "Last", "Last"
 End With
End Sub

NOTE In a production application, you should set up more pleasing buttons with appropriate images in
an associated ImageList control.

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (25 of 36) [9/22/1999 2:01:31 AM]

How It Works

At startup, the form connects to the SQL Server, submits a query, and captures the results of the query in the
mrsPublishers rdoResultset object. Code attached to the menu controls and toolbar buttons provides the
capability for navigation, inserts, updates, and deletes using the methods of the rdoResultset object.

NOTE You can easily implement an undo command by reloading the current row from the
rdoResultset into the controls with a call to the ColumnsToControls procedure. A
column-level undo command could be implemented by restoring only a single column value from the
rdoResultset object.

Comments

In Chapter 2, "Accessing a Database with Data Access Objects," a more robust approach was implemented using a
class module to encapsulate all the data access code. That approach would work equally well with this example. For
the sake of simplicity, the more direct approach of placing the data access code directly in the form module was
used. Although this code might be somewhat simpler to understand, over the lifetime of an application, it might
prove more difficult to maintain because of the tight coupling of the data access code with the user interface code.

QUERYING THE DATABASE

The SQL statement used to provide the source of the data for this form is somewhat simplistic for a
server database. Although the pubs sample database contains only a handful of rows, many tables will
have hundreds, thousands, or even millions of rows of data. If you issue a SELECT query with no
WHERE clause against such a large table in a production application, you will at best produce an
application with terrible performance and will quite possibly be summoned to the office of your
database administrator and be given a painful lesson in how to submit a proper query. Submitting
queries that return only the data you need is always good advice for any database application but is even
more critical if you are sending the query to a busy database server.

7.6 How do I...

Execute a SQL Server stored procedure by using Remote Data Objects?

Problem

Many of the queries I need to run are returned as the results of stored procedures on the server. How can I execute a
stored procedure and capture the resultset with Remote Data Objects?

Technique

A SQL Server stored procedure is a precompiled set of Transact-SQL statements that are executed using a single
statement. Because the statements have been precompiled and the queries have already been optimized, SQL Server
can often execute stored procedures much more efficiently than ad hoc SQL statements submitted for processing.
Many large database applications are built almost entirely using stored procedures to retrieve and edit rows.
Additionally, stored procedures can provide an added measure of security by allowing access to tables and columns
that would otherwise be unavailable. A user only needs permission to execute a stored procedure, regardless of the
permissions on the underlying tables and columns.

Stored procedures can range from simple SELECT queries that return results to complex Transact-SQL procedures
that take input and output parameters and return values and multiple resultsets. Although the details of writing stored

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (26 of 36) [9/22/1999 2:01:31 AM]

procedures on the server is beyond the scope of this chapter, it is not difficult to capture and use the results of stored
procedures.

NOTE Stored procedures always return read-only results.

Depending on the nature of the procedure, you might execute the procedure directly using the Execute method of
an rdoConnection object, or you might capture results of a stored procedure by using an rdoQuery or
rdoResultset object.

THE TROUBLE WITH STORED PROCEDURES

Transact-SQL, from a programming perspective, can be a difficult language to work with. SQL was
designed to manage data and database objects, and the commands and system stored procedures are
often cryptic. Debugging tools are limited, and in many cases you need to understand the inner
workings of a procedure before you can use it. This can make it difficult to create procedures that act as
"black boxes" with well-defined interfaces. However, the advantages in data processing efficiency
offered by stored procedures often far outweigh these disadvantages, especially for heavily used, large
database applications.

Steps

Use SQL Enterprise Manager or I-SQL/W to create the spStates stored procedure listed in step 2; then open and run
project HT706.vbp. This example uses a form that is visually identical to the form shown in Figure 7.5 in the
preceding How-To. Only two lines of code have been changed, but a minor change of this nature has the potential to
provide a significant performance improvement in a production application.

1. Create a new Standard EXE project, add a reference to Microsoft Remote Data Object 2.0, and save the
project as HT706.vbp. The single form for the application, FMain is identical to the FMain form used in
HT705.vbp, with the exception of the change shown in step 3.

2. Using SQL Enterprise Manager or I-SQL/W, select the pubs database and execute the following SQL Script
to create the spStates stored procedure:

CREATE PROCEDURE spStates AS
 SELECT StateCode FROM States ORDER BY StateCode
Go
GRANT EXECUTE ON spStates TO public
Go

NOTE You will need to have already installed the States table using the States.sql script. The script
shown above can be found in spStates.sql.

3. Replace the GetStates procedure with the following code. Two changes were made to the original
procedure in HT705.vbp. The sSQL string variable and the assignment of the SQL statement were removed,
and the name parameter of the OpenResultset method was replaced with the spStates stored
procedure. The balance of the project is identical.

Private Sub GetStates()
` populate the states combo box
 Dim rsStates As rdoResultset
 ` we only need one pass through this data,
 ` and will only need to do it once, so we
 ` use a read only, forward only cursor and
 ` the exec direct option

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (27 of 36) [9/22/1999 2:01:31 AM]

 Set rsStates = mcon.OpenResultset("spStates", _
 rdOpenForwardOnly, rdConcurReadOnly, rdExecDirect)
 ` populate the combo box
 Do While Not rsStates.EOF
 cboState.AddItem rsStates!StateCode
 rsStates.MoveNext
 Loop
 ` clean up
 rsStates.Close
End Sub

How It Works

The original query was a SELECT statement submitted directly to the server for processing:

SELECT StateCode FROM States ORDER BY StateCode

This was replaced with a stored procedure that executes the same query. Because stored procedures have already
been compiled and optimized, a few steps have been saved on the SQL Server each time this query has been
submitted. Only a minor change is required for the GetStates procedure to take advantage of the stored procedure
because the procedure was already designed to use a read-only resultset.

Comments

There might be no difference in the steps the SQL server takes to process the rows for this query. If you execute the
original SQL statement directly in SQL Enterprise Manager and then execute the stored procedure (both with the
Show Query Plan option turned on), you will see that the plan is identical for both queries. However, you are still
saving the SQL Server the time required to compile and optimize the query.

For this type of data, you should design your application to run the query once (either at start time or the first time it
is needed) and then cache the data locally for future use. On a table as stable as this one, you could consider
permanently retaining a local copy and not querying the server at all. However, most database applications will need
to run this type of query routinely. Often many small queries are run to populate lookup tables of coded values and
other types of selection lists for combo boxes, list boxes, and so on. This type of data probably does not change
often, but might not be stable enough to hardwire the values into the source code.

If you routinely submit a number of these queries in your application, a good solution might be to design a single
stored procedure on the server that returns several or possibly all of these queries at once; then cache the results
locally after the first execution. When you submit a query or stored procedure that returns multiple resultsets, you
use the MoreResults method of the rdoResultset object to determine whether there are additional resultsets
to process. You can also use the GetRows method to quickly and easily populate an array with the results of a query
for temporary local storage.

7.7 How do I...

Execute a parameterized SQL Server stored procedure with Remote Data
Objects?

Problem

I need to capture the return value of a stored procedure that takes parameters. How can I do this with Remote Data
Objects?

Technique

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (28 of 36) [9/22/1999 2:01:31 AM]

SQL Server stored procedures, like Visual Basic procedures, can take input and output parameters and can return
values. To capture these values, you need to use a different technique from that used in How-To 7.6. The
rdoQuery object provides the rdoParameters collection to manage the parameters of a stored procedure.

The question mark character is the placeholder for parameters in a SQL Server query. If a procedure takes
parameters, you put question marks in the SQL statement where the parameters would be entered if you were
submitting the query interactively. The following SQL statement would create a parameter query based on a
CustLast column:

SELECT CustID, CustFirst, CustLast FROM Customers WHERE CustLast = ?

To supply this parameter when you execute the query, you need to create an

rdoQuery object using the CreateQuery method:

` cn is a connection object defined elsewhere
` qry is an object variable declared as rdoQuery
` sSQL is a string variable
sSQL = "SELECT CustID, CustFirst, CustLast FROM Customers WHERE CustID = ?
Set qry = cn.CreateQuery("",sSQL)

This query will now have a single parameter in its rdoParameters collection.

You can assign a value to the parameter and execute the query:

` the parameters collection is zero-based
qry(0) = 12
` rs is an rdoResultset object
Set rs = qry.Execute

Stored procedures can also take parameters, but to capture output parameters or return values, you need to use the
OBDC call syntax. Here's the beginning of the sp_addgroup procedure from the master database:

create procedure sp_addgroup
@grpname varchar(30)

In addition to the grpname input parameter, sp_addgroup also returns a value indicating the success or failure of
the procedure. With the ODBC call syntax, this query would be created as

{? = call sp_addgroup (?) }

The question mark at the beginning of the statement acts as a placeholder for
the return value, and the question mark at the end acts as a placeholder for the grpname parameter. Normally, the
ODBC driver can determine whether the parameters are input or output, but you can also supply the direction
explicitly by using the Direction property of the rdoParameter object:

qry(0).Direction = rdDirectionInput

Along with input and output parameters, you can also use rdParamReturnValue to specify that a parameter is a
stored procedure return value.

Steps

The sample project for this How-To is a SQL Server Change Password dialog box. Open and run project HT707.vbp
to display the form shown in Figure 7.6. The dialog box uses the sp_password system stored procedure (in the
master database) to change the password for the current user.

Figure 7.6. The Change Password dialog box.

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (29 of 36) [9/22/1999 2:01:31 AM]

javascript:popUp('07fig06.gif')

NOTE If you are the sa, you can use sp_password to change the password for any user--with or
without the existing password. This is a standard security mechanism. Administrators can change, but
not read, existing passwords. Windows NT Server domain administrators and Access database
administrators have the same capability. This dialog box does not provide that capability. If you have sa
authority and need to change the password of another user, execute sp_password using SQL
Enterprise Manager or I-SQL/w.

1. Create a new Standard EXE project and save it as HT707.vbp. Change the name of Form1 to FMain and
save it as FMain.frm, and then create the objects and properties shown in Table 7.8.

Table 7.8. Objects and properties for FMain.

OBJECT Property Value

Form Caption Change Password

Border Style 3 - Fixed Dialog

Label Name lbl

Caption Old Password

Index 0

TextBox Name txtOld

Label Name lbl

Caption New Password

Index 1

TextBox Name txtNew

Label Name lbl

Caption Confirm New Password

Index 2

TextBox Name txtNewConfirm

CommandButton Name cmd

Caption OK

Default True

Index 0

CommandButton Name cmd

Caption Cancel

Cancel True

Index 1

2. Add Option Explicit to the declarations section of the form module, and then create the cmd_Click
event procedure. This procedure calls the ChangePassword procedure if OK was clicked or unloads the
form if Cancel was clicked.

Private Sub cmd_Click(Index As Integer)
On Error GoTo ProcError
 Select Case cmd(Index).Caption
 Case "OK"
 ChangePassword

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (30 of 36) [9/22/1999 2:01:31 AM]

 Case "Cancel"
 Unload Me
 End Select
ProcExit:
 Exit Sub
ProcError:
 MsgBox Err.Number & vbCrLf & Err.Description
 Resume ProcExit
End Sub

3. Add the following code as the ChangePassword function. This procedure uses the values entered in the
text boxes to supply the parameters for the sp_password system stored procedure. The procedure first
verifies that the user entered the same value in the New Password and Confirm New Password text boxes; it
then opens a connection to the SQL Server.

4. The pubs DSN is used to open the connection, but any valid connection to the server will work because the
procedure name is fully qualified in the master database. After the connection has been established, the
procedure creates an rdoQuery object, sets the direction of the parameters, and assigns the values of the two
input parameters. Finally, the query is executed using the Execute method of the rdoQuery object, and the
return value is captured using the rdoParameters collection. The sp_password returns 0 if the
password was successfully changed, and this value is tested to display an appropriate message based on the
return value of the stored procedure.

Private Sub ChangePassword()
` change the current user's password
` using the sp_password system stored procedure
 Dim con As rdoConnection
 Dim sSQL As String
 Dim qry As rdoQuery
 Dim sOld As String
 Dim sNew As String
 Dim sNewConfirm As String
 sOld = txtOld
 sNew = txtNew
 sNewConfirm = txtNewConfirm
 If sNew <> sNewConfirm Then
 ` mismatch, inform, clear values and exit
 MsgBox "New passwords do not match."
 txtNew = ""
 txtNewConfirm = ""
 txtNew.SetFocus
 Exit Sub
 End If
 Set con = _
 rdoEnvironments(0).OpenConnection _
 ("pubs")
 ` use the ODBC call syntax to capture the return value
 ` this is needed to know if the change succeeded
 sSQL = "{? = call master.dbo.sp_password (?,?) }"
 ` create the query object
 Set qry = con.CreateQuery("", sSQL)
 ` set direction for param 0
 qry(0).Direction = rdParamReturnValue

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (31 of 36) [9/22/1999 2:01:32 AM]

 qry(1).Direction = rdParamInput
 qry(2).Direction = rdParamInput
 ` this is equivalent to using
 ` qry.rdoParameters(1)
 qry(1) = sOld
 qry(2) = sNew
 ` run it
 qry.Execute
 ` sp_password returns 0 if successful
 ` the return parameters is always #0
 If qry(0) = 0 Then
 MsgBox "Password changed."
 Unload Me
 Else
 MsgBox "Unable to change password."
 End If
End Sub

How It Works

Only the ODBC call syntax can be used if you need to capture the output or return parameters from a stored
procedure. By using this syntax in the SQL statement, you can create an rdoQuery object with an
rdoParameters collection and use the parameters to supply input values and capture output and return values.

This procedure could also be run by directly providing the old and new password as part of the SQL statement and
run using the Execute method of an rdoConnection object, but you would not be able to determine whether
the procedure succeeded or failed because the return value would be unavailable.

Comments

This simple Change Password dialog box could easily be plugged into any SQL Server database application by
changing the code used to open the connection to the server or by supplying a valid connection using a public
property of the form.

7.8 How do I...

Handle Remote Data Objects errors?

Problem

I know that there will be runtime errors generated in my application and that I must trap and handle these errors to
make the application robust and reliable. How do I handle errors generated by Remote Data Objects?

Technique

As with any Visual Basic application, you must trap and handle the errors that are generated at runtime, or the Visual
Basic runtime DLL will invoke its own default error handler--which simply displays a message and terminates your
application. Error-handling techniques for Remote Data Objects applications are similar to the techniques used for
handling any other Visual Basic runtime errors, with one subtle but important variation: More than one error can be
generated by a single statement in Remote Data Objects.

To enable you to deal with this possibility, Remote Data Objects provides the rdoErrors collection. This is a
collection of rdoError objects you can examine the same way you examine the Visual Basic Err object. You can

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (32 of 36) [9/22/1999 2:01:32 AM]

check the Number, Source, and Description properties. An rdoError object also provides the
SQLRetCode and SQLState properties for you to examine.

Each of these properties might or might not provide useful information. SQL Server error messages can often be
cryptic at best, and although a Visual Basic runtime error is generated, you get only the first error in the
rdoErrors collection. You will normally need to iterate the rdoErrors collection to find the true nature of the
problem because the first error is often a generic message such as Command has been aborted.--a true but
generally useless piece of information for debugging without having the underlying cause of the problem.

The other significant difference in handling errors generated by Remote Data Objects is that you need to be prepared
to deal with a much wider array of possible problems, ranging from typical Visual Basic errors like Invalid Use
of Null (a common error in database applications) to the sudden death of the SQL Server at the other end of the
connection. Along with the normal array of possible data manipulation problems (invalid foreign key values, data
missing from required columns, and so on), most large SQL Server databases will have a wide variety of often
complex business rules that are enforced. If rules are enforced using SQL Server triggers or stored procedures, the
error numbers and messages generated will be dependent on the developer that created the Transact-SQL code. If
that developer was conscientious in developing the Transact-SQL code, you will receive descriptive and informative
messages. If you are developing your own Transact-SQL code, provide as much information as you reasonably can
and use a sensible convention for generating error numbers.

NOTE You generate errors in Transact-SQL by using the RAISERROR statement.

Although there are standard techniques for trapping and examining errors, the means you use to handle the errors is
entirely up to you and dependent on the context of the error. If a rule or some type of constraint is violated, you
might be able to provide a message to the user with information about the problem and possible solutions. For more
severe errors, such as a lost connection to the database server over the network, you might have little choice but to
gracefully terminate the application, informing the user of the problem in the process.

There are several avenues available for you to deal with possible problems:

Prevent the errors before they happen. By using combo boxes, lists, and other user interface mechanisms that
provide fixed lists of values for the user to select, you can prevent the entry of data that will violate database
rules. If a column requires that a value be a member of a particular list of valid values, you should design the
application so that only that list is available to the user.

●

Make explicit tests for known probable errors before submitting data to the server. By handling the problem in
advance of the generation of a runtime error, you gain more direct control over the problem and reduce the
overhead on the server--which will need to process only validated data.

●

Iterate the rdoErrors collection with a For...Each loop to gather as much information as possible
about the errors you do encounter. To whatever degree is possible, do this while debugging the application
and take steps to prevent the problems if you can.

●

As always, set up error handlers in Sub Main and all event procedures. Because these procedures are by
definition at the top of the Visual Basic call tree, errors in them cannot be raised and will be fatal to your
application. If your application must be shut down due to a severe error, close it down gracefully with your
own code rather than letting Visual Basic's default runtime error handling terminate the application for you.
You might even be able to save edits in progress locally and submit them to the server later when the problem
has been cleared up.

●

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (33 of 36) [9/22/1999 2:01:32 AM]

Your Responsibilities as a Database Application

DEVELOPER

As the developer of a database application, you have two responsibilities that can sometimes be at odds
with each other. You need to provide an easy-to-use, high-performance application for the user. Users
are mainly concerned with getting their work done and don't care much about the intricacies of SQL
Server rules, foreign key constraints, and other problems. At the same time, you need to make sure that
only valid data is stored in the database because the data can be worse than useless if it is not reliable.
Most database developers tend to err on the side of caution where data validation is concerned, often at
the expense of end user productivity. How strictly you need to enforce your rules depends on the nature
of the application. If you are working with a financial application where precision is paramount, you
might need to be more severe in your enforcement of business rules. However, it is often the case that
developers enforce rules that can potentially be ignored--at least temporarily--for the sake of the
productivity of the end user.

Only you can determine how strict you need to be, but you should try to make an effort to sterilize the
data only if it's truly necessary. In most cases, it's wishful thinking to believe that you can build an
application where no bad data can be entered, so attempts to do so only hurt user productivity. If you are
faced with a decision about data validation and rule enforcement, make the decision in the context of the
overall goal of the application rather than looking only at the details of table or column level rules.

Steps

There is no specific project that demonstrates handling errors from Remote Data Objects. You are probably already
well versed with basic Visual Basic error handling techniques, so rather than provide a contrived example, the
following steps examine some of the problems you might encounter in the existing examples from How-To 7.2 and
How-To 7.7. If you need a review of the essentials of Visual Basic error handling, see How-To 2.8, which covers the
basic techniques of runtime error handling.

In How-To 7.2, a bound control application was developed that enables you to browse, update, insert, and delete
rows in the Publishers table of the pubs sample database. There are two known problems involved in working with
the Publishers table that were described in the chapter. First, a rather strange check constraint is enforced on the
pub_id column, and second, there are foreign keys in other tables that reference the pub_id column. Inserts,
updates, and deletes can all generate violations of these rules, and the basic error handlers provided in the existing
example do not provide any information about the true nature of the problem.

1. Open and run HT702.vbp. The first publisher displayed should be New Moon Books. Change the existing
ID value from 0736 to 0737 and attempt to move to the next row using the navigation buttons provided by
the RemoteData control. The message shown in Figure 7.7 will be displayed. Following this message will be
another, shown in Figure 7.8.

Figure 7.7. The Command has been aborted message.

Figure 7.8. The operation canceled message.

2. Insert the following code as the rdc_Error event procedure. This procedure iterates the rdoErrors
collection with a For...Each loop and builds a message using all the available errors. The message
generated reveals the true nature of the problem: The column level check constraint on the pub_id column
has been violated.

Private Sub rdc_Error(_
 ByVal Number As Long, _
 Description As String, _

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (34 of 36) [9/22/1999 2:01:32 AM]

javascript:popUp('07fig07.gif')
javascript:popUp('07fig08.gif')

 ByVal Scode As Long, _
 ByVal Source As String, _
 ByVal HelpFile As String, _
 ByVal HelpContext As Long, _
 CancelDisplay As Boolean)
Dim sMsg As String
 Dim rerr As rdoError
 For Each rerr In rdoErrors
 sMsg = _
 rerr.Number & ": " & rerr.Description & vbCrLf
 Next
 MsgBox sMsg
End Sub

3. In the mnuDataSave_Click event, replace the simple MsgBox statement in the error handler with the
following code. This is the same approach used in the rdc_Error event procedure to find out what the real
problem is with the error. The original message Command has been aborted--although true--is useless
without the additional information provided by the rdoErrors collection.

 Dim rerr As rdoError
 Dim sMsg As String
 For Each rerr In rdoErrors
 sMsg = rerr.Number & ": " & rerr.Description & vbCrLf
 Next
 MsgBox sMsg

4. Run the project again, but this time attempt to delete New Moon Books. The now familiar Command has
been aborted message appears. Again the message is correct but useless. Replace the MsgBox statement
in the error handler with the same code used in the two previous steps. If you run the project and again attempt
the delete, the rdoErrors collection will now reveal that the underlying problem is the violation of a foreign
key constraint. With this information available, you can deal with the problem by either cancelling the delete
and informing the user or by deleting the associated rows in the foreign table.

5. Sometimes, despite your best efforts, the messages you receive from SQL Server just aren't going to provide
any useful information. In How-To 7.7, you created a form that calls the system stored procedure
sp_password. In SQL Enterprise Manager or I-SQL/w, you can run this stored procedure (which resides in
the master database) from any database on the server and change your password. That's how system stored
procedures are supposed to work and why they're called system stored procedures--they apply to the entire
SQL Server. Based on this information, replace the line of code in the ChangePassword subroutine with
the following line. At first glance you might expect this to work, but it doesn't. The rather bizarre error
message shown in Figure 7.9 is displayed instead of a notification that the password was changed.

sSQL = "{? = call sp_password (?,?) }"

Figure 7.9. A not-so-helpful error message.

NOTE A copy of the application with the incorrect code is available in project HT707R.vbp.

6. The trouble is that a fully qualified name for the procedure in the form database.owner.object is required.
Unfortunately, the rdoErrors collection does not provide any further information. If you place a breakpoint
in the procedure or set the Break on all Errors option in Visual Basic, you can examine the rdoErrors
collection in the immediate window. The only error available is the one displayed, and it certainly doesn't
indicate the true nature of the problem. A search of the Microsoft Technical Support Knowledge Base on the
Microsoft Web site using the keywords rdoquery error returned (among others) the following article.

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (35 of 36) [9/22/1999 2:01:32 AM]

javascript:popUp('07fig09.gif')

This article indicates that you need to provide the full path to the stored procedure if you use the technique
shown in How-To 7.7 (as well as an alternative method).

HOWTO: Call SQL Server System Stored Procedures from RDO
Last reviewed: April 18, 1997
Article ID: Q166211 The information in this article applies to:
*Microsoft Visual Basic Enterprise Edition for Windows, version 5.0

NOTE If you aren't already familiar with the Microsoft Knowledge Base, you should visit the Web site
and learn to use it. The Knowledge Base (or just KB) provides a wealth of technical information on all
Microsoft products and should be your first source of information if you encounter a problem. You can
query the KB online at http://www.microsoft.com/kb/.

How It Works

Standard Visual Basic error-handling techniques, in conjunction with the rdoErrors collection, enable you to trap
and examine runtime errors returned by Remote Data Objects. Armed with the information provided by the
rdoErrors collection, you can build applications that trap and handle runtime errors effectively.

Comments

The information provided by the rdoErrors collection is often helpful, but not always--as demonstrated in the
steps above. In order to be productive as a programmer, you'll need to be able to query the resources available in the
help files, the Knowledge Base, and other sources to find the solutions to your problems. Finally, don't underestimate
the power of your own intuition in solving problems and working out bugs in your application. As you gain
experience in programming with Visual Basic and Remote Data Objects, you will eventually learn to anticipate
problems and can often solve them with a simple educated guess.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Ch 7 -- SQL Server Databases and Remote Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch07/ch07.htm (36 of 36) [9/22/1999 2:01:32 AM]

Visual Basic 6 Database How-To

- 8 -
Using ActiveX Data Objects

How Do I...

8.1 Browse a SQL Server database with the ADO Data control?❍

8.2 Create and delete records in a SQL Server database using the ADO Data control?❍

8.3 Retrieve results from a SQL Server using ActiveX Data Objects?❍

8.4 Alter data using ActiveX Data Objects?❍

8.5 Perform a transaction using ActiveX Data Objects?❍

8.6 Execute a SQL Server stored procedure using ActiveX Data Objects?❍

8.7 Execute a parameterized SQL Server stored procedure with ActiveX Data Objects?❍

8.8 Create and modify SQL Server objects with ActiveX Data Objects?❍

8.9 Execute batch updates with ActiveX Data Objects?❍

8.10 Make remote updates to data with ActiveX Data Objects?❍

8.11 Build a middle-tier business object using ActiveX Data Objects?❍

8.12 Incorporate a business object into Microsoft Transaction Server?❍

8.13 Handle ActiveX Data Objects errors?❍

●

Universal Data Access, OLE DB, ActiveX Data Objects...what do they all mean? Recently developers have been hit
with another new wave of technology terms. Microsoft has once again pushed forward the frontier of data access.

Universal Data Access, referred to as UDA from here forward, is Microsoft's term for the idea that a developer should
be able to use one data access method for any data source he is querying. ODBC was a great step forward. For the first
time, no matter what relational database the application needed to talk to, you only needed to learn one API. The
problem with ODBC is that it was aimed directly at relational databases and other sources of data did not fit its model
very well. Instead of trying to tack functionality on to ODBC so that it could handle other data sources as well as it did
relational databases, Microsoft decided to do things right and start from scratch. They built OLE DB without having to
make any compromises to the existing architecture.

OLE DB is a COM-based interface between data providers and client applica-tions. Data providers can be anything
from relation databases to spread sheets to file systems. Like RDO was to the ODBC API, Microsoft knew it needed
to create an easy-to-use object layer on top of OLE DB; thus ActiveX Data Objects were born.

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (1 of 52) [9/22/1999 2:03:05 AM]

ADO is the interface into OLE DB so that VB can reap the benefits of UDA. Got that? This chapter covers ADO from
its simplest form, using the ADO Data control, to more complex forms, such as building three-tier applications using
Microsoft Transaction Server.

This chapter makes a few assumptions:

4 You need access to a SQL Server with the sample database pubs installed on it.●

4 A few of the samples require an ODBC datasource--pubs--set up to connect to that server and database. One
of the first data providers Microsoft released was a data provider that sat on top of ODBC. Any database
accessible to ODBC is accessible to ADO.

●

4 For How-To 8.12, you will need Microsoft Transaction Server. It is available from Microsoft as part of the
NT Server Option Pack.

●

CONNECTING TO OTHER DATABASES

All the How-Tos in this chapter use a Microsoft SQL Server, but ADO is not constrained to one database
vender or even just databases. The "Provider" parameter of the connection string indicates which OLE
DB data provider should be used. ADO 2.0 ships with several data providers including Jet, Oracle, and
Microsoft Directory Services. Connecting to a different data provider is as easy as changing the
connection string. For example, a typical connection string for an Access database would be
"Provider=Microsoft.Jet.OLEDB.3.51;Data Source=mydb.mdb".

8.1 Browse a SQL Server Database with the ADO Data Control

This How-To shows the quickest and simplest way to get up and running using ADO, the ADO Data control.

8.2 Create and Delete Records in a SQL Server Database Using the ADO Data Control

With a little extra code you can insert and delete records using the ADO Data control. This How-To shows you how.

8.3 Retrieve Results from a SQL Server Using ActiveX Data Objects

Retrieve data without the use of the ADO Data control in this How-To.

8.4 Alter Data Using ActiveX Data Objects

This How-To shows you how to update, insert, and delete records using ADO.

8.5 Perform a Transaction Using ActiveX Data Objects

Most business applications require them; this How-To shows you how to perform a transaction in ADO.

8.6 Execute a SQL Server Stored Procedure Using ActiveX Data Objects

You can increase the performance of your ADO applications by using stored procedures. In this How-To you learn
how to use SQL Server stored procedures with ADO.

8.7 Execute a Parameterized SQL Server Stored Procedure with ActiveX Data Objects

Some stored procedures have return values and output parameters. This How-To shows you what you need to know to
handle parameterized stored procedures.

8.8 Create and Modify SQL Server Objects with ActiveX Data Objects

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (2 of 52) [9/22/1999 2:03:05 AM]

The ADO object model does not let you modify SQL Server objects. This How-To shows you how to get around it.

8.9 Execute Batch Updates with ActiveX Data Objects

Saving many changes at once can increase performance. This How-To shows you how.

8.10 Make Remote Updates to Data with ActiveX Data Objects

In this How-To you will learn how to best update a Recordset using ADO when connections and bandwidth are
limited.

8.11 Build a Middle-Tier Business Object Using ActiveX Data Objects

Move up to three-tier development in this How-To, where you learn how to build a middle-tier business object using
ADO.

8.12 Incorporate a Business Object into Microsoft Transaction Server

When scalability becomes a problem, MTS is your answer. This How-To shows you how to take a middle-tier
business component and tune it for Microsoft Transaction Server.

8.13 Handle ActiveX Data Objects Errors

This How-To shows you what to do when things do go wrong.

8.1 How do I...

Browse a SQL Server database with the ADO Data control?

Problem

My data is on SQL Server database. What is an easy way to get to get the data using ADO?

Technique

Like the Visual Basic Data control and the RemoteData control, the ADO Data control gives you a "no code" solution
for data access. The difference lies in the data access method. The Visual Basic Data control uses the Jet Engine, the
RemoteData control uses RDO, and the ADO Data control uses Microsoft's newest data access methodology, ActiveX
Data Objects.

The technique to use the ADO Data control is very similar to its predecessors:

1. Draw an ADO Data control on your form and set the ConnectionString and RecordSource properties.

2. Add controls to the form to display the columns in the record source and set their DataSource and DataField
properties.

In just a couple of steps, and no lines of code, an application with the ability to browse and edit the database is born.
All the data access is handled by the ADO Data control.

Steps

Load and run ADODC.vbp. Figure 8.1 shows the ADODC application in action. Change the ConnectionString
property of the ADO Data Control on frmMain to match your user and password, and then run the application. You
can use the application to browse and edit the Authors table in the pubs database.

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (3 of 52) [9/22/1999 2:03:05 AM]

Figure 8.1. The Authors form using an ADO Data control.

1. Create a new Standard EXE project, and change the Project Name to ADODC in the Project Properties dialog
box. Rename the default form frmMain.

2. Using Project | Components, add the Microsoft ADO Data Control 6.0 to the project. Add an ADO Data
Control to frmMain along with the other controls listed in Table 8.1. Arrange the controls to match Figure 8.1
and set all the properties according to Table 8.1. Change the ConnectionString property of the ADO Data
Control to match your user and password.

Table 8.1. Objects and properties for frmMain.

OBJECT Property Value

Form Caption Authors

ADO Data control Name adodc

Caption Authors

Align 2 - vbAlignBottom

ConnectionString DSN=pubs;User Id=sa;Password=password

RecordSource authors

TextBox Name txtFirstName

Text ""

DataSource adodc

DataField au_fname

TextBox Name txtLastName

Text ""

DataSource adodc

DataField au_lname

TextBox Name txtAddress

Text ""

DataSource adodc

DataField address

TextBox Name txtCity

Text ""

DataSource adodc

DataField city

TextBox Name txtState

Text ""

DataSource adodc

DataField state

TextBox Name txtZip

Text ""

DataSource adodc

DataField zip

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (4 of 52) [9/22/1999 2:03:05 AM]

javascript:popUp('08fig01.gif')

TextBox Name txtPhone

Text ""

DataSource adodc

DataField phone

CheckBox control Name chkContract

Caption Contract

DataSource adodc

DataField contract

Label Name lblFirstName

Caption First

Label Name lblLastName

Caption Last

Label Name lblAddress

Caption Address

Label Name lblCity

Caption City

Label Name lblState

Caption State

Label Name lblZip

Caption Zip Code

Label Name lblPhone

Caption Phone

How It Works

The ADO Data control does all the work in this application. Use the navigation buttons to move through the records
and use the bound controls to edit and view the data.

Comments

This application is drag-and-drop programming at its best. With no code, a fully function application enables the user
to edit and view a Recordset using ADO.

8.2 How do I...

Create and delete records in a SQL Server database using the ADO Data
control?

Problem

Viewing and editing existing records is nice, but my users need to do more. How do I create and delete records using
the ADO Data control?

TECHNIQUE

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (5 of 52) [9/22/1999 2:03:05 AM]

Creating an application to view and edit existing records is really easy and it requires no code at all. Unfortunately, the
user's requirements are seldom that simple. The next obvious step is to grant the user the ability to add and delete
records.

To add a record using the ADO Data control:

1. Use the AddNew method of the ADO Data control's Recordset property to create a new blank row in the row
buffer.

2. Use the Update method of the ADO Data control's Recordset property to save the new row to the database.

The Recordset's Delete method is used to delete a record. However, the Delete method will not refresh the window
with a valid record. You must move the ADO Data control to a new valid row. This How-To uses the convention of
moving to the previous row when deleting.

Steps

Open ADODC2.vbp and change the ConnectionString property of the ADO Data Control on frmMain to match your
user and password, then run. This is almost the same application from the first How-To. The changes are listed in the
steps below.

1. Starting with the finished product of How-To 8.1, add the controls and menu items specified in Table 8.2.
Use Figure 8.2 to help place the new controls.

Figure 8.2. The new and improved Authors form.

Table 8.2. New objects and properties for frmMain.

OBJECT Property Value

TextBox Name txtId

Text ""

DataSource adodc

DataField au_id

Label Name lblId

Caption Id

Menu item Name mnuFile

Caption &File

Menu item Name mnuNew

Caption &New

Indent 1

Menu item Name mnuSave

Caption &Save

Indent 1

Enabled False

Menu item Name mnuExit

Caption E&xit

Indent 1

Menu item Name mnuEdit

Caption &Edit

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (6 of 52) [9/22/1999 2:03:05 AM]

javascript:popUp('08fig02.gif')

Menu item Name mnuDelete

Caption &Delete

Indent 1

2. Add Option Explicit to the declarations section of the form if it is not already there.

3. Add the following code to the form. This sub checks to see if a new record has been added; if it has been
added, the sub attempts to save the new record and disable the Save menu selection.

Private Sub Save()
 `if we need to save then save it
 If adodc.Recordset.EditMode = adEditAdd Then
 On Error GoTo SaveFailure:
 adodc.Recordset.Update
 On Error GoTo 0
 `don't need to save so disable that menu
 mnuSave.Enabled = False
 End If
SaveDone:
 Exit Sub
SaveFailure:
 MsgBox Err.Number & vbCrLf & Err.Description
 Resume SaveDone
End Sub

4. Adding the code adds the new empty row to the row buffer.

Private Sub mnuNew_Click()
 adodc.Recordset.AddNew
 `so we can save that new record
 mnuSave.Enabled = True
End Sub

5. Create the mnuSave_Click event procedure. It just calls the Save sub.

Private Sub mnuSave_Click()
 Save
End Sub

6. If the user tries to exit after adding a new row, check to see if she wants to save it in the mnuExit_Click event
procedure.

Private Sub mnuExit_Click()
 If adodc.Recordset.EditMode = adEditAdd Then
 If MsgBox("Do you want to save?", vbYesNo) = vbYes Then
 Save
 End If
 End If
 Unload Me
End Sub

7. Finally, add the code to delete a row.

Private Sub mnuDelete_Click()
 On Error GoTo DeleteFailure:
 adodc.Recordset.Delete
 `current row is now invalid so move back one
 adodc.Recordset.MovePrevious

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (7 of 52) [9/22/1999 2:03:05 AM]

 `if we are before the beginning go to the first
 If adodc.Recordset.BOF Then
 adodc.Recordset.MoveFirst
 End If
DeleteDone:
 Exit Sub
DeleteFailure:
 MsgBox Err.Number & vbCrLf & Err.Description
 Resume DeleteDone
End Sub

How It Works

Like the previous How-To, this one relies on the ADO Data control to do much of the work. You can use the
AddNew, Update, and Delete methods of the Recordset object to supplement the ADO Data control's basic
functionality to build a simple data manipulation application.

Comments

The ADO Data control is nice for quick and easy applications, but this How-To shows that you quickly have to move
up to manipulating ADO programmatically to get any advanced features. The rest of this chapter's How-To's focus on
using ADO's objects directly without the ADO Data control.

8.3 How do I...

Retrieve results from a SQL Server using ActiveX Data Objects?

Problem

I want to get at my data without using a bound control. How do I retrieve results from SQL Server using ActiveX Data
Objects?

Technique

The ADO Connection and Recordset objects provide direct access to data in ADO. If you have programmed in either
DAO or RDO, the ADO objects will seem strangely familiar. Most DAO and RDO objects have counterparts in ADO,
but one with significant difference.

The biggest difference between ADO and its predecessors is the flat nature of the ADO object model. RDO also has
an rdoRecordset object, which is the child of an rdoConnection, which is the child of an rdoEnvironment, which is the
child of the rdoEngine. RDO and DAO are very hierarchical; to get to a recordset, you must also have all the parent
objects. ADO does not require the overhead of the hierarchy. To retrieve results from a data source, all you need is a
connection and a recordset.

The steps to get data from SQL Server are listed below:

1. Create and open a connection.

2. Create and open a recordset with the connection as a parameter.

3. Close the recordset.

4. Close the connection.

Steps

Open the ListAuthors.vbp project. Before running the project you will have to change the username (User Id=),
password (Password=), and server name (Location=) parameters of the connection string. The connection is opened in

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (8 of 52) [9/22/1999 2:03:05 AM]

the Form_Load event of frmAuthors. The Authors form, shown in Figure 8.3, shows a list of authors and their
addresses.

Figure 8.3. The Authors form shows a list of authors.

A NOTE ON CONNECTION STRINGS

It is often hard to remember the exact syntax for connection strings, but the ADO Data control has an
excellent wizard for building and testing connection strings. Simply add the ADO Data control to your
project, right-click on the control and select ADODC properties, then click the Build button next to the
Use Connection String option. When you're finished creating and testing the connection string, cut and
paste it from the text box and remove the ADO Data control from your project.

1. Create a new Standard EXE project, add a reference to Microsoft ActiveX Data Objects 2.0 Library, and add
the Microsoft Windows Common Controls 6.0 component. Change the Project Name to ListAuthors and the
Name of the default form to frmAuthors, and save the project.

2. Add the object and set the properties according to Table 8.3.

Table 8.3. New objects and properties for frmAuthors.

OBJECT Property Value

Form Caption Authors

ListView Name listAuthors

View 3 - lvwReport

LabelEdit 1 - lvwManual

3. Add the columns listed in Table 8.4 to the ListView control using the Column Headers property page.

Table 8.4. Column Headers for listAuthors.

COLUMN WIDTH

Name 2000

Address 2000

City 1440

State 500

Zip 700

4. Add the following procedure. The Form_Load event/property opens the Connection object, opens the
Recordset object, and fills the ListView control with the names and address from the Authors table. Remember
to change the connection string for the Connection object's Open method.

Private Sub Form_Load()
 Dim cn As Connection
 Dim rs As Recordset
 Dim NewItem As ListItem
 `open the connection
 Set cn = New Connection
 cn.Open "Provider=SQLOLEDB.1;User ID=sa;Password=password;" _
 + "Location=WINEMILLER;Database=pubs"
 `could have also just specified an ODBC DSN like below

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (9 of 52) [9/22/1999 2:03:05 AM]

javascript:popUp('08fig03.gif')

 `cn.Open "DSN=pubs"
 `now open the recordset
 Set rs = New Recordset
 rs.Open "authors", cn, adOpenForwardOnly, adLockReadOnly
 Do Until rs.EOF
 Set NewItem = listAuthors.ListItems.Add(, rs("au_id"), _
 rs("au_lname") & ", " & rs("au_fname"))
 NewItem.SubItems(1) = rs("address")
 NewItem.SubItems(2) = rs("city")
 NewItem.SubItems(3) = rs("state")
 NewItem.SubItems(4) = rs("zip")
 rs.MoveNext
 Loop
 `close and clean up
 rs.Close
 cn.Close
 Set rs = Nothing
 Set cn = Nothing
End Sub

HOW IT WORKS

The code in Form_Load is typical for an ADO data retrieval operation.

1. Instance the Connection object.

2. Call the Connection object's Open method.

3. Instance the Recordset object.

4. Call the Recordset object's Open method, using the Connection object as a parameter.

5. Move through the Recordset until the EOF method returns a True.

6. Call the Recordset object's Close method.

7. Call the Connection object's Close method.

8. Set the Recordset and Connection objects to Nothing.

Opening connections is an expensive operation, so in most applications it is far better to keep a connection as a
module or global level variable. The rules change when Microsoft Transaction Server is added to the pot; How-To
8.12 explains why you should open and close a connection in each call when using Microsoft Transaction Server.

Comments

In most applications you will probably want to keep a Connection object at the global or module level. This will save
you from creating the object each time an operation is performed.

8.4 How do I...

Alter data using ActiveX Data Objects?

Problem

Now that I know how to get to my data using ADO, I want to change it. How do I alter data using ActiveX Data
Objects?

Technique

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (10 of 52) [9/22/1999 2:03:05 AM]

ADO provides two basic means for altering data: the Connection object's Execute method and the Recordset object.
Using the Execute method, you can use SQL queries and commands such as UPDATE, INSERT, and DELETE. The
Recordset object exposes corresponding methods with its Update, AddNew, and Delete methods.

How-To 8.3 uses a forward-only, read-only cursor because it only needs to display data. This How-To uses keyset
cursors with optimistic locking. This type of cursor allows updates and deletes to the recordset.

Steps

Open the ListAuthors2.vbp. As with How-To 8.3, you will need to update the connection string used to open the
connection in the Form_Load before you can run it. This project is typical of many applications where you select from
a list of objects and the objects' properties are displayed in a separate part of the window. There you can delete, edit,
and add new records.

1. Create a new Standard EXE, and change the Project Name to ListAuthors2. Change the default form name to
frmAuthors and save the project.

2. Add a reference to the Microsoft ActiveX Data Objects 2.0 Library and add the Microsoft Windows
Common Controls 6.0.

3. Using Table 8.5, add the required objects to the form and set their properties. Use Figure 8.4 as a guide to lay
out the position of the controls.

Figure 8.4. The Authors form.

Table 8.5. Objects and properties for frmAuthors.

OBJECT Property Value

Form Caption Authors

CommandButton Name cmdNew

Caption New

CommandButton Name cmdDelete

Caption Delete

CommandButton Name cmdUpdate

Caption Update

CheckBox Name chkExecute

Caption Use Execute

ListView Name listAuthors

View 3 - lvwReport

LabelEdit 1 - lvwManual

TextBox Name txtId

Text ""

TextBox Name txtFirstName

Text ""

TextBox Name txtLastName

Text ""

TextBox Name txtAddress

Text ""

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (11 of 52) [9/22/1999 2:03:05 AM]

javascript:popUp('08fig04.gif')

TextBox Name txtCity

Text ""

TextBox Name txtState

Text ""

TextBox Name txtZip

Text ""

TextBox Name txtPhone

Text ""

CheckBox Name chkContract

Caption Contract

Label Name lblId

Caption Id

Label Name lblFirstName

Caption First

Label Name lblLastName

Caption Last

Label Name lblAddress

Caption Address

Label Name lblCity

Caption City

Label Name lblState

Caption State

Label Name lblZip

Caption Zip Code

Label Name lblPhone

Caption Phone

4. Add the columns listed in Table 8.6 to the ListView control using the Column Headers property page.

Table 8.6. Column headers for listAuthors.

COLUMN Width

Name 2000

Address 2000

City 1440

State 500

Zip 700

5. Add following code to the declarations section of frmAuthors.

Option Explicit
Private mConn As Connection
`has something changed

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (12 of 52) [9/22/1999 2:03:05 AM]

Private mbNeedSave As Boolean
`are we working with a new record
Private mbNewRecord As Boolean
`keep track of the current record
Private msCurrentRecord As String

6. The Form_Load event looks much like the one from How-To 8.3. This
version does not close the connection because it will be used later. Add
a Form_Load event with the following code. Remember to change the
con-nection string to match your setup.

Private Sub Form_Load()
 Dim rs As Recordset
 Dim NewItem As ListItem
 `open the connection
 Set mConn = New Connection
 mConn.Open "Provider=SQLOLEDB.1;User ID=sa;Password=password" _
 + "Location=WINEMILLER;Database=pubs"
 `could have also just specified an ODBC DSN like below
 `mConnOpen "DSN=pubs"
 `now open the recordset
 Set rs = New Recordset
 rs.Open "authors", mConn, adOpenForwardOnly, adLockReadOnly
 Do Until rs.EOF
 Set NewItem = listAuthors.ListItems.Add(, rs("au_id"), _
 rs("au_lname") & ", " & rs("au_fname"))
 NewItem.SubItems(1) = rs("address")
 NewItem.SubItems(2) = rs("city")
 NewItem.SubItems(3) = rs("state")
 NewItem.SubItems(4) = rs("zip")
 rs.MoveNext
 Loop
 `close and clean up
 rs.Close
 Set rs = Nothing
 `set the first item
 listAuthors_ItemClick listAuthors.ListItems(1)
End Sub

7. Now add the Form_Unload event. This event closes the mConn and sets the object to Nothing.

Private Sub Form_Unload(Cancel As Integer)
 mConn.Close
 Set mConn = Nothing
End Sub

8. When the data fields change, the mbNeedSave flag is set and the cmdUpdate button is enabled. Add the
following code to capture when
a change happens.

Private Sub RecordChanged()
 mbNeedSave = True
 cmdUpdate.Enabled = True
End Sub
Private Sub chkContract_Click()
 RecordChanged

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (13 of 52) [9/22/1999 2:03:05 AM]

End Sub
Private Sub txtAddress_Change()
 RecordChanged
End Sub
Private Sub txtCity_Change()
 RecordChanged
End Sub
Private Sub txtFirstName_Change()
 RecordChanged
End Sub
Private Sub txtId_Change()
 RecordChanged
End Sub
Private Sub txtLastName_Change()
 RecordChanged
End Sub
Private Sub txtPhone_Change()
 RecordChanged
End Sub
Private Sub txtState_Change()
 RecordChanged
End Sub
Private Sub txtZip_Change()
 RecordChanged
End Sub

9. The New button clears the data and sets the mbNewRecord flag. Add the cmdNew_Click event.

Private Sub cmdNew_Click()
 `clear screen
 txtId.Text = ""
 txtFirstName.Text = ""
 txtLastName.Text = ""
 txtAddress.Text = ""
 txtCity.Text = ""
 txtState.Text = ""
 txtZip.Text = ""
 txtPhone.Text = ""
 chkContract.Value = vbChecked
 `set flags
 mbNewRecord = True
 mbNeedSave = True
 `nothing to delete
 cmdDelete.Enabled = False
 `no record selected
 Set listAuthors.SelectedItem = Nothing
 `start the user off in the right place
 txtId.SetFocus
End Sub

10. Add the code to handle the update. The Update function does most of the hard work in the application.
Based on the value of the chkExecute checkbox, it either uses the Connection object's Execute method, or the
Recordset object's AddNew and Update methods.

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (14 of 52) [9/22/1999 2:03:05 AM]

Private Sub cmdUpdate_Click()
 UpdateRecord
End Sub
Private Function UpdateRecord() As Boolean
 Dim sCmd As String
 Dim rs As Recordset
 If mbNewRecord Then
 `try to insert
 If chkExecute.Value = vbChecked Then
 `use the execute method of the connection
 sCmd = "insert into authors " _
 "(au_id,au_fname,au_lname,address" _
 + ",city,state,zip,phone,contract)"
 sCmd = sCmd + " values ("
 sCmd = sCmd + "`" + txtId.Text + "`"
 sCmd = sCmd + ",'" + txtFirstName.Text + "`"
 sCmd = sCmd + ",'" + txtLastName.Text + "`"
 sCmd = sCmd + ",'" + txtAddress.Text + "`"
 sCmd = sCmd + ",'" + txtCity.Text + "`"
 sCmd = sCmd + ",'" + txtState.Text + "`"
 sCmd = sCmd + ",'" + txtZip.Text + "`"
 sCmd = sCmd + ",'" + txtPhone.Text + "`"
 sCmd = sCmd + "," & IIf(chkContract.Value = vbChecked _
 1, 0)
 sCmd = sCmd + ")"
 On Error GoTo UpdateFailed:
 mConn.Execute sCmd
 On Error GoTo 0
 Else
 `use a Recordset Object to add it
 Set rs = New Recordset
 On Error GoTo UpdateFailed
 rs.Open "select * from authors where au_id = `"
 + txtId.Text + "`", mConn, adOpenKeyset, _
 adLockOptimistic
 rs.AddNew
 rs!au_id = txtId.Text
 rs!au_fname = txtFirstName.Text
 rs!au_lname = txtLastName.Text
 rs!address = txtAddress.Text
 rs!city = txtCity.Text
 rs!State = txtState.Text
 rs!zip = txtZip.Text
 rs!phone = txtPhone.Text
 rs!contract = (chkContract.Value = vbChecked)
 rs.Update
 On Error GoTo 0
 rs.Close
 Set rs = Nothing
 End If
 `no longer dealing with a new record

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (15 of 52) [9/22/1999 2:03:06 AM]

 mbNewRecord = False
 `add the new item to the list
 Dim NewItem As ListItem
 Set NewItem = listAuthors.ListItems.Add(, txtId.Text, _
 txtLastName.Text & ", " & txtFirstName.Text)
 NewItem.SubItems(1) = txtAddress.Text
 NewItem.SubItems(2) = txtCity.Text
 NewItem.SubItems(3) = txtState.Text
 NewItem.SubItems(4) = txtZip.Text
 Set listAuthors.SelectedItem = NewItem
 Else
 `try to update
 If chkExecute.Value = vbChecked Then
 `use the execute method of the connection
 sCmd = "update authors"
 sCmd = sCmd + " set "
 sCmd = sCmd + "au_id = `" + txtId.Text + "`"
 sCmd = sCmd + ",au_fname = `"
 sCmd = sCmd + txtFirstName.Text + "`"
 sCmd = sCmd + ",au_lname = `" + txtLastName.Text + "`"
 sCmd = sCmd + ",address = `" + txtAddress.Text + "`"
 sCmd = sCmd + ",city = `" + txtCity.Text + "`"
 sCmd = sCmd + ",state = `" + txtState.Text + "`"
 sCmd = sCmd + ",zip = `" + txtZip.Text + "`"
 sCmd = sCmd + ",phone = `" + txtPhone.Text + "`"
 sCmd = sCmd + ",contract = " & _
 IIf(chkContract.Value = vbChecked, 1, 0)
 sCmd = sCmd + " where au_id = `" "`"
 sCmd = sCmd + msCurrentRecord + "`"
 On Error GoTo UpdateFailed:
 mConn.Execute sCmd
 On Error GoTo 0
 Else
 `use a Recordset Object to make the changes
 Set rs = New Recordset
 On Error GoTo UpdateFailed
 rs.Open "select * from authors where au_id = `" _
 + msCurrentRecord + "`", mConn, adOpenKeyset _
 , adLockOptimistic
 `only update the primary key if it's changed
 `ADO acts like it's been updated even if the new
 `value is the same as the old so only set if it's
 `really changed
 If rs("au_id") <> txtId.Text Then
 rs!au_id = txtId.Text
 End If
 rs!au_fname = txtFirstName.Text
 rs!au_lname = txtLastName.Text
 rs!address = txtAddress.Text
 rs!city = txtCity.Text
 rs!State = txtState.Text

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (16 of 52) [9/22/1999 2:03:06 AM]

 rs!zip = txtZip.Text
 rs!phone = txtPhone.Text
 rs!contract = (chkContract.Value = vbChecked)
 rs.Update
 On Error GoTo 0
 rs.Close
 Set rs = Nothing
 End If
 `update the item in the list
 Dim OldItem As ListItem
 Set OldItem = listAuthors.ListItems.Item(msCurrentRecord)
 OldItem.Key = txtId.Text
 OldItem.Text = txtLastName.Text & ", " & txtFirstName.Text
 OldItem.SubItems(1) = txtAddress.Text
 OldItem.SubItems(2) = txtCity.Text
 OldItem.SubItems(3) = txtState.Text
 OldItem.SubItems(4) = txtZip.Text
 End If
 `no longer need save
 mbNeedSave = False
 cmdUpdate.Enabled = False
 cmdDelete.Enabled = True
 UpdateRecord = True
UpdateComplete:
 Exit Function
UpdateFailed:
 ShowADOError
 GoTo UpdateComplete
End Function

11. Create the cmdDelete_Click event. Like the Update function used previously, the cmdDelete_Click event
uses the Execute or Delete methods based on the value of the chkExecute checkbox.

Private Sub cmdDelete_Click()
 If chkExecute.Value = vbChecked Then
 Dim sCmd As String
 sCmd = "delete from authors where au_id = `" _
 + msCurrentRecord + "`"
 On Error GoTo DeleteFailed
 mConn.Execute sCmd
 On Error GoTo 0
 Else
 Dim rs As Recordset
 `now open the recordset
 Set rs = New Recordset
 On Error GoTo DeleteFailed
 rs.Open "select * from authors where au_id = `" _
 + msCurrentRecord + "`", mConn, adOpenKeyset _
 adLockOptimistic
 Do Until rs.EOF
 rs.Delete
 rs.MoveNext
 Loop

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (17 of 52) [9/22/1999 2:03:06 AM]

 On Error GoTo 0
 End If
 `remove the item from the list
 listAuthors.ListItems.Remove msCurrentRecord
 mbNeedSave = False
 cmdUpdate.Enabled = False
 listAuthors_ItemClick listAuthors.SelectedItem
DeleteComplete:
 Exit Sub
DeleteFailed:
 ShowADOError
 GoTo DeleteComplete
End Sub

12. As an item is selected in the listAuthors control, the listAuthors_ItemClick event checks to see if the current
record
needs to be saved, and then it refreshes the detail controls.

Private Sub listAuthors_ItemClick(ByVal Item As ComctlLib.ListItem)
 Dim rs As Recordset
 Set rs = New Recordset
 If mbNeedSave Then
 If Not UpdateRecord() Then
 Set listAuthors.SelectedItem = _
 listAuthors.ListItems.Item(msCurrentRecord)
 Exit Sub
 End If
 End If
 `now open the recordset
 Set rs = New Recordset
 rs.Open "select * from authors where au_id = `" + Item.Key + _
 "`"
 , mConn, adOpenForwardOnly, adLockReadOnly
 Do Until rs.EOF
 `update the listview in case it's changed
 Item.Text = rs("au_lname") & ", " & rs("au_fname")
 Item.SubItems(1) = rs("address")
 Item.SubItems(2) = rs("city")
 Item.SubItems(3) = rs("state")
 Item.SubItems(4) = rs("zip")
 `fill the edit controls
 txtId.Text = rs("au_id")
 txtFirstName.Text = rs("au_fname")
 txtLastName.Text = rs("au_lname")
 txtAddress.Text = rs("address")
 txtCity.Text = rs("city")
 txtState.Text = rs("state")
 txtZip.Text = rs("zip")
 txtPhone.Text = rs("phone")
 chkContract.Value = IIf(rs("contract"), vbChecked _
 vbUnchecked)
 rs.MoveNext
 Loop

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (18 of 52) [9/22/1999 2:03:06 AM]

 rs.Close
 Set rs = Nothing
 mbNeedSave = False
 cmdUpdate.Enabled = False
 cmdDelete.Enabled = True
 msCurrentRecord = txtId.Text
End Sub

13. Finally, add the sub that displays the errors reported by ADO.

Private Sub ShowADOError()
 `spin through the errors collection and
 `display the constructed error message
 Dim ADOError As Error
 Dim sError As String
 For Each ADOError In mConn.Errors
 sError = sError + ADOError.Number & " - " & _
 ADOError.Description _
 + vbCrLf
 Next ADOError
 MsgBox sError
End Sub

How It Works

The ListAuthors2 project shows two ways of altering data using ADO. Based on the Use Execute option, it uses the
Execute method to send SQL statements, or it uses the AddNew, Delete, and Update methods of the Recordset object.

Comments

The changes to the database in How-To 8.4 were very simple; insert a record, delete a record, and update a record.
Often, multiple changes must occur at the same time, and if one fails, none of the remaining changes should commit.
How-To 8.5 shows you how to wrap up your changes into a transaction where all the changes succeed or fail together.

Many operations in ADO can be performed multiple ways. In most cases the performance difference is negligible,
unless the operation is performed in a loop. Generally, deciding which method to use is a matter of preference and a
matter of which method can get the job done in the easiest manner possible for the developer. However, many
companies today are moving to three-tier applications. In a three-tier application, an application developer
manipulates the database through objects instead of executing SQL statements. Using the object model to perform
data manipulation might help you get acclimated to using objects instead of SQL.

8.5 How do I...

Perform a transaction using ActiveX Data Objects?

Problem

Now I know how to make changes to data, but several things must change together. If one fails, they should all fail.
How do I perform a transaction using ActiveX Data Objects?

Technique

A transaction ensures that all changes within the transaction either succeed or fail together. The classic example of an
application that requires transactions is a financial application in which money can be transferred from one account to
another. Without transactions, if the debit is successful, but the credit is not, the customer has lost money. If the debit

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (19 of 52) [9/22/1999 2:03:06 AM]

fails and the credit is successful, the institution loses money. Neither one is good if the company wants to stay in
business for a long time.

In ADO, the BeginTrans, CommitTrans, and RollbackTrans methods of the Connection object provide the means to
do transactions. The steps to perform a transaction are outlined below:

1. Call BeginTrans.

2. Make all changes on the same connection where the BeginTrans was called. Check each change to make sure
it is successful.

3. If all changes were successful, call CommitTrans. If any change failed, call RollbackTrans.

Steps

Open the Transaction.vbp. You will need to update the connection string in the Form_Load event. Change the
username (User Id=), password (Password=), and server name (Location=) parameters. Figure 8.5 shows the Transfer
Funds application. Two lists are displayed; select accounts in the To and From lists, enter an amount, and press the
Transfer button to move money from one account to another.

Figure 8.5. The Transfer Funds application.

1. Use SQL Enterprise Manager or ISQL/w to run the Accounts.sql script in your pubs database. This script
creates a new table, Accounts, and test data for this How-To.

2. Create a new Standard EXE. Change the Project Name to Transaction and rename the default form frmMain.

3. Add a reference to the Microsoft ActiveX Data Objects 2.0 Library. Add the Microsoft Windows Common
Controls 6.0 and the Microsoft Masked Edit Control 6.0.

4. Use Table 8.7 to add the objects and set the properties for frmMain.

Table 8.7. Objects and properties for frmMain.

OBJECT Property Value

Form Caption Transfer Funds

ListView Name listFrom

View 3 - lvwReport

LabelEdit 1 - lvwManual

ListView Name listTo

View 3 - lvwReport

LabelEdit 1 - lvwManual

Label Name lblAmount

Caption Amount

MaskEdBox Name maskedAmount

Mask ####.##

CommandButton Name cmdTransfer

Caption Transfer

5. For each of the ListViews, add a column for Customer and Balance using the Column Headers tab of the
ListView properties dialog box.

6. Add the following code to the Declarations section of frmMain.

Option Explicit
Private mConn As Connection

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (20 of 52) [9/22/1999 2:03:06 AM]

javascript:popUp('08fig05.gif')

7. The Form_Load and Form_Unload events open and close the connection. Change the connection string of the
Open method to connect to your server.

Private Sub Form_Load()
 `open the connection
 Set mConn = New Connection
 mConn.Open "Provider=SQLOLEDB.1;User ID=sa;Password=password" _
 + ";Location=WINEMILLER;Database=pubs"
 RefreshLists
End Sub
Private Sub Form_Unload(Cancel As Integer)
 mConn.Close
 Set mConn = Nothing
End Sub

8. Add the RefreshLists procedure. This procedure fills the two ListView controls with the list of account
holders and their balances.

Private Sub RefreshLists()
 `refresh the lists with acount holders and balances
 Dim NewItem As ListItem
 Dim rs As Recordset
 Set rs = New Recordset
 listFrom.ListItems.Clear
 listTo.ListItems.Clear
 rs.Open "Accounts", mConn, adOpenForwardOnly, adLockReadOnly
 Do Until rs.EOF
 Set NewItem = listFrom.ListItems.Add(, "k" & rs("AccountId") _
 , rs("Name"))
 NewItem.SubItems(1) = Format(rs("Balance"), "$0.00")
 Set NewItem = listTo.ListItems.Add(, "k" _
 & rs("AccountId"), rs("Name"))
 NewItem.SubItems(1) = Format(rs("Balance"), "$0.00")
 rs.MoveNext
 Loop
 rs.Close
 Set rs = Nothing
End Sub

9. Finally, add the cmdTransfer_Click event.

Private Sub cmdTransfer_Click()
 Dim lRowsAffected As Long
 Dim sError As String
 Dim sCmd As String
 Dim rs As Recordset
 If vbYes = MsgBox("Transfer " _
 & Format(Val(maskedAmount.Text), "$0.00") _
 & " from " & listFrom.SelectedItem.Text _
 & " to " & listTo.SelectedItem.Text & ".", vbYesNo) Then
 mConn.BeginTrans
 On Error GoTo TransferFailure
 `use the Connection's execute method
 sCmd = "update Accounts"
 sCmd = sCmd + " set Balance = Balance - "

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (21 of 52) [9/22/1999 2:03:06 AM]

 sCmd = sCmd + maskedAmount.Text
 `only do the update if the from account has enough money
 sCmd = sCmd + " where balance >= " & maskedAmount.Text
 sCmd = sCmd + " and AccountId = " _
 & Right(listFrom.SelectedItem.Key _
 , Len(listFrom.SelectedItem.Key) - 1)
 mConn.Execute sCmd, lRowsAffected
 If lRowsAffected = 0 Then
 sError = "Insufficient funds."
 GoTo TransferFailure
 End If
 `or use the Recordset's methods
 Set rs = New Recordset
 rs.Open "select * from Accounts where AccountId = " _
 & Right(listTo.SelectedItem.Key _
 , Len(listTo.SelectedItem.Key) - 1), mConn, _
 adOpenDynamic
 , adLockPessimistic
 rs!Balance = rs("Balance") + Val(maskedAmount.Text)
 rs.Update
 `ok so far, commit it
 mConn.CommitTrans
 rs.Close
 End If
TransferDone:
 On Error GoTo 0
 Set rs = Nothing
 RefreshLists
 Exit Sub
TransferFailure:
 `something bad happened so rollback the transaction
 mConn.RollbackTrans
 Dim ADOError As Error
 For Each ADOError In mConn.Errors
 sError = sError & ADOError.Number & " - " & _
 ADOError.Description + vbCrLf
 Next ADOError
 MsgBox sError
End Sub

How It Works

The beginning of the cmdTransfer_Click event calls the BeginTrans method. If an error occurs or the originating
account has insufficient funds, the transaction is rolled back. Two methods of data manipulation are used during the
transaction: the Connection object's Execute method and the Recordset object's Update method. There are no
restrictions on mixing and matching data manipulation methods during a transaction, as long as they are all done on
the same connection. If all the updates are successful, the transaction is committed and the display is refreshed.

Comments

Transactions are an indispensable tool for the database application developer. However when you begin to use
transactions, you add a new level of complexity to your application. One of the biggest problems with transactions is
that they easily lead to deadlocks.

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (22 of 52) [9/22/1999 2:03:06 AM]

A deadlock occurs when two connections try to make changes to resources the other holds. There are a couple of
strategies you can use to reduce the chance of a deadlock.

1. Reduce the time of the transaction. Move all string manipulation and other processing outside of the
transaction. In this How-To, reduce the chances of a deadlock by moving the code that assembles the UPDATE
so that it is before the BeginTrans.

2. Do transactions in the same order if possible. If all transactions start by changing the Orders table and then
the Inventory table, there will never be a situation in which one transaction holds the Orders table, but wants the
Inventory table, and another transaction holds the Inventory table, but wants the Orders table.

8.6 How do I...

Execute a SQL Server stored procedure using ActiveX Data Objects?

Problem

My company uses stored procedures to increase performance and to encapsulate objects in the database. How do I
execute a SQL Server?

Technique

Stored Procedures in ADO are very straight forward--if there are no parameters. Simply change the Options parameter
of the Recordset object's Open method to adCmdStoredProc. This tells ADO the Source argument is a stored
procedure. If you leave off the Options parameter, ADO will still work correctly, but it will have to do a little extra
processing to figure out with what it is dealing. For the best performance, always use the Options parameter to tell
ADO what type of command it is performing.

This How-To also introduces a new technique for creating a Recordset. As with most things in ADO, there are a
couple of ways to tackle the problem of creating a Recordset. The Connection object's Execute method returns a
Recordset if one is generated by the CommandText parameter. The Recordset returned from the Execute method is the
same as a manually created Recordset that was specified as forward-only and read-only.

Steps

Open the StoredProcedure.vbp. Change the connection string in the Form_Load event of frmMain and run the
application. The Stored Procedures application shown in Figure 8.6 displays two possible lists, based on which option
is selected. If Title Author is selected, the book titles become the parents in the TreeView; otherwise, the authors are
the parents.

Figure 8.6. The Stored Procedures application.

1. Use SQL Enterprise Manager or ISQL/w to run the Stored Procedures.sql script in your pubs database. This
script creates two new stored procedures in the pubs database: GetAuthorTitleList and GetTitleAuthorList.

2. Create a new Standard EXE. Change the Project Name to StoredProcedure and rename the default form to
frmMain.

3. Add a reference to the Microsoft ActiveX Data Objects 2.0 Library and add the Microsoft Windows
Common Controls 6.0.

4. Use Table 8.8 to add the objects and set the properties for frmMain.

Table 8.8. Objects and properties for frmMain.

OBJECT Property Value

Form Caption Stored Procedure

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (23 of 52) [9/22/1999 2:03:06 AM]

javascript:popUp('08fig06.gif')

TreeView Name treeResults

OptionButton Name optTitleAuthor

Caption Title Author

OptionButton Name optAuthorTitle

Caption Author Title

5. Like the other How-To's in this chapter, the declarations section, the Form_Load event, and the
Form_Unload event handle the Connection object.

Option Explicit
Private mConn As Connection
Private Sub Form_Load()
 `open the connection
 Set mConn = New Connection
 mConn.Open "Provider=SQLOLEDB.1;User ID=sa;Password=password"
 + ";Location=WINEMILLER;Database=pubs"
 RefreshList
End Sub
Private Sub Form_Unload(Cancel As Integer)
 mConn.Close
 Set mConn = Nothing
End Sub

6. Now add the code to call RefreshList when the OptionButtons change.

Private Sub optAuthorTitle_Click()
 RefreshList
End Sub
Private Sub optTitleAuthor_Click()
 RefreshList
End Sub

7. Finally add the RefreshList procedure.

Private Sub RefreshList()
 Dim rs As Recordset
 Dim NewNode As Node
 treeResults.Nodes.Clear
 If optTitleAuthor.Value = True Then
 `sort by titles
 Dim sLastTitle As String
 `use the Execute method to generate the Recordset
 `works the same as adOpenForwardOnly, adLockReadOnly
 Set rs = mConn.Execute("GetTitleAuthorList", , _
 adCmdStoredProc)
 Do Until rs.EOF
 If sLastTitle <> rs("title") Then
 `need a new parent
 sLastTitle = rs("title")
 Set NewNode = treeResults.Nodes.Add(, , _
 rs("title") , rs("title"))
 NewNode.Expanded = True
 End If
 `add the child

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (24 of 52) [9/22/1999 2:03:06 AM]

 treeResults.Nodes.Add sLastTitle, tvwChild _
 , sLastTitle + rs("au_lname") & ", " & _
 rs("au_fname") _
 , rs("au_lname") & ", " & rs("au_fname")
 rs.MoveNext
 Loop
 Else
 `sort by authors
 Dim sLastAuthor As String
 Set rs = New Recordset
 rs.Open "GetAuthorTitleList", mConn, adOpenForwardOnly _
 , adLockReadOnly, adCmdStoredProc
 Do Until rs.EOF
 If sLastAuthor <> rs("au_lname") & ", " & _
 rs("au_fname") Then
 `need a new parent
 sLastAuthor = rs("au_lname") & ", " & _
 rs("au_fname")
 Set NewNode = treeResults.Nodes.Add(, , _
 sLastAuthor , sLastAuthor)
 NewNode.Expanded = True
 End If
 `add the child
 treeResults.Nodes.Add sLastAuthor, tvwChild, _
 sLastAuthor + rs("title"), rs("title")
 rs.MoveNext
 Loop
 End If
End Sub

HOW IT WORKS

The RefreshList procedure opens a Recordset from a stored procedure almost exactly like a normal SELECT. The
only difference is the adCmdStoredProc parameter. This parameter tells ADO the Source parameter is a stored
procedure and tells ADO to do what it needs to do for stored procedures. Additionally RefreshList shows an
alternative way to create a Recordset by using the Execute method.

Comments

Of course this is the simple case. In most applications, stored procedures without any parameters are few and far
between. How-To 8.7 addresses the problem of dealing with stored procedures with input and output parameters.

8.7 How do I...

Execute a parameterized SQL Server stored procedure with ActiveX Data
Objects?

Problem

Some of the stored procedures I use have parameters and return values. How do I execute a parameterized SQL Server
Stored Procedure with ActiveX Data Objects?

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (25 of 52) [9/22/1999 2:03:06 AM]

Technique

Parameterized, SQL Server-stored procedures are enabled through the use of ADO's Command and Parameter objects.
The steps for executing a parameterized SQL Server stored procedure are outlined in the following numbered list:

1. Create a Command object and set its ActiveConnection, CommandText, and CommandType properties.

2. For each input parameter, output parameter, or return value, use the Command object's CreateParameter
method to create and populate a Parameter object.

3. Append the new Parameter objects to the Command object's Parameters collection.

4. Call the Command object's Execute method. If you are expecting a Recordset object from the stored
procedure, the Execute method
returns a Recordset object.

5. After this, the Recordset is completely fetched out or closed. The return value and output parameters are
available.

A NOTE ON STORED PROCEDURES AND ADO

Keep in mind that Command and Parameter objects do not need to be used for stored procedures with no
output parameters or return values. You can open a Recordset with the adCmdText Option parameter and
build the stored procedure call yourself in Transact SQL. This saves the overhead of creating Command
and Parameter objects.

Steps

Open the ParameterStoredProcedure.vbp, change the connection string in the Form_Load event, and run. The Royalty
List application, shown in Figure 8.7, displays a list of royalties. Selecting a royalty displays the list of authors and
titles to which that royalty was paid.

Figure 8.7. The Royalty List application.

1. Use SQL Enterprise Manager or ISQL/w to run the AuthorTitleByRoyalty.sql script in your pubs database.
This script creates
a new stored procedure in the pubs database, AuthorTitleByRoyalty.

2. Create a new Standard EXE. Change the Project Name to ParameterStoredProcedure and rename the default
form to frmMain.

3. Add a reference to the Microsoft ActiveX Data Objects 2.0 Library and add the Microsoft Windows
Common Controls 6.0.

4. Use Table 8.9 to add the objects and set the properties for frmMain.

Table 8.9. Objects and properties for frmMain.

OBJECT Property Value

Form Caption Royalty List

ListBox Name lstRoyalty

Label Name lblRoyalty

Caption Royalty

Label Name lblWorks

Caption Authors and Titles

ListView Name listWorks

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (26 of 52) [9/22/1999 2:03:06 AM]

javascript:popUp('08fig07.gif')

View 3 - lvwReport

LabelEdit 1 - lvwManual

5. Add the columns listed in Table 8.10 to the ListView control using the Column Headers property page.

Table 8.10. Column Headers for listWorks.

COLUMN Width

Name 2000

TITLE 2000

6. Add the Declarations section, Form_Load event, and Form_Unload event to handle the Connection object.
Remember to change the connection string in the Form_Load event for your server, user, and password.

Option Explicit
Private mConn As Connection
Private Sub Form_Load()
 `open the connection
 Set mConn = New Connection
 mConn.Open "Provider=SQLOLEDB.1;User ID=sa;Password=password" _
 + ";Location=WINEMILLER;Database=pubs"
 FillRoyalty
End Sub
Private Sub Form_Unload(Cancel As Integer)
 mConn.Close
 Set mConn = Nothing
End Sub

7. Add the FillRoyalty procedure. This procedure fills the ListBox control with all the possible royalty values.

Private Sub FillRoyalty()
 `fill the list with the royalty values
 Dim rs As Recordset
 lstRoyalty.Clear
 Set rs = mConn.Execute("select distinct royaltyper from" _
 "titleauthor" , , adCmdText)
 Do Until rs.EOF
 lstRoyalty.AddItem rs("royaltyper")
 rs.MoveNext
 Loop
 rs.Close
 Set rs = Nothing
End Sub

8. Finally add the lstRoyalty_Click event to display the list of authors and titles.

Private Sub lstRoyalty_Click()
 `display a list of authors and titles at the selected royalty
 `level
 Dim rs As Recordset
 Dim cmd As Command
 Dim param As adodb.Parameter
 Dim NewItem As ListItem
 Set cmd = New Command
 cmd.ActiveConnection = mConn

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (27 of 52) [9/22/1999 2:03:06 AM]

 cmd.CommandText = "AuthorTitleByRoyalty"
 cmd.CommandType = adCmdStoredProc
 `now build the parameter list
 `The stored procedure returns a true or false if there were
 `results
 Set param = cmd.CreateParameter("Return", adBoolean _
 , adParamReturnValue, , 0)
 cmd.Parameters.Append param
 `The input parameter
 Set param = cmd.CreateParameter("percentage", adInteger _
 , adParamInput, , Val(lstRoyalty.Text))
 cmd.Parameters.Append param
 `The output parameter, the number of rows as reported by
 `@@ROWCOUNT
 Set param = cmd.CreateParameter("numrows", adInteger, _
 adParamOutput)
 cmd.Parameters.Append param
 `clear the list
 listWorks.ListItems.Clear
 `cmd execute generates the Recordset for us then it's
 `business as usual
 Set rs = cmd.Execute
 Do Until rs.EOF
 Set ListItem = listWorks.ListItems.Add(, , _
 rs("au_lname") & ", " & rs("au_fname"))
 ListItem.SubItems(1) = rs("title")
 rs.MoveNext
 Loop
 rs.Close
 Set rs = Nothing
 Set NewItem = Nothing
 `use the return value and output parameter to display a
 `message
 If cmd("Return") = True Then
 MsgBox "This stored procedure returned " _
 & cmd("numrows") _
 & " rows as reported by @@ROWCOUNT"
 Else
 MsgBox "No rows were found."
 End If
End Sub

How It Works

The AuthorTitleByRoyalty stored procedure takes one input parameter and sends back one output parameter and a
return value. After setting up the Command object, the lstRoyalty_Click event specifies all the parameters of the
stored procedure. When the Recordset is completely fetched and closed, the return value and output parameter are
available through the Command object. Those values are then used to display a message to the user.

Comments

Stored procedures can greatly enhance the performance of most SQL Server operations in addition to providing you
with a way to encapsulate and hide data. SQL server checks the syntax and precompiles stored procedures so those

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (28 of 52) [9/22/1999 2:03:06 AM]

steps are eliminated when the stored procedure is called instead of straight Transact SQL. For operations that take
minutes or more to return, the overhead for syntax checking and compiling is relatively small, but on smaller
operations that return quickly and are called often the savings are substantial.

8.8 How do I...

Create and modify SQL Server objects with ActiveX Data Objects?

Problem

I need to do data definition through ADO. How do I create and modify SQL Server objects with ActiveX Data
Objects?

Technique

Unlike DAO, ADO does not have any way through the object model to modify SQL Server objects. There is no
Tables collection to which you can add; however, that does not prevent you from sending Transact SQL using the
Connection object's Execute method and adCmdText in the Options Parameter.

Using Transact SQL, you can create, alter, and drop tables, devices, stored procedures, or anything you can do with
SQL Enterprise manager. Appendix A has a full summary of SQL syntax including all the commands necessary to
create and modify tables.

Steps

Open and run the AlterObjects.vbp. Remember to change the connection string in the Form_Load event. Figure 8.8
shows the Alter Objects application. The three buttons create, alter, and drop a sample table in the pubs database.

Figure 8.8. The Alter Objects application.

1. Create a new Standard EXE. Change the Project Name to AlterObjects, rename the default form to frmMain,
and add a reference to the Microsoft ActiveX Data Objects 2.0.

2. Use Table 8.11 to add the objects and set the properties for frmMain.

Table 8.11. Objects and properties for frmMain.

OBJECT Property Value

Form Caption Alter Objects

CommandButton Name cmdCreate

Caption Create

CommandButton Name cmdAlter

Caption Alter

CommandButton Name cmdDrop

Caption Drop

3. Add the Declarations section, the Form_Load event, and the Form_Unload event to handle the Connection
object.

Option Explicit
Private mConn As Connection
Private Sub Form_Load()
 `open the connection

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (29 of 52) [9/22/1999 2:03:06 AM]

javascript:popUp('08fig08.gif')

 Set mConn = New Connection
 mConn.Open "Provider=SQLOLEDB.1;User ID=sa;Password=password"
 + ";Location=WINEMILLER;Database=pubs"
End Sub
Private Sub Form_Unload(Cancel As Integer)
 mConn.Close
 Set mConn = Nothing
End Sub

4. Finally, add the code behind the buttons.

Private Sub cmdAlter_Click()
 `alter the sample table
 Dim sCmd As String
 sCmd = "alter table HowToSample808 add MoreStuff CHAR(40) "
 sCmd = sCmd + "NULL"
 mConn.Execute sCmd, , adCmdText
End Sub
Private Sub cmdCreate_Click()
 `create the sample table
 Dim sCmd As String
 sCmd = "create table HowToSample808 (SampleId INTEGER NOT "
 sCmd = sCmd + "NULL"
 sCmd = sCmd + ", Stuff CHAR(40) NOT NULL)"
 mConn.Execute sCmd, , adCmdText
End Sub
Private Sub cmdDrop_Click()
 `drop the sample table
 Dim sCmd As String
 sCmd = "drop table HowToSample808"
 mConn.Execute sCmd, , adCmdText
End Sub

How It Works

Each of the CommandButton Click events assemble the Transact SQL commands for the database modifications and
send them using the Connection object's Execute method. By using adCmdText for the Options parameter, any
command the server understands can be sent to the server for processing.

Comments

Using the Execute method to do this opens a whole new realm of possibilities. Sometimes object models can be
restrictive, as the designer does not foresee every use that might come about. Microsoft has left the door open so you
can talk directly to the database, and you can use any command the database understands.

This power does not come without risks. Many companies might not want application developers with direct access to
the database. Fortunately, SQL Server does have strong support for security, and most applications will not log in as
the system administrator as this How-To does.

8.9 How do I...

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (30 of 52) [9/22/1999 2:03:06 AM]

Execute batch updates with ActiveX Data Objects?

Problem

I want to make many changes to a recordset and apply all the changes at once. How do I execute batch updates with
ActiveX Data Objects?

Technique

The Recordset object's UpdateBatch method applies multiple changes at once. There are three steps to performing a
batch update with ADO:

1. Open a recordset with the LockType parameter set to adLockBatchOptimistic.

2. Move through the recordset making all the changes required.

3. Call the Recordset object's UpdateBatch method.

Steps

Load the BatchUpdate.vbp, change the connection string in the Form_Load event to match your setup, and run the
application. The Authors application, displayed in Figure 8.9, shows a list of authors and their addresses.
Double-clicking on an author presents the Edit Author dialog box, shown in Figure 8.10. After all changes are
complete, click the Apply Changes button to perform the batch update.

Figure 8.9. The Authors application enables batch updates.

Figure 8.10. You can change names and address information using the Edit Authors dialog box.

1. Create a new Standard EXE. Change the Project Name to BatchUpdate, rename the default form to frmMain,
and add a reference to the Microsoft ActiveX Data Objects 2.0.

2. Using the Components dialog box, add Microsoft Windows Common Controls 6.0.

3. Use Table 8.12 to add the objects and set the properties for frmMain.

Table 8.12. Objects and properties for frmMain.

OBJECT Property Value

Form Caption Authors

ListView Name listAuthors

View 3 - lvwReport

LabelEdit 1 - lvwManual

CommandButton Name cmdApply

Caption Apply Changes

4. Use Table 8.13 to add the columns for listAuthors.

Table 8.13. Column Headers for listAuthors.

COLUMN Width

Last 1440

First 1440

Address 2000

City 1440

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (31 of 52) [9/22/1999 2:03:06 AM]

javascript:popUp('08fig09.gif')
javascript:popUp('08fig10.gif')

State 500

Zip 700

5. In the Declarations section of frmMain, set Option Explicit and add the declaration for mConn.

Option Explicit
Private mConn As Connection

6. In the Form_Load event, the connection is opened and the ListView control is filled with the author table
data. Remember to change the connection string on mConn's Open method to match your configuration.

Private Sub Form_Load()
 Dim rs As Recordset
 Dim NewItem As ListItem
 `open the connection
 Set mConn = New Connection
 mConn.Open "Provider=SQLOLEDB.1;User ID=sa;Password=password"
 + ";Location=WINEMILLER;Database=pubs"
 `fill the list
 Set rs = mConn.Execute("authors", , adCmdTable)
 Do Until rs.EOF
 Set NewItem = listAuthors.ListItems.Add(, rs("au_id") _
 , rs("au_lname"))
 NewItem.SubItems(1) = rs("au_fname")
 NewItem.SubItems(2) = rs("address")
 NewItem.SubItems(3) = rs("city")
 NewItem.SubItems(4) = rs("state")
 NewItem.SubItems(5) = rs("zip")
 rs.MoveNext
 Loop
 rs.Close
 Set rs = Nothing
End Sub

7. The Form_Unload event closes the connection and unloads the frmDetails.

Private Sub Form_Unload(Cancel As Integer)
 Unload frmDetails
 Set frmDetails = Nothing
 mConn.Close
 Set mConn = Nothing
End Sub

8. In the listAuthors_DblClick event, show the Edit Authors dialog box with all the author information. If the
user clicks OK, update listAuthors.

Private Sub listAuthors_DblClick()
 `fill the detail screen
 frmDetails.txtLastName.Text = listAuthors.SelectedItem.Text
 frmDetails.txtFirstName.Text = listAuthors.SelectedItem.SubItems(1)
 frmDetails.txtAddress.Text = listAuthors.SelectedItem.SubItems(2)
 frmDetails.txtCity.Text = listAuthors.SelectedItem.SubItems(3)
 frmDetails.txtState.Text = listAuthors.SelectedItem.SubItems(4)
 frmDetails.txtZip.Text = listAuthors.SelectedItem.SubItems(5)
 frmDetails.OK = False
 frmDetails.Show vbModal

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (32 of 52) [9/22/1999 2:03:07 AM]

 If frmDetails.OK = True Then
 `user hit OK, update the list
 listAuthors.SelectedItem.Text = frmDetails.txtLastName.Text
 listAuthors.SelectedItem.SubItems(1) = frmDetails.txtFirstName.Text
 listAuthors.SelectedItem.SubItems(2) = frmDetails.txtAddress.Text
 listAuthors.SelectedItem.SubItems(3) = frmDetails.txtCity.Text
 listAuthors.SelectedItem.SubItems(4) = frmDetails.txtState.Text
 listAuthors.SelectedItem.SubItems(5) = frmDetails.txtZip.Text
 End If
End Sub

9. Add the code to apply the changes.

Private Sub cmdApply_Click()
 Dim rs As Recordset
 Set rs = New Recordset
 `to do a batch update be sure to open with adLockBatchOptimistic
 rs.Open "authors", mConn, adOpenKeyset, _
 adLockBatchOptimistic _
 , adCmdTable
 Do Until rs.EOF
 rs("au_lname") = listAuthors.ListItems((rs("au_id"))).Text
 rs("au_fname") = listAuthors.ListItems((rs("au_id"))).SubItems(1)
 rs("address") = listAuthors.ListItems((rs("au_id"))).SubItems(2)
 rs("city") = listAuthors.ListItems((rs("au_id"))).SubItems(3)
 rs("state") = listAuthors.ListItems((rs("au_id"))).SubItems(4)
 rs("zip") = listAuthors.ListItems((rs("au_id"))).SubItems(5)
 rs.MoveNext
 Loop
 `update batch commits all the changes
 rs.UpdateBatch
 rs.Close
 Set rs = Nothing
End Sub

10. Add a new form and name it frmDetails. Use Table 8.14 to add the objects and set properties for frmDetails.

Table 8.14. Objects and properties for frmDetails.

OBJECT Property Value

Form Caption Edit Authors

TextBox Name txtFirstName

Text ""

TextBox Name txtLastName

Text ""

TextBox Name txtAddress

Text ""

TextBox Name txtCity

Text ""

TextBox Name txtState

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (33 of 52) [9/22/1999 2:03:07 AM]

Text ""

TextBox Name txtZip

Text ""

Label Name lblFirstName

Caption First

Label Name lblLastName

Caption Last

Label Name lblAddress

Caption Address

Label Name lblCity

Caption City

Label Name lblState

Caption State

Label Name lblZip

Caption Zip Code

CommandButton Name cmdOK

Caption OK

CommandButton Name cmdCancel

Caption Cancel

11. Finally, add the code for frmDetails.

Option Explicit
Public OK As Boolean
Private Sub cmdCancel_Click()
 Hide
End Sub
Private Sub cmdOK_Click()
 OK = True
 Hide
End Sub

How It Works

The Edit Details dialog box enables the user to change the names and addresses of the authors, but does not change the
database. All changes are collected till the Apply Changes button is pressed. The Recordset object is opened again,
this time with adLockBatchOptimistic in the LockType parameter. Next, the application makes all the changes and
calls the UpdateBatch method to apply all the changes.

Comments

Batch updates are often a way to squeeze more performance from a database operation. There is inherent overhead
each time an update is performed. By using a batch update, that overhead cost is paid only once instead of at each
separate update.

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (34 of 52) [9/22/1999 2:03:07 AM]

8.10 How do I...

Make remote updates to data with ActiveX Data Objects?

Problem

My application will be running over the Web, where server connections and bandwidth are expensive. I want to
minimize the server connections and bandwidth requirements. How do I make remote updates to data with ActiveX
Data Objects?

Technique

ADO was designed with the Web in mind, and by using client side cursors, RDS enables an application to retrieve
data, modify the data, and update the server using only one round trip. There are several steps required to enable this:

1. Open the connection using a remote provider. The connection string below uses the MS Remote provider to
open an ODBC datasource.

Dim conn As Connection
Set conn = New Connection
conn.Open "Provider=MS Remote;Remote Server=http://www.myserver.com" _
 + ";Remote Provider=MSDASQL;DSN=pubs"

A NOTE ON HTTP ADDRESSES

The Remote Server parameter in the ConnectionString expects an http address for the server. On a local
network the http address is simply http://myserver.

2. Set the Recordset object's CursorLocation property to adUseClient.

3. Open the Recordset using adOpenStatic for the CursorType parameter and adLockBatchOptimistic for the
LockType parameter.

4. After all the changes are collected, create a new Connection object using the same ConnectionString property
that is used in the first Connection.

5. Create a new Recordset object. Open it using the original Recordset as the Source parameter and the new
Connection object as the ActiveConnection parameter.

6. Call the second Recordset object's UpdateBatch method.

STEPS

Open the ADODC.vbp, change the connection string in the Form_Load event to match your server, user, and
password. The form, shown in Figure 8.11, is visually the same as the form in How-To 8.1, except this form uses a
client-side cursor.

This How-To is a modification of How-To 8.1. If you have completed How-To 8.1, you can start from where it left
off, or you can use the completed How-To 8.1 project from the CD.

1. Clear the ConnectionString and RecordSource properties of the ADO Data control.

Figure 8.11. The New Authors application uses a client-side cursor.

2. Add the following code to frmMain to load the RecordSet in Form_Load event and update it in the
Form_Unload event.

Private Sub Form_Load()
 Dim conn As Connection
 Dim rs As Recordset

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (35 of 52) [9/22/1999 2:03:07 AM]

javascript:popUp('08fig11.gif')

 `open the connection
 Set conn = New Connection
 conn.Open "Provider=MS Remote" _
 + ";Remote Server=http://winemiller" _
 + ";Remote Provider=MSDASQL;DSN=pubs"
 `fill the list
 Set rs = New Recordset
 rs.CursorLocation = adUseClient
 rs.Open "authors", conn, adOpenStatic _
 , adLockBatchOptimistic, adCmdTable
 Set adodc.Recordset = rs
End Sub
Private Sub Form_Unload(Cancel As Integer)
 Dim rs As Recordset
 Dim conn As Connection
 `open the connection
 Set conn = New Connection
 Set rs = New Recordset
 On Error GoTo UpdateFailure
 conn.Open "Provider=MS Remote; _
 + "Remote Server=http://winemiller" _
 + ";Remote Provider=MSDASQL;DSN=pubs"
 rs.Open adodc.Recordset, conn
 rs.UpdateBatch
 On Error GoTo 0
UpdateDone:
 Exit Sub
UpdateFailure:
 ShowADOError conn
 GoTo UpdateDone
End Sub

3. Add the ShowADOError procedure to display any errors that occur during the update.

Private Sub ShowADOError(pConn As Connection)
 `spin through the errors collection and
 `display the constructed error message
 Dim ADOError As Error
 Dim sError As String
 For Each ADOError In pConn.Errors
 sError = sError & ADOError.Number & " - "
 sError = ADOError.Description + vbCrLf
 Next ADOError
 MsgBox sError
End Sub

How It Works

First, in the Form_Load event, a client-side recordset is opened and assigned to the ADO Data control's Recordset
property. The user can make changes to all the records, moving back and forth through the entire recordset. When the
form unloads, another Recordset object is created with the changes from the first. The UpdateBatch method commits
the changes to the database.

Comments

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (36 of 52) [9/22/1999 2:03:07 AM]

Remote updates work great for single user applications, but open the window for concurrency problems if there is
more than one user. If multiple users are running applications that perform remote updates, the second user (and any
subsequent users) will get an error if he tries to update a record that has been changed since he first opened the
recordset.

8.11 How do I...

Build a middle-tier business object using ActiveX Data Objects?

Problem

Our company has decided to move our applications to a three-tier architecture. How do I build a middle-tier business
object using ActiveX Data Objects?

Technique

Remote updates work well where the application is small and concurrency is not a big issue; however, as applications
and number of users grow, a new paradigm for application development becomes attractive. Three-tier applications
typically move the data access and business rules from the client back to the server. This enables thin clients,
sometimes just a browser, and easy deployment when it comes time to make changes.

Any data access method can be used to build middle-tier components, but ADO in particular is a good choice because
of its ability to query almost anything and its light footprint.

When designing middle-tier objects there are several questions that must be answered:

4 What objects will be exposed? Some companies choose to build an object for each physical database table,
whereas others expose logical objects where several physical database tables are combined into one logical
entity.

●

4 What functions should those objects perform? Deletes, updates, and inserts are the first functions that come to
mind, but that might not be appropriate in all circumstances. Imagine a medical application where a delete is not
allowed, but a strikeout is.

●

4 Is there a standard to which you should adhere? Many companies have guidelines about the type of interface a
middle-tier component should have. If you are just starting your migration to three-tier, this might be where you
should start. Defining this standard up-front will save time in the long run as other developers begin to use and
build the middle-tier components.

●

4 Do you plan to use Microsoft Transaction Server? Transaction Server is not necessary to deploy three-tier
applications, but provides many benefits to applications that use it. The middle-tier component in this How-To
is written with Transaction Server in mind, but does not require MTS. You will see why some of the unusual
techniques used in this sample make sense in the next How-To.

●

Steps

Open the ThreeTier.vbg project group. Change the connection string in the Class_Initialize event of cAuthor to match
your user, server, and password. Run the application. The UITier application, shown in Figure 8.12, is very similar to
some of the other How-To's in this chapter. But, there is one important difference: there is no data access code in the
application. All the data access is done through the MiddleTier.dll.

Figure 8.12. The UITier application uses a middle-tier component for data access.

1. Create a new ActiveX DLL. Change the project name to MiddleTier. Rename the default class from Class1 to
cAuthor.

2. Add a reference to Microsoft ActiveX Data Objects 2.0 Library.

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (37 of 52) [9/22/1999 2:03:07 AM]

javascript:popUp('08fig12.gif')

3. Add the following code for the Declarations section, the Class_Initialize event, and the Class_Terminate
events. Remember to change the ConnectionString parameter on mConn's Open method to your configuration.

Option Explicit
Private mConn As Connection
Private Sub Class_Initialize()
 Set mConn = New Connection
 mConn.Open "Provider=SQLOLEDB.1;User ID=sa;Password=password" _
 + ";Location=WINEMILLER;Database=pubs"
End Sub
Private Sub Class_Terminate()
 mConn.Close
 Set mConn = Nothing
End Sub

4. Add the method to handle retrieving a list.

Public Function GetList(Optional psWhere As String) As Object
 `return a recordset to the client as object so she doesn't
 `even need to have a reference to ADO to use this object
 Dim sCmd As String
 Dim rs As Recordset
 sCmd = "select * from authors"
 `if she wanted a restricted list give it to her
 If Len(psWhere) > 0 Then
 sCmd = sCmd + " where " + psWhere
 End If
 Set rs = New Recordset
 rs.CursorLocation = adUseClient
 rs.Open sCmd, mConn, adOpenForwardOnly, adLockReadOnly _
 , adCmdText
 Set GetList = rs
End Function

5. Add the DeleteAuthor method. Given the author's ID, it constructs a delete statement and executes the delete.
Notice that the DeleteAuthor method does not return a True or False indicating success or failure. Instead, if
there is a problem, it raises an error. The reason for this is explained in How-To 8.13.

Public Sub DeleteAuthor(psau_id As String)
 `build delete string
 Dim sCmd As String
 sCmd = "delete authors"
 sCmd = sCmd + " where au_id = `" + psau_id + "`"
 `use execute to do the delete
 On Error GoTo DeleteError:
 mConn.Execute sCmd
 Exit Sub
DeleteError:
 Err.Raise vbObjectError, , "Error deleting"
End Sub

6. The UpdateAuthor method is next. Like the DeleteAuthor method, it also indicates failure through a raised
error instead of a return value. By now you may have noticed something unusual about this class: there are no
properties except the connection; everything is passed as a parameter! Each time an application calls a method
or sets a property, one round trip must be made across the network, and that is assuming early binding. When a
DLL is in process on the same machine, that hit is seldom noticeable, but in an environment where your

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (38 of 52) [9/22/1999 2:03:07 AM]

middle-tier is running on a server that might not even be in the same country, the performance hit is definitely
noticeable. This is perhaps the most important lesson to learn when building middle-tier components: They are
not objects for holding data, rather they are objects for doing work.

Public Sub UpdateAuthor(psau_id As String, psau_lname As String _
 , psau_fname As String, psphone As String _
 , psaddress As String _
 , pscity As String, psstate As String, pszip As String _
 , pbcontract As Boolean)
 `build udpate string
 Dim sCmd As String
 sCmd = "update authors "
 sCmd = sCmd + " set"
 sCmd = sCmd + " au_lname = `" + psau_lname + "`"
 sCmd = sCmd + ",au_fname = `" + psau_fname + "`"
 sCmd = sCmd + ",phone = `" + psphone + "`"
 sCmd = sCmd + ",address = `" + psaddress + "`"
 sCmd = sCmd + ",city = `" + pscity + "`"
 sCmd = sCmd + ",state = `" + psstate + "`"
 sCmd = sCmd + ",zip = `" + pszip + "`"
 sCmd = sCmd + ",contract = " & IIf(pbcontract, 1, 0)
 sCmd = sCmd + " where au_id = `" + psau_id + "`"
 `use execute to do the update
 On Error GoTo UpdateError
 mConn.Execute sCmd
 Exit Sub
UpdateError:
 Err.Raise vbObjectError, , "Error updating"
End Sub

7. Finally, add the method to insert a new author.

Public Sub NewAuthor(psau_id As String, psau_lname As String _
 , psau_fname As String, psphone As String _
 , psaddress As String _
 , pscity As String, psstate As String, pszip As String _
 , pbcontract As Boolean)
 `build insest string
 Dim sCmd As String
 sCmd = "insert authors (au_id, au_lname, au_fname , "
 sCmd = sCmd + "phone , address"
 sCmd = sCmd + ", city, state, zip, contract)"
 sCmd = sCmd + " values "
 sCmd = sCmd + "(`" + psau_id + "`"
 sCmd = sCmd + ",'" + psau_lname + "`"
 sCmd = sCmd + ",'" + psau_fname + "`"
 sCmd = sCmd + ",'" + psphone + "`"
 sCmd = sCmd + ",'" + psaddress + "`"
 sCmd = sCmd + ",'" + pscity + "`"
 sCmd = sCmd + ",'" + psstate + "`"
 sCmd = sCmd + ",'" + pszip + "`"
 sCmd = sCmd + "," & IIf(pbcontract, 1, 0)
 sCmd = sCmd + ")"

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (39 of 52) [9/22/1999 2:03:07 AM]

 `use execute to do the insert
 On Error GoTo InsertError
 mConn.Execute sCmd
 Exit Sub
InsertError:
 Err.Raise vbObjectError, , "Error inserting"
End Sub

8. Now it is time to create the user interface level of the application. Using File | Add Project, add a new
Standard EXE to the project group. Change the project name to UITier, change the default form name to
frmMain, and save. When you are prompted to save the project group file, save it as ThreeTier.vbg.

9. Using the Project | References menu item, add references to Microsoft ActiveX Data Objects Recordset 2.0
Library and the MiddleTier project.

10. Using Table 8.15, add the objects for frmMain.

Table 8.15. Objects and properties for frmMain.

OBJECT Property Value

Form Caption Authors

ListView Name listAuthors

View 3 - lvwReport

LabelEdit 1 - lvwManual

CommandButton Name cmdNew

Caption New

CommandButton Name cmdDelete

Caption Delete

CommandButton Name cmdEdit

Caption Edit

CommandButton Name cmdExit

Caption Exit

11. Table 8.16 lists the columns and widths for the listAuthors ListView control.

Table 8.16. Column Headers for listAuthors.

COLUMN Width

Last 1000

First 1000

Address 2000

City 1440

State 500

Zip 700

Phone 1440

Contract 700

12. Add the Declarations section, the Form_Load event, and the Form_Unload event. This code takes care of

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (40 of 52) [9/22/1999 2:03:07 AM]

creating and destroying the mAuthors object and filling the ListView control.

Option Explicit
Private mAuthors As cAuthor
Private Sub Form_Load()
 `fill the list with all the authors
 Dim rs As Recordset
 Dim NewItem As ListItem
 Set mAuthors = New cAuthor
 Set rs = mAuthors.GetList()
 Do Until rs.EOF
 Set NewItem = listAuthors.ListItems.Add(, rs("au_id"), _
 rs("au_lname"))
 NewItem.SubItems(1) = rs("au_fname")
 NewItem.SubItems(2) = rs("address")
 NewItem.SubItems(3) = rs("city")
 NewItem.SubItems(4) = rs("state")
 NewItem.SubItems(5) = rs("zip")
 NewItem.SubItems(6) = rs("phone")
 NewItem.SubItems(7) = rs("contract")
 rs.MoveNext
 Loop
End Sub
Private Sub Form_Unload(Cancel As Integer)
 Set mAuthors = Nothing
 Unload frmDetails
 Set frmDetails = Nothing
End Sub

13. Now, add the following code for the cmdDelete_Click event. The application tells the middle-tier
component to delete the selected author. If it is successful, then it updates the list; otherwise it displays the
trapped error.

Private Sub cmdDelete_Click()
 `delete the current author
 On Error GoTo DeleteError
 mAuthors.DeleteAuthor listAuthors.SelectedItem.Key
 listAuthors.ListItems.Remove listAuthors.SelectedItem.Key
 Exit Sub
DeleteError:
 MsgBox Err.Number + " - " + Err.Description
 Exit Sub
End Sub

14. The cmdEdit_Click event displays the Edit Authors dialog box, and if the user clicks OK, the event attempts
to update the selected author's record through the middle-tier component. Like the cmdDelete_Click event, if
the update is successful, the UI is updated; otherwise the trapped error is displayed.

Private Sub cmdEdit_Click()
 With frmDetails
 `fill the detail screen
 .txtId.Text = listAuthors.SelectedItem.Key
 .txtId.Locked = True
 .txtId.BackColor = vbButtonFace
 .txtLastName.Text = listAuthors.SelectedItem.Text

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (41 of 52) [9/22/1999 2:03:07 AM]

 .txtFirstName.Text = listAuthors.SelectedItem.SubItems(1)
 .txtAddress.Text = listAuthors.SelectedItem.SubItems(2)
 .txtCity.Text = listAuthors.SelectedItem.SubItems(3)
 .txtState.Text = listAuthors.SelectedItem.SubItems(4)
 .txtZip.Text = listAuthors.SelectedItem.SubItems(5)
 .txtPhone.Text = listAuthors.SelectedItem.SubItems(6)
 .chkContract.Value = _
 IIf(listAuthors.SelectedItem.SubItems(7) = "True" _
 , vbChecked, vbUnchecked)
 `show the edit dialog
 .OK = False
 .Caption = "Edit Author"
 .Show vbModal
 If .OK = True Then
 `user hit OK, update the database
 On Error GoTo EditError
 mAuthors.UpdateAuthor .txtId.Text, .txtLastName.Text _
 , .txtFirstName.Text, .txtPhone.Text, _
 .txtAddress.Text _
 , .txtCity.Text, .txtState.Text, .txtZip.Text _
 , .chkContract.Value = vbChecked
 On Error GoTo 0
 `update successfull change ui
 listAuthors.SelectedItem.Text = .txtLastName.Text
 listAuthors.SelectedItem.SubItems(1) = _
 .txtFirstName.Text
 listAuthors.SelectedItem.SubItems(2) = _
 .txtAddress.Text
 listAuthors.SelectedItem.SubItems(3) = .txtCity.Text
 listAuthors.SelectedItem.SubItems(4) = .txtState.Text
 listAuthors.SelectedItem.SubItems(5) = .txtZip.Text
 listAuthors.SelectedItem.SubItems(6) = .txtPhone.Text
 listAuthors.SelectedItem.SubItems(7) = _
 (.chkContract.Value = vbChecked)
 End If
 End With `frmDetails
 Exit Sub
EditError:
 MsgBox Err.Number + " - " + Err.Description
 Exit Sub
End Sub

15. Add the cmdNew_Click event. It looks very similar to the cmdEdit_Click event, except that the txtId field is
not locked when creating a new record.

Private Sub cmdNew_Click()
 With frmDetails
 `fill the detail screen
 .txtId.Text = ""
 .txtId.Locked = False
 .txtId.BackColor = vbWindowBackground
 .txtLastName.Text = ""
 .txtFirstName.Text = ""

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (42 of 52) [9/22/1999 2:03:07 AM]

 .txtAddress.Text = ""
 .txtCity.Text = ""
 .txtState.Text = ""
 .txtZip.Text = ""
 .txtPhone.Text = ""
 .chkContract.Value = vbUnchecked
 `show new dialog
 .OK = False
 .Caption = "New Author"
 .Show vbModal
 If .OK = True Then
 `user hit OK, update the database
 On Error GoTo NewError
 mAuthors.NewAuthor .txtId.Text, .txtLastName.Text _
 , .txtFirstName.Text, .txtPhone.Text, _
 .txtAddress.Text _
 , .txtCity.Text, .txtState.Text, .txtZip.Text _
 , .chkContract.Value = vbChecked
 On Error GoTo 0
 `update successfull change ui
 Dim NewItem As ListItem
 Set NewItem = listAuthors.ListItems.Add(_
 .txtId.Text
 , .txtLastName.Text)
 NewItem.SubItems(1) = .txtFirstName.Text
 NewItem.SubItems(2) = .txtAddress.Text
 NewItem.SubItems(3) = .txtCity.Text
 NewItem.SubItems(4) = .txtState.Text
 NewItem.SubItems(5) = .txtZip.Text
 NewItem.SubItems(6) = .txtPhone.Text
 NewItem.SubItems(7) = (.chkContract.Value = vbChecked)
 End If
 End With `frmDetails
 Exit Sub
NewError:
 MsgBox Err.Number + " - " + Err.Description
 Exit Sub
End Sub

16. Round out frmMain by adding a couple of miscellaneous procedures to activate the cmdEdit_Click event
when the listAuthors control is double-clicked and unload the form when cmdExit is clicked.

Private Sub listAuthors_DblClick()
 cmdEdit_Click
End Sub
Private Sub cmdExit_Click()
 Unload Me
End Sub

17. Next add a new form to the project. Change its name to frmDetails. Use Table 8.17 and Figure 8.13 to add
the objects for frmDetails.

Figure 8.13. The Details dialog box is used to edit and create authors.

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (43 of 52) [9/22/1999 2:03:07 AM]

javascript:popUp('08fig13.gif')

Table 8.17. Objects and properties for frmDetails.

OBJECT Property Value

TextBox Name txtId

Text ""

TextBox Name txtFirstName

Text ""

TextBox Name txtLastName

Text ""

TextBox Name txtAddress

Text ""

TextBox Name txtCity

Text ""

TextBox Name txtState

Text ""

TextBox Name txtZip

Text ""

TextBox Name txtPhone

Text ""

CheckBox Name chkContract

Caption Contract

Label Name lblId

Caption Id

Label Name lblFirstName

Caption First

Label Name lblLastName

Caption Last

Label Name lblAddress

Caption Address

Label Name lblCity

Caption City

Label Name lblState

Caption State

Label Name lblZip

Caption Zip Code

Label Name lblPhone

Caption Phone

18. Finally, add the following code to frmDetails so that the application can tell if the user clicked the OK
button.

Option Explicit

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (44 of 52) [9/22/1999 2:03:07 AM]

Public OK As Boolean
Private Sub cmdCancel_Click()
 Hide
End Sub
Private Sub cmdOK_Click()
 OK = True
 Hide
End Sub

How It Works

The UITier application collects and displays data, but passes off all the work to the MiddleTier.dll. The UITier
application could be replaced with DHTML, and no changes would be needed for the data access. Likewise, the
underlying table structure could change, business rules could be added and deleted, and the UITier application would
not have to change.

Comments

This How-To created a middle-tier component that would do its job of hiding the underlying data access and any
business rules from the application, but scalability would be questionable. For each object created there would be a
new database connection, and for each application using the object, there would be a separate instance of the object.
The next logical step for any three-tier application is to try and reap the benefits of using Microsoft Transaction
Server.

8.12 How do I...

Incorporate a business object into Microsoft Transaction Server?

Problem

I have a three-tier application in which I am experiencing scalability problems. How do I incorporate a business object
into Microsoft Transaction Server?

Technique

MTS can greatly enhance the scalability of middle-tier components. There are two benefits to using MTS that most
impact middle-tier components: object reuse and connection pools.

If MTS knows that an object has completed all the work that needs to be done and it is stateless, MTS will reuse that
object. So, many applications using the cAuthor class from How-To 8.11 could all be using the same instance of that
class. This saves time on the creation and destruction of objects, and it saves memory because only a few objects need
to be instantiated instead of one for each client.

WHAT DO YOU MEAN BY STATELESS?

An object is said to be stateless if there are no properties that must stay the same between calls. If the
cAuthor class from How-To 8.11 kept the author's name and other properties from one call to the next, it
would be statefull. MTS could not reuse that object for different clients because each client would need
the instance of cAuthor with their values intact.

The second benefit is the connection pools. MTS keeps a pool of database connections open. When an MTS object
needs a new connection, MTS gives the object one of the connections that is already open. Many objects share the
same connection without knowledge of this fact.

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (45 of 52) [9/22/1999 2:03:07 AM]

There are only a couple of things that an object needs to do to enjoy these benefits:

4 Tell MTS when the object is complete and if it was successful. Keep MTS informed, and MTS can reuse the
object in addition to providing transactions. MTS provides an ObjectContext; use the SetAbort or SetComplete
methods of the ObjectContext to indicate that object is complete but unsuccessful, or complete and successful.

●

4 Open a new connection on each call instead of holding them open. This enables MTS to grant connections and
share them between objects.

●

Steps

This How-To uses the complete How-To 8.11 project and modifies it to take advantage of MTS. If you have
completed How-To 8.11, you can use your finished project as a starting point, or you can copy the completed How-To
8.11 project from the CD and start from there.

1. Open the MiddleTier.vbp and a reference to Microsoft Transaction Server Type Library.

2. Change the NewAuthor procedure to tell MTS when it is done and to open the connection each time it's
called. The changes are listed below in bold.

Public Sub NewAuthor(psau_id As String, psau_lname As String _
 , psau_fname As String, psphone As String _
 , psaddress As String _
 , pscity As String, psstate As String, pszip As String _
 , pbcontract As Boolean)
 Dim Conn As Connection
 Set Conn = New Connection
 Conn.Open "Provider=SQLOLEDB.1;User ID=sa;Password=password" _
 + ";Location=WINEMILLER;Database=pubs"
 `build insest string
 Dim sCmd As String
 sCmd = "insert authors (au_id, au_lname, au_fname , "
 sCmd = sCmd + "phone , address"
 sCmd = sCmd + ", city, state, zip, contract)"
 sCmd = sCmd + " values "
 sCmd = sCmd + "(`" + psau_id + "`"
 sCmd = sCmd + ",'" + psau_lname + "`"
 sCmd = sCmd + ",'" + psau_fname + "`"
 sCmd = sCmd + ",'" + psphone + "`"
 sCmd = sCmd + ",'" + psaddress + "`"
 sCmd = sCmd + ",'" + pscity + "`"
 sCmd = sCmd + ",'" + psstate + "`"
 sCmd = sCmd + ",'" + pszip + "`"
 sCmd = sCmd + "," & IIf(pbcontract, 1, 0)
 sCmd = sCmd + ")"
 `use execute to do the insert
 On Error GoTo InsertError
 Conn.Execute sCmd
 GetObjectContext().SetComplete
 Exit Sub
InsertError:
 GetObjectContext().SetAbort
 Err.Raise vbObjectError, , "Error inserting"
End Sub

3. Next, change the UpdateAuthor procedure the same way. Again, all the changes are listed in bold.

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (46 of 52) [9/22/1999 2:03:07 AM]

Public Sub UpdateAuthor(psau_id As String, psau_lname As String _
 , psau_fname As String, psphone As String _
 , psaddress As String _
 , pscity As String, psstate As String, pszip As String _
 , pbcontract As Boolean)
 Dim Conn As Connection
 Set Conn = New Connection
 Conn.Open "Provider=SQLOLEDB.1;User ID=sa;Password=password" _
 + ";Location=WINEMILLER;Database=pubs"
 `build udpate string
 Dim sCmd As String
 sCmd = "update authors "
 sCmd = sCmd + " set"
 sCmd = sCmd + " au_lname = `" + psau_lname + "`"
 sCmd = sCmd + ",au_fname = `" + psau_fname + "`"
 sCmd = sCmd + ",phone = `" + psphone + "`"
 sCmd = sCmd + ",address = `" + psaddress + "`"
 sCmd = sCmd + ",city = `" + pscity + "`"
 sCmd = sCmd + ",state = `" + psstate + "`"
 sCmd = sCmd + ",zip = `" + pszip + "`"
 sCmd = sCmd + ",contract = " & IIf(pbcontract, 1, 0)
 sCmd = sCmd + " where au_id = `" + psau_id + "`"
 `use execute to do the update
 On Error GoTo UpdateError
 Conn.Execute sCmd
 GetObjectContext().SetComplete
 Exit Sub
UpdateError:
 GetObjectContext().SetAbort
 Err.Raise vbObjectError, , "Error updating"
End Sub

4. Now change the DeleteAuthor method.

Public Sub DeleteAuthor(psau_id As String)
 Dim Conn As Connection
 Set Conn = New Connection
 Conn.Open "Provider=SQLOLEDB.1;User ID=sa;Password=password" _
 + ";Location=WINEMILLER;Database=pubs"
 `build delete string
 Dim sCmd As String
 sCmd = "delete authors"
 sCmd = sCmd + " where au_id = `" + psau_id + "`"
 `use execute to do the delete
 On Error GoTo DeleteError:
 Conn.Execute sCmd
 GetObjectContext().SetComplete
 Exit Sub
DeleteError:
 GetObjectContext().SetAbort
 Err.Raise vbObjectError, , "Error deleting"
End Sub

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (47 of 52) [9/22/1999 2:03:08 AM]

5. Change the GetList method to include the new code.

Public Function GetList(Optional psWhere As String) As Object
 Dim Conn As Connection
 Set Conn = New Connection
 Conn.Open "Provider=SQLOLEDB.1;User ID=sa;Password=password" _
 + ";Location=WINEMILLER;Database=pubs"
 `return a record set to the client as object so he doesn't
 `even need to have a reference to ADO to use this object
 Dim sCmd As String
 Dim rs As Recordset
 sCmd = "select * from authors"
 `if they wanted a restricted list give it to them
 If Len(psWhere) > 0 Then
 sCmd = sCmd + " where " + psWhere
 End If
 Set rs = New Recordset
 rs.CursorLocation = adUseClient
 On Error GoTo GetListError:
 rs.Open sCmd, Conn, adOpenForwardOnly, adLockReadOnly, _
 adCmdText
 Set GetList = rs
 GetObjectContext().SetComplete
 Exit Function
GetListError:
 GetObjectContext().SetAbort
 Err.Raise vbObjectError, , "Error getting list"
End Function

6. Finally, remove the mConn variable from the Declarations section and delete the Class_Initialize and
Class_Terminate events. Compile the new DLL and fix any errors.

7. Using Microsoft Management Console, create a new MTS package and add the MiddleTier.dll to the package
so that your package and objects appear like Figure 8.14.

Figure 8.14. The MiddleTier.cAuthors component configured in MTS.

8. If you are running MTS on a separate machine, use dcomcnfg.exe to tell the local machine to create the
MiddleTier.cAuthor component on the MTS server. Load the UITier.vbp project and run it. Without any
changes to the user interface tier, the application now runs under MTS.

How It Works

Like How-To 8.11, the UI does very little work, and the MiddleTier.dll does the data access. However, now the
middle-tier is optimized for MTS. By using the SetAbort and SetComplete methods of the ObjectContext, MTS knows
when the object is completed and stateless so it can be reused. MTS can also hand out connections as needed because
the middle-tier opens a connection for each call. MTS can immediately reuse those connections after the call is
complete.

Comments

The MiddleTier.dll is now a highly scalable middle-tier component. Because this particular application would
probably spend only a little time within the middle-tier's code, compared to the user's time typing and browsing,
hundreds of clients could be serviced using probably only a small number of actual objects.

The only thing lacking in the cAuthor class is some really nice error reporting; "Error getting list" does not really help

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (48 of 52) [9/22/1999 2:03:08 AM]

javascript:popUp('08fig14.gif')

much. How-To 8.13 shows you how to handle ADO errors.

8.13 How do I...

Handle ActiveX Data Objects errors?

Problem

To make my application more robust and easier to debug, I need to deal with and report to the user ADO errors. How
do I handle ActiveX Data Objects errors?

TECHNIQUE

ADO reports errors through the Connection object's Errors collection. The values from the last Error object in the
Error's collection will also be repeated in Visual Basic's Err object. Typical error handling looks something like the
code below. Before calling on an ADO object's methods or properties, use On Error Goto. Depending on the level of
the application, you can then either raise an error or display a message to the user. This code below comes from a
middle-tier component and raises an error for the UI tier to display.

`open the connection
On Error GoTo InitializeError
mConn.Open "Provider=SQLOLEDB.1;User ID=sa;Password=password;" _
 + "Location=WINEMILLER;Database=pubs"
Exit Sub
InitializeError:
Err.Raise aeInitializeError, , FormatError(mConn _
 , "An error occurred while making the database connection.")

Steps

This How-To uses the complete How-To 8.11 project and modifies it to better deal with and report ADO errors. If you
have completed How-To 8.11, you can use your finished project as a starting point, or you can copy the completed
How-To 8.11 project from the CD and start from there.

1. Open the MiddleTier.vbp and add the following code to the cAuthor class.

Private Function FormatError(pConn
 As Connection, psAdditionalMessage _
 As String) As String
`start it with any message passed in
 Dim Error As Error
 Dim sTemp As String
 If Len(psAdditionalMessage) > 0 Then
 sTemp = psAdditionalMessage + vbCrLf
 End If
 `spin through the errors collection and add in all those
 `errors
 For Each Error In pConn.Errors
 sTemp = sTemp + Error.Source + " reported " _
 & Error.Number _
 & " - " + Error.Description + vbCrLf
 Next Error
 FormatError = sTemp
End Function

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (49 of 52) [9/22/1999 2:03:08 AM]

2. Add the following enumeration to the Declarations section of cAuthor. By providing meaningful error codes,
a UI tier developer could decide how critical the error is.

Public Enum cAuthorErrors
 aeInsertError = (vbObjectError + 1)
 aeUpdateError = (vbObjectError + 2)
 aeDeleteError = (vbObjectError + 3)
 aeFillError = (vbObjectError + 4)
 aeInitializeError = (vbObjectError + 5)
End Enum

3. Add error handling to the Class_Initialize procedure. Changes are highlighted in bold.

Private Sub Class_Initialize()
 Set mConn = New Connection
 `open the connection
 On Error GoTo InitializeError
 mConn.Open "Provider=SQLOLEDB.1;User ID=sa;Password=password" _
 + ";Location=WINEMILLER;Database=pubs"
 Exit Sub
InitializeError:
 Err.Raise aeInitializeError, , FormatError(mConn _
 , "An error occurred while making the database _
 connection.")
End Sub

4. Make similar changes to the GetList, UpdateAuthor, DeleteAuthor, and NewAuthor procedures. Again
changes are highlighted in bold. In addition, each function also has a chance to introduce an error. Those are
also highlighted in bold. You can use those errors to see the results of the error handling.

Public Sub NewAuthor(psau_id As String, psau_lname As String _
 , psau_fname As String, psphone As String _
 , psaddress As String _
 , pscity As String, psstate As String, pszip As String _
 , pbcontract As Boolean)
 `build insest string
 Dim sCmd As String
 sCmd = "insert sauthors (au_id, au_lname, au_fname , "
 sCmd = sCmd + "phone , address"
 sCmd = sCmd + ", city, state, zip, contract)"
 sCmd = sCmd + " values "
 sCmd = sCmd + "(`" + psau_id + "`"
 sCmd = sCmd + ",'" + psau_lname + "`"
 sCmd = sCmd + ",'" + psau_fname + "`"
 sCmd = sCmd + ",'" + psphone + "`"
 sCmd = sCmd + ",'" + psaddress + "`"
 sCmd = sCmd + ",'" + pscity + "`"
 sCmd = sCmd + ",'" + psstate + "`"
 sCmd = sCmd + ",'" + pszip + "`"
 sCmd = sCmd + "," & IIf(pbcontract, 1, 0)
 sCmd = sCmd + ")"
 `use execute to do the insert
 On Error GoTo InsertError
 mConn.Execute sCmd
 Exit Sub

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (50 of 52) [9/22/1999 2:03:08 AM]

InsertError:
 Err.Raise aeInsertError, , FormatError(mConn _
 , "An error occured while inserting the author.")
End Sub
Public Sub UpdateAuthor(psau_id As String, psau_lname As String _
 , psau_fname As String, psphone As String _
 , psaddress As String _
 , pscity As String, psstate As String, pszip As String _
 , pbcontract As Boolean)
 `build udpate string
 Dim sCmd As String
 sCmd = "udpate authors "
 sCmd = sCmd + " set"
 sCmd = sCmd + " au_lname = `" + psau_lname + "`"
 sCmd = sCmd + ",au_fname = `" + psau_fname + "`"
 sCmd = sCmd + ",phone = `" + psphone + "`"
 sCmd = sCmd + ",address = `" + psaddress + "`"
 sCmd = sCmd + ",city = `" + pscity + "`"
 sCmd = sCmd + ",state = `" + psstate + "`"
 sCmd = sCmd + ",zip = `" + pszip + "`"
 sCmd = sCmd + ",contract = " & IIf(pbcontract, 1, 0)
 sCmd = sCmd + " where au_id = `" + psau_id + "`"
 `use execute to do the update
 On Error GoTo UpdateError
 mConn.Execute sCmd
 Exit Sub
UpdateError:
 Err.Raise aeUpdateError, , FormatError(mConn _
 , "An error occured while updating the author.")
End Sub
Public Sub DeleteAuthor(psau_id As String)
 `build delete string
 Dim sCmd As String
 sCmd = "delete authorsx"
 sCmd = sCmd + " where au_id = `" + psau_id + "`"
 `use execute to do the delete
 On Error GoTo DeleteError:
 mConn.Execute sCmd
 Exit Sub
DeleteError:
 Err.Raise aeDeleteError, , FormatError(mConn _
 , "An error occured while deleting the author.")
End Sub
Public Function GetList(Optional psWhere As String) As Object
 `return a record set to the client as object so they don't
 `even need to have a reference to ADO to use this object
 Dim sCmd As String
 Dim rs As Recordset
 sCmd = "zselect * from authors"
 `if they wanted a restricted list give it to them
 If Len(psWhere) > 0 Then

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (51 of 52) [9/22/1999 2:03:08 AM]

 sCmd = sCmd + " where " + psWhere
 End If
 Set rs = New Recordset
 rs.CursorLocation = adUseClient
 On Error GoTo GetListError
 rs.Open sCmd, mConn, adOpenForwardOnly, adLockReadOnly, _
 adCmdText
 Set GetList = rs
 Exit Function
GetListError:
 Err.Raise aeFillError, , FormatError(mConn _
 , "An error occured while getting the list of authors.")

End Function

How It Works

The On Error Goto statements trap the ADO errors. Each procedure then uses the FormatError function to raise
another error that a top-level component can display to the user. Figure 8.15 shows a sample of the error message
generated by FormatError.

Figure 8.15. The formatted error message generated by FormatError.

Comments

Consistent and thorough error handling is a must for creating robust applications and components. Often, error
handling is the last thing that is added to an application. By taking the time up front to develop a consistent and
required approach to error handling, it will become second nature and save you time in the long run as your code starts
to debug itself instead of being debugged by your customers.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Ch 8 -- Using ActiveX Data Objects

http://www.pbs.mcp.com/ebooks/1571691529/ch08/ch08.htm (52 of 52) [9/22/1999 2:03:08 AM]

javascript:popUp('08fig15.gif')

Visual Basic 6 Database How-To

- 9 -
Microsoft Data Report

How do I...

9.1 Create a report using Microsoft Data Report Designer?❍

9.2 Add Calculated Fields to a Microsoft Data Report?❍

9.3 Select if the Microsoft Data Report will be displayed, printed, or exported using Visual Basic code?❍

9.4 Display a report based on criteria I choose using a Microsoft Data Report?❍

9.5 Determine which records will be printed using Crystal Reports?❍

9.6 Create subtotals and other calculated fields using Crystal Reports?❍

9.7 Control the order in which records will be printed using Crystal Reports?❍

9.8 Print labels using Crystal Reports?❍

9.9 Create and print form letters with Crystal Reports?❍

9.10 Print field data without extra spaces between the fields with Crystal Reports?❍

9.11 Prevent blank lines from being printed when a field contains no data using Crystal Reports?❍

9.12 Create cross-tab reports with Crystal Reports?❍

9.13 Generate reports using user-entered variables with Crystal Reports?❍

●

With Visual Basic 6 there are two methods for developing reports. Reports can be created within the Visual Basic development
environment by using Microsoft Data Reports, or by using the version of Crystal Reports included with Visual Basic by accessing
Crystal Reports' .RPT file via the Crystal's ActiveX control. (Of course, you also can use another version of Crystal Reports or
another third-party reporting program; however, Data Reports and Crystal Reports 4.6.1 both come with Visual Basic 6.)

Microsoft Data Reports

With the new Microsoft Data Reports, a developer can add a report directly to a Visual Basic project. The report can be designed,
saved, and compiled with a project just as a form or class would be. This feature integrates well with the Visual Basic IDE, and you
can create reports natively and intuitively as you would create any other form.

There are two major differences between creating reports with Microsoft Data Reports and creating other forms within the project:

The Data Report dimension is based on the printed page, whereas a form is based on twips.●

The Data Report does not use the intrinsic controls or ActiveX controls that regular Visual Basic forms use; they have their
own report intrinsic controls.

●

With Microsoft Data Reports, a report can be displayed to the screen in the form of a Print Preview window. From this window the
user can print the report to a printer or export the report to a file (including HTML). The report can be printed to a printer or exported
to a file without any user intervention by using Visual Basic code.

Crystal Reports

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (1 of 48) [9/22/1999 2:04:52 AM]

Crystal Reports is still included with Visual Basic 6. It includes the Crystal Reports Designer, ActiveX control, and necessary
runtimes. Visual Basic 6 is backward-compatible with projects created with Crystal Reports with earlier versions of Visual Basic.

Any Crystal Reports report must be created using the report designer. Although certain report elements can be changed at runtime
through the Crystal Reports OLE custom control, the control does not have the ability to create a report from scratch.

Running and Configuring Crystal Reports Designer

The Crystal Reports Designer works as a separate process from Visual Basic and keeps the report definition in a report definition file
with a .rpt file extension. You should try to save your report definition files in your Visual Basic project directory to make project
management and program distribution easier.

If you installed Visual Basic with the defaults, you'll find a Crystal Reports icon in the Microsoft Visual Basic 6.0 program group.
You can also start Crystal Reports by selecting Add-Ins|Report Designer from the Visual Basic main menu.

All the How-To's in this chapter assume that your Crystal Reports Designer program is set up the way ours is. Select File|Options
from the Crystal Reports main menu. On the Layout tab, check the Show Field Names option. On the New Report tab (see Figure
9.1), check the Use Report Gallery for new reports option. You can also enter a report directory as the default location for report
definition files.

Figure 9.1. The Crystal Reports Designer File Options dialog box.

Printing Reports

You have two printing approaches with Crystal Reports:

Using the Crystal Reports report designer. This program must be used to design all reports, and it can print them as well. This
means you don't need to run a Visual Basic application to print reports on data maintained by your application. The program,
however, can't be distributed to users of your application.

●

Using Crystal Reports OLE custom control (OCX). This OCX is included in the package and can be dropped into a Visual
Basic form to control report printing. The control gives your application access to most of the more useful features of the
Crystal Reports program. With this control, you can have the report displayed in a Print Preview window, printed directly to a
printer, or exported to a file.

●

Which Report Engine Should I Use?

With both Microsoft Data Reports and Crystal Reports included with Visual Basic 6, you have alternatives not previously available
with Visual Basic. The tool you use will depend on your particular situation and personal preferences. You need to consider the
reporting engines' different approaches to designing reports and how Visual Basic interfaces with the respective reporting engines.

When to Use Microsoft Data Reports

Data Reports integrates very well into the Visual Basic environment. The reports are generated directly in the Visual Basic IDE.
There are no separate report files, and the report definitions are stored in an ActiveX designer form with the Visual Basic project.
This means when a project is compiled, the report definition is compiled within the executable file (EXE). The report retrieves the
data to be used from a Data Connection within a Data Environment. This enables the report to retrieve data from this powerful new
feature in Visual Basic 6.

Microsoft Data Reports integrates well with Visual Basic by using the new powerful Data Environment and enabling the programmer
to create reports with similar methods in which forms are created. Data Reports is great for basic reports; however, it does not have
the options or advanced report features of the mature Crystal Reports and is not backward compatible with Crystal Report .RPT files.

When to Use Crystal Reports

Crystal Reports takes a totally different approach to creating reports to use with Visual Basic. A separate application creates the
report definitions, and these reports are stored in a separate .RPT file that must be distributed with the EXE file. Also, additional
DLLs and an OCX control must be included for the Visual Basic application to use a Crystal Reports report. The distribution
requirements are therefore much heavier than those for Microsoft Data Reports. Furthermore, a Crystal Reports report uses ODBC to
connect to a data source, not to the new powerful Data Environment.

Crystal Reports is much more mature that Microsoft Data Reports. Many applications have already been written using Crystal
Reports as their reporting engine. Also, Crystal Reports has a wider feature set than Data Reports. It can generate cross-tab reports
and sub reports, and it has much more powerful formula and many number crunching features. Crystal Reports also has an upgrade

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (2 of 48) [9/22/1999 2:04:52 AM]

javascript:popUp('09fig01.gif')

path that provides new features and more power.

Crystal is a mature and proven product. It might be heavier than Data Reports, but it offers a richer feature set and has upgrade
options for scalability.

CRYSTAL REPORTS UPGRADE OPTIONS

Crystal Reports Professional 6
This version of Crystal Reports includes an updated feature set to Crystal 4.6.1, which is included with Visual Basic. An
updated report designer and an ISAPI module is included, which allows reports to be placed on a IIS Web server. Java,
ActiveX, and pure HTML viewers can be used to display a report on the Web server. This version of Crystal Reports
enables you to export a report in various formats including HTML, MS-Excel, MS-Word, and Lotus 1-2-3.

Crystal Info
Crystal Info is a server-based solution that enables multiple users to view, schedule, and manipulate shared reports. It
can be used as a central storage for reports, for multiple users to view. It can be used to schedule when complex and time
consuming reports will be run so data can be viewed without having to run the report each time. What SQL Server is to
Microsoft Access, Crystal Info is to Crystal Reports.

Crystal Report Designer
This is an ActiveX designer that works in the same vein as Microsoft Data Reports. It gives you 100% functionality of
Crystal Reports 6 with the Visual Basic IDE. Take the way Microsoft Data Reports integrates into Visual Basic and add
the power of Crystal Reports 6. WOW! Prior to the release of Visual Basic 6, the only version of this tool available was
for Visual Basic 5, but keep an eye on the Seagate Software Web site (www.seagatesoftware.
com) for a Visual Basic 6 version.

Sample Databases in the How-To's

The How-To's in this chapter use the Microsoft Access .MDB file BIBLIO.MDB that was shipped with Visual Basic. If you selected
the default program locations when you installed Visual Basic, the Visual Basic files are located in the \Program Files\Visual Basic
directory. If these files are not located in the default directories, you'll need to tell Crystal where to find them.

Table 9.1 lists the tables in the BIBLIO.MDB database. You might want to add one index (duplicates are OK) on the Au_ID field in
the Title Author table to speed reporting. Use either Microsoft Access or the VisData sample application that is included with Visual
Basic to add the index.

Table 9.1. Tables from BIBLIO.MDB.

TABLE NAME Description

Authors Book author names

Publishers Names, phones, and other information about each publisher

Title Author Records linking the Author and Titles tables

Titles Books published by each company

You can find the next set of tables, shown in Table 9.2, in the file CRYSTAL.MDB, which is included on the CD-ROM. These files
make up a basic order-entry system.

Table 9.2. Tables from CRYSTAL.MDB.

TABLE NAME Description

Company Company name and information

Header Order invoice header

Detail Order detail records

The last database is Mailing List, in the file MAIL.MDB. Create this new table using the fields shown in Table 9.3. It is easiest if you
place the file in the same directory as the .RPT file that uses it.

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (3 of 48) [9/22/1999 2:04:52 AM]

Table 9.3. Mailing List table in MAIL.MDB.

FIELD NAME Data Type Size

Contact Text 30

Addr1 Text 40

City Text 30

State Text 20

Zip Text 10

Week Day Text 10

Enter some sample data in the Mailing List table. Table 9.4 lists a few sample lines of the table in MAIL.MDB on the CD-ROM
enclosed with this book. Enter various Contact names and Week Days. Include a number of records from each City, State,
and Zip. There are more than 600 records in the MAIL.MDB on the CD-ROM.

Table 9.4. Sample data in Mailing List table in MAIL.MDB.

CONTACT Addr1 City State Zip Week Day

Resident 4 Goodyear Street Boulder Colorado 80302-0302 Monday

Occupant 2291 Arapahoe Irvine California 92711-2002 Monday

Resident 8 Hazelnut Irvine California 92711-3810 Monday

Occupant 2 Orion Aliso Viejo California 92656-4200 Sunday

Medical Practitioner 1 Jenner Tacoma Washington 98402-8402 Thursday

Medical Practitioner Civic Center Anaheim California 92805-2805 Tuesday

Occupant 2 Park Plaza Irvine California 92714-271Thursday

9.1 Create a report using Microsoft Data Report Designer

Using the Data Report Designer, you will lay out a report and place report intrinsic controls on the form to create a simple Data
Report. This How-To will get your feet wet with the new Data Report Designer and how it relates to the Visual Basic IDE.

9.2 Add Calculated Fields to a Microsoft Data Report

Using the rptFunction report control you will add calculations to a Data Report. You will become familiar with various functions
the control can offer when creating reports.

9.3 Select if the Microsoft Data Report will be displayed, printed, or export using Visual Basic code

Using Microsoft Data Report and some Visual Basic coding, this How-To will demonstrate how to display a report to the screen,
print the report directly to the printer, or export the report to a file. The format of a file when exported can be text or HTML. The
ability of exporting a report to HTML opens up multiple possibilities to Web enable your application.

9.Have a Report Displayed Based on Criteria I Choose Using a Microsoft Data Report

Have a Data Report display data based on a parameter passed to a SQL-based query contained in a Data Environment object.

9.5 Determine Which Records Will Be Printed Using Crystal Reports

Using the Crystal Reports custom control, you can specify at runtime the records to be printed by sending a Crystal Reports
formula to the print engine. In this How-To, you'll create a report using three tables linked together and a simple Visual Basic
program to show how you can control the records printed at runtime.

9.6 Create Subtotals and Other Calculated Fields Using Crystal Reports

Crystal Reports has a rich variety of built-in capabilities for creating very complex reports. This How-To describes how to create a

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (4 of 48) [9/22/1999 2:04:52 AM]

bulk mail report based on an address file, sorting, grouping, and performing calculations needed for completion of a mailing's
paperwork. You certainly can't get too much more complex than a system created over 200 years by the federal bureaucracy!

9.7 Control the Order in Which Records Will Be Printed Using Crystal Reports

Although the Crystal Reports design program provides a very flexible report design and creation environment, you can change the
record sort order from a Visual Basic application, giving you essentially unlimited flexibility to print different reports, as you'll see in
this How-To. You'll also see how to change the group sort order, giving you another level of flexibility using database reports.

9.8 Print Labels Using Crystal Reports

Crystal Reports makes it easy to produce almost any type of label using a database. In this How-To, you'll create mailing labels
complete with attractive graphics and a return address.

9.9 Create and Print Form Letters with Crystal Reports

By using formulas and the flexible formatting in Crystal Reports, you can use your data to produce form letters. But how do you print
different page headers and footers? And how do you customize the text for each recipient in your mailing list? This How-To gives
you all the information you need to use Crystal Reports for form letters.

9.10 Print Field Data Without Extra Spaces Between the Fields with Crystal Reports

Although it is not as complete a set of tools as Visual Basic, Crystal Reports does have a number of useful string manipulation and
conversion functions and operators. In this How-To, you'll design a customer directory showing names, addresses, and the page
number as a single formula field, giving the report a more natural and finished look.

9.11 Prevent Blank Lines from Being Printed when a Field Contains No Data Using Crystal Reports

Crystal Reports provides two options that conserve space when reports are printed: the Suppress Blank Lines property for report
sections and Print on Multiple Lines property for text boxes. Both options are put to good use in this How-To, creating a report from
frequently incomplete data.

9.12 Create Cross-Tab Reports with Crystal Reports

Using Crystal Reports to produce cross-tab reports is very easy when you use the Cross-Tab layout window. In fact, the hardest part
of creating the report is developing a clear picture of how to analyze the data, but Crystal Reports makes it easy to try different
options until the report gives the information needed. This How-To demonstrates how to create a summary of customers by city and
day of the week that they receive service.

9.13 Generate Reports Using User-Entered Variables with Crystal Reports

Many of the design elements of a Crystal report can be changed on-the-fly in a Visual Basic application. Although there aren't
enough control properties to completely change an existing report or create a new report, there are enough changeable properties
available that a Visual Basic application can create entirely different reports using the same data. This How-To creates a Visual Basic
application and a Crystal report that allows records to be printed in different orders while filtering the records and customizing the
report heading and page numbering.

9.1 How Do I...

Create a report using Microsoft Data Report Designer?

Problem

I need to create a report using data from a database that can be displayed to the user, easily printed or exported to HTML.

Technique

Using Visual Basic and the included Data Report Designer, a report can be created to represent the data as desired. Using the
BIBLIO.MDB database included with Visual Basic, you will create a report that displays a list of authors. The preview window used
to display the report will enable the user to print and export the report directly from the preview.

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (5 of 48) [9/22/1999 2:04:52 AM]

Steps

Start Visual Basic, load then run the AuthorsDR.vbp project. Figure 9.2 displays how the report will look. The report can be printed
by clicking the printer icon, or can be exported to text or HTML by clicking the book icon.

Figure 9.2. AuthorsDR form shown at runtime.

1. Start Visual Basic and select a new Standard EXE project. Select Add Data Environment from the Project menu. The
window in Figure 9.3 will appear. Right click on the Connection1 item in the Data View window. Select the Properties item
from the popup menu. The following screen is used to set the database and connection type. This How-To will use the
BIBLIO.MDB database; therefore, select the Microsoft Jet 3.51 OLE DB Provider, then click on the Next button. Enter or
select the location of the BIBLIO.MDB database; it should be in the same folder as Visual Basic. Click on the Test button to
verify the connection. This handy option enables you to verify the database connection without having to write test codes. Run
the project. Click the OK button.

2. Right-click on the Commands folder in the Data Environment window. Select the Add Command item from the popup
menu. An item called Command1 will appear under the Commands folder. Right click on it and select the Properties item from
the popup menu. The Properties dialog box that appears is used to select a table or query. Click the on Connection drop-down
list and select Connection1. From the Database drop down select the Table object. From the Object drop-down list, select the
Authors Table. The dialog should look like Figure 9.4 after the items have been chosen.

Figure 9.3. The Data View Window.

Figure 9.4. The Command1 Properties dialog box.

3. From the Visual Basic main menu, select the Add Data Report item from the Project menu. Set the properties of the Data
Report as in Table 9.5. Then, right-click on the report and select Retrieve Structure from the popup menu. Retrieve Structure
will make the sections of the report match the database connection layout.

Table 9.5. Properties for drBasic.dsr AuthorsDR.

OBJECT Property Setting

DataReport Name drBasic

DataMember Command1

DataSource DataEnviroment1

4. The fields to be displayed can be added in two ways. The first method is to draw the fields on the report, then assign the
proper DataMember and DataField properties to them. The second method is to open the Data Environment window, and
drag and drop the fields directly on the report. After a field is dropped onto the detail section of the report, the field and its
caption are displayed on the report. Arrange the items as shown in Figure 9.5.

Figure 9.5. Arranged report objects.

5. Set the properties of the objects on the report form as in Table 9.6.

Table 9.6. Objects on drBasic.dsr.

OBJECT Property Setting

RptCaption Name lbTitle

Font Arial

Size 12

Caption "List of Authors"

RptCaption Name lbAuthorTitle

Font Arial

Caption Author:

RptCaption Name lbYearTitle

Font Arial

Caption "Year Born:"

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (6 of 48) [9/22/1999 2:04:53 AM]

javascript:popUp('09vdb35.gif')
javascript:popUp('09fig36r.gif')
javascript:popUp('09vdb37.gif')
javascript:popUp('09vdb38.gif')

RptText Name txtAuthor

Font Arial

DataField Author

DataMember Command1

RptText Name txtYearBorn

Font Arial

DataField "Year Born"

DataMember Command1

DataSource DataEnviroment1

6. Remove the form called Form1 that was automatically created when you started Visual Basic. Set the Startup Object to the
report form. Run the project.

HOW IT WORKS

First, a Data Environment must be defined. This is the gateway through which the report retrieves its data. Then, the report is
assigned to a Data Connection. The structure of the Data Connection is mirrored by the report. Dragging and dropping the fields into
the report creates the report layout. By running the Visual Basic project the report and data is displayed. At run-time the user can
easily print or export the report.

Comments

Creating a Data report consists of three basic steps. First, a data connection must be created. This is the object the report will use to
retrieve the data. With Visual Basic 6 the new Data Environment is very powerful and flexible as it enables the Data Reports to
retrieve data from various data types. You are not limited to just Access MDB files, but can get data from any ODBC DataSource or
use the built in functionality to connect directly to an Microsoft SQL server or an Oracle database.

The second step is to assign the report to a Data Connector created in the Data Environment and use the "Retrieve Structure" option
so the report section matches the data connection.

The third step is to add the report controls to the report. These controls will display the data the report retrieves. These controls can
range from displaying the names of the fields to calculated items that summarize data in the report.

9.2 How Do I...

Add Calculated Fields to my Microsoft Data Report?

Problem

I have a report that generates a list of items. I need to have the report count the number of items in the list.

Technique

Using the Data Report designer included with Visual Basic 6, you can create reports that can do various calculations based on the
data in the report.

This How-To will demonstrate how to make a group based on the Authors field and add a calculated field that will display the
number of books each author has written. This How-To will be a base demonstration how to add calculated fields to a Data Report.

Steps

Open and run DataProject.vbp, which displays the Figure 9.7. This displays each author's list of book and a count of the number of
books per author. By using the toolbar at the top of the report you can print or export the report.

1. Start Visual Basic and select a new Data Project. This will add the Data Environment and Data Report to the project.
Remove the form that was added to the project and set the Data Report as the Startup object.

2. From the Project menu select the Add Data Environment. Double-click on the DataEnvironment1 object that was added to
the Project window. Right-click on the Connection folder and select the Add Connection item from the popup menu.
Right-click on the Connection1 object and select the Properties item from the popup menu. Select the Microsoft Jet 3.51

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (7 of 48) [9/22/1999 2:04:53 AM]

OLE DB provider. The next dialog box that appears is used to find the BIBLIO.MDB file on your computer. Click the OK
button. Right-click on the Command folder and select the Add Command item from the popup menu. Command1 will be
added under the Commands folder. Right click on Command1 and select the Properties from the popup menu. Using the Data
Object dropdown select the Tables item. Using the Object Name dropdown select the Titles item.

Steps 1 and 2 were to set up the Data Environment. Please refer to the chapters in this book for a more detail on the Data
Environment.

3. Under the Grouping tab, check the Group Command Object checkbox. This will enable the items in the tab. Click on the
Author field and click the ">" button. This will cause the Data Environment to group the data by Author. Click the OK button.

4. Set the DataMember and DataSource of the Data Report. Right-click on the bottom of the report and select the Retrieve
Structure item from the popup menu. This will arrange the sections of the Data Report to match the data used.

5. Place the controls on the data report form as in Figure 9.6. Set the properties of the controls as in Table 9.7.

Figure 9.6. Objects arranged on the report.

Figure 9.7. The project at runtime.

Table 9.7. Objects and properties for drBasic.dsr.

OBJECT Property Setting

DataReport Name DataReport1

DataMember Command1_Grouping

RptLabel Name lbTitle

Font Arial

FontSize 14.25

Caption "Number of Books per Author"

RptText Name "txtAuthor"

Font Arial

FontSize 12

DataField Author

DataMember Command1_Grouping

RptLabel Name Label2

Caption Title:

RptLabel Name Label3of

Caption "Year Published:"

RptText Name txtTitle

DataField Title

DataMember Command1

RptText Name txtYearPublished

DataField "Year Published"

DataMember Command1

RptFunction Name Function1

DataField Title

DataMember Command1

FunctionType 4 - rptFunRCnt

RptLabel Name lbTotalBooks

Caption "Total Books by Author"

RptLabel Name Label1

Caption "%p"

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (8 of 48) [9/22/1999 2:04:53 AM]

javascript:popUp('09vdb39.gif')
javascript:popUp('09vdb40.gif')

RptLabel Name lbPageTitle

Caption Page

RptLabel Name lbof

Caption of

RptLabel Name Label4

Caption "%P"

6. Run the project. It might take a few minutes to retrieve the data from the database. The result should be displayed as in
Figure 9.7.

How It Works.

The report retrieves the data from the Data Environment. The Data Environment queries the database and groups the data by author.
The rptFunction control that has been placed in the Group footer displays the total number of books per author. The rptFunction
control can do various functions as in Table 9.8.

Table 9.8. rptFunction control functions description.

FUNCTION Setting Description

Sum 0 - rptFuncSum Adds the values of the field

Average 1 - rptFuncAve Averages the values of the field

Minimum 2 - rptFuncMin Displays the minimum value of the field

Maximum 3 - rptFuncMax Displays the maximum value of the field

Row Count 4 - rptFuncRCnt Displays the number of rows in a section

Value Count 5 - rptFuncVCnt Displays the number of rows containing non-null values

Standard Deviation 6 - rptFuncSDEV Displays the standard deviation

Standard Error 7 - rptFuncSERR Displays the standard error

The rptFunction can be used to do various calculations based on the type of data in the field. By placing the rptFunction control
in either a group or report footer, you can perform calculations on fields contained in the report.

Comments

Grouping is a very powerful function when generating reports. Grouping enables the report to list similar items together in the report.

For Example, the books were not added sequentially in the database, so when retrieving a list of authors and their books from the
database all the authors are mixed up in the list. Grouping allows report to present all the books for one author then another. Another
example is when creating a report to list the books per publisher. The grouping would be done on publishers not authors.

9.3 How Do I...

Select whether the Microsoft Data Report will be displayed, printed, or exported using
Visual Basic code?

Problem

I need to create an application that enables the user to choose the output method for the report. I would like the user to be able to
choose whether the report is previewed to the screen, printed to the printer, or exported to a file.

Technique

The data report has various methods defined to output a report. By using these methods, the programmer can determine the output
method for the report. This How-To will demonstrate the ways in which the application can enable the user to choose the output
method for the report.

The PrintReport method will be used to print the report directly to the Printer. This method can be set to print directly to the

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (9 of 48) [9/22/1999 2:04:53 AM]

printer without any user intervention, or the method can be used to display a dialog box to enable the user to select the print range
and the number of copies to be printed.

The ExportReport method will be used to generate a file of the report data. This method can be set to generate the file without
any user intervention or a dialog can be displayed so the user can select the file type and the page range.

The Show method will be used to display a print preview window of the report. This method is the same used to display any other
Visual Basic form.

Steps

Open and run the OutputType.vbp project. This project enables the user to display, print, or export the report. When printing or
exporting a report, the user can select the page range to be used. This is useful in large reports.

1. Start Visual Basic and choose a new Data Project. Have the Data Environment point to the BIBLO.MDB database.

2. Lay out the form as in Figure 9.8 and set the properties of the objects as in Table 9.9.

Figure 9.8. Arrangement of form frmOutPut.frm.

Table 9.9. rptFunction control functions description.

OBJECT Property Setting

Form Name frmOutPut

Caption "Data Report Output"

Frame Name frExport

Caption "Export Options"

CheckBox Name chkExport

Caption "Show Export Dialog"

TextBox Name txtStartPageEx

TextBox Name txtPrintToEx

ComboBox Name cbExportType

Label Name lbExportType

Caption "Export Type"

Label Name lbStartPageEx

Caption "Start Page:"

Label Name lbPrintToEx

Caption "Print To:"

CommonDialog Name CD

Frame Name frPrint

Caption "Print Options"

TextBox Name txtPrintTo

TextBox Name txtStartPage

CheckBox Name chkShowDialog

Caption "Show Print Dialog"

Label Name lbPrintTo

Caption "Print To:"

Label Name lbStart

Caption "Start Page:"

CommandButton Name cmdExit

Caption Exit

CommandButton Name cmdExport

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (10 of 48) [9/22/1999 2:04:53 AM]

javascript:popUp('09vdb41.gif')

Caption Export

CommandButton Name cmdPrint

Caption "Print"

CommandButton Name cmdPreview

Caption Preview

3. Add the following code in the Load event of the Form:

Private Sub Form_Load()
 cbExportType.AddItem "1 - HTML"
 cbExportType.AddItem "2 - Text"
 cbExportType.AddItem "3 - Unicode HTML"
 cbExportType.AddItem "4 - Unicode Text"
 cbExportType.ListIndex = 0
End Sub

This procedure will add the export types to the list box so the user can choose the format in which the report will be exported.

4. Add the following code to the Click event of the cmdPreview button:

Private Sub cmdPreview_Click()
 DataReport1.StartUpPosition = 0
 DataReport1.WindowState = 2
 DataReport1.Show
End Sub

This procedure will maximize the size of the report windows to the full screen, then display the report.

5. Add the following code to the Click event of the cmdPrint button:

Private Sub cmdPrint_Click()
 Dim fReturn As Long
 If txtStartPage.Text <> "" Or txtPrintTo.Text <> "" Then
 If IsNumeric(txtStartPage.Text) = False Or _
IsNumeric(txtPrintTo.Text) = False Then
 MsgBox "The start or end pages to print is invalid.", _
64
 Exit Sub
 End If
 End If
 If txtStartPage.Text = "" And txtPrintTo.Text = "" Then
 fReturn = DataReport1.PrintReport(chkShowDialog.Value * _
-1, rptRangeAllPages)
 Else
 fReturn = DataReport1.PrintReport(chkShowDialog.Value * _
-1, _
 txtStartPage.Text, txtPrintTo.Text)
 End If
 If fReturn = 2 Then
 MsgBox "Print Job Sent to Printer."
 Else
 MsgBox "Print Job Cancelled"
 End If
End Sub

This procedure prints the report to the printer. There are three variables that can be passed to the PrintReport method. The
first value is a Boolean value that determines if the Print dialog box is displayed. The second determines if all the pages are to
be printed. If the second value is not set to rptRangeAllPages, then a third value can be used to determine the range of
pages that will be printed.

6. Add the following code to the click event of the cmdExport button:

Private Sub cmdExport_Click()
 Dim Overwrite As Boolean

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (11 of 48) [9/22/1999 2:04:53 AM]

 If txtStartPageEx.Text <> "" Or txtPrintToEx.Text <> "" Then
 If IsNumeric(txtStartPageEx.Text) = False Or IsNumeric(txtPrintToEx.Text) =
False Then _
 MsgBox "The start or end pages to print is invalid.", _
64
 Exit Sub
 End If
 End If
 CD.ShowSave
 If CD.FileName <> "" Then
 If Dir(CD.FileName) <> "" Then
 Ans% = MsgBox("Do you want to overwrite this file ?", _
vbQuestion Or vbYesNo)
 If Ans% = 6 Then
 Overwrite = True
 Else
 Overwrite = False
 End If
 Else
 Overwrite = False
 End If
 If txtStartPageEx.Text = "" And txtPrintToEx.Text = "" _
Then
 DataReport1.ExportReport
DataReport1.ExportFormats(CLng(Left$(cbExportType.List _
(cbExportType.ListIndex), 1))).Key, CD.FileName, Overwrite, _
chkExport.Value * -1, rptRangeAllPages
 Else
 DataReport1.ExportReport DataReport1.ExportFormats _
(CLng(Left$(cbExportType.List(cbExportType.ListIndex) _
, 1))).Key, CD.FileName, Overwrite, chkExport.Value * -1, _
txtStartPageEx.Text, txtPrintToEx.Text
 End If
 End If
End Sub

The ExportReport method is used to export a report to a file. There are two primary file types, HTML and text. Unicode
versions of both types can also be exported. The ExportReport method has four (five if all pages are not selected) variables
which can be passed to the method. The first is the format type in which the report will be exported. If this value is left blank, a
dialog box will appear, asking the user which format is preferred. There are various ways to pass the export type using code.
This example uses the ExportFormats collection of the report. These are predefined types as outlined in Table 9.10. The
second value is the filename of the report to be written. In this example, the filename is set from the Common dialog box. The
third variable determines if a file should be overwritten. The fourth variable determines if the Export dialog box should be
displayed. The next two variables are identical to those used in PrintReport method and determine the page range to be
exported.

Table 9.10. Export file types.

EXPORT TYPE Constant Description

HTML rptKeyHTML Export in HTML Format

HTML Unicode rptKeyUnicodeHTML_UTF8 Export in HTML Unicode Format

Text rptKeyText Export in Text Format

Text Unicode rptKeyUnicodeText Export in Text Unicode Format

Note that if the overwrite variable is set to False and if an attempt is made to overwrite a file, the Export dialog box will
appear.

7. Add the following code to the Click event of the cmdExit button:

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (12 of 48) [9/22/1999 2:04:53 AM]

Private Sub cmdExit_Click()
 End
End Sub

Clicking this button will cause the application to end.

8. Lay out the report as in Figure 9.9. Set the properties as in Table 9.11.

Figure 9.9. The arrangement of the report DataReport1.dsr.

Table 9.11. Object and Properties for DataReport1.

OBJECT Property Setting

DataReport Name DataReport1

DataMember Command1_Grouping

rptLabel Name lbTitle

Font Arial

FontSize 14.25

Caption "Number of Books per Author"

RptTextbox Name txtAuthor

Font Arial

FontSize 12

DataField Author

DataMember Command1_Grouping

RptLabel Name Label2

Caption Title:

RptLabel Name Label3

Caption "Year Published:"

RptTextbox Name txtTitle

DataField Title

DataMember Command1

RptTextbox Name txtYearPublished

DataField "Year Published"

DataMember Command1

RptFunction Name Function1

DataField Title

FunctionType 4 - rptFuncCnt

DataMember Command1

RptLabel Name lbTotalBooks

Caption "Total Books by Author"

RptLabel Name Label1

Caption "%p"

RptLabel Name lbPageTitle

Caption Page

RptLabel Name lbof

Caption of

Rptlabel Name Label4

Caption "%P"

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (13 of 48) [9/22/1999 2:04:53 AM]

javascript:popUp('09vdb42.gif')

9. Run the project. Try the various combinations of report output.

How It Works

The Show method works as it does with a Visual Basic form. It has the report display to the screen. Before displaying the report to
the screen settings like StartupPosition and WindowState can be set. The same properties used to display Visual Basic
forms can be used to tailor the placement and position of the report on the screen when it is displayed.

The PrintReport is used to print the report directly to the printer. Setting the ShowVariable of the PrintReport
determines if the report will be automatically routed to the printer or if a dialog box will appear to ask the user the page range and
number of copies to be printed. Setting the range determines the pages that will be printed. If a value for the range is not set, all the
pages will be printed.

The ExportReport method is a very powerful function. It can be used to export reports as text, HTML, or a user-defined HTML
format. This method has six variables to set to control the way the report will be exported to a file.

ExportReport(ExportFormat, filename, Overwrite, ShowDialog, Range, PageFrom, PageTo)

The ExportFormat variable (ExportFormats collection item) is used to set the type of file that will be exported. This variable
is a member of the ExportFormats collection. The ExportFormats is a collection that stores the type of report formats that
can be exported. The ListBox was populated with the default items of the ExportFormats collection. The first character of
each item in the ListBox is the index of that export type in the ExportFormats collection. The Left$ function is used to grab
the number from the item displayed in the ListBox.

The filename variable (a String value) is used to set the name of the file that will be generated. If a full path (such as
C:\data\mynewfile.html) is not defined, the current working folder will be used.

The overwrite variable (a Boolean value) is set to determine if a file already exists as defined by the filename variable should be
overwritten. If this value is set to False and a file does exist, then the Export dialog box will appear as if the ShowDialog variable
was set to True.

The ShowDialog variable (a Boolean value) determines is the Export File dialog box is shown. If this value is True then the filename
variable does not need to be set.

The Range variable(s) (a Long value) is set to determine the range of pages that will be exported.

Comments

By using Visual Basic code, a programmer can create an application that generates reports with or without any user intervention. This
How-To could be a primer to create an application that prints large reports at night or generates HTML pages to be displayed on the
Web.

9.4 How Do I...

Have Visual Basic generate a Microsoft Data Report based on criteria I choose?

Problem

How do I pass parameters to the query in which my report is based?

Technique

Using Visual Basic and the Microsoft Data Reports, build an application that passes a variable as a parameter to a query contained in
a Data Environment. The database used will be the BIBLIO.MDB. The recordset will be based on an SQL statement entered into the
connection.

Steps

Open and run DataProject.vbp, which displays the screen in Figure 9.13. From this screen the report can be printed to a printer or
exported to a file.

Adding and configuring the Data Environment in this How-To is similar to adding one in How-To 9.2. In this How-To, the Data
Connection uses a SQL statement instead of retrieving data directly from a table in the BIBLIO database.

1. Start Visual Basic and select a new Data Project. This will add a Form, Report, and Data Environment automatically to your

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (14 of 48) [9/22/1999 2:04:53 AM]

project.

2. Double-click the DataEnvironment1 item in the Project Explorer window. This causes the Data View window to appear.
Right-click on the Connection1 connection and select the Properties item from the popup menu. The dialog box in Figure 9.10
will appear. Select Microsoft Jet 3.51 OLE DB Provider. Click on the Next button and select the BIBLIO.MDB database, then
click the OK button. The BIBLIO.MDB database should be in the same folder as Visual Basic.

3. Right-click on the Command folder in the Data View window and select the Add Command item from the popup menu.
You will see Command1 appear under the Commands folder. Right click on the Command1 command and select Properties
from the popup menu. Click the SQL Statement radio button and enter the SQL statement found in Figure 9.10 and as shown
below.

SELECT Author, ´Year Born´ FROM Authors WHERE (´Year Born´ = ?)

Figure 9.10. Data View window displaying SQL Statement.

4. Click on the Parameters tab and set the values of the parameter as in Figure 9.11. Then click on the OK button.

The variable will be assigned to this parameter, and the report will be generated based on the selected criteria.

5. Lay out the form as shown in Figure 9.12. Set the properties of the objects on the form as in Table 9.12.

Figure 9.11. The Parameter Tab.

Figure 9.12. Form frmDataEnv.frm.

Table 9.12. Objects and Properties of the frmDataEnv.frm Form.

OBJECT Property Setting

Form Name frmDataEnv

Caption "What Year ?"

CommandButton Name cmdRunReport

Caption "Run Report"

TextBox Name txtYear

6. Add the following code in the Click event of the cmdRunReport button.

Private Sub cmdRunReport_Click()
 If IsNumeric(txtYear.Text) = True Then
 DataEnvironment1.Command1 txtYear.Text
 DataReport1.Show
 Else
 MsgBox "Please enter a valid year, YYYY", 64
 End If
End Sub

This code passes the variable from the text box to the parameter contained in Data Environment. This means the end of messy
parsing and building SQL statement in code. The Data Environment is built and the parameters are defined, which makes
passing variables to SQL statements as simple as using methods.

How It Works

By having the database connection based on a SQL statement with a parameter, the Visual Basic application can easily pass a value
to the parameter to be used to query the database. No longer is there a need to create SQL in Visual Basic code on the fly for passing
to a recordset. A database connection can be created, and a value can be passed cleanly to it, on which the recordset can be based.

Comments

A major difference between the Data Report designer and Crystal Reports is the way parameters are passed to the report engine.

Using the Data Reports, all the record selection is done by the Data Connection of the Data Environment. The report requests the data
from the Data Connection, and it in turn does all the work of retrieving the proper data; the Data Report does not worry about that at
all.

Crystal Reports does this in a completely different manner (as seen in How-To 9.5).

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (15 of 48) [9/22/1999 2:04:53 AM]

javascript:popUp('09vdb43.gif')
javascript:popUp('09vdb44.gif')
javascript:popUp('09vdb45.gif')

To set the criteria for Crystal Reports formula, follow these steps:

1. A formula must be defined when creating the report with the Crystal Reports' designer.

2. A Crystal Reports formula (a string) is set to the Selection Formula property of Crystal OLE control.

9.5 How do I...

Determine which records will be printed using Crystal Reports?

Problem

The recordset I need to print changes each time a report is run. How can I let the application user specify at runtime which records to
print?

Technique

Many of the parameters used to print a Crystal report through a Visual Basic application can be set using the Crystal Reports custom
control. In this How-To, you'll create a simple report of authors and the computer books they've written. Because our BIBLIO.MDB
file contains several of the authors' birth years, you can write a Visual Basic program that enables users to set a range of birth years to
be printed, set a minimum or a maximum birth year, or set no limits at all, printing all the authors.

Steps

Load and run the Visual Basic application Authors.vbp. The form shown in Figure 9.13 appears. Enter a starting or an ending year, or
both, and click the Run Report button to print the report to a preview window. The BIBLIO.MDB contains more than 16,000 authors,
so job this might take a little while.

Figure 9.13. The Author Birth Range selection form.

Start by creating a simple report that can be modified through Visual Basic during printing. Start the Crystal Reports program.

1. Click the New Report toolbar button or select File|New from the main menu. The New Report Gallery appears, as shown in
Figure 9.14. Click the "Standard" option button.

Figure 9.14. The New Report Gallery.

2. When the Create Report Expert appears, click the Data File button, and use the common dialog to select the location of your
Biblio.MDB file.

3. Click the Next button to proceed to tab 2: Links. Notice that Crystal has automatically created a set of table Smart Links
based on fields with the same names in different tables (see Figure 9.15) .

Figure 9.15. Automatic table links defined by Crystal Reports.

4. Click the Next button to proceed to tab 3: Fields. Add the fields listed in Table 9.13 to your report by double-clicking on the
field name or selecting the field name and clicking Add.

Table 9.13. Computer author report tables and fields.

TABLE Field

Authors Author

Authors Year Born

Titles Title

Titles Year Published

5. On tab 4: Sort, add the Authors.Author field as a grouping field, and specify ascending order.

6. On tab 5: Total, remove Authors.Year Born and Titles.Year Published from the Total Fields box. Add the
Titles.Title field and specify count as the function in the pull-down list, as shown in Figure 9.16. Remove the
checkmark next to Add Grand Totals.

7. Ignore tab 6: Select, and proceed to tab 7: Style. Enter the text A Time for Computer Authors as the report title.

8. Click Preview Sample to view the results. Enter First 500 for the number of records to view. Experiment with the
Report Zoom button (three different-sized squares), page navigation (upper-right), and scrollbars. Hint: Crystal's button hints

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (16 of 48) [9/22/1999 2:04:53 AM]

javascript:popUp('09fig02.gif')
javascript:popUp('09fig03.gif')
javascript:popUp('09fig04.gif')

float in the status bar on the bottom right of the screen.

Figure 9.16. Author report total fields.

9. Click on the Design tab to return to design mode. Your report design should look like Figure 9.17. Move the Year Born
data field from the Details band to the Group #1 Header band. Delete the Author field from the Details band.

Figure 9.17. Author report design view.

10. Modify the number formats for Year Born and Year Published by right-clicking each field and choosing Change
Formats. The dialog box shown in Figure 9.18 appears. Uncheck the Thousands Separator box.

Figure 9.18. The Crystal Format Number dialog box.

11. Save the report as Authors.rpt for use from the Author Birth Range form.

12. Create a new Standard EXE Visual Basic project in your work area. Save the default form as Authors.frm and the project
as Authors.vbp.

13. From the Project Components menu, select Crystal Report Control and Microsoft Common Dialog Control 6.0, and click
OK.

14. Place controls on the form as shown previously in Figure 9.13, setting the properties as shown in Table 9.14. Note that the
common dialog and Crystal Report controls are invisible at runtime, so place them anywhere that is convenient.

Table 9.14. Objects and properties for Authors.frm.

OBJECT Property Setting

Form Name frmAuthors

Caption "Author Birth Range"

TextBox Name txtEnd

TextBox Name txtStart

CommandButton Name cmdQuit

Caption "Quit"

CommandButton Name cmdReport

Caption "Run Report"

CommonDialog Name cdOpenReport

CrystalReport Name crptAuthors

Label Name Label2

Caption "End Year:"

Label Name Label1

Caption "Start Year:"

15. Select the Crystal Report control. Invoke the custom property pages for the control by clicking the Custom property
in the property box and then the ellipsis button (...). The Property Pages dialog box shown in Figure 9.19 appears.

Figure 9.19. Crystal Report control property pages.

16. Be sure that the Crystal Report General properties are set as shown in Table 9.15. The ReportFileName text box is left
blank because that value will be set using the common dialog control.

Table 9.15. Custom properties.

PROPERTY Setting

ReportFileName ""

Destination To Window

17. Add the following code to the form's Load event procedure. This code simply moves the form to the lower-right portion of
the screen, out of the way of the report window when it appears.

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (17 of 48) [9/22/1999 2:04:54 AM]

javascript:popUp('09fig05.gif')
javascript:popUp('09fig06.gif')
javascript:popUp('09fig07.gif')
javascript:popUp('09fig08.gif')

Private Sub Form_Load()
 `Move the form to the lower-right of screen
 Me.Move Screen.Width - 1.1 * Me.Width, _
 Screen.Height - 1.25 * Me.Height
End Sub

18. Insert the following code in the Click event procedure of the cmdReport command button. This code performs two
main functions: validating the data that has been entered in the two text boxes and setting the properties of the Crystal Report
control.

Validation is performed for simple errors in the start and end years--checking that the start year is before or equal to the end
year and that the years are in a reasonable range for computer book authors (being conservative: 1850 to the present!).

Private Sub cmdReport_Click()
 Dim strSelectCritera As String
 Dim strDbName As String
 Static strSaveDir As String
 `Check for errors in the input year boxes
 If (Val(txtStart.Text) > Val(txtEnd.Text)) And _
Val(txtEnd.Text) Then
 MsgBox "Start year must be before End year."
 Exit Sub
 End If
 If Val(txtStart.Text) And Val(txtStart.Text) < 1850 And _
 Val(txtStart.Text) > Year(Now) Then
 MsgBox "Please enter a start year in the range 1850 to " & _
Year(Now)
 Exit Sub
 End If
 If Val(txtEnd.Text) And Val(txtEnd.Text) < 1850 And _
 Val(txtEnd.Text) > Year(Now) Then
 MsgBox "Please enter an ending year in the range 1850 to " _
& Year(Now)
 Exit Sub
 End If
 `Get the file to print using Common Dialog
 cdOpenReport.InitDir = strSaveDir
 cdOpenReport.ShowOpen
 `Let's be nice and "remember" the directory for the next use
 strSaveDir = cdOpenReport.filename
 If Len(cdOpenReport.filename) Then
 `Adding the data to the control
 crptAuthors.Destination = 0 `To Window
 crptAuthors.ReportFileName = cdOpenReport.filename
 If Len(txtStart.Text) And Len(txtEnd.Text) Then
 `Year range entered
 strSelectCritera = "{Authors.Year Born} in " & _
 txtStart.Text & " to " & txtEnd.Text
 ElseIf Len(txtStart.Text) And Len(txtEnd.Text) = 0 Then
 `Only starting year selected
 strSelectCritera = "{Authors.Year Born} >= " & _
 txtStart.Text
 ElseIf Len(txtStart.Text) = 0 And Len(txtEnd.Text) Then
 strSelectCritera = "{Authors.Year Born} <= " & _
 txtEnd.Text
 Else
 `Both boxes are emtpy; don't limit range
 strSelectCritera = ""
 End If
 crptAuthors.SelectionFormula = strSelectCritera

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (18 of 48) [9/22/1999 2:04:54 AM]

 ` Get the Biblio.mdb database location
 strDbName = strBiblioDb()
 ` Assign the data file location for the report
 crptAuthors.DataFiles(0) = strDbName
`Run the report
 crptAuthors.Action = 1
 Else
 `User pressed Cancel in Common Dialog
 MsgBox "No report file selected."
 End If
End Sub

After activating a common dialog Open File window to get the name of the report to use (select AUTHORS.RPT), the program
sets several properties of the Crystal Report control: Destination, ReportFileName, and SelectionFormula.
Remember that you set a few properties in the control as well. The program checks to see that a combination of start and end
were selected (all records will print if nothing was entered) and creates the selection string used to set the
SelectionFormula property. Finally, the report is printed by setting the Crystal Report control's Action property to 1.

19. Add the following code to the Click event of the cmdQuit command button, to provide an exit point from the program:

Private Sub cmdQuit_Click()
 Unload Me
End Sub

How It Works

All the actions of the Crystal Reports control are controlled by the way various properties are set. A number of properties can specify
exactly how the report is printed, as listed in Table 9.15 at the end of the chapter. There are additional properties, but those listed in
the table are the most useful in controlling the print behavior of the report.

Setting the Action property of the control to 1 causes the report to print. The Crystal Reports control uses this property as a
pseudo-control method. It is very important to note that printing the report does not tie up the program at the point where the
Action property is set to 1. In most cases, after the report writer has begun, the Visual Basic program continues executing, so you
can't perform any actions that are dependent on the completion of the report. On the other hand, your program can continue executing
and performing other tasks while the report prints.

Crystal Reports Formula Formats

For the control properties that require formulas, such as SelectionFormula and GroupSelectionFormula, the formulas
specified must be in the Crystal Reports format, which is quite different from the format of a Visual Basic statement. The formula
itself is used to set the property as a Visual Basic string, so any literal strings needed in the formula must be enclosed in single
quotation marks. In the case of the Sub procedure, cmdReport_Click, in this How-To, this formula is used when both a starting
year and an ending year are specified:

"{Authors.Year Born} in " & txtStart.Text & " to " & txtEnd.Text

If the start year is 1940 and the end year is 1950, the actual formula sent to Crystal Reports is this:

"{Authors.Year Born} in 1940 to 1950"

The following example shows how a string in the Visual Basic variable stateName would be coded:

"{Market.State} = `" & stateName & "`"

Note the inclusion of the single quotation marks, because the string literal must be enclosed by single quotation marks. If California
is the contents of the stateName variable, Crystal Reports receives this statement as this:

"{Market.State} = `California'"

It is very important to avoid extraneous spaces in the string sent to the report. If the preceding Visual Basic string were instead set to

"{Market.State} = ` " & stateName & " `"

the following formula would be sent to the report:

"{Market.State} = ` California `"

As a result, only records with a leading space before "California" would print in the report, because of the extra space at the
beginning of the criteria string.

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (19 of 48) [9/22/1999 2:04:54 AM]

More information about Crystal Reports formula formats can be found in the documentation for Crystal Reports.

Comments

Crystal Reports selects records differently than Microsoft Data Reports. With Crystal Reports, a String is created and assigned to the
SelectionFormula properties of the Crystal Reports OLE control. If you are creating a formula to pass to the SelectionFormula
property, all the error-checking must be done by the programmer. If the string is not valid, then Crystal Reports will generate a
runtime error but will not tell you what part of the string is incorrect.

9.6 How do I...

Create subtotals and other calculated fields using Crystal Reports?

Problem

How do I make Crystal Reports calculate subtotals and make other calculations that I need? All of my data is in an Access .MDB file,
but several of the fields I need aren't data fields at all, but are calculated from the fields in the file.

Technique

Crystal Reports supports a rich set of calculation tools and functions that enable you to make almost any type of calculation on
database field data. It usually takes some work to get everything working properly, but when you are finished, you will have a
powerful tool that can be used repeatedly.

In this How-To, you'll use those tools to create a bulk mail report, which can be used as the basis for completing the post office
paperwork for bulk mailings. Getting the figures needed for the postage calculation involves sorting the zip codes, counting them in
various groups, and checking to see which groups meet the minimum quantity requirements for the lowest postage rates.

Bulk Mailing Basics

This chapter won't be a primer on bulk mailing (the rules change constantly anyway), but here are a few basics so that the report
created in this How-To will be clearer. The premise of the bulk mailing system is that if you are willing to do some of the work for
the post office, you should get a break on postage. The breaks are attractive enough that a whole mailing industry has arisen around
preparing mailings to qualify for those breaks.

This How-To uses a subset of all the different bulk mail categories. The categories you'll design into the report are five-digit presort,
three-digit presort, state presort, and first class (the "catch-all" category). When you sort bulk mail, follow these steps:

1. Sort all the mailing pieces into groups that have 10 or more pieces going to the same first five digits of the zip code. Bundle
those by the five-digit zip code, count them, and multiply the total by .191, the lowest postage cost of the categories used here.
This gives you the total cost of that category of mail.

2. From the remaining pieces of mail (those that don't have at least 10 pieces per five-digit zip code), sort and extract the pieces
that have at least 10 pieces going to the same first three digits of the zip code. Bundle those groups, multiply the postage by
.191, and set them aside.

3. Again from the remaining pieces, select and sort all the pieces that have at least 10 pieces going to the same state. Bundle,
calculate the postage using .238 per piece, and set the pieces aside.

4. Finally, gather all the remaining pieces and place first-class stamps on them. They can go with the mailing, but you aren't
saving any money on them.

Before you start planning to pay your bills using bulk mail, you must have several hundred pieces mailed at the same time, and the
same item must be mailed to every address. You can't even include a note in that letter, unless you include the same note to all the
other people.

There is actually another category after the state level for multi-state pieces, but each additional layer complicates things at an
increasing rate. So, to avoid having an entire book about a single Crystal report for bulk mailing, this How-To is limited to these
categories.

Steps

The steps in this How-To show in detail how to create a bulk mail report that calculates postage and sorting order. On completion,
the report, which will look as shown in Figure 9.20, will show two windows: one showing the report header and the other showing

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (20 of 48) [9/22/1999 2:04:54 AM]

the report footer.

To open and run a report in Crystal Reports, select File|Open from the Crystal main menu, and select the BULKMAIL.RPT report.
To print the report, click the Print button on the toolbar, or select File|Print from the main menu. To preview the report onscreen,
click the Print Preview button on the toolbar, or select File|Print Preview from the Crystal Reports main menu. The general design
details are shown in the various tables throughout this How-To. You'll go through the individual steps needed to create the bulk mail
report. Figure 9.21 shows the main report elements in the Crystal Reports design window.

1. This How-To uses the MAIL.MDB database described in the introduction to this chapter. Start Crystal Reports, and start a
new report by clicking the New Report toolbar button or selecting File|New from the main menu. Click on Standard when the
Create New Report Gallery appears.

2. Click on Data File when the Create Report Expert appears. Use the dialog box to find the MAIL.MDB Access database file.
Click Done to close the dialog box.

3. From the Fields tab, add the Contact, City, State, and Zip fields from the MailingList table.

4. On the Style tab, enter Bulk Mail Calculation Report as the title.

Figure 9.20. Print preview of bulk mail report.

Figure 9.20.

Figure 9.21. Crystal Reports design window for bulk mail reports.

5. Insert a formula field by either clicking the Insert Formula toolbar button or selecting Insert formula Field from the main
menu. Name the formula @Zip5Increment. Be sure to leave off the @ when typing the name. Enter the following code in
the Edit Formula window:

WhilePrintingRecords;
NumberVar Zip5Count;
Zip5Count := Zip5Count + 1;

The Edit Formula window should look like Figure 9.22 when you have entered the @Zip5Increment formula text. Click
the Check button to have Crystal Reports evaluate the formula and check for errors. Click Accept when you're finished. After
the Edit Formula window closes, your cursor is dragging a dotted box around the design window. Move your cursor to the
Page Footer section of the screen, and click your left mouse button. This click "drops" the new field onto the report page. Don't
worry about the exact location because we will hide the field later.

Figure 9.22. The Zip5Increment formula entry.

6. In the same way, enter the @TotalCountIncrement formula:

WhilePrintingRecords;
NumberVar Zip5Count;
Zip5Count := Zip5Count + 1;

7. Format the newly added fields by right-clicking each one and choosing Change Format from the popup menu. Check the
Hide when printing box. (Notice the other format choices available, and try to keep the formatting options in mind when you
develop your reports.)

8. Shorten each of the fields and headers by approximately one-half inch, and move all the fields to the right side of the page.
Click on the Contact header, and then Ctrl-click on the contact field. Click over one of the black "ears" on the one Contact
header, and shorten the field. You can also select multiple fields by choosing Edit|Select Fields from the main menu or by
clicking the Select Fields toolbar button. After you make all the detail fields smaller, place them toward the right side of the
detail line to leave room for section headers on the left side of the page.

9. Add a section to the report to group information by state. Select Insert|Group Section from the Crystal Reports main menu.
From the first list box, select Mailing List.STATE. Note that the outermost group sections must be entered first, because
subsequent sections will be inserted within the preceding innermost section. Make sure that the sorting field is set to ascending
order, which is the default. Click OK to create the report section.

10. Insert the STATE field in the #1 State group by using Insert|Database Field from the main menu or the Insert Database
Field toolbar button.

11. Insert the formula @StatePrint, which prints the total number of state addresses if they number at least 10. Place the
field to the far right in the #1 State group footer band.

WhilePrintingRecords;
NumberVar StateCount;

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (21 of 48) [9/22/1999 2:04:54 AM]

http://www.pbs.mcp.com/ebooks/1571691529/ch09/09fig09a.gif
javascript:popUp('09fig09b.gif')
javascript:popUp('09fig10.gif')
javascript:popUp('09fig11.gif')

NumberVar StateTotalCount;
NumberVar StateCost;
NumberVar StateUnitCost;
NumberVar FirstClassCount;
NumberVar FirstClassCost;
if StateCount >= 10 then
 StateCost := StateCost + (StateCount * StateUnitCost)
else
 FirstClassCount := FirstClassCount + StateCount;
if StateCount >= 10 then
 StateTotalCount := StateTotalCount + StateCount;
if StateCount >= 10 then
 StateCount;

12. Insert @StateTotalLine, which prints a text prompt for the total number of state addresses. Place the field just to the
left of the StatePrint formula field.

WhilePrintingRecords;
NumberVar StateCount;
if StateCount >= 10 then
 "Total Count for " + {Mailing List.STATE} + ": "
else
 ""

13. Insert the formula @StateReset, which resets the State count to zero. The field will be hidden, so place the field
anywhere in the #1 State group header band, make it a small width, and hide it by changing its format. It is usually convenient
to place hidden fields to the far right. This formula is placed in the header area to ensure that the StateCount variable is
reset to zero at the beginning of every state. The WhilePrintingRecords statement ensures that the Crystal Reports will
calculate this formula during printing and not before reading records.

WhilePrintingRecords;
NumberVar StateCount;
StateCount := 0;

14. Format the @StateReset field to hide it while printing. Format the @StatePrint field to have zero decimal places.
Check the Suppress if Zero box. The Format Number dialog box should look like Figure 9.23.

Figure 9.23. Formatting for zero decimal places.

15. Insert the formula field @Zip_3, which takes the first three digits of the zip code. For the moment, place the field on the
report somewhere that is convenient. You'll move it in a moment, after creating the next group section.

{Mailing List.ZIP}[1 to 3]

16. Add the three-digit Zip group section. Select Insert|Group Section from the Crystal Reports main menu. From the first list
box, select the formula @Zip_3. Make sure that the sorting field is set to ascending order, which is the default.

17. Move the @Zip_3 formula field to the far left of the #2 @Zip_3 group header band.

18. Insert the formula @Zip3Print, which prints the total number of three-digit zip code addresses if there are at least 10.
Place the field to the far right of the #2 @Zip_3 group footer band.

WhilePrintingRecords;
NumberVar Zip3Count;
NumberVar Zip3TotalCount;
NumberVar Zip3Cost;
NumberVar Zip3UnitCost;
NumberVar StateCount;
if Zip3Count >= 10 then
 Zip3Cost := Zip3Cost + (Zip3Count * Zip3UnitCost)
else
 StateCount := StateCount + Zip3Count;
if Zip3Count >= 10 then
 Zip3TotalCount := Zip3TotalCount + Zip3Count;
if Zip3Count >= 10 then
 Zip3Count;

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (22 of 48) [9/22/1999 2:04:54 AM]

javascript:popUp('09fig12.gif')

19. Insert the formula @Zip3TotalLine, which prints the text for the total number of three-digit zip addresses.

WhilePrintingRecords;
NumberVar Zip3Count;
if Zip3Count >= 10 then
 "Total Count for " + {Mailing LIst.ZIP}[1 to 3] + ": "
else
 ""

20. Insert the formula field @Zip3Reset, which resets the three-digit Zip count to zero. The field will be hidden, so place
the field anywhere in the #2 @Zip_3 group section header band, and make it a minimum width. Placing hidden fields out of
the way to the far right is usually most convenient.

WhilePrintingRecords;
NumberVar Zip3Count;
Zip3Count := 0;

21. Format the @Zip3Reset field to hide it while printing. Format the @Zip3Print field to have zero decimal places and
to suppress if zero.

22. Insert the formula field @Zip_5, which takes the first five digits of the zip code. For the moment, place the field
somewhere that is convenient on the report. You'll move it in a moment, after creating the next group section.

{Mailing List.ZIP}[1 to 5]

23. Now add the five-digit Zip group section. Select Insert|Group Section from the Crystal Reports main menu. From the first
list box, select the formula @Zip_5. Make sure that the sorting field is set to ascending order, which is the default.

24. Move the @Zip_5 formula field to the far left of the #3 @Zip_5 group section header band.

25. Insert the formula @Zip5Print, which prints the total number of five-digit zip code addresses if there are at least 10.
Place the field to the far right of the #3 @Zip_5 group section footer band.

WhilePrintingRecords;
NumberVar Zip5Count;
NumberVar Zip5TotalCount;
NumberVar Zip3Count;
NumberVar Zip5Cost;
NumberVar Zip5UnitCost;
if Zip5Count >= 10 then
 Zip5Cost := Zip5Cost + (Zip5Count * Zip5UnitCost)
else
 Zip3Count := Zip3Count + Zip5Count;
if Zip5Count >= 10 then
 Zip5TotalCount := Zip5TotalCount + Zip5Count;
if Zip5Count >= 10 then
 Zip5Count;

26. Insert the formula @Zip5TotalLine, which prints the text for the total number of five-digit zip addresses.

WhilePrintingRecords;
NumberVar Zip5Count;
if Zip5Count >= 10 then
 "Total Zip (5) Count for " + {Mailing LIst.ZIP}[1 to 5] + ": "
else
 ""

27. Insert the formula field @Zip5Reset, which resets the five-digit Zip count to zero. The field will be hidden, so place the
field anywhere in the #3 @Zip_5 group section header band, and make it a minimum width. Placing hidden fields to the far
right is usually convenient.

WhilePrintingRecords;
NumberVar Zip5Count;
Zip5Count := 0;

28. Format the @Zip5Reset field to hide it while printing. Format the @Zip5Print field to have zero decimal places and
to suppress printing if zero.

29. Set the sorting order of the fields in the report by selecting Report Sort Records from the Crystal Reports main menu. The
three group sections should already appear in the right Sort Fields list, because by default the order of group sections in the

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (23 of 48) [9/22/1999 2:04:54 AM]

report are sorted by the group field. Add the zip code field by selecting that field in the Report Fields list on the left, and either
double-click on that field or click the Add button. Make sure that the order setting is set to ascending, which is the default. The
Record sort Order window should now appear as shown in Figure 9.24.

Figure 9.24. Setting the record sort order.

30. Insert the formula field @TotalCountReset, which sets the total count to zero at the beginning of the report. The field
will be hidden, so place the field anywhere in the page header band, and make it a small width. Placing hidden fields to the far
right is usually convenient. For convenience, this field also sets the postage amounts for the different classes of mail.

WhilePrintingRecords;
NumberVar Zip5UnitCost;
NumberVar Zip3UnitCost;
NumberVar StateUnitCost;
NumberVar FirstClassUnitCost;
Zip5UnitCost := .191;
Zip3UnitCost := .191;
StateUnitCost := .256;
FirstClassUnitCost := .320;

31. Next, add the fields to the page footer. This is where you'll place the various counts and total postage for the different
classes of mail. Start by adding the @FirstClassPrint formula field, which is the total count of the "miscellaneous"
category of mail. Place the field in the top line of the page footer section, as far right as possible.

WhilePrintingRecords;
NumberVar FirstClassCount;
NumberVar FirstClassCost;
NumberVar FirstClassUnitCost;
FirstClassCost := FirstClassCount * FirstClassUnitCost;
FirstClassCount;

32. Add the @FirstClassTotalLine, which is the heading for the total count of the "miscellaneous" category of mail.
Place the field in the top line of the page footer section, just to the left of the @FirstClassPrint field.

WhilePrintingRecords;
NumberVar FirstClassCount;
"Total First Class Count: ";

33. Now add the various running and final total formula fields. Add the @Zip3CostPrint formula field, which is the total
count label of the three-digit zip category of mail. Place the field in the top line of the page footer section, at the far left.

WhilePrintingRecords;
"Zip (3) Totals:"

34. Add the @Zip3Count formula field. This is the running count of the number of pieces of mail that qualify for three-digit
zip bulk rates. Add the field just to the right of the @Zip3CostPrint field. Format the field to have zero decimal places.

WhilePrintingRecords;
NumberVar Zip3TotalCount;
Zip3TotalCount;

35. Add the @Zip3TotalCost formula field. This field prints the running cost of the three-digit zip mail. Add the field just
to the right of the @Zip3Count field. The cost of each category is calculated as you go, so all you need to do here is print the
total. Format the field to have a currency symbol by checking the Currency Symbol checkbox in the Format Number dialog
box, shown previously in Figure 9.23.

WhilePrintingRecords;
NumberVar Zip3Cost;
Zip3Cost;

36. Add the @Zip5CostPrint formula field, which is the total count label of the five-digit zip category of mail. Place the
field in the second line of the page footer section, to the far left.

WhilePrintingRecords;
NumberVar Zip5Cost;
"Zip (5) Totals:";

37. Add the @Zip5Count formula field. This is the running count of the number of pieces of mail that qualify for five-digit
zip bulk rates. Add the field just to the right of the @Zip5CostPrint field. Format the field to have zero decimal places.

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (24 of 48) [9/22/1999 2:04:54 AM]

javascript:popUp('09fig13.gif')

WhilePrintingRecords;
NumberVar Zip5TotalCount;
Zip5TotalCount;

38. Add the @Zip5TotalCost formula field. This field prints the running cost of the five-digit zip mail. Add the field just to
the right of the @Zip5Count field. The cost of each category is calculated as the mail is processed, so only the total is printed
here. Format the field to have a currency symbol by checking the Currency Symbol checkbox in the Format Number dialog
box.

WhilePrintingRecords;
NumberVar Zip5Cost;
Zip5Cost;

39. Add the @StateCostPrint formula field, which is the total count label of the state category of mail. Place the field in
the third line of the page footer section, to the far left.

WhilePrintingRecords;
"State Totals:";

40. Add the @StateCount formula field. This is the running count of the number of pieces of mail that qualify for state bulk
rates. Add the field just to the right of the @StateCostPrint field. Format the field to have zero decimal places.

WhilePrintingRecords;
NumberVar StateTotalCount;
StateTotalCount;

41. Add the @StateTotalCost formula field. This field prints the running cost of the state mail. Add the field just to the
right of the @StateCount field. The cost of each category is calculated as the mail is processed, so only the total is printed
here. Format the field to have a currency symbol by checking the Currency Symbol checkbox in the Format Number dialog
box.

WhilePrintingRecords;
NumberVar StateCost;
StateCost;

42. Add the @FirstClassCostPrint formula field, which is the total count label of the "miscellaneous" category of mail
that is charged full fare. Place the field in the second line of the page footer section, to the right of the five-digit zip
information.

WhilePrintingRecords;
"First Class Totals:";

43. Add the @FirstClassCount formula field. This is the running count of the number of pieces of mail that don't qualify
for bulk rates. Add the field just to the right of the @FirstClassCostPrint field.

WhilePrintingRecords;
NumberVar FirstClassCount;
FirstClassCount;

44. Add the @FirstClassTotalCost formula field. This field prints the running cost of the first-class mail. Add the field
just to the right of the @FirstClassCount field. The cost of each category is calculated as the mail is processed, so only
the total is printed here.

WhilePrintingRecords;
NumberVar FirstClassCost;
FirstClassCost;

45. Add @TotalCostPrint formula field, which is the total count label of all the categories of mail. Place the field in the
third line of the page footer section, below the first-class mail information.

WhilePrintingRecords;
"Mailing Totals:";

46. Add the @TotalCount formula field. This is the running count of the number of pieces of all the mail. Add the field just
to the right of the @TotalCostPrint field.

WhilePrintingRecords;
NumberVar TotalCount;
TotalCount;

47. Add the @TotalCost formula field. This field prints the running cost of all the mail. Add the field just to the right of the
@TotalCount field. The cost of each category is calculated as the mail is processed, so only the total is printed here.

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (25 of 48) [9/22/1999 2:04:54 AM]

WhilePrintingRecords;
NumberVar Zip5Cost;
NumberVar Zip3Cost;
NumberVar StateCost;
NumberVar FirstClassCost;
NumberVar TotalCost;
TotalCost := Zip5Cost + Zip3Cost + StateCost + FirstClassCost;
TotalCost;

48. When you are finished inserting the various fields and group sections, the design should look something like Figure 9.25.
This screen shows the design window with the main menu File Options Show Field Names option checked and all the hidden
fields unhidden so that they appear more clearly.

49. Select File|Print Preview to preview the report, or click on the Print Preview button in the toolbar. To print the report,
select File|Print Printer in the main menu, or click on the Print toolbar button.

Figure 9.25. The completed bulk mail report design.

How It Works

Crystal Reports gives you all the tools you need to create complex reports. The bulk mail report created in this How-To approaches
the upper limit of complexity of a typical database report.

By using formulas in Crystal Reports, you can create customized fields to present data in almost any form, including a wide variety
of database formats to which you can connect with the Open Database Connectivity (ODBC) standard. See Chapter 6, "Connecting to
an ODBC Server," for a discussion about ODBC.

Many formulas start with the WhilePrintingRecords function. Although it is probably overkill in some cases, this function
forces the formula to be evaluated while records are being printed. This is the normal order of evaluation:

If no database or group field is included in the formula, the formula is evaluated before the program reads database records.●

If a database is included in the formula, the formula is evaluated while the program reads database records.●

If a group field, page # field, subtotal, and so on is included in the formula, the formula is evaluated after database records are
read and while the data from the records are being printed in the report.

●

Including WhilePrintingRecords ensures that formulas are evaluated as the report is being printed. Other functions,
BeforeReadingRecords and WhileReadingRecords, can be used to perform formula evaluations at different times. For
example, you might want to record the system time at the beginning of a report for use throughout. WhileReadingRecords lets
the Crystal Reports formula check to make sure that you haven't included elements in the formula that need to be evaluated while
printing, such as group calculations or report elements like a page number.

One important note must be made about the placement of the @FirstClassCount and @FirstClassTotalCost fields. The
@FirstClassTotalCost field must be placed on a lower line than the @FirstClassCount field; otherwise, the total cost
will be incorrect. Crystal Reports generally performs its calculations in a row order, so placing @FirstClassTotalCost on the
same line to the left of @FirstClassCount calculates the cost before the final count is updated.

Subtotals and Other Group Calculations

Crystal Reports provides the capability to "band" the report, which means to group similar records for grouping, sorting, and
calculating. Virtually any field or portion of a field can be used to group data at various levels. In this How-To, you grouped by state,
five-digit zip code, and three-digit zip code. In the latter two groups, you used the first five or three digits of the zip code, using the
following Crystal Reports substring array notation:

{database.field}[1 to 5]

Crystal Reports sorts records at various levels, providing options for sorting the different groups you designate, the groups
themselves, and the records within the groups. This capability made it simple to put the records in the right sort order for the bulk
mail groupings and to put them into the right groups. Formulas then determined whether the post office's requirement for a minimum
number of mail pieces was met.

Crystal Reports provides a set of grand total functions that make it easy to provide subtotals and counts of data, as well as statistical
analysis, at any group level. That way, complex formulas aren't needed in many cases. Everything in this How-To was done without
any outside database processing.

Comments

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (26 of 48) [9/22/1999 2:04:54 AM]

javascript:popUp('09fig14.gif')

Crystal formulas provide tremendous flexibility to meet your reporting needs, but they can become cumbersome, as they did in this
How-To. It might make more sense to write complex reports through the use of intermediate database tables. Create the table with
complex formulas in code and SQL, and then write a Crystal report to display the summarized information. The use of a private class
module to build the reporting table helps make code maintenance easier.

9.7 How do I...

Control the order in which records will be printed using Crystal Reports?

Problem

I want to be able to print the same Crystal report in different sort orders, but this task is a pain--and it is time-consuming to leave my
Visual Basic application to make a change to the report in the Crystal Reports design program. How can I set a report's sort order
from my application?

Technique

Many of the parameters used to print a report through a Visual Basic application can be easily set using the Crystal Reports custom
control. In this How-To, you'll create a list of computer book publishers. Through a Visual Basic program, you'll change the sort
order of the report at runtime.

Steps

Load and run the Visual Basic application PUBLISH.VBP. Click one of the Report buttons to view the report in a preview window in
zip, name, or city sort order. See Figure 9.26.

Figure 9.26. The Print Publishers' Names selection window.

Start by creating a simple report that can be modified through Visual Basic during printing. Start the Crystal Reports program.

1. Click on the New Report toolbar button, or select File|New from the main menu. The New Report Gallery appears. Click the
Listing option button.

2. When the Create Report Expert appears, click the Data File button, and use the common dialog to select the location of your
Biblio.MDB file.

3. On the Fields tab, add the fields listed in Table 9.15 to your report by either double-clicking on the field name or selecting
the field name and clicking Add.

Table 9.15. Computer author report tables and fields.

TABLE Field

Publishers State

Publishers Zip

Publishers Telephone

Publishers City

Publishers Name

4. On the Style tab, enter the text Computer Book Publishers as the report title.

5. Preview the report.

6. Now add the State group section. Inserting this section keeps the records grouped by state, so the individual records are
sorted by zip, name, or city within each state. Select Insert|Group Section from the Crystal Reports main menu. From the first
list box, select Publishers.State. Make sure that the sorting option is set to ascending order, which is the default. You
won't enter any other fields in this group section.

7. This is the report you'll use. Remember to save the file, calling it PUBLISH.RPT.

8. Start Visual Basic and create a new Standard EXE project in your work area. Save the default form as PUBLISH.FRM, and
save the project as PUBLISH.VBP. Select Project Components from the Visual Basic main menu, and make sure that the
Crystal Reports control is selected. Add the READINI.BAS file to the project to find your copy of the BIBLIO.MDB file.

9. Place controls on the form as shown in Figure 9.26, and set the properties as shown in Table 9.16. Note that the Crystal

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (27 of 48) [9/22/1999 2:04:55 AM]

javascript:popUp('09fig15.gif')

Reports control is invisible at runtime, so place it anywhere on the form that is convenient. Note also that the three report
command buttons make up a control array.

Table 9.16. Objects and properties for. PUBLISH.FRM.

OBJECT Property Setting

Form Name frmPublishers

Caption "Print Publishers' Names"

CommandButton Name cmdQuit

Caption "Quit"

CommandButton Name cmdReport

Caption "Report by Zip"

Index 0

CommandButton Name cmdReport

Caption "Report by City"

Index 1

CommandButton Name cmdReport

Caption "Report by Name"

Index 2

CrystalReport Name crptPublishers

ReportFileName "D:\Waite\Chapter.11\How-to.113\Publish.rpt"

Destination 0 `To Window

10. Add the following code to the Click event of the cmdReport command-button control array. This procedure sets the
ReportFileName to "PUBLISH.RPT" in the application's path, sets the SortFields property of the Crystal Reports
custom control to the sort order desired, and assigns the Crystal Reports print preview window title. Then it sets the Action
property to 1 to print the report.

Private Sub cmdReport_Click(Index As Integer)
 Dim strDbName As String
 ` Get the Biblio.mdb database location
 strDbName = strBiblioDb()
 ` Assign the data file location for the report
 crptPublishers.DataFiles(0) = strDbName
 ` Assign the report file name
 crptPublishers.ReportFileName = App.Path & "\Publish.rpt"
 `Set up the Report control
 Select Case Index
 Case 0 `Print by Zip
 crptPublishers.SortFields(0) = "+{Publishers.Zip}"
 crptPublishers.WindowTitle = "Publishers by Zip Code"
 Case 1 `Print by City
 crptPublishers.SortFields(0) = "+{Publishers.City}"
 crptPublishers.WindowTitle = "Publishers by City"
 Case 2 `Print by Name
 crptPublishers.SortFields(0) = "+{Publishers.Name}"
 crptPublishers.WindowTitle = "Publishers by Company Name"
 End Select
 crptPublishers.Action = 1
End Sub

11. Add the following code to the Click event of the cmdQuit command button, to provide an exit point from the program:

Private Sub cmdQuit_Click()
 Unload Me

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (28 of 48) [9/22/1999 2:04:55 AM]

End Sub

12. Add the following code to the form's Load event procedure. This code simply moves the form to the lower-right portion of
the screen, out of the way of the report window when it appears.

Private Sub Form_Load()
 `Move the form to the lower right of screen
 Me.Move Screen.Width - 1.1 * Me.Width, _
 Screen.Height - 1.25 * Me.Height
End Sub

How It Works

This is all it takes to create a report in Crystal Reports and an application in Visual Basic that controls the sort order of the report.
Entering a state group section causes the overall sort order of the report to always be by state. Then the individual publisher records
are sorted within each state. Leaving out the group section would cause all records to be sorted by zip, city, or name, without regard
to state.

This How-To used the properties of the Crystal Reports custom control. You had to change only a single property, SortFields, to
set the sort order. SortFields is an array, so you can enter as many sort fields as you want. In fact, the following groups of Visual
Basic code would also keep all the records sorted by state and then by the secondary sort order:

CrystalReport1.SortFields(0) = "+{Publishers.State}"
CrystalReport1.SortFields(1) = "+{Publishers.Zip}"
CrystalReport1.SortFields(0) = "+{Publishers.State}"
CrystalReport1.SortFields(1) = "+{Publishers.City}"
CrystalReport1.SortFields(0) = "+{Publishers.State}"
CrystalReport1.SortFields(1) = "+{Publishers.Name}"

The plus sign at the beginning of each field name means to sort the records in ascending order. Use a minus sign to sort in descending
order. The use of ascending and descending sort orders for different fields can be mixed and matched in a single report as much as
you like.

Crystal Reports also has the capability to sort the group sections in any order you like. This can be set either in the report itself or
again through the Crystal Reports custom control using the GroupSortFields property in the same way as the SortFields
property is used. So, for example, in this report you could have specified to sort the state groups in descending order, starting with
Washington and progressing to Alaska at the end of the report.

Comments

This How-To has illustrated one of the most frequent changes required for a report--changing the sort order. Consider using this
feature carefully on very large, frequently used reports if the underlying database does not provide a convenient index. The Crystal
Reports engine is pretty good at using database indices to retrieve data in the order it is needed, but a poorly sorted report can take
forever to run.

9.8 How do I...

Print labels using Crystal Reports?

Problem

I need to produce mailing labels for our marketing program. How can I use Visual Basic to automatically print the labels we need so
that they are ready for use on our mailings?

Technique

This How-To uses Crystal Reports' Mailing Labels design window. Crystal Reports ships with various standard Avery label formats,
so there is a pretty good chance that the exact label you need is one of the Avery formats. Even if it isn't, it is quite easy and
straightforward to modify one of the formats or create your own label.

This How-To can be combined with How-To 9.6, which creates a bulk mailing report, to print labels already sorted for bulk mailing,
with the postage already calculated.

Steps

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (29 of 48) [9/22/1999 2:04:55 AM]

The steps in this How-To show in detail how to create a shipping label. To open and run a report in Crystal Reports, select File|Open
from the Crystal main menu, and select the SHIPLBL.RPT report file, as shown in Figure 9.27. To print the report, click the Print
button on the toolbar, or select File|Print from the main menu. To preview the report on-screen, click the Print Preview button on the
toolbar, or select File|Print Preview from the Crystal Reports main menu.

1. This How-To uses the MAIL.MDB database described in the introduction to this chapter. Start Crystal Reports, and start a
new report by clicking the New Report toolbar button or selecting File|New from the main menu. Click on Mail Label when
the Create New Report Gallery appears.

Figure 9.27. Crystal Reports design view for SHIPLBL.RPT.

2. Click on Data File when the Create Report Expert appears. Use the dialog box to find the MAIL.MDB Access database file.
Click Done to close the dialog box.

3. From the Fields tab, add the Contact and ADDR1 fields to the report.

4. Now, instead of placing the City, State, and Zip fields separately, you'll use a Crystal Reports formula so that all three
fields appear on the same line without extra spaces. Start by clicking the Formula button on the Fields tab. Name the formula
CityStateZip, click OK, and enter this formula:

TrimRight({Mailing LIst.CITY}) + ", " + TrimRight({Mailing LIst.STATE}) _
 + " " + {Mailing LIst.ZIP}

The Crystal Reports TrimRight function removes extra spaces from text fields. Click Check to make sure that the formula is
correct, and then click Accept to define the formula. Click the Add button to include @CityStateZip with the printed fields
in the right-hand window.

5. On the Label tab, Select an Avery Shipping/Address label (Avery 5164). This label is 4 inches wide by 3.33 inches high, so
there are two columns of three labels. That leaves room for both a snazzy return address and the addressee information.

Select the Avery 5164 label by scrolling down through the Choose Mailing Label Type list box. Click on that entry, and you
are finished designing the label layout. The Label tab of the Create Report Expert dialog box should then look like the one
shown in Figure 9.28. You can also select the print sequence, either across or down first, by making a selection in the Printing
Direction box. Leave the default set at Across then Down. Click OK to insert this format into the report.

Figure 9.28. The Create Report Expert dialog box.

6. Click Preview Report to see the basic report. After reviewing the labels, switch to design view by clicking the Design tab.

7. Select the three fields on the report by Ctrl-clicking on each field in turn. Right-click and use the Change Font dialog box to
increase the font size to 12 points. You can also change font attributes by using the font toolbar at the bottom of the Crystal
Reports designer window. Drag the three fields down the label to just below the middle on the left side.

8. Add agraphic element in the upper-left corner. Select Insert|Picture from the main menu, or click the Insert Picture button on
the toolbar. When the Choose Graphic File box appears, select a graphics file from any of the supported formats: Windows
bitmap (BMP), CompuServe (GIF), PC Paintbrush (PCX), TIFF (TIF), or TARGA (TGA). EARTH.GIF, courtesy of NASA
and the Galileo spacecraft program, is included on the CD-ROM that accompanies this book.

After you select the file, click OK and the image appears on the Crystal Reports design screen. Position it so that the upper-left
corner of the image is at or near the upper-left corner of the label, inside the left vertical and top horizontal gray lines. Choose
Format|Picture from the main menu, and format the picture 2 inches wide and 1.5 inches tall, as shown in Figure 9.29. You'll
need to play with the aspect ratio (the ratio of height to width) to get it to look right. Because of different screen and printer
aspect ratios, what looks right on the screen might not look right on your printer.

Figure 9.29. The Graphic format dialog box.

9. Enter three text fields, and enter the text Global Research Network, One Uranus Place, and Houston,
Texas 04107. Place these text fields in the upper-right quarter of the label next to the picture. Format the fields for a
12-point bold italic font.

10. Insert a horizontal dividing line to split the two address areas of the label, by either selecting Insert Line from the main
menu or clicking on the Insert Line button on the toolbar. Place the point of the line drawing tool directly on the label's left
border, with the gray vertical line near the left edge of the label. Click and hold down the left mouse button as you drag the
tool to the right edge of the label. Release the mouse button. If you need to, adjust the position or length of the line just as you
would with any other field. Format the line to your preferred thickness.

11. Some versions of Crystal Reports enlarge the label size on the design window when you increase the font size on a line of
the report. This causes you to end up with only one or two rows of labels on the page, rather than three rows. To restore the
proper label size, scroll down to the bottom of the label. Notice that the bottom section border (the line that extends into the

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (30 of 48) [9/22/1999 2:04:55 AM]

javascript:popUp('09fig16.gif')
javascript:popUp('09fig17.gif')
javascript:popUp('09fig18.gif')

gray area to the left of the design area) is one-half to one-fourth of an inch below the rectangle of the label. Drag the bottom
section edge as far up as it will go, adjacent to the dashed gray line. In other words, the bottom edge of the label, the bottom
edge of the section, and the dashed line should all be very close to one another.

12. Remember to save the file, calling it SHIPLBL.RPT.

How It Works

When you run this report, Crystal uses the label format specifications to repeat different records across and down the page. The
selected graphic is automatically included on each label.

Comments

Designing labels with Crystal Reports is essentially the same as designing any other report. Crystal Reports has support for most of
the labels you'll need. If none of the formats is exactly right, pick something close and change the sizes and format to fit your needs.

9.9 How do I...

Create and print form letters using Crystal Reports?

Problem

Now that I can print my mailing labels, how can I print the form letters that will go into the mailing envelopes? How can I use my
database with text to prepare form letter reports?

Technique

By using a couple of formatting tricks with Crystal Reports, you can use the report writer to generate almost any type of database
report you need. This How-To shows how you can use Crystal Reports to replace your word processor's mail merge, and how to use
formulas and field formatting to present your data in the most attractive format.

Steps

The steps in this How-To show in detail how to create a multi-page form letter. To open and run a report in Crystal Reports, select
File|Open from the Crystal main menu, and select the FORMLTR.RPT report file, as shown in Figure 9.30. To print the report, click
the Print button on the toolbar, or select File|Print from the main menu. To preview the report on-screen, click the Print Preview
button on the toolbar, or select File|Print Preview from the Crystal Reports main menu.

1. This How-To uses the MAIL.MDB database described in the introduction to this chapter. Start Crystal Reports, and begin a
new report by clicking the New Report toolbar button or selecting File|New from the main menu. Click the Custom button
when the Create New Report Gallery appears.

2. Click on Data File in the lower-right corner after the Create Report Expert expands. Use the dialog box to find the
MAIL.MDB Access database file. Click Done to close the dialog box. A screen similar to that shown in Figure 9.31 appears.

Figure 9.30. Crystal Reports design view for FORMLTR.RPT.

Figure 9.31. Crystal Reports blank report design view.

3. As you design the report, be sure to save your work periodically by selecting File|Save (or File|Save As, the first time) from
the Crystal Reports main menu.

4. Because you don't want extra column headings for a form letter, Select File|Options from the main menu. On the Layout tab,
uncheck the Insert Detail Field Titles option.

5. Start by inserting the date for the letter. Select Insert|Special Field|Print Date Field. Locate the field in the detail section, to
the far left.

6. Expand the size of the detail section by dragging the bottom gray line of the section down as far as it will go. Alternatively,
place the text cursor on the last line of the detail section and press Enter as many times as needed to expand the section.

7. In the Insert Database Field window, double-click on the Contact field; then enter it in the detail line, or drag it from the
Insert Database Field window. Place the field on the second line after the Date field.

8. Repeat the last step for the Addr1 field, placing it on the line after the Contact field.

9. Now, instead of placing the City, State, and Zip fields separately, you'll use a Crystal Reports formula so that all three
fields appear on the same line without extraneous spaces. Start by clicking the Done button on the Insert Database Field

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (31 of 48) [9/22/1999 2:04:55 AM]

javascript:popUp('09fig19.gif')
javascript:popUp('09fig20.gif')

window to get it out of the way. Select Insert|Formula Field from the Crystal Reports main menu, and enter the name
CityStateZip in the Formula name text box. Click OK, and enter this formula:

TrimRight({Mailing LIst.CITY}) + ", " + TrimRight({Mailing _
LIst.STATE})
 + " " + {Mailing LIst.ZIP}

The Crystal Reports TrimRight function removes extra spaces from text fields. Click Check to make sure that the formula is
correct; then click Accept to place the formula field on the report, on the line under the Addr1 field.

10. You'll use another formula field for the salutation. Select Insert|Formula Field from the Crystal Reports main menu, and
enter the name Salutation in the Formula name text box. Click OK, and enter this formula:

"Dear " + TrimRight({Mailing LIst.CONTACT}) + ","

The Contact file in the Mailing List table has generic names, such as Medical Practitioner and Occupant. You can easily
modify this formula to accommodate a Salutation field, an actual name, or the ever-so-personal "Dear Sir or Madam."

11. Set the margins for the letter. Select File|Page Margins from the main menu, and enter 1.00 inch for the top and bottom
margins, and 1.25 inches for the side margins. Click OK to return to the report and set the margins.

12. Now you'll enter the body of the letter. In this How-To, you'll enter the text in separate text fields for each paragraph so
that you can enter fields in certain paragraphs to customize each letter. You can also enter all the text in a single text field if
you don't need to customize the text, or even in a single formula field. The latter method tends to get a bit unwieldy and
reduces your formatting options.

Crystal Reports has a rather serious flaw that turns what should be a single step into two steps. If you simply type each
paragraph's text into the Edit Text Field window and enter the field into the report, Crystal Reports makes the field as wide as
needed to fit the text. When you're using entire paragraphs, the field becomes several times the width of the report. When a
Crystal Reports field extends beyond the right margin, there is no way to make the field narrower because Crystal Reports
prevents you from grabbing the right edge of the field. On top of that, there is no field formatting option for field width. So
you'll need to enter a text field with a single space in it and place that field on the report. You should then edit the text of the
field, entering the text you actually want. Then you can size the field to the full width of the report.

Start by expanding the detail section, if necessary. Select Insert|Text Field from the main menu, or click the Insert Text button
on the toolbar. Enter one or two spaces, and click OK to place the field on the report. Place the field on the second line after
the salutation, at the left margin. Format the field's font for 12-point type.

13. Go back into the field to edit the text by right-clicking on the field and then selecting Edit Text Field from the popup menu,
or by selecting Edit|Text Field from the main menu. Enter the following text in the Edit Text Field window. When you're
finished typing, click the Accept button to insert the field on the report, and stretch the field to the full width of the report.

Welcome to the Slick Willy Sales Course! I congratulate you on your decision to take
the course, because with hard work and study the experience should greatly increase
your sales skills. I can speak from experience--after I took the course five years
ago, my sales success went up dramatically.

The field remains one line long in the report design window. When you format the following fields, you'll set an option that
tells Crystal Reports to expand the field vertically to show all the text.

14. Repeating the procedure in the preceding two steps, enter each of the following paragraphs in a separate text field. You'll
need to enter a lot of text so that the letter is two pages long to illustrate how to format different page headers.

I am the Group Leader assigned to keep in contact with you throughout the course. I'll call you regularly to
find out how you are doing, whether you need any help, answer any questions you might have, and help
you get the most out of the course. I'd be happy to meet with you to discuss the course, too--sometimes face
to face is the only way to work out issues. This applies not only to the class material but also to particular
sales calls or prospects you might like to discuss.

Feel free to call on any of the other Group Leaders. Call on whatever resources you feel will best help you
become a better salesperson.

Please come to class with the homework prepared, for two reasons

First, doing the work is the only way to learn the material. The class will be a waste of your time if you
don't learn anything! Second, we will use the assignments in class the following week.

The reading assignments are important too, not just for the lessons they contain, but because you'll

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (32 of 48) [9/22/1999 2:04:55 AM]

occasionally be called upon to give summaries of the readings.

And finally, read through the next week's lesson in the workbook, so you'll have an idea of what to expect
in class and can be prepared to discuss the lessons.

The single most important way to learn the material and use it successfully is to use it during the following
week. Plan ahead and incorporate it into your sales calls. Think about how to make it work for you. In fact,
not everything will work for you directly, but you can almost always adapt a concept to your advantage.

Charley and all of the Group Leaders arrive at the classroom by 5:30 P.M. the night of each class, so come
early if you'd like to discuss any of the material in person. Also, as I previously mentioned, any of us can
meet with you during the week.

15. Now, enter a customized paragraph. Select Insert|Formula Field from the main menu, or click the Insert Formula Field
button on the toolbar. Name the field CustomParagraph, and enter this formula:

WhilePrintingRecords;
StringVar para;
if {Mailing LIst.CONTACT} = "Medical Practioner" then
 para := "Since you live in the city of " +
 TrimRight({Mailing LIst.CITY}) +
 ", you can take advantage of our convenient MedShuttle. "
else
 if {Mailing LIst.CONTACT} = "Occupant" then
 para := "In the city of " + TrimRight({Mailing LIst.CITY}) _
 + ", there is an excellent rail system, " +
 "with a stop within walking distance of the meeting room."
 else
 para := " Please arrange your own transportation from "
 + TrimRight({Mailing List.CITY}) + ". ";
para := para +
"Please call us at 800-555-1212 if you need more information about getting here."

16. Enter the final two text fields. The Sincerely yours...Group Leader lines can be in a single text field, using carriage returns
at the end of each line.

We want you to be successful in the class and in your selling future. Let us know if
there is any way we can help you achieve that success.
Sincerely yours,
Bill Morehours
Group Leader

17. Format these detail section fields as shown in Table 9.17. The most important setting is Print on Multiple Lines for all the
paragraph fields so that the text fields will expand vertically to accommodate all the text in the paragraph.

Table 9.17. The detail section fields and formatting.

REPORT ELEMENT Values

Detail Section New Page After

PrintDate Date, Default Alignment, 1 March, 1999

Mailing List.CONTACT String, Default Alignment

Mailing List.ADDR1 String, Default Alignment

@CityStateZip String, Default Alignment

@Salutation String, Default Alignment

Paragraph text fields String, Default Alignment, MultipleLines, 12 pt Font

@CustomParagraph String, Default Alignment, MultipleLines, 12 pt Font

18. Now, enter the fields for the page header. You have two sets of fields: one for the first page of the letter with your company
name and address, and another for the second page header showing the addressee, date, and page. Use a Boolean variable

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (33 of 48) [9/22/1999 2:04:55 AM]

FirstPage to keep track of whether this is the first page of the letter.

Select Insert|Formula Field from the main menu, or click the Insert Formula Field button on the toolbar. Name the formula
Masthead1, and enter the following formula. Place the field on the top line of the page header, at the left margin.

WhilePrintingRecords;
BooleanVar FirstPage;
if FirstPage then
 FirstPage := False
else
 FirstPage := True;
if FirstPage then
 "Slick Willy Sales and Aerobics Training";

19. Select Insert|Formula Field from the main menu, or click the Insert Formula Field button on the toolbar. Name the formula
Masthead2, and enter the following formula. Place the field against the right margin on the second line of the page header.

WhilePrintingRecords;
BooleanVar FirstPage;
if FirstPage = True then
 "One Pennsylvania Avenue, Nashville, Tennessee 80104";

20. Select Insert|Formula Field from the main menu, or click the Insert Formula Field button on the toolbar. Name the formula
Masthead3, and enter the following formula. Place the field against the right margin on the third line of the page header.

WhilePrintingRecords;
BooleanVar FirstPage;
if FirstPage = True then
 "(800) 555-9875";

21. Now, enter the second set of page header fields, for the second page of the letter. Select Insert|Formula Field from the main
menu, or click the Insert Formula Field button on the toolbar. Name the formula PageHead, and enter the following formula.
Place the field against the left margin on the second line of the page header, under @Masthead1.

WhilePrintingRecords;
BooleanVar FirstPage;
if FirstPage = False then
 {Mailing LIst.CONTACT};

22. Select Insert|Formula Field from the main menu, or click the Insert Formula Field button on the toolbar. Name the formula
PageHeadDate, and enter the following formula. Place the field against the left margin on the third line of the page header.

WhilePrintingRecords;
BooleanVar FirstPage;
if FirstPage = False then
 Today;

23. Select Insert|Formula Field from the main menu, or click the Insert Formula Field button on the toolbar. Name the formula
PageHeadPage, and enter the following formula. Place the field against the left margin on the third line of the page header.

WhilePrintingRecords;
BooleanVar FirstPage;
if FirstPage = False then
 "Page 2";

24. Expand the size of the page header section to be one line longer than the bottom-most field so that both pages will have a
blank line between the page header and the start of the text (detail section).

25. Format the page header section fields as shown in Table 9.18.

Table 9.18. The page header section fields and formatting.

REPORT ELEMENT Values

Header Section Visible, New Page Before, Keep Together

@Masthead1 String, Default Alignment, 16pt Font, Bold Italic

@PageHead String, Default Alignment

@Masthead2 String, Right Alignment, 10pt Font, Italic

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (34 of 48) [9/22/1999 2:04:55 AM]

@PageHeadDate Date, Default Alignment, 1 March, 1999

@Masthead3 String, Right Alignment, 10pt Font, Italic

@PageHeadPage String, Default Alignment

26. Run the report, making sure that the different page headers print on the correct page.

How It Works

This How-To used a Crystal Reports Boolean variable to keep track of which page was printing. Although Crystal Reports can print
different headers and footers on the first page of the report, it treats all subsequent pages as "nonfirst page." In situations like this
form letter, in which each record prints one or more full pages, keep track of where you are by using formulas.

As mentioned in the preceding set of steps, the text for the letter can be put into fields, it can come from the database in memo fields,
or it can all be put into one large text field. It really depends on a few factors:

If every letter will be the same, with only one or two small customizations, use the technique in this How-To, in which a text
field is used for each paragraph. This technique gives you the best combination of formatting flexibility and also allows the
customization.

●

If all the text of the letters is the same, you could use one large text field to hold it all. This means all the text must be
formatted the same, and you must use trial and error to get the page headers and footers to work right. Also, Crystal Reports
has a problem with General Protection Faults and some video drivers, particularly when editing text fields that have some
trailing space configurations.

●

If the text in each letter changes substantially, and if much of the text is in the table you use for the report, you can use
database fields in combination with text fields and formulas to control (to a low level of detail) how each letter is formatted
and what information it contains.

●

Other than keeping track of which header to print, this form letter report is created in the same way as the other reports in this
chapter. Crystal Reports formulas provide you with a great deal of flexibility in presenting database records in the most useful
format.

Comments

Using Crystal Reports to print form letters probably isn't the best way to perform the task. Today's word processors make the job
easy. Generally, they can use data in a wide variety of formats and provide far more formatting flexibility. But as this How-To
shows, Crystal Reports has its own wide variety of flexible tools to perform many printing jobs on its own. Who was it who said, "If
the only tool you have is a screwdriver, the whole world looks like a screw"?

9.10 How do I...

Print field data without extra spaces between the fields using Crystal Reports?

Problem

When I create a report, I always need to put individual fields on the report for each database field. My database splits a client's name
into "Mr.," "John," and "Jones," and I'd like that name to appear as "Mr. John Jones." How can I do this in Crystal Reports?

Technique

This How-To creates a customer directory list using the string functions of Crystal Reports and operators to make the report fields
appear as one field, even though the information is in several different fields. After the report is created, the functions and operators
that Crystal Reports provides to manipulate strings in your database will be discussed.

Steps

The steps in this How-To show in detail how to create a customer directory in Crystal Reports. Select File|Open from the Crystal
main menu, and select the CUSTDIR.RPT report file, as shown in Figure 9.32. To print the report, click the Print button on the
toolbar, or select File|Print from the main menu. To preview the report on-screen, click the Print Preview button on the toolbar, or
select File|Print Preview from the Crystal Reports main menu.

1. This How-To uses the CRYSTAL.MDB database described in the introduction to this chapter. Start Crystal Reports, and
begin a new report by clicking the New Report toolbar button or selecting File|New from the main menu. Click the Custom
button when the Create New Report Gallery appears.

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (35 of 48) [9/22/1999 2:04:55 AM]

2. Make sure that Detail field names are automatically inserted into the page header. Select File|Options from the main menu.
On the Layout tab, check the Insert Detail Field Titles option.

3. Click on Data File in the lower-right corner after the Create Report Expert expands. Use the dialog box to find the
CRYSTAL.MDB Access database file. Click Done to close the dialog box.

Figure 9.32. Crystal Reports design view for CUSTDIR.RPT.

4. Start by adjusting the margins for the report. Select File|Page Margins from the Crystal Reports main menu. Set the top
margin to 0.5 inch and the other three margins to 1.0 inch.

5. Double-click on the CoName field and enter it in the detail line, or drag it from the Insert Database Field window. Place the
field about one-fourth of an inch from the left margin in the detail section.

6. Now, create an @Contact field, using the FormAddress, ContactFN, and ContactLN fields. Select Insert|Formula
Field from the Crystal Reports main menu, or click the Insert Formula Field button on the toolbar. Name the field Contact,
and enter this formula. Place the field to the right of the CoName field.

WhilePrintingRecords;
StringVar BuiltStr;
if Length({COMPANY.FORMADDRES}) > 0 then
 BuiltStr := TrimRight({COMPANY.FORMADDRES}) + " ";
BuiltStr := BuiltStr + TrimRight({COMPANY.CONTACTFN}) + " "
+ TrimRight({COMPANY.CONTACTLN});

7. Select Insert|Formula Field from the Crystal Reports main menu, or click the Insert Formula Field button on the toolbar.
Name the field CustomerID, and enter this formula. Place the field to the right of the @Contact formula field.

TrimRight({COMPANY.CUSTNUM})

8. Enlarge the height of the detail section by one line by dragging the lower-section line down with the mouse. To expand the
section using the keyboard, place the text cursor at the beginning of the last line of the section and press Enter once.

9. Select Insert|Formula Field from the Crystal Reports main menu, or click the Insert Formula Field button on the toolbar.
Name the field CompanyAddress, and enter this formula. Place the field on the second line of the detail section, about
one-half inch to the right of the left margin. Delete the field title Crystal Reports automatically generated from the Page Header
section.

WhilePrintingRecords;
TrimRight({COMPANY.ADDRESS}) + ", " +
TrimRight({COMPANY.CITY}) + ", " +
TrimRight({COMPANY.STATE}) + " " +
{COMPANY.ZIP_POSTAL}

10. Format these detail section fields as shown in Table 9.19.

Table 9.19. The detail section fields and formatting.

REPORT ELEMENT Values

Detail Section Visible

@CustomerID String, Centered Alignment

COMPANY.CONAME String, Default Alignment

@Contact String, Default Alignment

@CompanyAddress String, Default Alignment, Multiple Lines

11. Insert a report heading in the page header. Select Insert|Text Field from the Crystal Reports main menu, and enter
Customer Directory. Place the field at the upper-left corner of the report area. Wait to adjust the width of the field until
you change the font size.

12. As you entered fields in the detail section, Crystal Reports should have inserted corresponding column titles in the page
header section. Adjust those text fields so that they are more or less above the appropriate field. You'll need to adjust them
later when everything else is finished so that they are aesthetically pleasing.

13. Expand the size of the page header by dragging the lower edge down one line of text. Select Insert|Line from the Crystal
Reports main menu, or click the Insert Line button on the toolbar. Place the tip of the drawing tool at the left margin, just a bit
lower than the bottom edge of the line of column headings. Drag the tool across the width of the report, and release the mouse

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (36 of 48) [9/22/1999 2:04:55 AM]

javascript:popUp('09fig21.gif')

button at the right margin. Click the line with the right mouse button, and select Change Format from the popup menu, or
select Format|Line from the main menu. On the Width line, select the third box from the right, for a line width of 2.50 points.
Click OK to close the Line Format window.

14. Add a page number in the page footer section. Select Insert|Special Field|Page Number.

15. Format the page header and footer section fields, as shown in Table 9.20.

Table 9.20. The page header and footer section fields and formatting.

REPORT ELEMENT Values

Header Section Visible, New Page Before, Keep Together

Text Field Customer Directory

String, Centered Alignment, 14pt Font, Bold Italic

Text Field Contact

String, Left Alignment

Text Field Customer

String, Left Alignment

Text Field Customer ID

String, Centered Alignment

Line 2.50pt Width

Footer Section Visible, New Page After, Keep Together, Print at Page, Bottom

@PageNo String, Right Alignment

16. This finishes the Customer Directory report. Remember to save the file, calling it CUSTDIR.RPT.

How It Works

Crystal Reports has several functions and operators for converting other data types to strings and manipulating strings to appear the
way you want. Table 9.21 lists the primary functions that Crystal Reports provides for this purpose, and Table 9.22 lists the operators
that are most useful.

Table 9.21. Useful Crystal Reports functions for manipulating strings.

FUNCTION Description

Length(x) Indicates the number of characters in the string, including leading and trailing spaces

LowerCase (x) Converts all alphabetical characters in the string to lowercase

NumericText(fieldname) Indicates whether all characters are numeric

ReplicateString(x, n) Prints string x, n times

ToNumber (x) Converts the string to a number

ToText (x) Converts a number to a text string, with two decimal places

ToText (x, # places) Converts a number to a text string, with # decimal places

TrimLeft (x) Removes leading spaces from the string

TrimRight (x) Removes trailing spaces from the string

UpperCase (x) Converts all alphabetical characters in the string to uppercase

Table 9.22. Useful Crystal Reports operators for manipulating strings.

FUNCTION DESCRIPTION

+ Concatenation

[] Subscript

In In string

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (37 of 48) [9/22/1999 2:04:55 AM]

Crystal Reports likes an array of characters, so you can use array notation to extract characters from a string, as shown in the
following examples. Using a field called Address:

{Company.Address} = "1245 East Elm Lane"

Use the substring operator in the following lines to show different extractions:

{Company.Address}[1 to 5] equals "1245 "
{Company.Address}[6 to 200] equals "East Elm Lane"
{Company.Address}[3 to Len(TrimRight({Company.Address}))
 equals "45 East Elm Lane"

Here are a couple of final notes about strings in Crystal Reports:

When you trim and concatenate strings, remember to add spaces where you need them. For example, you needed to include a
space within the quotation marks when you concatenated the FormAddress, ContactFN, and ContactLN fields.
Otherwise, there would have been no space between the names.

●

In some databases, such as Paradox, it isn't necessary to use the TrimRight function to eliminate trailing spaces. Paradox
includes a null character at the end of the string, effectively making the length of the string the number of characters without
trailing spaces. It doesn't hurt to include the TrimRight function, because the format could change in the future or you might
need to adapt the report to be used with another database.

●

COMMENTS

Although Crystal provides many options for manipulating strings, consider carefully the best way to accomplish your goal, especially
if the database server is able to perform your task. The use of SQL enables you to perform many string operations in the database and
simplifies Crystal operations. In some cases, printing directly from Visual Basic might be the best solution.

9.11 How do I...

Prevent blank lines from being printed when a field contains no data using Crystal
Reports?

Problem

We use some tables that have many fields that only occasionally have data in them. How can I set up a report so that a line prints
only when it has data, and still allow memo fields with lots of data to print in their entirety?

Technique

This How-To uses two of the space saving features of Crystal Reports--the Suppress Blank Lines option and Print on Multiple Lines
option for text boxes. The Suppress Blank Lines option applies to an entire section, setting the report to print only lines that contain
data. That means you can conserve paper and save trees that would otherwise be needed to print much longer reports containing
many blank fields.

The Print on Multiple Lines option lets you place a text box on the report as a single line so that the box doesn't need to be made
large enough to show the longest possible string, wasting space on the report. This option tells Crystal Reports to go ahead and
expand the field vertically to fit the text if the text requires two or more lines. Otherwise, only the portion of the string that fits in the
first line of the field will print on the report.

Even when using these two options, you still need to design reports intelligently. It would be easy to have a line with several fields,
any of which could be blank or contain data. The line would print if any of the fields has data, so you need to try to put only a single
field on each line or to group fields together that are likely to be blank at the same time.

This How-To uses the Publishers, Publishers Comments, and Titles tables in the BIBLIO.MDB file. Each table has several fields that
are often blank mixed in with long memo fields.

Steps

The steps in this How-To show in detail how to create a fairly complex report from multiple tables and allow for missing
information. To open and run a report in Crystal Reports, select File|Open from the Crystal main menu, and select the TITLES.RPT
report file, as shown in Figure 9.33. To print the report, click the Print button on the toolbar, or select File|Print from the main menu.

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (38 of 48) [9/22/1999 2:04:55 AM]

To preview the report onscreen, click the Print Preview button on the toolbar, or select File|Print Preview from the Crystal Reports
main menu.

Figure 9.33. Crystal Reports design view for the publisher titles report.

1. This How-To uses the BIBLIO.MDB database described in the introduction to this chapter. Start Crystal Reports, and begin
a new report by clicking the New Report toolbar button or selecting File|New from the main menu. Click the Custom button
when the Create New Report Gallery appears.

2. Make sure that Detail field names are not automatically inserted into the page header section. Select File|Options from the
main menu. On the Layout tab, uncheck the Insert Detail Field Titles option.

3. Click on Data File in the lower-right corner after the Create Report Expert expands. Use the dialog box to locate the
BIBLIO.MDB Access database file installed with Visual Basic.

4. Start by adjusting the margins for the report. Select File|Page Margins from the Crystal Reports main menu. Set the top
margin to 0.5 inch and the other three margins to 1.0 inch.

5. Add an asterisk at the beginning of the Details line to make the individual titles (Detail section) stand out more clearly to the
reader of the report. Enter this as a formula field, because it is conceivable that a record in the table would not have a title but
would still have other relevant information. Select Insert|Formula Field from the main menu, or click the Insert Formula Field
button on the toolbar. Enter the formula name Bullet, and insert the following formula. Place the field about one-fourth of
an inch from the left margin, and make its width just wide enough for the asterisk.

if Not IsNull({Titles.Title}) then
 "*"

6. Double-click on the Titles.Title field and enter it in the detail line, or drag it from the Insert Database Field window.
Place the field just to the right of the Bullet field. Don't adjust the width until after the font size is set.

7. Expand the size of the detail section by dragging the lower boundary down as far as it will go. Because Crystal Reports
limits the amount by which you can expand a section's size, you might need to expand the section again as you add fields.

8. Double-click on the Description field and enter it in the detail line, or drag it from the Insert Database Field window. Place
the field on the line below the Title field, about one-fourth of an inch to the right of the Title. Drag the right border to the
right margin so that the field takes up the remaining width of the report.

9. In the same way, add the Notes, Subject, and Comments fields to the report, adding each below the preceding field.
Align the Notes and Subject fields with the Description field, and place the Comments field about one-fourth of an
inch to the right. Expand all the fields so that the right edge of each field is at the right margin of the report.

10. Format these detail section fields as shown in Table 9.23. Remember to expand the Title field to the right margin after
changing the font to bold. Also, if there are any blank lines at the bottom of the detail section, drag the lower detail section
border up to the bottom of the Comments field. A very quick way to format for multiple lines is to double-click the field for
which you want to format a string.

Table 9.23. The detail section fields and formatting.

REPORT ELEMENT Values

Detail Section Visible, Suppress Blank Lines

@Bullet String, Default Alignment

Titles.Title String, Default Alignment, Font 10pt Bold, Multiple Lines

Titles.Description String, Default Alignment, Multiple Lines

Titles.Notes String, Default Alignment, Multiple Lines

Titles.Subject String, Default Alignment, Multiple Lines

Titles.Comments Memo, Default Alignment, Multiple Lines

11. Now add the Company Name group section. Select Insert|Group Section from the Crystal Reports main menu. From the
first list box, select Publishers.Company Name. Leave the sorting option set to ascending order, which is the default, and
click OK to proceed.

12. The first field you'll enter in this group section is the publisher's company name. There is a problem, however, with simply
adding the field to the report. Some of the publishers have a long list of books that span more than one page, whereas others
have none. It would be nice to be able to reprint the company name at the beginning of the next page if that company's list of
books continues from one page to the next. So you'll enter the company name as a formula, testing to see whether this is a

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (39 of 48) [9/22/1999 2:04:55 AM]

javascript:popUp('09fig23.gif')

continuation. Select Insert|Formula Field from the Crystal Reports main menu, or click the Insert Formula Field button on the
toolbar. Name the formula GroupHeaderLater, and enter the following formula. The formula first checks to see whether
the preceding company name was null, in which case the name is printed. Otherwise, the new company name is checked to see
whether it is the same as the preceding name. If it isn't, you'll start a list for a new company, and print the name. If this is a
continuation list, you'll print the name in a formula field that can be put in the page header.

If PreviousIsNull({Publishers.Company Name}) then
 {Publishers.Company Name}
else
 if Previous ({Publishers.Company Name}) {Publishers.Company Name} then
 {Publishers.Company Name}
 else
 ""

13. Next, enter the publisher's phone number. There might not be a phone number in the file, and you want to label the number
as the phone (and later the fax number as the fax); therefore, you should enter a formula field. That way, you won't have the
word "Phone:" sitting in the report with nothing else there. Select Insert|Formula Field from the Crystal Reports main menu, or
click the Insert Formula Field button on the toolbar. Name the formula PubPhone, and enter the following formula. Place the
field to the right of the @GroupHeadLater field.

WhilePrintingRecords;
if Length({Publishers.Telephone}) > 0 then
 "Phone: " + {Publishers.Telephone}

14. Do the same thing for the fax number. Select Insert|Formula Field from the Crystal Reports main menu, or click the Insert
Formula Field button on the toolbar. Name the formula PubFax, and enter the following formula. Place the field to the right
of the @PubPhone field.

WhilePrintingRecords;
if Length({Publishers.Fax}) > 0 then
 "Fax: " + {Publishers.Fax}

15. Double-click on the Address field in the Insert Database Field window and enter it in the group section, or drag it from
the Insert Database Field window. Place the field on the line below the @GroupHeaderLater field, about one-fourth of an
inch to the right of that field. Drag the right border to make the width of the field the same as the @GroupHeaderLater
field.

16. The city, state, and zip code should appear on one line, so enter them as a formula field. Select Insert|Formula Field from
the Crystal Reports main menu, or click the Insert Formula Field button on the toolbar. Name the formula
PubCityStateZip, and enter the following formula. Place the field on the line after the Address field in the group
section header.

WhilePrintingRecords;
TrimRight({Publishers.City}) + ", " + TrimRight({Publishers.State}) +
" " + {Publishers.Zip}

17. Double-click on the Publisher.Comments field in the Insert Database Field window and enter it in the group section,
or drag it from the Insert Database Field window. Place the field on the line below the @PubAddress field, and align the left
edge with that field. Drag the right edge of the field to the report's right margin.

18. Now, enter the fields in the group footer that show the number of titles the publisher has on the list. Select Insert|Text Field
from the main menu, or click the Insert Text Field button on the toolbar. Enter Title(s) in the field, and place the field in
the first group section footer line, at the far right margin. Adjust the size of the field so that it is only wide enough to show the
text.

19. To insert a summary field, you must first highlight the field you want to count. Click on the Title field in the detail
section, and then select Insert|Summary from the main menu so that the Insert Summary window appears. Select Count from
the first list box, and leave the second list box to the default group section #1 sorting and grouping. The window should look
like the one shown in Figure 9.34 just before you click OK to enter the field. Place this field so that it reaches from the left
margin to the left edge of the Title(s) text box.

20. Format these group section fields as shown in Table 9.24.

Figure 9.34. The Insert Summary window.

Table 9.24. The detail section fields and formatting.

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (40 of 48) [9/22/1999 2:04:55 AM]

javascript:popUp('09fig24.gif')

REPORT ELEMENT Values

Group header #1: Suppress Blank Lines, Keep Section Together

@PubFax String, Default Alignment

@PubPhone String, Default Alignment

@GroupHeaderLater String, Default Alignment, 12pt Font, Bold Italic,

Multiple Lines

Publishers.Address String, Default Alignment

@PubCityStateZip String, Default Alignment

Comments Default Alignment, Multiple Lines

Title(s) String, Default Alignment

Group footer #1: Suppress Blank Lines

Count of Titles.Title Numeric, Default Alignment, Leading Minus, 0 Decimal

Places, Rounding: None, Thousands Symbol: `,',

Decimal

Symbol: `.'

21. Now move to the page header and footer. Select Insert|Text Field from the main menu, or click the Insert Text Field button
on the toolbar. Enter the text Publisher Titles Detail, and place the field at the upper-left corner of the page header
section. Wait to widen the field until you change the font so that Crystal Reports doesn't make the field so wide that you can't
adjust the right edge.

22. Now, enter a group header to print the publisher's company name if the list of titles continues from the preceding page.
Select Insert|Formula Field from the main menu, or click the Insert Formula Field button on the toolbar. Name the formula
@GroupHeaderFirst, and enter the following formula. Place the field on the third line of the page header, but don't adjust
its width yet.

if Previous({Publishers.Company Name}) = {Publishers.Company Name} _
then
 {Publishers.Company Name} + " continued"
else
 ""

23. Now, enter a page number field in the page footer section. Select Insert|Formula Field from the main menu, or click the
Insert Formula Field button on the toolbar. Name the formula @PageNo, and enter the following formula. Place the field on
the third line of the page footer at the far-right edge of the line.

"Page " + ToText(PageNumber, 0)

24. Format these page header and footer fields as shown in Table 9.25.

Table 9.25. The page header and footer fields and formatting.

REPORT ELEMENT Values

Text Field Publisher Titles Detail, 14 pt Font, Bold

@GroupHeaderFirst String, Default Alignment, 12pt Font, Bold Italic

@PageNo String, Right Alignment

How It Works

When you run this report, you should see blank lines only where they were intentionally left in the report. Leave margins at the top
and bottom of the page because some white space makes a report more easily read and understood.

Two interesting features were used to create this report. The first is the Suppress Blank Lines section formatting option. Using this
option means that all you have to do is make sure that no extraneous text appears on a line that otherwise would be blank so that the
line is not printed at all. The phone and fax fields were put into formulas rather than separate text fields to make some of the text
fields the full (or nearly full) width of the report. This way, if any field is blank, the entire line won't print. If two or more fields could
be blank on the same line, all the fields would have to be blank for the line not to print, resulting in a checkerboard effect if some

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (41 of 48) [9/22/1999 2:04:56 AM]

fields contain data and others do not.

The other interesting feature used in this report was a summary field. Crystal Reports automatically calculates the maximum,
minimum, count, and distinct count on any fields indicated. This How-To used a summary field to keep count of how many titles
each publisher had on the list.

Comments

Most of this How-To has focused on making a report "pretty." Although programming style is tremendously important to how well a
system works, good appearances will be remembered by anyone who sees your creations.

9.12 How do I...

Create cross-tab reports with Crystal Reports?

Problem

I use a table that needs to be summarized weekly in a cross-tab style report. It is almost impossible to produce the report in Visual
Basic before printing it. Can I use Crystal Reports to produce a cross-tab report from my tables?

Technique

Crystal Reports can analyze data as well as print it. One method is a cross-tab report, which summarizes two or more dimensions of
data in tables. In this How-To you will create a marketing analysis report that produces a breakdown of customers by city and by the
day of the week they were serviced, giving totals by weekday and by city.

Steps

The steps in this How-To show in detail how to create a cross-tab report. To open and run a report in Crystal Reports, select
File|Open from the Crystal main menu, and select the MAILANAL.RPT report file, shown in Figure 9.35. To print the report, click
the Print button on the toolbar, or select File|Print from the main menu. To preview the report onscreen, click the Print Preview
button on the toolbar, or select File|Print Preview from the Crystal Reports main menu.

1. This How-To uses the MAIL.MDB database described in the introduction to this chapter. Start Crystal Reports, and start a
new report by clicking the New Report toolbar button or selecting File|New from the main menu. Click on Cross-Tab when the
Create New Report Gallery appears.

2. Click on Data File when the Create Report Expert appears. Use the dialog box to find the MAIL.MDB Access database file.
Click Done to close the dialog box.

Figure 9.35. The Crystal Reports design window for marketing analysis report.

3. From the Fields tab, add the Contact, City, State, and Zip fields from the MailingList table.

4. On the Style tab, enter Bulk Mail Calculation Report as the title.

5. After you select the database file to use for the report, the CrossTab window appears, as shown in Figure 9.36. The layout of
this window makes it easy to visualize the final report. You will need to enter the field or formula used for the rows and
columns, and then enter a field or formula for the data that is contained in the body of the report. Crystal Reports will then
handle all the calculations to produce the report.

Figure 9.36. The Cross Tab tab of the Crystal Reports Create Report Expert.

6. Start by double-clicking on the Mailing List table name in the Fields list box so that the fields in the table appear. Drag the
Mailing List.CITY field to the Rows cross-tab list. This tells Crystal Reports that a list of cities contained in the file will
compose the rows of the report.

7. You will want to use the days of the week for the report columns. But first consider the space you have. There will be a
column for each day of the week, plus one for the list of city names and another for the total for each city, so there will be nine
columns altogether. If you don't abbreviate the days of the week, the data won't fit on a report, or part of the names will get cut
off. Unfortunately, Crystal Reports can't print text vertically, so you should use a formula field to print only the first three
characters of the day's name.

Click the New Formula button, and enter DayOfWeek as the formula name. Enter the following formula, which tells Crystal
Reports to use a substring consisting of the first three characters of the name. Drag the new formula to the Columns cross-tab
list.

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (42 of 48) [9/22/1999 2:04:56 AM]

javascript:popUp('09fig25.gif')
javascript:popUp('09fig26.gif')

{Mailing List.Week Day}[1 to 3]

8. The last step is to tell Crystal Reports what information will make up the body of the table. You just want to count contacts,
so drag the Contact field to the Summarized field. (The default function for the summarized field is Count, so you won't
need to make a change. You'll see in a moment how to change that.) That's all there is to designing the cross-tab layout, so
click Preview Report to see the results so far.

9. All that is left to do is to reposition and resize the cross-tab fields so that the font can be read, and to enter a report title and
page number. Start by setting the four margins of the report to 0.5 inch by selecting File|Page Margins from the main menu.

10. Next, move the cross-tab grid to the left so that there will be enough room on the page for all nine columns in the report.
Use the mouse to drag the vertical line on the left side of the DayOfWeek column to the left until it is about 1 to 1.5 inches
from the left margin, leaving enough room for the city names to print. The space to the right of the Total column will contain
the day-of-the-week columns. Narrow the Week Day column to about three-fourths of an inch and the Total column to
about one-half of an inch. You'll need to set the spacings by trial and error when all the report elements have been entered into
the report.

11. To enter a report heading, select Insert|Text Field from the main menu, or click the Insert Text Field button on the toolbar.
Enter Marketing Analysis by City and Day of Week, and place the field in the upper-left position in the page header.
Change the font size to 14 point by using the list of font sizes in the font toolbar, and click the B in the toolbar to make the font
bold.

12. Enter a page number field on the page footer. First, show the Page Footer section by right-clicking in the gray left margin
of the design window and selecting Show/Hide Sections from the menu. Show the Page Footer section. Then, select
Insert|Formula Field from the main menu, or click the Insert Formula Field button on the toolbar. Name the formula PageNo,
and enter the following formula. Place the field in the lower-left portion of the page footer, against the left margin.

"Page " + ToText(PageNumber, 0)

13. If you want to make changes to the cross-tab design of the report, use the right mouse button to click in the gray area to the
left of the page edge in the Cross-Tab detail section, and select Cross-Tab Layout from the popup menu. Then make any
changes you want in the same Cross-Tab layout window you used to create the report. To use a summarization function other
than Count, highlight the grid cell at the intersection of the City row and Week Day column, and select Edit|Summary Field
from the main menu. Figure 9.37 shows the options available. The options for any given report depend on the type of field data
selected for the Summarization field in the Cross-Tab layout window.

Figure 9.37. Cross-tab summarization function selections.

How It Works

Creating a cross-tab report in Crystal Reports is an almost trivial task after you understand how to present data using this type of
report. The table used in this How-To consists of names, addresses, dates, and week days. By using a cross-tab report, you transform
this data into a breakdown of clients by week, day, and geographic location. In fact, the hardest part of producing the report is to size
and position the report elements so that all the fields show their data and everything fits on the page.

Creating the report is easy, partially because the same record selection, sorting, and formatting options are available with cross-tab
reports as with other report formats used in this chapter.

Comments

One rather serious flaw of Crystal Reports is that any fields or columns that are off the right side of the report page do not print and
cannot be reached in the report design window. You can change the page orientation to landscape by using File|Printer Setup, but
even that orientation is not wide enough for some reports.

9.13 How do I...

Generate reports using user-entered variables?

Problem

Each time I print a report, I need to change elements of the report, such as the record sort order, the heading, and the name of the
person running the report. How can I run a report through a Visual Basic application and change selected elements of the report?

Technique

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (43 of 48) [9/22/1999 2:04:56 AM]

javascript:popUp('09fig27.gif')

This How-To takes advantage of three of the properties that the Crystal Reports custom control provides to modify the conditions
under which a report is printed at runtime in a Visual Basic application. It is simply a matter of setting the properties of the control.

Steps

Load and run the Visual Basic application MAILLIST.VBP. From the Print Sorted Mailing List window (see Figure 9.38), select a
report type to print (City, State, or Zip) and either enter a particular value to use in selecting records or leave the field blank to
include all records. Select a page number format to be used, and then click the Print Report button to preview the report.

1. Start by creating a simple report that you can modify when printing through Visual Basic (see Figure 9.39). Start Crystal
Reports, and start a new report by clicking the New Report toolbar button or selecting File | New from the main menu. Click
on Standard when the Create New Report Gallery appears.

Figure 9.38. The Print Sorted Mailing List window (frmMailList).

Figure 9.39. The Crystal Reports design window for a mailing list report.

2. Click on Data File when the Create Report Expert appears. Use the dialog box to find the MAIL.MDB Access database file.
Click Done to close the dialog box.

3. From the Fields tab, add the Contact, City, State, Zip, and Week Day fields from the Mailing List table.

4. Preview the report and save the report file, calling it MAILLIST.RPT.

5. Because you want to be able to change the report heading from the Visual Basic application, enter the heading as a formula
with a default value. That way, if the application doesn't change the title, something relatively meaningful will print. Select
Insert | Text Field from the Crystal Reports main menu, or click the Insert Text Field button on the toolbar. Name the formula
field ReportTitle, and enter this formula:

`Mailing List'

Format the title to be 14-point font, bold by using the font tool at the bottom of the Crystal Reports design window.

6. Insert the page number formula field @PageFooter by selecting Insert | Formula Filed from the main menu or clicking the
Insert Formula Field button on the toolbar. Enter this formula:

"Page " + ToText(PageNumber,0)

7. That's all there is to the report. Note that you didn't set up any sorting at all, nor any group sections. Next, you'll see how to
make changes through a Visual Basic application. Remember to save the report file, calling it MAILLIST.RPT.

8. Start Visual Basic and create a new project in your work area. Save the default form as MAILLIST.FRM, and save the
project as MAILLIST.VBP. Select Project | Components from the Visual Basic main menu, and make sure that the Crystal
Reports control is selected.

9. Place the controls on the form as shown in Figure 9.38, and set the properties as shown in Table 9.26. Note that the Crystal
Reports control is invisible at runtime, so place it anywhere that is convenient. Note also that the three page-number-format
option buttons make up a control array. The label control lblInstruction and text box txtValue have their Visible
property set to False; place them in the open area below the Report Type list box. Note that you are "hard coding" the name
of the report to use in the properties of the Crystal Reports control; change its location to wherever the report is located on your
drive.

Table 9.26. Objects and properties for MAILLIST.FRM.

OBJECT PROPERTY Setting

Form Name frmMailList

Caption "Print Sorted Mailing List"

CommandButton Name cmdQuit

Caption "&Quit"

CommandButton Name cmdReport

Caption "&Print Report"

Default -1 `True

TextBox Name txtValue

Visible 0 `False

Frame Name Frame1

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (44 of 48) [9/22/1999 2:04:56 AM]

javascript:popUp('09fig30.gif')
javascript:popUp('09fig31.gif')

Caption "Select Page Number Format"

OptionButton Name optPageNoType

Caption "page &one"

OptionButton Name optPageNoType

Caption "&1"

OptionButton Name optPageNoType

Caption "&Page 1"

Value -1 `True

PictureBox Name Picture1

Align 2 `Align Bottom

Label Name lblStatus

ComboBox Name lstReportType

Style 2 `Dropdown List

Label Name Label1

Caption "&Select Report Type:"

Label Name lblInstruction

AutoSize -1 `True

Visible 0 `False

CrystalReport Name CrystalReport1

ReportFileName "C:\VB\REPORT\MAILLIST.RPT" (Your local
path)

Destination 0 `To Print Preview Window

SelectionFormula ""

GroupSelectionFormula ""

Connect ""

UserName ""

10. Enter the following code in the Load event procedure of the form. This procedure initializes the lstReportType list
box to the types of reports available and sets the default page format as "Page 1."

Private Sub Form_Load()
 `Load the lstReportType list box
 lstReportType.Clear
 lstReportType.AddItem "City"
 lstReportType.AddItem "State"
 lstReportType.AddItem "Zip"
 lblStatus.Caption = "Select a report type."
 `Set the report file name
 CrystalReport1.ReportFileName = App.Path & "\MAILLIST.RPT"
 `Set the initial value of the page format
 optPageNoType_Click (0)
End Sub

11. Add the following code to the lstReportType Click event procedure. When a particular report type is selected, the
text of the lblInstruction label is set to prompt for the appropriate value, and it and the txtValue text box are made
visible. If the text of the lstReportType field is empty, the Visible property of the two controls is set to False.

Private Sub lstReportType_Click()
 If Len(lstReportType.Text) Then
 Select Case lstReportType.Text
 Case "City"
 lblInstruction.Caption = "&Enter the City name:"
 lblStatus.Caption = _

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (45 of 48) [9/22/1999 2:04:56 AM]

 "Enter a city name or blank for all."
 Case "State"
 lblInstruction.Caption = "&Enter the State name:"
 lblStatus.Caption = _
 "Enter a state name or blank for all."
 Case "Zip"
 lblInstruction.Caption = "&Enter the Zip Code:"
 lblStatus.Caption = _
 "Enter a zip code or blank for all."
 End Select
 txtValue.Text = ""
 lblInstruction.Visible = True
 txtValue.Visible = True
 txtValue.SetFocus
 Else
 lblInstruction.Visible = False
 txtValue.Text = ""
 txtValue.Visible = False
 End If
End Sub

12. Add the following code to the Click event procedure of the optPageNoType option button control array. Recall that
you entered the page number in the report footer as a formula field @PageFooter. You also set the default formula to print a
page number in the form "page one." Any time the report is printed through the Crystal Reports program, the page number
appears in the same form. This Visual Basic program simply sets the @PageFooter formula to whatever formula you want.
In this case, one of the three formats shown in the option button group, "Page 1," "1," or "page one."

Private Sub optPageNoType_Click(Index As Integer)
 `Set the page number format
 Select Case Index
 Case 0
 CrystalReport1.Formulas(1) = "PageFooter= `Page ` + _
 ToText(PageNumber, 0)"
 Case 1
 CrystalReport1.Formulas(1) = "PageFooter= _
ToText(PageNumber, 0)"
End Select
End Sub

13. Add the following code to the Click event procedure of the cmdReport command button. Now that the relevant
properties of the report have been set, it is time to actually print it. In contrast to previous How-To's, a different technique for
setting the properties is demonstrated here. They are all set at once at print time, instead of as they are changed on the form
(with the exception of the page number format). Use whichever technique works best in the context of your application.

Three different types of reports can be printed using this program:

For one city or all cities sorted by city and zip.●

For one state or all states sorted by state, city, and zip.●

For one zip code or all zip codes sorted by zip.●

Any of the initial digits of a zip code can be entered to obtain a zip code list; the program selects all the zip codes that begin
with those starting characters.

For each selected report type, this procedure first sets the SelectionFormula, which filters the records for the particular
city, state, or zip code. If no value was entered, the records for all of that particular group are filtered. Then the formulas you
built into the report are reset as appropriate. In the case of a city report, for example, the report title formula @ReportTitle
is set to "Mailing list for City of <city name>" or "Full City Mailing" if no city name was entered.
Finally, the SortFields array of fields for sorting are set. In each case, three elements of the array are set, clearing any
elements that are not used for the particular report. If you didn't clear unused array elements, they would remain set for the
next report unless explicitly overwritten.

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (46 of 48) [9/22/1999 2:04:56 AM]

Private Sub cmdReport_Click()
 Dim ZipDigits As String
 lblStatus.Caption = "Setting report options. Please wait..."
 DoEvents
 Select Case lstReportType.Text
 Case "City"
 `Set the filter and title for the report
 If Len(txtValue) Then
 CrystalReport1.SelectionFormula = _
"{Mailing LIst.CITY}= `" _
 & txtValue & "`"
 CrystalReport1.Formulas(0) = _
 "ReportTitle= `Mailing List for City of " & _
txtValue & "`"
 Else
 CrystalReport1.SelectionFormula = ""
 CrystalReport1.Formulas(0) = _
 "ReportTitle= `Full City Mailing List'"
 End If
 `Set the sort order and clear second element
 CrystalReport1.SortFields(0) = "+{Mailing LIst.CITY}"
 CrystalReport1.SortFields(1) = "+{Mailing LIst.ZIP}"
 CrystalReport1.SortFields(2) = ""
 Case "State"
 `Set the filter and title for the report
 If Len(txtValue) Then
 CrystalReport1.SelectionFormula = _
 "{Mailing LIst.STATE}= `" & txtValue & "`"
 CrystalReport1.Formulas(0) = _
 "ReportTitle= `Mailing List for State of " & _
txtValue & "`"
 Else
 CrystalReport1.SelectionFormula = _
 "{Mailing LIst.STATE}= {Mailing LIst.STATE}"
 CrystalReport1.Formulas(0) = _
 "ReportTitle= `Full State Mailing List'"
 End If
 `Set the sort order
 CrystalReport1.SortFields(0) = "+{Mailing LIst.STATE}"
 CrystalReport1.SortFields(1) = "+{Mailing LIst.CITY}"
 CrystalReport1.SortFields(2) = "+{Mailing LIst.ZIP}"
 Case "Zip"
 `Set the filter and title for the report
 If Len(txtValue) Then
 ZipDigits = Trim(Str(Len(txtValue)))
 CrystalReport1.SelectionFormula = _
 "{Mailing LIst.ZIP}[1 to " _
 & ZipDigits & "]= `" & txtValue & "`"
 CrystalReport1.Formulas(0) = _
 "ReportTitle= `Mailing List for Zip Code " & _
txtValue & "`"
 Else
 CrystalReport1.SelectionFormula = _
 "{Mailing LIst.ZIP}= {Mailing LIst.ZIP}"
 CrystalReport1.Formulas(0) = _
 "ReportTitle= `Full Zip Code Mailing List'"
 End If
 `Set the sort order

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (47 of 48) [9/22/1999 2:04:56 AM]

 CrystalReport1.SortFields(0) = "+{Mailing LIst.ZIP}"
 CrystalReport1.SortFields(1) = ""
 CrystalReport1.SortFields(2) = ""
 End Select
 `Print the report
 lblStatus.Caption = "Printing the report. Please wait..."
 DoEvents
 CrystalReport1.Action = 1
 lblStatus.Caption = "Enter new selections and print or quit."
 DoEvents
End Sub

14. Add the following code to the Click event of the cmdQuit command button to provide an exit point from the program:

Private Sub cmdQuit_Click()
 End
End Sub

How It Works

This How-To takes advantage of properties of the Crystal Reports custom control to modify the design of the report at runtime. These
changes stay in effect only for the lifetime of the Crystal Reports custom control in the form, and they are not saved in the report file
itself. This means that if the form with the control is unloaded, the options revert to the settings in the report until you explicitly set
them again. This "stickiness" trait of the control makes it critical to set any unused formulas or fields to a null string if they aren't
required for the current operation.

If you specified any particular sorting order in the report design, setting the particular formula or field through your application
would replace that formula for this report. So if a report has five formula fields and you change only two, the other three fields
remain as they were set in the report.

Three formula and field properties of the custom control were used in this How-To:

SelectionFormula: There is one selection formula in each report. But because it is a Crystal Reports formula, it can be as
complex as you care to make it. In this How-To, the City, State, and Zip fields of the report are set to the particular values
entered; if no values are entered, they are set to empty strings so that all records print.

●

Formulas: Any formula contained in the report file can be changed at runtime through the Crystal Reports control. In this
How-To, the @ReportTitle and @PageFooter formulas were changed.

●

SortFields: This property resets the record sort order of the report. A similar GroupSortFields property wasn't used
in this program, but it can be used to reset the sorting order of any groups in the report. Both of these properties are
implemented as arrays so that fields entered into the array are sorted in the order of the 0th element, 1st element, and so on.

●

It is important to remember that the format of any formulas set in Visual Basic must be in the Crystal Reports format of formulas, not
Visual Basic's statement format. This requires placing the entire formula in "double" quotation marks and placing any literals used in
the formula in "single" quotation marks. This is the reason for the convoluted form of this setting for the Formulas(0) property:

"ReportTitle= `Mailing List for City of " & txtValue & "`"

Comments

This How-To has shown the power of Crystal Reports to improve your development by setting different OCX control properties. The
creative combination of multiple control properties can help you deliver high-quality results to your customers.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Ch 9 --Microsoft Data Report

http://www.pbs.mcp.com/ebooks/1571691529/ch09/ch09.htm (48 of 48) [9/22/1999 2:04:56 AM]

Visual Basic 6 Database How-To

- 10 -
Security and Multiuser Access

How do I...

10.1 Open a database so that others can't access it while the user is working with it?❍

10.2 Open a table so that others can't access it while the user is working with it?❍

10.3 Work with locked records?❍

10.Work with secured Microsoft Access database files?❍

10.5 Assign permissions for database objects?❍

10.6 Change ownership of database objects?❍

10.7 Change or delete database passwords?❍

10.8 Use a single password for data access for all users?❍

10.9 Add new users to a system database?❍

10.10 Define new groups in a system database?❍

10.11 Add users to groups and delete users from groups?❍

10.12 Track user activity in a database?❍

10.13 Create and use an encrypted database?❍

●

When multiple users have access to a database, two issues become overwhelmingly important:

Ensuring that users accessing the database simultaneously do not inadvertently interfere with each other's
operations.

●

Ensuring that only authorized users have access to the data.●

This chapter presents techniques for handling both of these issues. The first 3 How-To's deal with the issue of
simultaneous multiuser access, and the remaining 10 How-To's show you how to use Visual Basic to implement
security with the Jet database engine.

10.1 Open a Database So That Others Can't Access It While the User Is Working with It

When your application runs in a multiuser environment, the application and the Jet database engine need to work
together to control access to common data. This How-To shows how to implement the most exclusive method of access
to multiuser resources, locking an entire database.

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (1 of 72) [9/22/1999 2:08:13 AM]

10.2 Open a Table So That Others Can't Access It While the User Is Working with It

Most of the time, locking an entire database results in limited functionality of the client software that needs to access
that database. In this How-To, you will learn how to gain exclusive read and write access to individual tables.

10.3 Work with Locked Records

If you decide not to lock an entire database or table for exclusive use, the Jet engine takes over and locks clusters of
records one at a time as users access them. This How-To shows how to work with the Jet engine to implement record
locking in your application.

10.Work with Secured Microsoft Access Database Files

Microsoft Access database files have a sophisticated set of security features that can be turned on simply by using
password protection for the Admin account. You can implement the security features at two levels: the individual
database file and the workgroup. The workgroup is defined by a system database. This How-To shows you how to work
with secured Microsoft Access databases.

10.5 Assign Permissions for Database Objects

Each table and query in a Microsoft Access database file has associated with it a set of permissions for each user in the
workgroup. This How-To shows you how to read and change permissions for users.

10.6 Change Ownership of Database Objects

The user who creates a table or query in a Microsoft Access database becomes its owner. With the appropriate
permissions, you can change the owner of a table or query. This How-To shows you the technique to accomplish this
task.

10.7 Change or Delete Database Passwords

The system administrator occasionally needs the ability to change a user's password and sometimes remove it all
together. This How-To shows how to accomplish this job through Visual Basic.

10.8 Use a Single Password for Data Access for All Users

You know that you can set individual passwords for each user in a workgroup, but what if you simply want to put a
password on the database itself? This How-To shows you how to do just that.

10.9 Add New Users to a System Database

A system database includes an entry for each user in the workgroup. This How-To shows you how to create new users
and add them to that workgroup.

10.10 Define New Groups in a System Database

Just as you might need to add new users, you also might need to add new groups to a system database. This How-To
shows you how to add new groups to a system database using Visual Basic.

10.11 Add Users to Groups and Delete Users from Groups

This How-To shows you how to add and remove any user in the system database to and from any group.

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (2 of 72) [9/22/1999 2:08:13 AM]

10.12 Track User Activity in a Database

It is nice to know which users did what to your database. Sometimes it would be useful if they had to sign what they
did. The How-To will show you how to create an audit trail with any particular recordset to keep track of user activity
in an Access database.

10.13 Create and Use an Encrypted Database

This How-To will show you how to create and convert encrypted databases so that others cannot access them with a
product other than Access or Visual Basic.

10.1 How do I...

Open a database so that others can't access it while the user is working with
it?

Problem

I have a database that I need to access from my application. It is important that no other user access the database while
my application is running, even if he or she is using the same project that I am using. How can I ensure that only one
instance of my program can access the database at a time?

Technique

Using the Microsoft Jet engine, shared data access is the default data mode. In this mode, the Jet engine takes care of
page locking of the database. To open the database exclusively, you must explicitly state that this is your intention by
passing a true value as the second parameter of the OpenDatabase method.

Steps

The Exclusive project is designed to illustrate the two distinct data modes used when opening a database, exclusive and
shared. Open the Exclusive.vbp project and compile it to an EXE file. Invoke this executable twice to create two
instances of the application. You should see the USER form opened twice, as shown in Figure 10.1. To open the
database exclusively, click the Open Exclusive command button, or to open the database using the shared data mode,
click the Open Shared command button. Notice the combinations permitted when opening the database with the two
instances of the Exclusive project. You can open the database exclusively only if no other user has the database open at
all, and you can open the database shared only if no other user has the database opened exclusively. To close the
database, click the Close Database command button.

Figure 10.1. Two instances of the Exclusive project.

1. Create a new project and call it Exclusive.vbp. Change the properties of the default form, Form1, to those
listed in Table 10.1, and save it as frmExclusive.frm.

Table 10.1. Objects and properties for the Exclusive project.

OBJECT Property Setting

Form Name frmExclusive

Caption USER

Command button Name cmdOpenExclusive

Caption Open &Exclusive

Command button Name cmdOpenShared

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (3 of 72) [9/22/1999 2:08:13 AM]

javascript:popUp('10fig01.gif')

Caption Open &Shared

Command button Name cmdCloseDatabase

Caption &Close Database

Command button Name cmdExit

Caption E&xit

Cancel -1 `True

Default -1 `True

Label Name lblDBStatusLabel

Caption Database Status

Label Name lblDBStatus

Caption ""

2. Enter the following form-level variable and constant declarations to be used throughout the project:

Option Explicit
` this is the database object variable used throughout this
` project
Private db As Database
` these are private constants used to indicate the desired state
` of the database when opened
Private Const OPEN_EXCLUSIVE = True
Private Const OPEN_SHARED = False

3. Now enter the code to initialize the frmExclusive form to display the database as closed by calling the
cmdCloseDatabase_Click event.

Private Sub Form_Initialize()
 ` when the form is initialized, ensure that the proper states
 ` of the command buttons and labels are set by calling the
 ` Close Database command button's click event
 cmdCloseDatabase_Click
End Sub

4. Code both the cmdOpenExclusive_Click and the cmdOpenShared_Click events with a call to the
OpenDB procedure, passing the appropriate form-level constant to indicate the data mode desired by the user.

Private Sub cmdOpenExclusive_Click()
 ` call the OpenDB procedure of this project, passing the
 ` OPEN_EXCLUSIVE constant (this constant holds the value of
 ` TRUE)
 OpenDB OPEN_EXCLUSIVE
End Sub
Private Sub cmdOpenShared_Click()
 ` call the OpenDB procedure of this project, passing the
 ` OPEN_SHARED constant (this constant holds the value of
 ` FALSE)
 OpenDB OPEN_SHARED
End Sub

5. When closing the database, set the db object variable to nothing, and set the command button Enabled
properties to the correct state, allowing the user only to open the database, because it is now closed. Here is the
code for the Close Database command button:

Private Sub cmdCloseDatabase_Click()

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (4 of 72) [9/22/1999 2:08:13 AM]

 ` set the database object variable to nothing, which is
 ` the equivalent of closing the database
 Set db = Nothing
 ` change the label that displays the database status to closed
 lblDBStatus = "CLOSED"
 ` only allow the user to open the database and not close it
 cmdOpenExclusive.Enabled = True
 cmdOpenShared.Enabled = True
 cmdCloseDatabase.Enabled = False
End Sub

6. Enter the code for the Exit command button. This code first calls the Close Database click event of the
command button to set the database object to nothing, unloading the project afterward to terminate the project.

Private Sub cmdExit_Click()
 ` call the close database command button click event to ensure
 ` that the database is closed before we terminate the project
 cmdCloseDatabase_Click
 ` end the application by calling Unload
 Unload Me
End Sub

7. Next, enter the code for the OpenDB procedure used to open the database for either exclusive or shared mode.
If the user decides to open the database exclusively, the OPEN_EXCLUSIVE constant is passed to this procedure
and onto the OpenDatabase method of the database object. This constant holds the value of True and opens
the database exclusively. The other choice, OPEN_SHARED, passes a value of False to the OpenDatabase
method.

Private Sub OpenDB(bDataMode As Boolean)
` if any error is encountered, call the code specified by the
` ERR_OpenDB label
On Error GoTo ERR_OpenDB:
 Dim sDBName As String
 ` on slower machines, this may take a moment; therefore,
 ` we will change the mouse pointer to an hourglass to indicate
 ` that the project is still working
 Screen.MousePointer = vbHourglass
 ` retrieve the database name and path from the ReadINI module
 sDBName = DBPath
 ` open the database using the desired data mode specified by
 ` the user if bDataMode = OPEN_EXCLUSIVE then the value of
 ` bDataMode is TRUE, telling the OpenDatabase method to open
 ` the database exclusively; otherwise, OPEN_SHARED = FALSE,
 ` opening the database in a shared mode
 Set db = dbengine.Workspaces(0).OpenDatabase(sDBName, bDataMode)
 ` if we are at this point, then the database was opened
 ` succesfully, now display the appropriate label depending on
 ` the data mode selected
 Select Case bDataMode
 Case OPEN_EXCLUSIVE:
 lblDBStatus = "OPEN: EXCLUSIVE"
 Case OPEN_SHARED:
 lblDBStatus = "OPEN: SHARED"
 End Select
 ` only allow the user to close that database, and do not allow

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (5 of 72) [9/22/1999 2:08:13 AM]

 ` opening of the database again
 cmdOpenExclusive.Enabled = False
 cmdOpenShared.Enabled = False
 cmdCloseDatabase.Enabled = True
 ` set the mouse pointer to the default icon
 Screen.MousePointer = vbDefault
Exit Sub
ERR_OpenDB:
 ` set the mouse pointer to the default icon
 Screen.MousePointer = vbDefault
 ` call the DatabaseError procedure, passing the Err object,
 ` which describes the error that has just occurred
 DatabaseError Err
End Sub

8. To finish this project, enter the code for responding to errors opening the database. This code is as follows:

Private Sub DatabaseError(oErr As ErrObject)
 Dim sMessage As String
 ` these are the constant values used to represent the two
 ` errors that we are going to trap in this code
 Const DB_OPEN = 3356 ` database already open in shared mode
 Const DB_IN_USE = 3045 ` database already open exclusively
 With oErr
 ` select the appropriate code depending upon the error
 ` number
 Select Case .Number
 ` attempted to open the database exclusively, but it
 ` is already open in shared mode
 Case DB_OPEN:
 sMessage = _
 "You cannot open the database exclusively " _
 & "because it is already opened by another user."
 ` attempted to open the database either exclusively or
 ` shared, but it is opened exclusively by another user
 Case DB_IN_USE:
 sMessage = _
 "You cannot open the database because it is " _
 & "opened exclusively by another user."
 ` unexpected error: display the error number and
 ` description for the user
 Case Else
 sMessage = "Error #" & .Number & ": " &
 .Description
 End Select
 End With
 ` display the message for the user
 MsgBox sMessage, vbExclamation, "DATABASE ERROR"
 ` ensure that the database is closed because of the error, and
 ` properly set all the command button enabled properties as
 ` well as the status label
 cmdCloseDatabase_Click
End Sub

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (6 of 72) [9/22/1999 2:08:13 AM]

How It Works

When you open an Access database exclusively in one instance of the Exclusive project, assuming that the database is
not opened by any other project, the Jet engine indicates that no other application can open the database by putting
codes in the LDB file named after your database. In the case of this project, you use the ORDERS.MDB database. The
file named ORDERS.LDB indicates how the database is opened and by whom.

Comments

This project uses an all-or-nothing concept when locking the data from other users. Either the data can be accessed by
others or it cannot. Sometimes this is too general of a technique to use when developing a multiuser application. In
How-To 10.2, you will use table locking to allow more flexible manageability of your database.

10.2 How do I...

Open a table so that others can't access it while the user is working with it?

Problem

My application accesses shared data through the Jet engine. The default record-locking scheme that Jet uses works great
for many instances. I need advanced record locking on particular tables so that others cannot access the entire table
when my application does. How do I open a table with exclusive access?

Technique

By default, the recordset that you add will have shared rights to other users unless you explicitly request otherwise. You
can indicate what kind of permissions you will grant other users when accessing that table.

The syntax for the OpenRecordset method is

Set rs = db.OpenRecordset(TableName, dbOpenTable, Options)

where rs is your recordset object variable, db is your database object variable, and TableName is the name of a valid
table in the db object. The second parameter, dbOpenTable, is the type of recordset to be used. This parameter can
be replaced with dbOpenDynaset, dbOpenSnapshot, dbOpenDynamic, or dbOpenForwardOnly. Table
10.2 lists the valid options.

Table 10.2. Options for the OpenRecordset method.

OPTION Description

dbDenyRead Denies read permissions to other users

dbDenyWrite Denies write permissions to other users

By using the dbDenyRead and dbDenyWrite options, you can open a table exclusively or with partial sharing
rights to other users.

Steps

Open and compile the TableLocker.vbp project. Create two instances of the TableLocker project by double-clicking its
icon twice from Windows Explorer. Move one form down to reveal the other (they start up in the same position). You
should see the forms shown in Figure 10.2.

Figure 10.2. Two instances of the TableLocker project.

You can set the permissions assigned to opening the table by using the two check boxes on the form and then pressing
the Open Table command button. You can add records and then close the table by pressing the appropriate command

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (7 of 72) [9/22/1999 2:08:13 AM]

javascript:popUp('10fig02.gif')

buttons.

Experiment with opening the table with the two instances of the project. If you open the table with exclusive rights
(deny read access) with one instance and then attempt to open it with the other in any way, you will be unsuccessful.
When this happens, the application asks whether you want to open the table with Read Only access. If this is possible,
the table will open but deny you the right to add records.

1. Create a new project and save it as TableLocker.vbp. Edit Form1 to include the objects and properties listed in Table
10.3, and save it as frmTableLocker.vbp.

Table 10.3. Objects and properties for the Exclusive project.

OBJECT Property Setting

Form Name frmTableLocker

Caption USER

Frame Name fraTableSharing

Check box Name chkDenyRead

Caption Deny others Read Access to Table

Check box Name chkDenyWrite

Caption Deny others Write Access to Table

Command button Name cmdOpenTable

Caption &Open Table

Command button Name cmdAddRecord

Caption &Add Record

Command button Name cmdCloseTable

Caption &Close Table

Command button Name cmdExit

Caption E&xit

2. Enter the following declarations for the form-level database and recordset object variables:

Option Explicit
` form-level object variables used to access the database and
` recordset objects used throughout this project
Private db As Database
Private rs As Recordset

3. Now enter the code to initialize the form to indicate that the table is closed:

Private Sub Form_Initialize()
 ` initialize the form controls to show that the table is
 ` closed upon startup of project
 cmdCloseTable_Click
End Sub

4. Open the database in the Form_Load event as shown next. The DBPath function is from the ReadINI
module included with the distribution CD-ROM to indicate where the ORDERS database is located on your
machine.

Private Sub Form_Load()
 Dim sDBName As String
 ` obtain the name and path of the table to be used in this

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (8 of 72) [9/22/1999 2:08:13 AM]

 ` project from the ReadINI module
 sDBName = DBPath
 ` open the database
 ` by not specifying an exclusive mode, the database is opened
 ` in shared mode
 Set db = DBEngine.Workspaces(0).OpenDatabase(sDBName)
End Sub

5. By placing the following code in the Form_Unload event, you can ensure that it runs even if the user does
not terminate the application by using the Exit command button:

Private Sub Form_Unload(Cancel As Integer)
 ` close the database and recordset objects by setting them to
 ` nothing
 Set db = Nothing
 Set rs = Nothing
End Sub

6. Now enter the cmdOpenTable_Click event code as shown next. This event opens the table using the check
box values of the frmTableLocker form to determine the permissions assigned to the opening of the table. If
an error occurs, the application calls the TableError routine to gracefully handle it and might try opening the
table again.

Private Sub cmdOpenTable_Click()
` if an error occurs, call the ERR_cmdOpenTable_Click code located
` at the end of this procedure
On Error GoTo ERR_cmdOpenTable_Click:
 ` local variable used to store permissions
 Dim nAccessValue As Integer
 ` set the mouse pointer to an hourglass because on some
 ` machines, this could take a few seconds
 Screen.MousePointer = vbHourglass
 ` default the permissions to nothing (all access okay)
 nAccessValue = 0
 ` apply the proper permissions that were restricted by the
 ` user
 If (chkDenyRead) Then nAccessValue = nAccessValue + dbDenyRead
 If (chkDenyWrite) Then nAccessValue = nAccessValue + _
 dbDenyWrite
 ` open the table using the permission variable
 Set rs = db.OpenRecordset("Customers", dbOpenTable, _
 nAccessValue)
 ` set the index to the PrimaryKey used later in GetPrimaryKey
 rs.Index = "PrimaryKey"
 ` release any locks that may be on the table, and process any
 ` data that is waiting to be completed
 DBEngine.Idle dbRefreshCache
 ` allow the correct status of the enabled property of the
 ` frmTableLocker controls
 cmdOpenTable.Enabled = False
 chkDenyRead.Enabled = False
 chkDenyWrite.Enabled = False
 cmdAddRecord.Enabled = True
 cmdCloseTable.Enabled = True
 ` set the mousepointer back to its default because we are now

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (9 of 72) [9/22/1999 2:08:13 AM]

 ` finished
 Screen.MousePointer = vbDefault
Exit Sub
ERR_cmdOpenTable_Click:
 ` an error has occurred; therefore, change the mouse pointer
 ` back to an hourglass
 Screen.MousePointer = vbDefault
 ` call the TableError function, passing the error object
 ` describing the error that has occurred
 ` if a value of True is returned, we are going to try opening
 ` the table again with read-only access
 If (TableError(Err)) Then
 chkDenyRead = False
 chkDenyWrite = False
 nAccessValue = dbReadOnly
 Resume
 End If
End Sub

7. When the user clicks the Add Record command button, a dummy record is added to the table using a unique
primary key that is obtained by calling the GetUniqueKey function. Again, if there is an error, the
TableError routine is called to handle it. The code for the cmdAddRecord_Click event is as follows:

Private Sub cmdAddRecord_Click()
` if an error occurs, call the ERR_cmdAddRecord code located at
` the end of this procedure
On Error GoTo ERR_cmdAddRecord:
 Dim lPrimaryKey As Long
 Dim sMessage As String
 ` used to populate fields in Customer table
 ` this is necessary because most of the fields belong to
 ` indexes, making them required fields
 Const DUMMY_INFO = "<>"
 ` retrieve a unique key from the GetPrimaryKey routine
 lPrimaryKey = GetPrimaryKey
 With rs
 ` add a new record
 .AddNew
 ` fill in the required fields
 .Fields("Customer Number") = lPrimaryKey
 .Fields("Customer Name") = DUMMY_INFO
 .Fields("Street Address") = DUMMY_INFO
 .Fields("City") = DUMMY_INFO
 .Fields("State") = DUMMY_INFO
 .Fields("Zip Code") = DUMMY_INFO
 ` make saves (if an error will occur, it will be here)
 .Update
 End With
 ` if we got this far, add new record was successfull
 sMessage = "Record added successfully!"
 MsgBox sMessage, vbInformation, "ADD RECORD"
Exit Sub
ERR_cmdAddRecord:

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (10 of 72) [9/22/1999 2:08:13 AM]

 ` an error has occurred; call the TableError function and pass
 ` the Err object describing the error
 TableError Err
End Sub

8. Enter the following cmdCloseTable_Click event code. This code sets the recordset object variable to
nothing (the equivalent of closing the recordset) and sets the Enabled property of the controls on the form to
their appropriate state.

Private Sub cmdCloseTable_Click()
 ` set the rs object variable to nothing, closing the recordset
 Set rs = Nothing
 ` properly display the controls on the frmTableLocker form
 chkDenyRead.Enabled = True
 chkDenyWrite.Enabled = True
 cmdOpenTable.Enabled = True
 cmdAddRecord.Enabled = False
 cmdCloseTable.Enabled = False
End Sub

9. Enter the cmdExit_Click code shown next to end the project. The Unload Me code will invoke the
Form_Unload event where the database and recordset object variables will be set to nothing.

Private Sub cmdExit_Click()
 ` using Unload Me will call Form_Unload where the form-level
 ` database and recordset object variables will be set to
 ` nothing
 Unload Me
End Sub

10. The GetPrimaryKey function returns a unique key based on the Customer Name field of the Customers
table you are accessing:

Private Function GetPrimaryKey()
 ` return a unique primary key based on the Customer Number
 ` field
 With rs
 ` if there are records in the table already, find the last
 ` one and add one to the Customer Number as a unique
 ` Primary Key; otherwise, there are no records in the
 ` table so return 1 for the first new record to be added
 If (Not (.EOF And .BOF)) Then
 .MoveLast
 GetPrimaryKey = .Fields("Customer Number") + 1
 Else
 GetPrimaryKey = 1
 End If
 End With
End Function

11. The TableError function contains the code that handles all the input and output errors that occur within
this application. If users cannot open the table with the permissions that were requested, they are asked whether
they want to try again with read-only access. Enter the code for the TableError function:

Private Function TableError(oErr As ErrObject) As Boolean
 Dim sMessage As String
 Dim nResponse As Integer
 ` these are the constant values used to represent the four

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (11 of 72) [9/22/1999 2:08:13 AM]

 ` errors that we are going to trap in this code
 Const TB_OPEN = 3262 ` database already open in shared mode
 Const TB_IN_USE = 3261 ` database already open exclusively
 Const TB_READ_ONLY = 3027 ` can't save, read only
 Const TB_LOCKED = 3186 ` table is locked, cannot update
 ` default the return value of the function to false, which
 ` will indicate that we do not want to try again
 TableError = False
 With oErr
 ` select the appropriate code depending upon the error
 ` number
 Select Case .Number
 ` the table couldn't be opened using the permissions
 ` requested; ask the user if they would like to open it
 ` in read-only mode
 Case TB_OPEN, TB_IN_USE:
 sMessage = "There was an error opening the table. " _
 & "Would you like to try read only mode?"
 nResponse = MsgBox(sMessage, vbYesNo + vbQuestion, _
 "ERROR")
 If (nResponse = vbYes) Then TableError = True
 Exit Function
 ` the table is read only and you cannot add a new
 ` record
 Case TB_READ_ONLY:
 sMessage = "You cannot add a record because the " _
 & "database is currently opened with read " _
 & "only status."
 ` the table is locked and you cannot add a new record
 Case TB_LOCKED:
 sMessage = "You cannot add a record because the " _
 & "database is currently locked by
 & "another user."
 ` unexpected error: display the error number and
 ` description for the user
 Case Else
 sMessage = "Error #" & .Number & ": " & _
 .Description
 End Select
 End With
 ` display the message for the user
 MsgBox sMessage, vbExclamation, "TABLE ERROR"
 ` ensure that the database is closed because of the error, and
 ` properly set all the command button enabled properties, as
 ` well as the status label
 cmdCloseTable_Click
End Function

How It Works

This project uses the dbDenyRead and dbDenyWrite options when opening the Customer table to deny rights to
other users when they attempt to open the table. If another user attempts to open the table that is already opened with
dbDenyRead, it is considered opened exclusively. If the table is already opened with the dbDenyWrite option, the

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (12 of 72) [9/22/1999 2:08:13 AM]

user can only open the table with a dbReadOnly option, not allowing new records or editing of ones that already
exist.

Comments

There is another parameter you can specify when you open a table; this is called the LockEdits parameter. Table
10.4 describes the options you can use for the LockEdits parameter.

Table 10.4. The LockEdits parameter.

OPTION Description

dbPessimistic Page is locked at Edit method.

dbOptimistic Page is locked at Update method.

dbPessimistic is the default value for this fourth parameter of the OpenRecordset method and indicates that
the page is to be locked as soon as the Edit method is encountered. The dbOptimistic option works a little
differently--it waits until the Update method is called to lock the page. The main reason for using the
dbOptimistic option is to allow less time for the page to be locked. How-To 10.3 demonstrates these options.

10.3 How do I...

Work with locked records?

Problem

My application is being designed to allow multiple users to access the same data. It is inevitable that sooner or later two
users will attempt to edit the same data. How do I write proper record-locking code to guard my application from
situations like this and to ensure database integrity?

Technique

As touched on in How-To 10.2, you can set the way in which a record is locked by accessing the LockEdits property
of the recordset. In doing this, you can set the value of this property to either pessimistic or optimistic. The default value
for LockEdits is True, which corresponds to pessimistic. By setting this property to False, you obtain optimistic
record locking.

Pessimistic record locking locks the record during the time indicated by the call to the Edit method and the call to the
Update method of a recordset. Optimistic record locking locks the record during the call to the Update method.

With the potential danger of database corruption with multiuser access, you can expect to encounter numerous trappable
runtime errors with record locking. The errors are listed here:

Error 3167: Record is deleted.●

Error 3197: Record has changed; operation halted.●

Error 3260: Record currently locked by another user, cannot update.●

It has become an acceptable programming technique to trap these errors and respond to them at such times. It is
common to expect some or all of these errors when running a multiuser application, as you will see in this project.

Steps

Open the RecordLocker project and compile it. Open two instances of the project and run them simultaneously. You
should see the forms shown in Figure 10.3. With one instance, open a record for editing. With the other instance, select
pessimistic record locking and edit the record. You will receive an error because the application is attempting to lock

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (13 of 72) [9/22/1999 2:08:13 AM]

the record from the time the Edit method is called. Try changing the record locking to optimistic and edit the record.
You will be able to get to this point; however, if you now click the Update button, you will receive an error. This is
because optimistic record locking attempts to lock the record when the Update method is called.

Figure 10.3. Two instances of the RecordLocker project.

The user can navigate the recordset by using the four buttons below the option buttons. The user can also refresh the
current record by clicking the Refresh button. This step is useful to ensure that you have the most up-to-date
information for the current record in case another user has already changed it.

1. Create a new project and call it RecordLocker.vbp. Create the objects and change the properties as listed in
Table 10.5. Save the form as frmRecordlocker.frm. Note that the cmdMove command buttons are a control array.

Table 10.5. Objects and properties for the Exclusive project.

OBJECT Property Setting

Form Name frmRecordLocker

Caption USER

Frame Name fraRecord

Text box Name txtCustomerName

Text box Name txtStreetAddress

Option button Name optPessimisticLocking

Caption Pessimistic Record Locking

Option button Name optOptimisticLocking

Caption Optimistic Record Locking

Command button Name cmdEdit

Caption &Edit

Command button Name cmdUpdate

Caption &Update

Command button Name cmdRefresh

Caption &Refresh

Command button Name cmdClose

Caption &Close

Command button Name cmdMove

Caption <<

Index 0

Command button Name cmdMove

Caption <

Index 1

Command button Name cmdMove

Caption >

Index 2

Command button Name cmdMove

Caption >>

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (14 of 72) [9/22/1999 2:08:14 AM]

javascript:popUp('10fig03.gif')

Index 3

Label Name lblCustomerName

Caption &Customer Name

Label Name lblStreetAddress

Caption &Street Address

2. Enter the following form-level variables in the declarations section of your project. The first two variables are
used to hold the database and recordset objects. The m_bEditMode variable is used to indicate whether the
project is in edit mode. The last two declarations are constant values used to determine whether the LockEdits
property of the recordset is set to pessimistic or optimistic.

Option Explicit
` form-level object variables that hold the database and recordset
` objects used throughout this project
Private db As Database
Private rs As Recordset
` form-level boolean variable used to indicate when the current
` record is in edit mode
Private m_bEditMode As Boolean
` form-level constant declarations used to indicate pessimistic or
` optimistic record locking
Private Const PESSIMISTIC = True
Private Const OPTIMISTIC = False

3. Now enter the code to open the database and recordset in the Form_Load event. This code also determines
whether the recordset is empty (ending the application if so) and, if not, displays the first record.

Private Sub Form_Load()
 Dim sDBName As String
 ` get the path and name of the database used in this project
 ` from the ReadINI module
 sDBName = DBPath
 ` open the database and recordset
 Set db = DBEngine.Workspaces(0).OpenDatabase(sDBName)
 Set rs = db.OpenRecordset("Customers", dbOpenDynaset)
 With rs
 ` if the recordset is empty, then inform the user and end
 If (.EOF And .BOF) Then
 MsgBox "Table Empty!", vbExclamation, "ERROR"
 Unload Me
 Else
 ` move to the first record and display it
 .MoveFirst
 DisplayRecord
 End If
 End With
 ` set the optPessimisticLocking value to true (this will
 ` automatically call the optPessimisticLocking_Click event
 optPessimisticLocking = True
End Sub

4. The Form_Unload event is called when the application is terminated. By setting the form-level object
variables db and rs to nothing, you achieve the same status as you would closing them with the Close method.

Private Sub Form_Unload(Cancel As Integer)

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (15 of 72) [9/22/1999 2:08:14 AM]

 ` set the form-level object variables for the database and
 ` recordset to nothing (this is the same as closing each
 ` object)
 Set db = Nothing
 Set rs = Nothing
End Sub

5. Enter the cmdEdit_Click code shown next. This event first checks to see whether the record is in edit
mode and updates the record if it is. After this, the recordset is placed in edit mode via the Edit method. If an
error is going to occur, it will be here. If the user has selected pessimistic locking and the record is currently
open, an error will occur. If no error is encountered, the text boxes are enabled to allow editing, and the
form-level Boolean flag, m_bEditMode, is set to True to indicate that edit mode
is on.

Private Sub cmdEdit_Click()
` if there is an error, goto the code labeled by ERR_cmdEdit_Click
On Error GoTo ERR_cmdEdit_Click:
 ` if the current record is in edit mode, call UpdateRecord
 If (m_bEditMode) Then UpdateRecord
 ` set the record to edit mode
 rs.Edit
 ` indicate that the record is in edit mode through the
 ` m_m_bEditMode form-level boolean variable
 m_bEditMode = True
 ` disable the edit command button and enable the update
 ` command button and text box controls
 cmdEdit.Enabled = False
 cmdUpdate.Enabled = True
 txtCustomerName.Enabled = True
 txtStreetAddress.Enabled = True
Exit Sub
ERR_cmdEdit_Click:
 ` an error has occurred, call the RecordError routine with the
 ` error object that describes the error and a string
 ` indicating the method attempted at the time of the error
 RecordError Err, "edit"
End Sub

6. The code for the cmdUpdate_Click event is easy. Simply call the UpdateRecord routine as shown here:

Private Sub cmdUpdate_Click()
 ` update the current record in the database
 UpdateRecord
End Sub

7. Now enter the code for the cmdRefresh_Click event as shown next. This code again updates the record if
it is in edit mode; then it performs a requery of the recordset and displays the current record.

Private Sub cmdRefresh_Click()

 ` if the current record is in edit mode, call UpdateRecord
 If (m_bEditMode) Then UpdateRecord
 ` requery dynaset and move the record pointer
 With rs
 .Requery
 .MoveNext
 .MovePrevious

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (16 of 72) [9/22/1999 2:08:14 AM]

 End With
 ` redisplay the current record
 DisplayRecord
End Sub

8. Enter the code for the cmdClose_Click event as shown here. This ends the application, and the
Form_Unload event is automatically called.

Private Sub cmdClose_Click()
 ` end the application, this will call the Form_Unload event
 Unload Me
End Sub

9. Now enter the code for both option buttons on the frmRecordLocker form as shown next. Each event
checks to see whether the record is in edit mode and performs an update if it is. Next, the LockEdits property
of the recordset is set to the locking method of choice.

Private Sub optPessimisticLocking_Click()
 ` if the current record is in edit mode, call UpdateRecord
 If (m_bEditMode) Then UpdateRecord
 ` set the LockEdits property of the recordset to Pessimistic
 ` record locking
 rs.LockEdits = PESSIMISTIC
End Sub
Private Sub optOptimisticLocking_Click()
 ` if the current record is in edit mode, call UpdateRecord
 If (m_bEditMode) Then UpdateRecord
 ` set the LockEdits property of the recordset to Optimistic
 ` record locking
 rs.LockEdits = OPTIMISTIC
End Sub

10. Now enter the code for the cmdMove_Click event. This event occurs when the user presses any of the four
command buttons belonging to the control array cmdMove. By comparing the Index variable passed as an
argument to this event with the constants defined, the correct recordset navigation is applied and the new record
is displayed.

Private Sub cmdMove_Click(Index As Integer)
 ` local constant values used to indicate which command button
 ` was pressed
 ` each constant corresponds to the index of each command
 ` button
 Const MOVE_FIRST = 0
 Const MOVE_PREVIOUS = 1
 Const MOVE_NEXT = 2
 Const MOVE_LAST = 3
 ` if the current record is in edit mode, call UpdateRecord
 If (m_bEditMode) Then UpdateRecord
 With rs
 Select Case Index
 ` move to the first record
 Case MOVE_FIRST:
 .MoveFirst
 ` move to the previous record; if the record pointer
 ` is before the first record, then move to the first
 ` record

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (17 of 72) [9/22/1999 2:08:14 AM]

 Case MOVE_PREVIOUS:
 .MovePrevious
 If (.BOF) Then .MoveFirst
 ` move to the next record; if the record pointer is
 ` beyond the last record, then move to the last record
 Case MOVE_NEXT:
 .MoveNext
 If (.EOF) Then .MoveLast
 ` move to the last record
 Case MOVE_LAST:
 .MoveLast
 End Select
 End With
 ` display the current record after moving to a new one
 DisplayRecord
End Sub

11. The following code displays the record. Enter this in the General section
of your project. If a new record is displayed, it cannot be in edit mode; therefore, you set the m_bEditMode
variable to False and disable the Update command button while enabling the Edit command button.

Private Sub DisplayRecord()
 ` disable the customer name and fill it with the current
 ` record's corresponding field value
 With txtCustomerName
 .Text = rs.Fields("Customer Name")
 .Enabled = False
 End With
 ` disable the street address and fill it with the current
 ` record's corresponding field value
 With txtStreetAddress
 .Text = rs.Fields("Street Address")
 .Enabled = False
 End With
 ` enable the edit and disable the update command buttons
 cmdEdit.Enabled = True
 cmdUpdate.Enabled = False
 ` currently not in edit mode
 m_bEditMode = False
End Sub

12. Enter the UpdateRecord code now. This procedure updates the recordset with the values shown on the
form. If the recordset LockEdits property was set to optimistic and the record is currently opened by another
user at this time, the Update method causes an error. Trap the error and call the RecordError procedure as
shown toward the end of this procedure.

Private Sub UpdateRecord()
` if there is an error, goto the code labeled by ERR_UpdateRecord
On Error GoTo ERR_UpdateRecord:
 ` set the new values of the record fields to those displayed
 ` on the form and update the record (this is where an error
 ` can occur)
 With rs
 .Fields("Customer Name") = txtCustomerName
 .Fields("Street Address") = txtStreetAddress

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (18 of 72) [9/22/1999 2:08:14 AM]

 .Update
 End With
 ` display the updated record
 DisplayRecord
Exit Sub
ERR_UpdateRecord:
 ` an error has occurred, call the RecordError routine with the
 ` error object that describes the error and a string
 ` indicating the method attempted at the time of the error
 RecordError Err, "update"
End Sub

13. Finally, enter the RecordError code, which displays the proper error message for the user based on the
error object that was passed to it as a parameter:

Private Sub RecordError(oErr As ErrObject, sAction As String)
 Dim sMessage As String
 ` error constant used to indicate that the current record is
 ` locked and cannot be updated or edited
 Const RECORD_LOCKED = 3260
 With Err
 Select Case .Number
 ` the record cannot be edited
 Case RECORD_LOCKED:
 sMessage = "Cannot " & sAction & " at this time " _
 & "because the record is currently locked " _
 & "by another user."
 ` an unexpected error has occurred
 Case Else:
 sMessage = "ERROR #" & .Number & ": " & _
 .Description
 End Select
 End With
 ` display the error message created above
 MsgBox sMessage, vbExclamation, "ERROR"
End Sub

How It Works

This How-To uses the LockEdits property of the recordset object to determine how a particular record is locked. If
the user selects pessimistic locking, the default setting for the Jet engine, the record becomes locked immediately upon
calling the Edit method of the recordset. This lock remains on until the Update method of the recordset is called.

On the other hand, if the user has selected optimistic record locking for the LockEdits property, the record is locked
only when the Update method is called. The advantage to this alternative is that the record is not locked for a
potentially long period as with pessimistic locking; however, the data in the record can change during the time between
the calls to the Edit and Update methods. If this is the case, a trappable runtime error occurs.

This project allows navigation of the recordset with four command buttons that emulate the Data control VCR
navigation buttons. When the user clicks a navigation button, the record pointer is repositioned to the first, previous,
next, or last record. If the record pointer goes before the first record or after the last, the application traps the potential
error and repositions the record pointer to the first or last record.

Comments

The preceding three How-To projects deal with constantly checking error codes to determine the state of a database,

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (19 of 72) [9/22/1999 2:08:14 AM]

table, or record. It is very important to always be a courteous programmer. This means properly coding your
applications so that they will prevent error messages from occurring not only in your own project but also in other
developers' applications.

Table 10.6 lists the most common error messages you might encounter when dealing with locking databases.

Table 10.6. Common database-locking error messages.

ERROR NUMBER Is Generated When...

3167 You use Edit, and the record has been deleted since the last time you read it.

3186 You use Update on a new or edited record, and the record's page is locked by another user.

3197 You use Edit or Update, and the record has changed since the last time you read it.

3027 You try to write to a table you have opened as read only.

3260 You use Addnew, Edit, or Update, and the record's page is locked by another user.

3261 You try to open a table that another user has opened with dbDenyRead or dbDenyWrite.

3262 You try to open a table with dbDenyRead or dbDenyWrite, and another user has the table
open.

3356 You try to open a database already opened exclusively by another user, or you try to open
exclusively a database that another user already has opened.

These error messages can be detected at various points in a project and should be trapped whenever possible.

10.4 How do I...

Work with secured Microsoft Access database files?

Problem

I need to create a secure Microsoft Access database file and have my Visual Basic program manipulate it. How can I do
this?

Technique

Microsoft Access databases support a wide variety of security features. The Jet engine can control which users and
applications can access databases, tables, or fields. Security features are managed through the use of a system database.
By convention, the database is usually named SYSTEM.MDW.

Every Microsoft Access user is assigned to a workgroup, and a copy of SYSTEM.MDW is established for each
workgroup. An entry for each user in the Windows Registry points to the correct copy of SYSTEM.MDW for the user's
assigned workgroup. This file is specified with the key HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\Office\8.0\Access\Jet\3.5\Engines. In this How-To, you learn the techniques
for accessing the objects in a secured Microsoft Access database.

Permissions

Each Microsoft Access database file includes a set of permissions that give users certain specified rights to the database
and to the objects within the database. For the database itself, two permissions can be granted: the right to open the
database (Open Database) and the right to open the database exclusively (Open Exclusive).

Although Microsoft Access security covers all database object types, the only data objects that can be accessed from
Visual Basic are tables and queries. Table 10.7 lists the seven permissions that can be granted for table and query
objects. Granting any of these permissions except Read Design implies granting others as well. Table 10.7 also shows

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (20 of 72) [9/22/1999 2:08:14 AM]

these implied permissions.

Table 10.7. Permissions for Microsoft Access tables and queries.

PERMISSION Implies These Additional Permissions

Read Design (none)

Modify Design Read Design, Read Data, Update Data, Delete Data

Administer All other permissions

Read Data Read Design

Update Data Read Data, Read Design

Insert Data Read Data, Read Design

Delete Data Read Data, Read Design

Groups and Users

Everyone who accesses a Microsoft Access database is a user and is identified by a username. Users can also be
assigned to groups. Every group has a group name. User and group information for a specified workgroup is stored in
the system database (usually SYSTEM.MDW) file. You can use Microsoft Access (or Visual Basic) to create users and
groups and to assign users to groups.

You grant permissions by users or by groups. Users inherit the rights of their group, unless you specify otherwise.
Assume, for example, that you have a group named Payroll Department. You assign the entire group only Read Data
permission to the Pay Rates table (and Read Design permission, which is implied by Read Data). For two users within
the group, Tom and Betty, you also assign Update Data, Insert Data, and Delete Data permissions. For one user in the
group, Pat, you revoke Read Data permission. The specific permission assignments you have made for users Tom,
Betty, and Pat override the group permissions for these users.

Secured and Unsecured Systems

All the preceding information is transparent--and relatively unimportant--as long as you are working with an unsecured
system. When the Workgroup Administrator application creates a new system database--and thereby creates a new
workgroup--the system is by default an unsecured system. All users are assigned empty strings ("") as passwords.
Users do not log in when they start Access, and your Visual Basic program does not need to provide a username or
password because all users are logged in automatically with the default name Admin and the password "".

This all changes as soon as the Admin user's password changes, because a password-protected Admin account makes
the system into a secured system. Each time a user starts Microsoft Access in a secured system, he or she must provide
a username, and that name must be registered in the workgroup's copy of the system database. If the system database
contains a password other than "" for the user, the password must be provided at login. In like manner, before your
Visual Basic program can access a database in a secured system, it must provide a valid username and a password (if
the user is assigned a password).

Security ID Numbers

Every user and group has a Security ID (SID)--a binary string created by the Jet engine and stored in the system
database where the user or group is defined. With several important exceptions, the Jet database engine builds a user or
group SID based on two pieces of information:

The user's name.●

The user's personal identifier (PID)--an alphanumeric string between 4 and 20 characters that must be provided
when a new user is added to the system database. (See How-To 10.9 for information on how to add users to the
system database.)

●

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (21 of 72) [9/22/1999 2:08:14 AM]

The SID, therefore, uniquely identifies a user or group.

Security IDs and Object Permissions

Object permissions are defined by assignment to an SID. You can think of a permission as a keyhole through which
access to an object can be obtained and the SID as a unique key that fits the keyhole (see Figure 10.4). Each object has a
set of keyholes, one matching the SID "key" for each user or group that has a specific permission. When you assign
permission for an object (a process covered in How-To 10.5), you in effect "drill another keyhole" into the object and
encode it with the SID of a specific user or group.

Ensuring a Secure Database

It is altogether too easy to think you have "secured" a Microsoft Access database yet actually have a security system
with gaping holes. The holes can exist because the predefined default users and groups are exceptions to the way SIDs
are built. Default users' and groups' SIDs are built as shown in Table 10.8.

Figure 10.4. Security IDs and permissions.

Table 10.8. Security ID sources for default users and groups.

USER OR GROUP SID Source

Admin user Hard-coded and identical in every system database

Guest user Hard-coded and identical in every system database

Users group Hard-coded and identical in every system database

Guests group Hard-coded and identical in every system database

Admins group Built by the Jet engine from three pieces of data: a username, a company name, and an ID number

The information in Table 10.8 has extremely important implications for database security. The Admin user's SID is
hard-coded and identical in every system database; that means that objects created by the Admin user can be accessed
by the Admin user in any system database. All someone needs to do to gain access to an object created by an Admin
user from any system database is to create a new system database and log in as Admin. Admin is the default user; in an
unsecured system, all users are Admin. Therefore, if you create an object in an unsecured system, that object belongs to
Admin and cannot be secured.

One solution (recommended by Microsoft in the Microsoft Access documentation) is to delete the Admin user from the
system database. This is permissible as long as the Admins group contains at least one other user.

Unlike the Admin user SID, the Admins group SID is unique to each system database. Note in Table 10.8 that the
Admins group SID requires an ID number. If the system database was created by the Microsoft Access setup program,
the ID number component of the Admins group SID is taken from the setup disks, and each set of setup disks is
uniquely encoded. If the system database is created through the Microsoft Access Workgroup Administrator, the ID
number component is computed based on an identifier entered by the person who creates the system database with the
Workgroup Administrator.

This scheme prevents someone who is a member of an Admins group in one system database from automatically
getting Admins group permissions when accessing database files through other system databases; because the Admins
group SIDs are different, the permissions are different (recall the concept of unique keyholes and keys from Figure
10.4). But it also means that all users who are currently members of the Admins group of the system database in use
when the database was originally created will always have the ability to change permissions on all objects in the
database--and this ability cannot be removed by anyone. Therefore, when you create a database you intend to secure,
you should be cognizant of who is defined to the system database as part of the Admins group.

Another implication of Table 10.8 is that permissions assigned to the Guests or Users group through one system
database will be available to members of the Guests or Users group in any system database. Therefore, assign the

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (22 of 72) [9/22/1999 2:08:14 AM]

javascript:popUp('10fig04.gif')

Guests or Users groups only the permissions you are willing to give to anyone. If you need to assign permissions to a
group of users and you want to restrict who can access the permissions, create a new group (see How-To 10.10 for
details on how to create a group and assign users to it).

Accessing a Secured System Through Visual Basic

Before your application can access a secured Microsoft Access system, it needs to provide the Jet engine with several
pieces of information:

The application must specify which system database file the application wants to use. This is normally a file
named SYSTEM.MDW.

●

The application must provide a username that is listed in that system database file.●

If that username has a password, the application must provide the password.●

After the Jet engine knows where to look for usernames and passwords, you provide a username and password. You can
do this by straightforward assignment to DBEngine properties:

DBEngine.DefaultUser = "Annette"
DBEngine.DefaultPassword = "mouseketeer"

The username is not case-sensitive, but the password is case-sensitive. If the password is recorded in the system
database as Mouseketeer and you supply mouseketeer, the login attempt will fail.

Workspaces and Sessions

The Jet engine implements most database security features through the Workspace object and its Groups and
Users collection. A Workspace object is a member of the Workspaces collection of the Database object.

When you set the IniPath, DefaultUser, and DefaultPassword properties of the DBEngine object, you are
actually setting the UserName and Password for the default workspace. The default workspace can be accessed by
its name, DBEngine.Workspaces("#Default Workspace#"), in which the # symbols are part of the name,
or as DBEngine.Workspaces(0).

A Workspace object defines a session for a user. Session and workspace are close to being synonyms. Within a
session, you can open multiple databases. Transactions occur within sessions.

For the default workspace, a session begins when you set the DefaultUser and DefaultPassword properties for
the DBEngine object. After you have successfully initialized the default session, your program can create additional
password-protected sessions.

To open a new session, you create a new Workspace object by using the CreateWorkspace method of the
DBEngine object. The CreateWorkspace method takes three required arguments: Name (the name of the
workspace), UserName, and Password. You can append the Workspace object to the DBEngine object's
Workspaces collection--although you do not need to add the Workspace object to the collection to use the object.
This code fragment initializes the default workspace and then creates a new Workspace object named My Space for
the user Lucy, whose password is diamonds. It then opens a database within the new workspace.

Dim wkSpace as Workspace
Dim db as Database
DBEngine.IniPath = "D:\MYAPP\THEINI.INI"
DBEngine.DefaultUser = "Mary"
DBEngine.DefaultPassword = "contrary"
Set wkSpace = DBEngine.CreateWorkspace("My Space", "Lucy", "diamonds")
Set db = wkSpace.OpenDatabase("BIBLIO.MDB")

Note that you must be logged into the DBEngine object via the DefaultUser and
DefaultPassword objects before you can create additional workspaces.

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (23 of 72) [9/22/1999 2:08:14 AM]

Steps

Open the Secure project (Secure.vbp) and make sure that the path in the GetWorkgroupDatabase function points to your
SYSTEM.MDW file. Then run the Secure project. You will first see a dialog box indicating the system database name
to be used in the application. The next dialog box is that of a typical logon screen, as shown in Figure 10.5. Here you
can enter different usernames and passwords to access the database.

Figure 10.5. The Secure project.

1. Create a new project and name it Secure.vbp. Add the objects and edit the properties as shown in Table 10.9;
then save the form as frmSecure.frm.

Table 10.9. Objects and properties for the Secure project.

OBJECT Property Setting

Form Name frmSecure

Caption Secure

Text box Name txtUserName

Text box Name txtPassword

Command button Name cmdOK

Caption &OK

Default True

Command button Name cmdCancel

Caption &Cancel

Cancel True

Label Name lblUserName

Caption &User Name

Label Name lblPassword

Caption &Password.

2. There are no form-level variables to declare in this project, so go directly to entering the Form_Load code as
shown next. This code sets the DBEngine properties with the default user and password to access the
SYSTEM.MDW file.

Private Sub Form_Load()
` if there is an error, goto the code labeled by ERR_Form_Load
On Error GoTo ERR_Form_Load:
 ` local variables used to hold the user name and password
 Dim sUser As String
 Dim sPassword As String
 With DBEngine
 ` set the system database INI path (registry key)
 DBEngine.IniPath = GetINIPath
 ` set system database file
 .SystemDB = GetWorkgroupDatabase
 ` set default user information
 sUser = "Admin"
 sPassword = "myturn"
 ` assign default user information
 .DefaultUser = sUser

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (24 of 72) [9/22/1999 2:08:14 AM]

javascript:popUp('10fig05.gif')

 .DefaultPassword = sPassword
 ` display current system database
 MsgBox "The system database is " & .SystemDB, vbInformation
 End With
Exit Sub
ERR_Form_Load:
 ` display the error information and then end the application
 With Err
 MsgBox "ERROR #" & .Number & ": " & .Description, vbExclamation, _
 "ERROR"
 End With
 Unload Me
End Sub.

3. Now enter the code for cmdOK_Click. This event creates a new Workspace object with the supplied
information from the frmSecure form, and if it is successful, it opens a recordset obtaining some information.

Private Sub cmdOK_Click()
` if an error occurs, then goto the code labeled by
` ERR_cmdOK_Click
On Error GoTo ERR_cmdOK_Click:
 ` local object variables used to hold the database, recordset,
 ` and workspace
 Dim db As Database
 Dim rs As Recordset
 Dim ws As Workspace
 ` local variable used to store database path and name
 Dim sDBName As String
 ` local variables used to store the username and password
 Dim sUserName As String
 Dim sPassword As String
 ` if there is no username, inform the user and exit the
 ` procedure if there is a username, assign the name and
 ` password
 If (txtUserName = "") Then
 MsgBox "You must enter a username.", vbExclamation, _
 "ERROR"
 txtUserName.SetFocus
 Exit Sub
 Else
 sUserName = txtUserName
 sPassword = txtPassword
 End If
 ` create a new workspace for the user
 Set ws = DBEngine.CreateWorkspace _
 ("NewWorkspace", sUserName, sPassword)
 ` obtain the database name and path from ReadINI and then open
 ` the database
 sDBName = DBPath
 Set db = ws.OpenDatabase(sDBName)
 ` ensure that we have connected by creating a recordset of
 ` some data
 Set rs = db.OpenRecordset("SELECT * FROM Customers")

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (25 of 72) [9/22/1999 2:08:14 AM]

 ` inform the user that we are successful
 MsgBox "User " & txtUserName & " connected successfully!", _
 vbInformation, "SUCCESS"
Exit Sub
ERR_cmdOK_Click:
 ` display the error information and then end the application
 ` With Err
 MsgBox "ERROR #" & .Number & ": " & .Description, vbExclamation, _
 "ERROR"
 End With
End Sub.

4. Now add the trivial code to end the project in the cmdCancel_Click event:

Private Sub cmdCancel_Click()
 ` end the application
 Unload Me
End Sub

How It Works

When the application starts, frmSecure is loaded. The Load event connects to the system database designated in the
Windows Registry and, if it is successful, displays a message showing the name of that database. When the user clicks
the OK button, the click event creates a new Workspace object, opens ORDERS.MDB, and opens a recordset based
on a table in ORDERS.MDB. If these steps are successful, the username and password are valid and the user has Read
Data privileges to the table.

Comments

In previous versions of Visual Basic, the Jet engine looked in INI files for the name of the system database file. With
Visual Basic 6.0 and the Jet 3.51 engine, the system database file is located in the Windows Registry. Probably the most
likely spot to find this file would be in your Windows system directory.

10.5 How do I...

Assign permissions for database objects?

Problem

I need to write an application for the system administrators where I work, to allow them to change the permissions of
users for Access databases. These administrators don't necessarily have Access available to them. How do I provide this
capability through my own Visual Basic application?

Technique

Permissions for a database are stored in a system table in the database. If you have Administer access to the database,
you can change these permissions through Access or Visual Basic.

Each Microsoft Access Database object owns a Containers collection where the following are true:

Each Container object in the Containers collection collects information about a specific type of object.●

The Container object named Tables contains information about all the Table and Query objects in the
database.

●

Each Container object owns a Documents collection.●

Each Document object in a Documents collection holds information about one instance of the object type
represented by the container.

●

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (26 of 72) [9/22/1999 2:08:14 AM]

Each Document object in the Tables container represents one Table or Query object.●

Each Document has a UserName property and a Permissions property.●

At any given time, the Permissions property value is a long integer that represents the permissions that the
user named by the UserName property has to the table or query represented by the Document object.

●

The values of the Permissions object for each combination of permissions for users other than the Admin user are
shown in Table 10.10. (The values for the Admin user, Administer, and Modify Design permissions vary, depending on
whether the object represented by the document is a table or a query.) Each permission named in the Permission or
Permissions column includes not only the named permission but also all implied permissions. For example, the value of
permissions property is 20 when Read Data and its implied property Read Design are True; the value is 116 when
Update Data and Delete Data and all the implied properties of both are True.

Table 10.10. Permissions property values for users other than Admin.

PERMISSION OR PERMISSIONS Value of Permissions Property

No permissions 0

Read Design 4

Read Data 20

Insert Data 52

Update Data 84

Update Data and Insert Data 116

Delete Data 148

Insert Data and Delete Data 180

Update Data and Delete Data 212

Update Data, Insert Data, and Delete Data 244

Modify Design 65756

Modify Design and Insert Data 65788

Administer 852478

You can determine the permissions a user has for a table or a query by setting the UserName property of the
Document object to the user's name and then reading the Permissions property. If you have Administer
permission for the table or query, you can set permissions for other users by setting the UserName property and then
assigning a value to the Permissions property.

Steps

Open the Permitter project and make sure that the GetWorkgroupDatabase function returns the proper fully
qualified path for the SYSTEM.MDW file. When this is done, run the application. You should see the form shown in
Figure 10.6. Select a combination of a single user and a table or query from the two list boxes on the Permitter form.
You can change various properties set for each combination and save them by clicking the Save button. Notice the
permission code above the check boxes. It changes according to the combinations of permissions granted to the user for
the given table or query.

Figure 10.6. The Permitter project.

1. Create a new project and name it Permitter.vbp. Add and edit the objects and properties as listed in Table
10.11, and save the form as frmPermitter.frm. Note that all the check boxes are part of a control array.

Table 10.11. Objects and properties for the Permitter project.

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (27 of 72) [9/22/1999 2:08:14 AM]

javascript:popUp('10fig06.gif')

OBJECT Property Setting

Form Name frmPermitter

Caption Permitter

List box Name lstUsers

List box Name lstTablesAndQueries

Command button Name cmdSave

Caption &Save

Command button Name cmdClose

Caption &Close

Cancel -1 `True

Default -1 `True

Frame Name fraPermissions

Caption Permissions

Check box Name chkPermission

Caption &Read Design

Index 0

Check box Name chkPermission

Caption &Modify Design

Index 1

Check box Name chkPermission

Caption &Administer

Index 2

Check box Name chkPermission

Caption R&ead Data

Index 3

Check box Name chkPermission

Caption &Update Data

Index 4

Check box Name chkPermission

Caption &Insert Data

Index 5

Check box Name chkPermission

Caption &Delete Data

Index 6

Label Name lblPermissionCode

Caption Permission Code:

Label Name lblPermissions

Caption 0

Label Name lblUsers

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (28 of 72) [9/22/1999 2:08:14 AM]

Caption &Users

Label Name lblTablesAndQueries

Caption &Tables and Queries

2. First enter the following form-level declarations in the declarations section of the project. The database object
variable will serve as the home of the database object referred to throughout the project. The constant
declarations with the PER_ prefix correspond to the seven check boxes on the frmPermitter form. The last
set of declarations, those preceded by the DB_ characters, are used to indicate the different values associated with
the permissions.

Option Explicit
` form-level object variable used to store database object
Private db As Database
` form-level constant declarations which correspond to check boxes
` on the frmPermitter form
Const PER_READ_DESIGN = 0
Const PER_MODIFY_DESIGN = 1
Const PER_ADMINISTER = 2
Const PER_READ_DATA = 3
Const PER_UPDATE_DATA = 4
Const PER_INSERT_DATA = 5
Const PER_DELETE_DATA = 6
` form-level constant declarations which indicate various
` permissions
Const DB_NOPERMISSIONS = 0
Const DB_READDESIGN = 4
Const DB_READDATA = 20
Const DB_INSERTDATA = 52
Const DB_UPDATEDATA = 84
Const DB_UPDATEINSERTDATA = 116
Const DB_DELETEDATA = 148
Const DB_INSERTDELETEDATA = 180
Const DB_UPDATEDELETEDATA = 212
Const DB_UPDATEINSERTDELETEDATA = 244
Const DB_MODIFYDESIGN = 65756
Const DB_MODIFYDESIGN_INSERTDATA = 65788
Const DB_READSEC = 131072
Const DB_ADMINISTER = 852478

3. Enter the Form_Load event as shown next. This code sets the default user and password of the DBEngine
object. You might have to change the values of these two variables to your system administrator's name and
password. The database is then open, and the two list boxes on the form are populated. If there are no current
users for the database, the application is terminated.

Private Sub Form_Load()
` if there is an error, then goto the code section labeled by
` ERR_Form_Load
On Error GoTo ERR_Form_Load:
 Dim sUserName As String
 Dim sPassword As String
 Dim sDBName As String
 ` assign default username and password
 sUserName = "Admin"
 sPassword = ""

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (29 of 72) [9/22/1999 2:08:14 AM]

 With DBEngine
 ` set system database path and name
 .SystemDB = GetWorkgroupDatabase
 ` set default user name and password
 .DefaultUser = sUserName
 .DefaultPassword = sPassword
 ` get path and name of database from ReadINI module
 sDBName = DBPath
 ` open database
 Set db = .Workspaces(0).OpenDatabase(sDBName)
 End With
 ` populate the two list boxes with the available users,
 ` tables, and queries from database
 FillUserList
 FillTableAndQueriesList
 ` if there are no valid users, inform the user and exit the
 ` application
 If (lstUsers.ListCount < 1) Then
 MsgBox "There are no users!", vbExclamation, "USERS"
 cmdClose_Click
 Else
 ` initialize the list boxes to point to the first item in
 ` each list box
 lstUsers.ListIndex = 0
 lstTablesAndQueries.ListIndex = 0
 End If
Exit Sub
ERR_Form_Load:
 ` display error for the user
 With Err
 MsgBox "ERROR #" & .Number & ": " & .Description, _
 vbExclamation, _
 "ERROR"
 End With
End Sub

4. Enter the following Form_Unload code now. This code ensures that the database object is released by
setting it to nothing when the application is terminated.

Private Sub Form_Unload(Cancel As Integer)
 ` close the database
 Set db = Nothing
End Sub

5. Now enter both the lstUsers and the lstTablesAndQueries Click event code. Each event relies on
the other's list box having a selected item. If there is a selected item in the corresponding list box, the
ReadPermissions procedure is called to gather the permission information for the user and table/query
combination, checking off the appropriate check boxes on the form.

Private Sub lstUsers_Click()
 ` if the TablesAndQueries list box is set to one of the items,
 ` call the ReadPermissions procedure, and if there was an
 ` error, unselect all check boxes
 If (lstTablesAndQueries.ListIndex >= 0) Then
 If (Not ReadPermissions()) Then

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (30 of 72) [9/22/1999 2:08:14 AM]

 lstUsers.ListIndex = -1
 UnCheckAll
 End If
 End If
End Sub
Private Sub lstTablesAndQueries_Click()
 ` if the Users list box is set to one of the items, call the
 ` ReadPermissions procedure, and if there was an error,
 ` unselect all check boxes
 If (lstUsers.ListIndex >= 0) Then
 If (Not ReadPermissions()) Then
 lstTablesAndQueries.ListIndex = -1
 UnCheckAll
 End If
 End If
End Sub

6. The chkPermission_Click event handles all seven check boxes found on the frmPermitter form.
This code ensures that the correct combinations of check boxes are set. Enter the following code:

Private Sub chkPermission_Click(Index As Integer)
 Dim nCount As Integer
 With chkPermission(Index)
 ` set the appropriate check box values dependent upon the
 ` others
 Select Case Index
 Case PER_READ_DESIGN:
 If (.Value = vbUnchecked) Then
 For nCount = 0 To 6
 chkPermission(nCount).Value = vbUnchecked
 Next nCount
 End If
 Case PER_MODIFY_DESIGN:
 If (.Value = vbChecked) Then
 chkPermission(PER_READ_DESIGN).Value = _
 vbChecked
 chkPermission(PER_READ_DATA).Value = vbChecked
 chkPermission(PER_UPDATE_DATA).Value = _
 vbChecked
 chkPermission(PER_INSERT_DATA).Value = _
 vbChecked
 Else
 chkPermission(PER_ADMINISTER).Value = _
 vbUnchecked
 End If
 Case PER_ADMINISTER:
 If (.Value = vbChecked) Then
 For nCount = 0 To 6
 chkPermission(nCount).Value = vbChecked
 Next nCount
 End If
 Case PER_READ_DATA:
 If (.Value = vbChecked) Then

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (31 of 72) [9/22/1999 2:08:15 AM]

 chkPermission(PER_READ_DESIGN).Value = _
 vbChecked
 Else
 chkPermission(PER_MODIFY_DESIGN).Value = _
 vbUnchecked
 chkPermission(PER_UPDATE_DATA).Value = _
 vbUnchecked
 chkPermission(PER_DELETE_DATA).Value = _
 vbUnchecked
 chkPermission(PER_INSERT_DATA).Value = _
 vbUnchecked
 chkPermission(PER_ADMINISTER).Value = _
 vbUnchecked
 End If
 Case PER_UPDATE_DATA:
 If (.Value = vbChecked) Then
 chkPermission(PER_READ_DESIGN).Value = _
 vbChecked
 chkPermission(PER_READ_DATA).Value = vbChecked
 Else
 chkPermission(PER_ADMINISTER).Value = _
 vbUnchecked
 chkPermission(PER_MODIFY_DESIGN).Value = _
 vbUnchecked
 End If
 Case PER_INSERT_DATA:
 If (.Value = vbChecked) Then
 chkPermission(PER_READ_DESIGN).Value = _
 vbChecked
 chkPermission(PER_READ_DATA).Value = vbChecked
 Else
 chkPermission(PER_ADMINISTER).Value = _
 vbUnchecked
 End If
 Case PER_DELETE_DATA:
 If (.Value = vbChecked) Then
 chkPermission(PER_READ_DESIGN).Value = _
 vbChecked
 chkPermission(PER_READ_DATA).Value = vbChecked
 Else
 chkPermission(PER_ADMINISTER).Value = _
 vbUnchecked
 chkPermission(PER_MODIFY_DESIGN).Value = _
 vbUnchecked
 End If
 End Select
 End With
End Sub

7. Enter the cmdSave_Click event code now. This code calculates the Permission Code value from the check
boxes on the form and saves it
to the Permissions property of the appropriate Document object.

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (32 of 72) [9/22/1999 2:08:15 AM]

Private Sub cmdSave_Click()
` if there is an error, goto the code labeled by ERR_cmdSave_Click
On Error GoTo ERR_cmdSave_Click:
 Dim oDocument As Document
 Dim lPermissionCode As Long
 ` set the document object variable to the proper selected
 ` table or query from the list box
 Set oDocument = _
 db.Containers("Tables").Documents(lstTablesAndQueries.Text)
 ` create the proper permission code dependent upon the
 ` selected check boxes of frmPermitter
 If chkPermission(PER_ADMINISTER) = vbChecked Then
 lPermissionCode = DB_ADMINISTER
 ElseIf chkPermission(PER_MODIFY_DESIGN) = vbChecked Then
 If chkPermission(PER_INSERT_DATA) = vbChecked Then
 lPermissionCode = DB_MODIFYDESIGN_INSERTDATA
 Else
 lPermissionCode = DB_MODIFYDESIGN
 End If
 ElseIf chkPermission(PER_UPDATE_DATA) = vbChecked Then
 If chkPermission(PER_INSERT_DATA) = vbChecked Then
 If chkPermission(PER_DELETE_DATA) = vbChecked Then
 lPermissionCode = DB_UPDATEINSERTDELETEDATA
 Else
 lPermissionCode = DB_UPDATEINSERTDATA
 End If
 Else
 lPermissionCode = DB_UPDATEDATA
 End If
 ElseIf chkPermission(PER_INSERT_DATA) = vbChecked Then
 If chkPermission(PER_DELETE_DATA) = vbChecked Then
 lPermissionCode = DB_INSERTDELETEDATA
 Else
 lPermissionCode = DB_INSERTDATA
 End If
 ElseIf chkPermission(PER_DELETE_DATA) = vbChecked Then
 lPermissionCode = DB_DELETEDATA
 ElseIf chkPermission(PER_READ_DATA) = vbChecked Then
 lPermissionCode = DB_READDATA
 ElseIf chkPermission(PER_READ_DESIGN) = vbChecked Then
 lPermissionCode = DB_READDESIGN
 Else
 lPermissionCode = DB_NOPERMISSIONS
 End If
 With oDocument
 ` save the permission code to the document object for the
 ` proper user
 .UserName = lstUsers.Text
 If (UCase$(.UserName) = "ADMIN") Then _
 lPermissionCode = lPermissionCode + DB_READSEC
 .Permissions = lPermissionCode
 lblPermissions.Caption = .Permissions

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (33 of 72) [9/22/1999 2:08:15 AM]

 End With
Exit Sub
ERR_cmdSave_Click:
 ` display the error for the user
 With Err
 MsgBox "ERROR #" & .Number & ": " & .Description, _
 vbExclamation, "ERROR"
 End With
End Sub

8. Enter the cmdClose_Click event code given next. This simply ends the application.

Private Sub cmdClose_Click()
 ` close the application
 Unload Me
End Sub

9. The UnCheckAll procedure, as shown here, is called from throughout the application to clear all the check
boxes on the form:

Private Sub UnCheckAll()
 Dim nCount As Integer
 ` set all the permission check boxes to unchecked
 For nCount = 0 To 6
 chkPermission(nCount).Value = vbUnchecked
 Next nCount
End Sub

10. Now enter both the FillUserList and the FillTableAndQueriesList procedures as shown next.
The FillUserList procedure populates the lstUsers list box with the information found in the Users
collection of the new workspace, and the FillTableAndQueriesList procedure populates the
lstTablesAndQueries list box with the tables and queries found in the Documents collection of the
Tables container.

Private Sub FillUserList()
 Dim oUser As User
 ` populate the user list boxes with all users except CREATOR,
 ` ENGINE, and ADMIN (these shouldn't be changed)
 For Each oUser In DBEngine.Workspaces(0).Users
 With oUser
 If (UCase$(.Name) <> "CREATOR") _
 And (UCase$(.Name) <> "ENGINE") _
 And (UCase$(.Name) <> "ADMIN") Then
 lstUsers.AddItem .Name
 End If
 End With
 Next
End Sub
Private Sub FillTableAndQueriesList()
 Dim oDocument As Document
 ` populate the TableAndQueries list boxes with all the
 ` available tables and queries except the system ones
 For Each oDocument In db.Containers("Tables").Documents
 With oDocument
 If (Left$(.Name, 4) <> "MSys") Then _
 lstTablesAndQueries.AddItem .Name

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (34 of 72) [9/22/1999 2:08:15 AM]

 End With
 Next
End Sub

11. The ReadPermissions function returns a Boolean value: True for success and False for failure. This
code breaks down the Permissions property of the appropriate Document object and checks off the
corresponding check boxes of the frmPermitter form.

Function ReadPermissions() As Boolean
` if there is an error, then goto the code labeled by ERR_ReadPermissions
On Error GoTo ERR_ReadPermissions:
 Dim nCount As Integer
 Dim lPermissionCode As Long
 Dim oDocument As Document
 ` set the document object to the appropriately selected table
 ` or query
 Set oDocument = _
 db.Containers("Tables").Documents(lstTablesAndQueries.Text)
 ` set the user name and get the current permissions for that
 ` user
 With oDocument
 .UserName = lstUsers.Text
 lblPermissions.Caption = .Permissions
 lPermissionCode = .Permissions
 End With
 ` set all check boxes to unchecked
 UnCheckAll
 ` set the appropriate check boxes for the current permission
 ` for the user selected
 Select Case lPermissionCode
 Case DB_READDESIGN
 chkPermission(PER_READ_DESIGN).Value = vbChecked
 Case DB_READDATA
 chkPermission(PER_READ_DATA).Value = vbChecked
 chkPermission(PER_READ_DESIGN).Value = vbChecked
 Case DB_INSERTDATA
 chkPermission(PER_INSERT_DATA).Value = vbChecked
 chkPermission(PER_READ_DESIGN).Value = vbChecked
 chkPermission(PER_READ_DATA).Value = vbChecked
 Case DB_UPDATEDATA
 chkPermission(PER_UPDATE_DATA).Value = vbChecked
 chkPermission(PER_READ_DESIGN).Value = vbChecked
 chkPermission(PER_READ_DATA).Value = vbChecked
 Case DB_UPDATEINSERTDATA
 chkPermission(PER_UPDATE_DATA).Value = vbChecked
 chkPermission(PER_INSERT_DATA).Value = vbChecked
 chkPermission(PER_READ_DESIGN).Value = vbChecked
 chkPermission(PER_READ_DATA).Value = vbChecked
 Case DB_DELETEDATA
 chkPermission(PER_DELETE_DATA).Value = vbChecked
 chkPermission(PER_READ_DESIGN).Value = vbChecked
 chkPermission(PER_READ_DATA).Value = vbChecked
 Case DB_INSERTDELETEDATA

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (35 of 72) [9/22/1999 2:08:15 AM]

 chkPermission(PER_DELETE_DATA).Value = vbChecked
 chkPermission(PER_READ_DESIGN).Value = vbChecked
 chkPermission(PER_READ_DATA).Value = vbChecked
 chkPermission(PER_INSERT_DATA).Value = vbChecked
 Case DB_UPDATEDELETEDATA
 chkPermission(PER_UPDATE_DATA).Value = vbChecked
 chkPermission(PER_READ_DESIGN).Value = vbChecked
 chkPermission(PER_READ_DATA).Value = vbChecked
 chkPermission(PER_DELETE_DATA).Value = vbChecked
 Case DB_UPDATEINSERTDELETEDATA
 chkPermission(PER_UPDATE_DATA).Value = vbChecked
 chkPermission(PER_READ_DESIGN).Value = vbChecked
 chkPermission(PER_READ_DATA).Value = vbChecked
 chkPermission(PER_DELETE_DATA).Value = vbChecked
 chkPermission(PER_INSERT_DATA).Value = vbChecked
 Case DB_MODIFYDESIGN
 chkPermission(PER_MODIFY_DESIGN).Value = vbChecked
 chkPermission(PER_READ_DESIGN).Value = vbChecked
 chkPermission(PER_READ_DATA).Value = vbChecked
 chkPermission(PER_UPDATE_DATA).Value = vbChecked
 chkPermission(PER_DELETE_DATA).Value = vbChecked
 Case DB_MODIFYDESIGN_INSERTDATA
 chkPermission(PER_MODIFY_DESIGN).Value = vbChecked
 chkPermission(PER_READ_DESIGN).Value = vbChecked
 chkPermission(PER_READ_DATA).Value = vbChecked
 chkPermission(PER_UPDATE_DATA).Value = vbChecked
 chkPermission(PER_INSERT_DATA).Value = vbChecked
 chkPermission(PER_DELETE_DATA).Value = vbChecked
 Case DB_ADMINISTER
 For nCount = 0 To 6
 chkPermission(nCount).Value = vbChecked
 Next nCount
 End Select
 ` indicate success
 ReadPermissions = True
Exit Function
ERR_ReadPermissions:
 ` display the error for the user
 With Err
 MsgBox "ERROR #" & .Number& & ": " & .Description, _
 vbExclamation, "ERROR"
 End With
 ` indicate failure
 ReadPermissions = False
End Function

How It Works

When the form loads, the program connects to the system database, opens the ORDERS database, and populates the
two list boxes according to the available information from these two databases. When the user selects both a valid user
and a table or query from the list boxes, the ReadPermissions function is called to display the options available for
the combination through seven check boxes on the form. The user can change these permissions and then save them by
clicking the Save button. The application then calculates a new value for the Permissions property of the

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (36 of 72) [9/22/1999 2:08:15 AM]

appropriate user/document combination and saves it to the system database.

Comments

The Permissions help screen identifies built-in constants for representing values of the Permissions property. If you
look up these constants in the Object Browser, you can see their values. Using these built-in variables is tricky,
however, because it is not always clear which implied properties each is including. The values in Table 10.10 were
obtained experimentally, by changing the permissions in Microsoft Access and reading the resulting value of the
Permissions property through Visual Basic.

10.6 How do I...

Change ownership of database objects?

Problem

How can I give system administrators the ability to change the ownership of various tables and queries through my
Visual Basic application?

Technique

Every data object in Microsoft Access has an owner. The default owner is the creator of that object. The owner has
specific permissions that others do not necessarily have. These permissions include the right to grant full privileges to
himself or others.

The name of the owner of a table or query resides in the Owner property of the appropriate Document object that
represents the data object. A user with Administer permission can change the owner of any data object by changing the
name of the Owner property.

Steps

Open the project OWNERSHIP.VBP and make sure that the GetWorkgroupDatabase function is returning the
proper fully qualified path to your SYSTEM.MDW file. When this is done, run the application. If the username and
password variables, located in the Form_Load event, are correct, you should see the form shown in Figure 10.7. When
a user clicks on a table or query in the list box, the owner of that data object is selected from the other list box. By
selecting a different user from the list and clicking the Save Owner button, you can change ownership of the data object.

1. Create a new project and call it OWNERSHIP.VBP. Use Form1 to create the objects and edit the properties as
listed in Table 10.12. Save the form as frmOwnership.frm.

Figure 10.7. The Ownership project.

Table 10.12. Objects and properties for the Ownership project.

OBJECT Property Setting

Form Name frmOwnership

Caption Ownership

List box Name lstUsers

List box Name lstTablesAndQueries

Command button Name cmdSave

Caption &Save

Command button Name cmdClose

Caption &Close

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (37 of 72) [9/22/1999 2:08:15 AM]

javascript:popUp('10fig07.gif')

Cancel -1 `True

Default -1 `True

Label Name lblUsers

Caption &Users:

Label Name lblTablesAndQueries

Caption &Tables And Queries

2. Begin by entering the following code into the declarations section of the project:

Option Explicit
` form-level object variable used to hold the database object
Private db As Database

3. Now enter the Form_Load event code as listed next. Change the sUserName and sPassword variables to
hold the values of your administrator's username and password.

Private Sub Form_Load()
` if there is an error, then goto the code section labeled by ERR_Form_Load
On Error GoTo ERR_Form_Load:
 Dim sUserName As String
 Dim sPassword As String
 Dim sDBName As String
 ` assign default user name and password
 sUserName = "Admin"
 sPassword = ""
 With DBEngine
 ` set system database path and name
 .SystemDB = GetWorkgroupDatabase
 ` set default user name and password
 .DefaultUser = sUserName
 .DefaultPassword = sPassword
 ` get path and name of database from ReadINI module
 sDBName = DBPath
 ` open database
 Set db = .Workspaces(0).OpenDatabase(sDBName)
 End With
 ` populate the two list boxes with the available users,
 ` tables, and queries from database
 FillUserList
 FillTableAndQueriesList
 ` if there are no valid users, inform the user and exit the
 ` application
 If (lstUsers.ListCount < 1) Then
 MsgBox "There are no users!", vbExclamation, "USERS"
 cmdClose_Click
 Else
 ` initialize the list boxes to point to the first item in
 ` each list box
 lstUsers.ListIndex = 0
 lstTablesAndQueries.ListIndex = 0
 End If
Exit Sub
ERR_Form_Load:

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (38 of 72) [9/22/1999 2:08:15 AM]

 ` display error for the user
 With Err
 MsgBox "ERROR #" & .Number & ": " & .Description, vbExclamation, _
 "ERROR"
 End With
End Sub

4. Enter the Form_Unload code to ensure that the database object variable is closed and released before the
application terminates:

Private Sub Form_Unload(Cancel As Integer)
 ` close the database
 Set db = Nothing
End Sub

5. Now enter the code for both the FillTableAndQueriesList and the FillUserList procedures.
These two routines are very similar to those found in the preceding How-To. The
FillTableAndQueriesList proce-dure populates the lstTablesAndQueries list box with the names
of the data objects in the Tables container. The FillUserList routine populates the lstUsers list box
with the users found in the Users collection of the current Workspace object.

Private Sub FillTableAndQueriesList()
 Dim oDocument As Document
 ` populate the TableAndQueries list boxes with all the
 ` available tables and queries except the system ones
 For Each oDocument In db.Containers("Tables").Documents
 With oDocument
 If (Left$(.Name, 4) <> "MSys") Then _
 lstTablesAndQueries.AddItem .Name
 End With
 Next
End Sub
Private Sub FillUserList()
 Dim oUser As User
 ` populate the user list boxes with all users except CREATOR
 ` and ENGINE (these shouldn't be changed)
 For Each oUser In DBEngine.Workspaces(0).Users
 With oUser
 If (UCase$(.Name) <> "CREATOR") _
 And (UCase$(.Name) <> "ENGINE") Then
 lstUsers.AddItem .Name
 End If
 End With
 Next
End Sub

6. Now enter the lstTablesAndQueries_Click event code as listed here. This code finds the owner of the
selected data object from the Users list by comparing it to the Owner property of the selected Document object.

Private Sub lstTablesAndQueries_Click()
 Dim nCount As Integer
 Dim sCurOwner As String
 With lstUsers
 ` loop through each user until the owner of the selected
 ` table or query is found
 For nCount = 0 To .ListCount - 1

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (39 of 72) [9/22/1999 2:08:15 AM]

 sCurOwner = _
 db.Containers("Tables").Documents(lstTablesAndQueries.Text).Owner
 If (.List(nCount) = sCurOwner) Then .ListIndex = nCount
 Next nCount
 End With
End Sub

7. The cmdSave_Click event code simply changes the value of the Owner property of the Documents
object to that of the selected user from the lstUsers list box:

Private Sub cmdSave_Click()
` if there is an error, goto the code labeled by ERR_cmdSave_Click
On Error GoTo ERR_cmdSave_Click:
 ` assign the new owner to the select table or query
 db.Containers("Tables").Documents(lstTablesAndQueries.Text).Owner = _
 lstUsers.Text
Exit Sub
ERR_cmdSave_Click:
 ` display error for the user
 With Err
 MsgBox "ERROR #" & .Number & ": " & .Description, _
 vbExclamation, "ERROR"
 End With
End Sub

8. Finally, enter the following code for the cmdClose_Click event to terminate the application:

Private Sub cmdClose_Click()
 ` end the application
 Unload Me
End Sub

How It Works

When the program starts, the system database is accessed using the default user and password properties. With this
database, the lstTablesAndQueries list box is populated with the available data objects. The Users list box is
populated with all the users available in the given workgroup. When the user selects a data object from the list, the
Owner property of that data object is used to find the user who is the owner of it. With a click of the Save button on the
frmOwnership form, the Owner property is changed to the currently selected user in the lstUsers list box.

Comments

You have added extensive error-handling code to the preceding few How-To's. This is because of the complexity
involved, and the precision necessary, when accessing the system database. A lot of the code will vary from machine to
machine and user to user, depending on usernames and passwords.

If you are working on a single PC that is not part of a network, there is a very good chance that you will have only one
or two users listed in the lstUsers list box. To add more users to your system, jump to How-To 10.9 to see a project
that enables you to add more users.

10.7 How do I...

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (40 of 72) [9/22/1999 2:08:15 AM]

Change or delete database

passwords?

Problem

How do I give the system administrators at my site the ability to change users' passwords for Access databases from my
Visual Basic applications?

Technique

Each user's password is stored in the Password property of the corresponding User object. The current user's
password is stored in the Password property of the current Workspace object.

The Password property cannot be read through Visual Basic, and it cannot be directly set. To change the password,
you must use the NewPassword method for a given user. The NewPassword method has two arguments--the first
being the current password and the second being the new password. Ordinary users cannot change their password
without knowing the current one.

Users with Administer power can change other users' passwords as well as their own without the need to know the
current password. Instead, an empty string is passed to the NewPassword method in place of the current password.

Steps

Open and run the PASSWORDS.VBP project. A list of available users appears on the form, as shown in Figure 10.8.
You can change the password of a given user by clicking the Change Password button, or you can delete the password
for a user by clicking the Delete Password button.

Figure 10.8. The Passwords project.

1. Create a new project and save it as PASSWORDS.VBP. Use Form1 to add the objects and edit the properties
as listed in Table 10.13. Save the form as frmPasswords.frm.

Table 10.13. Objects and properties for the Passwords project.

OBJECT Property Setting

Form Name frmPasswords

Caption Passwords

List box Name lstUsers

Command button Name cmdChangePassword

Caption C&hange Password

Command button Name cmdDeletePassword

Caption &Delete Password

Command button Name cmdClose

Caption &Close

Cancel -1 `True

Default -1 `True

Label Name lblUsers

Caption &Users

2. Begin by entering the Form_Load event code to access the system database and the call to FillUserList,
which populates the lstUsers list box. If there are no users in the list, the application terminates.

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (41 of 72) [9/22/1999 2:08:15 AM]

javascript:popUp('10fig08.gif')

Private Sub Form_Load()
` if there is an error, then goto the code section labeled by
` ERR_Form_Load
On Error GoTo ERR_Form_Load:
 Dim sUserName As String
 Dim sPassword As String
 ` assign default user name and password
 sUserName = "Admin"
 sPassword = ""
 With DBEngine
 ` set system database path and name
 .SystemDB = GetWorkgroupDatabase
 ` set default user name and password
 .DefaultUser = sUserName
 .DefaultPassword = sPassword
 End With
 ` populate the users list box with the available users
 FillUserList
 ` if there are no valid users, inform the user and exit the
 ` application
 If (lstUsers.ListCount < 1) Then
 MsgBox "There are no users!", vbExclamation, "USERS"
 cmdClose_Click
 Else
 ` initialize the list boxes to point to the first item in
 ` users list
 lstUsers.ListIndex = 0
 End If
Exit Sub
ERR_Form_Load:
 ` display error for the user
 With Err
 MsgBox "ERROR #" & .Number & ": " & .Description, _
 vbExclamation, "ERROR"
 End With
 ` end the application
 cmdClose_Click
End Sub

3. Enter the code for the Click event of the cmdChangePassword command button as shown next. This
code asks for the old password, the new password, and a confirmation of the new password; then it calls the
ChangePassword routine to change the password. Users logged in as Admin do not have to specify anything
for the old password because they have the power to change the current password without any knowledge
of it.

Private Sub cmdChangePassword_Click()
 ` local variables used to store passwords
 Dim sOldPassword As String
 Dim sNewPassword As String
 Dim sConPassword As String
 ` ask for old password
 sOldPassword = InputBox(_
 "Please enter the old password for user `" _

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (42 of 72) [9/22/1999 2:08:15 AM]

 & lstUsers.Text & "`.", _
 "CHANGE PASSWORD")
 ` ask for new password
 sNewPassword = InputBox(_
 "Please enter the new password for user `" _
 & lstUsers.Text & "`.", _
 "CHANGE PASSWORD")
 ` confirm new password
 sConPassword = InputBox("Please confirm new password for user `" _
 & lstUsers.Text & "`.", _
 "CHANGE PASSWORD")
 ` if new password is not equivalent to the confirmed password,
 ` notify the user and end the task; otherwise, change the
 ` password
 If (sNewPassword <> sConPassword) Then
 MsgBox "New password does not match confirmed password.", _
 vbExclamation, "ERROR"
 Else
 ChangePassword sOldPassword, sNewPassword
 End If
End Sub

4. Now enter the code to delete a password located in the Click event of the cmdDeletePassword
command button. This event asks for the old password and calls the ChangePassword routine with an empty
string as a new password to delete the current password. Again, if the user is logged on as Admin, as in this
example, it is unnecessary to enter an old password.

Private Sub cmdDeletePassword_Click()
 ` local variable used to store old password
 Dim sOldPassword As String
 ` ask for old password
 sOldPassword = InputBox(_
"Please enter the old password for user `" _
 & lstUsers.Text & "`.", _
 "DELETE PASSWORD")
 ` change the password
 ChangePassword sOldPassword, ""
End Sub

5. Enter the code for the cmdClose_Click event to terminate the application:

Private Sub cmdClose_Click()
 ` end the application
 Unload Me
End Sub

6. The FillUserList routine is listed next. This procedure adds all the current users of the workgroup to the
lstUsers list box except for CREATOR and ENGINE. These should not be changed; therefore, they are not
available for access by the user.

Private Sub FillUserList()
 Dim oUser As User
 ` populate the user list boxes with all users except CREATOR
 ` and ENGINE (these shouldn't be changed)
 For Each oUser In DBEngine.Workspaces(0).Users
 With oUser

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (43 of 72) [9/22/1999 2:08:15 AM]

 If (UCase$(.Name) <> "CREATOR") _
 And (UCase$(.Name) <> "ENGINE") Then
 lstUsers.AddItem .Name
 End If
 End With
 Next
End Sub

7. Finally, enter the ChangePassword routine listed here. This procedure takes two arguments. The first is the
old password, and the second is the new password. If there are no errors, the password is changed using the
NewPassword method.

Private Sub ChangePassword(sOldPassword As String, _
 sNewPassword As String)
` if there is an error, then goto the code labeled by
` ERR_ChangePassword
On Error GoTo ERR_ChangePassword:
 ` constant used to define application-defined error
 Const ERR_PASSWORD_TOO_LONG = 32000
 ` if the new password is too long, raise application-defined
 ` error
 If (Len(sNewPassword) > 14) Then Error ERR_PASSWORD_TOO_LONG
 ` change password, given the old and new passwords
 DBEngine.Workspaces(0).Users(lstUsers.Text).NewPassword _
 sOldPassword, sNewPassword
 ` if we got this far, we must be successful; notify the user
 MsgBox "Password successfully changed for user `" _
 & lstUsers.Text & "`", vbInformation, "SUCCESS"
Exit Sub
ERR_ChangePassword:
 ` local variable used to hold error message
 Dim sMessage As String
 With Err
 Select Case .Number
 ` application-defined error, password too long
 Case ERR_PASSWORD_TOO_LONG:
 sMessage = _
 "The password must be 14 characters or less."
 ` unexpected error, create error message with number
 ` and description
 Case Else:
 sMessage = "ERROR #" & .Number & ": " & _
 .Description
 End Select
 End With
 ` display error for the user
 MsgBox sMessage, vbExclamation, "ERROR"
End Sub

How It Works

After the program accesses the system database in the Form_Load event, the list box on the form is populated with the
available users in the workgroup. When a user selects a username from the list and clicks the Change Password button,
old and new passwords are sent to the ChangePassword procedure, where a call to the NewPassword method

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (44 of 72) [9/22/1999 2:08:15 AM]

changes the password. When the user clicks the Delete Password button, an empty string is passed to the
ChangePassword procedure to set the new password to nothing, therefore deleting it.

10.8 How do I...

Use a single password for data access for all users?

Problem

I want to secure my Access database, but I do not think it is necessary for each user to have his or her own password.
Instead, I want to create a password that I can change for the entire database, regardless of the user. How do I create a
single password for an entire Access database with Visual Basic?

Technique

The same concept shown in How-To 10.7 applies here. The NewPassword method is used to change the password for
a given Access database.

The NewPassword not only applies to the User object, but it also is available with the Database object. When you
specify a password for a database, you must connect to that database in the future with a string indicating the valid
password.

This string is passed as an argument to the OpenDatabase method, as shown in this example:

Set db = _
 DBEngine.Workspaces(0).OpenDatabase(DBName, True, False, ";pwd=PASSWORD")

Here, db is a database object, DBName is a valid path and name of an Access database, and PASSWORD is the password
for the given database.

Steps

Open and run the DatabasePassword.vbp project. You should see the form as shown in Figure 10.9. When a user clicks
the Open Database button, she is prompted with an input box asking for the password for the database. If there is no
password, the user simply presses Enter. After the database is open, the user can change the password by clicking the
Change Password button. Just as with changing a user's password, the project prompts for the old password as well as
the new and a confirmation of the new password. If all is successful, the password is changed.

Figure 10.9. The DatabasePassword project.

1. Create a new project and save it as DatabasePassword.vbp. Add the objects and edit the properties of Form1
as shown in Table 10.14. Afterward, save the form as frmDatabasePassword.frm.

Table 10.14. Objects and properties for the DatabasePassword project.

OBJECT Property Setting

Form Name frmDatabasePassword

Caption Database Password

Command button Name cmdOpenDatabase

Caption &Open Database

Command button Name cmdChangePassword

Caption Change &Password

Command button Name cmdCloseDatabase

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (45 of 72) [9/22/1999 2:08:15 AM]

javascript:popUp('10fig09.gif')

Caption &Close Database

Command button Name cmdExit

Caption &Exit

Cancel -1 `True

Default -1 `True

2. Enter the following code in the declarations section of your project. The db object variable is used to store the
database object, and the NO_ERROR constant declaration is used throughout the project to indicate success.

Option Explicit
` form-level object variable declaration used to hold database
` object
Private db As Database
` form-level constant declaration used to indicate success
Private Const NO_ERROR = 0

3. Now enter the familiar Form_Load event as shown next. This event, like the others in the previous How-To
sections, establishes a link with the system database using a default user and password. These variables might
need to be altered by the user to her own Administer values.

Private Sub Form_Load()
` if there is an error, then goto the code section labeled by
` ERR_Form_Load
On Error GoTo ERR_Form_Load:
 Dim sUserName As String
 Dim sPassword As String
 ` assign default user name and password
 sUserName = "Admin"
 sPassword = ""
 With DBEngine
 ` set system database path and name
 .SystemDB = GetWorkgroupDatabase
 ` set default user name and password
 .DefaultUser = sUserName
 .DefaultPassword = sPassword
 End With
 ` initialize database to closed state to disable various
 ` buttons
 cmdCloseDatabase_Click
Exit Sub
ERR_Form_Load:
 ` display error for the user
 With Err
 MsgBox "ERROR #" & .Number & ": " & .Description, _
 vbExclamation, _
 "ERROR"
 End With
 ` end the application
 cmdExit_Click
End Sub

4. Add the code that ensures that the database is closed in the Form_Unload event as shown here:

Private Sub Form_Unload(Cancel As Integer)
 ` ensure that the database is closed upon shutdown of

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (46 of 72) [9/22/1999 2:08:15 AM]

 ` application
 cmdCloseDatabase_Click
End Sub

5. Now enter the code for the cmdOpenDatabase_Click event of the Open Database command button. This
code prompts the user for the current database password, creates a password string, and passes it to the
OpenDatabase method. If all is successful, the user is notified that the database is opened, and the Change
Password and Close Database buttons are enabled.

Private Sub cmdOpenDatabase_Click()
` if there is an error, goto the code labeled by
` ERR_cmdOpenDatabase_Click
On Error GoTo ERR_cmdOpenDatabase_Click:
 Dim sPassword As String
 Dim sDBName As String
 ` local constant declaration of application-defined error
 Const ERR_NOT_VALID_PASSWORD = 3031
 ` ask user for the password of the database
 sPassword = InputBox("Please enter database password.", _
 "OPEN DATABASE")
 ` create connection string
 sPassword = ";pwd=" & sPassword
 ` retrieve database name and path from the ReadINI module
 sDBName = DBPath
 ` attempt to open the database
 Set db = DBEngine.Workspaces(0).OpenDatabase _
 (sDBName, True, False, sPassword)
ERR_cmdOpenDatabase_Click:
 Dim sMessage As String
 With Err
 ` determine error
 Select Case .Number
 ` there is no error, inform the user of success and
 ` enable the use of the change password and close
 ` database command buttons
 Case NO_ERROR:
 sMessage = "Database opened successfully."
 cmdOpenDatabase.Enabled = False
 cmdChangePassword.Enabled = True
 cmdCloseDatabase.Enabled = True
 ` password is incorrect
 Case ERR_NOT_VALID_PASSWORD:
 sMessage = "Invalid password."
 ` unexpected error, inform the user
 Case Else:
 sMessage = "ERROR #" & .Number & ": " & _
 .Description
 End Select
 ` display the error for the user
 MsgBox sMessage, _
 IIf(.Number = NO_ERROR, vbInformation, _
 vbExclamation), _
 IIf(.Number = NO_ERROR, "SUCCESS", "ERROR")

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (47 of 72) [9/22/1999 2:08:15 AM]

 End With
End Sub

6. The cmdChangePassword_Click event prompts the user for the old password, the new, and a
confirmation, and successfully changes the password by calling the NewPassword method of the Database
object. Enter the following code:

Private Sub cmdChangePassword_Click()
` if there is an error,
` goto the code labeled by ERR_cmdChangePassword_Click
On Error GoTo ERR_cmdChangePassword_Click:
 ` local variables used to store passwords
 Dim sOldPassword As String
 Dim sNewPassword As String
 Dim sConPassword As String
 ` private constant declarations for application-defined errors
 Const ERR_PASSWORDS_DIFFER = 32000
 Const ERR_PASSWORD_TOO_LONG = 32001
 ` ask for old password
 sOldPassword = InputBox("Please enter the old password for " _
 & "the database.", "CHANGE PASSWORD")
 ` ask for new password
 sNewPassword = InputBox("Please enter the new password for " _
 & "the database.", "CHANGE PASSWORD")
 If (Len(sNewPassword) > 14) Then Error ERR_PASSWORD_TOO_LONG
 ` confirm new password
 sConPassword = InputBox("Please confirm new password for " _
 & "the database.", "CHANGE PASSWORD")
 ` if new password is not equivalent to the confirmed password,
 ` notify the user and end the task; otherwise, change the
 ` password
 If (sNewPassword <> sConPassword) Then Error _
 ERR_PASSWORDS_DIFFER
 ` change the password
 db.NewPassword sOldPassword, sNewPassword
ERR_cmdChangePassword_Click:
 Dim sMessage As String
 With Err
 ` select appropriate error
 Select Case .Number
 ` no error has occurred, inform the user of success
 Case NO_ERROR:
 sMessage = "Password changed successfully."
 ` new and confirmed passwords are different
 Case ERR_PASSWORDS_DIFFER:
 sMessage = "The confirmed password does not " _
 & "match the new password."
 ` password is longer than 14 characters
 Case ERR_PASSWORD_TOO_LONG:
 sMessage = _
 "The password must be 14 characters or less."
 ` unexpected error, inform the user
 Case Else:

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (48 of 72) [9/22/1999 2:08:15 AM]

 sMessage = "ERROR #" & .Number & ": " & _
 .Description
 End Select
 ` display the error for the user
 MsgBox sMessage, _
 IIf(.Number = NO_ERROR, vbInformation, _
 vbExclamation), _
 IIf(.Number = NO_ERROR, "SUCCESS", "ERROR")
 End With
End Sub

7. The Click event of the Close Database command button is listed next. This procedure simply releases the
database object by setting it equal
to nothing and disables the Change Password and Close Database
buttons, as well as enables the Open Database button. The final event, cmdExit_Click, ends the application.
Enter these procedures now:

Private Sub cmdCloseDatabase_Click()
 ` close the database
 Set db = Nothing
 ` only allow the user to open the database
 cmdOpenDatabase.Enabled = True
 cmdChangePassword.Enabled = False
 cmdCloseDatabase.Enabled = False
End Sub
Private Sub cmdExit_Click()
 ` end the application
 Unload Me
End Sub

How It Works

When the DatabasePassword project is initialized, the system database is addressed with the default username and
password. When the user opens the database, he is prompted for the current password. This password is used to create a
string that is passed to the OpenDatabase method to open the database object.

When the user elects to change the current database password, he is asked to supply the old and new passwords, as well
as a confirmation of the new password. With a call to the NewDatabase method of the database object, the password
is changed.

You should note that the password cannot be changed when a database is opened in shared mode. As in this How-To,
you must open the database exclusively (by specifying True as the second argument to the OpenDatabase method)
to change the password.

Comments

Every How-To in this chapter uses the same database, the ORDERS.MDB database file. When you are through with
this How-To, be sure to change the database password back to a NULL string so that the other How-To projects can
successfully access the database!

10.9 How do I...

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (49 of 72) [9/22/1999 2:08:15 AM]

Add new users to a system database?

Problem

I need to give system administrators at my user sites the ability to add new users to the system database. How do I
accomplish this task through Visual Basic?

Technique

The Workspace object has a collection called Users. Each user defined in the system database has a corresponding
User object within the Users collection. To add a new user, you must first create a new User object. The new User
object must be supplied a name, a PID, and, optionally, a password.

The PID is a case-sensitive alphanumeric string between 4 and 20 characters in length. The Jet engine uses this PID in
combination with the username to build a security ID for a user.

After the User object is created, it is appended to the Users collection of the current Workspace object via the
Append method.

Steps

Open and run the AddUser.vbp project. You should see the form shown in Figure 10.10. To add a user, click the Add
User button and supply a username and password; the PID string is calculated from the username. If the user is
successfully added, you will see a message box indicating so, and the list box on the form will be updated to include the
new user.

Figure 10.10. The AddUser project.

1. Create a new project and call it AddUser.vbp. Using Form1, add the objects and edit the properties as shown
in Table 10.15, saving the form as frmAddUser.frm.

Table 10.15. Objects and properties for the AddUser project.

OBJECT Property Setting

Form Name frmAddUser

Caption Add User

List box Name lstUsers

Command button Name cmdAddUser

Caption &Add User

Command button Name cmdClose

Caption &Close

Cancel -1 `True

Default -1 `True

Label Name lblUsers

Caption &Users

2. There are no form-level declarations in this project, so go ahead and enter the Form_Load event code as
shown next. This code accesses the system database using the default username, Admin, and an empty string
password. After this is done, the FillUserList procedure is called to show all the available users in the
system database.

Private Sub Form_Load()
` if there is an error, then goto the code section labeled by

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (50 of 72) [9/22/1999 2:08:15 AM]

javascript:popUp('10fig10.gif')

` ERR_Form_Load
On Error GoTo ERR_Form_Load:
 Dim sUserName As String
 Dim sPassword As String
 ` assign default user name and password
 sUserName = "Admin"
 sPassword = ""
 With DBEngine
 ` set system database path and name
 .SystemDB = GetWorkgroupDatabase
 ` set default user name and password
 .DefaultUser = sUserName
 .DefaultPassword = sPassword
 End With
 ` populate the users list box with the available users
 FillUserList
Exit Sub
ERR_Form_Load:
 ` display error for the user
 With Err
 MsgBox "ERROR #" & .Number & ": " & .Description, _
 vbExclamation, _
 "ERROR"
 End With
 ` end the application
 cmdClose_Click
End Sub

3. Now enter the code for the Click event of the cmdAddUser command button. This event asks the user for
both a username and a password. After error-checking the input values, the procedure calls the GetNewPID
procedure to receive a personal identifier. This event then creates a new User object with this information and
appends it to the Users collection
of the current Workspace object.

Private Sub cmdAddUser_Click()
` if there is an error, then goto code labeled by
` ERR_cmdAddUser_Click
On Error GoTo ERR_cmdAddUser_Click:
 ` local variables used to store passwords
 Dim sNewUserName As String
 Dim sNewPassword As String
 Dim sConPassword As String
 ` local variables used for the new user
 Dim sPID As String
 Dim oNewUser As User
 ` constant declarations for application-defined error messages
 Const ERR_NO_USER_NAME = 32000
 Const ERR_PASSWORD_TOO_LONG = 32001
 Const ERR_PASSWORDS_NOT_EQUAL = 32002
 ` enter a new username
 sNewUserName = InputBox("Please enter a new username.", _
"ADD USER")
 ` trim excess white spaces from the username

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (51 of 72) [9/22/1999 2:08:16 AM]

 sNewUserName = Trim$(sNewUserName)
 ` if no username is entered, notify the user and abandon task
 If (sNewUserName = "") Then Error ERR_NO_USER_NAME
 ` ask for new password
 sNewPassword = InputBox(_
 "Please enter the new password for user `" _
 & sNewUserName & "`.", "ADD USER")
 ` if the password is too long, notify the user and end the
 ` task
 If (Len(sNewPassword) > 14) Then Error ERR_PASSWORD_TOO_LONG
 ` confirm new password
 sConPassword = InputBox("Please confirm new password for user `" _
 & sNewUserName & "`.", "ADD USER")
 ` if new password is not equivalent to the confirmed password,
 ` notify the user and end the task
 If (sNewPassword <> sConPassword) Then Error _
 ERR_PASSWORDS_NOT_EQUAL
 `get a PID for the new user
 sPID = GetNewPID(sNewUserName)
 With DBEngine
 ` create a new user object from username, pid, and
 ` password
 Set oNewUser = .Workspaces(0).CreateUser(sNewUserName, _
 sPID, _
 sNewPassword)
 ` append the new users to the workspace
 .Workspaces(0).Users.Append oNewUser
 End With
 ` repopulate list box with new users
 FillUserList
 ` notify the user of success
 MsgBox "User `" & sNewUserName & "` added successfully.", _
 vbInformation, "ADD USER"
Exit Sub
ERR_cmdAddUser_Click:
 ` variable used for error message
 Dim sMessage As String
 With Err
 ` create an error message for given error code
 Select Case .Number
 Case ERR_NO_USER_NAME:
 sMessage = "You did not enter a user name."
 Case ERR_PASSWORD_TOO_LONG:
 sMessage = _
 "The password must be 14 characters or less"
 Case ERR_PASSWORDS_NOT_EQUAL:
 sMessage = "The confirmed password is not " _
 & "equivalent to the new password."
 ` unexpected error, create an error message from the
 ` error number and description
 Case Else:
 sMessage = "ERROR #" & .Number & ": " & _

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (52 of 72) [9/22/1999 2:08:16 AM]

 .Description
 End Select
 End With
 ` display the error message for the user
 MsgBox sMessage, vbExclamation, "ERROR"
End Sub

4. Enter the following code to terminate the application:

Private Sub cmdClose_Click()
 ` end the application
 Unload Me
End Sub

5. Now enter the FillUserList procedure, which populates the lstUsers list box with all the users listed
in the system database:

Private Sub FillUserList()
 Dim oUser As User
 With lstUsers
 ` clear current list of users
 .Clear
 ` populate the user list boxes with all users
 For Each oUser In DBEngine.Workspaces(0).Users
 .AddItem oUser.Name
 Next
 End With
End Sub

6. Finally, enter the GetNewPID function, which creates a new PID string for the specified username, ensuring
that it is at least 4 but no more than 20 characters:

Private Function GetNewPID(sUserName As String) As String
 Dim sPID As String
 ` create new PID
 sPID = sUserName
 If (Len(sPID) > 20) Then
 ` if the PID is greater than 20 characters, shorten it
 sPID = Left$(sPID, 20)
 Else
 ` if the PID is less than 4 characters, add some
 ` underscores
 While (Len(sPID) < 4)
 sPID = sPID & "_"
 Wend
 End If
 ` return newly created PID value
 GetNewPID = sPID
End Function

How It Works

When the AddUser project starts, the code reads the system database to populate the list box on the form with the
available users. When the user decides to add a new user by clicking the Add User button, he must enter both a new
username and a password. The username is used to create a PID string. The name, PID, and password are then used to
create a new User object, which is appended to the existing Users collection.

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (53 of 72) [9/22/1999 2:08:16 AM]

Comments

To remove a user from the system database, simply use the Delete method of the Workspace object's Users
collection to delete the desired user, as shown here:

DBEngine.Workspaces(0).Users("USERNAME").Delete

Here, USERNAME is a name of a user currently in the Users collection of the current workspace.

10.10 How do I...

Define new groups in a system database?

Problem

How do I give system administrators the ability to define new groups in the system database through Visual Basic?

Technique

The techniques used in this How-To directly correspond to those used in How-To 10.9. To add a new group to the
Groups collection of the current Workspace object, you must first create a new Group object from a group name
and a PID.

In previous versions of Microsoft Jet, the identifier used for a group was called a GID (group identifier). Now, to make
things uniform, it is called a PID (personal identifier), as it is for a user.

The PID is used in the same manner for a group as for a user. It is used in conjunction with the group name to build an
SID for the group. After you create the group with its name and PID, you can append it to the Groups collection of the
current Workspace object.

Steps

Open and run the AddGroup.vbp project. You should see the form shown in Figure 10.11. To add a group, click the
Add Group button and supply the application with a name for the new group. If all is successful, you will see a
verification message box and the new group in the list of groups on the form.

Figure 10.11. The AddGroup project.

1. Create a new project and save it as AddGroup.vbp. Use Form1 to create the objects and edit the properties as
listed in Table 10.16. Save this form as frmAddGroup.frm.

Table 10.16. Objects and properties for the AddGroup project.

OBJECT Property Setting

Form Name frmAddGroup

Caption Add Group

List box Name lstGroups

Command button Name cmdAddGroup

Caption &Add Group

Command button Name cmdClose

Caption &Close

Cancel -1 `True

Default -1 `True

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (54 of 72) [9/22/1999 2:08:16 AM]

javascript:popUp('10fig11.gif')

Label Name lblGroups

Caption &Groups

2. Enter the Form_Load event code shown next. This code accesses the system database with the default
username and password assigned to
the sUserName and sPassword variables, respectively. Then call the FillGroupList to populate the list
box on the frmAddGroup form.

Private Sub Form_Load()
` if there is an error, then goto the code section labeled by
` ERR_Form_Load
On Error GoTo ERR_Form_Load:
 Dim sUserName As String
 Dim sPassword As String
 ` assign default username and password
 sUserName = "Admin"
 sPassword = ""
 With DBEngine
 ` set system database path and name
 .SystemDB = GetWorkgroupDatabase
 ` set default user name and password
 .DefaultUser = sUserName
 .DefaultPassword = sPassword
 End With
 ` populate the group list box with the available groups
 FillGroupList
Exit Sub
ERR_Form_Load:
 ` display error for the user
 With Err
 MsgBox "ERROR #" & .Number & ": " & .Description, _
 vbExclamation, _
 "ERROR"
 End With
 ` end the application
 cmdClose_Click
End Sub

3. Now enter the code for the Click event of the cmdAddGroup command button. This code asks the user for
a new group name and calls GetNewPID to create a personal identifier for the new group. With this information,
a new Group object is created and appended to the Groups collection of the current workspace.

Private Sub cmdAddGroup_Click()
` if there is an error, then goto code labeled by
` ERR_cmdAddGroup_Click
On Error GoTo ERR_cmdAddGroup_Click:
 ` local variables used to store new group name
 Dim sNewGroupName As String
 ` local variables used for the new group
 Dim sPID As String
 Dim oNewGroup As Group
 ` constant declaration for application-defined error message
 Const ERR_NO_GROUP_NAME = 32000
 ` enter a new group name

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (55 of 72) [9/22/1999 2:08:16 AM]

 sNewGroupName = InputBox("Please enter a new group name.", _
 "ADD GROUP")
 ` trim excess white spaces from the group name
 sNewGroupName = Trim$(sNewGroupName)
 ` if no group name is entered, notify the user and abandon
 ` task
 If (sNewGroupName = "") Then Error ERR_NO_GROUP_NAME
 `get a PID for the new group
 sPID = GetNewPID(sNewGroupName)
 With DBEngine
 ` create a new group object from group name, PID, and
 ` password
 Set oNewGroup = .Workspaces(0).CreateGroup(_
 sNewGroupName, sPID)
 ` append the new groups to the workspace
 .Workspaces(0).Groups.Append oNewGroup
 End With
 ` repopulate list box with new groups
 FillGroupList
 ` notify the user of success
 MsgBox "Group `" & sNewGroupName & "` added successfully.", _
 vbInformation, "ADD GROUP"
Exit Sub
ERR_cmdAddGroup_Click:
 ` variable used for error message
 Dim sMessage As String
 With Err
 ` create an error message for given error code
 Select Case .Number
 Case ERR_NO_GROUP_NAME:
 sMessage = "You did not enter a group name."
 ` unexpected error, create an error message from the
 ` error number and description
 Case Else:
 sMessage = "ERROR #" & .Number & ": " & _
 .Description
 End Select
 End With
 ` display the error message for the user
 MsgBox sMessage, vbExclamation, "ERROR"
 Stop
 Resume
End Sub

4. Enter the code for the cmdClose_Click event, which terminates the application:

Private Sub cmdClose_Click()
 ` end the application
 Unload Me
End Sub

5. Now enter the FillGroupList procedure, which populates the lstGroups list box with the groups found
in the system database:

Private Sub FillGroupList()

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (56 of 72) [9/22/1999 2:08:16 AM]

 Dim oGroup As Group

 With lstGroups
 ` clear current list of groups
 .Clear
 ` populate the group list boxes with all groups
 For Each oGroup In DBEngine.Workspaces(0).Groups
 .AddItem oGroup.Name
 Next
 End With
End Sub

6. To complete the project, enter the GetNewPID function, which accepts the new GroupName as an argument
used to create the PID that is returned. The PID will be between 4 and 20 characters in length.

Private Function GetNewPID(sGroupName As String) As String
 Dim sPID As String
 ` create new PID
 sPID = sGroupName
 If (Len(sPID) > 20) Then
 ` if the PID is greater than 20 characters, shorten it
 sPID = Left$(sPID, 20)
 Else
 ` if the PID is less than 4 characters, add some
 ` underscores
 While (Len(sPID) < 4)
 sPID = sPID & "_"
 Wend
 End If
 ` return newly created PID value
 GetNewPID = sPID
End Function

How It Works

This application begins by accessing the system database and populating the list box with the groups listed within it.
When a user decides to add a new group by clicking the Add Group button, he is asked to supply a new group name. A
PID is then created from this group name, and with both of these variables, a new Group object is created. This object
is then appended to the Groups collection of the current workspace using the Append method. Finally, the list box is
repopulated with the inclusion of the new group.

Comments

To remove a group from a system database, simply use the Delete method of the Workspace object's Groups
collection to delete the desired group, as shown here:

DBEngine.Workspaces(0).Groups("GROUPNAME").Delete

Here, GROUPNAME is a valid name of a group that belongs to the Groups collection of the current Workspace
object.

10.11 How do I...

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (57 of 72) [9/22/1999 2:08:16 AM]

Add users to groups and delete users from groups?

Problem

How do I give system administrators at my user sites the ability to add and remove users from different groups by using
Visual Basic?

Technique

The Group object owns a collection called Users. Each user who belongs to the group is represented by a User
object within the Users collection. If a User object exists in a system database, you can add that user to a group by
first using the CreateUser method of the Group object to create a temporary User object, supplying the username
of a user who is defined within the current system database.

After this job is done, you append the temporary User object to the Users collection of an existing Group object.

Steps

Open and run the AddUsersToGroups.vbp project. You should see the form shown in Figure 10.12. You can select the
group you want to work with from the combo box at the top of the form. A list box on the left lists all the available
users in the system database, and the list box on the right shows the users who are currently part of the selected group.

Figure 10.12. The AddUsersToGroups project.

To move a user into the currently selected group, select a user from the list of available users and click the > button to
move that user to the list of included users. To remove a user from a group, select the user from the list of included
users and click the < button. To add all users to a group, click the >> button, and to remove all users from a group, click
the << button. Changes are immediate, so be careful!

To delete a user from a group, use the Delete method of the Group object's Users collection.

1. Create a new project and name it AddUsersToGroups.vbp. Add and edit the objects and properties as shown in
Table 10.17, and save the form as frmAddUsersToGroups.frm. Notice that the four cmdMove command buttons
are part of a control array.

Table 10.17. Objects and properties for the AddUsersToGroups project.

OBJECT PROPERTY SETTING

Form Name frmAddUsersToGroups

Caption Add Users to Groups

Combo box Name cboGroups

Style 2 `Dropdown List

List box Name lstAvailableUsers

Sorted -1 `True

List box Name lstIncludedUsers

Sorted -1 `True

Command button Name cmdMove

Caption <<

Index 0

Command button Name cmdMove

Caption <

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (58 of 72) [9/22/1999 2:08:16 AM]

javascript:popUp('10fig12.gif')

Index 1

Command button Name cmdMove

Caption >

Index 2

Command button Name cmdMove

Caption >>

Index 3

Command button Name cmdClose

Caption &Close

Cancel -1 `True

Default -1 `True

Label Name lblGroups

Caption &Groups

Label Name lblAvailableUsers

Caption &Available Users

Label Name lblIncludedUsers

Caption &Included Users

2. Enter the code for the Form_Load event as shown here. This code initializes the DBEngine with the default
username and passwords defined in the sUserName and sPassword variables. The event then calls the
FillAvailableUserList and FillGroupCombo procedures to populate the form with the available
users and groups from the system database.

Private Sub Form_Load()
` if there is an error, then goto the code section labeled by
` ERR_Form_Load
On Error GoTo ERR_Form_Load:
 Dim sUserName As String
 Dim sPassword As String
 ` assign default username and password
 sUserName = "Admin"
 sPassword = ""
 With DBEngine
 ` set system database path and name
 .SystemDB = GetWorkgroupDatabase
 ` set default user name and password
 .DefaultUser = sUserName
 .DefaultPassword = sPassword
 End With
 ` populate the users list box with the available users
 FillAvailableUserList
 ` if there are no valid users, inform the user and exit the
 ` application
 If (lstAvailableUsers.ListCount < 1) Then
 MsgBox "There are no users!", vbExclamation, "USERS"
 cmdClose_Click
 Else
 ` populate the group combo box and select the first group

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (59 of 72) [9/22/1999 2:08:16 AM]

 ` automatically
 FillGroupCombo
 cboGroups.ListIndex = 0
 End If
Exit Sub
ERR_Form_Load:
 ` display error for the user
 With Err
 MsgBox "ERROR #" & .Number & ": " & .Description, _
 vbExclamation, _
 "ERROR"
 End With
 ` end the application
 cmdClose_Click
End Sub

3. Now enter the code that repopulates the lstIncludedUsers list box when the user selects a new group
from the cboGroups combo box:

Private Sub cboGroups_Click()
 ` fill the included users text boxes for the selected group
 FillIncludedUsers
End Sub

4. Enter the code for the Click event of the cmdMove command buttons now. This event handles all four of the
move buttons between the two list boxes on frmAddUsersToGroups. Using the locally declared constants to
indicate the different buttons, users are either removed or added to the current group by a call to either
RemoveUserFromGroup or AddUserToGroup.

Private Sub cmdMove_Click(Index As Integer)
 Dim nCount As Integer
 ` constant declarations that correspond to the four move
 ` buttons on the frmAddUsersToGroups form
 Const MOVE_REMOVE_ALL = 0
 Const MOVE_REMOVE = 1
 Const MOVE_ADD = 2
 Const MOVE_ALL = 3
 Select Case Index
 ` remove all included users from list
 Case MOVE_REMOVE_ALL:
 With lstIncludedUsers
 For nCount = 0 To .ListCount - 1
 RemoveUserFromGroup .List(nCount)
 Next nCount
 End With
 ` if a user is selected, remove it
 Case MOVE_REMOVE:
 With lstIncludedUsers
 If (.ListIndex < 0) Then Exit Sub
 RemoveUserFromGroup .Text
 End With
 ` if a user is selected, add it
 Case MOVE_ADD:
 With lstAvailableUsers
 If (.ListIndex < 0) Then Exit Sub

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (60 of 72) [9/22/1999 2:08:16 AM]

 AddUserToGroup .Text
 End With
 ` add all users from available users list box
 Case MOVE_ALL:
 With lstAvailableUsers
 For nCount = 0 To .ListCount - 1
 AddUserToGroup .List(nCount)
 Next nCount
 End With
 End Select
 ` repopulated the included user list box
 FillIncludedUsers
End Sub

5. Enter the code to terminate the application in the cmdClose_Click event:

Private Sub cmdClose_Click()
 ` end the application
 Unload Me
End Sub

6. Now enter the FillGroupCombo, FillAvailableUserList, and FillIncludedUsers
procedures, which all use the system database to populate their corresponding controls with groups available,
users available, or users in selected group:

Private Sub FillGroupCombo()
 Dim oGroup As Group
 ` populate the group combo box with all available groups
 For Each oGroup In DBEngine.Workspaces(0).Groups
 cboGroups.AddItem oGroup.Name
 Next
End Sub
Private Sub FillAvailableUserList()
 Dim oUser As User
 ` populate the user list boxes with all users except CREATOR
 ` and ENGINE
 For Each oUser In DBEngine.Workspaces(0).Users
 With oUser
 If (UCase$(.Name) <> "CREATOR") _
 And (UCase$(.Name) <> "ENGINE") Then
 lstAvailableUsers.AddItem .Name
 End If
 End With
 Next
End Sub
Private Sub FillIncludedUsers()
 Dim oUser As User
 With lstIncludedUsers
 ` clear the included users list box
 .Clear
 ` add all the included users for the given group
 For Each oUser In _
 DBEngine.Workspaces(0).Groups(cboGroups.Text).Users
 .AddItem oUser.Name
 Next

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (61 of 72) [9/22/1999 2:08:16 AM]

 End With
End Sub

7. Next enter the code to add a new user to a group. This procedure creates a new User object with the name of
the selected user and then appends the object to the Users collection of the selected group.

Private Sub AddUserToGroup(sUserName As String)
` if there is an error, goto code labeled by ERR_AddUserToGroup
On Error GoTo ERR_AddUserToGroup:
 Dim oUser As User
 ` constant declaration for error when user is already in group
 Const ERR_USER_IN_GROUP = 3032
 With DBEngine.Workspaces(0).Groups(cboGroups.Text)
 ` create a user and add him to the group
 Set oUser = .CreateUser(sUserName)
 .Users.Append oUser
 End With
Exit Sub
ERR_AddUserToGroup:
 With Err
 Select Case .Number
 ` if user is in group already, continue execution
 Case ERR_USER_IN_GROUP:
 Resume Next
 ` unexpected error, notify user
 Case Else
 MsgBox "ERROR #" & .Number & ": " & .Description, _
 vbExclamation, "ERROR"
 End Select
 End With
End Sub

8. Finally, enter the code to remove a user from a group. The procedure RemoveUserFromGroup, shown next,
uses the Delete method of the Users collection to remove the specified user from the Group object.

Private Sub RemoveUserFromGroup(sUserName As String)
 ` remove user from group
 DBEngine.Workspaces(0).Groups(_
 cboGroups.Text).Users.Delete sUserName
End Sub

How It Works

When the application begins, it accesses the system database with default values for username and password. This
database is used to populate the combo box of frmAddUsersToGroups with all the available groups and the
Available Users list box with all the users listed in the database.

When a user selects a group, the Users collection of that Group object is used to populate the Included Users list box.
To move users in to the specified group, a new User object is created and appended to the Users collection. To
remove users from the group, the Remove method of the Users collection is used with the specified user.

10.12 How do I...

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (62 of 72) [9/22/1999 2:08:16 AM]

Track user activity in a database?

Problem

I want to somehow keep a log to track which users created or edited records in my Access database. How do I track user
activity in a database using Visual Basic?

Technique

By creating two fields in a recordset, you can track both the user who modified a record and the date and time a record
was modified. The first field, used to track the user, is populated with the current username taken from the UserName
property of the current Workspace object.

The second field, the date and time a user modified a record, is populated with the function Now, which returns the
current date and time.

Steps

Open and run the project Tracker.vbp. After entering a valid username and password, you should see the form shown in
Figure 10.13. A ListView control shows the records of the Customers table in the ORDERS.MDB database. The Order
Number, User Name, and Last Modified information is displayed.

By clicking the Add Record button, you can add a dummy record to the recordset that becomes populated in the
ListView control. The username specified at the start of the application is used to populate the User Name field of the
recordset, and the current date and time is entered into the Last Modified field.

Figure 10.13. The Tracker project.

1. Create a new project and name it Tracker.vbp. Go to the Project | Components menu selection and choose
Microsoft Windows Common Controls 6.0 from the list to include the ListView control in your project.

2. Use Form1 in your project to add and edit the objects and properties as shown in Table 10.18. Use the
(Custom) property in the property window of the ListView control to add the three ColumnHeaders listed in
Table 10.18. Save the form as frmTracker.frm.

Table 10.18. Objects and properties for the Tracker project.

OBJECT PROPERTY SETTING

Form Name frmTracker

Caption Tracker

ListView Name lstCustomers

View 3 `Report View

HideColumnHeaders 0 `False

ColumnHeader Text Order Number

ColumnHeader Text User Name

SubItemIndex 1

ColumnHeader Text Last Modified

SubItemIndex 2

Command button Name cmdAddRecord

Caption &Add Record

Command button Name cmdClose

Caption &Close

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (63 of 72) [9/22/1999 2:08:16 AM]

javascript:popUp('10fig13.gif')

Cancel -1 `True

Default -1 `True

3. Now enter the form-level object variables in the declarations section of your project. These variables are used
to hold both the database and the recordset objects used throughout the Tracker project.

Option Explicit
` form-level object variables used to store database and recordset
` objects
Private db As Database
Private rs As Recordset

4. Enter the Form_Load event code as shown next. This code asks the user to enter both a valid username and a
password from those in the system database to open the Orders database and call the PopulateListView
procedure.

Private Sub Form_Load()
` if there is an error, goto the code labeled by ERR_Form_Load
On Error GoTo ERR_Form_Load:
 ` local constant declaration for invalid user name or password
 ` error
 Const ERR_INVALID_INFORMATION = 3029
 Dim sUserName As String
 Dim sPassword As String
 Dim sDBName As String
 ` get username
 sUserName = InputBox("Enter user name.", "LOGON")
 ` get user password
 sPassword = InputBox("Enter password.", "LOGON")
 With DBEngine
 ` set system database path and name
 .SystemDB = GetWorkgroupDatabase
 ` set default passwords
 .DefaultUser = sUserName
 .DefaultPassword = sPassword
 ` retrieve database path and name from ReadINI module
 sDBName = DBPath
 ` open database with given user and password
 Set db = .Workspaces(0).OpenDatabase(sDBName)
 End With
 ` populate the list view control
 PopulateListView
Exit Sub
ERR_Form_Load:
 Dim sMessage As String
 With Err
 Select Case .Number
 ` invalid user or password
 Case ERR_INVALID_INFORMATION:
 sMessage = "Invalid user name or password."
 ` unexpected error, notify the user
 Case Else
 sMessage = "ERROR #" & .Number & ": " & _
 .Description

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (64 of 72) [9/22/1999 2:08:16 AM]

 End Select
 End With
 ` display the message for the user
 MsgBox sMessage, vbExclamation, "ERROR"
 ` end the application
 cmdClose_Click
End Sub

5. Enter the code to close and release the database and recordset object variables in the Form_Unload event:

Private Sub Form_Unload(Cancel As Integer)
 ` close the recordset and database
 Set rs = Nothing
 Set db = Nothing
End Sub

6. Now enter the cmdAddRecord_Click event code to add a new record. Notice the two fields, User Last
Modified and DateTime Last Modified. These are populated with the UserName property of the
current workspace and the Now method to successfully create an auditing trail that you will use to track which
user created a given record.

Private Sub cmdAddRecord_Click()
` if an error occurs, call the ERR_cmdAddRecord code located at
` the end of this procedure
On Error GoTo ERR_cmdAddRecord:
 Dim sMessage As String
 Dim lPrimaryKey As Long
 ` used to populate fields in Customer table
 ` this is necessary because most of the fields belong to
 ` indexes making them required fields
 Const DUMMY_INFO = "<>"
 ` retrieve a unique key from the GetPrimaryKey routine
 lPrimaryKey = GetPrimaryKey
 With rs
 ` add a new record
 .AddNew
 ` fill in the required fields
 .Fields("Customer Number") = lPrimaryKey
 .Fields("Customer Name") = DUMMY_INFO
 .Fields("Street Address") = DUMMY_INFO
 .Fields("City") = DUMMY_INFO
 .Fields("State") = DUMMY_INFO
 .Fields("Zip Code") = DUMMY_INFO
 ` set the username, date, and time of new record to track
 ` users
 .Fields("User Last Modified") = _
 DBEngine.Workspaces(0).UserName
 .Fields("DateTime Last Modified") = Now
 ` make saves (if an error will occur, it will be here)
 .Update
 End With
 PopulateListView
 ` if we got this far, add new record was successfull
 sMessage = "Record added successfully!"
 MsgBox sMessage, vbInformation, "ADD RECORD"

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (65 of 72) [9/22/1999 2:08:16 AM]

Exit Sub
ERR_cmdAddRecord:
 ` display error for user
 With Err
 MsgBox "ERROR #" & .Number & ": " & .Description, _
 vbExclamation, _
 "ERROR"
 End With
End Sub

7. Enter the code to terminate the application on pressing the cmdClose command button:

Private Sub cmdClose_Click()
 ` end the application
 Unload Me
End Sub

8. Now enter the GetPrimaryKey function, which uses the Customer Number field of the last record in the
ORDERS.MDB database to create a new unique key:

Private Function GetPrimaryKey()
 ` return a unique primary key based on the Customer Number
 ` field
 With rs
 ` if there are records in the table already, find the last
 ` one and add one to the Customer Number as a unique
 ` Primary Key; otherwise there are no records in the
 ` table, so return 1 for the first new record to be added
 If (Not (.EOF And .BOF)) Then
 .MoveLast
 GetPrimaryKey = .Fields("Customer Number") + 1
 Else
 GetPrimaryKey = 1
 End If
 End With
End Function

9. Finally, enter the code for the PopulateListView procedure, which repopulates the ListView control with
the entire Customer table, showing which user added which Order Number, along with the date and time the
record was added:

Private Sub PopulateListView()
 Dim oItem As ListItem
 ` show headers of list view and clear the contents of the
 ` ListItems collection
 With lstCustomers
 .HideColumnHeaders = False
 .ListItems.Clear
 End With
 ` repopulate the recordset
 Set rs = db.OpenRecordset("Customers", dbOpenTable)
 With rs
 ` order the records by the primary key
 .Index = "PrimaryKey"
 ` add all records to the list view
 While (Not rs.EOF)

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (66 of 72) [9/22/1999 2:08:16 AM]

 Set oItem = lstCustomers.ListItems.Add(, , _
 .Fields("Customer Number"))
 oItem.SubItems(1) = "" & .Fields("User Last Modified")
 oItem.SubItems(2) = "" & .Fields(_
 "DateTime Last Modified")
 .MoveNext
 Wend
 End With
End Sub

How It Works

When the application begins, it asks the user to enter a username and password, which are checked against the system
database when the OpenDatabase method is used to access ORDERS.MDB. If the user correctly entered a valid
username and corresponding password, the ListView control of the Tracker project is populated with the contents of the
Customer table showing the Order Number, User Last Modified, and DateTime Last Modified fields
to form an auditing trail of the modification to the recordset.

When the user chooses to add a record by clicking the Add Record button, a new record is created using a newly
created primary key. In addition, the current date and time as well as the current username (taken from the UserName
property of the current Workspace object) are used.

Comments

When you set the DefaultUser and DefaultPassword properties of the DBEngine object, you are logging in to
the system database with that user. You should note that after you set these properties, you cannot change them during
the life of your application. You must terminate the program and restart it to log on as a new user.

10.13 How do I...

Create and use an encrypted database?

Problem

I want to prohibit other users from viewing my Access database files from various word processors and spy
applications. How can I encrypt my database using Visual Basic?

Technique

To encrypt an Access database, you must either specify encryption upon creation of the database or compact the
database into a newly encrypted file. To decrypt an Access database, you must decrypt it to a newly created file using
CompactDatabase.

Steps

Open and run the Encryptor.vbp project. You should see the form shown in Figure 10.14. To create a newly encrypted
database, click the Create a New Encrypted Database button. You then are asked to specify a database path and name
through a common dialog form.

Figure 10.14. The Encryptor project.

To encrypt an existing database, click the Encrypt an Existing Database button, and specify the database to encrypt and
a database path and name of the file to encrypt to. Conversely, to decrypt a database, click the Decrypt an Existing
Database button, and enter the database to decrypt along with the database to decrypt to. Do not enter a current database
name to encrypt or decrypt to; rather, enter a name of a database that does not exist.

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (67 of 72) [9/22/1999 2:08:16 AM]

javascript:popUp('10fig14.gif')

1. Create a new project and call it Encryptor.vbp. Go to the Project | Components menu selection and choose
Microsoft Common Dialog Control 6.0 from the list to include the File Open Common Dialog control in your
project.

2. Add the objects and edit the properties as shown in Table 10.19. Save the form as frmEncryptor.frm.

Table 10.19. Objects and properties for the Encryptor project.

OBJECT Property Setting

Form Name frmEncryptor

Caption Encryptor

Common Dialog Name cdlFile

Filter MS Access Databases (*.mdb)

Command button Name cmdCreateDatabase

Caption Create a &New Encrypted Database

Command button Name cmdEncryptDatabase

Caption &Encrypt an Existing Database

Command button Name cmdDecryptDatabase

Caption &Decrypt an Existing Database

Command button Name cmdClose

Caption &Close

Cancel -1 `True

Default -1 `True

3. Now enter the following constant declarations in the declarations section of your project. These are used to
indicate application-defined errors later in the project.

Option Explicit
` form-level constant declarations of application-defined errors
Private Const NO_ERROR = 0
Private Const ERR_DATABASE_EXISTS = 3204

4. Enter the code for the Form_Load event as shown here. Not only does this code log on to the system database
as the other How-To projects did, but it also initializes the Common Dialog control used in this project.

Private Sub Form_Load()
` if there is an error, goto the code labeled by ERR_Form_Load
On Error GoTo ERR_Form_Load:
 Dim sUserName As String
 Dim sPassword As String
 sUserName = "admin"
 sPassword = ""
 With DBEngine
 ` set system database path and name
 .SystemDB = GetWorkgroupDatabase
 ` set default passwords
 .DefaultUser = sUserName
 .DefaultPassword = sPassword
 End With
 With cdlFile
 ` set various properties of the common dialog control

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (68 of 72) [9/22/1999 2:08:16 AM]

 .Flags = cdlOFNExplorer
 .DefaultExt = "mdb"
 End With
Exit Sub
ERR_Form_Load:
 ` display the error message for the user
 With Err
 MsgBox "ERROR #" & .Number & ": " & .Description, _
 vbExclamation, _
 "ERROR"
 End With
 ` end the application
 cmdClose_Click
End Sub

5. Now enter the code for the Click event of the cmdCreateDatabase command button. This code uses the
Common Dialog control to ask the user the name of the database to create. When given this name, the event
creates an empty encrypted database.

Private Sub cmdCreateDatabase_Click()
` if there is an error, goto the code labeled by ERR_cmdCreateDatabase_Click
On Error GoTo ERR_cmdCreateDatabase_Click:
 Dim db As Database
 Dim sNewDatabase As String
 With cdlFile
 ` get the name of the database to encrypt or decrypt to
 .filename = ""
 .DialogTitle = "DATABASE TO CREATE"
 .Action = 1
 sNewDatabase = .filename
 ` if the name was not given, abandon task
 If (sNewDatabase = "") Then Exit Sub
 End With
 ` create the encrypted database
 Set db = DBEngine(0).CreateDatabase(sNewDatabase, _
 dbLangGeneral, dbEncrypt)
 ` close the database
 Set db = Nothing
ERR_cmdCreateDatabase_Click:
 Dim sMessage As String
 With Err
 ` determine error
 Select Case .Number
 ` there is no error, inform the user of success
 Case NO_ERROR:
 sMessage = "Database created successfully. "
 ` the database already exists
 Case ERR_DATABASE_EXISTS:
 sMessage = "You must choose a database that does " _
 & "not already exist."
 ` unexpected error, inform the user
 Case Else:
 sMessage = "ERROR #" & .Number & ": " & _

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (69 of 72) [9/22/1999 2:08:16 AM]

 .Description
 End Select
 ` display the error for the user
 MsgBox sMessage, _
 IIf(.Number = NO_ERROR, vbInformation, _
 vbExclamation), _
 IIf(.Number = NO_ERROR, "SUCCESS", "ERROR")
 End With
End Sub

6. Enter the code for the cmdEncryptDatabase_Click and the cmdDecryptDatabase_Click events
as shown next. These procedures both call the Encryptor routine to either encrypt or decrypt a database,
depending on the argument passed to the routine.

Private Sub cmdEncryptDatabase_Click()
 ` call procedure to encrypt database
 Encryptor dbEncrypt
End Sub
Private Sub cmdDecryptDatabase_Click()
 ` call procedure to decrypt database
 Encryptor dbDecrypt
End Sub

7. Enter the cmdClose_Click event code to terminate the application:

Private Sub cmdClose_Click()
 ` terminate the application
 Unload Me
End Sub

8. Finally, enter the following Encryptor procedure, which takes an Integer argument that will be passed to
the CompactDatabase method. This argument will be either dbEncrypt or dbDecrypt, depending on
which button the user presses.

Private Sub Encryptor(nAction As Integer)
` if there is an error, goto the code labeled by ERR_Encryptor
On Error GoTo ERR_Encryptor:
 Dim sCurDatabase As String
 Dim sNewDatabase As String
 Dim sActionString As String
 ` create string depending upon action decided by user
 If (nAction = dbEncrypt) Then
 sActionString = "ENCRYPT"
 Else
 sActionString = "DECRYPT"
 End If
 With cdlFile
 ` get the name of the database to encrypt or decrypt
 .filename = ""
 .DialogTitle = "DATABASE TO " & sActionString
 .Action = 1
 sCurDatabase = .filename
 ` if the name was not given, abandon task
 If (sCurDatabase = "") Then Exit Sub
 ` get the name of the database to encrypt or decrypt to
 .filename = ""

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (70 of 72) [9/22/1999 2:08:16 AM]

 .DialogTitle = "DATABASE TO " & sActionString & " TO"
 .Action = 1
 sNewDatabase = .filename
 ` if the name was not given, abandon task
 If (sNewDatabase = "") Then Exit Sub
 End With
 ` encrypt the database
 DBEngine.CompactDatabase sCurDatabase, sNewDatabase, , nAction
ERR_Encryptor:
 Dim sMessage As String
 With Err
 ` determine error
 Select Case .Number
 ` there is no error, inform the user of success
 Case NO_ERROR:
 sMessage = "Database successfully " _
 & LCase$(sActionString) & "ed to file `" _
 & sNewDatabase & "`."
 ` the database already exists
 Case ERR_DATABASE_EXISTS:
 sMessage = "You must choose a database that does " _
 & "not already exist."
 ` unexpected error, inform the user
 Case Else:
 sMessage = "ERROR #" & .Number & ": " & _
 .Description
 End Select
 ` display the error for the user
 MsgBox sMessage, _
 IIf(.Number = NO_ERROR, vbInformation, _
 vbExclamation), _
 IIf(.Number = NO_ERROR, "SUCCESS", "ERROR")
 End With
End Sub

How It Works

At the start of this application, the user is logged on to the system database using the default values for both the
username and the password. When the user decides to create a new database, the dbEncrypt option is included in the
CreateDatabase method to indicate that encryption is to be used on the database.

If the user decides to either encrypt or decrypt an existing database, he must actually create a new database from the
existing one by using the CompactDatabase method with an option of dbEncrypt or dbDecrypt. The database
to be created from the CompactDatabase method cannot already exist.

Comments

In this How-To, you started off accessing the system database in the Form_Load event given the default Admin
username and password, although the project did not necessarily need to access the system database.

Encryption is not really going to help you much unless you also add a password, which you did not do in this
application. Encryption stops others from viewing an Access database with anything but Access itself and Visual Basic.
Because both these tools are readily available, do not count on encryption as your only source of security. The
framework is here for system database security, and this is why you included its access in the Form_Load event.

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (71 of 72) [9/22/1999 2:08:16 AM]

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Ch 10 -- Security and Multiuser Access

http://www.pbs.mcp.com/ebooks/1571691529/ch10/ch10.htm (72 of 72) [9/22/1999 2:08:17 AM]

Visual Basic 6 Database How-To

- 11 -
The Windows Registry and State

Information
How do I...

11.1 Enter and retrieve Windows Registry entries from Visual Basic?❍

11.2 Put data access-related information into an application's section of the Registry?❍

11.3 Determine which database and report-related files need to be distributed with my
applications?

❍

11.Tune the Jet database engine through Windows Registry entries?❍

11.5 Tune the ODBC engine using Windows Registry entries?❍

●

The Windows Registry is a remarkable component of Windows 95. It is used to store information about
every application installed on your machine and replaces the original INI files of Windows 3.x. The
information that is held in the Registry ranges from file paths to encrypted registration keys for ActiveX
controls.

You can view the contents of the Windows Registry by locating the RegEdit application in your Windows
directory. After launching this application, you can view the contents of any key stored in the Registry.
You can also edit, create, or delete folders and keys within these folders; however, you should take
extreme caution in doing so, because these values are of great importance. Make sure you know and
realize what you are doing with the information in the Windows Registry before you decide to change
anything.

REGISTRY SAFEGUARDS

Always have at least one workable version of the Registry backed up before making any type

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (1 of 24) [9/22/1999 2:10:05 AM]

of adjustment to it.

If you have made changes to the Registry but not restarted Windows since the change, you
can restore the Registry to its state at the last successful Windows startup. Shut down
Windows by choosing Restart in MS-DOS mode. Then when you see the MS-DOS prompt,
type

scanreq /restore

If you are having a problem restarting Windows after Registry changes, you can reboot from
an emergency boot floppy disk, and type the preceding command from the MS-DOS prompt.

In this chapter, we will dive into the Windows Registry and see how we can get it to work for us. We will
accomplish this by using it to save state information for our application and our data access. We will also
look into changing specific information that is inherent on every user's machine to tune and maximize
performance in our applications.

11.1 Enter and Retrieve Windows Registry Entries from Visual Basic

When you exit most applications and then restart them later, you will notice that the screens appear to be
just as you left them earlier. This technique of storing an application's state information is discussed in this
How-To.

11.2 Put Data Access-Related Information into an Application's Section of the Registry

Sometimes it is important to use data access specifications that most other applications do not use. It is
important, however, to maintain the reliability of the original specifications in the Window Registry. This
How-To presents a project used to store state information for data access in the Windows Registry and to
temporarily change the settings for data access.

11.3 Determine Which Database and Report-Related Files Need to Be Distributed with My
Applications

Many times when creating a set of distribution disks for your application, you forget to include specific
files relating to databases or reports. This How-To explains which files are necessary for each of these
components.

11.Tune the Jet Database Engine Through Windows Registry Entries

If you are the down-and-dirty type when it comes to tweaking your machine for optimum performance,
this How-To is for you. Here we show you how to fine-tune each of the keys relating to the Jet database
engine tick.

11.5 Tune the ODBC Engine Using Windows Registry Entries

As well as fine-tuning the Jet database engine through the Windows Registry, you can also tune the
ODBC engine. In this How-To, we will explain just how to do this.

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (2 of 24) [9/22/1999 2:10:05 AM]

11.1 How do I...

Enter and retrieve Windows Registry entries from Visual Basic?

Problem

My applications need to store specific state information. For example, I would like to store the position
and size of the windows used in my projects so that the next time a user loads the program, it appears to
continue where he left off. How do I store state information for my applications using Visual Basic?

Technique

Back in the days of Windows 3.x, applications used INI files to store state information for their programs.
Apparently, this led to numerous INI files spread throughout user's drives. With the introduction of
Windows 95, we now have what is called the Windows Registry.

The Windows Registry acts as a Grand Central Station for INI files. Not only is application state
information stored in the Registry, but registrations for OCXs also reside here. By using the same
statements that we used to access INI files for Windows 3.x applications, we can work with the Windows
Registry. There are four in all:

GetSetting--Used to retrieve a single key's setting.●

GetAllSettings--Used to retrieve all keys and their corresponding settings for a given section
in the Registry.

●

SaveSetting--Used to save a setting for a particular key.●

DeleteSetting--Used to delete a key for a given section.●

Visual Basic has set a special section set aside for state information of user's applications. This section is
labeled by the key HKEY_CURRENT_USER\
Software\VB and VBA Program Settings. By using the four statements previously listed, we can create,
read, and alter settings in the VB and VBA Program Settings area of the Windows Registry to effectively
record our application's state information.

Steps

Load and run RegistryEditor.vbp. You will see the form shown in Figure 11.1. The Application
Name and Section text boxes are set to the default values used for this application. Change these values to
see different section keys. After you select a key, you can edit it and click the Save Setting command
button to save the setting. End the application by clicking the Close button.

Figure 11.1. The Registry Editor project.

1. Create a new project and name it RegistryEditor.vbp. Add the objects listed in Table 11.1
and edit their properties as shown. Save the form as frmRegistryEditor.frm.

Table 11.1. Objects and properties for the Registry Editor project.

OBJECT Property Setting

Form Name frmRegistryEditor

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (3 of 24) [9/22/1999 2:10:05 AM]

javascript:popUp('11fig01.gif')

Caption "Registry Editor"

Text box Name txtApplicationName

Caption "VB6DBHT Chapter 11"

Text box Name txtSection

Caption "Settings"

Text box Name txtSetting

Caption ""

List box Name lstKeys

Command button Name cmdClose

Caption "&Close"

Cancel -1 `True

Default -1 `True

Command button Name cmdSave

Caption "&Save Setting"

Label Name lblApplicationName

Caption "&Application Name:"

Label Name lblSection

Caption "Se&ction:"

Label Name lblKeys

Caption "&Key(s):"

Label Name lblSetting

Caption "Se&tting:"

2. Enter the declaration for the form-level variant variable used to store keys and settings from the
Windows Registry:

Option Explicit
` form-level variable used to store keys and settings for
` desired application and section
Private m_vSettings As Variant

3. When the application begins, automatically populate the screen with the default information by
calling the RepopulateKeys routine that we will enter later:

Private Sub Form_Load()
 ` initialize the application by populating the key list box
 RepopulateKeys
End Sub

4. Now enter the code for the lstKeys_Click event shown here. When the user changes the key
to be displayed, the application will load the new corresponding setting and display it in the setting
text box.

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (4 of 24) [9/22/1999 2:10:05 AM]

Private Sub lstKeys_Click()
 ` error message of choice when error has occurred
 ` obtaining setting
 Const ERRMSG_INVALID_SETTING = "<ERROR>"
 ` set the txtSetting text box to the value of the key in
 ` the Registry
 txtSetting = GetSetting(txtApplicationName, _
 txtSection, _
 lstKeys.Text, _
 ERRMSG_INVALID_SETTING)
 ` if there was an error in the retrieval process, disable
 ` editing of the key's setting
 If (txtSetting <> ERRMSG_INVALID_SETTING) Then
 lstKeys.Enabled = True
 txtSetting.Enabled = True
 cmdSave.Enabled = True
 End If
End Sub

5. When the user changes the name of the application or the section
to find keys for, we want to repopulate the list box displaying
them. This is done with a call to the RepopulateKeys routine in the
txtApplicationName_Change and txtSection_Change events, as shown here:

Private Sub txtApplicationName_Change()
 ` repopulate the key list box when the application name
 ` has changed
 RepopulateKeys
End Sub
Private Sub txtSection_Change()
 ` repopulate the key list box when the section name
 ` has changed
 RepopulateKeys
End Sub

6. Enter the following code to end the application:

Private Sub cmdClose_Click()
 ` end the application
 Unload Me
End Sub

7. Now enter the code for the cmdSave_Click event, which uses the SaveSetting statement
to save the information on the form to the Windows Registry:

Private Sub cmdSave_Click()
 ` save the selected key information from the desired
 ` information on the form
 SaveSetting txtApplicationName, _
 txtSection, _
 lstKeys.Text, _

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (5 of 24) [9/22/1999 2:10:05 AM]

 txtSetting
End Sub

8. Finally, enter the following code for the RepopulateKeys routine. When this code is called,
the application attempts to populate the list box with all the available keys for the given application
and section name. If this information does not correspond to a section in the Registry, an error
occurs. The RepopulateKeys routine traps this error and gracefully exits the procedure, leaving
the key list box empty and disabling any controls used to edit key settings.

Private Sub RepopulateKeys()
` if there is an error, goto the code labeled by ERR_RepopulateKeys
On Error GoTo ERR_RepopulateKeys:
 Dim nCount As Integer
 ` errors that are expected to be encountered
 Const ERR_INVALID_PROC_CALL = 5
 Const ERR_TYPE_MISMATCH = 13
 With lstKeys
 ` clear the listbox and setting text box
 .Clear
 txtSetting = ""
 ` disable editing functions
 lstKeys.Enabled = False
 txtSetting.Enabled = False
 cmdSave.Enabled = False
 ` retrieve available keys for given application name
 ` and section this will cause an ERR_INVALID_PROC_CALL
 ` error if one of the text box controls are empty
 m_vSettings = GetAllSettings(txtApplicationName, _
 txtSection)
 ` add each setting to the key list box
 ` this will cause an ERR_TYPE_MISMATCH error if there
 ` are no keys for the selected application and section
 ` names
 For nCount = 0 To UBound(m_vSettings, 1)
 .AddItem m_vSettings(nCount, 0)
 Next nCount
 ` select the first item in the list box
 .ListIndex = 0
 End With
Exit Sub
ERR_RepopulateKeys:
 With Err
 Select Case .Number
 ` if the error is expected, do nothing but end the
 ` procedure
 Case ERR_INVALID_PROC_CALL, ERR_TYPE_MISMATCH:
 ` unexpected error, display for the user

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (6 of 24) [9/22/1999 2:10:05 AM]

 Case Else:
 MsgBox "ERROR #" * .Number & ": " & _
 .Description, _
 vbExclamation, "ERROR"
 End Select
 End With
End Sub

How It Works

When this project is run, the list box control of the form is populated with the keys available for the given
application and section names using the GetAllSettings statement. If the section does not exist in the
Windows Registry, an error occurs, and the application is ended gracefully. If there are keys, the list box is
populated and the controls that are related to editing the key's setting are enabled.

After you decide to change the setting for a given key selected from the list box, you click the Save
Setting button. The code that is in the cmdSave_Click event uses the SaveSetting statement to
save the current key's value.

Choosing a new key from the list box control causes the code to execute the GetSetting statement,
which retrieves an individual setting for a specified application name, section, and key.

Comments

In this project, we saved all the key's settings as strings in the Windows Registry. This is because the
txtSetting text box's Text property returns a string value. If you were to use this project to save the
information for your application's position and size, you would have to change the string value returned to
a Long value.

This problem can be avoided by using a variable with a Long data type in the SaveSetting statement.
Visual Basic creates a new key with the data type of the specified setting.

11.2 How do I...

Put data access-related information into an application's section of
the Registry?

Problem

My application calls for DAO settings that are not considered standard. I can manually edit the Registry
key settings to the values that my application requires; however, other programs will be affected by my
changes. How do I temporarily change the DAO settings every time a user runs my projects?

Technique

By using the techniques discussed in How-To 11.1, we know that we can save state information for our
application. Visual Basic does not care what kind of information this is; therefore, we can just as easily
store DAO setting information as we can the application's position and height.

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (7 of 24) [9/22/1999 2:10:05 AM]

To temporarily change the DAO settings for the Jet engine, we can use the SetOption method of the
DBEngine. Using this command we can change the values of parameters that Jet uses to access data.
These changes are made until we change them again or the DBEngine is actually closed.

In all, there are 11 parameters we can use to alter the Jet and DAO's behavior. These parameters and their
associated key--in the Jet\3.5\Engines\Jet 3.5\ section of the Windows Registry--are listed in Table 11.2.

Table 11.2. Objects and properties for the Set Options project.

KEY Parameter Enumeration Constant

PageTimeout dbPageTimeout

SharedAsyncDelay dbSharedAsyncDelay

ExclusiveAsyncDelay dbExclusiveAsyncDelay

LockRetry dbLockRetry

UserCommitSync dbUserCommitSync

ImplicitCommitSync dbImplicitCommitSync

MaxBufferSize dbMaxBufferSize

MaxLocksPerFile dbMaxLocksPerFile

LockDelay dbLockDelay

RecycleLVs dbRecycleLVs

FlushTransactionTimeout dbFlushTransactionTimeout

Steps

Open and run SetOptions.vbp. You will see the form shown in Figure 11.2. By selecting the key
from the combo box, you will see the associated setting for the key in the Setting text box. Changing the
key's setting and clicking the Save Setting button will not only save the value of the setting, but also
temporarily change the parameter for the DBEngine object. If you delete the key by clicking the Delete
Key button, you will remove the key from the section for our state information in the Registry. The next
time you go to view the key, you will see the default setting of the key.

Figure 11.2. The Set Options project.

1. Create a new project and name it SetOptions.vbp. Add the controls and edit their properties
as shown in Table 11.3 for the default form, Form1. Save the form as frmSetOptions.frm.

Table 11.3. Objects and properties for the Set Options project.

OBJECT Property Setting

Form Name frmSetOptions

Caption "Set Options"

Combo box Name cboKeys

Style 2 `Dropdown List

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (8 of 24) [9/22/1999 2:10:06 AM]

javascript:popUp('11fig02.gif')

Text box Name txtSetting

Caption ""

Command button Name cmdClose

Caption "&Close"

Cancel -1 `True

Default -1 `True

Command button Name cmdSave

Caption "&Save Setting"

Command button Name cmdDelete

Caption "&Delete Key"

Label Name lblKey

Caption "&Key:"

Label Name lblSetting

Caption "Se&tting:"

2. Now enter the following code in the declarations section of the project. The form-level Long
variable is used to store the currently selected key from the combo box on the form. The other two
declarations are constants and are used to represent the default application and section names used
for this project.

Option Explicit
` form-level variable used to store the selected parameter from
` the list in the keys combo box
Private m_lSelectedParameter As Long
` form-level constant declarations used throughout the
` application to name the application and section when
` using the Get and Save settings methods
Private Const APPLICATION_TITLE = "VB6DBHT Chapter 11"
Private Const SECTION_NAME = "Jet 3.5"

3. Now enter the Form_Load event code as shown next. This code calls the
LoadJetRegistryInformation routine, which we will code in a separate module later, to
retrieve all the keys for the specified application and section of the Windows Registry. The event
then adds all the available parameters to the combo box control and selects the first one.

Private Sub Form_Load()
 ` load all Jet Registry settings from application section
 ` of the Windows Registry
 LoadJetRegistryInformation APPLICATION_TITLE, SECTION_NAME
 With cboKeys
 ` add all the available parameters for the SetOption
 ` method
 .AddItem "dbPageTimeout"
 .AddItem "dbSharedAsyncDelay"

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (9 of 24) [9/22/1999 2:10:06 AM]

 .AddItem "dbExclusiveAsyncDelay"
 .AddItem "dbLockRetry"
 .AddItem "dbUserCommitSync"
 .AddItem "dbImplicitCommitSync"
 .AddItem "dbMaxBufferSize"
 .AddItem "dbMaxLocksPerFile"
 .AddItem "dbLockDelay"
 .AddItem "dbRecycleLVs"
 .AddItem "dbFlushTransactionTimeout"
 ` select the first item in the combo box control
 .ListIndex = 0
 End With
End Sub

4. Now enter the code for the cboKeys_Click event, which is called every time the user selects a
new key from the combo box. This event retrieves the current setting for the chosen key from the
application's section of the Windows Registry. If there is no specified entry for the key in this
section, the lDefaultSetting is used instead.

Private Sub cboKeys_Click()
 Dim lDefaultSetting As Variant
 With cboKeys
 ` get a long value from the text version of the key
 m_lSelectedParameter = GetParameterFromKey(.Text)
 ` obtain the default setting for the key
 lDefaultSetting = GetDefaultKeySetting(.Text)
 ` display the current setting from the application's
 ` Registry settings if there is one; otherwise,
 ` display the default
 txtSetting = GetSetting(APPLICATION_TITLE, _
 SECTION_NAME, _
 .Text, _
 lDefaultSetting)
 End With
End Sub

5. Enter the following code to end the application:

Private Sub cmdClose_Click()
 ` end the application
 Unload Me
End Sub

6. The following code is used to save the current key and setting combina-tion to the application's
section of the Registry. This is done with the SaveSetting statement. In addition to the Registry
entry, the SetOption method of the DBEngine object is called to temporarily change the setting
of the desired parameter to the new value. If the user entered an incorrect data type for the key, an
error is generated and the user is notified.

Private Sub cmdSave_Click()
` if there is an error, goto the code labeled by ERR_

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (10 of 24) [9/22/1999 2:10:06 AM]

` cmdSave_Click
On Error GoTo ERR_cmdSave_Click:
 ` constant declarations for expected errors
 Const ERR_TYPE_MISMATCH = 13
 Const ERR_RESERVED_ERROR = 3000

 ` attempt to set the DBEngine option for the given key
 ` an error will occur here if an incorrect setting data
 ` type is entered by the user
 DBEngine.SetOption m_lSelectedParameter, _
 GetValueFromSetting(txtSetting)
 ` if the SetOption method was successful, save the
 ` new setting value in the application Registry section
 SaveSetting APPLICATION_TITLE, SECTION_NAME, _
 cboKeys.Text, txtSetting
 ` inform the user of the success
 MsgBox "Change has been made.", vbInformation, "Set Option"
Exit Sub
ERR_cmdSave_Click:
 Dim sMessage As String
 With Err
 Select Case .Number
 ` wrong data type entered for key setting
 Case ERR_TYPE_MISMATCH, ERR_RESERVED_ERROR:
 sMessage = "Value is of incorrect format."
 ` unexpected error, create a message from the error
 Case Else:
 sMessage = "ERROR #" & .Number & ": " & _
 .Description
 End Select
 End With
 ` inform the user of the error
 MsgBox sMessage, vbExclamation, "ERROR"
 ` repopulate the setting text box with the current or
 ` default key setting and set focus to the text box
 cboKeys_Click
 txtSetting.SetFocus
End Sub

7. The following code simply deletes the key from the application's section in the Windows
Registry and notifies the user of the success:

Private Sub cmdDelete_Click()
 ` remove the setting from the application section of the
 ` Windows Registry
 DeleteSetting APPLICATION_TITLE, SECTION_NAME, cboKeys.Text
 ` refresh the setting text box with the default value
 cboKeys_Click

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (11 of 24) [9/22/1999 2:10:06 AM]

 ` inform the user of the success
 MsgBox "Key has been deleted.", vbInformation, "Delete Key"
End Sub

8. The second half of this project begins with adding a new module.
This can be done by choosing Project | Add Module from the Visual
Basic menu. Rename the module RegistryInformation and save it
as RegistryInformation.bas. The remaining code for this project
should be entered in this module.

9. In the RegistryInformation module, enter the first routine to be used, which is the
LoadJetRegistryInformation as shown here. This routine loads all the settings and keys
for the given application and section names. For each key specified in the corresponding section of
the Registry, the SetOption method of the DBEngine object is called to temporarily change the
value of the given parameter for the life of this application. If there are no settings for the given
application and section names, an error is trapped and the routine exits gracefully.

Public Sub LoadJetRegistryInformation(_
 sApplicationName As String, _
 sSectionName As String)
` if there is an error, goto the code labeled by
` ERR_LoadJetRegistryInformation
On Error GoTo ERR_LoadJetRegistryInformation:
 Dim vSettings As Variant
 Dim nCount As Integer
 ` constant declaration for expected error
 Const ERR_TYPE_MISMATCH = 13
 ` obtain all the settings from the Registry section for
 ` the given application
 vSettings = GetAllSettings(sApplicationName, sSectionName)
 ` set all the options that were specified in the Jet 3.5
 ` section for the current application
 For nCount = 0 To UBound(vSettings, 1)
 DBEngine.SetOption GetParameterFromKey _
 (vSettings(nCount, 0)), _
 GetValueFromSetting(_
 vSettings(nCount, 1))
 Next nCount
Exit Sub
ERR_LoadJetRegistryInformation:
 With Err
 Select Case .Number
 ` there was no settings specified in the Registry
 ` for the given application, just continue without
 ` displaying an error message
 Case ERR_TYPE_MISMATCH:
 ` unexpected error, create a message from the error
 Case Else:

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (12 of 24) [9/22/1999 2:10:06 AM]

 MsgBox "ERROR #" & .Number & ": " & _
 .Description, _
 vbExclamation, "ERROR"
 End Select
 End With
End Sub

10. Now enter the public function GetValueFromSetting, which accepts a variant as an
argument and returns either a Long or String dependent upon the data type of the argument:

Public Function GetValueFromSetting(_
 vSetting As Variant) As Variant
 ` if the setting is a number, return a long; otherwise,
 ` return a string
 If (IsNumeric(vSetting)) Then
 GetValueFromSetting = CLng(vSetting)
 Else
 GetValueFromSetting = CStr(vSetting)
 End If
End Function

11. The following function returns the default setting for the specified key name. These defaults
were obtained from the Visual Basic Books Online and can be changed to your desired settings.

Public Function GetDefaultKeySetting(sKey As String) As Variant
 ` return the default key setting for the key specified
 Select Case sKey
 Case "dbPageTimeout":
 GetDefaultKeySetting = 5000
 Case "dbSharedAsyncDelay":
 GetDefaultKeySetting = 0
 Case "dbExclusiveAsyncDelay":
 GetDefaultKeySetting = 2000
 Case "dbLockEntry":
 GetDefaultKeySetting = 20
 Case "dbUserCommitSync":
 GetDefaultKeySetting = "Yes"
 Case "dbImplicitCommitSync":
 GetDefaultKeySetting = "No"
 Case "dbMaxBufferSize":
 GetDefaultKeySetting = 0

 Case "dbMaxLocksPerFile":
 GetDefaultKeySetting = 9500
 Case "dbLockDelay":
 GetDefaultKeySetting = 100
 Case "dbRecycleLVs":
 GetDefaultKeySetting = 0
 Case "dbFlushTransactionTimeout":
 GetDefaultKeySetting = 500

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (13 of 24) [9/22/1999 2:10:06 AM]

 End Select
End Function

12. Finally, enter the code for the public function GetParameterFromKey as shown here. This
function returns the corresponding parameter enumeration value for a specified key.

Public Function GetParameterFromKey(ByVal sKey As String) As Long
 ` return the correct constant for the given key
 Select Case sKey
 Case "dbPageTimeout":
 GetParameterFromKey = dbPageTimeout
 Case "dbSharedAsyncDelay":
 GetParameterFromKey = dbSharedAsyncDelay
 Case "dbExclusiveAsyncDelay":
 GetParameterFromKey = dbExclusiveAsyncDelay
 Case "dbLockRetry":
 GetParameterFromKey = dbLockRetry
 Case "dbUserCommitSync":
 GetParameterFromKey = dbUserCommitSync
 Case "dbImplicitCommitSync":
 GetParameterFromKey = dbImplicitCommitSync
 Case "dbMaxBufferSize":
 GetParameterFromKey = dbMaxBufferSize
 Case "dbMaxLocksPerFile":
 GetParameterFromKey = dbMaxLocksPerFile
 Case "dbLockDelay":
 GetParameterFromKey = dbLockDelay
 Case "dbRecycleLVs":
 GetParameterFromKey = dbRecycleLVs
 Case "dbFlushTransactionTimeout":
 GetParameterFromKey = dbFlushTransactionTimeout
 End Select
End Function

How It Works

This project uses two files for code. The first file, the frmSetOptions form, holds the information for
displaying and altering the application's Jet engine state information.

The second file used in this project, the RegistryInformation module, is designed to be portable
and to be added to your own project. By calling the LoadJetRegistryInformation and passing
the application's name and section, the procedure loads all the state information stored for the Jet in the
specified section of the Windows Registry. It then uses the SetOption method to temporarily change
the parameter values of Jet engine access for the life of your application.

Comments

It is important not to change the values of the actual settings for the Jet in the key Jet\3.5\Engines\Jet 3.5\
because it is very likely this is where the rest of your applications are finding the parameter values for Jet

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (14 of 24) [9/22/1999 2:10:06 AM]

DAO access. If by some chance you decide to change these values and need to set them back to their
original values, you can find the default settings from the Microsoft Visual Basic Books Online, in the
"Initializing the Microsoft Jet 3.5 Database Engine" section.

For more information on the meaning of the parameters used in this section, see How-To 11.4, "Tune the
Jet Database Engine Through Windows Registry Entries."

11.3 How do I...

Determine which database and report-related files need to be
distributed with my applications?

PROBLEM

I am creating an application that uses the Jet database engine and Crystal Reports. How do I determine the
files I need to distribute with my application?

Technique

Before Visual Basic 5.0, life was rough. Actually, life is still rough, but we are getting there. Creating
distribution disks for your application was a headache up until Microsoft began delivering its Application
Setup Wizard with Visual Basic 5.0. With the introduction of Visual Basic 6.0, Microsoft offers us the
Package and Deployment Wizard. The Package and Deployment Wizard does everything that the
Application Wizard in Visual Basic 5.0 did, but it also adds the ability to create packages for network or
Internet distribution. In this How-To, we will concentrate on how the Package and Deployment Wizard
can be used to create conventional disk-based packages for our applications.

Steps

Run the Package and Deployment Wizard that comes with Visual Basic 6.0. You will see the wizard as
shown in Figure 11.3.

Figure 11.3. The Package and Deployment Wizard.

1. After choosing to create a package, choose a packaging script as shown in Figure 11.4.

Figure 11.4. Choosing a packaging script.

2. Click the Next button and you will see the panel shown in Figure 11.5. In this panel, you select
the type of setup you wish to create.

Figure 11.5. Choosing a setup type.

3. After choosing the type of setup, choose the location to build the setup as shown in Figure 11.6.

Figure 11.6. Choosing a location to build the setup.

4. If your application uses DAO, you will choose drivers from the list shown in Figure 11.7.

5. Figure 11.8 shows a list of files that have been chosen to be included in your package. In this
step, you can deselect or add files for your package.

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (15 of 24) [9/22/1999 2:10:06 AM]

javascript:popUp('11fig03.gif')
javascript:popUp('11fig04.gif')
javascript:popUp('11fig05.gif')
javascript:popUp('11fig06.gif')

Figure 11.7. Choosing a DAO driver.

Figure 11.8. Choosing files for the setup.

6. Next, choose whether you would like a single cab or multiple cab files for your installation as
shown in Figure 11.9.

Figure 11.9. Choosing a distribution size.

7. Next, enter the name that should be shown when the setup program for your application is run.
This is shown in Figure 11.10.

Figure 11.10. Choosing a name for the setup.

8. After entering a setup name for your application, click the Next button to get to the screen shown
in Figure 11.11. This screen allows you to select the menu groups and items that should be created
once your application is created.

Figure 11.11. Choosing menu groups and Items.

9. The next step, as shown in Figure 11.12, allows you to change the locations in which particular
items in your package can be located.

Figure 11.12. Changing the location of setup components.

10. After you have set the correct location for the files in Figure 11.12, click the Next button to see
Figure 11.13. This screen allows you to indicate which files in your package are considered shared
files.

Figure 11.13. Choosing shared files.

11. After completing this, you will see the Finished panel as shown in Figure 11.14. Click Finish to
complete the installation setup process.

12. Type a name for the installation script and click Save Script.

13. Click Finish to create your application package.

Figure 11.14. Completing the setup.

How It Works

Problems arise sometimes when files become lost or when the Package and Deployment Wizard does not
find all the files necessary to be included in our distribution disks. All the files that actually have meaning
to us to run our application are considered runtime files.

Runtime Files

There is a check list of standard runtime files that you should work through when creating a set of
distribution disks. This checklist is as follows:

The program's main executable.●

Any database (MDB files for Access) or report files (RPT files for Crystal Reports).●

Any other data files (DAT), text files (TXT), or Registry files (REG). These files are those that will
not be found by a wizard, but accessed from within your application.

●

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (16 of 24) [9/22/1999 2:10:06 AM]

javascript:popUp('11fig07.gif')
javascript:popUp('11fig08.gif')
javascript:popUp('11fig09.gif')
javascript:popUp('11fig10.gif')
javascript:popUp('11fig11.gif')
javascript:popUp('11fig12.gif')
javascript:popUp('11fig13.gif')
javascript:popUp('11fig14.gif')

Any ActiveX components (OCX files).●

The Visual Basic runtime DLL (MSVBVM60.DLL).●

Any other dependency files (DLL or EXE).●

You should be able to know immediately what database, report, data, and ActiveX files you are to add to
your setup disks because these are files that you explicitly added to your project. The Visual Basic runtime
DLL (MSVBVM60.DLL) is necessary for every Visual Basic application. The trickiest files to find are
component dependency files.

Component Dependencies

Component dependencies are files that are necessary in order to use specific ActiveX controls and
particular components that are added as references from your application. There are a number of
resources, however, to locate the proper dependency files that are important to you.

First, it is important to always consult the documentation on all third-party components, as well as
Microsoft components, to see which DLLs are necessary in order to use its product. For instance, the
Microsoft Data Reporter requires the MSDBRPT.DLL file. In most cases, REG files are also necessary.
These files have registration information, entered into the Windows Registry, that is used to determine the
licensing usage available to the user for the particular component.

The second source for finding the appropriate dependency files for your distribution disks is the Visual
Basic documentation. All the included components are documented and explain which files are necessary
in order for them to work properly. All ActiveX controls will come with DEP files, if they don't already.
For example, the Microsoft Data Repeater ActiveX control comes with a file named MSDATREP.DEP,
and Crystal Reports comes with CRYSTL32.DEP. These files are used by the Package and Deployment
Wizard to determine which files are necessary for installation.

The third and most important source of information is the VB6DEP.INI file. This file replaces the
original SWDEPEND.INI file of earlier times and describes the dependencies used by Visual Basic.

The VB6DEP.INI file can be found in the Visual Basic \Wizards\PDWizard directory. This file lists
necessary dependencies for all available Visual Basic components. This file is used by the Package and
Deployment Wizard to determine the appropriate files necessary to successfully run your application.

Comments

The following is a portion of the MSDATREP.DEP file. It lists the information necessary to successfully
incorporate the MSDATREP.OCX ActiveX control that is for the Microsoft Data Repeater.

[MSDatRep.ocx]
Dest=$(WinSysPath)
Register=$(DLLSelfRegister)
Version=6.0.80.52
Uses1=ComCat.dll
Uses2=MSStdFmt.dll
Uses3=MSBind.dll
CABFileName=MSDatRep.cab
CABDefaultURL=http://activex.microsoft.com/controls/vb6
CABINFFile=MSDatRep.inf

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (17 of 24) [9/22/1999 2:10:06 AM]

The header of this portion of code, [MSDatRep.ocx], indicates the file in question. The first key,
Dest, indicates where the file should be stored on the installation machine (in this case, the Windows
System path).

The second parameter, Register, indicates that the file will self-register in the Windows Registry. The
Version parameter clearly holds the file's version number to compare with older files during the
installation process.

After this, a list of additional dependencies is listed with the parameter form of UsesX, where X is the
number of the dependency. These are files that the actual file being installed (MSDATREP.OCX) uses to
reference; therefore, they in turn must also be installed. The CABFileName parameter is the name of the
installation file for the particular installed file, and CABINFFile is the file that contains the installation
information for the installed file.

I skipped the CABDefaultURL parameter, which indicates the default Web site that is used in reference
to the installed file for upgrades or more information.

11.4 How do I...

Tune the Jet database engine through Windows Registry entries?

Problem

My application needs to alter the way the Jet engine is initiated in the Windows Registry in order to obtain
better performance. I know I can edit the Windows Registry using RegEdit, but I do not know what to
actually do. How do I tune the Jet engine through the Windows Registry?

Technique

When you install the Microsoft Jet engine for the first time, two DLL files are registered in the Windows
Registry. These files are MSJET35.DLL and MSRD2X35.DLL. When these files are registered, two
entries are created in the HKEY_LOCAL_MACHINES\Software\Microsoft\Jet\3.5\Engines folder. This is
done automatically when you install Access 97.

The first of these keys represents the path to the system database file. The typical path for this key would
be the system directory of Windows; therefore, no path is necessary because the system directory is
usually part of the default path. The following is an example of this SystemDB key:

SystemDB = "C:\WINDOWS\SYSTEM\SYSTEM.MDB"

The second key that is created is called CompactBYPkey. When this key is set to anything but zero,
databases will be compacted in the order of the primary key. If no primary key exists, the database is
compacted in base-table order. A value of zero for the CompactBYPkey key will instruct the Jet engine
to compact databases in base-table order. The default value for this key is nonzero, as in the following
example:

CompactBYPkey = 1

It should be noted that this setting is good only for databases created with the Microsoft Jet database

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (18 of 24) [9/22/1999 2:10:06 AM]

engine, version 3.0 or later. Any database created from an earlier version will compact by base-table order
automatically.

The Microsoft Jet is controlled by keys set in the \HKEY_LOCAL_MACHINES\
Software\Microsoft\Jet\3.5\Engines\Jet 3.5 folder of the Windows Registry. The default settings for these
keys are shown in Table 11.4.

Table 11.4. The Jet\3.5\Engines\Jet 3.5 keys and default values.

KEY Default

PageTimeout 5000

SharedAsyncDelay 0

ExclusiveAsyncDelay 2000

LockRetry 20

UserCommitSync Yes

ImplicitCommitSync No

MaxBufferSize 0

MaxLocksPerFile 9500

LockDelay 100

FlushTransactionTimeout 500

Threads 3

By adjusting these settings, you can manipulate how the Jet engine operates in every program that uses
these settings. The keys listed in Table 11.4 are briefly described in the text that follows.

Steps

Run the RegEdit application that is in the Windows directory on your machine. Locate the
\HKEY_LOCAL_MACHINES\Software\Microsoft\Jet\3.5\Engines\Jet 3.5 section of the Registry, and
you should see something similar to what's shown in Figure 11.15.

1. Choose a key in the section that you are now in. Choose Edit | Modify from the RegEdit menu.

2. Edit the value of the key that you selected. For a complete list of the available keys for this
section, see the "How It Works" section of this
How-To.

3. Click OK to save your changes or Cancel to abort.

Figure 11.15. The \HKEY_LOCAL_MACHINES\Software\
Microsoft\Jet\3.5\Engines\Jet 3.5 of the Windows Registry.

How It Works

The following is a list of the keys that make up the \HKEY_LOCAL_MACHINES\
Software\Microsoft\Jet\3.5\Engines\Jet 3.5 section of the Windows Registry and a description of each.

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (19 of 24) [9/22/1999 2:10:06 AM]

javascript:popUp('11fig15.gif')

PageTimeout

The PageTimeout key is used to indicate the time interval between when data that is not read-locked is
placed in an internal cache and when that data is invalidated. This key is measured in milliseconds, with a
default value of 5000 or 5 seconds.

FlushTransactionTimeout

The FlushTransactionTimeout key disables the ExclusiveAsyncDelay and
SharedAsyncDelay keys with a value of 1. A value of 0 enables these keys. The
FlushTransactionTimeout is the value that will start asynchronous writes only after the amount of
time specified has expired and no pages have been added to the cache. An exception to this statement is if
the cache exceeds the MaxBufferSize, the cache will start asynchronous writing even if the time has
expired. For instance, the Microsoft Jet 3.51 database engine will wait 500 milliseconds during
non-activity or until the cache size is exceeded before starting asynchronous writes.

LockDelay

The LockDelay key holds a value in milliseconds used to determine the time in between lock requests
indicated by the LockRetry key. This key was added to prevent "bursting" (overloading of the network)
that would occur with certain network operating systems.

MaxLocksPerFile

The MaxLocksPerFile key holds a value indicating the maximum number of Microsoft Jet
transactions. If the locks in a transaction attempt to exceed the MaxLocksPerFile key value, the
transaction is split into multiple parts and partially committed. This concept was conceived in order to
prevent NetWare 3.1 server crashes when the specified NetWare lock limit was exceeded as well as to
improve performance with both NetWare and NT.

LockRetry

The LockRetry key indicates the number of times to repeat attempts to access a locked page before
returning a lock conflict message. The default value for the LockRetry key is 20.

RecycleLVs

The RecycleLVs key is used to indicate whether Microsoft Jet is to recycle long value pages. These
include the Memo, Long Binary (OLE object), and Binary data types. With Microsoft Jet 3.0, if the
RecycleLVs key was not set, these long value pages would be recycled when the last user closed the
database. Microsoft Jet 3.51 will start to recycle most long value pages when the database is expanded--in
other words, when groups of pages are added. When this feature is enabled, you will notice a performance
drop when using long value data types. With Microsoft Access 97, this feature is automatically enabled
and disabled.

MaxBufferSize

The MaxBufferSize key represents the size of the database engine internal cache. This value is
represented in kilobytes. The MaxBufferSize key must be an integer greater than or equal to 512. The
default value for the MaxBufferSize varies depending on the amount of RAM installed on the user's
system. The formula for calculating the default is as follows:

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (20 of 24) [9/22/1999 2:10:06 AM]

((RAM - 12MB) / 4) + 512KB

Here, RAM is the amount of memory on the current system, measured in megabytes (MB). To set the value
of the MaxBufferSize to the default, simply set the key to zero.

THREADS

The Threads key represents the number of background threads available to the Microsoft Jet database
engine. The default value for the Threads key is 3.

UserCommitSync

The UserCommitSync key indicates whether the system should wait for a commit to finish. If the value
is Yes, which is the default, the system will wait for a commit to finish. If the value is No, the system will
perform the commit asynchronously.

ImplicitCommitSync

The ImplicitCommitSync key represents whether the system will wait for a commit to finish. A
default value of No will instruct the system to continue without waiting for the commit to finish, whereas
a value of Yes will cause the system to wait.

ExclusiveAsyncDelay

The ExclusiveAsyncDelay key specifies the amount of time (in milliseconds) an asynchronous flush
of an exclusive database is to be deferred. The default value for this key is 2000 milliseconds (2 seconds).

SharedAsyncDelay

The SharedAsyncDelay key represents the amount of time (in milliseconds) to defer an asynchronous
flush of a shared database. The default for the SharedAsyncDelay is 0.

11.5 How do I...

Tune the ODBC engine using Windows Registry entries?

Problem

My application needs to alter the way in which the ODBC engine is initiated in the Windows Registry in
order to obtain better performance. I know I can edit the Windows Registry using RegEdit, but I don't
know what to actually do. How do I tune the ODBC engine through the Windows Registry?

Technique

The ODBC engine keys are stored in the Windows Registry in the
\HKEY_LOCAL_MACHINE\Software\Microsoft\Jet\3.5\Engines\ODBC section. Table 11.5 lists the
available keys and their respective default values.

Table 11.5. The Jet\3.5\Engines\ODBC keys and default values.

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (21 of 24) [9/22/1999 2:10:06 AM]

KEY Default

LoginTimeout 20

QueryTimeout 60

ConnectionTimeout 600

AsyncRetryInterval 500

AttachCaseSensitive 0

AttachableObjects `TABLE', `VIEW', `SYSTEM TABLE', `ALIAS',
`SYNONYM'

SnapshotOnly 0

TraceSQLMode 0

TraceODBCAPI 0

DisableAsync 1

JetTryAuth 1

PreparedInsert 0

PreparedUpdate 0

FastRequery 0

By adjusting the values of any of these keys, you can affect the way any application that uses the ODBC
jet engine accesses data. The following is a brief description of each key represented in Table 11.5.

Steps

Run the RegEdit application that is in the Windows directory on your machine. Locate the
\HKEY_LOCAL_MACHINE\Software\Microsoft\Jet\3.5\Engines\ODBC section of the Registry, and you
should see something similar to Figure 11.13.

1. Choose a key in the section that you are now in. Choose Edit | Modify from the RegEdit menu.

2. Edit the value of the key that you have selected. For a complete list of the available keys for this
section, see the "How It Works" section of this How-To.

3. Click OK to save your changes or Cancel to abort.

How It Works

The following sections contain a list of the keys that make up the
\HKEY_LOCAL_MACHINE\Software\Microsoft\Jet\3.5\Engines\ODBC section of the Windows
Registry, and a description of each.

Figure 11.16. The \HKEY_LOCAL_MACHINE\Software\
Microsoft\Jet\3.5\Engines\ODBC of the Windows Registry.

LoginTimeout

The LoginTimout key is used to store the maximum number of seconds a login attempt can take. After
the specified time, timing out occurs with an error. The default for LoginTimout is 20 seconds.

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (22 of 24) [9/22/1999 2:10:06 AM]

javascript:popUp('11fig16.gif')

QueryTimeout

The QueryTimeout key is used to store the maximum number of seconds the entire processing time can
take to run a query before actually timing out. The default value for this key is 60 seconds. If the
DisableAsync key is set to its default of 0, the QueryTimeout key is used to indicate the time in
seconds waited for a response from the server between polls for the completion of a query.

ConnectionTimeout

The ConnectionTimeout key is used to store the maximum amount of seconds a cached connection
may remain idle before timing out. The default value for the ConnectionTimeout key is 600 seconds
(10 minutes).

AsyncRetryInterval

The AsyncRetryInverval is used to measure the time allotted between polls to determine whether
the server has completed processing a query. The AsyncRetryInterval key is measured in
milliseconds with a default of 500. This key is available only for asynchronous processing.

AttachCaseSensitive

The AttachCaseSensitive key is used to determine what type of matching is enabled for linking
tables. A default value of 0 indicates that the linking process is not case sensitive whereas a value of 1
indicates that the tables must match according to case.

AttachableObjects

The AttachableObjects key holds a list of server object types that are allowed to be linked. The
default value for this key is `TABLE', `VIEW', `SYSTEM TABLE', `ALIAS', `SYNONYM'.

SnapshotOnly

The SnapshotOnly key indicates whether Recordsets objects must be snapshots (default value of
0); they may also be dynasets (value of 1).

TraceSQLMode

The TraceSQLMode key is equivalent to the SQLTraceMode key. It indicates whether a trace of SQL
statements will be recorded in SQLOUT.TXT that is sent to an ODBC data source. The default value for
the TraceSQLMode key is 0, or no. A value of 1 indicates yes.

TraceODBCAPI

The TraceODBCAPI key indicates whether ODBC API calls are traced in the ODBCAPI.TXT file. A
value of 0 indicates no, and 1 indicates yes. The default for this key is no.

DisableAsync

The DisableAsync key is an indicator of whether to force synchronous query execution. This key can
either be set to its default of 1 for a force of synchronous query execution, or 0 for using asynchronous
query execution if possible.

JetTryAuth

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (23 of 24) [9/22/1999 2:10:06 AM]

The JetTryAuth key indicates whether the Microsoft Access user name and password are to be used to
log in to the server before prompting. The default value is yes (1). A value of 0 indicates no.

PreparedInsert

The PreparedInsert key is used to determine whether to use a prepared INSERT statement that
inserts data in all columns. The default value for this key is 1, which indicates using a prepared INSERT
statement. A value of 0 would indicate using a custom INSERT statement that inserts only non-null
values. By using prepared INSERT statements, nulls can overwrite server defaults. In addition, triggers
can execute on columns that were not inserted explicitly.

PreparedUpdate

The PreparedUpdate key is used to determine whether to use a prepared UPDATE statement that
updates data in all the available columns. A value of 0 is the default and this indicates that a custom
UPDATE statement is to be used and sets only columns that have changed. A value of 1 is used to use a
prepared UPDATE statement.

FastRequery

The FastRequery key is used to indicate whether to use a prepared SELECT statement for
parameterized queries. The default value is no, or 0. A value of 1 indicates yes.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Ch 11 -- The Windows Registry and State Information

http://www.pbs.mcp.com/ebooks/1571691529/ch11/ch11.htm (24 of 24) [9/22/1999 2:10:06 AM]

Visual Basic 6 Database How-To

- 12 -
ActiveX and Automation

How do I...

12.1 Use ActiveX Automation to edit pictures, documents, and spreadsheets embedded in an
application's database?

❍

12.2 Provide access to database files through a private class module?❍

12.3 Publish my ActiveX private class so that others can use it?❍

12.Provide controlled access to an encrypted, password-protected database using an ActiveX
EXE server?

❍

12.5 Use Microsoft Access as an ActiveX server to print reports from Visual Basic?❍

12.6 Use Microsoft Access queries containing user-defined functions from Visual Basic?❍

12.7 Convert database data to a spreadsheet form that can be used to edit and analyze data?❍

12.8 Include an editable report writer in a Visual Basic application?❍

12.9 Work with the Windows Registry for my ActiveX classes?❍

12.10 Create my own custom data control?❍

12.11 Create my own data bound control?❍

12.12 Use the DataRepeater control with custom Data Bound controls?❍

●

ActiveX Overview

COM Has Its Roots in OOP❍

ActiveX and Visual Basic 6❍

Building and Using Code Components❍

●

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (1 of 89) [9/22/1999 2:17:12 AM]

ActiveX Overview
ActiveX is the umbrella name Microsoft applies to developer technology that implements the component
object model (COM). At its heart, COM allows applications to communicate with each other and use each
other's features without regard to the original development language, date of development, or version
compatibility. The component object model started from the concepts of object-oriented programming (OOP)
and extended that model into the operating system to allow any COM program object to communicate
successfully with any other COM object supporting the desired interfaces.

OBJECT-ORIENTED PROGRAMMING

Object-oriented programming provides disciplines and methods for source code re-use and
recycling. OOP engineering concepts define an environment in which program objects model
"real-world" objects. Each object is responsible for its own data, program logic, lifetime, and
interfaces to the outside world. Formally, the academic experts tell us that "true" objects must
support encapsulation, inheritance, and polymorphism.

Encapsulation means that each object provides a safe container (or capsule) for its properties
(data) and methods (code). The object defines which properties and methods it will allow other
objects to see (public) and which ones remain only inside the object (private).

Inheritance means that a new object can be defined as a "kind of" another object and gain all the
"parent" object's properties and methods without doing any work.
Polymorphism is the capability of a derived object to change or override the inherited methods
of its parents. You can have a dog object with a method to bark, and you can then have a big dog
and a little dog inherited from the parent dog, each with a bark--but those two barks can be
different (woof, and WOOF WOOF, for example) if that method is overridden in the new object.

COM Has Its Roots in OOP

The component object model (COM) and the distributed component object model (DCOM) extend the
object-oriented programming (see sidebar) paradigm to allow preexisting software applications and objects to
interact through a published, stable specification. Microsoft's first widely published implementation of the
component object model was Object Linking and Embedding (OLE). This technology allowed previously
compiled programs to embed or link their objects (Word documents or Excel spreadsheets) into new
documents or forms.

Unfortunately, VB6 does not fully implement object-oriented programming. In particular, polymorphism is
given short shrift. In traditional OOP, an object can inherit methods from a parent and then change or
override only selected methods without having to re-implement all the parent's methods. With VB6, the
programmer must implement all inherited methods of a parent object even if only one method is to be
changed. By using the Implements keyword, a programmer tells the VB6 compiler that the class is
implementing an interface derived from another class. The "bird" object "flies on" feathered wings. The
"airliner" object "flies on" metal wings. In VB6, both the bird and the airliner classes would be declared to
implement the FlyingThing class in order to encapsulate the FlyingThing's properties and methods.
Both birds and airliners are flying objects, and both implement a "flies on" property, but they appear to share
similar properties and behaviors even though they are different objects.

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (2 of 89) [9/22/1999 2:17:12 AM]

ActiveX and Visual Basic 6

Visual Basic 6 provides several ways to incorporate ActiveX technologies in applications, determined
primarily by how the calling application fits into the ActiveX component's environment:

Code components serve as a library of objects available to calling applications. Built as Visual Basic
class modules, the services can be built as dynamic link libraries (DLLs), can be separate EXE files, or
can be statically bound into the calling application. The remainder of this chapter focuses on ActiveX
code components.

●

ActiveX controls are functionally equivalent to the visual controls you put on your forms. They differ
from other ActiveX components in that they talk back to the calling application by raising events
whose responses can modify the behavior of the control. ActiveX controls run in the caller's process
space and communicate directly through memory.

●

ActiveX documents are forms designed to appear within Internet browser windows. They are very
similar to ActiveX controls because they must be used within a browser container. They are similar to
code components in that they can be implemented as DLL or EXE files and run either within the
calling process environment (DLL) or as a separate process (EXE).

●

The three ActiveX methods share the use of the component object model as the operating-environment glue
that allows successful communication between components.

Building and Using Code Components

As developers, we build all our ActiveX code components as class modules. At the simple, practical level,
Visual Basic 6 treats class modules as objects implement-ing properties and methods in just the same manner
in which we can use the Visual Basic label control from our code. We can set the Caption property and
then invoke the Refresh method to ensure that the caption is displayed immediately. Visual Basic will help
us write the code with its code completion features and will show us as we type the defined properties and
methods for each object in the application. As a result, programmers will reuse existing code more often,
develop systems faster, and produce more reliable systems. The use of classes to develop our features and
functions helps keep other programmers from using our code in ways we did not intend.

ActiveX code components publish properties and methods that are available for use in your application. An
ActiveX code component can be included in an application by referencing a component from the Project
menu in the development environment. When included, component properties and methods can be invoked
from the calling application as though the calling application had all the component application's
functionality. For example, an application referencing a Microsoft Office EXE component can use the Visual
Basic for Applications (VBA) methods to manipulate the Office component's properties to create powerful
business solutions.

Visual Basic 4 called code components object linking and embedding, which is used to embed or link another
application's object within the calling application. The calling application is called the container. A Visual
Basic application acting as the container can use the OLE Container control to display linked or
embedded objects belonging to server applications. The type of object depends on the server. A spreadsheet
program typically provides worksheet objects and graph objects. A word processing program provides
document objects. A graphics program provides picture objects.

As mentioned previously, the balance of this chapter pertains to ActiveX code components. The specific

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (3 of 89) [9/22/1999 2:17:12 AM]

How-To's consist of the following tasks.

12.1 Use ActiveX Automation to Edit Pictures, Documents, and Spreadsheets Embedded in
an Application's Database

You can use the OLE Object field type in a Microsoft Access database file to store linked or embedded
objects, and then display those objects on a Visual Basic form. Users can view or edit the object from within
the Visual Basic application. This How-To shows you how to use an OLE Container control linked to a
data control to accomplish this task.

12.2 Provide Access to Database Files Through a Private Class Module

The first step to creating an ActiveX code component is to create and debug a private class module that
implements all the desired properties and methods. This How-To shows you a simple class-based
replacement for the data control that implements core functions.

12.3 Publish My ActiveX Private Class so That Others Can Use It

After you build a useful class module for simple data access, other members of your workgroup or
corporation might find it useful. Company policy, however, requires that your class module's functions only
be distributed as object code--you can't share your source. This How-To shows how to convert your class
module into an ActiveX DLL that can be used by other applications.

12.Provide Controlled Access to an Encrypted, Password-Protected Database Using an
ActiveX EXE Server

Visual Basic 6.0 has given the language a much stronger and more useful set of object-oriented features with
ActiveX. This How-To demonstrates a method of creating an ActiveX EXE component in Visual Basic that
can be used from other applications or even from other machines while hiding the details of its operation and
encapsulating its data.

12.5 Use Microsoft Access as an ActiveX Server to Print Reports from Visual Basic

The application design requires that all reports be centrally administered, and the Access database has been
selected as the report repository. This How-To demonstrates using Microsoft Access from Visual Basic to
print reports defined within the database.

12.6 Use Microsoft Access Queries Containing User-Defined Functions from Visual Basic

Sometimes, an application needs to take advantage of Access database functions that are not available
directly to Visual Basic 6.0. This How-To demonstrates using Microsoft Access as a component to use a
query containing a user-defined function.

12.7 Convert Database Data to a Spreadsheet Form That Can Be Used to Edit and Analyze
Data

Although Visual Basic is an extremely powerful and flexible tool and environment, it lacks many specialized
functions for financial, statistical, and scientific analyses of data in a database. This How-To shows how you
can use the specialized statistical functions from Microsoft Excel to make statistical calculations on any

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (4 of 89) [9/22/1999 2:17:12 AM]

database accessible to Visual Basic.

12.8 Include an Editable Report Writer in a Visual Basic Application

One of the biggest advantages of using ActiveX code components with Visual Basic applications is that you
can use the functionality of other applications in Visual Basic. In this How-To, you will see how you can use
all the power of Microsoft Word in Visual Basic, eliminating the need to duplicate the program-ming in your
own code.

12.9 Work with the Windows Registry for My ActiveX Classes

ActiveX code components bring lots of power and flexibility to your applica-tions, but they rely on correct
registration in order for other programs to find them. This How-To shows the use of the registration server to
register and "unregister" your controls.

12.10 Create My Own Custom Data Control

The data control provided with Visual Basic 6 is a powerful tool for building many applications, but it can
add tremendous amounts of processing overhead because it is a general-purpose tool with methods and events
that no one needs for most projects. This How-To shows you how to build a custom data control
purpose-built for a single table using data access objects.

12.11 Create My Own Data Bound Control

The data bound list box provided with Visual Basic is quite powerful, but using a data control to populate can
add a lot of unnecessary overhead to an applica-tion. This How-To shows you a data bound combo box
control that loads a specific code value type such as HAIRCOLOR from a specified database.

12.12 Use the DataRepeater Control with Custom Data Bound Controls

The DataRepeater control, new in Visual Basic 6, takes your custom data bound control and duplicates it so
that your custom control acts like a line in a list box. This How-To shows you how to use the DataRepeater
control with your custom bound control to build a database application that can browse and edit many records
at the same time.

12.1 How do I...

Use ActiveX Automation to edit pictures, documents, and spreadsheets
embedded in an application's database?

Problem

I'm creating a customer service database with a table that documents contacts with customers. When the
customer is sent a letter, I'd like to put a copy of the actual word processing document into the table. How can
I do this with Visual Basic?

Technique

Microsoft Access provides the OLE Object field type into which you can place either a linked or an

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (5 of 89) [9/22/1999 2:17:12 AM]

embedded OLE object. An embedded object is actually stored in the database. Linked objects are not stored
in the database; rather, the database stores a reference to the file containing the object.

The Visual Basic OLE Container control is a control used to place an OLE object onto a form. The OLE
Container control is then bound to an OLE Object field in a Microsoft Access database through a data
control. The data control and OLE Container control together manage the retrieval and updating of the
OLE Object field and the display of the field's contents on the form.

Visual Basic can insert a new object into a Microsoft Access database OLE Object field in two ways. The
OLE Container control's InsertObjectDlg box displays the Insert Object dialog box. The dialog box
enables the user to choose to create a new object from any application on the system that can act as an OLE
Server. This creates an embedded object. The dialog box also gives the user the means to select a file
containing an OLE object and to designate that the object be stored as an embedded or linked object.

If the Clipboard contains an object created by an OLE Server application, and if the current control is an OLE
Container, Visual Basic can paste the contents of the Clipboard into the control. The OLE
Container's Paste method pastes the object into the control in the default format (which depends on
the type of object). The PasteSpecial method displays a dialog box that lets the user select the format for
those object types that support more than one format.

Steps

Open the project Embedded.VBP. If necessary, edit the DatabaseName property of the datObjects
control to point to a copy of Chapter12.MDB. Then run the project. The form shown in Figure 12.1 appears.
Use the record navigation buttons of the data control to page through the records. As you display a record, the
application shows you the contents of the OLE Object field, the type of object, and the name of the object.
Double-click the object, and Paintbrush opens with the object displayed. Edit the object in Paintbrush, and
then choose File | Exit from the Paintbrush menu. When the dialog box appears asking whether you want to
update the link to the Visual Basic application, click Yes.

Figure 12.1. The Object Library form.

On the form, click the Add button. Click the OLE Container control, and then choose Edit | Insert Object.
The Insert Object dialog box appears, as shown in Figure 12.2. To create a new embedded object from one of
the listed applications, choose the object from the list and click OK. To create an object from a file, choose
the Create from File option. When the Insert Object dialog box changes in appearance (see Figure 12.3),
either enter a filename or click Browse and select a file from the File Open dialog box that appears. If you
want to select a linked object, click the Link check box. To create an embedded object, leave the Link check
box blank.

1. Create a new project called Embedded.VBP. Use Form1 to create the objects and properties listed
in Table 12.1, and save the form as OBJLIB.FRM. If you have moved the files installed by the
distribution disk, edit the DatabaseName property of the data control on Form1 to point to the
current location of Chapter12.MDB.

Figure 12.2. The Insert Object dialog box.

Figure 12.3. The Insert Object dialog box with the Create from File option selected.

Table 12.1. Objects and properties for the Object Library form.

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (6 of 89) [9/22/1999 2:17:12 AM]

javascript:popUp('12fig01.gif')
javascript:popUp('12fig02.gif')
javascript:popUp('12fig03.gif')

OBJECT PROPERTY Setting

Form Name Form1

Caption "Object Library"

Name CommandButton cmdClick

Caption "&Close Object"

Name CommandButton cmdDelete

Caption "&Delete"

Name CommandButton cmdAdd

Caption "&Add"

Name TextBox txtTitle

DataField "Title"

DataSource "datObjects"

Name Data datObjects

Connect "Access"

DatabaseName "C:\Code\Chapter12\Chapter12.mdb"

RecordsetType 1 `Dynaset

RecordSource "ObjectLibrary"

Name Label lblClass

DataField "Object Type"

DataSource "datObjects"

Name OLE oleObject

DataField "Object"

DataSource "datObjects"

SizeMode 3 `Zoom

Name Label Label1

AutoSize -1 `True

Name Label Label2

AutoSize -1 `True

2. Use the Visual Basic menu editor to create the menu shown in Table 12.2.

Table 12.2. Menu specifications for the Object Library form.

CAPTION Name Shortcut Key

&File mnuFile

----E&xit mnuFileExit

&Edit mnuEdit

----&Paste mnuEditPaste Ctrl+V

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (7 of 89) [9/22/1999 2:17:12 AM]

----Past&e Special mnuEditPasteSpecial

---- ---- mnuEditSep

----&Insert Object mnuEditInsertObject

3. Add the following code to the declarations section of Form1. This variable tracks deletions in
progress when, during cmdDelete_Click processing, the data control fires a reposition event in
response to the issued MoveNext.

Private mblnDeleting As Boolean

4. Enter the following code as the Click event for cmdAdd:

Private Sub cmdAdd_Click()
 Data1.Recordset.AddNew
End Sub

5. Enter the following code as the Click event for cmdDelete:

Private Sub cmdDelete_Click()
 On Error GoTo DeleteError
 mblnDeleting = True
 datObjects.Recordset.Delete
 `oleObject.Class = ""
 datObjects.Recordset.MoveNext
 ` Handle the "no current record" case.
 If datObjects.Recordset.EOF Then
 ` Handle the special case of deleting the
 ` last record
 datObjects.Recordset.MoveLast
 End If
 mblnDeleting = False
 ` Reset the error handler
 On Error GoTo 0
 Exit Sub
DeleteError:
 If Err.Number = 3021 Then ` No current record
 Resume Next
 End If
End Sub

6. Enter the following code as the Click event for mnuEdit. If the Edit menu is opened when the
OLE Container control is the active control, the Edit menu's Insert Object item is enabled. The
procedure looks at the PasteOK property of the OLE Container control. If PasteOK is True, the
object currently on the Windows Clipboard supports OLE, so the Paste and PasteSpecial items are
enabled. If PasteOK is False, the item on the Clipboard cannot be an OLE object, so Paste and
PasteOK are disabled. If the active control is anything other than the OLE Container control, all
the Edit menu choices are disabled.

Private Sub mnuEdit_Click()
 If Me.ActiveControl.Name = "oleObject" Then
 mnuEditPaste.Enabled = oleObject.PasteOK
 mnuEditPasteSpecial.Enabled = oleObject.PasteOK

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (8 of 89) [9/22/1999 2:17:13 AM]

 mnuEditInsertObject.Enabled = True
 Else
 mnuEditPaste.Enabled = False
 mnuEditPasteSpecial.Enabled = False
 mnuEditInsertObject.Enabled = False
 End If
End Sub

7. Enter the following code as the Click event of the Edit menu's Insert Object item. This code calls
the InsertObjDlg method of the OLE object. That method displays the Insert Object dialog box
and manages the actual insertion of the object designated by the user. If the user inserts a new object,
the procedure then gets the Class property of the OLE Container control and displays it in the
Class label on the form.

Private Sub mnuEditInsertObject_Click()
 OLE1.InsertObjDlg
 If OLE1.DataChanged Then
 lblClass.Caption = OLE1.Class
 End If
End Sub

8. Enter the following code as the Click event for mnuPaste. When the user chooses this menu
item, the code pastes the object currently on the Clipboard into the OLE Container control and
updates the Class label on the form.

Private Sub mnuEditInsertObject_Click()
 oleObject.InsertObjDlg
 If oleObject.DataChanged Then
 lblClass.Caption = oleObject.Class
 End If
End Sub

9. Enter the following code as the Click event for mnuPasteSpecial. When the user chooses this
menu item, the code invokes the PasteSpecialDlg method of the OLE Container control. This
method displays the Paste Special dialog box, which allows the user to choose the format and linkage
type to be used for the object.

Private Sub mnuEditPasteSpecial_Click()
 oleObject.PasteSpecialDlg
 lblClass.Caption = oleObject.Class
End Sub

10. Enter the following code as the Click event for cmdCloseObject to update the Access
database OLE Object database field:

Private Sub cmdCloseObject_Click()
 ` Save the updated object
 If oleObject.DataChanged Or txtTitle.DataChanged Then
 datObjects.UpdateRecord
 End If
End Sub

11. Enter the following code as the Click event for mnuFileExit:

Private Sub mnuFileExit_Click()

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (9 of 89) [9/22/1999 2:17:13 AM]

 If oleObject.DataChanged Or txtTitle.DataChanged Then
 datObjects.UpdateRecord
 End If
 Unload Me
End Sub

12. Enter the following code as the Reposition event for datObject. This procedure checks to
see whether we are in the middle of a delete operation before referencing a potentially non-existent
data-bound oleObject. The mblnDeleting variable controls accidentally re-entering the
validation event when the data control is positioned at "No current record" after deletion of the last
record.

Private Sub datObjects_Reposition()
 If Not mblnDeleting Then
 ` Update the label for the oleObject class if the
 ` reposition is not a MoveNext after deletion of
 ` the last record. The change to the lblClass value
 ` forces another validation and record update
 ` attempt. The update attempt after the deletion of
 ` the last record causes a "no current record" error
 If lblClass.Caption = "" Then
 lblClass.Caption = oleObject.Class
 End If
 End If
End Sub

13. Enter the following code for the Form_Load event. This procedure sets the database name for the
data control to be the database in the application directory.

Dim strDbName As String
 Dim strResponse As String
 On Error GoTo LoadError
 ` Set the database of the data control
 strDbName = App.Path
 strDbName = strDbName & "\Chapter14.mdb"
 datObjects.DatabaseName = strDbName
 ` Indicate that we are not currently deleting a
 ` record
 mblnDeleting = False
 Exit Sub
LoadError:
 MsgBox Err.Description & Chr(13) & "from " & Err.Source _
 & " -- Number: " & CStr(Err.Number)
 Unload Me
End Sub

How It Works

The OLE Container control contains the image of the data you are storing, the name of the application
used to manipulate the data, and the actual object data (embedded) or a reference to the actual object data
(linked). For example, when you embed a spreadsheet in the OLE Container control, the display image of

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (10 of 89) [9/22/1999 2:17:13 AM]

the spreadsheet, the application name (usually Excel), and the spreadsheet data itself are stored in the OLE
Container control.

The data control is responsible for storing the embedded object in the Access OLE object database field. You
might notice the "extra" work required to deal with the case of record movement after deleting the last record.
The form uses a control variable (mblnDeleting) to determine whether a delete operation is in progress.
The variable is checked in the Reposition event to prevent use of the oleObject.Class field when
the last record has been deleted from the recordset and the unfortunate No current record error. There
are 12 data validation constants for the data control to meet every programmer's potential needs, but they can
cause unfortunate extra work if a reference to control data is required during a different event's firing. In this
case, the Reposition event needs to check a field value, forcing a validation event before the
Reposition event is complete.

The OLE Container control does almost all the work for this application for us by managing the
properties and methods exposed by the ActiveX Automation components registered on the application's
computer. Simply double-click the OLE Container control, and people using the application have almost
all the capabilities of the embedded or linked component. The only limitation is that embedded or linked
document saving occurs through the OLE container rather than through the application.

Comments

The properties of the OLE Container control give you a great deal of control over how the control works
in your application. Two of the most useful properties are the edit-in-place property--actually a setting of the
MiscFlags property--and the SizeMode property. More details on other OLE Container control
properties can be found in the Visual Basic 6 documentation.

Editing in Place

If an ActiveX Automation application implements in-place editing, the user can edit an object right from your
Visual Basic form. When the user double-clicks the OLE Container control, the menu bar changes to the
one used by the server application that created the object, and any toolbars associated with the server
application appear. The full facilities of the server application are available to the containing application.
When the user moves the focus off the OLE Container control, the menus are restored to those of the
client (Visual Basic) application.

Unless you specify otherwise, editing in-place is active for those server applica-tions that support it. To
disable editing in-place, set the MiscFlags property to the built-in constant value of 2 (or use the constant
vbOLEMiscFlagDisableInPlace).

Controlling the Size

Windows gives the user the ability to resize forms. You might not always know in advance the size of the
object that will be stored in a database; therefore, Visual Basic enables you to control how the OLE
Container or the object it contains is sized. This is implemented through the settings of the SizeMode
property, which are shown in Table 12.3. The default for the SizeMode property is 2 (Autosize).

Table 12.3. Settings for the SizeMode property of the OLE Container control.

SETTING Meaning

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (11 of 89) [9/22/1999 2:17:13 AM]

0 - vbOLESizeClip The object is displayed actual size. If the object is larger than the control,
the image is clipped by the control.

1 - vbOLESizeStretch The object's image is sized to fill the control. May not maintain the original
proportions.

2 - vbOLESizeAutoSize The control is resized to display the entire object. Maintains proportions,
but requires that the OLE Container control resize event be handled to
change the size of the form or the container.

3 - vbOLESizeZoom The object is resized to fill as much as possible of the control while
maintaining the original proportions.

12.2 How do I...

Provide access to database files through a private class module?

Problem

I'm writing a companywide expense reporting system and need to control the data access to the expense detail
table to ensure that all data is correctly edited before insertion. How do I create a private class module with
properties and methods to manage and protect the contents of the expense detail table?

Technique

For this How-To, consider an expense detail table (contained in Expense.MDB). The fields of this table are
listed in Table 12.4.

Table 12.4. Expense detail table definition.

FIELD Type

ExpenseID Long--Auto increment

EmployeeId Text

ExpenseType Text

AmountSpent Currency

Description Text

DatePurchased Date/Time

DateSubmitted Date/Time

The people in the accounting department are very concerned that any entries made to this table always pass
certain edit checks. They are most concerned that the submission date always be set to the current date. They
want no back-dated submissions to make it look as though they're working slowly. We have decided to
manage the expense detail table with a Visual Basic class module to encapsulate the table properties and
enforce the critical submission-date requirement.

Class Modules Form the Object Core

Visual Basic class modules implement program objects and are the core building block of all ActiveX code

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (12 of 89) [9/22/1999 2:17:13 AM]

components. Each class implements public or private properties and methods. Properties are data items such
as an expense amount. Methods are code procedures that act on the properties. Public items are exposed
outside the class to the calling application. Private items are restricted to access by members of the class
unless you choose to expose selected methods as friends to be invoked directly by code contained within the
same project.

The expense detail class will be constructed to have properties (data items) corresponding to each table field
plus an additional property to contain the Access database filename. The class assumes that the table is named
Expenses. All properties are implemented with the Private keyword to ensure that callers cannot access
the data directly. A private declaration limits access to a variable or function to code contained within the
same module. Access to properties is through the Property Let and Property Get methods. These
special-purpose, public method procedures assign values to and retrieve values from their properties. As
values are set and retrieved, the Let and Get procedures can perform simple edits or complex calculations.

Linking Forms and Classes

The easiest way to link a simple form and its maintenance class is through two subroutines, one for setting the
object's values and the other for getting changed object values. These subroutines transfer values between the
form's controls and the object's properties by means of the Property Let and Property Set methods.
The subroutines are called before any of the object's data movement methods are called.

Building Class Modules

In Visual Basic 6, you can build class modules by typing the entire program module or by using the Class
Builder utility. This add-in speeds initial class module construction by automating property variable naming
and construction of all required skeleton methods. Unfortunately, the Class Builder cannot delete classes after
they are created. The most efficient way to use the Class Builder is to use it for initial definition of most of
the class and then use manual editing for the remainder of the code maintenance.

The principal benefit of using the Class Builder utility is that it automatically makes all properties private and
creates public Property Let and Property Get methods to allow calling applications to manipulate
the object's properties. Although this approach incurs some additional processing overhead, especially in a
private class module used only in your application, it automatically provides placeholders where you can later
add code to manipulate properties as they are set.

Steps

Open the project ActiveXExpense.VBP and run the project. The form shown in Figure 12.4 appears.
Experiment with the form to understand its simple behavior. The class module implements the most common
data control methods.

Figure 12.4. The Expense Client form.

1. Create a new project in your work area named ActiveXExpense.VBP, and use frmExpClient to
create the objects and properties listed in Table 12.5.

Table 12.5. Objects and properties for the Expense client form.

OBJECT Property Setting

Form Name frmExpClient

Caption "Expense Client"

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (13 of 89) [9/22/1999 2:17:13 AM]

javascript:popUp('12fig04.gif')

CommandButton Name cmdLast

Caption "&Last"

CommandButton Name cmdNext

Caption "&Next"

CommandButton Name cmdPrev

Caption "&Prev"

CommandButton Name cmdFirst

Caption "&First"

CommandButton Name cmdDelete

Caption "&Delete"

CommandButton Name cmdUpdate

Caption "&Update"

CommandButton Name cmdNewExpense

Caption "Ne&w Expense"

MaskEdBox Name mskAmountSpent

Format "$#,##0.00;($#,##0.00)"

TextBox Name txtSubmitDate

TextBox Name txtPurchaseDate

TextBox Name txtDescription

TextBox Name txtExpenseType

TextBox Name txtEmployeeId

TextBox Name txtExpenseId

Label Name Label1

Caption "Expense ID:"

Label Name Label2

Caption "Employee:"

Label Name Label3

Caption "Expense Type:"

Label Name Label4

Caption "Amount Spent:"

Label Name Label5

Caption "Description:"

Label Name Label6

Caption "Purchase Date:"

Label Name Label7

Caption "Submission Date:"

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (14 of 89) [9/22/1999 2:17:13 AM]

2. Use the Visual Basic Menu Editor to create the menu shown in Table 12.6.

Table 12.6. Menu specifications for the Expense client form.

CAPTION Name Shortcut Key

&File mnuFile

----E&xit mnuFileExit

3. Enter the following code into the declarations section of frmExpClient. This line declares a
private ExpenseDetail class variable to manage the expense details.

Private expDetailClass As New ExpenseDetail

4. Enter the following code as the Click event of the cmdNewExpense button. The
ExpenseDetail class does error trapping for us, so the command button handlers can manage the
object as a modal function modifying the database. The strResponse variable provides any required
feedback for immediate display.

Private Sub cmdNewExpense_Click()
 Dim strResponse As String
 strResponse = SetObjectValues
 If "OK" = strResponse Then
 strResponse = expDetailClass.Insert
 If "OK" <> strResponse Then
 MsgBox strResponse
 Exit Sub
 End If
 Call ReadObjectValues
 Else
 MsgBox strResponse
 End If
End Sub

5. Enter the following code as the Click event of the cmdUpdate button:

Private Sub cmdUpdate_Click()
` Updates current record with form values
 Dim strResponse As String
 strResponse = SetObjectValues
 If "OK" = strResponse Then
 strResponse = expDetailClass.Update
 If "OK" <> strResponse Then
 MsgBox strResponse
 Exit Sub
 End If
 Call ReadObjectValues
 Else
 MsgBox strResponse
 End If
End Sub

6. Enter the following code as the Click event of the cmdDelete button:

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (15 of 89) [9/22/1999 2:17:13 AM]

Private Sub cmdDelete_Click()
` Deletes current record from database
 Dim strResponse As String
 strResponse = expDetailClass.Delete
 If "OK" <> strResponse Then
 MsgBox strResponse
 Else
 Call ReadObjectValues
 End If

End Sub

7. Enter the following code for the Click events of the movement buttons. With the exception of the
invoked class methods, these event procedures are virtually identical--they invoke a class method,
check the result, and display an error message or data.

Private Sub cmdFirst_Click()
` Positions to first record in recordset and displays
` values
 Dim strResponse As String
 strResponse = expDetailClass.MoveFirst
 If "OK" <> strResponse Then
 MsgBox strResponse
 Else
 Call ReadObjectValues
 End If
End Sub
Private Sub cmdLast_Click()
` Positions to last record in recordset and displays values
 Dim strResponse As String
 strResponse = expDetailClass.MoveLast
 If "OK" <> strResponse Then
 MsgBox strResponse
 Else
 Call ReadObjectValues
 End If
End Sub
Private Sub cmdNext_Click()
` Positions to Next record in recordset and displays values
 Dim strResponse As String
 strResponse = expDetailClass.MoveNext
 If "OK" <> strResponse Then
 MsgBox strResponse
 Else
 Call ReadObjectValues
 End If
End Sub
Private Sub cmdPrev_Click()
` Positions to Previous record in recordset and displays

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (16 of 89) [9/22/1999 2:17:13 AM]

` values
 Dim strResponse As String
 strResponse = expDetailClass.MovePrev
 If "OK" <> strResponse Then
 MsgBox strResponse
 Else
 Call ReadObjectValues
 End If
End Sub

8. Enter the following code for the procedure SetObjectValues. This function invokes the
Expense Detail class's public methods to set the object's property values. The expense type is limited
by the object to values of TRAVEL, MEALS, OFFICE, AUTO, or TOLL/PARK. The
strSetExpenseType method converts the input to uppercase characters and checks for a valid
value. Invalid input results in the method returning an informative display message.

Private Function SetObjectValues() As String
` Sets related object values from form fields
 Dim strResponse As String
 strResponse = expDetailClass. _
 strSetExpenseType(txtExpenseType.Text)
 On Error GoTo TypeError
 If "OK" = strResponse Then
 expDetailClass.strEmployeeId = txtEmployeeId.Text
 expDetailClass.strDescription = txtDescription.Text
 expDetailClass.dtmDatePurchased = txtPurchaseDate.Text
 expDetailClass.curAmountSpent = CCur(mskAmountSpent.Text)
 End If
 SetObjectValues = strResponse
 Exit Function
TypeError:
 If Err.Number = 13 Then
 expDetailClass.curAmountSpent = 0
 Resume Next
 End If
End Function

9. Enter the following code for the procedure ReadObjectValues. Note that the form code doesn't
have to deal with any potential null values from the database; it just displays the results.

Private Sub ReadObjectValues()
` Read the object values into the form fields
 txtExpenseId.Text = CStr(expDetailClass.lngExpenseId)
 txtEmployeeId.Text = expDetailClass.strEmployeeId
 txtExpenseType.Text = expDetailClass.strExpenseType
 txtDescription.Text = expDetailClass.strDescription
 mskAmountSpent.Text = CStr(expDetailClass.curAmountSpent)
 txtPurchaseDate.Text = CStr(expDetailClass.dtmDatePurchased)
 txtSubmitDate.Text = CStr(expDetailClass.dtmDateSubmitted)
End Sub

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (17 of 89) [9/22/1999 2:17:13 AM]

10. Enter the following code for the Form_Load event. The invocation of the class's strDbName
Property Let method causes the object to open the specified database and position its hidden
recordset to the first record. An error handler is required in this procedure because Property Let
procedures cannot return a signal value but can raise errors.

Private Sub Form_Load()
` Get the ActiveX object to open its database and position
` to the first record
 Dim strDbName As String
 Dim strResponse As String
 On Error GoTo LoadError
 strDbName = App.Path
 strDbName = strDbName & "\Expense.mdb"
 expDetailClass.strDbName = strDbName
 strResponse = expDetailClass.MoveFirst
 If "OK" <> strResponse Then
 MsgBox strResponse
 Else
 Call ReadObjectValues
 End If
Exit Sub
LoadError:
 MsgBox Err.Description & Chr(13) & "from " & Err.Source _
 & " -- Number: " & CStr(Err.Number)
 Unload Me
End Sub

11. Enter the following code for the Form_Unload event. Although this client is using the expense
detail class as a private module whose memory will be released when the form is unloaded, EXE and
DLL objects will usually not release resources until no caller is making references. Setting an object to
the value Nothing is the caller's way of tearing down the object connection gracefully.

Private Sub Form_Unload(Cancel As Integer)
 Set expDetailClass = Nothing
End Sub

12. Enter the following code for the Click event of mnuFileExit:

Private Sub mnuFileExit_Click()
 Unload Me
End Sub

13. Use the VB Class Builder to create the skeleton of the Expense Detail class. Select Project | Add
Class Module. Double-click VB Class Builder to start the Class Builder add-in. Select File | New |
Class, and then name the new class ExpenseDetail.

14. Select the newly created ExpenseDetail class. Select File | New | Property, and create a
property named lngExpenseId with Long data type, as shown in Figure 12.5. Continue adding
properties until you have defined everything listed in Table 12.7.

Table 12.7. Properties and data types for the ExpenseDetail class.

PROPERTY Data Type

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (18 of 89) [9/22/1999 2:17:13 AM]

lngExpenseID Long

strEmployeeId String

strExpenseType String

curAmmountSpent Currency

strDescription String

dtmDatePurchased Date

dtmDateSubmitted Date

strDbName String

Figure 12.5. The VB Property Builder.

15. Click the Methods tab of the Class Builder utility to define the methods and return types listed in
Table 12.8. Be sure to define a return data type. Update the project and exit the Class Builder.

Table 12.8. Methods and data types for the ExpenseDetail class.

METHOD Return Data Type

Delete String

Insert String

Update String

MoveFirst String

MoveNext String

MovePrev String

MoveLast String

16. Add the variables in bold type to the declarations section of your class module. The other variables
were created by the Property Builder. The class needs database and recordset variables to perform its
work, and it uses the RecSetOpen Boolean variable to force closing the recordset and database if a
running version of the class is passed a new database name.

Option Explicit
`local variable(s) to hold property value(s)
Private mvarlngExpenseId As Long `local copy
Private mvarstrEmployeeId As String `local copy
Private mvarstrExpenseType As String `local copy
Private mvarcurAmountSpent As Currency `local copy
Private mvarstrDescription As String `local copy
Private mvardtmDatePurchased As Date `local copy
Private mvardtmDateSubmitted As Date `local copy
Private mvarstrDbName As String `local copy
` Database variables needed to keep track of current
` database condition
Private mdbExpense As Database
Private mrecExpense As Recordset

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (19 of 89) [9/22/1999 2:17:13 AM]

javascript:popUp('12fig06.gif')

Private mblnRecSetOpen As Boolean

17. Remove the Property Let procedures for lngExpenseId and dtmDateSubmitted from
the class module. The Access database engine automatically assigns the ExpenseId, and the
Insert method assigns the date submitted. A class module designed to protect the database can't
allow these changes.

18. Modify the Property Let procedure for the strDbName property as shown next. Whenever
the database name property is changed, we need to close an open recordset and database and then open
the desired database and recordset.

Public Property Let strDbName(ByVal vData As String)
`used when assigning a value to the property, on the left
`side of an assignment.
`Syntax: X.strDbName = 5
 On Error GoTo OpenError
 If mblnRecSetOpen Then
 mrecExpense.Close
 mdbExpense.Close
 End If
 mvarstrDbName = vData
 Set mdbExpense = DBEngine.Workspaces(0). _
 OpenDatabase(mvarstrDbName)
 Set mrecExpense = mdbExpense.OpenRecordset("Expenses")
 mblnRecSetOpen = True
 Exit Property
OpenError:
 ` Because we are designing this class for
 ` potential unattended operation, we'll have to raise
 ` an error on our own
 Err.Raise Number:=Err.Number
 Err.Clear
 Exit Property
End Property

19. Prepare the Class Initialize and Class Terminate procedures as shown next. The
Initialize procedure ensures that all critical variables have their initial values set correctly even if
we programmers think that they are already set. The Terminate procedure cleans up any messes we
might have made along the way.

Private Sub Class_Initialize()
 ` Indicate that the database is not yet open
 mblnRecSetOpen = False
 ` Clear all object variables
 Call ClearObject
End Sub
Private Sub Class_Terminate()
 ` We don't really care about errors when cleaning up.
 On Error Resume Next
 ` Close the recordset
 mrecExpense.Close

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (20 of 89) [9/22/1999 2:17:13 AM]

 ` Close the expense database
 mdbExpense.Close
 ` Reset the error handler
 On Error GoTo 0
 Exit Sub
End Sub

20. Define the private ClearObject procedure to clear the object's properties to known safe values
that won't cause database errors and that will look "empty" to anyone reading the values from a caller's
form:

Private Sub ClearObject()
` Clears all object variables
 mvarlngExpenseId = 0
 mvarstrEmployeeId = ""
 mvarstrExpenseType = ""
 mvarcurAmountSpent = 0
 mvarstrDescription = ""
 mvardtmDatePurchased = CDate("1/1/1980")
 mvardtmDateSubmitted = CDate("1/1/1980")
End Sub

21. Define the procedures to map the recordset field values to the object's variables. Note the use of the
With construct to improve runtime performance and code readability. The With construct tells Visual
Basic to add the With reference to the front of any ambiguous variable references. The source code is
easier to read because it is more succinct. Performance is improved because the runtime library doesn't
have to search all possible reference values for each assignment statement. In effect, the With
shorthand works equally well for the programmer and the runtime application.

Private Sub SetRecordset(recExp As Recordset)
` Copies current values to Recordset
 With recExp
 !EmployeeId = mvarstrEmployeeId
 !ExpenseType = mvarstrExpenseType
 !AmountSpent = mvarcurAmountSpent
 !Description = mvarstrDescription
 !DatePurchased = mvardtmDatePurchased
 !DateSubmitted = mvardtmDateSubmitted
 End With
End Sub
Private Sub GetRecordset(recExp As Recordset)
` Copies current values to Recordset
 With recExp
 mvarlngExpenseId = 0 + !ExpenseID
 mvarstrEmployeeId = "" & !EmployeeId
 mvarstrExpenseType = "" & !ExpenseType
 mvarcurAmountSpent = 0 + !AmountSpent
 mvarstrDescription = "" & !Description
 mvardtmDatePurchased = !DatePurchased
 mvardtmDateSubmitted = !DateSubmitted

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (21 of 89) [9/22/1999 2:17:13 AM]

 End With
End Sub

22. Create the special expense-type assignment method to provide editing and message response
capabilities. This code checks that the assigned value is one of the defined values and responds with an
error message if the value is not acceptable. The object supports no other method to set the expense
type, so the table is protected.

Public Function strSetExpenseType(ByVal vData As String) As String
` Sets the expense type to an allowed value
 Dim strTemp As String
 strTemp = UCase$(vData)
 If strTemp = "TRAVEL" _
 Or strTemp = "MEALS" _
 Or strTemp = "OFFICE" _
 Or strTemp = "AUTO" _
 Or strTemp = "TOLL/PARK" Then
 mvarstrExpenseType = strTemp
 strSetExpenseType = "OK"
 Else
 strSetExpenseType = "Expense type must be TRAVEL, MEALS, " _
 & "OFFICE, AUTO, or TOLL/PARK"
 End If
End Function

23. Create the Insert, Update, and Delete methods. These methods closely mimic the interaction
of the data control and its recordset, but they do not suffer from the intervening events that make direct
programming with the data control problematic.

Public Function Insert() As String
` Inserts a brand-new record into the database and leaves
` the newly inserted values as the current object values.
 On Error GoTo InsertError
 With mrecExpense
 .AddNew
 mvardtmDateSubmitted = Now
 Call SetRecordset(mrecExpense)
 .Update
 `Move to the most recently modified record
 .Bookmark = .LastModified
 Call GetRecordset(mrecExpense)
 End With
 Insert = "OK"
 Exit Function
InsertError:
 ` Return the error description
 Insert = Err.Description
 Err.Clear
 Exit Function
End Function

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (22 of 89) [9/22/1999 2:17:13 AM]

Public Function Update() As String
` Updates Expenses table from current object values
Dim strSql As String
 On Error GoTo UpdateError
 With mrecExpense
 .Edit
 Call SetRecordset(mrecExpense)
 .Update
 .Bookmark = .LastModified
 Call GetRecordset(mrecExpense)
 End With
 Update = "OK"
 Exit Function
UpdateError:
 ` Return the error description
 Update = Err.Description
 Err.Clear
 Exit Function
End Function
Public Function Delete() As String
` Deletes the expense detail record whose value is current
` from the database
 On Error GoTo DeleteError
 With mrecExpense
 .Delete
 If 0 = .RecordCount Then
 Call ClearObject
 Else
 .MoveNext
 If .EOF Then
 Call ClearObject
 Else
 Call GetRecordset(mrecExpense)
 End If
 End If
 End With
 Delete = "OK"
 Exit Function
DeleteError:
 ` Return the error description
 Delete = Err.Description
 Err.Clear
 Exit Function
End Function

24. Create the Move methods to mimic the data control's movement methods. Note that these four
procedures are nearly identical.

Public Function MoveFirst() As String

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (23 of 89) [9/22/1999 2:17:13 AM]

` Retrieve the first record
 On Error GoTo MoveError
 With mrecExpense
 If True = .BOF _
 And True = .EOF Then
 ` Empty recordset
 MoveFirst = "BOF"
 Else
 ` Move to the first record
 .MoveFirst
 Call GetRecordset(mrecExpense)
 MoveFirst = "OK"
 End If
 End With
 Exit Function
MoveError:
 ` Return the error description
 MoveFirst = Err.Description
 Err.Clear
 Exit Function
End Function
Public Function MoveNext() As String
` Moves to next Expenses table record and sets current
` object values
 On Error GoTo MoveError
 With mrecExpense
 If True = .BOF _
 And True = .EOF Then
 ` Empty recordset
 MoveNext = "EOF"
 Else
 ` Move to the next record
 .MoveNext
 If mrecExpense.EOF Then
 MoveNext = "EOF"
 Else
 Call GetRecordset(mrecExpense)
 MoveNext = "OK"
 End If
 End If
 End With
 Exit Function
MoveError:
 ` Return the error description
 MoveNext = Err.Description
 Err.Clear
 Exit Function

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (24 of 89) [9/22/1999 2:17:13 AM]

End Function
Public Function MovePrev() As String
` Retrieve the record prior to the current one
 On Error GoTo MoveError
 With mrecExpense
 If True = .BOF _
 And True = .EOF Then
 ` Empty recordset
 MovePrev = "BOF"
 Else
 ` Move to the previous record
 .MovePrevious
 If .BOF Then
 MovePrev = "BOF"
 Else
 Call GetRecordset(mrecExpense)
 MovePrev = "OK"
 End If
 End If
 End With
 Exit Function
MoveError:
 ` Return the error description
 MovePrev = Err.Description
 Err.Clear
 Exit Function
End Function
Public Function MoveLast() As String
` Retrieve the last record
 On Error GoTo MoveError
 With mrecExpense
 If True = .BOF _
 And True = .EOF Then
 ` Empty recordset
 MoveLast = "EOF"
 Else
 ` Move to the last record
 .MoveLast
 Call GetRecordset(mrecExpense)
 MoveLast = "OK"
 End If
 End With
 Exit Function
MoveError:
 ` Return the error description
 MoveLast = Err.Description
 Err.Clear

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (25 of 89) [9/22/1999 2:17:14 AM]

 Exit Function
End Function

How It Works

On Form_Load (step 10), the client application sets the database name for the class, causing the database
and recordset to open in the class module. The MoveFirst method positions the class's recordset at the first
record and populates the object's properties. The ReadObjectValues procedure copies the object values
to the display fields. Each command button on the form invokes a method very similar to a data control
method without the data control's performance overhead or frequently annoying events.

Comments

The use of a private class to manage your objects or tables is the starting of the n-tier architecture for your
applications. In n-tier architectures, presentation (or input/output) is managed by one set of components,
business rules by a second tier (class modules), and data by another tier (rules and triggers contained in the
database management system). The advantage of objects in this environment is that underlying technology
can be changed without affecting the callers as long as the interfaces remain stable.

Finally, you can easily convert class modules to ActiveX DLLs or ActiveX EXEs by including them in a
different project and recompiling. You can test and debug a new class as a private module and then convert it
to an EXE or a DLL. How-To 12.2 converts the ExpenseDetail class to an ActiveX DLL.

12.3 How do I...

Publish my ActiveX private class so that others can use it?

Problem

The staff in the accounting department loves the new ExpenseDetail class and the concept of "black box"
interfaces, but they are very worried that employees using the private class in source-code form might
compromise the class's security by modifying the code to inflate their own expense reimbursements. How can
I prevent access to my class's source code while letting other projects take advantage of the
ExpenseDetail class?

TECHNIQUE

There are several ways to publish your class's properties and methods without revealing the source code.
After all, major software publishers do it every day. The technique is to convert the class module into an
ActiveX DLL or EXE. This How-To demonstrates using the ExpenseDetail class module in an ActiveX
DLL.

Steps

To preview the ExpenseDetail DLL on your system, you first need to register the code component in
your system registry. Visual Basic will register the component for you automatically if you compile once.
Open the ActiveXDll.VBP project. Select File | Make ActiveX.DLL to compile the component. Open the
ActiveXExpense.vbp project and run it. You should see the form shown in Figure 12.6, which is the same
form shown earlier in Figure 12.4 because the form file is identical; only the project composition was
changed for the main application program.

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (26 of 89) [9/22/1999 2:17:14 AM]

Figure 12.6. The Expense Client form, now using an ActiveX DLL.

1. Create a new project in Visual Basic and specify an ActiveX DLL project when prompted. In the
project window, right-click the highest-level project item, and edit the project properties as shown in
Figure 12.7. The Project Name field is used within Visual Basic and must contain no spaces or
hyphens. The project description is stored in your system registry and provides the reference to your
code component.

2. Select Project | Add File and add ExpenseDetail.cls to your project. This file is identical to the
ExpenseDetail.cls file you wrote in How-To 12.2.

3. Select ExpenseDetail.cls in the project window. Ensure that the Instancing property is set to
5-Multi-use. A Public, Multiuse class can be created by an external reference, such as the Expense
Client form, and can be used by multiple programs simultaneously.

4. Select File | Make ActiveX.DLL to compile your ActiveX DLL.

Figure 12.7. Setting the ActiveX DLL project properties.

5. Open the ActiveXExpense.vbp project. Select Project | References to display the form shown in
Figure 12.8. Be sure to check the reference for the ActiveX DLL you just created.

Figure 12.8. Adding a reference to the ActiveX DLL.

6. Run the Expense Client project to observe the same behavior you saw in How-To 12.2.

How It Works

The Expense Client with an ActiveX DLL class works the same way as the bound class because the programs
are identical. The power of the component object model is letting the various pieces work together without
the Expense Client form needing to know how the class code works. It needs only the names and calling
parameters for the public methods and properties exposed by the ActiveX DLL. The exposed interfaces to the
ActiveX DLL are made available on your computer when you compile the ActiveX DLL by virtue of Visual
Basic 6 automatically registering the DLL in your system registry.

Comments

As you work more with building your own code components, plan to develop a test-and-debug strategy. In
How-To 12.2, we developed (and probably tested and debugged) a test client form and a class module linked
directly into the project. This approach to class modules simplifies development by allowing you to use the
Visual Basic debugger. After the ActiveX DLL is compiled, you can use only the Visual C++ debugger.

Be aware that the use of ActiveX components on your system can eventually lead to excessive Registry
entries, especially if you periodically delete and move your development DLL files. How-To 12.9 discusses
two Registry utilities from Microsoft that can help keep your Registry under control.

12.4 How do I...

Provide controlled access to an encrypted, password-protected
database using an ActiveX EXE server?

Problem

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (27 of 89) [9/22/1999 2:17:14 AM]

javascript:popUp('12fig04.gif')
javascript:popUp('12fig07.gif')
javascript:popUp('12fig08.gif')

I have a highly sensitive, protected database for which I must strictly control access--hiding even the details
of its format, source, and location, and giving controlled access to sections of the data. How can I create a
Visual Basic object that can be used in other applications while protecting the database?

Technique

By creating an ActiveX EXE with a public class object, you can control everything about the
database--hiding the details about the database itself, and giving the container application (the application
creating and using the object) only limited access to the contents of any or all tables. Because the class
methods that access the data are defined by your class module, you can limit access to only one or a few
tables, only certain records or a limited number of records, or whatever constraints you choose to place on the
database. As far as the container application is concerned, the data could be coming from a network, another
program, or anywhere else.

Steps

Open the Visual Basic SECURED.VBP project. Start the application by selecting Run | Start from the Visual
Basic main menu, pressing F5, or clicking the Start button on the Visual Basic toolbar. Minimize that
instance of Visual Basic. Start Microsoft Excel from the Windows Program Manager and open the
SECURED.
XLS workbook. Run the Main macro application by selecting Tools | Macro | Macros, selecting the Main
macro, and clicking Run. Main creates a spreadsheet with the contents of the database table and then releases
the database object. Exit Excel and stop the Visual Basic SECURED application.

1. Start Visual Basic and create a new project in your work area. Select ActiveX EXE as the project
type from the new project window, as shown in Figure 12.9. Save the project as SECURED.VBP.

Figure 12.9. The New Project window.

2. This How-To uses Visual Basic's data access objects, so they must be available to the project. Select
Project | References from the Visual Basic main menu, and make sure that the Microsoft DAO 3.51
Object Library is checked.

3. Copy the ExpenseDetail.cls file from How-To 12.3 to your work area and rename it
ExeExpenseDetail.cls. Remove the default Class1.cls file. Add the ExeExpenseDetail.cls file to your
project. Set the properties of the class as shown in Table 12.9.

Table 12.9. Objects and properties for class module ExeExpenseDetail.cls.

PROPERTY SETTING

Instancing 3--Single Use Name ExeExpenseDetail

4. Enter the following code in the Initialize event procedure for the class. The Initialize
event is the rough equivalent to a form's Load event procedure, doing all the work needed when a new
instance of a class is created by the calling application. In this case, all that is done is to set the location
of the hidden database. This code assumes that Chapter12.MDB is in the application path; set this
location to whatever drive, path, and file you want to use.

Private Sub Class_Initialize()
 On Error GoTo OpenError
 ` Put all the required security code here where it is
 ` protected by compilation.

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (28 of 89) [9/22/1999 2:17:14 AM]

javascript:popUp('12fig09.gif')

 mvarstrDbName = App.Path & "\Expense.mdb"
 Set mdbExpense = DBEngine.Workspaces(0). _
 OpenDatabase(mvarstrDbName)
 Set mrecExpense = mdbExpense.OpenRecordset("Expenses")
 mblnRecSetOpen = True
 Exit Sub
OpenError:
 ` Because we are designing this class for
 ` potential unattended operation, we'll have to raise
 ` an error on our own
 Err.Raise Number:=Err.Number
 Err.Clear
 Exit Sub
End Sub

5. Enter the following code in the Class Terminate procedure. We suppress errors because we're
trying to shut down anyway.

Private Sub Class_Terminate()
 ` We don't really care about errors when cleaning up.
 On Error Resume Next
 ` Close the recordset
 mrecExpense.Close
 ` Close the expense database
 mdbExpense.Close
 ` Reset the error handler
 On Error GoTo 0
 Exit Sub
End Sub

6. Enter the following code in the FieldCount and GetField procedures. These procedures define
the public methods of the class.

Public Function FieldCount() As Integer
 FieldCount = 7
End Function
Public Function GetField(intColumn As Integer) As Variant
` Return the requested field
 Select Case intColumn
 Case 0
 GetField = mvarlngExpenseId
 Case 1
 GetField = mvarstrEmployeeId
 Case 2
 GetField = mvarstrExpenseType
 Case 3
 GetField = mvarcurAmountSpent
 Case 4
 GetField = mvarstrDescription
 Case 5

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (29 of 89) [9/22/1999 2:17:14 AM]

 GetField = mvardtmDatePurchased
 Case 6
 GetField = mvardtmDateSubmitted
 End Select
End Function
Public Property Get BOF() As Boolean
 BOF = rs.BOF
End Property
Public Property Get EOF() As Boolean
 EOF = rs.EOF
End Property
Property Get FieldCount() As Long
 FieldCount = rs.Fields.Count
End Property
Property Get RecordCount() As Long
 Dim bm As String
 `Save our location in the recordset
 bm = rs.Bookmark
 rs.MoveLast
 RecordCount = rs.RecordCount
 `Return to the starting position in the recordset
 rs.Bookmark = bm
End Property

7. Change all the Public Property procedures to Private Property procedures to prevent
inadvertent access to the class properties. Change the Public functions for insert, update, and delete
to Private functions. Remove the Property Let procedure for strDbName.

8. Insert a new code module into the project by selecting Insert | Module from the Visual Basic main
menu. Set the name of the module to modSecuredAccess, and save the file as SECURED.BAS.

9. Enter the following code in the Sub Main procedure. No specific initialization code is required
here, but there needs to be at least one empty Sub Main to provide an entry point for OLE when
another application uses this class.

Sub Main()
End Sub

10. Set the project options to make the application act as an ActiveX EXE component. Select Project |
Properties from the menu. The project properties are shown in Table 12.10.

The Project Name is particularly important; this is the application name used in the Windows
Registry entry for the application. The object created by this application will then be referred to as

VBHTOpenSecuredDB.SecuredDatabase

in programs that use the object.

Table 12.10. Project properties for SECURED.VBP.

PROPERTY Setting

Startup Object Sub Main

Project Name VBHTOpenSecuredDB

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (30 of 89) [9/22/1999 2:17:14 AM]

Project Description Open Secured and Encrypted Chapter14.MDB

11. Because the operating system needs an executable file to extract informa-tion about the class, select
File | Make EXE from the Visual Basic main menu. Name the program SECURED.EXE and compile
the application. Correct any errors that the compiler flags.

12. Execute the application by selecting Run | Start from the main menu, pressing F5, or clicking the
Start button on the Visual Basic toolbar. The program loads and then waits for another application to
create an object. This approach allows us to debug the standalone EXE file from the Visual Basic
environment while a different application invokes our program's services.

13. Start Microsoft Excel. Create a new workbook by selecting File | New from the main menu or by
clicking the New Workbook icon on the toolbar. Save the file by selecting File | Save As from the main
menu or by clicking the Save icon on the toolbar. Save the file as SECURED.XLS.

14. Insert a new macro module in the workbook by selecting Tools | Macro | Visual Basic Editor from
the Excel main menu. Once in the Visual Basic Editor, select Insert | Module to create a new VBA
module. Insert the following Visual Basic code into the module. This procedure starts by creating an
instance of the SecuredDatabase object and then uses the object's properties and methods to move
through the database and enter the records into a new worksheet. Note that the Excel application is
unaware of where the information is coming from or even how the database is being accessed. All
those details are hidden in the SECURED.EXE file.

Option Explicit
Sub main()
 Dim numFields As Long
 Dim strResponse As String
 Dim objExpenseDetail As Object
 Set objExpenseDetail = _
 CreateObject("VBHTOpenSecuredDB.ExeExpenseDetail")
 Dim i As Long
 Dim j As Integer
 numFields = objExpenseDetail.FieldCount
 Sheets.Add
 `Format the column headings
 ActiveSheet.Cells(1, 1).Select
 Selection.ColumnWidth = 5
 ActiveCell.FormulaR1C1 = "ID"
 Selection.Font.FontStyle = "Bold"
 Selection.HorizontalAlignment = xlCenter
 ActiveSheet.Cells(1, 2).Select
 Selection.ColumnWidth = 10
 ActiveCell.FormulaR1C1 = "Employee"
 Selection.Font.FontStyle = "Bold"
 Selection.HorizontalAlignment = xlCenter
 ActiveSheet.Cells(1, 3).Select
 Selection.ColumnWidth = 8
 ActiveCell.FormulaR1C1 = "Type"
 Selection.Font.FontStyle = "Bold"
 Selection.HorizontalAlignment = xlCenter
 ActiveSheet.Cells(1, 4).Select

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (31 of 89) [9/22/1999 2:17:14 AM]

 Selection.ColumnWidth = 10
 ActiveCell.FormulaR1C1 = "Amount"
 Selection.Font.FontStyle = "Bold"
 Selection.HorizontalAlignment = xlCenter
 ActiveSheet.Cells(1, 5).Select
 Selection.ColumnWidth = 15
 ActiveCell.FormulaR1C1 = "Description"
 Selection.Font.FontStyle = "Bold"
 Selection.HorizontalAlignment = xlCenter
 ActiveSheet.Cells(1, 6).Select
 Selection.ColumnWidth = 10
 ActiveCell.FormulaR1C1 = "Purchased"
 Selection.Font.FontStyle = "Bold"
 Selection.HorizontalAlignment = xlCenter
 ActiveSheet.Cells(1, 7).Select
 Selection.ColumnWidth = 15
 ActiveCell.FormulaR1C1 = "Submitted"
 Selection.Font.FontStyle = "Bold"
 Selection.HorizontalAlignment = xlCenter
 `Put the records into the worksheet
 i = 0
 strResponse = objExpenseDetail.MoveFirst
 Do While "OK" = strResponse
 i = i + 1
 For j = 0 To numFields - 1
 ActiveSheet.Cells(i + 1, j + 1).Select
 ActiveCell.FormulaR1C1 = objExpenseDetail.GetField(j)
 Next
 strResponse = objExpenseDetail.MoveNext
 Loop
 ActiveSheet.Cells(1, 1).Select
 `Clean up by releasing the memory used for objExpenseDetail
 Set objExpenseDetail = Nothing
End Sub

15. Run the Main Excel procedure by selecting Tools | Macro | Macros from the main menu, selecting
the Main macro from the list, and clicking the Run button, or by clicking the Run Sub/UserForm button
from the Macro toolbar while the cursor is within the Main procedure.

How It Works

Visual Basic uses class modules to create objects that can be exposed to other applications. This is essentially
the same process used by the Jet engine to expose data access objects or by Microsoft Excel to expose
Worksheet or Chart objects.

This How-To has focused on the details of the ActiveX interface between Visual Basic and Excel. Note the
comments in the code where you might include parameters for opening secured databases. That information
is completely hidden from Excel. For more information about using secured databases, see Chapter 10,
"Security and Multiuser Access."

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (32 of 89) [9/22/1999 2:17:14 AM]

By defining Property Get, Property Let, and Public Sub and Function procedures, you can
precisely define the information that the class reveals to the outside world and the actions that it takes in
response to demands placed on it by outside applications.

The most important part of setting up the class so that it is visible to outside applications is setting the
project's properties. The fact that this is a separate EXE code component makes debugging somewhat tricky.
The easiest way to debug an ActiveX EXE under development is to start by doing most of the work with the
class module bound into an application EXE. After the class module has been debugged, add it into an Active
EXE project. You can still debug the class within an ActiveX EXE by running a copy of Visual Basic
dedicated to the class.

Comments

This class was defined to be what is called single-use in ActiveX terminology in order to ensure that different
callers would not affect other callers' data stored within the class. In this ActiveX EXE, the database name,
recordset position, and property values contain state, or context, information that is related to the calling
program. For example, the correct invocation of the MoveNext method assumes that the class properties are
correctly set for the caller. If we allowed two different programs to access the ActiveX EXE, Caller A's
MoveNext would cause Caller B's MovePrev to return an erroneous result. A multiuse ActiveX EXE class
requires that all the information necessary for a successful method invocation is contained in the method's
parameters and return values. If more than one invocation is required to retrieve the required data, the class
should be defined to be single-use.

12.5 How do I...

Use Microsoft Access as an ActiveX server to print reports from Visual
Basic?

Problem

The database provided for my Visual Basic project has already been developed, and the prototyping phase
developed several Access reports that we want to use again in the final application. Because all workstations
will have Access installed, we want to use this technique. How do I invoke an Access report from within a
Visual Basic 6 application?

TECHNIQUE

Microsoft Access is an ActiveX EXE code component. It exposes its Visual Basic for Applications properties
and methods just as any other ActiveX EXE does. The most powerful command for use in automating Access
as a code component is the DoCmd method of the Access Application object. DoCmd allows your program to
issue most commands within Access that a person sitting at the keyboard can do with a mouse and keyboard.

Steps

Open the project AccessReport.vbp. The form shown in Figure 12.10 appears. Click the command button.
Switch to the Access application to view and print the prepared report (see Figure 12.11).

Figure 12.10. The Invoke Access Report form.

Figure 12.11. The Access Expense report.

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (33 of 89) [9/22/1999 2:17:14 AM]

javascript:popUp('12fig10.gif')
javascript:popUp('12fig11.gif')

1. Create a new project named AccessReport.vbp in your work area. Create the objects and properties
listed in Table 12.11.

Table 12.11. Objects and properties for the Access Expense form.

OBJECT Property Setting

Name Form frmInvokeAccessReport

Caption "Invoke Access Report"

Name CommandButton cmdInvokeReport

Caption "&Invoke Access Report"

2. Be sure to select OLE Automation and the Microsoft Access Object Library in the Project
References menu. OLE Automation supports the program's capability to create and communicate with
Access. The Microsoft Access 8.0 Object Library enables you to use symbolic constant names for
Access-defined constants.

3. Insert the following code for the Click event of cmdInvokeReport:

Private Sub cmdInvokeReport_Click()
` Invokes an Access report in Print Preview mode
` Get the ActiveX object to open its database and position
` to the first record
 Dim strDbName As String
 Dim objAccess As Object
 On Error GoTo LoadError
 strDbName = App.Path
 strDbName = strDbName & "\Expense.mdb"
 Set objAccess = CreateObject("Access.Application")
 With objAccess
 .OpenCurrentDatabase FilePath:=strDbName
 .DoCmd.OpenReport ReportName:="ExpenseReport", _
 View:=Access.acPreview
End With
 ` Give up CPU control
 DoEvents
 Set objAccess = Nothing
 Exit Sub
LoadError:
 MsgBox Err.Description & Chr(13) & "from " & Err.Source & _
 " -- Number: " & CStr(Err.Number)
Unload Me
End Sub

How It Works

When you click the command button, the Visual Basic CreateObject method starts Access. The reference
to "Access.Application" is resolved by the Windows operating system through the system registry.
The two commands given to the Access application object open the database and prepare the report in Print

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (34 of 89) [9/22/1999 2:17:14 AM]

Preview mode. The report can then be printed within Access.

Inspection of this code shows that using another application to do your bidding is straightforward; the
difficult part is discovering which methods and properties are exposed by the object. For Access and the other
Microsoft Office applications, the easiest way to discover the available properties and methods is to use that
application's Help files. Use the Help contents to find a reference to Visual Basic, switch to the linked Help
file, and then search the Help index for the application object. The various methods and properties of the
application object should lead you to the commands you need in order to get your job done.

Comments

Although requiring a person to print the report to the printer might seem like an extra step, it takes advantage
of the print preview capabilities of Access and provides quite a bit of program polish with very little
development work. Before deploying an automated application such as this one, you probably want to
enforce some degree of security on the database as discussed in Chapter 10, "Security and Multiuser Access."

12.6 How do I...
Use Microsoft Access queries containing user-defined functions from Visual Basic?

PROBLEM

Sometimes you will need to use Access user-defined functions within your Visual Basic programs.
Unfortunately, Access user-defined functions can be run only by Access. How can I use Access to return data
from a query containing a user-defined function?

Technique

To use an Access query containing a user-defined function, you first need an Access-based recordset.
Because Access exposes its object methods and properties, we can directly manipulate Access recordsets
from Visual Basic by using the Visual Basic for Applications methods exposed by Access. The VBA syntax
for working with recordsets is identical to Visual Basic 6 syntax, so no learning curve is required. It is
important to remember, however, that the Access recordset is running in a different process, and the
performance is likely to be much slower than a native recordset. Both Visual Basic and Access recordsets can
be included in the same application. In this way, the slower ActiveX Automation recordset is used only when
required for the user-defined function query.

This application uses two Access queries to provide required data. The first provides a list of employees who
have submitted expense reports:

SELECT DISTINCT EmployeeID
FROM Expenses;

The second query is parameter-driven and invokes the user-defined function MyUpper to force the employee
name to all uppercase letters:

PARAMETERS EmpToFind Text;
SELECT Expenses.ExpenseID, MyUpper([EmployeeID]) AS Expr1,
 Expenses.ExpenseType, Expenses.AmountSpent, Expenses.Description,
 Expenses.DatePurchased, Expenses.DateSubmitted
FROM Expenses

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (35 of 89) [9/22/1999 2:17:14 AM]

WHERE (((MyUpper([EmployeeID]))=[EmpToFind]))
ORDER BY Expenses.ExpenseID;

The EmpToFind parameter limits the query records to only one employee.

Steps

Open the AccessParams.vbp project. If necessary, modify the database location for the database grid's data
control to point to your installation directory. Run the application by pressing F5. Then Select an employee
and click the Set Employee button to limit the view of expense details to only one employee, as shown in
Figure 12.12. Use the data movement buttons to view the selected employee's expenses.

Figure 12.12. The Access User-Defined Function form.

1. Create a new project named AccessParams.vbp in your work area. Copy the ExpenseDetail.cls file
from How-To 12.2 to this new project as ExpDetailParam.cls.

2. Select Project | References from the main Visual Basic menu, and select the references shown here:

Ole Automation

Microsoft DAO 3.51 Object Library

Microsoft Access 8.0 Object Library

3. Select Project | Components from the main Visual Basic menu, and select the following components:

Microsoft Masked Edit Control 6.0

Microsoft FlexGrid Control 6.0

4. Modify the declarations section of ExpDetailParam.cls as follows. The new object variables allow
direct control of the Access recordset. Declaring mobjAccess as an Access.Application object
enables Visual Basic's code-completion features in the editor for lazy typists.

Option Explicit
`local variable(s) to hold property value(s)
Private mvarlngExpenseId As Long `local copy
Private mvarstrEmployeeId As String `local copy
Private mvarstrExpenseType As String `local copy
Private mvarcurAmountSpent As Currency `local copy
Private mvarstrDescription As String `local copy
Private mvardtmDatePurchased As Date `local copy
Private mvardtmDateSubmitted As Date `local copy
Private mvarstrDbName As String `local copy
Private mvarstrEmpToQuery As String `local copy
Private mblnQueryOpen As Boolean
Private mobjAccess As New Access.Application
Private mobjRecSetExpense As Object

5. Modify the strDbName Property Let procedure to open the Access query rather than a
Visual Basic recordset:

Public Property Let strDbName(ByVal vData As String)
`used when assigning a value to the property, on the left
`side of an assignment.

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (36 of 89) [9/22/1999 2:17:14 AM]

javascript:popUp('12fig12.gif')

`Syntax: X.strDbName = 5
 On Error GoTo OpenError
 If mblnQueryOpen Then
 mobjAccess.CloseCurrentDatabase
 End If
 mvarstrDbName = vData
 mobjAccess.OpenCurrentDatabase mvarstrDbName
 mobjAccess.Application.Visible = False
 mobjAccess.DBEngine.Workspaces(0).Databases(0). _
 QueryDefs("ExpForOneEmployee"). _
 Parameters("EmpToFind"). _
 Value = mvarstrEmpToQuery
 Set mobjRecSetExpense = mobjAccess.DBEngine.Workspaces(0). _
 Databases(0).QueryDefs("ExpForOneEmployee"). _
 OpenRecordset()
 mblnQueryOpen = True
 Exit Property
OpenError:
 ` Because we are designing this class for
 ` potential unattended operation, we'll have to raise
 ` an error on our own
 Err.Raise Number:=Err.Number
 Err.Clear
 Exit Property
End Property

6. Add a new Property Let procedure for the name of the employee to query. This procedure
closes an open recordset, changes the employee name, and issues a new query.

Public Property Let strEmpToQuery(ByVal vData As String)
`used when assigning a value to the property, on the left
`side of an assignment.
`Syntax: X.strEmpToQuery = 5
 mvarstrEmpToQuery = vData
 On Error GoTo OpenError
 If mblnQueryOpen Then
 mobjRecSetExpense.Close
 End If
 mobjAccess.DBEngine.Workspaces(0).Databases(0). _
 QueryDefs("ExpForOneEmployee"). _
 Parameters("EmpToFind"). _
 Value = mvarstrEmpToQuery
 Set mobjRecSetExpense = mobjAccess.DBEngine.Workspaces(0). _
 Databases(0).QueryDefs("ExpForOneEmployee"). _
 OpenRecordset()
 mblnQueryOpen = True
 Exit Property
OpenError:
 ` Because we are designing this class for

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (37 of 89) [9/22/1999 2:17:14 AM]

 ` potential unattended operation, we'll have to raise
 ` an error on our own
 Err.Raise Number:=Err.Number
 Err.Clear
 Exit Property
End Property

7. Remove the Delete, Update, and Insert methods from the class. Remove the
SetRecordSet subroutine from the class.

8. Change all code references from mrecExpense to mobjRecSetExpense throughout the class
module.

9. Add the new class property to the ClearObject procedure:

Private Sub ClearObject()
` Clears all object variables
 mvarlngExpenseId = 0
 mvarstrEmployeeId = ""
 mvarstrExpenseType = ""
 mvarcurAmountSpent = 0
 mvarstrDescription = ""
 mvardtmDatePurchased = CDate("1/1/1980")
 mvardtmDateSubmitted = CDate("1/1/1980")
 mvarstrEmpToQuery = ""
End Sub

10. Replace the Class Initialize and Terminate procedures. We force termination of the
Access code component in the Terminate procedure.

Private Sub Class_Initialize()
 ` Indicate that the database is not yet open
 mblnQueryOpen = False
 ` Clear all object variables
 Call ClearObject
End Sub
Private Sub Class_Terminate()
 ` Close the recordset
 mobjRecSetExpense.Close
 mobjAccess.CloseCurrentDatabase
 mobjAccess.Quit
End Sub

11. Create a form to test the ExpDetailParam class with the objects properties shown in Table
12.12. Show only the Employee ID column for the database grid. Inspection of the Access database
used in this project will show that the ExpEmployeeNames is an Access query, not a table. Visual
Basic can use queries for recordsets and will display queries in the data control's RecordSource
pull-down list.

Table 12.12. Objects and properties for the Access Params form.

OBJECT Property Setting

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (38 of 89) [9/22/1999 2:17:14 AM]

Form Name frmExpClient

Caption "Expense Client"

Data Name datExpEmployees

Caption "Exp Employees"

DatabaseName "C:\Code\Chapter12\HowTo06\Expense.mdb"

RecordsetType 2 `Snapshot

RecordSource "ExpEmployeeNames"

MSFlexGrid Name dbgExpEmployee

DataSource datExpEmployees

CommandButton Name cmdSetEmployee

Caption "&Set Employee"

CommandButton Name cmdLast

Caption "&Last"

CommandButton Name cmdNext

Caption "&Next"

CommandButton Name cmdPrev

Caption "&Prev"

CommandButton Name cmdFirst

Caption "&First"

MaskEdBox Name mskAmountSpent

Format "$#,##0.00;($#,##0.00)"

PromptChar "_"

TextBox Name txtSubmitDate

TextBox Name txtPurchaseDate

TextBox Name txtDescription

TextBox Name txtExpenseType

TextBox Name txtEmployeeId

TextBox Name txtExpenseId

Label Name Label1

Caption "Expense ID:"

Label Name Label2

Caption "Employee:"

Label Name Label3

Caption "Expense Type:"

Label Name Label4

Caption "Amount Spent:"

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (39 of 89) [9/22/1999 2:17:14 AM]

Label Name Label5

Caption "Description:"

Label Name Label6

Caption "Purchase Date:"

Label Name Label7

Caption "Submission Date:"

12. Use the Visual Basic menu editor to create the menu shown in Table
12.13.

Table 12.13. Menu specifications for the Access Params form.

CAPTION Name Shortcut Key

&File mnuFile

----E&xit mnuFileExit

13. Add the following code to the Click event of cmdSetEmployee. This procedure obtains the
employee name from the selected database grid row, sets the class module's strEmpToQuery value,
and moves to the first expense for the selected employee.

Private Sub cmdSetEmployee_Click()
` Sets Employee ID textbox and initiates new query for
` expenses for the selected employee
 Dim strResponse As String
 On Error GoTo QueryError
 txtEmployeeId.Text = dbgExpEmployee.Text
 expDetailParam.strEmpToQuery = dbgExpEmployee.Text
 strResponse = expDetailParam.MoveFirst
 If "OK" <> strResponse Then
 MsgBox strResponse
 Else
 Call ReadObjectValues
 End If
 Exit Sub
QueryError:
 MsgBox Err.Description & Chr(13) & "from " & Err.Source & _
 " -- Number: " & CStr(Err.Number)
 Exit Sub
End Sub

14. Add the following code to the Click event for the movement buttons:

Private Sub cmdFirst_Click()
` Positions to first record in recordset and displays values
 Dim strResponse As String
 strResponse = expDetailParam.MoveFirst
 If "OK" <> strResponse Then
 MsgBox strResponse

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (40 of 89) [9/22/1999 2:17:14 AM]

 Else
 Call ReadObjectValues
 End If
End Sub
Private Sub cmdLast_Click()
` Positions to last record in recordset and displays values
 Dim strResponse As String
 strResponse = expDetailParam.MoveLast
 If "OK" <> strResponse Then
 MsgBox strResponse
 Else
 Call ReadObjectValues
 End If
End Sub
Private Sub cmdNext_Click()
` Positions to Next record in recordset and displays values
 Dim strResponse As String
 strResponse = expDetailParam.MoveNext
 If "OK" <> strResponse Then
 MsgBox strResponse
 Else
 Call ReadObjectValues
 End If
End Sub
Private Sub cmdPrev_Click()
` Positions to Previous record in recordset and displays
` values
 Dim strResponse As String
 strResponse = expDetailParam.MovePrev
 If "OK" <> strResponse Then
 MsgBox strResponse
 Else
 Call ReadObjectValues
 End If
End Sub

15. Define a ReadObjectValues procedure to transfer data from the class properties:

Private Sub ReadObjectValues()
` Read the object values into the form fields
 txtExpenseId.Text = CStr(expDetailParam.lngExpenseId)
 txtEmployeeId.Text = expDetailParam.strEmployeeId
 txtExpenseType.Text = expDetailParam.strExpenseType
 txtDescription.Text = expDetailParam.strDescription
 mskAmountSpent.Text = CStr(expDetailParam.curAmountSpent)
 txtPurchaseDate.Text = CStr(expDetailParam.dtmDatePurchased)
 txtSubmitDate.Text = CStr(expDetailParam.dtmDateSubmitted)
End Sub

16. Create Form Load and Unload procedures to initialize and tear down the application:

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (41 of 89) [9/22/1999 2:17:14 AM]

Private Sub Form_Load()
` Get the ActiveX object to open its database and position
` to the first record
 Dim strDbName As String
 Dim strResponse As String
 On Error GoTo LoadError
 strDbName = App.Path
 strDbName = strDbName & "\Expense.mdb"
 expDetailParam.strDbName = strDbName
 strResponse = expDetailParam.MoveFirst
 If "OK" <> strResponse Then
 MsgBox strResponse
 Else
 Call ReadObjectValues
 End If
 Exit Sub
LoadError:
 MsgBox Err.Description & Chr(13) & "from " & _
 Err.Source & " -- Number: " & CStr(Err.Number)
 Unload Me
End Sub
Private Sub Form_Unload(Cancel As Integer)
 Set expDetailParam = Nothing
End Sub

17. Add the following code to the Click event of mnuFileExit:

Private Sub mnuFileExit_Click()
 Unload Me
End Sub

How It Works

When the form loads, the application sets the database name of the class using the Property Let
strDBName procedure (step 5). This first reference to an Access.Application object causes a new
Access process to start for our work on behalf of the class. The Access application is made invisible to
minimize confusion on the application screen. The query parameter is set to retrieve an employee, and the
recordset is created within the class. The class's navigation methods are, in turn, connected to the navigation
buttons on the form.

When the cmdSetEmployee button is clicked, the class's employee name property is set from the current
record on the grid. The class is notified of the employee name change through the strEmpToQuery
Property Let procedure. The query parameter is changed, and the recordset is reopened to display
expenses for a different employee.

This How-To illustrates a generic programming technique frequently used to logically "partition" data
displays on forms. For example, you might want to display payment histories for multiple customers in a
service bureau application. The use of a grid to display possible customer choices with a detail form for the
payments is an example of a partitioning form.

Comments

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (42 of 89) [9/22/1999 2:17:14 AM]

More and more complex Visual Basic applications are being designed with n-tier architectures relying on
different tiers to perform different functions. In this How-To, we are using a classic three-tier architecture
consisting of the form, the class, and the Access queries. This approach helps make program code
maintenance easier over the long term because interfaces are clear. The use of the Access ExpEmployee
query to show only one row per employee uses the power inherent in the database engine to preprocess data
before using precious bandwidth sending multiple rows and forcing the client to eliminate duplicates.

12.7 How do I...

Convert database data to a spreadsheet form that can be used to edit
and analyze data?

Problem

I have a table with numeric results on which I need to perform some statistical analyses to make the data
meaningful. Visual Basic doesn't have an easy way to analyze complex data, nor does it have many statistical
analysis functions. How can I do the analyses that I need using a spreadsheet so that I can massage the data?

Technique

Although Visual Basic is missing many of the standard statistical and financial functions that many business
and scientific applications need, Microsoft Excel has a rich source of such functions. Using ActiveX
Automation, it is relatively easy to create an Excel spreadsheet, populating it with the data from a database,
and entering whatever Excel formulas are needed for analysis.

You will need Excel for this How-To, although this same technique can be used with most of the popular
spreadsheet applications available for Windows. All that any such spreadsheet needs is support for OLE 2 or
later, as well as some way of discovering the objects that the application makes visible to OLE Automation.
Microsoft provides a program with many of its other products, including the OLE SDK and some of its
programming languages, called OLE2VIEW, that examines an application and presents a list of the objects
available and their properties and methods.

Steps

Open the Visual Basic DataAnal.VBP project. Start the application by selecting Run | Start from the Visual
Basic main menu, by pressing F5, or by clicking the Start button on the Visual Basic toolbar. Click the Select
Database button, and select any Access .MDB file. Select a table from the Table combo box, and then click
Load Spreadsheet to select the numeric fields from the table and enter them into an Excel spreadsheet. When
the spreadsheet is finished loading (see Figure 12.13), click the down arrow on the Results combo box to
examine the average, median, and standard deviation for each field in the table. Double-click the spreadsheet
to edit it or examine a cell's contents.

Figure 12.13. The Data Analysis result screen for the DataAnal.vbp project.

1. Start Visual Basic and create a new project. Save the default form as DATAANAL.FRM, and save
the project as DATAANAL.VBP. This project uses the Microsoft Common Dialog control, so select
Project | Components from the main Visual Basic menu and make sure that the control is selected in
the list.

2. This How-To uses Visual Basic's data access objects, so they must be available to the project. Select

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (43 of 89) [9/22/1999 2:17:14 AM]

javascript:popUp('12fig13.gif')

Project | References from the Visual Basic main menu, and make sure that the Microsoft DAO 3.51
Object Library is checked, as shown in Figure 12.14.

3. Because this application uses the Microsoft Excel 5.0 Object Library, you need to make sure that
Visual Basic has access to that library. Select Tools | References from the Visual Basic main menu, and
make sure that the box in front of the Excel object library is checked. If it doesn't appear in the list,
click the Browse button and add the file XL5EN32.OLB in the Excel program directory, probably
C:\Program Files\Office. Normally, however, the Excel installation program activates the object library
in the Windows Registry.

If you attempt to run this program without Excel installed, the cmdLoadSS_Click event procedure
traps the error and shows a message box about the error.

4. Start Microsoft Excel and minimize the application. Having Excel running during development
speeds programming because you don't have to wait for Excel to load every time you start the project.

Figure 12.14. Setting object references for DataAnal.vbp.

5. Place controls on the form as shown in Figure 12.13, setting properties as shown in Table 12.14.
Note that the Common Dialog control is invisible at runtime, so you can place it anywhere on the form
that is convenient. Also note that the menu Raisan can be called anything you like; it is necessary only
to allow the Excel menu to appear on the form when the OLE object is activated.

Table 12.14. Objects and properties for DATAANAL.FRM.

OBJECT Property Setting

Form Name frmDataAnal

Caption "Data Analysis"

NegotiateMenus True

ComboBox Name lstResults

CommandButton Name cmdLoadSS

Caption "&Load Spreadsheet"

Enabled 0 `False

ComboBox Name lstTables

CommandButton Name cmdQuit

Caption "&Quit"

Default -1 `True

CommandButton Name cmdSelectDB

Caption "&Select Database"

TextBox Name txtFileName

BackColor &H00C0C0C0& (Light gray)

Label Name Label3

Alignment 1 `Right Justify

Caption "Results:"

OLE Name oleExcel

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (44 of 89) [9/22/1999 2:17:14 AM]

javascript:popUp('12fig14.gif')

OLETypeAllowed 1 `Embedded

Label Name Label2

Alignment 1 `Right Justify

Caption "Table:"

CommonDialog Name cdSelectFile

DefaultExt "MDB"

DialogTitle "Open Database File"

Filter "Access Db (*.mdb)|*.mdb|All Files
(*.*)|*.*"

Label Name Label1

Alignment 1 `Right Justify

Caption "Database:"

Menu Name mnuRaisan

Caption "Raisan"

Visible 0 `False

6. Enter the following code into the declarations section of the form. dbSS is used as a global database
object, and the two constants control the actions of the OLE custom control.

`This project makes use of an Excel 5.0 worksheet,
`so the Excel 5.0 Object Library must be specified
`in the VB Tools Reference menu.
Dim dbSS As Database
Const OLE_CreateEmbed As Integer = 0
Const OLE_Activate As Integer = 7

7. Enter the following code in the cmdSelectDB Click event procedure. This procedure sets up
and shows the file open common dialog box for a database to analyze. If a database is selected, it
extracts the names of all the tables, and populates the lstTables combo box.

Private Sub cmdSelectDB_Click()
 `Select a new database file to analyze
 Dim strFileName As String
 Dim X As TableDef
 Dim saveCursor
 `Open the file open common dialog
 cdSelectFile.InitDir = App.Path
 cdSelectFile.ShowOpen
 If Len(cdSelectFile.filename) Then
 saveCursor = Me.MousePointer
 Me.MousePointer = vbHourglass
 txtFileName = cdSelectFile.filename
 `Open the database
 Set dbSS = OpenDatabase(txtFileName)
 `Load the lstTables combo box
 lstTables.Clear

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (45 of 89) [9/22/1999 2:17:14 AM]

 If dbSS.TableDefs.Count Then
 For Each X In dbSS.TableDefs
 `Exclude system tables
 If Not X.Name Like "MSys*" Then
 lstTables.AddItem X.Name
 End If
 Next
 lstTables.ListIndex = 0
 End If
 Me.MousePointer = saveCursor
 Else
 MsgBox "No file selected."
 End If
End Sub

8. Add this code to the cmdLoadSS Click event procedure. When the user clicks the Load
Spreadsheet button, the selected table is examined for all the numeric fields, and the names of those
fields are put in the fieldTypes array. At the end of the For Each...Next loop, the variable i
will contain the number of numeric fields. If there are no numeric fields, the user is shown a message
and the procedure exits. (For simplicity, the number of fields is limited to 26 so that you don't have to
deal with double-lettered column names such as "AA," "AB," and "BB.") Then the table is opened, and
the data from each record for each numeric field is placed in the spreadsheet. After that process is
complete, formulas to calculate the average, median, and standard deviation are inserted at the bottom
of each column. The columns are assigned unique names so that you can read the values and put them
in the lstResults combo box.

Private Sub cmdLoadSS_Click()
 `If button is enabled, we can start
 Dim rsTable As Recordset
 Dim fld As Field
 Dim fieldTypes() As String
 Dim i As Integer, j As Integer
 Dim rowNo As Integer
 Dim cellRange As String
 Dim cellValue As Variant
 Dim cellPlace As String
 Dim cellName As String
 Dim totalRows As Integer
 Dim nameExcel As String
 Dim temp As String
 Dim ssName As String
 Dim saveCursor
 saveCursor = Me.MousePointer
 Me.MousePointer = vbHourglass
 `Create an array of all numerical fields to include in
 `the spreadsheet
 i = 0
 For Each fld In dbSS.TableDefs(lstTables.Text).Fields
 If fld.Type = dbInteger Or _

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (46 of 89) [9/22/1999 2:17:14 AM]

 fld.Type = dbLong Or _
 fld.Type = dbCurrency Or _
 fld.Type = dbSingle Or _
 fld.Type = dbDouble Then
 i = i + 1
 ReDim Preserve fieldTypes(i)
 fieldTypes(i) = fld.Name
 End If
 Next
 If i = 0 Then
 MsgBox "There are no numeric columns in the table. Exiting
 Âprocedure."
Me.MousePointer = saveCursor
 Exit Sub
 End If
 `For convenience, limit the number of columns to 26 so
 `we don't have to do anything fancy to columns AA, AB,
 `and so on
 i = IIf(i > 26, 26, i)
 `Open the recordset of the table
 Set rsTable = dbSS.OpenRecordset(lstTables.Text)
 On Error GoTo OLError
 oleExcel.CreateEmbed "", "Excel.Sheet.8"
 On Error GoTo 0
 ssName = oleExcel.object.Name
 Do While Not rsTable.EOF
 rowNo = rowNo + 1
 For j = 1 To i
 cellValue = rsTable(fieldTypes(j))
 oleExcel.object.Worksheets(1).Cells(rowNo, j).Value _
 = cellValue
 Next
 rsTable.MoveNext
 Loop
 `Insert the formulas to calculate the average, median, and
 `standard deviation, and name the cells
 totalRows = rowNo
 rowNo = totalRows + 2
 For j = 1 To i
 cellRange = ColName(j) & "1:" & ColName(j) _
 & Trim(Str(totalRows))
 cellValue = "=AVERAGE(" & cellRange & ")"
 cellPlace = "=Sheet1!$" & ColName(j) & "$" _
 & Trim(Str(rowNo)) _
 & ":$" & ColName(j) & "$" & Trim(Str(rowNo))
 oleExcel.object.Worksheets(1).Cells(rowNo, j).Value _
 = cellValue

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (47 of 89) [9/22/1999 2:17:15 AM]

 cellName = "average" & Trim(Str(j))
 oleExcel.object.Parent.Names.Add Name:=cellName, _
 RefersTo:=cellPlace
 Next
 rowNo = rowNo + 1
 For j = 1 To i
 cellRange = ColName(j) & "1:" & ColName(j) _
 & Trim(Str(totalRows))
 cellValue = "=MEDIAN(" & cellRange & ")"
 cellPlace = "=Sheet1!$" & ColName(j) & "$" _
 & Trim(Str(rowNo)) _
 & ":$" & ColName(j) & "$" & Trim(Str(rowNo))
 oleExcel.object.Worksheets(1).Cells(rowNo, j).Value _
 = cellValue
 cellName = "median" & Trim(Str(j))
 oleExcel.object.Parent.Names.Add Name:=cellName, _
 RefersTo:=cellPlace
 Next
 rowNo = rowNo + 1
 For j = 1 To i
 cellRange = ColName(j) & "1:" & ColName(j) _
 & Trim(Str(totalRows))
 cellValue = "=STDEV(" & cellRange & ")"
 cellPlace = "=Sheet1!$" & ColName(j) & "$" _
 & Trim(Str(rowNo)) _
 & ":$" & ColName(j) & "$" & Trim(Str(rowNo))
 oleExcel.object.Worksheets(1).Cells(rowNo, j).Value _
 = cellValue
 cellName = "stdev" & Trim(Str(j))
 oleExcel.object.Parent.Names.Add Name:=cellName, _
 RefersTo:=cellPlace
 Next
 `Lastly, put the results in the lstResults control
 lstResults.Clear
 For j = 1 To i
 nameExcel = "average" & Trim(Str(j))
 lstResults.AddItem fieldTypes(j) & " Average = " _
 & oleExcel.object.Worksheets(1).Range(nameExcel).Value
 Next
 For j = 1 To i
 nameExcel = "median" & Trim(Str(j))
 lstResults.AddItem fieldTypes(j) & " Median = " _
 & oleExcel.object.Worksheets(1).Range(nameExcel).Value
 Next
 For j = 1 To i
 nameExcel = "stdev" & Trim(Str(j))
 lstResults.AddItem fieldTypes(j) _

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (48 of 89) [9/22/1999 2:17:15 AM]

 " & " Standard Deviation = " _
 & oleExcel.object.Worksheets(1).Range(nameExcel).Value
 Next
 lstResults.ListIndex = 0
 Me.MousePointer = saveCursor
 Exit Sub
OLError:
 MsgBox "An OLE error occurred, probably because Excel is not
 Âinstalled on this computer."
 Unload Me
End Sub

9. Add the following code to the ColName procedure. This function provides an easy way to convert a
column number to its equivalent letter value.

Private Function ColName(colNo As Integer)
 Dim alpha As String
 alpha = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 ColName = Mid$(alpha, colNo, 1)
End Function

10. Add this code to the lstTables Click event procedure. When the form first loads, the
cmdLoadSS command button is disabled because there is no database table selected from which to
load data. After the user has selected a database and a table, it is possible to load the spreadsheet.

Private Sub lstTables_Click()
 If Len(lstTables.Text) Then
 cmdLoadSS.Enabled = True
 Else
 cmdLoadSS.Enabled = False
 End If
End Sub

11. Enter this code for the cmdQuit Click event procedure. The Set statement releases the dbSS
database object, and then the program ends.

Private Sub cmdQuit_Click()
 Set dbSS = Nothing
 End
End Sub

How It Works

An ActiveX Automation object can be either linked or embedded in an OLE control. If all you want to do is
see the object, linking is the way to go because the object isn't stored in the application. If you want to
visually edit your Visual Basic application, however, you must embed the object. Then you can "activate" the
object for editing by double-clicking it at runtime. Double-clicking is the default for activation, but the
default can be changed by setting the AutoActivate property of the control.

The key to using the OLE control with visual editing is to make sure that it is properly configured for the
object, in this case an Excel spreadsheet. For embedded objects, the control's OLETypeAllowed must be
either 1 (Embedded) or 2 (Either). The object is then created using this line in cmdLoadSS_Click():

oleExcel.CreateEmbed "", "Excel.Sheet.8"

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (49 of 89) [9/22/1999 2:17:15 AM]

If you want the embedded object's application menus to appear when you activate the object, you need to
have a menu as part of the form. If your application doesn't otherwise need a menu, create a dummy menu as
you did here, name it anything you like, and set the Visible property of the single menu item to False.
That way, the object's menu will appear. If your application does use a menu, create it as you normally
would, but set the NegotiatePosition property of each menu item to None, Left, Middle, or
Right, to indicate to Visual Basic how you want to sort the various menu items between the two menus.

Comments

ActiveX Automation is a powerful tool for your programming arsenal, but it might not always be the
appropriate tool given the power of the macro languages, such as Visual Basic for Applications, that are now
embedded in many applications. For use by an analyst who uses Excel for much of the day, this task might
have been better programmed in VBA from Excel. If the analyst later wants to change something, the VBA
macro is right there in the spreadsheet. For use as part of an Executive Information System (EIS), where
several spreadsheets and Access reports might be required for the complete solution, driving the spreadsheet
from Visual Basic might make more sense. Keeping all the custom code for an EIS in one place can simplify
application maintenance.

12.8 How do I...

Include an editable report writer in a Visual Basic application?

Problem

I want to give the users of my application the ability to edit the appearance of the reports generated by my
application. Neither Crystal Reports nor Microsoft Data Report allows that. How can I produce a report based
on a database and let the users edit it?

Technique

Using Visual Basic with Microsoft Word and the other Microsoft Office applications gives enormous
flexibility to your applications. Instead of taking all the time and effort needed to program a mini-word
processor or other application, you can use all the power of Microsoft Word. Even using one of the many
custom controls available for Visual Basic works only if you can find one that has the particular features you
need at a reasonable cost. Why not use the tools you already have?

This How-To uses a WordBasic object to create a database report, which is then embedded in an OLE custom
control on a form. The user can make any changes needed, using Word's own menus and toolbars.

Steps

Open the Visual Basic RPTWRITE.VBP project. Start the application by selecting Run | Start from the
Visual Basic main menu, by pressing F5, or by clicking the Start button on the Visual Basic toolbar. Click the
Create Report button, and select any Access .MDB file. After the data is processed and the report is created,
the file is presented in the OLE control, as shown in Figure 12.15. The report is saved to a temporary file,
TEMPRPT.DOC, in the application directory. Double-click the report window to activate visual editing and
make any changes required. Because a toolbar is not provided with this application, any active Word toolbars
appear as floating toolbars. When you are finished editing, click the Save File button to save the report as a
Word document of your choice.

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (50 of 89) [9/22/1999 2:17:15 AM]

1. Start Visual Basic and create a new project. Save the default form as RPTWRITE.FRM, and save the
project as RPTWRITE.VBP. This project uses the Microsoft Common Dialog control, so select Tools |
Custom Controls from the main Visual Basic menu, and make sure that the control is selected in the
list.

Figure 12.15. The Visual Report Writer form.

2. Start Microsoft Word and minimize the application. Having Word running during development
speeds programming because you don't have to wait for Word to load every time you start the project.

3. Place controls on the form as shown in Figure 12.15, setting the properties as shown in Table 12.15.
Note that the Common Dialog control is invisible at runtime, so you can place it anywhere on the form
that is convenient. Note too that the menu mnuFratsaBlatz can be called anything you like; it is
necessary to allow the Word menu to appear on the form only when the OLE object is activated.

Table 12.15. Objects and properties for RPTWRITE.FRM.

OBJECT Property Setting

Form Name frmReportWriter

Caption "Visual Report Writer"

NegotiateMenus True

PictureBox Name picHead

Align 1 `Align Top

Appearance 0 `Flat

BackColor &H00C0C0C0&

BorderStyle 0 `None

CommandButton Name cmdSave

Caption "&Save File"

CommandButton Name cmdQuit

Caption "&Quit"

CommandButton Name cmdReport

Caption "&Create Report"

Default -1 `True

Label Name lblStatus

Alignment 2 `Center

BorderStyle 1 `Fixed Single

CommonDialog Name cdBiblio

CancelError -1 `True

DefaultExt "MDB"

DialogTitle "BIBLIO.MDB Location"

FileName "biblio.mdb"

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (51 of 89) [9/22/1999 2:17:15 AM]

javascript:popUp('12fig15.gif')

Filter "BIBLIO Database
(biblio.mdb)|biblio.mdb|All
Files (*.*)|*.*|"

OLE Name oleWord

OLETypeAllowed 1 `Embedded

Menu Name mnuFratsaBlatz

Caption "&FratsaBlatz"

NegotiatePosition 1 `Left

Visible 0 `False

4. Enter the following code into the declarations section of the form. The ColumnTabs,
ColumnHeaders, and ColumnWidths arrays are used to store report formatting information so
that any modifications can be made in one place rather than in several different procedures. The OLE
constants are activation and deactivation methods for the OLE control.

Option Explicit
Dim mobjWord As Object
Dim strColumnTabs(6) As String
Dim strColumnHeaders(7) As String
Dim strColumnWidths(7) As String
`OLE Control Constants
Const OLE_Activate As Integer = 7
Const OLE_Deactivate As Integer = 9

5. Enter the following code in the form's Load event procedure. After a status message is put on the
form, the Word object used throughout this application is created. The creation of that object starts
Word running, so minimize it to get it out of the way. (Unfortunately, the AppMinimize command
doesn't always work. You can manually minimize it, although it is interesting to watch the report being
generated!) Finally, the column names and tab arrays are initialized and the column widths calculated.

Status "Creating a Word object"
 Me.Show
 Me.Refresh
 `Create a Microsoft Word object
 Set mobjWord = GetObject("", "Word.Basic")
 mobjWord.AppMinimize ("Microsoft Word")
 cmdReport.Enabled = True
 cmdQuit.Enabled = True
 `Set up standard layout information
 Call SetColumns
 Status "Click on Create Report to create the report."
End Sub

6. Enter the following code into the form's Resize event procedure. When you use an OLE control
containing an object that presents text to the user, you should allow the user to resize the form to see as
much or as little of the data as wanted. In this case, the report can go on for many pages, so allowing
resizing enables the user to examine and edit the report even in full screen if desired. In this case,
resizing is keyed to a couple of static values, the lefthand location of the Create Report button and the
height of the picture box at the top. This helps to keep the form in aesthetically pleasing proportion.

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (52 of 89) [9/22/1999 2:17:15 AM]

Note that enough of a border must be kept around the OLE control to allow for Word's rulers at the top
and left side of the control; these rulers extend outside the bounds of the control itself.

Private Sub Form_Resize()
 Dim intBorder As Integer
 Dim intWindowWidth As Integer
 intBorder = picHead.Height
 intWindowWidth = Me.ScaleWidth
 cmdReport.Height = intBorder
 cmdQuit.Height = intBorder
 cmdQuit.Left = intWindowWidth - cmdQuit.Width - cmdReport.Left
 lblStatus.Width = cmdQuit.Left - lblStatus.Left _
 - cmdReport.Left
 lblStatus.Top = (picHead.Height - lblStatus.Height) / 2
 oleWord.Left = intBorder
 oleWord.Width = Me.ScaleWidth - 2 * intBorder
 oleWord.Height = Me.ScaleHeight - oleWord.Top - intBorder
End Sub

7. Enter the cmdReport Click event procedure in the code section of the form. When the user clicks
the Create Report button, this procedure opens the database and prepares it for producing the report.
After the database is opened, the procedure calls the Print procedures to insert headers, footers,
titles, and column headers into the report. A table is inserted into the report and formatted, and then the
data is entered into the table using a Do While loop. On completion, the report is saved to a
temporary file in the application directory and is shown in the OLE control as an embedded object.

Private Sub cmdReport_Click()
 Dim strTitle As String
 Dim intIdx As Integer
 Dim strInsertText As String
 Dim strFileName As String
 Dim uexpExpDetail As New ExpenseDetail
 Dim strResponse As String
 Status "Opening database table"
 On Error GoTo ExpDetailError
 ` Use the common dialog to open a database.
 cdExpenseFile.InitDir = App.Path
 cdExpenseFile.ShowOpen
 uexpExpDetail.strDbName = cdExpenseFile.filename
 Status "Creating a new Word document"
 mobjWord.FileNew
 strTitle = "Expense Details"
 Status "Inserting header and footer information"
 PrintHeader strTitle, strColumnTabs(), strColumnHeaders()
 PrintFooter "Enlighthened Software, Inc."
 PrintReportTitle strTitle
 PrintColHeaders strColumnTabs(), strColumnHeaders()
 `Start printing the report
 Status "Adding data to report"
 mobjWord.TableInsertTable NumColumns:=7, _

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (53 of 89) [9/22/1999 2:17:15 AM]

 NumRows:=2, _
 InitialColWidth:="2 in"
 For intIdx = 0 To 7
 With mobjWord
 .TableSelectColumn
 .TableColumnWidth ColumnWidth:=strColumnWidths(intIdx)
 .NextCell
 .NextCell
 End With
 Next
 `Format the paragraph height
 mobjWord.TableSelectTable
 mobjWord.FormatParagraph Before:="6 pt"
 `Select the first cell in the table
 `mobjWord.TableSelectColumn
 mobjWord.NextCell
 strResponse = uexpExpDetail.MoveFirst
 Do While "EOF" <> strResponse
 With mobjWord
 strInsertText = CStr(uexpExpDetail.lngExpenseId)
 .Insert strInsertText
 .NextCell
 strInsertText = uexpExpDetail.strEmployeeId
 .Insert strInsertText
 .NextCell
 strInsertText = uexpExpDetail.strExpenseType
 .Insert strInsertText
 .NextCell
 strInsertText = _
 Format$(uexpExpDetail.curAmountSpent, "Currency")
 .Insert strInsertText
 .NextCell
 strInsertText = uexpExpDetail.strDescription
 .Insert strInsertText
 .NextCell
 strInsertText = _
 Format$(uexpExpDetail.dtmDatePurchased, _
 "General Date")
 .Insert strInsertText
 .NextCell
 strInsertText = _
 Format$(uexpExpDetail.dtmDateSubmitted, _
 "General Date")
 .Insert strInsertText
 .NextCell
 .TableInsertRow
 End With

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (54 of 89) [9/22/1999 2:17:15 AM]

 strResponse = uexpExpDetail.MoveNext
 Loop
 `Save the Word document
 mobjWord.ToolsOptionsSave SummaryPrompt:=0
 strFileName = App.Path & "\TempRpt.doc"
 `Word won't let us save a file over an existing document
 If Len(Dir(strFileName)) Then
 Kill strFileName
 End If
 mobjWord.FileSaveAs Name:=strFileName
 oleWord.CreateEmbed strFileName
 oleWord.Refresh
 Status "Report complete"
 Exit Sub
ExpDetailError:
 If Err.Number = 70 Then
 Resume Next
 Else
 MsgBox Err.Description & Chr(13) & "from " & Err.Source _
 & " -- Number: " & CStr(Err.Number)
 Exit Sub
 End If
End Sub

8. Enter this code in the SetColumns Sub procedure. Using the tab settings in the ColumnTabs
array, this procedure calculates the distance between tab settings. These widths will be used to size the
Word table's column widths so that the data appears below the corresponding column header. The
If...Then...Else...End If structure is used because the first column width will be the actual
setting for the first tab. This procedure counts on the tabs being in ascending order, or from left to right
on the page.

Sub SetColumns()
 Dim intIdx As Integer
 strColumnHeaders(0) = "ID"
 strColumnTabs(0) = "0.5"
 strColumnHeaders(1) = "Employee"
 strColumnTabs(1) = "1.25"
 strColumnHeaders(2) = "Type"
 strColumnTabs(2) = "2.0"
 strColumnHeaders(3) = "Amount"
 strColumnTabs(3) = "2.75"
 strColumnHeaders(4) = "Description"
 strColumnTabs(4) = "4.0"
 strColumnHeaders(5) = "Purchased"
 strColumnTabs(5) = "5.0"
 strColumnHeaders(6) = "Submitted"
 strColumnTabs(6) = "6.5"
 For intIdx = LBound(strColumnTabs) To UBound(strColumnTabs)
 If intIdx Then

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (55 of 89) [9/22/1999 2:17:15 AM]

 strColumnWidths(intIdx) = _
 Str$(Val(strColumnTabs(intIdx)) - _
 Val(strColumnTabs(intIdx - 1)))
 Else
 strColumnWidths(intIdx) = strColumnTabs(intIdx)
 End If
 Next
End Sub

9. Enter the following code in the PrintColHeaders Sub procedure of the form. This procedure
inserts the column headings into the report. Note that this procedure is used twice: once for the first
page of the report under the report title, and again in the Word Header so that the headings appear on
all subsequent pages. Note that the WordBasic command ViewHeader is used twice, acting as a
toggle between showing and closing the header.

Sub PrintColHeaders(Tabs() As String, ColHeaders() As String)
 Dim intIdx As Integer
 `Assumes cursor is at the beginning of the proper location
 mobjWord.InsertPara
 mobjWord.LineUp
 mobjWord.FormatParagraph Before:="12 pt", _
 After:="6 pt"
 For intIdx = 0 To UBound(Tabs)
 mobjWord.FormatTabs Position:=Tabs(intIdx) + Chr$(34), _
 Align:=0
 Next
 For intIdx = 0 To UBound(ColHeaders) - 1
 mobjWord.Insert ColHeaders(intIdx) + Chr$(9)
 Next
 With mobjWord
 .StartOfLine
 .SelectCurSentence
 .CharRight 1, 1
 .FormatFont Points:="12", _
 Font:="Times New Roman", _
 Bold:=1
 .FormatBordersAndShading ApplyTo:=0, _
 BottomBorder:=2
 .LineDown
 End With
End Sub

10. Enter the following code in the PrintFooter Sub procedure to insert page footers into the
report. Note that the WordBasic command ViewFooter is used twice, acting as a toggle between
showing and closing the footer.

 `Insert the report footer
 mobjWord.ViewFooter
 mobjWord.FormatTabs ClearAll:=1
 mobjWord.FormatTabs Position:="7.0" + Chr$(34), _

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (56 of 89) [9/22/1999 2:17:15 AM]

 DefTabs:="0.5" + Chr$(34), _
 Align:=2, _
 Leader:=0
 mobjWord.StartOfLine
 mobjWord.Insert Company + Chr$(9) + "Page "
 mobjWord.InsertPageField
 mobjWord.SelectCurSentence
 mobjWord.FormatFont Points:="12", _
 Font:="Times New Roman", _
 Bold:=1
 mobjWord.ViewFooter
End Sub

11. Add the following code to the PrintReport Sub procedure. Continuing the use of WordBasic
commands through OLE, a title is passed to this procedure, entered on the report, and formatted with a
larger font and a drop-shadow box. The box does not appear on the report shown in the OLE control,
but it will appear when the report is printed.

Sub PrintReportTitle(Title As String)
 With mobjWord
 .StartOfDocument
 .InsertPara
 .StartOfDocument
 .Insert Title
 .StartOfLine
 .SelectCurSentence
 .FormatFont Points:="18", _
 Font:="Times New Roman", _
 Bold:=1, _
 Italic:=1
 .CenterPara
 .FormatBordersAndShading ApplyTo:=0, _
 Shadow:=0
 `Leave the cursor on the following line
 .LineDown
 End With
End Sub

12. Enter the following code into the PrintHeader Sub procedure. The calling procedure passes a
report title to this procedure, along with the Tabs and ColHeaders arrays. The first page of the
report will be different from the rest of the report. It will have the page title, but the subsequent pages
will have the report title at the top of the page and will be left justified. The column headings are added
to the header so that they show on all pages. Recall that the column headings were placed on the first
page of the report, under the report title, as well.

Sub PrintHeader(Title As String, Tabs() As String, _
 ColHeaders() As String)
 Dim intIdx As Integer
 With mobjWord
 `For now, set DifferentFirstPage to no

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (57 of 89) [9/22/1999 2:17:15 AM]

 .FilePageSetup TopMargin:="0.8" + Chr$(34), _
 BottomMargin:="0.8" + Chr$(34), _
 LeftMargin:="0.75" + Chr$(34), _
 RightMargin:="0.75" + Chr$(34), _
 ApplyPropsTo:=4, _
 DifferentFirstPage:=0
 End With
 `Insert the report header
 With mobjWord
 .ViewHeader
 .FormatTabs ClearAll:=1
 .FormatTabs Position:="7.0" + Chr$(34), _
 DefTabs:="0.5" + Chr$(34), _
 Align:=2
 .StartOfLine
 .SelectCurSentence
 .CharRight 1, 1
 .FormatFont Points:="12", _
 Font:="Times New Roman", _
 Bold:=1
 .StartOfLine
 .Insert Title + Chr$(9)
 .InsertDateTime DateTimePic:="d' `MMMM', `yyyy", _
 InsertAsField:=0
 .InsertPara
 .InsertPara
 End With
 PrintColHeaders Tabs(), ColHeaders()
 mobjWord.ViewHeader `Closes if it is open
 `Now set DifferentFirstPage
 mobjWord.FilePageSetup DifferentFirstPage:=1
End Sub

13. Enter the following code in the Status Sub procedure in the form. By passing a string to this
procedure, you can keep the user up-to-date on the progress of the report, because it can take some
time to generate the report if the data source is large. A useful enhancement of this might be to add a
progress gauge or an accumulated record count to show actual progress through the table.

Sub Status(txtCaption)
 lblStatus.Caption = txtCaption
 lblStatus.Refresh
End Sub

14. Enter the following code in the cmdQuit Click and Unload event procedures. When the Quit
button is clicked, a final status message is shown and the application ends. When the form is unloaded,
the objWord object is released by being set to Nothing.

Private Sub cmdQuit_Click()
 Status "Ending application"
 Unload Me

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (58 of 89) [9/22/1999 2:17:15 AM]

End Sub
Private Sub Form_Unload(Cancel As Integer)
 `Shut down Word
 Set objWord = Nothing
End Sub

How It Works

This How-To uses many of the formatting and inserting commands available in WordBasic. If you are going
to modify the code in this How-To, you should have a copy of the Word Developer's Kit, which has lots of
detailed information about WordBasic and, of course, Word itself.

The easiest way to become familiar with WordBasic is to use the macro recorder in Word. Before creating a
document or formatting it, turn the recorder on by selecting Tools | Macro | Record New Macro, enter a
unique name for the macro, and then click Record. Word then records all your steps, not as individual
keystrokes but as fully formed commands using VBA. When you are finished making changes, simply click
the button with the blue square in the floating Macro Recorder toolbar. You can then open the macro using
Tools | Macro | Visual Basic Editor, and you can examine or even cut and paste it into your application.
You'll need to reformat the code to conform to Visual Basic's named arguments syntax, and you'll need to
enclose the code with With <object name>...End With so that Visual Basic knows which object to
apply the commands to. Alternatively, you can append the object name to the front of the WordBasic
command for individual lines. Both methods are demonstrated throughout the code in this How-To.

A Word table was used to contain the data in the report. Not only does this make it easy to line up the
different fields in the report, but it also simplifies the problem of having fields too long to fit in the width
allocated on a single line of the report. By changing the paragraph formatting in the table's cells, you can
achieve virtually any appearance you want. Alternatively, you could use the ColumnTabs array to put data
on the report the same way the column headers were. This approach might be easier if a record's fields will be
on multiple lines on the report, but you can also use Word's Merge Cells and other table formatting to achieve
different effects on the different lines of a record.

Remember that it is easiest to design the report in Word first and then translate the design into a Visual Basic
program, with or without the macro recorder.

If you want the embedded object's application menus to appear when you activate the object, you need to
have a menu as part of the form. If your application doesn't otherwise need a menu, create a dummy menu,
name it anything you like, and set the Visible property of the single menu item to False. That way, the
object's menu will appear. If your application does use a menu, create it as you normally would, but set the
NegotiatePosition property of each menu item to None, Left, Middle, or Right to give Visual
Basic an indication of how you want to sort the various menu items between the two menus.

12.9 How do I...

Work with the Windows Registry for my ActiveX classes?

Problem

All this work I am doing with ActiveX components means that my development computer is going to require
some maintenance. How do I keep my Windows Registry neat and tidy?

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (59 of 89) [9/22/1999 2:17:15 AM]

Technique

All ActiveX components must be registered in order to work correctly. The Windows Registry contains
information about each ActiveX component available on your system and the location of the files required to
use the component. ActiveX EXE files created by Visual Basic 6 automatically include the code to register
themselves in the system registry. Visual Basic will also register ActiveX DLL files on your development
machine. You will need to register your DLLs on machines to which you distribute your programs. The
RegSvr32.EXE program is designed to add and remove Registry entries for your components.

Steps
1. Start a DOS command box and change to your Windows System32 directory, usually
C:\WINDOWS\SYSTEM32 on Windows 95 and C:\WINNT\SYSTEM32 on Windows NT.

2. Invoke REGSVR32, passing the name of the ActiveX.DLL file from How-To 12.3:

C:\WINDOWS\SYSTEM32> REGSVR32 C:\CODE\CHAPTER12\HOWTO03\ACTIVEX.DLL

Figure 12.16 shows the results.

Figure 12.16. RegSvr32 run results.

How It Works

Every Windows system has a Registry containing information about nearly everything on the system. The
Registry is divided into HKEY classes for the current configuration, current user, users, machine, and root. For
the purposes of keeping our ActiveX components running, we are concerned with the
HKEY_CLASSES_ROOT section of the Registry. The component object model uses the Registry in two ways
to resolve ActiveX component references--by name and CLSID. The name for a component is assigned by
you in the Project Properties dialog box. ActiveXDll_For_HowTo_12_3.ExpenseDetail was
assigned as the full name for How-To 12.3. Component names are in the form
<Application>.<Object> in the event that a single DLL or EXE file contains more than one public
object. The CLSID is generated by Windows as a GUID (globally unique identifier). The GUID is a 16-byte
unique key presented on the screen by Windows as a formatted hexadecimal string. A typical CLSID might
look like {3CF0F563-0DC0-11D1-9AF0-004033373A8F}.

Windows uses the name of a component as a key into the Registry to find the associated CLSID. The CLSID
can then be used to find all the required information about the component so that Windows can run it. The
information for the ActiveX.DLL from How-To 12.3 includes

The InProcServer32 filename to load to run the component.●

The ProgID set as the project name on the project properties page (the same as the registered name).●

The TypeLib identifying the interface defined by the component (so that incompatible client programs
will not be allowed to invoke the component).

●

The version number identifying the version of the component program installed (relative to the version
number requested by the calling program).

●

You can manually inspect and modify the Windows Registry by invoking the RegEdt32.EXE program from
your Windows system directory.

In this How-To, RegSvr32 loads the specified DLL and invokes DllRegisterServer to cause the DLL
to be registered on the system. Whenever you use Visual Basic to create an object, the runtime library looks
in the Registry for the logical name you supplied, and then loads the associated implementing file. For

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (60 of 89) [9/22/1999 2:17:15 AM]

javascript:popUp('12fig16.gif')

example, when you request an Access.Application object, the Registry is accessed to determine which
program on which drive should be started to provide the required services.

Comments

RegSvr32 can also be used to unload DLL files from the Registry with the following syntax:

REGSVR32 /U <FileName>.DLL

Sometimes, manually unregistering and then reregistering a component can help convince an otherwise balky
application to run. Frequently, the cause of application run failure is a missing DLL file called by one of your
components. Running RegSvr32 for each component can sometimes help isolate missing DLL files.

In addition to RegSvr32, Microsoft has a program called RegClean available from its Web site. RegClean
audits the Registry on a machine and removes entries for which the enabling component is missing. Suppose,
for example, that you manually purged all the files for Excel from your system without running the uninstall
program. All your registered DLLs would be gone, but the Registry entries would still be there, pointing to
non-existent files. ActiveX components for Excel will then fail to run correctly. RegClean cleans up the
Registry entries to remove these "dangling" entries pointing to non-existent files. The program also leaves
behind an "undo" file when you are finished to help restore mistaken removals.

12.10 How do I...

Create my own custom data control?

Problem

I like the power of the Visual Basic 6 Data control, but I want something with more speed and a different user
interface. How can I mimic the data control's functions but make it run faster?

Technique

Building a data control is simpler than it sounds, but the debug and test environment is more complex than a
form-based project because an ActiveX control must run in both the design-time and the runtime
environments. Design-time code runs when controls are dropped onto the form, when objects are resized, and
when control properties are changed.

In outline, ActiveX controls are developed in the following general sequence:

Plan the control's properties, methods, events, and visual interface.●

Create the development and test environment.●

Design and develop the visual and design-time interfaces.●

Add the code for the data control's functions.●

Most of the time spent developing an ActiveX control is spent on the visual interface and the design-time
requirements of a visual control.

Plan the Control

Control planning is the easiest and hardest part of development--easiest because everyone knows what a data
control needs to do, and hardest because we also have to handle "nasty" things that might be thrown up in our
development or support paths. Nobody wants to support a control that crashes every time somebody does

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (61 of 89) [9/22/1999 2:17:15 AM]

something unexpected. Fortunately, Visual Basic's object-oriented features help us expect and prevent errors.

The goal of the simple data control is to provide many of the conveniences of the Visual Basic data control
with fast performance and complete source code availability. This data control will support four movement
operations (first, previous, next, and last) and three data change operations (add new, update, and delete). The
visual implementation of all operations will be constituent control buttons placed on the control. A
constituent control is one we will place on top of our control to deliver a desired function. Any existing
ActiveX control that has been designed to be placed on another control can be a constituent control for
another project. All the common controls that shipped with Visual Basic 6 can be used as constituent
controls, including text boxes, buttons, frames, list boxes, pictures, labels, and shapes. The OLE Automation
control cannot be used as a constituent control. If you plan to distribute your control to others, even at no
charge, be sure to check your license agreements and the Visual Basic 6 Books Online carefully.

Build the Development and Test Environment

The development and test environment for an ActiveX control is different from that of standard EXE projects
because ActiveX controls have both design-time and runtime code attributes that can be different. The most
important distinction is the way in which the control stores design-time property values. Properties such as
the captions, data sources, and database names must be stored at design time if they are specified.

The development and test environment is implemented as a project group in order to have the ActiveX
control project and the test form project available simultaneously. Whenever the control's object (visual
design) window is closed, the control is placed into design-time Run mode, and the design-time code can be
debugged within a single Visual Basic programming session.

Develop the Visual and Design-Time Interfaces

Your control's visual interface is the most obvious part of your work because the visual behavior is what
everyone will notice. At design time, we deal with the resize event for managing constituent control sizes and
control properties that need to be saved with the form. In the case of our private data control, we worry about
saving the database location.

Develop the Core Functions

Finally, we can develop the core functions and events for the data control. The core operations displayed by
the buttons are directly implemented with the underlying data access object (DAO) methods. The public
events notify the form of changes in the underlying data and of validation required prior to new, updated, or
deleted records. The validation event is not fired when the data changes through control movement.

Steps

Open the project ExpDataControl.vbg. The form shown in Figure 12.17 appears. Experiment with the form
and its buttons to get a feel for how this data control works.

Figure 12.17. The DataControl Test form.

1. Create a new ActiveX control project in your work area. Name the default User Control object
ctlExpenseDetail. Select Project | References from the main menu, and include a reference to the
Microsoft DAO 3.51 Object Library. Make sure that the OLE Automation library is not selected.

2. Select Project | Project1 properties from the Visual Basic 6 main menu, or right-click Project1 in the
Project Explorer window and select properties from the Object menu. Name the project
ExpDetailControl. Set the project description to Expense Detail ActiveX Control, as

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (62 of 89) [9/22/1999 2:17:15 AM]

javascript:popUp('12fig17.gif')

shown in Figure 12.18. The description will be saved to your Windows system Registry when you
compile your project. Save the control and project files.

Figure 12.18. The Project Properties window.

3. Add a new project to your work area by selecting File | Add Project from the main menu. The Add
Project window appears. Select Standard EXE from the New tab.

4. Name the default form TestDataControl and the default project prjTestDataControl.
Save the project and project group. When prompted, name the project group
ExpDataControl.vbg. Project groups help you debug related projects from a single Visual Basic
6 session.

5. Add seven command buttons and two frames to the control as shown in Figure 12.19. Don't worry
about exact placement because the resize event will manage final placement and sizing. (These visual
elements are almost the same as those in How-To 12.2.)

Figure 12.19. Expense data control visual elements.

6. Set the properties of the control elements as shown in Table 12.16.

Table 12.16. Objects and properties for the Expense Data control.

OBJECT PROPERTY Setting

UserControl Name ExpDataControl

Frame Name fraBorder

Caption "Expense Data Control"

Frame Name fraNavigate

Caption "Navigate"

CommandButton Name cmdFirst

Caption "&First"

CommandButton Name cmdPrev

Caption "&Prev"

CommandButton Name cmdNext

Caption "&Next"

CommandButton Name cmdLast

Caption "&Last"

Frame Name fraMaintain

Caption "Maintain"

CommandButton Name cmdNew

Caption "Ne&w"

CommandButton Name cmdUpdate

Caption "&Update"

CommandButton Name cmdDelete

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (63 of 89) [9/22/1999 2:17:15 AM]

javascript:popUp('12fig18.gif')
javascript:popUp('12fig20.gif')

Caption "&Delete"

USING DEBUG.PRINT TO TRACE CONTROL BEHAVIOR
One of the most challenging parts of developing an ActiveX control is determining which events
will fire and in what order. This How-To employs Debug.Print statements to trace control
behavior, especially during design time. The first statement in most of the control's event
procedure is usually this:

Debug.Print "Event Name" & Extender.Name

At both design time and runtime, this statement causes a debug trace in the immediate window
of all control behaviors. The Extender object reflects the control's container into your code in
order to access important information about the control's environment. Standard Extender
properties for a control include Name, Visible, Enabled, Top, Left, Height, and
Width. These properties exist in your container's object but can be of value to your code for
resizing and property initialization. You can use the trace information to learn more about
design-time events and their effect on your control.

7. Add the following code to the UserControl_Resize event of your control:

Private Sub UserControl_Resize()
` Resize constituent controls to look "nice"
Dim intMargin As Integer
Dim intHeight As Integer
Dim intWidth As Integer
 ` Trace our behavior
 Static intCountResized As Integer
 intCountResized = intCountResized + 1
 Debug.Print Extender.Name & " Resized " _
 & Str$(intCountResized) & " times"
 ` Adjust the placement of the border frame
 fraBorder.Move 0, 0, ScaleWidth, ScaleHeight
 ` Calculate the standard margin as a proportion of
 ` the total control width.
 intMargin = ScaleWidth / 36
 ` Calculate and adjust the sizes of the internal frames.
 intHeight = (ScaleHeight - (1.5 * intMargin) - intMargin) / 2
 intWidth = ScaleWidth - (2 * intMargin)
 fraMaintain.Move intMargin, (intMargin * 2), _
 intWidth, intHeight
 fraNavigate.Move intMargin, _
 (fraMaintain.Top + fraMaintain.Height), _
 intWidth, intHeight
 ` Adjust the maintenance button sizes and locations
 ` based on the number of buttons and margins required.
 ` We need an extra margin in the height because the frame
 ` caption takes about one margin.

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (64 of 89) [9/22/1999 2:17:15 AM]

 intHeight = fraMaintain.Height - (3 * intMargin)
 intWidth = (fraMaintain.Width - (4 * intMargin)) / 3
 cmdNew.Move intMargin, _
 2 * intMargin, _
 intWidth, intHeight
 cmdUpdate.Move cmdNew.Left + intWidth + intMargin, _
 2 * intMargin, _
 intWidth, intHeight
 cmdDelete.Move cmdUpdate.Left + cmdUpdate.Width + intMargin, _
 2 * intMargin, _
 intWidth, intHeight
 ` Adjust the movement button sizes and locations based on
 ` the number of buttons and margins required.
 intHeight = fraNavigate.Height - (3 * intMargin)
 intWidth = (fraNavigate.Width - (5 * intMargin)) / 4
 cmdFirst.Move intMargin, _
 2 * intMargin, _
 intWidth, intHeight
 cmdPrev.Move cmdFirst.Left + intWidth + intMargin, _
 2 * intMargin, _
 intWidth, intHeight
 cmdNext.Move cmdPrev.Left + intWidth + intMargin, _
 2 * intMargin, _
 intWidth, intHeight
 cmdLast.Move cmdNext.Left + intWidth + intMargin, _
 2 * intMargin, _
 intWidth, intHeight
End Sub

Although lengthy, the Resize event code just works from the outside of the control inward, making
sure that everything fits on the control with pleasing margins.

8. Set a breakpoint at the beginning of the Resize event procedure. Run the design-time environment
of your control by closing the control's object design window (where you add buttons and frames).
Notice that the Toolbox button for your UserControl, shown in Figure 12.20, has changed from gray to
color.

Figure 12.20. The Visual Basic Toolbox with the user control active.

9. Get ready to test your Resize event procedure. Select View | Immediate Window from the main
menu. Open the TestDataControl form design window. Select your new UserControl button from
the Visual Basic 6 Toolbox, and draw a control on the form. Don't be surprised when your Resize
event breakpoint is fired; every time the control is dropped onto a form or resized, this event occurs.
Take a moment to walk through the resize code and get a feel for its behavior. Don't forget to clear the
breakpoint when you are done.

10. Close the form's design window and stop the design-time instance of the UserControl by opening
the UserControl design window.

DEBUGGING AND TESTING USERCONTROL OBJECTS

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (65 of 89) [9/22/1999 2:17:15 AM]

javascript:popUp('12fig21.gif')

Debugging UserControl objects is straightforward when all the rules are clear. The Visual
Basic development environment automatically runs the control's design-time instance whenever
the UserControl's object design window is closed. The UserControl's icon is then activated on
the Toolbox palette. Any breakpoints or Debug object statements in the UserControl code are
then activated, and you can debug design-time code as you manipulate the UserControl on forms
or set properties.

However, you might find the instance of your control on the form hatched over (not running in
design mode) when you want to test with no apparent way to get the design-time code running.
This turn of events is usually caused by a runtime compile-on-demand error, forcing a project
reset and premature (in the programmer's mind) return to the design environment. Try manually
compiling all the projects in the group to correct this error. Select File | Make Project Group
from the Visual Basic main menu. Usually, recompiling the UserControl's .OCX file clears up
the design-time environment. Alternatively, you can turn off the Compile On Demand check box
on the General tab of the Options dialog box found on the Tools menu.

11. From the UserControl Code window, add a Caption property by selecting Tools | Add Procedure
from the main menu. Name the procedure Caption, and declare it as a public property (see Figure
12.21). Click OK.

Figure 12.21. Use the Visual Basic Add Procedure window to declare the Caption property.

12. Modify the Caption Property Let and Property Get procedures as shown next. Be sure
to change the variant declarations to string declarations.

Public Property Get Caption() As String
 Caption = fraBorder.Caption
End Property
Public Property Let Caption(ByVal strNewValue As String)
 ` Place the caption in the border frame.
 fraBorder.Caption = strNewValue
 ` Notify the container so that the property
 ` window may be updated
 PropertyChanged "Caption"
End Property

13. Add the following code to the UserControl_InitProperties event. Every time the control
is placed onto a form, the caption will be set to the con-trol's name. (Remember that referencing a
property from within a class causes the Property Let function to be called.)

Private Sub UserControl_InitProperties()
 ` Trace behavior.
 Debug.Print Extender.Name & ": InitProperties"
 ` Set the Caption property
 Caption = Extender.Name
End Sub

14. Add the following code to the UserControl WriteProperties procedure. The
WriteProperties event is called whenever the form is saved.

Private Sub UserControl_WriteProperties(PropBag As PropertyBag)
 ` Trace behavior.

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (66 of 89) [9/22/1999 2:17:16 AM]

javascript:popUp('12fig22.gif')

 Debug.Print Extender.Name & ": WriteProperties"
 `Save the caption property to the property bag.
 PropBag.WriteProperty "Caption", Caption, _
 Extender.Name
End Sub

15. Add the following code to the UserControl ReadProperties event to retrieve the saved
properties:

Private Sub UserControl_ReadProperties(PropBag As PropertyBag)
 ` Trace behavior.
 Debug.Print Extender.Name & ": ReadProperties"
 `Retrieve the caption
 Caption = PropBag.ReadProperty("Caption", _
 Extender.Name)
End Sub

16. Compile the entire project by selecting File | Make Project Group from the main menu. Close the
UserControl design window and open the test form design window. Place a UserControl object on
the test form. Experiment with the Caption property from the Visual Basic properties window in
Design mode. Try saving, closing, and reopening the form, and observe what happens in the Immediate
window.

17. Add the following declarations to the UserControl to define our recordset and the fields to be
managed:

` Variables to define and control the recordset
Private mblnRecSetOpen As Boolean
Private mdbExpense As Database
Private mrecExpense As Recordset
Private mstrDbName As String
` Module variables to hold property value(s)
Private mlngExpenseId As Long
Private mstrEmployeeId As String
Private mstrExpenseType As String
Private mcurAmountSpent As Currency
Private mstrDescription As String
Private mdtmDatePurchased As Date
Private mdtmDateSubmitted As Date

18. Define property procedures for the expense detail table by selecting Tools | Add Procedure from
the main menu when the UserControl code is active onscreen. Name the property
strDatabaseName and declare it to be a public property. Modify the generated Property Get
and Let procedures as shown next. This property can be set only at runtime because we don't want to
bother with opening and closing recordsets during form design. The Let procedure checks to see
whether the recordset is already open and closes it before opening it again.

Public Property Get strDatabaseName() As String
` Returns the database name to the container
 strDatabaseName = mstrDbName
End Property
Public Property Let strDatabaseName(ByVal strNewValue As String)
` Assigns database name to control and closes and opens the

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (67 of 89) [9/22/1999 2:17:16 AM]

` control's recordset
 ` Trace behavior.
 Debug.Print Extender.Name & ": Let strDatabaseName"
 ` Don't allow database to be set at design time
 If Ambient.UserMode = False Then
 Err.Raise Number:=31013, _
 Description:= _
 "Property is read-only at design time."
 Exit Property
 End If
 On Error GoTo OpenError
 If mblnRecSetOpen Then
 mrecExpense.Close
 mdbExpense.Close
 End If
 mstrDbName = strNewValue
 Set mdbExpense = _
 DBEngine.Workspaces(0).OpenDatabase(mstrDbName)
 Set mrecExpense = mdbExpense.OpenRecordset("Expenses")
 mblnRecSetOpen = True
 Exit Property
OpenError:
 ` Because we are designing this class for potential unattended
 ` operation, we'll have to raise an error on our own
 Err.Raise Number:=Err.Number
 Err.Clear
 Exit Property
End Property

19. Add some code to initialize the state control variables of the control so that the recordset open and
close logic works correctly:

Private Sub UserControl_Initialize()
` Initialize control's core variables
 ` Trace behavior, but we can't use the name because
 ` the extender object is not available
 Debug.Print "Initialize"
 mblnRecSetOpen = False
End Sub

20. Add a Terminate event procedure to close the database and recordset. Note that the Visual Basic
documentation states very clearly that control terminate event handlers must manage their own errors
because there is usually nothing in the container application on the call stack to handle an error. For the
same reason, never raise an error from a terminate event. For tracing purposes, the Extender object
is no longer available for retrieving the control's name.

Private Sub UserControl_Terminate()
 ` Trace behavior.
 Debug.Print "UserControl_Terminate"
 ` We don't really care about errors when cleaning up.

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (68 of 89) [9/22/1999 2:17:16 AM]

 On Error Resume Next
 ` Close the recordset
 mrecExpense.Close
 ` Close the expense database
 mdbExpense.Close
 ` Reset the error handler
 On Error GoTo 0
 Exit Sub
End Sub

21. The control will expose two events to its container--one for data changes and the other for
validation. Add the following code to the declarations section of the UserControl:

` Data changed event for data control movement
 ` or internally generated change tells the container
 ` that the control's view of the data has changed
 Public Event DataChanged()
 ` Action enum for validate event eases container
 ` code development
 Public Enum EXP_CHANGE_TYPE
 expAddNewValidate
 expUpdateValidate
 expDeleteValidate
 End Enum
 ` Validate response enum tells the control whether to
 ` proceed with the data change
 Public Enum EXP_RESPONSE_TYPE
 expOK
 expCancel
 End Enum
 ` Validate event for data control
 Public Event ValidateData(ByRef Response As EXP_RESPONSE_TYPE, _
 ByVal Change As EXP_CHANGE_TYPE)

The DataChanged event will tell the containing form that the underlying data has changed and that
the container should refresh its view of the data. The public Enum declarations assist the developer of
the containing form in understanding the event parameters. The ValidateData event will tell the
containing form that a data change is about to take place and provide an opportunity for cancellation by
the container.

22. Implement three helper subroutines to move data between record fields and the control data
variables and to clear the object variables:

Private Sub SetRecordset(recExp As Recordset)

` Copies current values to Recordset
 With recExp
 !EmployeeId = mvarstrEmployeeId
 !ExpenseType = mvarstrExpenseType
 !AmountSpent = mvarcurAmountSpent
 !Description = mvarstrDescription
 !DatePurchased = mvardtmDatePurchased

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (69 of 89) [9/22/1999 2:17:16 AM]

 !DateSubmitted = mvardtmDateSubmitted
 End With
End Sub
Private Sub GetRecordset(recExp As Recordset)
` Copies current values to Recordset
 With recExp
 mvarlngExpenseId = 0 + !ExpenseID
 mvarstrEmployeeId = "" & !EmployeeId
 mvarstrExpenseType = "" & !ExpenseType
 mvarcurAmountSpent = 0 + !AmountSpent
 mvarstrDescription = "" & !Description
 mvardtmDatePurchased = !DatePurchased
 mvardtmDateSubmitted = !DateSubmitted
 End With
End Sub
Private Sub ClearObject()
` Clears all object variables
 mlngExpenseId = 0
 mstrEmployeeId = ""
 mstrExpenseType = ""
 mcurAmountSpent = 0
 mstrDescription = ""
 mdtmDatePurchased = CDate("1/1/1980")
 mdtmDateSubmitted = CDate("1/1/1980")
End Sub

23. Implement the core data movement operations by providing code to work for the movement button
clicks:

Private Sub cmdFirst_Click()
` Move to the first record
 On Error GoTo MoveError
 If mblnRecSetOpen Then
 With mrecExpense
 If Not (True = .BOF _
 And True = .EOF) Then
 ` Dataset is not empty.
 ` Move to the first record.
 .MoveFirst
 Call GetRecordset(mrecExpense)
 RaiseEvent DataChanged
 End If
 End With
 End If
 Exit Sub
MoveError:
 ` Return the error description
 Err.Raise Number:=Err.Number, Source:=Err.Source, _
 Description:=Err.Description

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (70 of 89) [9/22/1999 2:17:16 AM]

 Err.Clear
 Exit Sub
End Sub
Private Sub cmdLast_Click()
` Move to the last record
 On Error GoTo MoveError
 If mblnRecSetOpen Then
 With mrecExpense
 If Not (True = .BOF _
 And True = .EOF) Then
 ` Dataset is not empty.
 ` Move to the last record.
 .MoveLast
 Call GetRecordset(mrecExpense)
 RaiseEvent DataChanged
 End If
 End With
 End If
 Exit Sub
MoveError:
 ` Return the error description
 Err.Raise Number:=Err.Number, Source:=Err.Source, _
 Description:=Err.Description
 Err.Clear
 Exit Sub
End Sub
Private Sub cmdNext_Click()
` Move to the next record
 On Error GoTo MoveError
 If mblnRecSetOpen Then
 With mrecExpense
 If True = .BOF _
 And True = .EOF Then
 .MoveLast
 Else
 ` Dataset is not empty.
 ` Move to the previous record.
 .MoveNext
 If .EOF Then
 .MoveLast
 End If
 End If
 Call GetRecordset(mrecExpense)
 RaiseEvent DataChanged
 End With
 End If
 Exit Sub

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (71 of 89) [9/22/1999 2:17:16 AM]

MoveError:
 ` Return the error description
 Err.Raise Number:=Err.Number, Source:=Err.Source, _
 Description:=Err.Description
 Err.Clear
 Exit Sub
End Sub
Private Sub cmdPrev_Click()
` Move to the previous record
 On Error GoTo MoveError
 If mblnRecSetOpen Then
 With mrecExpense
 If True = .BOF _
 And True = .EOF Then
 .MoveFirst
 Else
 ` Dataset is not empty.
 ` Move to the previous record.
 .MovePrevious
 If .BOF Then
 .MoveFirst
 End If
 End If
 Call GetRecordset(mrecExpense)
 RaiseEvent DataChanged
 End With
 End If
 Exit Sub
MoveError:
 ` Return the error description
 Err.Raise Number:=Err.Number, Source:=Err.Source, _
 Description:=Err.Description
 Err.Clear
 Exit Sub
End Sub

24. Implement the data maintenance operations by adding Click event procedures for the New,
Update, and Delete buttons:

Private Sub cmdNew_Click()
` Inserts a brand-new record into the database and leaves the
` newly inserted values as the current object values.
Dim uexpResponse As EXP_RESPONSE_TYPE
 On Error GoTo InsertError
 RaiseEvent ValidateData(uexpResponse, expAddNewValidate)
 If expOk = uexpResponse Then
 With mrecExpense
 .AddNew
 mdtmDateSubmitted = Now

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (72 of 89) [9/22/1999 2:17:16 AM]

 Call SetRecordset(mrecExpense)
 .Update
 `Move to the most recently modified record
 .Bookmark = .LastModified
 Call GetRecordset(mrecExpense)
 RaiseEvent DataChanged
 End With
 End If
 Exit Sub
InsertError:
 ` Return the error description
 Err.Raise Number:=Err.Number, Source:=Err.Source, _
 Description:=Err.Description
 Err.Clear
 Exit Sub
End Sub
Private Sub cmdUpdate_Click()
` Updates Expenses table from current object values
Dim uexpResponse As EXP_RESPONSE_TYPE
 On Error GoTo UpdateError
 RaiseEvent ValidateData(uexpResponse, expAddNewValidate)
 If expOk = uexpResponse Then
 With mrecExpense
 .Edit
 Call SetRecordset(mrecExpense)
 .Update
 `Move to the most recently modified record
 .Bookmark = .LastModified
 Call GetRecordset(mrecExpense)
 RaiseEvent DataChanged
 End With
 End If
 Exit Sub
UpdateError:
 ` Return the error description
 Err.Raise Number:=Err.Number, Source:=Err.Source, _
 Description:=Err.Description
 Err.Clear
 Exit Sub
End Sub
Private Sub cmdDelete_Click()
` Deletes the expense detail record whose value is
` current from the database
Dim uexpResponse As EXP_RESPONSE_TYPE
 On Error GoTo DeleteError
 RaiseEvent ValidateData(uexpResponse, expAddNewValidate)
 If expOk = uexpResponse Then

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (73 of 89) [9/22/1999 2:17:16 AM]

 With mrecExpense
 .Delete
 If 0 = .RecordCount Then
 Call ClearObject
 Else
 .MoveNext
 If .EOF Then
 Call ClearObject
 Else
 Call GetRecordset(mrecExpense)
 End If
 End If
 End With
 End If
 RaiseEvent DataChanged
 Exit Sub
DeleteError:
 ` Return the error description
 Err.Raise Number:=Err.Number, Source:=Err.Source, _
 Description:=Err.Description
 Err.Clear
 Exit Sub
End Sub

25. Provide Property Get and Let procedures for the core data variables implemented by the
control. Note that cutting and pasting the property procedures one pair at a time is much easier than
using the Add Procedure dialog box from step 18.

Public Property Get curAmountSpent() As Currency
 ` Return the control's current amount
 curAmountSpent = mcurAmountSpent
End Property
Public Property Let curAmountSpent(ByVal curNewValue As Currency)
 ` Set the amount spent
 mcurAmountSpent = curNewValue
End Property
Public Property Get dtmDatePurchased() As Date
 ` Return the control's current purchase date
 dtmDatePurchased = mdtmDatePurchased
End Property
Public Property Let dtmDatePurchased(ByVal dtmNewValue As Date)
 ` Set the purchase date
 mdtmDatePurchased = dtmNewValue
End Property
Public Property Get dtmDateSubmitted() As Date
 ` Return the control's current submitted date.
 ` There is no property Let procedure because the
 ` value is set only when the record is created.
 dtmDateSubmitted = mdtmDateSubmitted

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (74 of 89) [9/22/1999 2:17:16 AM]

End Property
Public Property Get lngExpenseId() As Long
 ` Return the database-assigned ExpenseID.
 ` Note that there is no Property Let procedure
 ` because the database makes the key assignment.
 lngExpenseId = mlngExpenseId
End Property
Public Property Get strDescription() As String
 ` Return the control's current description
 strDescription = mstrDescription
End Property
Public Property Let strDescription(ByVal strNewValue As String)
 ` Set the expense description
 mstrDescription = strNewValue
End Property
Public Property Get strEmployeeId() As String
 ` Return the control's current employee ID
 strEmployeeId = mstrEmployeeId
End Property
Public Property Let strEmployeeId(ByVal strNewValue As String)
 ` Set the employee ID
 mstrEmployeeId = strNewValue
End Property
Public Property Get strExpenseType() As String
 ` Return the control's current expense type
 strExpenseType = mstrExpenseType
End Property
Public Property Let strExpenseType(ByVal strNewValue As String)
` Sets the expense type to an allowed value
 Dim strTemp As String
 strTemp = UCase$(strNewValue)
 If strTemp = "TRAVEL" _
 Or strTemp = "MEALS" _
 Or strTemp = "OFFICE" _
 Or strTemp = "AUTO" _
 Or strTemp = "TOLL/PARK" Then
 mstrExpenseType = strTemp
 Else
 Err.Raise Number:=31013, _
 Description:="Expense type must be TRAVEL, MEALS, " _
 & "OFFICE, AUTO, or TOLL/PARK"
 `Err.Clear
 Exit Property
 End If
End Property

The strExpenseType Property Let procedure illustrates raising a field-level validation error
from a User Control. The lngExpenseId and dtmDateSubmitted properties do not have Let

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (75 of 89) [9/22/1999 2:17:16 AM]

procedures because these properties are set by the database and insert code.

26. The actual data properties should be available only at runtime and should not appear on the
control's property page. Select Tools | Procedure Attributes from the main menu. Click Advanced.
Select each data property in turn from the Name list box, check Don't Show in Property Browser, and
click the Apply button. Figure 12.22 shows the advanced Procedure Attributes dialog box.

27. Complete the Test Data Control form so that it looks like Figure 12.23, and set the form's control
attributes as shown in Table 12.17. Note that the Amount field is stored in a masked edit control.

Figure 12.22. The advanced Procedure Attributes dialog box.

Figure 12.23. Layout of the Test Data Control form.

Table 12.17. Objects and properties for the Test Data Control form.

OBJECT Property Setting

Form Name TestDataControl

Caption "Test Data Control"

ExpDetailControl Name expControl

Caption "Expense Control"

MaskEdBox Name mskAmountSpent

Format "$#,##0.00;($#,##0.00)"

PromptChar "_"

TextBox Name txtSubmitDate

TextBox Name txtPurchaseDate

TextBox Name txtDescription

TextBox Name txtExpenseType

TextBox Name txtEmployeeId

TextBox Name txtExpenseId

Label Name Label1

Caption "Expense ID:"

Label Name Label2

Caption "Employee:"

Label Name Label3

Caption "Expense Type:"

Label Name Label4

Caption "Amount Spent:"

Label Name Label5

Caption "Description:"

Label Name Label6

Caption "Purchase Date:"

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (76 of 89) [9/22/1999 2:17:16 AM]

javascript:popUp('12fig23.gif')
javascript:popUp('12fig17.gif')

Label Name Label7

Caption "Submission Date:"

28. Use the Visual Basic menu editor to create the menu shown in Table 12.18.

Table 12.18. Menu specifications for the Object Library form.

CAPTION Name Shortcut Key

&File mnuFile

----E&xit mnuFileExit

29. Add the following code to the DataChanged event for the expense user control. Whenever the
control notifies the form that a change has been made, the helper routine updates the displayed values.

Private Sub expControl_DataChanged()
 ` The data has changed in the control, so update the form
 Call ReadObjectValues
End Sub

30. Add the ReadObjectValues helper routine to display the control's values:

Private Sub ReadObjectValues()
` Read the object values into the form fields
 txtExpenseId.Text = CStr(expControl.lngExpenseId)
 txtEmployeeId.Text = expControl.strEmployeeId
 txtExpenseType.Text = expControl.strExpenseType
 txtDescription.Text = expControl.strDescription
 mskAmountSpent.Text = CStr(expControl.curAmountSpent)
 txtPurchaseDate.Text = CStr(expControl.dtmDatePurchased)
 txtSubmitDate.Text = CStr(expControl.dtmDateSubmitted)
End Sub

31. Add the following code to the Validate event of the user expense control. The control raises this
event when one of the data maintenance buttons is clicked. The error handler is needed to capture
errors raised by the control's Property Let routines. The Property Let routines are called by
SetObjectValues.

Private Sub expControl_ValidateData _
 (Response As ExpDetailControl.EXP_RESPONSE_TYPE, _
 ByVal Change As ExpDetailControl.EXP_CHANGE_TYPE)
` A command button has been pushed; update the control's
` data if needed
 On Error GoTo ValidateError
 Select Case Change
 Case expAddNewValidate, expUpdateValidate
 Call SetObjectValues
 Response = expOk
 Case expDeleteValidate
 Response = expOk
 Case Else
 Response = expCancel

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (77 of 89) [9/22/1999 2:17:16 AM]

 End Select
 Exit Sub
ValidateError:
 MsgBox Err.Description & " from " _
 & Err.Source & " -- " _
 & CStr(Err.Number)
 Response = expCancel
 Exit Sub
End Sub

32. Add the following helper routine to update the control's data values from the form fields:

Private Sub SetObjectValues()
` Sets related object values from form fields
 expControl.strExpenseType = txtExpenseType.Text
 expControl.strEmployeeId = txtEmployeeId.Text
 expControl.strDescription = txtDescription.Text
 expControl.dtmDatePurchased = txtPurchaseDate.Text
 expControl.curAmountSpent = CCur(mskAmountSpent.Text)
 Exit Sub
End Sub

33. Add the following Form_Load procedure to initialize the control's recordset:

Private Sub Form_Load()

` Get the ActiveX object to open its database
 Dim strDbName As String
 Dim strResponse As String
 On Error GoTo LoadError
 strDbName = App.Path
 strDbName = strDbName & "\Expense.mdb"
 expControl.strDatabaseName = strDbName
 Exit Sub
LoadError:
 MsgBox Err.Description & Chr(13) & "from " & Err.Source _
 & " -- Number: " & CStr(Err.Number)
 Unload Me
End Sub

34. Add the following procedure to the mnuFileExit Click event to exit the program:

Private Sub mnuFileExit_Click()
 Unload Me
End Sub

How It Works

The hand-crafted data control works by encapsulating recordset movement commands and visual controls in a
simple wrapper exposing the database name, two events, and the data value properties (fields). The control
itself manages all recordset navigation and the screen interface buttons.

The control begins useful functions when the strDatabaseName property is set and the recordset is
opened. The strDatabaseName property is created to be read-only at design time. Changing it at design

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (78 of 89) [9/22/1999 2:17:16 AM]

time results in an error message being displayed in the development environment.

The control's constituent buttons provide the heart of the user control. Whenever a movement button is
clicked, the recordset is moved to a valid record, and the DataChanged event is raised to cause the
containing application to retrieve current field values from the control's property values. When a database
maintenance button is clicked, the control raises the ValidateData event to allow the containing form to
update the control's copy of the data and to perform any display operations before the database is changed.

The data values of the control are implemented in runtime only and are hidden from the design-time
properties window of the container. The strExpenseType control raises a private error event to indicate
an invalid type together with an explanatory message. The Property Let procedure was not implemented
for the lngExpenseId property because it is assigned by the database when a new record is inserted in the
database.

Constituent Controls

Constituent controls are preexisting ActiveX controls placed onto ActiveX controls being developed. In this
How-To, frame and button constituent controls were placed onto the simple data control. The caption of the
data control was visually displayed as the caption of the surrounding frame. Although we didn't use the
technique here, it is possible to expose individual constituent control events as events of the control. For
example, if we wanted to raise a CommandFirstClick event from the control when the constituent
cmdFirst button click event occurred, we would declare a new event in the declarations section and add a
RaiseEvents call in the button click event.

Option Explicit
Public Event CommandFirstClick()
Private Sub cmdFirst_Click()
` Move to the first record
` ... Useful, productive code
 ` Tell the container about the click
 RaiseEvent CommandFirstClick
End Sub

Debugging ActiveX Controls

Most of the debugging for an ActiveX control project can be accomplished with the simple project group
approach shown in this How-To. Unfortunately, errors raised from Property Let procedures cannot be
debugged in this way. Visual Basic seems to assume that all errors raised by the Property Let procedure
must be handled by the Visual Basic End or Debug dialog box before the calling container gets a chance to
handle the error. The workaround for this problem is to compile the control to its .OCX file and open just the
test form's project from Visual Basic. Then the error will be trapped in the containing test form.

Comments

This control was built entirely by hand to illustrate the nuts and bolts of making a data control work within
the ActiveX control environment. An ActiveX control skeleton can also be built quickly using the ActiveX
Control Interface Wizard available as a Microsoft-supplied add-in to the Visual Basic 6 environment. The
Wizard generates all the code required for managing most "standard" ActiveX properties and events, which
were ignored in this How-To in the interest of keeping the core data control code more readable. You should
use this add-in to develop robust controls that might receive wider distribution through your programming
team or corporation.

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (79 of 89) [9/22/1999 2:17:16 AM]

You can also implement a specialized ActiveX data control function by placing a standard data control on an
ActiveX control as a constituent control. This approach would certainly provide more rapid development than
starting from button pasting, but at a potential cost in performance and complexity.

12.11 How do I...

Create my own data bound control?

Problem

I've created a database table for providing code values for list boxes. How can I write a data-bound ActiveX
list box control to quickly populate itself from the code value table and be data bound to a control on my
form?

Technique

This How-To shows the creation of an enhanced combo box control that fills itself with allowed choices from
a code value table contained in the application's database. The CodeValue.mdb database is located in the
Chapter12\HowTo10 directory on the CD-ROM. The main Subject data table contains information on
criminal suspects, and the Code10 table contains possible values for suspect attributes such as hair color and
eye color. The table is called Code10 because it returns 10-character fields based on 10-character code types.
Table 12.19 describes the suspect table, and Table 12.20 describes the Code10 table.

Table 12.19. The Suspect table.

FIELD
SuspectId

LastName

FirstName

MiddleName

Alias

EyeColor

HairClr

Religion

MaritalStatus

Table 12.20. The Code 10 table.

FIELD Description

CodeType10 Type of code values to return--for example, HAIRCOLOR.

CodeValue10 Data value to populate in combo boxes for the code type--for example, Blond.

CodeDesc Description of this particular type-value pair.

The new control will function almost the same as a standard combo box with the addition of a code type to
load and an open database object to use for creating the recordset. The ActiveX Control Interface Wizard will

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (80 of 89) [9/22/1999 2:17:16 AM]

write most of the code for this control based on its dialog inputs.

Steps
1. Open the project group TestBoundGroup.vbg and run the application. The form in Figure 12.24
appears. Become familiar with the application, especially the combo box behavior.

Figure 12.24. The Test Bound Control form.

2. Create a new ActiveX control project in your work area. Place a single ComboBox on the control
and name it cmbCodeValue. Name the project BoundComboControl and the control
ctlBoundCombo. Save the project.

3. Select Add-Ins | Add-In Manager from the main menu, and load the VB 6 ActiveX Ctrl Interface
Wizard. Click OK to close the dialog box.

4. Select Add-Ins | ActiveX Control Interface Wizard from the main menu. Click Next to begin
defining the BoundComboControl interface.

5. Declare the standard properties, events, and methods in the control's interface. Add the Change event
from the Available names list to the Selected Names list by selecting Change on the left and clicking
the > button. Similarly, add the ListCount, ListIndex, Style, and Text properties to the
interface. Figure 12.25 shows the Select Interface Members dialog box. Click Next to proceed.

Figure 12.25. The ActiveX Control Interface Wizard - Select Interface Members dialog box.

6. Click New to add the properties, methods, and events listed in Table 12.21. Click Next to proceed.

Table 12.21. The properties and method for the Bound Combo control.

TYPE Name Description

Property objDatabase Object variable to contain the open database object from which the
combo box should be loaded.

Property strCodeType Value for code type to select--for example, HAIRCOLOR.

Method Reload Reloads the list box from the database.

7. Use the Set Mapping dialog box (see Figure 12.26) to map most of the public interface properties,
methods, and events to the constituent combo box control. Select most of the public names from the
lefthand list box and then select cmbCodeValue from the Control pull-down list. Do not map the
objDatabase and strSqlWhere properties nor the Refresh method. Click Next to proceed.

Figure 12.26. The Control Interface Wizard - Set Mapping dialog box.

8. Set the attributes of the unmapped interface members using the Set Attributes dialog box shown in
Figure 12.27. The attribute values are shown in Table 12.22.

Figure 12.27. The Control Interface Wizard - Set Attributes dialog box.

Table 12.22. Members and properties for the Bound Combo control.

MEMBER Data Type Runtime Design-Time Description

objDatabase Object Write Only Not Avail. Open database object supplied at
runtime by container.

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (81 of 89) [9/22/1999 2:17:16 AM]

javascript:popUp('12fig24.gif')
javascript:popUp('12fig25.gif')
javascript:popUp('12fig26.gif')
javascript:popUp('12fig27.gif')

strCodeType String Read/Write Read/Write Code value type to retrieve.

9. Add the following code for the UserControl Resize event:

Private Sub UserControl_Resize()
` Resize the combo box to the size of the control
` The height can't be changed for certain styles, so
 ` we won't support any height changes.
 Height = cmbCodeValue.Height
 ` Resize the combo box without using the Move method.
 cmbCodeValue.Top = 0
 cmbCodeValue.Left = 0
 cmbCodeValue.Width = ScaleWidth
End Sub

10. Make the UserControl project by selecting File | Make BoundComboControl.ocx from the main
menu. Correct any compilation errors you find before proceeding.

11. Select File | Add Project from the main menu. Select Standard EXE from the Add Project dialog
box. Name the default form frmTestBoundCombo and the project prjTestBoundCombo. Save
the project group and name the group TestBoundGroup when prompted.

12. Close the cmbBoundControl design window to activate the control in Design mode. Test the
resize event code by resizing the control on the form.

13. Define the Text property to be a data-bound field on the form. Make the control's code the active
window in Visual Basic by opening and clicking in the window. Select Tools | Procedure Attributes
from the main menu, and select Text as the name. Click Advanced to show more options. Check all
options in the Data Binding frame except Update immediate (see Figure 12.28).

Figure 12.28. The Procedure Attributes for a data-bound property.

14. Modify the Text Property Let procedure to look like the following code. The
CanPropertyChange function asks the container whether the specified value can be changed and
the return value should be observed, even though Visual Basic always returns True.

Public Property Let Text(ByVal New_Text As String)
 If CanPropertyChange("Text") Then
 cmbCodeValue.Text() = New_Text
 PropertyChanged "Text"
 End If
End Property

15. Add the following code to the Change event of cmbDataBound to make sure that the container
knows that something changed:

Private Sub cmbCodeValue_Change()
 ` Notify the container of data change
 PropertyChanged "Text"
End Sub

16. Add a PropertyChanged call to the Click event of cmbDataBound:

Private Sub cmbCodeValue_Click()
 RaiseEvent Click
 PropertyChanged "Text"

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (82 of 89) [9/22/1999 2:17:16 AM]

javascript:popUp('12fig28.gif')

End Sub

17. Modify the wizard-generated Reload method to be a procedure (Sub) rather than a function, and
add the following code to fill the combo box:

Public Sub Reload()
` Reload the combo box
Dim strSql As String
Dim rsCodes As Recordset
 cmbCodeValue.Clear
 ` If the code type has been set
 If "" <> strCodeType Then
 ` Build a SQL statement.
 strSql = "SELECT CodeValue10 FROM Code10 WHERE " _
 & "CodeType10 = `" & strCodeType _
 & "` ORDER BY CodeValue10"
 `Get a recordset.
 Set rsCodes = objDatabase.OpenRecordset(strSql, _
 vbRSTypeSnapShot, dbForwardOnly)
 Do While Not rsCodes.EOF
 ` Add the items.
 cmbCodeValue.AddItem "" & rsCodes("CodeValue10")
 rsCodes.MoveNext
 Loop
 End If
 `Close the recordset
 rsCodes.Close
 Exit Sub
End Sub

18. Modify the objDatabase Property Set routine to invoke the Reload method:

Public Property Set objDatabase(ByVal New_objDatabase As Object)
 Set m_objDatabase = New_objDatabase
 PropertyChanged "objDatabase"
 ` Set the object database and invoke the Reload method to
 ` put data into the combo box
 If "" <> strCodeType Then
 Call Reload
 End If
End Property

19. Finish building the TestBoundControl form by adding fields, labels, and a data control until it
looks like Figure 12.29. Table 12.23 lists the form's objects and properties.

Figure 12.29. Layout for the TestBoundControl form.

Table 12.23. Objects and properties for the Test Bound Control form.

OBJECT Property Setting

Form Name frmTestBoundCombo

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (83 of 89) [9/22/1999 2:17:16 AM]

http://www.pbs.mcp.com/ebooks/1571691529/ch12/12fig20.gif

Caption "Test Bound Control"

Data Name dtaSuspects

Caption "Criminal Suspects"

Connect "Access"

DatabaseName "C:\Code\Chapter12\Howto10\CodeValues.mdb"

RecordSource "Subject"

ctlBoundCombo Name usrEyeBound

DataField "EyeColor"

DataSource "dtaSuspects"

strCodeType "EYECOLOR"

ctlBoundCombo Name usrHairBound

DataField "HairClr"

DataSource "dtaSuspects"

strCodeType "HAIRCOLOR"

ctlBoundCombo Name usrReligionBound

DataField "Religion"

DataSource "dtaSuspects"

strCodeType "RELIGION"

ctlBoundCombo Name usrMarStatBound

DataField "MaritalStatus"

DataSource "dtaSuspects"

strCodeType "MAR STAT"

TextBox Name txtSuspectId

DataField "SuspectId"

DataSource "dtaSuspects"

Enabled 0 `False

TextBox Name txtLastName

DataField "LastName"

DataSource "dtaSuspects"

TextBox Name txtFirstName

DataField "FirstName"

DataSource "dtaSuspects"

TextBox Name txtMiddleName

DataField "MiddleName"

DataSource "dtaSuspects"

TextBox Name txtAlias

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (84 of 89) [9/22/1999 2:17:16 AM]

DataField "Alias"

DataSource "dtaSuspects"

Label Name Label1

AutoSize -1 `True

Caption "SuspectId:"

Label Name Label2

AutoSize -1 `True

Caption "Last Name:"

Label Name Label3

AutoSize -1 `True

Caption "First Name:"

Label Name Label4

AutoSize -1 `True

Caption "Middle Name:"

Label Name Label5

AutoSize -1 `True

Caption "Alias:"

Label Name Label6

AutoSize -1 `True

Caption "Eye Color:"

Label Name Label7

AutoSize -1 `True

Caption "Hair Color:"

Label Name Label8

AutoSize -1 `True

Caption "Religion:"

Label Name Label9

AutoSize -1 `True

Caption "Marital Status:"

20. Add the following code to the Form_Load event:

Private Sub Form_Load()
 dtaSuspects.DatabaseName = App.Path & "\CodeValues.mdb"
 dtaSuspects.Refresh
 ` Initialize the bound combo controls
 Set usrEyeBound.objDatabase = dtaSuspects.Database
 Set usrHairBound.objDatabase = dtaSuspects.Database
 Set usrReligionBound.objDatabase = dtaSuspects.Database
 Set usrMarStatBound.objDatabase = dtaSuspects.Database

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (85 of 89) [9/22/1999 2:17:16 AM]

End Sub

How It Works

When the form loads, the Set statements for the bound combo boxes cause the combo boxes to be filled.
Any time the combo box contents are changed by a click or change event, PropertyChanged is called to
inform the containing form that a bound control has changed. The container, in turn, notifies the
dtaSuspects data control. Most of the control code was generated by the ActiveX Control Interface
Wizard to propagate constituent control properties to the bound control.

The ActiveX Interface Control Wizard provides a capable tool for building and extending your own
component library. This bound combo box control for displaying code values runs faster than a DBCombo
control and reduces the visual clutter of its containing form at design time. With a little more work, it could
be extended to include a single property page to browse for the Code Types through design-time SQL
statements, as well as setting the underlying combo box style.

Comments

The advantage of working with The ActiveX Interface Control Wizard is in the robustness and automated
checklist it gives you in the creation of your control. The wizard reminds the developer about all the
properties and methods of constituent controls in order to ensure that the properties and methods expected by
a developer are seamlessly implemented into the control's behavior.

12.12 How do I...

Use the DataRepeater control with custom Data Bound controls?

Problem

I've created a custom data bound control for editing records in the corporate database, but the users want to be
able to see and edit multiple records at the same time. How can I give them a multirecord view and still keep
my code investment in the custom data bound control?

Technique

This How-To shows you how to use the DataRepeater control with your custom data bound control to create
a multirecord view of the data. By keeping your existing custom data bound control, you reuse tested,
working code and keep your business rules in one place. The DataRepeater control takes a bound control and
repeats it like a list box of controls. Figure 12.30 shows a record set displayed with a DataRepeater and a
custom data bound control.

Figure 12.30. The DataRepeater control.

Steps
1. Create a new ActiveX control project. Name the project RepeaterTestControl and the control
ctlAddress. Save the project.

2. Add six text box controls and six labels to ctlAddress. Set the properties according to Table 12.24.
Arrange the text boxes and labels so that your interface looks like Figure 12.31.

Figure 12.31. The layout for ctlAddress.

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (86 of 89) [9/22/1999 2:17:16 AM]

javascript:popUp('12fig29.gif')
javascript:popUp('12fig30.gif')

Table 12.24. Objects and properties for the ctlAddress control.

OBJECT Property Setting

Text Name txtFirstName

Text ""

Text Name txtLastName

Text ""

Text Name txtAddress

Text ""

Text Name txtCity

Text ""

Text Name txtState

Text ""

Text Name txtZip

Text ""

Label Name lblFirstName

Caption "First Name"

Label Name lblLastName

Caption "Last Name"

Label Name lblAddress

Caption "Address"

Label Name lblCity

Caption "City"

Label Name lblState

Caption "State"

Label Name lblZip

Caption "Zip Code"

3. This control has a fixed size, so update the Resize event to match the following code. Depending on
how you laid out the text boxes and labels, you may have to adjust the values for height and width.

Private Sub UserControl_Resize()
 If Height <> 2325 Then
 Height = 2325
 End If
 If Width <> 5445 Then
 Width = 5445
 End If

End Sub

4. Select Add-Ins | Add-In Manager from the main menu, and load the VB 6 ActiveX Ctrl Interface

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (87 of 89) [9/22/1999 2:17:17 AM]

Wizard. Click OK to close the dialog box.

5. Select Add-Ins | ActiveX Control Interface Wizard from the main menu. Click Next to begin
defining the ctlAddress interface.

6. Remove all the items from the Selected Names list and click next to proceed.

7. Use the New button to add six new custom properties: FirstName, LastName, Address,
City, State, and Zip. Click the Next button to move to the Set Mapping screen.

8. For each of the new properties, map the property to the corresponding Text control's Text property.
Figure 12.32 shows the Address property mapped to the txtAddress's Text property. Click Next and
then click Finish to exit the ActiveX Control Interface Wizard.

Figure 12.32. Mapping properties to constituent control properties.

9. Select Tools | Procedure Attributes to open the Procedure Attributes dialog box. Click the Advanced
button to expose the entire dialog box. For the custom property added in the ActiveX Control Interface
Wizard, choose the Property is Data Bound and Show in DataBindings Collection at Design Time
options. Figure 12.33 shows the settings for the Address property. Click OK and save the project.

Figure 12.33. Setting the procedure attributes for the Address property.

10. Compile the RepeaterTestControl.OCX. ctlAddress is now a simple bound control for displaying a
person's name and address.

11. Add a new Standard EXE project by selecting File | Add Project. Name the new project
DataRepeaterTest.

12. Copy the Addresses.MDB file from the Chapter12\HowTo12 directory on the CD to the working
directory of the project.

13. Select Project | Components to show the Components dialog box. Select Microsoft ADO Data
Control 6.0 and Microsoft DataRepeater Control 6.0. Click OK to add the controls to your project.

14. Add a DataRepeater and ADO Data control to the default form. Set the properties according to
Table 12.25.

Table 12.25. Objects and properties for the Data Repeater Test form.

OBJECT Property Setting

Form Name frmDataRepeaterTest

Caption "Data Repeater How To"

DataRepeater Name datarepAddresses

Caption "Addresses"

DataSource adodcAddresses

RepeatedControlName RepeaterTestControl.ctlAddress

ADO Data
Control

Name adodcAddresses

Caption "Addresses"

ConnectionString "Provider=Microsoft.Jet.OLEDB.3.51;
DataSource=Addresses.mdb"

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (88 of 89) [9/22/1999 2:17:17 AM]

javascript:popUp('12fig31.gif')
javascript:popUp('12fig32.gif')

RecordSource "Addresses"

15. Right-click the DataRepeater control and select DataRepeater Properties. Using the
RepeaterBindings tab, match the PropertyNames with DataFields. First select the property in the
PropertyName combo box and then select the field from the DataField combo box. Click the Add
button to add the selections to the list. Do this for FirstName, LastName, Address, City,
State, and Zip. This step binds the fields in the RecordSource of the ADO Data control to the bound
fields of the ctlAddress. Click OK to change the properties.

How It Works

The aptly named DataRepeater control creates multiple instances of your custom bound control and shows
them in a list style view. With this tool you can move a single record view to a multiple record view with
little or no code change. This particular use of the DataRepeater allows the user to browse and edit a list of
people and addresses in Addresses.mdb. To navigate through the list use the scrollbars on the DataRepeater
or the classic data buttons on the ADO Data control.

Comments

The DataRepeater control can only be used with the ADO Data control; unfortunately, it doesn't work with
the regular Data control or the RemoteData control. However, for existing applications, conversions should
be fairly straightforward. ADO can access all the data sources available to the Data control and the
RemoteData control.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Ch 12 -- ActiveX and Automation

http://www.pbs.mcp.com/ebooks/1571691529/ch12/ch12.htm (89 of 89) [9/22/1999 2:17:17 AM]

Visual Basic 6 Database How-To

- 13 -
Advanced Database Techniques

How do I...

13.1 Search for database records by using a Soundex algorithm?❍

13.2 Back up selected database objects at a set schedule?❍

13.3 Replicate a database by using the Jet engine?❍

13.4 Omit specified objects from replicas?❍

13.5 Create a nonreplicated version of a replicated database?❍

●

Many times, there's just one more thing that needs to be done for everything to work correctly. The
How-To's in this chapter cover various advanced features of database programming that help polish your
applications. The database back-up and replication features are particularly valuable because they can help
you reduce support time and costs for your applications. A simple automated backup program in the
Windows startup group can save hours of headaches after your application or customer has made a serious
mistake.

13.1 Search for Database Records by Using a Soundex Algorithm

The Soundex feature available in many database management systems (DBMS) enables you to search for
names of people, places, or streets without knowing the exact spelling. This How-To demonstrates using
the Soundex function and points out some common problems with its use.

13.2 Back Up Selected Database Objects at a Set Schedule

The SQL SELECT...INTO statement provides a smooth way to perform a very selective online backup.
This How-To uses an enhanced ActiveX timer control to periodically back-up selected database objects.

13.3 Replicate a Database by Using the Jet Engine

Access and the Jet engine enable you to copy databases and keep their contents synchronized in different

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (1 of 23) [9/22/1999 2:19:23 AM]

locations. This How-To demonstrates creating and synchronizing a replicated database.

13.4 Omit Specified Objects from Replicas

By default, replication makes copies of everything in your database. This How-To demonstrates keeping
some objects local when making a replica set.

13.5 Create a Nonreplicated Version of a Replicated Database

Strictly speaking, you cannot make a nonreplicated version of a replicated database, but you can remove a
replica from the replica set and change the replica so that its structure can be modified. This How-To
changes a replica database into a standalone database.

13.1 How do I...
Search for database records by using a Soundex algorithm?

Problem

The people answering the telephones in the order entry department sometimes have a difficult time
understanding the names of individuals who call in. How can I write more forgiving SQL queries to look
up names?

Technique

This How-To uses the Soundex function of Microsoft SQL Server. The sample SQL statements should
also work with Sybase databases. Soundex is an encoding method for converting character strings into
four digit codes. The goal is to provide a fuzzier search pattern for people trying find name-based data.

Steps
1. Connect to a SQL database from your workstation using a SQL command processor such as
ISQL/W.

2. Issue the following commands to set up a test environment and open the file SOUNDEX.SQL
from the How-To directory:

if exists (select * from sysobjects
 where id = object_id(`dbo.SoundexText') and sysstat & 0xf = 3)
 drop table dbo.SoundexTest
GO
CREATE TABLE dbo.SoundexTest (
 LastName char (20) NULL ,
 FirstName char (20) NULL
)
GO
INSERT INTO SoundexTest VALUES (`Brown', `Laura')
INSERT INTO SoundexTest VALUES (`Browne', `Laura')
INSERT INTO SoundexTest VALUES (`Brun', `Laura')
INSERT INTO SoundexTest VALUES (`Braun', `Laura')

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (2 of 23) [9/22/1999 2:19:23 AM]

INSERT INTO SoundexTest VALUES (`Broom', `Laura')
INSERT INTO SoundexTest VALUES (`Harper', `Bill');
INSERT INTO SoundexTest VALUES (`Harpster', `Bill');
INSERT INTO SoundexTest VALUES (`Hahpah', `Bill');
INSERT INTO SoundexTest VALUES (`Hobber', `Bill');
INSERT INTO SoundexTest VALUES (`Hopper', `Bill');
INSERT INTO SoundexTest VALUES (`Hooper', `Bill');
INSERT INTO SoundexTest VALUES (`Kennedy', `Dennis');
INSERT INTO SoundexTest VALUES (`Kenney', `Dennis');
INSERT INTO SoundexTest VALUES (`Kennealy', `Dennis');

INSERT INTO SoundexTest VALUES (`Kenney', `Dennis');

3. Issue the following SELECT statement to verify that all rows were inserted into the database. All
rows should be retrieved and displayed as in
Table 13.1.

SELECT * FROM SoundexTest ORDER BY LastName, FirstName

Table 13.1. SELECT all rows results.

LAST NAME First Name

Braun Laura

Broom Laura

Brown Laura

Browne Laura

Brun Laura

Hahpah Bill

Harper Bill

Harpster Bill

Hobber Bill

Hooper Bill

Hopper Bill

Kennealy Dennis

Kennedy Dennis

Kenney Dennis

Kenney Dennis

4. Issue a SOUNDEX SELECT to find Brown. Table 13.2 shows all five Laura's.

SELECT * FROM SoundexTest
WHERE SOUNDEX (LastName) = SOUNDEX (`Brown')

ORDER BY LastName, FirstName

Table 13.2. SELECT SOUNDEX (`Brown') results.

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (3 of 23) [9/22/1999 2:19:23 AM]

LAST NAME First Name

Braun Laura

Broom Laura

Brown Laura

Browne Laura

Brun Laura

5. Use Soundex to find the various Harper records. Table 13.3 shows the results for various search
targets.

SELECT * FROM SoundexTest
WHERE SOUNDEX (LastName) = SOUNDEX (`Harper')
ORDER BY LastName, FirstName
SELECT * FROM SoundexTest
WHERE SOUNDEX (LastName) = SOUNDEX (`Harp')
ORDER BY LastName, FirstName
SELECT * FROM SoundexTest
WHERE SOUNDEX (LastName) = SOUNDEX (`Hopper')

ORDER BY LastName, FirstName

Table 13.3. SELECT SOUNDEX results with different keys.

TARGET Last Name First Name

Harper Harper Bill

Harp No records returned

Hopper Hobber Bill

Hooper Bill

Hopper Bill

How It Works

The Soundex algorithm was established by the United States government to provide name searching for
the Social Security Administration and the National Archives. The Soundex code is created by taking the
first letter of the string and then adding values according to Table 13.4.

Table 13.4. Soundex coding guide.

CODE DIGIT Letter

0 All others or word too short

1 B, P, F, V

2 C, S, G, J, K, Q, X, Z

3 D, T

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (4 of 23) [9/22/1999 2:19:23 AM]

4 L

5 M, N

6 R

Table 13.5 shows the generated Soundex code and the last name for the sample data. Usually, Soundex
will give a reasonable result, but it can make some interesting mistakes if the R is missed in a query.
Notice in particular that the Soundex for Harper and Hopper don't match. Soundex can also be
problematic if too few letters are provided for coding. Because all vowels and the silent letters H, Y, and W
are dropped from the coding digits, a Soundex search for BR will not return any of our B names.

Table 13.5. Soundex coding results.

SOUNDEX CODE Last Name

B650 Brown

B650 Browne

B650 Brun

B650 Braun

B650 Broom

H616 Harper

H612 Harpster

H100 Hahpah

H160 Hopper

H160 Hobber

H160 Hooper

K530 Kennedy

K500 Kenney

K540 Kennealy

Comments

This sample showed a way to use the SOUNDEX function in queries. Unfortunately, these SELECT
statements are very inefficient because they force the database manager to examine each row of the table.
If SOUNDEX makes sense for your application, try to create a column whose value is the SOUNDEX of the
target column, and then create an index on the SOUNDEX column.

13.2 How do I...

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (5 of 23) [9/22/1999 2:19:23 AM]

Back up selected database objects at a set schedule?

Problem

There are several tables in my database that need to be automatically backed up periodically. How can I
force an automatic backup on a periodic basis?

Technique

The solution to this problem requires two core components: an enhanced timer and a database backup
routine. The enhanced timer will be implemented as an ActiveX control that supports a "time to trigger"
property and notification event. The database backup routine will create a new database and use a
SELECT...INTO statement to implement the selective backup. The remainder of the project is a test
form.

The extended timer control is required because the standard Visual Basic control only supports timers of
approximately one minute in length. The extended timer control is driven by the TimeToTrigger
property and will raise its ExtendedTimerPop event once per day at the specified time. The standard
Visual Basic timer is used repeatedly and enabled until the time to trigger is within one minute of the
current time. Then the Visual Basic timer is set to the precise number of seconds required to meet the
TimeToTrigger property exactly.

Steps

Open the Backup.vbg project group to preview this project. Compile the enhanced timer control and then
the Backup Test project. Run the Backup Test project (see Figure 13.1). Enter a near future time in the
Trigger Time field and click the Start Timer button. Wait patiently until your system clock is one minute
past the trigger time. Close the form and check in the application directory for a newly created backup
copy of the Expense.MDB file whose name begins with the letters BU (for backup).

Figure 13.1. The Backup Test Form dialog box.

1. Create a new ActiveX Control project. Name the control ctlEnhancedTimer and the project
prjEnhancedTimer.

2. Select the ctlEnhancedTimer control and set its InvisibleAtRunTime property to true.

3. Draw a single timer control on the object and name it tmrCheckIt. Save the project.

4. Select Add-Ins | Add-In Manager from the main menu and make sure that the VB 6 ActiveX Ctrl
Interface Wizard is available in your environment by selecting it and checking Loaded/Unloaded in
the Load Behavior frame. Select Add-Ins | ActiveX Control Interface Wizard from the main menu.

5. Click the Next button to proceed to the Select Interface Members dialog box (see Figure 13.2).
Remove all names except the enabled property from the Selected Names window on the right.

Figure 13.2. The Select Interface Members dialog box.

6. Click Next to proceed to Create Custom Interface Members. Add the single property and event
listed in Table 13.6 to the control.

Table 13.6. Properties, methods, and events for the extended timer control.

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (6 of 23) [9/22/1999 2:19:23 AM]

javascript:popUp('13fig01.gif')
javascript:popUp('13fig02.gif')

TYPE Name Description

Property TimeToTrigger Date/Time variable to contain the desired trigger time for
timer.

Event ExtendedTimerPop Notifies the container that the TimeToTrigger has
arrived.

7. Click Next to proceed to the wizard's Set Mapping dialog box. Select the public name Enabled
and map it to the timer control's Enabled member, as shown in Figure 13.3.

Figure 13.3. Mapping the timer control member.

8. Click Next to set attributes for the extended timer control. Use the wizard's dialog box to set the
TimeToTrigger property to be a Date variable with Read/Write capabilities at both runtime and
design time.

9. Click Finish to have the wizard complete the skeleton code.

10. Add a Boolean to control variable to the Declarations section of the user control. This variable
determines whether the last internal timer has been set for final event notification to the container.

Option Explicit
`Default Property Values:
Const m_def_TimeToTrigger = 0
`Property Variables:
Dim m_TimeToTrigger As Date
`Event Declarations:
Event ExtendedTimerPop()
` Private control variable

Private m_bLastInternalTimer As Boolean

11. Add the SetTimer helper procedure to set the internal timer control's interval property:

Private Function SetTimer() As Integer
` Determine if this is should be the last internal
` timer call
 Dim lDifference As Long
 lDifference = DateDiff("s", TimeValue(Now()), _
 TimeValue(TimeToTrigger))
 If lDifference < 30 And lDifference > 0 Then
 ` This is the last timer to use
 m_bLastInternalTimer = True
 SetTimer = CInt(lDifference) * 1000
 Else
 ` Set timer for 30 more seconds
 m_bLastInternalTimer = False
 SetTimer = 30000
 End If

End Function

12. Add the following code to the timer event of the contained timer to implement a continuous,
event-fired loop to achieve the desired long timer:

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (7 of 23) [9/22/1999 2:19:23 AM]

javascript:popUp('13fig03.gif')

Private Sub tmrCheckIt_Timer()
` Handle the internal timer pop
 If m_bLastInternalTimer Then
 ` Notify the container
 tmrCheckIt.Enabled = False
 RaiseEvent ExtendedTimerPop
 Else
 ` Wait a while longer
 tmrCheckIt.Interval = SetTimer()
 tmrCheckIt.Enabled = True
 End If

End Sub

13. Add the following boldface code to the UserControl_InitProperties procedure to set
the initial timer value:

Private Sub UserControl_InitProperties()
` Set up the timer variables
 ` Set the timer
 If Ambient.UserMode = True Then
 tmrCheckIt.Interval = SetTimer()
 End If
 m_TimeToTrigger = m_def_TimeToTrigger

End Sub

14. Add the following boldface code to the Property Let Enabled procedure. The interval
must be set correctly for the container to enable the extended timer control at runtime.

Public Property Let Enabled(ByVal New_Enabled As Boolean)
 If Ambient.UserMode = True Then
 tmrCheckIt.Interval = SetTimer()
 End If
 tmrCheckIt.Enabled() = New_Enabled
 PropertyChanged "Enabled"

End Property

15. Add the following code to the Property Let TimeToTrigger procedure. The check for
a valid date is required to prevent invalid calculations.

Public Property Let TimeToTrigger(ByVal New_TimeToTrigger As Date)
 ` Check that the new value is a valid date.
 If Not IsDate(New_TimeToTrigger) Then
 Err.Raise 380
 Err.Clear
 Exit Property
 End If
 m_TimeToTrigger = New_TimeToTrigger
 PropertyChanged "TimeToTrigger"

End Property

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (8 of 23) [9/22/1999 2:19:23 AM]

16. Add the following code to the UserControl_Resize procedure to keep the control
approximately the same size as the timer control:

Private Sub UserControl_Resize()
` Resize the user control to a fixed size
 Size 420, 420

End Sub

17. Select File | Make EnhancedTimer.ocx from the Visual Basic main menu to compile the control.
Correct any compilation errors.

18. Select File | Add Project from the main menu and add a new Standard EXE project to your
Visual Basic environment. Name the default form frmBackupTest. Name the new project
prjBackupTest. Save the project group and all its components. Name the project group
Backup when prompted.

19. Test the design-time behavior of the control by drawing the control on the form and
experimenting with resizing the control.

20. Add a text box, label, and command button to the test form and set the properties as listed in
Table 13.7.

Table 13.7. Objects and properties for the Backup Test form.

OBJECT Property Setting

Form Name frmBackupTest

Caption Backup Test Form

CommandButton Name cmdStartTimer

Caption &Start Timer

TextBox Name txtTriggerTime

ctlEnhancedTimer Name ctlEnhancedTimer1

Label Name Label1

AutoSize -1 `True

Caption Trigger Time:

21. Add the following code to the cmdStartTimer_Click procedure to set the time to trigger
and to enable the control:

Private Sub cmdStartTimer_Click()
` Start the timer
 If Not IsDate(txtTriggerTime.Text) Then
 MsgBox "Invalid time format"
 Else
 ctlEnhancedTimer1.TimeToTrigger = txtTriggerTime.Text
 ctlEnhancedTimer1.Enabled = True
 End If

End Sub

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (9 of 23) [9/22/1999 2:19:23 AM]

22. Add the following code to the ctlEnhancedTimer1_ExtendedTimerPop procedure to
allow for control testing before beginning on the database backup code:

Private Sub ctlEnhancedTimer1_ExtendedTimerPop()
 Debug.Print "Extended timer pop"

End Sub

23. Compile and test the form. Be sure to save the project group.

24. In the project group window, make the prjBackupTest project active by highlighting it with
the mouse. Select Project | Add Class Module from the Visual Basic main menu. When the Add
Class Module dialog box appears, as in Figure 13.4, select VBCLASS.

Figure 13.4. The Add Class Module dialog box.

25. Select File | New Class from the Class Builder menu. Name the class clsBackupTable and
click OK.

26. Highlight clsBackupTable in the Class Builder Classes window. Add the properties listed
in Table 13.8 to the class by selecting File | New Property from the Class Builder menu or by
right-clicking in the properties tab. Figure 13.5 shows the completed Properties tab.

Table 13.8. Properties for the clsBackupTable module.

NAME Data Type Declaration

TableName String Public Property

DatabaseObject Object Public Property

Figure 13.5. The completed Properties tab for clsBackupTable.

27. Click on the Class Builder Methods tab. Add a new method by selecting File | New method
from the Class Builder menu or by right-clicking on the Methods tab. Name the method DoBackup
and give it no arguments and no return data type.

28. Exit from Class Builder by selecting File | Exit from the menu. Update the project with your
changes. Save the project group.

29. Add a reference to Data Access Objects by selecting Project | References from the Visual Basic
main menu and checking Microsoft DAO 3.51 Object Library. Click OK to close the dialog box.

30. Add the following code to the DoBackup procedure to actually implement the table backup by
creating a new .MDB file and copying the data:

Public Sub DoBackup()
Dim strDbName As String, strSql As String
Dim dbNew As Database
 On Error GoTo DbError
 ` Format a database name from the current time

 STRDBNAME = FORMAT(NOW, "BUYYYYMMMDDHHNNSS") & ".MDB"

 strDbName = App.Path & "\" & strDbName
 ` Make sure there isn't already a file with the name of
 ` the new database.

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (10 of 23) [9/22/1999 2:19:23 AM]

javascript:popUp('13fig04.gif')
javascript:popUp('13fig05.gif')

 If Dir(strDbName) <> "" Then Kill strDbName
 ` Create the new database
 Set dbNew = Workspaces(0).CreateDatabase(strDbName, _
 dbLangGeneral)
 ` Create a SQL command string to create the backup
 strSql = "SELECT " & TableName & ".* INTO " _
 & TableName & " IN `" & strDbName _
 & "` FROM " & TableName
 mvarDatabaseObject.Execute strSql
 Exit Sub
DbError:
 Err.Raise Err.Number, Err.Source, Err.Description
 Err.Clear
 Exit Sub

End Sub

31. Add the following declarations to the frmBackupTest form. These variables are required for
the backup class.

Option Explicit
Private usrBackupTable As New clsBackupTable

Private dbOpenDb As Database

32. Add a Form_Load procedure to initialize the backup class:

Private Sub Form_Load()
Dim strDbName As String
 On Error GoTo DbError
 strDbName = App.Path & "\Expense.mdb"
 ` Open a database for the Backup class to use
 Set dbOpenDb = Workspaces(0).OpenDatabase(strDbName)
 Set usrBackupTable.Database = dbOpenDb
 usrBackupTable.TableName = "Expenses"
 Exit Sub
DbError:
 MsgBox Err.Description & " from " & Err.Source _
 & " Number = " & CStr(Err.Number)
 End

End Sub

33. Complete the ctlEnhancedTimer1_ExtendedTimerPop procedure by adding an
invocation of the DoBackup procedure. Don't forget the error handler.

Private Sub ctlEnhancedTimer1_ExtendedTimerPop()
 On Error GoTo BackupError
 Debug.Print "Extended timer pop"
 usrBackupTable.DoBackup
 ` Restart the timer
 ctlEnhancedTimer1.Enabled = True
 Exit Sub

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (11 of 23) [9/22/1999 2:19:23 AM]

BackupError:
 MsgBox Err.Description & " from " & Err.Source _
 & " Number = " & CStr(Err.Number)
 Exit Sub

End Sub

How It Works

The first half of this How-To focuses on creating a timer control to support the backup application. In this
case, the standard timer control does not provide the functionality needed to wake up at a specific time.
This control's timeliness can be attributed to the SetTimer function specified in step 11. Every thirty
seconds the control wakes up and checks to see how soon it should fire its event. If there is less than 30
seconds, the internal timer is adjusted to exactly the amount of time needed so that it wakes up on time.

On the application side of the How-To, a backup class handles the work of backing up a table. When the
timer pops, the clsBackupTable's DoBackup method is invoked, and the timer is restarted. The
Form_Load procedure initializes the backup class, and the button click starts the timer.

Comments

In addition to solving a particular problem, this How-To demonstrated the use of component programming
to promote code reuse. The BackupTable class can have many uses outside of this project, especially if
it was modified to allow multiple table names instead of just one. A variation on the BackupTable class
could also be used in programs placed in the Windows Startup program group to provide an automatic
backup every time Windows is restarted.

The enhanced timer control can simplify many aspects of your current timer programs because is works
reliably for more than a minute. You might want to consider adding a schedule table to the enhanced timer
control to allow for multiple events or a schedule such as daily, weekly, or monthly.

13.3 How do I...

Replicate a database by using the Jet engine?

Problem

The sales representatives in our company like to enter their expense reports on their laptop computers.
How can I capture the expenses they enter in the field into the main expense database file?

Technique

Jet database replication enables you to create database copies and keep them synchronized. Both database
design and contents are copied whenever the databases are synchronized. Replication creation requires
that you make one database your Design Master and then invoke the MakeReplica method to create
additional database copies. Use the Synchronize method to make the data consistent between two
databases.

Steps

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (12 of 23) [9/22/1999 2:19:23 AM]

Open the project Replicate.vbp. Use the Browse buttons and select a source and replica database name
(see Figure 13.6). Choose a database that can be modified; this How-To will make extensive changes.
Click Create Replica to create a replica database. Use the VisData data maintenance utility (in the VB6
directory) to change a record in one of the databases. Click Synchronize. Use VisData to verify the change
was propagated to the other database.

Figure 13.6. The Replicate Database form.

1. Create a new Standard EXE project in your workspace. Name the default form frmReplicate and
the project prjReplicate. Save the form and project to disk.

2. Select Project | Components from the main menu and check Microsoft Common Dialog Control
6.0 (see Figure 13.7). Select Project | References from the Visual Basic main menu and activate the
Microsoft DAO 3.51 Object Library by checking its box in the selection list.

3. Draw text boxes, labels, command buttons, and a Common Dialog control on the form as shown
in Figure 13.6. Set the form's objects and properties as listed in Table 13.9.

Figure 13.7. Selecting the Microsoft Common Dialog Control 6.0.

Table 13.9. Objects and properties for the Replicate Database form.

OBJECT Property Setting

Form Name frmReplicate

Caption Replicate Database

CommandButton Name cmdOpenTo

Caption &Browse

CommandButton Name cmdSynchronize

Caption S&ynchronize

CommandButton Name cmdCreateReplica

Caption &Create Replica

CommandButton Name cmdOpenFrom

Caption &Browse

TextBox Name txtReplicaDbName

TextBox Name txtDbNameFrom

CommonDialog Name cdOpenFile

Filter Access Files (*.mdb)|*.mdb

Label Name Label1

AutoSize -1 `True

Caption Database to replicate:

Label Name Label2

AutoSize -1 `True

Caption Replica file name:

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (13 of 23) [9/22/1999 2:19:23 AM]

javascript:popUp('13fig06.gif')
javascript:popUp('13fig07.gif')

4. Add the following code to the Browse button procedures:

Private Sub cmdOpenFrom_Click()
` Open the Replicate from database file
 cdOpenFile.InitDir = App.Path
 cdOpenFile.ShowOpen
 txtDbNameFrom.Text = cdOpenFile.filename
End Sub
Private Sub cmdOpenTo_Click()
` Open the Replicate to database file
 cdOpenFile.InitDir = App.Path
 cdOpenFile.filename = "Replica.mdb"
 cdOpenFile.ShowOpen
 txtReplicaDbName.Text = cdOpenFile.filename

End Sub

5. Add the MakeReplicable procedure to the form's code. This procedure checks for the
existence of the Replicable property, adds it, if needed, and sets the value to T to make the
from database a Design Master.

Function MakeReplicable(ByRef dbMaster As Database) As Boolean
` Makes the passed database replicable
Dim prpReplicable As Property
Dim intIdx As Integer
Dim bFound As Boolean
 On Error GoTo DbError
 ` Check for existence of the replicable property
 For intIdx = 0 To (dbMaster.Properties.Count - 1)
 If dbMaster.Properties(intIdx).Name = "Replicable" Then
 bFound = True
 Exit For
 End If
 Next
 If Not bFound Then
 ` Create the property
 Set prpReplicable = dbMaster.CreateProperty(_
 "Replicable", dbText, "T")
 ` Append it to the collection
 dbMaster.Properties.Append prpReplicable
 End If
 ` Set the value of Replicable to true.
 dbMaster.Properties("Replicable").Value = "T"
 MakeReplicable = True
 Exit Function
DbError:
 MsgBox Err.Description & " From: " & Err.Source _
 & "Number: " & Err.Number

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (14 of 23) [9/22/1999 2:19:23 AM]

 MakeReplicable = False
 Exit Function

End Function

6. Add the CopyReplica helper function. This function actually creates a replica database using
the from database as a source.

Function CopyReplica(ByRef dbMaster As Database, strRepName As _
 String) As Boolean
` Makes a replica database from the passed master
 On Error GoTo DbError
 ` If the target file exists, purge it
 If Dir(strRepName) <> "" Then Kill strRepName
 dbMaster.MakeReplica strRepName, "Replica of " & dbMaster.Name
 CopyReplica = True
 Exit Function
DbError:
 MsgBox Err.Description & " From: " & Err.Source _
 & "Number: " & Err.Number
 CopyReplica = False
 Exit Function

End Function

7. Add the following code to the cmdCreateReplica_Click procedure. This procedure gains
exclusive control of the database, makes it a Design Master, and creates the specified replica. The
bContinue Boolean prevents proceeding past an error.

Private Sub cmdCreateReplica_Click()
` Create a replica from the named database
Dim dbMaster As Database
Dim bContinue As Boolean
 On Error GoTo DbError
 ` Open the database in exclusive mode
 Set dbMaster = Workspaces(0).OpenDatabase(txtDbNameFrom.Text _
 True)
 ` Make the database the Design Master
 bContinue = MakeReplicable(dbMaster)
 ` Make the replica
 bContinue = CopyReplica(dbMaster, txtReplicaDbName.Text)
 dbMaster.Close
 Exit Sub
DbError:
 MsgBox Err.Description & " From: " & Err.Source _
 & "Number: " & Err.Number
 Exit Sub

End Sub

8. Add the code for the cmdSynchronize_Click procedure. This procedure synchronizes the
contents of two databases in the same replica set.

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (15 of 23) [9/22/1999 2:19:23 AM]

Private Sub cmdSynchronize_Click()
Dim dbMaster As Database
 On Error GoTo DbError
 ` Open the database in non-exclusive mode
 Set dbMaster = Workspaces(0).OpenDatabase(txtDbNameFrom.Text _
 False)
 ` Synchronize the databases
 dbMaster.Synchronize txtReplicaDbName.Text, _
 dbRepImpExpChanges
 dbMaster.Close
 Exit Sub
DbError:
 MsgBox Err.Description & " From: " & Err.Source _
 & "Number: " & Err.Number
 Exit Sub

End Sub

How It Works

When you replicate databases, Jet modifies the database properties and the structure of your tables
substantially in order to track record and design changes. The Synchronize method uses these
additional structures to track database design and data changes and apply the changes consistently over
many databases.

The core concept of replication is the replica set governed by a single Design Master database. The Design
Master is the place where all design changes must occur for all replicas. A database is a member of a
replica set if it was created as a replica of the Design Master or as a replica of an existing replica. Any
member of the replica set may synchronize data with any other member of the replica set. Figure 13.8
shows the basic relationships.

Figure 13.8. Replica set showing creation and synchronization.

Database Modifications

Jet makes several database modifications when you make a database replicable. When these changes are
made, most of them are permanent.

The new database properties are Replicable, ReplicaID, and DesignMasterID. The
Replicable property indicates that the database can be replicated and that the table structures have
been modified. Once a database has been made replicable with the addition of the Replicable
property, the ReplicaID is a unique identifier for this database file.

The DesignMasterID is a unique identifier specifying the database that can initiate all design changes
for the replica set. Jet replication uses GUIDs (globally unique identifiers) wherever it needs a unique key
for a database or field value. A GUID is a 16-byte generated value designed to be unique no matter where
or when it is assigned. GUID values are usually displayed in hexadecimal notation with added hyphens for
visual clarity. The database that is the Design Master has the same values for ReplicaID and
DesignMasterID. Figure 13.9 shows the important database properties for a Design Master database
as viewed by VisData application that ships with Visual Basic. Figure 13.10 shows the same properties for

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (16 of 23) [9/22/1999 2:19:23 AM]

javascript:popUp('13fig08.gif')

a replica. Note that the DesignMasterID GUID is the same as the ReplicaID GUID for the Design
Master database. The replica database in Figure 13.10 has the ReplicaID of the Design Master database
as its DesignMasterID. Equal values for ReplicaID and DesignMasterID are what define a
database as a Design Master.

Figure 13.9. Database properties for a Design Master.

Figure 13.10. Database properties for a replica.

In addition to database property changes, making a database replicable adds about a dozen system tables
to the database to track the Design Master, other replicas, table aliases, schema design problems,
synchronization system errors, local replica-to-replica exchange logs, data conflicts, schedules, deleted
records, and generation history. Because of all the property and system table changes, making a database
replicable is a permanent operation. After the Replicable database property is set to T, it cannot be
changed.

Table Modifications

In addition to database modifications, replication changes the table structures by adding three columns: a
unique identifier, a generation identifier, and a lineage indicator. The unique identifier is stored in the
s_GUID column and contains a globally unique identifier for this record in any replica.

The generation identifier is used to speed up incremental synchronization so that only changed records
need to be sent to other replicas. Each time a record is changed, the generation number is set to zero. At
synchronization time, all records with generation number zero are sent. The generation number is then set
at both databases to one higher than the last generation number assigned. In addition, records with higher
generation numbers are sent because they reflect more recent changes. Record additions and deletions are
also reconciled between the two databases.

The lineage indicator is used to help resolve conflicts between simultaneous updates to data in different
databases. When the same record is updated in two different replicas, a conflict can result. The
Synchronize method resolves this conflict by using the s_Lineage field to determine which record
will be placed into both databases. The losing database will have a copy of the losing record in a table
named table_name_Conflict, where table_name is the original table name. For example, a
conflict-losing record from the Expenses table would be saved at the losing location only into the
Expenses_Conflict table.

Comments

Replication is a powerful tool in your database programming kit, but will require careful planning to
implement successfully. Design considerations for replicated databases can become problematic because
of our friend Murphy, whose famous law states, "If anything can go wrong, it will go wrong and at the
worst possible time." I believe that Murphy might have been an optimist when it comes to complex
replication schemes. Microsoft's core replication technology does a marvelous job of managing one-way
replication. One-way implies that the data will be changed in only one location. With central
administration, one-way data is the contents of list boxes, zip code tables, and product definitions that you
want to push out to field laptops. For data collection, one-way means that a central site is collecting from
multiple remote sites.

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (17 of 23) [9/22/1999 2:19:23 AM]

javascript:popUp('13fig09.gif')
javascript:popUp('13fig10.gif')

Two-way replication increases programming requirements because of the need to design and develop
conflict-resolution programs and procedures. The placement of conflict losing records into only one
database may make it difficult to implement conflict resolution programs in the desired location. For
example, a sales automation application may want all conflict resolutions managed at the home office, but
the Synchronize method might place a conflict notification into a sales rep's laptop in East Podunk.
Hand-crafted code may then be required to find the remote conflicts and transport them back to the home
office. One way to avoid conflicts is to use one-way replication only and separate tables into databases,
depending on direction of data movement.

In addition to the synchronization itself, you should consider carefully your approach to how and when
you plan to compact databases and run the RepairDatabase method. Compaction physically removes
all deleted records from the database and assists with compaction of the generations of tables whose
designs have changed. The RepairDatabase method inspects all system areas and tables for
correctness and discards any incorrect data. A database that was open for write operations during a power
failure or system crash can be left in a possibly corrupt state that should be repaired by the
RepairDatabase method.

13.4 How do I...

Omit specified objects from replicas?

Problem

Replication is working great for my data collection application, but the experimental tables in the Design
Master database keep getting replicated to the field. How can I omit undesired objects from the replicas?

Technique

The Jet KeepLocal property was designed to prevent database objects from being propagated during
replication. Just set value KeepLocal to T in the database's property collection, and the object won't be
replicated.

Steps

Open the project Replicate.vbp in the How-To04 directory (refer to Figure 13.06). Use the Browse buttons
and select Expenses.mdb as the master database name and Replica.mdb as the replica database name.
Click Create Replica to create a replica database. Use the VisData data maintenance utility (in the VB6
directory) to inspect the structures of the original and replica databases to verify that the replica contains
only the Expenses table.

1. Start with the completed form from How-To 13.3.

2. Add the SetKeepLocal helper function to the form's code:

Function SetKeepLocal(dbTarget As Database, strCollName _
 As String, strObjectName As String) As Boolean
` Sets KeepLocal to "T" for the passed object.
 Dim intIdx As Integer
 Dim blnFound As Boolean
 Dim tdfTableDef As TableDef

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (18 of 23) [9/22/1999 2:19:23 AM]

 Dim prpProperty As Property
 Dim docDocument As Document
 Dim qdfQueryDef As QueryDef
 On Error GoTo ErrorHandler
 Select Case strCollName
 Case "Forms", "Reports", "Modules", "Scripts"
 Set docDocument = dbTarget.Containers(strCollName). _
 Documents(strObjectName)
 blnFound = False
 For intIdx = 0 To docDocument.Properties.Count - 1
 If docDocument.Properties(intIdx).Name _
 = "KeepLocal" Then
 blnFound = True
 Exit For
 End If
 Next intIdx
 If Not blnFound Then
 Set prpProperty = docDocument.CreateProperty _
 ("KeepLocal", dbText, "T")
 docDocument.Properties.Append prpProperty
 Else
 docDocument.Properties("KeepLocal").Value = "T"
 End If
 Case "TableDefs"
 Set tdfTableDef = dbTarget.TableDefs(strObjectName)
 blnFound = False
 For intIdx = 0 To tdfTableDef.Properties.Count - 1
 If tdfTableDef.Properties(intIdx).Name _
 = "KeepLocal" Then
 blnFound = True
 Exit For
 End If
 Next intIdx
 If Not blnFound Then
 Set prpProperty = tdfTableDef.CreateProperty _
 ("KeepLocal", dbText, "T")
 tdfTableDef.Properties.Append prpProperty
 Else
 tdfTableDef.Properties("KeepLocal").Value = "T"
 End If
 Case "QueryDefs"
 Set qdfQueryDef = dbTarget.QueryDefs(strObjectName)
 blnFound = False
 For intIdx = 0 To qdfQueryDef.Properties.Count - 1
 If qdfQueryDef.Properties(intIdx).Name _
 = "KeepLocal" Then

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (19 of 23) [9/22/1999 2:19:23 AM]

 blnFound = True
 Exit For
 End If
 Next intIdx
 If Not blnFound Then
 Set prpProperty = qdfQueryDef.CreateProperty _
 ("KeepLocal", dbText, "T")
 qdfQueryDef.Properties.Append prpProperty
 Else
 qdfQueryDef.Properties("KeepLocal").Value = "T"
 End If
 End Select
 SetKeepLocal = True
 Exit Function
ErrorHandler:
 MsgBox Err.Description & " From: " & Err.Source _
 & "Number: " & Err.Number
 SetKeepLocal = False
 Exit Function

End Function

3. Remove the dbMaster.Synchronize call and add the following boldface code to the
cmdCreateReplica_Click procedure:

Private Sub cmdCreateReplica_Click()
` Create a replica from the named database
Dim dbMaster As Database
Dim bContinue As Boolean
 On Error GoTo DbError
 ` Open the database in exclusive mode
 Set dbMaster = Workspaces(0).OpenDatabase(txtDbNameFrom.Text _
 True)
 ` Keep everything but the expenses table local
 bContinue = SetKeepLocal(dbMaster, "QueryDefs", _
 "ExpEmployeeNames")
 If bContinue Then _
 bContinue = SetKeepLocal(dbMaster, "QueryDefs", _
 "ExpForOneEmployee")
 If bContinue Then _
 bContinue = SetKeepLocal(dbMaster, "TableDefs", _
 "ObjectLibrary")
 ` Make the database the Design Master
 If bContinue Then _
 bContinue = MakeReplicable(dbMaster)
 ` Make the replica
 If bContinue Then _
 bContinue = CopyReplica(dbMaster, txtReplicaDbName.Text)

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (20 of 23) [9/22/1999 2:19:23 AM]

 dbMaster.Close
 Exit Sub
DbError:
 MsgBox Err.Description & " From: " & Err.Source _
 & "Number: " & Err.Number
 Exit Sub

End Sub

How It Works

When the KeepLocal property is set to T, the CreateReplica method doesn't create a replica of the
database object. If you later want to replicate an object that was originally kept local, change its
Replicable property to T in the Design Master and synchronize the replicas to propagate the additions.
The VisData utility that shipped with Visual Basic can be used to make many of these changes.

Comments

In addition to the KeepLocal property, partial replication enables replicas to contain only part of the
Design Master's data. To make a partial replica:

Specify the dbRepMakePartial option on the MakeReplica method.●

4 Use the TableDefs ReplicaFilter property and Relations PartialReplica property to
specified the desired records.

Invoke the Database PopulatePartial method to move the desired data into the replica.●

13.5 How do I...

Create a nonreplicated version of a replicated database?

Problem

I've created a set of replica databases, but I want to allow one copy to be modified by another developer in
her test environment. How can I cut a replica out of the replica set so that it can be changed independently
of the others?

Technique

Within a set of replicas, only one database is allowed to have design changes, such as table creation or
field size changes. All other replicas must have their design changes made at the Design Master database
and synchronized through the replica set. This strict requirement ensures that the Data Access Objects
Synchronize method can adequately track and implement changes. After all, "Too many cooks spoil
the broth." But there are times when a replica needs to be cut out of the replica set. The reasons might
include testing a new replication schema without affecting the existing replica set, quality assurance
testing of the replication methods, or a major application design change. The core technique for returning
design independence to a replica database for structure changes is to make the replica into a new Design
Master.

Steps

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (21 of 23) [9/22/1999 2:19:24 AM]

Open the project BreakReplica.vbp (see Figure 13.11). Select Replica.mdb as your database. Click Break
Replica. Verify so that you can modify table definitions using the VisData utility.

Figure 13.11. The Break Replica Set form.

1. Create a new Standard EXE project in your workspace. Name the default form
frmBreakReplica and the project prjBreakReplica. Save the form and project to disk.

2. Select Project | Components from the main menu and check Microsoft Common Dialog Control
6.0. Select Project | References from the Visual Basic main menu and activate the Microsoft DAO
3.51 Object Library by checking its box in the selection list.

3. Draw controls on the form so that it looks like Figure 13.12. Don't forget to add a Common
Dialog control. Set the form's objects and properties as listed in Table 13.10.

Table 13.10. Objects and properties for the Break Replica Set form.

OBJECT Property Setting

Form Name frmBreakReplica

Caption Break Replica Set

CommandButton Name cmdBreakReplica

Caption &Break Replica

CommandButton Name cmdOpenFrom

Caption &Browse

CommonDialog Name cdOpenFile

Filter Access Files (*.mdb)|*.mdb

TextBox Name txtDbNameFrom

Label Name Label1

AutoSize -1 `True

Caption Database to remove from set:

4. Add the following code to the cmdOpenFrom_Click procedure to select a filename:

Private Sub cmdOpenFrom_Click()
` Open the Replicate from database file
 cdOpenFile.InitDir = App.Path
 cdOpenFile.ShowOpen
 txtDbNameFrom.Text = cdOpenFile.filename

End Sub

5. Add the following code to the cmdBreakReplica_Click procedure to set the selected
database's DesignMasterID to itself:

Private Sub cmdBreakReplica_Click()
Dim dbReplica As Database
 On Error GoTo DbError
 ` Open the database in exclusive mode

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (22 of 23) [9/22/1999 2:19:24 AM]

javascript:popUp('13fig11.gif')

 Set dbReplica = Workspaces(0).OpenDatabase(txtDbNameFrom.Text _
 True)
 dbReplica.DesignMasterID = dbReplica.ReplicaID
 dbReplica.Close
 Exit Sub
DbError:
 MsgBox Err.Description & " From: " & Err.Source _
 & "Number: " & Err.Number
 Exit Sub

End Sub

How It Works

To remove a database from the restrictions placed on replicas, you simply need to make the database
replica its own Design Master by setting the DesignMasterID to the ReplicaID as shown in step 5.
The database will be immediately cut out of the replica set and will no longer be easily able to synchronize
data structure or content changes with its previous replica siblings. In other words, breaking a database out
of a replica set should be considered permanent. In a production environment, the break-up could be very
inconvenient if done incorrectly.

Replicated databases remain replicated with all the extra properties and system tables after the database's
Replicable property is set to T. How-To 13.3 discusses the changes made to the database when it is
converted to a replica. Breaking a database out of a replica set will not make the database nonreplicable; it
will allow only its own design changes. All the extra data will still be in the database.

Comments

Replication is a fairly permanent decision, but it can be a powerful tool, especially with the use of the
partial replication methods to propagate design changes with very little coding effort. A package being
distributed to many locations can use replication to propagate design changes while never transmitting any
data. Field database design changes can be managed by distributing a new, empty member of the replica
set with the required design changes and synchronizing with a replica filters set to pass no records.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Ch 13 -- Advanced Database Techniques

http://www.pbs.mcp.com/ebooks/1571691529/ch13/ch13.htm (23 of 23) [9/22/1999 2:19:24 AM]

Visual Basic 6 Database How-To

- A -
SQL Reference

SQL Statement Classifications●

Data Definition Language

The CREATE Command❍

The ALTER Command❍

Using the CONSTRAINT Clause❍

The DROP Command❍

●

Data Manipulation Language

The SELECT Command❍

Joins❍

The INSERT Command❍

The UPDATE Command❍

The DELETE Command❍

Comments❍

●

With the use of commands, predicates, clauses, operators, aggregate functions, and joins, the Structured Query
Language (SQL) can successfully compose a query that returns a specified range of fields.

SQL is a language that ties in closely with the Microsoft Jet Engine and Data Access Object (DAO). By indicating
relations between tables and other queries of a database, through SQL, records are temporarily created and passed
back to the recordset object of the database object in Visual Basic.

This appendix serves as a quick reference and introduction to SQL. Using this reference, you should be able to create
your own SQL statements in Visual Basic to better exploit the power of the Microsoft Jet Engine and its components.

Visual Basic 6 Database How-To -- Appendix A -- SQL Reference

http://www.pbs.mcp.com/ebooks/1571691529/apa/apa.htm (1 of 12) [9/22/1999 2:20:42 AM]

SQL Statement Classifications
SQL statements are broken into two distinct classifications, both of which are discussed in detail in this appendix. The
first classification, the Data Definition Language (DDL), is used to create, modify, or remove the actual definitions in
a particular database. The second classification, the Data Manipulation Language (DML), is used to create, modify,
remove, or gather information that resides in the structure of the database. In other words, you would use DDL to
create tables, fields, and indexes, and you would use DML to populate, alter, and retrieve the information that resides
in the tables and field.

Table A.1 lists the seven available SQL commands that are the basis of any SQL statement. These commands indicate
what kind of query the SQL statement actually is. Table A.1 also indicates the classification of each command listed,
either definition (DDL) or manipulation (DML). A SQL command is used together with other components of a SQL
statement to create either an action query or a selection query. Action queries are those that begin with a SQL
command other than SELECT. As you might guess, a query beginning with SELECT is a selection query.

Table A.1. SQL commands.

COMMAND Classification Description

CREATE Definition Create a table, a field, or an index.

ALTER Definition Modify a table by adding a field or changing a field definition.

DROP Definition Drop a table or an index.

SELECT Manipulation Query a database with given parameters.

INSERT Manipulation Insert multiple records with one operation.

UPDATE Manipulation Change information throughout a range with given parameters.

DELETE Manipulation Remove records from the table.

When using queries, you will use various clauses that are implemented in the SQL statement. Table A.2 lists and
describes the available clauses for SQL used by the Microsoft Jet Engine.

Table A.2. SQL clauses.

CLAUSE Descriptions

FROM Specifies the table from which data is queried

WHERE Specifies the condition(s) for the query

GROUP BY Specifies the group(s) for the selected information

HAVING Specifies the condition(s) for each group in the query

ORDER BY Specifies the order of the query

The first of these clauses, FROM, is used to indicate the table or query used to gather the information for the SQL
statement. More than one table or query can be listed in the statement, using the FROM clause. When doing so, you are
creating at least one join in your query. Joins are discussed later in this appendix.

The second clause, WHERE, lists the condition or conditions that must be met for a record to be included in the query
results. Each condition is evaluated using conditional operators. Multiple conditions are listed using logical operators.
Table A.3 lists available conditional and logical operators.

Table A.3. SQL operators.

Visual Basic 6 Database How-To -- Appendix A -- SQL Reference

http://www.pbs.mcp.com/ebooks/1571691529/apa/apa.htm (2 of 12) [9/22/1999 2:20:42 AM]

OPERATOR TYPE Condition Is Met When

AND Logical Both expressions are true.

OR Logical Either expression is true.

NOT Logical The expression is false.

< Comparison The first expression is less than the second expression.

<= Comparison The first expression is less than or equal to the second expression.

> Comparison The first expression is greater than the second expression.

>= Comparison The first expression is greater than or equal to the second expression.

= Comparison The first expression is equal to the second expression.

<> Comparison The first expression is not equal to the second expression.

BETWEEN Comparison The value belongs to a specified set of values.

LIKE Comparison The value matches the pattern specified.

IN Comparison The record belongs to a particular group in a database.

The third SQL clause, GROUP BY, is used to group the query's result set. GROUP BY uses at least one field name from
a table or query listed in the statement's FROM clause to evaluate the records and group like values. You can also use
an aggregate function in a SQL statement to create summaries of the groups in the recordset. The list of available
aggregate functions is shown in Table A.4.

Table A.4. SQL aggregate functions.

AVG Returns the average value of a specified field

COUNT Returns the number of records in a query

SUM Returns the sum of the values in a specified field

MAX Returns the largest value in a specified field

MIN Returns the smallest value in a specified field

The fourth SQL clause, HAVING, specifies conditions (of the same syntax used for the WHERE clause) the groups
must meet to be included in the resulting recordset.

The last SQL clause, ORDER BY, uses field names to order the result set in a specified manner. More information on
all the SQL commands and clauses is presented in detail throughout this appendix.

Data Definition Language
DDL statements are used to create, alter, or remove tables, fields, and indexes from a database. The three SQL
commands used to do so are CREATE, DROP, and ALTER. All three are action queries.

Action queries in Visual Basic can be initiated in one of two ways. The first method of invoking an action query is by
using a QueryDef object. The second is by using the Execute method of the database object, as shown here:

db.Execute sSQLStatement

This assumes that db is a database object variable successfully set to a valid database, and sSQLStatement is a
valid string variable containing a valid action SQL statement.

Visual Basic 6 Database How-To -- Appendix A -- SQL Reference

http://www.pbs.mcp.com/ebooks/1571691529/apa/apa.htm (3 of 12) [9/22/1999 2:20:42 AM]

The CREATE Command

The CREATE command is used to create tables and indexes in a specified database. To create a table in a given
database, use the CREATE TABLE statement with the syntax shown here:

CREATE TABLE table (fld1 type [(sz)] [NOT NULL] [idx1] [, fld2 type [(sz)]

 [NOT NULL] [idx2] [, ...]] [, CONSTRAINT MFidx [, ...]])

In the preceding syntax, the table name succeeds the actual CREATE TABLE statement and is followed by a
comma-delimited list of field definitions that are used to create the specified table. At least one field must be listed in
parentheses as shown. Any valid database type can be used to indicate the type of field to be created, and a size (sz)
can be specified for text and binary fields.

The following example creates a new table in the db database with three fields:

db.Execute "CREATE TABLE Customers (CustNum INTEGER, " _

 & "CustName TEXT (25), Address TEXT (30))"

The new table created is called Customers. It contains an integer field named CustNum and two text fields named
CustName and Address.

Using the NOT NULL optional parameter, you can specify that the field can never have a NULL value. If a NULL
value is assigned to a field created with this option, a runtime error will occur. The following example is a more
bulletproof table definition:

db.Execute "CREATE TABLE Customers (CustNum INTEGER NOT NULL, " _

 & "CustName TEXT NOT NULL (25), Address TEXT (30))"

This version of the CREATE TABLE action query specifies that the Number and CustName field values cannot
consist of any NULL values. The Address field, however, can.

You can also use the CONSTRAINT clause in a CREATE TABLE statement to create an index either on an individual
field or on multiple fields. The following example creates an index in a new table:

db.Execute "CREATE TABLE Customers (" _
 & "CustNum INTEGER CONSTRAINT CustNumIndex PRIMARY, " _

 & "CustName TEXT (25), Address TEXT (30))"

This example creates a table with three fields as shown before, but it also adds an index named CustNumIndex for
the CustNum field.

To create an index on multiple fields, you can also use the CONSTRAINT clause as shown in this example:

db.Execute "CREATE TABLE Customers (CustNum INTEGER, " _
 & "CustName TEXT (25), Address TEXT (30), " _

 & "CONSTRAINT CustIndex UNIQUE (CustNum, CustName))"

Notice that the new index created by the CONSTRAINT clause, named CustIndex, is composed of both the
CustNum and the CustName fields described in the SQL statement. The difference between creating an individual
field index and creating a multiple field index with the CREATE TABLE statement is that, with the individual fields,
you indicate the CONSTRAINT clause after the given field, without a comma. Creating indexes of multiple fields with
the CONSTRAINT clause, you specify the index after the fields in the index are created, separated by a comma, listing
the individual fields, as shown in the last example. More information on the CONSTRAINT clause can be found in the
"Using the CONSTRAINT Clause" section, later in this appendix.

You do not necessarily have to create indexes in the CREATE TABLE statement--you can also explicitly create
indexes using the CREATE INDEX statement as shown in this example:

Visual Basic 6 Database How-To -- Appendix A -- SQL Reference

http://www.pbs.mcp.com/ebooks/1571691529/apa/apa.htm (4 of 12) [9/22/1999 2:20:42 AM]

db.Execute "CREATE UNIQUE INDEX CustIndex ON Customers (CustNum, CustName)"

This statement leads to the same results as derived by the last CREATE TABLE statement.

The syntax for the CREATE INDEX statement is as follows:

CREATE [UNIQUE] INDEX idx ON table (fld1 [ASC|DESC]
 [, fld2 [ASC|DESC], ...])

 [WITH {PRIMARY | DISALLOW NULL | IGNORE NULL}]

When using the CREATE INDEX statement, specifying the UNIQUE option as shown in the preceding example, you
are telling the Jet Engine that no two combinations, for the values of the fields listed, are to be allowed, thus creating a
unique index on the fields. By default, indexes are created in ascending order (ASC keyword), but you can specify to
list the order of the values of an index in descending order by using the DESC keyword after the corresponding field
name.

The last portion of the CREATE INDEX statement allows you to specify, in more detail, how an index is to be
handled. You do this with the WITH clause of the CREATE INDEX statement. To create a primary key on the table
indicated, use the WITH PRIMARY statement. This statement creates a unique index that is now the primary key.
Only one primary key can exist per table; attempting to create an additional one will result in a runtime error.

You can also prohibit the use of NULL values in an index, with the WITH DISALLOW NULL statement, or you can
allow NULL values with the WITH IGNORE NULL statement.

The ALTER Command

The second command belonging to the SQL Data Definition Language is ALTER. You can use the ALTER TABLE
statement to complete four distinct tasks:

Add a new field to a table.●

Delete a field from a table.●

Add a new index to a table.●

Delete an index from a table.●

You can add or delete only one field or index with each ALTER TABLE statement. The syntax for ALTER TABLE
is shown here:

ALTER TABLE table {ADD {COLUMN fld type[(size)] [NOT NULL] [CONSTRAINT idx]

 | CONSTRAINT MFidx} | DROP {COLUMN fld | CONSTRAINT indexname}}

The following example creates a new field in an existing table named Customers:

db.Execute "ALTER TABLE Customers ADD COLUMN PhoneNum TEXT (12)"

Just as you can add a field to a table, you can delete one, as shown in this example:

db.Execute "ALTER TABLE Customers DROP PhoneNum"

You can also specify new indexes just as you did with CREATE TABLE, except that you can add the index after the
table is already created, as shown here:

db.Execute "ALTER TABLE Customers " _

 & "ADD CONSTRAINT NameAndPhoneIndex (CustName, PhoneNum)"

Now you can delete that index with this final example:

db.Execute "ALTER TABLE Customers DROP CONSTRAINT NameAndPhoneIndex"

Visual Basic 6 Database How-To -- Appendix A -- SQL Reference

http://www.pbs.mcp.com/ebooks/1571691529/apa/apa.htm (5 of 12) [9/22/1999 2:20:42 AM]

Using the CONSTRAINT Clause

So far you have seen the CONSTRAINT clause in both the CREATE and the ALTER SQL commands. Now take a
closer look at this clause and discover how powerful it really is.

In its simplest form, a constraint is an index. Not only does the CONSTRAINT clause allow you to create or remove
indexes as shown in the CREATE and ALTER command sections, but it also allows you to create primary and foreign
keys to define relations and enforce referential integrity.

As shown earlier, by example, there are two versions of the CONSTRAINT statement, one for individual field indexes
and one for multiple field indexes. The syntax for a single field index is shown here:

CONSTRAINT name {PRIMARY KEY | UNIQUE | NOT NULL |
 REFERENCES foreigntable

 [(foreignfield1, foreignfield2)]}

The syntax for a multiple field index CONSTRAINT is this:

CONSTRAINT NAME

 {PRIMARY KEY (primary1[, primary2 [, ...]]) |
 UNIQUE (unique1[, unique2 [, ...]]) |
 NOT NULL (notnull1[, notnull2 [, ...]]) |
 FOREIGN KEY (ref1[, ref2 [, ...]])
 REFERENCES foreigntable

 [(foreignfield1 [, foreignfield2 [, ...]])]}

The name of the index to be created is specified directly after the CONSTRAINT keyword. In either version, you can
create three types of indexes:

A UNIQUE index. A unique index has no two fields, as indicated in the CONSTRAINT clause, with the same
values.

●

A PRIMARY KEY index. A primary key is, by definition, unique. This means that all the fields included in the
primary key definition must also be unique.

●

A FOREIGN KEY index. A foreign key is an index that uses another table to create an index on the current one.●

You can create a foreign key to create a relationship between multiple fields as in the following example:

db.Execute "ALTER TABLE Customers " _
 & "ADD CONSTRAINT NewIndex " _

 & "FOREIGN KEY (CustNum) REFERENCES Orders (CustNum)"

This example creates a relation between the Customers table and the Orders table of the db database object. A new
index is created, NewIndex, that links the two tables based on the CustNum field name.

The DROP Command

The DROP command comes in two flavors: DROP TABLE and DROP INDEX. As you might easily guess, the DROP
TABLE statement removes an existing table from a database as shown here:

db.Execute "DROP TABLE Customers"

The DROP INDEX statement works similarly to the DROP TABLE statement, except that it removes an index from a
given table as shown in this example:

db.Execute "DROP INDEX CustNumIndex ON Customers"

For reference, the syntax of the DROP command is as follows:

Visual Basic 6 Database How-To -- Appendix A -- SQL Reference

http://www.pbs.mcp.com/ebooks/1571691529/apa/apa.htm (6 of 12) [9/22/1999 2:20:43 AM]

DROP {TABLE table | INDEX idx ON table}

Data Manipulation Language
DML commands create a mix of action and selection queries. The commands SELECT, INSERT, UPDATE, and
DELETE are used to quickly and efficiently, through the use of the Jet Engine performance, manipulate the data
residing in specified tables.

The SELECT Command

The SELECT command differs from all other SQL commands in that it is a part of a selection query rather than an
action query. When you're using a selection query in a Visual Basic application, it is most commonly set in a recordset
object of a given database. Assuming that rs is a valid recordset object and db is a database object already set to a
valid database file, you can use the following statement to gather all the records in the Customers table of the db
object:

Set rs = db.OpenRecordset("SELECT * FROM Customers")

This example uses the most generic and basic form of a SELECT statement. This section explains the various
components of the SELECT statement and describes how the programmer can use each component to effectively sort
and filter records according to his or her needs.

The syntax for the SELECT statement is as follows:

SELECT [predicate]
 { * | table.* |
 [table.]field1 [AS alias1] [, [table.]field2 [AS alias2] [, ...]]}
FROM tableexpression [, ...] [IN externaldatabase]
[WHERE...]
[GROUP BY...]
[HAVING...]

[ORDER BY...]

It is quite understandable to be overwhelmed by this declaration, but not all the clauses included in this syntax are
necessarily used together--although they could be.

Take the following SELECT statement, for example:

SELECT DISTINCT CUSTNUM, CUSTNAME

FROM Customers
WHERE (CustNum >= 100) AND (CustNum <= 120)

ORDER BY CustName;

This statement retrieves only the fields CustNum and CustName from the Customers table. The WHERE clause in
this statement shows two conditions. The first condition says that the CustNum field values must be greater than or
equal to 100. The second condition states that the CustNum field values must be less than or equal to 120. So far, you
can see that the SELECT statement shown previously will return the CustNum and CustName for all records with a
customer number between 100 and 120. The last part of this statement says to order the records returned by the query
by the CustName field--in other words, in alphabetical order. You can also request the records to be returned in
reverse alphabetical order by placing the DESC keyword after the ORDER BY CustName clause.

You can use multiple conditions in a SELECT statement as shown in this statement. For a complete list of operators
for conditions, both logical and comparison, see Table A.4 at the beginning of this section.

Visual Basic 6 Database How-To -- Appendix A -- SQL Reference

http://www.pbs.mcp.com/ebooks/1571691529/apa/apa.htm (7 of 12) [9/22/1999 2:20:43 AM]

It is important to note that the DISTINCT keyword following the SELECT command is called a predicate. This
keyword indicates that only distinct (unique) combinations of fields will be returned. In this example, if you had three
records in the Customers table with the same customer number and name, but with different addresses, only one
record would be returned. If you were to add the Address field to the list of fields in the SELECT statement, you
would receive three records for the same customer number and name because the combination (number, name, and
address) is unique for each record returned.

The DISTINCT keyword is not the only predicate available in a SELECT statement. Table A.5 lists the four available
predicates for a SELECT statement.

Table A.5. SELECT predicates.

PREDICATE Description

ALL Returns all records, even duplicates

DISTINCT Returns only unique records, based on fields specified in the statement

DISTINCTROW Returns only unique records, based on all fields in the specified table(s), even those not listed in the
SELECT statement

TOP Returns the first n records or the top p percentage of records of the selected recordset

The default predicate used in SELECT statements not indicating a predicate is ALL. ALL returns all records that meet
the conditions of the selection query.

The TOP predicate is used in conjunction with the ORDER BY clause of a SELECT statement. It can be used in one of
two ways:

TOP n returns the first n records.●

TOP p PERCENT returns the top p percentage of the entire recordset.●

Following is an example of the TOP predicate:

SELECT TOP 10 PERCENT OrderNum, OrderPrice
FROM Orders

ORDER BY OrderPrice;

This statement would return the top 10% of records in the Orders table, based on the OrderPrice field. If you were
to order the recordset returned by this statement by the OrderNum field, you would get the top 10% of records based
on the OrderNum, which would probably not make a whole lot of sense.

It is worth pointing out that if there are identical values for the ORDER BY field that is specified, there is a chance that
more than the desired number of records will be returned. Assume, for instance, that I wanted to get the top 10 parts
based on quantity ordered. If there were 9 distinct quantity amounts that topped the list and 2 others that followed,
with the same value, I would have 11 records in all when I only wanted 10. The same is true for the TOP p
PERCENT format. If I wanted to retrieve the top 2% of part prices with my selection query, I would use the following
statement:

SELECT TOP 2 PERCENT PartName
FROM Orders

ORDER BY PartPrice;

This example returns the names of the items priced in the top 2%. If I have numerous items all with the same price,
they are considered one item, so I can very easily retrieve more records than I expected. It is also important to
understand what you are asking for when using the TOP predicate. For instance, it might be easy to think that you are
getting the top 10 customers based on moneys spent, but you must specifically state that you want the selection to be
made on a field such as TotalMoneySpent as compared to TotalOrderPrice.

Visual Basic 6 Database How-To -- Appendix A -- SQL Reference

http://www.pbs.mcp.com/ebooks/1571691529/apa/apa.htm (8 of 12) [9/22/1999 2:20:43 AM]

You can also group records that are returned from a query by using the GROUP BY clause in a SELECT statement, as
in the following example:

SELECT PartName, Count(PartName)
FROM Orders
WHERE (PartPrice > 10)

GROUP BY PartName;

This SELECT statement gathers and groups all the records from the Orders table whose PartPrice field values are
greater than 10. These records are then grouped by the PartNum field only, and a count of the number of each type of
part sold is returned. In other words, the resulting recordset contains the distinct names of parts that cost over $10 and
a count of the number of orders for each part.

The function COUNT, in this example, is called an aggregate function. Other aggregate functions include AVG, SUM,
MAX, and MIN. Table A.4 is a list of aggregate functions and their descriptions.

Another example of using an aggregate function is shown here:

SELECT PartName, SUM(PartPrice)
FROM Orders
WHERE (PartPrice > 10)
GROUP BY PartName

HAVING (SUM(PartPrice) > 1000) AND (PartName LIKE "WIDGET*");

This example introduces the HAVING clause. This clause acts very similarly to the WHERE clause, except that it tests
the condition specified after the grouping has occurred, unlike the WHERE clause, which tests conditions of records to
be included in the groups. The preceding SELECT statement gathers distinct part names and a sum of the total prices
sold from the Orders table. The only condition for records to be included in this grouping is that the price of each part
be greater than 10.

After the groups have been created by the Jet Engine, only the groups with a total PartPrice summary of more
than 1,000 are included. In addition to this condition, you can see the use of the LIKE keyword. You can use the
LIKE keyword anywhere you can specify a condition. LIKE uses pattern matching to check whether a field should be
included in a resulting recordset. In this example, only groups with a PartName field value beginning with the
characters WIDGET will be included in the recordset.

Joins

Joins are a very commonly used function of a SELECT statement. Joins are used to create temporary relationships
between tables when evaluating a selection query. Following is the syntax for using joins in a SELECT statement:

SELECT ...

FROM table1 [LEFT | RIGHT] JOIN table2 ON (table1.fld1 CompOp table2.fld2)

CompOp is a comparison operator (refer to Table A.4). A join effects the FROM clause of a SELECT statement as
shown in the preceding syntax declaration.

Left and right joins mirror each other in definition. A left join (called a left outer join) includes all records from table1,
even if no related records are found in table2. A right join (called a right outer join) includes all records from table2,
even if no related records are found in table1. Take the following statement, for example:

SELECT Customers.*, Orders.*

FROM Customers LEFT JOIN Orders ON (Customers.CustNum = Orders.CustNum);

This example returns all fields from the Customers table and only the fields from the Orders table that have matching
CustNum fields. In other words, the resulting recordset from this statement would include all the customers and

Visual Basic 6 Database How-To -- Appendix A -- SQL Reference

http://www.pbs.mcp.com/ebooks/1571691529/apa/apa.htm (9 of 12) [9/22/1999 2:20:43 AM]

information on orders for those customers that did order.

To create a join that returns only records that are included in both tables (inner join), you do not have to use the JOIN
clause at all, as shown in this example:

SELECT Customers.*, Orders.*
FROM Customers, Orders

WHERE (Customers.CustNum = Orders.CustNum);

This statement would return a shorter recordset than the earlier statement, given that there are customers who did not
place orders. In this SELECT statement, only the customers who placed orders qualify to be returned in the recordset.

Although it is unnecessary to do so, there is a SQL clause to specify inner joins, as shown in this example:

SELECT Customers.*, Orders.*

FROM Customers INNER JOIN Orders ON (Customers.CustNum = Orders.CustNum);

This statement is the equivalent to the preceding one, and in many cases it is actually easier to read and comprehend at
a glance.

You might also care to specify more than one condition in any of your joins, as shown in this example:

SELECT Customers.*, Orders.*
FROM Customers INNER JOIN Orders
ON ((Customers.CustNum = Orders.CustNum)

AND (Customers.Flag = Orders.Flag));

If you really want to go overboard, and many times you might find that you need to, you can nest joins within each
other as shown in the following example:

SELECT Customers.*, Orders.*, Tax.*
FROM Customers INNER JOIN
 (Orders INNER JOIN Tax ON (Orders.State = Tax.State))

 ON (Customers.CustNum = Orders.CustNum));

This SELECT statement returns all the records in which there is a customer number from the Customers table and
Orders table and a state in the Orders table and the Tax table.

You can nest either a LEFT JOIN or a RIGHT JOIN inside an INNER JOIN; however, you cannot nest an INNER
JOIN inside either a LEFT JOIN or a RIGHT JOIN.

The INSERT Command

The INSERT command is used in the INSERT INTO statement to create an append query, a type of action query.
You can use this command to add single or multiple rows to a table. This is the syntax for adding a single row using
the INSERT INTO statement:

INSERT INTO table [(fld1[, fld2[, ...]])]

VALUES (val1[, val2[, ...])

Using this syntax, you can add single rows to a table. You must specify each field and its value that you want to add.
If you leave out a field and its corresponding value, a NULL value is automatically inserted into the field. The new
records are appended to the end of the table. Following is an example of how to add a row onto a specific table:

INSERT INTO Customers (CustNum, CustName)

VALUES (1, "Kimberly");

If other fields are in the Customers table, they are assigned a NULL value.

Visual Basic 6 Database How-To -- Appendix A -- SQL Reference

http://www.pbs.mcp.com/ebooks/1571691529/apa/apa.htm (10 of 12) [9/22/1999 2:20:43 AM]

The syntax for adding multiple rows differs slightly:

INSERT INTO table2 [(fld1[, fld2[, ...]])]
SELECT [table1.]fld1[, fld2[, ...]

FROM ...

This syntax takes a specified selection of records from table1 and inserts them into table2. The number of fields for
both tables must be the same and in the correct order. The following example demonstrates the INSERT INTO
statement:

INSERT INTO Delivered (CustNum, DelPart, PriceCharged)
SELECT CustNum, PartName, PartPrice
FROM Orders

WHERE (Delivered = True);

This example inserts all the delivered orders from the Orders table into the corresponding fields of the Delivered table.

The INSERT INTO statement appends records at the end of an existing table, but you can also use a similar
statement and selection of records to create a new table, as in this example:

SELECT CustNum, PartName, PartPrice
INTO DeliveredBackup
FROM Orders

WHERE (Delivered = True);

This example creates a new table called DeliveredBackup, with the identical fields and properties of the fields listed in
the SELECT clause from the Orders table. The new table would include all the records with the Delivered field
value of True.

The UPDATE Command

The UPDATE command is used to set information in a current table to a new value. The syntax for the UPDATE
command is as follows:

UPDATE table
SET value

WHERE criteria

The value of the SET clause in the UPDATE statement is an assignment expression that will alter the current value of
the selected records of the table specified. Here is an example of the UPDATE statement:

UPDATE Orders

SET OrderTotal = (PartPrice * Quantity);

If no WHERE clause is specified, as in this example, the UPDATE query makes the necessary changes to all the records
in the specified table. In this example, the OrderTotal field is calculated based on the PartPrice and
Quantity field values for the corresponding record.

With a single SQL UPDATE query, it's possible to update multiple fields for each record, as shown in this next
example:

UPDATE Orders
SET OrderTotal = (PartPrice * Quantity),
 Discount = (PartPrice * .05) * Quantity

WHERE (OrderDate < #1/1/1998#);

This example gives a new value to both the OrderTotal field and the Discount field for all records whose

Visual Basic 6 Database How-To -- Appendix A -- SQL Reference

http://www.pbs.mcp.com/ebooks/1571691529/apa/apa.htm (11 of 12) [9/22/1999 2:20:43 AM]

OrderDate field value is before January 1, 1998. Notice the use of the number signs (#) before and after the date
criteria in the WHERE clause. This is the correct notation for specifying dates in a condition.

Notice that you cannot reverse UPDATE queries and must take care to ensure that the correct records are selected for
the update. To check which fields are going to be updated before the execution of the UPDATE statement, create a
selection query with the same criteria as the UPDATE query.

The DELETE Command

The DELETE command is used to perform bulk deletions of records within a specified table in one operation. You can
specify conditions to select the records from a table to delete. When you use the DELETE command, entire records are
deleted, not individual fields. The syntax for the DELETE command is shown here:

DELETE table.*
FROM table

WHERE ...

Following is an example of a DELETE statement:

DELETE *
FROM Customers

WHERE (LastOrderDate <= #6/20/73#);

This example deletes all the records in the Customers table in which the last order date was June 20, 1973, or earlier
(You don't need their business anyway!).

You can use the DELETE command to delete all the data in a particular table while maintaining the actual structure
and definition of the table, as shown in this example:

DELETE * FROM Orders;

This command could obviously be very dangerous; therefore, use this form of the DELETE command with extreme
caution.

Comments

SQL is a convenient, effective, and easy way to organize data for your applications. By using the commands described
in this appendix, you can select, filter, order, and group records in any way you need. The SQL is much more involved
than is described in this brief reference, but by knowing just these basic commands and functions, you can create just
about any desired recordset from your raw data.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Appendix A -- SQL Reference

http://www.pbs.mcp.com/ebooks/1571691529/apa/apa.htm (12 of 12) [9/22/1999 2:20:43 AM]

Visual Basic 6 Database How-To

- B -
DATA ACCESS OBJECT REFERENCE

Containers Collection, Container Object●

Databases Collection, Database Object●

Documents Collection, Document Object●

DBEngine Object●

Errors Collection, Error Object●

Fields Collection, Field Object●

Groups Collection, Group Object●

Parameters Collection, Parameter Object●

Recordsets Collection, Recordset Object●

TableDefs Collection, TableDef Object●

Workspaces Collection, Workspace Object●

Users Collection, User Object●

The Data Access Object (DAO) model provides you with an object-oriented interface to all the data
manipulation techniques inherent in Microsoft Jet Database files. Figure B.1 shows the entire DAO
object model in its hierarchical form.

Figure B.1. The Data Access Object model.

This appendix is designed as a reference to all the objects included in the DAO object model. The
collections and objects are listed in alphabetical order with tables indicating and describing all the
available methods and properties available to each.

Visual Basic 6 Database How-To -- Appendix B --DATA ACCESS OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apb/apb.htm (1 of 18) [9/22/1999 2:22:29 AM]

javascript:popUp('B_fig01.gif')

Containers Collection, Container Object
The Containers collection contains all the Container objects that are part of a database. A
container name can be Database, Tables, or Relations. Table B.1 shows the method of the
Containers collection; Table B.2 shows its property. Table B.3 lists the properties of the
Container object.

Table B.1. Containers collection method.

METHOD DESCRIPTION

Refresh Updates the contents of the collection to reflect the current status of the database

Table B.2. Containers collection property.

PROPERTY DESCRIPTION

Count The number of objects in the collection

Table B.3. Container object properties.

PROPERTY DESCRIPTION

AllPermissions Returns all permissions for the user named by UserName, including those that
are inherited from the user's group as well as the user's specific permissions

Inherit Sets or returns a value that indicates whether the document will receive a default
Permissions property setting

Name Sets a user-defined name for the DAO object

Owner Sets the owner of the current Container object

Permissions Sets the permissions available for the user, of the current Container object,
named by UserName

UserName Indicates the name of the user for the current Container object

Databases Collection, Database Object
The Database object is a member of the Databases collection. The Database object is a means of
access to an open database file. Table B.4 shows the method of the Databases collection; Table B.5
shows its property. Table B.6 lists the methods of the Database object, and Table B.7 lists the
properties.

Table B.4. Databases collection method.

METHOD DESCRIPTION

Visual Basic 6 Database How-To -- Appendix B --DATA ACCESS OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apb/apb.htm (2 of 18) [9/22/1999 2:22:29 AM]

Refresh Updates the contents of the collection to reflect the current status of the database

Table B.5. Databases collection property.

PROPERTY DESCRIPTION

Count Returns the number of objects in the collection

Table B.6. Database object methods.

METHOD DESCRIPTION

Close Closes the current Database object

Creates a new Property object

Creates a new QueryDef object and adds it to the QueryDefs collection

CreateRelation Creates a new Relation object and adds it to the Relations collection

CreateTableDef Creates a new TableDef object and adds it to the TableDefs collection

Execute Executes the specified SQL action query

MakeReplica Makes a new replica from another database replica

NewPassword Assigns a new password to the Database object

OpenRecordset Creates a new Recordset object and adds it to the Recordsets collection

PopulatePartial Synchronizes changes in a partial replica with the full replica and repopulates
the partial replica based on the current replica filters

Synchronize Synchronizes two replicas

Table B.7. Database object properties.

PROPERTY DESCRIPTION

CollatingOrder Returns the sequence of the sort order in text and string comparison

Connect Returns information about the source

Connection Returns a connection object corresponding to the current Database object

Name Sets a user-defined name for the DAO object

QueryTimeout Indicates the number of seconds to wait until an error is reported when
executing a query

RecordsAffected Indicates the number of records that were affected by the last call of the
Execute method

Replicable Indicates whether the current Database object can be replicated

ReplicaID Returns a 16-byte value that uniquely identifies a database replica

Transactions Indicates whether an object supports transactions

Visual Basic 6 Database How-To -- Appendix B --DATA ACCESS OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apb/apb.htm (3 of 18) [9/22/1999 2:22:29 AM]

Updatable Indicates whether an object can be updated

V1xNullBehavior Indicates whether zero-length strings in Text or Memo fields are converted to
NULL values

Version Indicates the DAO version currently in use

Documents Collection, Document Object
The Documents collection contains all the Document objects for a specific type of Microsoft Jet
Database object (Database, Table or Query, or Relationship). Table B.8 shows the method
of the Documents collection, and Table B.9 shows its property. Table B.10 shows the Document
object method; Table B.11 lists its properties.

Table B.8. Documents collection method.

METHOD DESCRIPTION

Refresh Updates the contents of the collection to reflect the current status of the database

Table B.9. Documents collection property.

PROPERTY DESCRIPTION

Count Returns the number of objects in the collection

Table B.10. Document object methods.

METHOD DESCRIPTION

CreateProperty Creates a new user-defined Property object

Table B.11. Document object properties.

PROPERTY DESCRIPTION

AllPermissions Indicates all the permissions belonging to the current user of the document that
are specific as well as inherited from its group

Container Returns the name of the Container object to which the current Document
object belongs

DateCreated Returns the date and time the current object was created

LastUpdated Returns the date and time the current object was last modified

KeepLocal Indicates that the current object is not to be replicated

Name Sets a user-defined name for the DAO object

Owner Returns the user that is considered the owner of the current Document object

Visual Basic 6 Database How-To -- Appendix B --DATA ACCESS OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apb/apb.htm (4 of 18) [9/22/1999 2:22:29 AM]

Permissions Returns the permissions specific to the current user of the document

Replicable Indicates whether the current Document object can be replicated

UserName Returns the name of the current user of the document

DBEngine Object
DBEngine is the only part of the DAO object model that is not a collection; rather it is only an object
that contains and controls all the other components of the DAO object model. Table B.12 lists the
methods of the DBEngine object; Table B.13 lists the properties.

Table B.12. DBEngine object methods.

METHOD DESCRIPTION

BeginTrans Begins transaction for the database engine

CommitTrans Commits changes since the last call to the BeginTrans method

Rollback Rolls back to the state before the call to the BeginTrans method

CompactDatabase Compacts an existing database into a new database

CreateDatabase Creates a new Database object, saves it to disk, and returns the opened
Database object

CreateWorkspace Creates a new Workspace object and appends it to the Workspaces
collection

Idle Allows the Jet engine to complete any pending tasks by suspending data
processing

OpenConnection Opens a connection to an ODBC data source

OpenDatabase Opens a database and returns a Database object that represents it

RegisterDatabase Enters connection information for an ODBC data source in the Windows
Registry

RepairDatabase Tries to repair a corrupt Jet database

SetOption Temporarily overrides values in the Windows Registry for the Microsoft Jet
database engine

Table B.13. DBEngine object properties.

PROPERTY DESCRIPTION

DefaultType Sets the type of Workspace object to be used when the next Workspace
object is created

DefaultUser Sets the username of the default Workspace object to be created

DefaultPassword Sets the password used to create the default Workspace object when it is
initiated

Visual Basic 6 Database How-To -- Appendix B --DATA ACCESS OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apb/apb.htm (5 of 18) [9/22/1999 2:22:29 AM]

IniPath Indicates the path of the information used from the Windows Registry about the
Jet database engine

LoginTimeout Returns the number of seconds before an error occurs when attempting to log on
to an ODBC data base

SystemDB Returns the path and name of the current workgroup information file

Version Indicates the DAO version currently in use

Errors Collection, Error Object
The Errors collection is a collection of Error objects pertaining to individual DAO operation
failures. Table B.14 shows the Errors collection method, and Table B.15 shows its property. Table
B.16 lists the properties of the Error object.

Table B.14. Errors collection method.

METHOD DESCRIPTION

Refresh Updates the contents of the collection to reflect the current status of the database

Table B.15. Errors collection property.

PROPERTY DESCRIPTION

Count Returns the number of objects in the collection

Table B.16. Error object properties.

PROPERTY DESCRIPTION

Description Indicates the description of the current error

HelpContext Returns the context ID for a topic in a Windows Help file

HelpFile Returns the name of a Windows Help file

Number Indicates the number referring to the current error

Source Indicates the source of the current error

Fields Collection, Field Object
The Fields collection belongs to the Index, QueryDef, Relation, and TableDef objects. The
collection is composed of all the Field objects of the corresponding object. The Field object is used
to access the value of that field and its definition. Table B.17 lists the methods of the Fields collection,
and Table B.18 shows its property. Table B.19 lists the Field object's methods, and Table B.20 lists its
properties.

Visual Basic 6 Database How-To -- Appendix B --DATA ACCESS OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apb/apb.htm (6 of 18) [9/22/1999 2:22:29 AM]

Table B.17. Fields collection methods.

METHOD DESCRIPTION

Append Adds a new object to the collection

Delete Removes an object from the collection

Refresh Updates the contents of the collection to reflect the current status of the database

Table B.18. Fields collection property.

PROPERTY DESCRIPTION

Count Indicates the number of objects in the collection

Table B.19. Field object methods.

METHOD DESCRIPTION

AppendChunk Appends a string to a Memo or Long Binary field

CreateProperty Creates a new user-defined Property object

GetChunk Returns a portion of a Memo or Long Binary field

Table B.20. Field object properties.

PROPERTY DESCRIPTION

AllowZeroLength Indicates whether a zero-length value can be stored in the field

Attributes Returns information containing characteristics of an object

CollatingOrder Returns the sequence of the sort order in text and string comparison

DataUpdatable Indicates whether the object's data can be updated

DefaultValue Returns a default value given to the field if no other value is specified

FieldSize Indicates the number of bytes used in the database for a Memo or Long
Binary field

ForeignName Returns the name of a Field object in a foreign table that corresponds to a
field in a primary table for a relationship

Name Sets a user-defined name for the DAO object

OrdinalPosition Indicates a numbered position of the current field in the Fields collection

OriginalValue Returns the value of the field when the last batch update began

Required Indicates whether the field must be given a value

Size Returns the size in length of the field

SourceField Indicates the name of the field that is the original source of the data for the
current Field object

Visual Basic 6 Database How-To -- Appendix B --DATA ACCESS OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apb/apb.htm (7 of 18) [9/22/1999 2:22:30 AM]

SourceTable Sets the name of the table that is the original source of the data for a Field
object

Type Returns the operational type of object

ValidateOnSet Indicates whether a Field object value is indicated when its Value property
is set

ValidationRule Returns the value that validates data in a field as it is changed or added to a table

ValidationText Indicates the message that your application displays if the value of the Field
object does not satisfy the validation rule

Value Returns the actual data stored in the field

VisibleValue Returns the value that is newer than the OriginalValue property as
determined by a batch update conflict

Groups Collection, Group Object
The Groups collection contains Group objects of a workspace or user. A Group object is a group of
users who have common access permissions. Table B.21 lists the methods of the Groups collection, and
Table B.22 shows its property. Table B.23 shows the Group object's method, and Table B.24 lists its
properties.

Table B.21. Groups collection methods.

METHOD DESCRIPTION

Append Adds a new object to the collection

Delete Removes an object from the collection

Refresh Updates the contents of the collection to reflect the current status of the database

Table B.22. Groups collection property.

PROPERTY DESCRIPTION

Count Indicates the number of objects in the collection

Table B.23. Group object method.

METHOD DESCRIPTION

CreateUser Creates a new user object for the current group

Table B.24. Group object properties.

PROPERTY DESCRIPTION

Visual Basic 6 Database How-To -- Appendix B --DATA ACCESS OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apb/apb.htm (8 of 18) [9/22/1999 2:22:30 AM]

Name Sets a user-defined name for the DAO object

PID Returns a group personal identifier

Indexes Collection, Index Object

The Indexes collection contains all the Index objects pertaining to a particular TableDef object.
The Index object specifies the order of the records in a table. Table B.25 lists the Indexes collection
methods, and Table B.26 shows the Indexes collection property. Table B.27 lists the Index object
methods, and Table B.28 lists the Index object properties.

Table B.25. Indexes collection methods.

METHOD DESCRIPTION

Append Adds a new object to the collection

Delete Removes an object from the collection

Refresh Updates the contents of the collection to reflect the current status of the database

Table B.26. Indexes collection property.

PROPERTY DESCRIPTION

Count Indicates the number of objects in the collection

Table B.27. Index object methods.

METHOD DESCRIPTION

CreateField Creates a Field object and appends it to the Fields collection

CreateProperty Creates a Property object

Table B.28. Index object properties.

PROPERTY DESCRIPTION

Clustered Indicates whether the Index object is a clustered index

DistinctCount Indicates the number of unique values for the Index object

Foreign Indicates whether the current Index object represents a foreign key

IgnoreNulls Indicates whether NULL values in the fields of the current Index object are
allowed

Name Sets a user-defined name for the DAO object

Primary Indicates that the current index is the primary key

Required Indicates that the values of the Field objects that make up the current Index
object must be specified

Visual Basic 6 Database How-To -- Appendix B --DATA ACCESS OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apb/apb.htm (9 of 18) [9/22/1999 2:22:30 AM]

Unique Indicates that the combination of the Field object values that make up the current
Index object are unique

Parameters Collection, Parameter Object
The Parameters collection contains all the Parameter objects of a QueryDef object. A
Parameter object contains a value that is passed to a QueryDef object. Table B.29 shows the
Parameters collection method, and Table B.30 shows its property. Table B.31 lists the Parameter
object properties.

Table B.29. Parameters collection method.

METHOD DESCRIPTION

Refresh Updates the contents of the collection to reflect the current status of the database

Table B.30. Parameters collection property.

PROPERTY DESCRIPTION

Count Indicates the number of objects in the collection

Table B.31. Parameter object properties.

PROPERTY DESCRIPTION

Direction Indicates whether the object represents an input, an output, both, or the return value from
the procedure

Name Sets a user-defined name for the DAO object

Type Indicates the operational type of object

Value Sets the value of the Parameter object

QueryDefs Collection, QueryDef Object

The QueryDefs collection holds all QueryDef objects for a database. The QueryDef object is a
stored definition of a query in a Jet database file or a temporary definition in an ODBCDirect workspace.
Table B.32 lists the methods of the QueryDefs collection, and Table B.33 shows its property. Table
B.34 lists the methods of the QueryDef object, and Table B.35 lists its properties.

Table B.32. QueryDefs collection methods.

METHOD DESCRIPTION

Append Adds a new object to the collection

Delete Removes an object from the collection

Visual Basic 6 Database How-To -- Appendix B --DATA ACCESS OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apb/apb.htm (10 of 18) [9/22/1999 2:22:30 AM]

Refresh Updates the contents of the collection to reflect the current status of the database

Table B.33. QueryDefs collection property.

PROPERTY DESCRIPTION

Count Indicates the number of objects in the collection

Table B.34. QueryDef object methods.

METHOD DESCRIPTION

Cancel Cancels execution of an asynchronous method call

Close Closes the current recordset

CreateProperty Creates a new user-defined Property object

Execute Executes the current query definition

OpenRecordset Creates a new Recordset object and appends it to the Recordsets collection

Table B.35. QueryDef object properties.

DESCRIPTION

CacheSize Returns the number of locally cached records that will be received from an
ODBC data source

Connect Indicates the information about the source of an open connection

DateCreated Returns the date and time the current object was created

LastUpdated Returns the date and time the current object was last modified

KeepLocal Indicates that the current object is not to be replicated

LogMessages Indicates whether messages from an ODBC data source are recorded

MaxRecords Indicates the maximum return from the query

Name Sets a user-defined name for the DAO object

ODBCTimeout Returns a number, indicating the number of seconds to wait before a timeout
error occurs when a QueryDef is executed on an ODBC database

Prepare Indicates whether the query should be prepared on the server as a temporary
stored procedure

RecordsAffected Indicates the number of records affected by the last call to the Execute
method

Replicable Indicates whether the current object can be replicated

ReturnsRecords Indicates whether a SQL pass-through query returns records

SQL Sets the SQL statement that composes the current query

StillExecuting Indicates whether an asynchronous operation has finished executing

Visual Basic 6 Database How-To -- Appendix B --DATA ACCESS OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apb/apb.htm (11 of 18) [9/22/1999 2:22:30 AM]

Type Returns the operational type of object

Updatable Indicates whether the QueryDef object can be updated

Recordsets Collection, Recordset Object
The Recordsets collection contains all open Recordset objects of a database. Through the
Recordset object, data can be manipulated and accessed. Recordset types include Table,
Dynaset, Snapshot, Forward-only, and Dynamic. All recordsets are accessed by rows (records)
and columns (fields). Table B.36 shows the method of the Recordsets collection, and Table B.37
shows its property. Table B.38 lists the methods of the Recordset object, and Table B.39 lists its
properties.

Table B.36. Recordsets collection method.

DESCRIPTION

Refresh Updates the contents of the collection to reflect the current status of the database

Table B.37. Recordsets collection property.

PROPERTY DESCRIPTION

Count Indicates the number of objects in the collection

Table B.38. Recordset object methods.

METHOD DESCRIPTION

AddNew Adds a new record to the current recordset

Cancel Cancels operation of an asynchronous operation

CancelUpdate Cancels any pending updates

Clone Creates a duplicate of the current Recordset object

Close Closes the current recordset

CopyQueryDef Returns a QueryDef object that is a copy of the QueryDef used to create the
current Recordset object

Delete Deletes the current record

Edit Prepares the current record for editing by Visual Basic code

FillCache Fills all or part of a Recordset object that contains data from an ODBC data
source

FindFirst Finds the first record that matches specified criteria

FindLast Finds the last record that matches specified criteria

FindNext Finds the next record that matches specified criteria

Visual Basic 6 Database How-To -- Appendix B --DATA ACCESS OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apb/apb.htm (12 of 18) [9/22/1999 2:22:30 AM]

FindPrevious Finds the previous record that matches specified criteria

GetRows Returns multiple rows from the current Recordset object

Move Moves the position of the current record in the current Recordset object

MoveFirst Moves to the first record of the recordset

MoveLast Moves to the last record of the recordset

MoveNext Moves to the next record of the recordset

MovePrevious Moves to the previous record of the recordset

NextRecordset Returns the next set of records returned by a multipart selection query in an
OpenRecordset call

OpenRecordset Sets the recordset to a new selection of records

Requery Performs the specified query again to update the recordset with the current database
information

Seek Finds a match to a specific criteria by using an index of the current recordset

Update Saves changes specified to the recordset from the AddNew or Edit method

Table B.39. Recordset object properties.

PROPERTY DESCRIPTION

AbsolutePosition Sets the record pointer position within the Recordset object

BatchCollisionCount Indicates the number of records that did not complete the last batch update

BatchCollisions Returns an array of bookmarks indicating which rows generated collisions
in the last batch update operation

BatchSize Indicates the number of statements sent back to the server in each batch

BOF Returns the beginning-of-file indicator

EOF Returns the end-of-file indicator

Bookmark Returns the bookmark for a record position

Bookmarkable Returns a Boolean stating the capability to create bookmarks

CacheSize Indicates the number of locally cached records that will be received from
an ODBC data source

CacheStart Returns a bookmark to the first record in a Recordset object containing
data to be locally cached from an ODBC data source

Connection Sets the Connection object that owns the current Recordset object

DateCreated Returns the date and time the current object was created

LastUpdated Returns the date and time the current object was last modified

EditMode Indicates the state of editing for the current record

Filter Sets a filter to determine the records included in a subsequently opened
Recordset object

Visual Basic 6 Database How-To -- Appendix B --DATA ACCESS OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apb/apb.htm (13 of 18) [9/22/1999 2:22:30 AM]

Index Sets the current index for the Recordset object

LastModified Returns a bookmark to the last edited or new record of the current
Recordset object

LockEdits Indicates the type of locking that is in effect while editing

Name Sets a user-defined name for the DAO object

NoMatch Indicates whether a record was found after using either the Seek method
or a Find method

PercentPosition Returns an approximate percentage of the current record position as
compared to the entire record population of the current Recordset
object

RecordCount Indicates the number of records in the current Recordset object

RecordStatus Returns the update status of a current record that is part of a batch update

Restartable Indicates whether the current object supports the ReQuery method

Sort Sets the order for records in the current Recordset object

StillExecuting Indicates whether an asynchronous operation has finished

Transactions Indicates whether the object supports transactions

Type Indicates the operational type of the object

Updatable Indicates whether the current object can be updated

UpdateOptions Indicates the way in which batch updates are executed

ValidationRule Returns the value that validates data in a field as it is changed or added to
a table

ValidationText Sets a message that your application displays if the value of the Field
object does not satisfy the validation rule

Relations Collection, Relation Object

The Relations collection contains all the Relation objects stored in a database. A Relation
object indicates the relationship between fields and tables or queries of a Jet database. Table B.40 lists
the methods of the Relations collection, and Table B.41 shows its property. Table B.42 shows the
method of the Relation object, and Table B.43 lists its properties.

Table B.40. Relations collection methods.

METHOD DESCRIPTION

Append Adds a new object to the collection

Delete Removes an object from the collection

Refresh Updates the contents of the collection to reflect the current status of the database

Table B.41. Relations collection property.

Visual Basic 6 Database How-To -- Appendix B --DATA ACCESS OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apb/apb.htm (14 of 18) [9/22/1999 2:22:30 AM]

PROPERTY DESCRIPTION

Count Indicates the number of objects in the collection

Table B.42. Relation object method.

METHOD DESCRIPTION

CreateField Creates a Field object and appends it to the Fields collection

Table B.43. Relation object properties.

PROPERTY DESCRIPTION

Attributes Returns characteristics of the current Relation object

ForeignTable Sets the name of the current Relation object's foreign table

Name Sets a user-defined name for the DAO object

PartialReplica Indicates whether the Relation object should be included in a partial replica

Table Returns the name of the current Relation object's primary table

ValidationText Sets a message that your application displays if the value of the Field object
does not satisfy the validation rule

TableDefs Collection, TableDef Object
The TableDefs collection contains all TableDef objects for a given database. The TableDef
object is used to access and manipulate a tables definition. Table B.44 lists the methods of the
TableDefs collection, and Table B.45 shows its property. Table B.46 lists the methods of the
TableDef object, and Table B.47 lists its properties.

Table B.44. TableDefs collection methods.

METHOD DESCRIPTION

Append Adds a new object to the collection

Delete Removes an object from the collection

Refresh Updates the contents of the collection to reflect the current status of the database

Table B.45. TableDefs collection property.

PROPERTY DESCRIPTION

Count Indicates the number of objects in the collection

Table B.46. TableDef object methods.

Visual Basic 6 Database How-To -- Appendix B --DATA ACCESS OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apb/apb.htm (15 of 18) [9/22/1999 2:22:30 AM]

METHOD DESCRIPTION

CreateField Creates a new Field object for the current TableDef and appends it to the
Fields collection

CreateIndex Creates a new Index object for the current TableDef object and appends it to
the Indexes collection

CreateProperty Creates a new user-defined Property object for the current TableDef object

OpenRecordset Creates a new Recordset object and appends it to the Recordsets collection

RefreshLink Updates the connection information for a linked table

Table B.47. TableDef object properties.

PROPERTY DESCRIPTION

Attributes Indicates the characteristics of the current TableDef object

ConflictTable Returns the name of a conflict table containing the database records that
conflicted during the synchronization of two replicas

Connect Sets information about the source of an open connection

DateCreated Returns the date and time the current object was created

LastUpdated Returns the date and time the current object was last modified

KeepLocal Indicates that the object is not to be replicated with replication of the database

Name Sets a user-defined name for the DAO object

RecordCount Indicates the number of records in a table

Replicable Indicates whether the object is replicable

ReplicaFilter Indicates what subset of records is replicated from a full replica

SourceTableName Indicates the name of a linked table or the name of a base table

Updatable Indicates whether you can change the DAO object

ValidationRule Sets a value that validates data in a field as it is changed or added to a table

ValidationText Sets a message that your application displays if the value of the Field object
does not satisfy the validation rule

Workspaces Collection, Workspace Object
The Workspaces collection contains all active Workspace objects that are not hidden. A
Workspace object defines how the Visual Basic application interacts with data. Table B.48 lists the
methods of the Workspaces collection, and Table B.49 shows its property. Table B.50 lists the
methods of the Workspace object, and Table B.51 lists its properties.

Table B.48. Workspaces collection methods.

Visual Basic 6 Database How-To -- Appendix B --DATA ACCESS OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apb/apb.htm (16 of 18) [9/22/1999 2:22:31 AM]

METHOD Description

Append Adds a new object to the collection

Delete Removes an object from the collection

Refresh Updates the contents of the collection to reflect the current status of the database

Table B.49. Workspaces collection property.

PROPERTY Description

Count Indicates the number of objects in the collection

Table B.50. Workspace object methods.

METHOD Description

BeginTrans Begins transaction for the workspace

CommitTrans Commits changes since the last call to the BeginTrans method

Rollback Rolls back to the workspace state before the call to the BeginTrans method

Close Closes the Workspace object

CreateDatabase Creates a new Database object

CreateGroup Creates a new Group object

CreateUser Creates a new User object

OpenConnection Opens a connection object for an ODBC data source

OpenDatabase Opens a database with the current workspace

Table B.51. Workspace object properties.

PROPERTY Description

DefaultCursorDriver Returns the type of cursor driver used on the connection created by the
call to OpenConnection or OpenDatabase

IsolateODBCTrans Indicates whether multiple transactions that involve the same
Jet-connected ODBC data source are isolated

LoginTimeout Indicates the number of seconds before an error occurs while attempting
to log on to an ODBC database

Name Sets a user-defined name for the DAO object

Type Indicates the operational type of object

UserName Returns the owner of the current workspace object

Visual Basic 6 Database How-To -- Appendix B --DATA ACCESS OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apb/apb.htm (17 of 18) [9/22/1999 2:22:31 AM]

Users Collection, User Object
A Users collection contains all User objects belonging to a particular Workspace or Group object.
The User object refers to a specific user account with various permissions. Table B.52 lists the methods
of the Users collection, and Table B.53 shows its property. Table B.54 lists the methods of the User
object, and Table B.55 lists its properties.

Table B.52. Users collection methods.

METHOD Description

Append Adds a new object to the collection

Delete Removes an object from the collection

Refresh Updates the contents of the collection to reflect the current status of the database

Table B.53. Users collection property.

PROPERTY Description

Count Indicates the number of objects in the collection

Table B.54. User object methods.

METHOD Description

CreateGroup Creates a new Group object for the current user

NewPassword Changes the password of the current user

Table B.55. User object properties.

PROPERTY Description

Name Sets the name of the current User object

Password Sets the password for the current User object

PID Returns a personal identifier for the current User object

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Appendix B --DATA ACCESS OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apb/apb.htm (18 of 18) [9/22/1999 2:22:31 AM]

Visual Basic 6 Database How-To

- C -
REMOTE DATA OBJECT REFERENCE

rdoColumns Collection, rdoColumn Object●

rdoConnections Collection, rdoConnection Object●

rdoEngine Object●

rdoEnvironments Collection, rdoEnvironment Object●

rdoErrors Collection, rdoError Object●

rdoParameters Collection, rdoParameter Object●

rdoQueries Collection, rdoQuery Object●

rdoResultsets Collection, rdoResultset Object●

rdoTables Collection, rdoTable Object●

The remote data object (RDO) model provides you with an object-oriented interface to open database
connectivity (ODBC) datasources. Figure C.1 shows the entire RDO object model in its hierarchical
form.

This appendix is designed as a reference to all the objects included in the RDO object model. The
collections and objects are listed in alphabetical order with tables indicating and describing all the
available methods and properties available to each.

rdoColumns Collection, rdoColumn Object
The rdoColumns collection contains all the columns in a rdoResultset or rdoTable. Table C.1 shows the
method for the rdoColumns collection, and Table C.2 lists the properties for the rdoColumns collection.
Table C.3 lists the events, Table C.4 lists the methods, and Table C.5 lists the properties for the

Visual Basic 6 Database How-To -- Appendix C -- REMOTE DATA OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apc/apc.htm (1 of 12) [9/22/1999 2:23:52 AM]

rdoColumn object.

Figure C.1. The remote data object model.

Table C.1. rdoColumns collection method.

METHOD DESCRIPTION

Refresh Updates the contents of the collection to reflect the current status of the database

Table C.2. rdoColumns collection properties.

PROPERTY DESCRIPTION

Count The number of objects in the collection

Item Returns the specified object from the collection

Table C.3. rdoColumn object events.

EVENT DESCRIPTION

DataChanged Fired when a column's data changes

WillChangeData Fired before a column's data is changed

Table C.4. rdoColumn object methods.

METHOD DESCRIPTION

AppendChunk Appends data to an rdoColumn

ColumnSize The number of bytes in an rdoColumn's value

GetChunk Returns a portion of an rdoColumn's value

Table C.5. rdoColumn object properties.

PROPERTY DESCRIPTION

AllowZeroLength Indicates whether a zero-length string is acceptable in the Value property

Attributes Returns attributes of an rdoColumn

BatchConflictValue Returns the value currently in the database during an optimistic batch update
conflict

ChunkRequired Indicates that GetChunk and AppendChunk must be used with this rdoColumn

KeyColumn Returns or sets whether this column is part of the primary key

Name Returns the name of the remote data object

OrdinalPosition Returns the relative position in the collection

Visual Basic 6 Database How-To -- Appendix C -- REMOTE DATA OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apc/apc.htm (2 of 12) [9/22/1999 2:23:52 AM]

javascript:popUp('CFig01.gif')

OriginalValue Returns the value of a column when it was fetched from the database

Required Indicates whether a column requires a non-NULL value

Size Returns the size of an rdoColumn

SourceColumn Returns the object's original source column name

SourceTable Returns the object's original source table name

Status Returns or sets the column buffer state

Type Returns the data type of the object

Updatable Indicates whether changes can be made to the object

Value Returns or sets the value of the object when ChunkRequired is False

rdoConnections Collection, rdoConnection Object
The rdoConnections collection manages all the connections in an rdoEnvironment. Table C.6 lists the
methods and Table C.7 lists the properties of the rdoConnections collection. Table C.8 lists the events,
Table C.9 lists the methods, and Table C.10 lists the properties of the rdoConnection object.

Table C.6. rdoConnections collection methods.

METHOD DESCRIPTION

Add Adds an item to the collection

Remove Removes an item from the collection

Table C.7. rdoConnections collection properties.

PROPERTY DESCRIPTION

Count The number of objects in the collection

Item Returns the specified object from the collection

Table C.8. rdoConnection object events.

EVENT DESCRIPTION

BeforeConnect Fired before the ODBC call to SQLDriverConnect

Connect Fired after the connection is made to the ODBC datasource

Disconnect Fired after a connection has been closed

QueryComplete Fired after an asynchronous query is completed

QueryTimeout Fired after a query has exceeded the QueryTimeout property

WillExecute Fired before a query is executed

Visual Basic 6 Database How-To -- Appendix C -- REMOTE DATA OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apc/apc.htm (3 of 12) [9/22/1999 2:23:52 AM]

Table C.9. rdoConnection object methods.

METHOD DESCRIPTION

BeginTrans Begins a transaction

Cancel Cancels an asynchronous query or pending results

Close Closes the connection

CommitTrans Commits a transaction

EstablishConnection Connects to a datasource

Execute Executes a query

OpenResultset Creates a new rdoResultset

RollbackTrans Rolls back a transaction

Table C.10. rdoConnection object properties.

PROPERTY DESCRIPTION

AsyncCheckInterval Keeps track of how often checks are done on asynchronous queries

Connect Returns information about the open connection

CursorDriver Returns or sets where the cursor is to be created

hDbc The ODBC connection handle for use with the ODBC API

LastQueryResults The last resultset returned on a prepared statement

LoginTimeout Returns or sets the login timeout, measured in seconds

LogMessages Returns or sets the ODBC trace file pathname

Name The name of the object

QueryTimeout Returns or sets the query timeout

rdoQueries The prepared statements collection

rdoResultsets The result sets collection

rdoTables The tables collection

RowsAffected The number of rows affected by the last query

StillConnecting Indicates a connection is still attempting to connect

StillExecuting Indicates an asynchronous query is still executing

Transactions Indicates whether a cursor supports transactions

Updatable Indicates whether a cursor is updatable

Version Returns the version of the ODBC driver

Visual Basic 6 Database How-To -- Appendix C -- REMOTE DATA OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apc/apc.htm (4 of 12) [9/22/1999 2:23:52 AM]

rdoEngine Object
The rdoEngine is the parent object of the RDO object model. It does not need to be created. Table C.11
shows the event of the rdoEngine object. Table C.12 lists the methods of the rdoEngine, and Table C.13
lists its properties.

Table C.11. rdoEngine object event.

EVENT DESCRIPTION

InfoMessage Fired when an rdoError is added to the rdoErrors collection

Table C.12. rdoEngine object methods.

METHOD DESCRIPTION

rdoCreateEnvironment Creates a new rdoEnvironment

rdoRegisterDataSource Registers a new ODBC datasource

Table C.13. rdoEngine object properties.

PROPERTY DESCRIPTION

rdoDefaultCursorDriver Returns or sets the default of where cursors are created for connections

RdoDefaultErrorThreshold Returns or sets the default error threshold

rdoDefaultLoginTimeout Returns or sets the timeout value for connecting to a datasource

rdoDefaultPassword Returns or sets the default password for any new rdoEnvironment

rdoDefaultUser Returns or sets the default user for any new rdoEnvironment

rdoEnvironments The collection of all the active rdoEnvironments

rdoErrors The collection of all the rdoErrors

rdoLocaleID The locale ID used for loading resources

rdoVersion The version of the RDO library

rdoEnvironments Collection, rdoEnvironment
Object
The rdoEnvironment is a grouping of connections for a particular user. The rdoEnvironments collection
is the collection of all those rdoEnviroment objects. Table C.14 lists the methods and Table C.15 lists the
properties for the rdoEnvironments collection. Table C.16 lists the events, Table C.17 lists the methods,
and Table C.18 lists the properties for the rdoEnvironment object.

Table C.14. rdoEnvironments collection methods.

Visual Basic 6 Database How-To -- Appendix C -- REMOTE DATA OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apc/apc.htm (5 of 12) [9/22/1999 2:23:52 AM]

METHOD DESCRIPTION

Add Adds an item to the collection

Remove Removes an item from the collection

Table C.15. rdoEnvironments collection properties.

PROPERTY DESCRIPTION

Count The number of objects in the collection

Item Returns the specified object from the collection

Table C.16. rdoEnvironment object events.

EVENT DESCRIPTION

BeginTrans Fired after the BeginTrans method is completed

CommitTrans Fired after the CommitTrans method is completed

RollbackTrans Fired after the RollbackTrans method is completed

Table C.17. rdoEnvironment object methods.

METHOD DESCRIPTION

BeginTrans Begins a transaction

Close Closes the object

CommitTrans Commits a transaction

OpenConnection Adds an item to the rdoConnections collection

RollbackTrans Rolls back a transaction

Table C.18. rdoEnvironment object properties.

PROPERTY DESCRIPTION

CursorDriver Returns or sets where cursors are created

hEnv Returns the handle to the ODBC environment

LoginTimeout Returns or sets the login timeout

Name Returns the name of the object

Password Returns or sets the password

rdoConnections The collection of rdoConnections in this environment

UserName Returns or sets the username

Visual Basic 6 Database How-To -- Appendix C -- REMOTE DATA OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apc/apc.htm (6 of 12) [9/22/1999 2:23:52 AM]

rdoErrors Collection, rdoError Object
The rdoErrors collection manages errors returned by RDO operations. For each operation there might be
multiple rdoError objects. Table C.19 shows the method of the rdoErrors collection, Table C.20 lists the
properties of the rdoErrors collection, and Table C.21 lists the properties of the rdoError object.

Table C.19. rdoErrors collection method.

METHOD DESCRIPTION

Clear Clears the collection

Table C.20. rdoErrors collection properties.

PROPERTY DESCRIPTION

Count The number of objects in the collection

Item Returns the specified object from the collection

Table C.21. rdoError object properties.

PROPERTY DESCRIPTION

Description Returns the description of the error

HelpContext Returns a help context ID associated with the error

HelpFile Returns a help file associated with the error

Number Returns the error number

Source Returns the source of the error

SQLRetcode Returns the return value from the most recent RDO operation

SQLState Returns the type of error as specified by the X/Open and SQL Access Group SQL

rdoParameters Collection, rdoParameter Object
The rdoParameters collection manages the list of rdoParameter objects for an rdoQuery. Table C.22 lists
the properties for the rdoParameters collection. Table C.23 shows the method and Table C.24 lists the
properties for the rdoParameter object.

Table C.22. rdoParameters collection properties.

PROPERTY DESCRIPTION

Count The number of objects in the collection

Item Returns the specified object from the collection

Visual Basic 6 Database How-To -- Appendix C -- REMOTE DATA OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apc/apc.htm (7 of 12) [9/22/1999 2:23:52 AM]

Table C.23. rdoParameter object method.

METHOD DESCRIPTION

AppendChunk Appends data to the object's data property

Table C.24. rdoParameter object properties.

PROPERTY DESCRIPTION

Direction Returns or sets how a parameter is passed to or from a procedure

Name Returns or sets the name of the object

Size Returns or sets the size of the object

Type Returns or sets the data type of the object

Value Returns or sets the value of the object

rdoQueries Collection, rdoQuery Object
An rdoQuery object is used to manage Structured Query Language (SQL) queries where there are input
or output parameters. The rdoQueries collection is made up of the rdoQuery objects for an
rdoConnection. Table C.25 lists the properties for the rdoQueries collection. Table C.26 lists the methods
and Table C.27 lists the properties for the rdoQuery object.

Table C.25. rdoQueries collection properties.

PROPERTY DESCRIPTION

Count The number of objects in the collection

Item Returns the specified object from the collection

Table C.26. rdoQuery object methods.

METHOD DESCRIPTION

Cancel Cancels an asynchronous query or pending result

Close Closes the object

Execute Executes the query

OpenResultset Creates a new rdoResultset

Table C.27. rdoQuery object properties.

PROPERTY DESCRIPTION

ActiveConnection Returns a reference to the parent rdoConnection

Visual Basic 6 Database How-To -- Appendix C -- REMOTE DATA OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apc/apc.htm (8 of 12) [9/22/1999 2:23:52 AM]

BindThreshold Returns or sets the size of the largest column automatically bound under ODBC

CursorType Returns or sets the type of cursor

hStmt Returns the handle to the ODBC statement

KeysetSize Returns or sets the number of rows in the keyset buffer

LockType Returns or sets the type of concurrency handling

MaxRows Returns or sets the maximum number of rows in the resultset

Name Returns the name of the object

Prepared Returns or sets whether the query should be prepared

QueryTimeout Returns or sets the query timeout

rdoColumns Returns the set of columns in the query

rdoParameters Returns the set of parameters in the query

RowsAffected Returns the number of rows affected by the most recent Execute method

RowsetSize Returns or sets the number of cursor rows in memory

SQL Returns or sets the SQL statement for the query

StillExecuting Returns whether an asynchronous query is still executing

Type Returns the type of the object

rdoResultsets Collection, rdoResultset Object
An rdoResultset object is the object used by the RDO to manage results from data retrieval operations.
The rdoResultsets collection is used by rdoConnection objects to manage all the resultsets on that
connection. Table C.28 lists the properties of the rdoResultsets collection. Table C.29 lists the events,
Table C.30 lists the methods, and Table C.31 lists the properties of the rdoResultset object.

Table C.28. rdoResultsets collection properties.

PROPERTY DESCRIPTION

Count The number of objects in the collection

Item Returns the specified object from the collection

Table C.29. rdoResultset object events.

EVENT DESCRIPTION

Associate Fired after a new connection is associated with the object

Dissociate Fired after the associated connection is set to nothing

ResultsChanged Fired after the current rowset is changed

RowCurrencyChange Fired after the resultset is moved to a new row or no row

Visual Basic 6 Database How-To -- Appendix C -- REMOTE DATA OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apc/apc.htm (9 of 12) [9/22/1999 2:23:52 AM]

RowStatusChanged Fired after the current row's state changes

WillAssociate Fired before a new connection is associated with the object

WillDissociate Fired before the associated connection is set to nothing

WillUpdateRows Fired before the updated rows are applied to the server

Table C.30. rdoResultset object methods.

METHOD DESCRIPTION

AddNew Creates a new copy buffer for a new row

BatchUpdate Performs a batched optimistic update

Cancel Cancels an asynchronous query or pending result

CancelBatch Cancels uncommitted changes in a batch

CancelUpdate Cancels pending updates

Close Closes the object

Delete Deletes the current row

Edit Copies the current row to a copy buffer for editing

GetClipString Retrieves multiple rows into a string

GetRows Retrieves multiple rows into an array

MoreResults Moves to the next resultset

Move Repositions the current row

MoveFirst Moves to the first row

MoveLast Moves to the last row

MoveNext Moves to the next row

MovePrevious Moves to the previous row

Requery Requeries the resultset

Resync Retrieves the batch update conflict values for the current row

Update Saves the copy buffer to the database

Table C.31. rdoResultset object properties.

PROPERTY DESCRIPTION

AbsolutePosition Returns the row number of the rdoResultset object's current row

ActiveConnection Returns a reference to the parent rdoConnection

BatchCollisionCount Returns the number of rows with collisions in a batch update

BatchCollisionRows Returns an array of rows with collisions in a batch update

BatchSize Returns or sets the number of rows in a batch update

Visual Basic 6 Database How-To -- Appendix C -- REMOTE DATA OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apc/apc.htm (10 of 12) [9/22/1999 2:23:52 AM]

BOF Returns whether the current row precedes the first row

Bookmark Returns or sets a bookmark identifying the current row

Bookmarkable Returns whether an rdoResultset supports bookmarks

EditMode Returns the editing state of the current row

EOF Returns whether the current row is after the last row

hStmt Returns the ODBC statement handle

LastModified Returns the bookmark of the last modified row

LockEdits Returns whether locking is in effect while editing

LockType Returns or sets the type of concurrency handling

Name Returns the name of the object

PercentPosition Returns or sets the position in the rdoResultset by percentage

rdoColumns Returns the rdoColumn objects in the rdoResultset

Restartable Returns whether the object supports the Requery method

RowCount Returns the number of rows in the object

Status Returns or sets the status of the current row

StillExecuting Returns whether an asynchronous query is still executing

Transactions Returns whether the object supports transactions

Type Returns the type of the object

Updatable Returns whether the object is updatable

UpdateCriteria Returns or sets how the WHERE clause is constructed for each row during an
optimistic batch update

UpdateOperation Returns or sets whether, during an optimistic batch update, to use an UPDATE or
a DELETE/INSERT combination

rdoTables Collection, rdoTable Object
The rdoTables collection manages the table in an rdoConnection. The rdoTable object manages a table in
an ODBC datasource. Table C.32 lists the properties of the rdoTables collection. Table C.33 shows the
method for the rdoTable object, and Table C.34 lists the properties for the rdoTable object.

Table C.32. rdoTables collection properties.

PROPERTY DESCRIPTION

Count The number of objects in the collection

Item Returns the specified object from the collection

Table C.33. rdoTable object method.

Visual Basic 6 Database How-To -- Appendix C -- REMOTE DATA OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apc/apc.htm (11 of 12) [9/22/1999 2:23:53 AM]

METHOD DESCRIPTION

OpenResultset Creates a new rdoResultset

Table C.34. rdoTable object properties.

PROPERTY DESCRIPTION

Name Returns the name of the object

rdoColumns Returns the rdoColumn objects in the table

RowCount Returns the number of rows in the object

Type Returns the type of object

Updatable Indicates whether changes can be made to the object

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Appendix C -- REMOTE DATA OBJECT REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apc/apc.htm (12 of 12) [9/22/1999 2:23:53 AM]

Visual Basic 6 Database How-To

- D -

ACTIVEX DATA OBJECTS REFERENCE
Command Object●

Connection Object●

Errors Collection, Error Object●

Fields Collection, Field Object●

Parameters Collection, Parameter Object●

Properties Collection, Property Object●

Recordset Object●

The ActiveX Data Objects provide you with an interface to OLE DB data sources. Figure D.1 shows the
entire ADO object model.

Figure D.1. The ActiveX Data Objects object model.

This appendix is designed as a reference to all the objects that are included in the ADO object model.
The collections and objects are listed in alphabetical order with tables indicating and describing all the
methods and properties available to each.

Command Object
The Command object contains the properties and methods necessary to execute SQL commands using
ADO. Tables D.1 and D.2 summarize the methods and properties of the Command object.

Table D.1. Command Object Methods

Visual Basic 6 Database How-To -- Appendix D -- ACTIVEX DATA OBJECTS REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apd/apd.htm (1 of 9) [9/22/1999 2:24:52 AM]

javascript:popUp('Dfig01.gif')

METHOD Description

Cancel Cancels an asynchronously executing command

CreateParameter Creates a new Parameter object

Execute Executes the command

Table D.2. Command Object Properties

PROPERTY Description

ActiveConnection Returns or sets the active Connection object

CommandText Returns or sets the command text

CommandTimeout Returns or sets the timeout in seconds

CommandType Returns or sets the command type

Name Returns the name of the object

Parameters Returns the parameters for this command

Prepared Returns or sets whether to compile this command before executing

Properties Returns the dynamic properties of object

State Returns the current state of the object

Connection Object
The Connection object manages a data provider connection in ADO. Table D.3 describes the
Connection object events, Table D.4 summarizes the Connection object methods, and Table D.5
lists the Connection object properties.

Table D.3. Connection Object Events

EVENT Description

BeginTransComplete Fired after the BeginTrans method is completed

CommitTransComplete Fired after the CommitTrans method is completed

ConnectComplete Fired after the Open method is completed

Disconnect Fired after the Close method is completed

ExecuteComplete Fired after the Execute method is completed

InfoMessage Fired when an information message comes from the data provider

RollbackTransComplete Fired after the RollbackTrans method is complete

WillConnect Fired before a connection is made

WillExecute Fired before the Execute method is performed

Visual Basic 6 Database How-To -- Appendix D -- ACTIVEX DATA OBJECTS REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apd/apd.htm (2 of 9) [9/22/1999 2:24:52 AM]

Table D.4. Connection Object Methods

METHOD Description

BeginTrans Begins a transaction

Cancel Cancels an asynchronous operation

Close Closes an object

Execute Executes a SQL statement or query

Open Open the connection

OpenSchema Returns a Recordset object filled with database information

RollbackTrans Rolls back a transaction

Table D.5. Connection Object Properties

PROPERTY Description

Attributes Indicates characteristics of the object

CommandTimeout Returns or sets the timeout for the Execute method

ConnectionString Returns or sets the connection string

ConnectionTimeout Returns or sets the timeout to establish a connection

CursorLocation Returns or sets where the cursor is created

DefaultDatabase Returns or sets the default database

Errors Returns the collection of Error objects raised by data providers

IsolationLevel Returns or set the level of isolation for transactions

Mode Returns the available permissions for modifying data

Properties Returns the dynamic properties for the object

Provider Returns the name of the data provider

State Returns the current state of the object

Version Returns the ADO version number

Errors Collection, Error Object
The Errors collection and Error object manage the data provider generated errors for a
Connection object. Tables D.6 and D.7 list the methods and properties for the Errors collection.
Table D.8 lists the properties for the Error object.

Table D.6. Errors Collection Methods

METHOD Description

Visual Basic 6 Database How-To -- Appendix D -- ACTIVEX DATA OBJECTS REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apd/apd.htm (3 of 9) [9/22/1999 2:24:52 AM]

Clear Clears the collection

Refresh Refreshes the items in the collection

Table D.7. Errors Collection Properties

PROPERTY Description

Count Returns the number of items in the collection

Item Returns the specified object from the collection

Table D.8. Error Object Properties

PROPERTY Description

Description Returns the description of the error

HelpContext Returns a Help Context Id if a HelpFile is available

HelpFile Returns the name of a help file where help on the error is available

NativeError Returns the error number reported by the underlying API or interface

Number Returns the error number

Source Returns the name of the source of the error

SQLState Returns the five-character ANSI standard error

Fields Collection, Field Object
The Fields collection and Field object are the columns or fields returned in a Recordset object.
Table D.9 summarizes the methods of the Fields collection. Table D.10 describes the properties of the
Fields collection. Tables D.11 and D.12 lists the methods and properties of the Field object.

Table D.9. Fields Collection Methods

METHOD Description

Append Appends an object to the collection

Delete Deletes an object from the collection

Refresh Refreshes the items in the collection

Table D.10. Fields Collection Properties

PROPERTY Description

Count Returns the number of items in the collection

Item Returns the specified object from the collection

Visual Basic 6 Database How-To -- Appendix D -- ACTIVEX DATA OBJECTS REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apd/apd.htm (4 of 9) [9/22/1999 2:24:52 AM]

Table D.11. Field Object Methods

METHOD Description

AppendChunk Appends data to the object's value

GetChunk Returns a portion of data from the object's value

Table D.12. Field Object Properties

PROPERTY Description

ActualSize Returns the size of the field

Attributes Indicates characteristics of the object

DataFormat Returns or sets the stdDataFormat object

DefinedSize The defined size of the field

Name The name of the object

NumericScale Returns or sets the number of decimal places to which numeric values will be
resolved

OriginalValue Returns the values of the field when the Recordset was first opened

Precision Returns or sets the maximum number of digits used to represent values

Properties Returns the dynamic properties for the object

Type Returns the datatype

UnderlyingValue Returns the object's current value in the database

Value Returns the object's current value in the Recordset

Parameters Collection, Parameter Object
The Parameters collection and Parameter object are used with the Command object to execute
stored procedures. Tables D.13 and D.14 list the methods and properties for the Parameters
collection. Table D.15 lists the method for the Parameter object, and Table D.16 lists the properties of
the Parameter object.

Table D.13. Parameters Collection Methods

METHOD Description

Append Appends an object to the collection

Delete Deletes an object from the collection

Refresh Refreshes the items in the collection

Table D.14. Parameters Collection Properties

Visual Basic 6 Database How-To -- Appendix D -- ACTIVEX DATA OBJECTS REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apd/apd.htm (5 of 9) [9/22/1999 2:24:52 AM]

PROPERTY Description

Count Returns the number of items in the collection

Item Returns the specified object from the collection

Table D.15. Parameter Object method

METHOD Description

AppendChunk Appends data to the object's value.

Table D.16. Parameter Object Properties

PROPERTY Description

Attributes Indicates characteristics of the object

Direction Returns or sets the direction of the parameter

Name The name of the object

NumericScale Returns or sets the number of decimal places to which numeric values will be resolved

Precision Returns or sets the maximum digits used to represent values

Properties Returns the dynamic properties for the object

Size Returns the maximum size of the object

Type Returns the datatype

Value Returns the object's value

Properties Collection, Property Object
The Properties collection and the Property object manage dynamic characteristics for an ADO
object. Tables D.17 and D.18 list the methods and properties of the Properties collection. Table D.19 lists
the properties of the Property object.

Table D.17. Properties Collection Method

METHOD Description

Refresh Refreshes the items in the collection

Table D.18. Properties Collection Properties

PROPERTY DESCRIPTION

Count Returns the number of items in the collection

Item Returns the specified object from the collection

Visual Basic 6 Database How-To -- Appendix D -- ACTIVEX DATA OBJECTS REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apd/apd.htm (6 of 9) [9/22/1999 2:24:52 AM]

Table D.19. Property Object Properties

PROPERTY Description

Attributes Indicates characteristics of the object

Name The name of the object

Type Returns the datatype

Value Returns the object's value

Recordset Object
The Recordset object handles the rows returned from an opened table or executed query. Tables D.20,
D.21, and D.22 describe the events, methods, and properties of the Recordset object.

Table D.20. Recordset Object Events

EVENT Description

EndOfRecordset Fired when the end of the Recordset is reached

FetchComplete Fired when the entire Recordset is fetched

FetchProgress Fired to indicate the progress of the data fetch

FieldChangeComplete Fired after a field is changed

MoveComplete Fired after the Recordset moves to another record

RecordChangeComplete Fired after a record is changed

RecordsetChangeComplete Fired after the Recordset is changed

WillChangeField Fired before a field's value is changed

WillChangeRecord Fired before a record is changed.

WillChangeRecordset Fired before the Recordset is changed.

WillMove Fired before the Recordset moves to another record.

Table D.21. Recordset Object Methods

METHOD Description

AddNew Adds a new record to the object

Cancel Cancels an asynchronously executing command

CancelBatch Cancels changes before BatchUpdate has been called

CancelUpdate Cancels changes before an Update has been called

Clone Returns a duplicate Recordset

Visual Basic 6 Database How-To -- Appendix D -- ACTIVEX DATA OBJECTS REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apd/apd.htm (7 of 9) [9/22/1999 2:24:52 AM]

Close Closes the object

CompareBookmarks Compares two bookmarks

Delete Deletes from the Recordset

Find Finds a record in the Recordset

GetRows Retrieves records into an array

GetString Retrieves records into a string

Move Moves the position of the current record

MoveFirst Moves to the first record of the Recordset

MoveLast Moves to the last record of the Recordset

MoveNext Moves to the next record of the Recordset

MovePrevious Moves to the previous record of the Recordset

NextRecordset Clears current Recordset and moves to the next Recordset

Open Opens the object

Requery Refreshes the Recordset by re-executing the underlying query

Resync Refreshes the Recordset to the current database values

Save Saves the Recordset to a file

Supports Returns whether the object supports a particular function

Update Saves the changes to the current row to the database

UpdateBatch Saves the changes of the current batch to the database

Table D.22. Recordset Object Properties

PROPERTY Description

AbsolutePage Returns or sets the page of the current record

AbsolutePosition Returns or sets the current record position by ordinal

ActiveCommand Returns the command object that created the Recordset

ActiveConnection Returns the active connection used by the Recordset

BOF Returns whether the current record position is before the beginning of the
Recordset

Bookmark Returns or sets a bookmark for the current record

CacheSize Returns or sets the number records that will be cached in local memory

CursorLocation Returns or sets where the cursor will be created

CursorType Returns or sets the type of cursor

DataMember Returns or sets the data member to retrieve from the object referenced by the
datasource property

DataSource Returns or sets the object containing data the Recordset represents

Visual Basic 6 Database How-To -- Appendix D -- ACTIVEX DATA OBJECTS REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apd/apd.htm (8 of 9) [9/22/1999 2:24:52 AM]

EditMode Returns the editing status of the current record

EOF Returns if the current record position is past the end of the Recordset

Fields Returns the collection of Field object's in the Recordset

Filter Returns or sets the filter for data

LockType Returns or sets the locking strategy

MarshalOptions Returns or sets how the Recordset should be marshaled using DCOM

MaxRecords Returns or sets the maximum number of records to return

PageCount Returns the number of pages the Recordset contains

PageSize Returns or sets the size of the pages

Properties Returns the dynamic properties for the object

RecordCount Returns the number of records

Sort Returns or sets the sort criteria

Source Returns or sets the source of the data

State Returns the current state of the object

Status Returns the status with regards to batch updates

StayInSync Returns or sets whether the parent row should change when underlying child rows
change in a hierarchical Recordset

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Appendix D -- ACTIVEX DATA OBJECTS REFERENCE

http://www.pbs.mcp.com/ebooks/1571691529/apd/apd.htm (9 of 9) [9/22/1999 2:24:52 AM]

Visual Basic 6 Database How-To

- E -
A Short Introduction to Visual Basic

Objects
Object Overview●

Your Own Object●

Collections of Objects

Adding an Item to a Collection Object❍

Removing an Item from a Collection Object❍

Accessing Items in a Collection Object❍

●

The introduction of Visual Basic 5 made object-oriented programming much easier. This appendix defines
and discusses objects as well as illustrates how to use them.

Object Overview
The biggest selling point of object-oriented programming is encapsulation. Encapsulation means that both
the data and the means of transforming or altering that data is wrapped up into one easy-to-use shell called an
object. In its simplest form, an object is a group of data describing a particular item that cannot be described
by a single number or string.

For instance, imagine that you want to make yourself the object in which to store your application. With a
single variable, you can give yourself a name. Most likely you need much more information than this to
describe yourself. You might want to indicate your age and possibly your address. It is possible to
incorporate all this information into one structure that represents you. Take, for example, the following type
declaration:

Private Type Person
 Name As String

Visual Basic 6 Database How-To -- Appendix E -- A Short Introduction to Visual Basic Objects

http://www.pbs.mcp.com/ebooks/1571691529/ape/ape.htm (1 of 7) [9/22/1999 2:25:40 AM]

 Age As Integer
 Address As String
 City As String
 State As String
 ZipCode As String

End Type

This declaration creates a new data type called Person that can hold a person's name, age, address, city, state,
and zip code. To create a new person, you would use something similar to the following declaration:

Private Steven As Person

This data structure was acceptable to Visual Basic programmers until version 6, when developers suddenly
demanded more (and we have the right!).

Now, in Visual Basic 6, you can include much more in a data structure than just the data. Using
encapsulation, you can add methods and events. The data, as we know it, becomes properties. Properties are
user-interface variables or variable objects. With these interfaces, you can cleanly access the data for what is
now called a class.

The concept of classes was not developed for Visual Basic; it was developed a long time ago for much older
languages. (If I quote a language that invented classes or object-oriented programming, I know I will receive
hate mail telling me of an earlier programming language, so I'll be vague in my history.) What's important is
that you have the ability to use classes now in Visual Basic.

A class is similar to a type declaration in that it is a framework or a shell used to hold and manipulate data;
however, no data or manipulation occurs in the class itself. To work with this structure, you must create an
instance of the class by declaring a variable--an object variable:

Private m_oNewPerson As New Person

Here, Person is no longer the name of a data structure but rather the name of a class that would hold
properties called Name, Age, Address, and so on. You would also have methods within this class to
manipulate this information. For instance, you might have a method that is part of the Person class that
would load a person's information from a file. In this case, you might have a Load method, as in this
example:

m_oNewPerson.Load "Steven"

This example accepts a string as an argument to determine the name of the person to load.

There have always been objects in Visual Basic, even if you haven't realized it. Take, for instance, the
TextBox control. This is an object--an instance of the text box class. You can use object-oriented
programming to access the properties of a TextBox control as shown in this procedure:

Private Sub DoSomethingSenseless()
 Text1.Enabled = True
 Text1.Text = "Hello Mommy!"
 Text1.SelStart = 0
 Text1.SelLength = Len(Text1.Text)

End Sub

This example simply sets various properties of the TextBox control to what you have specified. You also

Visual Basic 6 Database How-To -- Appendix E -- A Short Introduction to Visual Basic Objects

http://www.pbs.mcp.com/ebooks/1571691529/ape/ape.htm (2 of 7) [9/22/1999 2:25:40 AM]

read one of the properties from the TextBox control (Text1.Text), as shown in the last line.

You can call methods of this control in a fashion similar to this:

Text1.SetFocus

In this example, you simply called the SetFocus method that puts the focus of the window to the TextBox
control.

The DoSomethingSenseless routine shown previously takes advantage of a great interface to the
TextBox control. However, there is an even more object-oriented approach you can choose to take, as shown
in this newly revised DoSomethingSenseless routine:

Private Sub DoSomethingSenseless()
 With Text1
 .Enabled = True
 .Text = "Hello Mommy!"
 .SelStart = 0
 .SelLength = Len(.Text)
 .SetFocus
 End With

End Sub

This routine uses a statement called With. With uses the Text1 control to access its public members.

Many objects have default properties. The TextBox control's default property is the Text property. The
following example shows how you can access the default property:

Private Sub DoMoreThings()
 ` declare a new object and call it oNewObject
 Dim oNewObject As Object
 ` all objects can be set to the `root' type of Object
 Set oNewObject = Text1
 ` the following are equivalent
 oNewObject.Text = "Hello Dad!"
 oNewObject = "Hello Dad!"
 Text1.Text = "Hello Dad!"
 Text1 = "Hello Dad!"

End Sub

Notice the declaration of a new object variable in the beginning of this routine. All objects can be assigned to
the Object data type. This means that all objects implement the object class. After you have the new object,
you can set it to the Text1 control (actually, just give it a reference to the control). This step allows you to
access your Text1 control using the oNewObject object variable. Also notice that the Text property does
not have to be entered to assign the property its value because it is the object's default value.

Your Own Object
You can create your own object definition, or class, using Visual Basic 6. To do so, first create a new project.
Along with Form1, which should already be part of your new project, add a class module. Name the class
Person, and add the following code to the declarations section of the class module:

Visual Basic 6 Database How-To -- Appendix E -- A Short Introduction to Visual Basic Objects

http://www.pbs.mcp.com/ebooks/1571691529/ape/ape.htm (3 of 7) [9/22/1999 2:25:40 AM]

Option Explicit
Private m_sFirstName As String

Private m_sLastName As String

These two member variables of the Person class are private variables--they cannot be accessed by anybody
outside of your class.

Now add your public properties, which serve as your user interface to retrieve information from the user:

Public Property Let FirstName(ByVal sNewValue As String)
 m_sFirstName = sNewValue
End Property
Public Property Let LastName(ByVal sNewValue As String)
 m_sLastName = sNewValue

End Property

Please note that there are no Property Get routines for the FirstName and LastName properties.
This means that the properties are write-only and cannot be read.

Now create a property that allows the user to retrieve the entire name of the Person class as shown here:

Public Property Get FullName() As String
 FullName = m_sFirstName & " " & m_sLastName

End Property

This is a Property Get routine, and there is no Property Let routine, so this property is read-only.

You can now use your new class in a routine to create a new Person object:

Private Sub CreatePerson()
 Dim oNewPerson As New Person
 With oNewPerson
 ` retrieve information from the user
 .FirstName = InputBox$("Enter first name:")
 .LastName = InputBox$("Enter last name:")
 ` display the full name for the user

MSGBOX "PERSON'S FULL NAME: " & .FULLNAME

 End With

End Sub

This routine declares a new instance of the Person class that you wrote earlier. The user is then asked for
the first and last name of the new person, and both strings are stored in the corresponding property. Finally,
the FullName property is called to show the user the full name of the new person.

Collections of Objects
Collections are used to group related data objects into a single set. In DAO, collections are everywhere--from
the Workspaces collection to the Fields and Indexes collections.

A collection is a good place to keep a list of objects. For instance, take the Person class shown previously.

Visual Basic 6 Database How-To -- Appendix E -- A Short Introduction to Visual Basic Objects

http://www.pbs.mcp.com/ebooks/1571691529/ape/ape.htm (4 of 7) [9/22/1999 2:25:40 AM]

Suppose you want to add many people to a group or list. In this case, it would be good to use the
Collection class to keep track of the people. Take the following event, for example:

Public Persons As New Collection
Private Sub cmdAddPerson_Click()
 ` initiate a new person object
 Dim oNewPerson As New Person
 With oNewPerson
 ` get new name from the user
 .FirstName = InputBox$("Enter first name:")
 .LastName = InputBox$("Enter last name:")
 ` add the person to the persons collection
 Persons.Add .FullName
 End With

End Sub

This event fires when a person presses a command button. First, a new Person object is initiated from the
Person class. Next, the person's first and last names are filled. Finally, the person is added to the collection
using the Add method of the Persons collection.

The Collection class stores all items as Variant data types. Therefore, you can add any data type to a
collection object, with the exception of user-defined types. This also means that you can add different types
to the same collection because the Collection class cannot tell the difference anyway.

Table E.1 shows the property and three methods of the Collection class.

Table E.1. The Collection class.

METHOD OR PROPERTY Description

Count property Returns the number of items belonging to the current collection object

Add method Adds a new item to the current collection object

Item method Returns an item, by an index or a key, from the current collection object

Remove method Removes an item from the current collection, by an index or a key

As you can see, the Collection class is pretty straightforward. Although arrays are more efficient
memory managers than collection objects, they cannot compete with other advantages. For one, you never
need to use ReDim with a collection object--it takes care of its size for you. Also, the Collection class
can access its items very quickly using the Item method, whereas an array does not have this built-in
functionality.

An item of a collection is retrieved, removed, or added to a collection object, using a key and an index. A key
is a string used during the Add method call, whereas an index is usually determined after each object is added
to a collection. An index is a long value that can be determined by using the before and after
parameters; however, the index can change after another object is added to the collection.

You can use the index to iterate through a collection to access each item, as shown in this example:

Dim nCount As Integer
With Persons

Visual Basic 6 Database How-To -- Appendix E -- A Short Introduction to Visual Basic Objects

http://www.pbs.mcp.com/ebooks/1571691529/ape/ape.htm (5 of 7) [9/22/1999 2:25:40 AM]

 For nCount = 1 To .Count
 Debug.Print .Item(nCount).FullName
 Next nCount

End With

This code uses the Count property of the Persons collection to determine an upper bound for the
For...Next loop. For each item in the collection object Persons, the FullName property is printed to
the Immediate Window.

An easier and more efficient way to iterate through a collection is to use the For Each...Next statement
instead of the For...Next, as shown in this code:

Dim oPerson As Person
For Each oPerson In Persons
 Debug.Print oPerson.FullName

Next nCount

This code declares a new object variable called oPerson as a Person object. Using this variable, the For
Each oPerson In Persons line of code sets oPerson to each Persons.Item(index) object in
the collection. Now you can use the oPerson object to access the collection object.

Adding an Item to a Collection Object

To add items to a collection, you would use the Add method with the following syntax:

Sub Add (item As Variant [, key As Variant] [, before As Variant]

 [, after As Variant])

The first parameter to the routine is the actual object you are to add to the collection, and the second is a key
that would be used to quickly search for the given object. The following statements demonstrate the use of
keys in a collection:

Persons.Add oNewPerson, oNewPerson.FullName

Persons.Add oNewPerson, "Jason"

The other two parameters for the Add method are the before and after parameters. By using one of
these two parameters, you can specify the ordinal position of your item in the collection object as shown in
these examples:

Persons.Add oNewPerson, "Jason", 1 ` adds as first item
Persons.Add oNewPerson, "John", before:=3 ` adds as second item

Persons.Add oNewPerson, "Kimberly", after:=6 ` adds as seventh item

As you can see, the Add method supports named arguments.

Removing an Item from a Collection Object

To delete an item from a collection, you must know the index or the key of the item intended for deletion.
The syntax for the Remove method is as follows:

Sub Remove (index As Variant)

Visual Basic 6 Database How-To -- Appendix E -- A Short Introduction to Visual Basic Objects

http://www.pbs.mcp.com/ebooks/1571691529/ape/ape.htm (6 of 7) [9/22/1999 2:25:40 AM]

The index argument in the Remove method can be either the item's key or the item's index number.

Following are a couple examples of the Remove method:

Persons.Remove 5

Persons.Remove "Jason"

Accessing Items in a Collection Object

To access items in a collection, you can use the Item method. The syntax for the Item method is as
follows:

Function Item (index As Variant) As Variant

You must use the Set statement when the Item being returned is an object variable. The index argument
is either the key or the index of the item in the collection object, as shown in these examples:

SET ONEWPERSON = PERSONS.ITEM(6)

Set oNewPerson = Persons.Item("Jason")
Set oNewPerson = Persons(6)

Set oNewPerson = Persons("Jason")

Notice the last two statements. The Item method is omitted because it is the default method for the
Collection class.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Appendix E -- A Short Introduction to Visual Basic Objects

http://www.pbs.mcp.com/ebooks/1571691529/ape/ape.htm (7 of 7) [9/22/1999 2:25:40 AM]

Visual Basic 6 Database How-To

©Copyright, Macmillan Computer Publishing. All rights reserved.

No part of this book may be used or reproduced in any form or by any means, or stored in a
database or retrieval system without prior written permission of the publisher except in the case of
brief quotations embodied in critical articles and reviews.

For information, address Macmillan Publishing, 201 West 103rd Street, Indianapolis, IN 46290.

This material is provided "as is" without any warranty of any kind.

© Copyright, Macmillan Computer Publishing. All rights reserved.

Visual Basic 6 Database How-To -- Copyright --

http://www.pbs.mcp.com/ebooks/1571691529/copy.htm [9/22/1999 2:25:47 AM]

	Visual Basic 6 Database How-To
	Table of Contents
	Introduction
	Ch 1 --Accessing a Database with Bound Controls
	Ch 2 -- Accessing a Data-base with Data Access Objects
	Ch 3 -- Creating Queries With SQL
	Ch 4 -- Designing and Implementing a Database
	Ch 5 --Microsoft Access Databases
	Ch 6 -- Connecting to an ODBC Server
	Ch 7 -- SQL Server Databases and Remote Data Objects
	Ch 8 -- Using ActiveX Data Objects
	Ch 9 --Microsoft Data Report
	Ch 10 -- Security and Multiuser Access
	Ch 11 -- The Windows Registry and State Information
	Ch 12 -- ActiveX and Automation
	Ch 13 -- Advanced Database Techniques
	Appendix A -- SQL Reference
	Appendix B --DATA ACCESS OBJECT REFERENCE
	Appendix C -- REMOTE DATA OBJECT REFERENCE
	Appendix D -- ACTIVEX DATA OBJECTS REFERENCE
	Appendix E -- A Short Introduction to Visual Basic Objects
	Copyright

