
Using Your Sybex Electronic Book
To realize the full potential of this Sybex electronic book, you must have Adobe Acrobat Reader with

Search installed on your computer. To find out if you have the correct version of Acrobat Reader, click on
the Edit menu—Search should be an option within this menu file. If Search is not an option in the Edit
menu, please exit this application and install Adobe Acrobat Reader with Search from this CD (double-
click on rp500env.exe in the Adobe folder).

Navigation

To search, click the Search Query button on the toolbar
or choose Edit >Search > Query to open the Search window. In
the Adobe Acrobat Search dialog’s text field, type the text you
want to find and click Search.

Use the Search Next button (Control+U) and Search
Previous button (Control+Y) to go to other matches in
the book. The Search command also has powerful tools for
limiting and expanding the definition of the term you are
searching for. Refer to Acrobat's online Help (Help > Plug-In
Help > Using Acrobat Search) for more information.

www.sybex.com

Click here to begin using
your Sybex Elect ronic Book!

Search

Navigate throught the book by clicking on the headings that appear in the left panel;
the corresponding page from the book displays in the right panel.

Mastering™

Visual Basic® .NET

Evangelos Petroutsos

San Francisco London

2877c00.qxd 11/11/01 4:13 PM Page iii

http://www.sybex.com

Associate Publisher: Richard Mills

Acquisitions Editor: Denise Santoro Lincoln

Developmental Editor: Tom Cirtin

Editors: Pete Gaughan, Linda Recktenwald

Production Editor: Kylie Johnston

Technical Editors: Jesse Patterson, Greg Guntle

Book Designer: Maureen Forys, Happenstance Type-O-Rama

Graphic Illustrator: Tony Jonick

Electronic Publishing Specialist: Maureen Forys, Happenstance Type-O-Rama

Proofreaders: Nanette Duffy, Amey Garber, Dave Nash, Laurie O’Connell, Yariv Rabinovitch, Nancy Riddiough

Indexer: Ted Laux

CD Coordinator: Christine Detlefs

CD Technician: Keith McNeil

Cover Designer: Design Site

Cover Illustrator/Photographer: Sergie Loobkoff

Copyright © 2002 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. The author created reusable code in
this publication expressly for reuse by readers. Sybex grants readers limited permission to reuse the code found in this publication or its accompa-
nying CD-ROM so long as the author is attributed in any application containing the reusable code and the code itself is never distributed, posted
online by electronic transmission, sold, or commercially exploited as a stand-alone product. Aside from this specific exception concerning reusable
code, no part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photo-
copy, photograph, magnetic, or other record, without the prior agreement and written permission of the publisher.

Library of Congress Card Number: 2001094602

ISBN: 0-7821-2877-7

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States and/or other countries.
Mastering is a trademark of SYBEX Inc.

Screen reproductions produced with FullShot 99. FullShot 99 © 1991–1999 Inbit Incorporated. All rights reserved.
FullShot is a trademark of Inbit Incorporated.

The CD interface was created using Macromedia Director, COPYRIGHT 1994, 1997–2001 Macromedia Inc. For more information on
Macromedia and Macromedia Director, visit www.macromedia.com.

Internet screen shot(s) using Microsoft Internet Explorer reprinted by permission from Microsoft Corporation.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by following the
capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release software whenever possible.
Portions of the manuscript may be based upon pre-release versions supplied by software manufacturer(s). The author and the publisher make no
representation or warranties of any kind with regard to the completeness or accuracy of the contents herein and accept no liability of any kind
including but not limited to performance, merchantability, fitness for any particular purpose, or any losses or damages of any kind caused or
alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

2877c00.qxd 11/12/01 2:55 PM Page iv

http://www.sybex.com

The media and/or any online materials accompanying this book that
are available now or in the future contain programs and/or text files
(the “Software”) to be used in connection with the book. SYBEX
hereby grants to you a license to use the Software, subject to the terms
that follow. Your purchase, acceptance, or use of the Software will
constitute your acceptance of such terms.

The Software compilation is the property of SYBEX unless otherwise
indicated and is protected by copyright to SYBEX or other copyright
owner(s) as indicated in the media files (the “Owner(s)”). You are
hereby granted a single-user license to use the Software for your per-
sonal, noncommercial use only. You may not reproduce, sell, distribute,
publish, circulate, or commercially exploit the Software, or any portion
thereof, without the written consent of SYBEX and the specific copy-
right owner(s) of any component software included on this media.

In the event that the Software or components include specific license
requirements or end-user agreements, statements of condition, dis-
claimers, limitations or warranties (“End-User License”), those End-
User Licenses supersede the terms and conditions herein as to that
particular Software component. Your purchase, acceptance, or use of the
Software will constitute your acceptance of such End-User Licenses.

By purchase, use or acceptance of the Software you further agree to
comply with all export laws and regulations of the United States as
such laws and regulations may exist from time to time.

REUSABLE CODE IN THIS BOOK

The author created reusable code in this publication expressly for reuse
for readers. Sybex grants readers permission to reuse for any purpose
the code found in this publication or its accompanying CD-ROM so
long as the author is attributed in any application containing the
reusable code, and the code itself is never sold or commercially
exploited as a stand-alone product.

SOFTWARE SUPPORT

Components of the supplemental Software and any offers associated
with them may be supported by the specific Owner(s) of that material,
but they are not supported by SYBEX. Information regarding any
available support may be obtained from the Owner(s) using the
information provided in the appropriate read.me files or listed else-
where on the media.

Should the manufacturer(s) or other Owner(s) cease to offer support
or decline to honor any offer, SYBEX bears no responsibility. This
notice concerning support for the Software is provided for your
information only. SYBEX is not the agent or principal of the
Owner(s), and SYBEX is in no way responsible for providing any sup-
port for the Software, nor is it liable or responsible for any support
provided, or not provided, by the Owner(s).

WARRANTY

SYBEX warrants the enclosed media to be free of physical defects for a
period of ninety (90) days after purchase. The Software is not available

from SYBEX in any other form or media than that enclosed herein or
posted to www.sybex.com. If you discover a defect in the media during
this warranty period, you may obtain a replacement of identical format
at no charge by sending the defective media, postage prepaid, with
proof of purchase to:

SYBEX Inc.

Product Support Department

1151 Marina Village Parkway

Alameda, CA 94501

Web: www.sybex.com

After the 90-day period, you can obtain replacement media of identi-
cal format by sending us the defective disk, proof of purchase, and a
check or money order for $10, payable to SYBEX.

DISCLAIMER

SYBEX makes no warranty or representation, either expressed or
implied, with respect to the Software or its contents, quality, per-
formance, merchantability, or fitness for a particular purpose. In no
event will SYBEX, its distributors, or dealers be liable to you or any
other party for direct, indirect, special, incidental, consequential,
or other damages arising out of the use of or inability to use the Soft-
ware or its contents even if advised of the possibility of such damage.
In the event that the Software includes an online update feature,
SYBEX further disclaims any obligation to provide this feature for any
specific duration other than the initial posting.

The exclusion of implied warranties is not permitted by some states.
Therefore, the above exclusion may not apply to you. This warranty
provides you with specific legal rights; there may be other rights that
you may have that vary from state to state. The pricing of the book with
the Software by SYBEX reflects the allocation of risk and limitations
on liability contained in this agreement of Terms and Conditions.

SHAREWARE DISTRIBUTION

This Software may contain various programs that are distributed as
shareware. Copyright laws apply to both shareware and ordinary
commercial software, and the copyright Owner(s) retains all rights. If
you try a shareware program and continue using it, you are expected to
register it. Individual programs differ on details of trial periods, regis-
tration, and payment. Please observe the requirements stated in
appropriate files.

COPY PROTECTION

The Software in whole or in part may or may not be copy-protected
or encrypted. However, in all cases, reselling or redistributing these
files without authorization is expressly forbidden except as specifically
provided for by the Owner(s) therein.

Software License Agreement: Terms and Conditions

2877c00.qxd 11/11/01 4:13 PM Page v

http://www.sybex.com

To my family

2877c00.qxd 11/11/01 4:13 PM Page vii

http://www.sybex.com

Acknowledgments
Many people contributed to this book, and I would like to thank them all. I guess I should
start with the programmers at Microsoft, for their commitment to Visual Basic. Visual Basic has
evolved from a small, limited programming environment to a first-class development tool.

Special thanks to the talented people at Sybex—to all of them and to each one individually. I’ll
start with editor Pete Gaughan, who has taken this book personally and improved it in numerous
ways. Thanks, Pete. Thank you to developmental editor Tom Cirtin, who has followed the progress
of the book, its ups and downs, and managed to coordinate the entire team. To technical editors
Jesse Patterson and Greg Guntle for scrutinizing every paragraph and every line of code. To produc-
tion editor Kylie Johnston, who has done more than I can guess to keep this project in order and on
schedule. To designer and compositor Maureen Forys, and everyone else who added their expertise
and talent. Thank you all!

I’d like to thank and recognize Matt Tagliaferri for contributing Chapter 17, on exception
handling.

I would also like to thank Alvaro Antunes and Harry Heijkoop for their helpful remarks while they
were translating earlier versions of Mastering Visual Basic into Portuguese and Dutch, respectively.

2877c00.qxd 11/12/01 7:39 PM Page viii

http://www.sybex.com

Contents at a Glance

Introduction . xxiii

Part I • The Fundamentals . 1

Chapter 1 • Getting Started with VB.NET . 3

Chapter 2 • Visual Basic Projects . 33

Chapter 3 • Visual Basic: The Language . 79

Chapter 4 • Writing and Using Procedures . 151

Chapter 5 • Working with Forms . 185

Chapter 6 • Basic Windows Controls . 241

Chapter 7 • More Windows Controls . 289

Part II • Rolling Your Own Objects. 327

Chapter 8 • Building Custom Classes . 329

Chapter 9 • Building Custom Windows Controls . 391

Chapter 10 • Automating Microsoft Office Applications 433

Part III • Basic Framework Classes . 477

Chapter 11 • Storing Data in Collections . 479

Chapter 12 • Handling Strings, Characters, and Dates . 529

Chapter 13 • Working with Folders and Files . 569

Part IV • Intermediate Programming . 617

Chapter 14 • Drawing and Painting with Visual Basic . 619

Chapter 15 • Printing with VB.NET . 699

Chapter 16 • The TreeView and ListView Controls . 741

2877c00.qxd 11/11/01 4:13 PM Page ix

http://www.sybex.com

Chapter 17 • Error Handling and Debugging . 791

Chapter 18 • Recursive Programming . 811

Chapter 19 • The Multiple Document Interface . 837

Part V • Database Programming with VB.NET . 867

Chapter 20 • Databases: Architecture and Basic Concepts 869

Chapter 21 • Building Database Applications with ADO.NET 925

Chapter 22 • Programming the ADO.NET Objects . 963

Part VI • VB.NET on the Web . 997

Chapter 23 • Introduction to Web Programming . 999

Chapter 24 • Accessing Data on the Web . 1047

Chapter 25 • XML Web Services . 1083

Index . 1099

CONTENTS AT A GLANCEx

2877c00.qxd 11/11/01 4:13 PM Page x

http://www.sybex.com

Introduction

Welcome to .NET and Visual Basic .NET. As you already know, .NET is a name for
a new strategy: a blueprint for building applications for the next decade. It’s actually even more
than that. It’s Microsoft’s commitment to remain at the top of a rapidly changing world and give
us the tools to address the needs of tomorrow’s computing. Visual Basic .NET is a language for
creating .NET applications, like many others. It also happens that Visual Basic is the easiest to
learn, most productive language (but you already know that).

Visual Basic .NET is released shortly after the tenth anniversary of the first version of VB.
The original language that changed the landscape of computing has lasted for 10 years and has
enabled more programmers to write Windows application than any other language. Programmers
who invested in Visual Basic 10 years ago are in demand today. In the world of computing, how-
ever, things change very fast, including languages. At some point, they either die, or they evolve
into something new. Visual Basic was a language designed primarily for developing Windows
applications. It was a simple language, because it managed to hide many of the low-level details
of the operating system. Those who wanted to do more with Visual Basic had to resort to Win-
dows API. In a way, earlier versions of Visual Basic were ‘sandboxed’ to protect developers from
scary details.

Microsoft had to redesign Visual Basic. The old language just didn’t belong in the .NET pic-
ture (at least, it wouldn’t integrate very well into the picture). Visual Basic .NET is not VB7; it’s
a drastic departure from VB6, but a necessary departure. Visual Basic .NET was designed to take
us through the next decade of computing, and if you want to stay ahead, you will have to invest
the time and effort to learn it.

The most fundamental component of the .NET initiative is the .NET Framework, or simply
the Framework. You can think of the Framework as an enormous collection of functions for just
about any programming task. All drawing methods, for example, are part of the System.Drawing
class. To draw a rectangle, you call the DrawRectangle method, passing the appropriate argu-
ments. To create a new folder, you call the CreateDirectory method of the Directory class; to
retrieve the files in a folder, you call the GetFiles method of the same object. The Framework
contains all the functionality of the operating system and makes it available to your application
through numerous methods.

VB was such a success because it was a very simple language. You didn’t have to learn a lot
before you could start using the language. Being able to access the Framework’s objects means
that you’re no longer limited by the language. The new version of the language unlocks the full
potential of .NET; now there’s hardly anything you can do with another language but can’t do

2877c00.qxd 11/11/01 4:13 PM Page xxiii

http://www.sybex.com

INTRODUCTIONxxiv

with Visual Basic. This makes the language as powerful as any other language, but it also makes the
learning curve steeper. The good news is that, if you get started today, you’ll get a head start, which
may well last for another decade.

Who Should Read This Book?
You don’t need to know Visual Basic to read Mastering Visual Basic .NET, but you do need a basic
understanding of programming. You need to know the meaning of variables and functions and how
an If…Then structure works. This book is addressed to the typical programmer who wants to get the
most out of Visual Basic. It covers the topics I feel are of use to most VB programmers, and it does
so in depth. Visual Basic .NET is an extremely rich programming environment, and I’ve had to
choose between superficial coverage of many topics and in-depth coverage of fewer topics. To make
room for more topics, I have avoided including a lot of reference material and lengthy listings. For
example, you won’t find complete project listings or Form descriptions. I assume you can draw a few
controls on a Form and set their properties, and you don’t need long descriptions of the properties
of the control. I’m also assuming that you don’t want to read the trivial segments of each application.
Instead, the listings concentrate on the “meaty” part of the code: the procedures that explain the
topic at hand. If you want to see the complete listing, it’s all on the CD.

The topics covered in this book were chosen to provide a solid understanding of the principles
and techniques for developing applications with Visual Basic. Programming isn’t about new key-
words and functions. I chose the topics I felt every programmer should learn in order to master the
language. I was also motivated by my desire to present useful, practical examples. You will not find
all topics equally interesting or important. My hope is that everyone will find something interesting
and something of value to their daily work—whether it’s an application that maps the folders and
files of a drive to a TreeView control, an application that prints tabular data, or an application that
saves a collection of objects to a file.

Many books offer their readers long, numbered sequences of steps to accomplish something. Fol-
lowing instructions simplifies certain tasks, but programming isn’t about following instructions. It’s
about being creative; it’s about understanding principles and being able to apply the same techniques
in several practical situations. And the way to creatively exploit the power of a language such as
Visual Basic .NET is to understand its principles and its programming model.

In many cases, I provide a detailed, step-by-step procedure that will help you accomplish a task,
such as designing a menu. But not all tasks are as simple as designing menus. I explain why things
must be done in a certain way, and I present alternatives and try to connect new topics to those
explained earlier in the book. In several chapters, I expand on applications developed in earlier chap-
ters. Associating new knowledge to something you have already mastered provides positive feedback
and a deeper understanding of the language.

This book isn’t about the hottest features of the language; it’s about solid programming tech-
niques and practical examples. For example, I’m not going to show you how to write multithreaded
applications. The real challenge with multithreaded applications is their debugging, which requires
substantial experience. Once you master the basics of programming Windows applications with
Visual Basic .NET and you feel comfortable with the more advanced examples of the book, you will
find it easy to catch up with the topics that aren’t discussed.

2877c00.qxd 11/11/01 4:13 PM Page xxiv

http://www.sybex.com

xxvINTRODUCTION

How About the Advanced Topics?
Some of the topics discussed in this book are non-trivial, and quite a few topics can be considered
advanced. The TreeView control, for example, is not a trivial control, like the Button or TextBox
control, but it’s ideal for displaying hierarchical information (this is the control that displays the
hierarchy of folders in Windows Explorer). If you want to build an elaborate user interface, you
should be able to program controls like the TreeView control, which is discussed in Chapter 16.
(But you need not read that chapter before you decide to use this control in a project.)

You may also find some examples to be more difficult than you expected. I have tried to make
the text and the examples easy to read and understand, but not unrealistically simple. In Chapter 13,
you’ll find information about the File and Directory objects. You can use these objects to access and
manipulate the file system from within your application, but this chapter wouldn’t be nearly as use-
ful without an application that shows you how to scan a folder recursively (scan the folder’s files
and then its subfolders, to any depth). To make each chapter as useful as I could, I’ve included com-
plex examples, which will provide a better understanding of the topics. In addition, many of these
examples can be easily incorporated into your applications.

You can do a lot with the TreeView control with very little programming, but in order to make
the most out of this control, you must be ready for some advanced programming. Nothing terribly
complicated, but some things just aren’t simple. Programming most of the operations of the Tree-
View control, for instance, is straightforward, but if your application calls for populating a TreeView
with an arbitrary number of branches (such as mapping a directory structure to a TreeView), the
code can get involved.

The reason I’ve included the more advanced examples is that the corresponding chapters would
be incomplete without them. If you find some material to be over your head at first reading, you can
skip it and come back to it after you have mastered other aspects of the language. But don’t let a few
advanced examples intimidate you. Most of the techniques are well within the reach of an average
VB programmer. The few advanced topics were included for the readers who are willing to take that
extra step and build elaborate interfaces using the latest tools and techniques.

There’s another good reason for including advanced topics. Explaining a simple topic, like how
to populate a collection with items, is very simple. But what good is it to populate a collection if you
don’t know how to save it to disk and read back its items in a later session? Likewise, what good is it
to learn how to print simple text files? In a business environment, you will most likely be asked to
print a tabular report, which is substantially more complicated than printing text. In Chapter 15 you
will learn how to print business reports with headers, footers, and page numbers, and even how to
draw grids around the rows and columns of the report. One of my goals in writing this book was to
exhaust the topics I’ve chosen to discuss and to present all the information you need to do some-
thing practical.

The Structure of the Book
Mastering Visual Basic .NET isn’t meant to be read from cover to cover, and I know that most people
don’t read computer books this way. Each chapter is independent of the others, although all chapters
contain references to other chapters. Each topic is covered in depth; however, I make no assumptions
about the reader’s knowledge on the topic. As a result, you may find the introductory sections of a

2877c00.qxd 11/11/01 4:13 PM Page xxv

http://www.sybex.com

INTRODUCTIONxxvi

chapter too simple. The topics become progressively more advanced, and even experienced program-
mers will find some new information in each chapter. Even if you are familiar with the topics in a
chapter, take a look at the examples. I have tried to simplify many of the advanced topics and
demonstrate them with clear, practical examples.

VB6 ➠ VB.NET

Experienced Visual Basic programmers should pay attention to these special sidebars with the “VB6 to
VB.NET” icon, which calls your attention to changes in the language. These sections usually describe new
features in VB.NET or enhancements of VB6 features, but also VB6 features that are no longer supported
by VB.NET.

This book tries to teach through examples. Isolated topics are demonstrated with short examples,
and at the end of many chapters, you’ll build a large, practical, real-world app that “puts together”
the topics and techniques discussed throughout the chapter. You may find some of the more
advanced applications a bit more difficult to understand, but you shouldn’t give up. Simpler applica-
tions would have made my job easier, but the book wouldn’t deserve the Mastering title and your
knowledge of Visual Basic wouldn’t be as complete.

In the first part of the book, we’ll go through the fundamentals of Visual Basic .NET. You’ll
learn how to design visual interfaces with point-and-click operations, and how to program a few
simple events, like the click of the mouse on a button. After reading the first two chapters, you’ll
understand the structure of a Windows application. Then we’ll explore the elements of the visual
interface (the basic Windows controls) and how to program them.

The second part of the book is about building and using objects. Visual Basic .NET is a truly
object-oriented language, and objects are the recurring theme in every chapter. Part II is a formal
and more systematic treatment of objects. You will learn how to build custom classes and controls,
which will help you understand object-oriented programming a little better.

In the third part of the book, we’ll discuss some of the most common classes of the Framework.
The Framework is the core of .NET. It’s your gateway to the functionality of the operating system
itself, and it’s going to be incorporated into the next version of Windows. In Part III we’ll examine
collections (like ArrayLists and HashTables), the objects for manipulating files and folders, the
StringBuilder object that manipulates text, and a few more.

The fourth part of the book is a collection of intermediate to advanced topics. It includes chapters on
graphics and printing, an overview of the debugging tools, and a chapter on recursive programming—
a very powerful programming technique. You will also find a chapter on building Multiple Document
Interfaces—an interface that hosts multiple windows, each one displaying a different document.

The fifth part of the book is an overview of the data access tools. The emphasis is on the visual
tools, and you will learn how to query databases and present data to the user. You will also find
information on programming the basic objects of ADO.NET.

Part VI is about Web applications. Here you will learn the basics of ASP .NET, how to develop
Web applications, and how to write Web services. Web applications are written Visual Basic .NET,
but they deploy a user interface that consists of HTML pages and interact with the user through the

2877c00.qxd 11/11/01 4:13 PM Page xxvi

http://www.sybex.com

xxviiINTRODUCTION

browser. Web services are functions that can be called from anywhere, and they’re one of the most
promising features of the .NET Platform.

Mastering Visual Basic .NET does not cover all the topics you can think of. I hope I’ve chosen the
topics you’ll encounter most often in your daily tasks and I’ve covered them in enough detail,
to help you understand the basics and be able to look up more specific topics in the product
documentation.

How to Reach the Author
Despite our best efforts, a book this size is bound to contain errors. Although a printed medium
isn’t as easy to update as a Web site, I will spare no effort to fix every problem you report (or I dis-
cover). The revised applications, along with any other material I think will be of use to the readers of
this book, will be posted on the Sybex Web site. If you have any problems with the text or the appli-
cations in this book, you can contact me directly at pevangelos@yahoo.com.

Although I can’t promise a response to every question, I will fix any problems in the examples
and provide updated versions. I would also like to hear any comments you may have on the book,
about the topics you liked or did not like, and how useful the examples are. Your comments will be
taken into consideration in future editions.

2877c00.qxd 11/11/01 4:13 PM Page xxvii

http://www.sybex.com

Part I
The Fundamentals

In this section:
� Chapter 1: Getting Started with VB.NET
� Chapter 2: Visual Basic Projects
� Chapter 3: Visual Basic: The Language
� Chapter 4: Writing and Using Procedures
� Chapter 5: Working with Forms
� Chapter 6: Basic Windows Controls
� Chapter 7: More Windows Controls

2877c01.qxd 11/11/01 4:14 PM Page 1

http://www.sybex.com

Chapter 1

Getting Started with VB.NET
Welcome to the Enterprise Edition of Visual Basic .NET. I’m assuming you have installed
Visual Studio .NET, Enterprise Edition. You may have even already explored the new environ-
ment on your own, but this book doesn’t require any knowledge of Visual Basic 6. It doesn’t
require anything more than a familiarity with programming. As you already know, Visual Basic
.NET is just one of the languages you can use to build applications with Visual Studio .NET. I
happen to be convinced that it is also the simplest, most convenient language, but this isn’t really
the issue. What you should keep in mind is that Visual Studio .NET is an integrated environ-
ment for building, testing, and debugging a variety of applications: Windows applications, Web
applications, classes and custom controls, even console applications. It provides numerous tools
for automating the development process, visual tools to perform many common design and pro-
gramming tasks, and more features than any author would hope to cover.

The first thing you must learn is the environment you’ll be working in from now on. In the
first chapter of this book, you’ll familiarize yourself with the integrated development environment
(IDE) and how its tools allow you to quickly design the user interface of your application, as well
as how to program the application.

It will be a while before you explore all the items of the IDE. Visual Studio is an environment
for developing all types of applications, from a simple Windows application to a complete Web
app involving databases and XML files. I will explain the various items as needed in the course of
the book. In this chapter, we’ll look at the basic components of the IDE needed to build simple
Windows applications.

The Integrated Development Environment
Visual Studio .NET is an environment for developing Windows and Web applications. Visual
Basic .NET is just one of the languages you can use to program your applications. Actually,
Visual Studio .NET was designed to host any language, and many companies are working on lan-
guages that will be integrated in Visual Studio .NET. Some people will develop Windows appli-
cations in Visual Studio .NET with COBOL, or FORTRAN.

2877c01.qxd 11/11/01 4:14 PM Page 3

http://www.sybex.com

So, what’s the distinction between Visual Studio .NET and the language? Visual Studio .NET is
the environment that provides all the necessary tools for developing applications. The language is
only one aspect of a Windows application. The visual interface of the application isn’t tied to a spe-
cific language, and the same tools you’ll use to develop your application’s interface will also be used
by all programmers, regardless of the language they’ll use to code the application.

The tools you’ll use to access databases are also independent of the language. Visual Studio pro-
vides tools that allow you to connect to a database, inspect its objects, retrieve the information you’re
interested in, and even store it in objects that can be accessed from within any language.

There are many visual tools in the IDE, like the Menu Designer. This tool allows you to visually
design menus and to set their names and basic properties (such as checking, enabling, or disabling
certain options). Designing a menu doesn’t involve any code, and it’s carried out with point-and-
click operations. Of course, you will have to insert some code behind the commands of your menus,
and (again) you can use any language to program them.

To simplify the process of application development, Visual Studio .NET provides an environment
that’s common to all languages, which is known as integrated development environment (IDE). The purpose
of the IDE is to enable the developer to do as much as possible with visual tools, before writing code.
The IDE provides tools for designing, executing, and debugging your applications. It’s your second
desktop, and you’ll be spending most of your productive hours in this environment.

The Start Page
When you run Visual Studio for the first time, you will see the window shown in Figure 1.1. On the
My Profile tab, you will set your personal preferences by specifying your language. Select Visual
Basic Developer in the Profile box, and the other two boxes will be filled automatically. You can
leave the other fields to their default values. The ComboBox control at the bottom of the page, the
At Startup control, is where you define what you want Visual Studio .NET to do when it starts.
The choices are the following:

Show Start Page Every time you start Visual Studio .NET, this page will appear.

Load Last Loaded Solution Once you start working on a real project (a project that will take
you from a few days to a few months to complete), select this option so that the project will be
loaded automatically every time you start Visual Studio .NET.

Show Open Project Dialog Box Every time you start Visual Studio .NET, the Open Project
dialog box will appear, where you can select a project to open.

Show New Project Dialog Box Every time you start Visual Studio .NET, the New Project
dialog box will appear, where you can specify the name of a new project—a setting to avoid.

Show Empty Environment This option instructs Visual Studio .NET to start a new empty
solution, and you’re responsible for adding new or existing projects to the solution and new or
existing items to a project.

The actions are self-explanatory, and the most common setting is to show the Start Page. The
Start Page displays the four most recently opened projects, as well as the New Project and Open
Project buttons. To see the Start Page, select the Get Started option.

Chapter 1 GETTING STARTED WITH VB.NET4

2877c01.qxd 11/11/01 4:14 PM Page 4

http://www.sybex.com

The remaining options lead to Visual Studio sites with up-to-date information about the prod-
uct, such as news articles, updated documents, and service packs or patches. At the very least, you
should switch to the Downloads option from time to time to check for updates. The installation of
the updates should be automatic—after you confirm your intention to download and update any
new component, of course.

The Web Hosting option leads to a page with information about ISPs that support ASP.NET.
You will need the services of these ISPs to post an actual Web application or Web services to the
Internet. Web applications and Web services are two types of projects you can develop with Visual
Studio (they’re discussed in the last part of the book). These projects aren’t distributed to users;
instead, they run on a Web server; users must connect to the URL of the Web server and run the
application in their browser.

Note The official names of the products are Visual Studio .NET and Visual Basic .NET. Throughout the book I will
refer to the language as VB.NET and mostly as VB. When referring to the previous version of the language, I will use VB6.

Starting a New Project

At this point, you can create a new project and start working with Visual Basic .NET. To best explain
the various items of the IDE, we are going to build a simple form—it’s not even an application. The
form is the window of your application—what users will see on their desktop when they run your
application.

Open the File menu and select New ➢ Project. In the New Project dialog box (Figure 1.2), you
will see a list of project types you can create with Visual Studio. Select the Windows Application

Figure 1.1

This is what you’ll
see when you start
Visual Studio for
the first time.

5THE INTEGRATED DEVELOPMENT ENVIRONMENT

2877c01.qxd 11/11/01 4:14 PM Page 5

http://www.sybex.com

template, and Visual Studio will suggest the name WindowsApplication1 as the project name. Change
it to MyTestApplication. Under the project’s name is another box, named Location. This is the folder
in which the new project will be created (every project is stored in its own folder). Visual Studio will
create a new folder under the one specified in the Location box and will name it after the project. You
can leave the default project folder and click the OK button.

VB6 ➠ VB.NET

Unlike previous versions of Visual Basic, Visual Basic .NET creates a new folder for the project and saves
the project’s files there, even before you edit them. The IDE saves the changes to the project’s files by default
every time you run the project. To change this behavior, use the Tools ➢ Options dialog box, which is
described later in this book.

What you see now is the Visual Studio IDE displaying the Form Designer for a new project
(Figure 1.3). The main window is the Form Designer, and the gray surface on it is the window of
your new application in design mode. Using the Form Designer, you’ll be able to design the visible
interface of the application (place various components of the Windows interface on the form) and
then program the application.

The default environment is rather crowded, so let’s hide a few of the toolbars we’re not going to
use in the projects of the first few chapters. You can always show any of the toolbars at any time.
Open the View menu and select Toolbars. You will see a submenu with 28 commands, which are
toggles. Each command corresponds to a toolbar, and you can turn the corresponding toolbar on or
off by clicking one of the commands in the Toolbar submenu. Turn off all the toolbars except for
the Layout and Standard toolbars.

The last item in the Toolbars submenu is the Customize command, which leads to a dialog box
where you can specify which of the toolbars and which of the commands you want to see.

Figure 1.2

The New Project
dialog box

Chapter 1 GETTING STARTED WITH VB.NET6

2877c01.qxd 11/11/01 4:14 PM Page 6

http://www.sybex.com

Using the Windows Form Designer

To design the form, you must place on it all the controls you want to display to the user at runtime.
The controls are the components of the Windows interface (buttons, radio buttons, lists, and so on).
Open the Toolbox by moving the pointer over the Toolbox tab at the far left; the Toolbox will pull
out, as shown in Figure 1.4. This toolbox contains an icon for each control you can use on your form.

The controls are organized into tabs, each tab containing controls you can use with a specific type
of project. In the first part of the book, we’ll create simple Windows applications and we’ll use the
controls on the Windows Forms tab. When you develop a Web application, the icons of the controls
on the Windows Forms tab will become disabled and you will be allowed to place only Web con-
trols on the form (which will be a Web form, as opposed the Windows form you’re building in this
project). If you click the Web Forms tab now, all the icons on it will be disabled.

To place a control on the form, you can double-click the icon of the control. A new instance with
a default size will be placed on the form. Then you can position and resize it with the mouse. Or
you can select the control with the mouse, then move the mouse over the form and draw the outline
of the control. A new instance of the control will be placed on the form, and it will fill the rectangle
you specified with the mouse. Place a TextBox control on the form by double-clicking the TextBox
icon on the Toolbox.

Properties window

Solution ExplorerMenu Toolbar

View Designer buttonView Code buttonFigure 1.3

The integrated
development envi-
ronment of Visual
Studio .NET

7THE INTEGRATED DEVELOPMENT ENVIRONMENT

2877c01.qxd 11/11/01 4:14 PM Page 7

http://www.sybex.com

The control’s properties will be displayed in the Properties window (Figure 1.5). This window, at the
far left edge of the IDE, displays the properties of the selected control on the form. If the Properties win-
dow is not visible, select View ➢ Properties Window, or press F4. If no control is selected, the proper-
ties of the selected item in the Solution Explorer will be displayed. Place another TextBox control on the
form. The new control will be placed almost on top of the previous one. Reposition the two controls on
the form with the mouse. Then right-click one of them and, from the context menu, select Properties.

Figure 1.5

The properties of a
TextBox control

Figure 1.4

The Windows
Forms Toolbox
of the Visual
Studio IDE

Chapter 1 GETTING STARTED WITH VB.NET8

2877c01.qxd 11/11/01 4:14 PM Page 8

http://www.sybex.com

In the Properties window, also known as the Property Browser, you see the properties that deter-
mine the appearance of the control, and in some cases, its function. Locate the TextBox control’s
Text property and set it to “My TextBox Control” by entering the string (without the quotes) into
the box next to property name. Select the current setting, which is TextBox1, and type a new string.
The control’s Text property is the string that appears in the control.

Then locate its BackColor property and select it with the mouse. A button with an arrow will
appear next to the current setting of the property. Click this button and you will see a dialog box
with three tabs (Custom, Web, and System), as shown in Figure 1.6. On this dialog box, you can
select the color, from any of the three tabs, that will fill the control’s background. Set the control’s
background color to yellow and notice that the control’s appearance will change on the form.

Then locate the control’s Font property. You can click the plus sign in front of the property
name and set the individual properties of the font, or you can click the button with the ellipsis to
invoke the Font dialog box. On this dialog box, you can set the font and its attributes and then click
OK to close the dialog box. Set the TextBox control’s Font property to Verdana, 14 points, bold.
As soon as you close the Font dialog box, the control on the form will be adjusted to the new
setting.

There’s a good chance that the string you assigned to the control’s Text property won’t fit in the
control’s width when rendered in the new font. Select the control on the form with the mouse, and
you will see eight handles along its perimeter. Rest the pointer over any of these handles, and it will
assume a shape indicating the direction in which you can resize the control. Make the control long
enough to fit the entire string. If you have to, resize the form as well. Click somewhere on the form
and when the handles along its perimeter appear, resize it with the mouse.

If you attempt to make the control tall enough to accommodate a few lines of text, you’ll realize
that you can’t change the control’s height. By default, the TextBox control accepts a single line of
text. So far you’ve manipulated properties that determine the appearance of the control. Now you’ll
change a property that determines not only the appearance, but the function of the control as well.
Locate the Multiline property. Its current setting is False. Expand the list of available settings and

Figure 1.6

Setting a color prop-
erty in the Properties
dialog box

9THE INTEGRATED DEVELOPMENT ENVIRONMENT

2877c01.qxd 11/11/01 4:14 PM Page 9

http://www.sybex.com

change it to True. (You can also change it by double-clicking the name of the property. This action
toggles the True/False settings.) Then switch to the form, select the TextBox control, and make it
taller.

The Multiline property determines whether the TextBox control can accept one (if Multiline =
False) or more (if Multiline = True) lines of text. Set this property to True, go back to the Text
property, and this time set it to a long string and press Enter. The control will break the long text
into multiple lines. If you resize the control, the lines will change, but the entire string will fit across
the control. That’s because the control’s WordWrap property is True. Set it to False to see how the
string will be rendered on the control.

Multiline TextBox controls usually have a vertical scrollbar, so that users can quickly locate the
section of the text they’re interested in. Locate the control’s ScrollBars property and expand the list
of possible settings by clicking the button with the arrow. This property’s settings are None, Verti-
cal, Horizontal, and Both. Set it to vertical, assign a very long string to its Text property, and watch
how the control handles the text. At design time, you can’t scroll the text on the control. If you
attempt to move the scrollbar, the entire control will be moved. To examine the control’s behavior at
runtime, press F5. The application will be compiled, and a few moments later, the form with the two
TextBox controls will appear on the desktop (like the ones in Figure 1.7). This is what the users of
your application would see (if this were an application worth distributing, of course).

Enter some text at runtime, select text on the control, and copy it to the Clipboard by pressing
Ctrl+C. You can also copy text in any other Windows application and paste it on the TextBox con-
trol. When you’re done, open the Debug menu and select Stop Debugging. This will terminate your
application’s execution, and you’ll be returned to the IDE.

One of the properties of the TextBox control that determines its function, rather than its appear-
ance, is the CharacterCasing property, whose settings are Normal, Upper, and Lower. In normal
mode, the characters appear as typed. In Lower mode, the characters are automatically converted to
lowercase before they are displayed on the control. The default setting of this property is Normal.
Set it to Upper or Lower, run the application again, and see how this property’s setting affects the
function of the control. Enter some lowercase text on the control, and the control itself will convert
it to uppercase (or vice versa).

The design of a new application starts with the design of the application’s form. The design of
the form determines the functionality of the application. In effect, the controls on the form deter-
mine how the application will interact with the user. The form itself is a prototype, and you can
demonstrate it to a customer before even adding a single line of code. As you understand, by placing

Figure 1.7

The appearance
of a TextBox control
displaying multiple
text lines

Chapter 1 GETTING STARTED WITH VB.NET10

2877c01.qxd 11/11/01 4:14 PM Page 10

http://www.sybex.com

controls on the form and setting their properties you’re implementing a lot of functionality before
coding the application. The TextBox control with the settings discussed in this section is a func-
tional text editor.

Project Types
Before moving on, let me mention briefly all the types of projects you can build with Visual Studio
in addition to Windows applications. All the project types supported by Visual Studio are displayed
on the New Project dialog box, and they’re the following:

Class library A class library is a basic code-building component, which has no visible interface
and adds specific functionality to your project. Simply put, a class is a collection of functions that
will be used in other projects beyond the current one. With classes, however, you don’t have to
distribute source code. Class libraries are equivalent to ActiveX DLL and ActiveX EXE project
types of VB6.

Windows control library A Windows control (or simply control), such as a TextBox or Button,
is a basic element of the user interface. If the controls that come with Visual Basic (the ones that
appear in the Toolbox by default) don’t provide the functionality you need, you can build your
own custom controls. People design their own custom controls for very specific operations to
simplify the development of large applications in a team environment. If you have a good idea for
a custom control, you can market it—the pages of the computer trade magazines are full of ads
for advanced custom controls that complement the existing ones.

Console application A Console application is an application with a very limited user interface.
This type of application displays its output on a Command Prompt window and receives input
from the same window. You’ll see an example of a simple Console application later in this chap-
ter, and that will be the last Console application in this book. The purpose of this book is to
show you how to build Windows and Web applications with rich interfaces, not DOS-like appli-
cations. However, the product’s documentation uses Console applications to demonstrate specific
topics, and this is why I’ve included a short section on Console applications in this chapter.

Windows service A Windows service is a new name for the old NT services, and they’re long-
running applications that don’t have a visible interface. These services can be started automatically
when the computer is turned on, paused, and restarted. An application that monitors and reacts
to changes in the file system is a prime candidate for implementing as a Windows service. When
users upload files to a specific folder, the Windows service might initiate some processing (copy
the file, read its contents and update a database, and so on). We will not discuss Windows serv-
ices in this book.

ASP.NET Web application Web applications are among the most exciting new features of
Visual Studio. A Web application is an app that resides on a Web server and services requests
made through a browser. An online bookstore, for example, is a Web application. The applica-
tion that runs on the Web server must accept requests made by a client (a remote computer with
a browser) and return its responses to the requests in the form of HTML pages. Web applica-
tions are not new, but ASP.NET hides many of details of building Web applications and makes

11THE INTEGRATED DEVELOPMENT ENVIRONMENT

2877c01.qxd 11/11/01 4:14 PM Page 11

http://www.sybex.com

the process surprisingly similar to the process of building Windows applications. Web applica-
tions and Web services are discussed in detail in the last part of the book.

ASP.NET Web service A Web service is not the equivalent of a Windows service. A Web
service is a program that resides on a Web server and services requests, just like a Web applica-
tion, but it doesn’t return an HTML page. Instead, it returns the result of a calculation or a data-
base lookup. Requests to Web services are usually made by another server, which is responsible
for processing the data. A Web application that accepts a query for all VB books published by Sybex
will return a page with the results. A Web service that accepts the same query will return an XML
file with the results. The file will be used by the application that made the request to prepare a
new page and send it to the client, or to populate a Windows form.

Web control library Just as you can build custom Windows controls to use with your
Windows forms, you can create custom Web controls to use with your Web pages. Web con-
trols are not discussed in this book, but once you’ve understood how ASP applications work
and how Web applications interact with clients, you’ll be able to follow the examples in the
documentation.

The other three templates in the New Project dialog box—Empty Project, Empty Web Project,
and New Project In Existing Folder—are not project types, just a way to organize the new project
yourself. When you create a new project of any of the previous types, Visual Studio creates a new
folder named after the project and populates it with a few files that are necessary for the specific
application type. A Windows application, for example, has a form, and the appropriate file is created
automatically in the project’s folder when a new Windows application is created. With the last three
types of projects, you’re responsible for creating and adding all the required items yourself.

Your First VB Application
In this section, we’ll develop a very simple application to demonstrate not only the design of the
interface, but also how to code the application. We’ll build an application that allows the user to
enter the name of their favorite programming language, and then we evaluate the choice. Objectively,
VB is a step ahead of all other languages and it will receive the best evaluation. All other languages
will get the same grade—good, but not VB.

Tip The project you will build in this section is called WindowsApplication1, and you can find it in this chapter’s folder
on the CD. Copy the WindowsApplication1 folder from the CD to your hard disk, then clear the Read-Only attribute of
the files in the folder. All the files you copy from the CD are read-only. To change this attribute (so that you can save the
changes), select all the files in a project’s folder, right-click them, and select Properties. In the dialog box that appears, clear
the box Read-Only.

You can open the project on the CD and examine it, but I suggest you follow the steps outlined in
this paragraph to build the project from scratch. Start a new project, use the default name Windows-
Application1, and place a TextBox and a Button control on the form. Use the mouse to position and
resize the controls on the form, as shown in Figure 1.8.

Chapter 1 GETTING STARTED WITH VB.NET12

2877c01.qxd 11/11/01 4:14 PM Page 12

http://www.sybex.com

Now we must insert some code to evaluate the user’s favorite language. Windows applications are
made up of small code segments, called event handlers, which react to specific actions. In the case of our
example, we want to program the action of clicking the button. When the user clicks the button, we
want to execute some code that will display a message.

To insert some code behind the Button control, double-click the control and you’ll see the code
window of the application, which is shown in Figure 1.9. The line “Private ...” is too long to fit on
the printed page, so I’ve inserted a line-continuation character (an underscore) to break it into two lines.
When a line is too long, you can break it into two lines by inserting the line continuation character.
Alternatively, you can turn on the word wrap feature of the editor (you’ll see shortly how to adjust
the editor’s properties). Notice that I’ve also inserted quite a bit of space before the second half
of the first code line. It’s customary to indent continued lines so that they can be easily distinguished
from the other lines.

The editor opened a subroutine, which is delimited by the following statements:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

End Sub

Figure 1.9

The outline of a
subroutine that
handles the Click
event of a Button
control

Figure 1.8

A simple application
that processes a user-
supplied string

13YOUR FIRST VB APPLICATION

2877c01.qxd 11/11/01 4:14 PM Page 13

http://www.sybex.com

At the top of the main pane of the Designer, you will see two tabs named after the form: in
Figure 1.9, they’re the Form1.vb [Design] tab and the Form1.vb tab. The first tab is the Win-
dows Form Designer (where you build the interface of the application with visual tools) and the
second is the code editor, where you insert the code behind the interface. At the top of the code
editor, which is what you see in Figure 1.9, are two ComboBoxes. The one on the left contains
the names of the controls on the form. The other one contains the names of events each control
recognizes. When you select a control (or an object, in general) in the left list, the other list’s con-
tents are adjusted accordingly. To program a specific event of a specific control, select the name
of the control in the first list (the Objects list) and the name of the event in the right list (the
Events list).

The Click event happens to be the default event of the Button control, so when you double-
click a Button on the form, you’re taken to the Button1_Click subroutine. This subroutine is an
event handler. An event handler is invoked automatically every time an event takes place. The event
is the Click event of the Button1 control. Every time the Button1 control on the form is clicked, the
Button1_Click subroutine is activated. To react to the Click event of the button, you must insert the
appropriate code in this subroutine.

The name of the subroutine is made up of the name of the control, followed by an underscore
and the name of the event. This is just the default name, and you can change it to anything you like
(such as EvaluateLanguage, for this example, or StartCalculations). What makes this subroutine an
event handler is the keyword Handles at the end of the statement. The Handles keyword tells the
compiler what event this subroutine is supposed to handle. Button1.Click is the Click event of the
Button1 control. If there were another button on the form, the Button2 control, you’d have to write
code for a subroutine that would handle the Button2.Click event. Each control recognizes many
events; for each control and event combination, you can provide a different event handler. Of course,
we never program every possible event for every control.

Note As you will soon realize, the controls have a default behavior and handle the basic events on their own. The
TextBox control knows how to handle keystrokes. The CheckBox control (a small square with a check mark) changes state
by hiding or displaying the checkmark every time it’s clicked. The ScrollBar control moves its indicator (the button in the
middle of the control) every time you click one of the arrows at the two ends. Because of this default behavior of the controls,
you need not supply any code for the events of most controls on the form.

Rename Button1_Click subroutine to EvaluateLanguage. However, you shouldn’t change the
name of the event this subroutine handles. If you change the name of the control after you have
inserted some code in an event handler, the name of the event handled by the subroutine will be
automatically changed. The name of the subroutine, however, won’t change.

Let’s add some code to the Click event handler of the Button1 control. When this button is
clicked, we want to examine the text on the control and, if it’s “Visual Basic”, display a message; if
not, we’ll display a different message. Insert the lines of Listing 1.1 between the Private Sub and
End Sub statements. (I’m showing the entire listing here, but there’s no reason to retype the first and
last statements.)

Chapter 1 GETTING STARTED WITH VB.NET14

2877c01.qxd 11/11/01 4:14 PM Page 14

http://www.sybex.com

Listing 1.1: Processing a User-Supplied String

Private Sub EvaluateLanguage_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim language As String
language = TextBox1.Text
If language = “Visual Basic” Then

MsgBox(“We have a winner!”)
Else

MsgBox(language & “ is not a bad language.”)
End If

End Sub

Here’s what this code does. First, it assigns the value of the TextBox1 control to the variable lan-
guage. A variable is a named location in memory, where a value is stored. This memory location can
be read later in the code or set to a different value. Variables are where we store the intermediate
results of our calculation when we write code. Then the program compares the value of the language
variable to the literal “Visual Basic”, and depending on the outcome of the comparison, it displays
one of two messages. The MsgBox() function displays the specified message in a small window with
the OK button. Users can view the message and then click the OK button to close the message box.

Even if you’re not familiar with the syntax of the language, you should be able to understand
what this code does. Visual Basic is the simplest .NET language, and we will discuss the various
aspects of the language in detail in the following chapters. In the meantime, you should try to under-
stand the process of developing a Windows application: how to build the visible interface of the
application, and how to program the events to which you want your application to react.

Making the Application More Robust
The code of our first application isn’t very robust. If the user doesn’t enter the string with the exact
spelling shown in the listing, the comparison will fail. We can convert the string to uppercase and
then compare it to “VISUAL BASIC” to eliminate differences in case. To convert a string to upper-
case, use the ToUpper method of the string class. The following expression returns the string stored
in the language variable, converted to uppercase:

language.ToUpper

We should also assume that the user may enter “VB” or “VB.NET”, so let’s modify our code as
shown in Listing 1.2.

Listing 1.2: A More Robust String Comparison Technique

Private Sub EvaluateLanguage_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim language As String
language = TextBox1.Text

15YOUR FIRST VB APPLICATION

2877c01.qxd 11/11/01 4:14 PM Page 15

http://www.sybex.com

language = language.ToUpper
If language = “VISUAL BASIC” Or _

language = “VB” Or _
language = “VB.NET” Then
MsgBox(“We have a winner!”)

Else
MsgBox(language & “ is not a bad language”)

End If
End Sub

The If statement is a long one, and for clarity I’ve inserted the underscore character to break it
into multiple text lines. As you enter the code, you will either enter an underscore character and then
press Enter to move to the following line, or ignore the underscore character and continue typing on
the same line. You will see later how you can instruct the code editor to automatically wrap long
lines of code.

Run the application, enter the name of your favorite language, and then click the Button to evalu-
ate your choice. It’s an extremely simple project, but this is how you write Windows applications:
you design the interface and then enter code behind selected events.

In the following section, we’ll improve our application. You never know what users may throw
at your application, so whenever possible we try to limit their response to the number of available
choices. In our case, we can display the names of certain languages (the ones we’re interested in)
and force the user to select one of them. One way to display a limited number of choices is to use a
ComboBox control. In the following section, we’ll revise our sample application so that the user
won’t have to enter the name of the language. The user will be forced to select his or her favorite
language from a list, so that we won’t have to validate the string supplied by the user.

Making the Application More User-Friendly
Start a new project, the WindowsApplication2 project. If there’s already a project by that name in
your VB projects folder, name it differently or specify a different location. Click the Browse button
on the New Project dialog box and select a new folder. You can also create a new folder like
“MyProjects” or “VB.NET Samples” and select this as the default folder for your next few projects.
Every time you create a new project, this folder will be suggested by default. When you’re ready for
your own projects, specify a different location with the Browse button.

When the form of the project appears in the IDE, set the form’s Font property. Locate the Font
item in the Properties window and click the button with the ellipsis (three dots). The usual Font
dialog box will appear, and you can set the form’s font. This time, set it to Comic Sans MS, 11
points. All the controls you’ll place on the form from will inherit this font.

Open the Toolbox and double-click the icon of the ComboBox tool. A ComboBox control will
be placed on your form. Now place a Button control on the form and position it so that your form
looks like the one shown in Figure 1.10. To see the properties of a specific control in the Properties
window, you must select the appropriate control on the form. Then set the button’s Text property
to “Evaluate my choice” (just enter this string without the quotes in the box of the Text property in
the control’s Properties window).

Chapter 1 GETTING STARTED WITH VB.NET16

2877c01.qxd 11/11/01 4:14 PM Page 16

http://www.sybex.com

We must now populate the ComboBox control with the choices. Select the ComboBox control
on the form by clicking it with the mouse and locate its Items property in the Properties window.
The setting of this property is “Collection,” which means that the Items property doesn’t have a
single value; it’s a collection of items (strings, in our case). Click the ellipsis button and you’ll see
the String Collection Editor dialog box, as shown in Figure 1.11.

The main pane on the dialog box is a TextBox, where you can enter the items you want to appear
in the ComboBox control at runtime. Enter the following strings, one per row and in the order
shown here:

C++

C#

Java

Visual Basic

Cobol

Then click the OK button to close the dialog box. The items will not appear on the control at
design time, but you will see them when you run the project. Before running the project, set one
more property. Locate the ComboBox control’s Text property and set it to “Select your favorite
language.” This is not an item of the list; it’s the string that will initially appear on the control.

Figure 1.11

Click the ellipsis
button next to the
Items property of a
ComboBox to see
the String Collection
Editor dialog box.

Figure 1.10

Displaying options
on a ComboBox
control

17YOUR FIRST VB APPLICATION

2877c01.qxd 11/11/01 4:14 PM Page 17

http://www.sybex.com

You can run the project now and see how the ComboBox control behaves. Press F5 and wait for
a few seconds. The project will be compiled, and you’ll see its form on your desktop, on top of the
Visual Studio window. This is the same form we’ve been designing so far, but in runtime (in effect,
what the users of the application will see if you decide to distribute it).

I’m sure you know how this control behaves in a typical Windows application, and our sample appli-
cation is no exception. You can select an item on the control either with the mouse or with the keyboard.
Click the button with the arrow to expand the list, and then select an item with the mouse. Or press the
arrow down and arrow up keys to scroll through the list of items. The control isn’t expanded, but each
time you click an arrow button, the next or previous item in the list appears on the control.

We haven’t told the application what to do when the button is clicked, so let’s go back and add some
code to the project. Stop the application by clicking the Stop button on the toolbar (the solid black
square) or by selecting Debug ➢ Stop Debugging from the main menu. When the form appears in
design mode, double-click the button and the code window will open, displaying an empty Click event
handler. Insert the statements shown in Listing 1.3 between the Private Sub and End Sub statements.

Listing 1.3: The Revised Application

Private Sub EvaluateLanguage_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim language As String
language = ComboBox1.Text
If language = “Visual Basic” Then

MsgBox(“We have a winner!”)
Else

MsgBox(language & “ is not a bad language.”)
End If

End Sub

When the form is first displayed, a string that doesn’t correspond to a language is displayed in the
ComboBox control. We must select one of the items from within our code when the form is first
loaded. When a form is loaded, the Load event of the Form object is raised. Double-click some-
where on the form, and the editor will open the form’s Load event handler:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

End Sub

Enter the following code to select the item “Visual Basic” when the form is loaded:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

ComboBox1.SelectedIndex = 3
End Sub

Now that we select an item from within our code, you can reset the ComboBox’s Text property
to an empty string.

Chapter 1 GETTING STARTED WITH VB.NET18

2877c01.qxd 11/11/01 4:14 PM Page 18

http://www.sybex.com

As you realize, the controls on the Toolbox are more than nice pictures. They encapsulate a lot
of functionality, and they expose properties that allow you to adjust their appearance and their func-
tionality. Most properties are usually set at design time.

The IDE Components
The IDE of Visual Studio.NET contains numerous components, and it will take you a while to
explore them. It’s practically impossible to explain what each tool, each window, and each menu
does. We’ll discuss specific tools as we go along and as the topics we discuss get more and more
advanced. In this section, I will go through the basic items of the IDE, the ones we’ll use in the fol-
lowing few chapters to build simple Windows applications.

The IDE Menu
The IDE main menu provides the following commands, which lead to submenus. Notice that most
menus can also be displayed as toolbars. Also, not all options are available at all times. The options
that cannot possibly apply to the current state of the IDE are either invisible or disabled. The Edit
menu is a typical example. It’s quite short when you’re designing the form and quite lengthy when
you edit code. The Data menu disappears altogether when you switch to the code editor—you can’t
use the options of this menu while editing code.

File Menu

The File menu contains commands for opening and saving projects, or project items, as well as the
commands for adding new or existing items to the current project.

Edit Menu

The Edit menu contains the usual editing commands. Among the commands of the Edit menu are
the Advanced command and the IntelliSense command.

Advanced Submenu

The more interesting options of the Edit ➢ Advanced submenu are the following. Notice that the
Advanced submenu is invisible while you design a form visually and appears when you switch to the
code editor.

View White Space Space characters (necessary to indent lines of code and make it easy to
read) are replaced by periods.

Word Wrap When a code line’s length exceeds the length of the code window, it’s automati-
cally wrapped.

Comment Selection/Uncomment Selection Comments are lines you insert between your
code’s statements to document your application. Sometimes, we want to disable a few lines from
our code, but not delete them (because we want to be able to restore them). A simple technique
to disable a line of code is to “comment it out” (insert the comment symbol in front of the line).
This command allows you to comment (or uncomment) large segments of code in a single move.

19THE IDE COMPONENTS

2877c01.qxd 11/11/01 4:14 PM Page 19

http://www.sybex.com

IntelliSense Submenu

The Edit ➢ IntelliSense menu item leads to a submenu with four options, which are described next.
IntelliSense is a feature of the editor (and of other Microsoft applications) that displays as much
information as possible, whenever possible. When you type the name of a function and the opening
parenthesis, for example, IntelliSense will display the syntax of the function—its arguments. The
IntelliSense submenu includes the following options.

List Members When this option is on, the editor lists all the members (properties, methods,
events, and argument list) in a drop-down list. This list will appear when you enter the name of
an object or control followed by a period. Then you can select the desired member from the list
with the mouse or with the keyboard. Let’s say your form contains a control named TextBox1
and you’re writing code for this form. When you enter the following string:

TextBox1.

a list with the members of the TextBox control will appear (as seen in Figure 1.12). Select the
Text property and then type the equal sign, followed by a string in quotes like the following:

TextBox1.Text = “Your User Name”

If you select a property that can accept a limited number of settings, you will see the names of the
appropriate constants in a drop-down list. If you enter the following statement:

TextBox1.TextAlign =

you will see the constants you can assign to the property (as shown in Figure 1.13, they are the val-
ues HorizontalAlignment.Center, HorizontalAlignment.Right, and HorizontalAlignment.Left).
Again, you can select the desired value with the mouse or the arrow keys.

The drop-down list with the members of a control or object (the Members List) remains open
until you type a terminator key (the Escape or End key) or switch to another window.

Parameter Info While editing code, you can move the pointer over a variable, method, or prop-
erty and see its declaration in a yellow tooltip.

Figure 1.12

Viewing the mem-
bers of a control in
an IntelliSense drop-
down list

Chapter 1 GETTING STARTED WITH VB.NET20

2877c01.qxd 11/11/01 4:14 PM Page 20

http://www.sybex.com

Quick Info This is another IntelliSense feature that displays information about commands and
functions. When you type the opening parenthesis following the name of a function, for example,
the function’s arguments will be displayed in a tooltip box (a yellow horizontal box). The first
argument appears in bold font; after entering a value for this argument, the next one will appear
in bold. If an argument accepts a fixed number of settings, these values will appear in a drop-
down list, as explained previously.

Figure 1.14 shows the syntax of the DateDiff() function. This function calculates the difference
between two dates in a specified time interval. The first argument is the time interval, and its
value can be one of the constants shown in the list. The following two arguments are the two
dates. The remaining arguments are optional, and they specify options like the first day of the
week and the first day of the year. This function returns a Long value (an integer that represents
the number of the intervals between the two dates).

Complete Word The Complete Word feature enables you to complete the current word by
pressing Ctrl+spacebar. For example, if you type “TextB” and then press Ctrl+spacebar, you will
see a list of words that you’re most likely to type (TextBox, TextBox1, and so on).

View Menu

This menu contains commands to display any toolbar or window of the IDE. You have already seen
the Toolbars menu (earlier, under “Starting a New Project”). The Other Windows command leads to
submenu with the names of some standard windows, including the Output and Command windows.
The Output window is the console of the application. The compiler’s messages, for example, are dis-
played in the Output window. The Command window allows you to enter and execute statements.
When you debug an application, you can stop it and enter VB statements in the Command window.

Project Menu

This menu contains commands for adding items to the current project (an item can be a form, a file,
a component, even another project). The last option in this menu is the Set As StartUp Project com-
mand, which lets you specify which of the projects in a multiproject solution is the startup project
(the one that will run when you press F5). The Add Reference and Add Web Reference commands

Figure 1.13

Viewing the possible
settings of a property
in an IntelliSense
drop-down list

21THE IDE COMPONENTS

2877c01.qxd 11/11/01 4:14 PM Page 21

http://www.sybex.com

allow you to add references to .NET (or COM) components and Web components respectively.
We’ll use both commands in later chapters.

Build Menu

The Build menu contains commands for building (compiling) your project. The two basic com-
mands in this menu are the Build and Rebuild All commands. The Build command compiles (builds
the executable) of the entire solution, but it doesn’t compile any components of the project that
haven’t changed since the last build. The Rebuild All command does the same, but it clears any
existing files and builds the solution from scratch.

Debug Menu

This menu contains commands to start or end an application, as well as the basic debugging tools
(which are discussed in Chapter 17).

Data Menu

This menu contains commands you will use with projects that access data. You’ll see how to use this
short menu’s commands in sections that describe the visual database tools in Chapters 21 and 22 in
Part V of the book.

Format Menu

The Format menu, which is visible only while you design a Windows or Web form, contains com-
mands for aligning the controls on the form. The commands of this menu will be discussed briefly
later in this chapter and in more detail in the following chapter.

Figure 1.14

Viewing the argu-
ments of a function
in an IntelliSense box

Chapter 1 GETTING STARTED WITH VB.NET22

2877c01.qxd 11/11/01 4:14 PM Page 22

http://www.sybex.com

Tools Menu

This menu contains a list of tools, and most of them apply to C++. The Macros command of the
Tools menu leads to a submenu with commands for creating macros. Just as you can create macros
in an Office application to simplify many tasks, you can create macros to automate many of the
repetitive tasks you perform in the IDE. I’m not going to discuss macros in this book, but once you
familiarize yourself with the environment, you should look up the topic of writing macros in the
documentation.

Window Menu

This is the typical Window menu of any Windows application. In addition to the list of open win-
dows, it also contains the Hide command, which hides all Toolboxes and devotes the entire window
of the IDE to the code editor or the Form Designer. The Toolboxes don’t disappear completely.
They’re all retracted, and you can see their tabs on the left and right edges of the IDE window. To
expand a Toolbox, just hover the mouse pointer over the corresponding tab.

Help Menu

This menu contains the various help options. The Dynamic Help command opens the Dynamic
Help window, which is populated with topics that apply to the current operation. The Index com-
mand opens the Index window, where you can enter a topic and get help on the specific topic.

The Toolbox Window
Here you will find all the controls you can use to build your application’s interface. The Toolbox
window is usually retracted, and you must move the pointer over it to view the Toolbox. This win-
dow contains these tabs:

Crystal Reports

Data

XML Schema

Dialog Editor

Web Forms

Components

Windows Forms

HTML

Clipboard Ring

General

The Windows Forms tab contains the icons of the controls you can place on a Windows form,
and we’ll work exclusively with this tab in the course of the next few chapters. Likewise, the Web
Forms and HTML tabs contain the icons of the controls you can place on a Web form. The con-
trols on these tabs are examined in Part VI of the book.

23THE IDE COMPONENTS

2877c01.qxd 11/11/01 4:14 PM Page 23

http://www.sybex.com

The Data tab contains the icons of the objects you will use to build data-driven applications, and
they’re explored in Part V of the book. The items on the Data tab are objects with no visible inter-
face. The XML Schema tab contains the tools you’ll need to work with schema XML files. We’ll
touch this topic in Part V of the book, but you don’t really need to understand XML to use it.
You’ll see how to create XML files with visual tools.

The Solution Explorer
This window contains a list of the items in the current solution. A solution may contain multiple
projects, and each project may contain multiple items. The Solution Explorer displays a hierarchical
list of all the components, organized by project. You can right-click any component of the project
and select Properties in the context menu to see the selected component’s properties in the Proper-
ties window. If you select a project, you will see the Project Properties dialog box. You will find
more information on project properties in the following chapter.

If a project contains multiple forms, you can right-click the form you want to become the startup
form and select Set As StartUp Object. If the solution contains multiple projects, you can right-click
the project you want to become the startup form and select Set As StartUp Project. You can also add
items to a project with the Add Item command of the context menu, or remove a component from
the project with the Exclude From Project command. This command removes the selected compo-
nent from the project, but doesn’t affect the component’s file on the disk. The Remove command
removes the selected component from the project and also deletes the component’s file from the disk.

The Properties Window
This window (also known as the Property Browser) displays all the properties of the selected com-
ponent and their settings. Every time you place a control on a form, you switch to this window to
adjust the appearance of the control on the form, and you have already seen how to manipulate the
properties of a control through the Properties window.

Many properties are set to a single value, like a number or a string. If the possible settings of a
property are relatively few, they’re displayed as meaningful constants in a drop-down list. Other
properties are set through a more elaborate interface. Color properties, for example, are set from
within a Color dialog box that’s displayed right in the Properties window. Font properties are set
through the usual Font dialog box. Collections are set in a Collection Editor dialog box, where you
can enter one string for each item of the collection.

If the Properties window is hidden or you have closed it, you can either select the View ➢ Proper-
ties Window command or right-click a control on the form and select Properties. Or you can simply
press F4 to bring up this window. There will be occasions where a control may totally overlap another
control, and you won’t be able to select the hidden control and view its properties. In this case, you
can select the desired control in the ComboBox part of the Properties window. This box contains the
names of all the controls on the form, and you can select a control on the form by selecting its name
on this box. Use this technique to set the properties of a control that’s covered by another control.

The Output Window
The Output window is where many of the tools, including the compiler, send their output. Every time
you start an application, a series of messages is displayed on the Output window. These messages are

Chapter 1 GETTING STARTED WITH VB.NET24

2877c01.qxd 11/11/01 4:14 PM Page 24

http://www.sybex.com

generated by the compiler, and you need not understand them at this point. If the Output window is
not visible, select the View ➢ Other Windows ➢ Output command from the menu.

You can also send output to this window from within your code with the Console.WriteLine
method. Actually, this is a widely used debugging technique—to print the values of certain variables
before entering a problematic area of the code. As you will learn in Chapter 17, there are more elab-
orate tools to help you debug your application, but printing a few values to the Output window is a
time-honored practice in programming with VB to test a function or display the results of interme-
diate calculations.

In many of the examples of this book, especially in the first few chapters, I use the Console.Write-
Line statement to print something to the Output window. To demonstrate the use of the DateDiff()
function, for example, I’ll use a statement like the following:

Console.WriteLine(DateDiff(DateInterval.Day, #3/9/2001#, #5/15/2001#))

When this statement is executed, the value 67 will appear in the Output Window. This statement
demonstrates the syntax of the DateDiff() function, which returns the difference between the two
dates in days.

The Command Window
While testing a program, you can interrupt its execution by inserting a breakpoint. When the break-
point is reached, the program’s execution is suspended and you can execute a statement in the Com-
mand window. Any statement that can appear in your VB code can also be executed in the
Command window.

The Task List Window
This window is usually populated by the compiler with error messages, if the code can’t be success-
fully compiled. You can double-click an error message in this window, and the IDE will take you to
the line with the statement in error—which you should fix.

You can also add your own tasks to this window. Just click the first empty line and start typing.
A task can be anything, from comments and reminders, to URLs to interesting sites. If you add tasks
to the list, you’re responsible for removing them. Errors are removed automatically as soon as you fix
the statement that caused them.

Environment Options
The Visual Studio IDE is highly customizable. I will not discuss all the customization options here,
but I will show you how to change the default settings of the IDE. Open the Tools menu and select
Options (the last item in the menu). The Options dialog box will appear, where you can set all the
options regarding the environment. Figure 1.15 shows the options for the font of the various items
of the IDE. Here you can set the font for various categories of items, like the Text Editor, the
dialogs and toolboxes, and so on. Select an item in the Show Settings For list and then set the font
for this item in the box below.

25ENVIRONMENT OPTIONS

2877c01.qxd 11/11/01 4:14 PM Page 25

http://www.sybex.com

Figure 1.16 shows the Projects and Solutions options. The top box is the default location
for new projects. The three radio buttons in the lower half of the dialog box determine when
the changes to the project are saved. By default, changes are saved when you run a project. If you
activate the last option, then you must save your project from time to time with the File ➢ Save All
command.

Most of the tabs on the Options dialog box are straightforward, and you should take a look at
them. If you don’t like some of the default aspects of the IDE, this is the place to change them.

A Few Common Properties
In the next few sections, I will go through some of the properties, methods, and events that are com-
mon to many controls, so that I will not have to repeat them with every control in the following
chapters. These are very simple members you’ll be using in every application from now on.

To manipulate a control you use its properties, either on the Property Browser at design time, or
though your code at runtime. To program a control, supply a handler for the appropriate events.

Figure 1.16

The Projects and
Solutions options

Figure 1.15

The Fonts and Col-
ors options

Chapter 1 GETTING STARTED WITH VB.NET26

2877c01.qxd 11/11/01 4:14 PM Page 26

http://www.sybex.com

Controls expose methods, too, which act on the control. The Hide method, for example, makes the
control invisible. Properties, methods, and events constitute the programmatic interface of the con-
trol and are collectively known as the control’s members.

All controls have a multitude of properties, which are displayed in the Properties window, and
you can easily set their values. Different controls expose different properties, but here are some that
are common to most:

Name The control’s name. This name appears at the top of the Properties window when a con-
trol is selected on the form and is also used in programming the control. To set the text on a
TextBox control from within your code, you will use a statement like the following:

TextBox1.Text = “My TextBox Control”

You will see how to program the controls shortly.

Font A Font object that determines how the text of the control will be rendered at both design
and runtime.

Enabled By default, all controls are enabled. To disable a control, set its Enabled property to
False. When a control is disabled, it appears in gray color and users can’t interact with it. Dis-
abling a control isn’t as rare as you may think, because many controls are not functional at all
times. If the user hasn’t entered a value in all required fields on the form, clicking the Process but-
ton isn’t going to do anything. After all fields have been set to a valid value, you can enable the
control, indicating to the user that the button can now be clicked.

Size Sets, or returns, the control’s size. The Size property is a Size object, which exposes two
properties, the Width and Height properties. You can set the Size property to a string like “320,
80” or expand the Size property in the Properties window and set the Width and Height proper-
ties individually.

Tag Holds some data you want to associate with a specific control. For example, you can set the
Tag property to the control’s default value, so that you can restore the control’s default value if the
user supplies invalid data (a string in a TextBox control that expects a numeric value, or a date).

Text The text (a string) that appears on the control. The Label control’s caption can be set (or
read) through the Text property. A control that displays multiple items, like the ListBox or the
ComboBox control, returns the currently selected item in the Text property.

TabStop As you know, only one control at a time can have the focus on a form. To move the
focus from one control to the other on the same form, you press the Tab key (and Shift+Tab to
move the focus in reverse order). The TabStop property determines whether the control belongs
to the so-called tab order. If True (which is the default value), you can move the focus to the con-
trol with the Tab key. If False, the control will be skipped in the tab order.

TabIndex A numeric value that determines the position of the control in the Tab order. The con-
trol with the smallest TabIndex value is the one that has the focus when the form is first loaded. If
you press Tab once, the focus will be moved to the control with the next larger TabIndex value.

Visible Sometimes we want to make a control invisible. We do so by setting its Visible prop-
erty to False (the default value of the property is True).

27A FEW COMMON PROPERTIES

2877c01.qxd 11/11/01 4:14 PM Page 27

http://www.sybex.com

A Few Common Events
As you have already seen, and will also see in the coming chapters, much of the code of a Windows
application manipulates the properties of the various controls on the form. The code of the applica-
tion resides in selected event handlers. Each control recognizes several events, but we rarely program
more than one event per control. In most cases, most of the controls on the form don’t have any
code behind them. The events that are most frequently used in programming Windows applications
are shown next.

Click This is the most common event in Windows programming, and it’s fired when a control
is clicked.

DoubleClick Fired when the control is double-clicked.

Enter Fired when the control received the focus.

Leave Fired when the control loses the focus. We usually insert code to validate the control’s
content in this event’s handler.

MouseEnter Fired when the mouse pointer enters the area of the control. This event is fired once.
If you want to monitor the movement of the mouse over a control, use the MouseMove event.

MouseLeave This is the counterpart of the MouseEnter event, and it’s fired when the mouse
pointer moves out of the area of the control.

XXXChanged Some events are fired when a property changes value. These events include
BackColorChanged, FontChanged, VisibleChanged, and many more. The control’s properties can
also change through code, and it’s very common to do so. To set the text on a TextBox control
from within your code, you can execute a statement like the following:

TextBox1.Text = “a new caption”

You may wish to change the background color of a TextBox control if the numeric value dis-
played on it is negative:

If Val(TextBox.Text) < 0 Then
TextBox1.BackColor = Color.Red

End If

A Few Common Methods
In addition to properties, controls also expose methods. A method acts upon the control by per-
forming a specific task. Windows controls don’t provide many methods, but the objects we’ll
explore in the following chapters provide many more methods. You have already seen the ToUpper
method, which converts a string to uppercase and returns it as a new string. In VB.NET, a string is
more than a series of characters: it’s an object, and so is just about everything in .NET. Even a num-
ber is an object and exposes a few properties and methods of its own.

A String variable exposes the methods Length (it returns the string length), ToUpper (it converts
the characters in the string to uppercase and returns a new string), and ToLower (it converts the
characters in the string to lowercase and returns a new string). To see these methods in action, create

Chapter 1 GETTING STARTED WITH VB.NET28

2877c01.qxd 11/11/01 4:14 PM Page 28

http://www.sybex.com

a new application, place a Button control on the form and enter the following statements in its Click
event handler:

Console.WriteLine(“Visual Basic”.Length)
Console.WriteLine(“Visual Basic”.ToUpper)
Console.WriteLine(“Visual Basic”.ToLower)

Then press F5 to run the application, and you will see the following in the Output window (this
is where the Console.WriteLine statement sends its output):

12
VISUAL BASIC
visual basic

Note If the Output window is hidden, select View ➢ Other Windows ➢ Output.

Here are a few methods that are common to most controls. In later chapters, where we’ll explore
the Windows controls in detail, you’ll learn about the methods that are unique to individual con-
trols. The following methods apply to most of the Windows controls.

Focus This method moves the focus to the control to which the method applies, regardless of
the control that has the focus at the time. Your validation routine could move the focus to the
control with an erroneous entry with the following statement:

TextBox1.Focus

It’s also possible to “trap” the focus to a specific TextBox control until the user enters a valid value,
by calling the Focus method from within the Leave event. The following code segment doesn’t allow
users to move the focus to another control while TextBox1 doesn’t contain a valid numeric value:

Private Sub TextBox1_Leave(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles TextBox1.Leave

If Not IsNumeric(TextBox1.Text) Then TextBox1.Focus()
End Sub

The function IsNumeric() returns True if its argument (the value in parentheses following the
function’s name) is a numeric value, like 35 or 244.01.

Clear Many controls provide a method to clear their contents, and this is the Clear method. When
you call the Clear method on a TextBox control, the control’s Text property is set to an empty string.

Hide/Show The Hide and Show methods reveal or conceal the control. The two methods are
equivalent to setting the Visible property to True and False respectively.

PerformClick It’s rather common to invoke the Click event of a button from within our code.
To do so, call the PerformClick method of the Button control. There are no equivalent methods
for other events.

Scale This method scales the control by a value specified as argument. The following statement
scales the TextBox1 control down to 75 percent of its current size:

TextBox1.Scale(0.75)

29A FEW COMMON METHODS

2877c01.qxd 11/11/01 4:14 PM Page 29

http://www.sybex.com

Building a Console Application
One of the new features of Visual Basic .NET is that you can write applications that run in a Com-
mand Prompt window. The Command Prompt window isn’t really a DOS window, even though it
looks like one. It’s a text window, and the only way to interact with an application is to enter lines of
text and read the output generated by the application, which is displayed on this text window, one
line at a time. This type of application is called a Console application, and we’re going to demon-
strate Console applications with a single example. We will not return to this type of application later
in the book, because it’s not what you’re supposed to do as a Windows developer.

The Console application you’ll build in this section, ConsoleApplication1, prompts the user to
enter the name of his or her favorite language, and then it prints the appropriate message on a new
line, as shown in Figure 1.17.

Start a new project and, in the New Project dialog box, select the template Console Application.
You can also change its default name from ConsoleApplication1 to a more descriptive name. For the
example of this section, don’t change the application’s name.

A Console application doesn’t have a user interface, so the first thing you’ll see is the code editor’s
window with the following statements:

Module Module1

Sub Main()

End Sub

End Module

Unlike a Windows application, which is a class, a Console application is a module. Main() is the
name of a subroutine that’s executed automatically when you run a Console application. The code
you want to execute must be placed between the statements Sub Main() and End Sub. Insert the
statements shown in Listing 1.4 in the application’s Main() subroutine.

Figure 1.17

A Console applica-
tion uses the Com-
mand Prompt
window to interact
with the user.

Chapter 1 GETTING STARTED WITH VB.NET30

2877c01.qxd 11/11/01 4:14 PM Page 30

http://www.sybex.com

Listing 1.4: A Console Application

Module Module1
Sub Main()

Console.WriteLine(“Enter your favorite language”)
Dim language As String
language = Console.ReadLine()
language = language.ToUpper
If language = “VISUAL BASIC” Or language = “VB” Or language = “VB.NET” Then

Console.WriteLine(“We have a winner!”)
Else

Console.WriteLine(language & “ is not a bad language.”)
End If
Console.WriteLine()
Console.WriteLine()
Console.WriteLine(“PRESS ANY KEY TO EXIT”)
Console.ReadLine()

End Sub
End Module

This code is quite similar to the code of the equivalent Windows applications we developed ear-
lier, except that it uses the Console.WriteLine statement to send its output to the Command
Prompt window instead of a message box.

A Console application doesn’t react to events, because it has no visible interface. However,
it’s easy to add elements of the Windows interface to a Console application. If you change the
Console.WriteLine method calls into the MsgBox() function, the message will be displayed on a
message box.

The reason to build a Console application is to test a specific feature of the language without
having to build a user interface. Many of the examples in the documentation are Console applica-
tions; they demonstrate the topic at hand and nothing more. If you want to test the DateDiff() func-
tion, for example, you can create a new Console application and enter the lines of Listing 1.5 in its
Main() subroutine.

Listing 1.5: Testing the DateDiff() Function with a Console Application

Sub Main()
Console.WriteLine(DateDiff(DateInterval.Day, #3/9/2000#, #5/15/2004#))
Console.WriteLine(“PRESS ANY KEY TO EXIT”)
Console.ReadLine()

End Sub

The last two lines will be the same in every Console application you write. Without them, the
Command Prompt window will close as soon as the End Sub statement is reached, and you won’t
have a chance to see the result.

31BUILDING A CONSOLE APPLICATION

2877c01.qxd 11/11/01 4:14 PM Page 31

http://www.sybex.com

Console applications are convenient for testing short code segments, but Windows programming
is synonymous with designing functional user interfaces and you won’t find any more Console appli-
cations in this book.

Summary
This chapter was a quick introduction to the environment you’ll be using to design your applica-
tions. It’s a very rich environment, and it will take you a while to become quite comfortable with it.
Keep in mind that you won’t need most of the menus and toolbars in building simple Windows
applications.

What you must get accustomed to is how we design Windows applications. We start with the
application’s visual interface, which is designed with visual tools. This is done with the Windows
Form Designer. After completing the design of the interface, you must add some code to the appli-
cation. Windows applications are event driven. The user interacts with your application through the
mouse and keyboard. Every time the user does something with an element of the interface, an event
is raised. As a programmer, you must decide what events your application should react to and insert
the appropriate code in the handlers of these events.

In the following chapter, you’re going to build more simple applications and drill into the con-
cepts of event-driven programming, which is at the core of programming with Visual Studio .NET
and Visual Basic .NET.

Chapter 1 GETTING STARTED WITH VB.NET32

2877c01.qxd 11/11/01 4:14 PM Page 32

http://www.sybex.com

Chapter 2

Visual Basic Projects
The previous chapter introduced Visual Studio’s IDE, the Toolbox, and the principles
of event-driven programming. In this chapter, we expand on that introduction to the language by
building some “real” applications. Among other topics, we’ll look at how to write applications that
validate user input and how to write error-handling routines. We’ll also look at several techniques
you’ll need as you work through the applications we develop in the rest of the book. In the last
part of the chapter, you’ll learn how to distribute your application with a proper Windows installer
(a program that installs your application to the target machine).

The bulk of the chapter demonstrates very basic programming techniques, such as building
user interfaces, event programming, validating user input, and handling errors. The goal is to
show you how to write simple applications using the most basic elements of the language. This
chapter will explain the methodology for building applications. While the code of the applica-
tions will be rather simple, it will demonstrate the basics of validating data and trapping errors.

If you’re a beginner, you may be thinking, “All I want now is to write a simple application that
works—I’ll worry about data validation later.” It’s never too early to start thinking about validat-
ing your code’s data and error trapping. As you’ll see, making sure that your application doesn’t
crash may require more code than the actual operations it performs! If this isn’t quite what you
expected, welcome to the club. A well-behaved application must catch and handle every error
gracefully, including user errors.

Building a Loan Calculator
One easy-to-implement, practical application is a program that calculates loan parameters. Visual
Basic provides built-in functions for performing many types of financial calculations, and you
only need a single line of code to calculate the monthly payment given the loan amount, its dura-
tion, and the interest rate. Designing the user interface, however, takes much more effort.

2877c02.qxd 11/11/01 4:14 PM Page 33

http://www.sybex.com

Regardless of the language you use, you must go through the following process to develop an
application:

1. Decide what the application will do and how it will interact with the user.

2. Design the application’s user interface according to the requirements of Step 1.

3. Write the actual code behind the events you want to handle.

How the Loan Application Works
Following the first step of the process outlined above, you decide that the user should be able to
specify the amount of the loan, the interest rate, and the duration of the loan in months. You must,
therefore, provide three text boxes where the user can enter these values.

Another parameter affecting the monthly payment is whether payments are made at the beginning
or at the end of each month, so you must also provide a way for the user to specify whether the pay-
ments will be early (first day of the month) or late (last day of the month). The most appropriate
type of control for entering Yes/No or True/False type of information is the CheckBox control.
This control is a toggle: If it’s checked, you can clear it by clicking it. If it’s cleared, you can check it
by clicking again. The user doesn’t enter any data in this control (which means you need not antici-
pate user errors with this control), and it’s the simplest method for specifying values with two possible
states. Figure 2.1 shows a user interface that matches our design specifications. This is the main form
of the LoanCalculator project, which you will find in this chapter’s folder on the CD.

After the user enters all the information on the form, they can click the Show Payment button to
calculate the monthly payment. The program will calculate the monthly payment and display it in
the lower TextBox control. All the action takes place in the button’s Click subroutine. The function
for calculating monthly payments is called Pmt() and must be called as follows:

MonthlyPayment = Pmt(InterestRate, Periods, Amount, FutureValue, Due)

The interest rate (argument InterestRate) is specified as a monthly rate. If the interest rate is 16.5%,
the value entered by the user in the Interest Rate box should be 16.5, and the monthly rate will be
0.165 / 12. The duration of the loan (Periods) is specified in number of months, and Amount is the
loan’s amount. The FutureValue of a loan is zero (it would be a positive value for an investment), and
the last parameter, Due, specifies when payments are due.

The value of Due can be one of the constants DueDate.BegOfPeriod and DueDate.EndOfPeriod.
These two constants are built into the language, and you can use them without knowing their exact

Figure 2.1

LoanCalculator is a
simple financial
application.

Chapter 2 VISUAL BASIC PROJECTS34

2877c02.qxd 11/11/01 4:14 PM Page 34

http://www.sybex.com

value. In effect, this is the essence of using named constants: you type a self-descriptive name and
leave it to VB to convert it to a numeric value. As you will see, .NET uses numerous constants, all of
which are categorized in groups called enumerations. The constants that apply to the Due argument of
the Pmt() function belong to the DueDate enumeration, which has two members, the BegOfPeriod
and EndOfPeriod members.

The present value of the loan is the amount of the loan with a negative sign. It’s negative because
you don’t have the money now. You’re borrowing it; it’s money you owe to the bank. Future value
represents the value of something at a stated time—in this case, what the loan will be worth when
it’s paid off. This is what one side owes the other at the end of the specified period. So the future
value of a loan is zero.

Pmt() is a built-in function that uses the five values in the parentheses to calculate the monthly
payment. The values passed to the function are called arguments. Arguments are the values needed by a
function (or subroutine) to carry out an action or calculation. By passing different values to the
function, the user can specify the parameters of any loan and calculate its monthly payment. The
Pmt() function and other financial functions of Visual Basic are described in the reference
“VB.NET Functions and Statements” on the CD that accompanies this book.

You don’t need to know how the Pmt() function calculates the monthly payment. The Pmt()
function does the calculations and returns the result. To calculate the monthly payment on a loan of
$25,000 with an interest rate of 14.5%, payable over 48 months, and due the last day of the pay-
ment period (which in our case is a month), you’d call the Pmt() function as follows:

Console.WriteLine(Pmt(0.145 / 12, 48, -25000, 0, DueDate.EndOfPeriod))

The value 689.448821287218 will be displayed in the Output window (you’ll see later how you
can limit the digits after the decimal point to two, since this is all the accuracy you need for dollar
amounts). Notice the negative sign in front of the Amount argument in the statement. If you specify a
positive amount, the result will be a negative payment. The payment and the loan’s amount have dif-
ferent signs because they represent different cash flows. The loan’s amount is money you owe to the
bank, while the payment is money you pay to the bank.

The last two arguments of the Pmt() function are optional. If you omit them, Visual Basic uses
their default values, which are 0 for the FutureValue argument and DueDate.BegOfPeriod for the Due
argument. You can entirely omit these arguments and call the Pmt() function like this:

Console.WriteLine(Pmt(0.145 / 12, 48, -25000))

Calculating the amount of the monthly payment given the loan parameters is quite simple. What
you need to know or understand are the parameters of a loan and how to pass them to the Pmt()
function. You must also know how the interest rate is specified, to avoid invalid values. What you
don’t need to know is how the payment is calculated—Visual Basic does it for you. This is the
essence of functions: they are “black boxes” that perform complicated calculations on their argu-
ments and return the result. You don’t have to know how they work, just how to supply the values
required for the calculations.

Designing the User Interface
Now that you know how to calculate the monthly payment, you can design the user interface. To do
so, start a new project, name it LoanCalculator, and rename its form to LoanForm. The form and
the project files can be found in this chapter’s folder on the CD.

35BUILDING A LOAN CALCULATOR

2877c02.qxd 11/11/01 4:14 PM Page 35

http://www.sybex.com

Your first task is to decide the font and size of the text you’ll use for most controls on the form.
Although we aren’t going to display anything on the form directly, all the controls we place on it will
have, by default, the same font as the form. The form is the container of the controls, and they
inherit some of the form’s properties, such as the Font. You can change the font later during the
design, but it’s a good idea to start with the right font. At any rate, don’t try to align the controls if
you’re planning to change their fonts. This will, most likely, throw off your alignment efforts.

Tip Try not to mix fonts on a form. A form, or a printed page for that matter, that includes type in several fonts looks
like it has been created haphazardly and is difficult to read. However, you can use different sizes for some of the controls on
the form.

The loan application you’ll find on the CD uses the 10-point Verdana font. To change it, select
the form with the mouse, double-click the name of the Font property in the Properties window to
open the Font dialog box, and select the desired font and attributes. When the form is selected, its
name appears in the ComboBox at the top of the window, as shown in Figure 2.2.

To design the form shown previously in Figure 2.1, follow these steps:

1. Place four labels on the form and assign the following captions to them:

Label Caption

Label1 Loan Amount

Label2 Duration (months)

Label3 Interest Rate

Label4 Monthly Payment

The labels should be large enough to fit their captions. You don’t need to change the default
names of the four Label controls on the form because their captions are all we need. You
aren’t going to program them.

Figure 2.2

Setting the form’s
Font property

Chapter 2 VISUAL BASIC PROJECTS36

2877c02.qxd 11/11/01 4:14 PM Page 36

http://www.sybex.com

2. Place a TextBox control next to each label. Set their Name and Text properties to the follow-
ing values. These initial values correspond to a loan of $25,000 with an interest rate of
14.5% and a payoff period of 48 months.

TextBox Name Text

TextBox1 txtAmount 25,000

TextBox2 txtDuration 48

TextBox3 txtRate 14.5

TextBox4 txtPayment

3. The fourth TextBox control is where the monthly payment will appear. The user isn’t sup-
posed to enter any data in this box, so you must set its ReadOnly property to True. You’ll be
able to change its value from within your code, but users won’t be able to type anything in it.
(We could have used a Label control instead, but the uniform look of TextBoxes on a form is
usually preferred.)

4. Next, place a CheckBox control on the form. By default, the control’s caption is Check1, and
it appears to the right of the check box. Because we want the titles to be to the left of the cor-
responding controls, we’ll change this default appearance.

5. Select the check box with the mouse (if it’s not already selected), and in the Properties win-
dow, locate the CheckAlign property. Its value is MiddleLeft. If you expand the drop-down
list by clicking the arrow button, you’ll see that this property has many different settings
and each setting is shown as a square. Select the square in the middle row, the right column.
The string MiddleRight will appear in the property’s box when you click the appropriate
button. The first component of the CheckAlign property’s value indicates the vertical align-
ment of the check box, and the second component of the value indicates the horizontal
alignment. MiddleRight means that the check box should be centered vertically and right-
aligned horizontally.

6. With the check box selected, locate the Name property in the Properties window, and set it
to chkPayEarly.

37BUILDING A LOAN CALCULATOR

2877c02.qxd 11/11/01 4:14 PM Page 37

http://www.sybex.com

7. Change the CheckBox’s caption by entering the string Early Payment in its Text property
field.

8. Place a Button control in the bottom-left corner of the form. Name it bttnShowPayment, and
set its caption to Show Payment.

9. Finally, place another Button control on the form, name it bttnExit, and set its Text property
to Exit.

Aligning the Controls

Your next step is to align the controls on the form. First, be sure that the captions on the labels are
visible. Our labels contain lengthy captions, and if you don’t make the labels long enough, the cap-
tions may wrap to a second line and become invisible.

Tip Be sure to make your labels long enough to hold their captions, especially if you’re using a nonstandard font.
A user’s computer may substitute another font for your nonstandard font, and the corresponding captions may increase
in length.

The IDE provides commands to align the controls on the form, all of which can be accessed
through the Format menu. To align the controls that are already on the LoanForm, follow these steps:

1. Select the four labels on the form with the mouse and left-align them by choosing Format ➢
Align ➢ Lefts. The handles of all selected controls will be white, except for one control whose
handles will be black. All controls will be left-aligned with this control. To specify the con-
trol that will be used as reference point for aligning the other controls, click it after making
the selection. (You can select multiple controls either by drawing a rectangle that encloses
them with the mouse, or by clicking each control while holding down the Ctrl button.)

2. With the four text boxes selected, choose Format ➢ Align ➢ Lefts. Don’t include the check
box in this selection.

Tip When you select multiple controls to align together, use the control with black handles as a guide for aligning the
other controls.

3. With all four text boxes still selected, use the mouse to align them above and below the box
of the CheckBox control.

Your form should now look like the one in Figure 2.1. Take a good look at it and check to see if
any of your controls are misaligned. In the interface design process, you tend to overlook small prob-
lems such as a slightly misaligned control. The user of the application, however, instantly spots such
mistakes. It doesn’t make any difference how nicely the rest of the controls are arranged on the form;
if one of them is misaligned, it will attract the user’s attention.

Programming the Loan Application
Now run the application and see how it behaves. Enter a few values in the text boxes, change the
state of the check box, and test the functionality already built into the application. Clicking the

Chapter 2 VISUAL BASIC PROJECTS38

2877c02.qxd 11/11/01 4:14 PM Page 38

http://www.sybex.com

Show Payment button won’t have any effect because we have not yet added any code. If you’re
happy with the user interface, stop the application, open the form, and double-click the Show Pay-
ment Button control. Visual Basic opens the code window and displays the definition of the Show-
Payment_Click event:

Private Sub bttnShowPayment_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnShowPayment.Click

End Sub

Note I’ve broken the first line with an underline character, because it wouldn’t fit on the page. The underscore charac-
ter is the line-continuation character, which allows you to break a long code line into multiple text lines.

This is the declaration of the Button’s Click event handler. This subroutine will be invoked when
the user clicks the Show Payment button. Above the definition of the event handler, you will see the
following two statements:

Public Class LoanForm
Inherits System.Windows.Forms.Form

The first statement creates a new class for the project’s form; the second inherits the functionality
of the Form object. These statements are placed there by the IDE, and you shouldn’t change them.
When you learn more about classes and inheritance in the second part of the book, you’ll be able to
better understand the role of these statements.

Place the pointer between the lines Private Sub and End Sub, and enter the rest of the lines of
Listing 2.1 (you don’t have to reenter the first and last lines that declare the event handler).

Listing 2.1: The Show Payment Button

Private Sub bttnShowPayment_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnShowPayment.Click

Dim Payment As Single
Dim payEarly As DueDate
If chkPayEarly.Checked Then

payEarly = DueDate.BegOfPeriod
Else

payEarly = DueDate.EndOfPeriod
End If
Payment = Pmt(0.01 * txtRate.Text / 12, txtDuration.Text, _

-txtAmount.Text, 0, payEarly)
txtPayment.Text = Payment.ToString(“#.00”)

End Sub

The code window should now look like the one shown in Figure 2.3. Notice the underscore
character at the end of the first part of the long line. The underscore lets you break long lines so that
they will fit nicely in the code window. I’m using this convention in this book a lot to fit long lines

39BUILDING A LOAN CALCULATOR

2877c02.qxd 11/11/01 4:14 PM Page 39

http://www.sybex.com

on the printed page. The same statement you see as multiple lines in the book may appear in a single,
long line in the project.

You don’t have to break long lines manually as you enter code in the editor’s window. Open the
Edit menu and select Advanced ➢ Word Wrap. The editor will wrap long lines automatically at a
word boundary. While the word wrap feature is on, a check mark appears in front of the Edit ➢
Advanced ➢ Word Wrap command. To turn off word wrapping, select the same command again.

In Listing 2.1, the first line of code within the subroutine declares a variable. It lets the applica-
tion know that Payment is a placeholder for storing a floating-point number (a number with a decimal
part)—the Single data type. The second line declares a variable of the DueDate type. This is the
type of the argument that determines whether the payment takes place at the beginning or the end of
the month. The last argument of the Pmt() function must be a variable of this type, so we declare a
variable of the DueDate type. As mentioned earlier in this chapter, DueDate is an enumeration with
two members: BegOfPeriod and EndOfPeriod. In short, the last argument of the Pmt() function can
be one of the following values:

DueDate.BegOfPeriod
DueDate.EndOfPeriod

The first really executable line in the subroutine is the If statement that examines the value of
the chkPayEarly CheckBox control. If the control is checked, the code sets the payEarly variable to
DueDate.BegOfPeriod. If not, the code sets the same variable to DueDate.EndOfPeriod. The Combo-
Box control’s Checked property returns True if the control is checked at the time, False otherwise.
After setting the value of the payEarly variable, the code calls the Pmt() function, passing the values of
the controls as arguments:

� The first argument is the interest rate. The value entered by the user in the txtRate TextBox is
multiplied by 0.01 so that the value 14.5 (which corresponds to 14.5%) is passed to the
Pmt() function as 0.145. Although we humans prefer to specify interest rates as integers
(8%) or floating-point numbers larger than 1 (8.24%), the Pmt() function expects to read a
number less than 1. The value 1 corresponds to 100%. Therefore, the value 0.1 corresponds
to 10%. This value is also divided by 12 to yield the monthly interest rate.

Figure 2.3

The Show Payment
button’s Click event
subroutine

Chapter 2 VISUAL BASIC PROJECTS40

2877c02.qxd 11/11/01 4:14 PM Page 40

http://www.sybex.com

� The second argument is the duration of the loan in months (the value entered in the txtDura-
tion TextBox).

� The third argument is the loan’s amount (the value entered in the txtAmount TextBox).

� The fourth argument (the loan’s future value) is 0 by definition.

� The last argument is the payEarly variable, which is set according to the status of the chk-
PayEarly control.

The following two statements convert the numeric value returned by the Pmt() function to a
string and display this string in the fourth TextBox control. The result is formatted appropriately
with the following expression:

Payment.ToString(“#.00”)

The Payment variable is numeric, and all numeric variables provide the method ToString, which
formats the numeric value and converts it to a string. The character # stands for the integer part of the
variable. The period separates the integer from the fractional part, which is rounded to two decimal
digits. Because the Pmt() function returns a precise number, such as 372.2235687646345, you must
round and format it nicely before displaying it. Since the bank can’t charge you anything less than a
penny, you don’t need extreme accuracy. Two fractional digits are sufficient. For more information on
formatting numeric (and other) values, see the section “Formatting Numbers” in Chapter 3.

To display the result returned by the Pmt() function directly on the txtPayment TextBox control,
use the following statement:

txtPayment.Text = Pmt(0.01 * txtRate.Text / 12, txtDuration.Text, _
-txtAmount.Text, 0, payEarly)

This statement assigns the value returned by the Pmt() function directly to the Text property of
the control. The monthly payment will be displayed with four decimal digits, but this isn’t a proper
dollar amount.

Tip You almost always use the ToString method (or the Format() function) when you want to display the results of
numeric calculations, because most of the time you don’t need Visual Basic’s extreme accuracy. A few fractional digits are
all you need. In addition to numbers, the ToString method can format dates and time. The ToString method’s formatting
capabilities are discussed in Chapter 12, and the Format() function is described in the reference “VB.NET Functions and
Statements” on the CD.

The code of the LoanCalculator project on the CD is different and considerably longer than
what I have presented here. The statements discussed in the preceding text are the bare minimum for
calculating a loan payment. The user may enter any values on the form and cause the program to
crash. In the next section, we’ll see how you can validate the data entered by the user, catch errors,
and handle them gracefully (that is, give the user a chance to correct the data and proceed), as
opposed to terminating the application with a runtime error.

Validating the Data
If you enter a nonnumeric value in one of the fields, the program will crash and display an error mes-
sage. For example, if you enter twenty in the Duration text box, the program will display the error

41BUILDING A LOAN CALCULATOR

2877c02.qxd 11/11/01 4:14 PM Page 41

http://www.sybex.com

message shown in Figure 2.4. A simple typing error can crash the program. This isn’t the way Win-
dows applications should work. Your applications must be able to handle most user errors, provide
helpful messages, and in general, guide the user in running the application efficiently. If a user error
goes unnoticed, your application will either end abruptly or will produce incorrect results without an
indication.

Click the Break button, and Visual Basic will take you back to the application’s code window,
where the statements that caused the error will be highlighted in green. Obviously, we must do some-
thing about user errors. One way to take care of typing errors is to examine each control’s contents;
if they don’t contain valid numeric values, display your own descriptive message and give the user
another chance. Listing 2.2 is the revised Click event handler that examines the value of each text
box before attempting to use it in any calculations.

Listing 2.2: The Revised Show Payment Button

Private Sub bttnShowPayment_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnShowPayment.Click

Dim Payment As Single
Dim LoanIRate As Single
Dim LoanDuration As Integer
Dim LoanAmount As Integer

‘ Validate amount
If IsNumeric(txtAmount.Text) Then

LoanAmount = txtAmount.Text
Else

MsgBox(“Please enter a valid amount”)
Exit Sub

End If
‘ Validate interest rate

If IsNumeric(txtRate.Text) Then
LoanIRate = 0.01 * txtRate.Text / 12

Else
MsgBox(“Invalid interest rate, please re-enter”)

Figure 2.4

The Cast Exception
message means that
you supplied a string
where a numeric
value was expected.

Chapter 2 VISUAL BASIC PROJECTS42

2877c02.qxd 11/11/01 4:14 PM Page 42

http://www.sybex.com

Exit Sub
End If

‘ Validate loan’s duration
If IsNumeric(txtDuration.Text) Then

LoanDuration = txtDuration.Text
Else

MsgBox(“Please specify the loan’s duration as a number of months”)
Exit Sub

End If
‘ If all data were validated, proceed with calculations

Dim payEarly As DueDate
If chkPayEarly.Checked Then

payEarly = DueDate.BegOfPeriod
Else

payEarly = DueDate.EndOfPeriod
End If
Payment = Pmt(LoanIRate, LoanDuration, -LoanAmount, 0, payEarly)
txtPayment.Text = Payment.ToString(“#.00”)

End Sub

First, we declare three variables in which the loan’s parameters will be stored: LoanAmount, LoanI-
Rate, and LoanDuration. These values will be passed to the Pmt() function as arguments. Each text
box’s value is examined with an If structure. If the corresponding text box holds a valid number, its
value is assigned to the numeric variable. If not, the program displays a warning and exits the subrou-
tine without attempting to calculate the monthly payment. The user can then fix the incorrect value
and click the ShowPayment button again. IsNumeric() is another built-in function that accepts a
variable and returns True if the variable is a number, False otherwise.

If the Amount text box holds a numeric value, such as 21,000 or 21.50, the function IsNumeric
(txtAmount.Text) returns True, and the statement following it is executed. That following statement
assigns the value entered in the Amount TextBox to the LoanAmount variable. If not, the Else clause of
the statement is executed, which displays a warning in a message box and then exits the subroutine.
The Exit Sub statement tells Visual Basic to stop executing the subroutine immediately, as if the End
Sub line were encountered.

You can run the revised application and test it by entering invalid values in the fields. Notice that
you can’t specify an invalid value for the last argument; the CheckBox control won’t let you enter a
value. You can only check or clear it and both options are valid. The LoanCalculator application
you’ll find on the CD contains this last version with the error-trapping code.

The actual calculation of the monthly payment takes a single line of Visual Basic code. Display-
ing it requires another line of code. Adding the code to validate the data entered by the user, how-
ever, is an entire program. And that’s the way things are.

Note The applications in this book don’t contain much data-validation code because it would obscure the “useful” code
that applies to the topic at hand. Instead, they demonstrate specific techniques. You can use parts of the examples in your
applications, but you should provide your own data-validation code (and error-handling code, as you’ll see in the following
section).

43BUILDING A LOAN CALCULATOR

2877c02.qxd 11/11/01 4:14 PM Page 43

http://www.sybex.com

Writing Well-Behaved Applications

A well-behaved application must contain data-validation code. If an application such as LoanCalculator
crashes because of a typing mistake, nothing really bad will happen. The user will try again or else give up
on your application and look for a more professional one. However, if the user has been entering data for
hours, the situation is far more serious. It’s your responsibility as a programmer to make sure that only valid
data are used by the application and that the application keeps working, no matter how the user misuses
or abuses it.

Now run the application one last time and enter an enormous loan amount. Try to find out what
it would take to pay off the national debt with a reasonable interest rate in, say, 72 months. The
program will crash again (as if you didn’t know). This time the program will go down with a differ-
ent error message. Visual Basic will complain about an “overflow.” The exact message is shown in
Figure 2.5 and the program will stop at the line that assigns the contents of the txtAmount TextBox
to the LoanAmount variable. Press the Break button and the offending statement in the code will be
highlighted.

Tip An overflow is a numeric value too large for the program to handle. This error is usually produced when you divide
a number by a very small value. When you attempt to assign a very large value to an Integer variable, you’ll also get an
overflow exception.

Actually, in the LoanCalculator application, any amount greater than 2,147,483,647 will cause
an overflow condition. This is largest value you can assign to an Integer variable; it’s plenty for our
banking needs, but not nearly adequate for handling government budgets. As you’ll see in the next
chapter, Visual Basic provides other types of variables, which can store enormous values (making the
national debt look really small). In the meantime, if you want to use the loan calculator, change the
declaration of the LoanAmount variable to:

Dim LoanAmount As Single

Figure 2.5

Very large values can
cause the application
to crash with this
error message.

Chapter 2 VISUAL BASIC PROJECTS44

2877c02.qxd 11/11/01 4:14 PM Page 44

http://www.sybex.com

The Single data type can hold much larger values. Besides, the Single data type can also hold non-
integer values. I’m assuming you won’t ask for a loan of $25,000 and some cents, but if you want to
calculate the precise monthly payment for a debt you have accumulated, then you should be able to
specify a non-integer amount. In short, we should have declared the LoanAmount variable with the
Single data type in the first place (but then I wouldn’t have been able to demonstrate the overflow
exception).

An overflow error can’t be caught with data-validation code. There’s always a chance your calcu-
lations will produce overflows or other types of math errors. Data validation isn’t going to help here;
you just don’t know the result before you carry out the calculations. We need something called error
handling, or error trapping. This is additional code than can handle errors after they occur. In effect, you’re
telling VB that it shouldn’t stop with an error message. This would be embarrassing for you and
wouldn’t help the user one bit. Instead, VB should detect the error and execute the proper statements
that will handle the error. Obviously, you must supply these statements, and you’ll see examples of
handling errors at runtime in the following section.

Building a Math Calculator
Our next application is more advanced, but not as advanced as it looks. It’s a math calculator with a
typical visual interface that demonstrates how Visual Basic can simplify the programming of fairly
advanced operations. If you haven’t tried it, you may think that writing an application such as this
one is way too complicated, but it isn’t. The MathCalculator application is shown in Figure 2.6, and
you’ll find it in this chapter’s folder on the CD. The application emulates the operation of a hand-
held calculator and implements the basic arithmetic operations. It has the structure of a math calcu-
lator, and you can easily expand it by adding more features. In fact, adding features like cosines and
logarithms is actually simpler than performing the basic arithmetic operations.

Designing the User Interface
The application’s interface is straightforward, but it takes quite a bit of effort. You must align but-
tons on the form and make the calculator look as much like a hand-held calculator as possible. Start
a new project, the MathCalculator project, and name its main form CalculatorForm.

Designing the interface of the application isn’t trivial, because it’s made up of many buttons, all
perfectly aligned on the form. To simplify the design, follow these steps:

1. Select a font that you like for the form. All the Command buttons you’ll place on the form will
inherit this font. The MathCalculator application on the CD uses 10-point Verdana font.

Figure 2.6

The Calculator
application window

45BUILDING A MATH CALCULATOR

2877c02.qxd 11/11/01 4:14 PM Page 45

http://www.sybex.com

2. Add the Label control, which will become the calculator’s display. Set its BorderStyle prop-
erty to Fixed 3D so that it will have a 3-D look, as shown in Figure 2.6. Change its Fore-
Color and BackColor properties too, if you want it to look different than the rest of the
form. The project you will find on the CD uses colors that emulate the—now extinct—
green CRT monitors.

3. Draw a Button control on the form, change its caption (Text property) to 1, and name it
bttn1. Size the button carefully so that its caption is centered on the control. The other but-
tons on the form will be copies of this one, so make sure you’ve designed the first button as
best as you can, before you start making copies of it.

4. Place the button in its final position on the form. At this point you’re ready to create the
other buttons for the calculator’s digits. Right-click the button and select Copy. The Button
control is copied to the Clipboard, and now you can paste it on the form (which is much
faster than designing an identical button).

5. Right-click somewhere on the form and select Paste to create a copy of the button you copied
earlier. The button you copied to the Clipboard will be pasted on the form, on top of the
original button. The copy will have the same caption as the button it was copied from, and its
name will be Button1.

6. Now set the button’s Name to bttn2 and its Text property to 2. This button is the digit 2.
Place the new button to the right of the previous button. You don’t have to align the two
buttons perfectly now; later we’ll use the Format menu to align the buttons on the form.

7. Repeat Steps 5 and 6 eight more times, once for each numeric digit. Each time a new Button
control is pasted on the form, Visual Basic names it Button1 and sets its caption to 1; you
must change the Name and Text properties. You can name the buttons anything you like;
their Click event will be handled by the same subroutine, which will read the button’s Text
property to find out which digit was clicked.

8. When the buttons of the numeric digits are all on the form, place two more buttons, one for
the C (Clear) operation and one for the Period button. Name them bttnClear and bttnPeriod,
and set their captions accordingly. Use a larger font size for the Period button to make its
caption easier to read.

9. When all the digit buttons of the first group are on the form and in their approximate posi-
tions, align them with the commands of the Format menu.

a. First, align the buttons of the top row. Start by aligning the 1 button with the left side of
the lblDisplay Label. Then select all the buttons of the top row and make their horizontal
spacing equal (select Format ➢ Horizontal Spacing ➢ Make Equal). Then do the same
with the buttons in the first column, and this time, make sure their vertical distances are
equal (Format ➢ Vertical Spacing ➢ Make Equal).

b. Now you can align the buttons in each row and each column separately. Use one of the
buttons you aligned in the last step as the guide for the rest of them. The buttons can be

Chapter 2 VISUAL BASIC PROJECTS46

2877c02.qxd 11/11/01 4:14 PM Page 46

http://www.sybex.com

aligned in many ways, so don’t worry if somewhere in the process you ruin the alignment.
You can always use the Undo command in the Edit menu. Select the three buttons on the
second row and align their Tops using the first button as reference. Do the same for the
third and fourth rows of buttons. Then do the same for the four columns of buttons.

Now, place the buttons for the arithmetic operations on the form—addition (+), subtraction (-),
multiplication (*), and division (/). Use the commands on the Format menu to align these buttons
as shown earlier in Figure 2.6. The control with the black handles can be used as a reference for
aligning the other controls into rows and columns. The form shown in Figure 2.6 has a few more
buttons, which you can align using the same techniques you used to align the numeric buttons.

The Equals button at the bottom is called bttnEquals, and you must make it wide enough to
cover the space of the three buttons above it.

Programming the MathCalculator App
Now you’re ready to add some code to the application. Double-click one of the digit buttons on the
form, and you’ll see the following in the code window:

Private Sub bttn1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttn1.Click

End Sub

This is the Click event’s handler for a single digit button. Your first attempt is to program the
Click event handler of each digit button, but repeating the same code 10 times isn’t very productive.
We’re going to use the same event handler for all buttons that represent digits. All you have to do is
append the names of the events to be handled by the same subroutine after the Handles keyword.
You should also change the name of the event handler to something that indicates its role. Since this
subroutine handles the Click event for all the digit buttons, let’s call it Digit_Click(). Here’s the
revised declaration of a subroutine that can handle all the digit buttons:

Private Sub Digit_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttn1.Click, bttn2.Click, _
bttn3.Click, bttn4.Click, bttn5.Click, bttn6.Click, _
bttn7.Click, bttn8.Click, bttn9.Click, bttn0.Click

End Sub

When you press a digit button on a hand-held calculator, the corresponding digit is appended to
the display. To emulate this behavior, insert the following line in the Click event handler:

lblDisplay.Text = lblDisplay.Text + sender.Text

This line appends the digit clicked to the calculator’s display. The sender argument of the Click
event represents the control that was clicked (the control that fired the event). The Text property of
this control is the digit of the button that was clicked. For example, if you have already entered the
value 345, clicking the digit 0 displays the value 3450 on the Label control that acts as the calcula-
tor’s display.

47BUILDING A MATH CALCULATOR

2877c02.qxd 11/11/01 4:14 PM Page 47

http://www.sybex.com

The expression sender.Text is not the best method of accessing the Text property of the button
that was clicked, but it will work as long as the Strict option is off. We’ll return to this topic later in
the book, but for now let me briefly explain that you should convert the sender object to a TextBox
object and then access its Text property with the following statement:

CType(sender, TextBox).Text

The CType() function is discussed in the following chapter. For now, keep in mind that it con-
verts an object to an object of a different type. You will also notice that after typing the period fol-
lowing the closing parenthesis, all the members of the TextBox control will appear in a list, as if you
had entered the name of a TextBox control followed by a period.

The code behind the digit buttons needs a few more lines. After certain actions, the display
should be cleared. After pressing one of the buttons that correspond to math operations, the
display should be cleared in anticipation of the second operand. Actually, the display must be
cleared as soon as the first digit of the second operand is pressed. Revise the Digit_Click event
handler as shown in Listing 2.3.

Listing 2.3: The Digit_Click Event

Private Sub Digit_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttn1.Click, bttn2.Click, _
bttn3.Click, bttn4.Click, bttn5.Click, bttn6.Click, _
bttn7.Click, bttn8.Click, bttn9.Click, bttn0.Click

If clearDisplay Then
lblDisplay.Text = “”
clearDisplay = False

End If
lblDisplay.Text = lblDisplay.Text + sender.text

End Sub

The clearDisplay variable is declared as Boolean, which means it can take a True or False value.
Suppose the user has performed an operation and the result is on the calculator’s display. The user
now starts typing another number. Without the If clause, the program would continue to append
digits to the number already on the display. This is not how calculators work. When a new number
is entered, the display must clear. And our program uses the clearDisplay variable to know when to
clear the display.

The Equals button sets the clearDisplay variable to True to indicate that the display contains
the result of an operation. The Digit_Click() subroutine examines the value of this variable each
time a new digit button is pressed. If the value is True, Digit_Click() clears the display and then
prints the new digit on it. The subroutine also sets clearDisplay to False so that when the next digit is
pressed, the program won’t clear the display again.

What if the user makes a mistake and wants to undo an entry? The typical hand-held calculator
has no backspace key. The Clear key erases the current number on the display. Let’s implement this
feature. Double-click the C button and enter the code of Listing 2.4 in its Click event.

Chapter 2 VISUAL BASIC PROJECTS48

2877c02.qxd 11/11/01 4:14 PM Page 48

http://www.sybex.com

Listing 2.4: The Clear Button

Private Sub bttnClear_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnClear.Click

lblDisplay.Text = “”
End Sub

Now we can look at the Period button. A calculator, no matter how simple, should be able to
handle fractional numbers. The Period button works just like the digit buttons, with one exception.
A digit can appear any number of times in a numeric value, but the period can appear only once. A
number like 99.991 is valid, but you must make sure that the user can’t enter numbers such as
23.456.55. Once a period is entered, this button mustn’t insert another one. The code in Listing 2.5
accounts for this.

Listing 2.5: The Period Button

Private Sub bttnPeriod_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnPeriod.Click

If lblDisplay.Text.IndexOf(“.”) > 0 Then
Exit Sub

Else
lblDisplay.Text = lblDisplay.Text & “.”

End If
End Sub

IndexOf is a method that can be applied to any string. The expression lblDisplay.Text is a
string (the text on the Label control), so we can call its IndexOf method. The code IndexOf(“.”)
returns the location of the first instance of the period in the caption of the Label control. If this
number is positive, the number entered contains a period already, and another can’t be entered. In
this case, the program exits the subroutine. If the method returns 0, the period is appended to the
number entered so far, just like a regular digit.

Check out the operation of the application. We have already created a functional user interface
that emulates a hand-held calculator with data-entry capabilities. It doesn’t perform any operations
yet, but we have already created a functional user interface with only a small number of statements.

Math Operations

Now we can move to the interesting part of the application: considering how a calculator works.
Let’s start by defining three variables:

Operand1 The first number in the operation

Operator The desired operation

Operand2 The second number in the operation

49BUILDING A MATH CALCULATOR

2877c02.qxd 11/11/01 4:14 PM Page 49

http://www.sybex.com

When the user clicks one of the math symbols, the value on the display is stored in the variable
Operand1. If the user then clicks the Plus button, the program must make a note to itself that the cur-
rent operation is an addition and then clear the display so that the user can enter another value. The
symbol of the operation is stored in the Operator variable. The user enters another value and then
clicks the Equals button to see the result. At this point, our program must do the following:

1. Read the Operand2 value on the display.

2. Add that value to Operand1.

3. Display the result.

The Equals button must perform the following operation:
Operand1 Operator Operand2

Suppose the number on the display when the user clicks the Plus button is 3342. The user then
enters the value 23 and clicks the Equals button. The program must carry out the addition:

3342 + 23

If the user clicked the Division button, the operation is:

3342 / 23

In both cases, when Equals is clicked, the result is displayed (and it may become the first operand for
the next operation).

Variables are local in the subroutines where they are declared. Other subroutines have no access to
them and can’t read or set their values. Sometimes, however, variables must be accessed from many
places in a program. If the Operand1, Operand2, and Operator variables in this application must be
accessed from within more than one subroutine, they must be declared outside any subroutine. The
same is true for the clearDisplay variable. Their declarations, therefore, must appear outside any proce-
dure, and they usually appear at the beginning of the code with the following statements:

Dim clearDisplay As Boolean
Dim Operand1 As Double
Dim Operand2 As Double
Dim Operator As String

Let’s see how the program uses the Operator variable. When the user clicks the Plus button, the
program must store the value “+” in the Operator variable. This takes place from within the Plus but-
ton’s Click event. But later, the Equals button must have access to the value of the Operator variable in
order to carry out the operation (in other words, it must know what type of operation the user speci-
fied). Because these variables must be manipulated from within more than a single subroutine, they
were declared outside any subroutine.

The keyword Double is new to you. It tells VB to create a numeric variable with the greatest pos-
sible precision for storing the values of the operators. (Numeric variables and their types are dis-
cussed in detail in the next chapter.) The Boolean type takes two values, True and False. You have
already seen how the clearDisplay variable is used.

The variables Operand1, Operand2, and Operator are called Form-wide, or simply Form, variables,
because they are visible from within any subroutine on the form. If our application had another
form, these variables wouldn’t be visible from within the other form(s). In other words, any

Chapter 2 VISUAL BASIC PROJECTS50

2877c02.qxd 11/11/01 4:14 PM Page 50

http://www.sybex.com

subroutine on a form on which the variables are declared can read or set the values of the variables,
but no subroutine outside that form can do so.

With the variable declarations out of the way, we can now implement the Operator buttons.
Double-click the Plus button and, in the Click event’s handler, enter the lines shown in Listing 2.6.

Listing 2.6: The Plus Button

Private Sub bttnPlus_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnPlus.Click

Operand1 = Val(lblDisplay.Text)
Operator = “+”
clearDisplay = True

End Sub

The variable Operand1 is assigned the value currently on the display. The Val() function returns
the numeric value of its argument. The Text property of the Label control is a string. For example,
you can assign the value “My Label” to a label’s Text property. The actual value stored in the Text
property is not a number. It’s a string such as “428”, which is different from the numeric value 428.
That’s why we use the Val() function to convert the value of the Label’s caption to a numeric value.
The remaining buttons do the same, and I won’t show their listings here.

So far, we have implemented the following functionality in our application: When an operator
button is clicked, the program stores the value on the display in the Operand1 variable and the opera-
tor in the Operator variable. It then clears the display so that the user can enter the second operand.
After the second operand is entered, the user can click the Equals button to calculate the result.
When this happens, the code of Listing 2.7 is executed.

Listing 2.7: The Equals Button

Private Sub bttnEquals_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnEquals.Click

Dim result As Double
Operand2 = Val(lblDisplay.Text)
Select Case Operator

Case “+”
result = Operand1 + Operand2

Case “-”
result = Operand1 - Operand2

Case “*”
result = Operand1 * Operand2

Case “/”
If Operand2 <> “0” Then result = Operand1 / Operand2

End Select
lblDisplay.Text = result
clearDisplay = True

End Sub

51BUILDING A MATH CALCULATOR

2877c02.qxd 11/11/01 4:14 PM Page 51

http://www.sybex.com

The result variable is declared as Double so that the result of the operation will be stored with
maximum precision. The code extracts the value displayed in the Label control and stores it in the
variable Operand2. It then performs the operation with a Select Case statement. This statement
compares the value of the Operator variable to the values listed after each Case statement. If the value
of the Operator variable matches one of the Case values, the following statement is executed.

� If the operator is “+”, the result variable is set to the sum of the two operands.

� If the operator is “-”, the result variable is set to the difference of the first operand minus the
second.

� If the operator is “*”, the result variable is set to the product of the two operands.

� If the operator is “/”, the result variable is set to the quotient of the first operand divided by
the second operand, provided that the divisor is not zero.

Note Division takes into consideration the value of the second operand because if it’s zero, the division can’t be carried
out. The last If statement carries out the division only if the divisor is not zero. If Operand2 happens to be zero, nothing
happens.

Now run the application and check it out. It works just like a hand-held calculator, and you can’t
crash it by specifying invalid data. We didn’t have to use any data-validation code in this example
because the user doesn’t get a chance to type invalid data. The data-entry mechanism is foolproof.
The user can enter only numeric values because there are only numeric digits on the calculator. The
only possible error is to divide by zero, and that’s handled in the Equals button.

Debugging Tools

Our application works nicely and is quite easy to test—and to fix, if you discover something wrong
with it. But that’s only because it’s a very simple application. As you write code, you’ll soon discover
that something doesn’t work as expected, and you should be able to find out why and repair it. The
process of eliminating errors is called debugging, and Visual Studio provides the tools to simplify
the process of debugging. These tools are discussed in Chapter 17. There are a few simple operations
you should know, though, even as you work with simple projects like this one.

Open the MathCalculator project in the code editor and place the cursor in the line that calcu-
lates the difference between the two operands. Let’s pretend there’s a problem with this line and we
want to follow the execution of the program closely, to find out what’s going wrong with the appli-
cation. Press F9 and the line will be highlighted in brown. This line has become a breakpoint: as soon
as it is reached, the program will stop.

Press F5 to run the application and perform a subtraction. Enter a number, then click the minus
button, then another number, and finally the Equals button. The application will stop, and the code
editor will open. The breakpoint will be highlighted in yellow. Hover the pointer over the Operand1
and Operand2 variables in the code editor’s window. The value of the corresponding variable will
appear in a small box or tooltip. Move the pointer over any variable in the current event handler
to see its value. These are the values of the variables just prior to the execution of the highlighted
statement.

Chapter 2 VISUAL BASIC PROJECTS52

2877c02.qxd 11/11/01 4:14 PM Page 52

http://www.sybex.com

The result variable will most likely be zero, because the statement hasn’t been executed yet. If the
variables involved in this statement have their proper values (if not, you know that the problem is
prior to this statement, and perhaps in another event handler), then you can execute this statement
by pressing F10. By pressing F10, you’re executing the highlighted statement only. The program will
stop at the next line. The next statement to be executed is the End Select statement.

Find an instance of the result variable in the current event handler, rest the mouse over it, and you
will see the value of the variable after it has been assigned a value. Now you can press F10 to execute
another statement or F5 to return to normal execution mode.

You can also evaluate expressions involving any of the variables in the current event handler by
entering the appropriate statement in the Command window. The Command window appears at the
bottom of the IDE. If it’s not visible, then from the main menu, select View ➢ Other Windows ➢
Command Window. The current line in the Output window is prefixed with the greater than sym-
bol (reminiscent of the DOS days). Place the cursor next to it and enter the following statement:

? Operand1 / Operand2

The quotient of the two values will appear in the following line. The question mark is just a
shorthand notation for the Print command. If you want to know the current value on the calculator’s
display, enter the following statement:

? lblDisplay.Text

This statement requests the value of a property of a control on the form. The current value of the
Label control’s Text property will appear in the following line. You can also evaluate math expres-
sions with statements like the following:

? Math.Log(3/4)

Log() is the logarithm function, and it’s a method of the Math class. To create a random value
between 0 and 1, enter the statement:

? Rnd()

With time, you’ll discover that the Command window is a very handy tool in debugging applica-
tions. If you have a statement with a complicated expression, you can request the values of the indi-
vidual components of the expression and thereby make sure they can be evaluated.

Now move the pointer off the breakpoint and press F9 again. This will toggle the breakpoint sta-
tus, and the execution of the program won’t halt the next time this statement is executed.

If the execution of the program doesn’t stop at a breakpoint, it means that the statement was
never reached. In this case, you must search for the bug in statements that are executed before the
breakpoint. If you didn’t assign the proper value to the Operator variable, the Case “-” statement will
never be reached. You should place the breakpoint at the first executable statement of the Equals but-
ton’s Click event handler to examine the values of all variables the moment this subroutine starts its
execution. If all variables had the expected values, you will continue testing the code forward. If not,
you’d have to test the statements that lead to this statement—the statements in the event handlers of
the various buttons.

Another simple technique for debugging applications is the Output window. Although this isn’t a
debugging tool, it’s very common among VB programmers (and very practical, may I add). Many

53BUILDING A MATH CALCULATOR

2877c02.qxd 11/11/01 4:14 PM Page 53

http://www.sybex.com

programmers print the values of selected variables after the execution of some complicated state-
ments. To do so, use the statement:

Console.WriteLine

followed by the name of the variable you want to print, or an expression:

Console.WriteLine(Operand1)

This statement sends its output to the Output window, which is displayed next to the Command
window—click the Output tab at the bottom of the IDE to view this window. Alternatively, you
can select the command View ➢ Other Windows ➢ Output. This is a very simple technique, but it
works. You can also use it to test a function or method call. If you’re not sure about the syntax of a
function, pass an expression that contains the specific function to the Console.WriteLine statement
as argument. If the expected value appears in the Output window, you can go ahead and use it in
your code.

Let’s consider the DateDiff() function, which contains the difference between two dates. The
simplest syntax of this function is

DateDiff(interval, date1, date2)

I never know whether it subtracts date1 from date2 or the other way around—if you don’t get it
right the first time, then every time you want to use this function, there’s always a doubt in your
mind. Before using the function in my code, I insert a statement like

Console.WriteLine(DateDiff(DateInterval.Day, #1/1/2000#, #1/2/2000#))

The value printed on the Output window is 1, by the way, indicating that the first date is sub-
tracted from the second.

You will find more information on debugging in Chapter 17. I’ve just shown you a few simple
techniques that will help you take advantage of the simpler debugging tools of Visual Studio as you
write your first applications.

Adding More Features
Now that we have implemented the basic functionality of a hand-held calculator, we can add more
features to our application. Let’s add two more useful buttons:

� The +/-, or Negate, button, which inverts the sign of the number on the display

� The 1/x, or Inverse, button, which inverts the display number itself

Open the code window for each of the Command buttons and enter the code from Listing 2.8 in
the corresponding Click event handlers. For the +/- button, enter the event handler named
bttnNegate_Click, and for the 1/x button, enter the one named bttnInverse_Click.

Listing 2.8: The Negate and Inverse Buttons

Private Sub bttnNegate_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnNegate.Click

lblDisplay.Text = -Val(lblDisplay.Text)

Chapter 2 VISUAL BASIC PROJECTS54

2877c02.qxd 11/11/01 4:14 PM Page 54

http://www.sybex.com

clearDisplay = True
End Sub
Private Sub bttnInverse_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles bttnInverse.Click
If Val(lblDisplay.Text) <> 0 Then lblDisplay.Text = 1 / Val(lblDisplay.Text)
clearDisplay = True

End Sub

As with the Division button, we don’t attempt to invert a zero value. The operation (1 / 0) is
undefined and causes a runtime error. Notice also that I use the value displayed on the Label control
directly in the code. I could have stored the lblDisplay.Text value to a variable and used the variable
instead:

TempValue = Val(lblDisplay.Text)
If TempValue <> 0 Then lblDisplay.Text = 1 / TempValue

This is also better coding, but in short code segments, we all tend to minimize the number of statements.
You can easily expand the Math application by adding Function buttons to it. For example, you

can add buttons to calculate common functions, such as Cos, Sin, and Log. The Cos button calculates
the cosine of the number on the display. The code behind this button’s Click event is a one-liner:

lblDisplay.Text = Math.Cos(Val(lblDisplay.Text))

It doesn’t require a second operand, and it doesn’t keep track of the operation. You can implement
all math functions with a single line of code.

Of course, you should add some error trapping, and in some cases, you can use data-validation
techniques. For example, the Sqrt() function, which calculates the square root of a number, expects a
positive argument. If the number on the display is negative, you can issue a warning:

If lblDisplay.Text < 0 Then
MsgBox(“Can’t calculate the square root of a negative number”)

Else
lblDisplay.Text = Math.Sqrt(Val(lblDisplay.Text))

End If

All math functions are part of the Math class; that’s why they’re prefixed by the name of the class.
You can also import the Math class to the project with the following statement and thus avoid pre-
fixing the math functions:

Imports System.Math

The Log() function can calculate the logarithms of positive numbers only. If you add a button to
calculate logarithms and attempt to calculate the logarithm of a negative number, the result will be
the string “NaN.” This value is similar to infinity, and it says that the result is not a valid number
(NaN stands for not a number and is discussed in detail in the following chapter). Of course, display-
ing a value like NaN on the calculator’s display isn’t the most user-friendly method of handling
math errors. I would validate the data and pop up a message box with the appropriate description, as
shown in Listing 2.9.

55BUILDING A MATH CALCULATOR

2877c02.qxd 11/11/01 4:14 PM Page 55

http://www.sybex.com

Listing 2.9: Calculating the Logarithm of a Number

Private Sub bttnLog_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnLog.Click

If Val(lblDisplay.Text) < 0 Then
MsgBox(“Can’t calculate the logarithm of a negative number”)

Else
lblDisplay.Text = Math.Log(lblDisplay.Text)

End If
clearDisplay = True

End Sub

One more feature you could add to the calculator is a limit to the number of digits on the display.
Most calculators can only display a limited number of digits. To add this feature to the Math appli-
cation (if you consider this a “feature”), use the Len() function to find out the number of digits on
the display and ignore any digits entered after the number has reached the maximum number of
allowed digits.

Exception Handling
Crashing this application won’t be as easy as crashing the Loan application. If you start multiplying
very large numbers, you won’t get an overflow exception. Enter a very large number by typing repeat-
edly the digit 9, then multiply this value with another, equally large value. When the result appears,
click the multiplication symbol and enter another very large value. Keep multiplying the result with
very large numbers, until you exhaust the value range of the Double data type (that is, until the result
is so large that it can’t be stored to a variable of the Double type). When this happens, the string
“infinity” will appear in the display.

Our code doesn’t include statements to capture overflows, so where did the string “infinity” come
from? As you will learn in the following chapter, it is possible for numeric calculations to return the
string “infinity.” It’s Visual Basic’s way of telling you that it can’t handle very large numbers. This
isn’t a limitation of VB; it’s the way computers store numeric values: they provide a limited number
of bytes for this. You will find out more about oddities such as infinity in the following chapter.

You can’t create an overflow exception by dividing a number with zero either, because the code
will not even attempt to carry out this calculation. In short, the Calculator application is pretty
robust. However, we can’t be sure that users won’t cause the application to generate an exception, so
we must provide some code to handle all types of errors.

Errors are now called exceptions. You can think of them as exceptions to the normal (or intended)
flow of execution. If an exception occurs, the program must execute special statements to handle the
exception—statements that wouldn’t be executed normally. I think they’re called exceptions because
“error” is a word none of us likes, and most people can’t admit they wrote code that contains errors.
The term exception can be vague. What would you rather tell your customers: that the application you
wrote has errors, or that your code has raised an exception? You may not have noticed it, but the
term bug is not used as frequently any more; bugs are now called “known issues.” The term debugging,
however, hasn’t changed yet.

Chapter 2 VISUAL BASIC PROJECTS56

2877c02.qxd 11/11/01 4:14 PM Page 56

http://www.sybex.com

VB6 programmers used the term error to describe something wrong in their code, and they
used to write error-trapping code. With VB.NET, your code is error-free—it just raises exceptions
every now and then. Both the error-trapping code of VB6 and the exception-handling features of
VB.NET are supported. The error-trapping code of VB6 could get messy, so Microsoft added what
they call structured exception handling. It’s a more organized method to handle runtime errors—or excep-
tions. The basic premise is that when an exception occurs, the program doesn’t crash with an error
message. Instead, it executes a segment of code that you, the developer, provide.

Tip By the way, if you have a hard time admitting it’s a bug in your code, use the expression “mea culpa.” It’s Latin,
and it sounds so sophisticated, most people won’t even ask what it means.

How do you prevent an exception raised by a calculation? Data validation isn’t going to help.
You just can’t predict the result of an operation without actually performing the operation. And if
the operation causes an overflow, you can’t prevent it. The answer is to add a structured exception
handler. Most of the application’s code is straightforward, and you can’t generate an exception. The
only place that an exception may occur is the handler of the Equals button, where the calculations
take place. This is where we must add an exception handler. The outline of the error structure is the
following:

Try
{ statements block }

Catch Exception
{ handler block }

Finally
{ clean-up statements block }

End Try

The program will attempt to perform the calculations, which are coded in the statements block.
If it succeeds, it continues with the clean-up statements. These statements are mostly clean-up
code, and the Finally section of the statement is optional. If missing, the program execution contin-
ues with the statement following the End Try statement. If an error occurs in the first block of state-
ments, then the Catch Exception section is activated and the statements in the handler block are
executed.

The Catch block is where you handle the error. There’s not much you can do about errors that
result from calculations. All you can do is display a warning and give the user a chance to change the
values. There are other types of errors, however, which can be handled much more gracefully. If your
program can’t read a file from a CD drive, you can give the user a chance to insert the CD and retry.
In other situations, you can prompt the user for a missing value and continue. In general, there’s no
unique method to handle all exceptions. You must consider all types of exceptions your application
may cause and handle them on an individual basis.

The error handler for the Math application must inform the user that an error occurred and abort
the calculations—not even attempt to display a result. If you open the Equals button’s Click event
handler, you will find the statements detailed in Listing 2.10.

57BUILDING A MATH CALCULATOR

2877c02.qxd 11/11/01 4:14 PM Page 57

http://www.sybex.com

Listing 2.10: The Revised Equals Button

Private Sub bttnEquals_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnEquals.Click

Dim result As Double
Operand2 = Val(lblDisplay.Text)
Try

Select Case Operator
Case “+”

result = Operand1 + Operand2
Case “-”

result = Operand1 - Operand2
Case “*”

result = Operand1 * Operand2
Case “/”

If Operand2 <> “0” Then result = Operand1 / Operand2
End Select
lblDisplay.Text = result

Catch exc As Exception
MsgBox(exc.Message)
lblDisplay.Text= “ERROR”

Finally
clearDisplay = True

End Try
End Sub

Most of the time, the error handler remains inactive and doesn’t interfere with the operation of
the program. If an error occurs, which most likely will be an overflow error, the error-handling
section of the Try…Catch…End Try statement will be executed. This code displays a message box
with the description of the error, and it also displays the string “ERROR” on the display. The
Finally section is executed regardless of whether an exception occurred or not. In this example,
the Finally section sets the clearDisplay variable to True so that when another digit button is clicked,
a new number will appear on the display.

Note The exc variable represents an exception; it exposes a few properties in addition to the Message property, which is
the description of the exception. For more information on the members of the Exception class and how to handle exceptions,
see Chapter 17.

Taking the LoanCalculator to the Web
In this section, we’re going to build a new project that is a loan calculator just like the one we built
earlier. This time, though, the application will run on the browser, and any user who can connect to
your server will be able to use it without having to install it on their computer. As you can understand,
you’re about to convert the LoanCalculator from a Windows application to a Web application. It’s a

Chapter 2 VISUAL BASIC PROJECTS58

2877c02.qxd 11/11/01 4:14 PM Page 58

http://www.sybex.com

little early in the book to discuss Web applications, but I wanted to show you that building a Web
application is quite similar to building a Windows app.

Web applications are discussed in detail in the last part of the book, but since they’re among the
hot new features of the .NET platform, let me demonstrate why they are so hot. In a sentence,
Visual Studio.NET is the first attempt to make the development of Web applications as easy as VB
applications. You will see shortly that you can create the interface of a Web form (an HTML page
with controls that interact with the user) just as you create a Windows form. As for the application’s
code, it’s just like writing VB code to handle the events of a Windows form.

To write and test Web applications, you must have Internet Information Server (IIS) installed
and running on your computer. IIS is distributed with Windows 2000, and you must make sure it’s
running. Open the Start menu and select Settings ➢ Control Panel. Double-click the Administrative
Tools, then double-click the icon of the Internet Services Manager tool. When the Internet Services
Manager window appears, expand the node of your computer, right-click the Default Web Site item,
and from the context menu, select Start. This will start the Web server.

Start a new project and, on the New Project dialog box, click the ASP.NET Web Application
icon. Then enter the name of the application in the Name box—call it WebLoanCalculator. When
you close the New Project dialog box, you will see a window with a grid as usual, which represents
the Web page, or Web form. This document is called WebForm1.aspx (the default name of the Web
form). The Web form is equivalent to the Windows form, but it’s displayed as HTML on a
browser such as Internet Explorer, as you see in Figure 2.7.

A new Windows project is stored in its own folder under the folder specified in the Location
field on the New Project dialog box. Web applications are also stored in their own folder, but this
folder is created under the Web server’s root folder (usually the C:\Inetpub\wwwroot folder).

Opening a Web project is not as simple as double-clicking the icon of a Solution file. I suggest
you follow the steps described in this chapter to create the project. If you want to open the
WebLoanCalculator project on the CD, copy the entire WebLoanCalculator folder into the Web
Server’s root folder. Then start Visual Studio.NET and open the WebLoanCalculator solution file.

Figure 2.7

The WebLoan-
Calculator Web
application

59TAKING THE LOANCALCULATOR TO THE WEB

2877c02.qxd 11/11/01 4:14 PM Page 59

http://www.sybex.com

The text describes how to create the project from scratch. The application’s main form is called
WebLoanForm.aspx (it’s equivalent to a Windows form). You can open the application by starting
Internet Explorer and enter the following URL in its Address box:

http://localhost/WebLoanCalculator/WebLoanForm.aspx

Let me describe the process of building the Web application from scratch. Change the name of
WebForm1 to WebLoanForm. Open the Toolbox, and you see that the Web Forms tab is acti-
vated, instead of the Windows Forms tab. The Web Forms tab contains the icons of the controls
you can place on a Web form, which are similar to the Windows controls but not as elaborate or as
rich in functionality. As you already know, Web pages use a much simpler user-interaction model.
The viewer can enter text on certain controls, check or clear a few options, and click a button to sub-
mit the form to the server. The server reads the values on the controls, processes them, and returns a
new page with the results. In the future, you can expect that applications running over the Internet
will become more and more elaborate, but for now no one questions the HTML model used so far.
As long as the browser can only handle HTML files, the Web application’s front end is confined to
HTML pages.

There’s another tab on the Toolbox, the HTML tab. These are the standard HTML controls
you can use on any Web page. The Web Forms tab contains the so-called Web controls, and there
are quite a few Web controls, as opposed to the rather limited number of HTML controls. Some
of the Web controls are also quite advanced compared to the really limited capabilities of the
HTML controls. Does this mean that a page that contains Web controls can’t be displayed on a
browser other than Internet Explorer? Not at all. Web controls are translated automatically into
standard HTML code that can be rendered on any browser. For example, on the Web Forms tab
you’ll find some very elaborate controls, such as the TreeView control. HTML doesn’t provide
any controls that come even near the functionality of TreeView. Yet a Web TreeView control can
be rendered on any browser. The Web Forms Designer will insert the appropriate HTML tags to
create something that looks and behaves like the TreeView control—but it’s not a TreeView
control. There’s a lot to be said about Web controls, but you’ll have to wait until the last part of
the book. For now, we’ll build a simple application that uses Web controls to prompt the user
for the parameters of a loan and that will display the monthly payment on the same page, just like
a Windows application.

Start by placing four Label controls on the Web form. (Double-click the Label control’s icon on
the Toolbox four times, and four labels be placed on the Web form for you.) Change their place-
ment on the form by arranging them with the mouse, just as you would do with the controls on a
Windows form. You don’t have to align them perfectly now; you’ll use the commands of the Format
menu to align the controls on the form. Just place them roughly at positions shown in Figure 2.7.
Then select each Label with the mouse and, in the Properties window, locate the Text property of
the control.

As you can see, most of the basic properties of the Web controls have the same name as the Win-
dows controls. Change the captions of the four labels to “Loan Amount,” “Duration (months),”
“Interest,” and ‘Monthly Payment.” Notice that the Label Web control is resized automatically to
accommodate the string you assign to its Text property.

Now place four TextBox controls on the Web form, each next to one of the Labels. By default,
all TextBox controls are empty (they have no initial content). Change their size with the mouse and

Chapter 2 VISUAL BASIC PROJECTS60

2877c02.qxd 11/11/01 4:14 PM Page 60

http://www.sybex.com

align them roughly to the Label controls they correspond to. Then select them one at a time and
change their ID property to txtAmount, txtDuration, txtRate, and txtPayment, respectively. The ID
property of a Web control is the unique identifier of the control, similar to the Name property of a
Windows control. You’ll use the ID property to access the control’s members from within your code.

Then place a CheckBox control, set its Text property to Early Payment, and name it chkPay-
Early. Set its TextAlign property to Left, so that its check box will be placed to the right of the text.
The check box will be drawn immediately after the text, so you have to append a few spaces to the
control’s caption to clearly separate it from the check box.

The last control to place on the form is the Button control, whose Text property will be “Monthly
Payment” and Name property will be bttnShowPayment. This button will submit the loan parame-
ters entered on the form to the server, where the appropriate code will calculate the monthly pay-
ment and return it to the client. This is a good point to align the controls on the Web form. Select
the Label controls and align them left with the Format ➢ Align ➢ Lefts command. While the labels
are selected, use Format ➢ Vertical Spacing ➢ Make Equal to space them equally from one another.
Once the labels are in place, you can align each text box to the corresponding label, with the Format ➢
Align ➢ Middles command. Select a pair of a Label and a TextBox control at a time and align them.
Just make sure that the Label control is used as the reference control for the alignment.

At this point, you’re done designing the interface of the application. The interface is quite similar to
the interface of the equivalent Windows application, only this one was designed on a Web form with
Web controls. Other than that, the process was the same; even the tools for aligning the controls on
the Web form are the same as those for the Windows form. Our next task is to program the application.

Double-click the button on the Web form, and the editor window will open. The Web Form
Designer has selected the Click event of the button and inserted its definition. All you have to do is
insert the same code we used in the LoanCalculator application. You can switch to the Windows
application and copy the code (which was shown back in Listing 2.2). Just paste the code behind the
Show Payment button of the LoanCalculator Windows application in the Click event handler of
the Monthly payment button of the Web application, and there won’t be a single error. You can
reuse the code as is!

Press F5 to run the application. It will be several seconds before the Internet Explorer window
will pop up, displaying the page you’ve designed. Enter the parameters of a loan and then click the
Monthly Payment button. A few seconds later, the monthly payment will appear on the form. As
you will notice, a totally new page will arrive in the browser; this page contains the parameters of
the loan (the values you’ve entered on the form) and the result of the calculations.

If you look at the source code of the document shown on Internet Explorer, you will see straight
HTML code. The interface of the WebLoanCalculator application looks fine, but not quite like
a Web page. There’s none of the color or graphics we’re so accustomed to seeing on Web pages.
Our Web form contains only controls, but it’s an HTML page and you can add any element that
could appear on a Web page. In other words, the Web form can be edited as an HTML document.
Not only that, but the IDE allows you to edit your page either visually or in HTML mode. Let’s
add a colored caption and change the page’s background color.

Select the Web form by clicking somewhere on the form. In the Properties window, locate the
property pageLayout. Its setting is GridLayout, which explains why you were able to place the con-
trols anywhere on the page and align them in all possible ways. Those of you familiar with HTML
know that aligning controls on a Web form is anything but trivial. Change the pageLayout property

61TAKING THE LOANCALCULATOR TO THE WEB

2877c02.qxd 11/11/01 4:14 PM Page 61

http://www.sybex.com

from GridLayout to FlowLayout. Now you’re in normal HTML editing mode. Place the cursor at the
top of the page and start typing. Enter the string Easy Loan Calculator and then select it with
the mouse. You will notice that the text-formatting buttons on the toolbar have been enabled. Set the
text’s size to 6 and set its foreground and background colors. To set these properties, use the two
buttons next to the Bold/Italic/Underline group of buttons. The string is flush left on the form, so
enter a few spaces in front of the string to center it above the controls.

Note A quick comment for readers familiar with HTML: Browsers ignore multiple spaces, but the editor silently con-
verts the spaces you enter into codes, which are the HTML equivalent of “hard”—that is, nonbreaking—spaces.

You can also change the color of the page. Locate the page’s bgColor property in the Properties
window and set it to a light color. When the Color Picker dialog box appears on the form, you will
see the tab with the Web colors. These are the colors than can be displayed by all browsers, the so-
called safe colors. The form now looks like Figure 2.8 when viewed in a browser.

To see how the Web Form Designer handles the HTML elements of the page, click the HTML
button at the bottom of the Designer. The Web form can be viewed and designed either in Design
view (which is the default view) or in HTML view. The Web Form Designer inserted the following
statement in the HTML document to generate the header of the page:

Easy Loan Calculator

This is straight HTML code that could appear in any Web page, and it doesn’t use any Web
controls. Select the tag and delete it. Then switch to the Design view to see that the
header has disappeared. Switch back to the HTML view and insert the following statement right
after the <body> tag and before the <form> tag, as shown in Figure 2.9:

<h1>Easy Loan Calculator</h1>

Figure 2.8

The WebLoan-
Calculator as a
Web page

Chapter 2 VISUAL BASIC PROJECTS62

2877c02.qxd 11/11/01 4:14 PM Page 62

http://www.sybex.com

Click F5 to run the application. When Internet Explorer appears, enter some values in the text
boxes and check out the application. The Web application is functionally equivalent to the Win-
dows loan application you developed at the beginning of this chapter. Yet its user interface runs in
the browser, but the calculations take place on the server (the machine to which the clients connect
to request the WebLoanForm.aspx Web page). Every time you click the Monthly Payment button on
the page, the page is posted to the server. The browser transmits the values on the various controls
back to the server. The server processes these values (actually, it executes the event handler you wrote)
and creates a new page, which is sent to the client. This page includes the value of the monthly pay-
ment. Web applications are discussed in detail later in this book; with this example I wanted to
demonstrate the similarities between Windows forms and Web forms and how the same code works
with both types of applications.

Working with Multiple Forms
Let’s return to Windows applications. Few applications are built on a single form. Most applications
use two, three, or more forms, which correspond to separate sections of the application. In this sec-
tion, we are going to build an application that uses three forms and lets the user switch among them
at will. You’ll see how to write an application that opens multiple windows on the Desktop. In
Chapter 4, we’ll explore in depth the topic of building Windows applications with multiple forms.
In this chapter, we’ll build a simple example of a multiform application by combining the math and
financial calculators we built earlier in the chapter.

The way to combine the two applications is to create a new form, which will become the switch-
ing point for the two calculators. The user will be able to invoke either of the two calculators by
clicking a button on the new form. Let’s design an application that combines the forms of the two
projects.

Start a new project and call it Calculators. The project’s form will become the switching point
between the other two forms, and it’s shown in Figure 2.10. Start by renaming the new form from
Form1 to CalculatorsForm. To design it, add two Button controls and name them bttnMath and

Figure 2.9

Editing the Web
form’s HTML code

63WORKING WITH MULTIPLE FORMS

2877c02.qxd 11/11/01 4:14 PM Page 63

http://www.sybex.com

bttnLoan. Then set their Text properties to Simple Math and Simple Loan, respectively. As you can
guess, all you have to do now is add the code to invoke each of the existing forms from within each
button’s Click event handler. Add a third button on the form, call it bttnGame, and later you can
add an action game to the Calculators project.

At this point, we must add the forms of the MathCalculator and LoanCalculator projects into the
new project. Right-click the name of the project, and from the context menu, select Add Existing
Item. In the dialog box that appears, select the item MathForm.vb in the MathCalculator project’s
folder. Do the same for the LoanForm of the LoanCalculator project. The Calculators project now
contains three forms.

If you run the project now, you will see the Calculators form, but clicking its button won’t bring
up the appropriate form. Obviously, you must add a few lines of code in the Click event handler of
each button to invoke the corresponding form. To display one form from within another form’s
code, you must create an object that represents the second form and then call its Show method.
The code behind the Simple Math button is shown in Listing 2.11.

Listing 2.11: Invoking the Math Calculator

Private Sub bttnMath_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnMath.Click

Dim calcForm As New CalculatorForm
calcForm.Show()

End Sub

The calcForm variable is an object variable that represents the CalculatorForm form of the Calcula-
tors application. The name of the form is actually used as a data type, and this requires some expla-
nation. The form is implemented as a Class and therefore you create objects of this type.

The Dim statement creates a new instance of the form, and the Show method loads and displays
the form. If you run the project now, you’ll see the main form, and if you click the first button, the
math calculator’s form will appear. If you click the same button again, another instance of the form
will appear. What can we do to prevent this? We would like to display the CalculatorForm initially
and then simply show it, but not load another instance of the form. The answer is to move the dec-
laration of the calcForm variable outside the event handler, into the Form’s declaration section. The
variable is declared once, and all the procedures in the form can access its members. Variables
declared in an event handler take effect only in the event handler in which they were declared, and
that’s why at this point, every time you click a button, a new instance of the corresponding form is

Figure 2.10

The main form of
the Calculators
application

Chapter 2 VISUAL BASIC PROJECTS64

2877c02.qxd 11/11/01 4:14 PM Page 64

http://www.sybex.com

created and displayed. If the variable calcForm points to a single instance of the CalculatorForm, then
the form will be displayed every time we click the Simple Math button, but no new instance of it
will be created. You’ll find out more about the scope of variables in the following chapter.

When one of the two calculators is displayed, it doesn’t automatically become the active form.
The active form is the one that has the focus, and this is the main form of the application. To work
with a calculator, you must click the appropriate form to make it active. To activate the most recently
displayed form from within another form’s code, we’ll use the Activate method of the Form object.
Rewrite the Click event handlers of the two buttons on the form as shown in Listing 2.12 (the list-
ing shows the entire code of the form, so that you can see the declarations of the two variables that
represent the forms of the application).

Listing 2.12: The Calculators Project

Public Class CalculatorsForm
Inherits System.Windows.Forms.Form
Dim calcForm As New CalculatorForm()
Dim loanForm As New loanForm()
Private Sub bttnMath_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles bttnMath.Click
calcForm.Show()
calcForm.Activate()

End Sub
Private Sub bttnLoan_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles bttnLoan.Click
loanForm.Show()
loanForm.Activate()

End Sub
End Class

Notice the statement that declares the loanForm variable: the variable has the same name as the
data type, but this is no problem. It goes without saying that the name of the variable can be any-
thing. Our next task is to specify which form will be displayed when we start the application. Right-
click the Calculators project name and, in the context menu, select Properties. On the Calculators
Property Pages dialog box (Figure 2.11) is a ComboBox named StartUp Object. Expand it and you
will see the names of all the forms in the project. Select the name of form you want to appear when
the program starts, which is the CalculatorsForm.

The code behind the Play A Game button should also call the Show method of another form,
but it doesn’t. I regret not developing a game for your enjoyment, but I did implement a fun feature.
When you click this button, it jumps to another place on the form. The button’s Click event handler
is shown next:

Private Sub bttnGame_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnGame.Click

bttnGame.Left = Rnd() * Me.Width * 0.8
bttnGame.Top = Rnd() * Me.Height * 0.8

End Sub

65WORKING WITH MULTIPLE FORMS

2877c02.qxd 11/11/01 4:14 PM Page 65

http://www.sybex.com

This subroutine manipulates the Left and Top properties of the control to move the button to a
different position. The Rnd() function returns a random value between 0 and 1. To calculate the
horizontal position, the code multiplies the random value by the width of the form (actually, 80 per-
cent of the width). The vertical position is calculated in a similar manner.

Each Visual Basic project is made up of files that are all listed in the Solution Explorer window.
Each project contains quite a few files in addition to the Form files, and they’re all stored in a single
folder, which is named after the project. If you open the Calculators folder (Figure 2.12), you will
see that it contains the CalculatorForm and LoanForm forms. These are copies of the original forms
of their corresponding applications. When you add an existing item to a project, VB makes a copy of
this item in the project’s folder.

To move a project to another location, just move the project’s folder there. To create a copy of
the project, just copy the project’s folder to a different location.

Figure 2.12

The components
of the Calculators
project

Figure 2.11

Open the Project
Properties dialog
box to specify the
startup object.

Chapter 2 VISUAL BASIC PROJECTS66

2877c02.qxd 11/11/01 4:14 PM Page 66

http://www.sybex.com

Working with Multiple Projects
As you have noticed, every new project you create with VB is a so-called solution. Each solution con-
tains a project, which in turn contains one or more files, references to .NET or custom components,
and other types of items, which will be discussed in the following chapters. Both solutions and proj-
ects are containers—they contain other items. A solution may contain multiple projects. Each proj-
ect in a solution is independent of the other projects, and you can distribute the projects in a
solution separately. So, why create a solution? Let’s say you’re working on several related projects,
which are likely to use common components. Instead of creating a different solution for each proj-
ect, you can create a single solution to contain all the related projects.

Let’s build a solution with two related projects. The two related projects are the two calculators
we built earlier in this chapter. The two projects don’t share any common components, but
they’re good enough for a demonstration, and you will see how VB handles the components of
a solution.

VB.NET at Work: The Calculators Solution

Create an Empty Project and name it Calculators by selecting File ➢ New ➢ Blank Solution. In the
Solution Explorer window, you will see the name of the project and nothing else, not even the list of
references that are present in any other project type. To add a project to the solution, choose File ➢
Add Project ➢ Existing Project. (You can also right-click the solution’s name in the Solution
Explorer, select Add Existing Item ➢ Project, and, in the dialog box that pops up, select the Calcula-
tor project.) Do the same for the LoanCalculator project. When the Add Existing Project dialog box
appears, navigate to the folders with the corresponding projects and select the project’s file.

You now have a solution, called Calculators, that contains two projects. If you attempt to run the
project, the IDE doesn’t know which of the two projects to execute and will generate an error message.
We must decide how to start the new project (that is, which form to display when the user runs the
Calculators application). When a solution contains more than a single project, you must specify
the startup project. Right-click the name of one of the projects and, from the context menu, select
Set As StartUp Project. To test a different project, set a different StartUp project. Normally, you
will work for a while with the same project, so switching from one project to another isn’t really a
problem. It is also possible that different developers will work on different projects belonging to the
same solution.

Let’s say you’re going to design a documentation file for both projects. A good choice for a short
documentation file is an HTML file. To add an HTML file to the solution, right-click the solu-
tion’s name and select Add New Item. In the dialog box, select the HTML Page template, and then
enter a name for the new item. An HTML page will be added to the project, and an empty page
will appear in the Designer. This is the newly added HTML page, and you must add some content
to it.

Place the cursor on the design surface and start typing. Figure 2.13 shows a very simple HTML
page with an introduction to the application. To format the text, use the buttons on the toolbar.
These buttons embed the appropriate tags in the text, while you see the page as it would appear in
the browser. This is the Design view of the document. You can switch to the HTML view and edit
the document manually, if you’re familiar with HTML. The HTML page can be used by either
project—at the very least, you can distribute it with the application.

67WORKING WITH MULTIPLE FORMS

2877c02.qxd 11/11/01 4:14 PM Page 67

http://www.sybex.com

If you open the folder created for the project, you’ll find that it contains an unusually small num-
ber of files. The projects reside in their respective folders. Make a change to one of the project’s files.
You can change the background color of the three TextBox controls on the LoanForm to a light
shade, like Bisque. Then open the LoanCalculator project, and you will see that the changes have
taken effect. VB doesn’t create new copies of the forms (or any other component) added to the Cal-
culators solution. It uses the existing files and modifies them, if needed, in their original locations.
Of course, you can create a solution from scratch and place all the items in the same folder. Each
project is a separate entity, and you can create executables for each project and distribute them.

To create the executables, open the Build menu and select Build Solution or Rebuild Solution.
The Build Solution command compiles the files that have been changed since the last build; Rebuild
Solution compiles all the files in the project. The executables will be created in the Bin folder
under each project’s folder. The file Loan.exe will be created under the \Loan\Bin folder and the
Calculator.exe file under the \Calculator\Bin folder.

The solution is a convenience for the programmer. When you work on a large project that
involves several related applications, you can put them all in a solution and work with one project at
a time. Other developers may be working with other projects belonging to the same solution. A
designer may create graphics for the applications, you can include them in the solution, and they’ll be
available to all the projects belonging to the solution.

The Calculators project we built earlier contains copies of the forms we added to the project. The
Calculators solution contains references to external projects.

Executable Files
So far, you have been executing applications within Visual Basic’s environment. However, you can’t
expect the users of your application to have Visual Studio installed on their systems. If you develop
an interesting application, you won’t feel like giving away the code of the application (the source code,
as it’s called). Applications are distributed as executable files, along with their support files. The
users of the application can’t see your source code, and your application can’t be modified or made
to look like someone else’s application (that doesn’t mean it can’t be copied, of course).

Note An executable file is a binary file that contains instructions only the machine can understand and execute.
The commands stored in the executable file are known as machine language.

Figure 2.13

Adding an HTML
Document to a
solution

Chapter 2 VISUAL BASIC PROJECTS68

2877c02.qxd 11/11/01 4:14 PM Page 68

http://www.sybex.com

Applications designed for the Windows environment can’t fit in a single file. It just wouldn’t
make sense. Along with the executable files, your application requires support files, and these files may
already exist on many of the machines on which your application will be installed. That’s why it
doesn’t make sense to distribute huge files. Each user should install the main application and only
the support files that aren’t already installed on their computer.

The executable will run on the system on which it was developed, because the support files are there.
Under the project’s file, you will find two folders named Bin and Obj. Open the Obj folder, and you
will see that it contains a subfolder named Debug. This is where you will find the executable, which is
named after the project and has the extension .exe. Make sure that no instance of VS is running on
your computer and then double-click the icon of the MathCalculator.exe or LoanCalculator.exe file.
The corresponding application will start outside the Visual Studio IDE, and you can use it like any
other application on your PC. You can create desktop shortcuts to the two applications.

The folder Debug contains the Debug version of the executable. Normally, after you’re done
debugging the application, you should change the default configuration of the project from Debug
to Release. To change the project’s configuration, select Build ➢ Configuration Manager. The Con-
figuration Manager dialog box will pop up, as shown in Figure 2.14.

The default configuration for all projects is Debug. This configuration generates code optimized
for debugging. The other possible setting for the configuration is Release. Change the configuration
to Release and close the dialog box. If you build the project or the solution again, a Release folder
will be created under the Obj folder and will contain the new executable. The difference between the
two versions of the executable files is that Debug files contain symbolic debug information. The
Release configuration executes faster because it doesn’t contain any debugging information.

Distributing an Application
Distributing just an EXE file isn’t going to be any good, because the executable requires support
files. If these files aren’t installed on the target system (the computer on which your application will
be installed), then the EXE file isn’t going to work. The file will be executed only on a system that
has Visual Studio.NET on it. Distributing a large number of files and installing them on the target
computer is quite a task. You must create an installation program that (almost) automatically installs
your application and the required support files on the target computer. If some of those files are
already installed, they will not be installed again.

Figure 2.14

The Configuration
Manager window

69DISTRIBUTING AN APPLICATION

2877c02.qxd 11/11/01 4:14 PM Page 69

http://www.sybex.com

Note Eventually, all the support files will become part of the operating system, and then you’ll be able to distribute a
single EXE file (or a small number of files). This hasn’t happened with Windows 2000 or Windows XP and won’t for
some time. Until it does, you must provide your own installer.

A Setup project creates a Windows installer file (a file with extension .msi), which contains the
executable(s) of the application and auxiliary files that are necessary for the application, Registry
entries (if the application interacts with the Registry), installation instructions, and so on. The
resulting MSI file is usually quite long, and this is the file you distribute to end users. They must
double-click the icon of the MSI file to install the application on their computer. If they run the
same file again, the application will be removed. Moreover, if something goes wrong during the
installation, the installation will be rolled back and any components that were installed in the
process will be removed.

The topic of creating and customizing Windows installers is huge, and there are already a couple
of books on this topic alone—for example, VB/VBA Developer’s Guide to the Windows Installer by Mike
Gunderloy (Sybex, 2000). As you can understand, in this chapter we’ll only scratch the surface. I
will show you how to create a simple Setup project for installing the Calculators project on another
machine. Your main priority right now is to learn to write .NET applications and master the language.
You should be able to distribute even small applications, so the topic of creating Setup projects
shouldn’t be missing from this book. Yet you aren’t going to use the more advanced features for a
while—not before you can write elaborate applications that require a customized installation
procedure. In this section, I’ll show you how to create a Setup project for the Calculators project.
It’s a simple project that demonstrates the basic steps of creating a Windows installer using the
default options, and you’ll be able to use this application to install the Calculators application to a
target computer.

VB.NET at Work: Creating a Windows Installer
To create a Windows installer, you must add a Setup project to your solution. The Setup project
will create an installation program for the projects in the current solution. Open the Calculators
solution and add a new project (File ➢ Add Project ➢ New Project). In the dialog box that appears
(Figure 2.15), click the Setup and Deployment Projects item. In the Templates pane, you will see
five different types of Setup and Deployment projects. The simplest type of Setup project is the
Setup Wizard. This wizard takes you through the steps of creating a Setup project, which is another
wizard that takes the user through the steps of installing the application on the target computer.
Select this template and then enter the project’s name in the Name box: name the project Simple-
Calculators. Click OK, and the first screen of the wizard will appear. This is a welcome screen, and
you can click the Next button to skip it.

On the next screen, you’ll be prompted to choose a project type. You can create a project that
installs an application or one that adds components to an existing installation. We want to create a
project that installs an application for the first time, and we have two options: to create a setup for a
Windows application or for a Web application. Select the first option, as shown in Figure 2.16,
and click Next to move to the next screen of the wizard.

Chapter 2 VISUAL BASIC PROJECTS70

2877c02.qxd 11/11/01 4:14 PM Page 70

http://www.sybex.com

On the next screen, you’ll be prompted to select any files you want to add to the installation pro-
gram. Here you must click the items checked in Figure 2.17. The Primary Output is the executable
file, and the Content Files include things like the HTML file we added to the project. In the release
version of the program, you don’t usually want to include debug symbols or source files (well, per-
haps the debug symbols for large projects that are also tested at the client’s side). If your application
includes localized resource files, you should check the second option. Localized resources allow you
to write applications that adjust their text to the end user’s culture. It’s a special topic that’s not cov-
ered in this book.

The Setup project we’re creating here is part of a solution with the project you want to install
on the target machine. I’ve included the Setup project in the same solution for convenience only.
You can also create a Setup project and specify any executable file you want to install. The Setup
project takes a while to compile, so you should add it to the solution only after you have debugged
the application. Or remove the Setup project from the solution after you have created the setup file.

Figure 2.16

The Project Type
screen of the wizard

Figure 2.15

Adding a Setup and
Deployment project
to your solution

71DISTRIBUTING AN APPLICATION

2877c02.qxd 11/11/01 4:14 PM Page 71

http://www.sybex.com

Click Next again to see another screen, where you can specify additional files that are not part of
the project. You can add text files with installation instructions, compatibility data, registration
information, and so on. Click Next again, and the last screen of the wizard displays a summary of
the project you specified. Click Finish to close the wizard and create the Setup project.

The wizard adds the Setup project to your solution. Select the new project with the mouse and
open the Properties window to see the properties of the new project. The Solution Explorer and the
new project’s Properties window should look like the ones shown in Figure 2.18. The good news is
that you don’t have to write any code for this project. All you have to do is set a few properties and
you’re done.

The AddRemoveProgramsIcon property lets you specify the icon of the installation and removal
programs—yes, VB will also create a program to uninstall the application. You can specify whether
the Setup project will detect newer versions of the application and won’t overwrite them with an
older version. The DetectNewerInstalledVersion property is True by default. You can also specify
your company’s name and URL, support line, the title of the installation windows, and so on.

Figure 2.18

The Setup project’s
Properties

Figure 2.17

Specifying the items
you want to install

Chapter 2 VISUAL BASIC PROJECTS72

2877c02.qxd 11/11/01 4:14 PM Page 72

http://www.sybex.com

The Manufacturer property will become the name of the folder in which the installation will take
place. By default, this folder will be created in the user’s Program Files folder. Assign a name that
reflects either your company or the project type—a string like “The Math Experts” for the Calcula-
tors example. The Author property is where your name should appear. The ProductName property
is by default the name of the Setup project; change it to “The EasyCalc Project”. The Title property is
the title of the installer (what users see on the installation wizard’s title bar while the application is being
installed).

The Solution Explorer Buttons

You will notice that the usual buttons on the Solution Explorer have been replaced by six new but-
tons, which are described in the following sections.

File System Editor Button

Click this button and you will see the four sections of the target machine’s file system your setup
program can affect. Decide whether your application’s action should appear on the user’s Desktop or
in the Programs menu. Right-click either item and you will see a context menu that contains the
commands Add and Create Shortcut. The Add command leads to a submenu with four objects you
can automatically create from within your Setup program: Folder, Project Output, File, Assembly.
For typical applications you can add a folder (in which you can later place the project’s output), or
the project output. The less intruding option is to place a shortcut in the user’s Programs menu.

To make the project a little more interesting, we’ll install not only the Calculators application,
but the two individual applications: the Calculator and LoanCalculator projects. We’re going to add
three new commands to the user’s Programs menu, so let’s add a folder to this menu and then the
names of the applications in this folder. Right-click the item User’s Programs Menu and select Add
Folder. A new folder will be added under the User’s Programs Menu item. Change its name to Demo
Calculators, as shown in Figure 2.19. Select the new folder and look up its properties. The
AlwaysCreate property should be True—if not, the wizard will not add the folder to the user’s Pro-
grams menu.

Then right-click the newly added folder and select Add ➢ File. A dialog box will pop up where
you can select the executables that must appear in the Demo Calculators folder on the Programs
menu. Browse your disk and locate the Calculators, Calculator, and LoanCalculator executables in the
\Obj\Release folder under the corresponding project’s folder (all three files have the extension EXE).

After adding the items you want to appear in the Demo Calculators folder of the Programs
menu, the File System Editor should like the one in Figure 2.19.

Figure 2.19

Specifying how the
installation program
will affect the user’s
File System

73DISTRIBUTING AN APPLICATION

2877c02.qxd 11/11/01 4:14 PM Page 73

http://www.sybex.com

Registry Editor Button

Click this button to add new keys to the user’s Registry. You don’t have to add anything to the user’s
Registry, especially for this project. But you can place special strings in the Registry, like an encoded
date to find out when a demo version of your application may expire. You must first familiarize
yourself with the Registry and how to program it with Visual Basic, before you attempt to use it
with your applications.

File Types Editor Button

If your application uses its own file type, you can associate that type with your application, so that
when the user double-clicks a file of this type your application starts automatically. This is a sure way
to ruin the user’s file associations. If your application can handle GIF images or HTML files, don’t
even think of taking over these files. Use this option only with files that are unique to your application.

To add a new file type on the user’s machine, click the File Types Editor button on the Proper-
ties window. On the Designer’s surface, you will see a single item: File Types On Target Machine.
Right-click the item and select Add File Type. This command will add a new file type and the verb
&Open under it. Click the new file type and you will see its properties in the Properties window.
You can assign a description to the new file type, its extension, and the command that will be used
to open the files of this type (the name of your application’s EXE file).

User Interface Editor Button

Click this button and you will see the steps of the installation on the Designer’s surface, as shown in
Figure 2.20. Each phase of the installation process has one or more steps, and a different dialog box
is displayed at each step. Some of the dialog boxes contain messages, like a short description of the
application or a copyright message. These strings are exposed as properties of the corresponding dia-
log box, and you can change them. Just click a dialog box in the User Interface Editor and then look
up its properties in the Properties window.

The wizard inserts all the necessary dialog boxes, but you can add custom dialog boxes. If you do,
you must also provide some code to process the user’s selections on the custom dialog box. For our
simple example, we don’t need any customized dialog boxes. I will repeat here that the topic of creat-
ing a customized Windows installer is one of the major aspects of Visual Studio.NET, and when

Figure 2.20

The outline of the
installation process

Chapter 2 VISUAL BASIC PROJECTS74

2877c02.qxd 11/11/01 4:14 PM Page 74

http://www.sybex.com

you’re ready to build an installer for a large application, you will have to consult the documentation
extensively.

Custom Actions and System Requirements Buttons

The last two buttons on the Properties window allow you to specify custom actions and require-
ments for the target machine. For example, you may specify that the application be installed only on
systems on which a specific component has already been installed. You can ignore these buttons for
a simple installation project.

Finishing the Windows Installer
OK, we’re almost there. Select Build ➢ Build Solution, and VB will create the installation program.
First, it will create a new project folder, the SimpleCalculators folder. This is where the Setup
project’s files will be stored and where the executable file of the installation program will be created.
The process of building the executables and creating the Setup program will take several minutes. The
output of the build process is the SimpleCalculators.msi file. This is an executable file (known as
Windows Installer Package), and it will be created in the \SimpleCalculators\Release folder. Its
size will be approximately 15 MB. If you’re wondering what’s in this file, take a look at the Output
window of the IDE and you will see a large list of components added to the package.

Running the Windows Installer
Now you’re ready to install the Calculators project to your computer. If you have access to another
computer that doesn’t have Visual Studio installed, you should copy the SimpleCalculators.msi file
there and install the application there. The components required for your application to run prop-
erly are already installed on the development machine, and you can test the Setup project better on
another machine.

Go to the folder \SimpleCalculators\Release and double-click the icon of the Windows Installer
Package (or the folder to which you have copied this file on another machine). The MSI file is
represented by the typical installation icon (a computer and a CD). The following figures show the
installation steps. Please notice where the captions you specified in the Setup project’s properties
appear in the screens of the installation wizard. Consult these figures as you build a Setup applica-
tion to make sure the proper messages are displayed during the installation on the target computer.

1. This dialog appears while the Windows installer starts.

2. The welcome screen of the wizard that will guide the user through the installation procedure. The
messages on this screen are the properties CopyrightWarning and WelcomeText of the Welcome
dialog box in the User Interface Editor.

75DISTRIBUTING AN APPLICATION

2877c02.qxd 11/11/01 4:14 PM Page 75

http://www.sybex.com

3. This screen lets the user change the default path of the application to be installed. Notice
how the default path is formed. You can control the default installation path by setting the
appropriate properties of the Setup project. The installer will create a folder, under the Pro-
gram Files folder, named after the Manufacturer and ProductName properties of the Setup
project.

4. This screen asks the user to confirm the installation—which can be cancelled later as well.

5. The application is being installed, and this screen displays a progress indicator. The user can
terminate the installation by clicking the Cancel button.

6. The last screen of the installer confirms the successful installation of the application. Click
Close to end the program. If there was a problem installing the application, a description of
the problem will be displayed on this last screen. In this case, all the components installed
in the process will be automatically removed as well.

Chapter 2 VISUAL BASIC PROJECTS76

2877c02.qxd 11/11/01 4:14 PM Page 76

http://www.sybex.com

Verifying the Installation
You already know the kind of changes made to your system by an installation program. If you open
the Programs menu (Start ➢ Programs), you will see that a new item was added, the Demo Calcula-
tors item. If you select it with the mouse, a submenu will open, as shown in Figure 2.21. You can
select any of the three commands (Calculators, Calculator, or LoanCalculator) to start the corre-
sponding application.

Tip All three items in the Demo Calculators submenu have the default application icon. You should change the default
icons of your applications for a more professional look.

The Windows installer has created and installed a program for uninstalling the application from
the target computer. Open Control Panel and double-click the Add/Remove Programs icon. The
dialog box that appears contains an item for each program you can remove from your computer. The
newly installed application is the item The EasyCalc Project, as shown in Figure 2.22. Click its
Remove button to uninstall the application or the Change button to repair an existing installation.

Figure 2.21

The new items
added to the Pro-
grams menu by the
Windows installer

77DISTRIBUTING AN APPLICATION

2877c02.qxd 11/11/01 4:14 PM Page 77

http://www.sybex.com

As for the location of the executables and their support files, they’re in the EasyCalc Project
folder under \Program Files\CompanyName folder. If the same customer installs another of your
applications—say, the ProCalc Project—it will also be installed in its own folder under \Program
Files\CompanyName. Just make sure all the Setup projects have the same value for the Manufacturer
property, and the support files won’t be installed in multiple folders.

Summary
This chapter introduced you to the concept of solutions and projects. You learned how to build a simple
solution with a single project, as well as a solution with multiple projects. Use solutions to combine
multiple related projects into a single unit, so that your projects can share components. Each project
in a solution maintains its individuality, and you can either edit one from within the solution or
open it as a project and edit independently of the other projects in the solution.

You also learned how to develop Web applications. With VB.NET, developing Web applica-
tions is as easy as developing Windows applications. In a few short years, you should be able to
design a single interface that can be used by both types of projects (even if this means that there will
be nothing but Web applications). The user interface of Web and Windows applications may be
different, but the code behind both types of projects is straight Visual Basic.

After you have developed an application, you will have to distribute it. Distributing Windows
application isn’t a trivial process, but building a Setup program for your application with VB.NET is.
All you have to do is add a Setup project to a solution that contains the project or projects that you
want to distribute. The simplest type of Setup program doesn’t require any code, and you can create a
Windows installer by just setting a few properties. The output of the Setup program is a file with the
extension .msi, which you can copy to another computer. Once executed on the target computer, the
MSI file will install the application, create a shortcut to the application in the user’s Programs menu,
and even create an entry in Add/Remove Programs for repairing or uninstalling the application.

By now, you have a good idea about the environment and how Windows applications are built. In
the following two chapters, you’ll read about the language itself.

Figure 2.22

Use the Add/
Remove Programs
utility to remove
or repair an applica-
tion installed by the
Windows installer.

Chapter 2 VISUAL BASIC PROJECTS78

2877c02.qxd 11/11/01 4:14 PM Page 78

http://www.sybex.com

Chapter 3

Visual Basic: The Language
This chapter and the next discuss the fundamentals of any programming language: vari-
ables, flow-control statements, and procedures. A variable stores data, and a procedure is code that
manipulates variables. To do any serious programming with Visual Basic, you must be familiar
with these concepts. To write efficient applications, you need a basic understanding of some fun-
damental topics, such as the data types (the kind of data you can store in a variable), the scope
and lifetime of variables, and how to write procedures and pass arguments to them.

As you have seen in the first two chapters, most of the code in a Visual Basic application deals
with manipulating control properties and variables. This chapter explores in greater depth how
variables store data and how programs process variables. If you’re familiar with Visual Basic, you
might want to simply scan the following pages and make sure you’re acquainted with the topics
and the sample code discussed in this chapter. I would, however, advise you to read this chapter
even if you’re an experienced VB programmer.

VB6 ➠ VB.NET

Experienced Visual Basic programmers should pay attention to these special sidebars with the “VB6 to
VB.NET” icon, which calls your attention to changes in the language. These sections usually describe
new features in VB.NET or enhancements of VB6 features, but also VB6 features that are no longer sup-
ported by VB.NET.

If you’re new to Visual Basic, you may find that some material in this chapter less than excit-
ing. It covers basic concepts and definitions—in general, tedious, but necessary, material. Think
of this chapter as a prerequisite for the following ones. If you need information on core fea-
tures of the language as you go through the examples in the rest of the book, you’ll probably find
it here.

2877c03.qxd 11/11/01 4:15 PM Page 79

http://www.sybex.com

Variables
In Visual Basic, as in any other programming language, variables store values during a program’s exe-
cution. Let’s say you’re writing a program that converts amounts between different currencies. Instead
of prompting the user for the exchange rates all the time—or even worse, editing your code to change
the currency rates every day—you can store the exchange rates into variables and use these variables to
perform the conversions. If the current exchange rate between the U.S. dollar and the euro is 0.9682,
you can store this value to a variable called USD2Euro. If you change the value of this variable once in
your code, all the conversions will be calculated based on the new rate. Or you can prompt the users
for the exchange rate when they start the program, store the rate to the USD2Euro variable, and then
use it in your code.

A variable has a name and a value. The variable UserName, for example, can have the value “Joe,”
and the variable Discount can have the value 0.35. UserName and Discount are variable names, and
“Joe” and 0.35 are their values. “Joe” is a string (that is, text or an alphanumeric value), and 0.35 is a
numeric value. When a variable’s value is a string, it must be enclosed in double quotes. In your code,
you can refer to the value of a variable by the variable’s name. For example, the following statements
calculate and display the discounted price for the amount of $24,500:

Dim Amount As Single
Dim Discount As Single
Dim DiscAmount As Single
Amount = 24500
Discount = 0.35
DiscAmount = Amount * (1 – Discount)
MsgBox(“Your price is $” & DiscAmount)

Single is a numeric data type; it can store both integer and non-integer values. There are other
types of numeric variables, which are discussed in the following sections. I’ve used the Single data
type because it’s the most commonly used data type for simple calculations that don’t require
extreme accuracy.

The message that this expression displays depends on the values of the Discount and Amount vari-
ables. If you decide to offer a better discount, all you have to do is change the value of the Discount
variable. If you didn’t use the Discount variable, you’d have to make many changes in your code. In
other words, if you coded the line that calculated the discounted amount as follows:

DiscAmount = 24500 * (1 - 0.35)

you’d have to look for every line in your code that calculates discounts and change the discount from
0.35 to another value. By changing the value of the Discount variable in a single place in your code,
the entire program is updated.

VB6 ➠ VB.NET

In VB6, amounts of money were usually stored in Currency variables. The Currency data type turned out to
be insufficient for monetary calculations and was dropped from the language. Use the Decimal data type,
discussed later in this chapter, to represent money amounts.

Chapter 3 VISUAL BASIC: THE LANGUAGE80

2877c03.qxd 11/11/01 4:15 PM Page 80

http://www.sybex.com

Variables in VB.NET are more than just names, or placeholders, for values. They’re intelligent
entities that can not only store but also process a value. I don’t mean to scare you, but I think you
should be told: VB.NET variables are objects. And here’s why:

A variable that holds dates must be declared as such with the following statement:

Dim expiration As Date

Then you can assign a date to the expiration variable, with a statement like this:

expiration = #1/1/2003#

So far, nothing out of the ordinary. This is how you use variables with any other language. In
addition to holding a date, however, the expiration variable can process it. The expression

expiration.AddYears(3)

will return a new date that’s three years ahead of the date stored in the expiration variable. The new
date can be assigned to another Date variable:

Dim newExpiration As Date
newExpiration = expiration.AddYears(3)

The keywords following the period after the variable’s name are called methods and properties, just like
the properties and methods of the controls you place on a form to create your application’s visual inter-
face. The methods and properties (or the members) of a variable expose the functionality that’s built into
the class that represents the variable itself. Without this built-in functionality, you’d have to write some
serious code to extract the month from a Date variable, to figure out whether a character is a letter, a
digit, or a punctuation symbol, and so on. Much of the functionality you’ll need in an application that
manipulates dates, numbers, or text has already been built into the variables themselves, and you will see
examples of other properties and methods exposed by the various data types later in this chapter.

Don’t let the terminology scare you. Think of variables as placeholders for values and access their
functionality with expressions like the ones shown earlier. Start using variables to store values and,
if you need to process them, enter a variable’s name followed by a period to see a list of the members
it exposes. In most cases, you’ll be able to figure out what these members do by just reading their
names. I’ll come back to the concept of variables as objects, but I wanted to hit it right off the bat. A
more detailed discussion of the notion of variables as object can be found later in this chapter.

Since this book isn’t for computer scientists, I can simplify the text in the following sections by
treating variables as locations in memory where you store values. Later in this chapter, and after dis-
cussing the data types of the Common Language Runtime (CLR), I will treat them as objects.

Declaring Variables
In most programming languages, variables must be declared in advance. Historically, the reason for
doing this has been to help the compiler. Every time a compiled application runs into a new variable,
it has to create it. Doing so doesn’t take a lot of statements, but it does produce a delay that could be
avoided. If the compiler knows all the variables and their types that are going to be used in the appli-
cation ahead of time, it can produce the most compact and efficient, or optimized, code. For example,
when you tell the compiler that the variable Discount will hold a number, the compiler sets aside a cer-
tain number of bytes for the Discount variable to use.

81VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 81

http://www.sybex.com

One of the most popular, yet intensely criticized, features of BASIC was that it didn’t force the
programmer to declare all variables. As you will see, there are more compelling reasons than speed
and efficiency for declaring variables. For example, if the compiler knows the types of the variables,
it will catch many errors at design or compile time—errors that otherwise would surface at runtime.
When you declare a variable as Date, the compiler won’t let you assign an integer value to it. It also
won’t let you request the Month property of an Integer variable (Month is a property that applies
only to Date variables). Because the type of the variable is known at compile time, similar errors will
be caught as you enter code and therefore won’t cause runtime errors. Later in the chapter, in the sec-
tion “Why Declare Variables?”, you’ll see how variable declarations can simplify coding too.

When programming in VB.NET, you should declare your variables, because this is the default
mode and Microsoft recommends this practice strongly. They’ve been recommending it with previ-
ous versions of VB, but up to VB6 the language was accepting undeclared variables by default. If
you attempt to use an undeclared variable in your code, VB.NET will throw an exception. It will
actually catch the error as soon as you complete the line that uses the undeclared variable, underlin-
ing it with a wiggly red line. It is possible to change the default behavior and use undeclared variables
the way most people did with earlier versions of VB (you’ll see how this is done in the section “The
Strict and Explicit Options,” later in this chapter), but nearly all the examples of the book declare
their variables. In any case, you’re strongly encouraged to declare your variables.

VB6 ➠ VB.NET

Although not an absolute requirement, VB.NET encourages the declaration of variables. By default, every
variable must be declared. Moreover, when you declare a variable, you must also specify its type. One of the
new terms in the VB.NET documentation is strictly typed, which simply means that a variable has a specific
type and you can’t store a value of a different type to the variable. See the discussion of Option Explicit
and Option Strict statements later in this chapter for more information on using variables without
declaring them, or declaring them without a specific type.

VB.NET recognizes the type identifier characters. A variable name like note$ implies a String variable, and
you need not supply a data type when you declare the variable. The Defxxx statements (DefInt, DefDbl, and
so on), however, are not supported by VB.NET. The Defxxx statements were already obsolete, and they were
rarely used even with older versions of Visual Basic.

In VB.NET you can declare multiple variables of the same type without having to repeat each variable’s
type. The following statement, for instance, will create three Integer variables:

Dim width, depth, height As Integer

The following statement will create three Integer and two Double variables:

Dim width, depth, height As Integer, area, volume As Double

Another convenient shortcut introduced with VB.NET is that now you can initialize variables along with
their declaration. Not only can you declare a variable with the Dim statement, you can also initialize it by
assigning a value of the proper type to it:

Dim width As Integer = 9
Dim distance As Integer = 100, time As Single = 9.09

Chapter 3 VISUAL BASIC: THE LANGUAGE82

2877c03.qxd 11/11/01 4:15 PM Page 82

http://www.sybex.com

When you declare variables in your code, you’re actually telling the compiler the type of data you
intend to store in each variable. This way, the compiler can generate code that handles the variables
most efficiently. A variable that holds characters is different from a variable that holds numbers. If
the compiler knows in advance the type of data you’re going to store in each variable, it can not only
optimize the executable it will produce, it can also catch many mistakes as you type (an attempt to
store a word to a numeric variable, for instance).

To declare a variable, use the Dim statement followed by the variable’s name, the As keyword,
and its type, as follows:

Dim meters As Integer
Dim greetings As String

We’ll look at the various data types in detail in the next section. In the meantime, you should
know that a variable declared As Integer can store only integer numbers, and a variable declared As
String can only store text (strings of characters, or simply strings).

The first variable, meters, will store integers, such as 3 or 1,002, and the second variable, greetings,
will store text, such as “Thank you for using Fabulous Software”. You can declare multiple variables
of the same or different type in the same line, as follows:

Dim Qty As Integer, Amount As Decimal, CardNum As String

When Visual Basic finds a Dim statement, it creates one or more new variables, as specified in the
statement. That is, it creates a structure in the memory where it can store a value of the specified
type and assigns a name to it. Each time this name is used in subsequent commands, Visual Basic
accesses this structure to read or set its value. For instance, when you use the statement

meters = 23

Visual Basic places the value 23 in the structure reserved for the meters variable. When the program
asks for the value of this variable, Visual Basic reads it from the same structure.

To use the meters variable in a calculation, reference it by name in a statement in your code. The
statement

inches = meters * 39.37

multiplies the value stored in the meters variable and assigns the result to the inches variable. The equal
sign is the assignment operator: it assigns the value of the expression that appears to its right, to the
variable listed to its left. Only the variable to the left of the equal sign changes value.

The following statement displays the value of the same variable on a message box:

MsgBox(meters)

It causes Visual Basic to retrieve the value 23 from the area of memory named meters.
It’s also possible for a single statement to both read and set the value of a variable. The following

statement increases the value of the meters variable:

meters = meters + 1

Visual Basic reads the value (here, 23), adds 1 to it, and then stores the new value (24) in the origi-
nal location.

One good reason for declaring variables is so that Visual Basic knows the type of information the
variable must store and can validate the variable’s value. Attempting to assign a value of the wrong type

83VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 83

http://www.sybex.com

to a declared variable generates an error. For example, if you attempt to assign the value “Welcome” to
the meters variable, Visual Basic won’t compile the statement because this assignment violates the vari-
able’s declaration. The meters variable was declared as Integer, and you’re attempting to store a string in
it. It will actually underline the statement in the editor with a red wiggly line, which indicates an error.
If you hover the pointer over the statement in error, a box with an explanation of the error will appear.

You can use other keywords in declaring variables, such as Private, Public, and Static. These key-
words are called access modifiers, because they determine what sections of your code can access the spe-
cific variables and what sections can’t. We’ll look at these keywords in later sections of this chapter.
In the meantime, bear in mind that all variables declared with the Dim statement exist in the module
in which they were declared. If the variable Count is declared in a subroutine (an event handler, for
example), it exists only in that subroutine. You can’t access it from outside the subroutine. Actually,
you can have a Count variable in multiple procedures. Each variable is stored locally, and they don’t
interfere with one another.

Variable-Naming Conventions

When declaring variables, you should be aware of a few naming conventions. A variable’s name:

� Must begin with a letter.

� Can’t contain embedded periods. Except for certain characters used as data type identifiers
(which are described later in this chapter), the only special character that can appear in a vari-
able’s name is the underscore character.

� Mustn’t exceed 255 characters.

� Must be unique within its scope. This means that you can’t have two identically named variables
in the same subroutine, but you can have a variable named counter in many different subroutines.

Variable names in VB.NET are case-insensitive: The variable names myAge, myage, and MYAGE all
refer to the same variable in your code. Conversely, you can’t use the names myage
and MYAGE to declare two different variables.

Tip In fact, as you enter variable names, the editor converts their casing so that they match their declaration.

Variable Initialization

You can also initialize variables in the same line that declares them. The following line declares an
Integer variable and initializes it to 3,045:

Dim distance As Integer = 3045

This statement is equivalent to the following statements:

Dim distance As Integer
distance = 3045

It is also possible to declare and initialize multiple variables, of the same or different type, on the
same line:

Dim quantity As Integer = 1, discount As Single = 0.25

Chapter 3 VISUAL BASIC: THE LANGUAGE84

2877c03.qxd 11/11/01 4:15 PM Page 84

http://www.sybex.com

If you want to declare multiple variables of the same type, you need not repeat the type. Just sepa-
rate all the variables of the same type with commas and set the type of the last variable:

Dim length, width, height As Integer, volume, area As Double

This statement declares three Integer variables and two Double variables. Double variables hold
fractional values (or floating-point values, as they’re usually called) similar to the Single data type, only
they can represent non-integer values with greater accuracy. Declaring and initializing variables in a
single step was a common feature among programming languages, but missing from previous ver-
sions of Visual Basic.

You can even initialize variables that represent objects on the same line that declares them. In
Chapter 14, you will learn about pens and brushes, which are the two “instruments” for drawing.
Before you can draw a shape on your form, you must create a Pen or a Brush object and then use it
to draw something with. The simplest method of creating a new Pen is to specify its color. The fol-
lowing statement declares a Pen object that will draw in a blue-green color:

Dim myPen As Pen = New Pen(Color.AquaMarine)

This New keyword is used with object variables and tells VB to create a new instance of the Pen
object (in effect, to create a new Pen). Color is another object that lets you manipulate the color of
pens, backgrounds, and so on. Among other properties, the Color object exposes the names of colors
it recognizes, and Color.AquaMarine is one of them.

You can also create variables of type Color. The following statement creates two variables that rep-
resent a different color each (one will be used as the background and the other as the drawing color):

Dim bgColor As Color = Color.LightYellow, fgColor As Color = Color.Blue

VB6 ➠ VB.NET

Another interesting new feature introduced with VB.NET is the shorthand notation of common operations,
such as the addition of a value to a variable. The statement

counter = counter + 1

can now be written as

counter += 1

The symbols += form a new VB operator (there’s no space between the plus and the equal sign), which
adds the value on its left to the value on its right and assigns the result to the initial variable. Only a vari-
able may appear to the left of this operator, while on the right you can type either a variable or a value. The
statement

totalCount = totalCount + count

is equivalent to

totalCount += count

The same notation applies to other operators, like subtraction (-=), multiplication (*=), division (/=), inte-
ger division (\=), and concatenation (&=). All these operators are new to VB.NET. I will not overuse this nota-
tion in the book for the sake of current VB programmers; most of them consider this notation one of the
trademarks of the C language.

85VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 85

http://www.sybex.com

Types of Variables
Visual Basic recognizes the following five categories of variables:

� Numeric

� String

� Boolean

� Date

� Object

The two major variable categories are numeric and string. Numeric variables store numbers, and string
variables store text. Object variables can store any type of data. Why bother to specify the type if one
type suits all? On the surface, using object variables may seem like a good idea, but they have their
disadvantages. Integer variables are optimized for storing integers, and date variables are optimized
for storing dates. Before VB can use an object variable, it must determine its type and perform the
necessary conversions, if any. If an object variable holds an integer value, VB must convert it to a
string before concatenating it with another string. This introduces some overhead, which can be
avoided by using typed variables.

We begin our discussion of variable types with numeric variables. Text is stored in string vari-
ables, but numbers can be stored in many formats, depending on the size of the number and its pre-
cision. That’s why there are many types of numeric variables.

Numeric Variables

You’d expect that programming languages would use a single data type for numbers. After all, a
number is a number. But this couldn’t be farther from the truth. All programming languages provide
a variety of numeric data types, including the following:

� Integers (there are several integer data types)

� Decimals

� Single, or floating-point numbers with limited precision

� Double, or floating-point numbers with extreme precision

Note Decimal, Single, and Double are the three basic data types for storing floating-point numbers. The Double type
can represent these numbers more accurately than the Single type, and it’s used almost exclusively in scientific calculations.
The integer data types store whole numbers.

The data type of your variable can make a difference in the results of the calculations. The proper
variable types are determined by the nature of the values they represent, and the choice of data type
is frequently a trade-off between precision and speed of execution (less-precise data types are manip-
ulated faster). Visual Basic supports the numeric data types shown in Table 3.1.

Chapter 3 VISUAL BASIC: THE LANGUAGE86

2877c03.qxd 11/11/01 4:15 PM Page 86

http://www.sybex.com

Table 3.1: Visual Basic Numeric Data Types

Data Type Memory Stores

Representation

Short (Int16) 2 bytes Integer values in the range –32,768 to 32,767.

Integer (Int32) 4 bytes Integer values in the range –2,147,483,648 to 2,147,483,647.

Long (Int64) 8 bytes Very large integer values.

Single 4 bytes Single-precision floating-point numbers. It can represent negative
numbers in the range –3.402823E38 to –1.401298E–45 and positive
numbers in the range 1.401298E–45 to 3.402823E38. The value 0 can’t
be represented precisely (it’s a very, very small number, but not
exactly 0).

Double 8 bytes Double-precision floating-point numbers. It can represent negative
numbers in the range –1.79769313486232E308 to
–4.94065645841247E–324 and positive numbers in the range
4.94065645841247E–324 to 1.79769313486232E308.

Decimal 16 bytes Integer and floating-point numbers scaled by a factor in the range
from 0 to 28. See the description of the Decimal data type for the
range of values you can store in it.

VB6 ➠ VB.NET

The Short data type is the same as the Integer data type of VB6. The new Integer data type is the same as
the Long data type of VB6; the VB.NET Long data type is new and can represent extremely large integer
values. The Decimal data type is new to VB.NET, and you use it when you want to control the accuracy of
your calculations in terms of number of decimal digits.

Integer Variables

There are three different types of variables for storing integers, and the only difference is the range
of numbers you can represent with each type. As you understand, the more bytes a type takes, the
larger values it can hold. The type of integer variable you’ll use depends on the task at hand. You
should choose the type that can represent the largest values you anticipate will come up in your cal-
culations. You can go for the Long type, to be safe, but Long variables are four times as large as
Short variables, and it takes the computer longer to process them.

The statements in Listing 3.1 will help you understand when to use the various integer data types.
Each numeric data type exposes the MinValue and MaxValue properties, which return the mini-
mum and maximum values that can be represented by the corresponding data type. I have included
comments after each statement to explain the errors produced by some of the statements.

87VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 87

http://www.sybex.com

Listing 3.1: Experimenting with the Ranges of Numeric Variables

Dim shortInt As Int16
Dim Int As Int32
Dim longInt As Int64
Console.WriteLine(shortInt.MinValue)
Console.WriteLine(shortInt.MaxValue)
Console.WriteLine(Int.MinValue)
Console.WriteLine(Int.MaxValue)
Console.WriteLine(longInt.MinValue)
Console.WriteLine(longInt.MaxValue)
shortInt = shortInt.MaxValue + 1
‘ ERROR, exceeds the maximum value of the Short data type
Int = shortInt.MaxValue + 1
‘ OK, is within the range of the Integer data type
Int = Int.MaxValue + 1
‘ ERROR, exceeds the maximum value of the Integer data type
Int = Int.MinValue – 1
‘ ERROR, exceeds the minimum value of the Integer data type
longInt = Int.MaxValue + 1
‘ OK, is within the range of the Long data type
longInt = longInt.MaxValue + 1
‘ ERROR, exceeds the range of all integer data types

The six WriteLine statements will print the minimum and maximum values you can represent
with the integer data types. The following statement attempts to assign to a Short integer variable a
value that exceeds the largest possible value you can represent with the Short data type, and it will
generate an error. If you attempt to store the same value to an Integer variable, there will be no prob-
lem, because this value is well within the range of the Integer data type.

The next two statements attempt to store to an Integer variable two values that are also outside
the range that an Integer can represent. The first value exceeds the range of positive values, and the
second exceeds the range of the negative values.

If you attempt to store these values to a Long variable, there will be no problem. If you exceed
the range of values that can be represented by the Long data type, you’re out of luck. This value can’t
be represented as an integer, and you must store it in one of the variable types discussed in the next
sections.

Single- and Double-Precision Numbers

The names Single and Double come from single-precision and double-precision numbers. Double-
precision numbers are stored internally with greater accuracy than single-precision numbers. In scien-
tific calculations, you need all the precision you can get; in those cases, you should use the Double
data type.

The result of the operation 1 / 3 is 0.333333… (an infinite number of digits “3”). You could
fill 64 MB of RAM with “3” digits, and the result would still be truncated. Here’s a simple, but illu-
minating, example:

Chapter 3 VISUAL BASIC: THE LANGUAGE88

2877c03.qxd 11/11/01 4:15 PM Page 88

http://www.sybex.com

In a button’s Click event handler, declare two variables as follows:

Dim a As Single, b As Double

Then enter the following statements:

a = 1 / 3
Console.WriteLine(a)

Run the application and you should get the following result in the Output window:

.3333333

There are seven digits to the right of the decimal point. Break the application by pressing
Ctrl+Break and append the following lines to the end of the previous code segment:

a = a * 100000
Console.WriteLine(a)

This time the following value will be printed in the Output window:

33333.34

The result is not as accurate as you might have expected initially—it isn’t even rounded properly.
If you divide a by 100,000, the result will be:

0.3333334

which is different from the number we started with (0.3333333). This is an important point in
numeric calculations, and it’s called error propagation. In long sequences of numeric calculations, errors
propagate. Even if you can tolerate the error introduced by the Single data type in a single operation,
the cumulative errors may be significant.

Let’s perform the same operations with double-precision numbers, this time using the variable b.
Add these lines to the button’s Click event handler:

b = 1 / 3
Console.WriteLine(b)
b = b * 100000
Console.WriteLine(b)

This time, the following numbers are displayed in the Output window:

0.333333333333333
33333.3333333333

The results produced by the double-precision variables are more accurate.

Note Smaller-precision numbers are stored in fewer bytes, and larger-precision numbers are stored in more bytes. The
actual format of the floating-point numeric types is complicated and won’t be discussed in this book. Just keep in mind that
fractional values can’t be always represented precisely in the computer’s memory; they produce more accurate results, but
using more precision requires more memory.

Why are such errors introduced in our calculations? The reason is that computers store numbers
internally with two digits: zero and one. This is very convenient for computers, because electronics

89VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 89

http://www.sybex.com

understand two states: on and off. As a matter of fact, all the statements are translated into bits
(zeros and ones) before the computer can understand and execute them. The binary numbering sys-
tem used by computers is not much different than the decimal system we, humans, use; computers
just use fewer digits. We humans use 10 different digits to represent any number, whole or frac-
tional, because we have 10 fingers. Just as with the decimal numbering system some numbers can’t be
represented precisely, there are numbers that can’t be represented precisely in the binary system. Let
me give you a more illuminating example.

Create a single-precision variable, a, and a double-precision variable, b, and assign the same value
to them:

Dim a As Single, b As Double
a = 0.03007
b = 0.03007

Then print their difference:

Console.WriteLine(a-b)

If you execute these lines, the result won’t be zero! It will be -6.03199004634014E-10. This is a very
small number that can also be written as 0.000000000603199004634014. Because different numeric
types are stored differently in memory, they don’t quite match. What this means to you is that all vari-
ables in a calculation should be of the same type. In addition, don’t make comparisons like:

If a = b Then { do something }

Use a threshold instead. If the difference is smaller than a threshold, then the two values can be
considered equal (depending on the nature of your calculations, of course):

If (a - b) < 0.000001 Then { do something }

If your applications involve heavy math, always follow the values of the intermediate results to see
where truncation errors were introduced.

Eventually, computers will understand mathematical notation and will not convert all numeric
expressions into values, as they do today. If you multiply the expression 1/3 by 3, the result should
be 1. Computers, however, must convert the expression 1/3 into a value before they can multiply it
with 3. Since 1/3 can’t be represented precisely, the result of the (1/3) × 3 will not always be 1. If
the variables a and b are declared as Single or Double, the following statements will print 1:

a = 3
b = 1 / a
Console.WriteLine(b * a)

If the two variables are declared as Decimal, however, the result will be a number very close to 1,
but not exactly 1 (it will be 0.9999999999999999999999999999—there are 28 digits after the
decimal period).

The Decimal Data Type

Variables of the last numeric data type, Decimal, are stored internally as integers in 16 bytes and
are scaled by a power of 10. The scaling power determines the number of decimal digits to the right

Chapter 3 VISUAL BASIC: THE LANGUAGE90

2877c03.qxd 11/11/01 4:15 PM Page 90

http://www.sybex.com

of the floating point, and it’s an integer value from 0 to 28. When the scaling power is 0, the value is
multiplied by 100, or 1, and it’s represented without decimal digits. When the scaling power is 28,
the value is divided by 1028 (which is 1 followed by 28 zeros—an enormous value), and it’s repre-
sented with 28 decimal digits.

The largest possible value you can represent with a Decimal value is an integer:
79,228,162,514,264,337,593,543,950,335. The smallest number you can represent with a Decimal
variable is the negative of the same value. These values use a scaling factor of 0.

VB6 ➠ VB.NET

The Decimal data type is new to VB.NET and has replaced the Currency data type of previous versions of
VB. The Currency type was introduced to handle monetary calculations and had a precision of four decimal
digits. It was dropped from the language because it didn’t provide enough accuracy for the types of calcu-
lations it was designed for. Most programmers wanted to be able to control the accuracy of their calcula-
tions, so a new, more flexible type was introduced, the Decimal type.

When the scaling factor is 28, the largest value you can represent with a Decimal variable is quite
small, actually. It’s 7.9228162514264337593543950335 (and the largest negative value is the
same with the minus sign). The number zero can’t be represented precisely with a Decimal variable
scaled by a factor of 28. The smallest positive value you can represent with the same scaling factor is
0.00…01 (there are 27 zeros between the decimal period and the digit 1)—an extremely small
value, but still not quite zero.

Note The more accuracy you want to achieve with a Decimal variable, the smaller the range of available values you have
at your disposal—just as with the other numeric types, or just like about everything else in life.

When using Decimal numbers, VB keeps track of the decimal digits (the digits following the dec-
imal point) and treats all values as integers. The value 235.85 is represented as the integer 23585,
but VB knows that it must scale the value by 100 when it’s done using it. Scaling by 100 (that is,
102) corresponds to shifting the decimal point by two places. First, VB multiplies this value by 100
to make it an integer. Then, it divides it by 100 to restore the original value. Let’s say you want to
multiply the following values:

328.558 * 12.4051

First, you must turn them into integers. You must remember that the first number has three deci-
mal digits and the second number has four decimal digits. The result of the multiplication will have
seven decimal digits. So you can multiply the following integer values:

328558 * 124051

and then treat the last seven digits of the result as decimals. Use the Windows Calculator (in the
Scientific view) to calculate the previous product. The result is 40,757,948,458. The actual value
after taking into consideration the decimal digits is 4,075.7948458. This is how VB works with the

91VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 91

http://www.sybex.com

Decimal data type. If you perform the same calculations with Decimals in VB, you will get the exact
same result. Insert the following lines in a button’s Click event handler and execute the program:

Dim a As Decimal = 328.558
Dim b As Decimal = 12.4051
Dim c As Decimal
c = a * b
Console.WriteLine(c)

If you perform the same calculations with Single variables, the result will be truncated (and
rounded) to 3 decimal digits: 4,075.795. Notice that the Decimal data type didn’t introduce any
rounding errors. It’s capable of representing the result with the exact number of decimal digits. This
is the real advantage of decimals, which makes them ideal for financial applications. For scientific
calculations, you must still use Doubles. Decimal numbers are the best choice for calculations that
require a specific precision (like four or eight decimal digits).

Numeric-calculation errors due to truncation are not unique to VB, or even to Pentium processors.
This how computers and programming languages are designed, and you can’t avoid them. People who
write scientific applications have come up with techniques to minimize the effect of the truncations.
For other types of applications, the truncation errors are practically negligible. If you write financial
applications, use the Decimal data type and round the amounts to two decimal digits at the end.

Infinity and Other Oddities

VB.NET can represent two very special values, which may not be numeric values themselves but are
produced by numeric calculations: NaN (not a number) and Infinity. If your calculations produce
NaN or Infinity, you should confirm the data and repeat the calculations, or give up. For all practi-
cal purposes, neither NaN nor Infinity can be used in everyday business calculations.

VB6 ➠ VB.NET

VB.NET introduces the concepts of an undefined number (NaN) and infinity to Visual Basic. In the past, any
calculations that produced an abnormal result (i.e., a number that couldn’t be represented with the exist-
ing data types) generated runtime errors. VB.NET can handle abnormal situations much more gracefully.
NaN and Infinity aren’t the type of result you’d expect from meaningful numeric calculations, but at least
they don’t produce run-errors.

Some calculations produce undefined results, like infinity. Mathematically, the result of dividing
any number by zero is infinity. Unfortunately, computers can’t represent infinity, so they produce an
error when you request a division by zero. VB.NET will report a special value, which isn’t a number:
the Infinity value. If you call the ToString method of this value, however, it will return the string
“Infinity”. Let’s generate an Infinity value. Start by declaring a Double variable, dblVar:

Dim dblVar As Double = 999

Then divide this value by zero:

Dim infVar as Double
infVar = dblVar / 0

Chapter 3 VISUAL BASIC: THE LANGUAGE92

2877c03.qxd 11/11/01 4:15 PM Page 92

http://www.sybex.com

and display the variable’s value:

MsgBox(infVar)

The string “Infinity” will appear on a message box. This string is just a description; it tells you
that the result is not a valid number (it’s a very large number that exceeds the range of numeric
values that can be represented in the computer’s memory).

Another calculation that will yield a non-number is when you divide a very large number by a
very small number. If the result exceeds the largest value that can be represented with the Double
data type, the result is Infinity. Declare three variables as follows:

Dim largeVar As Double = 1E299
Dim smallVar As Double = 1E-299
Dim result As Double

Note The notation 1E299 means 10 raised to the power of 299, which is an extremely large number. Likewise, 1E-
299 means 10 raised to the power of –299, which is equivalent to dividing 10 by a number as large as 1E299.

Then divide the large variable by the small variable and display the result:

result = largeVar / smallVar
MsgBox(result)

The result will be Infinity. If you reverse the operands (that is, you divide the very small by the
very large variable), the result will be zero. It’s not exactly zero, but the Double data type can’t accu-
rately represent numeric values that are very, very close to zero.

Not a Number (NaN)

NaN is not new. Packages like Mathematica and Excel have been using it for years. The value NaN indicates
that the result of an operation can’t be defined: it’s not a regular number, not zero, and not Infinity. NaN is
more of a mathematical concept, rather than a value you can use in your calculations. The Log() function,
for example, calculates the logarithm of positive values. By default, you can’t calculate the logarithm of a
negative value. If the argument you pass to the Log() function is a negative value, the function will return
the value NaN to indicate that the calculations produced an invalid result.

The result of the division 0 / 0, for example, is not a numeric value. If you attempt to enter the
statement “0 / 0” in your code, however, VB will catch it even as you type and you’ll get the error
message “Division by zero occurs in evaluating this expression”.

To divide zero by zero, set up two variables as follows:

Dim var1, var2 As Double
Dim result As Double
var1 = 0
var2 = 0
result = var1 / var2
MsgBox(result)

93VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 93

http://www.sybex.com

If you execute these statements, the result will be a NaN. Any calculations that involve the result
variable (a NaN value) will yield NaN as a result. The statements:

result = result + result
result = 10 / result
result = result + 1E299
MsgBox(result)

will all yield NaN.
If you make var2 a very small number, like 1E-299, the result will be zero. If you make var1 a very

small number, then the result will be Infinity.
For most practical purposes, Infinity is handled just like NaN. They’re both numbers that

shouldn’t occur in business applications, and when they do, it means you must double-check your
code or your data. They are much more likely to surface in scientific calculations, and they must be
handled with the statements described in the next section.

Testing for Infinity and NaN

To find out whether the result of an operation is a NaN or Infinity, use the IsNaN and IsInfinity
methods of the Single and Double data type. The Integer data type doesn’t support these methods,
even though it’s possible to generate Infinity and NaN results with Integers. If the IsInfinity method
returns True, you can further examine the sign of the Infinity value with the IsNegativeInfinity and
IsPositiveInfinity methods.

In most situations, you’ll display a warning and terminate the calculations. The statements of
Listing 3.2 do just that. Place these statements in a Button’s Click event handler and run the
application.

Listing 3.2: Handling NaN and Infinity Values

Dim var1, var2 As Double
Dim result As Double
var1 = 0
var2 = 0
result = var1 / var2
If result.IsInfinity(result) Then

If result.IsPositiveInfinity(result) Then
MsgBox(“Encountered a very large number. Can’t continue”)

Else
MsgBox(“Encountered a very small number. Can’t continue”)

End If
Else

If result.IsNaN(result) Then
MsgBox(“Unexpected error in calculations”)

Else
MsgBox(“The result is “ & result.ToString)

End If
End If

Chapter 3 VISUAL BASIC: THE LANGUAGE94

2877c03.qxd 11/11/01 4:15 PM Page 94

http://www.sybex.com

This listing will generate a NaN value. Change the value of the var1 variable to 1 to generate a
positive infinity value, or to –1 to generate a negative infinity value. As you can see, the IsInfinity,
IsPositiveInfinity, IsNegativeInfinity, and IsNaN methods require that the variable be passed as
argument, even though these methods apply to the same variable. An alternate, and easier to read,
notation is the following:

System.Double.IsInfinity(result)

This statement is easier to understand, because it makes it clear that the IsInfinity method is a
member of the System.Double class. (As if variables that expose methods and properties weren’t
enough, a class has now surfaced! The class is the ‘factory” that produces the object. The code that
implements the various methods and properties of the variable is stored in the class. You will learn
the relationship between objects and classes as you move along.)

This odd notation is something you will have to get used to. Some methods don’t apply to the
object they refer to, and they’re called shared methods. They act on the value passed as argument and
not the object to which you apply them. You’ll read more on shared methods (and their counter-
parts, the reference methods) in Chapter 8.

If you change the values of the var1 and var2 variables to the following and execute the applica-
tion, you’ll get the message “Encountered a very large number”:

var1 = 1E+299
var2 = 1E-299

If you reverse the values, you’ll get the message “Encountered a very small number.” In any case,
the program will terminate gracefully and let you know the type of problem that prevents further
calculations.

The Byte Data Type

None of the previous numeric types is stored in a single byte. In some situations, however, data is
stored as bytes, and you must be able to access individual bytes. The Byte type holds an integer in
the range 0 to 255. Bytes are frequently used to access binary files, image and sound files, and so on.
Note that you no longer use bytes to access individual characters. Unicode characters are stored in
two bytes.

To declare a variable as a Byte, use the following statement:

Dim n As Byte

The variable n can be used in numeric calculations too, but you must be careful not to assign the
result to another Byte variable if its value may exceed the range of the Byte type. If the variables A
and B are initialized as follows:

Dim A As Byte, B As Byte
A = 233
B = 50

the following statement will produce an overflow exception:

Console.WriteLine(A + B)

95VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 95

http://www.sybex.com

The same will happen if you attempt to assign this value to a Byte variable with the following
statement:

B = A + B

The result (283) can’t be stored in a single byte. Visual Basic generates the correct answer, but it
can’t store it into a Byte variable. If you do calculations with Byte variables and the result may exceed
the range of the Byte data type, you must convert them to integers, with a statement like the following:

Console.WriteLine((CInt(A) + CInt(B)))

The CInt() function converts its argument to an Integer value. You will find more information
on converting variable types later in this chapter, in the section “Converting Variable Types.” Of
course, you can start with integer variables and avoid all the conversions between types. In rare occa-
sions, however, you may have to work with bytes and insert the appropriate code to avoid overflows.

Tip The operators that won’t cause overflows are the Boolean operators AND, OR, NOT, and XOR, which are fre-
quently used with Byte variables. These aren’t logical operators that return True or False. They combine the matching bits
in the two operands and return another byte. If you combine the numbers 199 and 200 with the AND operator, the
result is 192. The two values in binary format are 11000111 and 11001000. If you perform a bitwise AND
operation on these two values, the result is 11000000, which is the decimal value 192.

In addition to the Byte data type, VB.NET provides a Signed Byte data type, which can represent
signed values in the range from –128 to 127.

Boolean Variables

The Boolean data type stores True/False values. Boolean variables are, in essence, integers that take
the value –1 (for True) and 0 (for False). Actually, any non-zero value is considered True. Boolean
variables are declared as:

Dim failure As Boolean

and they are initialized to False.

Boolean variables are used in testing conditions, such as the following:

If failure Then MsgBox(“Couldn’t complete the operation”)

They are also combined with the logical operators AND, OR, NOT, and XOR. The NOT
operator toggles the value of a Boolean variable. The following statement is a toggle:

running = Not running

If the variable running is True, it’s reset to False, and vice versa. This statement is a shorter way of
coding the following:

Dim running As Boolean
If running = True Then

running = False
Else

running = True
End If

Chapter 3 VISUAL BASIC: THE LANGUAGE96

2877c03.qxd 11/11/01 4:15 PM Page 96

http://www.sybex.com

Boolean operators operate on Boolean variables and return another Boolean as their result. The
following statements will display a message if one (or both) of the variables ReadOnly and Hidden are
True (presumably these variables represent the corresponding attributes of a file):

If ReadOnly Or Hidden Then
MsgBox(“Couldn’t open the file”)

Else
{ statements to open and process file }

End If

You can reverse the logic and process the file if none of these variables are set to True:

If Not (ReadOnly Or Hidden) Then
{ statements to process the file }

Else
MsgBox(“Couldn’t open the file”)

End If

The condition of the If statement combines the two Boolean values with the Or operator. If both,
or one, of them are True, the parenthesized expression is True. This value is negated with the Not
operator, and the If clause is executed only if the result of the negation is True. If ReadOnly is True
and Hidden is False, the expression is evaluated as:

If Not (True Or False)

(True Or False) is True, which reduces the expression to

If Not True

which, in turn, is False.

String Variables

The String data type stores only text, and string variables are declared with the String type:

Dim someText As String

You can assign any text to the variable someText. You can store nearly 2 GB of text in a string vari-
able (that’s 2 billion characters and is much more text than you care to read on a computer screen).
The following assignments are all valid:

Dim aString As String
aString = “Now is the time for all good men to come to the aid of their country”
aString = “”
aString = “There are approximately 29,000 words in this chapter”
aString = “25,000”

The second assignment creates an empty string, and the last one creates a string that just happens
to contain numeric digits, which are also characters. The difference between these two variables

Dim aNumber As Integer = 25000
Dim aString As String = “25,000”

97VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 97

http://www.sybex.com

is that they hold different values. The aString variable holds the characters “2”, “5”, “,”, “0”, “0”, and
“0”, and aNumber holds a single numeric value. However, you can use the variable aString in numeric
calculations and the variable aNumber in string operations. VB will perform the necessary conversions,
as long as the Strict option is off (its default value).

VB6 ➠ VB.NET

Another feature not supported by VB.NET is the fixed-length string. With earlier versions of VB, you could
declare variables of fixed length with a statement like the following, to speed up string operations:

Dm shortText As String * 100
This is no longer needed, as the Framework supports two powerful classes for manipulating strings: the
String class and the StringBuilder class. They’re both described in Chapter 11.

Character Variables

Character variables store a single Unicode character in two bytes. In effect, characters are unsigned
short integers (UInt16); you can use the CChar() function to convert integers to characters, and the
CInt() function to convert characters to their equivalent integer values.

VB6 ➠ VB.NET

Character variables are new to VB.NET, and they correspond to the String * 1 type so often used with pre-
vious versions of VB.

To declare a character variable, use the Char keyword:

Dim char1, char2 As Char

You can initialize a character variable by assigning either a character or a string to it. In the latter
case, only the first character of the string is assigned to the variable. The following statements will
print the characters “a” and “A” to the Output window:

Dim char1 As Char = “a”, char2 As Char = “ABC”
Console.WriteLine(char1)
Console.WriteLine(char2)

The integer values corresponding to the English characters are the ANSI codes of the equivalent
characters. The statement:

Console.WriteLine(CInt(“a”))

will print the value 65.
If you convert the Greek character alpha (α) to an integer, its value is 945. The Unicode value of

the famous character π is 960.
Character variables are used in conjunction with strings. You’ll rarely save real data as characters.

However, you may have to process the individual characters in a string, one at a time. Because the

Chapter 3 VISUAL BASIC: THE LANGUAGE98

2877c03.qxd 11/11/01 4:15 PM Page 98

http://www.sybex.com

Char data type exposes interesting methods (like IsLetter, IsDigit, IsPunctuation, and so on), you
can use these methods in your code. Let’s say the string variable password holds a user’s new password,
and you require that passwords contain at least one special symbol. The code segment of Listing 3.3
scans the password and rejects if it contains letter and digits only.

Listing 3.3: Processing Individual Characters

Dim password As String, ch As Char
Dim i As Integer
Dim valid As Boolean = False
While Not valid

password = InputBox(“Please enter your password”)
For i = 0 To password.Length - 1

ch = password.Chars(i)
If Not System.Char.IsLetterOrDigit(ch) Then

valid = True
Exit For

End If
Next
If valid Then

MsgBox(“You new password will be activated immediately!”)
Else

MsgBox(“Your password must contain at least one special symbol!”)
End If

End While

Note If you are not familiar with the If…Then, For…Next, or While…End While structures, you can read their
description in the “Flow-Control Statements” section of this chapter and then return to check out this example.

The code prompts the user with an input box to enter a password. (Later in the book, you’ll find
out how to create a form that accepts the characters typed but displays asterisks in their place, so
that the password isn’t echoed on the screen.) The valid variable is Boolean, and it’s initialized to
False (you don’t have to initialize a Boolean variable to False, because this is its default initial value,
but it makes the code easier to read). It’s set to True from within the body of the loop, only if the
password contains a character that is not a letter or a digit. We set it to False initially, so that the
While…End While loop will be executed at least once. This loop will keep prompting the user until a
valid password is entered.

The loop scans the string variable password, one letter at a time. At each iteration, the next letter is
copied into the ch variable. The Chars property of the String data type is an array that holds the indi-
vidual characters in the string (another example of the functionality built into the data types).

Then the program examines the current character. The IsLetterOrDigit method of the Char data
type returns True if a character is either a letter or a digit. If the current character is a symbol, the
program sets the valid variable to True, so that the outer loop won’t be executed again, and it exits
the For…Next loop. Finally, it prints the appropriate message and either prompts for another pass-
word or quits.

99VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 99

http://www.sybex.com

You could write more compact code by using the IsLetterOrDigit method directly on the indi-
vidual characters of the password, instead of storing them first in a Char variable. Listing 3.4 is
another way to code the same program. (I’ve omitted the variable declarations at the beginning of the
code; they’re the same as before.)

Listing 3.4: Requesting a Password with One Special Character

While True
password = InputBox(“Please enter your password”)
For i = 0 To password.Length - 1

If Not System.Char.Chars(i).IsLetterOrDigit(password.Chars(i)) Then
MsgBox(“Your new password will be activated immediately!”)
Exit Sub

End If
Next
MsgBox(“Your password must contain at least one special symbol!”)

End While

It’s shorter and certainly much more real code. There’s nothing wrong with the first implementa-
tion, but the second one is “programmer’s code” as opposed to “beginner’s code.” Don’t worry if
you don’t quite understand how it works; you can come back and explore it after you finish this
chapter.

Tip Notice that neither implementation would be possible without the methods exposed by the Char function. Although
the second implementation doesn’t use a variable of Char type, it relies on the functionality exposed by the Char data type.
The expression password.Chars(i) is actually a character, and that’s why we can apply to it the members of the Char
data type.

Date Variables

Date and time values are stored internally in a special format, but you don’t need to know the exact
format. They are double-precision numbers: the integer part represents the date and the fractional
part represents the time. A variable declared as Date can store both date and time values with a state-
ment like the following:

Dim expiration As Date

The following are all valid assignments:

expiration = #01/01/2004#
expiration = #8/27/2001 6:29:11 PM#
expiration = “July 2, 2002”
expiration = Now()

(The Now() function returns the current date and time). The pound sign tells Visual Basic to
store a date value to the expiration variable, just as the quotes tell Visual Basic that the value is a string.
You can store a date as string to a Date variable, but it will be converted to the appropriate format.

Chapter 3 VISUAL BASIC: THE LANGUAGE100

2877c03.qxd 11/11/01 4:15 PM Page 100

http://www.sybex.com

If the Strict option is on, you can’t specify dates using the long date format (as in the third statement
of this example).

Tip The date format is determined by the Regional Settings (found in Control Panel). In the United States, it’s
mm/dd/yy (in other countries, the format is dd/mm/yy). If you assign an invalid date to a date variable, like
23/04/2002, Visual Basic will automatically swap the month and day values to produce a valid date as you type. If
the date is invalid even after the swapping of the month and day values, then an error message will appear in the Task List
window. The description of the error is “Expected expression.”

The Date data type is extremely flexible; Visual Basic knows how to handle date and time values,
so that you won’t have to write complicated code to perform the necessary conversions. To manipu-
late dates and times, use the members of the Date type, which are discussed in detail in Chapter 12,
or the Date and Time functions, which are described in the reference “VB.NET Functions and
Statements” on the book’s companion CD. The difference between two dates is calculated by the
function DateDiff(). This function accepts as argument a constant that determines the units in
which the difference will be expressed (days, hours, and so on) as well as two dates, and it returns the
difference between them in the specified increments. The following statement returns the number of
days in the current millennium:

Dim days As Long
days = DateDiff(DateInterval.Day, #12/31/2000#, Now())

You can also call the Subtract method of the Date class, which accepts a date as argument and
subtracts it from a Date variable. The difference between the two dates is returned as a TimeSpan
object, which includes number of days, hours, minutes, and so on. For more information on the
members of the Date class, see Chapter 12.

VB6 ➠ VB.NET

Previous versions of VB allowed direct numeric calculations with date variables. For example, you used to
be able to calculate the difference between two dates in days with by subtracting two date variables
directly:

days = date1 – date2 ‘ DOESN’T WORK IN VB.NET

VB.NET doesn’t allow the use of date variables with the arithmetic operators, even if the Strict option has
been turned off.

Data Type Identifiers

Finally, you can omit the As clause of the Dim statement, yet create typed variables, with the vari-
able declaration characters, or data type identifiers. These characters are special symbols, which you
append to the variable name to denote the variable’s type. To create a string variable, you can use
the statement:

Dim myText$

101VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 101

http://www.sybex.com

The dollar sign signifies a string variable. Notice that the name of the variable includes the dollar
sign—it’s myText$, not myText. To create a variable of a particular type, use one of the data declara-
tion characters in Table 3.2 (not all data types have their own identifier).

Table 3.2: Data Type Definition Characters

Symbol Data Type Example

$ String A$, messageText$

% Integer (Int32) counter%, var%

& Long (Int64) population&, colorValue&

! Single distance!

Double ExactDistance#

@ Decimal Balance@

Using type identifiers doesn’t help in producing the cleanest and easiest to read code. If you
haven’t used them in the past, there’s no really good reason to start using them now.

The Strict and Explicit Options

Previous versions of Visual Basic didn’t require that variables be declared before they were used.
VB.NET doesn’t require that you declare your variables either, but the default behavior is to throw an
exception if you attempt to use a variable that hasn’t been previously declared. If an undeclared vari-
able’s name appears in your code, the editor will underline the variable’s name with a wiggly red line,
indicating that it caught an error. Rest the pointer over the segment of the statement in question to
see the description of the error.

To change the default behavior, you must insert the following statement at the beginning of the
file, above the Imports statements:

Option Explicit Off

The Option Explicit statement must appear at the very beginning of the file. This setting affects
the code in the current module, not in all files of your project or solution.

The sample code in this section assumes that the Option Explicit has been set to Off. For all
other examples in the book, I will assume that this option is set to On. Not only that, but in the first
few chapters I include the declarations of the variables I use in short code samples that demonstrate
an object property or the syntax of a function.

You can also specify the settings of the Strict and Explicit options from the Property Pages dia-
log box of the current project, as shown in Figure 3.1. To open this dialog box, right-click the name
of the project in the Solution Explorer and, from the context menu, select Properties. The settings
you specify here take effect for all the components of the current project.

Chapter 3 VISUAL BASIC: THE LANGUAGE102

2877c03.qxd 11/11/01 4:15 PM Page 102

http://www.sybex.com

The default value of the Option Explicit statement is On. This is also the recommended value,
and you should not make a habit of changing this setting. Most programmers familiar with previous
versions of VB will not like having to declare their variables, but using variants for all types of vari-
ables has never been a good idea. In the later section “Why Declare Variables?”, you will see an
example of the pitfalls you’ll avoid by declaring your variables. (The truth is that all VB programmers
will miss variants, but this is a very small price to pay for the new features added to the language.)

By setting the Explicit option to Off, you’re telling VB that you intend to use variables without
declaring them. As a consequence, VB can’t make any assumption as to the variable’s type, so it uses
a generic type of variable that can hold any type of information. These variables are called Object
variables, and they’re equivalent to the old variants.

As you work with the Option Explicit set to Off, you can use variables as needed, without
declaring them first. When Visual Basic meets an undeclared variable name, it creates a new variable
on the spot and uses it. The new variable’s type is Object, the generic data type that can accommo-
date all other data types. Using a new variable in your code is equivalent to declaring it without type.
Visual Basic adjusts its type according to the value you assign to it. Create two variables, var1 and
var2, by referencing them in your code with statements like the following ones:

var1 = “Thank you for using Fabulous Software”
var2 = 49.99

The var1 variable is a string variable, and var2 is a numeric one. You can verify this with the Get-
Type method, which returns a variable’s type. The following statements print the types shown below
each statement, in bold:

Console.WriteLine(“Variable var1 is “ & var1.GetType().ToString)
Variable var1 is System.String
Console.WriteLine(“Variable var2 is “ & var2.GetType().ToString)
Variable var2 is System.Double

Later in the same program you can reverse the assignments:

var1 = 49.99
var2 = “Thank you for using Fabulous Software”

Figure 3.1

Setting the Strict
and Explicit options
on the project’s
Property Pages

103VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 103

http://www.sybex.com

If you execute the previous Print statements again, you’ll see that the types of the variables have
changed. The var1 variable is now a double, and var2 is a string.

Another related option is the Strict option, which is Off by default. The Strict option tells the
compiler whether the variables should be strictly typed. A strictly typed variable can accept values of the
same type as the type it was declared with. With the Strict option set to Off, you can use a string
variable that holds a number in a numeric calculation:

Dim a As String = “25000”
Console.WriteLine(a / 2)

The last statement will print the value 12500 on the Output window. Likewise, you can use
numeric variables in string calculations:

Dim a As Double = 31.03
a = a + “1”

If you turn the Strict option on by inserting the following statement at the beginning of the file,
you won’t be able to mix and match variable types:

Option Strict On

If you attempt to execute any of the last two code segments while the Strict option is On, the
compiler will underline a segment of the statement to indicate an error. If you rest the pointer over
the underlined segment of the code, the following error message will appear in a tip box:

Option strict disallows implicit conversions from String to Double

(or whatever type of conversion is implied by the statement).
When the Strict option is set to On, the compiler doesn’t disallow all implicit conversions

between data types. For example, it will allow you to assign the value of an Integer to a Long, but
not the opposite. The Long value may exceed the range of values that can be represented by an Inte-
ger variable. You will find more information on implicit conversions in the section “Widening and
Narrowing Conversions,” later in this chapter.

Moreover, with Option Strict On, you can’t late-bind an expression. Late binding means to call a
method or a property of an object, but not be able to resolve this call at design time.

When you declare an object, like a Pen or a Color object, and then you call one of its properties,
the compiler can verify that the member you call exists. Take a look at the following lines:

Dim myPen As Pen
myPen = New Pen(Color.Red)
myPen.Width = 2

These three statements declare a Pen object and initialize it to red color and a width of two pixels.
All the shapes you’ll draw with this pen will be rendered in red, and their outlines will be two pixels wide.
This is early binding, because as soon as the variable is declared, the compiler can verify that the Pen
object has a Width and a Red property.

Now let’s use an Object variable to store our Pen object:

Dim objPen As Object
objPen = New Pen(Color.Red)
objPen.Width = 2

Chapter 3 VISUAL BASIC: THE LANGUAGE104

2877c03.qxd 11/11/01 4:15 PM Page 104

http://www.sybex.com

This is called late binding, and it will work only if the Strict option is turned off. The objPen vari-
able is an Object variable and can store anything. The compiler has no way of knowing what type of
object you’ve stored to the variable, and therefore it can’t verify that the objPen variable exposes a
Width property. In this short segment, it’s pretty obvious that the objPen variable holds a Pen object,
but in a larger application the objPen variable may be set by any statement.

Early binding seems pretty restricting, but you should always use it. You should keep the default
value only when absolutely necessary (which is rare). Notice that you don’t have to turn on the Strict
option to use early binding—just declare your variables with a specific type. Early-bound variables
display their members in a drop-down list when you enter their name, followed by a period. If you
enter myPen and the following period in the editor’s window, you will see a list of all the methods
supported by the Pen object. However, if you enter objPen and the following period, you will see a list
with just four members—the members of any Object variable.

Object Variables

Variants—variables without a fixed data type—were the bread and butter of VB programmers up to
version 6.0. VB.NET supports variants only for compatibility reasons, and you shouldn’t be sur-
prised if they’re dropped altogether from the language in a future version. Variants are the opposite
of strictly typed variables: they can store all types of values, from a single character to an object. If
you’re starting with VB.NET, you should use strictly typed variables. However, variants are a major
part of the history of VB, and most applications out there (the ones you may be called to maintain)
make use of them. So I will discuss variants briefly in this chapter and show you what was so good
(and bad) about them.

VB6 ➠ VB.NET

By default, you can’t use variants with VB.NET. In order for variables to handle any value you assign to
them, you can either declare them as Object type or turn off the Strict option. The keyword Variant has dis-
appeared from the language.

Variants were the most flexible data type because they could accommodate all other types. A vari-
able declared as Object (or a variable that hasn’t been declared at all) is handled by Visual Basic
according to the variable’s current contents. If you assign an integer value to an Object variable,
Visual Basic treats it as an integer. If you assign a string to an Object variable, Visual Basic treats it
as a string. Variants can also hold different data types in the course of the same program. Visual
Basic performs the necessary conversions for you.

To declare a variant, you can turn off the Strict option and use the Dim statement without speci-
fying a type, as follows:

Dim myVar

If you don’t want to turn off the Strict option (which isn’t recommended anyway), you can
declare the variable with the Object data type:

Dim myVar As Object

105VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 105

http://www.sybex.com

Every time your code references a new variable, Visual Basic will create an Object variable. For
example, if the variable validKey hasn’t been declared, when Visual Basic runs into the following line:

validKey = “002-6abbgd”

it will create a new Object variable and assign the value “002-6abbgd” to it.
You can use Object variables in both numeric and string calculations. Suppose the variable modem-

Speed has been declared as Object with one of the following statements:

Dim modemSpeed ‘ Option Strict = Off
Dim modemSpeed As Object ‘ Option Strict = On

and later in your code you assign the following value to it:

modemSpeed = “28.8”

The modemSpeed variable is a string variable that you can use in statements such as the following:

MsgBox “We suggest a “ & modemSpeed & “ modem.”

This statement displays the following message:

We suggest a 28.8 modem.

You can also treat the modemSpeed variable as a numeric value with the following statement:

Console.WriteLine “A “ & modemSpeed & “ modem can transfer “ & modemSpeed * _
1000 / 8 & “ bytes per second.”

This statement displays the following message:

A 28.8 modem can transfer 3600 bytes per second.

The first instance of the modemSpeed variable in the above statement is treated as a string, because
this is the variant’s type according to the assignment statement (we assigned a string to it). The sec-
ond instance, however, is treated as a number (a single-precision number). Visual Basic converts it to
a numeric value because it’s used in a numeric calculation.

Another example of this behavior of variants can be seen in the following statements:

Dim I As Integer, S As String
I = 10
S = “11”
Console.WriteLine(I + S)
Console.WriteLine(I & S)

The first WriteLine statement will display the numeric value 21, while the second statement will
print the string “1011”. The plus operator (+) tells VB to add two values. In doing so, VB must
convert the two strings into numeric values, then add them. The concatenation operator (&) tells VB
to concatenate the two strings.

Visual Basic knows how to handle variables in a way that makes sense. The result may not be
what you had in mind, but it certainly is dictated by common sense. If you really want to concate-
nate the strings “10” and “11”, you should use the & operator, which would tell Visual Basic exactly
what to do. Quite impressive, but for many programmers this is a strange behavior that can lead to

Chapter 3 VISUAL BASIC: THE LANGUAGE106

2877c03.qxd 11/11/01 4:15 PM Page 106

http://www.sybex.com

subtle errors, and they avoid it. It’s up to you to decide whether to use variants and how far you will
go with them. Sure, you can perform tricks with variants, but you shouldn’t overuse them to the
point that others can’t read your code.

You can also store dates and times in an Object variable. To assign a date or time value to a vari-
ant, surround the value with pound signs, as follows:

date1 = #03/06/1999#

All operations that you can perform on date variables (discussed in the section “Date Variables”)
you can also perform with variants, which hold date and time values.

Converting Variable Types
In some situations, you will need to convert variables from one type into another. Table 3.3 shows
the Visual Basic functions that perform data-type conversions. Actually, you will have to convert
between data types quite often now that VB doesn’t do it for you.

Table 3.3: Data-Type Conversion Functions

Function Converts Its Argument To

CBool Boolean

CByte Byte

CChar Unicode character

CDate Date

CDbl Double

CDec Decimal

CInt Integer (4-byte integer, Int32)

CLng Long (8-byte integer, Int64)

CObj Object

CShort Short (2-byte integer, Int16)

CSng Single

CStr String

To convert the variable initialized as

Dim A As Integer

to a Double, use the function:

Dim B As Double
B = CDbl(A)

107VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 107

http://www.sybex.com

Suppose you have declared two integers, as follows:

Dim A As Integer, B As Integer
A = 23
B = 7

The result of the operation A / B will be a double value. The following statement:

Console.Write(A / B)

displays the value 3.28571428571429. The result is a double, which provides the greatest possible
accuracy. If you attempt to assign the result to a variable that hasn’t been declared as Double, and the
Strict option is On, then VB.NET will generate an error message. No other data type can accept this
value without loss of accuracy.

As a reminder, the Short data type is equivalent to the old Integer type, and the CShort() func-
tion converts its argument to an Int16 value. The Integer data type is represented by 4 bytes (32
bits), and to convert a value to Int32 type, use the CInt() function. Finally, the CLng() function
converts its argument to an Int64 value.

You can also use the CType() function to convert a variable or expression from one type to
another. Let’s say the variable A has been declared as String and holds the value “34.56”. The fol-
lowing statement converts the value of the A variable to a Decimal value and uses it in a calculation:

Dim A As String = “34.56”
Dim B As Double
B = CType(A, Double) / 1.14

The conversion is necessary only if the Strict option is On, but it’s a good practice to perform
your conversions explicitly. The following section explains what may happen if your code relies to
implicit conversions.

Widening and Narrowing Conversions

In some situations, VB.NET will convert data types automatically, but not always. Let’s say you
have declared and initialized two variables, an integer and a double, with the following statements:

Dim count As Integer = 99
Dim pi As Double = 3.1415926535897931

If the Strict option is On and you attempt to assign the value of the pi variable to the count vari-
able, the compiler will generate an error message to the effect that you can’t convert a double to an
integer. The exact message is:

Option Strict disallows implicit conversions from Double to Integer

VB6 ➠ VB.NET

You will probably see this message many times, especially if you’re a VB6 programmer. In the past, VB
would store the value 3 to the count variable and proceed. If you weren’t careful, you’d lose significant dec-
imal digits and might not even know it. This implicit conversion results in loss of accuracy, and VB.NET
doesn’t perform it by default. This is a typical example of the pitfalls of turning off the Strict option.

Chapter 3 VISUAL BASIC: THE LANGUAGE108

2877c03.qxd 11/11/01 4:15 PM Page 108

http://www.sybex.com

When the Strict option is On, VB.NET will perform conversions that do not result in loss of
accuracy (precision) or magnitude. These conversions are called widening conversions, as opposed to
the narrowing conversions. When you assign an Integer value to a Double variable, no accuracy or
magnitude is lost. On the other hand, when you assign a double value to an integer variable, then
some accuracy is lost (the decimal digits must be truncated). Since you, the programmer, are in con-
trol, you may wish to give up the accuracy—presumably, it’s no longer needed. When the Strict
option is on, VB.NET doesn’t assume that you’re willing to sacrifice the accuracy, even if this is
your intention. Instead, it forces you to convert the data type explicitly with one of the data type
conversion functions. Normally, you must convert the Double value to an Integer value and then
assign it to an Integer variable:

count = CInt(pi)

This is a narrowing conversion (from a value with greater accuracy or magnitude to a value with
smaller accuracy or magnitude), and it’s not performed automatically by VB.NET. Table 3.4 sum-
marizes the widening conversions VB.NET will perform for you automatically.

Table 3.4: VB.NET Widening Conversions

Original Data Type Wider Data Type

Any type Object

Byte Short, Integer, Long, Decimal, Single, Double

Short Integer, Long, Decimal, Single, Double

Integer Long, Decimal, Single, Double

Long Decimal, Single, Double

Decimal Single, Double

Single Double

Double none

Char String

In the first beta version of Visual Studio .NET, the Strict option was on by default. It seems that
pressure from VB6 programmers forced the designers of Visual Studio to change the default setting
of this option. I expect that the default settings of the Strict option will be turned on again in the
future, and eventually you won’t be able to turn it off.

If the Strict option is off (the default value), the compiler will allow you to assign a Long variable
to an Integer variable. Should the Long variable contain a value that exceeds the range of values of
the Integer data type, then you’ll end up with a runtime error. Of course, you can avoid the runtime
error with the appropriate error-handling code. If the Strict option is on, the compiler will point out
all the statements that may cause similar runtime errors, and you can re-evaluate your choice of vari-
able types. You can also turn on the Strict option temporarily to see the compiler’s warnings, then
turn it off again.

109VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 109

http://www.sybex.com

User-Defined Data Types
In the previous sections, we assumed that applications create variables to store individual values. As a
matter of fact, most programs store sets of data of different types. For example, a program for bal-
ancing your checkbook must store several pieces of information for each check: the check’s number,
amount, date, and so on. All these pieces of information are necessary to process the checks, and ide-
ally, they should be stored together.

A structure for storing multiple values (of the same or different type) is called a record. For
example, each check in a checkbook-balancing application is stored in a separate record, as shown in
Figure 3.2. When you recall a given check, you need all the information stored in the record.

To define a record in VB.NET, use the Structure statement, which has the following syntax:

Structure structureName
Dim variable1 As varType
Dim variable2 As varType
...
Dim variablen As varType

End Structure

varType can be any of the data types supported by the framework. The Dim statement can be
replaced by the Private or Public access modifiers. For structures, Dim is equivalent to Public.

After this declaration, you have in essence created a new data type that you can use in your appli-
cation. structureName can be used anywhere you’d use any of the base types (integers, doubles, and so
on). You can declare variables of this type and manipulate them as you manipulate all other variables
(with a little extra typing). The declaration for the record structure shown in Figure 3.2 is

Structure CheckRecord
Dim CheckNumber As Integer
Dim CheckDate As Date
Dim CheckAmount As Single
Dim CheckPaidTo As String

End Structure

This declaration must appear outside any procedure; you can’t declare a Structure in a subroutine
or function. The CheckRecord structure is a new data type for your application. Depending on
where the structure was declared, it may not be visible from the entire code, but it’s up to you to give
your structure the proper scope (see the section “A Variable’s Scope,” later in this chapter for more
information on variable scoping).

Figure 3.2

Pictorial representa-
tion of a record

Chapter 3 VISUAL BASIC: THE LANGUAGE110

2877c03.qxd 11/11/01 4:15 PM Page 110

http://www.sybex.com

To declare variables of this new type, use a statement such as this one:

Dim check1 As CheckRecord, check2 As CheckRecord

To assign a value to one of these variables, you must separately assign a value to each one of its
components (they are called fields), which can be accessed by combining the name of the variable and
the name of a field separated by a period, as follows:

check1.CheckNumber = 275

Actually, as soon as you type the period following the variable’s name, a list of all members to the
CheckRecord structure will appear, as shown in Figure 3.3. Notice that the structure supports a few
members on its own. You didn’t write any code for the Equals, GetType, and ToString members,
but they’re standard members of any Structure object and you can use them in your code. Both the
GetType and ToString methods will return a string like “ProjectName.FormName+CheckRecord”.

You can think of the record as an object and its fields as properties. Here are the assignment
statements for a check:

check2.CheckNumber = 275
check2.CheckDate = #09/12/2001#
check2.CheckAmount = 104.25
check2.CheckPaidTo = “Gas Co.”

You can also create arrays of records with a statement such as the following (arrays are discussed
later in this chapter):

Dim Checks(100) As CheckRecord

Each element in this array is a CheckRecord record and holds all the fields of a given check. To
access the fields of the third element of the array, use the following notation:

Checks(2).CheckNumber = 275
Checks(2).CheckDate = #09/12/2001#
Checks(2).CheckAmount = 104.25
Checks(2).CheckPaidTo = “Gas Co.”

All data types expose the Equals method, which compares an instance of a data type (a integer
variable, for example) to another instance of the same type. This is a trivial operation for simple data

Figure 3.3

Variables of
custom types
expose their mem-
bers as properties.

111VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 111

http://www.sybex.com

types, as you can compare the two variables directly. The Equals method can also compare two
Structure variables and return True if all of their fields match. If a single field differs, the two objects
represented by the variables are not identical. Use this method to compare variables declared as cus-
tom structures to avoid comparing all their members. Let’s say you have created two variables of the
CheckRecord type:

Dim c1, c2 As CheckRecord
{ assign values to the c1 and c2 variables }
If c1.Equals(c2) Then

MsgBox “Same”
Else

MsgBox “Different”
End If

You can also use arrays as Structure members. The following structure uses an array to store mul-
tiple e-mail addresses for the same person:

Structure Person
Dim First As String
Dim Last As String
Dim Address As String
Dim Phone As String
Dim EMail(10) As String

End Structure

Using this structure, you can store up to 10 e-mail addresses per person. To use the Person struc-
ture in your code, declare a variable of this type:

Dim aPerson As Person

To access the first element of the EMail member, use the following notation:

aPerson.EMail(0) = “JDoe@tex.com”

You can also declare an array of Person structures, with the following statement:

Dim allPeople(1000) As Person

This array can hold contact information for 1,000 persons, and each person is identified by an
index. That is, you must know the index corresponding to each person, or you must search the array
to locate the person you’re interested in. In Chapter 11, you’ll learn how to index and search arrays
with meaningful keys, like names, rather than indices.

To access an element of the EMail array, use two indices, one for the array of structures and
another one for the array member: allPeople(3).EMail(0), allPeople(3).EMail(1), and so on.

The Nothing Value

The Nothing value is used with Object variables and indicates a variable that has not been initial-
ized. If you want to disassociate an Object variable from the object it represents, set it to Nothing.
The following statements create an Object variable that references a Brush, use it, and then release it:

Dim brush As System.Drawing.Brush
brush = New System.Drawing.Brush(bmap)

Chapter 3 VISUAL BASIC: THE LANGUAGE112

2877c03.qxd 11/11/01 4:15 PM Page 112

http://www.sybex.com

{ use brush object to draw with }
brush = Nothing

The first statement declares a Brush variable. At this point, the brush variable is Nothing. The sec-
ond statement initializes the brush variable with the appropriate constructor. After the execution of
the second statement, the brush variable actually represents an object you can draw with. After using
it to draw something, you can release it by setting it to Nothing.

VB6 ➠ VB.NET

The Set statement is obsolete in VB.NET. You can initialize Object variables just like any other type of vari-
able, with the assignment operator.

If you want to find out whether an object variable has been initialized, use the Is keyword, as
shown in the following example:

Dim myPen As Pen
{ more statements here }
If myPen Is Nothing Then

myPen = New Pen(Color.Red)
End If

The variable myPen is initialized with the New constructor only if it hasn’t been initialized
already. If you want to release the myPen variable later in your code, you can set it to Nothing with
the assignment operator.

Examining Variable Types
Besides setting the types of variables and the functions for converting between types, Visual Basic
provides two methods that let you examine the type of a variable. They are the GetType() and Get-
TypeCode() methods. The GetType() method returns a string with the variable’s type (“Int32”,
“Decimal”, and so on). The GetTypeCode() method returns a value that identifies the variable’s
type. The code for the Double data type is 14. The values returned by the GetType() and GetType-
Code() methods for all data types are shown in Table 3.5.

Table 3.5: Variable Types and Type Codes

GetType() GetTypeCode() Description

Boolean 3 Boolean value

Byte 6 Byte value (0 to 255)

Char 4 Character

DateTime 16 Date/time value

Decimal 15 Decimal

Continued on next page

113VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 113

http://www.sybex.com

Table 3.5: Variable Types and Type Codes (continued)

GetType() GetTypeCode() Description

Double 14 Double-precision floating-point number

Int16 7 2-byte integer (Short)

Int32 9 4-byte integer (Integer)

Int64 11 8-byte integer (Long)

Object Object (a non-value variable)

SByte 5 Signed byte (–127 to 128)

Single 13 Single-precision floating-point number

String 8 String

UInt16 8 2-byte unsigned integer

UInt32 10 4-byte unsigned integer

UInt64 12 8-byte unsigned integer

Any variable exposes these methods automatically, and you can call them like this:

Dim var As Double
Console.WriteLine(“The variable’s type is “ & var.GetType)

These functions are used mostly in If structures, like the following one:

If var.GetType() Is GetType(System.Double) Then
{ code to handle a Double value }

End If

Notice that the code doesn’t reference data type names directly. Instead, it uses the value returned
by the GetType() function to retrieve the type of the class System.Double and then compares this
value to the variable’s type with the Is keyword.

Is It a Number or a String?

Another set of Visual Basic functions returns variables’ data types, but not the exact type. They
return a broader type, such as “numeric” for all numeric data types. This is the type you usually need
in your code. The following functions are used to validate user input, as well as data stored in files,
before you process them.

IsNumeric() Returns True if its argument is a number (Short, Integer, Long, Single, Double,
Decimal). Use this function to determine whether a variable holds a numeric value before passing
it to a procedure that expects a numeric value or process it as a number. You can also use this
function to test a value entered by a user when a numeric value is expected. The following state-
ments keep prompting the user with an InputBox for a numeric value. The user must enter a

Chapter 3 VISUAL BASIC: THE LANGUAGE114

2877c03.qxd 11/11/01 4:15 PM Page 114

http://www.sybex.com

numeric value, or click the Cancel button to exit. As long as the user enters nonnumeric values,
the InputBox pops up and prompts for a numeric value:

Dim strAge as String = “$”
Dim Age As Integer
While Not IsNumeric(strAge)

strAge = InputBox(“Please enter your age”)
End While

The variable strAge is initialized to a nonnumeric value so that the While…End While loop will be
executed at least once. You can use any value in the place of the dollar sign, as long as it’s not a
valid numeric value.

IsDate() Returns True if its argument is a valid date (or time). The following expressions
return True, because they all represent valid dates:

IsDate(#10/12/2010#)
IsDate(“10/12/2010”)
IsDate(“October 12, 2010”)

If the date expression includes the day name, as in the following expression, the IsDate() function
will return False:

IsDate(“Sat. October 12, 2010”) ‘ FALSE

IsArray() Returns True if its argument is an array.

IsDBNull() Detects whether an object variable has been initialized or is a DBNull value. This
function is equivalent to the IsNull() function of VB6.

IsReference() Returns True if its argument is an object. This function is equivalent to the
IsObject() function of VB6.

Tip All these functions are described in the bonus reference “VB.NET Functions and Statements,” on the CD.

Why Declare Variables?
All previous versions of Visual Basic didn’t enforce variable declaration, which was a good thing for
the beginner programmer. When you want to slap together a “quick and dirty” program, the last
thing you need is someone telling you to decide which variables you’re going to use and to declare
them before using them.

But most programmers accustomed to the free format of Visual Basic also carry their habits of
quick-and-dirty coding to large projects. When writing large applications, you will probably find
that variable declaration is a good thing. It will help you write clean code and simplify debugging.
Variable declaration eliminates the source of the most common and pesky bugs.

Let’s examine the side effects of using undeclared variables in your application. To be able to get
by without declaring your variables, you must set the Explicit option to Off. Let’s assume you’re
using the following statements to convert German marks to U.S. dollars:

DM2USD = 1.562
USDollars = amount * DM2USD

115VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 115

http://www.sybex.com

The first time your code refers to the DM2USD variable name, Visual Basic creates a new variable
and then uses it as if it was declared.

Suppose the variable DM2USD appears in many places in your application. If in one of these places
you type DM2UDS instead of DM2USD and the program doesn’t enforce variable declaration, the
compiler will create a new variable, assign it the value zero, and then use it. Any amount converted
with the DM2UDS variable will be zero! If the application enforces variable declaration, the compiler
will complain (the DM2UDS variable hasn’t been declared), and you will catch the error.

Many programmers, though, feel restricted by having to declare variables. Others live by it.
Depending on your experiences with Visual Basic, you can decide for yourself. For a small applica-
tion, you don’t have to declare variables; just insert the statement Option Explicit Off at the top of
your files. Be warned, though, that the river won’t go backward; VB.NET encourages the explicit
declaration of variables, but a future version of VB is quite likely to enforce variable declaration—in
the spirit of the other two languages of Visual Studio.

A Variable’s Scope
In addition to its type, a variable also has a scope. The scope (or visibility) of a variable is the section of
the application that can see and manipulate the variable. If a variable is declared within a procedure,
only the code in the specific procedure has access to that variable. This variable doesn’t exist for the
rest of the application. When the variable’s scope is limited to a procedure, it’s called local.

Suppose you’re coding the Click event of a Button to calculate the sum of all even numbers in the
range 0 to 100. One possible implementation is shown in Listing 3.5.

Listing 3.5: Summing Even Numbers

Private Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim i As Integer
Dim Sum As Integer
For i = 0 to 100 Step 2

Sum = Sum + i
Next
MsgBox “The sum is “ & Sum

End Sub

The variables i and Sum are local to the Button1_Click() procedure. If you attempt to set the value
of the Sum variable from within another procedure, Visual Basic will complain that the variable hasn’t
been declared. (Or, if you have turned off the Explicit option, it will create another Sum variable, ini-
tialize it to zero, and then use it. But this won’t affect the variable Sum in the Button1_Click() subrou-
tine.) The Sum variable is said to have procedure-level scope. It’s visible within the procedure and invisible
outside the procedure.

Sometimes, however, you’ll need to use a variable with a broader scope, such as one whose value is
available to all procedures within the same file. In principle, you could declare all variables outside
the procedures that use them, but this would lead to problems. Every procedure in the file would
have access to the variable, and you would need to be extremely careful not to change the value of a

Chapter 3 VISUAL BASIC: THE LANGUAGE116

2877c03.qxd 11/11/01 4:15 PM Page 116

http://www.sybex.com

variable without good reason. Variables that are needed by a single procedure (such as loop coun-
ters) should be declared in that procedure.

A new type of scope was introduced with VB.NET: the block-level scope. Variables introduced in a
block of code, such as an If statement or a loop, are local to the block but invisible outside the block.
Let’s revise the previous code segment, so that it calculates the sum of squares. To carry out the cal-
culation, we first compute the square of each value and then sum the squares. The square of each
value is stored to a variable that won’t be used outside the loop, so we can define the sqrValue variable
in the loop’s block and make it local to this specific loop, as shown in Listing 3.6.

Listing 3.6: A Variable Scoped in Its Own Block

Private Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim i, Sum As Integer
For i = 0 to 100 Step 2

Dim sqrValue As Integer
sqrValue = i * i
Sum = Sum + sqrValue

Next
MsgBox “The sum of the squares is “ & Sum

End Sub

The sqrValue variable is not visible outside the block of the For…Next loop. If you attempt to
use it before the For statement, or after the Next statement, VB will throw an exception. Insert the
statement

Console.WriteLine(sqrValue)

after the call to the MsgBox function to see what will happen: the sqrValue variable maintains its value
between iterations. If you insert the WriteLine statement after the line that declares the variable, you
will see that it’s not initialized at each iteration, even though there’s a Dim statement in the loop.
The values printed by this statement will keep getting larger, and they’re not reset to zero. Of course,
if you re-enter the block in which a variable is declared, you must initialize the variable to avoid side
effects. Even though the variable’s scope is the block in which it was declared, it exists while the sub-
routine is executing.

Another type of scope is the module-level scope. Variables declared outside any procedure in a
module are visible from within all procedures in the same module, but they’re invisible outside the
module. Variables with a module-level scope can be set from within any procedure, so you should
try to minimize the number of such variables. Setting many variables from within many procedures
can seriously complicate the debugging of the application. Beginners have a tendency to overuse
module-level scope, because they simplify the exchange of data among procedures. You can write
procedures that don’t accept any arguments—they simply act on module-level variables. Even
though they may simplify small projects, too many variables with module-level scope reduce the
maintainability and readability of large projects.

Let’s say you’re writing a text-editing application that provides the usual Save and Save As com-
mands. The Save As command prompts the user for the filename in which the text will be stored.

117VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 117

http://www.sybex.com

The Save command, however, must remember the name of the file used with the most recent Save
As command, so that it can save the text to the same file. It must also remember the name of the file
that was read most recently, so that it can save the text back to the same file. The path of the file is
needed from within three separate procedures, so it must be saved in a variable with module-level
scope: the Open procedure should be able to set this variable, the Save As procedure should be able
to either read or set it, and the Save procedure should be able to read it. This is a typical example of
a variable with module-level scope.

Finally, in some situations the entire application must access a certain variable. In this case, the
variable must be declared as Public. Public variables have a global scope: they are visible from any part
of the application. To declare a public variable, use the Public statement in place of the Dim state-
ment. Moreover, you can’t declare public variables in a procedure. If you have multiple forms in your
application and you want the code in one form to see a certain variable in another form, you can use
the Public modifier. You can also make a control on a form visible outside its own form, by setting
its Modifier property to Public. Setting this property causes VB to insert the Public keyword in the
declaration of the control.

Note You will learn how to access variables declared in one form from within another form’s code, in Chapter 5.

The Public keyword makes the variable available not only to the entire project, but also to all
projects that reference the current project. If you want your variables to be public within a project
(in other words, available to all procedures in any module in the project) but invisible to referencing
projects, use the Friend keyword in the declaration of the module. Variables that you want to use
throughout your project, but not have available to other projects that reference the current one,
should be declared as Friend. There is no way to make some of the public variables available to the
referencing projects.

So, why do we need so many different types of scope? You’ll develop a better understanding of
scope and which type of scope to use for each variable as you get involved in larger projects. In gen-
eral, you should try to limit the scope of your variables as much as possible. If all variables were
declared within procedures, then you could use the same name for storing a temporary value in each
procedure and be sure that one procedure’s variables don’t interfere with those of another procedure,
even if you use the same name. Not that you can run out of variable names, but names like tempString,
amount, total, and so on are quite common. All loop counters should also be local to the procedure
that uses them. The variable counter in the following loop should never be declared outside the
procedure:

For counter = 1 To 100
{ statements }

Next

This statement repeats the block of statements 100 times. There’s absolutely no reason to declare
the counter variable outside the procedure. Most programmers tend to use the same counter names in
all of their loops, so they have to use local variables.

Procedure-level variables are necessary, but you should try to minimize their use. If a variable looks
like a good candidate for procedure-level scope, see if you can implement the code with two or more
local-level scope variables. Many procedure-level variables can be reduced to local-level variables if

Chapter 3 VISUAL BASIC: THE LANGUAGE118

2877c03.qxd 11/11/01 4:15 PM Page 118

http://www.sybex.com

they’re used by a couple of functions only. You can pass their values from one function to the other
and avoid the creation of a new procedure-level variable.

The Lifetime of a Variable
In addition to type and scope, variables have a lifetime, which is the period for which they retain their
value. Variables declared as Public exist for the lifetime of the application. Local variables, declared
within procedures with the Dim or Private statement, live as long as the procedure. When the proce-
dure finishes, the local variables cease to exist and the allocated memory is returned to the system. Of
course, the same procedure can be called again. In this case, the local variables are recreated and ini-
tialized again. If a procedure calls another, its local variables retain their values while the called pro-
cedure is running.

You also can force a local variable to preserve its value between procedure calls with the Static
keyword. Suppose the user of your application can enter numeric values at any time. One of the tasks
performed by the application is to track the average of the numeric values. Instead of adding all the
values each time the user adds a new value and dividing by the count, you can keep a running total
with the function RunningAvg(), which is shown in Listing 3.7.

Listing 3.7: Calculations with Global Variables

Function RunningAvg(ByVal newValue As Double) As Double
CurrentTotal = CurrentTotal + newValue
TotalItems = TotalItems + 1
RunningAvg = CurrentTotal / TotalItems

End Function

You must declare the variables CurrentTotal and TotalItems outside the function so that their values
are preserved between calls. Alternatively, you can declare them in the function with the Static key-
word, as in Listing 3.8.

Listing 3.8: Calculations with Local Static Variables

Function RunningAvg(ByVal newValue As Double) As Double
Static CurrentTotal As Double
Static TotalItems As Integer
CurrentTotal = CurrentTotal + newValue
TotalItems = TotalItems + 1
RunningAvg = CurrentTotal / TotalItems

End Function

The advantage of using static variables is that they help you minimize the number of total vari-
ables in the application. All you need is the running average, which the RunningAvg() function pro-
vides without making its variables visible to the rest of the application. Therefore, you don’t risk
changing the variables’ values from within other procedures.

119VARIABLES

2877c03.qxd 11/11/01 4:15 PM Page 119

http://www.sybex.com

VB6 ➠ VB.NET

In VB6 you could declare all the variables in a procedure as static by prefixing the procedure definition with
the keyword Static. This option is no longer available with VB.NET: the Static modifier is not a valid modi-
fier for procedures.

Variables declared in a module outside any procedure take effect when the form is loaded and
cease to exist when the form is unloaded. If the form is loaded again, its variables are initialized, as if
it’s being loaded for the first time.

Variables are initialized when they’re declared, according to their type. Numeric variables are ini-
tialized to zero, string variables are initialized to a blank string, and Object variables are initialized to
Nothing. Of course, if the variable is declared with an initializer (as in Dim last As Integer = 99),
it is initialized to the specified value.

Constants
Some variables don’t change value during the execution of a program. These are constants that appear
many times in your code. For instance, if your program does math calculations, the value of pi
(3.14159…) may appear many times. Instead of typing the value 3.14159 over and over again, you
can define a constant, name it pi, and use the name of the constant in your code. The statement

circumference = 2 * pi * radius

is much easier to understand than the equivalent

circumference = 2 * 3.14159 * radius

You could declare pi as a variable, but constants are preferred for two reasons:

Constants don’t change value. This is a safety feature. Once a constant has been declared, you
can’t change its value in subsequent statements, so you can be sure that the value specified in the
constant’s declaration will take effect in the entire program.

Constants are processed faster than variables. When the program is running, the values of con-
stants don’t have to be looked up. The compiler substitutes constant names with their values, and
the program executes faster.

The manner in which you declare constants is similar to the manner in which you declare vari-
ables, except that in addition to supplying the constant’s name, you must also supply a value, as
follows:

Const constantname As type = value

Constants also have a scope and can be Public or Private. The constant pi, for instance, is usually
declared in a module as Public so that every procedure can access it:

Public Const pi As Double = 3.14159265358979

Chapter 3 VISUAL BASIC: THE LANGUAGE120

2877c03.qxd 11/11/01 4:15 PM Page 120

http://www.sybex.com

The name of the constant follows the same rules as variable names. The constant’s value is a lit-
eral value or a simple expression composed of numeric or string constants and operators. You can’t
use functions in declaring constants. The best way to define the value of the pi variable is to use the
pi member of the Math class:

pi = Math.pi

However, you can’t use this assignment in the constant declaration. You must supply the actual value.

Constants can be strings, too, like these:
Const ExpDate = #31/12/1997#
Const ValidKey = “A567dfe”

Visual Basic uses constants extensively to define method arguments and control properties. The
value of a CheckBox control, for instance, can be CheckState.Checked or CheckState.UnChecked. If
the CheckBox control’s ThreeState property is True, it can have yet another value, which is Check-
State.Intederminate. These constants correspond to integer values, but you don’t need to know
what these values are. You see only the names of the constants in the Properties window. If you type
the expression

CheckBox1.CheckState =

a list of all possible values of the CheckState property will appear as soon as you type the equal sign,
and you can select one from the list.

VB.NET recognizes numerous constants, which are grouped according to the property they
apply to. Each property’s possible values form an enumeration, and the editor knows which enumera-
tion applies to each property as you type. As a result, you don’t have to memorize any of the con-
stant names or look up their names. They’re right there as you type, and their names make them
self-explanatory. Notice that the name of the constant is prefixed by the name of the enumeration it
belongs to.

Note Enumerations are often named after the property they apply to, but not always. The set of possible values of the
BorderStyle property for all controls is named BorderStyle enumeration. The value set for the alignment of the text on a
control, however, is the HorizontalAlignment enumeration. But you always see the proper enumeration in the Properties
window, and the editor knows which one to display and when.

Constant declarations may include other constants. In math calculations, the value 2 × pi is
almost as common as the value pi. You can declare these two values as constants:

Public Const pi As Double = 3.14159265358979
Public Const pi2 As Double = 2 * pi

Tip When defining constants in terms of other constants, especially if they reside in different modules, be sure to avoid
circular definitions. Try to place all your constant declarations in the same module. If you have modules you use with sev-
eral applications, try to include the module’s name in the constant names to avoid conflicts and duplicate definitions.

121CONSTANTS

2877c03.qxd 11/11/01 4:15 PM Page 121

http://www.sybex.com

Arrays
A standard structure for storing data in any programming language is the array. Whereas individual
variables can hold single entities, such as one number, one date, or one string, arrays can hold sets of
data of the same type (a set of numbers, a series of dates, and so on). An array has a name, as does a
variable, and the values stored in it can be accessed by an index.

For example, you could use the variable Salary to store a person’s salary:

Salary = 34000

But what if you wanted to store the salaries of 16 employees? You could either declare 16 vari-
ables—Salary1, Salary2, up to Salary16—or you could declare an array with 16 elements. An array is
similar to a variable: it has a name and multiple values. Each value is identified by an index (an inte-
ger value) that follows the array’s name in parentheses. Each different value is an element of the array.
If the array Salaries holds the salaries of 16 employees, the element Salaries(0) holds the salary of
the first employee, the element Salaries(1) holds the salary of the second employee, and so on up
the element Salaries(15).

VB6 ➠ VB.NET

The indexing of arrays in VB.NET starts at zero, and you can’t change this behavior, because the Option
Base statement, which allowed you to specify whether the indexing of the array would start at 0 or 1, is no
longer supported by VB.NET. Whether you like it or not, your arrays must start at index zero. If you don’t
feel comfortable with the notion of zero being the first element, you can increase the dimensions of your
arrays by one and ignore the zeroth element.

In VB6 you could specify not only the dimensions of an array but also the index of the very first element,
with a declaration like

Dim myArray(101 To 999) As Integer

This notation is not valid in VB.NET.

Declaring Arrays
Unlike simple variables, arrays must be declared with the Dim (or Public, or Private) statement fol-
lowed by the name of the array and the index of the last element in the array in parentheses—for
example,

Dim Salaries(15) As Integer

Note Actually, there are occasions when you need not specify the exact dimensions of an array, as you’ll see shortly.

As I said before, Salaries is the name of an array that holds 16 values (the salaries of the 16
employees), with indices ranging from 0 to 15. Salaries(0) is the first person’s salary, Salaries(1)
the second person’s salary, and so on. All you have to do is remember who corresponds to each

Chapter 3 VISUAL BASIC: THE LANGUAGE122

2877c03.qxd 11/11/01 4:15 PM Page 122

http://www.sybex.com

salary, but even this data can be handled by another array. To do this, you’d declare another array of
16 elements as follows:

Dim Names(15) As String

and then assign values to the elements of both arrays:

Names(0) = “Joe Doe”
Salaries(0) = 34000
Names(1) = “Beth York”
Salaries(1) = 62000
...
Names(15) = “Peter Smack”
Salaries(15) = 10300

This structure is more compact and more convenient than having to hard-code the names of
employees and their salaries in variables.

All elements in an array have the same data type. Of course, when the data type is Object, the
individual elements can contain different kinds of data (objects, strings, numbers, and so on).

Arrays, like variables, are not limited to the basic data types. You can declare arrays that hold any
type of data, including objects. The following array holds colors, which can be used later in the code
as arguments to the various functions that draw shapes:

Dim colors(2) As Color
colors(0) = Color.BurlyWood
colors(1) = Color.AliceBlue
colors(2) = Color.Sienna

The Color object represents colors, and among the properties it exposes are the names of the col-
ors it recognizes. The Color object recognizes 128 color names (as opposed to the 16 color names
of VB6).

As a better technique to store names and salaries together in an array, create a Structure and then
declare an array of this type. The following structure holds names and salaries:

Structure Employee
Dim Name As String
Dim Salary As Single

End Structure

Insert this declaration in a form’s code file, outside any procedure. Then create an array of the
Employee type:

Dim Emps(15) As Employee

Each elements in the Emps array exposes two fields, and you can assign values to them with state-
ments like the following ones:

Emps(2).Name = “Beth York”
Emps(2).Salary = 62000

123ARRAYS

2877c03.qxd 11/11/01 4:15 PM Page 123

http://www.sybex.com

The advantage of storing related pieces of information to a structure is that you can access all the
items with a single index. The code is more compact, and you need not maintain multiple arrays. In
Chapter 11, you’ll see how to store structures and other objects to collections like ArrayLists and
HashTables.

Initializing Arrays
Just as you can initialize variables in the same line where you declare them, you can initialize arrays,
too, with the following constructor:

Dim arrayname() As type = {entry0, entry1, … entryN}

Here’s an example that initializes an array of strings:

Dim names() As String = {“Joe Doe”, “Peter Smack”}

This statement is equivalent to the following statements, which declare an array with two ele-
ments and then set their values:

Dim names(1) As String
names(0) = “Joe Doe”
names(1) = “Peter Smack”

The number of elements in the curly brackets following the array’s declaration determines the
dimensions of the array, and you can’t add new elements to the array without resizing it. If you need
to resize the array in your code dynamically, you must use the ReDim statement, as described in the
section “Dynamic Arrays,” later in this chapter. However, you can change the value of the existing
elements at will, as you would with any other array. The following declaration initializes an array of
Color objects in a single statement:

Dim Colors() As Color = {Color.BurlyWood, Color.AliceBlue, Color.Sienna, _
Color.Azure, Color.Fuchsia, Color.White}

Array Limits
The first element of an array has index 0. The number that appears in parentheses in the Dim state-
ment is one less than the array’s total capacity and is the array’s upper limit (or upper bound).

The index of the last element of an array (its upper bound) is given by the function UBound(),
which accepts as argument the array’s name. For the array

Dim myArray(19) As Integer

its upper bound is 19, and its capacity is 20 elements. The function UBound() is also exposed as a
method of the Array object, and it’s the GetUpperBound method. It returns the same value as the
UBound() function. The GetLowerBound method returns the index of the array’s first element,
which is always zero anyway. As you will see, arrays can have multiple dimensions, so these two
methods require that you specify the dimensions whose limits you want to read as arguments. For
one-dimensional arrays, like the ones discussed in this section, this argument is zero. Multidimen-
sional arrays are discussed later in this chapter.

Let’s say you need an array to store 20 names. Declare it with the following statement:

Dim names(19) As String

Chapter 3 VISUAL BASIC: THE LANGUAGE124

2877c03.qxd 11/11/01 4:15 PM Page 124

http://www.sybex.com

The first element is names(0), and the last is names(19). If you execute the following statements,
the values in bold will appear in the Output window:

Console.WriteLine(names.GetLowerBound(0))
0
Console.WriteLine(names.GetUpperBound(0))
19

To assign a value to the first and last element of the names array, use the following statements:

names(0) = “First entry”
names(19) = “Last entry”

If you want to iterate through the array’s elements, use a loop like the following one:
Dim i As Integer, myArray(19) As Integer
For i = 0 To myArray.GetUpperBound(0)

myArray(i) = i * 1000
Next

The actual number of elements in an array is given by the expression myArray.GetUpperBound(0)
+ 1. You can also use the array’s Length property to retrieve the count of elements. The following
statement will print the number of elements in the array myArray on the Output window:

Console.WriteLine(myArray.Length)

Still confused with the zero indexing scheme, the count of elements, and the index of the last ele-
ment in the array? It’s safe to make the array a little larger than it need be and ignore the first ele-
ment. Just make sure you never use the zeroth elements in your code—don’t store a value in the
element Array(0), and you can then ignore this element. To get 20 elements, declare an array with
21 elements as Dim myArray(20) As type and then ignore the first element.

Arrays are one of the most improved areas of VB.NET. For years, programmers invested endless
hours to write routines for sorting and searching arrays. It took Microsoft years to get arrays right,
but with VB.NET you can manipulate arrays with several methods and properties available through
the Array class, which is described in detail in Chapter 11. In this chapter, you’ll learn the basics of
declaring, populating, and accessing array elements, which is all you need to start using arrays in your
code. The Array class will help you manipulate arrays in more elaborate ways.

Multidimensional Arrays
One-dimensional arrays, such as those presented so far, are good for storing long sequences of one-
dimensional data (such as names or temperatures). But how would you store a list of cities and their
average temperatures in an array? Or names and scores, years and profits, or data with more than two
dimensions, such as products, prices, and units in stock? In some situations you will want to store
sequences of multidimensional data. You can store the same data more conveniently in an array of as
many dimensions as needed. Figure 3.4 shows two one-dimensional arrays—one of them with city
names, the other with temperatures. The name of the third city would be City(2), and its tempera-
ture would be Temperature(2).

125ARRAYS

2877c03.qxd 11/11/01 4:15 PM Page 125

http://www.sybex.com

A two-dimensional array has two indices. The first identifies the row (the order of the city in the
array), and the second identifies the column (city or temperature). To access the name and tempera-
ture of the third city in the two-dimensional array, use the following indices:

Temperatures(2, 0) ‘ the third city’s name
Temperatures(2, 1) ‘ the third city’s average temperature

The benefit of using multidimensional arrays is that they’re conceptually easier to manage. Sup-
pose you’re writing a game and want to track the positions of certain pieces on a board. Each square
on the board is identified by two numbers, its horizontal and vertical coordinates. The obvious
structure for tracking the board’s squares is a two-dimensional array, in which the first index corre-
sponds to the row number and the second corresponds to the column number. The array could be
declared as follows:

Dim Board(9, 9) As Integer

When a piece is moved from the square on the first row and first column to the square on the
third row and fifth column, you assign the value 0 to the element that corresponds to the initial
position:

Board(0, 0) = 0

and you assign 1 to the square to which it was moved, to indicate the new state of the board:

Board(2, 4) = 1

To find out if a piece is on the top-left square, you’d use the following statement:

If Board(0, 0) = 1 Then
{ piece found }

Else
{ empty square }

End If

This notation can be extended to more than two dimensions. The following statement creates an
array with 1,000 elements (10 by 10 by 10):

Dim Matrix(9, 9, 9)

Figure 3.4

A two-dimensional
array and the two
equivalent one-
dimensional arrays

Chapter 3 VISUAL BASIC: THE LANGUAGE126

2877c03.qxd 11/11/01 4:15 PM Page 126

http://www.sybex.com

You can think of a three-dimensional array as a cube made up of overlaid two-dimensional arrays,
such as the one shown in Figure 3.5.

It is possible to initialize a multidimensional array with a single statement, just as you do with a
one-dimensional array. You must insert enough commas in the parentheses following the array name
to indicate the array’s rank (the number of commas is one less than the actual dimensions). The fol-
lowing statements initialize a two-dimensional array and then print a couple of its elements:

Dim a(,) As Integer = {{10, 20, 30}, {11, 21, 31}, {12, 22, 32}}
Console.WriteLine(a(0, 1)) ‘ will print 20
Console.WriteLine(a(2, 2)) ‘ will print 32

You should break the line that initializes the dimensions of the array into multiple lines to make
your code easier to read. Just insert the line-continuation character at the end of each continued line:

Dim a(,) As Integer = {{10, 20, 30}, _
{11, 21, 31}, _
{12, 22, 32}}

If the array has more than one dimension, you can find out the number of dimensions with the
Array.Rank property. Let’s say you have declared an array for storing names as salaries with the fol-
lowing statements:

Dim Salaries(1,99) As Object

To find out the number of dimensions, use the statement:

Salaries.Rank

When using the Length property to find out the number of elements in a multidimensional array,
you will get back the total number of elements in the array—2 × 100, for our example. To find out
the number of elements in a specific dimension use the GetLength method, passing as argument a
specific dimension. The following expression will return the number of elements in the first dimen-
sion of the array:

Console.WriteLine(Salaries.GetLength(0))

Figure 3.5

Pictorial representa-
tions of one-, two-,
and three-dimen-
sional arrays

127ARRAYS

2877c03.qxd 11/11/01 4:15 PM Page 127

http://www.sybex.com

Since the index of the first array element is zero, the index of the last element is the length of the
array minus 1. Let’s say you have declared an array with the following statement to store player sta-
tistics for 15 players, and there are 5 values per player:

Dim Statistics(14, 4) As Integer

The following statements will return the values shown beneath them, in bold:

Console.WriteLine(Statistics.Rank)
2 ‘ dimensions in array
Console.WriteLine(Statistics.Length)
75 ‘ total elements in array
Console.WriteLine(Statistics.GetLength(0))
15 ‘ elements in first dimension
Console.WriteLine(Statistics.GetLength(1))
5 ‘ elements in second dimension
Console.WriteLine(Statistics.GetUpperBound(0))
14 ‘ last index in the first dimension
Console.WriteLine(Statistics.GetUpperBound(1))
4 ‘ last index in the second dimension

Dynamic Arrays
Sometimes you may not know how large to make an array. Instead of making it large enough to hold the
(anticipated) maximum number of data (which means that, on the average, most of the array may be
empty), you can declare a dynamic array. The size of a dynamic array can vary during the course of the
program. Or you might need an array until the user has entered a bunch of data and the application has
processed it and displayed the results. Why keep all the data in memory when it is no longer needed?
With a dynamic array, you can discard the data and return the resources it occupied to the system.

To create a dynamic array, declare it as usual with the Dim statement (or Public or Private) but
don’t specify its dimensions:

Dim DynArray() As Integer

Later in the program, when you know how many elements you want to store in the array, use the
ReDim statement to redimension the array, this time to its actual size. In the following example,
UserCount is a user-entered value:

ReDim DynArray(UserCount)

The ReDim statement can appear only in a procedure. Unlike the Dim statement, ReDim is
executable—it forces the application to carry out an action at runtime. Dim statements aren’t exe-
cutable, and they can appear outside procedures.

A dynamic array also can be redimensioned to multiple dimensions. Declare it with the Dim
statement outside any procedure as follows:

Dim Matrix() As Double

and then use the ReDim statement in a procedure to declare a three-dimensional array:

ReDim Matrix(9, 9, 9)

Chapter 3 VISUAL BASIC: THE LANGUAGE128

2877c03.qxd 11/11/01 4:15 PM Page 128

http://www.sybex.com

Note that the ReDim statement can’t change the type of the array—that’s why the As clause
is missing from the ReDim statement. Moreover, subsequent ReDim statements can change the
bounds of the array Matrix but not the number of its dimensions. For example, you can’t use the
statement ReDim Matrix(99, 99) later in your code. Once an array has been redimensioned once, its
number of dimensions can’t change. In the preceding example, the Matrix array will remain three-
dimensional through the course of the application.

Note The ReDim statement can be issued only from within a procedure. In addition, the array to be redimensioned must
be visible from within the procedure that calls the ReDim statement.

The Preserve Keyword

Each time you execute the ReDim statement, all the values currently stored in the array are lost.
Visual Basic resets the values of the elements as if they were just declared. (It resets numeric elements
to zero and String elements to empty strings.)

In most situations, when you resize an array, you no longer care about the data in it. You can,
however, change the size of the array without losing its data. The ReDim statement recognizes the
Preserve keyword, which forces it to resize the array without discarding the existing data. For
example, you can enlarge an array by one element without losing the values of the existing elements
by using the UBound() function as follows:

ReDim Preserve DynamicArray(UBound(DynArray) + 1)

If the array DynamicArray held 12 elements, this statement would add one element to the array, the
element DynamicArray(12). The values of the elements with indices 0 through 11 wouldn’t change.
The UBound() function returns the largest available index (the number of elements) in a one-dimen-
sional array. Similarly, the LBound() function returns the smallest index. If an array was declared
with the statement

Dim Grades(49) As Integer

then the functions LBound(Grades) and UBound(Grades) would return the values 0 and 49. For more
information on the functions LBound() and UBound(), see the reference “VB.NET Functions and
Statements” on the CD. Obviously, the LBound() function is of no practical value in VB.NET, since
the indexing of all arrays must start at 0.

Arrays of Arrays
Arrays are a major part of the language. In the section “User-Defined Data Types,” earlier in this
chapter, you saw how to create arrays of structures. It is possible to create even more complicated
structures for storing data, such as arrays of arrays. If an array is declared as Object, you can assign
other types to its elements, including arrays.

Note The technique described in this section will work only when the Strict option is Off. If it is On, VB will gener-
ate an error to the effect that the Strict option does not allow late binding.

129ARRAYS

2877c03.qxd 11/11/01 4:15 PM Page 129

http://www.sybex.com

Suppose you have declared and populated two arrays, one with integers and another with strings.
You can then declare an Object array with two elements and populate it with the two arrays, as
shown in Listing 3.9.

Listing 3.9: Populating an Array of Arrays

Dim IntArray(9) As Integer
Dim StrArray(99) As String
Dim BigArray(1) As Object
Dim i As Integer
‘ populate array IntArray
For i = 0 To 9

IntArray(i) = i
Next
‘ populate array StrArray
For i = 0 To 99

StrArray(i) = “ITEM “ & i.ToString(“0000”)
Next
BigArray(0) = IntArray
BigArray(1) = StrArray
Console.WriteLine(BigArray(0)(7))
Console.WriteLine(BigArray(1)(16))

The last two statements will print the following values on the Output window:

7
ITEM 0016

BigArray was declared as a one-dimensional array, but because each of its elements is an array, you
must use two indices to access it. To access the third element of IntArray in BigArray, use the indices 0
and 2. Likewise, the tenth element of the StrArray in BigArray is BigArray(1)(9). The notation is quite
unusual, but the indices of the BigArray must be entered in separate parentheses. In most cases, you’ll be
able to use Structures and avoid arrays of arrays, so you won’t have to bother with this notation.

Variables as Objects
As you have understood by now, variables are objects. This shouldn’t come as a surprise, but it’s an
odd concept for programmers with no experience in object-oriented programming. We haven’t cov-
ered objects and classes formally yet, but you have a good idea of what an object is. It’s an entity that
exposes some functionality by means of properties and methods. The TextBox control is an object,
and it exposes the Text property, which allows you to read, or set, the text on the control. Any name
followed by a period and another name signifies an object. The “other name” is a property or
method of the object.

At this point, I’ll ask you to take a leap forward. Things will become quite clear when you learn
more about objects later in the book, but I couldn’t postpone this discussion; you need a good
understanding of variables to move on. If you want, you can come back and re-read this section. In

Chapter 3 VISUAL BASIC: THE LANGUAGE130

2877c03.qxd 11/11/01 4:15 PM Page 130

http://www.sybex.com

the meantime, I’ll attempt to explain through examples how VB.NET handles variables. It’s a sim-
plified view of objects and, at points, I won’t even use proper terminology.

So, What’s an Object?
An object is a collection of data and code. You don’t see the code, and you’ll never have to change
it—unless you’ve written it, of course. An integer variable, intVar, is an object because it has a value
and some properties and methods. Properties and methods are implemented as functions. The
method intVar.ToString for instance, returns the numeric value held in the variable as a string, so
that you can use it in string operations. In other words, an Integer variable is an object that knows
about itself. It knows that it holds a whole number; it knows how to convert itself to a string; it
knows the minimum and maximum values it can store (properties MinValue and MaxValue); and so
on. In the past, a variable was just a named location in the memory. Now, it’s a far more complex
structure with its own “intelligence.” This intelligence consists of code that implements some of the
most common actions you’re expected to perform on its value. The same is true for strings, even
characters. Actually, the Char data type exposes a lot of very useful properties. In the past, program-
mers wrote their own functions to determine whether a character is a numeric digit or a letter,
whether it’s in upper- or lowercase, and so forth. With the Char data type, all this functionality
comes for free. The IsDigit and IsLetter methods return True if the character is a digit or a letter,
respectively, False otherwise. The Date data type even has a property called IsLeapYear.

As I mentioned, in the past programmers had to write their own functions to perform all these oper-
ations that are now built into the variables themselves. Since VB1, Microsoft has included many func-
tions to manipulate strings. Without these functions, VB programmers wouldn’t be able to do much
with String variables. These functions were enhanced with subsequent versions of VB. They did the
same with date-manipulation functions, and VB.NET has inherited a large number of functions from
VB6. Instead of bloating the language, the designers of VB.NET decided to move all this functionality
into the classes that implement the various data types. The old functions are still there, because there
are innumerable applications out there that use them. Applications written in VB.NET from scratch
should use the newer methods and properties, but old VB programmers are so accustomed to using the
equivalent VB functions that it will take them some time to switch to the new way of coding.

The main advantage of exposing so much functionality through the data types, instead of individ-
ual functions, is that you don’t have to learn the names of all these functions. Now, you can type the
period following a variable’s name and see the list of members it exposes. The alternative would be
to look up the documentation and try to locate a function that provides the desired functionality.

Another good reason for attaching so much functionality to the data types is that the specific
functions are meaningless with other data types. Since the IsLeapYear method is so specific to dates,
we better contain it in the world of the Date data type.

The real reason Microsoft is trying to eliminate the old functions is that all this functionality will
eventually become part of the operating system. As a result, the number of support runtime libraries
that are distributed with an EXE today will be greatly reduced.

The old VB functions that have been replaced by methods and properties are explained in the refer-
ence “VB.NET Functions and Statements” on the CD. These functions are still part of the language,
and you can’t ignore them, because of the applications that already use them. I suspect programmers
will mix both functions and methods with VB.NET, and it will be a while before the old functions
are abandoned. So, whether you’re a VB6 programmer (in which case you’re very familiar with the

131VARIABLES AS OBJECTS

2877c03.qxd 11/11/01 4:15 PM Page 131

http://www.sybex.com

string- and date-manipulation functions of VB) or you’re new to VB.NET (in which case you
should be able to read and understand existing code), you can’t ignore these functions, neither can
you ignore the members that expose the same functionality.

How about the code that implements all the functionality built into the variable? The code
resides in a class. A class is the code that implements the properties and methods of a variable. The
class that implements the Date type is the System.Date class, and it exposes the same functionality as
a Date variable. A Date variable is nothing more than an instance of the System.Date class. Here’s an
example. The Date class exposes the IsLeapYear method, which returns True if a specific year is
leap. The expression:

System.Date.IsLeapYear(2001)

will return False, because 2001 is not a leap year.
If you declare a variable of the Date type, it carries with it all the functionality of the System.Date

class. The IsLeapYear method can be applied to a Date variable as well:

Dim d1 As Date = #3/4/2001#
MsgBox(d1.IsLeapYear(2001))

If you execute these statements, a message box will pop up displaying the string “False.” But
shouldn’t the IsLeapYear method be applied to the d1 variable? The answer is no, because
IsLeapYear is a shared method: it requires an argument. You can use the System.Date class to
call the IsLeapYear method:

Console.WriteLine(System.Date.IsLeapYear(2001)

It is even possible to use expressions like the following:

Console.WriteLine(#3/4/2001#.IsLeapYear(2001))

This expression will return False. Change the year to 2004, and it will return True. The date, even
though it’s a value, it’s represented by an instance of the System.Date class. The compiler figures out that
the expression between the pound signs is a date and loads an instance of the System.Date class automat-
ically to represent the value. As an expression, I think it’s rather ridiculous, but it’s a valid expression nev-
ertheless. (An even more perplexing expression is #1/1/1900#.IsLeapYear(2020), but it’s also valid).

Note I’ve shown you how to create custom data types with the Structure keyword. A Structure doesn’t expose any prop-
erties or methods, just values. So, can we build custom data types with added functionality, like the functionality found in
the base data types? The answer is yes, but you must provide your own class. You’ll learn how to build custom data types
that provide properties and method, but you must first learn how to build your own classes, in Chapter 8.

Formatting Numbers
The ToString method, exposed by all data types except the String data type, converts a value to the
equivalent string and formats it at the same time. You can call the ToString method without any
arguments, as we have done so far, to convert any value to a string. The ToString method, however,
accepts an argument, which determines how the value will be formatted as a string. For example, you
can format a number as currency by prefixing it with the appropriate sign (e.g., the dollar symbol)
and displaying it to two decimal digits.

Chapter 3 VISUAL BASIC: THE LANGUAGE132

2877c03.qxd 11/11/01 4:15 PM Page 132

http://www.sybex.com

Notice that ToString is a method, not a property. It returns a value, which you can assign to
another variable or pass as arguments to a function like MsgBox(), but the original value is not
affected. The ToString method can also format a value if called with the format argument:

ToString(formatString)

The formatString argument is a format specifier (a string that specifies the exact format to be applied
to the variable) This argument can be a specific character that corresponds to a predetermined format
(standard numeric format string, as it’s called) or a string of characters that have special meaning in format-
ting numeric values (a picture numeric format string). Use standard format strings for the most common
operations and picture strings to specify unusual formatting requirements. To format the value
9959.95 as a dollar amount, you can use the following standard currency format string:

Dim int As Single = 9959.95
Dim strInt As String
strInt = int.ToString(“C”)

or the following picture numeric format string:

strInt = int.ToString(“$###,###.00”)

Both statements will format the value as “$9,959.95”. The “C” argument in the first example
means currency and formats the numeric value as currency. If you’re using a non-U.S. version of Win-
dows, the currency symbol will change accordingly. Depending on your culture, the currency symbol
may also appear after the amount. The picture format string is made up of literals and characters that
have special meaning in formatting. The dollar sign has no special meaning and will appear as is. The
symbol is a digit placeholder. All # symbols will be replaced by numeric digits, starting from the
right. If the number has fewer digits than specified in the string, the extra symbols to the left will be
ignored. The comma tells the Format function to insert a comma between thousands. The period is
the decimal point, which is followed by two more digit placeholders. Unlike the # sign, the 0 is a spe-
cial placeholder: if there are not enough digits in the number for all the zeros you’ve specified, a 0 will
appear in the place of the missing digits. If the original value had been 9959.9, for example, the last
statement would have formatted it as $9,959.90. If you used the # placeholder instead, then the
string returned by the Format method would have a single decimal digit.

Standard Numeric Format Strings

VB.NET recognizes the standard numeric format strings shown in Table 3.6.

Table 3.6: Standard Numeric Format Strings

Format Character Description Example

C or c Currency 12345.67.ToString(“C”) returns $12,345.67

E or e Scientific format 12345.67.ToString(“E”) returns 1.234567E+004

F or f Fixed-point format 12345.67.ToString(“F”) returns 12345.67

G or g General format Return a value either in fixed-point or scientific format

N or n Number format 12345.67.ToString(“N”) returns 12,345.67

X or x Hexadecimal format 250.ToString(“X”) returns FA

133VARIABLES AS OBJECTS

2877c03.qxd 11/11/01 4:15 PM Page 133

http://www.sybex.com

The format character can be followed by an integer. If present, the integer value specifies the
number of decimal places that are displayed. The default accuracy is two decimal digits.

The “C” format string causes the ToString method to return a string representing the number as
a currency value. An integer following the “C” determines the number of decimal places that are dis-
played. If no number is provided, two digits are shown after the decimal separator. The expression
5596.ToString(“c”) will return the string “$5,596.00”, and the expression 5596.4499.ToString(“c3”)
will return the string “$5,596.450”.

The fixed-point format returns a number with one or more decimal digits. The expression
(134.5).ToString(“f3”) will return the value 134.500. I’ve used the optional parentheses around
the value here to make clear that the number has a decimal point. VB doesn’t require that you supply
these parentheses.

Note Notice that not all format strings apply to all data types. For example, only integer values can be converted to
hexadecimal format.

Picture Numeric Format Strings

If the format characters listed in Table 3.6 are not adequate for the control you need over the
appearance of numeric values, you can provide your own picture format strings. Picture format
strings contain special characters that allow you to format your values exactly as you like. Table 3.7
lists the picture formatting characters.

Table 3.7: Picture Numeric Format Strings

Format Character Description Effect

0 Display zero placeholder Results in a non-significant zero if a number has fewer
digits than there are zeros in the format.

Display digit placeholder Replaces the “#” symbol with only significant digits.

. Decimal point Displays a “.” character.

, Group separator Separates number groups; for example, “1,000”.

% Percent notation Displays a “%” character.

E+0, E-0, e+0, e-0 Exponent notation Formats the output of exponent notation.

\ Literal character Used with traditional formatting sequences like “\n”
(newline).

“ ” Literal string Displays any string within quotes or apostrophes
literally.

; Section separator Specifies different output if the numeric value to be for-
matted is positive, negative, or zero.

Chapter 3 VISUAL BASIC: THE LANGUAGE134

2877c03.qxd 11/11/01 4:15 PM Page 134

http://www.sybex.com

Formatting Dates
To format dates, use the format characters shown in Table 3.8.

Table 3.8: Date Formatting Strings

Format Character Description Format

d Short date format MM/dd/yyyy

D Long date format dddd, MMMM dd, yyyy

f Long date followed by short time dddd, MMMM dd, yyyy HH:mm

F Long date followed by long time dddd, MMMM dd, yyyy HH:mm:ss

g (General) Short date followed by short time MM/dd/yyyy HH:mm

G (General) Short date followed by long time MM/dd/yyyy HH:mm:ss

m or M Month/day format MMMM dd

r or R RFC1123 pattern ddd, dd MMM yyyy HH:mm:ssGMT

s Sortable date/time format yyyy-MM-dd HH:mm:ss

t Short time format HH:mm

T Long time format HH:mm:ss

u Universal date/time yyyy-MM-dd HH:mm:ss

U Universal sortable date/time format dddd, MMMM dd, yyyy HH:mm:ss

Y or y Year month format MMMM, yyyy

If the variable birthDate contains the value #1/1/2000#, the following expressions return the val-
ues shown below them, in bold:

Console.WriteLine(birthDate.ToString(“d”))
1/1/2000
Console.WriteLine(birthDate.ToString(“D”))
Saturday, January 01, 2000
Console.WriteLine(birthDate.ToString(“f”))
Saturday, January 01, 2000 12:00 AM
Console.WriteLine(birthDate.ToString(“s”))
2000-01-01T00:00:00
Console.WriteLine(birthDate.ToString(“U”))
Saturday, January 01, 2000 12:00:00 AM

Flow-Control Statements
What makes programming languages flexible—capable of handling every situation and programming
challenge with a relatively small set of commands—is the capability to examine external conditions

135FLOW-CONTROL STATEMENTS

2877c03.qxd 11/11/01 4:15 PM Page 135

http://www.sybex.com

and act accordingly. Programs aren’t monolithic sets of commands that carry out the same calculations
every time they are executed. Instead, they adjust their behavior depending on the data supplied; on
external conditions, such as a mouse click or the existence of a peripheral; or even on abnormal con-
ditions generated by the program itself. For example, a program that calculates averages may work
time and again until the user forgets to supply any data. In this case, the program attempts to divide
by zero, and it must detect this condition and act accordingly. In effect, the statements discussed in
the section are what programs are all about. Without the capability to control the flow of the pro-
gram, computers would just be bulky calculators. To write programs that react to external events and
produce the desired results under all circumstances, you’ll have to use the following statements.

Test Structures
An application needs a built-in capability to test conditions and take a different course of action
depending on the outcome of the test. Visual Basic provides three such decision structures:

� If…Then

� If…Then…Else

� Select Case

If…Then

The If…Then statement tests the condition specified; if it’s True, the program executes the state-
ment(s) that follow. The If structure can have a single-line or a multiple-line syntax. To execute one
statement conditionally, use the single-line syntax as follows:

If condition Then statement

Visual Basic evaluates the condition, and if it’s True, executes the statement that follows. If the condi-
tion is False, the application continues with the statement following the If statement.

You can also execute multiple statements by separating them with colons:

If condition Then statement: statement: statement

Here’s an example of a single-line If statement:

If Month(expDate) > 12 Then expYear = expYear + 1: expMonth = 1

You can break this statement into multiple lines by using End If, as shown here:
If expDate.Month > 12 Then

expYear = expYear + 1
expMonth = 1

End If

The Month property of the Date type returns the month of the date to which it’s applied as a
numeric value. Some programmers prefer the multiple-line syntax of the If…Then statement, even if it
contains a single statement, because the code is easier to read. The block of statements between the
Then and End If keywords form the body of the conditional statement, and you can have as many
statements in the body as needed.

Chapter 3 VISUAL BASIC: THE LANGUAGE136

2877c03.qxd 11/11/01 4:15 PM Page 136

http://www.sybex.com

If…Then…Else

A variation of the If…Then statement is the If…Then…Else statement, which executes one block of
statements if the condition is True and another block of statements if the condition is False. The
syntax of the If…Then…Else statement is as follows:

If condition Then
statementblock1

Else
statementblock2

End If

Visual Basic evaluates the condition; if it’s True, VB executes the first block of statements and then
jumps to the statement following the End If statement. If the condition is False, Visual Basic ignores
the first block of statements and executes the block following the Else keyword.

Another variation of the If…Then…Else statement uses several conditions, with the ElseIf
keyword:

If condition1 Then
statementblock1

ElseIf condition2 Then
statementblock2

ElseIf condition3 Then
statementblock3

Else
statementblock4

End If

You can have any number of ElseIf clauses. The conditions are evaluated from the top, and if one
of them is True, the corresponding block of statements is executed. The Else clause will be executed
if none of the previous expressions are True. Listing 3.10 is an example of an If statement with
ElseIf clauses.

Listing 3.10: Multiple ElseIf Statements

score = InputBox(“Enter score”)
If score < 50 Then

Result = “Failed”
ElseIf score < 75 Then

Result = “Pass”
ElseIf score < 90 Then

Result = “Very Good”
Else

Result = “Excellent”
End If
MsgBox Result

137FLOW-CONTROL STATEMENTS

2877c03.qxd 11/11/01 4:15 PM Page 137

http://www.sybex.com

Multiple If…Then Structures vs. ElseIf

Notice that once a True condition is found, Visual Basic executes the associated statements and skips the
remaining clauses. It continues executing the program with the statement immediately after End If. All fol-
lowing ElseIf clauses are skipped, and the code runs a bit faster. That’s why you should prefer the compli-
cated structure with ElseIf statements used in Listing 3.10 to this equivalent series of simple If statements:

If score < 50 Then
Result = “Failed”

End If
If score < 75 And score >= 50 Then

Result = “Pass”
End If
If score < 90 And score > =75 Then

Result = “Very Good”
End If
If score >= 90 Then

Result = “Excellent”
End If

Visual Basic will evaluate the conditions of all the If statements, even if the score is less than 50.

You may have noticed that the order of the comparisons is vital in an If…Then structure that uses
ElseIf statements. Had you written the previous code segment with the first two conditions
switched, like this:

If score < 75 Then
Result = “Pass”

ElseIf score < 50 Then
Result = “Failed”

ElseIf score < 90 Then
Result = “Very Good”

Else
Result = “Excellent”

End If

the results would be quite unexpected. Let’s assume that score is 49. The code would compare the score
variable to the value 75. Since 49 is less than 75, it would assign the value “Pass” to the variable Result,
and then it would skip the remaining clauses. Thus, a student who made 49 would have passed the test!
So be extremely careful and test your code thoroughly if it uses multiple ElseIf clauses.

Select Case

An alternative to the efficient, but difficult-to-read, code of the multiple-ElseIf structure is the
Select Case structure, which compares one expression to different values. The advantage of
the Select Case statement over multiple If…Then…Else/ElseIf statements is that it makes the
code easier to read and maintain.

Chapter 3 VISUAL BASIC: THE LANGUAGE138

2877c03.qxd 11/11/01 4:15 PM Page 138

http://www.sybex.com

The Select Case structure tests a single expression, which is evaluated once at the top of the
structure. The result of the test is then compared with several values, and if it matches one of
them, the corresponding block of statements is executed. Here’s the syntax of the Select Case
statement:

Select Case expression
Case value1

statementblock1
Case value2

statementblock2
.
.
.

Case Else
statementblockN

End Select

A practical example based on the Select Case statement is Listing 3.11.

Listing 3.11: Using the Select Case Statement

Dim message As String
Select Case Now.DayOfWeek

Case DayOfWeek.Monday
message = “Have a nice week”

Case DayOfWeek.Friday
message = “Have a nice weekend”

Case Else
message = “Welcome back!”

End Select
MsgBox(message)

In the listing, the expression variable, which is evaluated at the beginning of the statement, is the
weekday, as reported by the DayOfWeek property of the Date type. It’s a numeric value, but its pos-
sible settings are the members of the DayOfWeek enumeration, and you can use the names of these
members in your code to make it easier to read. The value of this expression is compared with the
values that follow each Case keyword. If they match, the block of statements up to the next Case
keyword is executed, and then the program skips to the statement following the End Select state-
ment. The block of the Case Else statement is optional and is executed if none of the previous Case
values match the expression. The first two Case statements take care of Fridays and Mondays, and
the Case Else statement takes care of the weekdays.

Some Case statements can be followed by multiple values, which are separated by commas. List-
ing 3.12 is a revised version of the previous example.

139FLOW-CONTROL STATEMENTS

2877c03.qxd 11/11/01 4:15 PM Page 139

http://www.sybex.com

Listing 3.12: A Select Case Statement with Multiple Cases per Clause

Select Case Now.DayOfWeek
Case DayOfWeek.Monday

message = “Have a nice week”
Case DayOfWeek.Tuesday, DayOfWeek.Wednesday, _

DayOfWeek.Thursday, DayOfWeek.Friday
message = “Welcome back!”

Case DayOfWeek.Friday, DayOfWeek.Saturday, DayOfWeek.Sunday
message = “Have a nice weekend!”

End Select
MsgBox(message)

Monday, Friday (and weekends), and the remaining weekdays are handled separately by three
Case statements. The second Case statement handles multiple values (all weekdays, except for Mon-
day and Friday). Monday is handled by a separate Case statement. This structure doesn’t contain a
Case Else statement because all possible values are examined in the Case statements. The Day-
OfWeek method can’t return another value.

Tip If more than one Case value matches the expression, only the statement block associated with the first matching
Case executes.

For comparison, Listing 3.13 contains the equivalent If…Then…Else statements that would imple-
ment the example of Listing 3.12.

Listing 3.13: Listing 3.12 Implemented with Nested If Statements

If Now.DayOfWeek = DayOfWeek.Monday Then
message = “Have a nice week”

Else
If Now.DayOfWeek >= DayOfWeek.Tuesday And _

Now.DayOfWeek <= DayOfWeek.Friday Then
message = “Welcome back!”

Else
message = “Have a nice weekend!”

End If
End If
MsgBox(message)

To say the least, this coding is verbose. If you attempt to implement a more elaborate Select
Case statement with If…Then…Else statements, the code becomes even more difficult to read.

Of course, the Select Case statement can’t always substitute for an If…Then structure. The
Select Case structure only evaluates the expression at the beginning. By contrast, the If…Then…Else
structure can evaluate a different expression for each ElseIf statement, not to mention that you can
use more complicated expressions with the If clause.

Chapter 3 VISUAL BASIC: THE LANGUAGE140

2877c03.qxd 11/11/01 4:15 PM Page 140

http://www.sybex.com

Loop Structures
Loop structures allow you to execute one or more lines of code repetitively. Many tasks consist of
trivial operations that must be repeated over and over again, and looping structures are an important
part of any programming language. Visual Basic supports the following loop structures:

� For…Next

� Do…Loop

� While…End While

For…Next

The For…Next loop is one of the oldest loop structures in programming languages. Unlike the other
two loops, the For…Next loop requires that you know how many times the statements in the loop
will be executed. The For…Next loop uses a variable (it’s called the loop’s counter) that increases or
decreases in value during each repetition of the loop. The For…Next loop has the following syntax:

For counter = start To end [Step increment]
statements

Next [counter]

The keywords in the square brackets are optional. The arguments counter, start, end, and increment are all
numeric. The loop is executed as many times as required for the counter to reach (or exceed) the end
value.

In executing a For…Next loop, Visual Basic completes the following steps:

1. Sets counter equal to start

2. Tests to see if counter is greater than end. If so, it exits the loop. If increment is negative, Visual
Basic tests to see if counter is less than end. If it is, it exits the loop.

3. Executes the statements in the block

4. Increments counter by the amount specified with the increment argument. If the increment argu-
ment isn’t specified, counter is incremented by 1.

5. Repeats the statements

The For…Next loop in Listing 3.14 scans all the elements of the numeric array data and calculates
their average.

Listing 3.14: Iterating an Array with a For…Next Loop

Dim i As Integer, total As Double
For i = 0 To data.GetUpperBound(0)

total = total + data(i)
Next i
Console.WriteLine (total / data.Length)

141FLOW-CONTROL STATEMENTS

2877c03.qxd 11/11/01 4:15 PM Page 141

http://www.sybex.com

The single most important thing to keep in mind when working with For…Next loops is that the
loop’s counter is set at the beginning of the loop. Changing the value of the end variable in the loop’s
body won’t have any effect. For example, the following loop will be executed 10 times, not 100
times:

endValue = 10
For i = 0 To endValue

endValue = 100
{ more statements }

Next i

You can, however, adjust the value of the counter from within the loop. The following is an
example of an endless (or infinite) loop:

For i = 0 To 10
Console.WriteLine(i)
i = i - 1

Next i

This loop never ends because the loop’s counter, in effect, is never increased. (If you try this, press
Ctrl+Break to interrupt the endless loop.)

Warning Manipulating the counter of a For…Next loop is strongly discouraged. This practice will most likely lead
to bugs such as infinite loops, overflows, and so on. If the number of repetitions of a loop isn’t known in advance, use a
Do…Loop or a While…End While structure (discussed in the following section).

The increment argument can be either positive or negative. If start is greater than end, the value of
increment must be negative. If not, the loop’s body won’t be executed, not even once.

Finally, the counter variable need not be listed after the Next statement, but it makes the code eas-
ier to read, especially when For…Next loops are nested within each other (nested loops are discussed
in the section “Nested Control Structures” later in the chapter).

Do…Loop

The Do…Loop executes a block of statements for as long as a condition is True. Visual Basic evaluates
an expression, and if it’s True, the statements are executed. When the end of block is reached, the
expression is evaluated again and, if it’s True, the statements are repeated. If the expression is False,
the program continues and the statement following the loop is executed.

There are two variations of the Do…Loop statement; both use the same basic model. A loop can be
executed either while the condition is True or until the condition becomes True. These two varia-
tions use the keywords While and Until to specify how long the statements are executed. To execute
a block of statements while a condition is True, use the following syntax:

Do While condition
statement-block

Loop

Chapter 3 VISUAL BASIC: THE LANGUAGE142

2877c03.qxd 11/11/01 4:15 PM Page 142

http://www.sybex.com

To execute a block of statements until the condition becomes True, use the following syntax:

Do Until condition
statement-block

Loop

When Visual Basic executes these loops, it first evaluates condition. If condition is False, a Do…While
loop is skipped (the statements aren’t even executed once) but a Do…Until loop is executed. When
the Loop statement is reached, Visual Basic evaluates the expression again and repeats the statement
block of the Do…While loop if the expression is True, or repeats the statements of the Do…Until loop
if the expression is False.

In short, the Do While loop is executed when the condition is True, and the Do Until loop is exe-
cuted when the condition is False.

The Do…Loop can execute any number of times as long as condition is True or False, as appropriate
(zero or nonzero if the condition evaluates to a number). Moreover, the number of iterations need
not be known before the loops starts. In fact, the statements may never execute if condition is initially
False for While or True for Until.

Here’s a typical example of using a Do…Loop. Suppose the string MyText holds a piece of text (per-
haps the Text property of a TextBox control), and you want to count the words in the text. (We’ll
assume that there are no multiple spaces in the text and that the space character separates successive
words.) To locate an instance of a character in a string, use the InStr() function, which accepts three
arguments:

� The starting location of the search

� The text to be searched

� The character being searched

The following loop repeats for as long as there are spaces in the text. Each time the InStr() func-
tion finds another space in the text, it returns the location (a positive number) of the space. When
there are no more spaces in the text, the InStr() function returns zero, which signals the end of the
loop, as shown:

Dim MyText As String = “The quick brown fox jumped over the lazy dog”
Dim position, words As Integer
position = 1
Do While position > 0

position = InStr(position + 1, MyText, “ “)
words = words + 1

Loop
Console.WriteLine “There are “ & words & “ words in the text”

The Do…Loop is executed while the InStr() function returns a positive number, which happens for
as long as there are more words in the text. The variable position holds the location of each successive
space character in the text. The search for the next space starts at the location of the current space plus
1 (so that the program won’t keep finding the same space). For each space found, the program incre-
ments the value of the words variable, which holds the total number of words when the loop ends.

143FLOW-CONTROL STATEMENTS

2877c03.qxd 11/11/01 4:15 PM Page 143

http://www.sybex.com

Note There are simpler methods of breaking a string into its constituent words, like the Split method of the String class.
This is just an example of the Do While loop.

You may notice a problem with the previous code segment. It assumes that the text contains at
least one word and starts by setting the position variable to 1. If the MyText variable contains an empty
string, the program reports that it contains one word. To fix this problem, you must specify the con-
dition, as shown:

Do While InStr(position + 1, MyText, “ “)
position = InStr(position + 1, MyText, “ “)
words = words + 1

Loop
Console.WriteLine(“There are “ & words & “ words in the text”)

This code segment counts the number of words correctly, even if the MyText variable contains an
empty string. If the MyText String variable doesn’t contain any spaces, the function InStr(position
+ 1, MyText, “ “) returns 0, which corresponds to False, and the Do loop isn’t executed.

You can code the same routine with the Until keyword. In this case, you must continue to search
for spaces until position becomes zero. Here’s the same code with a different loop (the InStr() func-
tion returns 0 if the string it searches for doesn’t exist in the longer string):

position = 1
Do Until position = 0

position = InStr(position + 1, MyText, “ “)
words = words + 1

Loop
Console.WriteLine(“There are “ & words & “ words in the text”)

Another variation of the Do loop executes the statements first and evaluates the condition after each
execution. This Do loop has the following syntax:

Do
statements

Loop While condition

or

Do
statements

Loop Until condition

The statements in this type of loop execute at least once, since the condition is examined at the end
of the loop.

Could we have implemented the previous example with one of the last two types of loops? The
fact that we had to do something special about zero-length strings suggests that this problem
shouldn’t be coded with a loop that tests the condition at the end. Since the loop’s body will be exe-
cuted once, the words variable is never going to be zero.

As you can see, you can code loops in several ways with the Do…Loop statement, and the way you
use it depends on the problem at hand and your programming style.

Chapter 3 VISUAL BASIC: THE LANGUAGE144

2877c03.qxd 11/11/01 4:15 PM Page 144

http://www.sybex.com

While…End While

The While…End While loop executes a block of statements as long as a condition is True. The While
loop has the following syntax:

While condition
statement-block

End While

VB6 ➠ VB.NET

The End While statement replaces the Wend statement of VB6.

If condition is True, all statements are executed and, when the End While statement is reached, con-
trol is returned to the While statement, which evaluates condition again. If condition is still True, the
process is repeated. If condition is False, the program resumes with the statement following End While.

The loop in Listing 3.15 prompts the user for numeric data. The user can type a negative value to
indicate that all values are entered.

Listing 3.15: Reading an Unknown Number of Values

Dim number, total As Double
number = 0
While number => 0

total = total + number
number = InputBox(“Please enter another value”)

End While

You assign the value 0 to the number variable before the loop starts because this value can’t affect
the total. Another technique is to precede the While statement with an InputBox function to get the
first number from the user.

Sometimes, the condition that determines when the loop will terminate is so complicated that it
can’t be expressed with a single statement. In these cases, we declare a Boolean value and set it to
True or False from within the loop’s body. Here’s the outline of such a loop:

Dim repeatLoop As Boolean
repeatLoop = True
While repeatLoop

{ statements }
If condition Then

repeatLoop = True
Else

repeattLoop = False
End If

End While

145FLOW-CONTROL STATEMENTS

2877c03.qxd 11/11/01 4:15 PM Page 145

http://www.sybex.com

You may also see an odd loop statement like the following one:

While True
{ statements }

End While

This seemingly endless loop must be terminated from within its own body with an Exit state-
ment, which is called when a condition becomes True or False. The following loop terminates when
a condition is met in the loop’s body:

While True
{ statements }
If condition Then Exit While
{ more statements }

End While

Nested Control Structures
You can place, or nest, control structures inside other control structures (such as an If…Then block
within a For…Next loop). Control structures in Visual Basic can be nested in as many levels as you
want. It’s common practice to indent the bodies of nested decision and loop structures to make the
program easier to read.

When you nest control structures, you must make sure that they open and close within the same
structure. In other words, you can’t start a For…Next loop in an If statement and close the loop after
the corresponding End If. The following pseudocode demonstrates how to nest several flow-control
statements:

For a = 1 To 100
{ statements }
If a = 99 Then

{ statements }
End If
While b < a

{ statements }
If total <= 0 Then

{ statements }
End If

End While
For c = 1 to a

{ statements }
Next

Next

I’m not showing the names of the count variables after the Next statement, because it’s not neces-
sary. To find the matching closing statement (Next, End If, or End While), move down from the
opening statement until you hit a line that starts at the same column. This is the matching closing
statement. Notice that you don’t have to align the nested structures yourself. The editor reformats

Chapter 3 VISUAL BASIC: THE LANGUAGE146

2877c03.qxd 11/11/01 4:15 PM Page 146

http://www.sybex.com

the code automatically as you edit. It also inserts the matching closing statement—the End If state-
ment is inserted automatically as soon as you enter an If statement, for example.

Listing 3.16 shows the structure of a nested For…Next loop that scans all the elements of a two-
dimensional array.

Listing 3.16: Iterating through a Two-Dimensional Array

Dim Array2D(6, 4) As Integer
Dim iRow, iCol As Integer
For iRow = 0 To Array2D.GetUpperBound(0)

For iCol = 0 To Array2D.GetUpperBound(1)
Array2D(iRow, iCol) = iRow * 100 + iCol
Console.Write(iRow & “, “ & iCol & “ = “ & Array2D(iRow, iCol) & “ “)

Next iCol
Console.WriteLine()

Next iRow

The outer loop (with the iRow counter) scans each row of the array, and the inner loop scans each
column in the current row. At each iteration, the inner loop scans all the elements in the row specified
by the counter of the outer loop (iRow). After the inner loop completes, the counter of the outer loop
is increased by one and the inner loop is executed again, this time to scan the elements of the next row.
The loop’s body consists of two statements that assign a value to the current array element and then
print it in the Output window. The current element at each iteration is Array2D(iRow, iCol).

Part of the output produced by this code segment is shown here. The pair of values separated by
a comma are the indices of an element, and its value follows the equal sign:

0, 0 = 0 0, 1 = 1 0, 2 = 2 0, 3 = 3 0, 4 = 4
1, 0 = 100 1, 1 = 101 1, 2 = 102 1, 3 = 103 1, 4 = 104
2, 0 = 200 2, 1 = 201 2, 2 = 202 2, 3 = 203 2, 4 = 204
3, 0 = 300 3, 1 = 301 3, 2 = 302 3, 3 = 303 3, 4 = 304
4, 0 = 400 4, 1 = 401 4, 2 = 402 4, 3 = 403 4, 4 = 404
5, 0 = 500 5, 1 = 501 5, 2 = 502 5, 3 = 503 5, 4 = 504
6, 0 = 600 6, 1 = 601 6, 2 = 602 6, 3 = 603 6, 4 = 604

Tip The presence of the counter names iCol and iRow aren’t really required after the Next statement. Actually, if
you supply them in the wrong order, Visual Basic will catch the error. In practice, few programmers specify counter values
after a Next statement because Visual Basic matches each Next statement to the corresponding For statement. If the loop’s
body is lengthy, you can improve the program’s readability by specifying the corresponding counter name after each Next
statement.

You can also nest multiple If statements. The structure shown in Listing 3.17 tests a user-sup-
plied value to determine whether it’s positive and, if so, determines whether the value exceeds a cer-
tain limit.

147FLOW-CONTROL STATEMENTS

2877c03.qxd 11/11/01 4:15 PM Page 147

http://www.sybex.com

Listing 3.17: Simple Nested If Statements

Income = InputBox(“Enter your income”)
If Income > 0 Then

If Income > 10000 Then
MsgBox “You will pay taxes this year”

Else
MsgBox “You won’t pay any taxes this year”

End If
Else

MsgBox “Bummer”
End If

The Income variable is first compared with zero. If it’s negative, the Else clause of the If…Then
statement is executed. If it’s positive, it’s compared with the value 10,000, and depending on the
outcome, a different message is displayed.

The Exit Statement
The Exit statement allows you to exit prematurely from a block of statements in a control structure,
from a loop, or even from a procedure. Suppose you have a For…Next loop that calculates the square
root of a series of numbers. Because the square root of negative numbers can’t be calculated (the
Sqrt() function will generate a runtime error), you might want to halt the operation if the array con-
tains an invalid value. To exit the loop prematurely, use the Exit For statement as follows:

For i = 0 To UBound(nArray)
If nArray(i) < 0 Then Exit For
nArray(i) = Math.Sqrt(nArray(i))

Next

If a negative element is found in this loop, the program exits the loop and continues with the
statement following the Next statement.

There are similar Exit statements for the Do loop (Exit Do) and the While loop (Exit While), as
well as for functions and subroutines (Exit Function and Exit Sub). If the previous loop was part
of a function, you might want to display an error and exit not only the loop, but the function itself:

For i = 0 To nArray.GetUpperBound()
If nArray(i) < 0 Then

MsgBox “Negative value found, terminating calculations”
Exit Function

End If
nArray(i) = Sqr(nArray(i))

Next

If this code is part of a subroutine procedure, you use the Exit Sub statement. The Exit state-
ments for loops are Exit For, Exit While, and Exit Do. There is no way (or compelling reason) to
exit prematurely from an If or Case statement.

Chapter 3 VISUAL BASIC: THE LANGUAGE148

2877c03.qxd 11/11/01 4:15 PM Page 148

http://www.sybex.com

Summary
It’s been a long chapter, but we wouldn’t be able to go far without the information presented here.
You have learned the base data types supported by Visual Basic, how to declare variables, and when
to use them. Actually, the base data types aren’t supplied by Visual Basic; they’re part of the Com-
mon Language Runtime (CLR) and are the same for all languages. At this point, it doesn’t really
make much difference what part of .NET supplies each feature (the CLR, the Framework, or Visual
Basic itself).

You’ve also learned how to store sets of values to an array, which is a great convenience. Arrays
have always been a prime tool for programmers, and they’ve gotten so much better in .NET. You
will read more about arrays in Chapter 11.

The base types supported by CLR are just too basic for the needs of a real application. To store
more complicated information (like customers, accounts and so on), you can create your own cus-
tom structures. After defining the structure of the information, you can declare variables with the
same structure. These variables behave like objects (even though they’re not technically objects),
because they expose the fields of the structure as properties.

The most interesting information presented in this chapter is the notion of variables as objects.
That will all make much more sense in Chapter 8, where we’ll discuss classes formally and you’ll
learn how to build your own classes and declared variables that represent them. Until then, think of
variables as entities that expose some functionality through properties and methods. Properties and
methods are just names following the name of a variable.

149SUMMARY

2877c03.qxd 11/11/01 4:15 PM Page 149

http://www.sybex.com

2877c03.qxd 11/11/01 4:15 PM Page 150

http://www.sybex.com

Chapter 4

Writing and Using Procedures
The one thing you should have learned about programming in Visual Basic so far is that an
application is made up of small, self-contained segments. The code you write isn’t a monolithic list-
ing; it’s made up of small segments called procedures, and you work on one procedure at a time.

For example, when you write code for a control’s Click event, you concentrate on the event at
hand—namely, how the program should react to the Click event. What happens when the con-
trol is double-clicked, or when another control is clicked, is something you will worry about later,
in another control’s event handler. This “divide and conquer” approach isn’t unique to program-
ming events. It permeates the Visual Basic language, and even the longest applications are written
by breaking them into small, well-defined tasks. Each task is performed by a separate procedure
that is written and tested separately from the others.

Procedures are also used for implementing repeated tasks, such as frequently used calculations.
Suppose you’re writing an application that, at some point, must convert temperatures between
different scales or calculate the smaller of two numbers. You can always do the calculations inline
and repeat them in your code wherever they are needed, or you can write a procedure that per-
forms the calculations and call this procedure. The benefit of the second approach is that code is
cleaner and easier to understand and maintain. If you discover a more efficient way to implement
the same calculations, you need change the code in only one place. If the same code is repeated in
several places throughout the application, you will have to change every instance.

The two types of procedures supported by Visual Basic are the topics we’ll explore in this
chapter: subroutines and functions—the building blocks of your applications. We’ll discuss them in
detail, how to call them with arguments and how to retrieve the results returned by the functions.
You may find that some of the topics discussed in this chapter are rather advanced, but I wanted
to exhaust the topic in a single chapter, rather than having to interrupt the discussion of other
topics to explain an advanced, procedure-related technique. You can skip the sections you find
difficult at first reading and come back to these sections later, or look up the technique as needed.

2877c04.qxd 11/11/01 4:15 PM Page 151

http://www.sybex.com

Modular Coding
The idea of breaking a large application into smaller, more manageable sections is not new to com-
puting. Few tasks, programming or otherwise, can be managed as a whole. The event handlers are
just one example of breaking a large application into smaller tasks. Some event handlers may require
a lot of code. A button that calculates the average purchase or sale price of a specific product must
scan all the purchase orders or invoices, find the ones that include the specific product, take into
consideration all units purchased or sold and the corresponding prices, and then calculate the average
price. You could calculate the net profit with the following statements, which will most likely appear
behind a button’s event handler:

RetrievePOLines(productID)
Sum1 = SumQtyPrice()
Qty1 = SumQuantities()
RetrieveInvoiceLines(productID)
Sum2 = SumQtyPrice()
Net = (Sum2 – Sum1) / Qty1

The task is broken into smaller units, and each unit is implemented by a function or subroutine.
(I’ll define the difference between the two shortly.) The name of the procedure indicates the opera-
tion it performs. First, the RetrievePOLines() subroutine retrieves quantities and purchase prices of
a specific product—the productID argument—from a database. The SumQtyPrice() function multi-
plies the quantities by prices at which they were sold and sums the results to get the total value paid
for the purchase of a specific product. This result is stored in the Sum1 variable. The SumQuantities()
function sums the unit quantities into the Qty1 variable.

The RetrieveInvoiceLines() subroutine gets similar data from the invoices in the database, so that
the SumQtyPrice() function can calculate the total income generated by the same product. The value
returned by the SumQtyPrice() function is stored in the Sum2 variable.

The Qty1 variable holds the total number of items purchased. We don’t take into consideration
any units in stock, but we’ll assume a very small, or zero, stock. In the last statement, the expression
(Sum2 - Sum1) is the total profit, and, dividing by the quantity of units sold, we calculate the average
profit made by the specific product.

Even if you have no idea how to retrieve invoices from a database, you can understand what this
code segment does. You don’t know yet how it does it, but the functions themselves are also broken
into small, easy-to-understand parts. Besides, not all programmers in a team need to understand all
aspects of the application. Programmers who are responsible for producing charts don’t have to
understand how the data are actually retrieved from the database. As long as they have the proper
data, they can produce the required graphs.

Functions and subroutines are segments of code that perform well-defined tasks and can be called
from various parts of an application to perform the same operation, usually on different data. The
difference is that functions return a value, while subroutines don’t. This explains why function
names are assigned to a variable—we save the value returned by a function and reuse it later.

Chapter 4 WRITING AND USING PROCEDURES152

2877c04.qxd 11/11/01 4:15 PM Page 152

http://www.sybex.com

As you can see, the divide-and-conquer approach in software is nothing less than a requirement
in large applications. It’s so common in programming, that there’s a name for it: modular programming.
Ideally, every program should be broken down into really simple tasks, and the code should read
almost like English. You can write your application at a high level, and then start coding the low-
level procedures.

The best thing about modular programming is that it allows programmers with different skills to
focus on different parts of the application. A database programmer could write the RetrievePOLines()
and RetrieveInvoiceLines() procedures, while another programmer could use these procedures as black
boxes to build applications, just like the functions that come with the language. Imagine if you had to
write code to calculate the number of days between two dates without the advantage of the DateDiff()
function!

If you need a procedure to perform certain actions, such as changing the background color of a
control or displaying the fields of a record on the form, you can implement it either as a function or
subroutine. The choice of the procedure type isn’t going to affect the code. The same statements can
be used with either type of procedure. However, if your procedure doesn’t return a value, then it
should be implemented as a subroutine. If it returns a value, then it must be implemented as a func-
tion. The only difference between subroutines and functions is that functions return a value, while
subroutines don’t.

Both subroutines and functions can accept arguments, which are values you pass to the procedure
when you call it. Arguments and the related keywords are discussed in detail in the section “Argu-
ments,” later in this chapter.

Subroutines
A subroutine is a block of statements that carries out a well-defined task. The block of statements is
placed within a set of Sub…End Sub statements and can be invoked by name. The following subrou-
tine displays the current date in a message box and can be called by its name, ShowDate():

Sub ShowDate()
MsgBox(Now())

End Sub

Normally, the task a subroutine performs is more complicated than this; nevertheless, even this is
a block of code isolated from the rest of the application. All the event handlers in Visual Basic, for
example, are coded as subroutines. The actions that must be performed each time a button is clicked
are coded in the button’s Click procedure.

The statements in a subroutine are executed, and when the End Sub statement is reached,
control returns to the calling program. It’s possible to exit a subroutine prematurely, with the Exit
Sub statement. For example, some condition may stop the subroutine from successfully completing
its task.

All variables declared within a subroutine are local to that subroutine. When the subroutine exits,
all variables declared in it cease to exist.

153MODULAR CODING

2877c04.qxd 11/11/01 4:15 PM Page 153

http://www.sybex.com

Most procedures also accept and act upon arguments. The ShowDate() subroutine displays the cur-
rent date on a message box. If you want to display any other date, you’d have to pass an argument to
the subroutine telling it to act on a different value, like this:

Sub ShowDate(ByVal birthDate As Date)
MsgBox(birthDate)

End Sub

birthDate is a variable that holds the date to be displayed; its type is Date. (The ByVal keyword means
that the subroutine sees a copy of the variable, not the variable itself. What this means practically is that
the subroutine can’t change the value of the birthDate variable.)

To display the current date on a message box, you must call the ShowDate subroutine as follows
from within your program:

ShowDate()

To display another date with the second implementation of the subroutine, use a statement like
the following:

Dim myBirthDate = #2/9/1960#
ShowDate(myBirthDate)

Or, you can pass the value to be displayed directly without the use of an intermediate variable:

ShowDate(#2/9/1960#)

Subroutines and Event Handlers

In the first couple of chapters, you learned to develop applications by placing code in event handlers.
An event handler is a segment of code that is executed each time an external (or internal to your appli-
cation) condition triggers the event. When the user clicks a control, the control’s Click event handler
executes. This handler is nothing more than a subroutine that performs all the actions you want to
perform when the control is clicked. It is separate from the rest of the code and doesn’t have to
know what would happen if another control was clicked, or if the same control was double-clicked.
It’s a self-contained piece of code that’s executed when needed.

Every application is made up of event handlers, which contain code to react to user actions. Event
handlers need not return any results, and they’re implemented as subroutines. For example, to react
to the click of the mouse on the Button1 control, your application must provide a subroutine that
handles the Button1.Click event. The code in this subroutine is executed independently of any other
event handler, and it doesn’t return a result because there is no main program to accept it. The code
of a Visual Basic application consists of event handlers, which may call other subroutines and func-
tions but aren’t called by a main program. They are automatically activated by VB in response to
external events.

Functions
A function is similar to a subroutine, but a function returns a result. Subroutines perform a task and
don’t report anything to the calling program; functions commonly carry out calculations and report
the result. Because they return values, functions—like variables—have types. The value you pass
back to the calling program from a function is called the return value, and its type must match the type

Chapter 4 WRITING AND USING PROCEDURES154

2877c04.qxd 11/11/01 4:15 PM Page 154

http://www.sybex.com

of the function. Functions accept arguments, just like subroutines. The statements that make up a
function are placed in a set of Function…End Function statements, as shown here:

Function NextDay() As Date
Dim theNextDay As Date
theNextDay = DateAdd(DateInterval.Day, 1, Now())
Return(theNextDay)

End Function

DateAdd() is a built-in function that adds a number of intervals to a date. The interval is speci-
fied by the first argument (here, it’s days), the number of intervals is the second argument (one day),
and the third argument is the date to which the number of intervals is added (today). So the Next-
Day() function returns tomorrow’s date by adding one day to the current date. (The DateAdd()
function is described in the reference “VB.NET Functions and Statements” on the CD.) NextDay()
is a custom function, which calls the built-in DateAdd() function to complete its calculations.
Another custom function might call NextDay() for its own purposes.

The result of a function is returned to the calling program with the Return statement. In our
example, the Return statement happens to be the last statement in the function, but it could appear
anywhere; it could even appear several times in the function’s code. The first time a Return state-
ment is executed, the function terminates and control is returned to the calling program.

You can also return a value to the calling routine by assigning the result to the name of the func-
tion. The following is an alternate method of coding the NextDay() function:

Function NextDay() As Date
NextDay = DateAdd(DateInterval.Day, 1, Now())

End Function

Notice that this time I’ve assigned the result of the calculation to the function’s name directly and
didn’t use a variable.

Similar to variables, a custom function has a name, which must be unique in its scope. If you
declare a function in a form, the function name must be unique in the form. If you declare a function
as Public or Friend, its name must be unique in the project. Functions have the same scope rules as
variables and can be prefixed by many of the same keywords. In effect, you can modify the default
scope of a function with the keywords Public, Private, Protected, Friend, and Protected Friend.

Built-In Functions

Let’s look at a couple of functions, starting with one of the built-in functions, the Abs() function.
This function returns the absolute value of its argument. If the argument is positive, the function
returns it as is; if it’s negative, the function inverts its sign. The Abs() function could be imple-
mented as follows:

Function Abs(X As Double) As Double
If X >= 0 Then

Return(X)
Else

Return(-X)
End If

End Function

155MODULAR CODING

2877c04.qxd 11/11/01 4:15 PM Page 155

http://www.sybex.com

This is a trivial procedure, yet it’s built into Visual Basic because it’s used frequently in math and
science calculations. Developers can call a single function rather than supplying their own Abs()
functions. Visual Basic and all other programming languages provide many built-in functions to
implement the tasks needed most frequently by developers. But each developer has special needs, and
you can’t expect to find all the procedures you may ever need in a programming language. Sooner or
later, you will have to supply your own.

The .NET Framework provides a large number of functions that implement common or compli-
cated tasks. There are functions for the common math operations, functions to perform calculations
with dates (these are complicated operations), financial functions, and many more. When you use
the built-in functions, you don’t have to know how they work internally.

The Pmt() function, for example, calculates the monthly payments on a loan. All you have to
know is the arguments you must pass to the function and retrieve the result. The syntax of the Pmt()
function is

MPay = Pmt(Rate, NPer, PV, FV, Due)

where MPay is the monthly payment, Rate is the monthly interest rate, NPer is the number of pay-
ments (the duration of the loan in months), and PV is the present value of the loan (the amount you
took from the bank). Due is an optional argument that specifies when the payments are due (the
beginning or the end of the month), and FV is another optional argument that specifies the future
value of an amount; this isn’t needed in the case of a loan, but it can help you calculate how much
money you should deposit each month to accumulate a target amount over a given time. (The
amount returned by the Pmt() function is negative, because it’s a negative cash flow—it’s money
you owe—so pay attention to the sign of your values.)

To calculate the monthly payment for a $20,000 loan paid off over a period of 6 years at a fixed
interest rate of 7.25%, you call the Pmt() function as follows:

Dim mPay As Double
Dim Duration As Integer = 6 * 12
Dim Rate As Single = (7.25 / 100) / 12
Dim Amount As Single = 20000
mPay = Pmt(Rate, Duration, Amount)
MsgBox(“Your monthly payment will be $” & -mPay & vbCrLf & _

“You will pay back a total of $” & -mPay * duration)

Notice that the interest (7.25%) is divided by 12, because the function requires the monthly inter-
est. The value returned by the function is the monthly payment for the loan specified with the Dura-
tion, Amount, and Rate variables. If you place the preceding lines in the Click event handler of a Button,
run the project, and then click the button, the following message will appear on a message box:

Your monthly payment will be $343.3861
You will pay back a total of $24723.8

To calculate the monthly deposit amount, you must call the Pmt() function passing 0 as the pres-
ent value and the target amount as the future value. Replace the statements in the Click event handler
with the following and run the project:

Dim mPay As Double
Dim Duration As Integer = 15 * 12

Chapter 4 WRITING AND USING PROCEDURES156

2877c04.qxd 11/11/01 4:15 PM Page 156

http://www.sybex.com

Dim Rate As Single = (4 / 100) / 12
Dim Amount As Single = -40000
mPay = Pmt(Rate, Duration, 0, Amount)
MsgBox(“A monthly deposit of $” & mPay & vbCrLf & _

“every month will yield $40,000 in 15 years”)

It turns out that if you want to accumulate $40,000 over the next 15 years to send your kid to
college, assuming a constant interest rate of 4%, you must deposit $162.55 every month.

Pmt() is one of the simpler financial functions provided by the Framework, but most of us would
find it really difficult to write the code for this function. Since financial calculations are quite com-
mon in business programming, many of the functions you may need already exist, and all you need
to know is how to call them. The financial functions, along with all other built-in functions you can
use in your applications, are described in the reference “VB.NET Functions and Statements” (found
on the companion CD).

Custom Functions

The built-in functions, however, aren’t nearly enough for all types of applications. Most of the code
we write is in the form of custom functions, which are called from several places in the application.
Let’s look at an example of a more advanced function that does something really useful.

Every book has a unique International Standard Book Number (ISBN). Every application that
manages books—and there are many bookstores on the Internet—needs a function to verify the
ISBN, which is made up of nine digits followed by a check digit. To calculate the check digit, you
multiply each of the nine digits by a constant; the first digit is multiplied by 10, the second digit is
multiplied by 9, and so on. The sum of these multiplications is then divided by 11, and we take the
remainder. The check digit is the remainder subtracted from 11. Because the remainder is a digit
from 0 to 10, when it turns out to be 10, the check digit is set to “X.” This is the only valid charac-
ter that may appear in an ISBN, and it can only be the check digit. To calculate the check digit for
the ISBN 078212283, compute the sum of the following products:

0 * 10 + 7 * 9 + 8 * 8 + 2 * 7 + 1 * 6 + 2 * 5 + 2 * 4 + 8 * 3 + 3 * 2

The sum is 195, and when you divide that by 11, the remainder is 8. The check digit is 11 – 8,
or 3, and the book’s complete ISBN is 0782122833. The ISBNCheckDigit() function, shown in
Listing 4.1, accepts the nine digits of the ISBN as argument and returns the appropriate check digit.

Listing 4.1: The ISBNCheckDigit() Custom Function

Function ISBNCheckDigit(ByVal ISBN As String) As String
Dim i As Integer, chksum, chkDigit As Integer
For i = 0 To 8

chkSum = chkSum + (10 - i) * ISBN.Substring(i, 1)
Next
chkDigit = 11 - (chkSum Mod 11)
If chkDigit = 10 Then

Return (“X”)
Else

157MODULAR CODING

2877c04.qxd 11/11/01 4:15 PM Page 157

http://www.sybex.com

Return (chkDigit.ToString)
End If

End Function

The ISBNCheckDigit() function returns a string value, because the check digit can be either a
digit or “X.” It also accepts a string, because the complete ISBN (nine digits plus the check digit) is
a string, not a number (leading zeros are important in an ISBN but totally meaningless in a numeric
value). The Substring method of a String object extracts a number of characters from the string it’s
applied to. The first argument is the starting location in the string, and the second is the number of
characters to be extracted.

The expression ISBN.Substring(i, 1) extracts one character at a time from the ISBN string vari-
able. During the first iteration of the loop, it extracts the first character; during the second iteration,
it extracts the second character, and so on.

The character extracted is a numeric digit, which is multiplied by the value (10 – i) and the result
is added to the chkSum variable. This variable is the checksum of the ISBN. After it has been calcu-
lated, we divide it by 11 and take its remainder, which we subtract from 11. This is the ISBN’s
check digit and the function’s return value.

VB6 ➠ VB.NET

There’s something odd about the way the .NET Framework handles strings. The index of the first character
in a string is 0, not 1. That’s why the loop that scans the first nine digits of the ISBN goes from 0 to 8. Because
the variable i is one less than the position of the digit in the ISBN, we subtract it from 10 and not from 11.
Up to the last version of Visual Basic, the indexing of strings started at 1, but .NET changed all that, and this
is something you must get used to.

You can use this function in an application that maintains a book database, to make sure that all
books are entered with a valid ISBN. You can also use it with a Web application that allows viewers
to request books by their ISBN. The same code will work with two different applications, even
when passed to other developers. Developers using your function don’t have to know how the check
digit is calculated, just how to call the function and retrieve its result.

To test the ISBNCheckDigit() function, start a new project, place a button on the form, and
enter the following statements in its Click event handler (or open the ISBN project in this chapter’s
folder on the CD):

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Console.WriteLine(“The check Digit is “ & ISBNCheckDigit(“078212283”))
End Sub

After inserting the code of the ISBNCheckDigit() function and the code that calls the function,
your code editor should look like Figure 4.1. You can place a TextBox control on the Form and pass
the Text property of the control to the ISBNCheckDigit() function to calculate the check digit.

Chapter 4 WRITING AND USING PROCEDURES158

2877c04.qxd 11/11/01 4:15 PM Page 158

http://www.sybex.com

Calling Functions and Subroutines
When you call a procedure, you must supply values for all the arguments specified in the procedure’s
definition and in the same order. To call a procedure, you simply enter its name, followed by its
arguments in parentheses:

Dim chDigit As String
chDigit = ISBNCheckDigit(“078212283”)

The values of the arguments must match their declared type. If a procedure expects an integer
value, you shouldn’t supply a date value or a string. If the procedure is a function, you must assign its
return value to a variable so you can use it from within your code. The following statement creates
the complete ISBN by calling the ISBNCheckDigit() function:

Dim ISBN As String = “078212283”
MsgBox(“The complete ISBN is “ & ISBN & ISBNCheckDigit(ISBN))

The argument of the MsgBox() function needs a some explanation. It calls the ISBNCheck-
Digit() function, passing the ISBN as argument. Then it appends the check digit (which is the value
returned by the function) to the ISBN value and prints it. It is equivalent to the following state-
ments, which are simpler to read, but not nearly as common:

Dim wholeISBN As String
wholeISBN = ISBN & ISBNCheckDigit(ISBN)
MsgBox(“The complete ISBN is “ & wholeISBN)

Functions are called by name, and a list of arguments follows the name in parentheses as shown:

Degrees = Fahrenheit(Temperature)

In this example, the Fahrenheit() function converts the Temperature argument (which presumably is
the temperature in degrees Celsius) to degrees Fahrenheit, and the result is assigned to the Degrees
variable.

Figure 4.1

Calling the
ISBNCheckDigit()
function

159MODULAR CODING

2877c04.qxd 11/11/01 4:15 PM Page 159

http://www.sybex.com

Functions can be called from within expressions, as the following statement shows:

MsgBox(“40 degrees Celsius are “ & Fahrenheit(40).ToString & _
“ degrees Fahrenheit”)

Notice that the ToString method applies to the numeric value returned by the function, and you
need not implement it as part of your function. All numeric types provide the ToString method,
which converts the numeric value to a string.

Suppose the function CountWords() counts the number of words and the function
CountChars() counts the number of characters in a string. The average length of a word could be
calculated as follows:

Dim longString As String, avgLen As Double
longString = TextBox1.Text
avgLen = CountChars(longString) / CountWords(longString)

The first executable statement gets the text of a TextBox control and assigns it to a variable, which is
then used as an argument to the two functions. When the second statement executes, Visual Basic
first calls the functions CountChars() and CountWords() with the specified arguments and then
divides the results they return.

You can call functions in the same way that you call subroutines, but the result won’t be stored
anywhere. For example, the function Convert() may convert the text in a textbox to uppercase and
return the number of characters it converts. Normally, you’d call this function as follows:

nChars = Convert()

If you don’t care about the return value—you only want to update the text on a TextBox control—
you would call the Convert() function with the following statement.

Convert()

VB6 ➠ VB.NET

The Call statement of VB6 has disappeared. Also, the parentheses around the argument list are manda-
tory, even if the subroutine or function doesn’t accept any arguments. You can no longer call a subroutine
with a statement like

ConvertText myText

You must enclose the arguments in a pair of parentheses:

ConvertText(myText)

Arguments
Subroutines and functions aren’t entirely isolated from the rest of the application. Most procedures
accept arguments from the calling program. Recall that an argument is a value you pass to the proce-
dure and on which the procedure usually acts. This is how subroutines and functions communicate
with the rest of the application.

Chapter 4 WRITING AND USING PROCEDURES160

2877c04.qxd 11/11/01 4:15 PM Page 160

http://www.sybex.com

Functions also accept arguments—in many cases, more than one. The function Min(), for
instance, accepts two numbers and returns the smaller one:

Function Min(ByVal a As Single, ByVal b As Single) As Single
Min = IIf(a < b, a, b)

End Function

IIf() is a built-in function that evaluates the first argument, which is a logical expression. If the
expression is True, the IIf() function returns the second argument. If the expression is False, the
function returns the third argument.

To call this function use a few statements like the following:
Dim val1 As Single = 33.001
Dim val2 As Single = 33.0011
Dim smallerVal as Single
smallerVal = Min(val1, val2)
Console.Write(“The smaller value is “ & smallerVal)

If you execute these statements (place them in a button’s Click event handler), you will see the
following on the Output window:

The smaller value is 33.001

If you attempt to call the same function with two double values, as in a statement like the following:

Console.WriteLine(Min(3.33000000111, 3.33000000222))

you will see the value 3.33 in the Output window. The compiler converted the two values from
Double to Single data type and returned one of them. Which one is it? It doesn’t make a difference,
because when converted to Single, both values are the same.

Interesting things will happen if you attempt to use the Min() function with the Strict option
turned on. Insert the statement Option Strict On at the very beginning of the file. First, the editor
will underline the statement that implements the Min() function—the IIf() function. The IIf()
function accepts two Object variables as arguments, and you can’t call it with Single or Double val-
ues. The Strict option prevents the compiler from converting numeric values to objects. To use the
IIf() function with the Strict option, you must change its implementation as follows:

Function Min(ByVal a As Object, ByVal b As Object) As Object
Min = IIf(Val(a) < Val(b), a, b)

End Function

Argument-Passing Mechanisms
One of the most important issues in writing procedures is the mechanism used to pass arguments.
The examples so far have used the default mechanism: passing arguments by value. The other mecha-
nism is passing them by reference. Although most programmers use the default mechanism, it’s
important to know the difference between the two mechanisms and when to use each.

Passing Arguments by Value

When you pass an argument by value, the procedure sees only a copy of the argument. Even if the
procedure changes it, the changes aren’t permanent. The benefit of passing arguments by value is that

161ARGUMENTS

2877c04.qxd 11/11/01 4:15 PM Page 161

http://www.sybex.com

the argument values are isolated from the procedure, and only the code segment in which they are
declared can change their values. This is the default argument-passing mechanism in VB.NET.

To specify the arguments that will be passed by value, use the ByVal keyword in front of the
argument’s name. If you omit the ByVal keyword, the editor will insert it automatically, since it’s the
default option. To declare that the Degrees() function’s arguments are passed by value, use the
ByVal keyword in the argument’s declaration as follows:

Function Degrees(ByVal Celsius as Single) As Single
Degrees = (9 / 5) * Celsius + 32

End Function

To see what the ByVal keyword does, add a line that changes the value of the argument in the
function:

Function Degrees(ByVal Celsius as Single) As Single
Degrees = (9 / 5) * Celsius + 32
Celsius = 0

End Function

Now call the function as follows:

CTemp = InputBox(“Enter temperature in degrees Celsius”)
MsgBox(CTemp.ToString & “ degrees Celsius are “ & Degrees((CTemp)) & _

“ degrees Fahrenheit”)

If the value entered in the InputBox is 32, the following message is displayed:

32 degrees Celsius are 89.6 degrees Fahrenheit

Replace the ByVal keyword with the ByRef keyword in the function’s definition and call the
function as follows:

Celsius = 32.0
FTemp = Degrees(Celsius)
MsgBox(Celsius.ToString & “ degrees Celsius are “ & FTemp & _

“ degrees Fahrenheit”)

This time the program displays the following message:

0 degrees Celsius are 89.6 degrees Fahrenheit

When the Celsius argument was passed to the Degrees() function, its value was 32. But the func-
tion changed its value, and upon return it was 0. Because the argument was passed by reference, any
changes made by the procedure affected the variable permanently. When the calling program
attempted to use it, the variable had a different value than expected.

Note When you pass arguments to a procedure by reference, you’re actually passing the variable itself. Any changes made
to the argument by the procedure will be permanent. When you pass arguments by value, the procedure gets a copy of the
variable, which is discarded when the procedure ends. Any changes made to the argument by the procedure won’t affect the
variable of the calling program.

Chapter 4 WRITING AND USING PROCEDURES162

2877c04.qxd 11/11/01 4:15 PM Page 162

http://www.sybex.com

Note When you pass an array as argument to a procedure, the array is always passed by reference—even if you specify
the ByVal keyword. The reason for this is that it would take the machine some time to create a copy of the array. Since the copy
of the array must also live in memory, passing too many arrays back and forth by value would deplete your system’s memory.

Passing Arguments by Reference

Passing arguments by reference gives the procedure access to the actual variable. The calling proce-
dure passes the address of the variable in memory so that the procedure can change its value perma-
nently. With VB6, this was the default argument-passing mechanism, but this is no longer the case.

Start a new Visual Basic project and enter the following function definition in the form’s code
window:

Function Add(ByRef num1 As Integer, ByRef num2 As Integer) As Integer
Add = num1 + num2
num1 = 0
num2 = 0

End Function

This simple function adds two numbers and then sets them to zero.
Next, place a Command button on the form and enter the following code in the button’s Click

event:

Dim A As Integer, B As Integer
A = 10
B = 2
Dim Sum As Integer
Sum = Add(A, B)
Console.WriteLine(A)
Console.WriteLine(B)
Console.WriteLine(Sum)

This code displays the following results in the Output window:

0
0
12

The changes made to the function’s arguments take effect even after the function has ended. The
values of the variables A and B have changed value permanently.

Now change the definition of the function by inserting the keyword ByVal before the names of
the arguments, as follows:

Function Add(ByVal num1 As Integer, ByVal num2 As Integer) As Integer

With this change, Visual Basic passes copies of the arguments to the function. The rest of the pro-
gram remains the same. Run the application, click the button, and the following values display in the
Output window:

10
2
12

163ARGUMENTS

2877c04.qxd 11/11/01 4:15 PM Page 163

http://www.sybex.com

The function has changed the values of the arguments, but these changes remain in effect only in
the function. The variables A and B in the Button1_Click event handler haven’t been affected.

As you type the names of the arguments in the declaration of a subroutine or function, the editor
inserts automatically the ByVal keyword if you omit it (unless, of course, you specify the ByRef key-
word). In general, you pass arguments by reference only if the procedure has reason to change its
value. If the values of the arguments are required later in the program, you run the risk of changing
their values in the procedure.

Returning Multiple Values

If you want to write a function that returns more than a single result, you will most likely pass addi-
tional arguments by reference and set their values from within the function’s code. The following
function calculates the basic statistics of a data set. The values of the data set are stored in an array,
which is passed to the function by reference.

The Stats() function must return two values, the average and standard deviation of the data set. In
a real-world application, a function like Stats() should calculate more statistics than this, but this is
just an example to demonstrate how to return multiple values through the function’s arguments.
Here’s the declaration of the Stats() function:

Function Stats(ByRef Data() As Double, ByRef Avg As Double, _
ByRef StDev As Double) As Integer

The function returns an integer, which is the number of values in the data set. The two important
values calculated by the function are returned in the Avg and StDev arguments.

Function Stats(ByRef Data() As Double, ByRef Avg As Double, _
ByRef StDev As Double) As Integer

Dim i As Integer, sum As Double, sumSqr As Double, points As Integer
points = Data.Length
For i = 0 To points - 1

sum = sum + Data(i)
sumSqr = sumSqr + Data(i) ^ 2

Next
Avg = sum / points
StDev = System.Math.Sqrt(sumSqr / points - Avg ^ 2)
Return(points)

End Function

To call the Stats() function from within your code, set up an array of doubles and declare two
variables that will hold the average and standard deviation of the data set:

Dim Values(100) As Double
‘ Statements to populate the data set
Dim average, deviation As Double
Dim points As Integer
points = Stats(Values, average, deviation)
Console.WriteLine points & “ values processed.”
Console.WriteLine “The average is “ & average & “ and”
Console.WriteLine “the standard deviation is “ & deviation

Chapter 4 WRITING AND USING PROCEDURES164

2877c04.qxd 11/11/01 4:15 PM Page 164

http://www.sybex.com

Using ByRef arguments is the simplest method for a function to return multiple values. However,
the definition of your functions may become cluttered, especially if you want to return more than a
few values. Another problem with this technique is that it’s not clear whether an argument must be
set before calling the function or not. As you will see shortly, it is possible for a function to return an
array, or a custom structure with fields for any number of values.

Passing Objects as Arguments

When you pass objects as arguments, they’re passed by reference, even if you have specified the
ByVal keyword. The procedure can access and modify the members of the object passed as argu-
ment, and the new value will be visible in the procedure that made the call.

The following code segment demonstrates this. The object is an ArrayList, which is an enhanced
form of an array. The ArrayList is discussed in detail later in the book, but to follow this example all you
need to know is that the Add method adds new items to the ArrayList, and you can access individual
items with an index value, similar to an array’s elements. The Click event handler of a Button control cre-
ates a new instance of the ArrayList object and calls the PopulateList() subroutine to populate the list.
Even though the ArrayList object is passed to the subroutine by value, the subroutine has access to its
items:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim aList As New ArrayList()
PopulateList(aList)
Console.WriteLine(aList(0).ToString)
Console.WriteLine(aList(1).ToString)
Console.WriteLine(aList(2).ToString)

End Sub
Sub PopulateList(ByVal list As ArrayList)

list.Add(“1”)
list.Add(“2”)
list.Add(“3”)

End Sub

The same is true for arrays and all other collections. Even if you specify the ByVal keyword,
they’re passed by reference. A more elegant method of modifying the members of a structure from
within a procedure is to implement the procedure as a function returning a structure, as explained in
the section “Functions Returning Structures,” later in this chapter.

Event-Handler Arguments
In this section, we’re going to look at the implementation of event handlers as subroutines. Event han-
dlers never return a result, so they’re implemented as subroutines. In specific, we’re going to examine
the two arguments that are common to all event handlers, which pass information about the object
and the action that invoked the event.

You may have noticed that the subroutines that handle events accept two arguments: sender and e.
Here’s the declaration of the Click event handler for a button:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

End Sub

165ARGUMENTS

2877c04.qxd 11/11/01 4:15 PM Page 165

http://www.sybex.com

The sender argument conveys information about the object that initiated the event; we use this
argument in our code to find out the type of the object that raised the event. The following two
statements in a button’s Click event handler will print the values shown in bold on the Output
window:

Console.WriteLine(sender.ToString)
System.Windows.Forms.Button, Text: Button1

Console.WriteLine(sender.GetType)
System.Windows.Forms.Button

The second argument contains all the information you really need to process the event. The e
argument is an object that exposes some properties, which vary depending on the type of the event
and the control that raised the event. A TextBox control, for example, raises several events when a
key is pressed, in addition to the events of the mouse. The information you need to process the dif-
ferent types of events is passed to your application through the second argument of the event han-
dler.

Let’s examine the members of this argument for two totally different event types. The e argument
passed to the Click event handler has no special properties. All the information you really need is
that a button was clicked and nothing more. The location of the pointer, for example, doesn’t make
any difference in your code, neither do you care about the status of the various control keys. Regard-
less of whether the Alt or the Shift key was down or not when the left mouse button was clicked,
your application will be notified about the Click event. If you want to capture the state of the con-
trol keys and react differently depending on their status, you must program the handler of the
MouseDown or MouseUp events. These events are raised when the mouse is pressed or released and
are independent of the Click event.

The Mouse Events

Every time you click the mouse, a series of events is triggered. When you perform a single click, your
application receives a MouseDown event, then a Click event, and then a MouseUp event. You get
mouse events even as you scroll the mouse over a control: the MouseEnter when the mouse enters
the control, a series of MouseMove events as you move the mouse over the control, a MouseHover
event if you hover the mouse over the control, and a MouseLeave event as soon as the pointer gets
outside the bounds of the control. Different mouse events report different information to the appli-
cation through the arguments of the appropriate event handler, and this information is passed to
your application in the form of properties of the e argument. The e argument of most mouse events
provides the following properties.

Button

This property returns the button that was pressed, and its value is one of the members of the
MouseButtons enumeration: Left, Middle, None, Right, XButton1, and XButton2. The last two mem-
bers of the enumeration are for five-button mice and correspond to the two side buttons. The But-
ton property is present in events that involve the button of the mouse. The e argument of the Click
and DoubleClick events, however, doesn’t provide a Button property; these two events can only be
triggered with the left button.

Chapter 4 WRITING AND USING PROCEDURES166

2877c04.qxd 11/11/01 4:15 PM Page 166

http://www.sybex.com

Clicks

This property returns the number of times the mouse button was pressed and released. Its value is 1
for a single click and 2 for a double-click. You can’t click a control three times—as soon as you
click it for the second time, a double-click event will be raised.

Delta

This property is used with wheel mice; it reads the number of detents (that is, notches or stops) that
the mouse wheel was rotated. You can use this property to figure out how much a TextBox control
was scrolled (or any other control that can be scrolled with a scrollbar).

X, Y

These two properties return the coordinates of the pointer at the moment the mouse button was
pressed (in the MouseDown event) or released (in the MouseUp event). The coordinates are
expressed in pixels in the client’s area. If you click a Button control at the very first pixel (its top-left
corner), the X and Y properties will be 0.

The same properties are exposed by both the MouseDown and MouseUp events. Notice that
these two events are fired regardless of which button was pressed—unlike the Click and Dou-
bleClick events, which can’t be triggered with a button other than the left one.

The X and Y properties may be different for the MouseDown and MouseUp events. For
example, you can press a button and hold it down while you move the pointer around. When you
release the button, its coordinates will be different than the coordinates reported by the Mouse-
Down event. If you move the mouse outside the control in which you pressed the button, the coor-
dinates may exceed the dimensions of the control, or even be negative. They are the distances of the
pointer, at the moment you released the button, from the top-left corner of the control.

Insert the following code in a Button’s MouseDown and MouseUp event handlers:

Private Sub Button1_MouseDown(ByVal sender As Object, _
ByVal e As System.Windows.Forms.MouseEventArgs) _
Handles Button1.MouseDown

Console.WriteLine(“Button pressed at “ & e.X & “, “ & e.Y)
End Sub
Private Sub Button1_MouseUp(ByVal sender As Object, _

ByVal e As System.Windows.Forms.MouseEventArgs) _
Handles Button1.MouseUp

Console.WriteLine(“Button released at “ & e.X & “, “ & e.Y)
End Sub

If you press and release the mouse at a single point, both handlers will report the same point. If
you move the pointer before releasing the button, you will see four values like the following:

Button pressed at 63, 16
Button released at –107, -68

As you can guess, the mouse button was pressed while the pointer was over the Button control,
and it was released after the pointer was moved to the left and above the Button control.

167ARGUMENTS

2877c04.qxd 11/11/01 4:15 PM Page 167

http://www.sybex.com

The Key Events

The TextBox control recognizes the usual mouse events, but the most important events in program-
ming the TextBox (or other controls that accept text) are the key events, which are raised when a key
is pressed, while the control has the focus. The KeyPress event is fired every time a key is pressed.
This event reports the key that was pressed. You can have finer control over the user’s interaction
with the keyboard with the KeyDown and KeyUp events, which are fired when a key is pressed and
released respectively. The KeyDown event handler’s definition is:

Private Sub TextBox1_KeyDown(ByVal sender As Object, _
ByVal e As System.Windows.Forms.KeyEventArgs) _
Handles TextBox1.KeyDown

The second argument of the KeyDown and KeyUp event handlers provides information about
the status of the keyboard and the key that was pressed through the following properties.

Alt, Control, Shift

These three properties return a True/False value indicating whether one or more of the control keys
were down when the key was pressed.

KeyCode

The KeyCode property returns the code of the key that was pressed, and its value can be one of the
members of the Keys enumeration. This enumeration contains a member for all keys, including the
mouse keys, and its members are displayed in a drop-down list when you need them. Notice that
each key has its own code, which usually corresponds to two different characters. The “a” and “A”
characters, for example, have the same code, the KeysA member. The code of the key “0” on the
numeric keypad is the member Key0, and the function key F1 has the code KeyF1.

KeyData

This property returns a value that identifies the key pressed, similar to the KeyCode property, but it
also distinguishes the character or symbol on the key. The KeyCode for the 4 key is 52, regardless of
whether it was pressed with the Shift key or not. The same KeyCode value applies to the $ symbol,
because they’re both on the same key. The KeyData values for the same two characters are two long
values that include the status of the control keys. The value of the KeyData property is a member of
the Keys enumeration.

KeyValue

This property returns the keyboard value for the key that was pressed. It’s usually the same as the Key-
Data value, but certain keys don’t report a value (the control keys, for example, don’t report a KeyValue).

Passing an Unknown Number of Arguments
Generally, all the arguments that a procedure expects are listed in the procedure’s definition, and the
program that calls the procedure must supply values for all arguments. On occasions, however, you
may not know how many arguments will be passed to the procedure. Procedures that calculate aver-
ages or, in general, process multiple values can accept a few to several arguments whose count is not

Chapter 4 WRITING AND USING PROCEDURES168

2877c04.qxd 11/11/01 4:15 PM Page 168

http://www.sybex.com

known at design time. In the past, programmers had to pass arrays with the data to similar proce-
dures. Visual Basic supports the ParamArray keyword, which allows you to pass a variable number
of arguments to a procedure.

Let’s look at an example. Suppose you want to populate a ListBox control with elements. To add
an item to the ListBox control, you call the Add method of its Items collection as follows:

ListBox1.Items.Add(”new item”)

This statement adds the string “new item” to the ListBox1 control.
If you frequently add multiple items to a ListBox control from within your code, you can write a

subroutine that performs this task. The following subroutine adds a variable number of arguments
to the ListBox1 control:

Sub AddNamesToList(ParamArray ByVal NamesArray() As Object)
Dim x As Object
For Each x In NamesArray

ListBox1.Items.Add(x)
Next x

End Sub

This subroutine’s argument is an array prefixed with the keyword ParamArray. This array holds
all the parameters passed to the subroutine. To add items to the list, call the AddNamesToList()
subroutine as follows:

AddNamesToList(“Robert”, “Manny”, “Renee”, “Charles”, “Madonna”)

If you want to know the number of arguments actually passed to the procedure, use the Length
property of the parameter array. The number of arguments passed to the AddNamesToList() sub-
routine is given by the expression:

NamesArray.Length

The following loop goes through all the elements of the NamesArray and adds them to the list:

Dim i As Integer
For i = 0 to NamesArray.GetUpperBound(0)

ListBox1.Items.Add(NamesArray(i))
Next i

If you want to use the array’s Length property, write a loop like the following:

Dim i As Integer
For i = 0 to NamesArray.Length - 1

ListBox1.Items.Add(NamesArray(i))
Next i

A procedure that accepts multiple arguments relies on the order of the arguments. To omit some
of the arguments, you must use the corresponding comma. Let’s say you want to call such a proce-
dure and specify the first, third, and fourth arguments. The procedure must be called as:

ProcName(arg1, , arg3, arg4)

169ARGUMENTS

2877c04.qxd 11/11/01 4:15 PM Page 169

http://www.sybex.com

The arguments to similar procedures are usually of equal stature, and their order doesn’t make
any difference. A function that calculates the mean or other basic statistics of a set of numbers, or a
subroutine that populates a ListBox or ComboBox control, are prime candidates for implementing
using this technique. If the procedure accepts a variable number of arguments that aren’t equal in
stature, then you should consider the technique described in the following section.

Named Arguments
You’ve learned how to write procedures with optional arguments and how to pass a variable number
of arguments to the procedure. The main limitation of the argument-passing mechanism, though, is
the order of the arguments. If the first argument is a string and the second is a date, you can’t change
their order. By default, Visual Basic matches the values passed to a procedure to the declared argu-
ments by their order. That’s why the arguments you’ve seen so far are called positional arguments.

This limitation is lifted by Visual Basic’s capability to specify named arguments. With named argu-
ments, you can supply arguments in any order, because they are recognized by name and not by their
order in the list of the procedure’s arguments. Suppose you’ve written a function that expects three
arguments: a name, an address, and an e-mail address:

Function Contact(Name As String, Address As String, EMail As String)

When calling this function, you must supply three strings that correspond to the arguments Name,
Address, and EMail, in that order. However, there’s a safer way to call this function: supply the argu-
ments in any order by their names. Instead of calling the Contact function as follows:

Contact(“Peter Evans”, “2020 Palm Ave., Santa Barbara, CA 90000”, _
“PeterEvans@example.com”)

you can call it this way:

Contact(Address:=”2020 Palm Ave., Santa Barbara, CA 90000”, _
EMail:=”PeterEvans@example.com”, Name:=”Peter Evans”)

The := operator assigns values to the named arguments. Because the arguments are passed by name,
you can supply them in any order.

To test this technique, enter the following function declaration in a form’s code:

Function Contact(ByVal Name As String, ByVal Address As String, _
ByVal EMail As String) As String

Console.WriteLine(Name)
Console.WriteLine(Address)
Console.WriteLine(EMail)
Return (“OK”)

End Function

Then, call the Contact() function from within a button’s Click event with the following
statement:

Console.WriteLine(Contact(Address:=”2020 Palm Ave., Santa Barbara, CA 90000”, _
Name:=”Peter Evans”, EMail:=”PeterEvans@example.com”))

Chapter 4 WRITING AND USING PROCEDURES170

2877c04.qxd 11/11/01 4:15 PM Page 170

http://www.sybex.com

You’ll see the following in the Immediate window:

Peter Evans
2020 Palm Ave., Santa Barbara, CA 90000
PeterEvans@example.com
OK

The function knows which value corresponds to which argument and can process them the same
way that it processes positional arguments. Notice that the function’s definition is the same whether
you call it with positional or named arguments. The difference is in how you call the function and
how you declare it.

Named arguments make code safer and easier to read, but because they require a lot of typing,
most programmers don’t use them. Besides, programmers are so used to positional arguments that
the notion of naming arguments is like having to declare variables when variants will do. Named
arguments are good for situations in which you have optional arguments that require many consecu-
tive commas, which may complicate the code. The methods of the various objects exposed by the
Office applications (discussed in Chapter 10) require a large number of arguments, and they’re fre-
quently called with named arguments.

More Types of Function Return Values
Functions are not limited to returning simple data types like integers or strings. They may return cus-
tom data types and even arrays. The ability of functions to return all types of data makes them very
flexible and can simplify coding, so we’ll explore it in detail in the following sections. Using complex
data types, such as structures and arrays, allows you to write functions that return multiple values.

Functions Returning Structures

Suppose you need a function that returns a customer’s savings and checking balances. So far, you’ve
learned that you can return two or more values from a function by supplying arguments with the ByRef
keyword. A more elegant method is to create a custom data type (a structure) and write a function that
returns a variable of this type. The structure for storing balances could be declared as follows:

Structure CustBalance
Dim BalSavings As Decimal
Dim BalChecking As Decimal

End Structure

Then, you can define a function that returns a CustBalance data type as:

Function GetCustBalance(ByVal custID As Integer) As CustBalance
{ statements }

End Function

The GetCustBalance() function must be defined in the same module as the declaration of the cus-
tom data type it returns. If not, you’ll get an error message.

When you call this function, you must assign its result to a variable of the same type. First declare
a variable of the CustBalance type and then use it as shown here:

Private Balance As CustBalance
Dim custID As Integer

171ARGUMENTS

2877c04.qxd 11/11/01 4:15 PM Page 171

http://www.sybex.com

custID = 13011
Balance = GetCustBalance(custID)
Console.WriteLine(Balance.BalSavings)
Console.WriteLine(Balance.BalChecking)

Here, custID is a customer’s ID (a number or string, depending on the application). Of course, the
function’s body must assign the proper values to the CustBalance variable’s fields.

Here’s the simplest example of a function that returns a custom data type. This example outlines
the steps you must repeat every time you want to create functions that return custom data types:

1. Create a new project and insert the declarations of a custom data type in the declarations sec-
tion of the form:

Structure CustBalance
Dim BalSavings As Decimal
Dim BalChecking As Decimal

End Structure

2. Then implement the function that returns a value of the custom type. You must declare a
variable of the type returned by the function and assign the proper values to its fields. The
following function assigns random values to the fields BalChecking and BalSavings. Then, assign
the variable to the function’s name, as shown next:

Function GetCustBalance(ID As Long) As CustBalance
Dim tBalance As CustBalance
tBalance.BalChecking = CDec(1000 + 4000 * rnd())
tBalance.BalSavings = CDec(1000 + 15000 * rnd())
GetCustBalance = tBalance

End Function

3. Then place a button on the form from which you want to call the function. Declare a variable
of the same type and assign to it the function’s return value. The example that follows prints
the savings and checking balances on the Output window:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim balance As CustBalance
balance = GetCustBalance(1)
Console.WriteLine(balance.BalChecking)
Console.WriteLine(balance.BalSavings)

End Sub

For this example, I created a project with a single form. The form contains a single Command
button whose Click event handler is shown here. Create this project from scratch, perhaps using your
own custom data type, to explore its structure and experiment with functions that return custom
data types.

In the following section, I’ll describe a more complicated (and practical) example of a custom
data type function.

Chapter 4 WRITING AND USING PROCEDURES172

2877c04.qxd 11/11/01 4:15 PM Page 172

http://www.sybex.com

VB.NET at Work: The Types Project

The Types project, which you’ll find in this chapter’s folder on the CD, demonstrates a function
that returns a custom data type. The Types project consists of a form that displays record fields and
is shown in Figure 4.2. Every time you click the View Next button, the fields of the next record are
displayed. When all records are exhausted, the program wraps back to the first record.

The project consists of a single form. The following custom data type appears in the form’s code,
outside any procedure:

Structure Customer
Dim Company As String
Dim Manager As String
Dim Address As String
Dim City As String
Dim Country As String
Dim CustomerSince As Date
Dim Balance As Decimal

End Structure
Private Customers(8) As Customer
Private cust As Customer
Private currentIndex as Integer

The array Customers holds the data for nine customers, and the cust variable is used as a temporary
variable for storing the current customer’s data. The currentIndex variable is the index of the current
element of the array.

The Click event handler of the View Next button calls the GetCustomer() function with an index
value (which is the order of the current customer), and displays its fields in the Label controls on the
form. Then it increases the value of the currentIndex variable, so that it points to the next customer.

The GetCustomer() function returns a variable of Customer type (the variable aCustomer). The
code behind the View Next button follows:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

If currentIndex = CountCustomers() Then currentIndex = 0
Dim aCustomer As Customer
aCustomer = GetCustomer(currentIndex)
ShowCustomer(currentIndex)
currentIndex = currentIndex + 1

End Sub

Figure 4.2

The Types project
demonstrates
functions that
return custom
data types.

173ARGUMENTS

2877c04.qxd 11/11/01 4:15 PM Page 173

http://www.sybex.com

The CountCustomers() function returns the number of records stored in the Customers array. The
event handler starts by comparing the value of the current index to the number of elements in the
Customers array. If they’re equal, the currentIndex variable is reset to zero. The definitions of the
CountCustomers() and GetCustomer() functions are shown next:

Function CountCustomers() As Integer
Return(Customers.Length)

End Function
Function GetCustomer(ByVal idx As Integer) As Customer

Return(Customers(idx))
End Function

Finally, the ShowCustomer() subroutine displays the fields of the current record on the Label
controls on the form:

Sub ShowCustomer(ByVal idx As Integer)
Dim aCustomer As Customer
aCustomer = GetCustomer(idx)
lblCompany.Text = aCustomer.Company
lblSince.Text = aCustomer.CustomerSince
lblAddress.Text = aCustomer.Address
lblCity.Text = aCustomer.City
lblCountry.Text = aCustomer.Country
lblBalance.Text = aCustomer.Balance

End Sub

The array Customers is populated when the program starts with a call to the InitData() subroutine
(also in the project’s module). The program assigns data to Customers, one element at a time, with
statements like the following:

Dim cust As Customer
cust.Company = “Bottom-Dollar Markets”
cust.Manager = “Elizabeth Lincoln”
cust.Address = “23 Tsawassen Blvd.”
cust.City = “Tsawassen”
cust.Country = “Canada”
cust.CustomerSince = #10/20/1996#
cust.Balance = 33500
Customers(1) = cust

The code assigns values to the fields of the cust variable and then assigns the entire variable to an
element of the Customers array. The data could originate in a file or even a database. This wouldn’t
affect the operation of the application, which expects the GetCustomer() function to return a record
of Customer type. If you decide to store the records in a file or a collection like the ones discussed in
Chapter 11, the form’s code need not change; only the implementation of the GetCustomer() func-
tion will change. You should also change the CountCustomers() function, so that it detects when it
has reached the last record.

Chapter 4 WRITING AND USING PROCEDURES174

2877c04.qxd 11/11/01 4:15 PM Page 174

http://www.sybex.com

The Types project uses a single button that allows users to view the next record. You can place
another button that displays the previous record. This button’s code will be identical to the code of
the existing button, with the exception that it will decrease the currentIndex variable.

Functions Returning Arrays

In addition to returning custom data types, VB.NET functions can also return arrays. This is an
interesting possibility that allows you to write functions that return not only multiple values, but
also an unknown number of values. Earlier in the chapter you saw how to return multiple values
from a function as arguments, passed to the function by reference. You can also consider a custom
structure as a collection of values. In this section, we’ll revise the Stats() function that was described
earlier in this chapter, so that it returns the statistics in an array. The new Stats() function will return
not only the average and the standard deviation, but the minimum and maximum values in the data
set as well. One way to declare a function that calculates all the statistics is the following:

Function Stats(ByRef DataArray() As Double) As Double()

This function accepts an array with the data values and returns an array of doubles. This notation is
more compact and helps you write easier-to-read code.

To implement a function that returns an array, you must do the following:

1. Specify a type for the function’s return value, and add a pair of parentheses after the type’s
name. Don’t specify the dimensions of the array to be returned here; the array will be declared
formally in the function.

2. In the function’s code, declare an array of the same type and specify its dimensions. If the
function should return four values, use a declaration like this one:

Dim Results(3) As Double

The Results array will be used to store the results and must be of the same type as the func-
tion—its name can be anything.

3. To return the Results array, simply use it as argument to the Return statement:

Return(Results)

4. In the calling procedure, you must declare an array of the same type without dimensions:

Dim Stats() As Double

5. Finally, you must call the function and assign its return value to this array:

Stats() = Stats(DataSet())

Here, DataSet is an array with the values whose basic statistics will be calculated by the Stats()
function. Your code can then retrieve each element of the array with an index value as usual.

VB.NET at Work: The Statistics Project

The next project demonstrates how to design and call functions that return arrays. It’s the Statistics
project, which you can find in this chapter’s folder on the CD. When you run it, the Statistics appli-
cation creates a data set of random values and then calls the ArrayStats() function to calculate the

175ARGUMENTS

2877c04.qxd 11/11/01 4:15 PM Page 175

http://www.sybex.com

data set’s basic statistics. The results are returned in an array, and the main program displays them in
Label controls, as shown in Figure 4.3. Every time the Calculate Statistics button is clicked, a new
data set is generated and its statistics are displayed.

Let’s start with the ArrayStats() function’s code, which is shown in Listing 4.2.

Listing 4.2: The ArrayStats() Function

Function ArrayStats(ByVal DataArray() As Double) As Double()
Dim Result(3) As Double
Dim Sum, SumSquares, DataMin, DataMax As Double
Dim DCount, i As Integer
Sum = 0
SumSquares = 0
DCount = 0
DataMin = System.Double.MaxValue
DataMax = System.Double.MinValue
For i = 0 To DataArray.GetUpperBound(0)

Sum = Sum + DataArray(i)
SumSquares = SumSquares + DataArray(i) ^ 2
If DataArray(i) > DataMax Then DataMax = DataArray(i)
If DataArray(i) < DataMin Then DataMin = DataArray(i)
DCount = DCount + 1

Next
Dim Avg, StdDev As Double
Avg = Sum / DCount
StdDev = Math.Sqrt(SumSquares / DCount - Avg ^ 2)
Result(0) = Avg
Result(1) = StdDev
Result(2) = DataMin
Result(3) = DataMax
ArrayStats = Result

End Function

Figure 4.3

The Statistics pro-
ject calculates the
basic statistics of a
data set and returns
them in an array.

Chapter 4 WRITING AND USING PROCEDURES176

2877c04.qxd 11/11/01 4:15 PM Page 176

http://www.sybex.com

The function’s return type is Double(), meaning the function will return an array of doubles; that’s
what the empty parentheses signify. This array is declared in the function’s body with the statement:

Dim Result(3) As Double

The function performs its calculations and then assigns the values of the basic statistics to the ele-
ments of the array Result. The first element holds the average, the second element holds the standard
deviation, and the other two elements hold the minimum and maximum data values. The Result array
is finally returned to the calling procedure by the statement that assigns the array to the function
name, just as you’d assign a variable to the name of the function that returns a single result.

The code behind the Calculate Statistics button, which calls the ArrayStats() function, is shown
in Listing 4.3.

Listing 4.3: Calculating Statistics with the ArrayStats() Function

Protected Sub Button2_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Dim SData(99) As Double
Dim Stats() As Double
Dim i As Integer
Dim rnd As New System.Random()
ListBox1.Items.Clear()
For i = 0 To 99

SData(i) = rnd.NextDouble() * 1000
ListBox1.Items.Add(SData(i))

Next
Stats = ArrayStats(SData)
TextBox1.Text = “Average” & vbTab & vbTab & Stats(0)
TextBox1.Text = TextBox1.Text & cvCrLf & “Std. Deviation” & vbTab & Stats(1)
TextBox1.Text = TextBox1.Text & vbCrLf & “Min. Value” & vbTab & Stats(2)
TextBox1.Text = TextBox1.Text & vbCrLf & “Max. Value” & vbTab & Stats(3)

End Sub

The code generates 100 random values and displays them on a ListBox control. Then, it calls the
ArrayStats() function, passing the data values to it through the SData array. The function’s return
values are stored in the Stats array, which is declared as double but without dimensions. Then, the
code displays the basic statistics on a TextBox control, one item per line.

Overloading Functions
There are situations where the same function must operate on different data types, or a different
number of arguments. In the past, you had to write different functions, with different names and dif-
ferent arguments, to accommodate similar requirements. VB.NET introduces the concept of function
overloading, which means that you can have multiple implementations of the same function, each with
a different set of arguments and, possibly, a different return value. Yet, all overloaded functions
share the same name. Let me introduce this concept by examining one of the many overloaded func-
tions that come with the .NET Framework.

177ARGUMENTS

2877c04.qxd 11/11/01 4:15 PM Page 177

http://www.sybex.com

To generate a random number in the range from 0 to 1 (exclusive), use the NextDouble method
of the System.Random class. To use the methods of the Random class, you must first create an
instance of the class and then call the methods:

Dim rnd As New System.Random
Console.WriteLine(“Three random numbers”)
Console.Write(rnd.NextDouble() & “ – “ & rnd.NextDouble() & “ – “ & _

rnd.NextDouble())

The random numbers that will be printed on the Output window will be double precision values
in the range 0 to 1:

0.656691639058614 – 0.967485965680092 – 0.993525570721145

More often than not, we need integer random values. The Next method of the System.Random
class returns an integer value from –2,147,483,648 to 2,147,483,647 (this is the range of values
that can be represented by the Integer data type). We also want to generate random numbers in a
limited range of integer values. To emulate the throw of a dice, we want a random value in the range
from 1 to 6, while for a roulette game we want an integer random value in the range from 0 to 36.
You can specify an upper limit for the random number with an optional integer argument. The fol-
lowing statement will return a random integer in the range from 0 to 99:

randomInt = rnd.Next(100)

Finally, you can specify both the lower and upper limits of the random number’s range. The fol-
lowing statement will return a random integer in the range from 1,000 to 1,999:

randomInt = rnd.Next(1000, 2000)

The same method behaves differently based on the arguments we supply. The behavior of the
method depends either on the type of the arguments, the number of the arguments, or both of them.
As you will see, there’s no single function that alters its behavior based on its arguments. There are as
many different implementations of the same function as there are argument combinations. All the
functions share the same name, so that they appear to the user as a single, multifaceted function.
These functions are overloaded, and you’ll see in the following section how they’re implemented.

If you haven’t turned off the IntelliSense feature of the editor, then as soon as you type the open-
ing parenthesis after a function or method name, you see a yellow box with the syntax of the func-
tion or method. You’ll know that a function is overloaded when this box contains a number and two
arrows. Each number corresponds to a different overloaded form, and you can move to the next or
previous overloaded form by clicking the two little arrows or by pressing the arrow keys.

Let’s return to the Min() function we implemented earlier in this chapter. The initial implemen-
tation of the Min() function is shown next:

Function Min(ByVal a As Double, ByVal b As Double) As Double
Min = IIf(a < b, a, b)

End Function

By accepting double values as arguments, this function can handle all numeric types. VB.NET
performs automatically widening conversions (it can convert integers and decimals to doubles), so
this trick makes our function work with all numeric data types. However, what about strings? If you

Chapter 4 WRITING AND USING PROCEDURES178

2877c04.qxd 11/11/01 4:15 PM Page 178

http://www.sybex.com

attempt to call the Min() function with two strings as arguments, you’ll get an exception. The Min()
function just can’t handle strings.

To write a Min() function that can handle both numeric and string values, you must, in essence,
write two Min() functions. All Min() functions must be prefixed with the Overloads keyword. The
following statements show two different implementations of the same function:

Overloads Function Min(ByVal a As Double, ByVal b As Double) As Double
Min = IIf(a < b, a, b)

End Function
Overloads Function Min(ByVal a As String, ByVal b As String) As String

Min = IIf(a < b, a, b)
End Function

As you may have guessed, we need a third overloaded form of the same function to compare
dates. If you call the Min() function with two dates are arguments, as in the following statement, the
Min() function will compare them as strings.

Console.WriteLine(Min(#1/1/2001#, #3/4/2000#))

This statement will print the date 1/1/2001, which is not the smaller (earlier) date. If you swap
the years and call the function as

Console.WriteLine(Min(#1/1/2000#, #3/4/2001#))

you’ll get the earlier date, but just because it happens that their alphanumeric order is now the same
as their chronological order.

The overloaded form of the function that accepts dates as arguments is shown next:

Overloads Function Min(ByVal a As Date, ByVal b As Date) As Date
Min = IIf(a < b, a, b)

End Function

If you now call the Min() function with the dates #1/1/2001# and #3/4/2000#, the function will
return the second date, which is chronologically smaller than the first.

OK, the example of the Min() function is rather trivial. You can also write a Min() function that
compares two objects and handle all other data types. Let’s look into a more complicated overloaded
function, which makes use of some topics discussed later in this book. The CountFiles() function
counts the number of files that meet certain criteria. The criteria could be the size of the files, their
type, or the date they were created. You can come up with any combination of these criteria, but
here are the most useful combinations. (These are the functions I would use, but you can create even
more combinations, or introduce new criteria of your own.) The names of the arguments are self-
descriptive, so I need not explain what each form of the CountFiles() function does.

CountFiles(ByVal minSize As Integer, ByVal maxSize As Integer) As Integer
CountFiles(ByVal fromDate As Date, ByVal toDate As Date) As Integer
CountFiles(ByVal type As String) As Integer
CountFiles(ByVal minSize As Integer, ByVal maxSize As Integer, _

ByVal type As String) As Integer
CountFiles(ByVal fromDate As Date, ByVal toDate As Date, _

ByVal type As String) As Integer

179ARGUMENTS

2877c04.qxd 11/11/01 4:15 PM Page 179

http://www.sybex.com

Listing 4.4 shows the implementation of these overloaded forms of the CountFiles() function.
Since we haven’t discussed files yet, most of the code in the function’s body will be new to you—but
it’s not hard to follow. For the benefit of readers who are totally unfamiliar with file operations, I’ve
included a statement that prints on the Output window the type of files counted by each function.
The Console.WriteLine statement prints the values of the arguments passed to the function, along
with a description of the type of search it’s going to perform. The overloaded form that accepts two
integer values as arguments prints something like:

You’ve requested the files between 1000 and 100000 bytes

while the overloaded form that accepts a string as argument prints the following:

You’ve requested the .EXE files

Listing 4.4: The Overloaded Implementations of the CountFiles() Function

Overloads Function CountFiles(ByVal minSize As Integer, _
ByVal maxSize As Integer) As Integer

Console.WriteLine(“You’ve requested the files between “ & minSize & _
“ and “ & maxSize & “ bytes”)

Dim files() As String
files = System.IO.Directory.GetFiles(“c:\windows”)
Dim i, fileCount As Integer
For i = 0 To files.GetUpperBound(0)

Dim FI As New System.IO.FileInfo(files(i))
If FI.Length >= minSize And FI.Length <= maxSize Then

fileCount = fileCount + 1
End If

Next
Return(fileCount)

End Function
Overloads Function CountFiles(ByVal fromDate As Date, _

ByVal toDate As Date) As Integer
Console.WriteLine(“You’ve requested the count of files created from “ & _

fromDate & “ to “ & toDate)
Dim files() As String
files = System.IO.Directory.GetFiles(“c:\windows”)
Dim i, fileCount As Integer
For i = 0 To files.GetUpperBound(0)

Dim FI As New System.IO.FileInfo(files(i))
If FI.CreationTime.Date >= fromDate And _

FI.CreationTime.Date <= toDate Then
fileCount = fileCount + 1

End If
Next
Return(fileCount)

End Function

Chapter 4 WRITING AND USING PROCEDURES180

2877c04.qxd 11/11/01 4:15 PM Page 180

http://www.sybex.com

Overloads Function CountFiles(ByVal type As String) As Integer
Console.WriteLine(“You’ve requested the “ & type & “ files”)
Dim files() As String
files = System.IO.Directory.GetFiles(“c:\windows”)
Dim i, fileCount As Integer
For i = 0 To files.GetUpperBound(0)

Dim FI As New System.IO.FileInfo(files(i))
If FI.Extension = type Then

fileCount = fileCount + 1
End If

Next
Return(fileCount)

End Function
Overloads Function CountFiles(ByVal minSize As Integer, _

ByVal maxSize As Integer, ByVal type As String) As Integer
Console.WriteLine(“You’ve requested the “ & type & “ files between “ & _

minSize & “ and “ & maxSize & “ bytes”)
Dim files() As String
files = System.IO.Directory.GetFiles(“c:\windows”)
Dim i, fileCount As Integer
For i = 0 To files.GetUpperBound(0)

Dim FI As New System.IO.FileInfo(files(i))
If FI.Length >= minSize And _

FI.Length <= maxSize And _
FI.Extension = type Then

fileCount = fileCount + 1
End If

Next
Return(fileCount)

End Function
Overloads Function CountFiles(ByVal fromDate As Date, ByVal toDate As Date, _

ByVal type As String) As Integer
Console.WriteLine(“You’ve requested the “ & type & _

“ files created from “ & fromDate & “ to “ & toDate)
Dim files() As String
files = System.IO.Directory.GetFiles(“c:\windows”)
Dim i, fileCount As Integer
For i = 0 To files.GetUpperBound(0)

Dim FI As New System.IO.FileInfo(files(i))
If FI.CreationTime.Date >= fromDate And _

FI.CreationTime.Date <= toDate And FI.Extension = type Then
fileCount = fileCount + 1

End If
Next
Return(fileCount)

End Function

181ARGUMENTS

2877c04.qxd 11/11/01 4:15 PM Page 181

http://www.sybex.com

If you’re unfamiliar with the Directory and File objects, focus on the statement that prints to the
Output window and ignore the statements that actually count the files that meet the specified crite-
ria. After reading Chapter 13, you can revisit this example and understand the counting statements.
The Console.WriteLine statements report all the values passed as arguments, and they differentiate
between the various overloaded forms of the function.

Start a new project and enter the definitions of the overloaded forms of the function on the
form’s level. Listing 4.4 is lengthy, but all the overloaded functions have the same structure and dif-
fer only in how they select the files to count. Then place a TextBox and a button on the form, as
shown in Figure 4.4, and enter the statements from Listing 4.5 in the button’s Click event handler.
The project shown in Figure 4.4 is called OverloadedFunctions, and you’ll find it in this chapter’s
folder on the CD.

Listing 4.5: Testing the Overloaded Forms of the CountFiles() Function

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

TextBox1.AppendText(CountFiles(1000, 100000) & _
“ files with size between 1KB and 100KB” & vbCrLf)

TextBox1.AppendText(CountFiles(#1/1/2001#, #12/31/2001#) & _
“ files created in 2001” & vbCrLf)

TextBox1.AppendText(CountFiles(“.BMP”) & “ BMP files” & vbCrLf)
TextBox1.AppendText(CountFiles(1000, 100000, “.EXE”) & _

“ EXE files between 1 and 100 KB” & vbCrLf)
TextBox1.AppendText(CountFiles(#1/1/2000#, #12/31/2001#, “.EXE”) & _

“ EXE files created in 2000 and 2001”)
End Sub

The button calls the various overloaded forms of the CountFiles() function one after the other
and prints the results on the TextBox control.

Function overloading is new to VB.NET, but it’s used heavily throughout the language. There
are relatively few functions (or methods, for that matter) that aren’t overloaded. Every time you
enter the name of a function followed by an opening parenthesis, a list of its arguments appears in
the drop-down list with the arguments of the function. If the function is overloaded, you’ll see a

Figure 4.4

The Overloaded-
Functions project

Chapter 4 WRITING AND USING PROCEDURES182

2877c04.qxd 11/11/01 4:15 PM Page 182

http://www.sybex.com

number in front of the list of arguments, as shown in Figure 4.5. This number is the order of the
overloaded form of the function, and it’s followed by the arguments of the specific form of the func-
tion. The figure shows all the forms of the CountFiles() function.

You will have to overload many of the functions you’ll be writing once you start developing real
applications, because you’ll want your functions to work on a variety of data types. This is not the
only reason to overload functions. You may also need to write functions that behave differently
based on the number and types of their arguments.

Note Notice that you can’t overload a function by changing its return type. That’s why the Min() function returns a
double value, which is the most accurate value. If you don’t need more than a couple of decimal digits (or no fractional part
at all), you can round the return value in your code accordingly. However, you can’t have two Min() functions that accept
the exact same arguments and return different data types. Overloaded forms of a function are differentiated by the num-
ber and/or the type of their arguments, but not by the return value.

Summary
This chapter concludes the presentation of the core of the language. In the last two chapters, you’ve
learned how to declare and use variables, and how to break your applications into smaller, manage-
able units of code. These units of code are the subroutines and functions. Subroutines perform
actions and don’t return any values. Functions, on the other hand, perform calculations and return
values. Most of the language’s built-in functionality is in the form of functions. The methods of the
various controls look and feel like functions, because they’re implemented as functions. Functions
are indeed a major aspect of the language.

Subroutines aren’t as common. Many programmers actually prefer to write only functions and use
the return value to indicate the success or failure of the procedure, even if the procedure need not
return any value. Event handlers are implemented as subroutines, because they don’t return any val-
ues. Event handlers aren’t called from within your code; they are simply activated by the Common
Language Runtime.

Subroutines and functions communicate with the rest of the application through arguments.
There are many ways to pass arguments to a procedure, and you’ve seen them all. You have also seen
how to write overloaded functions, which are new to VB.NET; and as you will see in the rest of this
book, they’re quite common.

In the following chapters, we’ll explore the Windows controls in depth, and you will write your
first “real” Windows applications.

Figure 4.5

The overloaded
forms of the Count-
Files() function

183SUMMARY

2877c04.qxd 11/11/01 4:15 PM Page 183

http://www.sybex.com

2877c04.qxd 11/11/01 4:15 PM Page 184

http://www.sybex.com

Chapter 5

Working with Forms
In Visual Basic, the form is the container for all the controls that make up the user interface.
When a Visual Basic application is executing, each window it displays on the desktop is a form.
In previous chapters, we concentrated on placing the elements of the user interface on forms, set-
ting their properties, and adding code behind selected events. Now, we’ll look at forms them-
selves and at a few related topics, such as menus (forms are the only objects that can have menus
attached), how to design forms that can be automatically resized, and how to access the controls
of one form from within another form’s code. The form is the top-level object in a Visual Basic
application, and every application starts with the form.

Note The terms form and window describe the same entity. A window is what the user sees on the desktop when
the application is running. A form is the same entity at design time. The proper term is a Windows form, as opposed to
a Web form, but I will refer to them as forms.

Forms have built-in functionality that is always available without any programming effort on
your part. You can move a form around, resize it, and even cover it with other forms. You do so
with the mouse, or with the keyboard through the Control menu. As you will see, forms are not
passive containers; they’re “intelligent” objects that are aware of the controls placed on them and
can actually manipulate the controls at runtime. For example, you can instruct the form to resize
certain controls when the form itself is resized. Forms have many trivial properties that won’t be
discussed here. Instead, let’s jump directly to the properties that are unique to forms and then
look at how to manipulate forms from within an application’s code.

The forms that constitute the visible interface of your application are called Windows forms; this
term includes both the regular forms and dialog boxes, which are simple forms you use for very spe-
cific actions, such as to prompt the user for a specific piece of data or to display critical information.
A dialog box is a form with a small number of controls, no menus, and usually an OK and a Cancel
button to close it. For more information on dialog boxes, see the section “Forms vs. Dialog Boxes”
later in this chapter. Everything you’ll read about forms in the following sections applies to dialog
boxes as well, even if some form features (such as menus) are never used with dialog boxes.

2877c05.qxd 11/11/01 4:15 PM Page 185

http://www.sybex.com

VB6 ➠ VB.NET

The Form Designer is one of the most improved areas of VB.NET. For the first time, you can design forms
that can be easily resized—anyone who has programmed in earlier versions of VB knows what a hassle the
resizing of forms could be. The Anchor and Dock properties allow you to anchor controls on the edges of
the form and dock them on the form. When the form is resized, the controls on it can be either resized or
moved to new locations, so that they remain visible.

If the controls can’t fit the form, scroll bars can appear automatically, so that users can scroll the form in
its window and bring another section into view, if the form’s AutoScroll property is True. Scrolling forms
are also new to VB.NET.

A new special control was added, whose sole purpose is to act as a pane separator on forms: the Splitter con-
trol. This control is a thin horizontal or vertical stripe that allows you to resize two adjacent controls. If
two TextBox controls on the same form are separated by a Splitter control, users can shrink one TextBox to
make more room for the other. Again, no code required.

Of course, many things have changed too. You can no longer show a form by calling its Show method. You
must first create an instance of the form (a variable of the Form type) that you want to show and then call
the Show method of this variable. You no longer have arrays of controls. This isn’t much of a problem,
though, because with VB.NET you can create instances of new controls from within your code and position
them on the form.

The Appearance of Forms
Applications are made up of one or more forms (usually more than one), and the forms are what
users see. You should craft your forms carefully, make them functional, and keep them simple and
intuitive. You already know how to place controls on the form, but there’s more to designing forms
than populating them with controls. The main characteristic of a form is the title bar on which the
form’s caption is displayed (see Figure 5.1).

Title bar

Control
menu

Minimize
button

Close
button

Maximize
button

Figure 5.1

The elements of
the form

Chapter 5 WORKING WITH FORMS186

2877c05.qxd 11/11/01 4:15 PM Page 186

http://www.sybex.com

Clicking the icon on the left end of the title bar opens the Control menu, which contains the
commands shown in Table 5.1. On the right end of the title bar are three buttons: Minimize, Maxi-
mize, and Close. Clicking these buttons performs the associated function. When a form is maxi-
mized, the Maximize button is replaced by the Restore button. When clicked, this button resets the
form to the size and position before it was maximized. The Restore button is then replaced by the
Maximize button.

Table 5.1: Commands of the Control Menu

Command Effect

Restore Restores a maximized form to the size it was before it was maximized; available only
if the form has been maximized

Move Lets the user move the form around with the mouse

Size Lets the user resize the form with the mouse

Minimize Minimizes the form

Maximize Maximizes the form

Close Closes the current form

Properties of the Form Control
You’re familiar with the appearance of the forms, even if you haven’t programmed in the Windows
environment in the past; you have seen nearly all types of windows in the applications you’re using
every day. The floating toolbars used by many graphics applications, for example, are actually forms
with a narrow title bar. The dialog boxes that display critical information or prompt you to select
the file to be opened are also forms. You can duplicate the look of any window or dialog box
through the following properties of the Form object.

AcceptButton, CancelButton

These two properties let you specify the default Accept and Cancel buttons. The Accept button is
the one that’s automatically activated when you press Enter, no matter which control has the focus
at the time, and is usually the button with the OK caption. Likewise, the Cancel button is the one
that’s automatically activated when you hit the Esc key and is usually the button with the Cancel
caption. To specify the Accept and Cancel buttons on a form, locate the AcceptButton and Cancel-
Button properties of the form and select the corresponding controls from a drop-down list, which
contains the names of all the buttons on the form. You can also set them to the name of the corre-
sponding button from within your code.

187THE APPEARANCE OF FORMS

2877c05.qxd 11/11/01 4:15 PM Page 187

http://www.sybex.com

AutoScale

This property is a True/False value that determines whether the controls you place on the form are
automatically scaled to the height of the current font. When you place a TextBox control on the
form, for example, and the AutoScale property is True, the control will be tall enough to display a
single line of text in the current font. The default value is True, which is why you can’t make the
controls smaller than a given size. This is a property of the form, but it affects the controls on the
form. If you change the Font property of the form after you have placed a few controls on it, the
existing controls won’t be affected. The controls are adjusted to the current font of the form the
moment they’re placed on it.

AutoScroll

This is one of the most needed of the Form object’s new properties. The AutoScroll property is a
True/False value that indicates whether scroll bars will be automatically attached to the form (as
seen in Figure 5.2) if it’s resized to a point that not all its controls are visible. This property is new
to VB.NET and will help you design large forms without having to worry about the resolution of
the monitor on which they’ll be displayed.

The AutoScroll property is used in conjunction with three other properties, described next: Auto-
ScrollMargin, AutoScrollMinSize, and AutoScrollPosition.

AutoScrollMargin

This is a margin, expressed in pixels, that’s added around all the controls on the form. If the form is
smaller than the rectangle that encloses all the controls adjusted by the margin, the appropriate scroll
bar(s) will be displayed automatically.

If you expand the AutoScrollMargin property in the Properties window, you will see that it’s an
object (a Size object, to be specific). It exposes two members, the Width and Height properties, and
you must set both values. The default value is (0,0). To set this property from within your code, use
statements like these:

Me.AutoScrollMargin.Width = 40
Me.AutoScrollMargin.Height = 40

Figure 5.2

If the controls
don’t fit in the
form’s visible area,
scroll bars can be
attached automati-
cally.

Chapter 5 WORKING WITH FORMS188

2877c05.qxd 11/11/01 4:15 PM Page 188

http://www.sybex.com

AutoScrollMinSize

This property lets you specify the minimum size of the form, before the scroll bars are attached. If
your form contains graphics you want to be visible at all times, set the Width and Height members
of the AutoScrollMinSize property accordingly. Notice that this isn’t the form’s minimum size;
users can make the form even smaller. To specify a minimum size for the form, use the Minimum-
Size property, described later in this section.

Let’s say the AutoScrollMargin properties of the form are 180 by 150. If the form is resized to
less than 180 pixels horizontally or 150 pixels vertically, the appropriate scroll bars will appear auto-
matically, as long as the AutoScroll property is True. If you want to enable the AutoScroll feature
when the form’s width is reduced to anything less than 250 pixels, set the AutoScrollMinSize prop-
erty to (250, 0). Obviously, if the AutoScrollMinSize value is smaller than the dimensions of the
form that will automatically invoke the AutoScroll feature, AutoScrollMinSize has no effect. In this
example, setting AutoScrollMinSize.Width to anything less than 180 or AutoScrollMinSize.Height
to anything less than 150 will have no effect on the appearance of the form and its scroll bars.

AutoScrollPosition

This property lets you read (or set) the location of the auto-scroll position. The AutoScrollPosition
is the number of pixels by which the two scroll bars were displaced from their initial locations. You
can read this property to find out by how much the scroll bars were moved, or to move the scroll
bars from within your code.

Use this property in very specialized applications, because the form’s scroll bars are adjusted auto-
matically to bring the control that has the focus into view. As long as the users of the application
press the Tab key to move the focus to the next control, the focused control will be visible.

BorderStyle

The BorderStyle property determines the style of the form’s border and the appearance of the form;
it takes one of the values shown in Table 5.2. You can make the form’s title bar disappear altogether
by setting the form’s BorderStyle property to FixedToolWindow, the ControlBox property to False,
and the Text property to an empty string. However, a form like this can’t be moved around with the
mouse and will probably frustrate users.

Table 5.2: The FormBorderStyle Enumeration

Value Effect

None Borderless window that can’t be resized; this setting should be avoided.

Sizable (default) Resizable window that’s used for displaying regular forms.

Fixed3D Window with a visible border, “raised” relative to the main area. Can’t be resized.

FixedDialog A fixed window, used to create dialog boxes.

Continued on next page

189THE APPEARANCE OF FORMS

2877c05.qxd 11/11/01 4:15 PM Page 189

http://www.sybex.com

Table 5.2: The FormBorderStyle Enumeration (continued)

Value Effect

FixedSingle A fixed window with a single line border.

FixedToolWindow A fixed window with a Close button only. It looks like the toolbar displayed by the
drawing and imaging applications.

SizableToolWindow Same as the FixedToolWindow but resizable. In addition, its caption font is smaller
than the usual.

ControlBox

This property is also True by default. Set it to False to hide the icon and disable the Control menu.
Although the Control menu is rarely used, Windows applications don’t disable it. When the Con-
trolBox property is False, the three buttons on the title bar are also disabled. If you set the Text
property to an empty string, the title bar disappears altogether.

KeyPreview

This property enables the form to capture all keystrokes before they’re passed to the control that
has the focus. Normally, when you press a key, the KeyPress event of the control with the focus is
triggered (as well as the other keystroke-related events), and you can handle the keystroke from
within the control’s appropriate handler. In most cases, we let the control handle the keystroke and
don’t write any form code for that.

If you want to use “universal” keystrokes in your application, you must set the KeyPreview prop-
erty to True. Doing so enables the form to intercept all keystrokes, so that you can process them
from within the form’s keystroke events. The same keystrokes are then passed to the control with
the focus, unless you “kill” the keystroke by setting its Handled property to True when you process
it on the form’s level. For more information on processing keystrokes at the Form level and using
special keystrokes throughout your application, see the Contacts project later in this chapter.

MinimizeBox, MaximizeBox

These two properties are True by default. Set them to False to hide the corresponding buttons on
the title bar.

MinimumSize, MaximumSize

These two properties read or set the minimum and maximum size of a form. When users resize the
form at runtime, the form won’t become any smaller than the dimensions specified with the Mini-
mumSize property and no larger than the dimensions specified by MaximumSize. The Minimum-
Size property is a Size object, and you can set it with a statement like the following:

Me.MinimumSize = New Size(400, 300)

Chapter 5 WORKING WITH FORMS190

2877c05.qxd 11/11/01 4:15 PM Page 190

http://www.sybex.com

Or, you can set the width and height separately:

Me.MinimumSize.Width = 400
Me.MinimumSize.Height = 300

The MinimumSize.Height property includes the height of the Form’s title bar; you should take
that into consideration. If the minimum usable size of the Form is 400 by 300, use the following
statement to set the MinimumSize property:

me.MinimumSize = New Size(400, 300 + SystemInformation.CaptionHeight)

Tip The height of the caption is not a property of the Form object, even though you will find it useful in determining the
useful area of the form (the total height minus the caption bar). Keep in mind that the height of the caption bar is given by
the CaptionHeight property of the SystemInformation object.

SizeGripStyle

This property gets or sets the style of sizing handle to display in the bottom-right corner of the
form; it can have one of the values shown in Table 5.3. By default, forms are resizable, even if no
special mark appears at the bottom-right corner of the form. This little mark indicating that a form
can be resized is new to VB.NET and adds a nice touch to the look of the form.

Table 5.3: The SizeGripStyle Enumeration

Value Effect

Auto (default) The SizeGrip is displayed as needed.

Show The SizeGrip is displayed at all times.

Hide The SizeGrip is not displayed, but the form can still be resized with the mouse
(Windows 95/98 style).

StartPosition

This property determines the initial position of the form when it’s first displayed; it can have one of
the values shown in Table 5.4.

Table 5.4: The FormStartPosition Enumeration

Value Effect

CenterParent The form is centered in the area of its parent form.

CenterScreen The form is centered on the monitor.

Manual The location and size of the form will determine its starting position. See the
discussion of the Top, Left, Width, and Height properties of the form, later in
this section.

Continued on next page

191THE APPEARANCE OF FORMS

2877c05.qxd 11/11/01 4:15 PM Page 191

http://www.sybex.com

Table 5.4: The FormStartPosition Enumeration (continued)

Value Effect

WindowsDefaultBounds The form is positioned at the default location and size determined by Windows.

WindowsDefaultLocation The form is positioned at the Windows default location and has the dimensions
you’ve set at design time.

Top, Left

These two properties set or return the coordinates of the form’s top-left corner in pixels. You’ll
rarely use these properties in your code, since the location of the window on the desktop is deter-
mined by the user at runtime.

TopMost

This property is a True/False value that lets you specify whether the form will remain on top of all
other forms in your application. Its default property is False, and you should change it only in rare
occasions. Some dialog boxes, like the Find and Replace dialog box of any text processing applica-
tion, are always visible, even when they don’t have the focus. To make a form remain visible while
it’s open, set its TopMost property to True.

Width, Height

These two properties set or return the form’s width and height in pixels. They are usually set from
within the form’s Resize event handler, to keep the size of the form at a minimum size. The form’s
width and height are usually controlled by the user at runtime.

Placing Controls on Forms
As you already know, the second step in designing your application’s interface is the design of the
forms (the first step being the analysis and careful planning of the basic operations you want to pro-
vide through your interface). Designing a form means placing Windows controls on it, setting their
properties, and then writing code to handle the events of interest. Visual Studio.NET is a rapid
application development (RAD) environment. This doesn’t mean that you’re expected to develop
applications rapidly. It has come to mean that you can rapidly prototype an application and show
something to the customer. And this is made possible through the visual tools that come with
VS.NET, especially the new Form Designer.

To place controls on your form, you select them in the Toolbox and then draw, on the form, the
rectangle in which the control will be enclosed. Or, you can double-click the control’s icon to place
an instance of the control on the form. All controls have a default size, and you can resize the con-
trol on the form with the mouse. Next, you set the control’s properties in the Properties window.

Each control’s dimensions can also be set in the Properties window, through the Width and Height
properties. These two properties are expressed in pixels. You can also call the Width and Height prop-
erties from within your code to read the dimensions of a control. Likewise, the Top and Left
properties return (or set) the coordinates of the top-left corner of the control. In the section

Chapter 5 WORKING WITH FORMS192

2877c05.qxd 11/11/01 4:15 PM Page 192

http://www.sybex.com

“Building Dynamic Forms at Runtime,” later in this chapter, you’ll see how to create new controls at
runtime and place them on a form from within your code. You’ll use these properties to specify the
location of the new controls on the form in your code.

Setting the TabOrder
Another important issue in form design is the tab order of the controls on the form. As you know,
pressing the Tab key at runtime takes you to the next control on the form. The order of the controls
isn’t determined by the form; you specify the order when you design the application, with the help
of the TabOrder property. Each control has its own TabOrder setting, which is an integer value.
When the Tab key is pressed, the focus is moved to the control whose tab order immediately fol-
lows the tab order of the current control. The TabOrder of the various controls on the form need
not be consecutive.

To specify the tab order of the various controls, you can set their TabOrder property in the
Properties window, or you can select the Tab Order command from the View menu. The tab order
of each control will be displayed on the corresponding control, as shown in Figure 5.3 (the form
shown in the figure is the Contacts application, which is discussed shortly). Notice that some of the
buttons at the bottom of the form are not aligned as they should be. The OK and Cancel buttons
should be on top of the Add and Delete buttons, hiding them. I had to displace them to set the tab
order of all controls on the form and then align some of the buttons again.

To set the tab order of the controls, click each control in the order in which you want them to
receive the focus. Notice that you can’t change the tab order of a few controls only. You must click
all of them in the desired order, starting with the first control in the tab order. The tab order need
not be the same as the physical order of the controls on the form, but controls that are next to each
other in the tab order should be placed next to each other on the form as well.

Note The default tab order is the same as the order in which you place the controls on the form. Unless you keep the tab
order in mind while you design the form, you’ll end up with a form that moves the focus from one control to the next in a
totally unpredictable manner. Once all the controls are on the form, you should always check their tab order to make sure it
won’t confuse users.

Figure 5.3

Setting the TabOrder
of the controls on
the main form of the
Contacts project

193THE APPEARANCE OF FORMS

2877c05.qxd 11/11/01 4:15 PM Page 193

http://www.sybex.com

As you place controls on the form, don’t forget to lock them, so that you won’t move them
around by mistake as you work with other controls. You can lock the controls in their places either
by setting their Locked property to True, or by locking all the controls on the form with the
Format ➢ Lock Controls command.

VB6 ➠ VB.NET

Many of the controls in earlier versions of Visual Basic exposed a Locked property too, but this property had
a totally different function. The old Locked property prevented users from editing the controls at runtime
(entering text on a TextBox control, for example). The new Locked property is effective at design time
only; it simply locks the control on the form, so that it can’t be moved by mistake.

Designing functional forms is a crucial step in the process of developing Windows applications.
Most data-entry operators don’t work with the mouse, and you must make sure all the actions can
be performed with the keyboard. This doesn’t apply to graphics applications, of course, but most
applications developed with VB are business applications. If you’re developing a data-entry form, for
example, you must take into consideration the needs of the users in designing these forms. Make a
prototype and ask the people who will use the application to test-drive it. Listen to their objections
carefully, collect all the information, and then use it to refine your application’s user interface. Don’t
defend your design—just learn from the users. They will uncover all the flaws of the application,
and they’ll help you design the most functional interface.

The process of designing forms is considered to be the simplest step by most beginners, but a bad
user interface might force you to redesign the entire application later on—not to mention that an
inefficient interface will discourage people from using your application. Take your time to think
about the interface, the controls on your forms, and how users will navigate. I’m not going to discuss
the topic of designing user interfaces in this book. Besides, this is one of the skills you’ll acquire
with time.

VB.NET at Work: The Contacts Project
I would like to conclude this section with an example of a simple data-entry form that demon-

strates many of the topics discussed here, as well as a few techniques for designing easy-to-use forms.
Figure 5.4 shows a data-entry form for contact information, and I’m sure you will add your own
fields to make this application more useful. You can navigate through the contacts using the buttons
with the arrows, as well as add new contacts or delete existing ones by clicking the appropriate but-
tons. When you’re entering a new contact, the buttons shown in Figure 5.4 are replaced by the usual
OK and Cancel buttons. The action of adding a new contact must end by clicking one of these two
buttons. After committing a new contact, or canceling the action, the usual navigation buttons will
appear again.

Once the controls are on the form, the first step is to set their tab order. You must specify a
TabOrder even for controls that never receive focus, such as the labels. In addition to the tab order
of the controls, we’ll also use shortcut keys to give the user quick access to the most common fields.
The shortcut keys are displayed as underlined characters on the corresponding labels, as you can see
in Figure 5.4.

Chapter 5 WORKING WITH FORMS194

2877c05.qxd 11/11/01 4:15 PM Page 194

http://www.sybex.com

To set the TabOrder of the controls, use the View ➢ Tab Order command. Click all the con-
trols in the order you want them to receive the focus, starting with the first label. The proper order
of the controls is shown back in Figure 5.3. You can change the order of the buttons, if you want,
but the labels and text boxes must have consecutive settings. Don’t forget to include the buttons in
the tab order. Then open the View menu again and select the Tab Order command to return to the
regular view of the Form Designer.

If you run the application now, you’ll see that the focus moves from one TextBox to the next and
the labels are skipped. Since the labels don’t accept any data, they receive the focus momentarily and
then the focus is passed to the next control in the tab order. After the last TextBox control, the focus
is moved to the buttons, and then back to the first TextBox control. To add a shortcut key for the
most common fields, determine which of the fields will have their own shortcut key and which keys
will be used for that purpose. Being the Internet buffs that we all are, let’s assign shortcut keys to the
Company, EMail, and URL fields. Locate each label’s Text property in the Properties window and
insert the & symbol in front of the character you want to act as a shortcut for each Label. The Text
properties of the three controls should be &Company, &EMail, and &URL.

Shortcut keys are activated at runtime by pressing the shortcut character while holding down the
Alt key. The shortcut key will move the focus to the corresponding Label control, but because labels
can’t receive the focus, it’s passed immediately to the next control in the tab order, which is the adja-
cent TextBox control. For this technique to work, you must make sure that all controls are properly
arranged in the tab order.

Tip By the way, if you want to display the & symbol on a Label control, prefix it with another & symbol. To display
the string “Tom & Jerry” on a Label control, assign the string “Tom && Jerry” to its Text property.

If you run the application now, you’ll be able to quickly move the focus to the Company,
EMail, and URL boxes by pressing the shortcut key while holding down the Alt key. To access the
other fields (the TextBoxes without shortcuts), the user can press Tab to move forward in the tab
order or Shift+Tab to move backward. Try to move the focus with the mouse and enter data with
the keyboard, and you’ll soon understand what kind of interface a data-entry operator would rather
work with.

Figure 5.4

A simple data-entry
screen

195THE APPEARANCE OF FORMS

2877c05.qxd 11/11/01 4:15 PM Page 195

http://www.sybex.com

The contacts are stored in an ArrayList object, which is similar to an array but a little more con-
venient. We’ll discuss ArrayList in Chapter 11; for now, you can ignore the parts of the application
that manipulate the contacts and focus on the design issues.

Now enter a new contact by clicking the Add button, or edit an existing contact by clicking the
Edit button. Both actions must end with the OK or Cancel button. In other words, we won’t allow
users to switch to another contact while adding or editing a contact. The code behind the various
buttons is straightforward. The Add button hides all the navigational buttons at the bottom of the
form and clears the TextBoxes. The OK button saves the new contact to an ArrayList structure and
redisplays the navigational buttons. The Cancel button ignores the data entered by the user and like-
wise displays the navigational buttons. In either case, when the user switches back to the view mode,
the TextBoxes are also locked, by setting their ReadOnly properties to True.

Don’t worry about the statements that manipulate the ArrayList with the contacts or the state-
ments that save the contacts to a disk file and load them back to the application from a disk file.
We’ll come back to this project in Chapter 11, where we’ll discuss ArrayLists. Just focus on the
statements that control the appearance of the form.

For now, you can use the commands of the File menu to load or save a set of contacts. These
commands are quite simple: they load the same file, CONTACTS.BIN in the application’s folder. After
reading about the Open File and Save File dialog controls, you can modify the code so that it
prompts the user about the file to read from or write to. The CONTACTS.BIN file you will find on the
CD contains a few contacts I created from the Northwind sample database.

The application keeps track of the current contact through the currentContact variable. As you
move with the navigation keys, the value of this variable is increased or decreased accordingly. When
you edit a contact, the new values are stored in the Contact object that corresponds to the location
indicated by the currentContact variable. When you add a new contact, a new Contact object is added
to the current collection, and its order becomes the new value of the currentContact variable. Most of
the project’s code performs trivial tasks—hiding and showing the buttons at the bottom of the form,
displaying the fields of the current contact on the TextBox control, clearing the same controls to
prepare them to accept a new contact, and so on. We’ll come back to this project in Chapter 11,
where I’ll show you how to manipulate ArrayLists. There you’ll find more information about storing
data in an ArrayList, as well as how to save an ArrayList to a disk file and how to load the data from
the file back to the ArrayList.

Handling Keystrokes

The last topic demonstrated in this example is how to capture certain keystrokes, regardless of the
control that has the focus. We’ll use the F10 keystroke to display the total number of contacts
entered so far. Set the form’s KeyPreview property to True and then enter the following code in the
form’s KeyDown event:

If e.Keycode = keys.F10 Then
MsgBox(“There are “ & Contacts.Count.ToString & “ contacts in the database”)
e.Handled = True

End If

The form captures all the keystrokes and processes them. After it’s done with them, it may
allow the keystrokes to be passed to the control that has the focus. The processing is quite trivial. It

Chapter 5 WORKING WITH FORMS196

2877c05.qxd 11/11/01 4:15 PM Page 196

http://www.sybex.com

compares the key pressed to the F10 key and, if F10 was pressed, it displays the number of contacts
entered so far in a message box. Then, it stops the keystroke from propagating back to control with
the focus by setting its Handled property to True. Listing 5.1 is the complete event handler; if you
omit that statement in the listing, the F10 keystroke will be passed to the control with the focus—
the control that would receive the notification about the keystroke by default, if the form’s Key-
Preview property was left to its default value. Of course, the key F10 isn’t processed by the TextBox
control, so it’s not necessary to “kill” it before it reaches the control.

Listing 5.1: Handling Keystrokes in the Form’s KeyDown Event Handler

Public Sub Form1_KeyDown(ByVal sender As Object, _
ByVal e As System.WinForms.KeyEventArgs) Handles Form1.KeyUp

If e.Keycode = Keys.F10 Then
MsgBox(“There are “ & Contacts.Count.ToString & _

“ contacts in the database”)
e.Handled = True

End If
If e.KeyCode = Keys.Subtract And e.Modifiers = Keys.Alt Then

bttnPrevious_Click(sender, e)
End If
If e.KeyCode = Keys.Add And e.Modifiers = Keys.Alt Then

bttnNext_Click(sender, e)
End If

End Sub

The KeyDown event handler contains a little more code to capture the Alt+Plus and Alt+Minus
key combinations as shortcuts for the buttons that move to the next and previous contact respec-
tively. If the user has clicked the Plus button while holding down the Alt button, the code calls the
event handler of the Next button. Likewise, pressing Alt and the Minus key activates the event
handler of the Previous button.

The KeyCode property of the e argument returns the code of the key that was pressed. All key
codes are members of the Keys enumeration, so you need not memorize them. The name of the but-
ton with the plus symbol is Keys.Add. The Modifiers property of the same argument returns the
modifier key(s) that were held down while the key was pressed. Also, all possible values of the Mod-
ifiers property are members of the Keys enumeration and will appear in a list as soon as you type the
equal sign. The name of the Alt modifier is Keys.Alt.

If you run the Contacts application, you’ll see that it’s not trivial. To add or modify a record, you
must click the appropriate button, and while in edit mode, the navigational buttons disappear. The
reason is that data-entry operators want to know the state of the application at each moment. With
this design, you can’t move to another record while editing the current one, as discussed previously.

Another interesting part of the project is the handler of the KeyPress event. This event takes place
when a normal key (letter, digit, or punctuation symbol) is pressed. If the OK button is invisible at
the time, it means that the user can’t edit the current record and the program “chokes” the keystroke,
preventing it from reaching the control that has the focus. The form’s KeyPress event is handled by
the subroutine shown in Listing 5.2.

197THE APPEARANCE OF FORMS

2877c05.qxd 11/11/01 4:15 PM Page 197

http://www.sybex.com

Listing 5.2: Handling Keystrokes in the Form’s KeyPress Event Handler

Private Sub Form1_KeyPress(ByVal sender As Object, _
ByVal e As System.Windows.Forms.KeyPressEventArgs) _
Handles MyBase.KeyPress

If bttnOK.Visible = False Then
e.Handled = True

End If
End Sub

The Contacts project contains quite a bit of code, which will be discussed in more detail in Chap-
ter 11. It’s included in this chapter to demonstrate some useful techniques for designing intuitive
interfaces, and I’ve only discussed the sections of the application that relate to the behavior of the
form and the controls on it as a group.

Anchoring and Docking
One of the most tedious tasks in designing user interfaces with Visual Basic before VB.NET was
the proper arrangement of the controls on the form, especially on forms that users were allowed
to resize at runtime. You design a nice form for a given size, and when it’s resized at runtime, the
controls are all clustered in the top-left corner. A TextBox control that covered the entire width
of the form at design time suddenly “cringes” on the left when the user drags out the window.
If the user makes the form smaller than the default size, part of the TextBox is invisible, because
it’s outside the form. You can attach scroll bars to the form, but that doesn’t really help—who
wants to type text and have to scroll the form horizontally? It makes sense to scroll vertically,
because you get to see many lines at once, but if the TextBox control is wider than the form, you
can’t see an entire line.

Programmers had to be creative and resize and/or rearrange the controls on a form from within
the form’s Resize event. This event takes place every time the user resizes the form at runtime, and,
quite often, we had to insert code in this event to resize controls so that they would continue to take
up the entire form’s width. You may still have to insert a few lines of code in the Resize event’s han-
dler, but a lot of the work of keeping controls aligned is no longer needed. The Anchor and Dock
properties of the various controls allow you specify how they will be arranged with respect to the
edges of the form when the user resizes it.

The Anchor property lets you attach one or more edges of the control to corresponding edges of
the form. The anchored edges of the control maintain the same distance from the corresponding
edges of the form. Place a TextBox control on a new form and then open the control’s Anchor
property in the Properties window. You will see a little square within a larger square, like the one in
Figure 5.5, and four pegs that connect the small control to the sides of the larger box. The large box
is the form, and the small one is the control. The four pegs are the anchors, which can be either white
or gray. The gray anchors denote a fixed distance between the control and the form. By default, the
control is placed at a fixed distance from the top-left corner of the form. When the form is resized,
the control retains its size and its distance from the top-left corner of the form.

Chapter 5 WORKING WITH FORMS198

2877c05.qxd 11/11/01 4:15 PM Page 198

http://www.sybex.com

Let’s say we want our control to fill the width of the form, be aligned to the top of the form, and
leave some space for a few buttons at the bottom. Make the TextBox control as wide as the control
(allowing, perhaps, a margin of a few pixels on either side). Then place a couple of buttons at the
bottom of the form and make the TextBox control tall enough that it stops above the buttons, as
shown in Figure 5.6. This is the form of the Anchor project on the CD.

Now open the TextBox control’s Anchor property and make the all four anchors gray by clicking
them. This action tells the Form Designer to resize the control accordingly at runtime, so that the
distances between the sides of the control and the corresponding sides of the form are the same as
you’ve set at design time.

Resize the form at design time, without running the project. The TextBox control is resized
according to the form, but the buttons remain fixed. Let’s do the same for the two buttons. The two
buttons must fit in the area between the TextBox control and the bottom of the form, so we must
anchor them to the bottom of the form. Select both controls on the form with the mouse and then
open their Anchor property. Make the anchor at the bottom gray and the other three anchors white;
this will anchor the two buttons to the bottom of the form. If you resize the form now, the TextBox
control will fill it, leaving just enough room for the two buttons at the bottom of the form.

We need to do something more about the buttons. They’re aligned vertically, but their horizontal
location doesn’t change. Select the button to the left, open its Anchor property, and click the left
anchor. This will anchor the button to the left side of the form—which is the default behavior anyway.

Figure 5.6

This form is filled
by three controls,
regardless of the
form’s size at
runtime.

Figure 5.5

The settings of the
Anchor property

199THE APPEARANCE OF FORMS

2877c05.qxd 11/11/01 4:15 PM Page 199

http://www.sybex.com

Now select the button to the right, open its Anchor property, and click the right anchor. This will
anchor the second button to the right side of the control. Resize the form again and see how all con-
trols are resized and rearranged on the form at all times. This is much better than the default behavior
of the controls on the form. Figure 5.7 shows the same form in two very different sizes, with the
TextBox taking up most of the space on the form and leaving room for the buttons, which in turn are
repositioned horizontally as the form is resized.

Yet, there’s a small problem: if you make the form very narrow, there will be no room for both
buttons across the form’s width. The simplest way to fix this problem is to impose a minimum size
for the form. To do so, you must first decide the form’s minimum width and height and then set the
MinimumSize property to these values.

In addition to the Anchor property, most controls provide the Dock property, which determines
how a control will dock on the form. The default value of this property is None. Create a new form,
place a TextBox control on it, and then open the control’s Dock property. The various rectangular
shapes are the settings of the property. If you click the middle rectangle, the control will be docked
over the entire form: it will expand and shrink both horizontally and vertically to cover the entire
form. This setting is appropriate for simple forms that contain a single control, usually a TextBox,
and sometimes a menu. Try it out.

Let’s create a more complicated form with two controls (it’s the Docking project on the CD).
The form shown in Figure 5.8 contains a TreeView control on the left and a ListView control on
the right. The two controls display generic data, but the form has the same structure as a Windows
Explorer window, with the directory structure in tree form on the left pane and the files of the
selected folder on the right pane.

Place a TreeView control on the left side of the form and a ListView control on the right side of
the form. Then dock the TreeView to the left and the ListView to the right. If you run the applica-
tion now, then as you resize the form, the two controls remain docked to the two sides of the form,
but their sizes don’t change. If you make the form wider, there will be a gap between the two con-
trols. If you make the form narrower, one of the controls will overlap the other.

End the application, return to the Form Designer, select the ListView control, and anchor the
control on all four sides. This time, the ListView will change size to take up all the space to the right
of the TreeView.

Figure 5.7

The form of
Figure 5.6 in two
different sizes

Chapter 5 WORKING WITH FORMS200

2877c05.qxd 11/11/01 4:15 PM Page 200

http://www.sybex.com

Note When you anchor a control to the left side of the form, the distance between the control’s left side and the form’s
left edge remains the same. This is the default behavior of the controls. If you dock the right side of the control to the right
side of the form, then as you resize the width of the form, the control is moved so that its distance from the right side of the
form remains fixed—you can even push the control out of the left edge of the form. If you anchor two opposite sides of the
control (top and bottom, or left and right), then the control is resized, so that the docking distances of both sides remain the
same. Finally, if you dock all four sides, the control is resized along with the form. Place a multiline TextBox control on
a form and try out all possible settings of the Dock property.

The form behaves better, but it’s not what you really expect from a Windows application. The
problem with the form of Figure 5.8 is that users can’t change the relative widths of the controls. In
other words, you can’t make one of the controls narrower to make room for the other, which is a
fairly common concept in the Windows interface. The narrow bar that allows users to control the
relative sizes of two controls is a splitter. When the cursor hovers over a splitter, it changes to a double
arrow to indicate that the bar can be moved. By moving the splitter, you can enlarge one of the two
controls while shrinking the other.

The Form Designer provides a special control for placing a splitter between pairs of controls,
and this is the Splitter control. We’ll design a new form identical to that of Figure 5.8, only this
time we’ll place a Splitter control between them, so that users can change the relative size of the
two controls. First, place a TextBox control on the form and set its Multiline property to True. You
don’t need to do anything about its size, because we’ll dock it to the left side of the form. With the
TextBox control selected, locate its Dock property and set it to Left. The TextBox control will fill
the left side of the form, from top to bottom.

Then place an instance of the Splitter control on the form, by double-clicking its icon on the
Toolbox. The Splitter will be placed next to the TextBox control. The Form Designer will attempt
to dock the Splitter to the left side of the form. Since there’s a control docked on this side of the
form already, the Splitter will be docked left against the TextBox.

Now place another TextBox control on the form, to the right of the Splitter control. Set the
TextBox’s Multiline property to True and its Dock property to Fill. We want the second TextBox
to fill all the area to the right of the Splitter. Now run the project and check out the functionality of
the Splitter. Paste some text on the two controls and then change their relative size by sliding the
Splitter between them, as shown in Figure 5.9. You will find this project, called Splitter1, in this
chapter’s folder on the CD.

Figure 5.8

Filling a form with
two controls

201THE APPEARANCE OF FORMS

2877c05.qxd 11/11/01 4:15 PM Page 201

http://www.sybex.com

Let’s design a more elaborate form with two Splitter controls, like the one shown in Figure 5.10
(it’s the form of the Splitter2 project on the CD). This form is at the heart of the interface of Out-
look, and it consists of a TreeView control on the left (where the folders are displayed), a ListView
control (where the selected folder’s items are displayed), and a TextBox control (where the selected
item’s details are displayed). Since we haven’t discussed the ListView and TreeView controls yet, I’m
using three TextBox controls. The process of designing the form is identical, regardless of the con-
trols you put on it.

Before explaining the process in detail, let me explain how the form shown in Figure 5.10 is dif-
ferent from the one in Figure 5.9. The vertical Splitter allows you to change the size of the TextBox
on the left; the remaining space on the form must be taken by the other two controls. A Splitter con-
trol, however, must be placed between two controls (no more, no less). By placing a Panel control on
the right side of the form, we use the vertical Splitter to separate the TextBox control to the left
and the Panel control to the right. The other two TextBox controls and the horizontal Splitter are
arranged on the Panel as you would arrange them on a form. Let’s build this form.

First, place a multiline TextBox control on the form and dock it to the right. Then place a Splitter
control, which will be docked to the left by default. Since there’s a control docked to the left of the
form already, the Splitter control will be docked to the right side of that control. Then place a Panel
control to the left of the Splitter control and set its Dock property to Fill. So far, you’ve done
exactly what you did in the last example. If you run the application now, you’ll be able to resize the
two controls on the form.

Now we’re going to place two TextBox controls on the Panel control, separated by a horizontal
Splitter control. Place the first multiline TextBox control and dock it to the top of the Panel. Then
place a Splitter control on the Panel. The Form Designer will attempt to dock it to the left of the
control, so there’s no point in trying to resize the Splitter control with the mouse. Just change its
Dock property from Left to Top. Finally, place the third TextBox on the Panel, and set its Multiline
property to True and its Dock property to Fill. The last TextBox will fill the available area of the
Panel below the Splitter. Run the application, paste some text on all three TextBox controls, and
then use the two Splitter controls to resize the TextBoxes any way you like. Any VB6 programmer
will tell you that this is a very elaborate interface—they just can’t guess how many lines of code you
wrote.

So far, you’ve seen what the Form Designer and the Form object can do for your application.
Let’s switch our focus to programming forms.

Figure 5.9

The Splitter control
lets you change the
relative size of the
controls on either
side.

Chapter 5 WORKING WITH FORMS202

2877c05.qxd 11/11/01 4:15 PM Page 202

http://www.sybex.com

The Form’s Events
The Form object triggers several events, the most important of them being Activate, Deactivate,
Closing, Resize, and Paint.

The Activate and Deactivate Events

When more than one form is displayed, the user can switch from one to the other with the mouse or
by pressing Alt+Tab. Each time a form is activated, the Activate event takes place. Likewise, when a
form is activated, the previously active form receives the Deactivate event.

Figure 5.10

An elaborate form
with two Splitter
controls.

203THE APPEARANCE OF FORMS

2877c05.qxd 11/11/01 4:15 PM Page 203

http://www.sybex.com

The Closing Event

This event is fired when the user closes the form by clicking its Close button. If the application must
terminate because Windows is shutting down, the same event will be fired as well. Users don’t always
quit applications in an orderly manner, and a professional application should behave gracefully under
all circumstances. The same code you execute in the application’s Exit command must also be
executed from within the Closing event as well. For example, you may display a warning if the user
has unsaved data, or you may have to update a database, and so on. Place the code that performs
these tasks in a subroutine and call it from within your menu’s Exit command, as well as from within
the Closing event’s handler.

You can cancel the closing of a form by setting the e.Cancel property to True. The event handler
in Listing 5.3 displays a message box telling the user that the data hasn’t been saved and gives them a
chance to cancel the action and return to the application.

Listing 5.3: Cancelling the Closing of a Form

Public Sub Form1_Closing(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) _
Handles Form1.Closing

Dim reply As MsgBoxResult
reply = MsgBox(“Current document has been edited. Click OK to terminate “ & _

“the application, or Cancel to return to your document.”, _
MsgBoxStyle.OKCancel)

If reply = MsgBoxResult.Cancel Then
e.Cancel = True

End If
End Sub

The Resize Event

The Resize event is fired every time the user resizes the form with the mouse. With previous ver-
sions of VB, programmers had to insert quite a bit of code in the Resize event’s handler to resize the
controls and possibly rearrange them on the form. With the Anchor and Dock properties, much of
this overhead can be passed to the form itself.

Many VB applications used the Resize event to impose a minimum size for the form. To make
sure that the user can’t make the form smaller than, say 300 by 200 pixels, you would insert these
lines into the Resize event’s handler:

Private Form1_Resize(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Form1.Resize

If Me.Width < minWidth Then Me.Width = minWidth
If Me.Height < minHeight Then Me.Height = minHeight

End Sub

Chapter 5 WORKING WITH FORMS204

2877c05.qxd 11/11/01 4:15 PM Page 204

http://www.sybex.com

There’s a better approach to imposing a minimum form size, the MinimumSize property, discussed
earlier in this chapter. If you want the two sides of the form to maintain a fixed ratio, you will have to
resize one of the dimensions from within the Resize event handler. Let’s say the form’s width must
have a ratio of 3:4 to its height. Assuming that you’re using the form’s height as a guide, insert the
following statement in the Resize event handler to make the width equal to three fourths of the height:

Private Form1_Resize(ByVal sender As Object, ByVal e As System.EventArgs)
Me.Width = (0.75 * Me.Height)

End Sub

You may also wish to program the Resize event to redraw the form. Normally, this action takes
place from within the Paint event, which is fired every time the form must be redrawn. The Paint
event, however, isn’t fired when the form is reduced in size.

The Paint Event

This event takes place every time the form must be refreshed. When you switch to another form that
partially or totally overlaps the current form and then switch back to the first form, the Paint event
will be fired to notify your application that it must redraw the form. In this event’s handler, we insert
the code that draws on the form. The form will refresh its controls automatically, but any custom
drawing on the form won’t be refreshed automatically. We’ll discuss this event in more detail in
Chapter 14.

In this section, I’ll show you a brief example of using the Paint event. Let’s say you want to fill
the background of your form with a gradient that starts with red at the top-left corner of the form
and ends with yellow at the bottom-right corner, like the one in Figure 5.11. This is the form of the
Gradient project, which you will find in this chapter’s folder on the CD. Each time the user resizes
the form, the gradient must be redrawn, because its exact coloring depends on the form’s size and
aspect ratio. The PaintForm() subroutine, which redraws the gradient on the form, must be called
from within the Paint and Resize events.

Before presenting the PaintForm() subroutine, I should briefly discuss the Graphics object. The
surface on which you will draw the gradient is a Graphics object, which you can retrieve with the
Me.CreateGraphics method. The FillRectangle method, which you’ll use in this example, is one of
the methods of the Graphics object, and it fills a rectangle with a gradient.

Figure 5.11

Filling a form’s
background with a
gradient

205THE APPEARANCE OF FORMS

2877c05.qxd 11/11/01 4:15 PM Page 205

http://www.sybex.com

To draw on a surface, you must create a brush object (the instrument you’ll draw with). One of
the built-in brushes is the LinearGradientBrush, which creates a linear gradient. The following state-
ment declares a variable to represents a brush that draws a linear gradient:

Dim grbrush As System.Drawing.Drawing2D.LinearGradientBrush

To initialize the grbrush variable, you must specify the properties of the gradient: its span and its
starting and ending colors. One form of the Brush object’s constructor is the following:

New Brush(origin, dimensions, starting_color, ending_color)

The last two arguments are the gradient’s starting and ending colors, and they’re obvious. The
first argument is a point (a pair of x and y coordinates), while the dimensions of the gradient deter-
mine its direction and size. If the height of the gradient is zero, the gradient will be horizontal, and if
the width is the same as its height, the gradient is diagonal. If the gradient’s dimensions are smaller
than the area you want to fill, the gradient will be repeated. To draw a red-to-yellow gradient that
fills the form diagonally, the gradient’s origin must be the form’s top-left corner—the point (0, 0)—
and the gradient’s dimensions must be the same as the form’s dimensions. The following statement
creates the brush for the desired gradient:

grbrush = New System.Drawing.Drawing2D.LinearGradientBrush(New Point(0, 0), _
New Point(Me.Width, Me.Height), Color.Red, Color.Yellow)

Finally, the FillRectangle method will draw a filled rectangle with the specified brush. The Fill-
Rectangle method accepts as arguments the brush it will use to draw the gradient, the origin of the
rectangle, and its dimensions:

Me.CreateGraphics.FillRectangle(grbrush, New Rectangle(0, 0, _
Me.Width, Me.Height))

To fill a form with a gradient, enter a RepaintForm() subroutine in the form’s code window, then
call this subroutine from within the Form’s Resize and Paint event handlers, as shown in Listing 5.4.

Listing 5.4: Repainting a Gradient on a Form

Sub RepaintForm()
Dim grbrush As System.Drawing.Drawing2D.LinearGradientBrush
grbrush = New System.Drawing.Drawing2D.LinearGradientBrush(New Point(0, 0), _

New Point(Me.width, Me.height), Color.Red, Color.Yellow)
Me.CreateGraphics.FillRectangle(grbrush, New Rectangle(0, 0, _

Me.Width, Me.Height))
End Sub
Public Sub Form1_Paint(ByVal sender As Object, _

ByVal e As System.WinForms.PaintEventArgs) Handles Form1.Paint
RepaintForm()

End Sub
Public Sub Form1_Resize(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles Form1.Resize
RepaintForm()

End Sub

Chapter 5 WORKING WITH FORMS206

2877c05.qxd 11/11/01 4:15 PM Page 206

http://www.sybex.com

As mentioned earlier, the Paint event is fired every time the form must be redrawn, but not when
the form is resized to smaller dimensions. Because the visible area of the form doesn’t include any
new regions, the Paint event isn’t fired—Windows thinks there’s nothing to redraw, so why fire a
Paint event? The example with the gradient, however, is a special case. When the form is reduced in
size, the gradient’s colors must also change. They must go from red to yellow in a shorter span,
which means that even though the end colors of the gradient will be the same, the actual gradient
will look different. Therefore, the statements that draw the form’s gradient must be executed from
within the Resize event as well.

To experiment with the Paint and Resize events, comment out the call to the subroutine Repaint-
Form() in one of the two event handlers at a time. Then resize the form, overlap it totally and par-
tially by another form, and bring it to the foreground again. You will notice that unless both event
handlers are executed, the form’s background gradient isn’t properly drawn at all times.

You can request that the Paint event is fired when the form is resized by calling the form’s Set-
Style method with the following arguments:

Me.SetStyle(ControlStyles.ResizeRedraw, True)

If you insert this statement in the form’s Load event handler, then you need not program the
Resize event. The Paint event will be fired every time the form is resized by the user. You’ll read a
lot about painting and drawing with VB.NET in Chapter 14. In the mean time, you can place back-
ground images on your forms by setting the BackgroundImage property.

Loading and Showing Forms
One of the operations you’ll have to perform with multi-form applications is to load and manipu-
late forms from within other forms’ code. For example, you may wish to display a second form to
prompt the user for data specific to an application. You must explicitly load the second form, read
the information entered by the user, and then close the form. Or, you may wish to maintain two
forms open at once and let the user switch between them. The entire process isn’t trivial, and it’s cer-
tainly more complicated than it used to be with VB6. You have seen the basics of handling multiple
forms in an application in Chapter 2; in this chapter, we’ll explore this topic in depth.

To access a form from within another form, you must first create a variable that references the
second form. Let’s say your application has two forms, named Form1 and Form2, and that Form1 is
the project’s startup form. To show Form2 when an action takes place on Form1, first declare a vari-
able that references Form2:

Dim frm As New Form2

This declaration must appear in Form1 and must be placed outside any procedure. (If you place
it in a procedure’s code, then every time the procedure is executed, a new reference to Form2 will be
created. This means that the user can display the same form multiple times. All procedures in Form1
must see the same instance of the Form2, so that no matter how many procedures show Form2, or
how many times they do it, they’ll always bring up the same single instance of Form2.)

Then, to invoke Form2 from within Form1, execute the following statement:

frm.Show

207LOADING AND SHOWING FORMS

2877c05.qxd 11/11/01 4:15 PM Page 207

http://www.sybex.com

This statement will bring up Form2 and usually appears in a button’s or menu item’s Click event
handler. At this point, the two forms don’t communicate with one another. However, they’re both
on the desktop and you can switch between them. There’s no mechanism to move information from
Form2 back to Form1, and neither form can access the other’s controls or variables. To exchange
information between two forms, use the techniques described in the section “Controlling One Form
from within Another,” later in this section.

The Show method opens Form2 in a modeless manner. The two forms are equal in stature on the
desktop, and the user can switch between them. You can also display the second form in a modal
manner, which means that users won’t be able to return to the form from which they invoked it.
While a modal form is open, it remains on top of the desktop and you can’t move the focus to the
any other form of the same application (but you can switch to another application). To open a
modal form, use the statement

frm.ShowDialog

The modal form is, in effect, a dialog box, like the Open File dialog box. You must first select a
file on this form and click the Open button, or click the Cancel button, to close the dialog box and
return to the form from which the dialog box was invoked. Which brings us to the topic of distin-
guishing forms and dialog boxes.

A dialog box is simply a modal form. When we display forms as dialog boxes, we change the bor-
der of the forms to the setting FixedDialog and invoke them with the ShowDialog method. Modeless
forms are more difficult to program, because the user may switch among them at any time. Not only
that, but the two forms that are open at once must interact with one another. When the user acts on
one of the forms, this may necessitate some changes in the other, and you’ll see shortly how this is
done. If the two active forms don’t need to interact, display one of them as a dialog box.

When you’re done with the second form, you can either close it by calling its Close method or
hide it by calling its Hide method. The Close method closes the form, and its resources are no
longer available to the application. The Hide method sets the Form’s Visible property to False; you
can still access a hidden form’s controls from within your code, but the user can’t interact with it.
Forms that are displayed often, such as the Find and Replace dialog box of a text processing applica-
tion, should be hidden, not closed. To the user, it makes no difference whether you hide or close a
form. If you hide a form, however, the next time you bring it up with the Show or ShowDialog
methods, its controls are in the state they were the last time. This may not be what you want, how-
ever. If not, you must reset the controls from within your code before calling the Show or Show-
Dialog method.

The Startup Form
A typical application has more than a single form. When an application starts, the main form is loaded.
You can control which form is initially loaded by setting the startup object in the Project Properties
window, shown in Figure 5.12. To open this, right-click the project’s name in the Solution Explorer
and select Properties. In the project’s Property Pages, select the Startup Object from the drop-down
list. You can also see other parameters in the same window, which are discussed elsewhere in this book.

By default, Visual Basic suggests the name of the first form it created, which is Form1. If you
change the name of the form, Visual Basic will continue using the same form as startup form, with
its new name.

Chapter 5 WORKING WITH FORMS208

2877c05.qxd 11/11/01 4:15 PM Page 208

http://www.sybex.com

You can also start an application with a subroutine without loading a form. This subroutine must
be called Main() and must be placed in a Module. Right-click the project’s name in the Solution
Explorer window and select the Add Item command. When the dialog box appears, select a Module.
Name it StartUp (or anything you like; you can keep the default name Module1) and then insert
the Main() subroutine in the module. The Main() subroutine usually contains initialization code
and ends with a statement that displays one of the project’s forms; to display the AuxiliaryForm
object from within the Main() subroutine, use the following statements (I’m showing the entire
module’s code):

Module StartUpModule
Sub Main()

System.Windows.Forms.Application.Run(New AuxiliaryForm())
End Sub

End Module

Then, you must open the Project Properties dialog box and specify that the project’s startup
object is the subroutine Main(). When you run the application, the form you specified in the Run
method will be loaded.

Controlling One Form from within Another
Loading and displaying a form from within another form’s code is fairly trivial. In some situations, this is
all the interaction you need between forms. Each form is designed to operate independently of the oth-
ers, but they can communicate via public variables (see the next section, “Private vs. Public Variables”).
In most situations, however, you need to control one form from within another’s code. Controlling the
form means accessing its controls and setting or reading values from within another form’s code.

Look at the two forms in Figure 5.13, for instance. These are forms of the TextPad application,
which we are going to develop in Chapter 6. TextPad is a text editor that consists of the main form
and an auxiliary form for the Find & Replace operation. All other operations on the text are per-
formed with the commands of the menu you see on the main form. When the user wants to search

Figure 5.12

In the Properties
window, you can
specify the form
that’s displayed
when the application
starts.

209LOADING AND SHOWING FORMS

2877c05.qxd 11/11/01 4:15 PM Page 209

http://www.sybex.com

for and/or replace a string, the program displays another form on which they specify the text to
find, the type of search, and so on. When the user clicks one of the Find & Replace form’s buttons,
the corresponding code must access the text on the main form of the application and search for a
word or replace a string with another. The Find & Replace dialog box not only interacts with the
TextBox control on the main form, it also remains visible at all times while it’s open, even if it
doesn’t have the focus, because its TopMost property was set to True. You’ll see how this works
in Chapter 6. In this chapter, we’ll develop a simple example to demonstrate how you can access
another form’s controls.

Sharing Variables between Forms

The simplest method for two forms to communicate with each other is via public variables. These vari-
ables are declared in the form’s declarations section, outside any procedure, with the keywords Public
Shared. If the following declarations appear in Form1, the variable NumPoints and the array DataVal-
ues can be accessed by any procedure in Form1, as well as from within the code of any form belong-
ing to the same project.

Public Shared NumPoints As Integer
Public Shared DataValues(100) As Double

To access a public variable declared in Form1 from within another form’s code, you must prefix
the variable’s name by the name of the form, as in:

FRM.NumPoints = 99
FRM.DataValues(0) = 0.3395022

where FRM is a variable that references the form in which the public variables were declared. You
can use the same notation to access the controls on the form represented by the FRM variable. If the
form contains the TextBox1 control, you can use the following statement to read its text:

FRM.TextBox1.Text

Figure 5.13

The Find & Replace
form acts on the
contents of a control
on another form.

Chapter 5 WORKING WITH FORMS210

2877c05.qxd 11/11/01 4:15 PM Page 210

http://www.sybex.com

Another technique for exposing the controls of a form to the code of the other forms of the
application is to create Public Shared variables that represent the controls to be shared. The follow-
ing declaration makes the TBox variable of Form1 available to all other forms in the application:

Public Shared TBox As TextBox

To make this variable represent a TextBox control, assign to it the name of the control:

TBox = TextBox1

This statement appears usually in the form’s Load() subroutine, but it can appear anywhere in
your code. It just has to be executed before you show another form. To access the TextBox1 control
on Form1 from within another form’s code, use the following expression:

Form1.TBox

This expression represents a TextBox control, and you can call any of the TextBox control’s
properties and methods:

Form1.TBox.Length ‘ returns the length of the text
Form1.TBox.Append(“some text”) ‘ appends text

Keep in mind that the controls you want to access from within another form’s code must be
declared with as Public Shared, not just Public.

Forms vs. Dialog Boxes
Dialog boxes are special types of forms with rather limited functionality, which we use to prompt
the user for data. The Open and Save dialog boxes are two of the most familiar dialog boxes in
Windows. They’re so common, they’re actually known as common dialog boxes. Technically, a dialog
box is a good old Form with its BorderStyle property set to FixedDialog. Like forms, dialog boxes
may contain a few simple controls, such as Labels, TextBoxes, and Buttons. You can’t overload a
dialog box with controls and functionality, because you’ll end up with a regular form.

Figure 5.14 shows a few dialog boxes you have certainly seen while working with
Windows applications. The Protect Document dialog box of Word is a modal dialog box: You
must close it before switching to your document. The Accept or Reject Changes dialog box is mode-
less, like the Find and Replace dialog box. It allows you to switch to your document, yet it remains
visible while open even if it doesn’t have the focus.

Notice that some dialog boxes, such as Open, Color, and even the humble MessageBox, come
with the .NET Framework, and you can incorporate them in your applications without having to
design them.

Figure 5.14

Typical dialog boxes
used by Word

211LOADING AND SHOWING FORMS

2877c05.qxd 11/11/01 4:15 PM Page 211

http://www.sybex.com

Another difference between forms and dialog boxes is that forms usually interact with each other.
If you need to keep two windows open and allow the user to switch from one to the other, you need
to implement them as regular forms. If one of them is modal, then you should implement it as a dia-
log box. A characteristic of dialog boxes is that they provide an OK and a Cancel button. The OK
button tells the application that you’re done using the dialog box and the application can process the
information on it. The Cancel button tells the application that it should ignore the information on
the dialog box and cancel the current operation. As you will see, dialog boxes allow you to quickly
find out which button was clicked to close them, so that your application can take a different action
in each case.

In short, the difference between forms and dialog boxes is artificial. If it were really important to
distinguish between the two, they’d be implemented as two different objects—but they’re the same
object. So, without any further introduction, let’s look at how to create and use dialog boxes.

To create a dialog box, start with a Windows Form, set its BorderStyle property to FixedDialog
and set the ControlBox, MinimizeBox, and MaximizeBox properties to False. Then add the neces-
sary controls on the form and code the appropriate events, as you would do with a regular Windows
form. Figure 5.15 shows a simple dialog box that prompts the user for an ID and a password. The
dialog box contains two TextBox controls, next to the appropriate labels, and the usual OK and
Cancel buttons. The Cancel button signifies that the user wants to cancel the operation, which was
initiated in the form that displayed the dialog box. The forms of Figure 5.15 are the Password pro-
ject on the CD.

Start a new project, rename the form to MainForm, and place a button on the form. This is the
application’s main form, and we’ll invoke the dialog box from within the button’s Click event han-
dler. Then add a new form to the project, name it PasswordForm, and place on it the controls
shown in Figure 5.15.

We have the dialog box, but how do we initiate it from within another form’s code? The process
of displaying a dialog box is no different than displaying another form. To do so, enter the follow-
ing code in the event handler from which you want to initiate the dialog box (this is the Click event
handler of the main form’s button):

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim DLG as new PasswordForm()
DLG.ShowDialog

End Sub

Figure 5.15

A simple dialog box
that prompts users
for a username and
password

Chapter 5 WORKING WITH FORMS212

2877c05.qxd 11/11/01 4:15 PM Page 212

http://www.sybex.com

Here, PasswordForm is the name of the dialog box. The ShowDialog method displays a dialog box
as modal; to display a modeless dialog box, use the Show method instead. An important distinction
between modal and modeless dialog boxes has to do with the calling application. When you display
a modal dialog box, the statement following the one that called the ShowDialog method is not exe-
cuted. The statements from this point to the end of the event handler will be executed when the user
closes the dialog box. Statements following the Show method, however, are executed immediately as
soon as the dialog box is displayed.

You already know how to read the values entered on the controls of the dialog box. You also need
to know which button was clicked to close the dialog box. To convey this information from the dialog
box back to the calling application, the Form object provides the DialogResult property. This property
can be set to one of the values shown in Table 5.5 to indicate what button was clicked. The Dialog-
Result.OK value indicates that the user has clicked the OK button on the form. There’s no need to
place an OK button on the form; just set the form’s DialogResult property to DialogResult.OK.

Table 5.5: The DialogResult Enumeration

Value Description

Abort The dialog box was closed with the Abort button.

Cancel The dialog box was closed with the Cancel button.

Ignore The dialog box was closed with the Ignore button.

No The dialog box was closed with the No button.

None The dialog box hasn’t been closed yet. Use this option to find out whether a modeless
dialog box is still open.

OK The dialog box was closed with the OK button.

Retry The dialog box was closed with the Retry button.

Yes The dialog box was closed with the Yes button.

The dialog box need not contain any of the buttons mentioned here. It’s your responsibility to set
the value of the DialogResult property from within your code to one of the settings shown in the
table. This value can be retrieved by the calling application. Notice also that the action of assigning a
value to the DialogResult property also closes the dialog box—you don’t have to call the Close
method explicitly.

Let’s say your dialog box contains a button named Done, which signifies that the user is done
entering values on the dialog box. The Click event handler for this button contains a single line:

Me.DialogResult = DialogResult.OK

This statement sets the DialogResult property, which will be read by the code of the form that
invoked the dialog box, and also closes the dialog box. The event handler of the button that displays
this dialog box should contain these lines:

Dim DLG as Form = new PasswordForm
If DLG.ShowDialog = DialogResult.OK Then

213LOADING AND SHOWING FORMS

2877c05.qxd 11/11/01 4:15 PM Page 213

http://www.sybex.com

{ process the user selection }
End If

Figure 5.16 demonstrates how this is done in the Password project.

The dialog box may actually contain two buttons, one of them called Activate or Register Now
and the other called Cancel or Remind Me Later. In addition, the dialog box may contain any number
of buttons. You decide which buttons will close the form and enter the statement that sets the
DialogResult property in their Click event handlers. The value of the DialogResult property is usually
set from within two buttons—one that accepts the data and one that rejects them. Depending on your
application, you may allow the user to close the dialog box by clicking more than two buttons. Some
of them must set the DialogResult property to DialogResult.OK, others to DialogResult.Abort.

Note Of course, you can read the values of the controls on the dialog box anyway—it’s your application and you can
do whatever you wish with it. If the user has closed the dialog box with the Cancel button, however, the information is incor-
rect, and any results your application generates based on these values will also be incorrect.

The DialogResult property applies to buttons as well. You can close the dialog box and pass the
appropriate information to the calling application by setting the DialogResult property of a button
to one of the members of the DialogResult enumeration in the Properties window. If you also set
one of the buttons on the form to be the Accept button and another to be the Cancel button, you
don’t have to enter a single line of code in the modal form. The user can enter values on the various
controls and then close the dialog box by pressing the Enter or Cancel key. The dialog box will close
and will return the DialogResult.OK or DialogResult.Cancel value.

The dialog box doesn’t contain a single line of code. Just make sure the Form’s AcceptButton prop-
erty is bttnOK, the CancelButton property is bttnCancel, and the DialogResult properties of the two
buttons are OK and Cancel, respectively. The AcceptButton sets the form’s DialogResult property to
DialogResult.OK automatically, and the CancelButton sets the same property to DialogResult.Cancel.
Any other button must set the DialogResult property explicitly. Listing 5.5 shows the code behind the
Log In button on the main form.

Figure 5.16

The code window
of the Password
project’s main form

Chapter 5 WORKING WITH FORMS214

2877c05.qxd 11/11/01 4:15 PM Page 214

http://www.sybex.com

Listing 5.5: Prompting the User for an ID and a Password

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim DLG As New PasswordForm()
If DLG.ShowDialog() = DialogResult.OK Then

If DLG.txtUserID.Text = “” Or DLG.txtPassword.Text = “” Then
MsgBox(“Please specify a user ID and a password to connect”)
Exit Sub

End If
MsgBox(“You were connected as “ & DLG.txtUserID.Text)

Else
MsgBox(“Connection failed for user “ & DLG.txtPassword.Text)

End If
End Sub

The code of the main form reads the values of the controls on the dialog box through the DLG
variable. If the dialog box contains many controls, it’s better to communicate the data back to the
calling application through properties. All you have to do is create a Property procedure for each
control and then read the values entered by the user as properties. The topic of Property procedures
is discussed in detail in Chapter 8, but it’s nothing really complicated. To keep the complexity to a
minimum, you can also implement the properties with Public Shared variables. Let’s say that the
dialog box prompts the user to select a state on a ComboBox control. To create a State property, use
the following declaration:

Public Shared State As String

This variable will be exposed by the dialog box as a property, and the application that invoked the
dialog box can read the value of the State property with a statement like DLG.State.

The value of the State variable must be set each time the user selects a state on the ComboBox
control, from within the control’s SelectedIndexChanged event handler:

State = cmbStates.Text

where cmbStates is the name of the ComboBox control. The user may change their mind and repeat the
action of selecting a state. The most recently selected state’s name will be stored in the variable State,
because the SelectedIndexChanged event takes place every time the user makes another selection.

You can invoke the dialog box and then read the value of the State variable from within your code
with the following statements:

Dim Dlg as StatesDialogBox = new StatesDialogBox
Dlg.ShowDialog
If Dlg.DialogResult = DialogResult.OK Then

Console.WriteLine(Dlg.State)
End If

This is a good place to demonstrate how to design multiple interacting forms and dialog boxes
with an example.

215LOADING AND SHOWING FORMS

2877c05.qxd 11/11/01 4:15 PM Page 215

http://www.sybex.com

VB.NET at Work: The MultipleForms Project
It’s time to write an application that puts together the most important topics discussed in this section.
There’s quite a bit to learn about projects with multiple forms, and this is the topic of the following
sections. Most of the aspects discussed here are demonstrated in the MultipleForms project, which you
will find on the CD. I suggest you follow the steps outlined in the text to build the project on your own.

The MultipleForms project consists of a main form, an auxiliary form, and a dialog box. All three
components of the application’s interface are shown in Figure 5.17. The buttons on the main form
display both the auxiliary form and the dialog box.

Let’s review the various operations we want to perform—they’re typical for many situations, not
specific to this application. At first, we must be able to invoke both the auxiliary form and the dialog
box from within the main form; the Show Auxiliary Form and Show Age Form buttons do this.
The main form contains a variable declaration, strProperty. This variable is, in effect, a property of the
main form and is declared with the following statement:

Public Shared strProperty As String = “Mastering VB.NET”

The main form’s code declares a variable that represents the auxiliary form and then calls its
Show method to display the auxiliary form. The declaration must appear in the form’s declarations
section:

Dim FRM As New AuxiliaryForm()

The Show Auxiliary Form button contains a single statement, which invokes the auxiliary form
by calling the Show method of the FRM variable.

The auxiliary-form button named Read Shared Variable In Main Form reads the strProperty vari-
able of the main form with the following statement:

Private Sub bttnReadShared_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnReadShared.Click

Figure 5.17

The MultipleForms
project’s interface

Chapter 5 WORKING WITH FORMS216

2877c05.qxd 11/11/01 4:15 PM Page 216

http://www.sybex.com

MsgBox(MainForm.strProperty, MsgBoxStyle.OKOnly, “Public Variable Value”)
End Sub

Using the same notation, you can set this variable from within the auxiliary form. The following
event handler prompts the user for a new value and assigns it to the shared variable of the main form.
You can confirm that the value has changed by reading it again.

Private Sub bttnSetShared_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnSetShared.Click

Dim str As String
str = InputBox(“Enter a new value for strProperty”)
MainForm.strProperty = str

End Sub

The two forms communicate with each other through public variables. Let’s make this communi-
cation a little more elaborate by adding an event. Every time the auxiliary form sets the value of the
strProperty variable, it will raise an event to notify the main form. The main form, in turn, will use this
event to display the new value of the string on the TextBox control as soon as the code in the auxil-
iary form changes the value of the variable and before it’s closed.

To raise an event, you must declare the event’s name in the form’s declaration section. Insert the
following statement in the auxiliary form’s declarations section:

Event strPropertyChanged()

Now add a statement that fires the event. To raise an event, we call the RaiseEvent statement pass-
ing the name of the event as argument. This statement must appear in the Click event handler of the Set
Shared Variable In Main Form button, right after setting the value of the shared variable. Listing 5.6
shows the revised event handler.

Listing 5.6: Raising an Event

Private Sub bttnSetShared_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnSetShared.Click

Dim str As String
str = InputBox(“Enter a new value for strProperty”)
MainForm.strProperty = str
RaiseEvent strPropertyChanged

End Sub

The event will be raised, but it will go unnoticed if we don’t handle it from within the main
form’s code. To handle the event, you must change the declaration of the FRM variable from

Dim FRM As New AuxiliaryForm()

to

Dim WithEvents FRM As New AuxiliaryForm()

217LOADING AND SHOWING FORMS

2877c05.qxd 11/11/01 4:15 PM Page 217

http://www.sybex.com

The WithEvents keyword tells VB that the variable is capable of raising events. If you expand the
drop-down list with the objects in the code editor, you will see the name of the FRM variable, along
with the other controls you can program. Select FRM in the list and then expand the list of events for
the selected item. In this list, you will see the strPropertyChanged event. Select it, and the definition
of an event handler will appear. Enter these statements in this event’s handler:

Private Sub FRM_strPropertyChanged() Handles FRM.strPropertyChanged
TextBox1.Text = strProperty
Beep()

End Sub

It’s a very simple handler, but it’s adequate for demonstrating how to raise and handle custom
events. If you run the application now, you’ll see that the value of the TextBox control changes as
soon as you change the value in the auxiliary form.

Of course, you can update the TextBox control on the main form directly from within the auxil-
iary form’s code. Use the expression MainForm.TextBox1 to access the control and then manipulate it
as usual. Events are used when we want to perform some actions on a form when an action takes
place in one of the other forms of the application.

Let’s see now how the main form interacts with the dialog box. What goes on between a form
and a dialog box is not exactly “interaction”—it’s a more timid type of behavior. The form displays
the dialog box and then waits until the user closes the dialog box. Then, it looks at the value of the
DialogResult property to find out whether it should even examine the values passed back by the dia-
log box. If the user has closed the dialog box with the Cancel (or an equivalent) button, the applica-
tion ignores the dialog box settings. If the user closed the dialog box with the OK button, the
application reads the values and proceeds accordingly.

Before showing the dialog box, the code of the Show Dialog Box button sets the values of certain
controls on it. In the course of the application, it usually makes sense to suggest a few values on the
dialog box, so that the user can accept the default values. The main form selects a date on the con-
trols that display the date, and then displays the dialog box with the statements given in Listing 5.7.

Listing 5.7: Displaying a Dialog Box and Reading Its Values

Protected Sub Button3_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

‘ Preselects the date 4/11/1980
DLG.cmbMonth.Text = “4”
DLG.cmbDay.Text = “11”
DLG.CmbYear.Text = “1980”
DLG.ShowDialog()
If DLG.DialogResult = DialogResult.OK Then

MsgBox(DLG.cmbMonth.Text & “ “ & DLG.cmbDay.Text & “, “ & _
DLG.cmbYear.Text)

Else
MsgBox(“OK, we’ll protect your vital personal data”)

End If
End Sub

Chapter 5 WORKING WITH FORMS218

2877c05.qxd 11/11/01 4:15 PM Page 218

http://www.sybex.com

The DLG variable is declared on the Form level with the following statement:

Dim DLG As New AgeDialog()

The dialog box is modal: you can’t switch to the main form while the dialog box is displayed. To
close the dialog box, you can click one of the OK or Cancel buttons. Each button sets the Dialog-
Result property to indicate the action that closed the dialog box. The code behind the two buttons
is shown in Listing 5.8.

Listing 5.8: Setting the Dialog Box’s DialogResult Property

Protected Sub bttnOK_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Me.DialogResult = DialogResult.OK

End Sub
Protected Sub bttnCancel_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)
Me.DialogResult = DialogResult.Cancel

End Sub

Since the dialog box is modal, the code in the Show Dialog Box button is suspended at the line that
shows the dialog box. As soon as the dialog box is closed, the code in the main form resumes with the
statement following the one that called the ShowDialog method of the dialog box. This is the If state-
ment in Listing 5.7 that examines the value of the DialogResult property and acts accordingly.

Designing Menus
Menus are one of the most common and characteristic elements of the Windows user interface.
Even in the old days of character-based displays, menus were used to display methodically organized
choices and guide the user through an application. Despite the visually rich interfaces of
Windows applications and the many alternatives, menus are still the most popular means of organiz-
ing a large number of options. Many applications duplicate some or all of their menus in the form of
toolbar icons, but the menu is a standard fixture of a form. You can turn the toolbars on and off,
but not the menus.

The Menu Editor
Menus can be attached only to forms, and they’re implemented through the MainMenu control. The
items that make up the menu are MenuItem objects. As you will see, the MainMenu control and
MenuItem objects give you absolute control over the structure and appearance of the menus of your
application.

The IDE provides a visual tool for designing menus, and then you can program their Click event
handlers. In principle, that’s all there is to a menu: you design it, then you program each command’s
actions. Depending on the needs of your application, you may wish to enable and disable certain
commands, add context menus to some of the controls on your form, and so on. Because each item
(command) in a menu is represented by a MenuItem object, you can control the application’s menus

219DESIGNING MENUS

2877c05.qxd 11/11/01 4:15 PM Page 219

http://www.sybex.com

from within your code by manipulating the properties of the MenuItem objects. Let’s start by
designing a simple menu, and I’ll show you how to manipulate the menu objects from within your
code we go along.

Double-click the MainMenu icon on the Toolbox. The MainMenu control will be added to the
form, and a single menu command will appear on your form. Its caption will be Type Here. If you
don’t see the first menu item on the Form right away, select the MainMenu control in the Compo-
nents tray below the form. Do as the caption says; click it and enter the first command’s caption,
File, as seen in Figure 5.18. As soon as you start typing, two more captions appear: one on the same
level (the second command of the form’s main menu, representing the second pull-down menu) and
another one below File (representing the first command on the File menu). Select the item under
File and enter the string New.

Enter the remaining items of the File menu—Open, Save, and Exit—and then click somewhere
on the form. All the temporary items (the ones with the Type Here caption) will disappear, and the
menu will be finalized on the form. At any point, you can add more items by right-clicking one of
the existing menu items and selecting Insert New.

To add the Edit menu, select the MainMenu icon to activate the visual menu editor and then click
the File item. In the new item that appears next to that, enter the string Edit. Press Enter and you’ll
switch to the first item of the Edit menu. Fill the Edit menu with the commands shown in Figure 5.19.
Table 5.6 shows the captions (property Text) and names (property Name) for each menu and each
command.

The left-most items in Table 5.6 are the names of the first-level menus (File and Edit); the cap-
tions that are indented in the table are the commands on these two menus. Each menu item has a
name, which allows you to access the properties of the menu item from within your code. The same
name is also used in naming the Click event handler of the item. The default names of the menu
items you add visually to the application’s menu are MenuItem1, MenuItem2, and so on. To change
the default names to something more meaningful, you can change the Name property in the Proper-
ties window. To view the properties of a menu item, select it with the left mouse button, then right-
click it and select Properties from the context menu.

Figure 5.19

Type these standard
commands on the
Edit menu.

Figure 5.18

As soon as you start entering the
caption of a menu or menu
item, more items appear to the
left and below the current item.

Chapter 5 WORKING WITH FORMS220

2877c05.qxd 11/11/01 4:15 PM Page 220

http://www.sybex.com

Table 5.6: The Captions and Names of the File and Edit Menus

Caption Name

File FileMenu

New FileNew

Open FileOpen

Save FileSave

Exit FileExit

Edit EditMenu

Copy EditCopy

Cut EditCut

Paste EditPaste

Alternatively, you can select Edit Names from the context menu. This action lets you edit the
names of the menu items right on the menu structure, as if you were changing the captions. The cap-
tions appear next to the names of the items, but you can only edit the names. Figure 5.20 shows a
menu structure in name-editing mode. When you’re done renaming the items, right-click somewhere
on the menu and select the Edit Names command again. The check mark next to the Edit Names
option will clear, and you’ll be switched back to editing the captions.

To create a separator bar in a menu, right-click the item you want to display below the separator
and select Insert Separator. Separator bars divide menu items into logical groups, and even though
they have the structure of regular menu commands, they don’t react to the mouse click. You can also
create a separator bar by setting the item’s caption to a dash (-).

As you will notice, the menus expand by default to the bottom and to the right. To insert a menu
command to the left of an existing command, or to insert a menu item above an existing menu item,
right-click the item following the one you want to insert and select Insert New.

The MenuItem Object’s Properties
The MenuItem object represents a menu command, at any level. If a command leads to a submenu,
it’s still represented by a MenuItem object, which has its own collection of MenuItem objects. Each

Figure 5.20

Editing the names
of the items in
your menu

221DESIGNING MENUS

2877c05.qxd 11/11/01 4:15 PM Page 221

http://www.sybex.com

individual command is represented by a MenuItem object. The MenuItem object provides the fol-
lowing properties, which you can set in the Properties window at design time or manipulate from
within your code:

Checked Some menu commands act as toggles, and they are usually checked to indicate that
they are on or unchecked to indicate that they are off. To initially display a check mark next to a
menu command, right-click the menu item, select Properties, and check the Checked box in its
Properties window. You can also access this property from within your code to change the
checked status of a menu command at runtime. For example, to toggle the status of a menu com-
mand called FntBold, use the statement:

FntBold.Checked = Not FntBold.Checked

DefaultItem This property is a True/False value that indicates whether the MenuItem is the
default item in a submenu. The default item is displayed in bold and is automatically activated
when the user double-clicks a menu that contains it.

Enabled Some menu commands aren’t always available. The Paste command, for example, has
no meaning if the Clipboard is empty (or if it contains data that can’t be pasted in the current
application). To indicate that a command can’t be used at the time, you set its Enabled property
to False. The command then appears grayed in the menu, and although it can be highlighted, it
can’t be activated. The following statements enable and disable the Undo command depending
on whether the TextBox1 control can undo the most recent operation.

If TextBox1.CanUndo Then
cmdUndo.Enabled = True

Else
cmdUndo.Enabled = False

End If

cmdUndo is the name of the Undo command in the application’s Edit menu. The CanUndo prop-
erty of the TextBox control returns a True/False value indicating whether the last action can be
undone or not.

IsParent If the menu command, represented by a MenuItem object, leads to a submenu, then
that MenuItems object’s IsParent property is True. Otherwise, it’s False. The IsParent property is
read-only.

Mnemonic This read-only property returns the character that was assigned as an access key to the
specific menu item. If no access key is associated with a MenuItem, the character 0 will be returned.

Visible To remove a command temporarily from the menu, set the command’s Visible prop-
erty to False. The Visible property isn’t used frequently in menu design. In general, you should
prefer to disable a command to indicate that it can’t be used at the time (some other action is
required to enable it). Making a command invisible frustrates users, who may try to locate the
command in another menu.

MDIList This property is used with Multiple Document Interface (MDI) applications to
maintain a list of all open windows. The MDIList property is explained in Chapter 19.

Chapter 5 WORKING WITH FORMS222

2877c05.qxd 11/11/01 4:15 PM Page 222

http://www.sybex.com

Programming Menu Commands

Menu commands are similar to controls. They have certain properties that you can manipulate from
within your code, and they trigger a Click event when they’re clicked with the mouse or selected with
the Enter key. If you double-click a menu command at design time, Visual Basic opens the code for the
Click event in the code window. The name of the event handler for the Click event is composed of
the command’s name followed by an underscore character and the event’s name, as with all other
controls.

To program a menu item, insert the appropriate code in the MenuItem’s Click event handler. A
related event is the Select event, which is fired when the cursor is placed over a menu item, even if it’s
not clicked. The Exit command’s code would be something like:

Sub menuExit(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles menuExit.Click

End
End Sub

If you need to execute any clean-up code before the application ends, place it in the CleanUp()
subroutine and call this subroutine from within the Exit item’s Click event handler:

Sub menuExit(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles menuExit.Click

CleanUp()
End

End Sub

The same subroutine must also be called from within the Closing event handler of the applica-
tion’s main form, as some users might terminate the application by clicking the form’s Close button.

An application’s Open menu command contains the code that prompts the user to select a file and
then open it. You will see many examples of programming menu commands in the following chapters.
All you really need to know is that each menu item is a MenuItem object, and it fires the Click event
every time it’s selected with the mouse or the keyboard. In most cases, you can treat the Click
event handler of a MenuItem object just like the Click event handler of a Button.

You can also program multiple menu items with a single event handler. Let’s say you have a
Zoom menu that allows the user to select one of several zoom factors. Instead of inserting the same
statements in each menu item’s Click event handler, you can program all the items of the Zoom
menu with a single event handler. Select all the items that share the same event handler (click them
with the mouse while holding down the Shift button). Then click the Event button on the Proper-
ties window and select the event that you want to be common for all selected items.

The handler of the Click event of a menu item has the following declaration:

Private Sub Zoom200_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Zoom200.Click

End Sub

This subroutine handles the menu item 200%, which magnifies an image by 200%. Let’s say the
same menu contains the options 100%, 75%, 50%, and 25%, and that the names of these commands

223DESIGNING MENUS

2877c05.qxd 11/11/01 4:15 PM Page 223

http://www.sybex.com

are Zoom100, Zoom75, and so on. The common handler for their Click event will have the follow-
ing declaration:

Private Sub Zoom200_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Zoom200.Click, _
Zoom100.Click, Zoom75.Click, Zoom50.Click, Zoom25.Click

End Sub

The common event handler wouldn’t do you any good, unless you could figure out which item
was clicked from within the handler’s code. This information is in the event’s sender argument. Con-
vert this argument to the MenuItem type, then look up all the properties of the MenuItem object
that received the event. The following statement will print the name of the menu item that was
clicked (if it appears in a common event handler):

Console.WriteLine(CType(sender, MenuItem).Text)

When you program multiple menu items with a single event handler, set up a Select Case state-
ment based on the caption of the selected menu item, like the following:

Select Case sender.Text
Case “Zoom In”

{ statements to process Zoom In command }
Case “Zoom Out”

{ statements to process Zoom Out command }
Case “Fit”

{ statements to process Fit command }
End Select

It’s also common to manipulate the MenuItem’s properties from within its Click event handler.
These properties are the same properties you set at design time, through the Menu Editor window.
Menu commands don’t have methods you can call. Most menu object properties are toggles. To
change the Checked property of the FontBold command, for instance, use the following statement:

FontBold.Checked = Not FontBold.Checked

If the command is checked, the check mark will be removed. If the command is unchecked, the
check mark will be inserted in front of its name. You can also change the command’s caption at run-
time, although this practice isn’t common. The Text property is manipulated only when you create
dynamic menus, as you will see in the section “Adding and Removing Commands at Runtime.” You
can change the caption of simple commands such as Show Tools and Hide Tools. These two cap-
tions are mutually exclusive, and it makes sense to implement them with a single command. The
code behind this MenuItem examines the caption of the command, performs the necessary opera-
tions, and then changes the caption to reflect the new state of the application:

If ShowMenu.Text = “Show Tools” Then
{ code to show the toolbar }
ShowMenu.Text = “Hide Tools”

Else
{ code to hide the toolbar }
ShowMenu.Text = “Show Tools”

End If

Chapter 5 WORKING WITH FORMS224

2877c05.qxd 11/11/01 4:15 PM Page 224

http://www.sybex.com

Using Access and Shortcut Keys

Menus are a convenient way of displaying a large number of choices to the user. They allow you to
organize commands in groups, according to their function, and are available at all times. Opening
menus and selecting commands with the mouse, however, can be an inconvenience. When using a
word processor, for example, you don’t want to have to take your hands off the keyboard and reach
for the mouse. To simplify menu access, Visual Basic supports access keys and shortcut keys.

Access Keys

Access keys allow the user to open a menu by pressing the Alt key and a letter key. To open the Edit
menu in all Windows applications, for example, you can press Alt+E. E is the Edit menu’s access key.

Once the menu is open, the user can select a command with the arrow keys or by pressing another
key, which is the command’s access key. Once a menu is open, the Alt key isn’t needed. For example,
with the Edit menu open, you can press P to invoke the Paste command or C to copy the selected text.

Access keys are designated by the designer of the application, and they are marked with an under-
line character. The underline under the character E in the Edit menu denotes that E is the menu’s
access key and that the keystroke Alt+E opens the Edit command. To assign an access key, insert
the ampersand symbol (&) in front of the character you want to use as access key in the MenuItem’s
Text property.

Note If you don’t designate access keys, Visual Basic will use the first character in each top-level menu as its access key.
The user won’t see the underline character under the first character, but will be able to open the menu by pressing the first
character of its caption while holding down the Alt key. If two or more menu captions begin with the same letter, the first
(left-most and top-most) menu will open.

Because the & symbol has a special meaning in menu design, you can’t use it as is. To actually dis-
play the & symbol in a caption, prefix it with another & symbol. For example, the caption &Drag
produces a command with the caption Drag (the first character is underlined because it’s the access
key). The caption Drag && Drop will create another command whose caption will be Drag & Drop.
Finally, the string &Drag && Drop will create another command with the caption Drag & Drop.

Shortcut Keys

Shortcut keys are similar to access keys, but instead of opening a menu, they run a command when
pressed. Assign shortcut keys to frequently used menu commands, so that users can reach them with
a single keystroke. Shortcut keys are combinations of the Ctrl key and a function or character key.
For example, the usual access key for the Close command (once the File menu is opened with Alt+F)
is C; but the usual shortcut key for the Close command is Ctrl+W.

To assign a shortcut key to a menu command, drop down the Shortcut list in the MenuItem’s Prop-
erties window and select a keystroke. You don’t have to insert any special characters in the command’s
caption, nor do you have to enter the keystroke next to the caption. It will be displayed next to the com-
mand automatically. To view the possible keystrokes you can use as shortcuts, select a MenuItem in the
Form Designer and expand the drop-down list of the Shortcut property in the Properties window.

Tip When assigning access and shortcut keys, take into consideration well-established Windows standards. Users expect
Alt+F to open the File menu, so don’t use Alt+F for the Format menu. Likewise, pressing Ctrl+C universally performs
the Copy command; don’t use Ctrl+C as a shortcut for the Cut command.

225DESIGNING MENUS

2877c05.qxd 11/11/01 4:15 PM Page 225

http://www.sybex.com

Manipulating Menus at Runtime
Dynamic menus change at runtime to display more or fewer commands, depending on the current
status of the program. This section explores two techniques for implementing dynamic menus:

� Creating short and long versions of the same menu

� Adding and removing menu commands at runtime

Once the menu is in place and you have named all the items—you can use the default names, but
this makes the code harder to read—you can program them by setting their properties from within
your code. Each item in the menu is represented by a MenuItem object, which you program as usual.

Creating Short and Long Menus

A common technique in menu design is to create long and short versions of a menu. If a menu
contains many commands, and most of the time only a few of them are needed, you can create one
menu with all the commands and another with the most common ones. The first menu is the long
one, and the second is the short one. The last command in the long menu should be Short Menu,
and when selected, it should display the short version. The last command in the short menu should
be Long Menu, and it should display the long version. Figure 5.21 shows a long and a short version
of the same menu (from the LongMenu project, which you will find on the CD). The short version
omits infrequently used commands and is easier to handle.

To implement the LongMenu command, start a new project and create a menu that has the struc-
ture shown in Table 5.7. Listing 5.9 is the code that shows/hides the long menu in the MenuSize
command’s Click event.

Table 5.7: LongMenu Command Structure

Command Name Caption

FontMenu Font

mFontBold Bold

mFontItalic Italic

Continued on next page

Figure 5.21

The two versions
of the Font menu of
the LongMenu
application

Chapter 5 WORKING WITH FORMS226

2877c05.qxd 11/11/01 4:15 PM Page 226

http://www.sybex.com

Table 5.7: LongMenu Command Structure (continued)

Command Name Caption

mFontRegular Regular

mFontUnderline Underline

mFontStrike Strike

mFontSmallCaps SmallCaps

mFontAllCaps AllCaps

Separator - (hyphen)

MenuSize Short Menu

Listing 5.9: The MenuSize Menu Item’s Click Event

Protected Sub menuSize_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

If MenuSize.text = “Short Menu” Then
MenuSize.text = “Long Menu”

Else
MenuSize.text = “Short Menu”

End If
mFontUnderline.Visible = Not mFontUnderline.Visible
mFontStrike.Visible = Not mFontStrike.Visible
mFontSmallCaps.Visible = Not mFontSmallCaps.Visible
mFontAllCaps.Visible = Not mFontAllCaps.Visible

End Sub

The subroutine in Listing 5.9 doesn’t do much. It simply toggles the Visible property of certain
menu commands and changes the command’s caption to Short Menu or Long Menu, depending on
the menu’s current status. Notice that because the Visible property is a True/False value, we don’t
care about its current status; we simply toggle the current status with the Not operator.

Adding and Removing Commands at Runtime

We’ll conclude our discussion of menu design with a technique for building dynamic menus, which
grow and shrink at runtime. Many applications maintain a list of the most recently opened files in
their File menu. When you first start the application, this list is empty, and as you open and close
files, it starts to grow.

The RunTimeMenu project demonstrates how to add items to and remove items from a menu at
runtime. The main menu of the application’s form contains the Run Time Menu submenu, which is
initially empty.

227DESIGNING MENUS

2877c05.qxd 11/11/01 4:15 PM Page 227

http://www.sybex.com

The two buttons on the form add commands to and remove commands from the Run Time Menu.
Each new command is appended at the end of the menu, and the commands are removed from the bot-
tom of the menu first (the most recently added commands). To change this order, and display the most
recent command at the beginning of the menu, use a large initial index value (like 99) and increase it
with every new command you add to the menu. Listing 5.10 shows the code behind the two buttons
that add and remove menu items.

Listing 5.10: Adding and Removing MenuItems at Runtime

Protected Sub bttnRemoveOption_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

If RunTimeMenu.MenuItems.Count > 0 Then
RunTimeMenu.MenuItems.Remove(RunTimeMenu.MenuItems.count - 1)

End If
End Sub
Protected Sub bttnAddOption_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)
RunTimeMenu.MenuItems.Add(“Run Time Option “ & _

RunTimeMenu.MenuItems.Count.toString, _
New EventHandler(AddressOf Me.OptionClick))

End Sub

The Remove button’s code uses the Remove method to remove the last item in the menu by its
index, after making sure the menu contains at least one item. The Add button adds a new item, sets
its caption to “Run Time Option n”, where n is the item’s order in the menu. In addition, it assigns
an event handler to the new item’s Click event. This event handler is the same for all the items added
at runtime; it’s the OptionClick() subroutine.

Adding menu items with the simpler forms of the Add method is trivial. The new menu items,
however, would be quite useless unless there was a way to program them as well. The code uses the
following form of the Add method, which accepts two arguments: the caption of the item and an
event handler:

Menu.MenuItems.Add(caption, event_handler)

The event handler is the address of a subroutine, which will be invoked when the corresponding
menu item is clicked, and it’s specified as a New EventHandler object. The AddressOf operator
passes the address of the OptionClick() subroutine to the new menu item, so that it knows which
subroutine to execute when it’s clicked.

As you can understand, all the runtime options invoke the same event handler—it would be quite
cumbersome to come up with a separate event handlers for different items. In the single event han-
dler, you can examine the name of the MenuItem object that invoked the event handler and act
accordingly. The OptionClick() subroutine used in this example (Listing 5.11) displays the name of
the menu item that invoked it. It doesn’t do anything, but it shows you how to figure out the item
of the Run Time Menu that was clicked:

Chapter 5 WORKING WITH FORMS228

2877c05.qxd 11/11/01 4:15 PM Page 228

http://www.sybex.com

Listing 5.11: Programming Dynamic Menu Items

Private Sub OptionClick(ByVal sender As Object, ByVal e As EventArgs)
Dim itemClicked As New MenuItem()
itemClicked = CType(sender, MenuItem)
Console.WriteLine(“You have selected the item “ & itemClicked.Text)

End Sub

Creating Context Menus

Nearly every Windows application provides a context menu that the user can invoke by right-clicking a
form or a control. (It’s sometimes called a shortcut menu or pop-up menu.) This is a regular menu, but it’s
not anchored on the form. It can be displayed anywhere on the form or on specific controls. Different
controls can have different context menus, depending on the operations you can perform on them at
the time.

To create a context menu, place a ContextMenu control on your form. The new context menu will
appear on the form just like a regular menu, but it won’t be displayed there at runtime. You can create
as many context menus as you need by placing multiple instances of the ContextMenu control on your
form and adding the appropriate commands to each one. To associate a context menu with a control
on your form, set the control’s ContextMenu property to the name of the corresponding context menu.

Designing a context menu is identical to designing a MainMenu. The only difference is that the
first command in the menu is actually the context menu’s name, and it’s not displayed along with the
menu. Figure 5.22 shows a context menu at design time and how the same menu is displayed at run-
time. Context Menu is the menu’s name, not a menu item.

You can create as many context menus as you wish on a form. Each control has a ContextMenu
property, which you can set to any of the existing ContextMenu controls. Select the control for
which you want to specify a context menu and, in the Properties window, locate the ContextMenu
property. Expand the drop-down list and select the name of the desired context menu.

To edit one of the context menus on a form, select the appropriate ContextMenu control at the
bottom of the Designer. The corresponding context menu will appear on the form’s menu bar, as if
it were a regular form menu. This is temporary, however, and the only menu that will appears on the

Figure 5.22

A context menu,
(left) at design
time and (right) at
runtime

229DESIGNING MENUS

2877c05.qxd 11/11/01 4:15 PM Page 229

http://www.sybex.com

form’s menu bar at runtime is the one that corresponds to the MainMenu control (and there can be
only one of those on each form).

You can also merge two menus to create a new one that combines their items. This technique is
used with MDI forms, where we want to add the commands of the child form to the parent form.
For more information on the Merge method, see Chapter 19.

Iterating a Menu’s Items
The last menu-related topic in this chapter demonstrates how to iterate through all the items of a
menu structure, including their submenus at any depth. The main menu of an application can be
accessed by the expression Me.Menu. This is a reference to the top-level commands of the menu,
which appear in the form’s menu bar. Each command, in turn, is represented by a MenuItem object.
All the MenuItems under a menu command form a MenuItems collection, which you can scan and
retrieve the individual commands.

The first command in a menu is accessed with the expression Me.Menu.MenuItems(0); this is the
File command in a typical application. The expression Me.Menu.MenuItems(1) is the second com-
mand on the same level as the File command (typically, the Edit menu).

To access the items under the first menu, use the MenuItems collection of the top command. The
first command in the File menu can be accessed by the expression

Me.Menu.MenuItems(0).MenuItems(0)

The same items can be accessed by name as well, and this is how you should manipulate the menu
items from within your code. In unusual situations, or if you’re using dynamic menus to which you
add and subtract commands at runtime, you’ll have to access the menu items through the Menu-
Items collection.

VB.NET at Work: The MapMenu Project

The MapMenu project demonstrates how to access the items of a menu from within your applica-
tion’s code. The project’s main form, shown in Figure 5.23, contains a menu, a TextBox control,
and a Button that prints the menu’s structure on the TextBox. You can edit the menu before running
the program, and the code behind the Button will print the structure of the menu items without any
modifications.

Figure 5.23

The MapMenu
application

Chapter 5 WORKING WITH FORMS230

2877c05.qxd 11/11/01 4:15 PM Page 230

http://www.sybex.com

The code behind the Map Menu button (Listing 5.12) iterates through the items of a Main-
Menu object and prints all the commands in the Output window. It scans all the items of the menu’s
MenuItems collection and prints their captions. After printing each command’s caption, it calls the
PrintSubMenu() subroutine, passing the current MenuItem as argument. The PrintSubMenu() sub-
routine iterates through the items of the collection passed as argument and prints their captions.

Listing 5.12: Printing the Top-Level Commands of a Menu

Protected Sub MapMenu_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Dim itm As MenuItem
For Each itm In Me.Menu.MenuItems

Console.WriteLine(itm.Text)
PrintSubMenu(itm)

Next
End Sub

The PrintSubMenu() subroutine, shown in Listing 5.13, goes through the MenuItems collection
of the MenuItem object passed to it as argument and prints the captions of the submenu it repre-
sents. At each iteration, it examines the value of the property itm.MenuItems.Count. This is the num-
ber of commands under the current menu items. If it’s a positive value, the current item leads to a
submenu. To print the submenu’s items, it calls itself, passing the itm object as argument. This
simple technique scans all the submenus, at any depth. The PrintSubMenu() subroutine is a recur-
sive routine, because it calls itself.

Listing 5.13: Printing Submenu Items

Sub PrintSubMenu(ByVal MItem As MenuItem)
Dim itm As New MenuItem()
For Each itm In MItem.MenuItems

Console.WriteLine(itm.Text)
If itm.MenuItems.Count > 0 Then PrintSubMenu(itm)

Next
End Sub

Tip There’s a tutorial on coding recursive routines in Chapter 18 of this book, and you will find more examples of recur-
sive routines in the course of the book. If you’re totally unfamiliar with recursive routines, you can come back and exam-
ine the code more carefully after reading this chapter.

Open the MapMenu application, edit the menu on its form, run the project, and click the Map
Menu Structure button. The few lines of the PrintSubMenu() subroutine will iterate through all the
items in the form’s menu and submenus, at any depth.

231DESIGNING MENUS

2877c05.qxd 11/11/01 4:16 PM Page 231

http://www.sybex.com

Building Dynamic Forms at Runtime
There are situations when you won’t know in advance how many instances of a given control may be
required on a form. This isn’t very common, but if you’re writing a data-entry application and you
want to work with many tables of a database, you’ll have to be especially creative. Since every table
consists of different fields, it will be difficult to build a single form to accommodate all the possible
tables a user may throw at your application.

Another good reason for adding or removing controls at runtime is to enable certain features of
your application, depending on the current state or the user’s privileges. For these situations, it is
possible to design dynamic forms, which are populated at runtime. The simplest approach is to create
more controls than you’ll ever need and set their Visible property to False at design time. At run-
time, you can display the controls by switching their Visible property to True. As you know already,
quick-and-dirty methods are not the most efficient ones. You must still rearrange the controls on the
form to make it look nice at all times. The proper method to create dynamic forms at runtime is to
add and remove controls with the techniques discussed in this section.

Just as you can create new instances of forms, you can also create new instances of any control
and place them on a form. The Form object exposes the Controls collection, which contains all the
controls on the form. This collection is created automatically as you place controls on the form at
design time, and you can access the members of this collection from within your code. It is also pos-
sible to add new members to the collection, or remove existing members, with the Add and Remove
statements accordingly.

VB6 ➠ VB.NET

VB.NET doesn’t support arrays of controls, which used to be the simplest method of adding new controls
on a form at runtime. With VB.NET, you must create a new instance of a control, set its properties, and then
place it on the form by adding it to the form’s Controls collection.

The Form.Controls Collection
To understand how to create controls at runtime and place them on a form, you must first learn
about the Controls collection. All the controls on a form are members of the Controls property,
which is a collection. The Controls collection exposes members for accessing and manipulating the
controls at runtime, and these members are:

Add method Adds a new element to the Controls collection. In effect, it adds a new control on
the current form. The Add method accepts a control as argument and adds it to the collection. Its
syntax is:

Controls.Add(controlObj)

where controlObj is an instance of a control. To place a new Button control on the form, declare a
variable of the Button type, set its properties, and then add it to the Controls collection:

Dim bttn As New System.WinForms.Button

Chapter 5 WORKING WITH FORMS232

2877c05.qxd 11/11/01 4:16 PM Page 232

http://www.sybex.com

bttn.Text = “New Button”
bttn.Left = 100
bttn.Top = 60
bttn.Width = 80
Me.Controls.Add(bttn)

Remove method Removes an element from the Controls collection. It accepts as argument either
the index of the control to be removed, or a reference to the control to be removed (a variable of the
Control type that represents one of the controls on the form). The syntax of these two forms is:

Me.Controls.Remove(index)
Me.Controls.Remove(controlObj)

Count property Returns the number of elements in the Controls collection. The number of
controls on the current form is given by the expression Me.Controls.Count. Notice that if there
are container controls, the controls in the containers are not included in the count. For example,
if your form contains a Panel control, the controls on the panel won’t be included in the value
returned by the Count property.

All method Returns all the controls on a form (or in a container control) as an array of the
System.WinForms.Control type. You can iterate through the elements of this array with the usual
methods exposed by the Array class.

Clear method Removes all the elements of the Controls array.

The Controls collection is also a property of any control that can host other controls. Most of
the controls that come with VB.NET can host other controls. The Panel control, for example, is a
container for other controls. As you recall from our discussion of the Anchor and Dock properties,
it’s customary to place controls on a panel and handle them collectively, as a section of the form.
They are moved along with the panel at design time, and they’re rearranged as a group at runtime.
The panel belongs to the form’s Controls collection. The element that corresponds to the Panel con-
trol provides its own Controls collection, which lets you access the controls on the panel.

If a panel is the third element of the Controls collection, you can access it with the expression
Me.Controls(2). To access the controls on this panel, use the following Controls collection:

Me.Controls(2).Controls

VB.NET at Work: The ShowControls Project

The ShowControls project (Figure 5.24) demonstrates the basic methods of the Controls array.
Open the project and add any number of controls on its main form. You can place a panel to act as
a container for other controls as well. Just don’t remove the button at the top of the form (the Scan
Controls On This Form button), which contains the code to list all the controls.

The code behind the Scan Controls On This Form button enumerates the elements of the form’s
Controls collection. The code doesn’t take into consideration containers within containers. This
would require a recursive routine, which would scan for controls at any depth. You will read a lot
about recursive routines in this book and you will find a tutorial on the topic in Chapter 18. After
you’re familiar with recursion (if you aren’t already), you can revisit this project and adjust its code

233BUILDING DYNAMIC FORMS AT RUNTIME

2877c05.qxd 11/11/01 4:16 PM Page 233

http://www.sybex.com

accordingly. The code that iterates through the form’s Controls collection and prints the names of
the controls in the Output window is shown in Listing 5.14.

Listing 5.14: Iterating the Controls Collection

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim i As Integer
For i = 0 To Me.Controls.Count - 1
Console.WriteLine(Me.Controls(i).ToString)
If Me.Controls(i).GetType Is GetType(system.Windows.Forms.Panel) Then
Dim j As Integer
For j = 0 To Me.Controls(i).Controls.Count - 1
Console.WriteLine(Me.Controls(i).Controls(j).ToString)

Next
End If

Next
End Sub

The form shown in Figure 5.24 produced the following output:

System.Windows.Forms.HScrollBar, Minimum: 0, Maximum: 100, Value: 60
System.Windows.Forms.CheckedListBox
System.Windows.Forms.TextBox, Text: TextBox2
System.Windows.Forms.CheckBox, CheckState: 1
System.Windows.Forms.CheckBox, CheckState: 0
System.Windows.Forms.CheckBox, CheckState: 1
System.Windows.Forms.TextBox, Text: TextBox1
System.Windows.Forms.Button, Text: Button4
System.Windows.Forms.Button, Text: Button3
System.Windows.Forms.Button, Text: Button2

Each member of the Controls collection exposes the GetType method, which returns the con-
trol’s type, so that you can know what control is stored in each collection element. To compare the
control’s type returned by the GetType method, use the GetType() function passing as argument a

Figure 5.24

Accessing the
controls on a
form at runtime

Chapter 5 WORKING WITH FORMS234

2877c05.qxd 11/11/01 4:16 PM Page 234

http://www.sybex.com

control type. The following statement examines whether the control in the first element of the Con-
trols collection is a TextBox:

If Me.Controls(0).GetType Is GetType(system.WinForms.TextBox) Then
MsgBox(“It’s a TextBox control”)

End If

Notice the use of the Is operator in the preceding statement. The equals operator will cause an
exception, because objects can be compared only with the Is operator. Do not use string compar-
isons to find out the control’s type. A statement like the following won’t work:

If Me.Controls(i).GetType = “TextBox” Then ... ‘ WRONG

The elements of the Controls collection are of the Control type, and they expose the properties
of the control they represent. Their Top and Left properties read (or set) the position of the corre-
sponding control on the form. The following expressions move the first control on the form to the
specified location:

Me.Controls(0).Top = 10
Me.Controls(0).Left = 40

To access other properties of the control represented by an element of the Controls collection,
you must first cast it to the appropriate type. If the first control of the collection is a TextBox con-
trol, use the CType() function to cast it to a TextBox variable, and then request its Text property:

If Me.Controls(i).GetType Is GetType(system.WinForms.TextBox) Then
Console.WriteLine(CType(Me.Controls(0), TextBox).Text)

End If

The If statement is necessary, unless you can be sure that the first control is a TextBox control. If
you omit the If statement and attempt to convert it to a TextBox, a runtime exception will be
thrown if the object Me.Controls(0) isn’t a TextBox control.

VB.NET at Work: The DynamicForm Project
To demonstrate how to handle controls at runtime from within your code, I’ve included the Dynamic-
Form project (Figure 5.25), a simple data-entry window for a small number of data points. The user
can specify at runtime the number of data points they wish to enter, and the number of TextBoxes
on the control changes.

Figure 5.25

The DynamicForm
project

235BUILDING DYNAMIC FORMS AT RUNTIME

2877c05.qxd 11/11/01 4:16 PM Page 235

http://www.sybex.com

The control you see at the top of the form is the NumericUpDown control. All you really need
to know about this control is that it fires the ValueChanged event every time the user clicks one of
the two arrows or types another value in its edit area. This event handler’s code adds or removes
controls on the form, so that the number of TextBoxes (as well as the number of the corresponding
labels) matches the value on the control. Listing 5.15 shows the handler for the ValueChanged event
of the NumericUpDown1 control. The ValueChanged event is fired when the user clicks one of the
two arrows on the control or types a new value in the control’s edit area.

Listing 5.15: Adding and Removing Controls at Runtime

Private Sub NumericUpDown1_ValueChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles NumericUpDown1.ValueChanged

Dim TB As New TextBox()
Dim LBL As New Label()
Dim i, TBoxes As Integer

‘ Count all TextBox controls on the form
For i = 0 To Me.Controls.Count - 1

If Me.Controls(i).GetType Is GetType(System.Windows.Forms.TextBox) Then
TBoxes = TBoxes + 1

End If
Next

‘ Add new controls if number of controls on the form is less
‘ than the number specified with the NumericUpDown control

If TBoxes < NumericUpDown1.Value Then
TB.Left = 100
TB.Width = 120
TB.Text = “”
For i = TBoxes To NumericUpDown1.Value - 1

TB = New TextBox()
LBL = New Label()
If NumericUpDown1.Value = 1 Then

TB.Top = 20
Else

TB.Top = Me.Controls(Me.Controls.Count - 2).Top + 25
End If
Me.Controls.Add(TB)
LBL.Left = 20
LBL.Width = 80
LBL.Text = “Data Point “ & i
LBL.Top = TB.Top + 3
TB.Left = 100
TB.Width = 120
TB.Text = “”
Me.Controls.Add(LBL)
AddHandler TB.Enter, _

New System.EventHandler(AddressOf TBox_Enter)
AddHandler TB.Leave, _

New System.EventHandler(AddressOf TBox_Leave)

Chapter 5 WORKING WITH FORMS236

2877c05.qxd 11/11/01 4:16 PM Page 236

http://www.sybex.com

Next
Else

For i = Me.Controls.Count - 1 To _
Me.Controls.Count - 2 * (TBoxes - NumericUpDown1.Value) Step -2

Me.Controls.Remove(Controls(i))
Me.Controls.Remove(Controls(i - 1))

Next
End If

End Sub

First, the code counts the number of TextBoxes on the form, then it figures out whether it should
add or remove elements from the Controls collection. To remove controls, the code iterates through
the last n controls on the form and removes them. The number of controls to be removed, n, is:

2 * (TBoxes - NumericUpDown1.Value)

where TBoxes is the total number of controls on the form minus the value specified in the Numeric-
UpDown control.

If the value entered in the NumericUpDown control is less than the number of TextBox controls
on the form, the code removes the excess controls from within a loop. At each step, it removes two
controls, one of them being a TextBox and the other being a Label control with the matching cap-
tion (that’s why the loop variable is decreased by two). The code also assumes that the first two con-
trols on the form are the Button and the NumericUpDown controls. If the value entered by the user
exceeds the number of TextBox controls on the form, the code adds the necessary pairs of TextBox
and Label controls to the form.

To add controls, the code initializes a TextBox (TB) and a Label (LBL) variable. Then, its sets their
locations and the label’s caption. The left coordinate of all labels is 20, their width is 80, and their Text
property (the label’s caption) is the order of the data item. The vertical coordinate is 20 pixels for the
first control, and all other controls are three pixels below the control on the previous row. Once a new
control has been set up, it’s added to the Controls collection with one of the following statements:

Me.Controls.Add(TB) ‘ adds a TextBox control
Me.Controls.Add(LBL) ‘ adds a Label control

The code contains a few long lines, but it isn’t really complicated. It’s based on the assumption
that, except for the first few controls on the form, all others are pairs of Label and TextBox controls
used for data entry.

To use the values entered by the user on the dynamic form, we must iterate the Controls collec-
tion, extract the values in the TextBox controls and use them. Listing 5.16 shows how the Process
Values button scans the TextBox controls on the form performs some very basic calculations with
them (counting the number of data points and summing their values).

Listing 5.16: Reading the Controls on the Form

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim ctrl As Object

237BUILDING DYNAMIC FORMS AT RUNTIME

2877c05.qxd 11/11/01 4:16 PM Page 237

http://www.sybex.com

Dim Sum As Double = 0, points As Integer = 0
Dim iCtrl As Integer
For iCtrl = 0 To Me.Controls.Count - 1

ctrl = Me.Controls(iCtrl)
If ctrl.GetType Is GetType(system.Windows.Forms.TextBox) Then

If IsNumeric(CType(ctrl, TextBox).Text) Then
Sum = Sum + CType(ctrl, TextBox).Text
points = points + 1

End If
End If

Next
MsgBox(“The sum of the “ & points.ToString & “ data points is “ & _

Sum.ToString)
End Sub

You can add more statements to calculate the mean and other vital statistics, or process the values
in any other way. You can even dump all the values into an array and then use the array notation to
manipulate them.

You can also write a For Each…Next loop to iterate through the TextBox controls on the form, as
shown in Listing 5.17. The Process Values button at the bottom of the form demonstrates this
alternate method of iterating through the elements of the Me.Controls collection. Because this loop
goes through all the elements, we must examine the type of each control in the loop and process only
the TextBox controls.

Listing 15.17: Reading the Controls with a For Each…Next Loop

Private Sub bttnProcess2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnProcess2.Click

Dim TB As Control
Dim Sum As Double = 0, points As Integer = 0
For Each TB In Me.Controls

If TB.GetType Is GetType(Windows.Forms.TextBox) Then
If IsNumeric(CType(TB, TextBox).Text) Then

Sum = Sum + CType(TB, TextBox).Text
points = points + 1

End If
End If

Next
MsgBox(“The sum of the “ & points.ToString & “ data points is “ & _

Sum.ToString)
End Sub

Chapter 5 WORKING WITH FORMS238

2877c05.qxd 11/11/01 4:16 PM Page 238

http://www.sybex.com

Creating Event Handlers at Runtime
You’ve seen how to add controls on your forms at runtime and how to access the properties of these
controls from within your code. In many situations, this is all you need: a way to access the proper-
ties of the controls (the text on a TextBox control, or the status of a CheckBox or RadioButton con-
trol). What good is a Button control, however, if it can’t react to the Click event? The only problem
with the controls you add to the Controls collection at runtime is that they don’t react to events. It’s
possible, though, to create event handlers at runtime, and this is what you’ll learn in this section.
Obviously, this isn’t a technique you’ll be using every day; you can come back and read this section
when the need arises.

To create an event handler at runtime, create a subroutine that accepts two arguments—the usual
sender and e arguments—and enter the code you want to execute when a specific control receives a
specific event. Let’s say you want to add one or more buttons at runtime on your form and these
buttons should react to the Click event. Create the ButtonClick() subroutine and enter the appropri-
ate code in it. The name of the subroutine could be anything; you don’t have to make up a name that
includes the control’s or the event’s name.

Once the subroutine is in place, you must connect it to an event of a specific control. The Button-
Click() subroutine, for example, must be connected to the Click event of a Button control. The
statement that connects a control’s event to a specific event handler, is the AddHandler statement,
whose syntax is:

AddHandler control.event, New System.EventHandler(AddressOf subName)

For example, to connect the ProcessNow() subroutine to the Click event of the Calculate button,
use the following statement:

AddHandler Calculate.Click, New System.EventHandler(AddressOf ProcessNow)

Let’s add a little more complexity to the DynamicForm application. We will program the Enter
and Leave events of the TextBox controls added at runtime through the Me.Controls.Add method.
When a TextBox control receives the focus, we’ll change its background color to a light yellow, and
when it loses the focus we’ll restore the background to white, so that the user knows which box has
the focus at any time. We’ll use the same handlers for all TextBox controls, and the code of the two
handlers are shown in Listing 5.18.

Listing 5.18: Event Handlers Added at Runtime

Private Sub TBox_Enter(ByVal sender As Object, ByVal e As System.EventArgs)
CType(sender, TextBox).BackColor = color.LightCoral

End Sub
Private Sub TBox_Leave(ByVal sender As Object, ByVal e As System.EventArgs)

CType(sender, TextBox).BackColor = color.White
End Sub

The event handlers use the sender argument to find out which TextBox control received or lost the
focus, and they set the appropriate control’s background color (property BackColor). We write one
handler per event and associate it with any number of controls added dynamically. Technically, the

239BUILDING DYNAMIC FORMS AT RUNTIME

2877c05.qxd 11/11/01 4:16 PM Page 239

http://www.sybex.com

TBox_Enter() and TBox_Leave() subroutines are not event handlers—at least, not before we
associate them with an actual control and a specific event. This is done in the same segment of code
that sets the properties of the controls we create dynamically at runtime. After adding the control to
the Me.Controls collection, call the following statements to connect the new control’s Enter and
Leave events to the appropriate handlers:

AddHandler TB.Enter, New System.EventHandler(AddressOf TBox_Enter)
AddHandler TB.Leave, New System.EventHandler(AddressOf TBox_Leave)

Run the DynamicForm application and see how the TextBox controls handle the focus-related
events. With a few statements and a couple of subroutines, we were able to create event handlers at
runtime, from within our code.

Summary
In this chapter, you learned the most useful and practical techniques for designing forms. The Win-
dows Form Designer that comes with VS.NET is leaps ahead of the equivalent designer of VB6,
and it allows you to design truly elaborate interfaces with very little code (in some cases, no code at
all). At the very least, you must make sure that the controls on the form will fit nicely when the form
is resized at runtime by setting the Anchor and Dock properties accordingly.

Building applications with multiple forms is a bit more involved than it used to be, but not really
complicated. In the following chapter, we’re going to discuss in detail the basic components of the
user interface, which are the controls—the basic building blocks of the application. If you think
forms come with a lot of built-in functionality, wait until you find out the functionality built into
the controls.

Chapter 5 WORKING WITH FORMS240

2877c05.qxd 11/11/01 4:16 PM Page 240

http://www.sybex.com

Chapter 6

Basic Windows Controls
In the previous chapters, we explored the environment of Visual Basic and the principles
of event-driven programming, which is the core of VB’s programming model. In the process, we
briefly explored a few basic controls through the examples. The .NET Framework provides many
more controls, and all of them have a multitude of properties. Most of the properties have obvi-
ous names, and you can set them either from the Properties window or from within your code.

This chapter explores several of the basic Windows controls in depth. These are the controls
you’ll be using most often in your applications because they are the basic building blocks of the
Windows user interface.

Rather than look at controls’ background and foreground color, font, and other trivial proper-
ties, we’ll look at the properties unique to each control and how these properties are used in
building a user interface.

Note This chapter doesn’t present every property and every method of the basic Windows controls. That would take
another book, and its value would be questionable. Most properties are quite simple to use and easy to understand (and
then there are some you’ll never use). This chapter focuses on the unique properties, methods, and events of each control
you need to know, in order to use them in your user interface.

The TextBox Control
The TextBox control is the primary mechanism for displaying and entering text and is one of the
most common elements of the Windows user interface. The TextBox control is a small text edi-
tor that provides all the basic text-editing facilities: inserting and selecting text, scrolling if the
text doesn’t fit in the control’s area, and even exchanging text with other applications through the
Clipboard.

2877c06.qxd 11/11/01 4:16 PM Page 241

http://www.sybex.com

VB6 ➠ VB.NET

The VB.NET TextBox control is very similar to the one in VB6, with a major improvement. The old TextBox
control couldn’t handle large chunks of text. It could handle up to 32K characters, and this was a serious
limitation. The new TextBox control can hold more than 2 billion characters, which is more than you care
to read in a single session.

The WordWrap property allows you to specify whether the control will wrap text lines as they approach the
width of the control. In the old version of the control, the ScrollBars property determined whether the control
wraps the text. Without a horizontal ScrollBar, the text was wrapped automatically. Now, you can enter
long lines of text even if no horizontal scroll bar is present.

Another feature of the new TextBox control is that it allows you to access individual lines of text through the
Lines property. The Lines property is a string array, and each element of the array holds a text line.
Lines(0) is the first line, Lines(1) is the second line, and so on. The number of text lines on the control is
given by the expression Lines.Length.

Finally, the properties that let you select or manipulate text—the SelStart, SelLength, and SelText proper-
ties—have changed names. They’re now called SelectionStart, SelectionLength, and SelectedText. The Align-
ment property, which specifies the alignment of the text on the control, is now called TextAlignment. The
AppendText method lets you add text to the control, and it’s much faster than the equivalent statement

TextBox1.Text = TextBox1.Text & newLine

The text box is an extremely versatile data-entry tool that can be used for entering a single line of
text, such as a number or a password, or for entering simple text files. Figure 6.1 shows a few typical
examples created with the TextBox control. All the boxes in Figure 6.1 contain text—some a single
line, some several lines. The scroll bars you see in some text boxes are part of the control. You can
specify which scroll bars (vertical and/or horizontal) will appear on the control, and the appropriate
scroll bars are attached to the control automatically whenever the control’s contents exceed the visible
area of the control.

With the exception of graphics applications, the TextBox control is the bread and butter of any
Windows application. By examining its properties and designing a text editor based on the TextBox
control, you’ll see that most of the application’s functionality is already built into the control.

Figure 6.1

Typical uses of the
TextBox control

Chapter 6 BASIC WINDOWS CONTROLS242

2877c06.qxd 11/11/01 4:16 PM Page 242

http://www.sybex.com

Basic Properties
Let’s start with the properties that determine the appearance and, to some degree, the functionality
of the TextBox control; these can be set through the Properties window. Then, we’ll look at the
properties that allow you to manipulate the control’s contents. Let me mention quickly the TextAlign
property, which sets (or returns) the alignment of the text on the control and can be Left, Right, or
Center. The TextBox control doesn’t allow you to format text, but you can set the font in which the
text will be displayed with the Font property, as well as the control’s background color with the
BackColor property. If you want to display a background image, use the BackImage property and
assign to it the path of the file with the desired image.

MultiLine

This property determines whether the TextBox control will hold a single line or multiple lines of
text. By default, the control holds a single line of text. To change this behavior, set the MultiLine
property to True.

ScrollBars

This property controls the attachment of scroll bars to the TextBox control if the text exceeds the
control’s dimensions. Single-line text boxes can’t have a scroll bar attached, even if the text exceeds
the width of the control. Multiline text boxes can have a horizontal or a vertical scroll bar, or both.
Scroll bars can appear in multiline text boxes even if they aren’t needed or the text doesn’t exceed the
dimensions of the control.

If you attach a horizontal scroll bar to the TextBox control, the text won’t wrap automatically as
the user types. To start a new line, the user must press Enter. This arrangement is useful in imple-
menting editors for programs in which lines must break explicitly. If the horizontal scroll bar is
missing, the control inserts soft line breaks when the text reaches the end of a line, and the text is
wrapped automatically. You can change the default behavior by setting the WordWrap property.

WordWrap

This property determines whether the text is wrapped automatically when it reaches the right
edge of the control. The default value of this property is True. If the control has a horizontal
scroll bar, however, you can enter very long lines of text. The contents of the control will scroll to
the left, so that the insertion point is always visible as you type. You can turn off the horizontal
scroll bar and still enter long lines of text; just use the left/right arrows to bring any part of the text
into view.

This feature may seem dubious at first, but you’ll find it useful when you resize the control. By
the way, it’s very easy to resize the control so that it always fills the form, with the Dock property
(see section “Anchoring and Docking” in Chapter 5). If the text is a program listing, like the one
shown in Figure 6.2, or a list of numbered items, you don’t want the text to wrap at any point.
You’d rather force users to open up the form so that the entire width of the text is visible across the
control. You can experiment with the WordWrap and ScrollBars properties in the TextPad applica-
tion, which is described later in this chapter.

243THE TEXTBOX CONTROL

2877c06.qxd 11/11/01 4:16 PM Page 243

http://www.sybex.com

Notice that the WordWrap property has no effect on the actual line breaks. The lines are
wrapped automatically, and there are no hard breaks (returns) at the end of each line. Open the
TextPad project, enter a long paragraph, and resize the window. The text will be automatically
adjusted to the new width of the control. Then select it and copy it by pressing Ctrl+C. Switch to
Word, or another word processor, and paste it. You will see that the text is copied as a single para-
graph, without additional hard breaks. The lines will break according to the size of the container and
will be re-broken when the control is resized.

As you can understand, when WordWrap is set to True, there’s no reason to attach a horizontal
scroll bar to the control. Even if you set the ScrollBars property to Horizontal, this setting will be
ignored.

AcceptsReturn, AcceptsTab

These two properties specify how the TextBox control reacts to the Return (Enter) and Tab keys. The
Enter key activates the default button on the form, if there is one. The default button is usually an OK
button that can be activated with the Enter key, even if it doesn’t have the focus. In a multiline TextBox
control, however, we want to be able to use the Enter key to change lines. The default value of this
property is True, so that pressing Enter creates a new line on the control. If you set it to False, users can
still create new lines in the TextBox control, but they’ll have to press Ctrl+Enter. If the form contains
no default button, then the Enter key creates a new line regardless of the AcceptsReturn setting.

Most forms that contain text boxes have also a default button, so users can work with the key-
board. Otherwise, they’d be forced to take their hands off the keyboard, use the mouse to click a
button, and then return to the keyboard—or press the Tab button repeatedly to move the focus to
one of the buttons.

Tip This is a very important issue in designing practical user interfaces. You shouldn’t force your users to switch
between the keyboard and the mouse all the time. Follow the Windows standards (the Enter key for the default button, the
Tab key to move from one control to the next, and shortcuts) to make sure that your application can be used without the
mouse. Data-entry operators would rather work without the mouse at all.

Figure 6.2

Turn off the Word-
Wrap property to
display program
listings or other lines
that shouldn’t break
arbitrarily.

Chapter 6 BASIC WINDOWS CONTROLS244

2877c06.qxd 11/11/01 4:16 PM Page 244

http://www.sybex.com

The AcceptsTab property determines how the control reacts to the Tab key. Normally, the Tab
key takes you to the next control in the tab order. In a TextBox control, however, you may wish for
the Tab key to insert a Tab character in the text of the control instead; to do this, set this property
to True. The default value of the AcceptsTab property is False, so that users can move to the next
control with the Tab key. If you change the default value, users can still move to the next control in
the tab order by pressing Ctrl+Tab. Notice that the AcceptsTab property has no effect on other
controls. Users may have to press Ctrl+Tab to move to the next control while a TextBox control
has the focus, but they can use the Tab key to move from any other control to the next one.

MaxLength

This property determines the number of characters the TextBox control will accept. Its default value
is 32,767, which was the maximum number of characters the VB6 version of the control could hold.
Set this property to zero, so that the text can have any length, up to the control’s capacity limit—
2 GB, or 2,147,483,647 characters to be exact. To restrict the number of characters the user can
type, set the value of this property accordingly.

Note The MaxLength property of the TextBox control is often set to a specific value in data-entry applications. This
prevents users from entering more characters than can be stored in a database field.

A TextBox control with its MaxLength property set to 0, its MultiLine property set to True, and
its ScrollBars property set to Vertical is, on its own, a functional text editor. Place a TextBox control
with these settings on a form, run the application, and check out the following:

� Enter text and manipulate it with the usual editing keys, such as Delete, Insert, Home,
and End.

� Select multiple characters with the mouse or the arrow keys while holding down the Shift key.

� Move segments of text around with Copy (Ctrl+C), Cut (Ctrl+X), and Paste (Ctrl+V)
operations.

� Exchange data with other applications through the Clipboard.

You can do all this without a single line of code! Shortly you’ll see what you can do with the
TextBox control if you add some code to your application, but first, let’s look at a few more proper-
ties of TextBox control.

Text-Manipulation Properties
Most of the properties for manipulating text in a TextBox control are available at runtime only. This
section presents a breakdown of each property.

Text

The most important property of the TextBox control is the Text property, which holds the control’s
text. This property is also available at design time so that you can assign some initial text to the control.
Notice that there are two methods of setting the Text property at design time. For single-line TextBox
controls, set the Text property to a short string, as usual. For multiline TextBox controls, open the Lines

245THE TEXTBOX CONTROL

2877c06.qxd 11/11/01 4:16 PM Page 245

http://www.sybex.com

property and enter the text on the String Collection Editor window, which will appear. When you’re
done, click OK to close the window. Each line you enter on the String Collection Editor window is a
paragraph. Depending on the width of the control, this paragraph may be broken into multiple lines.

At runtime, use the Text property to extract the text entered by the user or to replace the existing
text by assigning a new value to the property. The Text property is a string and can be used as argu-
ment with the usual string-manipulation functions of Visual Basic. It also supports all the members of
the String class. The following expression returns the number of characters in the TextBox1 control:

Dim strLen As Integer
strLen = TextBox1.Text.Length

VB6 programmers are accustomed to calling the Len() function, which does the same:

strLen = Len(TextBox1.Text)

To clear the control, you can set its Text property to a blank string:

TextBox1.Text = “”

or call the control’s Clear method:

TextBox1.Clear

The IndexOf method of the String class will locate a string within the control’s text. The follow-
ing statement returns the location of the first occurrence of the string “Visual” in the text:

Dim location As Integer
location = TextBox1.Text.IndexOf(“Visual”)

You can also use the InStr() function of VB:
location = Instr(TextBox1.Text, “Visual”)

The InStr() function allows you to specify whether the search will be case-sensitive or not, while the
IndexOf method doesn’t. For more information on locating strings in a TextBox control, see the
later section “VB.NET at Work: The TextPad Project,” where we’ll build a text editor with search
and replace capabilities.

To store the control’s contents in a file, use a statement such as

StrWriter.Write(TextBox1.Text)

Similarly, you can read the contents of a text file into a TextBox control with a statement such as

TextBox1.Text = StrReader.ReadToEnd

where StrReader and StrWriter are two properly declared StreamReader and StreamWriter object vari-
ables. You will find out how to read from and write to files in Chapter 13, but you will also find the
code for saving the text to a disk file (and reading text from a disk file as well) in the TextPad sample
project, later in this chapter.

To locate all instances of a string in the text, use a loop like the one in Listing 6.1. This loop
locates successive instances of the string “basic” and then continues searching from the character fol-
lowing the previous instance of the word in the text. To locate the last instance of a string in the
text, use the LastIndexOf method. You can write a loop similar to the one of Listing 6.1 that scans
the text backwards.

Chapter 6 BASIC WINDOWS CONTROLS246

2877c06.qxd 11/11/01 4:16 PM Page 246

http://www.sybex.com

Listing 6.1: Locating a String in a TextBox

Dim startIndex = -1
startIndex = TextBox1.Text.IndexOf(“basic”, startIndex + 1)
While startIndex > 0

Console.WriteLine(“String found at “ & startIndex)
startIndex = TextBox1.Text.IndexOf(“basic”, startIndex + 1)

End While

To test Listing 6.1, place a multiline TextBox and a Button control on a form, then enter the state-
ments of the listing in the button’s Click event handler. Run the application and enter some text on
the TextBox control. Make sure the text contains the word “basic” or change the code to locate
another word, and click the button. Notice that the IndexOf method performs a case-sensitive search.

Use the Replace method to replace a string with another within the line, the Split method to split
the line into smaller components (like words), and any other method exposed by the String class.
The following statement appends a string to the existing text on the control:

TextBox1.Text = TextBox1.Text & newString

This statement has appeared in just about any application that manipulated text with the
TextBox control. It was an inefficient method to append text to the control, especially if the control
contained a lot of text already. The problem with this statement isn’t obvious when you’re dealing
with small text chunks. As the amount of text on the control increases, however, this statement takes
longer to execute.

Now, you can use the AppendText method to append strings to the control, which is far more
efficient that manipulating the Text property directly. To append a string to a TextBox control, use
the following statement:

TextBox1.AppendText(newString)

The AppendText method appends the specified text to the control “as is,” without any line
breaks between successive calls. If you want to append individual paragraphs to the control’s text,
you must insert the line breaks explicitly, with a statement like the following:

TextBox1.AppendText(newString) & vbCrLf

vbCrLf is a VB constant that corresponds to the carriage return/new line characters.

ReadOnly, Locked

If you want to display text on a TextBox control but prevent users from editing it (an agreement or a
contract they must read, software installation instructions, and so on), you can set the ReadOnly
property to True. When ReadOnly is set to True, you can put text on the control from within your
code, and users can view it, yet they can’t edit it.

To prevent the editing of the TextBox control with VB6, you had to set the Locked property to
True. Oddly, the Locked property is also supported, but now it has a very different function. The
Locked property of VB.NET locks the control at design time (so that you won’t move it or change
its properties by mistake as you design the form).

247THE TEXTBOX CONTROL

2877c06.qxd 11/11/01 4:16 PM Page 247

http://www.sybex.com

Lines

In addition to the Text property, you can access the text on the control with the Lines property.
Unlike the Text property, however, the Lines property is read-only: you can’t set the control’s text
by assigning strings to the Lines array. Lines is a string array where each element holds a line of text.
The first line of the text is stored in the element Lines(0), the second line of text is stored in the ele-
ment Lines(1), and so on. You can iterate through the text lines with a loop like the following:

Dim iLine As Integer
For iLine = 0 To TextBox1.Lines.GetUpperBound(0)– 1

{ process string TextBox1.Lines(iLine) }
Next

You must replace the line in brackets with the appropriate code, of course. Because the Lines
property is an array, it supports the GetUpperBound method, which returns the index of the last ele-
ment in the array. Each element of the Lines array is a string, and you can call any of the String
class’s methods to manipulate it. You can search for a string within the current line with the
IndexOf and LastIndexOf methods, retrieve the line’s length with the Length property, and so on—
just keep in mind that you can’t alter the text on the control by editing the Lines array. The String
class is discussed in detail in Chapter 12. Alternatively, you can store the current line to a string vari-
able and manipulate it with the usual string-manipulation functions of VB:

Dim myString As String
myString = TextBox1.Lines(iLine)

PasswordChar

Available at design time, this property turns the characters typed into any character you specify. If
you don’t want to display the actual characters typed by the user (when entering a password, for
instance), use this property to define the character to appear in place of each character the user types.

The default value of this property is an empty string, which tells the control to display the char-
acters as entered. If you set this value to an asterisk (*), for example, the user sees an asterisk in the
place of every character typed. This property doesn’t affect the control’s Text property, which con-
tains the actual characters. If a text box’s PasswordChar property is set to any character, the user
can’t even copy or cut the text. Any text that’s pasted on the control will appear as a sequence of
whatever character has been specified with PasswordChar.

Text-Selection Properties
The TextBox control provides three properties for manipulating the text selected by the user: Selected-
Text, SelectionStart, and SelectionLength. For example, the user can select a range of text with a
click-and-drag operation, and the selected text will appear in reverse color. You can access the selected
text from within your code with the SelectedText property, and its location in the control’s text with
the SelectionStart and SelectionLength properties.

SelectedText

This property returns the selected text, enabling you to manipulate the current selection from
within your code. For example, you can replace the selection by assigning a new value to the

Chapter 6 BASIC WINDOWS CONTROLS248

2877c06.qxd 11/11/01 4:16 PM Page 248

http://www.sybex.com

SelectedText property. To convert the selected text to uppercase, use the ToUpper method of the
String class:

TextBox1.SelectedText = TextBox1.SelectedText.ToUpper

or use the UCase() function of VB6:

TextBox1.SelectedText = UCase(TextBox1.SelectedText)

To delete the current selection, assign an empty string to the SelectedText property:

TextBox1.SelectedText = “”

SelectionStart, SelectionLength

The SelectionStart property returns or sets the position of the first character of the selected text in
the control’s text, somewhat like placing the cursor at a specific location in the text and selecting text
by dragging the mouse. The SelectionLength property returns or sets the length of the selected text.
The most common use of these two properties is to extract the user’s selection or to select a piece of
text from within the application. You’ll use these two properties to implement search and replace
operations for a simple text editor.

Suppose the user is seeking the word “Visual” in the control’s text. The IndexOf method will
locate the string, but it won’t select it. The found string may even be outside the visible area of the
control. You can add a few more lines of code to select the word in the text and highlight it so that
the user will spot it instantly:

Dim seekString As String
Dim textStart As Integer
seekString = “Visual”
textStart = TextBox1.Text.IndexOf(seekString)
If textStart > 0 Then

TextBox1.SelectionStart = selStart – 1
TextBox1.SelectionLength = seekString.Length

End If
TextBox1.ScrollToCaret()

These lines locate the string “Visual” (or any user-supplied string stored in the seekString variable)
in the text and select it by setting the SelectionStart and SelectionLength properties of the TextBox
control. The index of the first character on the control is zero, so we must subtract one from the
location returned by the IndexOf method. Moreover, if the string is outside the visible area of the
control, the user must scroll the text to bring the selection into view. The TextBox control provides
the ScrollToCaret method, which brings the section of the text with the cursor into view.

The few lines of code shown above form the core of a text editor’s Search command. Replacing the
current selection with another string is as simple as assigning a new value to the SelectedText property,
and this technique provides you with an easy implementation of a find-and-replace operation. Design-
ing a Find and Replace dialog box will take more effort than implementing the find-and-replace logic!

Tip The SelectionStart and SelectionLength properties always have a value even if no text has been selected. In this case,
SelectionLength is 1, and SelectionStart is the current location of the pointer in the text. If you want to insert some text at
the pointer’s location, simply assign it to the SelectedText property.

249THE TEXTBOX CONTROL

2877c06.qxd 11/11/01 4:16 PM Page 249

http://www.sybex.com

HideSelection

The selected text on the TextBox will not remain highlighted when the user moves to another control or
form. To change this default behavior, use the HideSelection property. You will use this property to
keep text highlighted in a TextBox control while another form or a dialog box has the focus, such as a
Find and Replace dialog box. Its default value is True, which means that the text doesn’t remain high-
lighted when the text box loses the focus. If you set the HideSelection property to False, the selected text
will remain highlighted even when the TextBox control loses the focus. The default value of this prop-
erty in VB6 was False, something you must take into consideration when you convert old applications
into VB.NET.

Text-Selection Methods
In addition to properties, the TextBox control exposes two methods for selecting text. You can
select some text with the Select method, whose syntax is shown next:

TextBox1.Select(start, length)

The Select method is new to VB.NET and is equivalent to setting the SelectionStart and Selec-
tionLength properties. To select the characters 100 through 105 on the control, call the Select
method, passing the values 99 and 6 as arguments:

TextBox1.Select(99, 6)

If the range of characters you select contains hard line breaks, you must take them into considera-
tion as well. Each hard line break counts for two characters (carriage return and line feed). If the
TextBox control contains the string “ABCDEFGHI,” then the following statement will select the
range “DEFG”:

TextBox1.Select(3, 4)

If you insert a line break every third character and the text becomes:

ABC
DEF
GHI

then the same statement will select the characters “DE” only. In reality, it has also selected the two
characters that separate the first two lines, but special characters aren’t displayed and can’t be high-
lighted. The length of the selection, however, will be 4.

As far as the appearance of the selected text goes, it doesn’t make any difference whether it was
selected by the user or by the application; it appears in reverse color, as is common with all text editors.

The following two statements select the text on a TextBox control with the SelectionStart and
SelectionLength properties:

TextBox1.SelectionStart = selStart – 1
TextBox1.SelectionLength = word.Length

These two lines can be replaced with a single call to the Select method:

TextBox1.Select(selStart – 1, word.Length)

where word is a string variable holding the selection.
A variation of the Select method is the SelectAll method, which selects all the text on the control.

Chapter 6 BASIC WINDOWS CONTROLS250

2877c06.qxd 11/11/01 4:16 PM Page 250

http://www.sybex.com

Undoing Edits
An interesting feature of the TextBox control is that it can automatically undo the most recent edit
operation. To undo an operation from within your code, you must first examine the value of the
CanUndo property. If it’s True, it means that the control can undo the operation; then you can call
the Undo method to undo the most recent edit.

An edit operation is the insertion or deletion of characters. Entering text without deleting any is
considered a single operation and will be undone in a single step. A user may have spent an hour
entering text (without making any corrections), and you can make all the text disappear with a single
call to the Undo method. Fortunately, the deletion of the text has become the most recent operation,
which can be undone with another call to the Undo method. In effect, the Undo method is a toggle.
When you call it for the first time, it undoes the last edit operation. If you call it again, it redoes the
operation it previously undid. The deletion of text can be undone only if no other editing operation
has taken place in the meantime.

Let’s say you have typed 1,000 characters on a TextBox control. If you call the Undo method, it
will clear the control. If you call it again, it will restore the deleted text. Then you enter another
1,000 characters, and delete the last 3 characters. Now the operation that will be undone by the
Undo method is the deletion of the last 3 characters. Then if you call the Undo method again, it will
re-remove the 3 characters.

In the TextPad application we’ll build in the following section, we’ll implement an Undo/Redo
command. It will be the first command in the Edit menu and will be a toggle. If its caption is Undo,
we’ll call the Undo method and then change its name to Redo. Likewise, if its caption is Redo, we’ll
call the Undo method (which this time is going to undo the last undo and restore the text to the
state it was before the call to the Undo method) and then change the command’s name to Undo. Of
course, the caption of the command will be Redo only between undoing an edit operation and the
editing of the text. As soon as the user enters or deletes a single character on the TextBox control,
the caption of the command must become Undo again.

The Undo method would be much more useful if we could set the beginning of an undo action.
For example, we could mark the Enter keypress (the beginning of a new line) as the beginning of an
undoable operation—or the saving of the text to a file, the paste operation, and so on. In its current
implementation, the Undo method undoes everything up to the most recent deletion. If no text has
been deleted, then all the text will be removed from the control. However, you will see an interesting
method of using the Undo method to undo selected operations.

You can disable the redo operation by calling the ClearUndo method. This method clears the undo
buffer of the control, and you should call it from within an Undo command’s event handler, to prevent
an operation from being redone. In most cases you should give users the option to redo an operation,
especially since the Undo method may delete an enormous amount of text from the control.

VB.NET at Work: The TextPad Project
The TextPad application, shown in Figure 6.3, demonstrates most of the TextBox control’s proper-
ties and methods described so far. TextPad is a basic text editor that you can incorporate in your
programs and customize for special applications. The TextPad’s form is covered by a TextBox con-
trol. Every time the user changes the size of the form, the application adjusts the size of the TextBox
control accordingly. This feature doesn’t require any programming—just set the Dock property of
the TextBox control to Fill.

251THE TEXTBOX CONTROL

2877c06.qxd 11/11/01 4:16 PM Page 251

http://www.sybex.com

The name of the application’s main form is TXTPADForm and the name of the Find and
Replace dialog box is FindForm. You can design the two forms as shown in the figures of this chap-
ter, or open the TextPad project on the CD and examine its code as well.

The menu bar of the form contains all the commands you’d expect to find in text-editing applica-
tions; they’re listed in Table 6.1.

Table 6.1: The Menu of the TextPad Form

Menu Command Description

File New Clears the text

Open Loads a new text file from disk

Save Saves the text to its file on disk

Save As Saves the text with a new filename on disk

Exit Terminates the application

Edit Undo/Redo Undoes/redoes the last edit operation

Copy Copies selected text to the Clipboard

Cut Cuts selected text

Paste Pastes the Clipboard’s contents to the text

Select All Selects all the text in the control

Find Displays a dialog box with Find and Replace options

Word Wrap Toggle menu item that turns text wrapping on and off

Continued on next page

Figure 6.3

TextPad
demonstrates the
most useful
properties and
methods of the
TextBox control.

Chapter 6 BASIC WINDOWS CONTROLS252

2877c06.qxd 11/11/01 4:16 PM Page 252

http://www.sybex.com

Table 6.1: The Menu of the TextPad Form (continued)

Menu Command Description

Process Upper Case Converts selected text to uppercase

Lower Case Converts selected text to lowercase

Number Lines Numbers the text lines

Customize Font Sets the text’s font, size, and attributes

Page Color Sets the control’s background color

Text Color Sets the color of the text

Design this menu bar using the techniques explained in Chapter 5. The File menu commands are
implemented with the Open File and Save File dialog boxes, the Font command with the Font dia-
log box, and the Color command with the Color dialog box. These dialog boxes are discussed in the
following chapters, and as you’ll see, you don’t have to design them yourself. All you have to do is
place a control on the form and set a few properties; the CLR takes it from there. The application
will display the standard Open File/Save File/Font/Color dialog boxes on which the user can select
or specify a filename or select a font or color.

The Edit Menu

The options on the Edit menu move the selected text to and from the Clipboard. For the TextPad
application, all you need to know about the Clipboard are the SetDataObject method, which places
the current selection (text, image, or any other information that can be exchanged between
Windows applications) on the Clipboard, and the GetDataObject method, which retrieves informa-
tion from the Clipboard (see Figure 6.4).

The Copy command, for example, is implemented with a single line of code (Editor is the name of
the TextBox control). The Cut command does the same, and it also clears the selected text. The
code for these and for the Paste command, which assigns the contents of the Clipboard to the cur-
rent selection, is presented in Listing 6.2.

Listing 6.2: The Cut, Copy, and Paste Commands

Protected Sub EditCopy_Click(ByVal Sender As Object, _
ByVal e As System.EventArgs)

Clipboard.SetDataObject(Editor.SelectedText)
End Sub
Protected Sub EditCut_Click(ByVal Sender As Object, _

ByVal e As System.EventArgs)
Clipboard.SetDataObject(Editor.SelectedText)
Editor.SelectedText = “”

End Sub

253THE TEXTBOX CONTROL

2877c06.qxd 11/11/01 4:16 PM Page 253

http://www.sybex.com

Protected Sub EditPaste_Click(ByVal Sender As Object, _
ByVal e As System.EventArgs)

If Clipboard.GetDataObject.GetDataPresent(DataFormats.Text) Then
Editor.SelectedText = Clipboard.GetDataObject.GetData(DataFormats.Text)

End If
End Sub

If no text is currently selected, the Clipboard’s text is pasted at the pointer’s current location. The
SelectedText property allows you to paste text at the current location of the pointer, even if no text
is currently selected. If the Clipboard contains a bitmap (placed there by another application), or any
other type of data that the TextBox control can’t handle, the paste operation will fail; that’s why we
handle the Paste operation with an If statement. If the Clipboard contains text, the program goes ahead
and pastes the text on the control; if not, it does nothing. You could provide some hint to the user
by including an Else clause that informs them that the data on the clipboard can’t be used with a
text-editing application.

The GetDataPresent property returns a True or False value, depending on whether the data on
the Clipboard is of the same type as specified by the argument (text in our case). If you want to
experiment with the Clipboard and the various formats it recognizes, check out the members of
DataFormats, an enumeration that exposes a member for each different format it recognizes.

If you repeatedly paste chunks of text on the control, they’re considered a single operation and
will be undone with a single call to the Undo method.

Figure 6.4

The Copy, Cut, and
Paste operations can
be used to exchange
text with any other
application.

Chapter 6 BASIC WINDOWS CONTROLS254

2877c06.qxd 11/11/01 4:16 PM Page 254

http://www.sybex.com

The Process and Customize Menus

The commands of the Process and Customize menus are straightforward. The Customize menu
commands open the Font or Color dialog box and change the control’s Font, ForeColor, and Back-
Color properties. The Upper Case and Lower Case commands of the Process menu are also trivial:
they select all the text, convert it to uppercase or lowercase respectively, and assign the converted text
to the control’s Text property. Listing 6.3 is the code behind these two commands.

Listing 6.3: The Upper Case and Lower Case Commands

Private Sub ProcessUpper_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ProcessUpper.Click

Editor.SelectedText = Editor.SelectedText.ToUpper
End Sub
Private Sub ProcessLower_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles ProcessLower.Click
Editor.SelectedText = Editor.SelectedText.ToLower

End Sub

The Number Lines command demonstrates how to process the individual lines of text on the
control. This command inserts a number in front of each text line. However, it doesn’t remove the
line numbers, and there’s no mechanism to prevent the user from editing the line numbers or insert-
ing/deleting lines after they have been numbered. Use this feature to create a numbered listing, or to
number the lines of a file just before saving it or sharing with another user. Listing 6.4 shows the
Number Lines command’s code and demonstrates how to iterate through the Lines array.

Listing 6.4: The Number Lines Command

Private Sub ProcessNumber_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ProcessNumber.Click

Dim iLine As Integer
Dim newText As New System.Text.StringBuilder()
For iLine = 0 To Editor.Lines.Length - 1

newText.Append((iLine + 1).ToString & vbTab & _
Editor.Lines(iLine) & vbCrLf)

Next
Editor.Text = newText.ToString

End Sub

This event handler uses a StringBuilder variable. The StringBuilder class is equivalent to the String
class: it exposes similar methods and properties, but it’s much faster in manipulating strings than the
String class. The StringBuilder class is discussed in detail in Chapter 12.

255THE TEXTBOX CONTROL

2877c06.qxd 11/11/01 4:16 PM Page 255

http://www.sybex.com

Undoing Selected Operations

The numbering of the text lines is an operation you’d expect to be able to undo, but this isn’t the
case. If you paste a listing on the text box control and then number the lines with the Process ➢
Number Lines command, the numbered lines will appear as expected. If you attempt to undo the
operation with the Edit ➢ Undo method, nothing will happen. The numbered lines weren’t typed
(or pasted) on the control, and they don’t constitute an operation that can be undone.

One way to mark the numbering of the lines as an undoable operation is to copy the control’s
text to the Clipboard, clear the control and then paste the text onto the text box. The paste opera-
tion can be undone and the Undo command will restore the text to its status before the insertion of
the line numbers. In effect, it will remove the numbers in front of each line.

The trick is to replace the line that assigns the text stored in the newText variable to the Text
property of the text box with the following statements:

Editor.SelectAll()
Clipboard.SetDataObject(newText.ToString())
Editor.Paste()

The Click event handler of the Process ➢ Number Lines command of the TextPad project on
the CD includes these statements. You can copy a few lines of VB code from the IDE and paste
them onto the text box. Then number them with the Process ➢ Number Lines command and,
finally, remove the numbers by undoing the operation. If you redo the last operation, the line num-
bers will be inserted in front of each code line. If you type something between the two operations,
however, you will no longer be able to remove the line numbers with the Undo command.

Implementing an intelligent Undo/Redo feature requires quite a bit of code, and it’s not among
the features of simple text-editing applications. If you need this type of functionality, you’re better
off buying an off-the-shelf component. Not that it can’t be implemented with VB.NET, but the
time you’ll spend on this project will be far more expensive.

Search and Replace Operations

The last option in the Edit menu—and the most interesting—displays a Find & Replace dialog box
(shown in Figure 6.5). This dialog box works like the similarly named dialog box of Microsoft
Word and many other Windows applications.

Before we look at the implementation of the Find & Replace dialog box, let me recap the tech-
niques for manipulating a control from within another form’s code, because this is what the Find &
Replace dialog box does. Normally, the controls on a form are private and can’t be accessed from
code outside the form. To make a control available to other forms, you can either declare it as Public
by setting the Modifiers property to Public, or create a Public variable on the form that represents

Figure 6.5

TextPad’s Find &
Replace dialog box

Chapter 6 BASIC WINDOWS CONTROLS256

2877c06.qxd 11/11/01 4:16 PM Page 256

http://www.sybex.com

the control to be shared. In our case, the control to be shared is the Editor TextBox control on the
main form of the application, and we’ll make it available to the code of the Find & Replace form
through the txtBox variable. First, you must declare the txtBox variable in the main form with the fol-
lowing statement:

Public Shared txtBox As TextBox

This statement must appear outside any procedure. Then, in the main form’s Load event, set the
txtBox variable to the Editor TextBox control with the following statement:

txtBox = Editor

That’s all it takes. If TXTPADForm is the main form’s name, you can now access the properties
of the Editor control on the main form with an expression like

TXTPADForm.txtBox.Text

It would have been simpler to make the Editor control public, and that is how you should make
your controls available to other forms. I’ve chosen a technique that’s slightly more complicated for
demonstration purposes. This technique allows you to make public not the control itself, but some
of its properties (like the Text property). If you wanted to expose only the Text property to other
forms, then you’d have to declare a string variable as Public and set it to the control’s Text property:

Public editText As String
editText = Editor.Text

The buttons in the Find & Replace dialog box are relatively self-explanatory:

Find Locates the first instance of the specified string in the text. In other words, Find starts
searching from the beginning of the text, not from the current location of the pointer. If a match
is found, the Find Next, Replace, and Replace All buttons are enabled.

Find Next Locates the next instance of the string in the text. Initially, this button is disabled;
it’s enabled only after a successful Find operation.

Replace Replaces the current instance of the found string with the replacement string and then
locates the next instance of the same string. Like the Find Next button, it’s disabled until a suc-
cessful Find operation.

Replace All Replaces all instances of the string specified in the Search For box with the string
in the Replace With box.

Whether the search is case-sensitive depends on the status of the Case Sensitive CheckBox con-
trol. The Find and Find Next commands check the status of this check box and set the srchMode vari-
able accordingly. This variable is then used with the InStr() function to specify the type of search.
We’re using the InStr() function instead of the IndexOf method because the latter doesn’t perform
case-insensitive searches, while the InStr() does—so, there’s good reason for using the good old VB
functions after all.

If the string is found in the control’s text, the program highlights it by selecting it. In addition,
the program calls the TextBox control’s ScrollToCaret method to bring the selection into view. If
you omit to call the ScrollToCaret method and the selection is not in the currently visible text, users

257THE TEXTBOX CONTROL

2877c06.qxd 11/11/01 4:16 PM Page 257

http://www.sybex.com

won’t see it. The Find Next button takes into consideration the location of the pointer and searches
for a match after the current location. If the user moves the pointer somewhere else and then clicks
the Find Again button, the program will locate the first instance of the string after the current loca-
tion of the pointer, and not after the last match. If you want to locate the next match regardless of
where the pointer is, you should store the location of the match to a variable and use it with the
InStr() function for subsequent searches.

TextPad handles search operations like all typical Windows applications. Let’s start with the
implementation of the Find button, shown in Listing 6.5.

Listing 6.5: The Find Button

Private Sub bttnFind_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnFind.Click

Dim selStart As Integer
Dim srchMode As CompareMethod
If chkCase.Checked = True Then

srchMode = CompareMethod.Binary
Else

srchMode = CompareMethod.Text
End If
selStart = InStr(TXTPADForm.txtBox.Text, searchWord.Text, srchMode)
If selStart = 0 Then

MsgBox(“Can’t find word”)
Exit Sub

End If
TXTPADForm.txtBox.Select(selStart - 1, searchWord.Text.Length)
bttnFindNext.Enabled = True
bttnReplace.Enabled = True
bttnReplaceAll.Enabled = True
TXTPADForm.txtBox.ScrollToCaret()

End Sub

The Find button examines the value of the chkCase CheckBox control, which specifies whether the
search will be case-sensitive and sets the value of the srchMode variable accordingly. The srchMode vari-
able is passed to the InStr() function and tells it how to search for the desired string. The variable’s
value can be one of the two constants, Binary (for case-sensitive, or exact, matches) and Text (for
case-insensitive matches). If the InStr() function locates the string, the program selects it by calling the
control’s Select method with the appropriate arguments. If not, it displays a message. Notice that after
a successful Find operation, the Find Next, Replace, and Replace All buttons on the form are enabled.

Tip You may have noticed that the first selected character is at the location of the match minus 1 (selStart – 1).
This is odd indeed, and the explanation is that for the InStr() function, the index of the first character is 1. The Select method,
however, however, uses the index zero for the first character in the string. The same is true for all the methods of the String
class, so you should be very careful not to mix the usual string functions of Visual Basic and the methods of the new
String class.

Chapter 6 BASIC WINDOWS CONTROLS258

2877c06.qxd 11/11/01 4:16 PM Page 258

http://www.sybex.com

The code of the Find Again button is the same, but it starts searching at the character following
the current selection. This way, the InStr() function locates the next instance of the same string.
Here’s the statement that locates the next instance of the search argument:

selStart = InStr(TXTPADForm.txtBox.SelStart + 2, TXTPADForm.txtBox.Text, _
SearchWord.Text, srchMode)

The Replace button replaces the current selection with the replacement string and then locates
the next instance of the find string. The Replace All button does the same thing as the Replace but-
ton, but it continues to replace the found string until no more instances can be located in the text.
Listing 6.6 presents the code behind the Replace and Replace All buttons.

Listing 6.6: The Replace and Replace All Operations

Private Sub bttnReplace_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnReplace.Click

If TXTPADForm.txtBox.SelectedText <> “” Then
TXTPADForm.txtBox.SelectedText = replaceWord.Text

End If
bttnFindNext_Click(sender, e)

End Sub
Private Sub bttnReplaceAll_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles bttnReplaceAll.Click
Dim curPos, curSel As Integer
curPos = TXTPADForm.txtBox.SelectionStart
curSel = TXTPADForm.txtBox.SelectionLength
Form1.txtBox.Text = Replace(TXTPADForm.txtBox.Text, Trim(searchWord.Text), _

Trim(replaceWord.Text))
TXTPADForm.txtBox.SelectionStart = curPos
TXTPADForm.txtBox.SelectionLength = curSel

End Sub

You might also want to limit the search operation to the selected text only. To do so, pass the
location of the first selected character to the InStr() function as before. In addition, you must make
sure that the located string falls within the selected range, which is from

TXTPADForm.Editor.SelectionStart

to

TXTPADForm.Editor.SelectionStart + TXTPADForm.Editor.SelectionLength

You must create two variables, the curPos and curSel variables, and store the values of the Selection-
Start and SelectionLength properties when the Find command is clicked, and then ignore any
matches outside this range.

259THE TEXTBOX CONTROL

2877c06.qxd 11/11/01 4:16 PM Page 259

http://www.sybex.com

The Undo/Redo Commands

The Undo command (Listing 6.7) is implemented with a call to the Undo method. However,
because the Undo method works like a toggle, we must also toggle its caption from Undo to Redo
and vice versa, each time the command is activated.

Listing 6.7: The Undo/Redo Command of the Edit Menu

Private Sub EditUndo_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles EditUndo.Click

If EditUndo.Text = “Undo” Then
Editor.Undo()
EditUndo.Text = “Redo”

Else
Editor.Undo()
EditUndo.Text = “Undo”

End If
End Sub

As I mentioned earlier, if you edit the text after an undo operation, you can no longer redo the
last undo operation. This means that as soon as the contents of the TextBox control change, the cap-
tion of the first command in the Edit menu must become Undo, even it’s Redo at the time. The
Redo command is available only after undoing an operation and before editing the text. So, how do
we know that the text has been edited? The TextBox control fires the TextChanged event every time
its contents change. We’ll use this event to restore the caption of the Undo/Redo command to
Undo. Insert the following statements in the TextChanged event of the TextBox control:

Private Sub Editor_TextChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Editor.TextChanged

EditUndo.Text = “Undo”
End Sub

Capturing Keystrokes
The TextBox control has no unique methods or events, but it’s quite common in programming to
use this control to capture and process the user’s keystrokes. The KeyPress event occurs every time a
key is pressed, and it reports the character that was pressed. You can use this event to capture certain
keys and modify the program’s behavior depending on the character typed.

Suppose you want to use the TextPad application (discussed in the preceding sections) to prepare
messages for transmission over a telex line. As you may know, a telex can’t transmit lowercase char-
acters or special symbols. The editor must convert the text to uppercase and replace the special sym-
bols with their equivalent strings: DLR for $, AT for @, O/O for %, BPT for #, and AND for &.
You can modify the default behavior of the TextBox control from within the KeyPress event so that
it converts these characters as the user types.

The TELEXPad application is identical to the TextPad application, but customized for prepar-
ing telex messages. (Not that the telex is growing in popularity, but there are situations in which

Chapter 6 BASIC WINDOWS CONTROLS260

2877c06.qxd 11/11/01 4:16 PM Page 260

http://www.sybex.com

some custom preprocessing of the data is required.) By capturing keystrokes, you can process the
data as they are entered, in real time. For example, you could make sure that numeric values fall
within a given range or that hexadecimal digits don’t contain invalid characters, and so on. The only
difference is the modified application’s KeyPress event. The KeyPress event handler of the TELEX-
Pad application is shown in Listing 6.8.

Listing 6.8: TELEXPad Application’s KeyPress Event Handler

Public Sub Editor_KeyPress(ByVal sender As Object, _
ByVal e As System.WinForms.KeyPressEventArgs) _
Handles Editor.KeyPress

Dim ch As Char
Dim CrLf As String
If System.Char.IsControl(e.KeyChar) Then Exit Sub
CrLf = vbCrLf
ch = e.KeyChar.ToChar
ch = ch.ToUpper(ch)
Select Case ch

Case “@”.ToChar
Editor.SelectedText = “AT”

Case “#”.ToChar
Editor.SelectedText = “BPT”

Case “$”.ToChar
Editor.SelectedText = “DLR”

Case “%”.ToChar
Editor.SelectedText = “O/O”

Case “&”.ToChar
Editor.SelectedText = “AND”

Case Else
Editor.SelectedText = ch

End Select
e.Handled = True

End Sub

The very first executable statement in the event handler examines the key that was pressed and
exits if it was a special editing key (Del, Backspace, Ctrl+V, and so on). The KeyChar property of
the e argument of the KeyPress event reports the key that was pressed. To convert it a character, we
call its ToChar method, and in the following line, we convert the character to uppercase by calling
the ToUpper method. Normally, you would combine the two statements:

ch = e.KeyChar.ToChar
ch = ch.ToUpper(ch)

into one:

ch = System.String.ToUpper(e.KeyChar.ToChar)

but I’ve used a rather verbose syntax to make code more readable.

261THE TEXTBOX CONTROL

2877c06.qxd 11/11/01 4:16 PM Page 261

http://www.sybex.com

Then the code uses a Case statement to handle individual keystrokes. If the user pressed the $
key, for example, the code displays the characters “DLR”. If no special character was pressed, the
code displays the character pressed “as is” from within the Case Else clause of the Select statement.

VB6 ➠ VB.NET

Before you exit the event handler, you must “kill” the original key pressed, so that it won’t appear on the
control. You do by setting the Handled property to True, which tells VB that it shouldn’t process the key-
stroke any further. In VB6, you could kill a keystroke by setting the KeyAscii argument of the KeyPress
event (or the KeyCode argument of the KeyUp event) to zero. The e.KeyChar argument in VB.NET is read-
only, and you can’t set it from within your code.

Capturing Function Keys

Another common feature in text-editing applications is the assignment of special operations to the
function keys. The Notepad application, for example, uses the F5 function key to insert the current date
at the cursor’s location. You can do the same with the TextPad application, but you can’t use the
KeyPress event—the KeyChar argument doesn’t report function keys. The events that can capture
the function keys are the KeyDown event, which is generated when a key is pressed, and the KeyUp
event, which is generated when a key is released. Also, unlike the KeyPress event, KeyDown and
KeyUp don’t report the character pressed, but instead report the key’s code (a special number that
distinguishes each key on the keyboard, also known as the scancode), through the e.KeyCode property.

The keycode is unique for each key, not each character. Lower- and uppercase characters have different
ASCII values but the same keycode because they are on the same key. The number 4 and the $ symbol
have the same keycode because the same key on the keyboard generates both characters. When the key’s
code is reported, the KeyDown and KeyUp events also report the state of the Shift, Ctrl, and Alt keys.

To program the KeyDown and KeyUp events, you must know the keycode of the key you want
to capture. The keycode for the function key F1 is 112 (or the constant Keys.F12), the keycode for
F2 is 113 (or the constant Keys.F13), and so on. To capture a special key, such as the F1 function
key, and assign a special string to it, program the key’s KeyUp event. The event handler in Listing
6.9 uses the F5 and F6 function keys to insert the current date and time in the document. It also
uses the F7 and F8 keys to insert two predefined strings in the document.

Listing 6.9: KeyUp Event Examples

Public Sub Editor_KeyUp(ByVal sender As Object, _
ByVal e As System.WinForms.KeyEventArgs) Handles Editor.KeyUp

Select Case e.KeyCode
Case Keys.F5 : editor.SelectedText = Now().ToLongDateString
Case Keys.F6 : editor.SelectedText = Now().ToLongTimeString
Case Keys.F7 : editor.SelectedText = “MicroWeb Designs, Inc.”
Case Keys.F8 : editor.SelectedText = “Another user-supplied string”

End Select
End Sub

Chapter 6 BASIC WINDOWS CONTROLS262

2877c06.qxd 11/11/01 4:16 PM Page 262

http://www.sybex.com

With a little additional effort, you can provide users with a dialog box that lets them assign their
own strings to function keys. You’ll probably have to take into consideration the status of the Shift,
Control, and Alt properties of the event’s e argument, which report the status of the Shift, Ctrl, and
Alt keys respectively. Windows already uses many of the function keys, and you shouldn’t reassign
them. For example, the F1 key is the standard Windows context-sensitive Help key, and users will
be confused if they press F1 and see the date appear in their documents. The keystroke Alt+F4
closes the window, so you shouldn’t reassign it either.

To find out whether two of the modifier keys are down when a key is pressed, use the AND oper-
ator with the appropriate properties of the e argument. The following If structure detects the Ctrl
and Alt keys:

If e.Control AND e.Alt Then
{ Alt and Control keys were down }

End If

The ListBox, CheckedListBox, and ComboBox Controls
The ListBox, CheckedListBox, and ComboBox controls present lists of choices, from which the user
can select one or more. The first two are illustrated in Figure 6.6. The ListBox control occupies a
user-specified amount of space on the form and is populated with a list of items. If the list of items
is longer than can fit on the control, a vertical scroll bar appears automatically.

The items must be inserted in the ListBox control through the code or via the Properties window.
To add items at design time, locate the Items property in the control’s Properties window and click
the button with the ellipsis. A new window will pop up, the String Collection Editor window, where
you can add the items you want to display on the list. Each item must appear on a separate text line,
and blank text lines will result in blank lines on the list. These items will appear on the list when the
form is loaded, but you can add more items (or remove existing ones) from within your code at any
time. They will appear in the same order as entered on the String Collection Editor window unless
the control has its Sorted property set to True, in which case the items will be automatically sorted,
regardless of the order in which you’ve specified them.

The ComboBox control also contains multiple items but typically occupies less space on the
screen. The ComboBox control is an expandable ListBox control: the user can expand it to make a
selection and collapse it after the selection is made. The real advantage to the ComboBox control,
however, is that the user can enter new information in the ComboBox, rather than being forced to
select from the items listed.

Figure 6.6

The ListBox and
CheckedListBox
controls

263THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS

2877c06.qxd 11/11/01 4:16 PM Page 263

http://www.sybex.com

This section first examines the ListBox control’s properties and methods. Later, you’ll see how
the same properties and methods can be used with the ComboBox control.

There’s also a variation of the ListBox control, the CheckedListBox control, which is identical to
the ListBox control, but a check box appears in front of each item. The user can select any number
of items by checking the boxes in front of them.

VB6 ➠ VB.NET

The ListBox control has been greatly enhanced in .NET Framework. The most prominent change is that it
no longer supports the List property. To access individual items on the control, you must use the Items
property, which is a Collection. The first item on the control is Items(0), the second is Items(1), and so
on. The Items collection has the usual properties of a collection: the Count property, which is the number
of items on the control, and the Add, Remove, Insert, and Clear methods to add items to or remove items
from the control. The ListCount property has also disappeared. The number of items on the control is
given by the expression Items.Count, and the AddItem and RemoveItem methods of the old version of the
control are no longer supported.

The handling of multiple selected items has also been enhanced. If the control allows a single selection,
the SelectedIndex and SelectedItem properties return the index and the value of the selected item. If the
control allows multiple selections, you can use the SelectedIndices and SelectedItems collections to access
the indices and values of the selected items.

The most important enhancement to the new ListBox control is the search feature. You can use the Find-
String and FindStringExact methods to locate an item in the list. The FindString method locates the clos-
est match to the search argument, while the FindStringExact method finds an exact match, if there is one.
Notice that these methods work just as well with sorted and unsorted lists.

Finally, two new methods were introduced to speed up the display while new items are added to the con-
trol. If you have many items to add to the control at once, call the BeginUpdate method at the beginning,
then call the Add or Insert method of the Items collection as many times as needed, and finally call the
EndUpdate method. The control won’t be updated each time you add a new item, but the items will be
added to the control after EndUpdate is executed. This technique avoids the constant flickering of the con-
trol while new items are added.

Basic Properties
The ListBox and ComboBox controls provide a few common properties that determine the basic func-
tionality of the control and are usually set at design time; we’ll start with these fundamental properties.

IntegralHeight

This property is a Boolean value (True/False) that indicates whether the control’s height will be
adjusted to avoid the partial display of the last item. When set to True, the control’s actual height
may be slightly different than the size you’ve specified, so that only an integer number of rows are
displayed. If you want the ListBox control be the same height as another control, use the ListBox as
the reference for the other controls. Sometimes you’ll have to set this property to False to align a
ListBox control with other controls on the form.

Chapter 6 BASIC WINDOWS CONTROLS264

2877c06.qxd 11/11/01 4:16 PM Page 264

http://www.sybex.com

Items

The Items property is a collection that holds the items on the control. At design time, you can popu-
late this list through the String Collection Editor window. At runtime you can access and manipulate
the items through the methods and properties of the Items collection, which are described in the fol-
lowing section. To load a number of items to a ListBox control at design time, locate the Items
property in the Properties window, and click the button with the ellipsis next to it. This will bring
up the String Collection Editor, where you can enter any number of items. Enter each item’s text on
a separate line, and click the OK button when you’re done to close the window.

MultiColumn

A ListBox control can display its items in multiple columns, if you set its MultiColumn property to
True. The problem with multicolumn ListBoxes is that you can’t specify the column in which each
item will appear. Set this property to True for ListBox controls with a relatively small number of
items, and do so only when you want to save space on the form. A horizontal scroll bar will be
attached to a multicolumn ListBox, so that users can bring any column into view.

SelectionMode

This property determines how the user can select the list’s items and must be set at design time (at
runtime, you can only read this property’s value). The SelectionMode property’s values determine
whether the user can select multiple items and which method will be used for multiple selections.
The possible values of this property—members of the SelectionMode enumeration—are shown in
Table 6.2.

Table 6.2: The SelectionMode Enumeration

Value Description

None No selection at all is allowed.

One (Default) Only a single item can be selected.

MultiSimple Simple multiple selection: A mouse click (or pressing the spacebar) selects or deselects
an item in the list. You must click all the items you want to select.

MultiExtended Extended multiple selection: Press Shift and click the mouse (or press one of the arrow
keys) to expand the selection. This will highlight all the items between the previously
selected item and the current selection. Press Ctrl and click the mouse to select or dese-
lect single items in the list.

Sorted

Items can be inserted by the application into a ListBox or ComboBox control, but inserting them in
the proper place and maintaining some sort of organization can be quite a task for the programmer.
If you want the items to be always sorted, set the control’s Sorted property to True. This property
can be set at design time as well as runtime.

265THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS

2877c06.qxd 11/11/01 4:16 PM Page 265

http://www.sybex.com

The ListBox control is basically a text control and won’t sort numeric data properly. To use the
ListBox control to sort numbers, you must first format them with leading zeros. For example, the
number 10 will appear in front of the number 5, because the string “10” is smaller than the string
“5”. If the numbers are formatted as “010” and “005”, they will be sorted correctly.

The items in a sorted ListBox control are in ascending and case-sensitive order. Moreover, there is
no mechanism for changing this default setting. The following items would be sorted as shown:

“AA”

“Aa”

“aA”

“aa”

“BA”

“ba”

Uppercase characters appear before the equivalent lowercase characters, but both upper- and low-
ercase characters appear together. All words beginning with B appear after the words beginning with
A and before the words beginning with C. Within the group of words beginning with B, those
beginning with a capital B appear before those beginning with a lowercase b.

Note Populating long sorted lists is an expensive operation, because VB must figure out where to insert each item. It
takes 13 seconds to populate an unsorted list with 100,000 items. The same operation takes forever (several minutes) if
the Sorted property is set to True. If you want to add a large number of items to a ListBox control, set its Sorted property
to False, populate it and then set the Sorted property to True to sort the items on the control. For 100,000 items, this trick
will bring down the total time from minutes to seconds.

Text

The Text property returns the selected text on the control. Notice that the items need not be strings.
By default, each item is an object. For each object, however, the control displays a string, which is the
same string returned by the object’s ToString method. To retrieve the selected string on the control,
use the Text property. To access the actual object, use the SelectedItem property, which is described
later in this chapter.

The Items Collection
To manipulate a ListBox control from within your application, you should be able to:

� Add items to the list

� Remove items from the list

� Access individual items in the list

The items in the list are represented by the Items collection. You use the members of the Items
collection to access the control’s items and to add or remove items. The Items property exposes the
standard members of a Collection, and they’re described in the following sections.

Chapter 6 BASIC WINDOWS CONTROLS266

2877c06.qxd 11/11/01 4:16 PM Page 266

http://www.sybex.com

Each member of the Items collection is an object. In most cases, we use ListBox controls to store
strings, but it’s possible to store objects. When you add an object to a ListBox control, a string will
be displayed on the corresponding line of the control. This is the string returned by the object’s
ToString method. This is the property of the object that will be displayed by default. You can dis-
play any other property of the object by setting the control’s ValueMember property to the name of
the property.

If you add a Color and a Rectangle object to the Items collection with the following statements:

ListBox1.Items.Add(Color.Yellow)
ListBox1.Items.Add(New Rectangle(0, 0, 100, 100))

then the following strings will appear on the first two lines of the control:

Color [Yellow]
{X=0, Y=0, Width=100, Height=100}

However, you can access the members of the two objects, because the ListBox stores objects, not
their descriptions. The following two statements will print the green color component of the Color
object and the width of the Rectangle object (the output produced by each statement is shown in bold):

Console.WriteLine(ListBox1.Items.Item(0).G)
255
Console.WriteLine(ListBox1.Items.Item(1).Width)
100

The expressions in the last two statements are late-bound. This means that the compiler doesn’t
know whether the first object in the Items collection is a Color object and therefore can’t verify the
member Green. If you attempt to call the Green property of the second item in the collection, you’ll
get an exception at runtime to the effect that the code has attempted to access a missing member.
The missing member is the G (green component) property of the Rectangle object.

The proper way to read the objects stored in a ListBox control is to examine the type of the object
first, and attempt to retrieve a property (or call a method) of the object only if it’s of the appropriate
type. Here’s how you would read the green component of a Color object:

If ListBox1.Items.Item(0).GetType Is GetType(Color) Then
Console.WriteLine(ListBox1.Items.Item(0).G)

End If

Add

To add items to the list, use the Items.Add or Items.Insert method. The syntax of the Add method is

ListBox1.Items.Add(item)

The item parameter is the object to be added to the list. You can add any object to the ListBox control,
but items are usually strings. The Add method appends new items to the end of the list, unless the
Sorted property has been set to True.

The following loop adds the elements of the array words to a ListBox control, one at a time:

Dim words(100) As String
{ statements to populate array }

267THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS

2877c06.qxd 11/11/01 4:16 PM Page 267

http://www.sybex.com

Dim i As Integer
For i = 0 To 99

ListBox1.Items.Add(words(i))
Next

Similarly, you can iterate through all the items on the control with a loop like the following:

Dim i As Integer
For i = 0 To ListBox1.Items.Count – 1

{ statements to process item ListBox1.Items(i) }
Next

You can also use the For Each…Next statement to iterate through the Items collection, as shown
here:

Dim itm As Object
For Each itm In ListBox1.Items

{ process the current item, represented by the itm variable }
Next

When you populate a ListBox control with a large number of items, call the BeginUpdate before
starting the loop and the EndUpdate method when you’re done. These two methods will turn off the
visual update of the control while you’re populating it. When the EndUpdate method is called,
the control will be redrawn with all the items.

Clear

The Clear method removes all the items from the control. Its syntax is quite simple:

List1.Items.Clear

Count

This is the number of items in the list. If you want to access all the items with a For…Next loop, the
loop’s counter must go from 0 to ListBox1.Items.Count – 1, as shown in the example of the Add
method.

CopyTo

The CopyTo method of the Items collection retrieves all the items from a ListBox control and
stores them to the array passed to the method as argument. The syntax of the CopyTo method is

ListBox1.CopyTo(destination, index)

where destination is the name of the array that will accept the items and index is the index of an element
in the array where the first item will be stored. The array that will hold the items of the control must
be declared explicitly and must be large enough to hold all the items.

Insert

To insert an item at a specific location, use the Insert method, whose syntax is:

ListBox1.Items.Insert(index, item)

Chapter 6 BASIC WINDOWS CONTROLS268

2877c06.qxd 11/11/01 4:16 PM Page 268

http://www.sybex.com

where item is the object to be added and index is the location of the new item. The first item’s order
in the list is zero. Note that you need not insert items at specific location when the list is sorted. If
you do, the items will be inserted at the specified locations, but the list will no longer be sorted.

The following statement inserts a new item at the top of the list:

ListBox1.Items.Insert(0, “new item”)

Remove

To remove an item from the list, you must first find its position (index) in the list, and call the
Remove method passing the position as argument:

ListBox1.Items.Remove(index)

The index parameter is the order of the item to be removed, and this time it’s not optional. The fol-
lowing statement removes the item at the top of the list:

ListBox1.Remove(0)

You can also specify the item to be removed by reference. To remove a specific item from the list,
use the following syntax:

ListBox1.Items.Remove(item)

If the control contains strings, pass the string to be removed. If the same string appears multiple
times on the control, only the first instance will be removed. If the control contains object, pass a
variable that references the item you want to remove.

Contains

The Contains method of the Items collection—not to be confused with the control’s Contains
method—accepts an object as argument and returns a True/False value indicating whether the col-
lection contains this object or not. Use the Contains method to avoid the insertion of identical
objects to the ListBox control. The following statements add a string to the Items collection, only if
the string isn’t already part of the collection:

Dim itm As String = “Remote Computing”
If Not ListBox1.Items.Contains(itm) Then

ListBox1.Items.Add(itm)
End If

Selecting Items

The ListBox control allows the user to select either one or multiple items, depending on the setting
of the SelectionMode property. In a single-selection ListBox control, you can retrieve the selected
item with the SelectedItem property and its index with the SelectedIndex property. SelectedItem
returns the selected item, which could be an object. The text that was clicked by the user to select the
item is reported by the Text property.

If the control allows the selection of multiple items, they’re reported with the SelectedItems
property. This property is a collection of Item objects and exposes the same members as the Items
collection. The SelectedItems.Count property reports the number of selected items.

269THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS

2877c06.qxd 11/11/01 4:16 PM Page 269

http://www.sybex.com

To iterate through all the selected items in a multiselection ListBox control, use a loop like the
following:

Dim itm As Object
For Each itm In ListBox1.SelectedItems

Console.WriteLine(itm)
Next

The itm variable was declared as Object because the items in the ListBox control are objects. They
happen to be strings in most cases, but they can be anything. If they’re all of the same type, you can
convert them to the specific type and then call their methods. If all the items are of the Color type,
you can use a loop like the following to print the red component of each color:

Dim itm As Object
For Each itm In ListBox1.SelectedItems

Console.WriteLine(Ctype(itm, Color).Red)
Next

A common situation in programming the ListBox control is to remove items from one control
and add them to another. This is what the ListDemo project of the following section demonstrates,
along with the techniques for adding and removing items to single-selection and a multiselection
ListBox controls.

Note Even though the ListBox control can store all types of objects, it’s used most frequently for storing strings. Storing
objects to a ListBox control requires some extra work, because the ToString method of most objects doesn’t return the type
of string we want to display on the control. You will find an example on using the ListBox control with objects in Chap-
ter 8, where you’ll learn how to build custom objects.

VB.NET at Work: The ListDemo Project
The ListDemo application (shown in Figure 6.7) demonstrates the basic operations of the List-

Box control. The two ListBox controls on the form operate slightly differently. The first has the
default configuration: only one item can be selected at a time, and new items are appended after the
existing item. The second ListBox control has its Sorted property set to True and its MultiSelect
property set to MultiExtended. This means that the elements of this control are always sorted, and
the user can select multiple cells with the mouse.

The code for the ListDemo application contains much of the logic you’ll need in your ListBox
manipulation routines. It shows you how to:

� Add and remove items

� Transfer items between lists

� Handle multiple selected items

� Maintain sorted lists

Chapter 6 BASIC WINDOWS CONTROLS270

2877c06.qxd 11/11/01 4:16 PM Page 270

http://www.sybex.com

The Add Item Buttons

The Add Item buttons use the InputBox() function to prompt the user for input, and then they add
the user-supplied string to the ListBox control. The code is identical for both buttons (Listing 6.10).

Listing 6.10: The Add Item Buttons

Private Sub bttnAdd1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnAdd1.Click

Dim ListItem As String
ListItem = InputBox(“Enter new item’s name”)
If ListItem.Trim <> “” Then

sourceList.Items.Add(ListItem)
End If

End Sub

Notice that the subroutine examines the data entered by the user to avoid adding blank strings to
the list. The code for the Clear buttons is also straightforward; it simply calls the Clear method of the
Items collection to remove all entries from the corresponding list.

The Remove Selected Item(s) Buttons

The code for the Remove Selected Item button is different from that for the Remove Selected Items
button (both are presented in Listing 6.11). The code for the Remove Selected Items button must
scan all the items of the left list and remove the selected one(s). The reason is that the ListBox on
the right can have only one selected item, and the other one allows the selection of multiple items.
To delete an item, you must have at least one item selected. The code makes sure that the Selected-
Index property is not negative. If no item is selected, the SelectedIndex property is –1 and attempting
to remove an item by specifying an invalid index will generate an error.

Figure 6.7

ListDemo
demonstrates
most of the
operations you’ll
perform with
ListBoxes.

271THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS

2877c06.qxd 11/11/01 4:16 PM Page 271

http://www.sybex.com

Listing 6.11: The Remove Buttons

Private Sub bttnRemoveSelDest_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnRemoveSelDest.Click

destinationList.Items.Remove(destinationList.SelectedItem)
End Sub
Private Sub bttnRemoveSelSrc_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles bttnRemoveSelSrc.Click
Dim i As Integer
For i = 0 To sourceList.SelectedIndices.Count - 1

sourceList.Items.RemoveAt(sourceList.SelectedIndices(0))
Next

End Sub

Even though it’s possible to remove an item by name, this is not a safe approach. If two items have
the same name, then the Remove method will remove the first one. Unless you’ve provided the code to
make sure that no identical items can be added to the list, remove them by their index, which is unique.

Notice that the code removes always the first item in the SelectedIndices collection. If you attempt
to remove the item SelectedIndices(i), you will remove the first selected item, but after that you
will not remove all the selected items. After removing an item from the selection, the remaining items
are no longer at the same locations. The second selected item will take the place of the first selected
item, which was just deleted, and so on. By removing the first item in the SelectedIndices collection,
we make sure that all selected items, and only they, will be eventually removed.

The code of the Remove Selected Items button uses the Count property of the SelectedIndices
collection to repeat the operation as many times as the number of selected items.

The Arrow Buttons

The two Buttons with the single arrows, between the ListBox controls shown in Figure 6.7, transfer
selected items from one list to another. The first arrow button can transfer a single element only,
after it ensures that the list contains a selected item. Its code is presented in Listing 6.12. First, it
adds the item to the second list, and then it removes the item from the original list. Notice that the
code removes an item by passing it as argument to the Remove method, because it doesn’t make any
difference which one of two identical objects will be removed.

Listing 6.12: The Right Arrow Button

Private Sub bttnMoveDest_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnMoveDest.Click

Dim i As Integer
While sourceList.SelectedIndices.Count > 0

destinationList.Items.Add(sourceList.SelectedItems(i))
sourceList.Items.Remove(sourceList.SelectedItems(i))

End While
End Sub

Chapter 6 BASIC WINDOWS CONTROLS272

2877c06.qxd 11/11/01 4:16 PM Page 272

http://www.sybex.com

The second arrow button transfers items in the opposite direction; the code is almost identical to
the one presented here, and I need not repeat it. The fact that one list is sorted and the other isn’t
doesn’t affect our code. The destination control (the one on the left) doesn’t allow the selection of
multiple items, so you could use the SelectedIndex and SelectedItem properties. Since the single ele-
ment is also part of the SelectedItems collection, you need not use a different approach. The state-
ments that move a single item from the right to the left ListBox are shown next:

sourceList.Items.Add(destinationList.SelectedItem)
destinationList.Items.RemoveAt(destinationList.SelectedIndex)

Before we leave the topic of the ListBox control, let’s examine one more powerful technique:
using the ListBox control to maintain a list of keys (the data items used in recalling the information)
to an array or random access file with records of related information. We’ll use the ListBox control
to store information like names, or book titles, which allows users to select the desired item. The
item in the control will be linked to related information, like addresses and phone numbers for
people, author and price information for books, and so on. In other words, we’ll use the ListBox
control as a lookup mechanism for several pieces of information.

Searching
The single most important enhancement to the ListBox control is that it can now locate any item in
the list with the FindString and FindStringExact methods. Both methods accept a string as argument
(the item to be located) and a second, optional argument, the index at which the search will begin.
The FindString method locates a string that partially matches the one you’re searching for; Find-
StringExact finds an exact match. If you’re searching for “Man” and the control contains a name like
“Mansfield,” FindString will match the item, but FindStringExact will not.

Note Both the FindString and FindStringExact methods perform case-insensitive searches. If you’re searching for
“visual” and the list contains the item “Visual”, both methods will locate it.

The syntax of both methods is the same:

itemIndex = ListBox1.FindString(searchStr As String)

where searchStr is the string you’re searching for. An alternative form of both methods allows you to
specify the order of the item at which the search will begin:

itemIndex = ListBox1.FindString(searchStr As String, startIndex As Integer)

The startIndex argument allows you specify the beginning of the search, but you can’t specify where
the search will end.

The FindString and FindStringExact methods work even if the ListBox control is not sorted. You
need not set the Sorted property to True before you call one of the searching methods on the control.
Sorting the list will probably help the search operation a little, but it takes the control less than 100
milliseconds to find an item in a list of 100,000 items, so time spent to sort the list isn’t worth it.

VB.NET at Work: The ListBoxFind Application

The application you’ll build in this section (seen in Figure 6.8) populates a list with a large number
of items and then locates any string you specify. Click the button Populate List to populate the

273THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS

2877c06.qxd 11/11/01 4:16 PM Page 273

http://www.sybex.com

ListBox control with 10,000 random strings. This process will take a few seconds and will populate
the control with different random strings every time. Then, each time you click the Find Item button,
you’ll be prompted to enter a string. The code will locate the closest match in the list and select
(highlight) this item.

The code (Listing 6.13) attempts to locate an exact match with the FindStringExact method. If it
succeeds, it reports the index of the matching element. If not, it attempts to locate a near match, with
the FindString method. If it succeeds, it reports the index of the near match (which is the first item
on the control that partially matches the search argument) and terminates. If it fails to find an exact
match, it reports that the string wasn’t found in the list.

Listing 6.13: Searching the List

Private Sub bttnFind_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnFind.Click

Dim srchWord As String
Dim wordIndex As Integer
srchWord = InputBox(“Enter word to search for”)
wordIndex = ListBox1.FindStringExact(srchWord)
If wordIndex >= 0 Then

MsgBox(“Index = “ & wordIndex.ToString & “ =” & _
(ListBox1.Items(wordIndex)).ToString, , “EXACT MATCH”)

ListBox1.TopIndex = wordIndex
ListBox1.SelectedIndex = wordIndex

Else
wordIndex = ListBox1.FindString(srchWord)
If wordIndex >= 0 Then

MsgBox(“Index = “ & wordIndex.ToString & “ =” & _
(ListBox1.Items(wordIndex)).ToString, , “NEAR MATCH”)

ListBox1.TopIndex = wordIndex
ListBox1.SelectedIndex = wordIndex

Else
MsgBox(“Item “ & srchWord & “ is not in the list”)

End If
End If

End Sub

Figure 6.8

The ListBoxFind
application

Chapter 6 BASIC WINDOWS CONTROLS274

2877c06.qxd 11/11/01 4:16 PM Page 274

http://www.sybex.com

If you search for “SAC”, for example, and the control begins with a string like “SAC” or “sac” or
“sAc”, the program will return the index of the item in the list and will report an exact match. If no
exact match can be found, the program will return something like “SACDEF”, if such a string exists
on the control, as a near match. If none of the strings on the control starts with the characters SAC,
the search will fail.

Populating the List

The Populate List button creates 10,000 random items with the help of the Random class. First, it
generates a random value in the range 1 through 20, which is the length of the string (not all strings
have the same length). Then the code (shown in Listing 6.14) generates as many random characters
as the length of the string and builds the string. This random number is in the range from 65 to 91;
these are the ANSI values of the uppercase characters.

Listing 6.14: Populating a List with Random Strings

Protected Sub PopulateButton_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Dim wordLen As Integer
Dim NWords As Integer = 9999
Dim rnd As System.Random
rnd = New System.Random()
Dim rndChar As Char
Dim thisWord As String
Dim i, j As Integer
For i = 0 To NWords

wordLen = CInt(rnd.NextDouble * 20 + 1)
thisWord = “”
For j = 0 To wordLen

rndchar = Chr(65 + CInt(rnd.Next, 25))
thisWord = thisWord & rndChar

Next
ListBox1.Items.Add(thisWord)

Next
End Sub

The ComboBox Control
The ComboBox control is similar to the ListBox control in the sense that it contains multiple items
of which the user may select one, but it typically occupies less space on-screen. The ComboBox is
practically an expandable ListBox control, which can grow when the user wants to make a selection
and retract after the selection is made. Normally, the ComboBox control displays one line with the
selected item. The real difference, however, between ComboBox and ListBox controls is that the
ComboBox allows the user to specify items that don’t exist in the list. Moreover, the Text property
of the ComboBox is read-only at runtime, and you can locate an item by assigning a value to the
control’s Text property.

275THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS

2877c06.qxd 11/11/01 4:16 PM Page 275

http://www.sybex.com

Three types of ComboBox controls are available in Visual Basic.NET. The value of the control’s
Style property, whose values are shown in Table 6.3, determines which box is used.

Table 6.3: Styles of the ComboBox Control

Value Effect

DropDown (Default) The control is made up of a drop-down list and a text box. The user can select
an item from the list or type a new one in the text box.

DropDownList This style is a drop-down list, from which the user can select one of its items but can’t
enter a new one.

Simple The control includes a text box and a list that doesn’t drop down. The user can select
from the list or type in the text box.

The ComboBoxStyles project in this chapter’s folder on the CD (see Figure 6.9) demonstrates
the three styles of the ComboBox control. It’s a common element of the Windows interface, and its
properties and methods are identical to those of the ListBox control. Load the ComboBoxStyles
project in the Visual Basic IDE and experiment with the three styles of the ComboBox control.

The DropDown and Simple ComboBox controls allow the user to select an item from the list or
enter a new one in the edit box of the control.

The DropDownList ComboBox is similar to a ListBox control in the sense that it restricts the
user to selecting an item, but not entering a new one. However, it takes much less space on the form
than a ListBox. When the user wants to make a selection, the DropDownList expands to display
more items. After the user has made a selection, the list contracts to a single line again.

Most of the properties and methods of the ListBox control also apply to the ComboBox control.
The Items collection gives you access to the control’s items, and the SelectedIndices and SelectedItems
collections give you access to the items in the current selection. If the control allows only a single item
to be selected, then use the properties SelectedIndex and SelectedItem. You can also use the FindString
and FindStringExact methods to locate any items in the control.

Figure 6.9

The ComboBox-
Styles project
demonstrates the
various styles of the
ComboBox control.

Chapter 6 BASIC WINDOWS CONTROLS276

2877c06.qxd 11/11/01 4:16 PM Page 276

http://www.sybex.com

There’s one aspect worth mentioning, regarding the operation of the control. Although the edit
box at the top allows you to enter a new string, the new string doesn’t become a new item. It remains
there until you select another item or you clear the edit box.

The most common use of the ComboBox control as a lookup table. The ComboBox control takes
up very little space on the form, but it can be expanded at will. You can save even more space, when
the ComboBox is contracted, by setting it to a width that’s too small for the longest item. Use the
DropDownWidth property, which is the width of the segment of the control that’s dropped down.
By default, this property is equal to the Width property. Figure 6.10 shows a ComboBox control with
a couple of unusually long items. The control is wide enough to display the default selection. When
the user clicks the arrow to expand the control, the drop-down section of the control is wider than the
default width, so that the long items can be read. The control on the left is shown in its normal state,
with a width of 130 pixels. The drop-down segment of the control is 240 pixels wide. You will have
to experiment a little to find the ideal value of the DropDownWidth property.

Although the ComboBox control allows users to enter text in the control’s edit box, it doesn’t
provide a simple mechanism for adding new items at runtime. Let’s say you provide a ComboBox
with city names. Users can type the first few characters and very quickly locate the desired item. But
what if you want to allow users to add new city names? You can provide this feature with two simple
techniques. The simpler one is to place a button with an ellipsis (three periods) right next to the
control. When users want to add a new item to the control, they can click the button and be
prompted for the new item.

A more elegant approach is to examine the control’s Text property as soon as it loses focus. If the
string entered by the user doesn’t match an item on the control, then you must add a new item to the
control’s Items collection and select the new item from within your code. The FlexComboBox proj-
ect on the CD demonstrates how to use both techniques in your code. The main form of the project,
which is shown in Figure 6.11, is a simple data-entry screen. It’s not the best data-entry form, but it’s
meant for demonstration purposes.

Figure 6.11

The FlexComboBox
project demonstrates
two techniques for
adding new items
to a ComboBox at
runtime.

Figure 6.10

The ComboBox
control’s Width and
DropDownWidth
properties

277THE LISTBOX, CHECKEDLISTBOX, AND COMBOBOX CONTROLS

2877c06.qxd 11/11/01 4:16 PM Page 277

http://www.sybex.com

The ComboBox that displays countries isn’t updateable; it’s populated at design time and can’t
accept new items, so you must populate it with all the country names. The ComboBox that displays
cities is updateable. You can either enter a city name and press the Tab key to move to another con-
trol, or click the button next to the control to be prompted for a new city name. The application
will let you enter any city/country combination. You should provide code to limit the cities within
the selected country, but this is a non-trivial task. You also need to store the new city names entered
on the first ComboBox control to a file (or a database table), so that users will find them there the
next time they execute the application. I’m not going to make the application really elaborate; I’ll
only add the code to demonstrate how to add new items to a ComboBox control at runtime.

The button with the ellipsis next to the City ComboBox control prompts the user for the new
item with the InputBox() function. Then it searches the Items collection of the control with the
Items.IndexOf method, and if the new item isn’t found, it’s added to the control. Then the code
selects the new item in the list. To do so, it sets the control’s SelectedIndex property to the value
returned by the Items.Add method, or the value returned by the Items.IndexOf method, depending
on whether the item was located, or added to the list. Listing 6.15 shows the code behind the button
with the ellipsis.

Listing 6.15: Adding a New Item to the ComboBox Control at Runtime

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim itm As String
itm = InputBox(“Enter new item”, “New Item”)
If itm <> “” Then AddElement(itm)

End Sub

The AddElement() subroutine, which accepts a string as argument and adds it to the control, is
shown in Listing 6.16. As you will see, the same subroutine will be used by the second method for
adding items to the control at runtime.

Listing 6.16: The AddElement() Subroutine

Sub AddElement(ByVal newItem As String)
Dim idx As Integer
If Not ComboBox1.Items.Contains(newItem) Then

idx = ComboBox1.Items.Add(newItem)
Else

idx = ComboBox1.Items.IndexOf(newItem)
End If
ComboBox1.SelectedIndex = idx

End Sub

Chapter 6 BASIC WINDOWS CONTROLS278

2877c06.qxd 11/11/01 4:16 PM Page 278

http://www.sybex.com

You can also add new items at runtime by adding the same code in the control’s LostFocus event
handler:

Private Sub ComboBox1_LostFocus(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles ComboBox1.LostFocus

Dim newItem As String = ComboBox1.Text
AddElement(newItem)

End Sub

The ScrollBar and TrackBar Controls
The ScrollBar and TrackBar controls let the user specify a magnitude by scrolling a selector between
its minimum and maximum values. In some situations, the user doesn’t know in advance the exact
value of the quantity to specify (in which case, a text box would suffice), so your application must
provide a more flexible mechanism for specifying a value, along with some type of visual feedback.

VB6 ➠ VB.NET

The ScrollBar control is the same as in VB6 with no substantial improvements. You will notice that there is
only one ScrollBar control on the Toolbox, instead of the horizontal and vertical ones of VB6. In VB.NET, you
can set the orientation of the control through the Orientation property. The main event of the ScrollBar con-
trol, Change, has a new name: it’s now called ValueChanged.

The TrackBar control is the old Slider control; other than its name, nothing else has changed.

The vertical scroll bar that lets a user move up and down a long document is a typical example of
the use of a ScrollBar control. In the past, users had to supply line numbers to locate the section of the
document they wanted to view. With a highly visual operating system, however, this is no longer even
an option.

The scroll bar and visual feedback are the prime mechanisms for repositioning the view in a long
document or in a large picture that won’t fit entirely in its window. When scrolling through a docu-
ment or image to locate the area of interest, the user doesn’t know or care about line numbers or pixel
coordinates. Rather, the user uses the scroll bar to navigate through the document, and the visible part
of the document provides the required feedback.

The TrackBar control is similar to the ScrollBar control, but it doesn’t cover a continuous range
of values. The TrackBar control has a fixed number of tick marks, which the developer can label
(e.g., Off, Slow, and Speedy, as shown in Figure 6.12). The user can place the slider’s indicator to
the desired value. While the ScrollBar control relies on some visual feedback outside the control to
help the user position the indicator to the desired value, the TrackBar control forces the user to
select from a range of valid values.

In short, the ScrollBar control should be used when the exact value isn’t as important as the value’s
effect on another object or data element. The TrackBar control should be used when the user can type
a numeric value and the value your application expects is a number in a specific range; for example, inte-
gers between 0 and 100, or a value between 0 and 5 inches in steps of 0.1 inches (0.0, 0.1, 0.2 … 5.0).

279THE SCROLLBAR AND TRACKBAR CONTROLS

2877c06.qxd 11/11/01 4:16 PM Page 279

http://www.sybex.com

The TrackBar control is preferred to the TextBox control in similar situations because there’s no need
for data validation on your part. The user can only specify valid numeric values with the mouse.

The ScrollBar Control
The ScrollBar control is a long stripe with an indicator that lets the user select a value between the
two ends of the control, and it can be positioned either vertically or horizontally. Use the Orienta-
tion property to make the control vertical or horizontal. The left (or bottom) end of the control
corresponds to its minimum value; the other end is the control’s maximum value. The current value
of the control is determined by the position of the indicator, which can be scrolled between the min-
imum and maximum values. The basic properties of the ScrollBar control, therefore, are properly
named Minimum, Maximum, and Value (see Figure 6.13).

Minimum The control’s minimum value. The default value is 0, but because this is an Integer
value you can set it to negatives values as well.

Maximum The control’s maximum value. The default value is 100, but you can set it to any
value you can represent with the Integer data type.

Value The control’s current value, specified by the indicator’s position.

The Minimum and Maximum properties are positive Integer values. To cover a range of negative
numbers or non-integers, you must supply the code to map the actual values to Integer values. For
example, to cover a range from 2.5 to 8.5, set the Minimum property to 25, set the Maximum prop-
erty to 85, and divide the control’s value by 10. If the range you need is from –2.5 to 8.5, do the
same but set the Minimum property to 0, set the Maximum property to 110, and subtract 25 from
the Value property every time you read it.

LargeChange

Value

LargeChange SmallChangeSmallChange

Figure 6.13

The basic properties
of the ScrollBar
control

Figure 6.12

The TrackBar
control lets the
user select one
of several discrete
values.

Chapter 6 BASIC WINDOWS CONTROLS280

2877c06.qxd 11/11/01 4:16 PM Page 280

http://www.sybex.com

VB.NET at Work: The Colors Project

Figure 6.14 shows another example that demonstrates how the ScrollBar control works. The Colors
application lets the user specify a color by manipulating the value of its basic colors (red, green, and
blue) through scroll bars. Each basic color is controlled by a scroll bar and has a minimum value of 0
and a maximum value of 255.

Note If you aren’t familiar with color definition in the Windows environment, see the section “Specifying Colors” in
Chapter 14.

As the scroll bar is moved, the corresponding color is displayed, and the user can easily specify a
color without knowing the exact values of its primary components. All the user needs to know is
whether the desired color contains, for example, too much red or too little green. With the help of
the scroll bars and the immediate feedback from the application, the user can easily pinpoint the
exact value. Notice that this “exact value” is of no practical interest; only the final color counts.

Scroll bars and slider bars have minimum and maximum values that can be set with the Minimum
and Maximum properties. The indicator’s position in the control determines its value, which is set
or read with the Value property. In the Colors application, the initial value of the control is set to
128 (the middle of the range). Before looking at the code for the Colors application, let’s examine
the control’s events.

The ScrollBar Control’s Events

The user can change the ScrollBar control’s value in three ways:

By clicking the two arrows at its ends. The value of the control changes by the amount specified
with the SmallChange property.

By clicking the area between the indicator and the arrows. The value of the control changes by
the amount specified with the LargeChange property.

By dragging the indicator with the mouse.

You can monitor the changes on the ScrollBar’s value from within your code with two events:
ValueChanged and Scroll. Both events are fired every time the indicator’s position is changed. If you
change the control’s value from within your code, then only the ValueChanged event will be fired.

The Scroll event can be fired in response to many different actions, such as the scrolling of the
indicator with the mouse or a click on one of the two buttons at the ends of the scrollbars. If you

Figure 6.14

The Colors
application
demonstrates
the use of the
ScrollBar control.

281THE SCROLLBAR AND TRACKBAR CONTROLS

2877c06.qxd 11/11/01 4:16 PM Page 281

http://www.sybex.com

want to know the action that caused this event, you can examine the Type property of the second
argument of the event handler. The settings of the e.Type property are shown in Table 6.4.

Table 6.4: The Actions That Can Cause the Scroll Event

Member Description

EndScroll The user has stopped scrolling the control.

First The control was scrolled to the Minimum position.

LargeDecrement The control was scrolled by a large decrement (user clicked the bar between
the button and the left arrow).

LargeIncrement The control was scrolled by a large increment (user clicked the bar between
the button and the right arrow).

Last The control was scrolled to the Maximum position.

SmallDecrement The control was scrolled by a small decrement (user clicked the left arrow).

SmallIncrement The control was scrolled by a small increment (user clicked the right arrow).

ThumbPosition The button was moved.

ThumbTrack The button is being moved.

Events in the Colors Application

The Colors application demonstrates how to program the two events. The two PictureBox controls
display the color designed with the three scroll bars. The left PictureBox is colored from within the
Scroll event, while the other one is colored from within the ValueChanged event.

As the user moves the indicator with the mouse, different colors are shown in the second Picture-
Box, which is colored from within the ValueChanged event. This event is every time a scrollbar changes
value.The other PictureBox doesn’t follow the changes as they occur. In the Scroll event handler of
the three scroll bars, the code examines the value of the e.Type property and reacts to it only if the
event was fired because the scrolling of the indicator has ended. For all other actions, the event
handler doesn’t update the color of the left PictureBox.

If the user attempts to change the Color value by clicking the two arrows of the scroll bars or by
clicking in the area to the left or to the right of the indicator, both PictureBox controls are updated.
While the user slides the indicator, or keeps pressing one of the end arrows, only the PictureBox to
the right is updated.

The conclusion from this experiment is that you can program either event to provide continuous
feedback to the user. If this feedback requires too many calculations, which would slow down the
reaction of the corresponding event handler, you can postpone the reaction until the user has stopped
scrolling the indicator. You can detect this condition by examining the value of the e.Type property.
When it’s ScrollEventType.EndScroll, you can execute the appropriate statements. Listing 6.17
shows the code behind the Scroll and ValoueChanged events of the Srollbar that controls the red
component of the color. The code of the corresponding events of the other two controls is identical.

Chapter 6 BASIC WINDOWS CONTROLS282

2877c06.qxd 11/11/01 4:16 PM Page 282

http://www.sybex.com

Listing 6.17: Programming the ScrollBar Control’s Scroll Event

Private Sub redBar_Scroll(ByVal sender As System.Object, _
ByVal e As System.Windows.Forms.ScrollEventArgs) Handles redBar.Scroll

If e.Type = ScrollEventType.EndScroll Then ColorBox1()
End Sub
Private Sub redBar_ValueChanged(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles redBar.ValueChanged
ColorBox2()

End Sub

The ColorBox1() and ColorBox2() subroutines update the color of the two PictureBox controls
and their listings are shown in Listing 6.18. The code creates a new color value based on the values
of the three scroll bars and uses it to set the BackColor property of the appropriate control.

Listing 6.18: Updating the Color of the Two TextBox Controls

Sub ColorBox1()
Dim clr As Color
clr = Color.FromARGB(redBar.Value, greenBar.Value, blueBar.Value)
PictureBox1.BackColor = clr

End Sub
Sub ColorBox2()

Dim clr As Color
clr = Color.FromARGB(redBar.Value, greenBar.Value, blueBar.Value)
PictureBox2.BackColor = clr

End Sub

The TrackBar Control
The TrackBar control is similar to the ScrollBar control, but it lacks the granularity of ScrollBar.
Suppose you want the user of an application to supply a value in a specific range, such as the speed
of a moving object. Moreover, you don’t want to allow extreme precision; you need only a few set-
tings, such as slow, fast, and very fast. A TrackBar control with just a few stops, such as the one
shown in Figure 6.12, will suffice. The user can set the control’s value by sliding the indicator or by
clicking on either side of the indicator.

Note Granularity is how specific you want to be in measuring. In measuring distances between towns, a granularity of
a mile is often adequate. In measuring (or specifying) the dimensions of a building, the granularity could be on the order of a
foot or an inch. The TrackBar control lets you set the type of granularity that’s necessary for your application.

Similar to the ScrollBar control, SmallChange and LargeChange properties are available. Small-
Change is the smallest increment by which the Slider value can change. The user can only change the
slider by the SmallChange value by sliding the indicator (unlike the ScrollBar control, there are no
arrows at the two ends of the Slider control). To change the Slider’s value by LargeChange, the user
can click on either side of the indicator.

283THE SCROLLBAR AND TRACKBAR CONTROLS

2877c06.qxd 11/11/01 4:16 PM Page 283

http://www.sybex.com

VB.NET at Work: The Inches Project

Figure 6.15 demonstrates a typical use of the TrackBar control. The form in the figure is an element
of a program’s user interface that lets the user specify a distance between 0 and 10 inches in incre-
ments of 0.2 inches. As the user slides the indicator, the current value displays on a Label control
above the TrackBar. If you open the Inches application, you’ll notice that there are more stops than
there are tick marks on the control. This is made possible with the TickFrequency property, which
determines the frequency of the visible tick marks.

You may specify that the control has 50 stops (divisions) but that only 10 of them will be visible.
The user can, however, position the indicator on any of the 40 invisible tick marks. You can think
of the visible marks as the major tick marks and the invisible ones as the minor tick marks. If the
TickFrequency property is 5, only every fifth mark will be visible. The slider’s indicator, however,
will stop at all tick marks.

Tip When using the TrackBar control on your interfaces, you should set the TickFrequency property to a value that
helps the user select the desired setting. Too many tick marks are confusing and difficult to read. Without tick marks, the con-
trol isn’t of much help. You might also consider placing a few labels to indicate the value of selected tick marks, as I have
done in this example.

The properties of the TrackBar control in the Inches application are as follows:

Minimum = 0
Maximum = 50
SmallChange = 1
LargeChange = 5
TickFrequency = 5

The TrackBar needs to cover a range of 10 inches in increments of 0.2 inches. If you set the Small-
Change property to 1, you have to set LargeChange to 10 (there’s a total of 10 intervals of 0.2 inches
in 10 inches). Moreover, the TickFrequency is set to 5, so there will be a total of 10 divisions in every
inch. The numbers below the tick marks were placed there with properly aligned Label controls.

The label at the bottom needs to be updated as the TrackBar’s value changes. This is signaled to
the application with the Change event, which occurs every time the value of the control changes,
either through scrolling or from within your code. The ValueChanged event handler of the Track-
Bar control is shown next:

Private Sub TrackBar1_ValueChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles TrackBar1.ValueChanged

lblInches.Text = “Length in inches = “ & Format(TrackBar1.Value / 5, “#.00”)
End Sub

Figure 6.15

This TrackBar
control lets users
specify a distance.

Chapter 6 BASIC WINDOWS CONTROLS284

2877c06.qxd 11/11/01 4:16 PM Page 284

http://www.sybex.com

The Label controls below the tick marks can also be used to set the value of the control. Every
time you click one of the labels, the following statement sets the TrackBar control’s value. Notice
that all the Label controls’ Click events are handled by a common handler:

Private Sub Label_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Label1.Click, Label2.Click, _
Label3.Click, Label4.Click, Label5.Click, Label6.Click, _
Label7.Click, Label8.Click, Label9.Click

TrackBar1.Value = sender.text * 5
End Sub

VB.NET at Work: The TextMargin Project

To see the TrackBar control in use, let’s review a segment of another application, the RTFPad appli-
cation, which will be covered in Chapter 7. The Form shown in Figure 6.16 contains a RichTextBox
control and two sliders. The RichTextBox control will be explained in Chapter 7. All you need to
know about the control to follow the code is that the RichTextBox control is similar to a TextBox
control, but provides many more editing and formatting options. Two of the control’s properties
we’ll use in this example are the SelectionIndent and SelectionHangingIndent properties, and their
functions are as follows:

SelectionIndent Specifies the amount by which the currently selected paragraphs are indented
from the left side of the control.

SelectionHangingIndent Specifies the amount of the hanging indentation (that is, the indenta-
tion of all paragraph lines after the first line).

The two TrackBar controls above the RichTextBox control let the user manipulate these two
indentations. Because each paragraph in a RichTextBox control is a separate entity, it can be

Figure 6.16

The two TrackBar
controls let the
user format the
paragraphs in
a RichTextBox
control.

285THE SCROLLBAR AND TRACKBAR CONTROLS

2877c06.qxd 11/11/01 4:16 PM Page 285

http://www.sybex.com

formatted differently. The upper slider controls the paragraph’s indentation, and the lower slider
controls the paragraph’s hanging indentation.

You can open the TextMargin application in this chapter’s folder on the CD and check it out.
Enter a few paragraphs of text and experiment with it to see how the sliders control the appearance
of the paragraphs.

To create the form shown in Figure 6.16, the left edge of the RichTextBox control must be per-
fectly aligned with the TrackBar control’s indicators at their leftmost position. When both sliders
are at the far left, the SelectionIndent and SelectionHangingIndent properties are zero. As the indi-
cators are scrolled, these two properties change value, and the text is reformatted instantly. All the
action takes place in the Slider controls’ Scroll event.

Listing 6.18 presents the code of the Scroll event handlers for the two TrackBars: TrackBar1, on
top, determines the paragraph’s indentation, and TrackBar2, on the bottom, controls the hanging or
“first-line” indentation of the current paragraph.

Listing 6.18: Scroll Event Handlers of the TrackBars

Private Sub TrackBar1_Scroll(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles TrackBar1.Scroll

RichTextBox1.SelectionIndent = _
CInt(RichTextBox1.Width * (TrackBar1.Value / TrackBar1.Maximum))

TrackBar2_Scroll(sender, e)
End Sub
Private Sub TrackBar2_Scroll(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles TrackBar2.Scroll
RichTextBox1.SelectionHangingIndent = CInt(RichTextBox1.Width * _

(TrackBar2.Value / TrackBar2.Maximum)) - RichTextBox1.SelectionIndent
End Sub

The paragraph’s hanging indentation is not the distance of the text from the left edge of the con-
trol, but the distance from the leftmost character of the first line. That’s why every time the para-
graph’s indentation changes, the program calls the Scroll event of the second TrackBar control to
adjust the hanging indentation, even though the second control hasn’t been moved. The hanging
indentation is expressed as a percentage, and we get the ratio of the difference between the two con-
trols and their maximum value.

Every time you move the pointer in another paragraph in the text, the two TrackBar controls
must be set to reflect the margins of the current paragraph. The selection of a new paragraph is
reported to the application through the SelectionChanged event of the RichTextBox control. In the
event handler shown in Listing 6.19 are two lines that set the Value property of the two TrackBar
controls to the appropriate values.

Chapter 6 BASIC WINDOWS CONTROLS286

2877c06.qxd 11/11/01 4:16 PM Page 286

http://www.sybex.com

Listing 6.19: SelectionChanged Event Handler of the RichTextBox

Private Sub RichTextBox1_SelectionChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) _
Handles RichTextBox1.SelectionChanged

TrackBar1.Value = (RichTextBox1.SelectionIndent / RichTextBox1.Width) * 100
TrackBar2.Value = TrackBar1.Value + _

(RichTextBox1.SelectionHangingIndent / RichTextBox1.Width) * 100
End Sub

Summary
In this chapter, you learned about the basic Windows controls, which are the main components in
creating Windows forms. The TextBox and ListBox controls are two of the most common elements
of the interface of just about any Windows application and include a whole lot of functionality. The
other controls are also quite common but considerably easier to program.

In the following chapters, you will read about more Windows controls—specifically, in Chapter
7, the controls for displaying common dialog boxes (like the Font and Color dialog boxes) and the
RichTextBox control. These are not trivial controls, and they deserve a detailed discussion.

There are several more Windows controls I am not going to discuss in this book. The Date-
TimePicker and MonthCalendar control are calendars that allow users to specify a date on a calen-
dar, rather than typing it. The ToolBar and StatusBar controls are used to add tool bars (a narrow
section with buttons at the top of the form) and status bars (a section with messages at the bottom
of the form), and they are fairly easy to program. The functionality provided by these controls is too
specific (and limited) compared to the functionality of the controls discussed in this and the follow-
ing chapter.

287SUMMARY

2877c06.qxd 11/11/01 4:16 PM Page 287

http://www.sybex.com

2877c06.qxd 11/11/01 4:16 PM Page 288

http://www.sybex.com

Chapter 7

More Windows Controls
In this chapter, we’ll continue our discussion of the basic Windows controls with the con-
trols that implement the common dialog boxes and the RichTextBox control.

The Toolbox contains a few more controls, like ToolBar and DateTimePicker, that I won’t
discuss in this book. You won’t often need them in your applications, and once you have learned
to build user interfaces with the basic Windows controls, you’ll have no problem using the less
common ones. The controls I’m not discussing in this book are less elaborate and have a relatively
small number of properties and methods.

The .NET Framework provides a set of controls for displaying common dialogs such as Open
or Color. Each of these controls encapsulates a large amount of functionality that would take a
lot of code to duplicate (in any language). The common dialog controls are an essential part of a
Windows application, because they enable you to design user interfaces with the look and feel of
a Windows application.

Besides the common dialog boxes, we’ll also explore the RichTextBox control, which is an
advanced version of the TextBox. RichTextBox provides all the functionality you’ll need to build
a word processor—WordPad is actually built around the RichTextBox control. It’s the only con-
trol that can display formatted text, so if your application requires this feature, RichTextBox is
your only option. It allows you to format text by mixing any number of fonts and attributes. You
can also embed other objects in the document displayed on a RichTextBox, such as images. Sure,
the RichTextBox control is nothing like a modern word processor, but it’s a great tool for editing
formatted text at runtime.

The Common Dialog Controls
A rather tedious, but quite common, task in nearly every application is to prompt the user for
filenames, font names and sizes, or colors to be used by the application. Designing your own dia-
log boxes for these purposes would be a hassle, not to mention that your applications wouldn’t
have the same look and feel of all Windows applications. In fact, all Windows applications use
some standard dialog boxes for common operations. Figure 7.1 shows a couple of examples.
These dialog boxes are built into the Framework system, and any application can use them.

2877c07.qxd 11/11/01 4:16 PM Page 289

http://www.sybex.com

If you ever want to display an Open or Font dialog box, don’t design it—it already exists. To use
it, just place the appropriate common dialog control on your form and activate it from within your
code by calling the ShowDialog method.

VB6 ➠ VB.NET

In previous versions of VB, there was a single control on the Toolbox for all common dialog controls. VB.NET
has a separate control for each common dialog, and there are four such controls on the Toolbox (excluding
the ones that apply to printing). The new common dialog controls are the FontDialog, ColorDialog, Open-
FileDialog, and SaveFileDialog. The new controls expose a large number of properties that are specific to
each dialog box and are a little easier to program than the previous single control. The dialog controls for
printing are discussed in detail in Chapter 15.

The common dialog controls are invisible at runtime, and they’re not placed on your forms. You
simply add them to the project by double-clicking their icons on the Toolbox. When a common
dialog control is added to a project, a new icon appears in the components tray of the form, just
below the Form Designer. The following common dialog controls are available on the Toolbox.

OpenFileDialog Lets users select a file to open. It also allows the selection of multiple files, for
applications that must process many files at once (change the format of the selected files, for example).

Figure 7.1

The Open and Font
common dialog
boxes

Chapter 7 MORE WINDOWS CONTROLS290

2877c07.qxd 11/11/01 4:16 PM Page 290

http://www.sybex.com

SaveFileDialog Lets users select or specify a filename in which the current document will
be saved.

ColorDialog Lets users select a color from a list of predefined colors, or specify custom colors.

FontDialog Lets users select a typeface and style to be applied to the current text selection. The
Font common dialog has an Apply button, which you can intercept from within your code and
use to apply the currently selected font to the text without closing the common dialog.

PrintDialog Lets users select and set up a printer (the page’s orientation, the document pages
to be printed, and so on).

There are two more common dialog controls, the PrintPreviewDialog and the PageSetupDialog
controls. These controls will be discussed in detail in Chapter 15, in the context of VB’s printing
capabilities. The PrintDialog control is discussed here because it doesn’t require any printing code.
This dialog box simply sets the basic properties of the printout. These properties must be taken into
consideration by the printing code of the application, as you will see in Chapter 15.

Using the Common Dialog Controls
To display a common dialog from within your application, you must first add an instance of the
appropriate control to your project. Then, you must set basic properties of the control through the
Properties window. Most applications set the control’s properties from within the code, because
common dialogs interact closely with the application. When you call the Color common dialog, for
example, you should preselect a color from within your application and make it the default selection
on the control. If you open the Color dialog box to prompt the user for the color of the text on a
control, the default selection should be the current setting of the control’s ForeColor property. Like-
wise, the Save dialog box must suggest a filename when it first pops up, and you must specify the
appropriate filename (or, at least, the file’s extension) from within your application’s code.

To display a common dialog box from within your code, you simply call the control’s ShowDialog
method, which is common for all controls. As soon as you call the ShowDialog method, the corre-
sponding dialog box appears on-screen and the execution of the program is suspended until the box
is closed. Using the Open and Save dialog boxes, the user can traverse the entire structure of their
drives and locate the desired filename. When the user clicks the Open or Save button, the dialog
box closes and the program’s execution resumes. The code should read the name of the file selected
by the user (FileName property) and use it to open the file or to store the current document there.

Here is the sequence of statements used to invoke the Open common dialog and retrieve the
selected filename:

If OpenFileDialog1.ShowDialog = DialogResult.OK Then
fileName = OpenFileDialog1.FileName

End If

The common dialogs are nothing more than dialog boxes, and they return a value indicating how
they were closed. You should read this value from within your code and ignore the settings of the
dialog box if it was canceled.

291THE COMMON DIALOG CONTROLS

2877c07.qxd 11/11/01 4:16 PM Page 291

http://www.sybex.com

The variable fileName is the full pathname of the file selected by the user. You can also set the
FileName property to a filename, which will be displayed when the Open dialog box is first opened.
This allows the user to click the Open button to open the preselected file or choose another file.

OpenFileDialog1.FileName = “C:\Documents\Doc1.doc”
If OpenFileDialog1.ShowDialog = DialogResult.OK Then

fileName = OpenFileDialog1.FileName
End If

Similarly, you can invoke the Color dialog box and read the value of the selected color with the
following statements:

If ColorDialog1.ShowDialog = DialogResult.OK Then
selColor = ColorDialog1.Color

End If

The ShowDialog method is common to all controls. The Title property is also common to all
controls. This property returns or sets the string displayed in the title bar of the dialog box. The
default title is the name of the dialog box (e.g., “Color,” Font,” and so on), but you can adjust it
from within your code.

The Color Dialog Box
The Color dialog box, shown in Figure 7.2, is one of the simplest dialog boxes. It has a single prop-
erty, Color, which returns the color selected by the user or sets the initially selected color when the
user opens the dialog box. Before opening the Color common dialog with the ShowDialog method,
you can set various properties, which are described next.

The following statements set the selected color of the Color common dialog control, display the
control, and then use the color selected on the control to fill the form. First, place a ColorDialog
control on the form, and then insert the following statements in a button’s Click event handler:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

ColorDialog1.Color = Me.BackColor

Figure 7.2

The Color dialog box

Chapter 7 MORE WINDOWS CONTROLS292

2877c07.qxd 11/11/01 4:16 PM Page 292

http://www.sybex.com

ColorDialog1.AllowFullOpen = True
If ColorDialog1.ShowDialog = DialogResult.OK Then

Me.BackColor = ColorDialog1.Color
End If

End Sub

AllowFullOpen

Set this property to True if you want users to be able to open up the dialog box and define their
own custom colors. The AllowFullOpen property doesn’t open the custom section of the common
dialog. It simply enables the Define Custom Colors button on the dialog box. Otherwise, this button
is disabled. If you want to fully open the Color dialog box (like the one shown in Figure 7.2) when
it first pops up, set the AllowFullOpen property to True. The Define Custom Colors button on the
dialog box of Figure 7.2 is disabled because the dialog box is already fully opened.

AnyColor

This property is a Boolean value that determines whether the dialog box displays all available colors
in the set of basic colors.

Color

This property is a Color value, and you can set it to any valid color. If you set this property before
opening the Color dialog box, the selected color will appear on the control as the preselected color.
On return, it’s the color selected by the user on the dialog box.

ColorDialog1.Color = Color.Azure
If ColorDialog1.ShowDialog = DialogResult.OK Then

Me.BackColor = ColorDialog1.Color
End If

CustomColors

This property indicates the set of custom colors that will be shown in the common dialog. The
Color dialog box has a section called Custom Colors, where you can display 16 additional custom
colors. The CustomColors property is an array of integers that represent colors. To display three
custom colors in the lower section of the Color dialog box, use a statement like the following:

Dim colors() As Integer = {222663, 35453, 7888}
ColorDialog1.CustomColors = colors

You’d expect that the CustomColors property would be an array of Color values, but it’s not.
You can’t create the array CustomColors with a statement like:

Dim colors() As Color = {Color.Azure, Color.Navy, Color.Teal}

Since it’s awkward to work with numeric values, you should convert color values to integer values
with a statement like the following:

Color.Navy.ToARGB

293THE COMMON DIALOG CONTROLS

2877c07.qxd 11/11/01 4:16 PM Page 293

http://www.sybex.com

This statement returns an integer value that represents the color Navy. This value, however, is
negative. The reason for that is that the first byte in the color value represents the transparency of
the color. To get the value of the color, you must take the absolute value of the integer value
returned by the previous expression. To create an array of integers that represent color values, use a
statement like the following:

Dim colors() As Integer = {Math.Abs(Color.Gray.ToARGB), _
Math.Abs(Color.Navy.ToARGB), _
Math.Abs(Color.Teal.ToARGB)}

Now you can assign the colors array to the CustomColors property of the control, and they will
appear in the Custom Colors section of the Color dialog box. The three colors of the same code are
the custom colors shown in Figure 7.2.

SolidColorOnly

Indicates whether the dialog box will restrict users to selecting solid colors only. This setting should
be used with systems that can display only 256 colors.

The Font Dialog Box
The Font dialog box, shown in Figure 7.3, lets the user review and select a font and its size and style.
Optionally, the user can also select the font’s color and even apply the current dialog-box settings to
the selected text on a control of the form without closing the dialog box, by clicking the Apply but-
ton on the Font dialog box.

After the user selects a font, its size and style, and possibly some special effects (the text color or
the underline attribute), and clicks the OK button, the dialog returns the attributes of the selected
font through its properties. In addition to the OK button, there’s an Apply button, which reports
the current setting to your application. You can intercept the Click event of the Apply button and
adjust the appearance of the text on your form while the common dialog is still visible.

The main property of this control is the Font property, which sets the initially selected font on
the control and retrieves the font selected by the user. The following statements display the Font

Figure 7.3

The Font common
dialog box

Chapter 7 MORE WINDOWS CONTROLS294

2877c07.qxd 11/11/01 4:16 PM Page 294

http://www.sybex.com

dialog box after selecting the current font of the TextBox1 control. When the user closes the dialog
box, they retrieve the selected font and assign it to the TextBox control:

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

FontDialog1.Font = TextBox1.Font
If FontDialog1.ShowDialog = DialogResult.OK Then

TextBox1.Font = FontDialog1.Font
End If

End Sub

AllowScriptChange

This property is a Boolean value that indicates whether the Script combo box will be displayed on
the Font common dialog. This combo box allows the user to change the current character set and
select a non-western language (like Greek, Hebrew, Cyrillic, and so on). The text on which the new
font is applied will change to a different language only if the corresponding language has been
installed on the system.

AllowSimulations

This property is a Boolean value that indicates whether the dialog box allows the display and selec-
tion of simulated fonts.

AllowVectorFonts

This property is a Boolean value that indicates whether the dialog box allows the display and selec-
tion of vector fonts.

AllowVerticalFonts

This property is a Boolean value that indicates whether the dialog box allows the display and selection
of both vertical and horizontal fonts. Its default value is False, which displays only horizontal fonts.

Color

This property sets or returns the selected font color. The user will see the option to select a color for
the selected font only if you set the ShowColor property to True.

FixedPitchOnly

This property is a Boolean value that indicates whether the dialog box allows only the selection of
fixed-pitch fonts. Its default value is False, which means that all fonts (fixed- and variable-pitch
fonts) are displayed on the common dialog.

Font

This property is a Font object. You can set it to the preselected font before displaying the dialog
box and assign it to a Font property upon return. The following statements show how to preselect

295THE COMMON DIALOG CONTROLS

2877c07.qxd 11/11/01 4:16 PM Page 295

http://www.sybex.com

the font of the TextBox1 control on the Font dialog box and how to change the same control’s font
to the one selected by the user on the dialog box:

FontDialog1.Font = TextBox1.Font
If FontDialog1.ShowDialog = DialogResult.OK Then

TextBox1.Font = FontDialog1.Font
End If

You can create a new Font object and assign it to the control’s Font property. The following
statements do that:

Dim newFont As Font
newFont = New Font(“Verdana”, 12, FontStyle.Underline)
FontDialog1.Font = newFont
FontDialog1.ShowDialog()

The Font object’s constructor is heavily overloaded. The form shown here is among the simpler
overloaded forms of the constructor. To apply multiple attributes, combine their names with the Or
operator.

The Color property is not part of the Font property. If you allow users to change the font’s color,
you must handle this property separately from within your code. To continue the previous example,
the following statement sets the color of the new font:

TextBox1.ForeColor = FontDialog1.Color

FontMustExist

This property is a Boolean value that indicates whether the dialog box forces the selection of an
existing font. If the user enters a font name that doesn’t correspond to a name in the list of available
fonts, a warning is displayed. Its default value is True.

MaxSize, MinSize

These two properties are integers that determine the minimum and maximum point size the user can
select. Use these two properties to prevent the selection of extremely large or extremely small font
sizes.

ScriptsOnly

This property indicates whether the dialog box allows selection of fonts for Symbol character sets,
in addition to the American National Standards Institute (ANSI) character set. Its default value
is True.

ShowApply

This property is a Boolean value that indicates whether the dialog box provides an Apply button. Its
default value is False, so the Apply button isn’t normally displayed. If you set this property to True,
you must also program the control’s Apply button—the changes aren’t applied automatically to any
of the controls on the current form.

Chapter 7 MORE WINDOWS CONTROLS296

2877c07.qxd 11/11/01 4:16 PM Page 296

http://www.sybex.com

The following statements display the Font dialog box with the Apply button:

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

FontDialog1.Font = TextBox1.Font
FontDialog1.ShowApply = True
If FontDialog1.ShowDialog = DialogResult.OK Then
TextBox1.Font = FontDialog1.Font

End If
End Sub

If you display the Apply button, you must also capture its Click event and process it from within
your code. The FontDialog control raises the Apply event every time the user clicks the Apply but-
ton. In this event’s handler, you must read the currently selected font and assign it to the TextBox
control on the form:

Private Sub FontDialog1_Apply(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles FontDialog1.Apply

TextBox1.Font = FontDialog1.Font
End Sub

ShowColor

This property is a Boolean value that indicates whether the dialog box allows the user to select a
color for the font.

ShowEffects

This property is a Boolean value that indicates whether the dialog box contains controls to allow the
user to specify special text effects, such as strikethrough and underline. The effects are returned to
the application as attributes of the selected Font object, and you don’t have to anything special in
your application.

The Open and Save As Dialog Boxes
Open and Save As are the two most widely used common dialog boxes, and they’re implemented by
the OpenFileDialog and SaveFileDialog controls. Nearly every application prompts the user for a
filename, and VB provides two controls for this purpose. The two dialog boxes are nearly identical
and most of their properties are common, so we’ll start with the properties that are common to both
controls.

When one of the two controls is displayed, it rarely displays all the files in any given folder.
Usually the files displayed are limited to the ones that the application recognizes so that users can
easily spot the file they want. The Filter property determines which files appear in the Open or
Save dialog box (Figure 7.4).

It’s also standard for the Windows interface not to display the extensions of files (although Win-
dows distinguishes files using their extensions). The Save As Type combo box contains the various
file types recognized by the application. The various file types can be described in plain English with
long descriptive names and without their extensions.

297THE COMMON DIALOG CONTROLS

2877c07.qxd 11/11/01 4:16 PM Page 297

http://www.sybex.com

The extension of the default file type for the application is described by the DefaultExtension
property, and the list of the file types displayed in the Save As Type box is described by the Filter
property. Both the DefaultExtension and the Filter properties are available in the control’s Properties
window at design time. At runtime, you must set them manually from within your code.

To prompt the user for the file to be opened, use the following statements. This dialog box dis-
plays the files with the extension .BIN only.

Private Sub bttnSave_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnSave.Click

OpenFileDialog1.DefaultExt = “.BIN”
OpenFileDialog1.AddExtension = True
OpenFileDialog1.Filter = “Binary Files|*.bin”
If OpenFileDialog1.ShowDialog() = DialogResult.OK Then

Console.WriteLine(OpenFileDialog1.FileName)
End If

End Sub

The following sections describe the properties of the OpenFileDialog and SaveFileDialog
controls.

AddExtension

This property is a Boolean value that determines whether the dialog box automatically adds an
extension to a filename, if the user omits it. The extension added automatically is the one specified
by the DefaultExtension property, which must be set before you call the ShowDialog method.

CheckFileExists

This property is a Boolean value that indicates whether the dialog box displays a warning if the user
enters the name of a file that does not exist.

CheckPathExists

This property is a Boolean value that indicates whether the dialog box displays a warning if the user
specifies a path that does not exist, as part of the user-supplied filename.

Figure 7.4

The Save As
dialog box

Chapter 7 MORE WINDOWS CONTROLS298

2877c07.qxd 11/11/01 4:16 PM Page 298

http://www.sybex.com

DefaultExtension

This property sets the default extension of the dialog box. Use this property to specify a default file-
name extension, such as TXT or DOC, so that when a file with no extension is saved, the extension
specified by this property is automatically appended to the filename, as long as the AddExtension
property is also set to True. The default extension property starts with the period, and it’s a string
like “.BIN”.

DereferenceLinks

This property indicates whether the dialog box returns the location of the file referenced by the
shortcut or the location of the shortcut itself. If you attempt to select a shortcut on your desktop
with the DereferenceLinks property set to False, the dialog box will return to your application a
value like C:\WINDOWS\SYSTEM32\lnkstub.exe, which is the name of the shortcut, and not the
name of the file represented by the shortcut. If you set the DereferenceLinks property to True,
the dialog box will return the actual filename represented by the shortcut, which you can use in
your code.

FileName

This property is the path of the file selected by the user on the control. If you set this property to a
filename before opening the dialog box, this value will be the proposed filename. The user can click
OK to select this file, or select another one on the control. Read this property from within your code
only if the control was closed with OK button. If the user closed it with the Cancel button, you
should ignore the setting of this value. The two controls provide another related property, the File-
Names property, which returns an array of filenames. To find out how to allow the user to select
multiple files, see the discussion of the MultipleFiles and FileNames properties under “VB.NET at
Work: Multiple File Selection” at the end of this section.

Filter

This property is used to specify the type(s) of files displayed on the dialog box. To display text files
only, set the Filter property to “Text files|*.txt”. The pipe symbol separates the description of the
files (what the user sees) from the actual extension (how the operating system distinguishes the vari-
ous file types).

If you want to display multiple extensions, such as BMP, GIF, and JPG, use a semicolon to sepa-
rate extensions with the Filter property. The string “Images|*.BMP;*.GIF;*.JPG” displays all the
files of these three types when the user selects Images in the Save As Type box.

Don’t include spaces before or after the pipe symbol because these spaces will be displayed with
the description and Filter values. In the Open common dialog of an image-processing application,
you’ll probably provide options for each image file type, as well as an option for all images:

OpenFileDialog1.Filter = “Bitmaps|*.BMP|GIF Images|*.GIF|JPEG” & _
“Images|*.JPG|All Images|*.BMP;*.GIF;*.JPG”

The Open dialog box has four options, which determine what appears in the Save As Type box
(see Figure 7.5).

299THE COMMON DIALOG CONTROLS

2877c07.qxd 11/11/01 4:16 PM Page 299

http://www.sybex.com

FilterIndex

When you specify more than one filter for the Open dialog box, the filter specified first in the Filter
property becomes the default. If you want to use a Filter value other than the first one, use the
FilterIndex property to determine which filter will be displayed as the default when the common dialog
is opened. The index of the first filter is 1, and there’s no reason to ever set this property to 1. If you
want to use the Filter property value of the example in the preceding section and set the FilterIndex
property to 2, the Open dialog box will display GIF files by default.

InitialDirectory

This property sets the initial directory (folder) in which files are displayed the first time the Open
and Save dialog boxes are opened. Use this property to display the files of the application’s folder or
to specify a folder in which the application will store its files by default. If you don’t specify an ini-
tial folder, it will default to the last folder where the dialog box opened or saved a file. It’s also cus-
tomary to set the initial folder to the application’s path, with the following statement:

OpenFileDialog1.InitialDirectory = Application.ExecutablePath

The expression Application.ExecutablePath returns the path in which the application’s exe-
cutable file resides. You can also create a default data folder for the application during installation
and use this folder’s name as the initial directory.

RestoreDirectory

Every time the Open and Save dialog boxes are displayed, the current folder is the one selected by
the user the last time the control was displayed. The RestoreDirectory property is a Boolean value
that indicates whether the dialog box restores the current directory before closing. Its default value is
False, which means that the initial directory is not restored automatically. The InitialDirectory prop-
erty overrides the RestoreDirectory property.

ValidateNames

This property is a Boolean value that indicates whether the dialog box accepts only valid Win32 file-
names. Its default value is True, and you shouldn’t change it.

Figure 7.5

Displaying multiple
file types in the
Open dialog box

Chapter 7 MORE WINDOWS CONTROLS300

2877c07.qxd 11/11/01 4:16 PM Page 300

http://www.sybex.com

Tip The following four properties—FileNames, MultiSelect, ReadOnlyChecked, and ShowReadOnly—are properties
of the OpenFileDialog control only.

FileNames

If the Open dialog box allows the selection of multiple files (see the later section “VB.NET at
Work: Multiple File Selection”), the FileNames property contains the pathnames of all selected
files. FileNames is a collection, and you can iterate through the filenames with an enumerator. See
the MultipleFiles application for an example of iterating through the collection of the selected files.
This property is unique to the OpenFileDialog control.

MultiSelect

This property is a Boolean value that indicates whether the user can select multiple files on the dia-
log box. Its default value is False, and users can select a single file. When the MultiSelect property is
True, the user can select multiple files, but they must all come from the same folder. You can’t allow
the selection of multiple files from different folders. This property is unique to the OpenFileDialog
control.

ReadOnlyChecked

This property is a Boolean value that indicates whether the Read-Only check box is initially selected
when the dialog box first pops up (the user can clear this box to open a file in read/write mode).
You can set this property to True only if the ShowReadOnly property is also set to True. This
property is unique to the OpenFileDialog control.

ShowReadOnly

This property is a Boolean value that indicates whether the Read-Only check box is available. If this
check box appears on the form, the user can check it so that the file will be opened as read-only.
Files opened as read-only shouldn’t be saved onto the same file—you can prompt the user for a new
filename, but you shouldn’t save them with the same filename. This property is unique to the Open-
FileDialog control.

VB.NET at Work: The OpenFile and SaveFile Methods

The OpenFileDialog control exposes the OpenFile method, which allows you to quickly open the
selected file. Normally, after retrieving the name of the file selected by the user, you must open this
file for reading (in the case of the Open dialog box) or writing (in the case of the Save dialog box).
The topic of reading from, or writing to, files is discussed in detail in Chapter 13. In this section, I’ll
show you how to quickly read the selected file through the OpenFileDialog control’s OpenFile
method.

When the OpenFile method is applied to the Open dialog box, the file is opened with read-only
permission. The same method can be applied to the Save dialog box, in which case the file is opened
with read-write permission. The OpenFile method is demonstrated by the OpenMethod project,
whose main form is shown in Figure 7.6.

301THE COMMON DIALOG CONTROLS

2877c07.qxd 11/11/01 4:16 PM Page 301

http://www.sybex.com

The following code segment demonstrates how to open a text file with the OpenFile method,
read its contents, and display it on a TextBox control. The code displays the Open dialog box and
then calls the control’s OpenFile method to open the file and read it. Listing 7.1 is code behind the
Open And Read Text File button on the form.

Listing 7.1: The OpenFile Method of the OpenFileDialog Control

Private Sub readTextFile_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles readTextFile.Click

OpenFileDialog1.ShowDialog()
Dim str As System.IO.Stream
str = OpenFileDialog1.OpenFile
Dim txt As New System.Text.StringBuilder()
Dim buffer(1000) As Byte
Dim numBytesToRead As Integer = CInt(str.Length)
Dim numBytesRead As Integer = 0
Dim n As Integer
While (numBytesToRead > 0)

n = str.Read(buffer, 0, 1000)
Console.WriteLine(n.ToString & “read”)
If n = 0 Then

Exit While
End If
Dim i As Integer
For i = 0 To n

txt.Append(Chr(buffer(i)))
Next
numBytesRead += n
numBytesToRead -= n

End While
str.Close()
TextBox1.Text = txt.ToString

End Sub

Figure 7.6

The main form of
the OpenMethod
project

Chapter 7 MORE WINDOWS CONTROLS302

2877c07.qxd 11/11/01 4:16 PM Page 302

http://www.sybex.com

The code reads the file 1,000 characters at a time and appends the characters to a StringBuilder
variable (this type of variable is especially efficient for manipulating strings, and you’ll learn more
about it in Chapter 12). The Read method of the Stream object reads 1,000 characters and stores
them to the buffer array. Then the characters of the array are appended to a StringBuilder variable, the
txt variable, which is finally displayed on the TextBox control.

VB.NET at Work: Multiple File Selection

The Open dialog box allows the selection of multiple files. This option isn’t very common, but it can
come in handy in situations when you want to process files en masse. You can let the user select many
files and then process them one at a time. Or you may wish to prompt the user to select multiple files
to be moved or copied.

To allow the user to select multiple files on the Open dialog box, set the MultiSelect property to
True. The user can then select multiple files with the mouse by holding down the Shift or Ctrl key.
The names of the selected files are reported by the property FileNames, which is an array of strings. The
FileNames array contains the pathnames of all selected files, and you can iterate through them as you
would iterate through the elements of any array.

In this chapter’s folder on the CD, you’ll find the MultipleFiles project, which demonstrates the
use of the FileNames property. The application’s form is shown in Figure 7.7. The button at the top
of the form opens a File dialog box, where you can select multiple files. After closing the dialog box
by clicking the Open button, the application displays the pathnames of the selected files in the List-
Box control.

The code behind the Open Files button is shown in Listing 7.2. In this example, I’ve used the
array’s enumerator to iterate through the elements of the FileNames array. You can use any of the
methods discussed in Chapter 3 to iterate through the array.

Figure 7.7

The MultipleFiles
project lets the
user select multiple
files on an Open
dialog box.

303THE COMMON DIALOG CONTROLS

2877c07.qxd 11/11/01 4:16 PM Page 303

http://www.sybex.com

Listing 7.2: Processing Multiple Selected Files

Private Sub bttnFile_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnFile.Click

OpenFileDialog1.Multiselect = True
OpenFileDialog1.ShowDialog()
Dim filesEnum As IEnumerator
ListBox1.Items.Clear()
filesEnum = OpenFileDialog1.FileNames.GetEnumerator()
While filesEnum.MoveNext

ListBox1.Items.Add(filesEnum.Current)
End While

End Sub

The Print Dialog Box
The Print dialog box (Figure 7.8) enables users to select a printer, set certain properties of the print-
out (e.g., number of copies and pages to be printed), and set up a specific printer.

After the user selects a printer and clicks OK, the Print dialog box returns the attributes of the
desired printout to the calling program through the following properties:

AllowPrintToFile This property is a Boolean value that controls whether the user will be given
the option to print to a file. If set to False, the Print To File option on the dialog will be disabled.

AllowSelection This property is a Boolean value that determines whether the user is allowed to
print the current selection of the document. If you don’t want to provide the code for printing a
segment of the document, set this property to False.

AllowSomePages This property is a Boolean value that determines whether the Pages option
on the dialog will be enabled.

Figure 7.8

The Print common
dialog box

Chapter 7 MORE WINDOWS CONTROLS304

2877c07.qxd 11/11/01 4:16 PM Page 304

http://www.sybex.com

These properties determine which of the options on the dialog box will be available to the user.
To retrieve the properties of the printout specified by the user on the dialog box, you must use the
PrinterSettings object. This object exposes many properties, such as FromPage and ToPage (which
determine the starting and ending page of the printout), Copies (which determines the number of
copies of the printout), and PrinterName (the name of the selected printer). The PrinterSettings
property is discussed in detail in Chapter 15.

The following statements create a new PrinterSettings object, pass it to the Print dialog box, and
then display the dialog box. Upon return, they print a few of the settings specified by the user on the
Print dialog box. Place an instance of the PrintDialog control to the form and enter the following
statements in a button’s Click event handler to test them:

PrintDialog1.AllowSomePages = True
PrintDialog1.AllowSelection = True
PrintDialog1.PrinterSettings = _

New System.Drawing.Printing.PrinterSettings()
PrintDialog1.ShowDialog()
Console.WriteLine(“FROM PAGE: “ & PrintDialog1.PrinterSettings.FromPage)
Console.WriteLine(“TO PAGE: “ & PrintDialog1.PrinterSettings.ToPage)
Console.WriteLine(“# OF COPIES: “ & PrintDialog1.PrinterSettings.Copies)
Console.WriteLine(“PRINTER NAME:” & PrintDialog1.PrinterSettings.PrinterName)
Console.WriteLine(“PRINT RANGE: “ & PrintDialog1.PrinterSettings.PrintRange)
Console.WriteLine(“LANDSCAPE: “ & PrintDialog1.PrinterSettings.LandscapeAngle)

The output produced by the previous statements on my system looked like this:

FROM PAGE: 3
TO PAGE: 4
OF COPIES: 1
PRINTER NAME:Epson Stylus Photo 750 ESC/P 2
PRINT RANGE: 2
LANDSCAPE: 270

To set the orientation of the printout, you must click the Properties button on the Print dialog
box. This action will display the property pages dialog box of the specified printer, where you can
set properties like the page’s orientation, the quality of the printout, and other printer-dependent
properties. The value 270 returned by the LandscapeAngle indicates the angle of rotation for the
printout. The default orientation is Portrait, and the document must be rotated by 270 degrees
clockwise for the Landscape orientation.

The PrinterSettings object, as well as the related PageSettings object, are explored in detail in
Chapter 15, where you’ll learn how to print documents with the .NET Framework and Visual Basic.

The RichTextBox Control
The RichTextBox control is the core of a full-blown word processor. It provides all the functional-
ity of a TextBox control; in addition, it gives you the capability to mix different fonts, sizes, and
attributes; and it gives you precise control over the margins of the text (see Figure 7.9). You can even
place images in your text on a RichTextBox control (although you won’t have the kind of control
over the embedded images that you have with Microsoft Word).

305THE RICHTEXTBOX CONTROL

2877c07.qxd 11/11/01 4:16 PM Page 305

http://www.sybex.com

The fundamental property of the RichTextBox control is its RTF property. Similar to the Text
property of the TextBox control, this property is the text displayed on the control. Unlike the
Text property, which returns (or sets) the text of the control but doesn’t contain formatting infor-
mation, the RTF property returns the text along with any formatting information. Therefore, you can
use the RichTextBox control to specify the text’s formatting, including paragraph indentation, font,
and font size or style.

RTF stands for Rich Text Format, which is a standard for storing formatting information along
with the text. The beauty of the RichTextBox control for programmers is that they don’t need to
supply the formatting codes. The control provides simple properties that turn the selected text into
bold, change the alignment of the current paragraph, and so on. The RTF code is generated inter-
nally by the control and used to save and load formatted files. It’s possible to create elaborately for-
matted documents without knowing the RTF language.

Note The WordPad application that comes with Windows is based on the RichTextBox control. You can easily dupli-
cate every bit of WordPad’s functionality with the RichTextBox control, as you will see later on in the section “VB.NET
at Work: The RTFPad Project.”

The RTF Language
A basic knowledge of the RTF format, its commands, and how it works, will certainly help you
understand how the RichTextBox control works. RTF is a language that uses simple commands to
specify the formatting of a document. These commands, or tags, are ASCII strings, such as \par (the
tag that marks the beginning of a new paragraph) and \b (the tag that turns on the bold style). And
this is where the value of the RTF format lies. RTF documents don’t contain special characters and
can be easily exchanged among different operating systems and computers, as long as there is an
RTF-capable application to read the document. Let’s look at the RTF document in action.

Figure 7.9

A word processor
based on the func-
tionality of the
RichTextBox
control

Chapter 7 MORE WINDOWS CONTROLS306

2877c07.qxd 11/11/01 4:16 PM Page 306

http://www.sybex.com

Open the WordPad application (choose Start ➢ Programs ➢ Accessories ➢ WordPad) and
enter a few lines of text (see Figure 7.10). Select a few words or sentences and format them in differ-
ent ways with any of WordPad’s formatting commands. Then save the document in RTF format:
Choose File ➢ Save As, select Rich Text Format, and then save the file as Document.rtf. If you
open this file with a text editor such as Notepad, you’ll see the actual RTF code that produced the
document. You can find the RTF file for the document shown in Figure 7.10 in this chapter’s
folder on the CD; a small section of the RTF document is presented in Listing 7.3.

Listing 7.3: Excerpt from the RTF Code for the Document of Figure 7.9

{\rtf1\ansi\ansicpg1252\deff0\deflang1033
{\fonttbl{\f0\fnil\fcharset0 Verdana;}{\f1\fswiss\fcharset0 Arial;}}
\viewkind4\uc1\pard\nowidctlpar\fi720\b\f0\fs18 RTF \b0 stands for \i Rich Text
Format\i0 , which is a standard for storing formatting information along with the
text. The beauty of the RichTextBox control for programmers is that they don\rquote
t need to supply the formatting codes. The control provides simple properties that
turn the selected text into bold, change the alignment of the current paragraph,
and so on.\par

As you can see, all formatting tags are prefixed with the backslash (\) symbol. To display the \
symbol itself, insert an additional slash. Paragraphs are marked with the \par tag, and the entire doc-
ument is enclosed in a pair of curly brackets. The \li and \ri tags followed by a numeric value spec-
ify the amount of the left and right indentation. If you assign this string to the RTF property of a
RichTextBox control, the result will be the document shown in Figure 7.10, formatted exactly as it
appears in WordPad.

RTF is similar to HTML (Hypertext Markup Language), and if you’re familiar with HTML, a
few comparisons between the two standards will provide helpful hints and insight into the RTF lan-
guage. Like HTML, RTF was designed to create formatted documents that could be displayed on
different systems. The RTF language uses tags to describe the document’s format. For example, the

Figure 7.10

The formatting
applied to the text
using WordPad’s
commands is stored
along with the text
in RTF format.

307THE RICHTEXTBOX CONTROL

2877c07.qxd 11/11/01 4:16 PM Page 307

http://www.sybex.com

tag for italics is \i, and its scope is delimited with a pair of curly brackets. The following RTF seg-
ment displays a sentence with a few words in italics:

{{\b RTF} (which stands for Rich Text Format) is a {\i document formatting
language} that uses simple commands to specify the formatting of the document.}

The following is the equivalent HTML code:

RTF (which stands for Rich Text Format) is a <i>document formatting
language</i> that uses simple commands to specify the formatting of the document.

The and <i> tags of HTML are equivalent to the \b and \i tags of RTF. RTF, however,
is much more complicated than HTML. It’s not nearly as easy to understand an RTF document as
it is to understand an HTML document because RTF was meant to be used internally by applica-
tions. As you can see in Listing 7.3, RTF contains information about the font being used, its size,
and so on. Just as you need a browser to view HTML documents, you need an RTF-capable appli-
cation to view RTF documents. WordPad, for instance, supports RTF and can both save a docu-
ment in RTF format and read RTF files.

You’re not expected to supply your own RTF code to produce a document. You simply select
the segment of the document you want to format and apply the corresponding formatting command
from within your word processor. Fortunately, the RichTextBox control isn’t any different. It doesn’t
require you or the users of your application to understand RTF code. The RichTextBox control does
all the work for you while hiding the low-level details.

VB.NET at Work: The RTFDemo Project

The RTFDemo project, shown in Figure 7.11, demonstrates the principles of programming the
RichTextBox control. The RichTextBox control is the large box covering the upper section of the
form where you can type text as you would with a regular TextBox control.

Figure 7.11

The RTFDemo
project demonstrates
how the Rich-
TextBox control
handles RTF code.

Chapter 7 MORE WINDOWS CONTROLS308

2877c07.qxd 11/11/01 4:16 PM Page 308

http://www.sybex.com

Use the first three buttons to set styles for the selected text. The Bold and Italic buttons are self-
explanatory; the Regular button restores the regular style of the text. All three buttons create a new
font based on the current font of the RichTextBox control and turn on the appropriate attribute.
Here’s the code behind the Bold button:

Private Sub bttnBold_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnBold.Click

Dim fnt As New Font(RichTextBox1.Font, FontStyle.Bold)
RichTextBox1.SelectionFont = fnt

End Sub

The code for the Italic button is quite similar, it simply sets a different attribute:

Private Sub bttnItalic_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnItalic.Click

Dim fnt As New Font(RichTextBox1.Font, FontStyle.Italic)
RichTextBox1.SelectionFont = fnt

End Sub

Both buttons create a new Font object based on the current font of the control. The second argu-
ment of the Font’s constructor is a constant with the font’s attributes. The code shown here turns on
the Bold and Italic attributes of the font. The second statement in the two handlers assigns the new
font to the selected text (property SelectionFont). Notice that these two buttons don’t toggle the bold
and the italic attribute; if the selected text is already bold, nothing will change.

The Clear button clears the contents of the control by calling its Clear method:

RichTextBox1.Clear()

The two buttons on the second row demonstrate the nature of the RichTextBox control. Select a
few words on the control, turn on their bold and/or italic attribute, and then click the Show Text
button. You’ll see a message box that contains the control’s text. No matter how the text is format-
ted, the control’s Text property will be the same. This is the text you would copy from the control
and paste into a text-editing application that doesn’t support formatting commands (for example,
Notepad). The code behind the Show Text button is:

MsgBox(RichTextBox1.Text)

To replace the text on the control, you can either type some new text, or select some formatted
text in another application, like WordPad, and paste it on the control.

The RTF Code

If you click the Show RTF button, you’ll see the actual RTF code that produced the formatted doc-
ument in Figure 7.11. The message box with the RTF code is shown in Figure 7.12. This is all the
information the RichTextBox control requires to render the document. As complicated as it may
look, it isn’t difficult to produce. In programming the RichTextBox control, you’ll rarely have to
worry about inserting actual RTF tags in the code. The control is responsible for generating the
RTF code and for rendering the document. You simply manipulate a few properties (the recurring
theme in Visual Basic programming), and the control does the rest.

309THE RICHTEXTBOX CONTROL

2877c07.qxd 11/11/01 4:16 PM Page 309

http://www.sybex.com

On rather rare occasions, you may have to supply RTF tags. You don’t have to know much about
RTF tags, though. Simply format a few words with the desired attributes using the RTFDemo
application (or experiment with the Immediate window), copy the tags that produce the desired
result, and use them in your application. If you are curious about RTF, experiment with the
RTFDemo application.

One of the most interesting applications on the book’s CD-ROM is the RTFPad application, a
word-processing application that’s discussed in detail later in this chapter. This application duplicates
much of the functionality of Windows WordPad, but it’s included in this book to show you how the
RichTextBox control is used. The RTFPad application can become your starting point for writing cus-
tom word-processing applications (a programmer’s text editor with color-coded keywords, for example).

The RichTextBox’s Properties
The names of the RichTextBox control’s properties for manipulating selected text mostly start with
Selected or Selection. The most commonly used properties related to the selected text are shown in
Table 7.1. Some of these are discussed in further detail in following sections.

Table 7.1: RichTextBox Properties for Manipulating Selected Text

Property What It Manipulates

SelectedText The selected text

SelectedRTF The RTF code of the selected text

SelectionStart The position of the selected text’s first character

SelectionLength The length of the selected text

SelectionFont The font of the selected text

SelectionColor The color of the selected text

The indentation of the selected text

RightMargin The distance of the text’s right margin from the left edge of the
control, which is in effect the length of each text line

SelectionBullet Whether the selected text is bulleted

BulletIndent The amount of bullet indent for the selected text

SelectionIndent, SelectionRightIndent,
SelectionHangingIndent

Figure 7.12

The RTF code for
the formatted docu-
ment shown in Fig-
ure 7.11

Chapter 7 MORE WINDOWS CONTROLS310

2877c07.qxd 11/11/01 4:16 PM Page 310

http://www.sybex.com

SelectedText

The SelectedText property represents the selected text. To assign the selected text to a variable, use
the following statement:

SText=RichTextbox1.SelectedText

RichTextbox1 is the name of the control. You can also modify the selected text by assigning a new
value to the SelectedText property. The following statement converts the selected text to uppercase:

RichTextbox1.SelectedText=UCase(RichTextbox1.SelectedText)

If you assign a string to the SelectedText property, the selected text in the control is replaced with
the string. The following statement replaces the current selection on the RichTextbox1 control with the
string “Revised string”:

RichTextbox1.SelectedText=”Revised string”

If no text is selected, the statement inserts the string at the location of the pointer. It is possible,
therefore, to insert text automatically by assigning a string to the SelectedText property.

Note The SelectedText property is similar to the Text property. The difference is that SelectedText applies to the cur-
rent selection or cursor position instead of the entire text of the control. The same is true for the RTF and SelectedRTF
properties.

SelectionStart, SelectionLength

To simplify the manipulation and formatting of the text on the control, two additional properties,
SelectionStart and SelectionLength, report the position of the first selected character in the text and
the length of the selection, respectively. You can also set the values of these properties to select a
piece of text from within your code. One obvious use of these properties is to select (and highlight)
the entire text (or a segment of the text):

RichTextBox1.SelectionStart = 0
RichTextBox1.SelectionLength = Len(RichTextBox1.Text)

A better method of selecting the entire text on the control is to call the SelectAll method, which
is discussed later in this section.

SelectionAlignment

Use this property to read or change the alignment of one or more paragraphs. This property value is
one of the members of the HorizontalAlignment enumeration: Left, Right, and Center.

Note The user doesn’t have to actually select the entire paragraph to align it. Placing the pointer anywhere in the para-
graph or selecting a few characters in the paragraph will do, because there is no way to align only a part of a paragraph.

SelectionIndent, SelectionRightIndent, SelectionHangingIndent

These properties allow you to change the margins of individual paragraphs. The SelectionIndent
property sets (or returns) the amount of the text’s indentation from the left edge of the control. The

311THE RICHTEXTBOX CONTROL

2877c07.qxd 11/11/01 4:16 PM Page 311

http://www.sybex.com

SelectionRightIndent property sets (or returns) the amount of the text’s indentation from the right
edge of the control. The SelectionHangingIndent property is the distance between the left edge of
the first line and the left edge of the following lines.

The SelectionHangingIndent property includes the current setting of the SelectionIndent property.
If all the lines of a paragraph are aligned to the left, the SelectionIndent property can have any value
(this is the distance of all lines from the left edge of the control), but the SelectionHangingIndent
property must be zero. If the first line of the paragraph is shorter than the following lines, the
SelectionHangingIndent has a negative value. Figure 7.13 shows two differently formatted paragraphs.
The settings of the SelectionIndent and SelectionHangingIndent properties are determined by the
two sliders at the top of the form.

SelectionBullet, BulletIndent

You use these properties to create a list of bulleted items. If you set the SelectionBullet property to
True, the selected paragraphs are formatted with a bullet style, similar to the tag in HTML.
To create a list of bulleted items, assign the value True to the SelectionBullet property. To change a
list of bulleted items back to normal text, make the same property False.

The paragraphs formatted with the SelectionBullet property set to True are also indented from
the left by a small amount. To set the amount of the indentation, use the BulletIndent property,
whose syntax is

RichTextBox1.BulletIndent = value

You can also read the BulletIndent property from within your code to find out the bulleted items’
indentation. Or you can use this property, along with the SelectionBullet property, to simulate
nested bulleted items. If the current selection’s SelectionBullet property is True and the user wants to
apply the bullet format, you can increase the indentation of the current selection.

Figure 7.13

Various combina-
tions of the Selec-
tionIndent and
SelectionHanging-
Indent properties
produce all possible
paragraph formatting.

Chapter 7 MORE WINDOWS CONTROLS312

2877c07.qxd 11/11/01 4:16 PM Page 312

http://www.sybex.com

Methods
The first two methods of the RichTextBox control you will learn about are SaveFile and LoadFile:

SaveFile saves the contents of the control to a disk file.

LoadFile loads the control from a disk file.

SaveFile

The syntax of the SaveFile method is

RichTextBox1.SaveFile(path, filetype)

where path is the path of the file in which the current document will be saved. By default, the SaveFile
method saves the document in RTF format and uses the RTF extension. You can specify a different
format with the second, optional, argument, which can take on the value of one of the members of
the RichTextBoxStreamType enumeration, which are described in Table 7.2.

Table 7.2: The RichTextBoxStreamType Enumeration

Format Effect

PlainText Stores the text on the control without any formatting

RichNoOLEObjs Stores the text without any formatting and ignores any embedded OLE objects

RichText Stores the formatted text

TextTextOLEObjs Stores the text along with the embedded OLE objects

UnicodePlainText Stores the text in Unicode format

LoadFile

Similarly, the LoadFile method loads a text or RTF file to the control. Its syntax is identical to the
syntax of the SaveFile method:

RichTextBox1.LoadFile(path, filetype)

The filetype argument is optional and can have one of the values of the RichTextBoxStreamType enu-
meration. Saving and loading files to and from disk files are as simple as presenting a Save or Open
common dialog control to the user and then calling one of the SaveFile or LoadFile methods with
the filename returned by the common dialog box.

Note You can’t assign formatted text to the control at design time. The Text property is available at design time, but
the text is rendered in the same format. The RTF property isn’t available at design time. To display initially some format-
ted text on the control, you must either load it from a file with the LoadFile method, or assign the equivalent RTF code to
the RTF property at runtime, usually from within the form’s Load event.

313THE RICHTEXTBOX CONTROL

2877c07.qxd 11/11/01 4:16 PM Page 313

http://www.sybex.com

Select, SelectAll

The Select method selects a section of the text on the control, similar to setting the SelectionStart
and SelectionLength properties. The Select method accepts two arguments, which are the location of
the first character to be selected and the length of the selection:

RichTextBox1.Select(start, length)

The SelectAll method accepts no arguments and selects all the text on the control.

Advanced Editing Features
The RichTextBox control provides all the text-editing features you’d expect to find in a text-editing
application. You can use the arrow keys to move through the text and press Ctrl+C to copy text or
Ctrl+V to paste it. To facilitate the design of advanced text-editing features, the RichTextBox con-
trol provides the AutoSelectWord property, which controls how the control selects text. If it’s True,
the control selects a word at a time.

In addition to formatted text, the RichTextBox control can handle OLE objects. You can insert
images in the text by pasting them with the Paste method. The Paste method doesn’t require any
arguments; it simply inserts the contents of the Clipboard at the current location in the document.

The RichTextBox control encapsulates undo and redo operations at multiple levels. Each opera-
tion has a name (Typing, Deletion, and so on), and you can retrieve the name of the next operation
to be undone or redone and display it on the menu. Instead of a simple Undo or Redo caption, you
can change the captions of the Edit menu to something like Undo Delete or Redo Typing.

To program undo and redo operation from within your code, you must use the following proper-
ties and methods.

CanUndo, CanRedo

These two properties are Boolean values you can read to find out whether an operation can be
undone or redone. If they’re False, you must disable the corresponding menu command from within
your code. The following statements disable the Undo command if there’s no action to be undone at
the time, where EditUndo is the name of the Undo command on the Edit menu:

If RichTextBox1.CanUndo Then
EditUndo.Enabled = True

Else
EditUndo.Enabled = False

End If

These statements appear in the menu item’s Select event handler (not in the Click event handler),
because they must be executed before the menu is displayed. The Select event is triggered when a menu
is opened. As a reminder, the Click event isn’t fired when you click an item. For more information
on programming the events of a menu, see Chapter 5.

UndoActionName, RedoActionName

These two properties return the name of the action that can be undone or redone. The most com-
mon value of both properties is the string “typing,” which indicates that the Undo command will
delete a number of characters. Another common value is the “delete” string, while some operations

Chapter 7 MORE WINDOWS CONTROLS314

2877c07.qxd 11/11/01 4:16 PM Page 314

http://www.sybex.com

are named “unknown.” If you change the indentation of a paragraph on the control, this action’s
name is “unknown.” It’s likely that more action names will be recognized in future versions of the
control.

The following statement sets the caption of the Undo command to a string that indicates the
action to be undone:

EditUndo.Text = “Undo “ & Editor.UndoActionName

Undo, Redo

These two methods undo or redo an action. The Undo method cancels the effects of the last action
of the user on the control. The Redo method redoes the last action that was undone. Obviously,
unless one or more actions have been undone already, the Redo method won’t have any effect.

You will see how the Undo and Redo methods, as well as the related properties, are used in an
application in the section “The RTFPad Project,” later in this chapter.

Cutting and Pasting
To cut, or copy, and paste text on the RichTextBox control, you can use the same techniques as with
the regular TextBox control. For example, you can replace the current selection by assigning a string
to the SelectedText property. The RichTextBox, however, provides useful methods for performing
these operations. The methods Copy, Cut, and Paste perform the corresponding operations. The
Cut and Copy methods are straightforward and require no arguments. The Paste method accepts a
single argument, which is the format of the data to be pasted. Since the data will come from the
Clipboard, you can extract the format of the data in the Clipboard at the time and then call the
CanPaste method to find out whether the control can handle this type of data. If so, you can then
paste them on the control with the Paste method.

This technique requires quite a bit of code, because the Clipboard object doesn’t return the
format of the data it holds. You must call the following method of the Clipboard object to find
out whether the data is of a specific type and then call the control’s CanPaste method to find out
whether it can handle the data:

If Clipboard.GetDataObject.GetDataPresent(DataFormats.Text) Then
RichTextBox.Paste(DataFormats.Text)

End If

This is a very simple case, because we know that the RichTextBox control can accept text. For a
robust application, you must call the GetDataPresent method for each type of data your application
should be able to handle (you may not want to allow users to paste all types of data that the control
can handle).

In the RTFPad project later in this chapter, we’ll use a structured exception handler to allow
users to paste anything on the control. If the control can’t handle it, the data won’t be pasted on the
control. As you already know, the RichTextBox control can display images along with text. Each
image takes up the entire width of the control. You can center it on the page with the usual align-
ment properties, but you can’t enter text to either side of the image. If you need a control with the
functionality of Word, then you can either automate Word from within your VB application (see
Chapter 10 for more information on programming Word’s objects) or purchase a third-party con-
trol with advanced processing features.

315THE RICHTEXTBOX CONTROL

2877c07.qxd 11/11/01 4:16 PM Page 315

http://www.sybex.com

Searching in a RichTextBox Control
The Find method locates a string in the control’s text and is similar to the InStr() function. You can
use InStr() with the control’s Text property to locate a string in the text, but the Find method is
optimized for the RichTextBox control and supports a couple of options that the InStr() function
doesn’t. The simplest form of the Find method is the following:

RichTextBox1.Find(string)

The string argument is the string you want to locate in the RichTextBox control. The method
returns an integer value that is the location of the first instance of the string in the text. If the speci-
fied string can’t be found in the text, the value –1 is returned.

Another, equally simple syntax of the Find method allows you to specify how the control will
search for the string:

RichTextBox1.Find(string, searchMode)

The searchMode argument is a member of the RichTextBoxFinds enumeration, which are shown in
Table 7.3.

Table 7.3: The RichTextBoxFinds Enumeration

Value Effect

MatchCase Performs a case-sensitive search.

NoHighlight The text found will not be highlighted.

None Locates instances of the specified string even if they’re not whole words.

Reverse The search starts at the end of the document.

WholeWord Locate only instances of the specified string that are whole words.

Two more forms of the Find method allow you specify the range of the text in which the search
will take place:

RichTextBox1.Find(string, start, searchMode)
RichTextBox1.Find(string, start, end, searchMode)

The arguments start and end are the starting and ending locations of the search (use them to search
for a string within a specified range only). If you omit the end argument, the search will start at the
location specified by the start argument and will extend to the end of the text.

You can combine multiples of the values of the searchMode argument with the OR operator. The
default search is case-insensitive, covers the entire document, and highlights the matching text on
the control. The RTFPad application’s Find command demonstrates how to use the Find method
and its arguments to build a Search & Replace dialog box that performs all the types of text-searching
operations you might need in a text-editing application.

Chapter 7 MORE WINDOWS CONTROLS316

2877c07.qxd 11/11/01 4:16 PM Page 316

http://www.sybex.com

Formatting URLs
A new feature built into the RichTextBox control is the automatic formatting of URLs embedded
in the text. To enable this feature, set the DetectURLs property to True. Then, as soon as the
control determines that you’re entering a URL (usually after you enter the three Ws and the follow-
ing period), it will format the text as a hyperlink. When the pointer rests over a hyperlink, its shape
turns into a hand, just as it would in Internet Explorer. Run the RTFDemo project, enter a URL
like www.sybex.com, and see how the RichTextBox control handles it.

In addition to formatting the URL, the RichTextBox control triggers the LinkClicked event
when a hyperlink is clicked. To display the corresponding page from within your code, enter the fol-
lowing statement in the LinkClicked event handler:

Private Sub RichTextBox1_LinkClicked(ByVal sender As Object, _
ByVal e As System.Windows.Forms.LinkClickedEventArgs) _
Handles RichTextBox1.LinkClicked

System.Diagnostics.Process.Start(e.LinkText)
End Sub

The System.Diagnostics.Process class provides the Start method, which starts an application.
You can specify either the name of the executable or the path of a file. The Start method will look
up the associated application and start it. As you can see, handling embedded URLs with the Rich-
TextBox control is almost trivial.

Whatever application or file you specify in the Start method (Internet Explorer, for example) will
run independently of your application, and the user may navigate to any other site, or close the
browser and return to your application.

VB.NET at Work: The RTFPad Project
Creating a functional, even fancy, word processor based on the RichTextBox control is quite simple.
The challenge is to provide a convenient interface that lets the user select text, apply attributes and
styles to it, and then set the control’s properties accordingly. This chapter’s application does just
that. It’s called RTFPad, and you can find it in this chapter’s folder on the CD.

The RTFPad application (see Figure 7.9) is based on the TextPad application developed in
Chapter 6. It contains the same text-editing commands and some additional text-formatting com-
mands that can only be implemented with the RichTextBox control; for example, it allows you to
mix font styles in the text. This section examines the code and discusses a few topics unique to this
application’s implementation with the RichTextBox control.

The two TrackBar controls above the RichTextBox control manipulate the indentation of the text.
We’ve already explored this arrangement in the discussion of the TrackBar control in Chapter 6, but
let’s review the operation of the two controls again. Each TrackBar control has a width of 816 pixels,
which is equivalent to 8.5 inches on a monitor with a resolution of 96 dpi (dots per inch). The height
of the TrackBar controls is 42 pixels and, unfortunately, they can’t be made smaller. The Minimum
and Maximum properties of the control are of no significance, because all we really care about is
the relative value of the control. Each time the user slides the top TrackBar control, the code sets the
SelectionIndent property to the proper percentage of the control’s width. Because the Selection-
HangingIndent includes the value of the SelectionIndent property, it also adjusts the setting of the
SelectionHangingIndent property. Listing 7.4 is the code that’s executed when the upper TrackBar
control is scrolled.

317THE RICHTEXTBOX CONTROL

2877c07.qxd 11/11/01 4:16 PM Page 317

http://www.sybex.com

Listing 7.4: Setting the SelectionIndent Property

Private Sub TrackBar1_Scroll(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles TrackBar1.Scroll

Editor.SelectionIndent = Editor.Width * (TrackBar1.Value / TrackBar1.Maximum)
Editor.SelectionHangingIndent = Editor.Width * _

(TrackBar2.Value / TrackBar2.Maximum) - Editor.SelectionIndent
End Sub

The second TrackBar control controls the hanging indentation of the selected text (the indenta-
tion of all text lines after the first one). Its Scroll event handler is presented in Listing 7.5.

Listing 7.5: Setting the SelectionHangingIndent Property

Private Sub TrackBar2_Scroll(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles TrackBar2.Scroll

Editor.SelectionHangingIndent = Editor.Width * _
(TrackBar2.Value / TrackBar2.Maximum) - Editor.SelectionIndent

End Sub

Enter some text in the control, select one or more paragraphs, and check out the operation of the
two sliders.

The Scroll events of the two TrackBar controls adjust the text’s indentation. The opposite action
must take place when the user rests the pointer on another paragraph: the sliders’ positions must be
adjusted to reflect the new indentation of the text. The selection of a new paragraph is signaled to
the application by the SelChange event. The statements of Listing 7.6, which are executed from
within the SelChange event, adjust the two slider controls to reflect the indentation of the text.

Listing 7.6: Setting the Slider Controls

Private Sub Editor_SelectionChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Editor.SelectionChanged

If Editor.SelectionIndent = Nothing Then
TrackBar1.Value = TrackBar1.Minimum
TrackBar2.Value = TrackBar2.Minimum

Else
TrackBar1.Value = Editor.SelectionIndent * TrackBar1.Maximum / _

Editor.Width
TrackBar2.Value = (Editor.SelectionHangingIndent / Editor.Width) * _

TrackBar2.Maximum + TrackBar1.Value
End If

End Sub

Chapter 7 MORE WINDOWS CONTROLS318

2877c07.qxd 11/11/01 4:16 PM Page 318

http://www.sybex.com

If the user selects multiple paragraphs with different indentations, the SelectionIndent property
returns Nothing. The code examines the value of the SelectionIndent property and, if it’s Nothing, it
moves both controls to the left edge. This way, the user can slide the controls and set the indenta-
tions for multiple paragraphs. Or you can set the sliders according to the indentation of the first or
last paragraph in the selection. Some applications make the handles gray to indicate that the selected
text doesn’t have uniform indentation, but unfortunately you can’t gray the sliders and keep them
enabled. Of course, you can always design a custom control. The TrackBar controls are too tall for
this type of interface and can’t be made very narrow (as a result, the interface of the RTFPad appli-
cation isn’t very elegant).

The File Menu

The RTFPad application’s File menu contains the usual Open, Save, and Save As commands, which
are implemented with the LoadFile and SaveFile methods. Listing 7.7 shows the implementation of
the Open command in the File menu.

Listing 7.7: The Open Command

Private Sub FileOpen_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FileOpen.Click

If DiscardChanges() Then
OpenFileDialog1.Filter = “RTF Files|*.RTF|DOC Files|” & _

“*.DOC|Text Files|*.TXT|All Files|*.*”
If OpenFileDialog1.ShowDialog() = DialogResult.OK Then

fName = OpenFileDialog1.FileName
Editor.LoadFile(fName)
Editor.Modified = False

End If
End If

End Sub

The fName variable is declared on the Form level and holds the name of the currently open file.
It’s set every time a new file is successfully opened and used by the Save command to automatically
save the open file, without prompting the user for a filename.

DiscardChanges() is a function that returns a Boolean value, depending on whether the
control’s contents can be discarded or not. The function starts by examining the Editor control’s
Modified property. If True, it prompts the user as to whether he wants to discard the edits.
Depending on the value of the Modified property and the user’s response, the function returns a
Boolean value. If the DiscardChanges() function returns True, the program goes on and opens a
new document. If the function returns False, the handler exits. Listing 7.8 shows the Discard-
Changes() function.

319THE RICHTEXTBOX CONTROL

2877c07.qxd 11/11/01 4:16 PM Page 319

http://www.sybex.com

Listing 7.8: The DiscardChanges() Function

Function DiscardChanges() As Boolean
If Editor.Modified Then

Dim reply As MsgBoxResult
reply = MsgBox(“Text hasn’t been saved. Discard changes?”, _

MsgBoxStyle.YesNo)
If reply = MsgBoxResult.No Then

Return False
Else

Return True
End If

Else
Return True

End If
End Function

The Modified property becomes True after typing the first character and isn’t reset back to False.
The RichTextBox control doesn’t handle this property very intelligently and doesn’t reset it to False
even after saving the control’s contents to a file. The application’s code sets the Editor.Modified
property to False after creating a new document, as well as after saving the current document.

The Save As command (Listing 7.9) prompts the user for a filename and then stores the Editor
control’s contents to the specified file. It also sets the fName variable to the file’s path, so that the
Save command can use it. The fName variable is declared at the beginning of the code, outside any
procedure.

Listing 7.9: The Save As Command

Private Sub FileSaveAs_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FileSaveAs.Click

SaveFileDialog1.Filter = “RTF Files|*.RTF|DOC Files|” & _
“*.DOC|Text Files|*.TXT|All Files|*.*”

SaveFileDialog1.DefaultExt = “RTF”
If SaveFileDialog1.ShowDialog() = DialogResult.OK Then

fName = SaveFileDialog1.FileName
Editor.SaveFile(fName)
Editor.Modified = False

End If
End Sub

The Save command’s code is similar, only it doesn’t prompt the user for a filename. It calls the
SaveFile method passing the fName variable as argument. If the fName variable has no value (in other
words, if a user attempts to save a new document with the Save command), then the code activates
the event handler of the Save As command automatically. It also resets the control’s Modified prop-
erty to False. The code behind the Save command is shown in Listing 7.10.

Chapter 7 MORE WINDOWS CONTROLS320

2877c07.qxd 11/11/01 4:16 PM Page 320

http://www.sybex.com

Listing 7.10: The Save Command

Private Sub FileSave_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FileSave.Click

If fName <> “” Then
Editor.SaveFile(fName)
Editor.Modified = False

Else
FileSaveAs_Click(sender, e)

End If
End Sub

The Edit Menu

The Edit menu contains the usual commands for exchanging data through the Clipboard (Copy,
Cut, Paste), Undo/Redo commands, and a Find command to invoke the Find and Replace dialog
box. All the commands are almost trivial, thanks to the functionality built into the control. The
basic Cut, Copy, and Paste commands call the RichTextBox control’s Copy, Cut, and Paste methods
to exchange information with other applications through the Clipboard. If you aren’t familiar with
the Clipboard’s methods, all you need to know to follow this example are the SetText method,
which copies a string to the Clipboard, and the GetText method, which copies the Clipboard’s con-
tents to a string variable. The Copy, Cut, and Paste commands are shown in Listing 7.11.

Listing 7.11: The Copy, Cut, and Paste Commands

Private Sub EditCopy_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles EditCopy.Click

Editor.Copy()
End Sub
Private Sub EditCut_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles EditCut.Click
Editor.Cut()

End Sub
Private Sub EditPaste_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles EditPaste.Click
Try

Editor.Paste()
Catch exc As Exception

MsgBox(“Can’t paste current clipboard’s contents”)
End Try

End Sub

As you recall from the discussion of the Paste command, we can’t use the CanPaste method,
because it’s not trivial; you have to handle each data type differently. By using the exception handler,
we allow the user to paste all types of data the RichTextBox control can accept, and we display a
message when an error occurs.

321THE RICHTEXTBOX CONTROL

2877c07.qxd 11/11/01 4:16 PM Page 321

http://www.sybex.com

The Undo and Redo commands of the Edit menu are coded as follows. First, we must display
the name of the action to be undone or redone in the Edit menu. When the Edit menu is selected, the
Select event is fired. This event takes place before the Click event, so I’ve inserted a few lines of code
that read the name of the most recent action that can be undone or redone and print it next to the
Undo or Redo command. If there’s no such action, the program will disable the corresponding
command. Listing 7.12 is the code that’s executed when the Edit menu is dropped.

Listing 7.12: Setting the Captions of the Undo and Redo Commands

Private Sub EditMenu_Select(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles EditMenu.Select

If Editor.UndoActionName <> “” Then
EditUndo.Text = “Undo “ & Editor.UndoActionName
EditUndo.Enabled = True

Else
EditUndo.Text = “Undo”
EditUndo.Enabled = False

End If
If Editor.RedoActionName <> “” Then

EditRedo.Text = “Redo “ & Editor.RedoActionName
EditRedo.Enabled = True

Else
EditRedo.Text = “Redo”
EditRedo.Enabled = False

End If
End Sub

When the user selects one of the Undo and Redo commands, we simply call the appropriate
method from within the menu item’s Click event handler (Listing 7.13).

Listing 7.13: Undoing and Redoing Actions

Private Sub EditUndo_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles EditUndo.Click

If Editor.CanUndo Then Editor.Undo()
End Sub
Private Sub EditRedo_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles EditRedo.Click
If Editor.CanRedo Then Editor.Redo()

End Sub

Calling the CanUndo and CanRedo method is unnecessary, because if there’s no corresponding
action the two menu items will be disabled, but an additional check is no harm. Should there be an
“unknown” action that the control can’t undo, these If statements will prevent the control from
attempting to perform the undo action.

Chapter 7 MORE WINDOWS CONTROLS322

2877c07.qxd 11/11/01 4:16 PM Page 322

http://www.sybex.com

The Format Menu

The commands of the Format menu control the alignment of the text and the font attributes of the
current selection. The Font command displays the Font dialog box and then assigns the font selected
by the user to the current selection. Listing 7.14 shows the code behind the Font command.

Listing 7.14: The Font Command

Private Sub FormatFont_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FormatFont.Click

If Not Editor.SelectionFont Is Nothing Then
FontDialog1.Font = Editor.SelectionFont

Else
FontDialog1.Font = Nothing

End If
If FontDialog1.ShowDialog() = DialogResult.OK Then

Editor.SelectionFont = FontDialog1.Font
End If

End Sub

Notice that the code preselects a font on the dialog box, which is the font of the current selec-
tion. If the current selection isn’t formatted with a single font, then no font is preselected. You can
modify the code so that it displays the font of the first character in the selection.

To enable the Apply button of the Font dialog box, set the control’s ShowApply property to
True and insert the following statement in its Apply event handler. Select the FontDialog1 control
in the Objects drop-down list of the code editor, and then select the Apply event in the Events drop-
down list. When the declaration of the event handler appears, insert the statement that applies the
font selected on the Font dialog box to the current selection:

Private Sub FontDialog1_Apply(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles FontDialog1.Apply

Editor.SelectionFont = FontDialog1.Font
End Sub

The options of the Align menu set the RichTextBox control’s SelectionAlignment property to
different members of the HorizontalAlignment enumeration. The Align ➢ Left command, for
example, is implemented with the following statement:

Editor.SelectionAlignment = HorizontalAlignment.Left

The Search & Replace Dialog Box

The Find command in the Edit menu opens the dialog box shown in Figure 7.14, which the user can
use to perform various search and replace operations (whole-word or case-sensitive match, or both).
The code behind the Command buttons on this form is quite similar to the code for the Search &
Replace dialog box of the TextPad application, with one basic difference: it uses the control’s Find
method. The Find method of the RichTextBox control performs all types of searches, and some of
its options are not available with the InStr() function.

323THE RICHTEXTBOX CONTROL

2877c07.qxd 11/11/01 4:16 PM Page 323

http://www.sybex.com

To invoke the Search & Replace dialog box (Listing 7.15), the Find command calls the Show
method of a variable that represents the dialog box.

Listing 7.15: Displaying the Search & Replace Dialog Box

Private Sub EditFind_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles EditFind.Click

If fndForm Is Nothing Then
fndForm = New FindForm()

End If
fndForm.Show()

End Sub

fndForm is declared on the Form level with the following statement:

Dim fndForm As FindForm

The dialog box should have access to the Editor control on the main form. To allow the dialog
box to manipulate the RichTextBox control on the main form, the program declared a public shared
variable with the following statement:

Public Shared RTFBox As RichTextBox

This variable is initialized to the Editor RichTextBox control in the form’s Load event handler,
shown in Listing 7.16.

Listing 7.16: The Main Form’s Load Event Handler

Private Sub EditorForm_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

RTFBox = Editor
End Sub

The Find method of the RichTextBox control allows you to perform case-sensitive or -insensitive
searches, as well as search for whole words only. These options are specified through an argument of
the RichTextBoxFinds type. The SetSearchMode() function (Listing 7.17) examines the settings of the
two check boxes at the bottom of the form and sets this option.

Figure 7.14

The Search &
Replace dialog box
of the RTFPad
application

Chapter 7 MORE WINDOWS CONTROLS324

2877c07.qxd 11/11/01 4:16 PM Page 324

http://www.sybex.com

Listing 7.17: Setting the Search Options

Function SetSearchMode() As RichTextBoxFinds
Dim mode As RichTextBoxFinds
If chkCase.Checked = True Then

mode = RichTextBoxFinds.MatchCase
Else

mode = RichTextBoxFinds.None
End If
If chkWord.Checked = True Then

mode = mode Or RichTextBoxFinds.WholeWord
Else

mode = mode Or RichTextBoxFinds.None
End If
SetSearchMode = mode

End Function

The Find and Find Next methods call this function to retrieve the constant that determines the
type of the search specified by the user on the form. This value is then passed to the Find method.
Listing 7.18 shows the code behind the Find and Find Next buttons.

Listing 7.18: The Find and Find Next Commands

Private Sub bttnFind_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnFind.Click

Dim wordAt As Integer
Dim srchMode As RichTextBoxFinds
srchMode = SetSearchMode()
wordAt = EditorForm.RTFBox.Find(txtSearchWord.Text, 0, srchMode)
If wordAt = -1 Then

MsgBox(“Can’t find word”)
Exit Sub

End If
EditorForm.RTFBox.Select(wordAt, txtSearchWord.Text.Length)
bttnFindNext.Enabled = True
bttnReplace.Enabled = True
bttnReplaceAll.Enabled = True
EditorForm.RTFBox.ScrollToCaret()

End Sub
Private Sub bttnFindNext_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles bttnFindNext.Click
Dim selStart As Integer
Dim srchMode As CompareMethod
srchMode = SetSearchMode()
selStart = InStr(EditorForm.RTFBox.SelectionStart + 2, _

EditorForm.RTFBox.Text, txtSearchWord.Text, srchMode)

325THE RICHTEXTBOX CONTROL

2877c07.qxd 11/11/01 4:16 PM Page 325

http://www.sybex.com

If selStart = 0 Then
MsgBox(“No more matches”)
Exit Sub

End If
EditorForm.RTFBox.Select(selStart - 1, txtSearchWord.Text.Length)
EditorForm.RTFBox.ScrollToCaret()

End Sub

Notice that both event handlers call the ScrollToCaret method to force the selected text to
become visible—should the Find method locate the desired string outside the visible segment of
the text.

Summary
This chapter concludes the presentation of the Windows controls you’ll be using in building typical
applications. There are a few more controls on the Toolbox that will be discussed in later chapters,
and these are the rather advanced controls, like the TreeView and ListView controls. In addition,
there are some rather trivial controls, which aren’t used as commonly as the basic controls. The triv-
ial controls will not be discussed in this book. Instead, we’re going to move to some really exciting
topics, like how to build custom classes and custom Windows controls.

Classes are at the core of VB.NET and extremely powerful. For the first time, VB classes support
inheritance, which means you can extend existing classes, or existing Windows controls. You’ll learn
how to build your own classes and inherit existing ones in the following chapter. Then, you’ll learn
about building custom controls. Like classes, controls can also be inherited, and you’ll see how easy
it is to extend the functionality of existing controls by adding new members.

Chapter 7 MORE WINDOWS CONTROLS326

2877c07.qxd 11/11/01 4:16 PM Page 326

http://www.sybex.com

Part II
Rolling Your
Own Objects

In this section:
� Chapter 8: Building Custom Classes
� Chapter 9: Building Custom Windows Controls
� Chapter 10: Automating Microsoft Office Applications

2877c08.qxd 11/11/01 4:17 PM Page 327

http://www.sybex.com

Chapter 8

Building Custom Classes
Classes are at the very heart of Visual Studio. Just about everything you do with VB.NET
is a class, and you already know how to use classes. The .NET Framework itself is an enormous
compendium of classes, and you can import any of them into your applications. You simply
declare a variable of the specific class type, initialize it, and then use it in your code. As you have
noticed, even a Form is a Class, and it includes the controls on the form and the code behind them.
All the applications you’ve written so far are enclosed in a set of Class…End Class statements.

When you create a variable of any type, you’re creating an instance of a class. The variable
lets you access the functionality of the class through its properties and methods. Even the base
data types are implemented as classes (the System.Integer class, System.Double, and so on). An
integer value, like 3, is actually an instance of the System.Integer class, and you can call the
properties and methods of this class using its instance. Expressions like 3.MinimumValue and
#1/1/2000#.Today are odd, but valid.

In this chapter, you’ll learn how to build your own classes, which you can use in your projects
or pass to other developers. Classes are used routinely in team development. If you’re working in
a corporate environment, where different programmers code different parts of an application, you
can’t afford to repeat work that someone else has done already. You should be able to get their
code and use it in your application as is. That’s easier said than done, because you can guess what
will happen as soon as a small group of programmers start sharing code. They’ll end up with
dozens of different versions for each function, and every time they upgrade a function they will
most likely break the applications that were working with the old version. Or, each time they
revise a function, they must update all the projects using the old version of the function and test
them. It just doesn’t work.

The major driving force behind object-oriented programming is code reuse. Classes allow you to
write code that can be reused in multiple projects. You already know that classes don’t expose
their source code. In other words, you can’t see the code in a class, and therefore you can’t affect
any other projects that use the class. You also know that classes implement complicated operations
and make these operations available to programmers through properties and methods. The Array
class exposes a Sort method, which sorts its elements. This is not a simple operation, but fortunately
you don’t have to know anything about sorting. Someone else has done it for you and made this
functionality available to your applications. This is called encapsulation. Some functionality has

2877c08.qxd 11/11/01 4:17 PM Page 329

http://www.sybex.com

been built into the class (or encapsulated into the class), and you can access it from within your appli-
cations with a simple method call.

The 3,500 (or so) classes that come with the .NET Framework give you access to all the objects
used by the operating system. All you have to do is use them in your application. You don’t have to
see the code, and you don’t have to know anything about sorting to sort your arrays, just as you
don’t need to know anything about encryption to encrypt a string with the System.Security.Cryp-
tography class. In effect, you’re reusing code that Microsoft has already written. As you will see, it is
also possible to extend these classes by adding custom members, and even override existing members.
When you extend a class, you create a new class based on an existing one. Projects using the original
class will keep seeing the original class, and they will work fine. New projects that see the derived class
will also work.

In this chapter, you’ll learn how to create your own classes and share them with other programmers.
This is one of the most improved areas of VB.NET, which is the first truly object-oriented version
of Visual Basic. Most of the new functionality comes from the new techniques for implementing
classes. Once you understand how classes are implemented and how to exploit features like inheri-
tance, you’ll understand the topics discussed in earlier chapters a lot better. If you still have questions
regarding the object-oriented features of the language, like the methods and properties exposed by
the various data types, there’s a good chance that you’ll find the answers here. This chapter is not as
much about techniques as it is about a good understanding of how classes work and why features
like inheritance are really needed in a modern language—and, of course, why you shouldn’t go over-
board with inheritance.

What Is a Class?
A class is a program that doesn’t run on its own; it must be used by another application. The way
we invoke a class is by creating a variable of the same type as the class. Then, we exploit the func-
tionality exposed by the class by calling the members of the class through this variable. The methods
and properties of the class, as well as its events, constitute the class’s interface. It’s not a visible inter-
face, like the ones you’ve learned to design so far, and the class doesn’t interact directly with the user.
To interact with the class, the application uses the class’s interface, just as users will be interacting
with your application through its visual interface.

Until now, you have learned how to use classes. Now’s the time to understand what goes on
behind the scenes when you interact with a class and its members. Behind each object, there’s a class.
When you declare an array, you’re invoking the System.Array class, which contains all the code for
manipulating arrays. Even when you declare a simple integer variable, you’re invoking a class, the
System.Integer class. This class contains the code that implements the various properties (such as
MinValue and MaxValue) and methods (such as ToString) of the Integer data type. The first time
you use an object in your code, you’re instantiating the class that implements this object. The class is
loaded into memory, initializes its variables, and is ready to execute. An instance of the class is ready
for you to use.

Classes are very similar to Windows controls, only they don’t have a visible interface. Controls
are instantiated when you place them on a form; classes are instantiated when you use a variable of
the same type—and not when you declare the variable with the Dim statement. To use a control,

Chapter 8 BUILDING CUSTOM CLASSES330

2877c08.qxd 11/11/01 4:17 PM Page 330

http://www.sybex.com

you must make it part of the project by adding its icon to the Toolbox, if it’s not already there. To
use a class in your code, you must import the file that implements the class (this is a DLL file). To
manipulate a control from within your code, you call its properties and methods. You do the same
with classes. Finally, you program the various events raised by the controls to interact with the users
of your applications. Most classes don’t expose any events, since the user can’t interact with them,
but some classes do raise events, which you can program just as you program the events of a Win-
dows control. Using classes is not new to you, and many of the concepts presented in this chapter
are not new to you either.

In Chapter 3, I mentioned briefly that a class combines code and data. You have probably
noticed this already in the last couple of chapters. The System.Integer class, for example, stores an
integer value and knows how to process it. Variables in VB.NET are not just areas in memory you
can access by name; they’re instances of the corresponding classes. The array is a better example. The
role of the array is to store sets of data. In addition to holding the data, the Array class also knows
how to process them—how to retrieve an element, how to extract a segment of the array, even how
to sort its elements. All these operations require a substantial amount of code. The data stored in the
array and the code that implements the properties and the methods of the array are hidden from you,
the developer. You can instruct the array to perform certain tasks. When you call the Sort method,
you’re telling the array to execute some code that will sort the elements of the array. The developer
doesn’t know how the data are stored in the array, or how the Sort method works. In the following
section, you’ll see how data and code coexist in a class and how you can manipulate the data through
the properties and methods exposed by the class. Let’s start by building a custom class and then
using it in our code.

Building the Minimal Class
Our first example is the Minimal class; we’ll start with the minimum functionality and keep adding
features to it. The name of the class can be anything—just make sure it’s suggestive of the class’s
functionality.

A Class may reside in the same file as a Form, but it’s customary to implement custom classes in a
separate module, a Class module. You can also create a Class project, which contains just a class.
However, a class doesn’t run on its own, and you can’t test it without a form. You can create a Win-
dows application, add the class to it, and then test it by adding the appropriate code to the form.
After debugging the class, you can remove the test form and use the class with any project. Since the
class is pretty useless outside the context of an application, in this chapter I will use Windows appli-
cations and add a class to them.

Start a new project and name it SimpleClass (or open the project by that name on the CD). Then
create a new class by adding a Class item to your project. Right-click the project’s name in the Solution
Explorer window and, from the context menu, select Add ➢ Add Class. In the dialog box that pops
up, select the Class icon and enter a name for the class. Set the class’s name to Minimal, as shown in
Figure 8.1.

The code that implements the class will reside in the Minimal.vb file, and we’ll use the existing
form to test our class. After you have tested and finalized the class’s code, you no longer need
the form and you can remove it from the project.

331BUILDING THE MINIMAL CLASS

2877c08.qxd 11/11/01 4:17 PM Page 331

http://www.sybex.com

When you open the class by double-clicking its icon in the Project Explorer window, you will see
the following lines in the code window:

Public Class Minimal

End Class

You can also create a class in the same file as the application’s form. To do so, enter the Class
keyword followed by the name of the class, after the existing End Class. The editor will insert the
matching End Class for you. At this point, you already have a class, even though it doesn’t do any-
thing. Switch back to the Form Designer, add a button to the test form, and insert the following
code in its Click event handler:

Dim obj1 As Minimal()

Press Enter and, on the following line, type the name of the variable, obj1, followed by a period.
You will see a list of the methods your class exposes already:

Equals
GetHashCode
GetType
ReferenceEqual
ToString

These methods are provided by the Common Language Runtime (CLR). You don’t have to sup-
ply any code for these methods. They don’t expose any real functionality; they simply reflect how
VB handles all classes. To see the kind of functionality these methods expose, enter the following
lines in the Button’s Click event handler and then run the application:

Dim obj1 As New Minimal()
Console.WriteLine(obj1.ToString)
Console.WriteLine(obj1.GetType)
Console.WriteLine(obj1.GetHashCode)
Dim obj2 As New Minimal()
Console.WriteLine(obj1.Equals(obj2))
Console.WriteLine(Minimal.ReferenceEquals(obj1, obj2))

Figure 8.1

Adding a Class item
to a project

Chapter 8 BUILDING CUSTOM CLASSES332

2877c08.qxd 11/11/01 4:17 PM Page 332

http://www.sybex.com

The following lines will be printed on the Output window:

SimpleClass.Minimal
SimpleClass.Minimal
18
False
False

As you can see, the name of the object is the same as its type. This is all the information about
your new class that’s available to the CLR. Shortly you’ll see how you can implement your own
ToString method and return another value. The hash value of the obj1 variable happens to be 18, but
this is of no consequence.

The next line tells you that two variables of the same type are not equal. But why aren’t they
equal? We haven’t differentiated them at all, yet they’re different because they point to two different
objects and the compiler doesn’t know how to compare them. All it can do is figure out whether
they point to the same object. To understand how objects are compared, add the following state-
ment after the line that declares obj2:

obj2 = obj1

If you run the application again, the last statement will print True on the Output window. The
Equals method checks for reference equality; that is, it returns True if both variables point to the
same object (same instance of the class). If you change obj1, then obj2 will point to the new object.
OK, we can’t change the object because it exposes no members that we can set to differentiate it
from another object of the same type. We’ll get to that shortly.

Most classes expose a custom Equals method, which knows how to compare two objects of the
same class. The custom Equals method usually compares the properties of the two instances of the
class and returns True if all properties are the same. You’ll learn how to customize the default mem-
bers of any class later in this chapter.

Notice the name of the class: SimpleClass.Minimal. Within the current project, you can access it
as Minimal. Other projects can either import the Minimal class and access it as Minimal, or specify
the complete name of the class.

Adding Code to the Minimal Class
Let’s add some functionality to our class. We’ll begin by adding a few properties and methods to
perform simple text-manipulation tasks. The two properties are called property1 (a String) and prop-
erty2 (a Double). To expose these two members as properties, you can simply declare them as public
variables. This isn’t the best method of implementing properties, but it really doesn’t take more than
declaring something as Public to make it available to code outside the class. The following line
exposes the two properties of the class:

Public property1 As String, property2 As Double

The two methods are the ReverseString and NegateNumber methods. The first method reverses
the order of the characters in property1 and returns the new string. The NegateNumber method
returns the negative of property2. These are the simplest type of methods that don’t accept any
arguments; they simply operate on the values of the properties. In just the way that properties are
exposed as Public variables, methods are exposed as Public procedures (functions or subroutines).

333BUILDING THE MINIMAL CLASS

2877c08.qxd 11/11/01 4:17 PM Page 333

http://www.sybex.com

Enter the function declarations of Listing 8.1 between the Class Minimal and End Class statements
in the class’s code window (I’m showing the entire listing of the class here).

Listing 8.1: Adding a Few Members to the Minimal Class

Public Class Minimal
Public property1 As String, property2 As Double
Public Function ReverseString() As String

Return (StrReverse(property1))
End Function
Public Function NegateNumber() As Double

Return (-property2)
End Function

End Class

Let’s test what we’ve done so far. Switch back to your form and enter the lines shown in Listing 8.2 in
a new button’s Click event handler. Notice that as soon as you enter the name of the obj variable and the
period after it, a complete list of the class’s members, including the custom members, appears in a list box.
The obj variable is of the Minimal type and exposes the public members of the class. You can set and read its
properties and call its methods. In Figure 8.2, you see a few more members than the ones added so far; we’ll
extend our Minimal class in the following section. Your code doesn’t see the class’s code, just as it doesn’t
see any of the built-in classes’ code. You trust that the class knows what it’s doing and does it right.

Listing 8.2: Testing the Minimal Class

Dim obj As New Minimal()
obj.property1 = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”
obj.property2 = 999999
Console.WriteLine(obj.ReverseString)
Console.WriteLine(obj.NegateNumber)

Figure 8.2

The members of the
class are displayed
automatically by the
IDE, as needed.

Chapter 8 BUILDING CUSTOM CLASSES334

2877c08.qxd 11/11/01 4:17 PM Page 334

http://www.sybex.com

Every time you create a new variable of the Minimal type, you’re creating a new instance of the
Minimal class. The class’s code is loaded into memory only the first time you create a variable of this
type, but every time you declare another variable of the same type, a new set of variables is created.
This is called an instance of the class. The code is loaded once, but it can act on different sets of variables.
In effect, different instances of the class are nothing more than different sets of local variables.

The New Keyword

The New keyword tells VB to create a new instance of the Minimal class. If you omit the New keyword, you’re
telling the compiler that you plan to store an instance of the Minimal class in the obj variable, but the class
won’t be instantiated. You must still initialize the obj variable with the New keyword on a separate line:

obj = New Minimal()

If you omit the New keyword, a “Null Reference” exception will be thrown when the code attempts to use
the variable. This means that the variable is Null—it hasn’t been initialized yet.

Property Procedures
The property1 and property2 properties will accept any value, as long as the type is correct and the value
of the numeric property is within the acceptable range. But what if the generic properties were mean-
ingful entities, like ages or zip codes? We should be able to invoke some code to validate the values
assigned to the property. To do so, you must implement the properties with the so-called Property
procedures.

Properties are implemented with a special type of procedure that contains a Get and Set section.
The Set section of the procedure is invoked when the application attempts to set the property’s value,
and the Get section is invoked when the application requests the property’s value. Usually, the value
passed to the property is validated in the Set section and, if valid, stored to a local variable. The same
local variable’s value is returned to the application when it requests the property’s value, from the prop-
erty’s Get section. Listing 8.3 shows what the implementation of an Age property would look like.

Listing 8.3: Implementing Properties with Property Procedures

Private tAge As Integer
Property Age() As Integer

Get
Age = tAge

End Get
Set (ByVal Value As Integer)

If Value < 0 Or Value >= 125 Then
MsgBox(“Age must be positive and less than 125”)

Else
tAge = Value

End If
End Set

End Property

335BUILDING THE MINIMAL CLASS

2877c08.qxd 11/11/01 4:17 PM Page 335

http://www.sybex.com

tAge is the local variable where the age is stored. When a line like the following is executed in the
application that uses your class, the Set section of the Property procedure is invoked:

obj.Age = 39

Since the value is valid, it’s stored in the tAge local variable. Likewise, when a line like the following
one is executed,

Console.WriteLine(obj.Age)

the Get section of the Property procedure is invoked, and the value 39 is returned to the application.
The Value keyword in the Set section represents the actual value that the calling code is attempt-

ing to assign to the property. You don’t declare this variable, and its name is always Value. The tAge
variable is declared as private, because we don’t want any code outside the class to access it; this vari-
able is used by the class to store the value of the Age property and can’t be manipulated directly. The
Age property is, of course, public, so that other applications can set it.

Enter the Property procedure for the Age property in the Minimal class and then switch to the
form to test it. Open the Button’s Click event handler and add the following lines to the existing ones:

obj.Age = 39
Console.WriteLine(“after setting the age to 39, age is “ & obj.Age.ToString)
obj.Age = 199
Console.WriteLine(“after setting the age to 199, age is “ & obj.Age.ToString)

The value 39 will appear in the Output window. This means that the class accepted the value 39.
When the third statement is executed, a message box will appear with the error’s description:

Age must be positive and less than 125

then the value 39 will appear again in the Output window again. The attempt to set the age to 199
failed, so the property retains its previous value.

Raising Exceptions

Our error-trapping code works fine, but what good is it? Any developer using our class won’t be able
to handle this error. You don’t want to display messages from within your class, because messages
are intended for the final user. As a developer, you’d rather receive an exception and handle it from
within your code. So, let’s change the implementation of the Age property a little. The Property pro-
cedure for the Age property (Listing 8.4) throws an argument exception if you attempt to assign an
invalid value to it.

Listing 8.4: Throwing an Exception from within a Property Procedure

Private tAge As Integer
Property Age() As Integer

Get
Age = tAge

End Get
Set (ByVal Value As Integer)

If Value < 0 Or Value >= 125 Then
Dim AgeException As New ArgumentException()

Chapter 8 BUILDING CUSTOM CLASSES336

2877c08.qxd 11/11/01 4:17 PM Page 336

http://www.sybex.com

Throw AgeException
Else

tAge = Value
End If

End Set
End Property

You can test this property in your application; switch to the test form, and enter the statements
of Listing 8.5 in a new button’s Click event handler (this is the code behind the Handle Exceptions
button on the test form).

Listing 8.5: Catching the Age Property’s Exception

Dim obj As New Minimal()
Dim userAge as Integer
UserAge = InputBox(“Please enter your age”)
Try

obj.Age = userAge
Catch exc as ArgumentException

MsgBox(“Can’t accept your value, “ & userAge.ToString & VbCrLf & _
“Will continue with default value of 30”)

obj.Age = 30
End Try

This is a much better technique for handling errors in your class. The exceptions can be inter-
cepted by the calling application, and developers using your class can write a robust application by
handling the exceptions in their code. When you develop custom classes, keep in mind that you can’t
handle most errors from within your class, because you don’t know how other developers will use
your class. Make your code as robust as you can, but don’t hesitate to throw exceptions for all condi-
tions you can’t handle from within your code (Figure 8.3). Our example continues with a default
age of 30. But as a class developer, you can’t make this decision—another developer might prompt
the user for another value, and a sloppy developer might let his application crash (but this isn’t your
problem).

Figure 8.3

Raising an exception
in the class’s code

337BUILDING THE MINIMAL CLASS

2877c08.qxd 11/11/01 4:17 PM Page 337

http://www.sybex.com

Implementing Read-Only Properties

Let’s make our class a little more complicated. Age is not usually requested on official documents.
Instead, you must furnish your date of birth, from which your current age can be calculated at any
time. We’ll add a BDate property in our class and make Age a read-only property.

To make a property read-only, you simply declare it as ReadOnly and supply the code for the
Get procedure only. Revise the Age property’s code in the Minimal class as seen in Listing 8.6. Then
enter the Property procedure from Listing 8.7 for the BDate property.

Listing 8.6: Making a Read-Only Property

Private tAge As Integer
ReadOnly Property Age() As Integer

Get
Age = tAge

End Get
End Property

Listing 8.7: The BDate Property

Private tBDate As Date
Property BDate() As Date

Get
BDate = tBDate

End Get
Set

If Not IsDate(Value) Then
MsgBox(“Invalid date”)
Exit Property

End If
If Value > Now() Or DateDiff(DateInterval.Year, Now(), Value) >= 125 Then

MsgBox(“Age must be positive and less than 125”)
Else

tBDate = Value
End If

End Set
End Property

The code calls the DateDiff() function, which returns the difference between two dates in a spec-
ified interval—in our case, years. The expression DateInterval.Year is the name of constant, which
tells the DateDiff() function to calculate the difference between the two dates in years. You don’t
have to memorize the constant names—you simply select them from a list as you type.

So, the code checks the number of years between the date of birth and the current date. If it’s neg-
ative (which means that the person hasn’t been born yet) or more than 125 years (just in case), it
rejects the value. Otherwise it sets the value of the tBDate local variable.

Chapter 8 BUILDING CUSTOM CLASSES338

2877c08.qxd 11/11/01 4:17 PM Page 338

http://www.sybex.com

Now we must do something about the Age property’s value. The implementation of the Age
property shown in Listing 8.6 allows you to read the value of the property, but not set it. However,
you must update the tAge variable. Instead of maintaining a local variable for the age, we can calculate
it every time the user requests the value of the Age property. Revise the Age property’s code to
match Listing 8.8, so that it calculates the difference between the date of birth and the current date
and returns the person’s age.

Listing 8.8: A Calculated Property

ReadOnly Property Age() As Integer
Get

Age = CInt(DateDiff(DateInterval.Year, Now(), tBDate))
End Get

End Property

Notice also that you no longer need the tAge local variable, because the age is calculated on-the-fly
when requested. As you can see, you don’t always have to store property values to local variables. A
property that returns the number of files in a directory, for example, also doesn’t store its value in a
local variable. It retrieves the requested information on-the-fly and furnishes it to the calling applica-
tion. By the way, the calculations may still return a negative value, if the user has changed the sys-
tem’s date, but this is rather far-fetched.

You can implement write-only properties with the WriteOnly keyword. This type of property is
implemented with a Set section only. But WriteOnly properties are of questionable value, and you’ll
probably never use them.

Our Minimal class is no longer so minimal. It exposes some functionality, and you can easily add
more. Add properties for name, profession, and income, and methods to calculate insurance rates
and anything you can think of. Add a few members to the class, and check them out.

Before ending this section, let’s experiment a little with object variables. We’ll create two variables
of the Minimal class and set some properties. Then, we’ll call the Equals method to compare them.
Enter the lines of Listing 8.9 in a new button’s Click handler (this is the code behind the button
named Test Equals Method on the test form).

Listing 8.9: Experimenting with Class Instances

Dim obj1 As New Minimal()
Obj1.property1 = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”
Dim obj2 As New Minimal()
obj2 = obj1
If obj1.Equals(obj2) Then Console.WriteLine(“They’re equal”)
obj2.property1 = “abcdefghijklmnopqrstuvwxyz”
If obj1.Equals(obj2) Then Console.WriteLine(“They’re equal”)

339BUILDING THE MINIMAL CLASS

2877c08.qxd 11/11/01 4:17 PM Page 339

http://www.sybex.com

The statements of Listing 8.9 will produce the following output:

They’re equal
They’re equal

The two variables are initially equal. No surprise. After modifying one of the obj2 variable’s prop-
erties, however, they’re still equal, because obj2 points to obj1. Every time we change obj2, obj1 also
changes. That’s because we’ve made obj1 point to obj2. They both point to the same object (or
instance of the class), and you can access this object through either class.

Comment out the line that sets obj2 equal to obj1. Now, they’re not equal, even if you set all their
fields to the same values. They don’t reference the same object, and it’s possible to set their proper-
ties differently.

In the following section, we’ll add an Equals method that checks for value equality (as opposed to
reference equality) by comparing the values of the properties of the two instances.

Customizing Default Members
As you recall, when you created the Minimal class for the first time, before adding any code, the
class already exposed a few members—the default members, such as the ToString method (which
returns the name of the class) and the Equals method (which compares two objects for reference
equality). You can provide your custom implementation for these members; this is what we’re going
to do in this section. You already know how to do this. Your custom ToString method must be
implemented as a public function, and it must override the default implementation. The implemen-
tation of a custom ToString method is shown next:

Public Overrides Function ToString() As String
Return “The infamous Minimal class”

End Function

It’s that simple. The Overrides keyword tells the compiler that this implementation overwrites
the default implementation of the class. Ours is a very simple method, but you can return any string
you can build in the function. For example, you can incorporate the value of the BDate property in
the string:

Return(“MINIMAL: “ & tBDate.ToString)

tBDate is a local variable in the class’s module, and you can use its value in any way you see fit in your
code. The value of the local variable tBDate is the current value of the BDate property of the current
instance of the class.

When called through different variables, the ToString method will report different values. Let’s
say you’ve created and initialized two instances of the Minimal class with the following statements:

Dim obj1 As New Minimal()
Obj1.Bdate = #1/1/1963#
Dim obj2 As New Minimal()
Obj2.Bdate = #12/31/1950#
Console.WriteLine(obj1.ToString)
Console.WriteLine(obj2.ToString)

Chapter 8 BUILDING CUSTOM CLASSES340

2877c08.qxd 11/11/01 4:17 PM Page 340

http://www.sybex.com

The last two statements will print the following lines on the Output window:

MINIMAL: 1963-01-01 00:00:00
MINIMAL: 1950-12-31 00:00:00

The Equals method exposed by most of the built-in objects, however, can compare values, not
references. Two Rectangle objects, for example, are equal if their dimensions and origins are the
same. The following two rectangles are equal:

Dim R1 As New Rectangle(0, 0, 30, 60)
Dim R2 As New Rectangle
R2.X = 0
R2.Y = 0
R2.Width = 30
R2.Height = 60
If R1.Equals(R2) Then

MsgBox(“The Two rectangles are equal”)
End If

If you execute these statements, a message box will pop up. The two variables point to different
objects (i.e., different instances of the same class), but the two objects are equal. The Rectangle class
provides its own Equals method, which knows how to compare two Rectangle objects. If your class
doesn’t provide a custom Equals method, all the compiler can do is compare the objects referenced
by the two variables. In the case of our Minimal class, the Equals method returns True if the two vari-
ables point to the same object (which is the same instance of the class). If the two variables point to
two different objects, the default Equals method will return False, even if the two objects are equal.

You’re probably wondering what makes two objects equal. Is it all of their properties, or perhaps
some of them? Two objects are equal if the Equals method says so. You should compare the objects
in a way that makes sense, but you’re in no way limited as to how you do this. You may even com-
pare internal variables that are not exposed as properties to decide about the equality. In the Minimal
class, for example, you may decide to compare the birth dates and return True if they’re equal. List-
ing 8.10 is the implementation of a possible custom Equals method for the Minimal class.

Listing 8.10: A Custom Equals Method

Public Overloads Function Equals(ByVal obj As Object) As Boolean
Dim O As Minimal = CType(obj, Minimal)
If O.BDate = tBDate Then

Equals = True
Else

Equals = False
End If

End Function

Notice that the Equals method is prefixed with the Overloads keyword, not the Overrides key-
word. To test the new Equals method, place a new button on the form and insert the statements of
Listing 8.11 in its Click event handler.

341BUILDING THE MINIMAL CLASS

2877c08.qxd 11/11/01 4:17 PM Page 341

http://www.sybex.com

Listing 8.11: Testing the Custom Equals Method

Dim O1 As New Minimal()
Dim O2 As New Minimal()
O1.BDate = #3/1/1960#
O2.BDate = #3/1/1960#
O1.property1 = “object1”
O2.property1 = “OBJECT2”
If O1.Equals(O2) Then

MsgBox(“They’re equal”)
End If

If you run the application, you’ll see the message confirming that the two objects are equal,
despite the fact that their property1 properties were set to different values. The BDate property is the
same, and this is the only setting the Equals method examines.

So, it’s up to you to decide which properties fully and uniquely identify an object and to use
these properties in determining when two objects are equal. It’s customary to compare the values
of all the properties of the two objects in the Equals function and return True if they’re all the
same. You can modify the code of the custom Equals function to take into consideration the other
properties.

Know What You’re Comparing

The Equals method shown in Listing 8.10 assumes that the object you’re trying to compare to the
current instance of the class is of the same type. Since you can’t rely on developers to catch all their
mistakes, you should know what you’re comparing before you actually do the comparison. A more
robust implementation of the Equals method is shown in Listing 8.12.

Listing 8.12: A More Robust Equals Method

Public Overloads Function Equals(ByVal obj As Object) As Boolean
Dim O As New Minimal()
Try

O = CType(obj, Minimal)
Catch typeExc As InvalidCastException

Throw typeExc
Exit Function

End Try
If O.BDate = tBDate Then

Equals = True
Else

Equals = False
End If

End Function

Chapter 8 BUILDING CUSTOM CLASSES342

2877c08.qxd 11/11/01 4:17 PM Page 342

http://www.sybex.com

Note Note that the custom Equals method throws the same exception it receives from the CType() function. This is a
little different from creating and throwing a new custom exception, as we did in the Age property’s code.

Custom Enumerations
Let’s add a little more complexity to our class. Since we’re storing dates of birth to our class, we can
classify persons according to their age. Instead of using literals to describe the various age groups,
we’ll use an enumeration, with the following group names:

Public Enum AgeGroup
Baby
Child
Teenager
Adult
Senior
Overaged

End Enum

These statements must appear outside any procedure in the class, and we usually place them at
the beginning of the file, right after the declaration of the Class. The enumeration is a list of integer
values, each one mapped to a name. In our example, the name Baby corresponds to 0, the name Child
corresponds to 1, and so on. You don’t really care about the actual values of the names, because the
very reason for using enumerations is to replace numeric constants with more meaningful names.
You’ll see shortly how enumerations are used both in the class and the calling application.

Now add to the class the GetAgeGroup method (Listing 8.13), which returns the name of the
group to which the person represented by an instance of the Minimal class belongs. The name of
the group is a member of the AgeGroup enumeration.

Listing 8.13: Using an Enumeration

Public Function GetAgeGroup() As AgeGroup
Dim group As AgeGroup
Select Case tAge

Case Is < 5 : Return (group.Baby)
Case Is < 12 : Return (group.Child)
Case Is < 21 : Return (group.Teenager)
Case Is < 65 : Return (group.Adult)
Case Is < 100 : Return (group.Senior)
Case Else : Return (group.Overaged)

End Select
End Function

First, we declare a variable of the AgeGroup type. As you can see, the members of the AgeGroup
enumeration become properties of the group variable. The advantage of using enumerations is that
you can manipulate meaningful names instead of numeric constants. This makes your code less
prone to errors and far easier to understand.

343BUILDING THE MINIMAL CLASS

2877c08.qxd 11/11/01 4:17 PM Page 343

http://www.sybex.com

Tip The members of an enumeration are not variables. They’re constants, and you can only access them through a vari-
able of the AgeGroup enumeration.

Because the AgeGroup enumeration was declared as Public, it’s exposed to any application that
uses the Minimal class. Let’s see how we can use the same enumeration in our application. Switch to
the form’s code window, add a new button, and enter the statements from Listing 8.14 in its event
handler.

Listing 8.14: Using the Enumeration Exposed by the Class

Protected Sub Button3_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Dim obj As Minimal
obj = New Minimal()
obj.BDate = #2/9/1932#
Console.WriteLine(obj.Age)
Dim discount As Single
If obj.GetAgeGroup = Minimal.AgeGroup.Baby Or _

obj.GetAgeGroup = Minimal.AgeGroup.Child Then discount = 0.4
If obj.GetAgeGroup = Minimal.AgeGroup.Senior Then discount = 0.5
If obj.GetAgeGroup = Minimal.AgeGroup.Teenager Then discount = 0.25
Console.WriteLine(discount)

End Sub

This routine calculates discounts based on the person’s age. Notice that we don’t use numeric
constants in our code, just descriptive names. Moreover, the possible values of the enumeration are
displayed in a drop-down list by the IntelliSense feature of the IDE as needed (Figure 8.4), and you
don’t have to memorize them, or look them up, as you would with constants.

Using the SimpleClass in Other Projects
The project you’ve built in this section is a Windows application that contains a Class module. The
class is contained within the project, and it’s used by the project’s main form. What if you wanted to
use this class in another project?

Figure 8.4

The members of
an enumeration are
displayed automati-
cally in the IDE as
you type.

Chapter 8 BUILDING CUSTOM CLASSES344

2877c08.qxd 11/11/01 4:17 PM Page 344

http://www.sybex.com

First, you must change the type of the project. A Windows project can’t be used as a component
in another project. Right-click the SimpleClass project and select Properties. On the project’s Prop-
erties dialog box, locate the Output drop-down list and change the project’s type from
Windows Application to Class Library, as shown in Figure 8.5. Then close the dialog box. When
you return to the project, right-click the TestForm and select Exclude From Project. A class doesn’t
have a visible interface, and there’s no reason to include the test form in your project.

Now open the Build menu and select Configuration Manager. The current configuration is
Debug. Change it to Release, as shown in Figure 8.6. The Debug configuration should be used in
testing and debugging the project. When you’re ready to distribute the application (be it a
Windows application, a class library, or a control library), you must change the current configura-
tion to Release. When you compile a project in Debug configuration, the compiler inserts additional
information in the executable to ease the debugging process.

From the main menu, select Build ➢ Build SimpleClass. This command will compile the Simple-
Class project (which is a class) and will create a DLL file. This is the file that contains the class’s
code and is the file you must use in any project that needs the functionality of the SimpleClass class.
The DLL file will be created in the \Obj\Release folder under the project’s folder.

Figure 8.6

Changing the config-
uration of a project

Figure 8.5

Setting a project’s
properties through
the Property Pages
dialog box

345BUILDING THE MINIMAL CLASS

2877c08.qxd 11/11/01 4:17 PM Page 345

http://www.sybex.com

Let’s use the SimpleClass.dll file in another project. Start a new Windows application, open the
Project menu, and add a reference to the SimpleClass. Select Project ➢ Add Reference and, in the
dialog box that appears, switch to the Projects tab. Click the Browse button and locate the Simple-
Class.dll file. Select the name of the file and click OK to close the dialog box.

The SimpleClass component will be added to the project. You can now declare a variable of the
SimpleClass type and call its properties and methods:

Dim obj As New SimpleClass
obj.Age = 45
obj.property2 = 5544
MsgBox(obj.Negate())

If you want to keep testing the SimpleClass project, add the TestForm to the project (right-click
the project’s name, select Add ➢ Add Existing Item, and select the TestForm in the project’s
folder). Then change the project’s type back to Windows application, and finally change its configu-
ration from Release to Debug.

Firing Events
Methods and properties are easy to implement, and you have seen how to implement them. Classes
can also fire events. It’s possible to raise events from within your classes, although not quite as com-
mon. Controls have many events, because they expose a visible interface and the user interacts
through this interface (clicks, drags and drops, and so on). But classes can also raise events. Class
events can come from three different sources:

The class itself A class may raise an event to indicate the progress of a lengthy process, or that
an internal variable or property has changed value. The PercentDone event is a typical example. A
process that takes a while to complete reports its progress to the calling application with this
event, which is fired periodically. These are called progress events, and they’re the most common type
of class events.

Time events These events are based on a timer. They’re not very common, but you can imple-
ment alarms, job schedulers, and similar applications. You can set an alarm for a specific time or
an alarm that will go off after a specified interval.

External events External events, like the completion of an asynchronous operation, can also fire
events. A class may initiate a file download and notify the application when the file arrives.

Notice that the class can’t intercept events initiated by the user under any circumstances, because
it doesn’t have a visible user interface.

Time Events

Let’s look at an example of a simple event, one that’s raised at a specific time. We’ll implement an
event in our Minimal class that fires at five o’clock in the afternoon—that is, if an application is
using the class at the time. Classes can’t be instantiated at specific times. Even if they could, the
events would go unnoticed. Classes must be instantiated by an application. In addition, the applica-
tion must be executing when the event is fired, so that it can process it. If the application doesn’t

Chapter 8 BUILDING CUSTOM CLASSES346

2877c08.qxd 11/11/01 4:17 PM Page 346

http://www.sybex.com

provide a handler for the event, the event will go unnoticed—just like the DragEnter and Enter
events of most controls, which are not handled in a typical Windows application.

The first problem we face is that the class’s code isn’t running constantly to check the time peri-
odically. It executes when a member of the class is called and then returns control to your applica-
tion. To make your class check the time periodically, you must embed a Timer control in your class.
But the class doesn’t have a visible interface, so you can’t place a Timer control on it. The solution is
to instantiate a Timer control from within the class’s code and program its Elapsed event so that it
fires every so often. In our example, we’ll implement an event that’s fired every day at five o’clock.
This is a reminder for the end of a shift, so it need not be extremely precise. We’ll set the Timer
control to fire a Tick event every 10 seconds. If this were a real-time application, you’d have to fire
Tick events more often. The following line creates an instance of the Timer control:

Dim WithEvents tmr As System.Timers.Timer

This declaration must appear outside any procedure. The WithEvents keyword is crucial here.
Controls and classes that raise events must be declared with the WithEvents keyword, or else the
application won’t see the events. Controls will fire them, but the class won’t be watching out for
events. While methods and properties are an integral part of the class and you don’t have to request
that these members be exposed, the events are not exposed by default. Moreover, the statements that
declare object variables with the WithEvents keyword must appear outside any procedure.

The Timer control is disabled by default, and we must enable it. A good place to insert the Timer’s
initialization code is the class’s New() procedure, which is called when the class is instantiated:

Public Sub New()
tmr = New WinForms.Timer()
tmr.Interval = 10000
tmr.Enabled = True

End Sub

Our timer is ready to go and will fire an event every 10,000 milliseconds, or 10 seconds. The
shorter the interval, the more time spent in processing the Timer’s Elapsed event.

The Timer’s Elapsed event will be fired every 10 seconds, and you must now program this event.
What do we want to do in this event? Check the time and, if it’s five o’clock, raise the TeaTime
event. Before a class can raise an event, you must declare it with a statement like the following:

Public Event TeaTime()

This declaration must also appear outside any procedure in your class’s code. Now you can pro-
gram the Elapsed event handler (Listing 8.15) and raise the event when appropriate. Because we
can’t be sure that the Timer will fire its event at five o’clock precisely, we check the time and, if it’s
after 1700 hours and no later than 120 seconds after that time, we fire the event.

Listing 8.15: The Timer’s Tick Event Handler

Private Sub tmr_Elapsed(ByVal sender As Object, _
ByVal e As System.Timers.ElapsedEventArgs) Handles tmr.Elapsed

‘Console.WriteLine(DateDiff(DateInterval.Second, Now(), _
DateAdd(DateInterval.Hour, 17, System.DateTime.Today)))

347BUILDING THE MINIMAL CLASS

2877c08.qxd 11/11/01 4:17 PM Page 347

http://www.sybex.com

If DateDiff(DateInterval.Second, Now(), DateAdd(_
DateInterval.Hour, 17, System.DateTime.Today)) < 120 Then

tmr.Enabled = False
RaiseEvent TeaTime(Me)

End If
End Sub

Notice that once the event is raised, we disable the timer, or else the same event would fire again
and again (Figure 8.7). The long statement I’ve commented out displays the number of seconds
from the moment it’s executed to five o’clock. Use this value to adjust the second statement, and
make the class fire the event at any time.

The code uses the DateDiff() function, which calculates the difference between the current time
and 1700 hours in seconds. If this difference is less than two minutes, the class raises the TeaTime
event. The syntax of the DateDiff() function is complicated, but here’s an explanation of its argu-
ments. The first argument is a constant value that tells the DateDiff() function what time unit to use
in reporting the difference. In our example, we want to express the difference in seconds. The fol-
lowing two arguments are the two date (or time) values to be subtracted. The first of the two argu-
ments is the current date and time: the second is a date/time value that represents the current date at
five o’clock. This value is constructed with the following expression:

DateAdd(DateInterval.Hour, 17, System.DateTime.Today)

This statement returns the current date with a time value of 17:00.00 (something like 2001-08-13
17:00:00). This value is then compared to the current date and time.

Programming the Class’s Event

How do we intercept the event in our main application? As you may have guessed, we’ll instantiate
the class with the WithEvents keyword. Declare a second variable of the Minimal type in the test
form with the WithEvents keyword:

Dim WithEvents TimerObj As Minimal

Figure 8.7

Declaring and rais-
ing an event in the
class’s code

Chapter 8 BUILDING CUSTOM CLASSES348

2877c08.qxd 11/11/01 4:17 PM Page 348

http://www.sybex.com

After this declaration, the TimerObj variable will appear in the list of objects of the editor window,
and its TeaTime event will appear in the list of events, as you see in Figure 8.8. You can now pro-
gram the event in your application and use it any way you see fit.

The events raised by a class may pass additional arguments to the program that handles the event.
The sender argument is passed by default and contains information about the object that raised the
event—so that you can write an event handler for multiple events. Place a new button on the form,
name it Initialize Timer, and enter the following code in its Click event handler (this is the code
behind the button of that name on the test form):

Private Sub bttnInitTimer_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnInitTimer.Click

TimerObj = New Minimal()
End Sub

This subroutine creates a new instance of the TimerObj variable. This variable was declared outside
the procedure, but it wasn’t instantiated. Before this statement is executed, no events will take place.
I’ve inserted the statement that prints the time difference (seconds left until five o’clock) in the
Timer’s Tick event so that you can see what’s going on.

Let’s see how the application uses the class. Start the application and wait for 10 seconds. You
might expect to see something in the Output window, but nothing will appear. The Console.Write-
Line statement in the Timer control’s Tick event handler isn’t executed, because the TimerObj vari-
able hasn’t been instantiated yet.

Click one of the buttons on the form other than the Initialize Timer button. Every 10 seconds, a
new double value will appear in the Output window. This is the number of seconds left until (or
passed since) five o’clock. The event, however, isn’t raised. An instance (or more) of the Minimal
class has been created, so the class’s code is executing, and it prints the number of seconds left until
the next TeaTime event in the Output window. However, the TimerObj variable (the one declared
with the WithEvents keyword) has not been instantiated yet, so even if the class fires the event, your
application won’t handle it. Since none of the variables of the Minimal type was declared with the
WithEvents keyword, the application isn’t receiving notifications about the event—should it hap-
pen. The class’s code, however, is running, and it prints a value every 10 seconds.

Now click the Initialize Timer button, wait for a few seconds, and the message will pop up—
provided you’re testing the application around five o’clock. Only the TimerObj variable was declared
with the WithEvents keyword, and this is the only one that can intercept the event.

Figure 8.8

Programming a
class’s event

349BUILDING THE MINIMAL CLASS

2877c08.qxd 11/11/01 4:17 PM Page 349

http://www.sybex.com

Before I end this example, I should show you how to test the application without having to wait
forever. I ran the application at 1:57 P.M., and the value printed by the first statement in the Tick
events was 10,900 or so (the numbe r of seconds to five o’clock). Then I stopped the application,
changed the value 120 in the code to a value a little smaller than the one in the Output window
(10,850), and restarted the application. A few moments later, the event was fired (it took more than
10 seconds, so I was sure the code was working properly). If you’re running the application after five
o’clock, the values will be negative, so adjust the comparison accordingly.

You have the basics for writing classes to fire alarms at specified intervals, a specific time, or even
a time interval after a certain operation. You can also use this class (with some modifications) to
monitor the system and raise an event if certain things happen. You could check a folder periodically
to see if a file was added or deleted. There’s no reason to write code for this, because the Framework
exposes the FileSystemWatcher class, which does exactly that (the FileSystemWatcher class is dis-
cussed in Chapter 13). But you may wish to monitor a printer, know when a new user logs in, or
keep track of any other operation or action you can detect from within your code.

Passing Parameters through Event Arguments

Events usually pass some information to the routine that processes them. The TeaTime event is a
trivial example that doesn’t include any information, but in most cases there will be some informa-
tion you’ll want to pass to the application. The arguments of an event are declared just like the argu-
ments of a procedure. The following statement declares an event that’s fired when the class
completes the download of a file. The event passes three parameter values to the application that
intercepts it:

Public Event CompletedDownload(ByVal fileURL As String, _
ByVal fileName As String, ByVal fileLength As Long)

The parameters passed to the application through this event are the URL from which the file was
downloaded, the path of a file where the downloaded information was stored, and the length of the
file. To raise this event from within a class’s code, call the RaiseEvent statement as before, passing
three values of the appropriate type, as shown next:

RaiseEvent CompletedDownload(“http://www.server.com/file.txt”, _
“d:\temp\A90100.txt”, 144329)

In the following section, you’ll find actual examples of events that pass arguments to the applica-
tion that uses the class. You will also see how you can cancel an asynchronous operation from within
your application by setting one of the arguments of the event.

Progress Events

Progress events can be fired in two ways. If you know the duration of the operation, you can fire
progress events when every five or ten percent of the operation completes. If the operation takes place
from within a loop, you can fire the progress event after a certain number of iterations. A more com-
plicated case is when you don’t know in advance how long the operation may take. This may happen
when you download a file of unknown size. In this case, you can fire progress events every so many
seconds and report the number of bytes downloaded, or some other indication that might help the
application display some form of progress. Reporting the progress as a percentage of the total work

Chapter 8 BUILDING CUSTOM CLASSES350

2877c08.qxd 11/11/01 4:17 PM Page 350

http://www.sybex.com

done is out of the question, so this progress event isn’t of much help to the developer or to the user of
the application. It simply tells the user that the class is running in the background, not much more.

To demonstrate progress events, I’ve prepared an application (DirScanner on the companion
CD) that goes through an entire drive and adds up the sizes of all files. This is a lengthy operation
even on the fastest Pentium system, so it will give you a chance to monitor the progress events. Since
the class has no way of knowing the total number of folders (or files) on the disk ahead of time, it
can only report the number of folders scanned so far.

The following code scans recursively all folders on the hard drive. The process of scanning a
folder, including its subfolders, is quite simple—if you’re familiar with recursion, that is. The code is
discussed in detail in Chapter 18, but don’t worry about understanding how it works right now. Just
focus on the ScanProgress event, which is fired each time a new folder has been scanned. The applica-
tion that receives the event can update a display with the total number of folders scanned so far, which
is a good indication of the progress of the operation. It’s not an indicator of the time left to complete
the operation, but sometimes this is all you can do. When you search for a specific file with the Find
utility, for example, all you get is a list of folders scanned so far at the bottom of the window.

The DirScanner class (shown in Listing 8.16) calls the ScanFolder() function, which accepts as
argument the name of the folder to be scanned and returns the total size of all the files in this folder.
ScanFolder() scans the files in the folder passed as argument. Then it goes through the subfolders
under the same folder and does the same. To do so, it calls itself by passing each subfolder’s name as
argument. By the time it’s done, the totalSize local variable holds the sum of the sizes of all files under
the initial folder.

Listing 8.16: The DirScanner Class

Imports System.IO
Imports System.IO.Directory
Public Class DirScanner

Public Event ScanProgress(ByVal foldersScanned As Integer)
Private totalSize As Long
Private nFolders As Integer
Public Function ScanFolder(ByVal folder As String) As Long

Dim file, dir As String
Dim FI As FileInfo
For Each file In Directory.GetFiles(folder)

FI = New FileInfo(file)
totalSize = totalSize + FI.Length

Next
For Each dir In Directory.GetDirectories(folder)

nFolders = nFolders + 1
RaiseEvent ScanProgress(nFolders)
ScanFolder(dir)

Next
Return totalSize

End Function
End Class

351BUILDING THE MINIMAL CLASS

2877c08.qxd 11/11/01 4:17 PM Page 351

http://www.sybex.com

The ScanProgress event is declared at the Class level (outside the ScanFolder() procedure), and it
passes an Integer value to the calling application; this is the number of folders scanned so far. The
ScanFolder() function maintains two private variables, where it stores the number of folders scanned
so far (the nFolders variable) and the total size of the files. The nFolders value is reported to the appli-
cation through the event’s argument. The code of the ScanFolder() function is straightforward,
except for the line that raises the event. The event is raised every time the function runs into a new
folder and before it starts scanning it.

To test the DirScanner class and its event, add a button on the test form and enter the code of
Listing 8.17 in its Click event handler.

Listing 8.17: Testing the DirScanner Class

Dim WithEvents objDirScanner As DirScanner
Protected Sub Button1_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)
Dim folder As String
objDirScanner = New DirScanner()
folder = “C:\Program Files”
MsgBox(“Your files occupy “ & _

objDirScanner.ScanFolder(folder).Tostring & “ bytes on the drive”)
End Sub

The application calls the ScanFolder() method and, while the method is executing, it receives
progress events. The last statement in this subroutine will be executed after the ScanFolder() method
completes its execution and returns control to the Click event handler. In the meantime, the events
raised by the class are processed by the objDirScanner_ScanProgress handler, which is shown in the
following code. To program this event handler, select the name of the objDirScanner variable in the
object list and the ScanProgress event in the event list of the editor’s window. The code shown here
uses the information passed through these events to update the caption on the application’s form.

Public Sub objDirScanner_ScanProgress(ByVal foldersScanned As System.Integer) _
Handles objDirScanner.ScanProgress

Me.Text = “Scanned “ & foldersScanned.ToString & “ folders so far”
End Sub

Another method of reporting the progress of a lengthy operation is to raise an event every so
often during the operation. The following pseudocode segment outlines the class’s code that raises
an event every eventDuration seconds:

If Now.TimeOfDay < (newInterval + eventDuration) Then
newInterval = Now.TimeOfDay
RaiseEvent Progress(foldersScanned)

End If

Chapter 8 BUILDING CUSTOM CLASSES352

2877c08.qxd 11/11/01 4:17 PM Page 352

http://www.sybex.com

When an application initiates an operation that may take a while to complete, it usually provides
a Cancel button, which the user can click to interrupt the process. But how do we notify the class
that it must abort the current operation? This is done through the progress event, with the help of an
additional argument. Many event handlers include a Cancel argument, which the application can set
to True to indicate its intention to interrupt the execution of the current operation in the class. Let’s
revise our progress event in the DirScanner class to include a Cancel argument.

Tip Notice that the Cancel argument doesn’t pass information from the class to the application; it passes information the
other way. We want the class to be able to read the value of the Cancel argument set by the application, so we must pass this
argument by reference, not by value. If you pass the Cancel argument by value, its value won’t change. Even if the applica-
tion sets it to True, it’s actually setting the value of the copy of the Cancel variable, and your class will never see this value.

Instead of revising the code of the existing ScanProgress event, we’ll add another event, the
ScanTimerProgress event. Add the event declaration and the ScanTimerFolder() function from List-
ing 8.18 to your class.

Listing 8.18: The ScanTimerFolder Method

Public Function ScanTimerFolder(ByVal folder As String) As Long
Dim file, dir As String
Dim FI As FileInfo
Dim interval As Double = 3000
If start = 0 Then start = Now.TimeOfDay.TotalMilliseconds
Dim cancel As Boolean
For Each file In Directory.GetFiles(folder)

FI = New FileInfo(file)
totalSize = totalSize + FI.Length

Next
For Each dir In Directory.GetDirectories(folder)

If Now.TimeOfDay.TotalMilliseconds > (start + interval) Then
RaiseEvent ScanTimerProgress(nFolders, cancel)
If cancel Then Exit Function
start = Now.TimeOfDay.TotalMilliseconds

End If
nFolders = nFolders + 1
ScanTimerFolder(dir)

Next
Return totalSize

End Function

The code is the same, except for the If statement that examines the value of the cancel argument. If
cancel is True, then the program aborts its execution. To test the new progress event, add a second
button on the form and enter the code of Listing 8.19 in its Click event handler.

353BUILDING THE MINIMAL CLASS

2877c08.qxd 11/11/01 4:17 PM Page 353

http://www.sybex.com

Listing 8.19: Initiating the Scanning of a Folder

Protected Sub Button2_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Dim folder As Directory
objDirScanner = New DirScanner()
folder = New Directory(“D:\”)
MsgBox(“Your files occupy “ & _

objDirScanner.ScanTimerFolder(folder).Tostring & “ bytes on the drive”)
End Sub

The new event will be caught by the same object, the objDirScanner object, in addition to the Scan-
Progress event. Delete (or comment out) the statements in the objDirScanner_ScanProgress event
handler and enter Listing 8.20’s lines in the new event’s handler.

Listing 8.20: The ScanTimerProgress Event

Public Sub objDirScanner_ScanProgress(ByVal foldersScanned As System.Integer, _
ByRef Cancel As Boolean) Handles objDirScanner.ScanProgress

Me.Text = “Scanned “ & foldersScanned.ToString & “ folders so far”
If foldersScanned > 3000 Then Cancel = True

End Sub

To test the Cancel argument, the program sets it to True to terminate the execution of the Scan-
Folder() method if it has already scanned more than 3,000 files. Normally, you should provide a
Cancel button on your form, which the user can click to terminate the execution of the method.
Check out the DirScanner project and experiment with other techniques for handling the Cancel
argument. If your Program Files folder contains fewer than 3,000 files, use a smaller value in the
code to terminate the process of scanning a folder prematurely. Notice that if the scanning operation
is interrupted prematurely, the corresponding method will not return the number of folders scanned
or the total number of bytes they occupy on disk.

Asynchronous Operations

An asynchronous operation is an operation you initiate from within your code and then continue with
other tasks, without waiting for the operation’s completion. When you start the download a file in
Internet Explorer, for example, you can continue surfing while the file is being downloaded in the
background. The more operations you can perform in the background, the more responsive your
application appears to be.

When the operation completes, the class must notify the application that it’s done, and this takes
place through an event. These events are similar to the progress events discussed in the previous sec-
tion, and we won’t discuss them in this chapter.

Shared Properties
When you instantiate a class, its code is loaded into memory, its local variables are initialized, and
then the New subroutine is executed. This happens the first time you instantiate a variable of the

Chapter 8 BUILDING CUSTOM CLASSES354

2877c08.qxd 11/11/01 4:17 PM Page 354

http://www.sybex.com

class’s type. If the class has already been instantiated (that is, if you have already created a variable of
the same type), the code isn’t loaded again. Instead, a new copy of each local variable is created. The
same code acts on different data, and it appears as if you have multiple instances of the class loaded
and running at the same time. Each instance of the class has its own properties; the values of these
properties are local to each instance of the class. If you declare two variables of the Minimal type in
your application, thus:

Dim obj1, obj2 As Minimal

then you can set their Age property to different values:

obj1.property1 = 10
obj2.property2 = 90

The two expressions are independent of one another, as if there were two instances of the class in
memory at the same time.

There are situations, however, where you want all instances of a class to see the same property
value. Let’s say you want to keep track of the users currently accessing your class. You can declare a
method that must be called in order to enable the class, and this method signals that another user has
requested your class. This could be a method that establishes a connection to a database or opens a
file. We’ll call it the Connect method. Every time an application calls the Connect method, you can
increase an internal variable by one. Likewise, every time an application calls the Disconnect method,
the same internal variable is decreased by one. This internal variable can’t be private, because it will
be initialized to zero with each new instance of the class. You need a variable that is common to all
instances of the class. Such a variable is called shared and is declared with the Shared keyword.

Let’s add a shared variable to our Minimal class. We’ll call it LoggedUsers, and it will be read-only. Its
value is reported with the Users property, and only the Connect and Disconnect methods can change its
value. Listing 8.21 is the code you must add to the Minimal class to implement a shared property.

Listing 8.21: Implementing a Shared Property

Shared LoggedUsers As Integer
ReadOnly Property Users() As Integer

Get
Users = LoggedUsers

End Get
End Property
Public Function Connect() As Integer

LoggedUsers = LoggedUsers + 1
{ your own code here }

End Function
Public Function Disconnect() As Integer

If LoggedUsers > 1 Then
LoggedUsers = LoggedUsers - 1

End If
{ your own code here }

End Function

355BUILDING THE MINIMAL CLASS

2877c08.qxd 11/11/01 4:17 PM Page 355

http://www.sybex.com

To test the shared variable, add a new button to the form and enter Listing 8.22 in its Click event
handler. (The lines in bold are the values reported by the class; they’re not part of the listing.)

Listing 8.22: Testing the LoggedUsers Shared Property

Protected Sub Button5_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Dim obj1 As New Minimal()
obj1.Connect()
Console.WriteLine(obj1.Users)

1
obj1.Connect()
Console.WriteLine(obj1.Users)

2
Dim obj2 As New Minimal()
obj2.Connect()
Console.WriteLine(obj1.Users)

3
Console.WriteLine(obj2.Users)

3
Obj2.Disconnect()
Console.WriteLine(obj2.Users)

2
End Sub

If you run the application, you’ll see the values displayed under each Console.WriteLine state-
ment in the Output window. The values in bold are not part of the listing; I’ve inserted them in the
listing to help you match each item of the output to the statement that produces it. As you can see,
both obj1 and obj2 variables access the same value of the Users property. Shared variables are com-
monly used in classes that run on a server and service multiple applications. In effect, they’re the
class’s Global variables, which can be shared among all the instances of a class. You can use shared
variables to keep track of the total number of rows accessed by all users of the class in a database,
connection time, and other similar quantities.

A “Real” Class
In this section, I’ll discuss a more practical class that exposes three methods for manipulating
strings. I have used these methods in many projects, and I’m sure many readers will have good use
for them—at least one of them. The first two methods are the ExtractPathName and ExtractFile-
Name methods, which extract the file and path name from a full filename. If the full name of a file
is “c:\Documents\Recipes\Chinese\Won Ton.txt”, the ExtractPathName method will return the
substring “c:\Documents\Recipes\Chinese\” and the ExtractFileName method will return the sub-
string “Won Ton.txt”.

Chapter 8 BUILDING CUSTOM CLASSES356

2877c08.qxd 11/11/01 4:17 PM Page 356

http://www.sybex.com

Note You can use the Split method of the String class to extract all the parts of a delimited string. Extracting the path
name and filename of a complete filename is so common in programming that it’s a good idea to implement the correspon-
ding functions as methods in a custom class. You can also use the Path object, which exposes a similar functionality. The
Path object is discussed in Chapter 13.

The third method is called Num2String; it converts a numeric value (an amount) to the equiva-
lent string. For example, it can convert the amount $12,544 to the string “Twelve Thousand, Five
Hundred And Forty Four.” No other class in the Framework provides this functionality, and any
program that prints checks can use this class.

Parsing a Filename String
Let’s start with the two methods that parse a complete filename. These methods are implemented as
public functions, and they’re quite simple. Start a new project, rename the form to TestForm, and
add a Class to the project. Name the class and the project StringTools. Then enter the code of List-
ing 8.23 in the Class module.

Listing 8.23: The ExtractFileName and ExtractPathName Methods

Public Function ExtractFileName(ByVal PathFileName As String) As String
Dim delimiterPosition As Integer
delimiterPosition = PathFileName.LastIndexOf(“\”)
If delimiterPosition > 0 Then

Return PathFileName.Substring(delimiterPosition + 1)
Else

Return PathFileName
End If

End Function
Public Function ExtractPathName(ByVal PathFileName As String) As String

Dim delimiterPosition As Integer
delimiterPosition = PathFileName.LastIndexOf(“\”)
If delimiterPosition > 0 Then

Return PathFileName.Substring(0, delimiterPosition)
Else

Return “”
End If

End Function

These are two simple functions that parse the string passed as argument. If the string contains no
delimiter, it’s assumed that the entire argument is just a filename.

The Num2String method is far more complicated, but if you can implement it as a regular func-
tion, it doesn’t take any more effort to turn it into a method. The listing of Num2String is shown in
Listing 8.24. First, it formats the billions in the value (if the value is that large), then the millions,
thousands, units, and finally the decimal part, which may contain no more than two digits.

357A “REAL” CLASS

2877c08.qxd 11/11/01 4:17 PM Page 357

http://www.sybex.com

Listing 8.24: Converting Numbers to Strings

Public Function Num2String(ByVal number As Decimal) As String
Dim biln As Decimal, miln As Decimal, thou As Decimal, hund As Decimal
Dim ten As Integer, units As Integer
Dim strNumber As String
If number > 999999999999.99 Then

Num2String = “***”
Exit Function

End If
biln = CInt(number / 1000000000)
If biln > 0 Then strNumber = FormatNum(biln) & “ Billion” & Pad()
miln = Int((number - biln * 1000000000) / 1000000)
If miln > 0 Then _

strNumber = strNumber & FormatNum(miln) & “ Million” & Pad()
thou = Int((number - biln * 1000000000 - miln * 1000000) / 1000)
If thou > 0 Then _

strNumber = strNumber & FormatNum(thou) & “ Thousand” & Pad()
hund = Int(number - biln * 1000000000 - miln * 1000000 - thou * 1000)
If hund > 0 Then strNumber = strNumber & FormatNum(hund)
If Right(strNumber, 1) = “,” Then _

strNumber = Left(strNumber, Len(strNumber) - 1)
If Left(strNumber, 1) = “,” Then _

strNumber = Right(strNumber, Len(strNumber) - 1)
If number <> Int(number) Then

strNumber = strNumber & FormatDecimal(CInt((number - Int(number)) * 100))
Else

strNumber = strNumber & “ dollars”
End If
Num2String = Delimit(SetCase(strNumber))

End Function

Each group of three digits (million, thousand, and so on) is formatted by the FormatNum()
function. Then, the appropriate string is appended (“Million”, “Thousand”, and so on). The
FormatNum() function, which converts a numeric value less than 1,000 to the equivalent string, is
shown in Listing 8.25.

Listing 8.25: The FormatNum() Function

Private Function FormatNum(ByVal num As Decimal) As String
Dim digit100 As Decimal, digit10 As Decimal, digit1 As Decimal
Dim strNum As String
digit100 = Int(num / 100)
If digit100 > 0 Then strNum = Format100(digit100)
digit10 = Int((num - digit100 * 100))
If digit10 > 0 Then

If strNum <> “” Then

Chapter 8 BUILDING CUSTOM CLASSES358

2877c08.qxd 11/11/01 4:17 PM Page 358

http://www.sybex.com

strNum = strNum & “ And “ & Format10(digit10)
Else

strNum = Format10(digit10)
End If

End If
FormatNum = strNum

End Function

The FormatNum() function formats a three-digit number as a string. To do so, it calls the For-
mat100() to format the hundreds, and the Format10() function formats the tens. The Format10()
function, as you may have guessed, calls the Format1() function to format the units. I will not show
the code for these functions; you can find it on the CD in the StringTools project. You’d probably
use similar functions to implement the Num2String method as a function. Instead, I will focus on a
few peripheral issues, like the enumerations used by the class as property values.

To make the Num2String method more flexible, the class exposes the UseCase, UseDelimiter,
and UsePadding properties. The UseCase property determines the case of the characters in the string
returned by the method. The UseDelimiter method specifies the special characters that may appear
before and after the string. Finally, the UsePadding property specifies the character that will appear
between groups of digits. The values each of these properties may take on are shown here:

UsePadding UseDelimiter UseCase

clsToolsCommas clsToolsNone clsToolsCaps

clsToolsSpaces clsTools1Asterisk clsToolsLower

clsToolsDashes clsTools3Asterisks clsToolsUpper

The actual numeric values are of no interest. The values under each property name are imple-
mented as enumerations, and you need not memorize their names. As you enter the name of prop-
erty followed by the equal sign, the appropriate list of values will pop up and you can select the
desired member.

Listing 8.26 presents the clsToolsCase enumeration and the implementation of the UseCase
property:

Listing 8.26: The clsToolsCase Enumeration and the UseCase Property

Enum clsToolsCase
clsToolsCaps
clsToolsLower
clsToolsUpper

End Enum
Private varUseCase As clsToolsCase
Public Property UseCase() As clsToolsCase

Get
Return (varUseCase)

End Get

359A “REAL” CLASS

2877c08.qxd 11/11/01 4:17 PM Page 359

http://www.sybex.com

Set
varUseCase = Value

End Set
End Property

Once the declaration of the enumeration and the Property procedure are in place, the coding of
the rest of the class is simplified a great deal. The Num2String() function, for example, calls the Pad()
method after each three-digit group. The separator is specified by the UseDelimiter property, whose
type is clsToolsPadding. The Pad() function uses the members of the clsToolsPadding enumeration
to make the code easier to read. As soon as you enter the Case keyword, the list of values that may be
used in the Select Case statement will appear automatically and you can select the desired member.
Here’s the code of the Pad() function:

Private Function Pad() As String
Select Case mvarUsePadding

Case clsToolsPadding.clsToolsSpaces : Pad = “ “
Case clsToolsPadding.clsToolsDashes : Pad = “-”
Case clsToolsPadding.clsToolsCommas : Pad = “, “

End Select
End Function

To test the StringTools class, create a test form like the one shown in Figure 8.9. Then enter the
code from Listing 8.27 in the Click event handler of the two buttons.

Listing 8.27: Testing the StringTools Class

Protected Sub Button1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Dim objStrTools As New StringTools()
objStrTools.UseCase = StringTools.clsToolsCase.clsToolsCaps
objStrTools.UseDelimiter = StringTools.clsToolsDelimit.clsToolsNone
objStrTools.UsePadding = StringTools.clsToolsPadding.clsToolsCommas
TextBox2.Text = objStrTools.Num2String(CDec(TextBox1.text))

End Sub
Protected Sub Button2_Click(ByVal sender As Object, _

ByVal e As System.EventArgs)
Dim objStrTools As New StringTools()

Figure 8.9

The test form of the
StringTools class

Chapter 8 BUILDING CUSTOM CLASSES360

2877c08.qxd 11/11/01 4:17 PM Page 360

http://www.sybex.com

openFileDialog1.ShowDialog()
Console.writeline(objStrTools.ExtractPathName(OpenFileDialog1.FileName))
Console.WriteLine(objStrTools.ExtractFileName(OpenFileDialog1.FileName))

End Sub

Reusing the StringTools Class
Let’s see now how the StringTools class can be used in another project, without making the VB file
with the class part of every project that requires this functionality. First, you must create the class’s
executable file. Unlike Windows applications, classes are compiled into DLL files. Your project
most likely contains a test form in addition to the class, so you must exclude the test form from the
project. Right-click the name of the test form and select Exclude From Project. This action will
exclude the file from the project. You project now contains the StringTools class only.

Classes can’t be executed on their own, so you must also change the type of the project. Right-click
the name of the project and select Properties. In the Project Property Pages dialog box, change the
project’s output type from Windows Application to Class Library. Then close the project’s property
pages, open the Project menu, and select Build. This action will create the StringTools.dll file in
the project’s Bin folder. This is the file you must reference in any project that requires the function-
ality of the StringTools class.

Start a new project, and choose Project ➢ Add Reference. On the dialog box that will appear,
switch to the Projects tab and click the Browse button. Locate the Bin folder under the project’s
folder, where you will find the StringTools.dll file. Select it and close all the dialog boxes. When
you’re back to the project, you will see that the StringTools class has been added to the project. You
can’t edit the class’s code, which means you can’t break it. You can even extend the functionality of
the StringTools class by adding more members to it, without touching its code. The topic of build-
ing new classes based on existing ones is discussed in the later section “Inheritance.”

VB.NET at Work: The ClassContacts Project
In Chapter 4, I discussed briefly the Contacts application. This application uses a structure to store
the contacts and provides four navigational buttons to allow users to move to the first, last, previous,
and next contact. Now that you have learned how to use the ListBox control and how to use custom
classes in your code, we’re going to revise the Contacts application. First, we’ll implement the contacts
as a class. The fields of each contact (company name, contact name, and so on) will be implemented as
properties. The advantage of implementing the contacts as classes, as opposed to structures, is that you
can validate the values of the fields from within your class, and not rely on the application developer
to validate the data before storing them to an instance of a structure.

Another advantage is that other developers can extend your class and add new properties, or
methods, without having access to your code. You will see how to extend classes later in this chapter,
in the section on inheritance.

We’ll also improve the user interface of the application. Instead of the rather simplistic naviga-
tional buttons, we’ll place all the company names in a sorted ListBox control. The user can easily
locate the desired company and select it in the list to view the fields of the selected contact. The
editing buttons at the bottom of the form work as usual. Figure 8.10 shows the revised Contacts
application, which is the ClassContacts application you will find in this chapter’s CD folder.

361A “REAL” CLASS

2877c08.qxd 11/11/01 4:17 PM Page 361

http://www.sybex.com

Make a copy of the Contacts folder from Chapter 4 and rename it to ClassContacts. Then open
the application in the new folder and likewise rename the project from Contacts to ClassContacts.
The next step is to delete the declaration of the Contact structure and add a class to the project.
Name the new class Contact and enter in it the code from Listing 8.28.

Listing 8.28: The Contact Class

<Serializable()> Public Class Contact
Private _companyName As String
Private _contactName As String
Private _address1 As String
Private _address2 As String
Private _city As String
Private _state As String
Private _zip As String
Private _tel As String
Private _email As String
Private _URL As String
Property CompanyName() As String

Get
CompanyName = _companyName

End Get
Set(ByVal Value As String)

If Value Is Nothing Or Value = “” Then
Throw New Exception(“Company Name field can’t be empty”)
Exit Property

End If
_companyName = Value

End Set
End Property
Property ContactName() As String

Figure 8.10

The interface of the
ClassContacts appli-
cation is based on
the ListBox control.

Chapter 8 BUILDING CUSTOM CLASSES362

2877c08.qxd 11/11/01 4:17 PM Page 362

http://www.sybex.com

Get
ContactName = _contactName

End Get
Set(ByVal Value As String)

_contactName = Value
End Set

End Property
Property Address1() As String

Get
Address1 = _address1

End Get
Set(ByVal Value As String)

_address1 = Value
End Set

End Property
Property Address2() As String

Get
Address2 = _address1

End Get
Set(ByVal Value As String)

_address2 = Value
End Set

End Property
Property City() As String

Get
City = _city

End Get
Set(ByVal Value As String)

_city = Value
End Set

End Property
Property State() As String

Get
State = _state

End Get
Set(ByVal Value As String)

_state = Value
End Set

End Property
Property ZIP() As String

Get
ZIP = _zip

End Get
Set(ByVal Value As String)

_zip = Value
End Set

End Property
Property tel() As String

363A “REAL” CLASS

2877c08.qxd 11/11/01 4:17 PM Page 363

http://www.sybex.com

Get
tel = _tel

End Get
Set(ByVal Value As String)

_tel = Value
End Set

End Property
Property EMail() As String

Get
EMail = _email

End Get
Set(ByVal Value As String)

_email = Value
End Set

End Property
Property URL() As String

Get
URL = _URL

End Get
Set(ByVal Value As String)

_URL = Value
End Set

End Property
Overrides Function ToString() As String

If _contactName = “” Then
Return _companyName

Else
Return _companyName & vbTab & “(“ & _contactName & “)”

End If
End Function

End Class

The first thing you’ll notice is that the class’s definition is prefixed by the <Serializable()> key-
word. The topic of serialization is discussed in Chapter 11, but for now all you need to know is that
the .NET Framework can convert objects to a text or binary format and store them in files. Surpris-
ingly, this process is quite simple. <Serializable()> is an attribute of the class. As you will see later in
this book, there are more attributes you can use with your classes, or even with your methods. The
most prominent method attribute is the <WebMethod> attribute, which turns a regular function
into a Web method.

The various fields of the contact structure are now properties of the Contact class. The imple-
mentation of the properties is trivial, except for the CompanyName property, which contains some
validation code. The Contact class requires that the CompanyName property has a value; if it doesn’t,
the class throws an exception. Finally, the class provides its own ToString method, which returns the
name of the company followed by the contact name in parentheses. We’re going to store all the contacts
in the ListBox control. The ListBox control will display the value returned by the object’s ToString

Chapter 8 BUILDING CUSTOM CLASSES364

2877c08.qxd 11/11/01 4:17 PM Page 364

http://www.sybex.com

method, so we must provide our own ToString method that describes each contact. The company
name should be adequate, but if there are two companies by the same name, you can use another
field to differentiate them. I’ve used the contact name, but you can use any of the other properties
(the URL would be a good choice).

Each contact is stored in a variable of the Contact type and added to the ListBox control. Now,
we must change the code of the main form a little. First, remove the navigational buttons; we no
longer need them. Their function will be replaced by a few lines of code in the ListBox control’s
SelectedIndexChanged event. Every time the user selects another item on the list, the statements
shown in Listing 8.29 display the contact’s properties on the various TextBox controls on the form.

Listing 8.29: Displaying the Fields of the Selected Contact Object

Private Sub ListBox1_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ListBox1.SelectedIndexChanged

currentContact = ListBox1.SelectedIndex
ShowContact()

End Sub

The ShowContact() subroutine reads the object stored at the location specified by the current-
Contact variable and displays its properties on the various TextBox controls on the form.

When a new contact is added, the code creates a new Contact object and adds it to the ListBox con-
trol. When a contact is edited, a new Contact object replaces the currently selected object on the control.
The code is very similar to the code of the Contacts application. I should mention that the ListBox
control is locked while a contact is being added or edited, because it doesn’t make sense to select
another contact at that time. Besides, we want to be able to replace the contact being edited when the
user is done.

To delete a contact (Listing 8.30), we simply remove the currently selected object on the con-
trol. In addition, we must select the next object, or the first object if the deleted object was the last
one in the list.

Listing 8.30: Deleting an Object on the ListBox

Private Sub bttnDelete_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnDelete.Click

If currentContact > -1 Then
ListBox1.Items.RemoveAt(currentContact)
If currentContact = ListBox1.Items.Count Then _

currentContact = ListBox1.Items.Count - 1
If currentContact = -1 Then

ClearFields()
MsgBox(“There are no more contacts”)

Else
ShowContact()

End If

365A “REAL” CLASS

2877c08.qxd 11/11/01 4:17 PM Page 365

http://www.sybex.com

Else
MsgBox(“No current contacts to delete”)

End If
End Sub

When you add a new contact, the following code is executed in the Add button’s Click event
handler:

Private Sub bttnAdd_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles bttnAdd.Click

adding = True
ClearFields()
HideButtons()
ListBox1.Enabled = False

End Sub

These statements simply prepare the application to accept a new record. The controls are cleared
in anticipation of the new record’s fields, and the adding variable is set to True. The OK button is
clicked to end either the addition of a new record or an edit operation. The code behind the OK
button is shown in Listing 8.31.

Listing 8.31: Committing a New or Edited Record

Private Sub bttnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnOK.Click

Dim contact As New Contact()
SaveContact()
ListBox1.Enabled = True
ShowButtons()

End Sub

As you can see, the same subroutine handles both the insertion of a new record and the editing of
an existing one. All the work is done by the SaveContact() subroutine, which is shown in Listing 8.32.

Listing 8.32: The SaveContact() Subroutine

Sub SaveContact()
Dim contact As New Contact()
contact.CompanyName = txtCompany.Text
contact.ContactName = txtContact.Text
contact.Address1 = txtAddress1.Text
contact.Address2 = txtAddress2.Text
contact.City = txtCity.Text
contact.State = txtState.Text
contact.ZIP = txtZIP.Text
contact.tel = txtTel.Text

Chapter 8 BUILDING CUSTOM CLASSES366

2877c08.qxd 11/11/01 4:17 PM Page 366

http://www.sybex.com

contact.EMail = txtEMail.Text
contact.URL = txtURL.Text
If adding Then

ListBox1.Items.Add(contact)
Else

ListBox1.Items(currentContact) = contact
ListBox1.Items.RemoveAt(currentContact)
ListBox1.Items.Add(contact)

End If
End Sub

The SaveContact() subroutine uses the adding variable to distinguish between an add and an edit
operation, and either adds the new record to the ListBox control or replaces the current record in the
ListBox with the values on the various controls.

The last step is the serialization and deserialization of the items on the ListBox control. Serial-
ization is the process of storing the object to a disk file, and deserialization is the opposite process.
To serialize objects, we first store them into an ArrayList object. The ArrayList object is a dynamic
array that stores objects; it can be serialized as a whole. Likewise, the disk file is deserialized as an
ArrayList; then each element of the ArrayList is moved to the Items collection of the ListBox con-
trol. The ArrayList object is discussed in detail in Chapter 11, along with the techniques for serializ-
ing and deserializing its elements.

The ClassContacts application demonstrates how to use classes to implement custom objects; it’s
also a demonstration of how the ListBox control should be used. In Chapter 6, when we explored the
ListBox control, you saw examples of storing strings to this control. To make the most of the ListBox
control, use it to save objects in its Items collection. In addition to storing data, the ListBox control
is also a fine navigational tool, as long as it’s sorted and the objects you store to the control provide a
custom ToString method that returns a string identifying the object.

Encapsulation and Abstraction
As you have seen, developing a new custom class with VB is a straightforward process. In effect, it’s
very similar to writing regular VB code. So, why build classes in the first place? One of the advan-
tages of using classes is that their functionality is cast in iron; other developers can use it, but they
can’t break it. You can think of classes as black boxes, and this is what programmers call encapsulation.
The String data type encapsulates a lot of functionality and exposes it through its properties and
methods (the Length property, or the Split method, for example). The functionality is added to the
class and is available to all applications that make use of the String class.

If you have a set of utility functions and you use them in several of your projects, you’re already
familiar with the following scenario. You modify one function for the needs of a specific applica-
tion, then you modify another function to suit another application, and as you go along you break
applications that used to work with the old versions of the functions. If you place all your custom
string-manipulation functions in a class, you’ll encapsulate their functionality.

Encapsulation doesn’t mean that the class must be used “as is.” As you will see in the following
section, it is possible (and desirable) to modify a member. In short, you can create new classes based
on existing ones and add new members, or revise existing members. The old applications will work

367A “REAL” CLASS

2877c08.qxd 11/11/01 4:17 PM Page 367

http://www.sybex.com

with the old class, while newer applications will work with the newer version of the class. All this can
be done without any housekeeping requirements on your part.

Classes are extremely useful in team programming. In large database projects, a team of program-
mers develops classes that access the database and perform low-level operations. Other developers use
these classes to get an abstracted view of the database. For example, programmers who develop front-
end applications need not be concerned with the exact structure of the database. They can access
methods like AddBook to add a new book to the database, or GetAuthorBooks to get the books of an
author. The first method accepts fields like the book’s title and ISBN and creates a new record in the
database. The GetAuthorBooks method accepts the ID of an author and returns the books written by
this author. The developers working on the front-end applications don’t access the database directly.
The appropriate classes give them an abstracted view of the database, and they call simple methods to
perform fairly complicated tasks. Another advantage of using classes in database applications is that if
you change the structure of the database, or even move the data to another database, you need only
change the code in the class and the front-end applications will keep working. The capacity to isolate
programmers from unnecessary details is called abstraction.

These are two of the advantages of using classes. In the following section you will learn about
inheritance, a feature that will enable you to write truly reusable code. Inheritance is one of the foun-
dations of object-oriented programming, and this is the first version of Visual Basic that supports
true inheritance (or implementation inheritance, as it’s called).

Inheritance
The promise of classes, and of object programming at large, is code reuse. The functionality you
place into a class is there for your projects, and any other developer can access it as well. To appreci-
ate the power of classes, you must understand what happens when you need to add functionality to
your class. There are two ways to extend a class: add new members and revise existing members.
Both approaches are quite simple if you’ve written the class. But what if others want to extend your
class? Handing out the code is out of the question. Every developer will “improve” your class, and
each developer will end up with his own version of it. The class will be no longer reusable. If you
unleash the source code of a class to the members of a programming team, it won’t be long before
you have dozens of “improved” versions of your class. They may be improved versions, alright, but
an application using one of them won’t be able to use any of the others.

Changing your own classes is not simple either. The class is used by multiple applications, so
you can’t make changes that will break the existing code. To revise a class without breaking the
existing code, you must make sure that the existing members don’t change their interface—that is,
you shouldn’t change the types of the properties, or the number and type of the arguments you pass
to the methods. The applications using your class don’t see its code. All they care about is that the
members they call will keep working. You can rewrite the code of a method, if you come up with a
better way to accomplish the task—or other technological advances necessitate the update of the
code. If the method doesn’t change name, accepts the same arguments, and returns the same value,
the calling application will never know that a different code is executing. Since methods are imple-
mented as functions, it’s possible to overload a method, so that it can be called with different
arguments.

Chapter 8 BUILDING CUSTOM CLASSES368

2877c08.qxd 11/11/01 4:17 PM Page 368

http://www.sybex.com

So, how can we update a class that’s being used by dozens of applications out there? By overriding
existing members or supplying the code for new members. Best of all, you don’t need access to the
class’s code to extend it. You can add or replace members without seeing the existing code. To
understand how useful this can be, let’s start with an example of extending an existing class that’s
part of the Framework. Surely, you didn’t think Microsoft would make the code of Windows itself
available to all developers. This would break not only existing applications, but the operating system
itself. Most of the 3,500 classes that come with the Framework, however, can be extended.

Classes are extended by creating new classes that inherit the functionality of the existing class.
And this is the single most important new feature of VB.NET: inheritance. Inheritance is simply the
ability to create a new class based on an existing one. The existing class is the parent class, or base class.
The new class is said to inherit the base class and is called a subclass, or derived class. The derived class
inherits all the functionality of the base class and can add new members and replace existing ones.
The replacement of existing members with other ones is called overriding. When you replace a mem-
ber of the base class, you’re overriding it. Or, you can overload a method by providing multiple
forms of the method that accept different arguments.

Inheriting Existing Classes
To demonstrate the power of inheritance, you’re going to extend an existing class, the ArrayList
class. This class comes with the Framework, and it’s a dynamic array. (See Chapter 11 for a detailed
description of the ArrayList class.) The ArrayList class maintains a list of objects, similar to an array,
but it’s dynamic. The class we’ll develop in this section will inherit all the functionality of ArrayList,
plus it will expose a custom method we’ll implement here: the EliminateDuplicates method. The
project described in this section is the CustomArrayList project on the CD.

Let’s call the new class myArrayList. The first line in the new class must be the Inherits statement,
followed by the name of the class we want to inherit, ArrayList. Start a new project, name it Cus-
tomArrayList, and add a new Class to it. Name the new class myArrayList:

Class myArrayList
Inherits ArrayList

End Class

If you don’t add a single line of code to this class, the myArrayList class will expose exactly the
same functionality as the ArrayList class. If you add a public function to the class, it will become a
method of the new class, in addition to the methods of ArrayList. Add the code of the EliminateDu-
plicates() subroutine (Listing 8.33) to the myArrayList class; this subroutine will become a method
of the new class.

Listing 8.33: The EliminateDuplicates Method for the ArrayList Class

Sub EliminateDuplicates()
Dim i As Integer = 0
Dim delEntries As ArrayList
While i <= MyBase.Count - 2

Dim j As Integer = i + 1

369INHERITANCE

2877c08.qxd 11/11/01 4:17 PM Page 369

http://www.sybex.com

While j <= MyBase.count - 1
If MyBase.Item(i).ToString = MyBase.item(j).ToString Then

MyBase.RemoveAt(j)
End If
j = j + 1

End While
i = i + 1

End While
End Sub

The code compares each item with all following items and removes any duplicates. The duplicate
items are the ones whose ToString property returns the same value. You may wish to perform very
specific comparisons, but the ToString method will do for our demo. To test the derived class, place
a button on the test form, and insert the code presented by Listing 8.34 in its Click event handler.

Listing 8.34: Testing the EliminateDuplicates Method

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

Dim mlist As New myArrayList()
mlist.Add(“ 10”)
mlist.Add(“A”)
mlist.Add(“20”)
mlist.Add(“087”)
mlist.Add(“c”)
mlist.Add(“A”)
mlist.Add(“b”)
mlist.Add(“a”)
mlist.Add(“A”)
mlist.Add(“87”)
mlist.Add(10)
mlist.Add(100)
mlist.Add(110)
mlist.Add(“1001”)
Console.WriteLine(mlist.GetString())
mlist.EliminateDuplicates()
Console.WriteLine(mlist.GetString())

End Sub

The following table shows the contents of the ArrayList before and after the elimination of the
duplicates. Notice that the second list contains the item “10” twice. One of the items is a string, and
the other one is a numeric value, and therefore they’re not duplicates.

Chapter 8 BUILDING CUSTOM CLASSES370

2877c08.qxd 11/11/01 4:17 PM Page 370

http://www.sybex.com

Original List After Elimination of Duplicates

10 10

A A

20 20

087 087

C c

A b

B a

A 87

A 10

87 100

10

100

GetString (Listing 8.35) is not a method of the ArrayList. It’s a method of the extended
ArrayList class, which returns the values of all the items in the list (it uses each item’s ToString
method to retrieve the string representation of the items).

Listing 8.35: The GetString Method

Function GetString() As String
Dim i As Integer
Dim strValue As String
strValue = MyBase.Item(0).ToString
For i = 1 To MyBase.Count - 1

strValue = strValue & vbCrLf & MyBase.Item(i).ToString
Next
GetString = strValue

End Function

Another problem with the ArrayList class is that it can’t sort its elements if they’re not of the same
type. You can always provide a custom comparer for custom types, but it’s impossible to write a com-
parer that can handle all objects. Sometimes, however, we need to know the smallest or largest numeric
element, or the alphabetically first or last element. These methods apply to numeric or string elements
only; if some of the collection’s elements are objects, we can ignore them. Let’s implement two more
custom methods (Listing 8.36) for myArrayList. The Min method returns the alphabetically smallest
value; the NumMin method returns the numerically smallest value.

371INHERITANCE

2877c08.qxd 11/11/01 4:17 PM Page 371

http://www.sybex.com

Listing 8.36: The Min and NumMin Methods of the ArrayList Class

Function Min() As String
Dim i As Integer
Dim minValue As String

minValue = MyBase.Item(0).ToString
For i = 1 To MyBase.Count - 1

If MyBase.Item(i).ToString < minValue Then _
minValue = MyBase.Item(i).ToString

Next
Min = minValue

End Function
Function NumMin() As Double

Dim i As Integer
Dim minValue As Double

minValue = 1E+230
For i = 1 To MyBase.Count - 1

If IsNumeric(MyBase.item(i)) And _
val(MyBase.Item(i).tostring) < minValue Then _

minValue = val(MyBase.Item(i).tostring)
Next
NumMin = minValue

End Function

You can populate the myArrayList with strings and integers and call the Min and NumMin
methods to retrieve the smaller string or numeric value in the list.

What have we done in this section, really? We took an existing class, a very powerful one, and
extended it. We did that by writing simple VB statements that could have appeared in any applica-
tion. We just had to insert the Inherits keyword followed by the name of an existing class on which
we want to base our class, and provide the implementation of the new methods. A few more key-
words to learn and you can practically customize any class that comes with the Framework. Existing
applications won’t break (the ArrayList class is actually used by some system services, which will
keep working fine); they see the original class, not myArrayList. Some of your new applications will
see the enhanced ArrayList. Another developer might extend the functionality of your derived class.
The old applications will work because ArrayList is still around; your applications will also work
because myArrayList hasn’t been modified; and someone else’s applications will work with another
class derived from yours.

Implementation inheritance is a powerful feature and can be used in many situations, besides
enhancing an existing class. You can design base classes that address a large category of objects and
then subclass them for specific objects. The typical example is the Person class, from which classes
like Contact, Customer, Employee, and so on can be derived. Inheritance is used with large-scale
projects to ensure consistent behavior across the application. In the following section, you’re going
to see an interesting application of inheritance. We’re going to build classes that describe related
objects (shapes), all of which will be based on a single class that encapsulates the basic characteristics
of all derived classes.

Chapter 8 BUILDING CUSTOM CLASSES372

2877c08.qxd 11/11/01 4:17 PM Page 372

http://www.sybex.com

Polymorphism
This is another powerful aspect of inheritance. Polymorphism is the ability of a base type to adjust
itself to accommodate many different derived types. Let’s make it simpler by using some analogies in
the English language. Take the word run, for example. This verb can be used to describe athletes,
cars, or refrigerators; they all “run.” In different sentences, the same word takes different meanings.
When you use it with a person, it means going a distance at a fast pace. When you use it with a
refrigerator, it means that it’s working. When you use it with a car, it may take on both meanings.
So, in a sense the word run is polymorphic (and so are many other English words): Its exact meaning
is differentiated according to the context.

To apply the same analogy to computers, think of a class that describes a basic object, like a
Shape. This class would be very complicated if it had to describe and handle all shapes. It would be
incomplete too, because the moment you released it to the world, you’d think of a new shape that
can’t be described by your class. To design a class that describes all shapes, you build a very simple
class to describe shapes at large, and then you build a separate class for each individual shape: a Tri-
angle class, a Square class, a Circle class, and so on. As you can guess, all these classes inherit the
Shape class. Let’s also assume that all the classes that describe individual shapes expose an Area
method, which calculates the area of the shape they describe. The name of the Area method is the
same for all classes, but it calculates a different formula.

The developer, however, doesn’t have to learn a different syntax of the Area method for each
shape. They can declare a Square object and calculate its area with the following statements:

Dim shape1 As New Square, area As Double
area = shape1.Area

If shape2 represents a circle, the same method will calculate the circle’s area:

Dim shape2 As New Circle, area As Double
area = shape2.Area

You can go through a list of objects derived from the Shape class and calculate their areas by call-
ing the Area method. No need to know what shape each object represents—you just call its Area
method. Let’s say you’ve created an ArrayList with various shapes. You can go through the collec-
tion and calculate the total area with a loop like the following:

Dim shapeEnum As IEnumerator
Dim totalArea As Double
shapeEnum = aList.GetEnumerator
While shapeEnum.MoveNext

totalArea = totalArea + CType(shapeEnum.Current, Shape).area
End While

The CType() function converts the current element of the collection to a Shape object; it’s neces-
sary only if the Strict option is on, which prohibits VB from late-binding the expression (Strict is off
by default). As a reminder, when the Strict option is off, trivial mistakes will manifest themselves as
runtime exceptions. If you mistype the name of the Area method as Arae, the compiler won’t catch
this error at design time. If the Strict option is on, however, the error will be caught as you type.

The Area method is polymorphic. Its exact meaning (or formula, in the case of shapes) is
adjusted to the context in which it’s used. OK, this is a simple concept. It’s only natural that we’re

373POLYMORPHISM

2877c08.qxd 11/11/01 4:17 PM Page 373

http://www.sybex.com

able to call the Area method to calculate the area of any shape, isn’t it? Believe me, it took us many
years to get there. VB.NET is the first version of VB that supports true polymorphism. We’re
going to look at the implementation of the classes that describe shapes in a moment, but first I
would like to discuss some alternatives and show you the drawbacks, so that you won’t think that
building classes to calculate the areas of various shapes is wasted time.

The first alternative would be to build a separate function to calculate the area of each shape
(SquareArea, CircleArea, and so on). It will work, but why bother with so many function names, not
to mention the overhead in your code? You must first figure out the type of shape described by a
specific variable, like shape1, and then call the appropriate method. The code will not be as easy to
read, and the longer the application gets, the more If and Case statements you’ll be coding.

The second, even less efficient method is a really long Area() function that would be able to calcu-
late the area of all shapes. This function should be a very long Case statement, like the following one:

Public Function Area(ByVal shapeType As String) As Double
Select Case shapeType

Case “Square”: { calculate the area of a square }
Case “Circle”: { calculate the area of a circle }
{ . . . more Case statements }

End Select
End Function

The real problem with this approach is that every time you want to add a new segment to calcu-
late the area of a new shape to the function, you’d have to edit it. If another developer wanted to add
a shape, they’d be out of luck.

In the following section, we’ll build the Shape class, which we’ll extend with individual classes for
various shapes. You’ll be able to add your own classes to implement additional shapes, and any code
written using the older versions of the Shape class will keep working.

The Shape Class
Let’s start with the Shape class, which will be the base class for all other shapes. This is a really
simple class that’s pretty useless on its own. Its real use is that it exposes some members that can be
inherited. The base class exposes two methods, Area and Perimeter. Even the two methods don’t do
much—actually, they do absolutely nothing. All they really do is provide a naming convention. All
classes that will inherit the Shape class will have an Area and a Perimeter method. They must pro-
vide the implementation of these methods, so that all object variables that represent shapes will
expose an Area method and a Perimeter method.

Start a new project as usual, add a Shape class, and enter the code of Listing 8.37 in it.

Listing 8.37: The Shape Class

Class Shape
Overridable Function Area() As Double
End Function
Overridable Function Perimeter() As Double
End Function

End Class

Chapter 8 BUILDING CUSTOM CLASSES374

2877c08.qxd 11/11/01 4:17 PM Page 374

http://www.sybex.com

If there are properties common to all shapes, you place the appropriate Property procedures in
the Shape class. If you want to assign a color to your shapes, place a Color property in this class. The
Overridable keyword means that a class that inherits from the Shape class can override the default
implementation of the corresponding methods or properties. As you will see shortly, it is possible
for the base class to provide a few members that can’t be overridden in the derived class.

Then you can implement the classes for the individual shapes. Add another Class to the project,
name it Shapes, and enter Listing 8.38’s code in it.

Listing 8.38: The Square, Triangle, and Circle Classes

Public Class Square
Inherits Shape
Private sSide As Double
Public Property Side() As Double

Get
Side = sSide

End Get
Set

sSide = Value
End Set

End Property
Public Overrides Function Area() As Double

Area = sSide * sSide
End Function
Public Overrides Function Perimeter() As Double

Return (4 * sSide)
End Function

End Class
Public Class Triangle

Inherits Shape
Private side1, side2, side3 As Double
Property SideA() As Double

Get
SideA = side1

End Get
Set

side1 = Value
End Set

End Property
Property SideB() As Double

Get
SideB = side2

End Get
Set

side2 = Value
End Set

375POLYMORPHISM

2877c08.qxd 11/11/01 4:17 PM Page 375

http://www.sybex.com

End Property
Public Property SideC() As Double

Get
SideC = side3

End Get
Set

side3 = Value
End Set

End Property
Public Overrides Function Area() As Double

Dim perim As Double
perim = Perimeter()
Return (Math.Sqrt(perim * (perim - side1) * (perim - side2) * _

(perim - side3)))
End Function
Public Overrides Function Perimeter() As Double

Return (side1 + side2 + side3)
End Function

End Class
Public Class Circle

Inherits Shape
Private cRadius As Double
Public Property Radius() As Double

Get
Radius = cRadius

End Get
Set

cRadius = Value
End Set

End Property
Public Overrides Function Area() As Double

Return (Math.Pi * cRadius ^ 2)
End Function
Public Overrides Function Perimeter() As Double

Return (2 * Math.Pi * cRadius)
End Function

End Class

The Shapes.vb file contains three classes: Square, Triangle, and Circle. All three expose their
basic geometric characteristics as properties. The Triangle class, for example, exposes the properties
SideA, SideB, and SideC, which allow you to set the three sides of the triangle. In addition, all three
classes expose the Area and Perimeter methods. These methods are implemented differently for each
class, but they do the same thing: they return the area and the perimeter of the corresponding shape.
The Area method of the Triangle class is a bit involved, but it’s just a formula.

Chapter 8 BUILDING CUSTOM CLASSES376

2877c08.qxd 11/11/01 4:17 PM Page 376

http://www.sybex.com

Testing the Shape Class

To test the Shapes class, all you have to do is create three variables—one of each type of shape—and
call their methods. Or, you can store all three variables into an array and iterate through them. If the
collection contains Shape variables only, the current item is always a shape, and as such it exposes the
Area and Perimeter methods. The code in Listing 8.39 does exactly that. First, it declares three vari-
ables of the Triangle, Circle, and Square types. Then it sets their properties and calls their Area
method to print their areas.

Listing 8.39: Testing the Shape Class

Protected Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs)

Dim shape1 As New Triangle()
Dim shape2 As New Circle()
Dim shape3 As New Square()

‘ Set up a triangle
shape1.SideA = 3
shape1.SideB = 3.2
shape1.SideC = 0.94
Console.WriteLine(“The triangle’s area is “ & shape1.Area.ToString)

‘ Set up a circle
shape2.Radius = 4
Console.WriteLine(“The circle’s area is “ & shape2.Area.ToString)

‘ Set up a square
shape3.Side = 10.01
Console.WriteLine(“The square’s area is “ & shape3.Area.ToString)
Dim shapes() As Shape
shapes(0) = shape1
shapes(1) = shape2
shapes(2) = shape3
Dim shapeEnum As IEnumerator
Dim totalArea As Double
shapeEnum = shapes.GetEnumerator
While shapeEnum.MoveNext

totalArea = totalArea + CType(shapeEnum.Current, shape).Area
End While
Console.WriteLine(“The total area of your shapes is “ & totalArea.ToString)

End Sub

In the last section, the test code stores all three variables into an array and iterates through its ele-
ments. At each iteration, it casts the current item to the Shape type and calls its Area method. The
expression that calculates areas is CType(shapeEnum.Current, shape).Area, and the same expression
calculates the area of any shape.

The Shape base class is quite trivial—it doesn’t expose any functionality of its own. Depending
on how you will use the individual shapes in your application, you can add properties and methods

377POLYMORPHISM

2877c08.qxd 11/11/01 4:17 PM Page 377

http://www.sybex.com

to the base class. In a drawing application, all shapes have an outline and a fill color. These proper-
ties can be implemented in the Shape class, because they apply to all derived classes. Any methods
with common implementation for all classes should also be implemented as methods of the
parent class.

The same techniques can be applied to more elaborate classes. For example, you can create a class
that represents persons and then derive any number of classes from the Person class. The derived
classes could be the Employee class, the Salesperson class, the Consultant class, and so on. The Per-
son class stores the information that is common to all persons, and each of the derived classes inher-
its these properties and methods. The Pay method can’t be common to all persons, and it must be
implemented in each individual class. Some persons are paid a salary, others are paid commissions,
and so on. The individual methods of each class must implement the Pay method according to the
type of person they represent. Inheritance pays off in very large projects, while it may introduce sub-
stantial complications in small projects, especially if used without careful design.

Object Constructors and Destructors
As you already know, objects are created and then disposed of when no longer needed. To construct
an object, you must first declare it and then set it to a new instance of the class it represents. To con-
struct a triangle, for example, you can use either of these two statements:

Dim shape1 As Triangle = New Triangle()
Dim shape1 As New Triangle()

It is also possible to specify the properties of an object in the same line that creates the object,
with the New keyword. This is the object’s constructor (it initializes the object by setting some or all
of its properties).

Dim rect1 As Rectangle = New Rectangle(10, 10, 50, 90)

The shapes in the Shapes class can’t be initialized in the same line that declares them, because
they don’t provide a constructor. We must implement a so-called parameterized constructor, which
allows you to pass arguments to an object as you declare it. These arguments are usually the basic
properties of the object. Parameterized constructors don’t pass arguments for all the properties of
the object; they expect only enough parameter values to make the object usable.

Constructors are implemented with the New subroutine, which is called every time a new instance
of the class is initialized. This is where you code initialization tasks such as opening files and estab-
lishing connections to databases. We used the New subroutine to instantiate a new Timer object in
an earlier example. This time, we’ll create a New subroutine for each shape, and we’ll declare argu-
ments for the New subroutine.

VB6 ➠ VB.NET

The Class_Initialize method of VB6 has been replaced by the New subroutine, and the Class_Terminate
method of VB6 has been replaced by the Destruct subroutine in VB.NET.

Chapter 8 BUILDING CUSTOM CLASSES378

2877c08.qxd 11/11/01 4:17 PM Page 378

http://www.sybex.com

Let’s start with the Triangle class. When we initialize a Triangle, we want to be able to specify
the sides of the triangle. Here’s the constructor for the Triangle class:

Sub New(ByVal sideA As Double, ByVal sideB As Double, ByVal sideC As Double)
MyBase.New()
side1 = sideA
side2 = sideB
side3 = sideC

End Sub

The code is quite trivial, with the exception of the statement that calls the MyBase.New subroutine.
MyBase is a keyword that lets you access the members of the base class (a topic that’s discussed in
detail later in this chapter). The reason you must call the New method of the base class is that the
base class may have its own constructor, which can’t be called directly. You must always insert this
statement in your constructors to make sure that any initialization tasks that must be performed by
the base class will not be skipped.

Likewise, when we create a Circle object, we want to be able to specify its radius. The following is
the parameterized constructor of the Circle class:

Sub New(ByVal radius As Double)
MyBase.New()
cRadius = radius

End Sub

When you enter a statement like

Dim shape1 As New Triangle(

in the editor, you will see a list of the parameters you can set, as shown in Figure 8.11.

If you no longer need an object, you can set it to Nothing. The Common Language Runtime
(CLR) won’t release the object as soon as you set it to Nothing. The new garbage collector (GC)
checks periodically for objects that are no longer needed and releases them. However, you don’t know
when this will happen. If there are tasks you want to perform prior to releasing an object, place them
in the Destruct subroutine. The GC will call this subroutine (if it exists) prior to releasing the object.

The New() subroutine is usually overloaded. We always provide a constructor that accepts no
arguments, so that developers can create an instance of the class without having to specify any of the
arguments. The following New() constructor allows you to create an instance of the Triangle shape
without passing any parameters:

Sub New()
MyBase.New()

End Sub

Figure 8.11

The members of the
various Shape con-
structors displayed
by IntelliSense

379POLYMORPHISM

2877c08.qxd 11/11/01 4:17 PM Page 379

http://www.sybex.com

You may have noticed the lack of the Overloads keyword. Constructors can have multiple forms
and don’t require the use of Overloads—just supply as many implementations of the New() subrou-
tine as you need. The following statements show how to create three overloaded forms of the New
constructor of the Circle shape. The first constructor accepts no arguments, the second constructor
accepts the radius of the circle, and the last constructor accepts a Rectangle object that encloses the
circle:

Sub New()
MyBase.New()

End Sub
Sub New(ByVal radius As Double)

MyBase.New()
cRadius = radius

End Sub
Sub New(ByVal rect As Rectangle)

MyBase.New()
cRadius = rect.Width

End Sub

Instance and Shared Methods
As you may have noticed in previous chapters (and it will become even more clear in the following
chapters), some classes allow you to call some of their members without first creating an instance of
the class. The String class, for example, exposes the IsLeapYear method, which accepts as argument a
numeric value and returns a True/False value indicating whether the year is leap or not. You can call
this method through the DateTime (or Date) class, as shown in the following statement:

If DateTime.IsLeapYear(1999) Then
{ process a leap year }

End If

Other members, like the Day property, can’t be called through the name of the class. You must
first create an instance of the DateTime class, assign a value to it, and then call the Day method of
the specific instance of the class. The Day property returns the number of the day, and it has mean-
ing only when applied to a specific date. To call the Day property, declare a variable of the Date
type, initialize it, and then call its Day property:

Dim d1 As Date = Now()
Console.WriteLine(d1.Day)

If you attempt to call the property Date.Day, the statement will not be compiled and the error
message will be “Day is not a member of Date.” The methods that don’t require that you create an
instance of the class before you call them are called shared methods. Methods that can be applied to
an instance of the class are called instance methods. By default, all methods are instance methods. To
create a shared method, you must prefix the corresponding function declaration with the Shared key-
word, just like a shared property.

Why do we need a shared method, and when should we create shared methods? If a method
doesn’t apply to a specific instance of a class, make it shared. Let’s consider the DateTime class,
which implements the Date data type. The DaysInMonth methods returns the number of days in

Chapter 8 BUILDING CUSTOM CLASSES380

2877c08.qxd 11/11/01 4:17 PM Page 380

http://www.sybex.com

the month that was passed to the method as argument. You don’t really need to create an instance of
a Date object to retrieve the current date, so the DaysInMonth method is a shared method. The
AddDays method, on the other hand, is an instance method. We have a date to which we want to
add a number days and construct a new date. In this case, it makes sense to apply the method to an
instance of the class—the instance that represents the date to which we add the number of days.

The SharedMembers project on the CD is a simple class that demonstrates the differences
between a shared and an instance method. Both methods do the same thing: they reverse the charac-
ters in a string. The IReverseString method is an instance method: it reverses the current instance of
the class, which is a string. The SReverseString method is a shared method: it reverses its argument.
Listing 8.40 shows the code that implements the SharedMembersClass component.

Listing 8.40: A Class with a Shared and an Instance Method

Public Class SharedMembersClass
Private strProperty As String
Sub New(ByVal str As String)

strProperty = str
End Sub
Public Function IReverseString() As String

Return (StrReverse(strProperty))
End Function
Public Shared Function SReverseString(ByVal str As String) As String

Return (StrReverse(str))
End Function

End Class

The instance method acts on the current instance of the class. This means that the class must be
initialized to a string, and this is why the New constructor requires a string argument. To test the
class add a form to the project, make it the Startup object and add two buttons on it. The code
behind the two buttons is shown next:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim testString As String = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”
Dim obj As New SharedMembersClass(testString)
Console.WriteLine(obj.IReverseString)

End Sub
Private Sub Button2_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button2.Click
Dim testString As String = “ABCDEFGHIJKLMNOPQRSTUVWXYZ”
Console.WriteLine(SharedMembersClass.SReverseString(testString))

End Sub

The code behind the first button creates a new instance of the SharedMembersClass and calls its
IReverseString method. The second button calls the SReverseString method through the class’s
name and passes the string to be reversed as argument to the method.

381POLYMORPHISM

2877c08.qxd 11/11/01 4:17 PM Page 381

http://www.sybex.com

Who Can Inherit What?
The Shape base class and the Shapes derived class work fine, but there’s a potential problem. A new
derived class that implements a new shape may not override the Area or the Perimeter method. To
make sure that all derived classes implement this method, we can specify the MustInherit modifier to
the class declaration and the MustOverride modifier to the member declaration.

The Shapes project on the CD uses the MustInherit keyword in the definition of the Shape class.
This keyword tells the CLR that the Shape class can’t be used as is; it must be inherited by another
class. A class that can’t be used as is known as abstract base class, or virtual class. The definition of the
Area and Perimeter methods are prefixed with the MustOverride keyword, which tells CLR that
derived classes (the ones that will inherit the members of the base class) must provide their own
implementation of the two methods:

Public MustInherit Class Shape
Public MustOverride Function Area() As Double
Public MustOverride Function Perimeter() As Double

End Class

Notice that there’s no End Function statement, just the declaration of the function that must be
inherited by all derived classes. If the derived classes may override one or more methods optionally,
these methods must be implemented as actual functions. Methods that must be overridden need not
be implemented as functions—they’re just placeholders for a name.

There are other modifiers you can use with your classes, like the NotInheritable modifier, which
prevents your class from being used as base class by other developers. You may wish to enhance the
Array class by adding a few new members. If you insert the statement Inherits Array in a class, the
compiler will complain to the effect that the System.Array class can’t be inherited. This is an
example of a noninheritable class.

In this section, we’re going to look at the class-related modifiers and when to use them. The vari-
ous modifiers are keywords, like the Public and Private keywords you can use in variable declara-
tions. These keywords can be grouped according to the entity they apply to, and I’ve used this
grouping to organize them in the following sections.

Parent Class Keywords
These keywords apply to classes that may be inherited, and they appear in front of the Class key-
word. By default, all classes can be inherited, but their members can’t be overridden. You can change
this default behavior with the following modifiers:

NotInheritable Prevents the class from being inherited. No other classes can be derived from
this class. The base data types, for example, are not inheritable. In other words, you can’t create a
new class based on the Integer data type. The Array class is also not inheritable.

MustInherit This class must be inherited. You can’t create an object of this class in your code
and, therefore, you can’t access its methods. The Shape class is nothing more than a blueprint
for the methods it exposes and can’t be used on its own; that’s why it was declared with the
MustInherit keyword. A derived class can access the members of the base class through the
keyword MyBase.

Chapter 8 BUILDING CUSTOM CLASSES382

2877c08.qxd 11/11/01 4:17 PM Page 382

http://www.sybex.com

Derived Class Keyword
The Inherits keyword applies to classes that inherit from other classes and must be the first statement
in the derived class:

Inherits Any derived class must inherit an existing class. The Inherits statement tells the com-
piler which class it derives from, and it must be the first executable statement in the derived class’s
code. A class that doesn’t include the Inherits keyword is by definition a base class.

Parent Class Member Keywords
These keywords apply to the members of classes that may be inherited, and they appear in front of
the member’s name. They determine how derived classes must handle the members (i.e., whether
they may or must override their properties and methods):

Overridable Every member with this modifier may be overwritten. If a member is declared as
Public only, it can’t be overridden. You should allow developers to override as many of the mem-
bers of your class as possible, as long as you don’t think there’s a chance that they may break the
code by overriding a member. Members declared with the Overridable keyword don’t necessarily
need to be overridden, so they must provide some functionality.

NotOverridable Every member declared with this modifier can’t be overridden in the inherit-
ing class.

MustOverride Every member declared with this modifier must be overridden. You may skip
the overriding of a member declared with the MustOverride modifier in the derived class, as long
as the derived class is declared with the MustInherit modifier. This means that the derived class
must be inherited by some other class, which then receives the obligation to override the original
member declared as MustOverride. It seems complicated, but it’s really common sense. If you can’t
provide the implementation of a member that must be overridden, the class must be inherited by
another class, which will provide the implementation.

The two methods of the Shape class must be overridden, and we’ve done so in all the derived classes
that implement various shapes. Let’s also assume that you wanted to create different types of triangles
with different classes (an orthogonal triangle, an isosceles triangle, and a generic triangle). Let’s also
assume that these classes would inherit the Triangle class. You can skip the definition of the Area
method in the Triangle class, but you’d have to include it in the derived classes that implement the
various types of triangles. Moreover, the Triangle class would have to be marked as MustInherit.

Public This modifier tells the CLR that the specific member can be accessed from any applica-
tion that uses the class.

Private This modifier tells the CLR that the specific member can be accessed only in the mod-
ule it was declared. All the local variables must be declared as Private, and no other class (includ-
ing derived classes), or application, will see them.

Protected Protected members have scope between public and private, and they can be accessed
in the derived class, but they’re not exposed to applications using either the parent class or the
derived classes. In the derived class, they have a private scope. Use the Protected keyword to mark

383WHO CAN INHERIT WHAT?

2877c08.qxd 11/11/01 4:17 PM Page 383

http://www.sybex.com

the members that are of interest to developers who will use your class as base class, but not to
developers who will use it in their applications.

Protected Friend This modifier tells the CLR that the member is available to the class that
inherits the class, as well as to any other component of the same project.

Derived Class Member Keyword
The Overrides keyword applies to members of derived classes and indicates whether a member of
the derived class overrides a base class member:

Overrides Use this keyword to specify the member of the parent class you’re overriding. If a
member has the same name in the derived class as in the parent class, this member must be over-
ridden. You can’t use the Overrides keyword with members that were declared with the
NotOverridable or Protected keywords in the base class.

A few examples are in order. The sample application of this section is the InheritanceKeywords
project on the CD. Create a simple class by entering the statements of Listing 8.41 in a Class mod-
ule, and name the module ParentClass.

Listing 8.41: The InheritanceKeywords Class

Public MustInherit Class ParentClass
Public Overridable Function Method1() As String

Return (“I’m the original Method1”)
End Function
Protected Function Method2() As String

Return (“I’m the original Method2”)
End Function
Public Function Method3() As String

Return (“I’m the original Method3”)
End Function
Public MustOverride Function Method4() As String

‘ No code in a member that must be overridden !
‘ Notice the lack of the matching End Function here

Public Function Method5() As String
Return (“I’m the original Method5”)

End Function
Private prop1, prop2 As String
Property Property1() As String

Get
Property1 = “Original Property1”

End Get
Set

prop1 = Value
End Set

End Property
Property Property2() As String

Chapter 8 BUILDING CUSTOM CLASSES384

2877c08.qxd 11/11/01 4:17 PM Page 384

http://www.sybex.com

Get
Property2 = “Original Property2”

End Get
Set

prop2 = Value
End Set

End Property
End Class

This class has five methods and two properties. Notice that Method4 is declared with the Must-
Override keyword, which means it must be overridden in a derived class. Notice also the structure of
Method4. It has no code, and the End Function statement is missing. Method4 is declared with the
MustOverride keyword, so you can’t instantiate an object of the ParentClass type. A class that con-
tains even a single member marked as MustOverride must also be declared as MustInherit.

Place a button on the class’s test form, and in its code window attempt to declare a variable of the
ParentClass type. VB will issue a warning that you can’t create a new instance of a class declared with
the MustInherit keyword. Because of the MustInherit keyword, you must create a derived class.
Enter the lines from Listing 8.42 in the ParentClass module, after the end of the existing class.

Listing 8.42: The Derived Class

Public Class DerivedClass
Inherits ParentClass
Overrides Function Method4() As String

Return (“I’m the derived Method4”)
End Function
Public Function newMethod() As String

Console.WriteLine(“<This is the derived Class’s newMethod “ & _
“calling Method2 of the parent Class> “)

Console.WriteLine(“ “ & MyBase.Method2())
End Function

End Class

The Inherits keyword determines the parent class. This class overrides the Method4 member and
adds a new method to the derived class, the newMethod. If you switch to the test form’s code win-
dow, you can now declare a variable of the DerivedClass type:

Dim obj As DerivedClass

This class exposes all the members of ParentClass except for the Method2 method, which is
declared with the Protected modifier. Notice that the newMethod() function calls this method
through the MyBase keyword and makes its functionality available to the application. Normally, we
don’t expose Protected methods and properties through the derived class.

Let’s remove the MustInherit keyword from the declaration of the ParentClass class. Since it’s no
longer mandatory that the ParentClass be inherited, the MustInherit keyword is no longer a valid

385WHO CAN INHERIT WHAT?

2877c08.qxd 11/11/01 4:17 PM Page 385

http://www.sybex.com

modifier for the class’s members. So, Method4 must be either removed or implemented. Let’s delete
the declaration of the Method4 member. Since Method4 is no longer a member of the ParentClass,
you must also remove the entry in the DerivedClass that overrides it.

MyBase and MyClass
The MyBase and MyClass keywords let you access the members of the base class and the derived
class explicitly. To see why they’re useful, edit the ParentClass as shown here:

Public Class ParentClass
Public Overridable Function Method1() As String

Return (Method4())
End Function
Public Overridable Function Method4() As String

Return (“I’m the original Method4”)
End Function

Then override Method4 in the derived class, as shown here:

Public Class DerivedClass
Inherits ParentClass
Overrides Function Method4() As String
Return(“Derived Method4”)

End Function

Switch to the test form, add a button, declare a variable of the derived class, and call its Method4:

Dim objDerived As New DerivedClass()
Console.WriteLine(objDerived.Method4)

What will you see if you execute these statements? Obviously, the string “Derived Method4.” So
far, all looks reasonable, and the class behaves intuitively. But what if we add the following method
in the derived class?

Public Function newMethod() As String
Return (Method1())

End Function

This method calls Method1 in the ParentClass class, because Method1 is not overridden in the
derived class. Method1 in the base class calls Method4. But which Method4 gets invoked? Sur-
prised? It’s the derived Method4! To fix this behavior (assuming you want to call the Method4 of
the base class) change the implementation of Method1 to the following:

Public Overridable Function Method1() As String
Return (MyClass.Method4())

End Function

If you run the application again, the statement:

Console.WriteLine(objDerived.newMethod)

will print the string:

I’m the original Method4

Chapter 8 BUILDING CUSTOM CLASSES386

2877c08.qxd 11/11/01 4:17 PM Page 386

http://www.sybex.com

Is it reasonable for a method of the base class to call the overridden method? It is, because the
overridden class is newer than the base class and the compiler tries to use the newest members. If you
had other classes inheriting from the DerivedClass class, their members would take precedence.

Use the MyClass keyword to make sure you’re calling a member in the same class, and not an
overriding member in an inheriting class. Likewise, you can use the keyword MyBase to call the
implementation of a member in the base class, rather than the equivalent member in a derived class.

VB.NET at Work: The Matrix Class
The Matrix project on the CD demonstrates many of the topics discussed in this chapter, plus a few
rather advanced techniques, like complicated constructors. The Matrix class exposes the functional-
ity you need to process two-dimensional matrices and can be your starting point for a class that
implements advanced matrix operations, as opposed to the simple ones implemented in this example.
I realize most readers aren’t interested in math; you can skip this section if that’s you. I will quickly
describe the class, its methods, and how to use it, and you can explore the code on your own.

The Matrix class maintains a two-dimensional table of Doubles and the table’s dimensions. The table’s
dimensions are exposed as properties—Rows and Cols—and they’re stored in the _rows and _cols local
variables. New tables are instantiated through the New constructor. If New is called without arguments, it
creates a matrix with a single element. You can also pass the desired dimensions in the New constructor.
The implementations of the two overloaded forms of the constructor are shown in Listing 8.43.

Listing 8.43: The Overloaded New() Constructor of a Matrix

Sub New(ByVal R As Integer, ByVal C As Integer)
MyBase.new()
_rows = R
_cols = C
ReDim _table(_rows, _cols)

End Sub
Sub New()

MyBase.new()
_rows = 1
_cols = 1
ReDim _table(_rows, _cols)

End Sub

If you don’t know the dimensions of a table when you declare it, you can set them later with the
Rows and Cols properties, which are implemented as seen in Listing 8.44. Actually, you will see
shortly when you may have to declare a matrix without specific dimensions.

Listing 8.44: The Rows and Cols Properties of a Matrix

Public Property Rows() As Integer
Get

Rows = _rows
End Get

387WHO CAN INHERIT WHAT?

2877c08.qxd 11/11/01 4:17 PM Page 387

http://www.sybex.com

Set(ByVal Value As Integer)
_rows = Value

End Set
End Property
Public Property Cols() As Integer

Get
Cols = _cols

End Get
Set(ByVal Value As Integer)

_cols = Value
End Set

End Property

To populate a matrix, call the Cell method (Listing 8.45) to assign a value to a specified cell. The
Cell method accepts two arguments, which are the row and column number of the cell that will be
set to the specified value.

Listing 8.45: The Cell Method of a Matrix

Public Property Cell(ByVal row As Integer, ByVal col As Integer) As Double
Get

Cell = _table(row, col)
End Get
Set(ByVal Value As Double)

_table(row, col) = Value
End Set

End Property

The following statements create a new matrix and populate it with random integer values in the
range 0 to 300:

Dim a As Matrix = New Matrix(3, 4)
Dim i, j As Integer
Dim rnd As System.Random = New System.Random()
For i = 0 To a.Rows - 1

For j = 0 To a.Cols - 1
a.Cell(i, j) = rnd.Next(300)

Next
Next

The most useful methods of the Matrix class are those that perform matrix operations. I’ve
implemented only a few matrix operations, but you can easily extend the class by adding new meth-
ods. These methods are the Add, Subtract, and Multiply methods, which perform the simpler matrix
operations. All three methods accept either one or two Matrix objects as arguments, and they return
the result of the operation. If you pass a single argument, the second matrix is the current instance
of the class. If you pass two arguments, the methods add, subtract, or multiply the two matrices.

Chapter 8 BUILDING CUSTOM CLASSES388

2877c08.qxd 11/11/01 4:17 PM Page 388

http://www.sybex.com

The result of a matrix operation is another matrix, unless the two matrices are incompatible for
the operation. For example, you can’t add two matrices of different dimensions. You can modify the
code so that it makes the smaller matrix equal to the larger one by appending zeros for the missing
elements. However, you can’t multiply two matrices, unless the number of columns in the first
matrix is equal to the number of rows in the second matrix. If the arguments passed to the Add
method (or any other method of the Matrix class) are incompatible, the method returns an empty
matrix. You must examine the size of the matrix returned by the method and act accordingly.
Alternatively, you can throw an exception from within the method’s code (the statement Throw
New System.ArgumentException() is all you need).

Listing 8.46 shows the implementation of the Add method. The first overloaded form of the
method acts on the two matrices passed as arguments; this code is rather trivial. The second over-
loaded form adds the matrix passed as argument to the matrix represented by the current instance of
the class. To access the elements of the current matrix, the code uses the object MyClass. The first
form of the Add method is a shared method, while the second one is an instance method (it requires
an instance of the class).

Listing 8.46: The Overloaded Matrix Add Method

Public Overloads Function Add(ByVal A As Matrix, ByVal B As Matrix) As Matrix
Dim Row, Col As Integer
If Not (A.Rows = B.Rows And A.Cols = B.Cols) Then

Add = New Matrix()
Exit Function

End If
Dim newMatrix As New Matrix(A.Rows, A.Cols)
For Row = 0 To A.Rows - 1

For Col = 0 To A.Cols - 1
newMatrix.Cell(Row, Col) = A.Cell(Row, Col) + B.Cell(Row, Col)

Next
Next
Add = newMatrix

End Function
Public Overloads Function Add(ByVal A As Matrix) As Matrix

Dim Row, Col As Integer
If Not (A.Rows = MyClass.Rows And A.Cols = MyClass.Cols) Then

Add = New Matrix()
Exit Function

End If
Dim newMatrix As New Matrix(MyClass.Rows, MyClass.Cols)
For Row = 0 To MyClass.Rows - 1

For Col = 0 To MyClass.Cols - 1
newMatrix.Cell(Row, Col) = A.Cell(Row, Col) + MyClass.Cell(Row, Col)

Next
Next
Add = newMatrix

End Function

389WHO CAN INHERIT WHAT?

2877c08.qxd 11/11/01 4:17 PM Page 389

http://www.sybex.com

You can open the Matrix project on the CD, examine the code, and add more features to the
Matrix class, starting with a method that inverts matrices (a complicated algorithm that I have not
implemented in the sample project). You will notice that I’ve implemented the class in the form’s
file. After adding all the functionality you need to the class, you can copy the class’s code into
another project and create a class to use with any of your projects.

Summary
In this chapter, you learned the mechanics of building custom classes, and you were exposed to the
main concepts of object-oriented programming. Inheritance and polymorphism are the two most
powerful features introduced into the Visual Basic programming language, which bring it to the
same level as the other two languages of Visual Studio.

The reason for using classes is code reuse. Classes are robust and not susceptible to changes. If
another developer needs to extend your class, adding more members or overwriting existing mem-
bers, they can do so by inheriting the functionality of your class. The existing applications will work
with the old class, while newer applications can use the new one. You can also edit your class’s code
without breaking any existing code. Just make sure you don’t change the interface of a class.

Now that you understand what classes are, how they work, and what they can do for you, we’re
going to explore some useful classes that come with the .NET Framework. Of the numerous Frame-
work classes, I’ve selected a few that most developers will be using on a daily basis and will discuss
them at length in the following chapters. There are many more classes than I even list in this book.
Once you familiarize yourself with the most basic ones, you will find it easier to discover the func-
tionality of the other classes, or locate in the documentation the one that exposes the functionality
you need.

Chapter 8 BUILDING CUSTOM CLASSES390

2877c08.qxd 11/11/01 4:17 PM Page 390

http://www.sybex.com

Chapter 9

Building Custom
Windows Controls
Since version 5 of the language, VB has made it very simple to build custom controls, and it’s
gotten even better with VB.NET. In addition to a host of controls that come with VB.NET and
the capability to use ActiveX controls with .NET, you can also easily create your own custom
.NET controls.

The design of custom Windows controls has been one of the best implemented features of the
language. Creating custom controls with VB.NET is even simpler, mostly because of the func-
tionality added to the UserControl object.

Now, who should be developing custom Windows controls and why? If you come up with an
interesting utility that can be used from within several applications, why not package it as a cus-
tom control and reuse it in your projects? You can also pass it to other developers and make sure
that your application has a consistent look. For example, you might develop a custom control for
designing reports or displaying lists of customers. Every form that uses this functionality should
be implemented around this control. Users will learn to use the application faster, and the custom
control will help you maintain a consistent look throughout the application.

In this chapter, you will learn how to design custom Windows controls for .NET. We’ll start by
designing a new control that inherits an existing control and adds some extra functionality. Just as in
the previous chapter we created a custom ArrayList that incorporated all the functionality of the orig-
inal ArrayList and added some methods to it, we’ll do the same with the TextBox control. Then
you’ll see how to build custom controls that combine multiple .NET controls. These controls are
called compound controls, and they’re like regular forms with built-in functionality. The ComboBox con-
trol, for example, is a compound control made up of a TextBox (its edit area), a ListBox, and a But-
ton that expands the list. Compound controls ride on the functionality of their constituent controls,
and you can add specific functionality through custom properties and methods. Finally, you’ll learn
how to build user-drawn controls. A user-drawn control is an empty surface, and you’re responsible for
drawing the control’s interface (and updating it in response to external events).

We’ll also discuss a few interesting, out of the ordinary, topics, like how to take control of the
drawing process of the MenuItem object and create menus with graphics. You’ll also learn how
easy it is to build nonrectangular controls.

2877c09.qxd 11/11/01 4:17 PM Page 391

http://www.sybex.com

On Designing Windows Controls
Before I get to the details of how to build custom controls, I want to show you how they relate to
other types of projects. I’m going to discuss briefly the similarities and differences among Windows
controls, classes, and standard projects. This information will help you get the big picture and put
together the pieces of the following sections.

A standard application consists of a main form and several (optional) auxiliary forms. The auxiliary
forms support the main form, as they usually accept user data that are processed by the code in the
main form. You can think of a custom control as a form and think of its Properties window as the
auxiliary form. An application interacts with the user through its interface. The developer decides how
the forms interact with the user, and the user has to follow these rules. Something similar happens with
custom controls. The custom control provides a well-defined interface, which consists of properties and
methods. This is the only way to manipulate the control. Just as users of your applications don’t have
access to the source code and can’t modify the application, developers can’t see the control’s source code
and must access a Windows control through the interface exposed by the control. When you develop a
custom control, in turn, you can use any of the controls on the Toolbox. Once an instance of the control
is on the form, you can manipulate it through its properties and methods and you never get to see its code.

In Chapter 8, you learned how to implement interfaces consisting of properties and methods and
how to raise events from within a class. This is how you build the interface of a custom Windows
control. You implement properties as Property procedures, and you implement methods as Public
procedures. Whereas a class may provide a few properties and any number of methods, a control
must provide a large number of properties. A developer who places your custom control on a form
expects to see the properties that are common to all the controls that are visible at runtime (proper-
ties to set the control’s dimensions, its color, the text font, the Index and Tag properties, and so on).
Fortunately, many of the standard properties are exposed automatically. The developer also expects
to be able to program all the common events, such as the mouse and keyboard events, as well as
some events that are unique to the custom control.

The design of a Windows control is similar to the design of a form. You place controls on a
Form-like object, called UserControl, which is the control’s surface. It provides nearly all the meth-
ods of a standard form, and you can adjust its appearance with the drawing methods. In other words,
you can use familiar programming techniques to draw a custom control, or you can use existing con-
trols to build a custom control.

The forms of an application are the windows you see on the Desktop when the application is exe-
cuted. When you design the application, you can rearrange the controls on a form and program how
they react to user actions. Windows controls are also windows, only they can’t exist on their own
and can’t be placed on the Desktop. They must be placed on forms.

The major difference between applications and custom controls is that custom controls can exist
in two runtime modes. When the developer places a control on a form, the control is actually run-
ning. When you set a control’s property through the Properties window, something happens to the
control; its appearance changes, or the control rejects the changes. This means that the code of the
custom control is executing, even though the project on which the control is used is in design mode.
When the developer starts the application, the custom control is already running. However, the con-
trol must be able to distinguish when the project is in design or execution mode and behave accord-
ingly. Here’s the first property of the UserControl object you will be using quite frequently in your
code: the DesignMode property. When the control is positioned on a form and used in the

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS392

2877c09.qxd 11/11/01 4:17 PM Page 392

http://www.sybex.com

Designer, the DesignMode property is True. When the developer executes the project that contains
the control, the DesignMode property is False.

Consider a simple TextBox control at design time. Its Text property is TextBox1. If you set its
MultiLine property to True, and the ScrollBar property to Vertical, a vertical scroll bar will be
attached to the control automatically. Obviously, some statements are executed while the project is
in design mode. Then you start the application, enter some text in the TextBox control, and end it.
When the project is back in design mode, the control’s Text property is reset to TextBox1. The con-
trol has stored its settings before the project switched from design-time to runtime mode and
restored them when the project returned to design mode again.

These dual runtime modes of a Windows control are something you’ll have to get used to. When
you design custom controls, you must also switch between the roles of Windows control developer
(the programmer who designs the control) and application developer (the programmer who uses the
control).

In summary, a custom control is an application with a visible user interface as well as an invisible
programming interface. The visible interface is what the developer sees when he places an instance of
the control on the form, which is also what the user sees on the form when the project is placed in run-
time mode. The developer can manipulate the control through the properties exposed by the control
(at design time) and through its methods (at runtime). The properties and methods constitute the con-
trol’s invisible interface (or the developer interface, as opposed to the user interface). You, the control devel-
oper, will develop the visible user interface on a UserControl object, which is almost identical to the
Form object. It’s like designing a standard application. As far as the control’s invisible interface goes, it’s
like designing a class. Of course, the code of the control may also affect its appearance.

Enhancing Existing Controls
The simplest type of custom Windows control you can build is one that enhances the functionality
of an existing control. The .NET Windows controls are quite functional, and you’ll be hard-pressed
to come up with ideas to make them better. However, it’s very likely that you may have to add some
functionality that’s specific to an application. The TextBox control, for example, is a text editor on
its own, and you have seen how easy it is to build a text editor using the properties and methods
exposed by this control. Many programmers add code to their projects to customize the appearance
and the functionality of this control. Let’s say you’re building data-entry forms composed of many
TextBox controls. To help the user identify the current control on the form, it would be nice to
change its color while it has the focus. If the current control is colored differently than all others,
users will quickly locate the control that has the focus.

Another feature you can add to the TextBox control is to format its contents as soon as it loses
focus. Let’s consider a TextBox control that must accept dollar amounts. After the user enters a
numeric value, the control could automatically format the numeric value as a dollar amount, and per-
haps change the text’s color to red for negative amounts. You can also format the number as the user
enters it, but I wouldn’t advise you to do that. Some programmers like to format numeric values as
the users enter digits, but this usually confuses, rather than helps, users. Let the users enter data on a
control, and then format the control after they move the focus to another control. As you will see,
it’s not only possible, it’s actually quite easy to build a control that incorporates all the functionality
of a TextBox and some additional features that you provide through the appropriate code. You

393ENHANCING EXISTING CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 393

http://www.sybex.com

already know how to add features like the ones described here to a TextBox from within the applica-
tion’s code. But what if you want to enhance multiple TextBox controls on the same form, or reuse
your code in multiple applications?

The best approach is to create a new Windows control with all the desired functionality and then
reuse it in multiple projects. To use the proper terminology, you can create a new custom Windows
control that inherits from the TextBox control. The derived (or subclassed) control includes all the
functionality of the control being inherited, plus any new features you care to add to it. This is
exactly what we’re going to do in the following section.

Building the FocusedTextBox Control
Let’s call our new custom control FocusedTextBox. Start a new VB project and, on the New Project
dialog box, select the template Windows Control Library. Name the project FocusedTextBox. The
Solution Explorer for this project contains a single item, the UserControl1 item (in addition to the
standard project components such as References and AssemblyInfo). UserControl1 (Figure 9.1) is
the control’s surface—in a way, it’s the control’s form. This is where you’ll design the visible inter-
face of the new control.

Start by renaming the UserControl1 object to FocusedTextBox. Renaming the object isn’t enough;
you must also rename the class that implements the control. Open the object’s code window (click
the View Code button at the top of the Solution Explorer while the UserControl1 object is selected)
and change the line

Public Class UserControl1

to

Public Class FocusedTextBox

Figure 9.1

A custom control in
design mode

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS394

2877c09.qxd 11/11/01 4:17 PM Page 394

http://www.sybex.com

Then save the project by selecting the File ➢ Save All command. The UserControl object of a
control that inherits from an existing control is empty. You need not place a TextBox control on it.
Let’s inherit all the functionality of the TextBox control into our new control. Locate the following
line in the control’s code window:

Inherits System.Windows.Forms.UserControl

and change it to

Inherits TextBox

This statement tells the compiler that we want our new control to inherit all the functionality of
the TextBox. All custom controls inherit the System.Windows.Forms.UserControl object, and so
does the TextBox control. In other words, you’re not going to discard any functionality by deleting
the original Inherits statement. As soon as you specify that your custom control inherits the TextBox
control, the UserControl object will disappear from the Designer. The Designer knows exactly
what the new control must look like (it will look and behave exactly like a TextBox control), and
you’re not allowed to change it. Let’s test our control and verify that it exposes all the TextBox
functionality.

To test the control, you must add it to a form. A control can’t be executed in its own window. Add
a new project to the solution (a Windows Application project) with the File ➢ Add Project ➢ New
Project command. When the Add New Project dialog box appears, select the Windows Application
template, specify the original project’s path in the Location box, and set the project’s name to TestPro-
ject. A new folder will be created under the FocusedTextBox folder—the TestProject folder—and the
new project will be stored there. You could have added the test project to the custom control project’s
folder, but it’s good to separate the custom control project’s files from the test project’s files.

To test the control you just “designed,” you need to place an instance of the custom control on
the Form1 form of the test project. First, you must build the control and then add a reference to this
control to the test project. Select the FocusedTextBox item in the Solution Explorer, and from the
Build menu, select the Build FocusedTextBox command. This command will create a DLL file with
the control’s executable code. This file will be created in the Bin folder under the project’s folder,
and you will see later in this chapter how to reference the new custom control in other projects.

Then switch to the test project and select the Project ➢ Add Reference command. In the next
dialog box, switch to the Projects tab, shown in Figure 9.2. Here you see the name of the other proj-
ect in the solution (the custom control’s project). Select the name of the FocusedTextBox project on
the main pane, click Select, and then click the OK button to close the dialog box.

Your new control is now referenced in the test project. Open the test project’s form in the
Designer and expand the Toolbox. The last item on the Toolbox is the icon of your new control. It
has already been integrated into the design environment, and you will see shortly how you can use it
in any other Windows application. Place an instance of the FocusedTextBox control on the form
and check it out. It looks, feels, and behaves just like a regular TextBox. In fact, it is a TextBox con-
trol by a different name. It exposes all the members of the regular TextBox control: you can move it
around, resize it, change its Multiline and WordWrap properties, set its Text, and so on.

Note If the new control and the test project are part of the same project, you don’t have to add a reference to the con-
trol—it will appear in the Toolbox anyway, and you’ll be able to use it with the test project as soon as you build it. You’ll
have to add a reference to the control, however, to use it with any other project.

395ENHANCING EXISTING CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 395

http://www.sybex.com

As you can see, it’s quite trivial to create a new custom control by inheriting a .NET Windows
control. Of course, what good is a control that’s identical to an existing one? Let’s add some extra
functionality to our custom TextBox control. Switch to the control project and view the Focused-
TextBox object’s code. In the code editor’s pane, expand the Objects list and select the item Base
Class Events. This list contains the events of the TextBox control, since this is the base control for
our custom control.

Then expand the Events drop-down list and select the Enter event. The following event handler
declaration will appear:

Private Sub FocusedTextBox_Enter(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MyBase.Enter

End Sub

This event takes place every time our custom control gets the focus. To change the color of the
current control, insert the following statement in the event handler:

Me.BackColor = Color.Cyan

(or use any other color you like; just make sure it mixes well with the ForegroundColor property).
We must also program the Leave event, so that the control’s background color is reset to white when
it loses the focus. Enter the following statement in the Leave event’s handler:

Private Sub FocusedTextBox_Leave(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MyBase.Leave

Me.BackColor = Color.White
End Sub

Having a hard time picking the color that signifies that the control has the focus? Why not
expose this value as a property, so that you (or other developers using your control) can set it indi-
vidually in each project? Let’s add two properties, the EnterFocusColor and the LeaveFocusColor
(their role is rather obvious). Since our control is meant for data-entry operations, we can add one
more neat feature. Some fields on a form are usually mandatory and some others are optional. Let’s

Figure 9.2

Referencing the cus-
tom control in the
test project

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS396

2877c09.qxd 11/11/01 4:17 PM Page 396

http://www.sybex.com

add some visual indication when a mandatory field is left blank. First, we need to specify whether a
field is mandatory or not with the Mandatory property. If a field is mandatory, then its background
color will switch to the color indicated by yet another property, the MandatoryColor property.
Here’s a quick overview of the control’s custom properties:

EnterFocusColor When the control receives the focus, its background color is set to this value.
If you don’t want the currently active control to change color, set its EnterFocusColor to white.

LeaveFocusColor When the control loses the focus, its background color is set to this value. If
the control has its Mandatory property set to True and it’s blank, the MandatoryColor takes
precedence.

Mandatory This property indicates whether the control corresponds to a required field, if
Mandatory is True (Required), or an optional field, if Mandatory is False (Optional).

MandatoryColor This is the background color of the control if its Mandatory property is
required. The MandatoryColor overwrites the LeaveFocusColor setting. In other words, if the
user skips a mandatory field, the corresponding control is painted with the MandatoryColor and
not with the LeaveFocusColor. Notice that required fields behave like optional fields after they
have been assigned a value.

If you have read the previous chapter, you should be able to implement these properties easily.
Listing 9.1 is the code that implements the four custom properties. The values of the properties are
stored in the private variables declared at the beginning of the listing. Then the control’s properties
are implemented as Property procedures.

Listing 9.1: The Property Procedures of the FocusedTextBox

Dim _mandatory As Boolean
Dim _enterFocusColor, _leaveFocusColor As Color
Dim _mandatoryColor As Color
Property Mandatory() As Boolean

Get
Mandatory = _mandatory

End Get
Set(ByVal Value As Boolean)

_mandatory = Value
End Set

End Property
Property EnterFocusColor() As Color

Get
EnterFocusColor = _enterFocusColor

End Get
Set(ByVal Value As Color)

_enterFocusColor = EnterFocusColor
End Set

End Property
Property LeaveFocusColor() As Color

397ENHANCING EXISTING CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 397

http://www.sybex.com

Get
LeaveFocusColor = _leaveFocusColor

End Get
Set(ByVal Value As Color)

_leaveFocusColor = LeaveFocusColor
End Set

End Property
Property MandatoryColor() As Color

Get
MandatoryColor = _mandatoryColor

End Get
Set(ByVal Value As Color)

_mandatoryColor = MandatoryColor
End Set

End Property

The last step is to use these properties in the control’s Enter and Leave events. When the control
receives the focus, it changes its background color to EnterFocusColor to indicate that it’s the cur-
rent control on the form. When it loses the focus, its background is restored back to the Leave-
FocusColor, unless it’s a required field and the user has left it blank. In this case, its background
color is set to MandatoryColor. Listing 9.2 shows the code in the two focus-related events of the
UserControl object.

Listing 9.2: The Enter and Leave Events

Private Sub FocusedTextBox_Enter(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MyBase.Enter

Me.BackColor = EnterFocusColor
End Sub
Private Sub FocusedTextBox_Leave(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles MyBase.Leave
If Trim(Me.Text).Length = 0 And _mandatory Then

Me.BackColor = _mandatoryColor
Else

Me.BackColor = _leaveFocusColor
End If

End Sub

Build the control again with the Build ➢ Build FocusedTextBox command, and switch to the test
form. Place several instances of the custom control on the form, align them, and then select each one
and set its properties in the Properties window. All four custom properties are clustered in the Misc
section of the window (Figure 9.3); you’ll see shortly how you can change this default behavior. Set
the custom properties of a few controls on the form and then press F5 to run the application. See
how the FocusedTextBox controls behave as you move the focus from one to the other and how
they handle the mandatory fields.

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS398

2877c09.qxd 11/11/01 4:17 PM Page 398

http://www.sybex.com

Notice also that the color properties are set through the usual Color tab, just as you would set the
color properties of the existing controls. The Mandatory property can change value with a double-click.
Or you can expand the list of possible settings (True/False) and select one of them with the mouse.

Pretty impressive, isn’t it? I’m also sure that many readers will incorporate this custom control in
their projects—perhaps you may already be considering new features. Even if you have no use for
an enhanced TextBox control, you’ll agree that building it was quite simple. Next time you need to
enhance one of the .NET Windows controls, you know how to do it. Just build a new control that
inherits from an existing control, add some custom members, and use it. Of course, you can’t change
the base control’s interface. This means that you can’t draw the control’s surface—it will be drawn
by the code of the TextBox control. But then again, all rules have exceptions. Some of the controls
allow you to hook your own code into them and control the process of drawing the base control’s
area. You’ll see how to customize the appearance of menu items and the ListBox control toward the
end of this chapter.

Classifying the Control’s Properties

Let’s get back to our FocusedTextBox control—there are some loose ends to take care of. First, we
must specify the category in the Properties window under which each custom property appears. By
default, all the properties you add to a custom control are displayed in the Misc section of the
Properties window. To specify that a control be displayed in a different section, use the Category
attribute of the Property procedure. As you will see, properties have other attributes too, which you
can set in your code as you design the control.

Properties can have attributes, which appear in front of the property name and are enclosed in a
pair of angle brackets. The following attribute declaration in front of the property’s name deter-
mines the category of the Properties window in which the specific property will appear:

<Category(“Appearance”)>

If none of the existing categories suits a specific property, you can create a new category in the
Properties window by specifying its name in the Category attribute. If you have a few properties that
should appear in a section called “Conditional,” insert the following attribute in front of the declara-
tions of the corresponding properties:

<Category(“Conditional”)>

Figure 9.3

The custom proper-
ties of the Focused-
TextBox control in
the Properties
window

399ENHANCING EXISTING CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 399

http://www.sybex.com

When this control is selected, the “Conditional” section will appear in the Properties window
and all the properties with this attribute under it.

All attributes are members of the System.ComponentModel class, and you must import this class.
The following statement must be the first statement in the control’s code window:

Imports System.ComponentModel

Another attribute is the Description attribute, which determines the property’s description that
appears at the bottom of the Properties window for the selected property. To specify multiple
attributes, separate them with commas, as shown here:

<Description(“Indicates whether the control can be left blank”), _
Category(“Appearance”)> _
Property Mandatory() As Boolean
{ the property procedure’s code }

The most important attribute is the DefaultValue attribute, which determines the property’s default
(initial) value. The EnterFocusColor and LeaveFocusColor properties must have default values, so
that when you place them on the form you won’t have to change these two settings for all the controls.
The DefaultValue attribute must be followed by the default value in parentheses:

<Description(“Indicates whether the control can be left blank”), _
Category(“Appearance”), DefaultValue(False)> _
Property Mandatory() As Boolean
{ the property procedure’s code }

Some attributes apply to the Class that implements the custom controls. The DefaultProperty and
DefaultEvent attributes determine the control’s default property and event. To specify that Mandatory
is the default attribute of the FocusedTextBox control, replace its declaration with the following:

<DefaultProperty(“Mandatory”)> Public Class FocusedTextBox

Events are discussed later in the chapter, but you already know how to raise an event from within
a class. Raising an event from within a control’s code is quite similar—although the control may
raise events in response to external actions.

Open the FocusedTextBox project on the companion CD and examine its code. You can experi-
ment with various formatting options for fields that are numeric. The following statement in the
control’s Leave event will format the control’s contents as a dollar amount:

If IsNumeric(Me.Text) Then
Me.Text = FormatCurrency(Me.Text, 2, False, True, True)
If Val(Me.Text) < 0 Then

Me.Text = “(“ & Me.Text & “)”
End If

End If

Let’s move on to something more interesting. This time we’ll build a control that combines the
functionality of several controls, which is a much more common scenario than basing a new custom
control to an existing control. You will literally design its visible interface by dropping controls on
it, just like designing the visible interface of a Windows form.

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS400

2877c09.qxd 11/11/01 4:17 PM Page 400

http://www.sybex.com

Building Compound Controls
A compound control provides a visible interface that combines multiple Windows controls. As a
result, this type of control doesn’t inherit the functionality of any specific control. You must expose
its properties by providing your own code. This isn’t as bad as it sounds, because a compound con-
trol inherits the UserControl object, which exposes quite a few members of its own. You will add
your own members, and in many cases you can map a property or method of the compound control
to a property or method of one of its constituent controls. If your control contains a TextBox con-
trol, for example, you can map the custom control’s WordWrap property to the equivalent property
of the TextBox. The following property procedure demonstrates how to do it:

Property WordWrap() As Boolean
Get

WordWrap = TextBox1.WordWrap
End Get
Set(ByVal Value As Boolean)

TextBox1.WordWrap = Value
End Set

End Property

As you can see, you don’t have to maintain a private variable for storing the value of the custom
control’s WordWrap property. When this property is set, the Property procedure assigns the prop-
erty’s value to the TextBox1.WordWrap property. Likewise, when this property’s value is requested, the
procedure reads it from the constituent control and returns it.

The same logic applies to events. Let’s say your compound control contains a TextBox and a
ComboBox control, and you want to raise the TextChanged event when the user edits the TextBox
control and the (custom) SelectionChanged event when the user selects another item in the Combo-
Box control. First, you must declare the two events:

Event TextChanged
Event SelectionChanged

Then, you must raise the two events from within the appropriate event handlers: the
TextChanged event from the TextBox.TextChanged event hander and the SelectionChanged from
the ComboBox.SelectedIndexChanged event handler:

Private Sub TextBox1_TextChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FocusedTextBox1.TextChanged

RaiseEvent TextChanged()
End Sub
Private Sub ComboBox1_SelectedIndexChanged(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles ComboBox1.SelectedIndexChanged
RaiseEvent SelectionChanged()

End Sub

VB.NET at Work: The ColorEdit Control
The control we’ll build in this section is very similar to the Color dialog box. The ColorEdit control
allows you to specify a color by adjusting its red, green, and blue components with three scroll bars,
or to select a color by name. The control’s surface at runtime on a form is shown in Figure 9.4.

401BUILDING COMPOUND CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 401

http://www.sybex.com

Now open the UserControl object and design its interface, as shown in Figure 9.4. The three
ScrollBar controls are named RedBar, GreenBar, and BlueBar respectively. The MinimumValue
property for all three controls is 0; the MaximumValue for all three is 255. This is the valid range
of values for a color component. The control at the top-left corner is a Label control with its back-
ground color set to Black. (We could have used a PictureBox control in its place.) The role of this
control is to display the selected color.

The ComboBox control at the bottom of the control is the NamedColors control, which is pop-
ulated with color names when the control is loaded. Color is the name of an object that allows you
to manipulate colors, and it exposes 140 properties, which are color names (Beige, Azure, and so
on). Don’t bother entering all the color names in the ComboBox control; just open the ColorEdit
project on the CD and you will find the AddNamedColors() subroutine, which does exactly that.
The first few lines of this function are shown next:

Private Sub AddNamedColors()
With ComboBox1.Items

.Add(“AliceBlue”)

.Add(“AntiqueWhite”)

.Add(“Aqua”)

The user can specify a color by sliding the three ScrollBar controls or by selecting an item in the
ComboBox control. In either case, the Label control’s Background color will be set to the selected
color. If the color was specified with the ComboBox control, the three ScrollBars will be adjusted to
reflect the color’s basic components (red, green, and blue components).

Not all possible colors you can specify with the three ScrollBars have a name (there are approxi-
mately 16 million colors). That’s why the ComboBox control contains the “Unknown” item, which
is selected when the user specifies a color by settings its basic components.

Finally, the ColorEdit control exposes two properties, the SelectedColor and NamedColor prop-
erties. The NamedColor property retrieves the selected color’s name. If the color wasn’t isn’t selected
on the ComboBox control, the value “Unknown” will be returned. The SelectedColor property returns,
or sets, the current color. The SelectedColor property’s type is Color, and it can be assigned any
expression that represents a color value. The following statement will assign the form’s Background-
Color property to the SelectedColor property of the control:

ctrlColorEditor.SelectedColor = Me.BackgroundColor

Figure 9.4

The ColorEdit con-
trol on a form

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS402

2877c09.qxd 11/11/01 4:17 PM Page 402

http://www.sybex.com

You can also specify a color value with the FromARGB method of the Color object:

ctrlColorEditor.SelectedColor = Color.FromARGB(red, green, blue)

The implementation of the SelectedColor property is shown in Listing 9.3, and it’s straightfor-
ward. The Get section of the procedure assigns the Label’s background color to the SelectedColor
property. The Set section of the procedure extracts the three color components from the value of the
property and assigns them to the three ScrollBar controls. Then it calls the ShowColor subroutine to
update the display (you’ll see shortly what this subroutine does).

Listing 9.3: The SelectedColor Property Procedure

Property SelectedColor() As Color
Get

SelectedColor = Label1.BackColor
End Get
Set(ByVal Value As Color)

HScrollBar1.Value = Value.R
HScrollBar2.Value = Value.G
HScrollBar3.Value = Value.B
ShowColor()

End Set
End Property

The NamedColor property (Listing 9.4) is read-only and is marked with the ReadOnly keyword
in front of the procedure’s name. This property retrieves the value of the ComboBox control and
returns it.

Listing 9.4: The NamedColor Property Procedure

ReadOnly Property NamedColor() As String
Get

NamedColor = ComboBox1.SelectedItem
End Get

End Property

When the user selects a color name in the ComboBox control, the code retrieves the correspon-
ding color value with the Color.FromName method. This method accepts a color name as argument
(a string) and returns a color value, which is assigned to the namedColor variable. Then the code
extracts the three basic color components with the R, G, and B properties (these properties return
the red, green, and blue color components). Listing 9.5 shows the code behind the ComboBox
control’s SelectedIndexChanged event, which is fired every time a new color name is selected on
the control.

403BUILDING COMPOUND CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 403

http://www.sybex.com

Listing 9.5: Specifying a Color by Name

Private Sub ComboBox1_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ComboBox1.SelectedIndexChanged

Dim namedColor As Color
Dim colorName As String
colorName = ComboBox1.SelectedItem
If colorName <> “Unknown” Then

namedColor = Color.FromName(colorName)
HScrollBar1.Value = namedColor.R
HScrollBar2.Value = namedColor.G
HScrollBar3.Value = namedColor.B
ShowColor()

End If
End Sub

The ShowColor property simply sets the Label’s background color to the color specified by the
three ScrollBar controls. Even when you select a color value by name, the control’s code sets the three
ScrollBars to the appropriate values. This way, we don’t have to write additional code to update the
display. The ShowColor subroutine is quite trivial:

Sub ShowColor()
Label1.BackColor = Color.FromARGB(255, HScrollBar1.Value, _

HScrollBar2.Value, HScrollBar3.Value)
End Sub

The single statement in this subroutine picks up the values of the three basic colors from the Scroll-
Bar controls and creates a new color value with the FromARGB method of the Color object. The first
argument is the transparency of the color (the “A” or alpha channel), and we set it to 255 for a com-
pletely opaque color. You can edit the project’s code to take into consideration the transparency chan-
nel as well. If you do, you must replace the Label control with a PictureBox control and display an
image on it. Then draw a rectangle with the specified color on top of it. If the color isn’t completely
opaque, you’ll be able to see the underlying image and visually adjust the transparency channel.

Testing the ColorEdit Control

To test the new control, you must place it on a form. Build the ColorEdit control, add a new project
to the current solution as before, reference the new control in the test project, and then add an
instance of the control to the form. You don’t have to enter any code in the test form. Just run it and
see how you specify a color either with the scroll bars or by name. You can also read the value of the
selected color through the SelectedColor property. The code behind the Color Form button on the
test form does exactly that:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Me.BackColor = ColorEdit1.SelectedColor
End Sub

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS404

2877c09.qxd 11/11/01 4:17 PM Page 404

http://www.sybex.com

Building User-Drawn Controls
This is the most complicated, but also the most flexible, type of control. A user-drawn control con-
sists of a UserControl object with no constituent controls. You are responsible for updating the
control’s visible area with the appropriate code, which must appear in the control’s OnPaint method.
This method is called right before the OnPaint event is fired, and if you override it, you can take
control of the repaint process.

To demonstrate the design of user-drawn controls, we’ll develop the Label3D control, which is
an enhanced Label control and is shown in Figure 9.5. It provides all the members of the Label con-
trol plus a few highly desirable new features, such as the ability to align the text in all possible ways
on the control, as well as in three-dimensional type. The new custom control is called Label3D, and
its project on the CD is the FlexLabel project. It contains the Label3D project (which is a Windows
Control Library project) and the usual test project (which is a Windows Application project).

At this point, you’re probably thinking about the code that aligns the text and renders it as carved
or raised. A good idea is to start with a Windows project, which displays a string on a form and
aligns it in all possible ways. A control is an application packaged in a way that allows it to be dis-
played on a form instead of on the Desktop. As far as the functionality is concerned, in most cases it
can be implemented on a regular form.

Designing a Windows form with the same functionality is fairly straightforward. You haven’t
seen the drawing methods yet, but this control doesn’t involve any advanced drawing techniques. All
we need is a method to render strings on the control. To achieve the 3D effect, you must display the
same string twice, first in white and then in black on top of the white. The two strings must be dis-
placed slightly, and the direction of the displacement determines the effect (whether the text will
appear as raised or carved). The amount of displacement determines the depth of the effect. Use a
displacement of one pixel for a light effect and a displacement of two pixels for a heavy one.

VB.NET at Work: The Label3D Control
The first step in designing a user-drawn custom control is to design the control’s interface: what it
will look like when placed on a form (its visible interface) and how developers can access this func-
tionality through its members (the programmatic interface). Sure, you’ve heard the same advice over
and over, and many of you still start coding an application without spending much time designing it.
In the real world, especially if you are not a member of programming team, people design as they
code (or the other way around).

Figure 9.5

The Label3D con-
trol is an enhanced
Label control.

405BUILDING USER-DRAWN CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 405

http://www.sybex.com

The situation is quite different with Windows controls. Your custom control must provide prop-
erties, which will be displayed automatically in the Properties window. The developer should be able
to adjust every aspect of the control’s appearance by manipulating the settings of these properties. In
addition, developers expect to see the standard properties shared by most controls (such as the back-
ground color, the text’s font, and so on). You must carefully design the methods so that they expose
all the functionality of the control that should be accessed from within the application’s code, and
the methods shouldn’t overlap. Finally, you must provide the events necessary for the control to
react to external events. Don’t start coding a custom control unless you have formulated a very clear
idea of what the control will do and how it will be used by developers at design time.

The Label3D Control’s Specifications

The Label3D control displays a caption like the standard Label control, so it must provide the Caption
and Font properties, which let the developer determine the text and its appearance. The UserControl
object exposes these two properties, so we need not implement them in our code. In addition, the
Label3D can align its caption both vertically and horizontally. This functionality will be exposed by
the Alignment property, whose settings are shown in Table 9.1.

Table 9.1: The Settings of the Alignment Property (The Align Enumeration)

Value

TopLeft

TopMiddle

TopRight

CenterLeft

CenterMiddle

CenterRight

BottomLeft

BottomMiddle

BottomRight

The (self-explanatory) values in Table 9.1 are the names that will appear in the drop-down list of
the Alignment property in the Properties window. As you have noticed, properties with a limited
number of settings display a drop-down list there. This list contains descriptive names (instead of
numeric values), and the developer can select only a valid setting. The Alignment property’s settings
will be the members of a custom enumeration.

Similarly, the text effect is manipulated through the Effect property, whose settings are shown in
Table 9.2. There are basically two types of effects, raised and carved text, and two variations on each
effect (normal and heavy).

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS406

2877c09.qxd 11/11/01 4:17 PM Page 406

http://www.sybex.com

Table 9.2: The Settings of the Effect Property (The Effect3D Enumeration)

Value

None

Carved

CarvedHeavy

Raised

RaisedHeavy

Like the Alignment property, the Effect property has a small number of valid settings, which will
be identified in the Properties window with descriptive names. These names are the members of
another custom enumeration.

In addition to the custom properties, the Label3D control should also expose the standard prop-
erties of a Label control, such as Tag, BackColor, and so on. Developers expect to see standard
properties in the Properties window, and you should implement them. The Label3D control doesn’t
have any custom methods, but it should provide the standard methods of the Label control, such as
the Move method. Similarly, although the control doesn’t raise any special events, it must support the
standard events of the Label control, such as the mouse and keyboard events.

Most of the custom control’s functionality exists already, and there should be a simple technique
to borrow this functionality from other controls, rather than implementing it from scratch. This is
indeed the case: The UserControl object, from which all user-drawn controls inherit, exposes a large
number of members.

Designing the Custom Control

Start a new project of the Windows Control Library type, name it FlexLabel, and then rename the
UserControl1 object to Label3D. Open the UserControl object’s code window and change the name
of the class from UserControl1 to Label3D. The first two lines in the code window should be:

Public Class Label3D
Inherits System.Windows.Forms.UserControl

All user-drawn controls inherit from the UserControl object, and you will soon see the members
exposed by the UserControl object itself.

Note Every time you place a Windows control on a form, it’s named according to the UserControl object’s name and
a sequence digit. The first instance of the custom control you place on a form will be named Label3D1, the next one will
be named Label3D2, and so on. Obviously, it’s important to choose a meaningful name for your UserControl object.

As you will soon see, the UserControl is the “form” on which the custom control will be
designed. It looks, feels, and behaves like a regular VB form, but it’s called a UserControl. UserCon-
trol objects have additional unique properties that don’t apply to a regular form, but in order to start
designing new controls, think of them as regular forms.

You’ve set the scene for a new user-drawn Windows control. Start by declaring the two enumera-
tions shown in Tables 9.1 and 9.2. Listing 9.6 shows the Enum statements for the two enumerations.

407BUILDING USER-DRAWN CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 407

http://www.sybex.com

Listing 9.6: The Align and Effect3D Enumerations

Public Enum Align
TopLeft
TopMiddle
TopRight
CenterLeft
CenterMiddle
CenterRight
BottomLeft
BottomMiddle
BottomRight

End Enum
Public Enum Effect3D

None
Raised
RaisedHeavy
Carved
CarvedHeavy

End Enum

The next step is to implement the Alignment and Effect properties. Each property’s type is an
enumeration, and Listing 9.7 shows the implementation of the two properties.

Listing 9.7: The Alignment and Effect Properties

Private Shared mAlignment As Align
Private Shared mEffect As Effect3D
Public Property Alignment() As Align

Get
Alignment = mAlignment

End Get
Set(ByVal Value As Align)

mAlignment = Value
Invalidate()

End Set
End Property
Public Property Effect() As Effect3D

Get
Effect = mEffect

End Get
Set(ByVal Value As Effect3D)

mEffect = Value
Invalidate()

End Set
End Property

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS408

2877c09.qxd 11/11/01 4:17 PM Page 408

http://www.sybex.com

The current settings of the two properties are stored in the private variables mAlignment and mEffect.
When either property is set, the Property procedure’s code calls the Invalidate method of the UserCon-
trol object to redraw the string on the control’s surface. The call to the Invalidate method is required for
the control to operate properly in design mode. You can provide a method to redraw the control at
runtime (although developers shouldn’t have to call a method to refresh the control every time they set
a property), but this isn’t possible at design time. When a property is changed in the Properties win-
dow, the control should be able to update itself and reflect the new property setting. The Invalidate
method causes the control to be redrawn, to reflect the new setting of the property. Shortly, you’ll see
an even better way to automatically redraw the control every time a property is changed.

Finally, you must add one more property, the Caption property, which is the string to be ren-
dered on the control. Declare a private variable to store the control’s caption (the mCaption variable)
and enter the code from Listing 9.7 to implement the Caption property.

Listing 9.7: The Caption Property Procedure

Private mCaption As String
Property Caption() As String

Get
Caption = mCaption

End Get
Set(ByVal Value As String)

mCaption = Value
Invalidate()

End Set
End Property

The core of the control’s code is in the OnPaint method, which is called automatically before the
control repaints itself (that is, prior to the Paint event). The same event’s code is also executed when
the Invalidate method is called, and this is why we call this method every time one of the control’s
properties changes value. The OnPaint method enables you to take control of the repaint process
and supply your own code for repainting the control’s surface. The single characteristic of all user-
drawn controls is that they override the default OnPaint method. This is where you must insert the
code to draw the control’s surface—i.e., draw the specified string taking into consideration the
Alignment and Effect properties. The OnPaint method’s code is shown in Listing 9.8.

Listing 9.8: Overriding the UserControl’s OnPaint Method

Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
Dim lblFont As Font = Me.Font
Dim lblBrush As New SolidBrush(Color.Red)
Dim X, Y As Integer
Dim textSize As SizeF
textSize = e.Graphics.MeasureString(mCaption, lblFont)
Select Case Me.mAlignment

Case Align.BottomLeft

409BUILDING USER-DRAWN CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 409

http://www.sybex.com

X = 2
Y = Me.Height - textSize.Height

Case Align.BottomMiddle
X = CInt((Me.Width - textSize.Width) / 2)
Y = Me.Height - textSize.Height

Case Align.BottomRight
X = Me.Width - textSize.Width - 2
Y = Me.Height - textSize.Height

Case Align.CenterLeft
X = 2
Y = (Me.Height - textSize.Height) / 2

Case Align.CenterMiddle
X = (Me.Width - textSize.Width) / 2
Y = (Me.Height - textSize.Height) / 2

Case Align.CenterRight
X = Me.Width - textSize.Width - 2
Y = (Me.Height - textSize.Height) / 2

Case Align.TopLeft
X = 2
Y = 2

Case Align.TopMiddle
X = (Me.Width - textSize.Width) / 2
Y = 2

Case Align.TopRight
X = Me.Width - textSize.Width - 2
Y = 2

End Select
Dim dispX, dispY As Integer
Select Case mEffect

Case Effect3D.None : dispX = 0 : dispY = 0
Case Effect3D.Raised : dispX = 1 : dispY = 1
Case Effect3D.RaisedHeavy : dispX = 2 : dispY = 2
Case Effect3D.Carved : dispX = -1 : dispY = -1
Case Effect3D.CarvedHeavy : dispX = -2 : dispY = -2

End Select
e.Graphics.Clear(Me.BackColor)
lblBrush.Color = Color.White
e.Graphics.DrawString(mCaption, lblFont, lblBrush, X, Y)
lblBrush.Color = Me.ForeColor
If Me.DesignMode Then

e.Graphics.DrawString(“DesignTime”, New Font(“Verdana”, 24, _
FontStyle.Bold), New SolidBrush(Color.FromARGB(200, 230, 200, 255)), 0, 0)

Else
e.Graphics.DrawString(“RunTime”, New Font(“Verdana”, 24, FontStyle.Bold), _
New SolidBrush(Color.FromARGB(200, 230, 200, 255)), 0, 0)

End If
e.Graphics.DrawString(mCaption, lblFont, lblBrush, X + dispX, Y + dispY)

End Sub

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS410

2877c09.qxd 11/11/01 4:17 PM Page 410

http://www.sybex.com

This subroutine calls for a few explanations. The OnPaint event passes a PaintEventArgs argu-
ment (the ubiquitous e argument). This argument exposes the Graphics property, which represents
the control’s surface. The Graphics object exposes all the methods you can call to create graphics
on the control’s surface. The Graphics object is discussed in detail in Chapter 14, but for the pur-
poses of this chapter all you need to know is that the MeasureString method returns the dimensions
of a string when rendered in a specific font, and the DrawString method draws the string in the spec-
ified font. The first Select Case statement calculates the coordinates of the string’s origin on the
control’s surface. These coordinates are calculated for each different alignment. Then another Select
Case statement sets the displacement between the two strings, so that when superimposed they pro-
duce a three-dimensional look. Finally, the code draws the value of the Caption property on the
Graphics object. It draws the string in white color first, then in black. The second string is drawn
dispX pixels to the left and dispY pixels below the first one to give the 3D effect.

Notice the two statements that print the strings “DesignTime” and “RunTime” in a light color
on the control’s background, depending on the current status of the control. They indicate whether
the control is currently in design (if UserMode is True) or run time (if UserMode is False).

Testing Your New Control

To test your new control, you must first add it to the Toolbox, so that you can place it on a form.
You can add a form to the current project and test the control, but you shouldn’t add more compo-
nents to the control project. It’s best to add a new project to the current solution.

Add the TestProject to the current solution, rename its Form to TestForm, and open it in design
mode. Place a Label3D control on the test form and the other controls shown in Figure 9.5. If the
Label3D icon doesn’t appear in the Toolbox, you must build the control’s project.

Now double-click the Label3D control on the form to see its events. Your new control has its
own events, and you can program them just as you would program the events of any other control.
Enter the following code in the control’s Click event:

Private Sub Label3D1_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Label3D1.Click

MsgBox(“My properties are “ & vbCrLf & _
“Caption = “ & Label3D1.Caption & vbCrLf & _
“Alignment = “ & Label3D1.Alignment & vbCrLf & _
“Effect = “ & Label3D1.Effect)

End Sub

To run the control, press F5 and then click the control. You will see the control’s properties dis-
played in a message box.

The other controls on the test form (see Figure 9.5) allow you to set the appearance of the cus-
tom control at runtime. The two ComboBox controls are populated with the members of the
appropriate enumeration when the form is loaded. In their SelectedIndexChanged event handler, you
must set the corresponding property to the selected value, as shown in the following listing:

Private Sub AlignmentBox_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles AlignmentBox.SelectedIndexChanged

Label3D1.Alignment = AlignmentBox.SelectedItem
End Sub
Private Sub EffectsBox_SelectedIndexChanged(ByVal sender As System.Object, _

411BUILDING USER-DRAWN CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 411

http://www.sybex.com

ByVal e As System.EventArgs) _
Handles EffectsBox.SelectedIndexChanged

Label3D1.Effect = EffectsBox.SelectedItem
End Sub

The TextBox control at the bottom of the form stores the Caption property. Every time you
change this string, the control is updated, because the Set procedure of the Caption property calls
the Invalidate method.

Initializing a Custom Control

To initialize the control’s properties, insert the appropriate code in the New() subroutine. This sub-
routine is in the section marked with the following line:

#Region “ Windows Form Designer generated code “

and it contains code generated by the designer. Expand this section by clicking the plus sign in front
of its name and locate the New() subroutine. Listing 9.9 shows the New() subroutine of the custom
control.

Listing 9.9: The New() Subroutine of the Label3D Control

Public Sub New()
MyBase.New()

‘This call is required by the Windows Form Designer.
InitializeComponent()

‘Add any initialization after the InitializeComponent() call
mCaption = “Label3D”
mAlignment = Align.CenterMiddle
mEffect = Effect3D.Raised
SetStyle(ControlStyles.ResizeRedraw, “True”)

End Sub

I’ve only added the four last statements in this listing; the first couple of statements and the com-
ments were inserted by the Designer. After assigning initial values to the private variables that store
the control’s properties, there’s a call to the SetStyle method, which accepts several arguments. The
ResizeRedraw argument determines whether the control will be redrawn when it’s resized. Normally,
the Paint event isn’t fired when the control is made smaller, and when the control is enlarged, only the
new area of the control is repainted. The call to the SetStyle method forces the control to be repainted
every time the user resizes it on the form.

You need not initialize all the properties of the control, just the ones that should have a value the
first time the control is placed on a form. When you place a TextBox control on the form, for example,
its Text property is set to the control’s name and its Font property is set to Microsoft Sans Serif. The
Label3D control’s default caption is “Label3D”. Many of the control’s properties are handled by the
UserControl object itself, and Font is one of them. To set the initial font, locate the Font property of
the UserControl and set it accordingly. The BackgroundColor and BackgroundImage properties are
also handled by the UserControl object. You can specify a default background image if you want, but
this property will be exposed in the Properties window, and the developer can set it at design time.

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS412

2877c09.qxd 11/11/01 4:17 PM Page 412

http://www.sybex.com

The Changed Events

The UserControl object exposes many of the events you need to program the control, like the key
and mouse events. In addition, you can raise custom events. The .NET Windows controls raise an
event every time a property value is changed. If you examine the list of events exposed by the
Label3D control, you’ll see the FontChanged and SizeChanged events. These events are provided by
the UserControl object. As a control developer, you should expose similar events for your custom
properties. This isn’t very difficult to do, but you must follow a few steps.

Declare an event handler for each of the Changed events:

Private mOnAlignmentChanged As EventHandler
Private mOnEffectChanged As EventHandler
Private mOnCaptionChanged As EventHandler

Then declare the actual events and their handlers:

Public Event AlignmentChanged(ByVal sender As Object, ByVal ev As EventArgs)
Public Event EffectChanged(ByVal sender As Object, ByVal ev As EventArgs)
Public Event CaptionChanged(ByVal sender As Object, ByVal ev As EventArgs)

And finally invoke the event handlers from within the appropriate OnEventName method:

Protected Overridable Sub OnAlignmentChanged(ByVal E As EventArgs)
Invalidate()
If Not (mOnAlignmentChanged Is Nothing) Then mOnAlignmentChanged.Invoke(Me, E)

End Sub
Protected Overridable Sub OnEffectChanged(ByVal E As EventArgs)

Invalidate()
If Not (mOnEffectChanged Is Nothing) Then mOnEffectChanged.Invoke(Me, E)

End Sub
Protected Overridable Sub OnCaptionChanged(ByVal E As EventArgs)

Invalidate()
If Not (mOnCaptionChanged Is Nothing) Then mOnCaptionChanged.Invoke(Me, E)

End Sub

As you can see, the OnpropertyChanged events call the Invalidate method to redraw the control
when a property’s value is changed. As a result, you can now remove the call to the Invalidate
method from the Property Set procedures. If you switch to the test form, you will see that the cus-
tom control exposes the AlignmentChanged, EffectChanged, and CaptionChanged events. The
OnCaptionChanged method is executed automatically every time the Caption property changes
value, and it fires the CaptionChanged event. Normally, this event isn’t programmed.

Raising Events
The UserControl object raises the usual events you’d expect to see in the editor’s window. When
you select the custom control in the Objects drop-down list of the editor and expand the list of
events for this control, you’ll see all the events fired by UserControl. They’re the usual events, which
you already know how to program. However, what good are the Key events if the custom control
doesn’t handle keystrokes? Most events will go unnoticed in most applications.

413BUILDING USER-DRAWN CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 413

http://www.sybex.com

The situation is very different with compound controls. A compound control usually allows the
user to interact with one or more of its constituent controls. Let’s return to the ColorEdit custom
control. The Click event is fired when the user clicks any area of the control outside the compound
controls. When one of the scroll bars is clicked, no event is raised. Instead, the control adjusts the
selected color. You can raise an event from within your control, if you want to. For example, you
can raise an event to notify the application that the red scroll bar control has changed value, or that
another color was selected in the ComboBox control with the named colors. Of course, these events
are of questionable value, because the motivation for building a custom control is to hide as many of
the low-level details as possible.

To demonstrate how to raise custom events, let’s say you want to raise an event when the user
clicks the Label control where the selected color is displayed. Let’s call this event ColorClick. To
raise a custom event, you must declare it in your control and call the RaiseEvent method to raise it.
Note that the same event may be raised from many different places in the control’s code.

To declare the ColorClick event, enter the following statement in the control’s code. This line can
appear anywhere, but placing it after the private variables that store the property values is customary.

Public Event ColorClick(ByVal sender As Object, ByVal e As EventArgs)

To raise the ColorClick event when the user clicks the Label control, insert the following state-
ment in the Label control’s Click event handler:

Private Sub Label1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Label1.Click

RaiseEvent ColorClick(Me, e)
End Sub

Raising a custom event from within a control is as simple as raising an event from within a class.
The RaiseEvent statement in the Label’s Click event handler maps the Click event of the Label con-
trol to the ColorClick event of the custom control. If you switch to the test form and examine the
list of events of the Label3D control on the form, you’ll see that the new event was added.

The ColorClick event doesn’t convey much information. You could use it to display a context
menu with a few common color names and let the user select one. In a real application, you could
convey a lot of information to the developer using your control through custom events. As you can
see, the arguments passed to the application by the ColorClick event are the same as the arguments
passed to the Label control’s Click event.

When raising custom events, it’s likely that you’ll want to pass additional information to the developer.
Let’s say you want to pass the Label control’s color to the application through the second argument of the
ColorClick event. The EventArgs type doesn’t provide a Color property, so we must build a new type that
inherits all the members of the EventArgs type and adds a property, the Color property. You can probably
guess that we’ll create a custom class that inherits from the EventArgs class and adds the Color member.
Enter the statements of Listing 9.10 at the end of the file (after the existing End Class statement).

Listing 9.10: Declaring a Custom Event Type

Public Class ColorEvent
Inherits EventArgs
Public Shared color As Color

End Class

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS414

2877c09.qxd 11/11/01 4:17 PM Page 414

http://www.sybex.com

Then, declare the following event in the control’s code:

Public Event ColorClick(ByVal sender As Object, ByVal e As ColorEvent)

And finally raise the ColorClick event from within the Label’s Click event handler (Listing 9.11).

Listing 9.11: Raising a Custom Event

Private Sub Label1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Label1.Click

Dim ev As ColorEvent
ev.color = Label1.BackColor
RaiseEvent ColorClick(Me, ev)

End Sub

Using the Custom Control in Other Projects
By adding a test project to the Label3D custom control project, we were able to design and test the
control in the same environment. A great help indeed, but the custom control can’t be used in other
projects. If you start another instance of Visual Studio and attempt to add your custom control to
the toolbox, you won’t see the Label3D entry in the Toolbox.

To add your custom component in another project, open the Customize Toolbox dialog box,
then click the .NET Framework Components tab. Be sure to carry out the steps described here while
the .NET Framework Components tab is visible. If the COM Components tab is visible instead,
you can perform the same steps but you’ll end up with an error message (because the custom compo-
nent is not a COM component).

Click the Browse button on the dialog box and locate the FlexLabel.dll file. It’s in the Bin
folder under the FlexLabel project’s folder. The Label3D control will be added to the list of .NET
Framework components, as shown in Figure 9.6. Check the box in front of the control’s name, then
click the OK button to close the dialog box and add Label3D to the Toolbox. Now you can use this
control in your new project.

Figure 9.6

Adding the Label3D
control to another
project’s Toolbox

415BUILDING USER-DRAWN CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 415

http://www.sybex.com

VB.NET at Work: The Alarm Control
This example demonstrates a custom control that contains all three types of members—properties,
methods, and events—and raises events based on a timer, rather than some user action. It’s a simple
alarm that can be set to go off at a certain time, and when it times out, it triggers a TimeOut event.
Moreover, while the timer is ticking, the control updates a display, showing the time elapsed since
the timer started (the property CountDown must be False) or the time left before the alarm goes off
(the property CountDown must be True). Figure 9.7 shows the test form for the Alarm control.
The first instance of the Alarm control counts down the time left before the alarm goes off, and the
second counts the time since it was started.

The Alarm Control’s Interface

The Alarm control has two custom properties, AlarmTime and CountDown. AlarmTime is the time
when the alarm goes off, expressed in AM/PM format. CountDown is a True/False property that
determines what’s displayed on the control. If CountDown is True, the alarm displays the time
remaining. If you set the alarm to go off at 8:00 P.M. and you start the timer at 7:46 P.M., the control
displays 0:14.00, then 0:13.59, and so on until the alarm goes off 14 minutes later. If CountDown
is False, the control starts counting at 00:00.00 and counts until the AlarmTime is reached. The
Alarm control takes into consideration the date as well and can be set to go off in more than 24 hours.
However, it was designed to count a relatively small number of hours. If you set it to go off in a
week, the number of hours left until the TimeOut event won’t be displayed nicely on the control
(you have to make the control wider so that it can fit more digits), but the code will work for any
setting of the AlarmTime property.

The Alarm control has two methods for starting and stopping the alarm: StartTimer starts the
timer, and StopTimer stops it.

Finally, the Alarm control fires the TimeOut event, which notifies the application that the alarm
has gone off (which happens when the time reaches AlarmTime). The application can use this event
to trigger another action or simply to notify the user.

Testing the Alarm Control

The Alarm control’s test form is shown earlier, in Figure 9.7. It contains two instances of the con-
trol, and you set their CountDown property at design time. The AlarmTime property of both
controls is set to the same value, which is 15 minutes ahead of the current time. Listing 9.12 shows
the code behind the Start Timers button of the test form.

Figure 9.7

The test form for
the Alarm custom
control

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS416

2877c09.qxd 11/11/01 4:17 PM Page 416

http://www.sybex.com

Listing 9.12: Setting Up the Two Alarm Controls on the Test Form

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

CtrlAlarm1.CountDown = True
CtrlAlarm2.CountDown = False
CtrlAlarm1.AlarmTime = Now.AddSeconds(10)
CtrlAlarm2.AlarmTime = Now.AddSeconds(20)
CtrlAlarm1.StartTimer()
CtrlAlarm2.StartTimer()
TextBox1.Text = “Current date and time: “ & vbCrLf & Now & vbCrLf
TextBox1.Text = TextBox1.Text + “Alarm1” & vbCrLf
TextBox1.Text = TextBox1.Text & “ set for “ & _

CtrlAlarm1.AlarmTime.ToShortDateString
TextBox1.Text = TextBox1.Text & “ “ & _

CtrlAlarm1.AlarmTime.ToLongTimeString & vbCrLf
TextBox1.Text = TextBox1.Text & “ and counting down” & vbCrLf
TextBox1.Text = TextBox1.Text & vbCrLf & “Alarm2” & vbCrLf
TextBox1.Text = TextBox1.Text & “ set for “ & _

CtrlAlarm2.AlarmTime.ToShortDateString
TextBox1.Text = TextBox1.Text & “ “ & _

CtrlAlarm2.AlarmTime.ToLongTimeString & vbCrLf
TextBox1.Text = TextBox1.Text & “ and counting up” & vbCrLf

End Sub

The last group of statements that manipulate the TextBox control display the time each control was
started and the alarm time of the two controls. Then, you can watch the alarms count the time until they
go off. To start the two alarms, the code calls the control’s StartTimer method. The information printed
on the TextBox will help you verify that the controls work properly, especially if you edit the code.

Both controls will fire the TimeOut event when the alarm time is reached, and I’ve inserted two
very simple handlers for these events (there’s a similar event handler for the second control):

Private Sub CtrlAlarm1_TimeOut() Handles CtrlAlarm1.TimeOut
Beep()
MsgBox(“Alarm1 is off!”)

End Sub

Designing the Alarm’s User Interface

Your first step is to design the control’s interface. Unlike the Timer control of Visual Basic, the
Alarm control has a visible interface and uses two constituent controls: a Timer control (which is
used to update the display every second as well as figure out whether the alarm must go off or not)
and a Label control, where it displays the time.

To design the control’s interface, follow these steps:

1. Place a Label control on the UserControl form, and set its Font property to a font and size
that looks nice for our purposes. We will not expose the Label’s Font as a property of the

417BUILDING USER-DRAWN CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 417

http://www.sybex.com

control, so that developers using this control can’t change it. If you want developers to be able
to change the control’s font, you must insert additional code to adjust the dimensions of the
Label so that all the digits will be visible.

2. Set the Label’s Dock property to Fill, so that it takes up all the space provided for the control.

3. Add a Timer control to the UserControl object—it will appear in the components tray at the
bottom of the Designer’s window.

The control’s visible interface is quite trivial, thanks to the constituent controls. Let’s look at the
members of the Alarm control (Figure 9.8).

Implementing the Control’s Members

Now we are ready to implement the control’s properties, methods, and event. Let’s start with the
properties. First, declare the private variables that will hold the property values:

Private startTime As Date
Private Running As Boolean
Private m_CountDown As Boolean
Private m_AlarmTime As Date

As you have guessed, m_CountDown and m_AlarmTime are the two private variables that will hold the
values of the CountDown and AlarmTime properties. The Running variable is True while the alarm
is running and is declared outside any procedure so that all procedures can access its value. The start-
Time variable is set to the time the alarm starts counting and is used when the control is not counting
down (you’ll see how it’s used shortly).

Figure 9.8

The Alarm control
at design time

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS418

2877c09.qxd 11/11/01 4:17 PM Page 418

http://www.sybex.com

The procedures for implementing the control’s properties are quite simple; they’re detailed in
Listing 9.13.

Listing 9.13: The Alarm Control’s Properties

Public Property CountDown() As Boolean
Get

CountDown = m_CountDown
End Get
Set(ByVal vNewValue As Boolean)

m_CountDown = vNewValue
End Set

End Property
Public Property AlarmTime() As Date

Get
AlarmTime = m_AlarmTime

End Get
Set(ByVal vNewValue As Date)

If IsDate(vNewValue) Then m_AlarmTime = vNewValue
End Set

End Property

The AlarmTime property may include a date part. If you specify a date only, the program
assumes that the time is 00:00:00 (midnight). In the Properties window, VB will display a date value
for the AlarmTime property. Type the desired time after the date in the format “hh:mm:ss”. Notice
that because AlarmTime is of the Date type, a DateTimePicker control will be automatically dis-
played on the Properties window to help you set the property’s value visually.

Now we can add the code for the two methods. The StartTimer method (Listing 9.14) sets the
Timer control’s Enabled property to True, so that it will start firing Tick events.

Listing 9.14: The StartTimer Method

Public Sub StartTimer()
If Not Running Then

Timer1.Enabled = True
Running = True
startTime = Now

End If
End Sub

This method doesn’t do anything if the alarm is already running. The StopTimer method is
shown in Listing 9.15.

419BUILDING USER-DRAWN CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 419

http://www.sybex.com

Listing 9.15: The StopTimer Method

Public Sub StopTimer()
If Running Then

Timer1.Enabled = False
Running = False

End If
End Sub

As with the StartTimer method, the alarm stops only if it’s running. If that’s the case, the code
disables the Timer control and sets the Running variable to False.

Next declare the TimeOut event with the following statement, which must appear outside any
procedure.

Public Event TimeOut()

The TimeOut event doesn’t pass any information to the caller; it simply notifies the application
that the current instance of the Alarm control has timed off. To raise the event, you must insert the
appropriate code in the Timer’s Tick event handler. In the same event handler, which is invoked every
second, we must also update the display. If the control is counting down, we create a TimeSpan
object with the difference between the current time and the AlarmTime property. If the control is
counting up, we create another TimeSpan object with the difference between the time the control
was started and the current time (the time elapsed since the alarm was started). Listing 9.16 is the
code of the Timer control’s Tick event hander.

Listing 9.16: The Timer’s Tick Event Handler

Private Sub Timer1_Tick(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Timer1.Tick

Dim TimeDiff As TimeSpan
TimeDiff = m_AlarmTime.Subtract(Now)
If TimeDiff.Seconds < 0 Then

StopNow = True
Timer1.Enabled = False
Label1.Text = “*****”
RaiseEvent TimeOut
Exit Sub

End If
If Not m_CountDown Then
‘ the following statement calculates the difference
‘ between current time and alarm time and adds 1 second
TimeDiff = Now.TimeOfDay.Subtract(startTime.TimeOfDay). _

Add(New TimeSpan(0, 0, 1))
End If
Label1.Text = Format(TimeDiff.TotalHours, “00”) & “:” & _

Format(TimeDiff.Minutes, “00”) & “:” & _
Format(TimeDiff.Seconds, “00”)

End Sub

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS420

2877c09.qxd 11/11/01 4:17 PM Page 420

http://www.sybex.com

The code also compares the current date/time to the setting of the m_AlarmTime property, and if
the difference is negative, it means that the alarm must go off. If so, it raises the TimeOut event.

Designing Irregularly Shaped Controls
With VB.NET it’s quite easy to create irregularly shaped controls. It’s possible to create irregularly
shaped forms too, but, unlike irregularly shaped controls, an irregularly shaped form is still quite
uncommon. By the way, you can also create semitransparent forms with VB.NET—if you can come
up with a good reason to do so.

To change the default shape of a custom control, you must use the Region object. This is another
graphics-related object that specifies a closed area. You can even use Bezier curves to make highly
unusual and smooth shapes for your controls. In this section, we’ll do something less ambitious:
We’ll create controls with the shape of an ellipse, as shown in Figure 9.9.

You can turn any control to any shape you like by creating the appropriate Region object and
then applying it to the Region property of the control. This must take place from within the con-
trol’s Load event. Listing 9.17 shows the statements that change the shape of the control.

Listing 9.17: Creating a Non-Rectangular Control

Private Sub RoundButton_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Dim G As Graphics
G = Me.CreateGraphics
Dim roundPath As New GraphicsPath()
Dim R As New Rectangle(0, 0, Me.Width, Me.Height)
roundPath.AddEllipse(R)
Me.Region = New Region(roundPath)
Me.CreateGraphics.DrawEllipse(New Pen(Color.DarkGray, 3), R)

End Sub

Figure 9.9

Two instances of
an ellipse-shaped
control

421DESIGNING IRREGULARLY SHAPED CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 421

http://www.sybex.com

First, we retrieve the Graphics object of the UserControl object and store it in the G variable.
Then we create a GraphicsPath, the roundPath object, and add an ellipse to it. The ellipse is based on
the rectangle that encloses the ellipse. The R object is used temporarily to specify the ellipse. The
new path is then used to create a Region object, which is assigned to the Region property of the
UserControl object. This gives our control the shape of an ellipse. The last statement draws an
ellipse with the dark gray pen around the perimeter of the control. This step is optional, but it’s
equivalent to adding a border to the control.

To demonstrate the design of an irregularly shaped control, we’ll build the RoundButton control,
which was shown in Figure 9.9 earlier. You can find this control along with its test form in the
NonRectangular project on the CD. The most important section of the control’s code is the Load
event handler, which was shown in Listing 9.17.

Irregularly shaped controls are used in fancy interfaces, and they usually react to movement of the
mouse. The control of Figure 9.9 changes its background color and caption when the mouse is over
the control. Listing 9.18 shows the code behind the control’s MouseEnter and MouseLeave events.
When the mouse enters the control’s area (this is detected by the control automatically—you won’t
have to write a single line of code for it), the currentState variable is set to Active, the control’s back-
ground color to green, and its caption to “Play.” Similar actions take place in the control’s Mouse-
Leave event handler: the control’s background color changes to red and its caption to “Pause”. In
addition, each time the control switches state (from Pause to Play or vice versa), one of the Now-
Playing and NowPausing events is fired.

Listing 9.18: The RoundButton Control’s MouseEnter and MouseLeave Events

Private Sub RoundButton_MouseEnter(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MyBase.MouseEnter

If currentState = State.Active Then
Me.BackColor = Color.Green
currentCaption = “Play”
RaiseEvent NowPlaying()

End If
End Sub
Private Sub RoundButton_MouseLeave(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles MyBase.MouseLeave
If currentState = State.Active Then

Me.BackColor = Color.Red
currentCaption = “Pause”
RaiseEvent NowPausing()

End If
End Sub

These two events set up the appropriate variables, and the drawing of the control takes place in
the OnPaint method, which is shown in Listing 9.19.

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS422

2877c09.qxd 11/11/01 4:17 PM Page 422

http://www.sybex.com

Listing 9.19: The RoundButton Control’s OnPaint Method

Protected Overrides Sub OnPaint(ByVal pe As PaintEventArgs)
Dim roundPath As New GraphicsPath()
Dim R As New Rectangle(0, 0, Me.Width, Me.Height)
roundPath.AddEllipse(R)
Me.Region = New Region(roundPath)
pe.Graphics.DrawEllipse(New Pen(Color.DarkGray, 3), R)
Dim fnt As Font
If currentState = State.Active Then

If Me.BackColor.Equals(Color.Silver) Then Me.BackColor = Color.Green
fnt = New Font(“Verdana”, 24, FontStyle.Bold)

Else
fnt = New Font(“Verdana”, 14, FontStyle.Regular)

End If
Dim X As Integer = (Me.Width - pe.Graphics.MeasureString(_

currentCaption, fnt).Width) / 2
Dim Y As Integer = (Me.Height - pe.Graphics.MeasureString(_

currentCaption, fnt).Height) / 2
pe.Graphics.DrawString(currentCaption, fnt, Brushes.White, X, Y)

End Sub

The OnPaint method uses graphics methods to center the string on the control. They’re the same
methods we used in the example of the user-drawn control, earlier in this chapter. The drawing methods
are discussed in detail in Chapter 14.

The code makes use of the currentState variable, which can take on two values: Active and Inactive.
These two values are members of the State enumeration, which is shown next:

Public Enum State
Active
Inactive

End Enum

The control can be in two states. In the Active state, it behaves as described. In the Inactive state,
the control turns gray and doesn’t respond to the movement of the mouse. In addition, its caption
becomes “Resume” and the user can switch between states by clicking the control. The control’s
click event handler is shown next:

Private Sub RoundButton_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MyBase.Click

If currentState = State.Active Then
currentState = State.Inactive
Me.BackColor = Color.Silver
currentCaption = “Resume”

Else
currentState = State.Active
currentCaption = “Play”

423DESIGNING IRREGULARLY SHAPED CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 423

http://www.sybex.com

End If
Me.Invalidate()

End Sub

The code changes the control’s state and, when the control is switched to the Inactive state, it fills
it with a gray shade. To restore the control to its Active state, the user must click the control again.

The test form of the project shows how the RoundButton control behaves on a form. You can
use the techniques described in this section to make a series of round controls to emulate the look of
VCR controls. When the mouse hovers over the control, you can display the icon of the button
(Play, Pause, Resume, and so on). When the mouse moves outside the area of the control, you can
display the same icon with washed-out colors. Or you can place a nice colored dot on the control,
which will be green when the button is pressed and red when it’s released.

The control raises two events to notify the application that its state has changed. The two event
names must be declared outside any procedure with the following statements:

Public Event NowPlaying()
Public Event NowPausing()

The two events are raised from within the MouseEnter and MouseLeave event handlers with the
following statements:

RaiseEvent NowPlaying()
RaiseEvent NowPaused()

To test these events, switch to the test form and enter the following statements in the two event
handlers of the RoundButton control. They’re two simple statements that display the control’s cur-
rent status on the form’s title bar. They simply demonstrate how to capture the changes in the con-
trol’s status and use it in the host application to control other activities:

Private Sub RoundButton1_NowPlaying() Handles RoundButton1.NowPlaying
Me.Text = “Playing...”

End Sub
Private Sub RoundButton1_NowPausing() Handles RoundButton1.NowPausing

Me.Text = “Paused...”
End Sub

In Chapter 14, you’ll learn more about shapes and paths, and you may wish to experiment with
other oddly shaped controls. How about a progress indicator control that looks like a thermometer?

Building Owner-Drawn Controls
In this section, I’ll show a couple of examples that demonstrate how to customize existing controls.
You’re not going to build new custom controls in this section; actually, you’ll hook custom code
into certain events of a control to direct the rendering of the control. Some of the .NET Windows
controls can be customized far more than it is possible through their properties. These are the list-
like controls (menus, ListBox controls), and they allow you to supply your own code for drawing
each item. Using this technique, you can create a menu with a separate font for each menu item, a
ListBox control with alternating background colors, and so on. You can even put bitmaps on the

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS424

2877c09.qxd 11/11/01 4:17 PM Page 424

http://www.sybex.com

background of each item, draw the text in any colors, and create items of varying heights. This is a
very interesting technique, because without it, as you recall from our discussion of the ListBox con-
trol, all items have the same height and you must make each control wide enough to fit the longest
item (if this is known at design time).

To create an owner-drawn control, you must program two events: the MeasureItem and Draw-
Item events. As you may have noticed, you can only interfere with the drawing process of controls
that display items in rectangles (like the MenuItem and ListBox controls). The MeasureItem event is
where you decide about the dimensions of the rectangle where the drawing will take place.

These two events don’t take place unless you set the DrawMode property of the control. Since only
controls that expose the DrawMode property can be owner-drawn, you have a quick way of figuring
out whether a control’s appearance can be customized with the techniques discussed in this section.
This property can be set to Normal (the control is draws its own surface), OwnerDrawnFixed (you can
draw the control, but the height of the drawing area remains fixed), or OwnerDrawnVariable (you
can draw the control and use a different height for each item). The settings of the DrawMode shown
here apply to the ListBox control. The MenuItem control provides the OwnerDraw mode, whose
settings are True (you’re responsible for rendering the item’s rectangle) or False. Let’s start by building
an owner-drawn menu.

Designing Owner-Drawn Menus
When a menu item’s OwnerDraw property is set to True, the following events are fired every time
the item is about to be drawn: first the MeasureItem event, then the DrawItem event. In the first
event, you can find out the properties of the item and set up the size of the rectangle in which the
menu item will be rendered. In the second event, you must insert the code to draw the item.

The second argument of both events, the ubiquitous e argument, exposes the Graphics object,
which represents the area on which the item will be drawn. In the MeasureItem event’s handler, you
can’t draw anything. You can calculate the dimensions of the rectangle that delimits the drawing you
want to create and set the e argument’s ItemWidth and ItemHeight properties respectively.

In the DrawItem event’s handler, you can call any of the Graphic object’s drawing commands to
render anything on the item’s rectangle. You can draw text in any font, style, or size, draw simple
shapes, or even place a small bitmap in the item’s rectangle. To demonstrate the design of owner-
drawn menus, I’ve included the OwnerDrawnMenu project on the CD, which creates a simple menu
with font names. Each name is rendered in the corresponding font, so that you can see what the text
will look like when rendered in this font. The form of the OwnerDrawnMenu project is shown in
Figure 9.10.

Figure 9.10

A simple owner-
drawn menu

425BUILDING OWNER-DRAWN CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 425

http://www.sybex.com

First, you must design the menu as usual and set the OwnerDrawn property of each menu item to
True. Give meaningful names to all items, so that you can simplify your code.

Then insert the code of the Listing 9.20 in the MeasureItem and DrawItem event handlers of
each owner-drawn menu item.

Listing 9.20: Programming the MeasureItem and DrawItem Events

Private Sub FontVerdana_MeasureItem(ByVal sender As Object, _
ByVal e As System.Windows.Forms.MeasureItemEventArgs) _
Handles FontVerdana.MeasureItem

Dim fnt As New Font(“Verdana”, 12, FontStyle.Regular)
Dim itemSize As SizeF
itemSize = e.Graphics.MeasureString(“Verdana”, fnt)
e.ItemHeight = itemSize.Height
e.ItemWidth = itemSize.Width

End Sub
Private Sub FontVerdana_DrawItem(ByVal sender As Object, _

ByVal e As System.Windows.Forms.DrawItemEventArgs) _
Handles FontVerdana.DrawItem

Dim fnt As New Font(“Verdana”, 12, FontStyle.Regular)
Dim R As New RectangleF(e.Bounds.X, e.Bounds.Y, _

e.Bounds.Width, e.Bounds.Height)
Dim brush As SolidBrush
e.Graphics.FillRectangle(Brushes.PaleTurquoise, R)
e.Graphics.DrawString(“Verdana”, fnt, Brushes.White, R)

End Sub

I’m only showing the code for the first menu item; the others are identical. In the MeasureItem
event handler, the code calls the MeasureString method to find out the dimensions of the item’s cap-
tion when rendered in its font and then sets the dimensions of the item’s rectangle in the menu. The
code in the DrawItem event handler draws the caption in the item’s rectangle. It uses a white solid
brush and sets the item’s background color to red. The string is rendered in white color. The last
item (the handwriting font) is rendered in blue color on a yellow background.

The code is quite trivial really, and all the drawing methods will be discussed in detail in Chapter 14.
You can return to this project after reading about the drawing methods and create more elaborate
owner-drawn menus.

Designing Owner-Drawn ListBox Controls
In this section, we’ll look at a similar technique for designing owner-drawn ListBox controls. You
may have to create owner-drawn ListBoxes if you want to use different colors or fonts for differ-
ent items, or to populate the list with items of widely different lengths. The example you’ll build
in this section, shown in Figure 9.11, uses an alternating background color, and each item has a
different height, depending on the string it holds. Lengthy strings are broken into multiple lines at
word boundaries. Since you’re responsible for breaking the string into lines, you can use any other

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS426

2877c09.qxd 11/11/01 4:17 PM Page 426

http://www.sybex.com

technique—for example, you can place an ellipsis to indicate that the string is too long to fit on
the control, or use a smaller font, and so on.

The fancy ListBox of Figure 9.11 was created with the OwnerDrawnList project, which you
will find on the CD. Or you can follow the steps outlined in this section to build it from scratch.

To custom-draw the items on a ListBox control (or a ComboBox, for that matter), you use the
MeasureItem event to calculate the item’s dimensions and the DrawItem event to actually draw the
item. Each item is a rectangle that exposes a Graphics object, and you can call any of the Graphics
object’s drawing methods to draw on the item’s area. The drawing techniques we’ll use in this
example are similar to the ones we used in the previous section, but once you learn more about the
drawing methods in Chapter 14, you’ll be able to create even more elaborate designs than the ones
shown here.

The items to be added to the list are stored in an ArrayList, which is populated in the form’s
Load event handler. Each time you add a new item to the ListBox control, it’s first added to the
ArrayList, then to the control. The reason for doing this is because at the time the MeasureItem
event is fired, the item isn’t part of the list yet and there’s no simple method to access the new
item—short of using a global variable. It’s a minor inconvenience, and if you experiment with the
OwnerDrawnList project, you may be able to find a work-around.

Each time an item is about to be drawn, the MeasureString and DrawString events are fired, in
this order. In the MeasureString event handler, we set the dimensions of the item with the statements
shown in Listing 9.21.

Listing 9.21: Setting Up an Item’s Rectangle in an Owner-Drawn ListBox Control

Private Sub ListBox1_MeasureItem(ByVal sender As Object, _
ByVal e As System.Windows.Forms.MeasureItemEventArgs) _
Handles ListBox1.MeasureItem

Dim itmSize As SizeF
Dim S As New SizeF(ListBox1.Width, 200)
itmSize = e.Graphics.MeasureString(items(e.Index).ToString, fnt, S)
e.ItemHeight = itmSize.Height
e.ItemWidth = itmSize.Width

End Sub

Figure 9.11

An unusual, but
quite functional
ListBox control

427BUILDING OWNER-DRAWN CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 427

http://www.sybex.com

This time we’re using a different form of the MeasureString method. This form accepts as argu-
ments a string, the font in which the string will be rendered, and a SizeF object. The SizeF object
contains two members, the Width and Height members. These two members are used to pass to the
method information about the area in which we want to print the string. In our example, we’re going
to print the string in a rectangle that’s as wide as the ListBox control and as tall as needed to fit the
entire string. I’m using a height of 200 pixels (enough the fit the longest string users may throw at
the control). Upon return, the MeasureString method sets the members of the SizeF object to the
width and height actually required to print the string. What we get back is the height of a rectangle
in which the string will fit.

The two members of the SizeF object are then used to set the dimensions of the current item
(properties e.ItemWidth and e.ItemHeight). We’ve set the dimensions of the item, and we’re ready
to draw it. The custom rendering of the current item takes place in the ItemDraw event handler,
which is shown in Listing 9.22.

Listing 9.22: Drawing an Item in an Owner-Drawn ListBox Control

Private Sub ListBox1_DrawItem(ByVal sender As Object, _
ByVal e As System.Windows.Forms.DrawItemEventArgs) _
Handles ListBox1.DrawItem

If e.Index = -1 Then Exit Sub
Dim txtBrush As SolidBrush
Dim bgBrush As SolidBrush
Dim txtfnt As Font
If e.Index / 2 = CInt(e.Index / 2) Then
‘ color even numbered items

txtBrush = New SolidBrush(Color.Blue)
bgBrush = New SolidBrush(Color.LightYellow)

Else
‘ color odd numbered items

txtBrush = New SolidBrush(Color.Blue)
bgBrush = New SolidBrush(Color.Cyan)

End If
If e.State And DrawItemState.Selected Then
‘ use red color and bold for the selected item

txtBrush = New SolidBrush(Color.Red)
txtfnt = New Font(fnt.Name, fnt.Size, FontStyle.Bold)

Else
txtfnt = fnt

End If
e.Graphics.FillRectangle(bgBrush, e.Bounds)
e.Graphics.DrawRectangle(Pens.Black, e.Bounds)
Dim R As New RectangleF(e.Bounds.X, e.Bounds.Y, _

e.Bounds.Width, e.Bounds.Height)
e.Graphics.DrawString(items(e.Index).ToString, txtfnt, txtBrush, R)
e.DrawFocusRectangle()

End Sub

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS428

2877c09.qxd 11/11/01 4:17 PM Page 428

http://www.sybex.com

To test the enhanced ListBox control, place two buttons on the form, as shown in Figure 9.11.
The Add New Item button prompts the user for a new item (a string) and adds it to the items
ArrayList. Then it calls the Add method of the ListBox.Items collection to add the new item to the
ListBox control. The reason you must add the new item to the ArrayList collection is that you can’t
directly add items to the control. As you recall, the MeasureItem event adds one element of the
ArrayList to the control at a time. Since both the MeasureItem and DrawItem methods pick up the
item to be added from the ArrayList collection, you need not specify any argument to the List-
Box1.Items.Add method. Listing 9.23 provides the code that adds a new item to the list.

Listing 9.23: Adding an Item to the List at Runtime

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

Dim newItem As String
newItem = InputBox(“Enter item to add to the list”)
items.Add(newItem)
ListBox1.Items.Add(“”)

End Sub

The last feature in the test application is the reporting of the selected item when the user double-
clicks an item. I’ve included this code to demonstrate that, other than some custom drawing, the
owner-drawn ListBox control carries with it all the functionality of the original ListBox control. It
fires the same events, reports the same properties, and can be manipulated with the same methods.

When the user double-clicks the ListBox control, the code shown in Listing 9.24 is executed.
This code retrieves SelectedIndex and SelectedItem properties and reports them to the application.

Listing 9.24: Retrieving the Selected Item from the Owner-Drawn ListBox Control

Private Sub ListBox1_DoubleClick(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles ListBox1.DoubleClick

MsgBox(“Item at location “ & ListBox1.SelectedIndex & _
“ is “ & vbCrLf & ListBox1.SelectedItem)

End Sub

Using ActiveX Controls
Before ending this chapter, I would like to show you how to use ActiveX control with .NET. If
you’re new to VB, ActiveX controls were the old Windows controls used with previous versions of
VB. There are tons of ActiveX controls out there, and many of you are already using them in your
projects. You can continue using them with your .NET projects as well. At this point, there’s a

429USING ACTIVEX CONTROLS

2877c09.qxd 11/11/01 4:17 PM Page 429

http://www.sybex.com

relatively small number of .NET controls, so for a while we will have to use the same controls we
used in our VB6 projects.

One of my favorite ActiveX controls is the WebBrowser control. I happen to have this control
because I’ve installed VB6. If you’re a VB6 programmer, you will have access to this control. If
not, hopefully Microsoft will make these controls available with the release version of Visual Stu-
dio, or allow developers to download them. The WebBrowser control is nothing less than Inter-
net Explorer in a control. This control can render any HTML document and Web page you can
view with Internet Explorer, but it will do so in the context of a form. You can create forms that
allow users to navigate the Web (or at least connect to your company’s Web site) from within
your application. Figure 9.12 shows a Windows form with an instance of the WebBrowser con-
trol on it. The document displayed on the control is Visual Studio’s home page. You can navigate
to any URL by typing an address in the TextBox control at the top of the form and clicking the
Navigate button.

By default, .NET doesn’t know how to handle ActiveX controls. To use an ActiveX control in a
.NET application, you must create a “wrapper” around the ActiveX control. The wrapper is a layer
of code that allows .NET to communicate with the ActiveX control. .NET thinks it’s talking to a
.NET control, and the ActiveX control thinks its talking to a COM component. In effect, the wrap-
per is a translator that allows the two parties to communicate with one another, even though they
don’t understand each other’s language. This is called a runtime callable wrapper (RCW), and it’s created
for you by the CLR as soon as you add an ActiveX control to your Toolbox.

To add an ActiveX control, such as the WebBrowser control, to your Toolbox, open the Cus-
tomize Toolbox dialog box (right-click the Toolbox and select Customize). In the COM Compo-
nents tab, locate the ActiveX control you want to add, as shown in Figure 9.13.

Now design a form like the one shown in Figure 9.12 and enter the code from Listing 9.25 in the
button’s Click event handler:

Figure 9.12

Navigating the Web
with the Web-
Browser control

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS430

2877c09.qxd 11/11/01 4:17 PM Page 430

http://www.sybex.com

Listing 9.25: Navigating to a URL with the WebBrowser Control

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

AxWebBrowser1.Navigate2(TextBox1.Text)
End Sub

That’s all it takes! You can also use this control to display local files to the users, such as help
documents. Or allow them to connect to your site from within your application. I have found this
control extremely useful in a large number of projects.

In Chapter 14, you’ll see how to use another ActiveX control, the Script control. The Script con-
trol allows you to execute short programs written in VBScript (a subset of Visual Basic). As you will
see, it’s an extremely useful control that allows you to add scripting capabilities to your applications.

It is also possible to build your .NET controls so that they can be used in a COM environment,
like Visual Studio 6. The process isn’t complicated, but you must first understand how ActiveX
controls are registered in the system Registry. I won’t get into the details here, because this topic is of
interest mostly to programmers who write .NET controls and want to expand their market by mak-
ing their .NET controls compatible with earlier versions of Visual Studio. Please look up the docu-
mentation for specific information and step-by-step instructions on making your .NET control
usable in the COM world.

Summary
One of the primary reasons for the phenomenal success of Visual Basic was that it could host cus-
tom controls. If you’ve been programming with VB for several years, you’ll remember the VBX con-
trols. If you started using VB the last few years, you’ll remember the OCX controls. Now, it’s the
.NET controls. The controls keep getting better and so do the tools for creating custom controls.

Figure 9.13

Adding an ActiveX
control to the
Toolbox

431SUMMARY

2877c09.qxd 11/11/01 4:17 PM Page 431

http://www.sybex.com

The idea behind custom controls is that you can build a component with a visible and a program-
matic interface and make it part of any development environment in the Windows world. Building
custom controls isn’t just a task for the few companies that sell them. Even modest applications may
call for custom controls. When you build a control, you’re actually encapsulating a lot of functionality
in a black box, similar to a class. Unlike classes, however, controls have a visible interface too. Now
that you know how to build your own classes and controls, you’re ready to distribute your code not
only to end users, but developers as well. Even if you won’t make money by selling your components,
there will always be a need for custom components in any programming environment. If you think
that your code will be used repeatedly, either in multiple projects or by multiple programmers,
consider packaging it as a custom class or control. The difference between the two is that controls
expose the same functionality as classes but add a visible interface.

Chapter 9 BUILDING CUSTOM WINDOWS CONTROLS432

2877c09.qxd 11/11/01 4:17 PM Page 432

http://www.sybex.com

Chapter 10

Automating Microsoft Office
Applications
Another way to extend Visual Basic is to program the various objects exposed by the
Office applications, or any other application that exposes an object model. Word, Excel, and
Outlook expose rich object models that can be programmed, either from within the Office appli-
cations themselves, or in external applications, written in any .NET language. You can program
any Office application with VBA or use VB.NET to program against the object model of each
application. In this chapter, I’ll present the basic objects of the Office applications (Office 2000
and Office XP), because they are extremely popular and expose a whole lot of functionality.

I will limit the discussion to the three basic Office applications, Word, Excel, and Outlook,
but once you understand how to manipulate their objects it shouldn’t be hard to look into the
object models of PowerPoint, Project, and VISIO. Practically speaking, the most useful object
model for VB programmers is that of Outlook, which allows you to read incoming messages or
to create and send new ones from within applications written in VB.NET. Excel and Word also
expose quite a bit of functionality, and you will see how you can tap into this functionality from
within your VB applications.

An object model is a collection of classes that represents the objects, or entities, each application
can handle, the properties that determine the characteristics of these entities, and the methods
that act on them. The object model exposes all the functionality of its application, and you can
program the exposed objects with any language. Word, for example, manipulates documents,
which are made up of text, graphics, and tables (among other things). Word’s object model
exposes the Document object, which represents a Word document. The Document object has a
Range property, which represents a segment of the document (or all of it). The Range object, in
turn, provides three collections—Paragraphs, Words, and Characters—which contain the corre-
sponding entities of the document. All three collections provide the Font property, which lets you
format the corresponding item by setting the font attributes. You can also apply a style to a para-
graph or a word with the Style property.

As you will see, it is possible (and fairly straightforward) to start Word, create a new docu-
ment, print it, and then close the application without ever displaying Word’s window. You can
use this functionality to generate elaborate printouts from within your VB applications. You can

2877c10.qxd 11/11/01 4:17 PM Page 433

http://www.sybex.com

also access the spell-checking features of Word with a text document generated with VB.NET. Or
you can create spreadsheets from within a VB application, complete with formulas. Then you can
retrieve the results and use them in your VB application. All this can happen with Excel running in
the background, and the users never see it. You can literally borrow the functionality of the Office
applications and use it in your VB projects.

Of course, the object models of the Office applications aren’t part of Visual Studio. They will be
available to program against only if you have installed a version of Office on your system. The object
models of the various versions of Office are very similar, and you should be able to adjust the code
to accommodate syntactical changes. The samples of this chapter were developed with Office 2000
and they may require some minor changes to work with Office XP.

This chapter doesn’t attempt to present the object models of the corresponding applications in
their entirety. It’s only an introduction to the topic of automating the Office applications by pro-
gramming their objects. VBA programmers are already familiar with the object models discussed in
this chapter, and they’ll leverage their skills by bringing their knowledge of Office to Visual Basic.
VB programmers, on the other hand, will learn how to program the object model of an external
application and extend VB. They will also have to learn the object model of the application they’re
programming against, and the information in this chapter is more than adequate to get you started.

Programming Word
Word is a top-notch word processor, and you can tap into the power of Word through the object
model it exposes. You can create documents, format them, and store them as DOC files. You can
print these files, or e-mail them as attachments to a list of addresses. You can also reuse Word’s
spell-checking capabilities to correct documents at runtime. You will see later in this section how to
spell-check a text document with a few lines of code using the objects exposed by Word.

Microsoft Word provides numerous objects, which you can use to program any action that can
be carried out with menu commands. For example, you can open a document, count words and char-
acters, replace certain words in it, and save it back on disk without user intervention. You can actu-
ally do all this without displaying Word’s window on the Desktop.

The top-level Word object is the Application object, which represents the current instance of the
application. You can use the Application object to access some general properties of Word’s win-
dow, including its Visible property (to make the application visible or not). Normally, this property
should be False, but you can turn it on during debugging to see what each statement in your code
does to the current document.

To use the object model of Microsoft Word in your VB project, you must add a reference to the
Microsoft Word application to the project. Open the Project menu, select Add References and, on
the Add Reference dialog box, select the COM tab. Then locate the Microsoft Word 9.0 Object
Library item by double-clicking its name and click OK to close the dialog box. (This version num-
ber applies to Office 2000. By the time you’re reading this book, you may be using a newer version
of Office. Select the Word component with the highest version number in the list.)

To program against Word’s objects, you must first create a variable that represents the applica-
tion, with a statement like the following:

Dim WordApp As New Word.Application

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS434

2877c10.qxd 11/11/01 4:17 PM Page 434

http://www.sybex.com

The New keyword tells VB to create a new instance of Word. This will start Word, but no visi-
ble interface will be displayed on the monitor. The WordApp variable must be declared on the Form
level, so that all procedures can access it.

Under the Application object is the Documents collection, which contains a Document object for
each open document. Using an object variable of the Document type, you can open an existing doc-
ument or create a new document. The following statement opens an existing document with a spe-
cific name (assuming the specified document exists on the drive):

doc1 = WordApp.Documents.Open(“My Word Samples.doc”)

To create a new document, call the Add method of the Documents collection and then save the
new document with the SaveAs method:

Dim newDoc As New Word.Document
newDoc = WordApp.Documents.Add
newDoc.SaveAs(“My new Document”)

The first statement declares a new document, and the second one adds a new document to the cur-
rent instance of Word. After the execution of these statements, you can insert text, format it, and do
anything you can do with the active document through Word’s interface.

If you don’t specify a path name, the document is saved in the default Save folder of Word. The
SaveAs method accepts many more arguments, which are discussed in the section “Printing and Sav-
ing Documents,” later in this chapter.

If the document has been saved already, you can call the Save method, which requires no argu-
ments. Lastly, you must close the document and quit the application. The following statement closes
the active document:

Documents.Close(saveChanges, originalFormat, routeDocument)

All three arguments are optional. The saveChanges argument is a member of the WDSaveOptions
enumeration and can have one of the following values: wdDoNotSaveChanges, wdPromptToSaveChanges,
or wdSaveChanges. The originalFormat argument determines the format that will be used to save the
document; its value is a member of the WDOriginalFormat enumeration: wdOriginalDocumentFormat,
wdPromptUser, or wdWordDocument. The last argument is a True/False value indicating whether the
document should be routed to the next recipient. If the document doesn’t have a routing slip attached,
this argument is ignored.

If you have multiple open documents at once, you can select the active document with the Active-
Document property. This property returns a Document object, and you can call it as shown here:

doc1 = WordApp.ActiveDocument

If the variable doc1 represents an open document, you can make it the active document by calling
the Activate method:

doc1.Activate

You can also create a new document by adding it to the Documents collection:

Dim doc As New Word.Document
doc = WordApp.Documents.Add

435PROGRAMMING WORD

2877c10.qxd 11/11/01 4:17 PM Page 435

http://www.sybex.com

After you’re done processing the document, you can save it by calling the SaveAs method, with
the following statement:

Documents.SaveAs(fileName)

where fileName is a user-supplied filename (you can display the SaveFile common dialog to prompt
the user for the file’s name).

If the document has been modified since it was last saved, you must set the argument saveChanges
to wdDoNotSaveChanges or wdSaveChanges. If you omit to close a changed document, the application
won’t terminate and, when you shut down your computer, you’ll be prompted as to whether you
want to save the file.

Note If your application crashes, the next time you start Word you may see a bunch of recovered documents. These
documents are leftovers of (rather unsuccessful) testing and debugging attempts.

To terminate the application, call its Quit method, and then set the WordApp variable to Nothing.
If you omit these steps and simply terminate your VB project, the instance of Word running in the
background won’t shut down. Every time you instantiate a variable to represent Microsoft Word, a
new instance of the application will start and will remain alive in memory until you shut down the
computer. Make sure you program the Closing event of your application, so that you won’t leave any
instances of Word floating around. The Closing event handler should contain the following lines:

Private Sub Form1_Closing(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) _
Handles MyBase.Closing

WordApp.Documents.Close(Word.WdSaveOptions.wdDoNotSaveChanges)
WordApp.Quit()
WordApp = Nothing

End Sub

The Close method of the Documents collection closes all open documents without saving them.
Then the Quit statement terminates Word. This code segment assumes that the documents have been
saved already. If not, it will simply close them without prompting, which means you may lose the edits.

Note While you’re testing an application that uses any of the Office object models, you may have to end the application
before it has had a chance to terminate the Office application. To find out if there are any instances of Word running in the
background, invoke the Task Manager window by pressing Ctrl+Alt+Delete. On the Task Manager window, select the
Processes tab and look for instances of the Office application you’re programming against. The names of the three Office
applications are WINWORD, EXCEL, and OUTLOOK, and if they appear in the list of processes while your appli-
cation isn’t running, you must terminate them manually. If you see too many instances of an Office application in the
processes list, it means that your application doesn’t terminate the Office application properly.

Tip If you stop the VB project by clicking the Stop button (or by selecting Debug ➢ Stop Debugging), the Closing event
won’t be triggered. While testing a project that contacts an Office application, try to terminate it with the End statement, or
by clicking the Form’s Close button. If you must terminate the application prematurely because of an error, open the Task
Manager and shut down manually the running instances of the Office application.

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS436

2877c10.qxd 11/11/01 4:17 PM Page 436

http://www.sybex.com

Objects That Represent Text
The most important object that each document exposes is the Range object, which represents a con-
tiguous section of text. This section can be words, part of a word, characters, or even the entire doc-
ument. Using the Range object’s methods, you can insert new text, format existing text (or delete it),
and so on. You can also use the Selection object to access part of the document. Both the Range and
Selection objects will be discussed later in this chapter in detail.

To address specific units of text, use the following collections:

The Paragraphs collection, which is made up of Paragraph objects that represent text paragraphs

The Words collection, which is made up of Word objects that represent words

The Characters collection, which is made up of Character objects that represent individual
characters

The Documents Collection and the Document Object
The first object under the Word Application object hierarchy is the Document object, which is any
document that can be opened with Word or any document that can be displayed in Word’s window.
All open documents belong to a Documents collection that is made up of Document objects. Like
all other collections, it supports the Count property (the number of open documents); the Add
method, which adds a new document; and the Remove method, which closes an existing one. To
access an open document, you can use the Item method of the Documents collection, specifying the
document’s index as follows:

Application.Documents.Item(1)

Or you can specify the document’s name:

Application.Documents.Item(“Chapter01.doc”)

To open an existing document, use the Documents collection’s Open method, whose syntax is:

Documents.Open(fileName)

The fileName argument is the document file’s path name. To create a new document, use the Docu-
ments collection’s Add method, which accepts two optional arguments:

Documents.Add(template, newTemplate)

The argument template specifies the name of a template file to be used as the basis for the new
document. The newTemplate argument is a Boolean value. If it’s set to True, Word creates a new
template file.

Most of the operations you’ll perform apply to the active document (the document in the active
Word window), which is represented by the ActiveDocument object, a property of the Application
object. To access the selected text in the active document, use the following expression:

Application.ActiveDocument.Selection

You can also make any document active by calling the Activate method of the Document object.
To make the document MyNotes.doc active, use the following statement:

Documents(“MyNotes.doc”).Activate

437PROGRAMMING WORD

2877c10.qxd 11/11/01 4:17 PM Page 437

http://www.sybex.com

You can also pass the index of a document as argument to the Documents collection to specify one
of the open documents. After the execution of this statement, the MyNotes.doc document becomes
the active one, and your code can refer to it through the object Application.ActiveDocument.

To access the first word in the active document use the following expression, which returns a
Word object:

WordApp.ActiveDocument.Words(1)

The Word document exposes several properties, one of them being the Text property, which
returns a string (the first word in the document):

WordApp.ActiveDocument.Words(1).Text

You can go through all the words in the active document with a loop like the following:

Dim word As Word.Range
For Each word In WordApp.ActiveDocument.Words

Console.WriteLine(word.Text)
Next

Notice that there’s no object that represents a word; a word is simply a Range object—the
Words collection contains a Range object for each word in the document.

The following loop goes through the paragraphs of the active document, converts them to Range
objects, and then prints the paragraph’s text through the Range.Text property:

Dim para As Word.Paragraph
For Each para In WordApp.ActiveDocument.Paragraphs

Console.WriteLine(para.Range.Text
Next

Printing and Saving Documents

To print a document, call its Printout method, which has the following syntax:

Printout background, append, range, outputfilename, from, to, item, copies, _
pages, pageType, PrintToFile, Collate, filename, ActivePrinterMacGX, _
ManualDuplexPrint, PrintZoomColumn, PrintZoomRow, _
PrintZoomPaperWidth, PrintZoomPaperHeight

All the arguments are optional; they correspond to the properties you can set on Word’s Print
dialog box. The background argument is a True/False value that specifies whether the printout
will take place in the background, and this argument is usually set to True when we’re automating
applications.

When calling methods with a large number of arguments (most of which are omitted anyway),
you should use named arguments to specify only a few arguments. For example, to print the first
three pages of the active document, use the following syntax:

AppWord.ActiveDocument.Printout from:=1, to:=3

To save a document, use the SaveAs method of the Document object, which has the following syntax:

SaveAs FileName, FileFormat, LockComments, Password, AddToRecentFiles, _
WritePassword, ReadOnlyRecommended, EmbedTrueTypeFonts, _
SaveNativePictureFormat, SaveFormsData, SaveAsOCELetter

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS438

2877c10.qxd 11/11/01 4:17 PM Page 438

http://www.sybex.com

As with the Print method, the arguments of the SaveAs method correspond to the settings of the
application’s Save As dialog box. If the file has been saved already, use the Save method, which
accepts no arguments at all. It saves the document to its file on disk using the options you specified
in the SaveAs method when the document was saved for the first time. To save the active document
under a different filename, use the following statement:

AppWord.ActiveDocument.SaveAs “c:\Documents\Report2002.doc”

Notice that there’s no argument for overwriting an existing file. If you attempt to overwrite an
existing file, a dialog box will pop up prompting you for whether you want to overwrite the file or
cancel the operation. If you don’t want your user to see any of Word’s dialog boxes, you must make
sure the file doesn’t exist from within your code (or delete the file).

A related property of the Document object is the Saved property, which returns a True/False value
indicating whether a document has been changed since the last time it was saved. Use the Saved prop-
erty in your code to find out whether you must call the Save method before you quit the application.

The code segment in Listing 10.1 creates a new document, prints it, and then quits without sav-
ing it. The WordApp variable is declared outside the procedure, because it will most likely be used by
other procedures in the same application. Notice that you can call the Add method of the Docu-
ments collection without a filename. The new document is called Document1, but it’s not saved
on disk.

Listing 10.1: Creating and Printing a DOC File

Dim WordApp As New Word.Application()
Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click
Dim thisDoc As New Word.Document()
thisDoc = WordApp.Documents.Add
With thisDoc

.Range.InsertAfter(“Printing with Word”)

.Paragraphs.Item(1).Range.Font.Bold = True

.Paragraphs.Item(1).Range.Font.Size = 14

.Range.InsertParagraphAfter()

.Paragraphs.Item(2).Range.Font.Bold = False

.Paragraphs.Item(2).Range.Font.Size = 12

.Range.InsertAfter(“This is the first line of the test printout”)

.Range.InsertParagraphAfter()

.Range.InsertAfter(“and this is the second line of the test printout”)
Try

.PrintOut(True, True)
Catch exc As Exception

MsgBox(exc.Message)
End Try
.Close(Word.WdSaveOptions.wdDoNotSaveChanges)

End With
WordApp.Quit()

End Sub

439PROGRAMMING WORD

2877c10.qxd 11/11/01 4:17 PM Page 439

http://www.sybex.com

The sample code calls the PrintOut method of the Document object to print the current docu-
ment. The two parameters passed to the method correspond to the background and append arguments.
If something goes wrong during printing, the structured error handler will catch the exception and
report it on a message box. The body of the procedure generates a sample document (you will see in
the following section how the Range object can be used to create a new document).

Manipulating Text

As mentioned already, the two basic objects for accessing text in a Word document are the Range
and Selection objects. The Selection object represents a contiguous segment of text, similar to mak-
ing a selection with the mouse. The Range object is a also a collection of characters, words, or para-
graphs, similar to the Selection. The difference between the two objects is that there’s only one
Selection object in a document, but you can define many Range objects. You can manipulate indi-
vidual Range objects without affecting the current selection.

To extract some text from a document, you can use the Document object’s Range method, which
accepts as arguments the positions of the starting and ending characters in the text. The syntax of the
Range method is:

Document1.Range(start, end)

where Document1 is a variable of the Word.Document type and represents a Word document. The start
and end arguments are two numeric values. The first character’s position in the document is 0. The
following statement extracts the first 100 characters of the document represented by the Document
object variable:

Range1 = Document1.Range(0, 99)

These characters are assigned to the Range1 object variable. The Range1 variable must be declared as
Range type:

Dim Range1 As Word.Range

In the preceding expressions, the Document1 variable must first be set to refer to an existing object
with statements like

Dim Document1 As Word.Document = WordApp.Documents.Item(1)

You can also replace the variable Document1 with the built-in object ActiveDocument, which rep-
resents the active document. The selected text in the active document can be accessed by the follow-
ing expression:

WordApp.ActiveDocument.Selection

Words, sentences, and paragraphs are more meaningful units of text than characters. The Word,
Sentence, and Paragraph objects are better suited for text manipulation, and you commonly use these
objects to access documents. These objects, however, don’t support all the properties of the Range
object. All units of text can be converted to a Range object with the Range property. For example,
the following statement returns the third paragraph in the specified document as a Range object:

Document1.Paragraphs(3).Range

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS440

2877c10.qxd 11/11/01 4:17 PM Page 440

http://www.sybex.com

You can then apply the Range object’s properties and methods to manipulate the third paragraph.
The Paragraph object doesn’t have a Font property or a Select method. To change the appearance

of the third paragraph in the document, you must first convert the paragraph to a Range object with
a statement like this:

Set Range1 = Document1.Paragraphs(3).Range
Range1.Font.Bold = True

Document1 is a properly declared Document variable, and Range1 is a properly declared Range vari-
able. You can also combine both statements into one and avoid the creation of the Range1 object
variable as follows:

Document1.Paragraphs(3).Range.Font.Bold = True

The following statement selects (highlights) the same paragraph:

Document1.Paragraphs(3).Range.Select

(You won’t see the selection, of course, but if you make Word’s window visible at this point, you’ll
see that the Select method actually highlights a section of the document.) Once a paragraph (or any
other piece of text) is selected, you can apply all types of processing to it (e.g., edit it, move it, for-
mat it).

The two methods of the Range object that you’ll use most often are InsertAfter, which inserts a
string of text after the specified Range, and InsertBefore, which inserts a string of text ahead of the
specified Range. The following statements insert a title at the beginning of the document and a clos-
ing paragraph at the end:

AppWord.ActiveDocument.Select
AppWord.ActiveDocument.Range.InsertBefore “This is the document’s title”
AppWord.ActiveDocument.Range.InsertAfter “This is the closing paragraph”

The Select method of the ActiveDocument object selects the entire text. The selected text is then
converted to a Range object, so that the Range object’s methods can be applied to it.

To create a new paragraph, use InsertParagraphBefore and InsertParagraphAfter. Both methods
will insert a new paragraph, before or after the specified range.

The Current Selection

The Selection object represents the current selection in the active document. This property returns
the range of text selected by the user, but you can also select a range of text from within your appli-
cation. The Selection object is very similar to the Range object, and both objects expose the same
functionality. Although you can maintain many Range objects in your application, there’s only one
selection. When the current selection is changed, the previous selection is lost.

Note Selection is a property of the Application object and represents the selected text in the current document (the active
document). If no text is selected, the Selection object represents an empty range of text. Its location is the same as the loca-
tion of the insertion point.

441PROGRAMMING WORD

2877c10.qxd 11/11/01 4:17 PM Page 441

http://www.sybex.com

Accessing Paragraphs, Words, and Characters

While all collections in Word are 1-based, the Characters collection is 0-based. To access the first document
in the Documents collection, we use an index value of 1. To access the first sentence in the document, we also
use an index of 1, and the same is true for the first word. The first character, however, has an index of 0.

Let’s say you have added a document to the Documents collection, represented by the doc variable:

Dim doc As New Word.Document()
doc = W.Documents.Add

W represents a running instance of Word, and it’s declared on the Form level. Add two lines of text to the
document with the following statements:

doc.Range.InsertAfter(“The quick brown fox “)
doc.Range.InsertParagraphAfter()
doc.Range.InsertAfter(“jumped over the lazy dog”)

Let’s experiment with extracting paragraphs, words, and characters from the current document. To read
the first five characters of the document, enter the following statement:

Console.WriteLine(doc.Range(0, 5).Text)

This statement will print the string “The q” on the Output window (without the quotes, of course). To read
the first paragraph, we must request the first member of the Paragraphs collection and get its Range prop-
erty. Then we’ll apply the Text property to read the text:

Console.WriteLine(doc.Range.Paragraphs.Item(1).Range.Text)

This statement will print the string “The quick brown fox ” on the Output window. Finally, you can read the
second word with the following statement:

Console.WriteLine(doc.Range.Paragraphs.Item(1).Range.Words.Item(2).Text)

The second word is “quick,” which indicates that the Words collection is 1-based, like the Paragraphs
collection.

Note that the Paragraph object must be converted to a Range object before you can access its Words collection.

To specify a Selection, use the Start and End properties, which are the locations of the starting
and ending character of the selection in the document. If you set both properties to the same value,
you’re in effect positioning the insertion pointer to the specified location. The following statements
select three characters, starting with the eleventh character in the document, and print them on the
Output window:

WordApp.Selection.Start = 10
WordApp.Selection.End = 12
Console.WriteLine(WordApp.Selection.Text())

The Start and End properties are expressed in characters, and as such they’re 0-based. The
Selection.Type property returns information about the current selection, and its value can be one

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS442

2877c10.qxd 11/11/01 4:17 PM Page 442

http://www.sybex.com

of the members of the WDSelectionType enumeration: wdNoSelection, wdSelectionBlock, wdColumn,
wdFrame, wdInLineShape, wdIP, wdNormal, wdRow, and wdShape. IP stands for insertion point and
represents the location of the insertion pointer at the time—this value means that there is no text
currently selected.

The contents of the current selection are expressed in characters, words, sentences, and para-
graphs. There are four properties, named Characters, Words, Sentences, and Paragraphs, and they’re
all collections. Use their Count property to find out the number of the corresponding items in the
selection, or the Item property followed by an index value in parentheses to retrieve a specific mem-
ber from the collection. The following expressions return the number of words and characters in the
selected text:

WordApp.Selection.Words.Count
WordApp.Selection.Characters.Count

To access the third word in the current selection, use the following expression:

WordApp.Selection.Words.Item(3)

The various collections exposed by the Office applications are 1-based, except for the Characters
collection, which is 0-based.

You can use the Selection object to enter new text into a document, as well as for formatting the
text. While the Range object is a property of the Document object, the Selection object is a property
of the Word.Application object and applies to the active document. To replace the current selection
with new text, use the TypeText method, which accepts as argument the new text. If the selection
contains any text, the old text will be replace with the new text. The selection can also be empty, in
which case the new text will be inserted at the location of the insertion pointer.

The following statement inserts some text at the location of the insertion pointer, or replaces the
selected text:

WordApp.Selection.TypeText(“some text”)

A good reason for using the Selection object to insert text is that you can specify the format
before entering the text. To change the current character format, use the Font property of the Selec-
tion object, as shown in the following few statements:

With WordApp.Selection
.Font.Size = .Font.Size + 1
.Font.Bold = True
.TypeText(“this text stands out”)
.Font.Size = .Font.Size - 1
.Font.Bold = False
.TypeText(“back to the previous text font”)

End With

When you use the Selection object to insert text into a document, you can set the character for-
mat as you go along. If you want to apply styles, however, it’s easier to use the Range object. Styles
are usually applied to entire paragraphs, not isolated words or sentences. This is a good point at
which to demonstrate the concepts discussed so far with an example.

443PROGRAMMING WORD

2877c10.qxd 11/11/01 4:17 PM Page 443

http://www.sybex.com

VB.NET at Work: The WordDemo Project

With the objects and methods described so far, you have enough information to create a new docu-
ment, place some text into it, format it, and then save it to a disk file. The first step is to start an
instance of Word and connect to it. The WordDemo project (Figure 10.1) demonstrates how to:

� Create a new document.

� Insert some text and format it.

� Save the new document to a user-specified DOC file.

These actions take place from within the Visual Basic application while Word is running in the
background. The user doesn’t see Word’s window, not even as an icon on the taskbar. The new doc-
ument is saved in a file with a name you specify through the Save File dialog box. You can open this
file later with Word and edit it.

The buttons InsertAfter and TypeText create a new document and apply some formatting, using
the Range and Selection objects respectively. The code behind the TypeText button uses the Type-
Text method of the Selection object to create a new document. Let’s start with the code of the
TypeText button, detailed in Listing 10.2.

Listing 10.2: Composing a Document with the TypeText Method

Private Sub Button2_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Button2.Click

Dim doc As New Word.Document()
doc = WordApp.Documents.Add()
Dim str As String
str = “Text Formatting:”
With WordApp.Selection

Figure 10.1

The WordDemo
project’s main form

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS444

2877c10.qxd 11/11/01 4:17 PM Page 444

http://www.sybex.com

.Font.Size = WordApp.Selection.Font.Size + 2

.Font.Bold = True

.TypeText(str)

.Font.Size = WordApp.Selection.Font.Size - 2

.Font.Bold = False

.TypeParagraph()

.Font.Color = Word.WdColor.wdColorDarkRed

.Font.Italic = False

.TypeText(“This sentence will appear in red. “)

.TypeParagraph()

.Font.Color = Word.WdColor.wdColorBlack

.Font.Italic = True

.Font.Size = WordApp.Selection.Font.Size + 2

.TypeText(“Text color was reset to black, “ & _
“but the font size was increased by two points”)

End With
Dim fName As String
SaveFileDialog1.Filter = “Documents|*.doc”
SaveFileDialog1.ShowDialog()
fName = SaveFileDialog1.FileName
If fName <> “” Then

Try
doc.SaveAs(fName)

Catch exc As Exception
MsgBox(“Failed to save document” & vbCrLf & exc.Message)

End Try
End If
MsgBox(“The document contains “ & doc.Paragraphs.Count & “ paragraphs “ & _

vbCrLf & doc.Words.Count & “ words and “ & _
doc.Characters.Count & “ characters”)

doc.Close(Word.wdSaveOptions.wdDoNotSaveChanges)
End Sub

This event handler makes use of the WordApp variable, which must be declared in the Form level
with the following statement:

Dim WordApp As New Word.Application()

You must also add a reference to the Microsoft Word 9.0 Object library to your project.
The code changes the Font object to format the following text, and then it inserts the text with

the TypeText method. The text entered is formatted according to the Font in effect. Every time you
change the font attributes, they take effect for the following text. After entering the text, the code
saves the document to a file. The name of the file is specified by the user on the FileSave dialog box.

You can also compose the same document using the Range object. The code behind the InsertAfter
button uses the Range object to manipulate the text (insert new paragraphs and manipulate them). The
following statements create a new document with a header, followed by three paragraphs, using the
InsertAfter and InsertParagraphAfter methods. Listing 10.3 is the code behind the InsertAfter button.

445PROGRAMMING WORD

2877c10.qxd 11/11/01 4:17 PM Page 445

http://www.sybex.com

Listing 10.3: Composing a Document with the Range Method

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim doc As New Word.Document()
doc = WordApp.Documents.Add()
With doc.Range

.InsertAfter(“A New Architecture for Building Distributed Applications”)

.InsertParagraphAfter()

.InsertAfter(“ADO.NET is the latest data access technology from “ & _
“Microsoft, geared towards distributed applications. Unlike “ & _
“its predecessor, ADO.NET uses disconnected recordsets.”)

.InsertParagraphAfter()

.InsertAfter(“The disconnected recordsets are called Datasets, and “ & _
“they may contain multiple tables. If the tables are related, “ & _
“the Dataset knows how to handle the relations and provides “ & _
“methods that allow you to move from any row of a table to the “ & _
“related rows of the other tables.”)

.InsertParagraphAfter()

.InsertParagraphAfter()

.InsertAfter(“ADO.NET uses XML to move rows between the database “ & _
“and the middle tier, as well as between the middle tier “ & _
“and the client. XML passes through firewalls, and it’s an “ & _
“ideal candidate for moving binary information between “ & _
“layers and/or different operating systems.”)

End With
Dim selRange As Word.Range
selRange = doc.Paragraphs.Item(1).Range
selRange.Font.Size = 14
selRange.Font.Bold = True
selRange.ParagraphFormat.Alignment = _

Word.WdParagraphAlignment.wdAlignParagraphCenter
selRange = doc.Paragraphs.Item(2).Range.Sentences.Item(2)
selRange.Italic = True
selRange = doc.Paragraphs.Item(3).Range.Words.Item(6)
selRange.Font.Bold = True
selRange = doc.Paragraphs.Item(5).Range.Words.Item(5)
selRange.Font.Bold = True
Dim fName As String
SaveFileDialog1.Filter = “Documents|*.doc”
SaveFileDialog1.ShowDialog()
fName = SaveFileDialog1.FileName
If fName <> “” Then

Try
doc.SaveAs(fName)

Catch exc As Exception
MsgBox(“Failed to save document” & vbCrLf & exc.Message)

End Try
End If

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS446

2877c10.qxd 11/11/01 4:17 PM Page 446

http://www.sybex.com

MsgBox(“The document contains “ & doc.Paragraphs.Count & “ paragraphs “ & _
vbCrLf & doc.Words.Count & “ words and “ & _

doc.Characters.Count & “ characters”)
doc.Close(Word.WdSaveOptions.wdDoNotSaveChanges)
End Sub

Once the text has been added to the document, the code formats the header (the first paragraph
in the document) and selected words in the document. The individual words are accessed through
the Words collection of the corresponding paragraph. The following expression returns the second
paragraph of the document:

doc.Paragraphs.Item(2)

If you apply the Range method to this expression, you’ll get a Range object with the text of the
second paragraph:

doc.Paragraphs.Item(2).Range

Finally, you can access individual words in this paragraph with the following expression:

doc.Paragraphs.Item(2).Range.Words.Item(5)

The Edit Document button shows you how to manipulate the text in a Word document from
within your VB application. The initial document (SAMPLE.DOC) contains multiple spaces between
words that shouldn’t be there. To reduce multiple spaces to single space characters (a common task
in editing), you can use the Find and Replace dialog box. The WordDemo application does the
same by calling the Find.Execute method.

The Find method accepts a large number of arguments, and we usually specify only the argu-
ments we’re interested in by name. If you want to simply specify the word to search for, you can
specify only the FindText argument as follows:

thisDoc.Content.Find.Execute FindText:= “VB7”

where thisDoc is an object variable that represents a document.
The arguments of the Find.Execute method are the following (the order they’re listed here is the

same order in which they appear in the method):

Find.Execute(FindText, MatchCase, MatchWholeWord, MatchWildChars, _
MatchSoundsLike, MatchAllWordForms, MatchForward, Wrap, _
Format, ReplaceWith, Replace, MatchKashida, MatchDiacritics, _
MatchAlefHamza, MatchControl)

The names of the arguments are self-explanatory, except for the last few, which are True/False
values and determine how Word should search for the specified text in non-English languages.

Tip To find out the members of each Word enumeration, you can open the Object browser and expand Interop.Word ➢
Word (or the name of another application that’s referenced in your project). Move down to the entries beginning with WD.
These are Word’s enumerations. Select an enumeration by clicking its name, and you will see the members of the enumera-
tion in the right pane. The WDReplace enumeration, for instance, contains the following members: wdReplaceAll,
wdReplaceNone, and wdReplaceOne.

447PROGRAMMING WORD

2877c10.qxd 11/11/01 4:17 PM Page 447

http://www.sybex.com

If you want to replace one or more instances of a word (or sentence) in the text, set the ReplaceWith
argument to the replacement text and the Replace argument to one of the values wdReplaceAll or
wdReplaceOne, depending on whether you want to replace a single or all instances of the text. The
code segment in Listing 10.4 replaces all instances of “VB7” to “VB.NET” and removes the multi-
ple spaces from the document.

Listing 10.4: Massaging a Word Document

Private Sub Button3_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button3.Click

Dim thisDoc As Word.Document
Dim thisRange As Word.Range
WordApp.Documents.Open(“c:\sample.doc”)
WordApp.Visible = False
thisDoc = WordApp.ActiveDocument
thisDoc.Content.Find.Execute(FindText:=”VB7”, ReplaceWith:=”VB.NET”, _

Replace:=Word.WdReplace.wdReplaceAll)
While thisDoc.Content.Find.Execute(FindText:=” “, _

Wrap:=Word.WdFindWrap.wdFindContinue)
thisDoc.Content.Find.Execute(FindText:=” “, ReplaceWith:=” “, _

Replace:=Word.WdReplace.wdReplaceAll, _
Wrap:=Word.WdFindWrap.wdFindContinue)

End While
WordApp.Documents.Item(1).Save()
MsgBox(“Replaced all instances of ‘VB7’ with ‘VB.NET’ and saved the document”)
WordApp.Documents.Item(1).Close()

End Sub

For the WordDemo application, we must specify the string to search for and the replacement string.
The program searches for two consecutive spaces, and if found, replaces them with a single space.
Notice that the replacement of all instances of “VB7” with “VB.NET” is carried out by a single
call to the Find.Execute method. The wdReplaceAll option tells Word to replace all instances of
the string throughout the document. Replacing the multiple spaces, however, is not as simple, because
you may have more than two spaces in a row. The code sets up a While loop, which repeats while
the Find.Execute method reports that instances of two or more consecutive spaces exist. In the
loop’s body, we call the Find.Execute method, this time specifying a replacement string.

Note To test this application, create a short document with several instances of the string “VB7” and insert multiple
spaces between its words. Save the document as sample.doc in the root folder of the C: drive and then run the applica-
tion. You will find a simple file named sample.doc in the application’s folder on the CD.

Spell-Checking Documents
One of the most useful features of Word (and of every Office application) is its ability to spell-
check a document. This functionality is also exposed by Word’s objects, and you can borrow it for
use within your Visual Basic applications. This is not only possible, it’s actually quite simple. To call

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS448

2877c10.qxd 11/11/01 4:17 PM Page 448

http://www.sybex.com

upon Word’s spell-checking routines, you need to know about two objects: the ProofreadingErrors
and SpellingSuggestions collections.

The ProofreadingErrors collection is a property of the Range object and it contains the misspelled
words in the Range. To ask Word to spell-check a range of text and populate the ProofreadingErrors
collection, call the Range object’s SpellingErrors method. This method returns a result that must be
stored in an object variable of type ProofreadingErrors:

Dim SpellCollection As ProofreadingErrors
Set SpellCollection = DRange.SpellingErrors

DRange is Range object (a paragraph or an entire document). The second line populates the Spell-
Collection variable with the misspelled words. You can then set up a For Each…Next loop to read the
words from the collection.

Besides locating spelling errors, Word can also suggest a list of alternate spellings or words that
sound like the misspelled one. To retrieve the list of alternate words, you call the GetSpelling-
Suggestions method of the Application object, passing the misspelled word as an argument. Notice
that this is a method of the Application object, not of the Range object you’re spell-checking. The
results returned by the GetSpellingSuggestions method must be stored in another collection, this one
of the SpellingSuggestions type:

Dim CorrectionsCollection As SpellingSuggestions
Set CorrectionsCollection = AppWord.GetSpellingSuggestions(“antroid”)

The second line retrieves the suggested alternatives for the word antroid. To scan the list of sug-
gested words, you set up a loop that retrieves all the elements of the CorrectionsCollection collec-
tion. The example in the next section demonstrates the use of both methods from within a Visual
Basic application.

VB.NET at Work: The WordSpellChecker Project

WordSpellChecker is an application that uses Word’s methods to spell-check a text file. You’ll find
the WordSpellChecker application in this chapter’s folder on the CD; its main form, shown in Fig-
ure 10.2, consists of a multiline TextBox control on which the user can enter some text and spell-
check it by clicking the SpellCheck Document button.

Figure 10.2

The WordSpell-
Checker applica-
tion’s main form

449PROGRAMMING WORD

2877c10.qxd 11/11/01 4:17 PM Page 449

http://www.sybex.com

The application will contact Word and request the list of misspelled words. The list of mis-
spelled words is displayed on a ListBox control on the same Form, as shown in Figure 10.2. The
ListBox control on the left shows all the misspelled words returned by Word. Word can not only
locate misspelled words but suggest alternatives as well. To view the alternate spellings for a specific
word, select the word in the left list by double-clicking it.

To replace all instances of the selected misspelled word with the selected alternative, click the
Replace button. You can design your own interface to allow the user to select which and how many
instances of the misspelled word in the original document will be replaced.

The program uses three public variables, which are declared as follows:

Public WordApp As Application
Public CorrectionsCollection As SpellingSuggestions
Public SpellCollection As ProofreadingErrors

The SpellCollection variable is a collection that contains all the misspelled words, and the
CorrectionsCollection variable is another collection that contains the suggested spellings for a specific
word. The CorrectionsCollection variable’s contents are changed every time the user selects another mis-
spelled word in Word’s Spelling Suggestions window.

When the SpellCheck Document button is clicked, the program creates a new document and
copies the TextBox control’s contents to the new document using the InsertAfter method of the
Range object, as follows:

WordApp.Documents.Add
Dim Drange As Word.Range
Drange = WordApp.ActiveDocument.Range
DRange.InsertAfter(Text1.Text)

Now comes the interesting part. The Visual Basic code calls the Range object’s SpellingErrors
method, which returns a collection of ProofreadingErrors objects. The result of the SpellingErrors
method is assigned to the object variable SpellCollection:

Dim SpellCollection As Word.ProofreadingErrors
Set SpellCollection = DRange.SpellingErrors

The lines in Listing 10.5—the SpellCheck Document button’s Click event handler—spell-check
the document and add the words contained in the SpellCollection collection (the misspelled words) to
the ListBox1 control.

Listing 10.5: The Check Document Button

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim DRange As Word.Range
Me.Text = “Starting Word ...”
WordApp.Documents.Add()
Me.Text = “Checking words...”
DRange = WordApp.ActiveDocument.Range
DRange.InsertAfter(TextBox1.Text)

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS450

2877c10.qxd 11/11/01 4:17 PM Page 450

http://www.sybex.com

Dim SpellCollection As Word.ProofreadingErrors
SpellCollection = DRange.SpellingErrors
If SpellCollection.Count > 0 Then

ListBox1.Items.Clear()
ListBox2.Items.Clear()
Dim iword As Integer
Dim newWord As String
For iword = 1 To SpellCollection.Count

newWord = SpellCollection.Item(iword).Text
If ListBox1.FindStringExact(newWord) < 0 Then

ListBox1.Items.Add(newWord)
End If

Next
End If
Me.Text = “Word spelling Demo”

End Sub

The document is checked in a single statement, which calls the SpellingErrors method of a Range
object that contains the entire text. Then the program goes through every word in the SpellCollection
collection and adds them to the ListBox1 control. Notice that the ListBox control with the mis-
spelled words doesn’t contain duplicate entries. The code uses the control’s FindStringExact method
to find out whether a word belongs to the list or not.

Every time an entry in this ListBox is clicked, the code calls the WordApp object’s GetSpelling-
Suggestions method, passing the selected word as an argument. The GetSpellingSuggestions method
returns another collection with the suggested words, which are placed in the second ListBox control
on the Form with the statements shown in Listing 10.6. If this collection is empty (Word can’t sug-
gest any alternatives), the string “No suggestions!” is displayed on the control.

Listing 10.6: Retrieving Correction Suggestions

Private Sub ListBox1_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ListBox1.SelectedIndexChanged

Dim CorrectionsCollection As Word.SpellingSuggestions
CorrectionsCollection = WordApp.GetSpellingSuggestions(ListBox1.Text)
ListBox2.Items.Clear()
If CorrectionsCollection.Count > 0 Then

Dim iWord As Integer
For iWord = 1 To CorrectionsCollection.Count

ListBox2.Items.Add(CorrectionsCollection.Item(iWord).Name)
Next

Else
ListBox2.Items.Add(“No suggestions!”)

End If
End Sub

451PROGRAMMING WORD

2877c10.qxd 11/11/01 4:17 PM Page 451

http://www.sybex.com

You can also replace misspelled words in the document with one of the suggested alternatives by
clicking the Replace Word button. When you do, the application calls the Replace function to
replace all instances of the selected word with the selected alternative. After that, it removes the mis-
spelled word from the list. The code behind the Replace Word button is shown in Listing 10.7.

Listing 10.7: Replacing Misspelled Words

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

If ListBox1.SelectedIndex >= 0 And ListBox2.SelectedIndex >= 0 Then
TextBox1.Text = Replace(TextBox1.Text, _

ListBox1.SelectedItem, ListBox2.SelectedItem)
ListBox1.Items.Remove(ListBox1.SelectedIndex)
ListBox2.Items.Clear()

End If
End Sub

The WordSpellChecker application can become the starting point for many custom Visual Basic
applications that require spell-checking but don’t need powerful editing features. In some cases, you
might want to customize spelling, although it’s not a very common situation. In a mail-aware appli-
cation, for example, you can spell-check the text and exclude URLs and e-mail addresses. You
would first scan the words returned by the SpellingErrors method to check which ones contained
special characters and omit them.

As you can see, tapping into the power of the Office applications isn’t really complicated. Once
you familiarize yourself with the objects of these applications, you can access the Office applications
by manipulating a few properties and calling the methods of these objects.

If you have a list of words to spell-check, you can call the CheckSpelling method of the
Word.Application object to check the spelling of each word. The loop shown in Listing 10.8 goes
through each word in a list and checks its spelling. If the word is misspelled, it’s added to a second
ListBox control. This application uses the Word.Application object and doesn’t create a document
with the text to be spell-checked.

Listing 10.8: Spell-Checking a List of Words

Dim WordApp As New Word.application()
Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click
Dim SpellCollection As Word.ProofreadingErrors
Dim wrd As Integer
ListBox2.Items.Clear()
Dim words As Integer = ListBox1.Items.Count
For wrd = 0 To words - 1

Me.Text = “Spelling ... “ & CInt(wrd / words * 100) & “ % done”
If Not WordApp.CheckSpelling(ListBox1.Items(wrd)) Then

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS452

2877c10.qxd 11/11/01 4:17 PM Page 452

http://www.sybex.com

ListBox2.Items.Add(ListBox1.Items(wrd))
End If
Application.DoEvents()

Next
End Sub

Programming Excel
Excel is probably the most popular application among users and developers. Actually, there are
countless programmers who earn their living by doing everything with Excel—they even write lim-
ited database applications using Excel as a data store. I’m not suggesting you start using Excel as a
universal tool, but it’s very likely that, at some point, you’ll be called to import data from an Excel
spreadsheet into your applications. In most situations, the tabular format of Excel isn’t what you
really need, and you’ll have to write code to import the data into your applications.

Another good reason for using Excel’s object model is to format and print tabular data. An appli-
cation that generates reports on a regular basis (every day, for example) can create XLS files that can
be used for neat printouts, as well as for archiving purposes.

To use Excel’s object model in your code, you must add a reference to the Microsoft Excel 9.0 Object
Library item to your project. Open the Project menu, select Add Reference, and double-click the name
of the Excel library. Then click OK to add an instance of Excel’s object model to your application. To
contact Excel from within your VB application, declare a variable of the Excel.Application type. The
following declaration must appear outside the procedures that use it:

Dim EXL As New Excel.Application

EXL represents a new instance of Excel, which runs in the background.
To access Excel’s functionality, you can use a hierarchy of objects, which are described next. The

objects that Excel exposes have different names from those of Word, but they form an equally sensi-
ble and structured hierarchy for accessing data stored in a tabular arrangement. Just as Word’s basic
unit of information is the text segment (not characters or words), Excel’s basic unit of information is
also called Range. A Range object can contain a single cell or an entire worksheet (and everything in
between).

Two important methods of Excel’s Application object are the Calculate method, which recalcu-
lates all open worksheets, and the Evaluate method, which evaluates math expressions and returns
the result. The following statement returns a numeric value that is the result of the math expression
passed to the Evaluate method as argument:

Dim result As Double
result = EXL.Evaluate(“cos(3/1.091)*log(3.499)”)

You can also use variables in your expressions as long as you store their values in specific cells
and use the addresses of these cells in the expression. You will see shortly how to assign formulas
to specific cells. Doing so allows you to calculate complicated expressions that involve other cells
as well.

453PROGRAMMING EXCEL

2877c10.qxd 11/11/01 4:17 PM Page 453

http://www.sybex.com

The Worksheets Collection and the Worksheet Object
Each workbook in Excel contains one or more worksheets. The Worksheets collection, which is
similar to Word’s Documents collection, contains a Worksheet object for each worksheet in the cur-
rent workbook. To add a new worksheet, use the Add method, whose syntax is as follows:

Application.Worksheets.Add(before, after, count, type)

The before and after arguments let you specify the order of the new worksheet in the workbook. You
can specify one of the two arguments; if you omit both, the new worksheet is inserted before the
active worksheet (and also becomes active). The type argument specifies the new worksheet’s type and
can have one of the values in Table 10.1.

Table 10.1: The XLSheetType Enumeration

Value Description

xlWorksheet The default value

xlExcel4MacroSheet A worksheet with Excel 4 macros

xlExcel4IntlMacroSheet A worksheet with Excel 4 international macros

xlChart A worksheet with Excel charts

xlDialogSheet A worksheet with Excel dialogs

To create a new worksheet, declare a variable of the Worksheet type and then add it to the
Worksheets collection. Sheets belongs to Workbooks, so you must use a statement like the follow-
ing one to create a new Workbook and then add a Worksheet to it:

Dim WSheet As New Excel.Worksheet()
WSheet = EXL.Workbooks.Add.Worksheets.Add

You can also open an existing workbook with the Open method of the Workbooks collection:

EXL.Workbooks.Open(“c:\Sample.xls”)

Then you can access the worksheets from within your code and populate them. By default, each
new workbooks contains three worksheets, named “Sheet1,” “Sheet2,” and “Sheet3.” To place a
value in the first cell of the second worksheet, use the following statement:

WSheet = EXL.Workbooks.Item(1).Worksheets(“Sheet2”)
WSheet.Cells(1, 1) = “TOP LEFT CELL”

You can also add worksheets to the current Workbook with the Add method of the Worksheets
collection. The following statements add a new worksheet and place a value to the top-left cell:

WSheet = EXL.ActiveWorkbook.Worksheets.Add()
WSheet.Cells(1, 1) = “First Cell”

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS454

2877c10.qxd 11/11/01 4:17 PM Page 454

http://www.sybex.com

To access an individual worksheet, use the Worksheet collection’s Item method, passing the
index or the worksheet’s name as an argument. If the second worksheet is named SalesData.xls, the
two following expressions are equivalent:

Application.Worksheets.Item(2)
Application.Worksheets.Item(“SalesData”)

The Range Object
Excel is an application for manipulating units of information stored in cells, but the basic object for
accessing the contents of a worksheet is the Range object, which is a property of the Worksheet
object. There are several ways to identify a Range, but here’s the basic syntax of the Range method:

Worksheet.Range(cell1:cell2)

Here, cell1 and cell2 are the addresses of the two cells that delimit a rectangular area on the work-
sheet—the top-left and bottom-right corners of the selection. In this section, we are going to use the
standard Excel notation, which is a number for the row and a letter for the column—for example,
C3 or A103. To select the 10×10 top-left section of the active Worksheet, use the expression:

Worksheet.Range(“A1:J10”)

To retrieve a single cell as a Range object, use the Cells method, whose syntax is:

Worksheet.Cells(row, col)

The Range property is an object, and among the properties it exposes is the Range property. The
Range.Range property is a relative reference to another cell. In the following code segment, the first
line returns the cell D8. The second line returns a cell that is three columns to the right and five
rows down from the previous cell—that is, G13:

range1 = Worksheet.Range(4, 8)
range2 = range1.Range(3, 5)

The second line can also be written as:

range2 = range1.Range(“C5”)

Finally, the Rows and Columns methods return an entire row or column by number. The follow-
ing expressions return the third row and the fourth column as Row and Column objects, respectively:

Worksheet.Rows(3)
Worksheet.Columns(“D”)

The Row object contains a single row, and you can access this row’s cells with the Cells property,
which accepts as argument a single coordinate—the cell’s order in the row. The same is true for
columns. The following statement retrieves the third cell in the second row:

Console.WriteLine(WSheet.Rows(2).Cells(3).Text)

The Range object is not a collection, but you can access individual cells in a Range object
through its Cells method. The Cells method accepts as arguments the row and column coordinates

455PROGRAMMING EXCEL

2877c10.qxd 11/11/01 4:17 PM Page 455

http://www.sybex.com

of a cell and returns its value. The indices are 1-based. The Cells(i, j).Text property returns the
cell’s contents as a string, and the Cells(i, j).Value property returns the cell’s contents as a string
(if it’s text) or as a numeric value (if it’s numeric).

Another way to work with cells is to make a selection and access the properties and methods of
the Selection object. To create a Selection object (which represents the cells that are highlighted
with the mouse when Excel’s window is visible), use the Range object’s Select method:

Range(“A2:D2”).Select

This statement creates a new Selection object. You can also assign names to the ranges and access
them later in your code by their names. The following statement selects the same range as the pre-
ceding one and names it:

myRange = Range(“A2:D2”).Select

Because a worksheet has only one selection, you don’t have to specify any arguments. To change
the appearance of the selection, for instance, use the Font property:

Selection.Font.Bold = True
Selection.Font.Size = 13

Notice that the selection is always rectangular; you can’t select nonadjoining cells on a worksheet.
However, you can specify an area consisting of multiple ranges. The following statements combine
two different ranges with the Union method and assign them to a new Range object:

Set Titles = Worksheet.Range (“A1:A10”)
Set Totals = Worksheet.Range (“A100:A110”)
Set CommonRange = Union(Titles, Totals)
CommonRange.Font.Bold = True

The Union method returns a Range object, which you can use to manipulate all the cells in the
Titles and Totals ranges together. For example, you can apply common formatting to all the cells in the
CommonRange object, as shown above.

The Members of the Range Object

The Range object provides a large number of properties and methods, which can’t be discussed in
the context of this chapter. One basic property is the Cells property, which is a collection of the cells
that make up the current range. The first cell in the Range is Range.Cells(1, 1), and the last is

Range.Cells(Range.Cells.Rows, Range.Cells.Columns)

All of Excel’s collections are 1-based, rather than 0-based.
You can also access an entire row or column in the selection with the EntireRow and EntireColumn

properties. These properties are also objects, and they expose a Cells property, similar to the Row and
Column objects. To access an individual cell in either collection, use a single index. The Horizontal-
Alignment and VerticalAlignment properties let you specify how the cells’ contents will be aligned
in available space. Look up the corresponding enumerations in the Object Browser to find out the
possible settings for these properties.

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS456

2877c10.qxd 11/11/01 4:17 PM Page 456

http://www.sybex.com

The Clear method resets all the cells of the Range object, and the Copy method creates a copy
of the Range object. If you want to fill a Range with identical values, use the methods FillDown,
FillLeft, FillRight, and FillUp.

You can also sort the cells in a Range object by calling its Sort method, which rearranges the rows
in the Range object according to the sorting criteria. Its syntax is:

Sort(key1, order1, key2, type, order2, key3, order3, header, orderCustom, _
matchCase, orientation, sortMethod)

The arguments of the Sort method allow you to specify the same settings you would normally
specify through Excel’s Sort dialog box, shown in Figure 10.3. To bring up this dialog box in Excel,
select a range of cells, and choose the Data ➢ Sort command.

key1, key2, and key3 are the columns according to which the range will be sorted. If you
specify more than one column, the range will be sorted according to the key1 column. Rows with
identical values in this column will then be sorted according to the key2 column. The order1, order2,
and order3 arguments determine the sort order of the three key columns. Their values are members of
the XLSortOrder enumeration and can be set to xlAscending (the default) or xlDescending.

The type argument specifies which cells will be sorted and is used only when sorting PivotTables.
Its value can be one of the following members of the XLSortType enumeration: xlSortLabels or
xlSortValues. The header determines whether the first row should be treated as a header row or not;
header rows are not sorted. This argument is one of the following members of the XLYesNoGuess
enumeration: xlGuess, xlNo, or xlYes. The orientation argument, finally, lets you determine whether
you want to sort rows (xlSortRows, which is the default value) or columns (xlSortColumns).

To sort the first 20 columns and 2 rows of the first worksheet, use the following statements:

Worksheets.(“Sheet1”).Range(“A1:C20”).Sort _
Key1:=Worksheets(“Sheet1”).Range(“A1”), _
Key2:=Worksheets(“Sheet1”).Range(“B1”)

In the section “The ExcelDemo Project,” later in this chapter, you’ll find a demonstration of the
Sort method.

Figure 10.3

The Sort method’s
arguments specify
the same settings as
this dialog box.

457PROGRAMMING EXCEL

2877c10.qxd 11/11/01 4:17 PM Page 457

http://www.sybex.com

The UsedRange Object

Another useful member of the Excel object model is the UsedRange object, which represents a rec-
tangular section of the active worksheet containing all the non-empty cells. The UsedRange object is
a Range object and exposes all the members of the Range object. The Rows and Columns properties
are collections that contain the UsedRange object’s rows and columns, respectively. The number of
columns and rows are given by the properties UsedRange.Columns.Count and UsedRange.Rows.Count,
and the total number of used cells is given by UsedRange.Cells.Count. To access these cells, use the
expression UsedRange.Cells(row, col); you can’t use the A1 notation with the Cells collection.

To iterate through all the non-empty cells on the current worksheet, use the following loop. This
loop scans the cells of myRange row by row and prints the indices and value of each cell in the Output
window:

Dim myRange As Excel.Range = Wsheet.UsedRange
Dim row, col As Integer
For row = 1 To myRange.Rows.count

For col = 1 To myRange.Columns.count
Console.WriteLine(“[“ & row & “, “ & col & “ : “ & _

myRange.cells(row, col).value & “]”)
Next

Next

Of course, not all the cells in the UsedRange are non-empty; some of them may be empty. All
cells outside the UsedRange, however, are empty.

In the following section, we are going to create a new spreadsheet from within a Visual Basic
application, insert data and formulas, and then print the document.

VB.NET at Work: The ExcelDemo Project

The ExcelDemo application’s Create Spreadsheet button demonstrates how to access a worksheet,
populate it with data, and then format the data (see Figure 10.4). The program starts by setting the
AppExcel object variable, which references the Excel application.

The new spreadsheet is populated and formatted with the statements shown in Listing 10.9. The
code uses the Cells collection to access individual cells and assign their values. To format a group of
cells, it creates a Range object that contains all the cells to be formatted alike, selects the range, and
then manipulates the cells through the Selection object. Finally, it uses the UsedRange object to
print the values of all non-empty cells in the Output window.

Figure 10.4

Contacting Excel’s
object model
from within a VB
application

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS458

2877c10.qxd 11/11/01 4:17 PM Page 458

http://www.sybex.com

Listing 10.9: Preparing a New Spreadsheet

Dim EXL As New Excel.Application()
Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click
If EXL Is Nothing Then

MsgBox(“Couldn’t start Excel”)
Exit Sub

End If
Dim WSheet As New excel.Worksheet()
WSheet = EXL.Workbooks.Add.Worksheets.Add
With WSheet

.Cells(2, 1).Value = “1st Quarter”

.Cells(2, 2).Value = “2nd Quarter”

.Cells(2, 3).Value = “3rd Quarter”

.Cells(2, 4).Value = “4th Quarter”

.Cells(2, 5).Value = “Year Total”

.Cells(3, 1).Value = 123.45

.Cells(3, 2).Value = 435.56

.Cells(3, 3).Value = 376.25

.Cells(3, 4).Value = 425.75

.Range(“A2:E2”).Select()
With EXL.Selection.Font

.Name = “Verdana”

.FontStyle = “Bold”

.Size = 12
End With

End With
WSheet.Range(“A2:E2”).Select()
EXL.Selection.Columns.AutoFit()
WSheet.Range(“A2:E2”).Select()
With EXL.Selection

.HorizontalAlignment = Excel.XlHAlign.xlHAlignCenter
End With

‘ Format numbers
WSheet.Range(“A3:E3”).Select()
With EXL.Selection.Font

.Name = “Verdana”

.FontStyle = “Regular”

.Size = 11
End With
WSheet.Cells(3, 5).Value = “=Sum(A3:D3)”
Dim R As Excel.Range
R = WSheet.UsedRange
Dim row, col As Integer
For col = 1 To R.Columns.count

For row = 1 To R.Rows.count

459PROGRAMMING EXCEL

2877c10.qxd 11/11/01 4:17 PM Page 459

http://www.sybex.com

TextBox1.AppendText (R.cells(row, col).value & vbTab)
Next
TextBox1.AppendText(vbCrLf)

Next
End Sub

While the worksheet is being populated and formatted, Excel is running in the background.
Users can’t see Excel, although they will notice activity (the disk is spinning, and the pointer assumes
an hourglass shape for several seconds).

After the grid is populated, we can read the values from the spreadsheet and displays them in two
columns on the TextBox control of the ExcelDemo form. To read the data, you can use different
technique. The code in Listing 10.10 creates a selection on the spreadsheet and then brings it into
the Visual Basic application in a single move. The selected cells are read into the CData object
with the following statements:

AppExcel.Range(“A2:E3”).Select
Set CData = AppExcel.Selection

CData is a Range object that holds the selected cells. Then you can use straight VB code to iterate
through the elements of the CData object and create the two columns of text, shown in Figure 10.5.

Listing 10.10: Importing Data from Excel

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

TextBox1.Clear()
Dim WSheet As New Excel.Worksheet()
WSheet = EXL.Workbooks.Open(“C:\TEST.XLS”).Worksheets.Item(1)
EXL.Range(“A2:E3”).Select()
Dim CData As Excel.Range
CData = EXL.Selection
Dim iCol, iRow As Integer
For iCol = 1 To 5

For iRow = 0 To 1
TextBox1.AppendText(CData(iRow, iCol).value & vbTab

Next
TextBox1.AppendText(vbCrLf)

Next
EXL.Workbooks.Close()

End Sub

The ExcelDemo project also demonstrates how to use the Sort method (Listing 10.11), even
though the range is too small. We’ll treat the 10 cells on the worksheet as a range and sort them
according to the values in the first column.

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS460

2877c10.qxd 11/11/01 4:17 PM Page 460

http://www.sybex.com

Listing 10.11: The Sort and Import Data Button

Private Sub Button3_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button3.Click

Dim WSheet As New Excel.Worksheet()
WSheet = EXL.Workbooks.Open(“C:\TEST.XLS”).Worksheets.Item(1)
EXL.Range(“A2:E3”).Select()
Dim CData As Excel.Range
CData = EXL.Selection
CData.Sort(Key1:=CData.Range(“A2”), order1:=Excel.XLSortOrder.xlAscending)
TextBox1.Clear()
Dim iCol, iRow As Integer
For iCol = 1 To 5

For iRow = 0 To 1
TextBox1.AppendText(CData(iRow, iCol).value & vbTab)

Next
TextBox1.AppendText(vbCrLf)

Next
EXL.Workbooks.Close()

End Sub

If you change the order1 argument’s value to Excel.XLSortOrder.xlDescending, the rows won’t be
rearranged, because they happen to already be in descending order. You can add more rows to the work-
sheet and sort a larger range. You should also set the header argument to Excel.XLYesNoGuess.xlYes, so
that the first row will be treated as header and won’t be sorted along with the other rows.

To sort the same range by column, specify the orientation argument to the Sort method. To experi-
ment with the various sort options, change the call to the Sort method in the previous listing to the
following:

CData.Sort(Key1:=CData.Range(“A2”), order1:=Excel.XlSortOrder.xlAscending, _
orientation:=Excel.XlSortOrientation.xlSortRows)

If you print the values of the UsedRange without sorting, they will appear on the TextBox in the
following order:

1st Quarter 2nd Quarter 3rd Quarter 4th Quarter Year Total

123.45 435.56 376.25 425.75 1361.01

Figure 10.5

This spreadsheet was
created by the Excel-
Demo application,
using Excel’s objects.

461PROGRAMMING EXCEL

2877c10.qxd 11/11/01 4:17 PM Page 461

http://www.sybex.com

If you sort them by rows, which is the default sort order, the columns will be swapped as follows:

1st Quarter 3rd Quarter 4th Quarter 2nd Quarter Year Total

123.45 376.25 425.75 435.56 1361.01

Using Excel as a Math Parser
Earlier in this chapter, you learned how to borrow the spell-checking capabilities of Word. Now,
we’ll do something similar with Excel. Excel is a great tool for doing math. At the same time, Visual
Basic doesn’t provide a function or method for calculating math expressions supplied by the user at
runtime. If Excel is installed on the host computer, you can contact it from within your VB applica-
tion and use it to evaluate complicated math expressions.

The simplest method to calculate a math expression is to call the Evaluate method of the
Excel.Application object. Assuming you’ve initialized the ExcelApp object variable, you can calculate
a math expression like

1/cos(0.335)*cos(12.45)

by calling the ExcelApp object’s Evaluate method and passing the expression as a string argument:

y = ExcelApp.Evaluate(“1/cos(0.335)*cos(12.45)”)

The Calculate Expression button on the ExcelDemo project’s form does exactly that with the state-
ments shown in Listing 10.12.

Listing 10.12: Calculating an Excel Expression

Private Sub Button3_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button3.Click

Dim mathStr As String
mathStr = InputBox(“Enter math expression to evaluate”, , _

“cos(3.673/4)/exp(-3.333)”)
If mathStr <> “” Then

Try
MsgBox(EXL.Evaluate(mathStr).ToString)

Catch exc As Exception
MsgBox(exc.Message)

End Try
End If

End Sub

The code in Listing 10.12 prompts the user to enter any math expression at runtime. Calculating
arbitrary math expressions supplied at runtime with straight Visual Basic code is quite difficult.

Another technique to calculate math expressions with Excel is to prefix the expression with the
equal sign (=) and assign the entire expression to a cell. Excel will assign the result of the calculation

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS462

2877c10.qxd 11/11/01 4:17 PM Page 462

http://www.sybex.com

to the cell, and if you read back the value of the same cell, it will be a number and not the actual
expression you supplied.

Dim expression As String = “1/cos(0.335)*cos(12.45) “
wSheet.Cells(1, 1).Value = “=” & expression
wSheet.Calculate
result = wSheet.Cells(1, 1).Value
MsgBox(“The value of the expression “ & expression & vbCrLf & “ is “ & result)

Note Using Excel to evaluate simple expressions may seem like overkill, but if you consider that Visual Basic doesn’t
provide the tools for evaluating expressions at runtime, automating Excel is not such a bad idea. This is especially true if
you want to evaluate complicated expressions and calculate the statistics of large data sets.

Programming Outlook
Incorporating e-mail capabilities into your applications is a common feature in today’s applications.
To make your applications e-mail–aware, you can program Outlook’s objects. In this section, you’ll
learn how to mail-enable your Visual Basic applications by manipulating the object model of Out-
look. Outlook isn’t a simple mail client. It maintains a list of contacts organized in folders; the con-
tacts may contain a lot of information (from physical addresses to anniversary dates), even
information about meetings. You will also learn how to write applications that automatically
process, and even reply to, messages. Many corporations use Outlook to automate common tasks
like appointment scheduling and routing e-mail. Because of the variety of tasks that can be per-
formed from within Outlook’s environment, you should learn the basics of programming its objects.

To contact Outlook and program the objects it exposes, you must first create a variable that rep-
resents the application itself, such as the OLApp variable:

Dim OLApp As New Outlook.Application

Unlike Word and Excel, Outlook doesn’t expose a single object like a Document or Worksheet
that gives you access to the information it can handle. Outlook contains several objects including
mail messages, contacts, and tasks. The most likely candidate to use as the basic unit of information
in Outlook is a folder. Depending on the operation you want to perform with Outlook, you must
first select the appropriate folder in the Shortcuts bar. For example, to view the incoming e-mail
messages, you must select the Inbox folder; to add a contact, you must first select the Contacts
folder. You can’t expect to find information about your contacts in the Inbox folder or the unread
messages in the Calendar folder. Since every operation in Outlook is initiated with the selection of
the proper folder, the various folders of the application are the top-level objects.

To access the folder objects, you must create a MAPI message store. A MAPI message store is a data
source that provides all types of information that can be stored by Outlook. If you’ve used Outlook
before, you know that it’s essentially a front end for a database that can store many different types of
information. To access this information, you must create a Namespace object variable with the fol-
lowing statements:

Dim OLApp As New Outlook.Application()
Dim OLNameSpace As Outlook.Namespace
OLNameSpace = OLApp.GetNamespace(“MAPI”)

463PROGRAMMING OUTLOOK

2877c10.qxd 11/11/01 4:17 PM Page 463

http://www.sybex.com

The first statement that declares the OLApp variable should appear outside any procedure, so it can
be used by all the procedures in your project. Through the OLNameSpace variable, you can access the
various folders and other objects of Outlook. The method for accessing a folder is the GetDefault-
Folder method, which accepts the name of the folder as argument and returns an object variable. The
object variable returned by GetDefaultFolder method provides properties and methods that give
your application access to the items stored in the folder.

The various folders maintained by Outlook can be accessed with the following constants (their
names are self-explanatory, and they’re all members of the OLDefaultFolders enumeration):

olFolderCalendar olFolderInbox olFolderOutbox

olFolderContacts olFolderJournal olFolderSentMail

olFolderDeletedItems olFolderNotes olFolderTask

olFolderDrafts

To retrieve all the items in the Contacts folder, use the following statement:

Set allContacts = OLNameSpace.GetDefaultFolder(olFolderContacts).Items

The Items property returns a collection that contains all the items in the specified folder. The
allContacts variable must be declared as:

Dim allContacts As Outlook.MAPIFolder

Each folder contains different types of information. The Contacts folder is made up of Contact-
Item objects, the Inbox and Outbox folders contain MailItem objects, and the Calendar folder
contains a collection of AppointmentItem objects. Each one of these objects provides numerous
properties, which are the attributes of the item it represents. For example, a ContactItem object pro-
vides properties for setting just about any attribute of a contact (name, address, e-mail, and so on).

To see the properties of the ContactItem object, open the Object Browser, expand the Interop
.Outlook item and locate the entry ContactItem as shown in Figure 10.6. The properties of the
selected object will appear in the right pane, and the specific object provides a large number of
properties. The properties you’ll use most often in your applications are LastName, FirstName,
Email1Address, Title, and the properties that begin with HomeAddress and BusinessAddress. These
are the fields you can set in the Contact dialog box when you add or edit a contact with Outlook. If
you need additional fields, you can create your own custom properties. (These are also accessed by
name, but I’m not going to discuss them here. You should see Outlook’s Help files for more infor-
mation on adding custom properties.)

A property that’s common to all items is the EntryID property, which is a string value that uniquely
identifies each item. EntryID values are similar to IDs you assign to the various records in a database
(they identify the record, but they have no other apparent meaning). Of course, you can’t have the user
select a contact or message based on its EntryID—it makes much more sense to present a list of names
or companies to select from—but you can use them to bookmark items. You’ll see how the EntryID
property is used in the examples of the following sections. Basically, we use a meaningful field to dis-
play information (like an e-mail address or sender’s name), and we keep track of the current contact or
message by its EntryID property. The Namespace object exposes the GetFolderByID and GetItem-
ByID methods; you will see shortly how these two methods are used along with EntryID.

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS464

2877c10.qxd 11/11/01 4:17 PM Page 464

http://www.sybex.com

Retrieving Information
Outlook stores different types of information in different folders. Outlook’s folders do not corre-
spond to physical folders on the disk; they’re just the basic organizational units of Outlook. Contact
information is stored in the Contacts folder, incoming messages are stored in the Inbox folder, and
so on. Most users, however, customize Outlook’s folder structure by adding subfolders to the
default folders. To organize your contacts, for instance, you can create the Business and Personal
subfolders under the Contacts folder. Likewise, you can create Business, Personal, and Junk folders
under the Inbox folder.

In the following sections, you’ll learn how to extract contacts and messages from the correspon-
ding folders. The process of extracting information stored in Outlook’s folders is straightforward:
we retrieve the contents of the appropriate folder, and then we extract the information we want by
calling their properties. If the item is a message, you can retrieve its subject with the Subject prop-
erty. If the item is a contact, you can retrieve the company of the contact with the CompanyName
name property. The properties supported by each item are listed automatically in the code editor
when needed, so I won’t repeat them here.

The examples of the following sections deal with the Inbox and Contacts folders. Outlook sup-
ports other folders as well, which are not discussed in this chapter.

VB.NET at Work: The Contacts Project

The first example of programming Outlook’s objects is the Contacts application, whose form is
shown in Figure 10.7. The Contacts application assumes that all contact items are stored in the
Contacts folder. If you’ve organized your contacts differently—perhaps in subfolders under
the Contacts folder—copy a few contacts temporarily to the Contacts folder so that you
can test the application. Later, in the section “Recursive Scanning of the Contacts Folder,” you’ll
see how you can scan the entire Contacts folder recursively, including its subfolders.

The Contact project’s main form contains two lists. The first list is populated with company
names, which are read from the contact items. This list doesn’t contain any duplicate entries, even
though a typical Contacts folder contains multiple contacts from the same company. To view the

Figure 10.6

The properties of
the ContactItem
object

465PROGRAMMING OUTLOOK

2877c10.qxd 11/11/01 4:17 PM Page 465

http://www.sybex.com

contacts in a company, double-click the company’s name and the corresponding contacts will appear
in the second ListBox control Then, each time you click a contact name, more information about the
selected contact will be displayed in the lower half of the form.

First, you must declare a variable that represents the Outlook application, as well as a Namespace
variable, with the following statements. All other objects can be accessed through these two variables.

Dim OutlookApp As New Outlook.Application()
Dim OLNameSpace As Outlook.Namespace

In addition, we need one more variable to store the contacts. This variable is also declared on the
form, with the following statement:

Dim allContacts As Outlook.MAPIFolder

When the Show Company Names button is clicked, the program creates a collection with all the
items in the Contacts folder, the allContacts collection, and then sorts it according to the company
name. The list doesn’t contains duplicate names (we use the Contains method of the Items collec-
tion to find out whether a company name exists in the list before adding it). The code of the Show
Company Names button is detailed in Listing 10.13.

Listing 10.13: Populating the Companies List

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

OLNameSpace = OutlookAPP.GetNamespace(“MAPI”)
allContacts = OLNameSpace.GetDefaultFolder _

(Outlook.OLDefaultFolders.olFolderContacts)
allContacts.Items.Sort(“CompanyName”)
Dim contact As Outlook.ContactItem
Dim cnt As Integer
ContactKeys.Clear()
ListBox2.Items.Clear()

Figure 10.7

Demonstrating how
to retrieve contact
items from Out-
look’s Contacts
folder

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS466

2877c10.qxd 11/11/01 4:17 PM Page 466

http://www.sybex.com

For cnt = 1 To allContacts.Items.Count
contact = allContacts.Items.Item(cnt)
If contact.CompanyName <> “” Then

If Not ListBox1.Items.Contains(contact.CompanyName) Then
ListBox1.Items.Add(contact.CompanyName)

End If
End If

Next
End Sub

The code that retrieves the contacts for the company selected on the left must be placed in the
ListBox control’s SelectedIndexChanged event. This event handler (Listing 10.14) applies the
Restrict method to the allContacts collection, which selects only the items meeting the specified crite-
ria. In our case, the criterion is that the contact’s CompanyName field is the same as the selected
item on the list. For more information on specifying selection criteria, see the section “Filtering
Messages,” later in this chapter.

Listing 10.14: Selecting Contacts from a Company

Private Sub ListBox1_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles ListofCompanies.SelectedIndexChanged

Dim contacts As Outlook._Items
contacts = allContacts.Items.Restrict(“[CompanyName]=’” & _

ListofCompanies.Text & “‘“)
Dim contact As Outlook.ContactItem
Dim cnt As Integer
ListofContacts.Items.Clear()
ContactKeys.Clear()
For cnt = 1 To contacts.Count

contact = contacts.Item(cnt)
If contact.Email1Address <> “” Then

If (Not ListofContacts.Items.Contains(contact.Email1Address)) Then
ListofContacts.Items.Add(contact.Email1Address)
ContactKeys.Add(contact.EntryID)

End If
End If

Next
End Sub

This subroutine makes use of the Restrict method, which accepts a filter expression as argument.
The filter is applied to the items of a specific folder and selects the items that meet the criteria. The
items are then returned as a collection—in our example, a collection of ContactItem items. The items
in the folder are not affected; if you apply another filter, you’ll get back the items that create a new
collection. It simply hides the items that don’t meet the specified criteria.

467PROGRAMMING OUTLOOK

2877c10.qxd 11/11/01 4:17 PM Page 467

http://www.sybex.com

To display additional information about a contact, the code shown in Listing 10.15 needs to be
executed from within the second ListBox control’s Click event. This code retrieves the selected con-
tact by its ID and displays selected fields in the TextBoxes at the bottom of the form.

Listing 10.15: Displaying Contact Information

Private Sub ListBox2_SelectedIndexChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles ListBox2.SelectedIndexChanged

Dim contact As Outlook.ContactItem
contact = OLNameSpace.GetItemFromID (ContactKeys(ListBox2.SelectedIndex))
txtFullName.Text = contact.FullName
txtTel.Text = contact.BusinessTelephoneNumber
txtFAX.Text = contact.BusinessFaxNumber

End Sub

The Contacts project has a serious drawback: it assumes that all the contacts are in the Contacts
folder. If they’re organized in folders under the Contacts folder, then only the contacts in the top-
level folder will be processed. Later in this chapter, you will see how to scan the Contacts folder,
including its subfolders.

VB.NET at Work: The Messages Project

The Messages project demonstrates some techniques for retrieving mail items. Messages are stored
in the Inbox and Outbox folders, as well as any custom folders created under these by the user. The
Messages example retrieves the messages from the Inbox folder only. If you don’t have any messages
in this folder, temporarily move some incoming messages from your custom folders to the Inbox
folder to test the application. Later in the chapter, you’ll see how to retrieve all the messages under
Inbox, including its subfolders nested to any depth.

The Messages application (shown in Figure 10.8) lets you select messages based on their sender
or the date they were sent. The user can specify the criteria with the controls on the top-right section
of the form and then click the Show Selected Messages button to display the messages that meet the
criteria in the Selected Messages ListBox. The program displays only each message’s sender and sub-
ject on the ListBox control to the right. Then, when the user clicks a message on this list, more
information is displayed in the controls in the lower half of the form (including the message’s body).
If the message contains attachments, the names of the attached files are displayed in a message box.
Run the project and experiment with it.

There are two issues you should be aware of. First, the Messages application can see only the mes-
sages in the Inbox folder. If you’ve organized your messages into subfolders under the Inbox folder,
you must temporarily move a few messages to the Inbox folder. The second issue is that the sender
names are read from the Contacts folder. If the names in the Contacts folder don’t match the names
that appear in the messages, then you won’t see the messages sent by the selected contact.

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS468

2877c10.qxd 11/11/01 4:17 PM Page 468

http://www.sybex.com

The Application’s Code

In the form’s Load event, we create two object variables: OLApp references the Outlook application
and OLObjects references Outlook’s folders. These variables are declared on the Form level with the
following statements:

Dim OLApp As Application
Dim OLObjects As Outlook.NameSpace

Then the code sets up the InBox variable, where the messages in the Inbox folder will be stored.
This variable is also declared outside any procedure, with the following statement:

Dim InBox As outlook.MAPIFolder

The code scans all the messages in the Inbox folder and adds the sender’s name to the ComboBox
control on the right. The Sorted property of the ComboBox control is set to True, and the code
doesn’t add duplicate entries (it uses the Contains method of the Items collection to find out
whether the contact exists in the list or not). The bulk of the statements of Listing 10.16 are exe-
cuted from within the form’s Load event handler.

Listing 10.16: Initializing the Messages Project

Dim OutlookApp As New outlook.Application()
Dim InBox As outlook.MAPIFolder
Dim OLObjects As Outlook.Namespace

Private Sub Form1_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles MyBase.Load

OLObjects = OutlookApp.GetNamespace(“MAPI”)

Figure 10.8

Demonstrating how
to read Outlook’s
incoming messages
from within VB
applications

469PROGRAMMING OUTLOOK

2877c10.qxd 11/11/01 4:17 PM Page 469

http://www.sybex.com

InBox = OLObjects.GetDefaultFolder(Outlook.OLDefaultFolders.olFolderInbox)
Dim mssg As Outlook.MailItem
Dim imssg As Integer
For imssg = 1 To InBox.Items.Count

mssg = InBox.Items.Item(imssg)
If Not mssg.SenderName Is Nothing Then

If Not ComboBox1.Items.Contains(mssg.SenderName) Then
ComboBox1.Items.Add(mssg.SenderName)

End If
End If

Next
ComboBox1.Sorted = True
ComboBox1.SelectedIndex = 0

End Sub

Filtering Messages

The user can select a name and/or a date range to limit the selected messages. If the check boxes
“From this sender” and “Between these dates” are cleared, then clicking the Show Selected Messages
button will display all the messages in the Inbox folder on the ListView control on the left. We
haven’t discussed yet the ListView control, but you can think of it as ListBox control with multiple
columns. Each item has a Text property, which is the string of the first column, and a SubItems
property, which is a collection. If you check either or both check boxes, then the program will dis-
play only the messages that meet the specified criteria.

To filter the messages, use the Restrict method of the Items collection. This method accepts an
expression that filters some messages and returns only the messages you’re interested in. The syntax
of the Restrict method is Restrict(filterstring), where filterstring is an expression that specifies the
desired criteria. The Restrict method returns a collection of items: the items of the original collec-
tion that meet the criteria. The original collection doesn’t change, and you can retrieve a different
collection from it by applying another filter expression.

The filterstring argument is a string expression that combines field names, logical operators, and
values. To retrieve the messages sent by “Site Builder Network”, use the following string:

“[SenderName] = “ ‘Site Builder Network’ “

To retrieve all messages sent in October 2000, use the following string:

“[SentOn] => “ ‘10/01/00’ “ And [SentOn] <= “ ‘10/31/00’ “

(The single quotes are used to embed quotes within quotes. You can also use two consecutive dou-
ble quotes in the string to indicate an embedded double quote.)

You can combine as many fields as needed with the usual comparison and logical operators. The
field names for each item type can be found in the Object Browser. Select the desired item (e.g.,
MailItem, ContactItem) and look up its properties in the Members pane.

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS470

2877c10.qxd 11/11/01 4:17 PM Page 470

http://www.sybex.com

In the Messages project, you use the values of various controls on the form to build the filter
string as follows. First, you validate the dates, then you build the filter string with the following
statements:

If chkSender.Checked Then
filter = “[SenderName]=’” & ComboBox1.Text & “‘“

End If
If chkDates.Checked Then

If filter <> “” Then filter = filter & “ And “
filter = filter & “[SentOn] > ‘“ & DateTimePicker1.Value.ToShortDateString & _

“‘ And [SentOn] <= ‘“ & DateTimePicker2.Value.ToShortDateString & “‘“
End If
If filter <> “” Then

selMessages = InBox.Items.Restrict(filter)
Else

selMessages = InBox.Items
End If

Notice the placement of the single quotes in the expressions. If the selected string on the Com-
boBox1 control is “Sybex”, then the statement:

“[SenderName] = ‘“ & ContactName & “‘“

will produce the following string:

[SenderName] = ‘Sybex’

The filter variable is built slowly, according to the values entered by the user on the Form. If the
user specifies a name, the SenderName property is set to the appropriate value. If the user specifies
dates, the SentOn property is set accordingly.

The filter variable is then passed to the Restrict method of the InBox.Items collection. Then the
program loops through the selected messages, which are the items of the selMessages collection. At
each iteration, another message’s sender and subject are displayed on a ListView control. I have used
the ListView control to store the subjects of the messages and their sender, because I could also
store the ID of the messages in a hidden column (a column with a width of 0 pixels). Here are the
statements that display the filtered messages.

Dim mssg As Outlook.MailItem
Dim imssg As Integer
Dim itm As ListViewItem
For imssg = 1 To selMessages.Count

mssg = selMessages.Item(imssg)
itm = New ListViewItem()
itm.Text = mssg.SenderName
itm.SubItems.Add(mssg.Subject)
itm.SubItems.Add(mssg.EntryID)
ListView1.Items.Add(itm)
itm = Nothing

Next

471PROGRAMMING OUTLOOK

2877c10.qxd 11/11/01 4:17 PM Page 471

http://www.sybex.com

The rest of the code is straightforward. When an item on the ListView control is clicked, the
program recalls the selected item and displays its basic entries in the corresponding Label controls
at the bottom of the screen and its body in the TextBox control (whose ReadOnly property must
be set to True to prevent editing of the message). Listing 10.17 is the ListView control’s Selected-
IndexChanged event handler.

Listing 10.17: Viewing a Message Item

Private Sub ListView1_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ListView1.SelectedIndexChanged

Dim selID As String
If ListView1.SelectedItems.Count() = 0 Then Exit Sub
txtMessage.Text = “”
selID = ListView1.SelectedItems(0).SubItems(2).Text
Dim mssg As Outlook.MailItem
mssg = OLObjects.GetItemFromID(selID)
txtMessage.Text = mssg.Body
lblSubject.Text = mssg.Subject
lblSender.Text = mssg.SenderName
lblSentOn.Text = mssg.SentOn.ToShortDateString
lblRecvdOn.Text = mssg.ReceivedTime.ToShortDateString
Dim i As Integer
lstAttachments.Items.Clear()
For i = 1 To mssg.Attachments.Count

lstAttachments.Items.Add(mssg.Attachments.Item(i).FileName)
Next

End Sub

Open the Messages project in the Visual Basic IDE to examine its code and see how it combines
the items of the Contacts folder and uses them to retrieve mail items from the Inbox folder. You can
modify the code to add more selection criteria or to work with different folders (for example, the
Outbox folder or a subfolder under the Inbox folder).

Warning The Messages project uses the FullName property of the contacts to display the names of possible message
senders. If the names you’ve used in the Contacts folder are not the same as the sender names in the incoming messages, then
the program won’t select all the messages as you’d expect. There are many methods for matching contacts and messages, but
they require additional effort. For example, you can use each contact’s e-mail address, which is the same in both the Con-
tacts and Inbox folders. However, contacts may have multiple e-mail addresses, so you must make sure you search the mail
items for all e-mail addresses (aliases) of the selected contact.

Recursive Scanning of the Contacts Folder
The Contacts project of the previous section assumes that all contacts are stored in the Contacts
folder (likewise, the other projects assume that all messages reside in a single folder). This may be

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS472

2877c10.qxd 11/11/01 4:17 PM Page 472

http://www.sybex.com

the case for users with a small number of contacts (or totally unorganized users), but it’s not com-
mon. Most users organize their contacts in subfolders to better classify them and simplify searching.
Scanning a Contacts folder with subfolders is not as simple. This operation calls for recursive program-
ming. If you thought that the chapter on recursive programming was uncalled for in an introductory
book, this is another attestation to its usefulness. The topic of recursive programming is discussed in
detail in Chapter 18. In this chapter, I’ll explain the code as we go along, but if you’re totally unfamil-
iar with this programming technique, you should read the material on recursion first and you’ll find
it easier to understand the code of this section.

VB.NET at Work: The AllContacts Project

The application that demonstrates how to recursively scan the Contacts folder is called AllContacts
and can be found in this chapter’s folder on the CD. The TreeView control with the names of all
subfolders under the Contacts folder is populated when the form is loaded (see Figure 10.9).
Expand the various folders on the TreeView control, and click a folder’s name to see its contact
items in the ListBox control on the right.

The Project’s Code

Let’s start with the trivial code. First, declare the following object variables, which are used by most
procedures:

Dim OutlookApp As New Outlook.Application()
Dim OlObjects As Outlook.Namespace
Dim OlContacts As Outlook.MAPIFolder

Then, in the Show All Contact Folders button’s Click event handler, enter the statements of List-
ing 10.18 to instantiate the OlObjects and OlContacts variables, needed to access the folders of Out-
look. This code adds the root node to the TreeView control—the root node being the Contacts
folder—and all the first-level subfolders under it. Each time a new subfolder is added to the Tree-
View control, the code calls the ScanSubFolders() subroutine, passing the current folder as argu-
ment. The ScanSubFolders() subroutine iterates through the subfolders of the folder passed as
argument and adds them to the TreeView control, under the appropriate node.

Figure 10.9

Populating the Tree-
View control with
the names of the
subfolders

473PROGRAMMING OUTLOOK

2877c10.qxd 11/11/01 4:17 PM Page 473

http://www.sybex.com

Listing 10.18: Scanning the Subfolders of the Contact Folder

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnShowContacts.Click

OlObjects = OutlookApp.GetNamespace(“MAPI”)
OlContacts = _

OlObjects.GetDefaultFolder(Outlook.OlDefaultFolders.olFolderContacts)
Dim rootNode, newNode As TreeNode
rootNode = TreeView1.Nodes.Add(“Contacts”)
rootNode.Tag = OlContacts.EntryID
Dim allFolders As Outlook.Folders
Dim folder As Outlook.MAPIFolder
allFolders = OlContacts.Folders
folder = allFolders.GetFirst
While Not folder Is Nothing

newNode = rootNode.Nodes.Add(folder.Name)
ScanSubFolders(folder, newNode)
folder = allFolders.GetNext

End While
End Sub

Later in our application, we want to be able to retrieve the contacts in any folder, when the user
selects the folder. The folder’s name is not enough, because it doesn’t uniquely identify a folder. All
folders have a unique ID, which you can retrieve with the EntryID property. To have this informa-
tion handy later in code, we store the ID of each folder to the corresponding node’s Tag property.

The ScanSubFolders() subroutine (Listing 10.19) iterates through all the subfolders of the folder
passed as argument. If any of these subfolders have subfolders of their own, the program calls the
ScanSubFolders() subroutine again to scan them. This process is repeated recursively, until the initial
folder has been scanned to any depth necessary. At each iteration, the code adds a new folder to the
TreeView control and sets the node’s Tag property to the ID of the folder. This ID will be
extracted later from the Tag property of the selected node and used to retrieve the corresponding
folder.

Listing 10.19: The ScanSubFolders() Subroutine

Private Sub ScanSubFolders(ByVal currentFolder As outlook.MAPIFolder, _
ByVal currentNode As TreeNode)

Dim subfolders As Outlook.Folders
subfolders = currentFolder.Folders
Dim parentNode As TreeNode = currentNode
Dim newNode As TreeNode
If subfolders.Count > 0 Then

Dim strFolderKey As String
Dim subFolder As Outlook.MAPIFolder
subFolder = subfolders.GetFirst
While Not subFolder Is Nothing

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS474

2877c10.qxd 11/11/01 4:17 PM Page 474

http://www.sybex.com

newNode = parentNode.Nodes.Add(subFolder.Name)
newNode.Tag = subFolder.EntryID
ScanSubFolders(subFolder, newNode)
subFolder = subfolders.GetNext

End While
End If

End Sub

Viewing a Folder’s Contacts

After populating the TreeView control with the structure of the subfolders under the Contacts
folder, you can select a folder in the TreeView control with the mouse to display its contacts on the
ListBox control at the right side of the form. When an item in the TreeView control is clicked, the
AfterSelect event is triggered; the code for this is presented in Listing 10.20. This event reports the
node clicked, and you can use the event’s argument to retrieve the node’s tag, which is the ID of the
selected folder. Once you know the ID of the selected folder, you can create a reference to this folder
(variable selFolder) and use it to scan the contact items in the actual folder.

Listing 10.20: Listing the Items of the Selected Folder

Private Sub TreeView1_AfterSelect(ByVal sender As System.Object, _
ByVal e As System.Windows.Forms.TreeViewEventArgs) _
Handles TreeView1.AfterSelect

If e.Node.Tag Is Nothing Then Exit Sub
Dim folderid As String = e.Node.Tag
Dim selFolder As Outlook.MAPIFolder
selFolder = OlObjects.GetFolderFromID(folderid)
Dim itm As Integer
ListBox1.Items.Clear()
For itm = 1 To selFolder.Items.Count

ListBox1.Items.Add(selFolder.Items.Item(itm).Email1Address)
ListBox1.Items.Add(vbTab & selFolder.Items.Item(itm).FullName)

Next
End Sub

The code displays only the contact’s name and e-mail address. You can modify the code to dis-
play any fields. For example, you can retrieve the contact’s e-mail address and send a message to all
the contacts in a specific folder, as we’ll do in the last example of the chapter.

Automated Messages

The Send Message to Selected Contacts button demonstrates how to send a message once the user
has picked one or more recipients. The message’s subject and body are hard-coded in this project,
but you can easily modify the application so that it reads the message’s body from a text file. You

475PROGRAMMING OUTLOOK

2877c10.qxd 11/11/01 4:17 PM Page 475

http://www.sybex.com

can also embed keywords into the text file and replace them with the recipient’s name, title, address,
and so on. The code (Listing 10.21) is short and straightforward, and it’s meant to demonstrate the
basic steps for automating the creation and dispatch of electronic messages, placing them in the Out-
box folder. From there, the message will leave in the same way as the messages you create manually
with Outlook.

Listing 10.21: Listing the Items of the Selected Folder

Private Sub bttnSend_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnSend.Click

Dim msg As Outlook.MailItem
msg = OutlookApp.CreateItem(Outlook.OlItemType.olMailItem)
Dim iContact As Integer
For iContact = 0 To ListBox1.SelectedIndices.Count - 1

msg.Recipients.Add(ListBox1.Items(_
ListBox1.SelectedIndices.Item(iContact).ToString)

msg.Subject = “Automated Message”
msg.Body = “Enter the message’s body here”
msg.send()

Next
End Sub

First, you must create a new MailItem object, variable msg, with the CreateItem method of Out-
look. Then you set the fields of the MailItem object. There are many more properties you can set;
they will all appear as soon as you enter the name of the variable that represents the MailItem object
and the following period. Finally, call the MailItem object’s Send method to place it in the Outbox
folder, from which it will be sent the next time Outlook sends and receives messages.

Summary
If you add references to the various Office applications in your projects and then open the Object
Browser, you’ll realize that Word, Excel, and Outlook expose many objects, which in turn, provide
numerous properties and methods. Automating Office applications is well within the reach of the
average Visual Basic programmer, as long as you familiarize yourself with the objects exposed by
these applications (or any other application that exposes an object model).

Chapter 10 AUTOMATING MICROSOFT OFFICE APPLICATIONS476

2877c10.qxd 11/11/01 4:17 PM Page 476

http://www.sybex.com

Part III
Basic Framework

Classes
In this section:
� Chapter 11: Storing Data in Collections
� Chapter 12: Handling Strings, Characters, and Dates
� Chapter 13: Working with Folders and Files

2877c11.qxd 11/11/01 4:18 PM Page 477

http://www.sybex.com

Chapter 11

Storing Data in Collections
In this chapter, you’re going to learn how to store sets of objects to structures similar to
arrays. One of the most common operations in programming is the storage and manipulation of
data. There are databases, of course, which can store any type of information and preserve its struc-
ture as well, but not all applications make use of databases. If your application needs to store a few
shapes (like the ones you designed in the previous chapter), or a few names and contact informa-
tion, you shouldn’t have to set up a new database. A simple collection like the ones described in
this chapter will suffice. Traditionally, arrays were used to store related data and objects. Since
arrays can store custom data types (or structures), they seem to be the answer to many data-storage
and -manipulation issues. Arrays, however, don’t expose all the functionality you may need in your
application. To address the issues of data storage outside databases, the .NET Framework provides
certain classes known as collections.

All collections store sets of related data, and we’ve already examined a data structure that does
the same, the array. Arrays used to be indexed sets of data, and this is how we’ve explored arrays
so far. In this chapter, you’re going to find out that VB.NET arrays expose useful members that
make arrays extremely flexible. It took Microsoft years to get arrays right, but now you can have
arrays that sort themselves, search for an element, and more. In the past, programmers spent end-
less hours writing code to perform the same operations on arrays, but VB.NET will free them
from similar, counterproductive tasks.

There are more types of collections besides arrays, and they’re all hosted in the System
.Collections class, an assembly exposing many classes that implement collections, like the ArrayList
and the HashTable collections. We aren’t going to discuss them all in this book, only the most
important ones, which are the ArrayList, HashTable, Dictionary, and SortedList. Their function-
ality overlaps a lot, which may make it difficult to decide which structure to use. The good news
is that once you’ve learned to use one of them, you can easily apply your skills to the others.

Conventional arrays are not implemented by the System.Collections class. They’re imple-
mented by the System.Array class, which is not inheritable. This chapter starts with a discussion
of the advanced features of the Array class. Once you know how to make the most of arrays,
I’ll discuss the limitations of arrays, and we’ll explore other collections that overcome these
limitations.

2877c11.qxd 11/11/01 4:18 PM Page 479

http://www.sybex.com

VB6 ➠ VB.NET

All the topics discussed in this chapter are new to VB.NET. Arrays have been around since the first version
of Visual Basic, but all the features discussed in this chapter, such as sorting and searching arrays, are
new to VB.NET. ArrayLists are also new to VB.NET; they’re dynamic arrays. Another class, the HashTable,
is the evolution of a structure that was known as Dictionary in VB5 and VB6, whose elements are identi-
fied not by a number, but by a meaningful key. The basic functionality of the HashTable class is practically
identical to that of the Dictionary, but the HashTable has more features, including the ability to sort its
elements.

The last topic discussed in this chapter is the ability to specify functions for sorting custom objects in a col-
lection. As you will see, it’s quite simple. These functions don’t actually sort the collection; they simply
compare two elements. Once you provide this functionality, the Framework takes it from there and uses
your custom functions to sort and search the collection. This type of close interaction with the inner work-
ings of the language is a powerful feature, totally new to VB programmers.

Advanced Array Topics
In Chapter 3, we explored the basics of arrays—how to declare arrays, how to access elements
by index, and a few more elementary topics. VB.NET supports arrays through the Array class,
which exposes a whole lot of functionality that wasn’t there before. The System.Array class is
not inheritable, which means you can’t create custom arrays; the classes under System.Collections
are inheritable, and you can customize the other collections discussed in this chapter.

But before we explore the more advanced methods exposed by the Array class, let me remind you
about the basic array members that are new to VB.NET arrays. The Length property returns the
number of elements in the array. In the case of a multidimensional array, the Length property returns
the total number of elements in all dimensions. To find out the number of dimensions in an array, call
its Rank property. The index of the first element in an array is zero, and the index of the last element
is retrieved by the method GetUpperBound. If the array is multidimensional, you must specify the
dimension whose upper bound you wish to read. The expression array.GetUpperBound(0) returns the
upper bound of the first dimension, and the expression array.GetUpperBound(array.Rank - 1)
returns the number of elements in the last dimension of the array. For more information on these
members, see the section “Arrays” in Chapter 3.

Sorting Arrays
The most prominent feature of the Array class is that VB.NET arrays can be sorted and searched.
To sort an array, call its Sort method. This method is heavily overloaded and, as you will see, it is
possible to sort an array based on the values of another array, or even supply your own custom sort-
ing routines. If the array is sorted, you can call the BinarySearch method to locate an element. If not,
you can call the IndexOf and LastIndexOf methods.

Chapter 11 STORING DATA IN COLLECTIONS480

2877c11.qxd 11/11/01 4:18 PM Page 480

http://www.sybex.com

The simplest form of the Sort method accepts a single argument, which is the name of the array
to be sorted:

System.Array.Sort(arrayName)

This method sorts the elements of the array according to the type of its elements. If the array is
not strictly typed, the Sort method will fail. The Array class just doesn’t know how to compare
integers to strings or dates, so don’t attempt to sort arrays whose elements are not of the same type.
If you can’t be sure that all elements are of the same type, use a Try…Catch statement.

Note The Sort method is a reference method. It requires that you supply the name of the array to be sorted as an argu-
ment, even when you’re applying the Sort method directly to an array. In other words, the expression arrayName.Sort()
is invalid. You must still pass the name of the array as argument to the Sort method: arrayName.Sort(arrayName).
I’m using the notation System.Array.Sort(arrayName) because it’s easier to understand. Besides, a statement like
names.Sort(names) just isn’t elegant.

You can also sort a section of the array with the following form of the Sort method:

System.Array.Sort(arrayName, startIndex, endIndex)

where startIndex and endIndex are the indices that delimit the section of the array to be sorted. I don’t
see what good a half-sorted array can be, unless you’re dealing with extremely large arrays. Even then,
the Sort method is incredibly fast.

An interesting variation of the Sort method sorts the elements of an array according to the values
of the elements in another array. Let’s say you have one array of names and another with the match-
ing Social Security numbers. It is possible to sort the array with the names according to their Social
Security numbers. This form of the Sort method has the following syntax:

System.Array.Sort(array1, array2)

array1 is the array with the keys, and array2 is the array with the actual elements to be sorted. This
is a very handy form of the Sort method. Let’s say you have a list of words stored in one array and
their frequencies in another. Using the first form of the Sort method, you can sort the words alpha-
betically. With this form of the Sort method, you can sort them according to their frequencies
(starting with the most common words and ending with the less common ones). The two arrays
must be one-dimensional and have the same number of elements. If you want to sort a section of
the array, just supply the startIndex and endIndex arguments to the Sort method, after the names of the
two arrays.

The SortArrayByLength application, shown in Figure 11.1, demonstrates how to sort an array
based on the length of its elements (short elements appear at the top of the array, while longer ele-
ments appear near the bottom of the array). First, it populates the array MyStrings with a few strings,
then it assigns the lengths of these strings to the matching elements of the array MyStringsLen. The ele-
ment MyStrings(0) is “Visual Basic”, and the MyStringsLen(0) element’s value is 12. Once the two
arrays have been populated, the code sorts the elements of the MyStrings array according to the values
of the MyStringsLen array.

481ADVANCED ARRAY TOPICS

2877c11.qxd 11/11/01 4:18 PM Page 481

http://www.sybex.com

The statement that sorts the array is

System.Array.Sort(MyStringsLen, MyStrings)

The code, which also displays the arrays before and after sorting, is shown in Listing 11.1.

Listing 11.1: Sorting an Array According to the Length of Its Elements

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Dim MyStrings(3) As String
Dim MyStringsLen(3) As Integer
MyStrings(0) = “Visual Basic”
MyStrings(1) = “C++”
MyStrings(2) = “C#”
MyStrings(3) = “HTML”
Dim i As Integer
For i = 0 To UBound(MyStrings)

MyStringsLen(i) = len(MyStrings(i))
Next
ListBox1.Items.Clear()
ListBox1.Items.Add(“Original Array”)
ListBox1.Items.Add(“*************************”)
Dim str As Integer
For str = 0 To UBound(MyStrings)

ListBox1.Items.Add(MyStrings(str) & “ “ & MyStringsLen(str).ToString)
Next
ListBox1.Items.Add(“*************************”)
ListBox1.Items.Add(“Array Sorted According to String Length “)
ListBox1.Items.Add(“*************************”)
System.Array.Sort(MyStringsLen, MyStrings)
For str = 0 To UBound(MyStrings)

ListBox1.Items.Add(MyStrings(str) & “ “ & MyStringsLen(str).ToString)
Next
ListBox1.Items.Add(“*************************”)

Figure 11.1

The SortArray-
ByLength application

Chapter 11 STORING DATA IN COLLECTIONS482

2877c11.qxd 11/11/01 4:18 PM Page 482

http://www.sybex.com

‘ Sort the array twice
ListBox1.Items.Add(“Array Sorted Twice According to String Length “)
ListBox1.Items.Add(“*************************”)
System.Array.Sort(MyStringsLen, MyStrings)
For str = 0 To UBound(MyStrings)

ListBox1.Items.Add(MyStrings(str) & “ “ & MyStringsLen(str).ToString)
Next
ListBox1.Items.Add(“*************************”)

End Sub

The output produced by the SortArrayByLength application on the ListBox control is shown here:

Original Array

Visual Basic 12
C++ 3
C# 2
HTML 4

Array Sorted According to String Length

C# 2
C++ 3
HTML 4
Visual Basic 12

Array Sorted Twice According to String Length

C# 2
C++ 3
HTML 4
Visual Basic 12

Notice that the Sort method sorts both the auxiliary array (the one with the lengths of the
strings) and the main array. After the call to the Sort method, the first element in the MyStrings array
is “C#”, and the first element in the MyStringsLen array is 2. In other words, the Sort method doesn’t
simply sort the elements of one array based on the values of the other array. If it did, the elements of
the two arrays would no longer match. Because of the way the Sort method operates, you can sort the
array multiple times, as demonstrated in Listing 11.1.

The array with the keys that will determine the order of the elements can be anything. If the array
to be sorted holds some rectangles, you can create an auxiliary array with the area of the rectangles,
and sort the original array according to the area of its rectangles. Likewise, an array of colors can be
sorted according to the hue, or the luminance, of each color component, and so on.

483ADVANCED ARRAY TOPICS

2877c11.qxd 11/11/01 4:18 PM Page 483

http://www.sybex.com

Another form of the Sort method uses a user-supplied function to sort arrays of custom objects.
As you recall, arrays can store all types of objects. But the Framework doesn’t know how to sort your
custom objects. To sort an array of objects, you must provide your own function that implements
the IComparer interface. This form of the Sort method is described in detail in the later section
“The IEnumerator and IComparer Interfaces,” where you will also learn how to write functions for
sorting your custom objects.

Searching Arrays
Arrays can be searched in two ways: with the BinarySearch method, which works on sorted arrays
and is extremely fast; and with the IndexOf (and LastIndexOf) methods, which work regardless of
the order of the elements. All three methods search for an instance of an item and return its index.
The IndexOf and LastIndexOf methods are similar to the methods by the same name of the String
class. They return the index of the first (or last) instance of an object in the array, or the value –1
if the object isn’t found in the array. Both methods are overloaded, and the simplest form of the
IndexOf method is:

itemIndex = System.Array.IndexOf(array, object)

where array is the name of the array to be searched and object is the item you’re searching for. The
LastIndexOf method’s syntax is identical, but the LastIndexOf method starts searching from the end
of the array. If the item you’re searching for is unique in the array, both methods will return the same
index.

Another form of the IndexOf and LastIndexOf methods allows you to begin the search at a spe-
cific index:

itemIndex = System.Array.IndexOf(array, object, startIndex)

This form of the method starts searching in the segment of the array from startIndex to the end of
the array. Finally, you can specify the range of indices where the search will take place with the fol-
lowing form of the method:

itemIndex = System.Array.IndexOf(array, object, startIndex, endIndex)

You can search large arrays more efficiently with the BinarySearch method, if the array is sorted.
The simplest form of the BinarySearch method is

System.Array.BinarySearch(array, object)

where array is the name of the array and object the item you’re searching for. To search a section of the
array, supply the two indices that delimit the section of the array you wish to sort:

System.Array.BinarySearch(array, startIndex, selLength, object)

If the array contains custom objects, you must provide an IComparer object that compares two
elements. This is the same object you supply to the Sort method for custom sorts.

The BinarySearch method returns an integer value, which is the index of the object you’re search-
ing for in the array. If the object argument is not found, the method returns a negative value, which is
the negative of the index of the next larger item minus one. This transformation, the negative of a
positive number minus one, is called the one’s complement, and other languages provide an operator for
it, the tilde (~). The one’s complement of 10 is –11, and the one’s complement of –3 is 2.

Chapter 11 STORING DATA IN COLLECTIONS484

2877c11.qxd 11/11/01 4:18 PM Page 484

http://www.sybex.com

Why all this complexity? Zero is a valid index, so only a negative value could indicate a failure in
the search operation. A value of –1 would indicate that the operation failed, but the BinarySearch
method does something better. If it can’t locate the item, it returns the index of the item immediately
after the desired item (the first item in the array that exceeds the item you’re searching for). This is a
near match, and the BinarySearch method returns a negative value to indicate near matches. Notice
that there will always be a near match, unless you’re searching for a value larger than the last value in
the array. In this case, the BinarySearch method will return the one’s complement of the array’s upper
bound. If your array was declared with 100 elements and the value you’re searching for is an element
that’s larger than the last element, the BinarySearch method will return the one’s complement of the
value 100 (which is –101).

Tip Like the BinarySearch method, the IndexOf and LastIndexOf methods perform case-sensitive searches. However,
because the BinarySearch method reports near matches, it appears as if it performs case-insensitive searches. If the array
contains the element “Charles” and you search for “charles,” the IndexOf method will not find the string, while the Binary-
Search will find it but will report it as a near match.

The Option Compare statement has no effect on the comparisons performed either by the Binary-
Search or by the IndexOf/LastIndexOf methods. If you want to perform case-insensitive compar-
isons, you must provide your own custom comparer, as described in the section “Custom Sorting,”
later in this chapter.

The ArraySearch application, shown in Figure 11.2, demonstrates how to handle exact and near
matches reported by the BinarySearch method. The Populate Array button populates an array with
1,000 random strings. The same strings are also displayed on a sorted ListBox control, so that you
can view them. The elements have the same order in both the array and the ListBox, so we can use
the index reported by the BinarySearch method to locate and select instantly the same item in the
ListBox.

The Populate Array button creates 1,000 random strings, each with a length of 3 to 15 charac-
ters. Both the length of each string and the characters in it are chosen randomly. You can find the
code of the Populate Array button’s Click handler on the CD. This isn’t the most interesting part of
the application anyway. When you run the application, message boxes will pop up displaying the

Figure 11.2

Searching an array
and locating the
same element in the
ListBox control

485ADVANCED ARRAY TOPICS

2877c11.qxd 11/11/01 4:18 PM Page 485

http://www.sybex.com

time it took for each operation: how long it took to populate the array, how long it took to sort it,
and how long it took to populate the ListBox. You may wish to experiment with large arrays
(100,000 elements or more).

The Search Array button prompts the user for a string with an InputBox and then locates the
string with the BinarySearch method in the array. The result is either an exact or a near match, and
it’s displayed on a message box. At the same time, the item reported by the BinarySearch method is
also selected in the ListBox control.

To test the application, find a string in the list and then click the Search Array button. Enter
the entire string (you can use lowercase or uppercase characters; it doesn’t make a difference) and
verify that the application reports an exact match and locates the item in the ListBox. Then enter a
string that doesn’t exist in the list (or the beginning of an existing string) and see how the Binary-
Search handles near matches.

The code behind the Search Array button calls the BinarySearch method and stores the integer
returned by the method to the wordIndex variable. Then it examines the value of this variable. If
wordIndex is positive, there was an exact match and it’s reported. If wordIndex is negative, the program
calculates the one’s complement of this value, which is the index of the near match. The element at
this index is reported as a near match. Finally, regardless of the type of the match, the code selects the
same item in the ListBox and makes it visible. Listing 11.2 is the code behind the Search Array button.

Listing 11.2: Locating Exact and Near Matches with BinarySearch

Private Sub bttnSearch_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnSearch.Click

Dim srchWord As String
Dim wordIndex As Integer
srchWord = InputBox(“Enter word to search for”)
wordIndex = System.Array.BinarySearch(words, srchWord)
Console.WriteLine(wordIndex)
If wordIndex >= 0 Then

MsgBox(“Words(“ & wordIndex.ToString & “) = “ & _
words(wordIndex), , “EXACT MATCH”)

ListBox1.TopIndex = wordIndex
ListBox1.SelectedIndex = wordIndex

Else
MsgBox(“Words(“ & (-wordIndex - 1).ToString & “) = “ & _

words(-wordIndex - 1), , “NEAR MATCH”)
ListBox1.TopIndex = -wordIndex - 1
ListBox1.SelectedIndex = -wordIndex - 1

End If
End Sub

Notice that all methods for sorting and searching arrays work with the base data types only. If the
array contains custom data types, you must supply your own functions for comparing elements of
this type, a process described in detail in the section “The IEnumerator and IComparer Interfaces,”
later in this chapter.

Chapter 11 STORING DATA IN COLLECTIONS486

2877c11.qxd 11/11/01 4:18 PM Page 486

http://www.sybex.com

The Binary Search Algorithm

The BinarySearch method uses a very powerful search algorithm, the binary search algorithm, but it
requires that the array be sorted. You need not care about the technical details of the implementation
of a method, but in the case of the binary search algorithm, a basic understanding of how it works
will help you understand how it performs near matches. To locate an item in a sorted array, this
method compares the search string to the array’s middle element. If the search string is smaller, we
know that the element is in the first half of the array and we can safely ignore the second half. The
same process is repeated with the remaining half of the elements. The search string is compared to
the middle element of the reduced array, and after the comparison, we can ignore one half of the
reduced array. At each step, the binary search algorithm rejects one half of the items left until it
reduces the list to a single item. This is the item we’re searching for. If not, the item is not in the
list. To search a list with 1,024 items, the binary search algorithm makes 10 comparisons. At the
first step, it rejects 512 elements, then 256, then 128 and so on, until it reaches a single element.
For an array of 1,024 × 1,024 (that’s a little more than a million) items, the algorithm makes 20
comparisons to locate the desired item.

If you apply the BinarySearch method on an array that hasn’t been sorted, the method will carry
out all the steps and report that the item wasn’t found, even though it may be in the array. The algo-
rithm doesn’t check the order of the elements; it just assumes that they’re sorted. You may also have
noticed that, regardless of the outcome, the same number of operations takes place. The binary
search algorithm always halves the number of elements in which it attempts to locate the desired ele-
ment in the array. That’s why you should never apply to the BinarySearch method to an array that
hasn’t been sorted yet.

To see what happens when you apply the BinarySearch method to an array that hasn’t been sorted,
remove the statement that calls the Sort method in the ArraySearch sample application. The application
will keep reporting near matches, even if the string you’re searching is present in the array. The Binary-
Search method, assuming that the array is sorted, keeps halving the array by successive comparisons.
When it’s left with a single item, which is not the one you’re searching for, it returns the index of the
following element and reports a near match. Of course, the near match isn’t close to the element you’re
searching for by any stretch of the word—it’s an element that happens to be there when the algorithm
finishes. You should never apply the BinarySearch method to an array that hasn’t been sorted.

Sorting an array is an expensive operation, and you can’t afford to continuously sort lengthy arrays.
If your array isn’t sorted, you can still search for specific items with the IndexOf and LastIndexOf
methods. These methods locate an item in an array and they’re overloaded, similar to the Binary-
Search method.

Other Array Operations
The Array class exposes additional methods, which are described briefly in this section.

The Reverse method reverses the order of the elements in an array. The syntax of the Reverse
method is

System.Array.Reverse(array)

The Reverse method can’t be applied to an array and reverse its elements. Instead, it returns a new
array with the elements of the array passed as argument, only in reverse order. To reverse the order of

487ADVANCED ARRAY TOPICS

2877c11.qxd 11/11/01 4:18 PM Page 487

http://www.sybex.com

the elements in the array Names, call the Reverse method passing the Names array as argument. The
reversed array must be assigned to another array, ReverseNames in our example:

Dim Names(99) As String
{ statements to populate array Names }
Dim ReverseNames() As String
ReverseNames = System.Array.Reverse(Names)

After the execution of the last statement, the ReverseNames array contains the same elements as the
Names array in reverse order. Notice that the ReverseNames array need not be dimensioned when it’s
declared; the Reverse method will dimension the array accordingly.

The Copy and CopyTo methods copy the elements of an array (or segment of an array) to another
array. The Copy method copies a range of elements from one array to another, and its syntax is

System.Array.Copy(sourceArray, destinationArray, count)

sourceArray and destinationArray are the names of the two arrays, and count is the number of elements to
be copied. The copying process starts with the first element of the source array and ends after the
first count elements have been copied. If count is less than the length of the source array, or it exceeds
the length of the second array, an exception will be thrown.

Warning Both the Copy and CopyTo methods work with one-dimensional arrays only.

Another form of the Copy method allows you to specify the range of elements in the source array
to be copied and a range in the destination array where these elements will be copied. The syntax of
this form of the method is

System.Array.Copy(sourceArray, sourceStart,_
destinationArray, destinationStart, count)

This method copies count elements from the source array starting at location sourceStart and places
them in the destination array starting at location destinationStart. All indices must be valid, and there
should be count elements after the sourceStart index in the source array, as well as count elements after
the destinationStart in the destination array. If not, a runtime error will be generated.

The CopyTo method is similar, but it doesn’t require the name of the source array. It copies the
elements of the array to which it’s applied into the destination array:

System.Array.CopyTo(destinationArray, sourceStart)

Array Limitations
VB.NET arrays are more flexible than ever. The most demanding tasks programmers had to per-
form with arrays are now implemented as methods of the Array class. However, arrays aren’t perfect
for all types of data storage. One problem with arrays is that they’re not dynamic structures. Resiz-
ing the array is a time-consuming operation. There is no simple method to insert additional elements
or delete elements anywhere in the array. To remove the third item from an array, you must move up
all the elements after the third one by one position. The element array(3) must become array(2),
array(4) must become array(3), and so on. You can easily implement this technique with a loop, but
what good is it going to be with a large array?

Chapter 11 STORING DATA IN COLLECTIONS488

2877c11.qxd 11/11/01 4:18 PM Page 488

http://www.sybex.com

A similar approach must be followed to make space for a new element. To insert a new element at
the beginning of the array, all elements must be moved by one position toward the end of the array.

These problems were addressed with the introduction of a new structure, the ArrayList, which is
described in the following section. In short, the ArrayList is a dynamic array that expands and
shrinks automatically during the course of the program as needed.

Another shortcoming of arrays is that you can only access their elements by means of an index,
which in most situations is a meaningless number. Ideally, we should be able to access arrays with a
meaningful key. If the array Capitals contains the state capitals, the capital of California could be the
element Capitals(0) or Capitals(33). It’s up to the programmer to come up with a technique to match
states to indices. A far more convenient structure would be an array that can be accessed by a string,
which in our example would be the name of the state: Capitals(“California”). The Framework provides
two structures that resemble an array, but their elements can be accessed by a key: the HashTable
and the Dictionary. The Dictionary is not new VB.NET—it has been around since VB4—but it’s
being replaced by the HashTable. In this chapter, I will discuss the HashTable class in detail.

Both ArrayLists and HashTables are quite similar in terms of the members they expose, so I will
present the members of the ArrayList collection in detail. Many of these members apply to both
collections.

The ArrayList Collection
The ArrayList collection allows you to maintain multiple elements, similar to an array. However, the
ArrayList collection allows the insertion of elements anywhere in the collection, as well as the
removal of any element. In other words, it’s a dynamic structure that can also grow automatically as
you add elements. Like an array, the ArrayList’s elements can be sorted and searched. In effect, the
ArrayList is a more “convenient” array, a dynamic array. You can also remove elements by value, not
only by index. If you have an ArrayList populated with names, you remove the item “Charles” by
passing the string itself as argument. Notice that “Charles” is not an index value; it’s the element you
want to remove.

Creating an ArrayList
To use an ArrayList in your code, you must first create an instance of the ArrayList class with the
New keyword. When you declare an ArrayList, you need not specify any dimensions. Just use a
statement like this one:

Dim aList As New ArrayList

The aList variable represents an ArrayList that can hold only 16 elements (the default size). You
can set the initial capacity of the ArrayList by setting its Capacity property. The Capacity property is
the number of elements the ArrayList can hold. It’s like declaring an array for 100 elements, but
using only 4 of them. There are 96 more elements to be used. The ArrayList’s capacity can be
increased, or reduced, at any time, just by setting the Capacity property. The following statement
sets the capacity of the ArrayList to 1,000 elements:

aList.Capacity = 1000

489THE ARRAYLIST COLLECTION

2877c11.qxd 11/11/01 4:18 PM Page 489

http://www.sybex.com

The aList variable is now ready to hold a large number of items. Notice that you don’t have to
prepare the collection for accepting a specific number of items. Every time you exceed the collec-
tion’s capacity, it’s doubled automatically. However, it’s not decreased automatically when you
remove items.

The exact number of items currently in the ArrayList is given by the Count property, which is
always less than (or, at most, equal to) the Capacity property. Both properties are expressed in terms
of items, not bytes or any other unit that might involve additional calculations. If you decide that
you’re no longer going to add more items to the collection, you can call the TrimToSize method,
which will set the collection’s capacity to the number of items in the list. After calling the TrimTo-
Size method, the Capacity property becomes equal to the Count property.

Adding and Removing Items
To add a new item to an ArrayList, use the Add method, whose syntax is

index = aList.Add(object)

where aList is a properly declared ArrayList and object is the item you want to add to the ArrayList
collection (it could be a number, a string, or a custom object). The Add method appends the speci-
fied item to the collection and returns the index of the new item. If you’re using an ArrayList named
Capitals to store the names of the state capitals, you can add an item (a string) with the following
statement:

Capitals.Add(“Sacramento”)

If the Persons ArrayList holds variables of a custom type, prepare a variable of that type and then add
it to the collection. Let’s say you’ve created a structure called Person with the following declaration:

Structure Person
Dim LastName As String
Dim FirstName As String
Dim Phone As String
Dim EMail As String

End Structure

To store a collection of Person items in an ArrayList, create a variable of the Person type, set its
fields, and then add it to the ArrayList, as in Listing 11.3.

Listing 11.3: Adding a Structure to an ArrayList

Dim Persons As New ArrayList
Dim p As New Person
p.LastName = “Last Name”
p.FirstName = “First Name”
p.Phone = “Phone”
p.EMail = “name@server.com”
Persons.Add(p)
p.LastName = “another name”
{ statements to set the other fields }
Persons.Add(p)

Chapter 11 STORING DATA IN COLLECTIONS490

2877c11.qxd 11/11/01 4:18 PM Page 490

http://www.sybex.com

If you execute these statements, the ArrayList will hold two items, both of the Person type. Notice
that you can add multiple instances of the same object to the ArrayList collection. To find out whether
an item belongs to the collection already, use the Contains method, which accepts as argument an
object and returns a True or False value, depending on whether the object belongs to the list:

If Persons.Contains(p) Then
MsgBox(“Duplicate element rejected”)

Else
Persons.Add(p)

End If

By default, items are appended to the ArrayList. To insert an item at a specific location, use the
Insert method. The Insert method accepts as argument the location at which the new item will be
inserted and, of course, an object to insert in the ArrayList, as shown next:

aList.Insert(index, object)

Unlike the Add method, the Insert method doesn’t return a value—the location of the new item
is already known.

You can also add multiple items with a single call to the AddRange method. This method
appends a collection of items to the ArrayList. The items could come from an array, or another
ArrayList. The following statement appends the elements of an array to the aList collection:

Dim colors() As Color = {Color.Red, Color.Blue, Color.Green}
aList.AddRange(colors)

The AddRange method in this example has appended three items of the same type to the ArrayList
collection. The array could have been declared as Object too; it doesn’t have to be strictly typed,
because the ArrayList collection is not strictly typed.

To insert a range of items anywhere in the ArrayList, use the InsertRange method, whose syntax is

aList.InsertRange(index, objects)

where index is the index of the ArrayList where the new elements will be inserted and objects is a col-
lection with the elements to be inserted.

Finally, you can overwrite a range in the ArrayList with a new range, with the SetRange method.
To overwrite the items in locations 5 through 9 in an ArrayList, use a few statements like the
following:

Dim words() As String = {“Just”, “a”, “few”, “more”, “words”}
aList.SetRange(5, words)

This code segment assumes that the aList collection contains at least 10 items, and it replaces five
of them.

To remove an item, use the Remove method, whose syntax is:

aList.Remove(object)

The object argument is the value to be removed, and not an index value. The ArrayList allows you to
remove items only by value. If the collection contains multiple instances of the same item, only the
first instance of the object will be removed.

491THE ARRAYLIST COLLECTION

2877c11.qxd 11/11/01 4:18 PM Page 491

http://www.sybex.com

Notice that the Remove method compares values, not references. If the ArrayList contains a Rec-
tangle object, you can search for this item by creating a new Rectangle variable and setting its prop-
erties to the properties of the Rectangle object you want to remove:

Dim R1 As New Rectangle(10, 10, 100, 100)
Dim R2 As Rectangle
aList.Add(R1)
aList.Add(R2)
R2 = New Rectangle(10, 10, 100, 100)
aList.Remove(R2)

If you execute these statements, they will add two identical rectangles to the aList ArrayList. The last
statement will remove the first of the two rectangles.

If you attempt to remove an item that doesn’t exist, an exception will be thrown. You can always
make sure that the item exists before attempting to remove it, by calling the Contains method, which
returns True if the item exists in the ArrayList, False otherwise:

If aList.Contains(object) Then aList.Remove(object)

You can also remove items by specifying their order in the list with the RemoveAt method. This
method accepts as argument the location of the item to remove, which must be less than the number
of items currently in the list. The syntax of the RemoveAt method is

aList.RemoveAt(index)

To remove more than one consecutive item, use the RemoveRange method, whose syntax is

aList.RemoveRange(startIndex, count)

The startIndex argument is the index of the first item to be removed, and count is the number of items to
be removed.

The following statements are examples of the methods that remove items from an ArrayList collec-
tion. The first two statements remove an item by value. The first statement removes an object, and the
second removes a string item. The third statement removes the third item, and the last one removes
the third through fifth items.

aList.Remove(Color.Red)
aList.Remove(“RichardM”)
aList.RemoveAt(2)
aList.RemoveRange(2, 3)

If you execute all the statements in the order shown, the third statement may not remove the orig-
inal collection’s third item. It will remove the third item of the collection as it has been rearranged
after the execution of the first two statements. The same is true for the last statement. It will remove
the elements at locations 2, 3, and 4, as they are arranged at the moment the statement is executed.

Copying Items

Besides adding and removing items, you can also extract selected items from an ArrayList with the
GetRange method. The GetRange method extracts a number of consecutive elements from the
ArrayList and stores them to a new ArrayList:

newList = ArrayList.GetRange(index, count)

Chapter 11 STORING DATA IN COLLECTIONS492

2877c11.qxd 11/11/01 4:18 PM Page 492

http://www.sybex.com

where index is the index of the first item to copy and count is the number of items to be copied. The
GetRange method returns another ArrayList with the proper number of items.

The following statement copies three items from the aList ArrayList and inserts them at the begin-
ning of the bList ArrayList. The three elements copied are the fourth through sixth elements in the
original collection:

bList.InsertRange(0, aList.GetRange(3, 3))

The statements in Listing 11.4 populate the aList ArrayList with 10 strings. Then they copy
elements 3 through 5 and add them to the start of the bList ArrayList. Then they copy elements
7 through 9 from the aList ArrayList and insert them in the bList ArrayList, right after the third
element.

Listing 11.4: The GetRange and InsertRange Methods

Dim aList As New ArrayList()
Dim names(10) As String
names(0) = “Item 0” : names(1) = “Item 1”
names(2) = “Item 2” : names(3) = “Item 3”
names(4) = “Item 4” : names(5) = “Item 5”
names(6) = “Item 6” : names(7) = “Item 7”
names(8) = “Item 8” : names(9) = “Item 9”
aList.InsertRange(0, names)
ShowArrayList(aList)
Dim bList As New ArrayList()
bList.InsertRange(0, aList.GetRange(3, 3))
ShowArrayList(aList)
bList.InsertRange(2, aList.GetRange(7, 3))
ShowArrayList(bList)

The ShowArrayList() procedure (Listing 11.5) displays the contents of the ArrayList in the Out-
put window (the GetEnumerator method is discussed in detail later in this chapter).

Listing 11.5: The ShowArrayList() Subroutine

Sub ShowArrayList(ByVal List As Arraylist)
Dim AListEnum As IEnumerator
AListEnum = List.GetEnumerator
While AListEnum.MoveNext

Console.WriteLine(AListEnum.Current)
End While
Console.WriteLine()

End Sub

493THE ARRAYLIST COLLECTION

2877c11.qxd 11/11/01 4:18 PM Page 493

http://www.sybex.com

The output produced by Listing 11.5 is shown next in columns, so that you can compare the ele-
ments in the original ArrayList and the elements copied to the second ArrayList collection. The bList
collection was populated with the items 3, 4, and 5 initially (the middle column in the following
table). The second InsertRange statement inserted the items 7, 8, and 9 in front of the third element,
which was pushed to the end of the list. The column bList (1) shows the contents of bList after the
execution of the first InsertRange statement, and the column bList (2) shows the contents of bList
after the execution of the second InsertRange statement.

aList bList (1) bList (2)

Item 0 Item 3 Item 3
Item 1 Item 4 Item 4
Item 2 Item 5 Item 7
Item 3 Item 8
Item 4 Item 9
Item 5 Item 5
Item 6
Item 7
Item 8
Item 9

The Repeat method fills an ArrayList with multiple instances of the same item, and its syntax is

newList = aList.Repeat(item, count)

This method returns a new ArrayList with count elements, all of them being identical to the item
argument. To fill an ArrayList with the string “New Item”, use the following statement:

newList = System.ArrayList.Repeat(“New Item”, 10)

Another method of the ArrayList class is the Reverse method, which reverses the order of the ele-
ments in an ArrayList collection, or a portion of it, and its syntax is

newList = aList.Reverse()

or

newList = aList.Reverse(startIndex, endIndex)

The first form of the method reverses the entire collection; the second form reverses a section of
the collection. Both methods return another ArrayList with the same elements as the original, only in
reverse order.

Sorting ArrayLists

To sort the ArrayList, use the Sort method, which has three overloaded forms:

aList.Sort()
aList.Sort(comparer)
aList.Sort(startIndex, endIndex, comparer)

Chapter 11 STORING DATA IN COLLECTIONS494

2877c11.qxd 11/11/01 4:18 PM Page 494

http://www.sybex.com

The ArrayList’s Sort method doesn’t require that you pass the name of the ArrayList to be sorted
as argument. aList is a properly declared and initialized ArrayList object. The first form of the Sort
method sorts the ArrayList alphabetically or numerically, depending on the data type of the objects
stored in it. If the items are not all of the same type, an exception will be thrown. You’ll see how you
can handle this exception shortly.

If the items stored in the ArrayList are of a data type other than the base data types, you must
supply your own mechanism to compare the objects. The other two forms of the Sort method use a
custom function for comparing items. Notice that there is no overloaded form of the Sort method
that sorts a section of the ArrayList.

Note Despite their similarities, the Sort method of ArrayList collection is not as flexible as the Sort method of the Array
class. For example, you can’t sort an ArrayList collection based on the values in another collection.

The Sort method will sort an ArrayList only if all the items are of the same type or if the items
can be compared by the default comparer provided by a specific data type. The list may contain
items of widely different types, in which case the Sort method will fail. To prevent a runtime excep-
tion, you must make sure that all items are of the same type. If you can’t ensure that all the items are
of the same type, catch the possible error and handle it from within your code, as demonstrated in
Listing 11.6.

Listing 11.6: Foolproof Sorting

Dim Sorted As Boolean = True
Try

aList.Sort()
Catch SortException As Exception

MsgBox(SortException.Message)
Sorted = False

End Try
If Sorted Then

{ process sorted ArrayList }
Else

{ process unsorted list }
End If

The Sorted Boolean variable is initially set to True, because the Sort method will most likely suc-
ceed. If not, an exception will be thrown, in which case the code resets the Sorted variable to False and
uses it later to distinguish between sorted and unsorted collections. For example, if the collection
was sorted properly, you can call the BinarySearch method. If not, you can only use the IndexOf and
LastIndexOf methods to locate an item.

The Sort method can’t even sort a collection of various numeric data types. If some of the objects
are Doubles and some Integers or Decimals, the Sort method will fail. You must either make sure
that all the items in the ArrayList are of the same type, or provide your own function for comparing
the ArrayList’s items.

495THE ARRAYLIST COLLECTION

2877c11.qxd 11/11/01 4:18 PM Page 495

http://www.sybex.com

Searching ArrayLists

Like arrays, the ArrayList class exposes the IndexOf and LastIndexOf methods to search in an
unsorted list and the BinarySearch method for sorted lists. If you need to know the location of an
item, use the IndexOf and LastIndexOf methods, which accept as argument the object to be located
and return an index:

aList.IndexOf(object)

Here, object is the item you’re searching.
The LastIndexOf method has the same syntax, but it starts scanning the array from its end and

moves backward toward the beginning. The IndexOf and LastIndexOf methods are overloaded. The
other two forms of the IndexOf method are:

aList.IndexOf(object, startIndex)
aList.IndexOf(object, startIndex, length)

The two additional arguments determine where the search starts and ends. The two methods
return the index of the item, if it belongs to the collection. If not, they return the value –1. Both
ArrayLists and Arrays are searched in a linear fashion, from beginning to end (or from end to begin-
ning in the case of the LastIndexOf method).

Tip The IndexOf and LastIndexOf methods perform case-sensitive searches, and they report exact matches only.

If the ArrayList is sorted, use the BinarySearch method, which accepts as argument the object to
be located and returns its index in the collection:

aList.BinarySearch(object)

where object is the item you’re looking for. This form of the BinarySearch method can’t be used with
data types that don’t provide their own comparer (i.e., base types like integers and strings). To use
the BinarySearch method with an ArrayList of custom objects, you must provide your own com-
parer, which is the same as the one used with the Sort method to sort the collection.

There are two more forms of this method. To search for an item in an ArrayList with different
data types, use the following form of the BinarySearch method:

aList.BinarySearch(object, comparer)

The first argument is the object you’re searching for, and the second is the name of an IComparer
object.

Another form of the BinarySearch method allows you to search for an item in a section of the
collection; its syntax is

aList.BinarySearch(startIndex, length, object, comparer)

The first argument is the index at which the search will begin, and the second argument is the
length of the subrange. object and comparer are the same as with the second form of the method. For
more information on the BinarySearch method, see the description of the BinarySearch method of
the Array class. The two methods are identical, and they apply to sorted lists only.

Chapter 11 STORING DATA IN COLLECTIONS496

2877c11.qxd 11/11/01 4:18 PM Page 496

http://www.sybex.com

Iterating an ArrayList

To iterate through the elements of an ArrayList collection, you can set up a For…Next loop like the
following one:

For i = 0 To ArrayList.Count – 1
{ process item ArrayList(i) }

Next

This is a trivial operation, but the processing itself can get as complicated as the type of objects
stored in the collection requires. The current item at each iteration is the ArrayList(i). If you don’t
know its exact type, assign it to an Object variable and then process it.

You could also use the For Each…Next loop with an Object variable, as shown next:

Dim itm As Object
For Each itm In ArrayList

{ process item itm }
Next

If all the items in the ArrayList are of the same type, you can use a variable of the same type to
iterate through the collection, instead of a generic Object variable. If all the elements were Decimals,
for example, you can declare the itm variable as Decimal.

An even better method is to create an enumerator for the collection and use it to iterate through
its items. This technique applies to all collections and is discussed in the section “Enumerating Col-
lections,” later in this chapter.

The ArrayList class addresses most of the problems associated with the Array class, but one last
problem remains—that of accessing the items in the collection through a meaningful key. This is
the problem addressed by the HashTable collection.

The HashTable Collection
The ArrayList is a more convenient form of an array. It’s dynamic, it allows you to insert items any-
where and remove items from the collection with a single method call, and it supports all the con-
venient features of an array, like sorting and searching.

Yet, both collections have a drawback: namely, you must access their elements by an index. Another
collection, the HashTable collection, is similar to the ArrayList, but it allows you to access the items
by a key. Each item has a value and a key. The value is the same value you store in an array, but the
key is a meaningful entity for accessing the items in the collection.

The HashTable exposes most of the properties and methods of the ArrayList, with a few notable
exceptions. The Count property returns the number of items in the collection as usual, but the
HashTable collection doesn’t expose a Capacity property. The HashTable collection uses fairly com-
plicated logic to maintain the list of items, and it adjusts its capacity automatically. Fortunately, you
need not know how the items are stored in the collection. In short, it creates automatically a unique
key for each item. This key is derived from the item being added, and it’s possible that two items
will produce the same key—not very likely, but the possibility is not zero. The HashTable class uses
a complicated algorithm to handle all possible cases, but you need not be concerned with these
details. The Framework provides all these classes so that you won’t have to write low-level code.

497THE HASHTABLE COLLECTION

2877c11.qxd 11/11/01 4:18 PM Page 497

http://www.sybex.com

To use a HashTable in your code, you need not import any class. Just declare a HashTable vari-
able with the following statement:

Dim hTable As New HashTable

To add an item to the HashTable, use the Add method, whose syntax is

hTable.Add(key, value)

value is the item you want to add (it can be any object), and key is a value you supply, which repre-
sents the item. This is the value you’ll use later to retrieve the item. If you’re setting up a structure
for storing temperatures in various cities, use the city names as keys:

Dim Temperatures As New HashTable
Temperatures.Add(“Houston”, 81)
Temperatures.Add(“Los Angeles”, 78)

Notice that you can have duplicate values, but the keys must be unique. If you attempt to use an
existing key, an argument exception will be raised. To find out whether a specific value or key is
already in the collection, use the ContainsKey and ContainsValue methods. The syntax of the two
methods is quite similar:

hTable.ContainsKey(object)
hTable.ContainsValue(object)

The HashTable collection exposes the Contains method too, which is identical to the ContainsKey
method.

To find out whether a specific key is in use already, use the ContainsKey method, as shown in the
following statements, which add a new item to the HashTable only if it’s key doesn’t exist already:

Dim value As New Rectangle(100, 100, 50, 50)
Dim key As String = “object1”
If Not hTable.ContainsKey(key) Then

hTable.Add(key, value)
End If

The Values and Keys properties allow you to retrieve all the values and the keys in the
HashTable. Both properties are collections and expose the usual members of a collection. To iterate
through the values stored in the HashTable hTable, use the following loop:

Dim itm As Object
For Each itm In hTable.Values

Console.WriteLine(itm)
Next

There is only one method to remove items from an ArrayList: the Remove method, which
accepts as argument the key of the item to be removed:

hTable.Remove(key)

To extract items from a HashTable, use the CopyTo method. This method copies the items to a
one-dimensional array, and its syntax is

newArray = HTable.CopyTo(arrayName)

Chapter 11 STORING DATA IN COLLECTIONS498

2877c11.qxd 11/11/01 4:18 PM Page 498

http://www.sybex.com

You must set up the array that will accept the items beforehand, because this method can throw
several different exceptions for various error conditions. The array that accepts the values must be
one-dimensional, and there should be enough space in the array for the HashTable’s values. More-
over, the array’s type must be Object, because this is the type of the items you can store in a
HashTable.

Listing 11.7 demonstrates how to scan the keys of a HashTable through the Keys property and
then use these keys to access the items through the Item property (and passing the key as argument).

Listing 11.7: Iterating a HashTable

Private Function ShowHashTableContents(ByVal table As Hashtable) As String
Dim msg As String
Dim element, key As Object
msg = “The HashTable contains “ & table.Count.tostring & “ elements:” & vbCrLf
For Each key In table.keys

element = table.Item(key)
msg = msg & vbCrLf
msg = msg & “ Element Type = “ & element.GetType.ToString & vbCrLf
msg = msg & “ Element Key= “ & Key.ToString
msg = msg & “ Element Value= “ & element.ToString & vbCrLf

Next
Return(msg)

End Sub

To print the contents of a HashTable variable on the Output window, call the ShowHashTable-
Contents() function, passing the name of the HashTable as argument, and then print the string
returned by the function:

Dim HT As New HashTable
{ statements to populate HashTable }
Console.WriteLine(ShowHashTableContents(HT))

VB.NET at Work: The WordFrequencies Project
In this section, you’ll develop an application that counts word frequencies in a text. The Word-
Frequencies application scans text files and counts the occurrences of each word in the text. As you
will see, the HashTable is the natural choice for storing this information, because you want to access
a word’s frequency by the word. To retrieve (or update) the frequency of the word elaborate, for
example, you will use the expression:

Words(“ELABORATE”).Value

Arrays and ArrayLists are out of the question, because they can’t be accessed by a key. You could also
use the SortedList collection, which is described later in this chapter, but this collection maintains its
items sorted at all times. If you need this functionality as well, you can modify the application accord-
ingly. The items in a SortedList are also accessed by keys, so you won’t have to introduce substantial
changes in the code.

499THE HASHTABLE COLLECTION

2877c11.qxd 11/11/01 4:18 PM Page 499

http://www.sybex.com

Let me start with a few remarks. First, all words we locate in the various text files will be con-
verted to uppercase. Because the keys of the HashTable are case-sensitive, converting them to upper-
case makes them unique. This way, we don’t risk counting the same word in different cases as two or
more different words.

The frequencies of the words can’t be calculated instantly, because we need to know the total
number of words in the text. Instead, each value in the HashTable is the number of occurrences of a
specific word. To calculate the actual frequency of the same word, you must divide this value by the
number of occurrences of all words, but this can happen only after we have scanned the entire text
file and counted the occurrences of each word. Since this operation will introduce delays in the
application, I’ve decided to keep track of number of occurrences only and calculate the word fre-
quencies when requested.

When the code runs into another instance of the word elaborate, it simply increases the matching
item of the HashTable by one:

Words(“ELABORATE”).Value = Words(“ELABORATE”).Value + 1

The application’s interface is shown in Figure 11.3. To scan another text file and process its
words, click the Read Text File button. You’ll be prompted to select the name of the file to be
processed with an Open dialog box. Then, you can click the Show Word Count button to count the
number of occurrences of each word in the text. The last button on the form sorts the words accord-
ing to their count.

The application maintains a single HashTable collection, the Words collection, and it updates this
collection rather than counting word occurrences from scratch. The Frequency Table menu contains the
commands to save the collection’s items to a disk file and read the same data from the file. Use one of
the Save commands to save the HashTable to a disk file, and use the equivalent Load command to
read the data from the disk file into the HashTable. The commands in this menu can store the data either
to a text file (Save SOAP/Load SOAP commands) or to a binary file (Save Binary/Load Binary). Use

Figure 11.3

The
WordFrequencies
project demons
trates how to use
the HashTable
collection.

Chapter 11 STORING DATA IN COLLECTIONS500

2877c11.qxd 11/11/01 4:18 PM Page 500

http://www.sybex.com

these commands to store the data generated in a single session, load the data in a later session, and
process more files. These commands will be discussed in detail at the end of the chapter, where we’ll
explore the Serialization class. For now, you can use the commands to continue processing text files in
multiple sessions.

The WordFrequencies application uses techniques and classes we haven’t discussed yet. The topic
of reading from (or writing to) files is discussed in the following chapter. You don’t really have to
understand the code that opens a text file and reads its lines; just focus on the segments that manipu-
late the text file. To test the project, I used some very large files I downloaded from the Project
Gutenberg Web site (http://promo.net/pg/). This site contains entire books in electronic format
(plain text files), and you can borrow some files to test any program that manipulates text (in addi-
tion to reading them, of course).

The code reads the text into a string variable, the str variable. Then, it calls the Split method of
the String class to split the text into individual words. The Split method uses the space, comma,
period, quote, exclamation mark, colon, semicolon, and newline characters as delimiters. The indi-
vidual words are stored in the Words array. The program goes through each word in the array and
determines whether it’s a valid word by calling the IsValidWord() function. This function returns
False if one of the characters in the word is not a letter; strings like “B2B” or “U2” are not consid-
ered proper words. IsValidWord() is a custom function, and you can edit it as you wish.

Any valid word becomes a key to the WordFrequencies HashTable. The corresponding value is the
number of occurrences of the specific word in the HashTable. If a key (a new word) is added to the
table, its value is set to 1. If the key exists already, then its value is increased by 1, with the following
If statement:

If Not WordFrequencies.ContainsKey(word) Then
WordFrequencies.Add(word, 1)

Else
WordFrequencies(word) = CType(WordFrequencies(word), Integer) + 1

End If

The code that reads the text file and splits it into individual words is shown in Listing 11.8. The
code prompts the user to select a text file with the Open dialog box and then reads the entire text into
a string variable, the txtLine variable, and the individual words are isolated with the Split method of
the String class.

Listing 11.8: Splitting a Text File into Words

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

OpenFileDialog1.DefaultExt = “TXT”
OpenFileDialog1.Filter = “Text|*.TXT|All Files|*.*”
OpenFileDialog1.ShowDialog()
If OpenFileDialog1.FileName = “” Then Exit Sub
Dim str As StreamReader
Dim txtFile As File
Dim txtLine As String
Dim Words() As String

501THE HASHTABLE COLLECTION

2877c11.qxd 11/11/01 4:18 PM Page 501

http://www.sybex.com

Dim Delimiters() As Char = {CType(“ “, Char), CType(“.”, Char), _
CType(“,”, Char), CType(“‘“, Char), _
Ctype(“!”, Char), Ctype(“;”, Char), _
Ctype(“:”, Char), Chr(10), Chr(13)}

str = File.OpenText(OpenFileDialog1.FileName)
txtLine = str.ReadLine()
txtLine = str.ReadToEnd
Words = txtLine.Split(Delimiters)
Dim iword As Integer, word As String
For iword = 0 To Words.GetUpperBound(0)

word = Words(iword).ToUpper
If IsValidWord(word) Then

If Not WordFrequencies.ContainsKey(word) Then
WordFrequencies.Add(word, 1)

Else
WordFrequencies(word) = CType(WordFrequencies(word), Integer) + 1

End If
End If

Next
End Sub

This event handler calculates the count of the unique words and displays them on a TextBox con-
trol. In a document with 130,000 words, it didn’t take more than a couple of seconds to perform all
the calculations. The process of displaying the list of unique words on a TextBox control was very fast
too, thanks to the StringBuilder class. The code behind the Show Word Count button (Listing 11.9)
displays the list of words along with the number of occurrences of each word in the text.

Listing 11.9: Displaying the Count of Each Word in the Text

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

Dim wEnum As IDictionaryEnumerator
Dim occurrences As Integer
Dim allWords As New System.Text.StringBuilder()
wEnum = WordFrequencies.GetEnumerator
While wEnum.MoveNext

allWords.Append(wEnum.Key.ToString & vbTab & “—>” & vbTab & _
wEnum.Value.ToString & vbCrLf)

End While
TextBox1.Text = allWords.ToString

End Sub

The last button on the form calculates the frequency of each word in the HashTable, sorts them
according to their frequencies, and displays the list; its code is detailed in Listing 11.10.

Chapter 11 STORING DATA IN COLLECTIONS502

2877c11.qxd 11/11/01 4:18 PM Page 502

http://www.sybex.com

Listing 11.10: Sorting the Words According to Frequency

Private Sub Button3_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button3.Click

Dim wEnum As IDictionaryEnumerator
Dim Words(WordFrequencies.Count) As String
Dim Frequencies(WordFrequencies.Count) As Double
Dim allWords As New System.Text.StringBuilder()
Dim i, totCount As Integer
wEnum = WordFrequencies.GetEnumerator
While wEnum.MoveNext

Words(i) = CType(wEnum.Key, String)
Frequencies(i) = CType(wEnum.Value, Integer)
totCount = totCount + Frequencies(i)
i = i + 1

End While
For i = 0 To Words.GetUpperBound(0)

Frequencies(i) = Frequencies(i) / totCount
Next
Words.Sort(Frequencies, Words)
TextBox1.Clear()
For i = Words.GetUpperBound(0) To 0 Step -1

allWords.Append(Words(i) & vbTab & “—>” & vbTab & _
Format(100 * Frequencies(i), “#.000”) & vbCrLf)

Next
TextBox1.Text = allWords.ToString

End Sub

Handling Large Sets of Data

Incidentally, my first attempt was to display the list of unique words on a ListBox control. The process was
incredibly slow. The first 10,000 words were added in a few seconds, but as the number of items increased,
the time it took to add them to the control increased exponentially (or so it seemed).

Adding thousands of items to a ListBox control is a very slow process. It’s likely that you will run into situ-
ations where a seemingly simple task will turn out to be detrimental to your application’s performance. You
should try different approaches, but also consider a total overhaul of your user interface. Ask yourself, who
needs to see a list with 10,000 words? You can use the application to do the calculations and then retrieve
the count of selected words, or display the 100 most common ones, or even display 100 words at a time. I’m
displaying the list of words because this is a demonstration, but a real application shouldn’t display such a
long list. The core of the application counts unique words in a text file, and it does it very efficiently.

Appending each word to a TextBox control was slow too, so I’ve used a string variable to store the text,
then assign it to the control. This variable is the allWords variable, which was declared with the String-
Builder type. As you will learn in the following chapter, the StringBuider class manipulates strings like the
String class, but it’s very fast.

503THE HASHTABLE COLLECTION

2877c11.qxd 11/11/01 4:18 PM Page 503

http://www.sybex.com

The SortedList Class
The SortedList collection is a peculiar combination of the Array and HashTable classes. It maintains
a list of items, which can be accessed either with an index or with a key. Moreover, the collection is
always sorted according to the keys. The items of a SortedList are ordered according to the values of
their keys, and there’s no method for sorting the collection according to the values stored in it.

To create a new SortedList collection, use a statement like the following:

Dim sList As New SortedList

As you may have guessed, this collection can store keys that are of the base data types. If you
want to use custom objects as keys, you must specify an argument of the IComparer type, which tells
VB how to compare the custom items. This information is crucial; without it, the SortedList won’t
be able to maintain its items sorted. You can still store items in the SortedList, but they will appear
in the order in which they were added.

This form of the SortedList constructor has the following syntax:

Dim sList As New SortedList(New comparer)

where comparer is the name of a custom IComparer interface (which is discussed in detail later in this
chapter). There are also two more forms of the constructor, which allow you to specify the initial
capacity of the SortedList collection, as well as a Dictionary object, whose data (keys and values) will
be added to the SortedList.

Like the other two collections examined in this chapter, the SortedList collection supports the
Capacity and Count properties. To add an item to a SortedList collection, use the Add method,
whose syntax is

sList.Add(key, item)

where key is the key of the new item and item is the item to be added. Both arguments are objects. The
Add method is the only way to add items to a SortedList collection. All items are inserted into the
collection according to their keys, and each item’s key must be unique. Attempting to add a dupli-
cate key will throw an exception.

The SortedList class also exposes the ContainsKey and ContainsValue properties, which allow
you to find out whether a key or item exists in the list already. To add a new item, use the following
statement that makes sure the key isn’t in use:

If Not sList.ContainsKey(myKey) Then
sList.Add(myKey, myItem)

End If

(Just replace myKey and myItem with your key and item.) It’s OK to store duplicate items in the same
SortedList collection, but you can still detect the presence of an item in the list with a similar If statement.

To replace an existing item, use the SetByIndex method, which replaces the value at a specific
index. The syntax of the method is

sList.SetByIndex(index, item)

where the first argument is the index at which the value will be inserted and item is the new item to be
inserted in the collection. This object will replace the value that corresponds to the specified index.

Chapter 11 STORING DATA IN COLLECTIONS504

2877c11.qxd 11/11/01 4:18 PM Page 504

http://www.sybex.com

The key, however, remains the same. There’s no equivalent method for replacing a key; you must
first remove the item, and then insert it again with its new key.

To remove items from the collection, use the Remove and RemoveAt methods. The Remove method
accepts a key as argument and removes the item that corresponds to that key. The RemoveAt
method accepts an index as argument and removes the item at the specified index. To remove all the
items from a SortedList collection, call its Clear method. After clearing the collection, you should
also call its TrimToSize method to restore its capacity to the default size (16).

Let’s build a SortedList and print out its elements. The following listing declares the sList SortedList
and then adds 10 items to the collection. The keys are integers, and the values are strings. The items
are added in no specific order, but as soon as they’re added they’re inserted at the proper location in
the collection, so that their keys are in ascending order.

Create a new project, place a button on its form, and enter Listing 11.11 in its Click event han-
dler. The project you’ll build in this section is called SortedList, and you can find it on the CD.

Listing 11.11: Populating a Simple SortedList

Public Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs)

Dim sList As New System.Collections.SortedList()
‘ Populate sortedlist

sList.Add(16, “item 3”)
sList.Add(10, “item 9”)
sList.Add(15, “item 4”)
sList.Add(17, “item 2”)
sList.Add(11, “item 8”)
sList.Add(14, “item 5”)
sList.Add(18, “item 1”)
sList.Add(12, “item 7”)
sList.Add(19, “item 0”)
sList.Add(13, “item 6”)
Dim SLEnum As IDictionaryEnumerator
SLEnum = sList.GetEnumerator()

‘ Print all key-value pairs
While SLEnum.MoveNext

Console.WriteLine(“Key = “ & SLEnum.Key.Tostring & “, Value= “ & _
SLEnum.Value.ToString

End While
End Sub

The first segment of the code populates the ArrayList, while the second segment of the code prints
all the key–value pairs in the order in which the enumerator retrieves them. The enumerator is the
built-in mechanism for scanning a collection’s items (it will be discussed in detail later in this chapter).

If you execute these statements, they will produce the following output:

Key = 10, Value= item 9
Key = 11, Value= item 8

505THE SORTEDLIST CLASS

2877c11.qxd 11/11/01 4:18 PM Page 505

http://www.sybex.com

Key = 12, Value= item 7
Key = 13, Value= item 6
Key = 14, Value= item 5
Key = 15, Value= item 4
Key = 16, Value= item 3
Key = 17, Value= item 2
Key = 18, Value= item 1
Key = 19, Value= item 0

The items are sorted according to their keys, regardless of the order in which they were inserted
into the collection.

Let’s look now at a few methods for extracting keys and values. To find out the index of a value
in the SortedList, use the IndexOfValue method, which accepts as argument an object. If the object
exists in the collection, it returns its index. If not, it returns the value –1. If the same value appears
more than once in the collection, the IndexOfValue property will return the first instance of the
value. Moreover, there’s no mechanism for retrieving the following instances. Notice that the Index-
OfValue property performs a case-sensitive search. The following statement will return the index 2
(the item you’re looking for is in the third place in the original SortedList):

Console.WriteLine(sList.IndexOfValue(“item 7”))

You can also find out the index of a specific key, with the IndexOfKey method, whose syntax is
similar. Instead of a value, it locates a key. The following statement will return the index 7 (the key
you’re looking for is in the eighth place in the SortedList):

Console.WriteLine(sList.IndexOfKey(17))

The GetKey and GetValue methods allow you to retrieve the index that corresponds to a specific
key or value in the SortedList. Both methods accept an object as argument and return an index.

Finally, you can combine the two methods to retrieve the key that corresponds to a value, with a
statement like the following one:

Console.WriteLine(sList.GetKey(sList.IndexOfValue(“item 7”)))

This statement will print the value 12, based on the contents of the sList collection in Listing 11.11.

Note If either the key or the value you’re searching for can’t be found, the IndexOfKey and IndexOfValue methods
will return –1.

You can retrieve the keys in a SortedList collection and create another list, with the GetKeyList
method. Likewise, the GetValueList method returns all the values in the SortedList. The following
code extracts the keys from the sList SortedList and stores them in the keys list. Then, it scans the list
with the help of the key variable and prints all the keys:

Dim keys As IList
keys = slist.GetKeyList()
Dim key As Integer
For Each key In Keys

Console.WriteLine(key)
Next

Chapter 11 STORING DATA IN COLLECTIONS506

2877c11.qxd 11/11/01 4:18 PM Page 506

http://www.sybex.com

You can also extract both the keys and the values from a SortedList and store them into an
ArrayList, as shown here:

Dim AllKeys As New ArrayList()
AllKeys.InsertRange(0, sList.GetValueList)

Each item is stored at a specific location in the SortedList, and you can find out the location of
each item with a loop like the following:

Dim idx As Integer
For idx = 0 To sList.Count - 1

Console.WriteLine(“ITEM: “ & sList.GetByIndex(idx).ToString & _
“ is at location “ & idx.Tostring)

Next

The output produced by this code segment is:

ITEM: item 9 is at location 0
ITEM: item 8 is at location 1
ITEM: item 7 is at location 2
ITEM: item 6 is at location 3
ITEM: item 5 is at location 4
ITEM: item 4 is at location 5
ITEM: item 3 is at location 6
ITEM: item 2 is at location 7
ITEM: item 1 is at location 8
ITEM: item 0 is at location 9

You can also find out the location of each key, with a loop like the following one:

For idx = 0 To sList.Count - 1
Console.WriteLine(“The key at location “ & idx.ToString & “ is “ & _

sList.GetKey(idx).ToString)
Next

The output produced by the preceding code segment is:

The key at location 0 is 10
The key at location 1 is 11
The key at location 2 is 12
The key at location 3 is 13
The key at location 4 is 14
The key at location 5 is 15
The key at location 6 is 16
The key at location 7 is 17
The key at location 8 is 18
The key at location 9 is 19

Notice that the keys are rearranged as they’re added to the list, and they’re always physically sorted.
As you can understand, the keys must be of a base data type. If not, the SortedList can’t compare

the keys and therefore can’t maintain the proper order. To use objects as keys, you must also supply
a function custom comparer (a function that knows how to compare two objects). The topic of creating

507THE SORTEDLIST CLASS

2877c11.qxd 11/11/01 4:18 PM Page 507

http://www.sybex.com

custom comparers in discussed in detail shortly in the section “The IEnumerator and IComparer
Interfaces.” In the last example of that section, you will build a custom comparer for sorting the
SortedList based on a function of its keys, instead of the actual values of the keys.

Remember the WordFrequencies project we built earlier to demonstrate the use of the HashTable
class? Change the declaration of the WordFrequencies variable from HashTable to SortedList, and
the project will work as before. The only difference is that the words will appear on the TextBox
control sorted alphabetically when you click the Show Word Count button.

Other Collections

The System.Collections class exposes a few more collections, including the Queue and the Stack
collections. The main characteristic of these two collections is how you add and remove items to
them. When you add items to a Queue, the items are appended to the collection. When you remove
items, they’re removed from the top of the collection. You’d use this collection to emulate the cus-
tomer line in a bank or a production line.

The Stack collection inserts new items at the top, and you can only remove the top item. The
Stack collection is a FIFO (first in first out) structure, while the Queue class is a LIFO structure
(last in first out). You’d use this collection to emulate the stack maintained by the CPU, one of the
most crucial structures for the operating system and applications alike. Stacks and Queues are used
heavily in computer science, but they aren’t as common in business applications. I’m not going to
discuss any more collections in this book, but you can look them up in the documentation. There
are quite a few more interesting topics to cover in this chapter—and most important is how to save a
collection to a disk file and read it back.

The IEnumerator and IComparer Interfaces
Judging by its title, you probably thought this is a section for C++ programmers adapted for VB pro-
grammers. IEnumerator and IComparer are two objects that unlock some of the most powerful fea-
tures of collections. The proper term for IEnumerator and IComparer is interface, a term I will describe
shortly. If you don’t want to get too technical about interfaces, think of them as objects. The IEnu-
merator object retrieves a list of pointers for all the items in a collection, and you can use it to iterate
through the items in a collection. Every collection has a built-in enumerator, and you can retrieve it by
calling its GetEnumerator method. The IComparer object exposes the Compare and CompareTo
methods, which tells the compiler how to compare two objects of the same type. Once the compiler
knows how to compare the objects, it can sort a collection of objects with the same type.

The IComparer interface consists of a function that compares two items and returns a value indi-
cating their order (which one is the smaller item, or whether they’re equal). The Framework can’t com-
pare objects of all types. It only knows how to compare the base types—integers, strings, and so on. It
doesn’t know how to compare two rectangles, or two color objects. If you have a collection of col-
ors, you may want to sort them according to their luminance, saturation, brightness, and so on. The
compiler can’t make any assumptions as to how you may wish to sort your collection, and, of course,
it doesn’t expose members to sort a collection in all possible ways. Instead, it gives you the option to
specify a function that compares two colors (or two objects of any other type, for that matter) and
uses this function to sort the collection. The same function is used by the BinarySearch method, to

Chapter 11 STORING DATA IN COLLECTIONS508

2877c11.qxd 11/11/01 4:18 PM Page 508

http://www.sybex.com

locate an item in a sorted collection. In effect, the IComparer interface is a function that knows how
to compare two Color objects, for our example. If the collection contains items of a custom Struc-
ture, the IComparer interface is a function that knows how to compare two instances of the custom
Structure.

So, what is an interface? An interface is another term in object-oriented programming and describes
a very simple technique. When we write the code for a class, we may not know how to implement a
few operations, but we do know that they’ll have to be implemented later. We insert a placeholder
for these operations (a function declaration) and expect that the application that uses the class will
provide the actual implementation of these functions. All collections expose a Sort method, which
sorts the items in the collection by comparing them to one another. To do so, the Sort method calls
a function that compares two items and returns a value indicating their relative order. Any class that
exposes a function that can compare its objects can be sorted. The Integer data type, which is imple-
mented by the System.Integer class, exposes such a function, and so do all the base types. Custom
objects must provide their own comparison function—or more than a single function, if you want to
sort them in multiple ways. Since you can’t edit the collection’s Sort method’s code, you must supply
your comparison function through a mechanism that the class can understand. This is what the
IComparer interface is all about. The code that compares two objects of the same type is actually
trivial. You must follow the steps outlined here to make this function part of the class, so that the
collection can see and use it.

Enumerating Collections
All collections expose the IEnumerator interface, which is a fancy term for a very simple operation.
IEnumerator returns an object that allows you to iterate through the collection without having to
know anything about its items, not even the count of the items. To retrieve the enumerator for a col-
lection, call its GetEnumerator method, with a statement like the following:

Dim ALEnum As IEnumerator
ALEnum = AList.GetEnumerator

The IEnumerator object exposes two methods, the MoveNext and Reset methods. The
MoveNext method moves to the next item in the collection and makes it the current item. When
you initialize the IEnumerator object, it’s positioned in front of the very first item, so you must call
the MoveNext method to move to the first item. The Reset method does exactly the same: it reposi-
tions the IEnumerator in front of the first element.

The MoveNext method doesn’t return an item, as you might expect. It returns a True/False value
indicating whether it has successfully moved to the next item. Once you have reached the end of the
collection, the MoveNext method will return False. Here’s how you can enumerate through an
ArrayList collection with an enumerator:

Dim aItems As IEnumerator
aItems = aList.GetEnumerator
While aItems.MoveNext

{ process item aItems.Current }
End While

509THE IENUMERATOR AND ICOMPARER INTERFACES

2877c11.qxd 11/11/01 4:18 PM Page 509

http://www.sybex.com

At each iteration, the current item is given by the Current property of the enumerator, which rep-
resents the current object in the collection. Once you have reached the last item, the MoveNext
method will return False and the loop will terminate. To rescan the items, you must reset the
enumerator by calling its Reset method.

To process the current item, you can directly call its methods through the aItems.Current object.
If the collection holds Rectangles, for example, you can access their sizes with these expressions:

CType(aItems.Current, Rectangle).Width
CType(aItems.Current, Rectangle).Height

The Strict option necessitates the explicit conversion of the Current item to a Rectangle object.
In other words, you can’t use an expression like aItems.Current.Width with the Strict option on.

The event handler in Listing 11.12 populates an ArrayList with Rectangle objects and then iter-
ates through the collection and prints the area of each Rectangle.

Listing 11.12: Iterating an ArrayList with an Enumerator

Protected Sub Button2_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Dim aList As New ArrayList()
Dim R1 As New Rectangle(1, 1, 10, 10)
aList.Add(R1)
R1 = New Rectangle(2, 2, 20, 20)
aList.Add(R1)
aList.add(New Rectangle(3, 3, 2, 2))
Dim REnum As IEnumerator
REnum = aList.GetEnumerator
Dim R As New Rectangle()
While REnum.MoveNext

R = CType(REnum.Current, Rectangle)
Console.WriteLine(R.Width * R.Height)

End While
End Sub

The third Rectangle variable is added to the collection directly, without using an intermediate
variable, as I did with the first two objects. The Rectangle object is initialized in the same line that
adds the object to the collection. Then the REnum variable is set up and used to iterate through the
items of the collection. At each iteration, the code saves the current Rectangle to the R variable, and
it uses this variable to access the properties of the Rectangle object (its width and height).

Of course, you can iterate a collection without the enumerator, but with a For Each…Next loop.
To iterate through a HashTable, you can use either the Keys or the Values collections. The code of
Listing 11.13 populates a HashTable with Rectangle objects. Then it scans the items and prints
their keys, which are strings, and the area of each rectangle.

Chapter 11 STORING DATA IN COLLECTIONS510

2877c11.qxd 11/11/01 4:18 PM Page 510

http://www.sybex.com

Listing 11.13: Iterating a HashTable with Its Keys

Protected Sub Button3_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Dim hTable As New HashTable()
Dim r1 As New Rectangle(1, 1, 10, 10)
hTable.Add(“R1”, r1)
r1 = New Rectangle(2, 2, 20, 20)
hTable.Add(“R2”, r1)
hTable.add(“R3”, New Rectangle(3, 3, 2, 2))
Dim key As Object
Dim R As Rectangle
For Each key In hTable.keys

R = CType(hTable(key), Rectangle)
Console.WriteLine(“The area of Rectangle {0} is {1}”, Key.ToString, _

R.Width * R.Height)
Next

End Sub

The code adds three Rectangle objects to the HashTable and then iterates through the collection
using the Keys properties. Each item’s key is a string (“R1”, “R2”, and “R3”). The Keys property is
itself a collection and can be scanned with a For Each…Next loop. At each iteration, we access a dif-
ferent item through its key, with the expression hTable(key). The output produced by this code is
shown here:

The area of Rectangle R1 is 100
The area of Rectangle R2 is 400
The area of Rectangle R3 is 4

(I have used a format string with the WriteLine method to avoid a very long statement by embed-
ding the values into the string.)

Alternatively, you can iterate a HashTable with an enumerator, but be aware that the GetEnumer-
ator method of the HashTable collection returns an object of the IDictionaryEnumerator type, not
an IEnumerator object. The IDictionaryEnumerator is quite similar to the IEnumerator, but it
exposes additional properties. They are the Key and Value properties, and they return the current
item’s key and value. The IDictionaryEnumerator object also exposes the Entry property, which
returns both the key and the value. You can access the current item’s key and value either as
DEnum.Key and DEnum.Value, or as DEnum.Entry.Key and DEnum.Entry.Value. DEnum is a properly
declared enumerator for the HashTable:

Dim DEnum As IDictionaryEnumerator

Assuming that you have populated the hTable collection with the same three Rectangle objects,
you can use the statements in Listing 11.14 to iterate through the collection’s items.

511THE IENUMERATOR AND ICOMPARER INTERFACES

2877c11.qxd 11/11/01 4:18 PM Page 511

http://www.sybex.com

Listing 11.14: Iterating a HashTable with an Enumerator

Dim hEnum As IDictionaryEnumerator
hEnum = hTable.GetEnumerator
While hEnum.MoveNext

Console.WriteLine(“The value of “ & hEnum.Key & “{0} is “ & hEnum.Value)
Console.WriteLine(CType(hEnum.Value, Rectangle).Width * _

CType(hEnum.Value, Rectangle).Height)
End While

If you execute these statements after populating the HashTable collection with three Rectangles,
they will produce the following output:

The value of R1 is {X=1,Y=1,Width=10,Height=10}
100
The value of R2 is {X=2,Y=2,Width=20,Height=20}
400
The value of R3 is {X=3,Y=3,Width=2,Height=2}
4

The Value property of the enumerator returns an object, which must be cast to the appropriate
type, before you can call its members—unless the Strict option has been set to Off, of course.

VB.NET at Work: The Enumerations Project

The project Enumerations (Figure 11.4) on the CD shows how to iterate through an ArrayList and
a HashTable with and without an enumerator. The code should be quite familiar to you by now, so
I will not list it list here. You can open the project and examine its code and routines.

You can also enumerate arrays with an IEnumerator object. You must declare the enumerator
variable as IEnumerator and then call the MoveNext method to iterate the array from within a loop.
Listing 11.15 iterates through the elements of a string array with an enumerator.

Figure 11.4

How to scan
ArrayLists and
HashTables with
and without an
enumerator

Chapter 11 STORING DATA IN COLLECTIONS512

2877c11.qxd 11/11/01 4:18 PM Page 512

http://www.sybex.com

Listing 11.15: Enumerating an Array

Dim Names(4) As String
Names(0) = “Name 0” : Names(1) = “Name 1”
Names(2) = “Name 2” : Names(3) = “Name 3”
Dim arrayEnum As IEnumerator
arrayEnum = Names.GetEnumerator
While arrayEnum.MoveNext

Console.WriteLine(arrayEnum.Current)
End While

Custom Sorting
The Sort method allows you to sort collections, as long as the items are of the same base data type.
If the items are objects, however, the collection doesn’t know how to sort them. If you want to sort
objects, you must help the collection a little by telling it how to compare two objects. A sorting
operation is nothing more than a series of comparisons. Sorting algorithms compare items and swap
them if necessary. They don’t even swap the items; they simply rearrange a list of pointers to the
items. The first pointer points to the first item in the sorted collection, the second pointer points to
the second item in the sorted collection, and so on. The items themselves remain in their original
positions.

All the information needed by a sorting algorithm to operate on any type of item is a function
that compares two objects. Let’s say you have a list of persons, and each person is a Structure that
contains names, addresses, e-addresses, and so on. The System.Collections class can’t make any
assumptions as to how you want your list sorted. This collection can be sorted by any field in the
structure (names, e-addresses, postal codes, and so on). Even if the collection contains a built-in
object, like a Rectangle or Color object, the collection doesn’t know how to sort them.

The comparer is implemented as a separate class, outside all other classes, and is specific to a cus-
tom data type. Let’s say you have created a custom structure for storing contact information. The
Person object is declared as a structure with the following fields:

Structure Person
Dim Name As String
Dim BDate As Date
Dim EMail As String

End Structure

To add an instance of the Person object to an ArrayList or HashTable, create a variable of Per-
son type and initialize its fields as follows:

Dim p As New Person
Dim aList As ArrayList
p.Name = “Adams, George”
p.Bdate = #4/17/1957#
p.EMail = “gadams@example.com”
aList.Add(p)

513THE IENUMERATOR AND ICOMPARER INTERFACES

2877c11.qxd 11/11/01 4:18 PM Page 513

http://www.sybex.com

To add another element, you can either create a new Person object (variable p1, for example) or
set the p variable to Nothing and then initialize it again.

p = Nothing
p.Name = “New Name”
p.BDate = #1/1/1950#
‘ The EMail field is empty
aList.Add(p)

This collection can’t be sorted with the simple form of the Sort method, because the compiler
doesn’t know how to compare two Person objects. You must provide your own function for compar-
ing two variables of the Person type. Once this function has been written, the compiler will be able
to compare items and therefore sort the collection. This custom function, however, can’t be passed to
the Sort and BinarySearch methods by name. You must create a new class that implements the ICom-
parer interface and pass an IComparer object to the two methods. Here’s the outline of a class that
implements the IComparer interface (then we’ll look at the implementation details of the function
that actually compares two objects).

Class customComparer : Implements IComparer
Public Function Compare(ByVal o1 As Object, ByVal o2 As Object) _

As Integer Implements IComparer.Compare
{ function’s code }

End Function
End Class

The name of the class can be anything. It should be a name that indicates the type of comparison
it performs, or the type of objects it compares. The name of the custom function must be Compare,
and it must implement the IComparer.Compare interface. What exactly do we mean by “implement
an interface”? As you have seen, all classes expose some standard members. The method ToString,
for example, is a standard method, and the Framework knows how to implement it. It simply returns
the name of the class. There are situations, however, where we know that we’re going to need a mem-
ber, we know the name of the member, but we just can’t implement it.

The collection classes, for example, expose a Sort method. In order to sort their items, they must
be able to compare two elements and figure out which one is first. The comparison can be carried
out for the base types, but not for objects. So, they provide a placeholder, where you must place a
function that knows how to compare two instances of the object. This ability to write classes that
provide placeholders for the actual implementation of a method is known as interface. If you write a
function that compares two objects of the specific type and you pass it to the Sort method, this function
will be called in the place of the Compare method. The Sort method calls the Compare method of
the class that represents the objects you’re comparing. If it finds one, it uses it. If not, the Sort method
won’t work. The IComparer interface is the class’s way of incorporating your custom comparer function
into its Sort method.

Let’s get back to our example. To use the custom function, you must create an object of
customComparer type (or whatever you have named the class) and then pass it to the Sort and
BinarySearch methods as argument:

Dim CompareThem As New customComparer
aList.Sort(CompareThem)

Chapter 11 STORING DATA IN COLLECTIONS514

2877c11.qxd 11/11/01 4:18 PM Page 514

http://www.sybex.com

You can combine the two statements in one by initializing the customComparer variable in the line
that calls the Sort method:

aList.Sort(New customComparer())

You can also use the equivalent syntax of the BinarySearch method to locate a custom object that
implements its own IComparer interface:

BinarySearch(object, New customComparer())

This is how you use a custom function to compare two objects. Everything is the same, except for
the name of the class, which is different every time. The last step is to write the code that compares the
two objects and returns an integer value, indicating the order of the elements. This value should be –1
if the first object is smaller than the second object, 0 if the two objects are equal, and 1 if the first
object is larger than the second object. “Smaller” here means that the element appears before the
larger one when sorted in ascending order. Listing 11.16 is the function that sorts Person objects
according to the Age field.

Listing 11.16: A Custom Comparer

Class PersonAgeComparer : Implements IComparer
Public Function Compare(ByVal o1 As Object, ByVal o2 As Object) As Integer _

Implements IComparer.Compare
Dim person1, person2 As Person
Try

person1 = CType(o1, Person)
person2 = CType(o2, Person)

Catch compareException As system.Exception
Throw (compareException)
Exit Function

End Try
If person1.BDate < person2.BDate Then

Return -1
Else

If person1.BDate > person2.BDate Then
Return 1

Else
Return 0

End If
End If

End Function
End Class

The code could have been considerably simpler, but I’ll explain momentarily why the Try state-
ment is necessary. The comparison takes place in the If statement. If the first person’s birth date is
numerically smaller than the second person’s, the function returns the value –1. If the first person’s
birth date is numerically smaller than the second person’s, the function returns 1. Finally, if the two
values are equal, the function returns 0.

515THE IENUMERATOR AND ICOMPARER INTERFACES

2877c11.qxd 11/11/01 4:18 PM Page 515

http://www.sybex.com

The code is straightforward, so why the error-trapping code? Before we perform any of the neces-
sary operations, we convert the two objects into Person objects. It’s not unthinkable that the collec-
tion with the objects you want to sort contains objects of different types. If that’s the case, the CType()
function won’t be able to convert the corresponding argument to the Person type, and the compari-
son will fail. The same exception that would be thrown in the function’s code is raised again from
within the error handler, and it’s passed back to the calling code.

The Person objects can be sorted in many different ways. You may wish to sort them by ID,
name, and so on. To accommodate multiple sorts, you must implement several classes, each one with
a different Compare function. Listing 11.17 shows two classes that implement two different Com-
pare functions for the Person class. The PersonNameComparer class compares the names, while the
PersonAgeComparer class compares the ages.

Listing 11.17: A Class with Two Custom Comparers

Class PersonNameComparer : Implements IComparer
Public Function Compare(ByVal o1 As Object, ByVal o2 As Object) As Integer _

Implements IComparer.Compare
Dim person1, person2 As Person
Try

person1 = CType(o1, Person)
person2 = CType(o2, Person)

Catch compareException As system.Exception
Throw (compareException)
Exit Function

End Try
If person1.Name < person2.Name Then

Return -1
Else

If person1.Name > person2.Name Then
Return 1

Else
Return 0

End If
End If

End Function
End Class
Class PersonAgeComparer : Implements IComparer

Public Function Compare(ByVal o1 As Object, ByVal o2 As Object) As Integer _
Implements IComparer.Compare

Dim person1, person2 As Person
Try

person1 = CType(o1, Person)
person2 = CType(o2, Person)

Catch compareException As system.Exception
Throw (compareException)
Exit Function

End Try

Chapter 11 STORING DATA IN COLLECTIONS516

2877c11.qxd 11/11/01 4:18 PM Page 516

http://www.sybex.com

If person1.BDate > person2.BDate Then
Return -1

Else
If person1.BDate < person2.BDate Then

Return 1
Else

Return 0
End If

End If
End Function

End Class

To test the custom comparers, create a new application and enter the code of Listing 11.17 (the
two classes) in a separate Class module. Don’t forget to include the declaration of the Person Struc-
ture. Then place a button on the form and enter the code of Listing 11.18 in its Click event handler.
This code adds three persons with different names and birth dates to an ArrayList.

Listing 11.18:Testing the Custom Comparers

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim AList As New ArrayList()
Dim p As Person

‘ Populate collection
p.Name = “C Person”
p.EMail = “PersonC@sybex.com”
p.BDate = #1/1/1961#
If Not AList.Contains(p) Then AList.Add(p)
p.Name = “A Person”
p.EMail = “PersonA@sybex.com”
p.BDate = #3/3/1961#
If Not AList.Contains(p) Then AList.Add(p)
p.Name = “B Person”
p.EMail = “PersonB@sybex.com”
p.BDate = #2/2/1961#
If Not AList.Contains(p) Then AList.Add(p)

‘ Print collection as is
Dim PEnum As IEnumerator
PEnum = AList.GetEnumerator
ListBox1.Items.Add(“Original Collection”)
While PEnum.MoveNext

ListBox1.Items.Add(CType(PEnum.Current, Person).Name & vbTab & _
CType(PEnum.Current, Person).BDate)

End While
‘ Sort by name, then print collection

ListBox1.Items.Add(“ “)

517THE IENUMERATOR AND ICOMPARER INTERFACES

2877c11.qxd 11/11/01 4:18 PM Page 517

http://www.sybex.com

ListBox1.Items.Add(“Collection Sorted by Name”)
AList.Sort(New PersonNameComparer())
PEnum = AList.GetEnumerator
While PEnum.MoveNext

ListBox1.Items.Add(CType(PEnum.Current, Person).Name & vbTab & _
CType(PEnum.Current, Person).BDate)

End While
‘ Sort by age, then print collection

ListBox1.Items.Add(“ “)
ListBox1.Items.Add(“Collection Sorted by Age”)
AList.Sort(New PersonAgeComparer())
PEnum = AList.GetEnumerator
While PEnum.MoveNext

ListBox1.Items.Add(CType(PEnum.Current, Person).Name & vbTab & _
CType(PEnum.Current, Person).BDate)

End While
End Sub

The four sections of the code are delimited by comments, which appear in bold in the listing.
The first section populates the collection with three variables of the Person type. The second section
prints the items in the order in which they were added to the collection:

C Person
1/1/1961
A Person
3/3/1961
B Person
2/2/1961

The third section of the code calls the Sort method passing the PersonNameComparer custom com-
parer as argument, and it again prints the contents of the ArrayList. The names are listed now in
alphabetical order:

A Person
3/3/1961
B Person
2/2/1961
C Person
1/1/1961

In the last section, it calls the Sort method again, this time to sort the items by age, and prints them:

C Person
1/1/1961
B Person
2/2/1961
A Person
3/3/1961

Chapter 11 STORING DATA IN COLLECTIONS518

2877c11.qxd 11/11/01 4:18 PM Page 518

http://www.sybex.com

As you can see, it’s straightforward to write your own custom comparers and sort your custom
object in any way that suits your application. Custom comparisons may include more complicated
calculations, not just comparisons. For example, you can sort Rectangles by their area, color values
by their hue or saturation, and customers by the frequency of their orders.

The example of this section is called CustomComparer; you can find it in this chapter’s folder on
the CD. The main form (Figure 11.5) contains a single button, which populates the collection and
then prints the original collection, the collection sorted by name, and then the collection sorted by
birth date.

Custom Sorting of a SortedList
The items of a SortedList are sorted according to their keys. Of course, the SortedList will not be able
to maintain the order of the keys, unless the keys are of a base type, such as integers or strings. If you
need to use objects as keys, you must simply provide a function to implement the IComparer interface,
as you know well by now. In this section, we’ll build a custom comparer for the same SortedList we
built earlier in the SortedList example. The custom comparer will sort the keys in the collection
according to the cosine of their values. If you’re not interested in trigonometry and don’t know what
the cosine of a number is, don’t worry. It’s a function that transforms a number into another number.
If the keys were points in the space, you could sort them according to their distance from the sun, or
whatever. The idea is that you can transform the keys into another meaningful value and sort the
collection according to the transformed value.

Note Whether the SortedList is sorted according to its keys, or a transformation of the keys, these values must be
unique. It’s not enough that the original keys be unique. Their transformations must be also unique.

Let’s start with the custom comparer, which comparers the cosines of the two values. Add a
new class to the SortedList project and name it CustomComparer. Then enter the code from
Listing 11.19 in its code window.

Figure 11.5

The Custom-
Compare project:
how to sort
collections of
objects according
to any property

519THE IENUMERATOR AND ICOMPARER INTERFACES

2877c11.qxd 11/11/01 4:18 PM Page 519

http://www.sybex.com

Listing 11.19: A Custom Comparer for the SortedList

Class CustomComparer : Implements IComparer
Public Function Compare(ByVal o1 As Object, ByVal o2 As Object) As Integer _

Implements IComparer.Compare
Dim num1, num2 As Integer
Try

num1 = CType(o1, Integer)
num2 = CType(o2, Integer)

Catch compareException As system.Exception
Throw (compareException)
Exit Function

End Try
If Math.Cos(num1) < Math.Cos(num2) Then

Return -1
Else

If Math.Cos(num1) > Math.Cos(num2) Then
Return 1

Else
Return 0

End If
End If

End Function
End Class

The Compare() function is very similar to the Compare() functions of the previous examples.
Instead of comparing the arguments directly, it transforms them with the help of the Cos() function
and then compares the transformed values. You can replace the Cos() function with a custom func-
tion that performs as many calculations as necessary.

To test the custom comparer, open the SortedList project, place another button on the form, and
enter the following declaration in the new button’s Click event handler:

Dim sList As New System.Collections.SortedList(New CustomComparer())

This statement tells the SortedList to sort its keys using the CustomComparer, not the default
comparer for the integer data type. Then copy the statements that populate the SortedList and
paste them after the previous declaration. Finally, enter a few more statements to iterate through
the SortedList and print the key–value pairs. Here’s the complete listing of the second button’s
event handler for your reference:

Dim sList As New System.Collections.SortedList(New CustomComparer)
‘ Populate SortedList
sList.Add(16, “item 3”)
sList.Add(10, “item 9”)
sList.Add(15, “item 4”)
sList.Add(17, “item 2”)
sList.Add(11, “item 8”)

Chapter 11 STORING DATA IN COLLECTIONS520

2877c11.qxd 11/11/01 4:18 PM Page 520

http://www.sybex.com

sList.Add(14, “item 5”)
sList.Add(18, “item 1”)
sList.Add(12, “item 7”)
sList.Add(19, “item 0”)
sList.Add(13, “item 6”)
While SLEnum.MoveNext

Console.WriteLine(“Key = “ & SLEnum.Key.Tostring & “, Value= “ & _
SLEnum.Value.ToString & “, Cos(key) = “ & _
Math.Cos(CType(SLEnum.Key, Double)))

End While

If you execute these statements, they will generate the following output:

Key = 16, Value= item 3, Cos(key) = -0.9576594803233847
Key = 10, Value= item 9, Cos(key) = -0.8390715290764524
Key = 15, Value= item 4, Cos(key) = -0.7596879128588213
Key = 17, Value= item 2, Cos(key) = -2.7516333805159693E-01
Key = 11, Value= item 8, Cos(key) = 4.4256979880507854E-03
Key = 14, Value= item 5, Cos(key) = 0.1367372182078336
Key = 18, Value= item 1, Cos(key) = 0.6603167082440802
Key = 12, Value= item 7, Cos(key) = 0.8438539587324921
Key = 13, Value= item 6, Cos(key) = 0.9074467814501962
Key = 19, Value= item 0, Cos(key) = 0.9887046181866692

Once you have declared a custom comparer, you can use it with the BinarySearch method as well.
The binary search algorithm uses consecutive comparisons to locate an item in a sorted collection. If
the custom comparer is in place, it simply calls your Compare() function to perform the compar-
isons and locate the item in the collection. The form of the BinarySearch method that uses a custom
comparer to locate an item is

BinarySearch(object, comparer())

where object is the item you’re looking for and comparer is the name of the custom comparer. For every
collection that uses a custom comparer for its Sort method, you must call this form of the Binary-
Search method.

In Chapter 8 we created a class to represent shapes and added a method to calculate the area of
each shape. You can create an ArrayList of Shape objects and write your own comparer to sort the
elements of the ArrayList according to the area of each shape.

The Serialization Class
You have seen how the various collections of VB.NET store items, how to access their elements,
and even how to sort and search the collections. The last piece of information you need before you
can use collections in your applications to store large sets of data is how to store collections to disk
files. In the last section of this chapter, you’ll learn how to do this so you can reuse a collection at a
later time. What good is it to create a long collection, if your application can’t retrieve from a disk
file in another session?

None of the collections exposes a Save or a similarly named method. Fortunately, there’s a mecha-
nism that can store arbitrary objects to disk: the Serialization class. This class exposes the Serialize

521THE SERIALIZER CLASS

2877c11.qxd 11/11/01 4:18 PM Page 521

http://www.sybex.com

method, which saves an object to disk. The Deserialize method does the opposite: it reads a file created
by the Serialize method and re-creates the original object. The Serialization class is a complicated one,
but in this book I will discuss its Serialize and Deserialize methods, which you can use to persist your
collection (and custom data types) to disk. When it comes to saving objects to disk (or even exchange
them with other applications), the proper term is persist, which basically means to make an entity like an
object, or variable, available to the application between sessions.

Serializing Individual Objects
To serialize an object, you must call the Serialize method of the System.Runtime.Serialization
.Formatters.Binary object. First, declare an object of this type with a statement like the following:

Dim BFormatter As New BinaryFormatter()

To avoid fully qualifying the BinaryFormatter class, import the class into your project with the
following statement:

Imports System.Runtime.Serialization.Formatters.BinaryFormatter

The BinaryFormatter class persists objects in binary format. You can also persist objects in text
format, using the SoapFormatter. The SoapFormatter persists the objects in XML format, which is
quite verbose and the corresponding files are considerably lengthier. To use the SoapFormatter
object, you must add a reference to the following .NET component through the Add Reference
dialog box:

System.Runtime.Serialization.Formatters.Soap

Notice that this isn’t a class you can import; you must add a reference to the class. After that, you
can declare a SoapFormatter variable with the following statement:

Dim formatter As Soap.SoapFormatter

If you’re wondering where the name of this class comes from, SOAP is an acronym for Simple
Object Access Protocol. This is a protocol for accessing objects over HTTP—in other words, it’s a
protocol that allows the encoding of objects in text format. The SOAP protocol was designed to
enable distributed computing over the Internet, and it’s used with Web services. So, if SOAP can be
used to access objects over the Internet, why not use it to persist objects in text format?

The methods of the BinaryFormatter and SoapFormatter are equivalent, so I will use the Binary-
Formatter in the examples of this section. At the end of the section, I will show the code behind the
menu of the WordFrequencies project, which persists the HashTable with the words and their fre-
quencies to both binary and text format.

The syntax of the Serialize method is

BFormatter.Serialize(stream, object)

where stream is a variable that represents a stream and object is the object you want to serialize. Since
we want to persist our objects to disk files, the stream argument represents a stream to a binary file.

Chapter 11 STORING DATA IN COLLECTIONS522

2877c11.qxd 11/11/01 4:18 PM Page 522

http://www.sybex.com

The File object and its methods are discussed in detail in Chapter 13; here, I will only explain
briefly the statements we’ll use to store data to a disk file and read it back. The following statements
create such a Stream object:

Dim saveFile As FileStream
saveFile = File.Create(“C:\SHAPES.BIN”)

The saveFile variable represents the stream to a specific file on the disk, and the Create method of the
same variable creates a stream to this file.

After you have set up the Stream and BinaryFormatter objects, you can call the Serialize method
to serialize any object. To serialize a Rectangle object, for example, use the following statements:

Dim R As New Rectangle(0, 0 , 100, 100)
BFormatter.Serialize(saveFile, R)

The event handler in Listing 11.20 persists two Rectangle objects to the Shapes.bin file in the
root folder. The file’s extension can be anything. Since the file is binary, I’ve used the BIN
extension:

Listing 11.20: Serializing Distinct Objects

Protected Sub Button1_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Dim R1 As New Rectangle()
R1.X = 1
R1.Y = 1
R1.Size.Width = 10
R1.Size.Height = 20
Dim R2 As New Rectangle()
R2.X = 10
R2.Y = 10
R2.Size.Width = 100
R2.Size.Height = 200
Dim saveFile As FileStream
saveFile = File.Create(“C:\SHAPES.BIN”)
Dim formatter As BinaryFormatter
formatter = New BinaryFormatter()
formatter.Serialize(saveFile, R1)
formatter.Serialize(saveFile, R2)
saveFile.Close()

End Sub

Notice that the Serialize method serializes a single object at a time. To save the two rectangles,
the code calls the Serialize method once for each rectangle. To serialize multiple objects with a single
statement, you must create a collection, append all the objects to the collection, and then serialize the
collection itself, as explained in the following section.

523THE SERIALIZER CLASS

2877c11.qxd 11/11/01 4:18 PM Page 523

http://www.sybex.com

Serializing a Collection
Serializing a collection is quite similar to serializing any single object. The second argument to the
Serialize method is the object you want to serialize, and this object can be anything, including a col-
lection. To demonstrate the serialization of an ArrayList, we’ll modify the previous code a little, so
that instead of persisting individual items, it will persist an entire collection. Declare the two Rec-
tangle objects as before, but this time append them to an ArrayList collection. Then add a color
value to the collection, as shown in Listing 11.21, which serializes an ArrayList collection to the file
C:\ShapesColors.bin.

Listing 11.21: Serializing a Collection

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

Dim R1 As New Rectangle()
R1.X = 1
R1.Y = 1
R1.Width = 10
R1.Height = 20
Dim R2 As New Rectangle()
R2.X = 10
R2.Y = 10
R2.Width = 100
R2.Height = 200
Dim shapes As New ArrayList()
shapes.Add(R1)
shapes.Add(R2)
shapes.Add(Color.Chartreuse)
shapes.Add(Color.DarkKhaki.GetBrightness)
shapes.Add(Color.DarkKhaki.GetHue)
shapes.Add(Color.DarkKhaki.GetSaturation)
Dim saveFile As FileStream
saveFile = File.OpenWrite(“C:\ShapesColors.bin”)
saveFile.Seek(0, SeekOrigin.End)
Dim formatter As BinaryFormatter = New BinaryFormatter()
formatter.Serialize(saveFile, shapes)
saveFile.Close()
MsgBox(“ArrayList serialized successfully”)

End Sub

The last three Add methods add the components of another color to the collection. Instead of
adding the color as is, we’re adding three color components, from which we can reconstruct the color
Color.DarkKhaki. Then we proceed to save the entire collection to a file using the same statements
as before. The difference is that we don’t call the Serialize method for each object. We call it once
and pass the entire ArrayList as argument.

If you open the ShapesColors.bin file with a text editor (start Notepad and drop the file on its
window), you will see that most of the file contains binary information—most of the characters are

Chapter 11 STORING DATA IN COLLECTIONS524

2877c11.qxd 11/11/01 4:18 PM Page 524

http://www.sybex.com

not printable. You will still be able to read the names of the properties saved to the file, as shown in
Figure 11.6.

Deserializing Objects
To read a file with the description of an object that has been persisted with the Serialize method,
you simply call the Formatter object’s Deserialize method and assign the result to an appropriately
declared variable. In the case of the last example, the value returned by the Deserialize method must
be assigned to an ArrayList variable. The syntax of the Deserialize method is

object = Bformatter.Deserialize(str)

where str is a Stream object to the file with the data.
Because the Deserialize method returns an Object variable, you must cast it to the ArrayList type

with the CType() function. To use the Deserialize method, declare a variable that can hold the value
returned by the method. If the data to be deserialized is a Rectangle, declare a Rectangle variable. If
it’s a collection, declare a variable of the same collection type. Then call the Deserialize method and
cast the value returned to the appropriate type. The following statements outline the process:

Dim object As <type>
{ code to set up a Stream variable (str) and BinaryFormatter }
object = CType(Bformatter.Serialize(str), <type>)

Listing 11.22 is the code that retrieves the items from the ShapesColors.bin file and stores them
into an ArrayList. I’ve added a few statements to print all the items of the ArrayList.

Listing 11.22: De-serializing a Collection

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim readFile As FileStream
readFile = File.OpenRead(“C:\ShapesColors.bin”)
Dim BFormatter As BinaryFormatter
BFormatter = New BinaryFormatter()

Figure 11.6

Viewing a file with
objects persisted
with the Serializer
class

525THE SERIALIZER CLASS

2877c11.qxd 11/11/01 4:18 PM Page 525

http://www.sybex.com

Dim Shapes As New ArrayList()
Dim R1 As Rectangle
Shapes = CType(BFormatter.Deserialize(readFile), ArrayList)
Dim i As Integer
TextBox1.AppendText(“The ArrayList contains “ & Shapes.Count & _

“ objects” & vbCrLf & vbCrLf)
For i = 0 To Shapes.Count - 1

TextBox1.AppendText(Shapes(i).ToString & vbCrLf)
Next

End Sub

You can find the code presented in this section in the Serialization project on the CD. The
application consists of two buttons; the first persists the collection to disk, and the second reads
the file, re-creates the collection, and displays the objects read from the file.

Persisting a HashTable

We can now return to the WordFrequencies project and examine the code behind the menu of the
project. The Frequency Table menu contains four commands, which save the HashTable to, and
read it from, a text file and a binary file. The four commands of the menu are:

Command Effect

Save Binary Saves the HashTable to a binary file with default extension BIN

Load Binary Loads the HashTable with data from a binary file

Save SOAP Saves the HashTable to a text file with default extension TXT

Load Binary Loads the HashTable with data from a text file

The code behind the Save Binary command is shown in Listing 11.23. The code is actually quite
simple: it creates an instance of the BinaryFormatter class (variable Formatter) and uses its Serialize
method to persists the entire HashTable with a single statement.

Listing 11.23: Persisting the HashTable to a Binary File

Private Sub SaveBin(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles SaveBinary.Click

Dim saveFile As FileStream
SaveFileDialog1.DefaultExt = “BIN”
If SaveFileDialog1.ShowDialog = DialogResult.OK Then

saveFile = File.OpenWrite(SaveFileDialog1.FileName)
saveFile.Seek(0, SeekOrigin.End)
Dim Formatter As BinaryFormatter = New BinaryFormatter()
Formatter.Serialize(saveFile, WordFrequencies)
saveFile.Close()

End If
End Sub

Chapter 11 STORING DATA IN COLLECTIONS526

2877c11.qxd 11/11/01 4:18 PM Page 526

http://www.sybex.com

The equivalent Load Binary command is just as simple. It sets up a BinaryFormatter object and
calls its Deserialize method to read the data.

The code of the Save SOAP command (Listing 11.24) sets up a SoapFormatter object and uses
its Serialize method to persist the HashTable. The code that reads the data from the file and popu-
lates the HashTable is equally simple, and it’s shown in Listing 11.25.

Listing 11.24: Persisting the HashTable to a Text File

Private Sub SaveText(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles SaveText.Click

Dim saveFile As FileStream
SaveFileDialog1.DefaultExt = “XML”
If SaveFileDialog1.ShowDialog = DialogResult.OK Then

saveFile = File.OpenWrite(SaveFileDialog1.FileName)
saveFile.Seek(0, SeekOrigin.End)
Dim Formatter As Soap.SoapFormatter = New Soap.SoapFormatter()
Formatter.Serialize(saveFile, WordFrequencies)
saveFile.Close()

End If
End Sub

Listing 11.25: Loading a HashTable from a Text File

Private Sub LoadText(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles LoadText.Click

Dim readFile As FileStream
OpenFileDialog1.DefaultExt = “XML”
If OpenFileDialog1.ShowDialog = DialogResult.OK Then

readFile = File.OpenRead(OpenFileDialog1.FileName)
Dim Formatter As Soap.SoapFormatter
Formatter = New Soap.SoapFormatter()
WordFrequencies = CType(Formatter.Deserialize(readFile), SortedList)

End If
End Sub

As you can see, the code is identical whether you use the BinaryFormatter or a SoapFormatter
class. The code is quite simple, and the Serialize/Deserialize methods do all the work automagically.

You can open the binary file with a text editor, and you will see the words but not the numeric
values. If you open the text file, you will see a structured XML file with the words and their counts.
The words are in the first half of the file, and their counts in the second half. Here are the first few
lines of this file (I’ve omitted the headers):

<item id=”ref-5” xsi:type=”SOAP-ENC:string”>A</item>
<item id=”ref-6” xsi:type=”SOAP-ENC:string”>ABADDIRS</item>

527THE SERIALIZER CLASS

2877c11.qxd 11/11/01 4:18 PM Page 527

http://www.sybex.com

<item id=”ref-7” xsi:type=”SOAP-ENC:string”>ABANDON</item>
<item id=”ref-8” xsi:type=”SOAP-ENC:string”>ABANDONED</item>
<item id=”ref-9” xsi:type=”SOAP-ENC:string”>ABANDONING</item>

The corresponding counts are:

<item xsi:type=”xsd:int”>2064</item>
<item xsi:type=”xsd:int”>1</item>
<item xsi:type=”xsd:int”>5</item>
<item xsi:type=”xsd:int”>10</item>
<item xsi:type=”xsd:int”>2</item>

Most of us shouldn’t really care how the Serialize method stores the data to the XML file, or to
the binary file, as long as the Deserialize method can read them back into and load them into an
object so that we won’t have to write code to parse this file.

Summary
The Collection classes we explored in this chapter are just a few among the 3,500 classes of the
.NET Framework, but they’re certainly among the most useful ones. Just about any application that
needs to persist data between sessions can benefit from these classes. Even the humble array has been
totally revamped; it can now sort and search its elements. The ArrayList is a dynamic array, while the
HashTable is offers many of the advantages of an ArrayList plus the capability to access its elements
by meaningful keys.

All the collections support custom sorting and searching. If the collection contains objects or
custom structures, you can provide simple custom functions to enable the comparison and sorting of
the collection’s elements. Not only that, but you can provide multiple comparers and use each one to
sort the collection in many different ways, as needed.

The last class we explored in this chapter was the Serialization class, which basically enables you
to persist complicated objects with a single function call. You saw examples of using the members
of the Serialization class with an ArrayList, but this is probably the most efficient way to use the
Serialization class. An ArrayList may can be populated with objects of any type, so you can store
your custom objects to an ArrayList and then persist the entire collection to a file with a few simple
statements.

Chapter 11 STORING DATA IN COLLECTIONS528

2877c11.qxd 11/11/01 4:18 PM Page 528

http://www.sybex.com

Chapter 12

Handling Strings, Characters,
and Dates
This chapter is a formal discussion of the .NET Framework’s string- and date-manipulation
capabilities. You have seen many of the string functions in earlier chapters, as well as many of the
properties and methods of the String class. Almost every application manipulates strings, so the
String and StringBuilder classes are two that you’ll use more than any other.

Previous versions of Visual Basic provided numerous functions for manipulating strings.
These functions are supported by VB.NET, and not just for compatibility reasons; they’re part of
the core of Visual Basic. The string-manipulation functions are still a major part of VB, while the
math functions were removed from the language and placed in a special class, the System.Math
class. This is a good indication of the type of processing that takes place in a typical application.
You’ll write more code to manipulate strings than to do math.

Another group of functions deals with dates. The date-manipulation functions are still part of
the core of the language and were not moved to a special class. Many of these functions are dupli-
cated in the DateTime class, in the form of properties and methods. The Month() function, for
example, returns the month of a date passed to the function as argument. The DateTime.Month
property does the same: it returns the month of a date value. The following statements print the
number of the current month:

Console.WriteLine(Month(Now()))
Console.WriteLine(Now().Month)

The first statement used the Month() function, while the second one uses the Date class’s
Month method. The function Now() returns the current date, which is a value of the Date type
(which is the same as the DateTime type), and that’s why we can apply the Month method to
this value.

The string- and date-handling functions of Visual Basic are described in the reference
“VB.NET Functions and Statements” (on the companion CD). These functions aren’t new to
VB.NET anyway, and it’s important that you familiarize yourself with the built-in functions,
even if you’re going to use the new classes of the .NET Framework. There are miles of VB6 code
out there, and it’s more than likely that you will run into code ported from VB6 applications, or
you’ll be asked to port VB6 code into .NET.

2877c12.qxd 11/11/01 4:18 PM Page 529

http://www.sybex.com

In this chapter, we’ll explore the members of the String and StringBuilder classes, which handle
strings, and the members of the DateTime and TimeSpan classes, which handle dates and time. As I
go along, I will mention the equivalent VB functions for the readers already familiar with VB6. If
you’re porting old VB applications to VB.NET, the string and date functions of VB6 still work
with VB.NET, but you should gradually replace them with the newer classes. If you’ve written appli-
cations that manipulate strings extensively, you should take the time to replace the older string func-
tions with the equivalent methods of the StringBuilder class.

Handling Strings and Characters
The new Framework provides two classes for manipulating text: the String and the StringBuilder
classes. The String object represents fixed-length strings, which you can’t edit. Once you assign a
value to a String object, that’s it. You can examine the string, locate words in it, parse it, but you
can’t edit it. The String class also exposes methods like the Replace and Remove methods, which
replace a section of the string with another or remove a range of characters from the string. These
methods, however, don’t act on the string directly: they replace or remove parts of the original string
and then return the result as a new string.

The StringBuilder class is similar to the String class: it stores strings, but it can manipulate them
in place. The distinction between the two classes is that the String class is for static strings, while the
StringBuilder class is for dynamic strings. Use the String class for strings that don’t change frequently
in the course of an application and the StringBuilder class for strings that grow and shrink frequently.
The two classes expose similar methods, but the String class’s methods return new strings; if you need
to manipulate large strings extensively, using the String class may fill the memory quite fast.

Any code that manipulates strings must also be able to manipulate individual characters. In previ-
ous versions of Visual Basic, characters were indistinguishable from strings; they were one-character
strings. VB.NET introduces the Char class, which not only stores characters but also exposes numer-
ous methods for handling characters. Both the String and StringBuilder classes provide methods for
storing strings into arrays of characters, as well as converting character arrays into strings. After
extracting the individual characters from a string, you can process them with the members of the
Char class. We’ll start our discussion of text-handling features of VB.NET with an overview of
the Char data type, and we’ll continue with the other two major components, the String and String-
Builder classes.

VB6 ➠ VB.NET

The Char class is new to VB.NET, and it exposes numerous methods for handling characters. You will find
this data type especially useful in validating user-supplied strings, as you no longer need to write code to
figure out whether a character is a digit or letter, a special character, and so on. There are now methods
you can call to find out the type of character stored in a Char variable.

The StringBuilder is also new to VB.NET. The old string functions of Visual Basic are now implemented as
methods of the String and StringBuilder classes.

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES530

2877c12.qxd 11/11/01 4:18 PM Page 530

http://www.sybex.com

The Char Class
The Char data type stores characters as individual, double-byte (16-bit), Unicode values, and it
exposes methods for classifying the character stored in a Char variable. You can use methods like
IsDigit and IsPunctuation on a Char variable to determine its type, and other similar methods can
simplify your string validation code.

To use a character variable in your application, you must declare it with a statement like the fol-
lowing one:

Dim ch As Char = “A”

You can also initialize it by setting the variable to a character:

Dim ch As Char = CChar(“A”)

The expression “A” represents a string, even though it contains a single character. Everything you
enclose in double quotes is a string. To convert it to a character, you must cast it to the Char type. If
the Strict option is off (which is the default value), you need not perform the conversion explicitly.
If the Strict option is on, you must use the CChar() or CType() function to convert the string in the
double quotes to a character value, as shown in the second example line. You can also pass a string
to CChar() function. It will convert the first character of the string to a Char type and ignore the fol-
lowing characters. The CType() function can convert an object to a character.

Properties

The Char class provides two trivial properties, MaxValue and MinValue. They return the largest
and smallest character values you can represent with the Char data type.

Methods

The Char data type exposes methods for handling characters. As you will see, the String and String-
Builder classes expose the Chars property, which returns individual characters in the string, and you
can apply any of the methods discussed here to a variable of the Char type.

All the methods discussed in the following sections have the same syntax. They accept either a
single argument, which is the character they act upon, or a string and the index of a character in the
string on which they act. The IsDigit() method, for example, has two forms, which are:

Char.IsDigit(char)
Char.IsDigit(string, 3)

The first statement acts on a character variable, while the second form acts on the third character
of the specified string. Both methods return True if the specified character is a numeric digit, False
otherwise.

With a few exceptions, the methods of the Char class are shared. This means that you can call
them without having to create an instance of the class. As you saw, the IsDigit method accepts as
argument a character and doesn’t act on a Char variable. If the ch variable represents a character, you
can find out whether the character is a digit with either of the following statements:

ch.IsDigit(ch)
Char.IsDigit(ch)

531HANDLING STRINGS AND CHARACTERS

2877c12.qxd 11/11/01 4:18 PM Page 531

http://www.sybex.com

The first notation isn’t very elegant, so I will use the second notation in the examples of this sec-
tion. You can even use the following counter-intuitive method of calling IsDigit:

CType(“a”, Char).IsDigit(“4”)

The CType() function returns a character, and you can apply any of the System.Char class’s
methods to this character.

GetNumericValue

This method returns a numeric value if called with an argument that is a digit, and the value –1 oth-
erwise. If you call the GetNumericDigit with the argument “5”, it will return the numeric value 5. If
you call it with the symbol “@”, it will return the value –1.

GetUnicodeCategory

This method returns a numeric value that is a member of the UnicodeCategory enumeration and
identifies the Unicode group to which the character belongs. The Unicode categories group charac-
ters into many categories such as math symbols, currency symbols, and quotation marks. Look up
the UnicodeCategory enumeration in the documentation for more information.

IsControl

This method returns a True/False value indicating whether the specified character is a control
character. The Backspace and Escape keys, for example, are control characters. The second form of
the method examines the character at location index in a string and returns True if it’s a control
character.

IsDigit

This method determines whether the specified character is a digit. The code segment in Listing 12.1
uses the IsDigit method to find out whether the current character is a digit or a character. You can
insert this code in a control’s KeyPress event to process each keystroke.

Listing 12.1: Differentiating Letter from Digit Keystrokes

Private Sub TextBox1_KeyPress(ByVal sender As Object, _
ByVal e As KeyPressEventArgs) Handles TextBox1.KeyPress

Dim c As Char
c = e.KeyChar
If Char.IsDigit(c) Then

{ process c as number }
Else

{ process c as character or punctuation symbol }
End If

End Sub

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES532

2877c12.qxd 11/11/01 4:18 PM Page 532

http://www.sybex.com

The e.KeyChar property returns the character that was pressed by the user and fired the KeyPress
event. To reject nonnumeric keys as the user enters text on a TextBox control, use the event handler
shown in Listing 12.2.

Listing 12.2: Rejecting Nonnumeric Keystrokes

Private Sub TextBox1_KeyPress(ByVal sender As Object, ByVal e As EventArgs)
Dim c As Char
c = e.KeyChar
If Not (Char.IsDigit(c) Or Char.IsControl(c)) Then
e.Handled = True

End If
End Sub

This code ignores any keystrokes that don’t represent numeric digits and are not control charac-
ters. Control characters are not rejected, because we want users to be able to edit the text on the con-
trol. The Backspace key is captured by the KeyPress event, and you shouldn’t “kill” it. If the
TextBox control is allowed to accept fractional values, you should allow the period character as well,
by using the following If clause:

Dim c As Char
c = e.KeyChar
If Not (Char.IsDigit(c) Or c = “.” Or Char.IsControl(c)) Then

e.Handled = True
End If

IsLetter

This method returns a True/False value indicating whether the specified character is a letter. You
can write an event handler similar to the one shown in Listing 12.2 using the IsLetter method to
accept letters and reject numeric keys and special symbols.

IsLetterOrDigit

This method returns a True/False value indicating whether the specified character is a letter or a
digit. The example of the Chars property of the String class shows how to scan an entire string to
find out whether it’s made up of letter and digits, or whether it contains symbols as well.

IsLower, IsUpper

This method returns a True/False value indicating whether the specified character is lowercase or
uppercase, respectively.

IsNumber

This method returns a True/False value indicating whether the specified character is a number. The
IsNumber method takes into consideration hexadecimal digits (the characters 0123456789ABCDEF)
in the same way as the IsDigit method does for decimal numbers.

533HANDLING STRINGS AND CHARACTERS

2877c12.qxd 11/11/01 4:18 PM Page 533

http://www.sybex.com

IsPunctuation

This method returns a True/False value indicating whether the specified character is a punctua-
tion mark.

IsSeparator

This method returns a True/False value indicating whether the character is categorized as a separa-
tor (space, newline character, and so on). The following characters are considered separators (oddly,
the semicolon is not a separator):

) closing parenthesis

: colon

, comma

! exclamation mark

(opening parenthesis

. period

pound sign

IsWhiteSpace

This method returns a True/False value indicating whether the specified character is white space.
Any sequence of spaces, tabs, line feeds, and form feeds is considered white space. Use this method
along with the IsPunctuation method to remove all characters in a string that are not words.

ToLower, ToUpper

These methods convert their argument to a lowercase or uppercase character and return it as another
character.

ToString

This method converts a character to a string. It returns a single-character string, which you can use
with other string-manipulation methods or functions.

The String Class
The String class implements the String data type, which is one of the richest data types in terms of
the members it exposes. We have used strings extensively in earlier chapters, but this is a formal dis-
cussion of the String data type and all of the functionality it exposes.

To create a new instance of the String class, you simply declare a variable of the String type. You
can also initialize it by assigning to the corresponding variable a text value:

Dim title As String = “Mastering VB.NET”

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES534

2877c12.qxd 11/11/01 4:18 PM Page 534

http://www.sybex.com

The String class exposes a Replace method, but this method returns a new string; it doesn’t
replace the specified characters in the original string:

Dim title As String = “Mastering VB.NET”
Dim newTitle As String
newTitle = title.Replace(“VB”, “Visual Basic”)

The Replace method, and many other methods of the String class, don’t operate directly on a
string. Instead, they create a new string and return it as their result. In the last statement of the
example, the Replace method doesn’t act directly on the title variable. It creates a new String variable,
which is assigned to another variable. You can also apply the result of a method to the same variable
to which the method applies:

title = title.Replace(“VB”, “Visual Basic”)

You can also manipulate strings with Visual Basic’s string-manipulation functions. For example,
you can replace the substring “VB” with “Visual Basic” with the following statement:

newTitle = Replace(title, “VB”, “Visual Basic”)

Like the methods of the String class, the string-manipulation functions don’t act on the original
string; they return a new string.

If you plan to manipulate strings in your code often, use the StringBuilder class instead, which is
extremely fast compared to the String class and VB’s string-manipulation functions.

Some of the members of the String class are shared members, while some others are instance
members. The Copy method, for example, accepts as argument the string to be copied and doesn’t
require an instance of the class:

Dim s1, s2 As String
s1 = “This is a string”
s2 = String.Copy(s1)

The Length property, however, can only be applied to an instance of the String class. The follow-
ing statement returns the length of the string stored in the variable s1:

Console.WriteLine(s1 & “ is “ & s1.Length.ToString & “ characters long.”)

Properties

The String class exposes only two properties, the Length and Chars properties, which return a
string’s length and its characters respectively. Both properties are read-only.

Length

The Length property returns the number of characters in the string, and it’s read-only. To find out
the number of characters in a string variable, use the following statement:

chars = myString.Length

535HANDLING STRINGS AND CHARACTERS

2877c12.qxd 11/11/01 4:18 PM Page 535

http://www.sybex.com

You can apply the Length method to any expression that evaluates to a string. The following
statement formats the current date in long date format (this format includes the day’s and month’s
names) and then retrieves the string’s length:

StrLen = Format(Now(), “dddd, MMMM dd, yyyy”).Length

The Format() function formats numbers and dates and was discussed in Chapter 3.

Chars

The Chars property is an array of characters that holds all the characters in the string. Use this prop-
erty to read individual characters from a string based on their location in the string. The index of the
first character in the Chars array is zero.

Tip The Chars array is read-only, and you can’t edit a string by setting individual characters.

The loop detailed in Listing 12.3 rejects strings (presumably passwords) that are less than six
characters long and don’t contain a special symbol:

Listing 12.3: Validating a Password

Private Function ValidatePassword(ByVal password As String) As Boolean
If password.Length < 6 Then

MsgBox(“The password must be at least 6 characters long”)
Return False

End If
Dim i As Integer
Dim valid As Boolean = False
For i = 0 To password.Length - 1

If Not Char.IsLetterOrDigit(password.Chars(i)) Then Return True
Next
MsgBox(“The password must contain at least one “ & _

“character that is not a letter or a digit.”)
Return False

End Function

The code checks the length of the user-supplied string and makes sure it’s at least six characters
long. If not, it issues a warning and returns False. Then it starts a loop that scans all the characters in
the string. Each character is accessed by its index in the string. If one of them is not a letter or
digit—in which case the IsLetterOrDigit method will return False—the function terminates and
returns True to indicate a valid password. If the loop is exhausted, then the password argument con-
tains no special symbols and the function displays a message and returns False.

Methods

All the functionality of the String class is available through methods, which are described in the fol-
lowing sections. Most of these methods are shared methods: you must supply the string on which

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES536

2877c12.qxd 11/11/01 4:18 PM Page 536

http://www.sybex.com

they act as argument. In other words, they don’t modify the current instance of the String class;
instead, they return a new String value.

Compare

This method compares two strings and returns a negative value if the first string is less than the sec-
ond, a positive value if the second string is less than the first, and zero if the two strings are equal.
The Compare method is overloaded, and the first two arguments are always the two strings to be
compared.

The simplest form of the method accepts two strings as arguments:

String.Compare(str1, str2)

The following form of the method accepts a third argument, which is a True/False value and
determines whether the search will be case-sensitive (if True) or not:

String.Compare(str1, str2, case)

Another form of the Compare method allows you to compare segments of two strings; its syntax is

String.Compare(str1, index1, str2, index2, length)

index1 and index2 are the starting locations of the segment to be compared in each string. The two
segments must have the same length, which is specified by the last argument.

The following statements return the values shown in bold below each:

Console.WriteLine(String.Compare(“the quick brown fox”, “THE QUICK BROWN FOX”))
-1
Console.WriteLine(String.Compare(“THE QUICK BROWN FOX”, “the quick brown fox”))
1
Console.WriteLine(String.Compare(“THE QUICK BROWN FOX”, “THE QUICK BROWN FOX”))
0

If you want to specify a case-sensitive search, append yet another argument and set it to True.
The forms of the Compare method that perform case-sensitive searches may accept yet another argu-
ment, which determines the culture info.

CompareOrdinal

The CompareOrdinal method compares two strings similar to the Compare method, but it doesn’t
take into consideration the current locale. This method returns zero if the two strings are the same,
but a positive or negative value if they’re different. These values are not 1 and –1; the value can be
anything, since it represents the numeric difference between the Unicode values of the first two char-
acters that are different in the two strings.

Concat

This method concatenates two or more strings (places them one after the other) and forms a new string.
The simpler form of the Concat method has the following syntax, and it’s equivalent to the & operator:

newString = String.Concat(string1, string2)

537HANDLING STRINGS AND CHARACTERS

2877c12.qxd 11/11/01 4:18 PM Page 537

http://www.sybex.com

This statement is equivalent to the following:

newString = string1 & string2

A more useful from of the same method concatenates a large number of strings stored in an array:

newString = String.Concat(strings)

To use this form of the method, store all the strings you want to concatenate into a string array
and then call the Concat method, as shown in this code segment:

Dim strings() As String = {“string1”, “string2”, “string3”, “string4”}
Dim longString As String
longString = String.Concat(strings)

If you want to separate the individual strings with special delimiters, append them to each indi-
vidual string before concatenating them. Or, you can use the Join method discussed later in this sec-
tion. The Concat method simply appends each string to the end of the previous one.

Copy

The Copy method copies the value of one String variable to another. Notice that the value to be
copied must be passed to the method as argument. The Copy method doesn’t apply to the current
instance of the String class. Most programmers will use the assignment operator and will never
bother with the Copy method. The last two statements in the following sample code are equivalent:

Dim s1, s2 As String
s1 = “some text”
s2 = s1
s2 = String.Copy(s1)

The following syntax will also work, because the s1 variable is an instance of the String class, but
it’s awkward—almost annoying:

s2 = s1.Copy(s1)

However, the Copy method doesn’t return a copy of the string to which it’s applied. The follow-
ing statement is invalid:

s2 = s1.Copy ‘ INVALID STATEMENT

EndsWith, StartsWith

These two methods return True if the string ends or starts with a user-supplied substring. The syn-
tax of these methods is

found = str.EndsWith(string)
found = str.StartsWith(string)

These two methods are equivalent to using the Left and Right functions to extract a given num-
ber of characters from the left or right end of the string. The two statements following the declara-
tion of the name variable are equivalent:

Dim name As String = “Visual Basic.NET”

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES538

2877c12.qxd 11/11/01 4:18 PM Page 538

http://www.sybex.com

If Left(name, 3) = “Vis” Then ...
If name.StartsWith(“Vis”) Then ...

Notice that the comparison performed by the StartsWith method is case-sensitive. If you don’t
care about the case, you can convert both the string and the substring to uppercase, as in the follow-
ing example:

If name.ToUpper.StartsWith(“VIS”) Then ...

This If clause is True regardless of the casing of the name variable.

IndexOf, LastIndexOf

These two methods locate a substring in a larger string. The IndexOf method starts searching from
the beginning of the string, and the LastIndexOf method starts searching from the end of the string.
Both methods return an integer, which is the order of the substring’s first character in the larger
string (the order of the first character is zero).

VB6 ➠ VB.NET

The IndexOf and LastIndexOf methods are equivalent to the InStr() and InStrRev() functions of VB6.

In the following examples, ch is a Char variable, chars is an array of type Char, and str is a String
variable.

To locate a single character in a string, use the following forms of the IndexOf method:

String.IndexOf(ch)
String.IndexOf(ch, startIndex)
String.IndexOf(ch, startIndex, count)

The startIndex argument is the location in the string, where the search will start, and the count
argument is the number of characters that will be examined. The IndexOf method returns the loca-
tion of the first instance in the string—these two methods are instance methods.

To locate a string, use the following forms of the IndexOf method:

String.IndexOf(str)
String.IndexOf(str, startIndex)
String.IndexOf(str, startIndex, count)

The last three forms of the IndexOf method search for an array of characters in the string:

String.IndexOf(chars())
String.IndexOf(chars(), startIndex)
String.IndexOf(chars(), startIndex, count)

The following statement will return the position of the string “Visual” in the text of the TextBox1
control, or –1 if the string isn’t contained in the text:

Dim pos As Integer
pos = TextBox1.Text.IndexOf(“Visual”)

539HANDLING STRINGS AND CHARACTERS

2877c12.qxd 11/11/01 4:18 PM Page 539

http://www.sybex.com

Both methods perform a case-sensitive search, taking into consideration the current locale. To
make case-insensitive searches, use uppercase for both the string and the substring. The following
statement returns the location of the string “visual” (or “VISUAL”, “Visual”, and even “vISUAL”)
within the text of TextBox1:

Dim pos As Integer
pos = TextBox1.Text.ToUpper.IndexOf(“VISUAL”)

The expression TextBox1.Text is the text on the control, and its type is String. We apply the
method ToUpper to convert the text to uppercase. The expression TextBox1.Text.ToUpper is the
text on the TextBox1 control converted to uppercase, which is a string value. Finally, we apply the
IndexOf method to this string to locate the first instance of the word “VISUAL.”

IndexOfAny

This method accepts as argument an array of characters and returns the first occurrence of any of the
array’s characters in the string:

str.IndexOfAny(chars)

where chars is an array of characters. This method attempts to locate the first instance of any member
of chars in the string. If the character is found, then its index is returned. If not, the process is
repeated with the second character and so on, until an instance is found, or the array has been
exhausted. If you want to locate the first delimiter in a string, call the IndexOfAny method with an
array like the following:

Dim chars() As Char = {CChar(“ “), CChar(“.”), CChar(“,”), CChar(“;”)}
Dim mystring As String = “This is a short sentence”
Console.WriteLine(mystring.IndexOfAny(chars))

When the last statement is executed, the value 4 will be printed on the Output window. This is
the location of the first space in the string (keep in mind that the index of the first character in the
string is zero).

To locate the first number in a string, pass the nums array to the IndexOfAny method, as shown
in the following example:

Dim nums() As Char = {“1”, “2”, “3”, “4”, “5”, “6”, “7”, “8”, “9”, “0”}
mystring = “This sentence contains 36 characters”
Console.WriteLine(mystring.IndexOfAny(nums))

The statements shown here will work if the Strict option is off. If this option is turned on, you
must explicitly convert each number to a character with the CChar() or CType() function, as shown
in the first example of this section.

Insert

The Insert method inserts one or more characters at a specified location in a string and returns the
new string. The syntax of the Insert method is

newString = str.Insert(startIndex, subString)

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES540

2877c12.qxd 11/11/01 4:18 PM Page 540

http://www.sybex.com

startIndex is the position in the str variable, where the string specified by the second argument will be
inserted. The following statement will insert a dash between the second and third characters of the
string “CA93010”

Dim Zip As String = “CA93010”
Dim StateZip As String
StateZip = Zip.Insert(2, “-”)

The StateZip string variable will become “CA-93010” after the execution of these statements.

Join

This method joins two or more strings and returns a single string with a separator between the origi-
nal strings. Its syntax is

newString = String.Join(separator, strings)

where separator is the string that will be used as separator and strings is an array with the strings to be
joined.

If you have an array of many strings and you want to join a few of them, you can specify the
index of the first string in the array and the number of strings to be joined with the following form
of the Join method:

newString = String.Join(separator, strings, startIndex, count)

The following statement will create a full path by joining folder names:

Dim path As String
Dim folders() As String = {“My Documents”, “Business”, “Expenses”}
path = String.Join(“/”, folders)

The value of the path variable after the execution of these statements will be:

My Documents/Business/Expenses

Split

Just as you can join strings, you can split a long string into smaller ones with the Split method,
whose syntax is

strings() = String.Split(delimiters, string)

where delimiters is an array of characters and string is the string to be split. The string is split into sec-
tions that are separated by any one of the delimiters specified with the first argument. These strings
are returned as an array of strings. The Split method, like the Join method, is a shared method (you
can’t split a string variable by applying the Split method to it).

Note The delimiters array allows you to specify multiple delimiters, which makes it a great tool for isolating words
in a text. You can specify all the characters that separate words in text (spaces, tabs, periods, exclamation marks, and so
on) as delimiters and pass them along with the text to be parsed to the Split method.

The statements in Listing 12.4 isolate the parts of a path, which are delimited by a backslash
character.

541HANDLING STRINGS AND CHARACTERS

2877c12.qxd 11/11/01 4:18 PM Page 541

http://www.sybex.com

Listing 12.4: Extracting a Path’s Components

Dim path As String = “c:\My Documents\Business\Expenses”
Dim delimiters() As Char = {CChar(“\”)}
Dim parts() As String
parts = path.Split(delimiters)
Dim iPart As IEnumerator
iPart = parts.GetEnumerator
While iPart.MoveNext

Console.WriteLine(iPart.Current.tostring)
End While

If the path ends with a slash, then the Split method will return an extra empty string. You should
either make sure that the string doesn’t start or end with a delimiter, or ignore the elements of the
parts array that hold empty strings.

Notice that the parts array is declared without a size. It’s a one-dimensional array that will be
dimensioned automatically by the Split method, according to the number of substrings separated by
the specified delimiter(s). The second half of the code iterates through the parts of the path and dis-
plays them on the Output window.

If you execute the statements of Listing 12.4 (place them in a button’s Click event handler and
run the program), the following strings will be printed in the Output window:

c:
My Documents
Business
Expenses

Remove

The Remove method removes a given number of characters from a string, starting at a specific loca-
tion, and returns the result as a new string. Its syntax is

newString = str.Remove(startIndex, count)

where startIndex is the index of the first character to be removed in the str string variable and count is
the number of characters to be removed.

The Remove method is new to VB.NET. To remove a particular number of characters in previ-
ous versions of Visual Basic, you had to build a new string by concatenating the characters to the left
and to the right of the part of the string to be removed.

Replace

This method replaces all instances of a specified character (or substring) in a string with a new one.
It creates a new instance of the string, replaces the characters as specified by its arguments, and
returns this string:

newString = str.Replace(oldChar, newChar)

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES542

2877c12.qxd 11/11/01 4:18 PM Page 542

http://www.sybex.com

where oldChar is the character in the str variable to be replaced and newChar is the character to replace the
occurrences of oldChar. The string after the replacement is returned as the result of the method. The fol-
lowing statements replace all instances of the tab character with a single space. You can change the last
statement to replace tabs with a specific number of spaces—usually 3, 4, or 5 spaces.

Dim txt, newTxt As String
Dim vbTab As String = vbCrLf
txt = “some text with two tabs”
newTxt = txt.Replace(vbTab, “ “)

Note that the Replace method can also replace substrings in a longer string. This form of the
syntax is shown next:

newString = str.Replace(oldString, newString)

Use the following statements to replace all instances of “VB7” in a string with the substring
“VB.NET”:

Dim txt, newTxt As String
txt = “Welcome to VB7”
newTxt = txt.Replace(“VB7”, “VB.NET”)

PadLeft, PadRight

These two methods align the string left or right in a specified field. They both return a fixed-length
string with spaces to the right (for left-padded strings) or to the left (for right-padded strings). Both
methods accept the length of the field as argument and return a new string:

Dim LPString, RPString As String
LPString = “[“ & “Mastering VB”.PadRight(20) & “]”
RPString = “[“ & “Mastering VB”.PadLeft(20) & “]”

After the execution of these statements, the values of the LPString and RPString variables are:

[Mastering VB]
[Mastering VB]

There are 8 spaces to the right of the left-padded string and 8 spaces to the right of the left-
padded string.

VB6 ➟ VB.NET

The PadLeft and PadRight methods replace the LSet() and RSet() functions of VB6.

Another form of these methods allows you to specify the character to be used in padding the
strings. If you change the calls to the PadLeft and PadRight methods in the last example with the
following:

LPString = “Mastering VB”.PadRight(20, “@”)
RPString = “Mastering VB”.PadLeft(20, “.”)

543HANDLING STRINGS AND CHARACTERS

2877c12.qxd 11/11/01 4:18 PM Page 543

http://www.sybex.com

then the two strings will be:

Mastering VB@@@@@@@@
........Mastering VB

If the string is shorter than the specified field length, then the PadLeft and PadRight methods
return the original string. The two padding methods don’t trim the string to fit it in the specified field.

You can use the padding methods for visual alignment only if you’re using a monospaced font,
like Courier. These two methods can used to create text files with rows made up of fields with a
fixed length.

The StringBuilder Class
The StringBuilder class stores dynamic strings and exposes methods to manipulate them much faster
than the String class. To use the StringBuilder class in an application, you must import the
System.Text class (unless you want to fully qualify each instance of the StringBuilder class in your
code). Assuming you have imported the System.Text class in your code module, you can create a
new instance of the class with the following statement:

Dim txt As New StringBuilder

There are many ways to initialize an instance of the StringBuilder class, but first I must explain
the capacity of a StringBuilder object. Since the StringBuilder handles dynamic strings, it’s good to
declare in advance the size of the string you intend to store in the current instance of the class. The
default capacity is 16 characters, and it’s doubled automatically every time you exceed it. To set the
initial capacity of the StringBuilder class, use the Capacity property. A related property is the Max-
Capacity property, which is read-only and returns the maximum length of a string you can store in a
StringBuilder variable. This value is approximately 2 billion characters; it’s the length of the longest
string you can store to an instance of the StringBuilder class.

To create a new instance of the StringBuilder class, you can call its constructor without any argu-
ments, as I did in the preceding example. You can also initialize it by passing a string as argument:

Dim txt As New StringBuilder(“some string”)

If you can estimate the maximum length of the string you’ll store in the variable, you can specify
this value with the following form of the constructor, so that the variable need not be resized as you
add to it:

Dim txt As New StringBuilder(initialCapacity)

The size you specify is not a hard limit; the variable may grow longer at runtime, and the String-
Builder will adjust its capacity.

If you want to specify a maximum capacity for your StringBuilder variable, use the following
constructor:

Dim txt As New StringBuilder(initialCapacity, maxCapacity)

Finally, you can initialize a new instance of the StringBuilder class using both an initial and a
maximum capacity, as well as its initial value, with the following form of the constructor:

Dim txt As New StringBuilder(string, initialCapacity, maxCapacity)

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES544

2877c12.qxd 11/11/01 4:18 PM Page 544

http://www.sybex.com

All the members of the StringBuilder class are instance members. In other words, you must create
an instance of the StringBuilder class before calling any of its properties or methods.

Properties

You have already seen the two basic properties of the StringBuilder class, the Capacity and Max-
Capacity properties. In addition, the StringBuilder class provides the Length and Chars properties,
which are the same as the corresponding properties of the String class.

Length

This property returns the number of characters in the current instance of the StringBuilder and is an
integer value smaller than (or, at most, equal to) the Capacity property.

Chars

This property gets or sets the character at a specified location in the string, and it’s an array of char-
acters. Note that the index of the first character is zero.

ch = SB.Chars(index)

where ch is a properly declared Char variable and SB is an instance of the StringBuilder class. To set a
character’s value in the string, use the following statement:

SB.Chars(index) = ch

Note The Chars property of the StringBuilder class is read-write, as opposed to the same property of the String class,
which is read-only. You can use the Chars array to change selected characters in a string.

Methods

Many of the methods of the StringBuilder class are equivalent to the methods of the String class, but
they act directly on the string to which they’re applied, and they don’t return a new, separate string.

Append

The Append method appends a base type to the current instance of the StringBuilder class, and its
syntax is

SB.Append(value)

where the value argument can be a single character, a string, a date, or any numeric value. When you
append numeric values to a StringBuilder, they’re converted to strings; the value appended is the
string returned by the type’s ToString method. You can also append an object to the String-
Builder—the actual string that will be appended is the object’s ToString property.

Another form of the Append method allows you to append an array of characters, and it has the
following syntax:

SB.Append(chars, startIndex, count)

545HANDLING STRINGS AND CHARACTERS

2877c12.qxd 11/11/01 4:18 PM Page 545

http://www.sybex.com

Or, you can append a segment of a string by specifying the starting location of the substring in
the longer string and the number of characters to be copied:

SB.Append(string, startIndex, count)

AppendFormat

The AppendFormat method is similar to the Append method. Before appending the string, however,
it formats it. The string to be appended contains format specifications and the appropriate values.
The syntax of the AppendFormat method is

SB.AppendFormat(string, values)

The first argument is a string with embedded format specifications and values is an array with val-
ues (objects, in general), one for each format specification in the string. If you have a small number of
values to format, up to four, you can supply them as separate arguments separated by commas:

SB.AppendFormat(string, value, value, value, value)

The following statement appends the string “Your balance as of Thursday, May 16, 2002 is
$19,950.40” to a StringBuilder variable:

Dim statement As New StringBuilder
statement.AppendFormat(“Your balance as of {0:D} is ${1: #,###.00}”, _

#5/16/2002#, 19950.40)

Each format specification is enclosed in a pair of curly brackets, and they’re numbered sequen-
tially (from zero). Then there’s a colon followed by the actual specification. The D format specifica-
tion tells the AppendFormat method to format the specified string in long date format. The second
format specification, “#,###.00”, uses the thousands separator and two decimal digits.

The following statements append the same string, but they pass the values through an array:

Dim statement As New StringBuilder
Dim values() As Object = {“5/16/2002”, 19950.4}
statement.AppendFormat(“Your balance as of {0:D} is ${1:#,###.00}”, values)

In both cases, the statement variable will hold a string like this one:

Your balance as of Thursday, May 16, 2002 is $19,950.40

The format specifications in the original string usually contain formatting characters. For more
information on date and time formatting options, see the section on the ToString method of the
Date type, later in this chapter.

Insert

This method inserts a string into the current instance of the StringBuilder class, and its syntax is

SB.Insert(index, value)

The index argument is the location where the new string will be inserted in the current instance of the
StringBuilder, and value is the string to be inserted. As with the Append method, the value argument
can be any object. The Insert method will insert the string returned by the object’s ToString method.

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES546

2877c12.qxd 11/11/01 4:18 PM Page 546

http://www.sybex.com

This means that you can use the Insert method to insert numeric values and dates directly into a
StringBuilder variable.

A variation of the syntax shown here inserts multiple copies of the specified string into the
StringBuilder:

SB.Insert(index, string, count)

Yet another form of the Insert method inserts an array of characters at the specified location in
the current instance of the StringBuilder (chars is an array of characters):

SB.Insert(index, chars)

Remove

This method removes a number of characters from the current StringBuilder, starting at a specified
location; its syntax is

SB.Remove(startIndex, count)

where startIndex is the position of the first character to be removed from the string and length is the
number of characters to be removed.

Replace

This method replaces all instances of a string in the current StringBuilder with another string. The
syntax of the Replace method is

SB.Replace(oldValue, newValue)

where the two arguments can be either strings or characters. Another form of the Replace method
limits the replacements to a specified segment of the StringBuilder instance:

SB.Replace(oldValue, newValue, startIndex, count)

This method will replace all instances of oldValue with newValue in the section starting at location
startIndex and extending count characters.

ToString

Use this method to convert the StringBuilder instance to a String and assign it to a String variable.

VB.NET at Work: The StringReversal Project
To get an idea of how efficiently the StringBuilder manipulates strings, here’s an application that
reverses a string (Figure 12.1). The program reverses two strings, one declared as String and another
one declared as StringBuilder. Note that neither the String nor the StringBuilder class exposes a
method for reversing the order of the characters in a string. However, you can use the StrReverse()
function in this project to reverse a string with a single function call. In this example, we’ll reverse
the strings by swapping individual characters to time the two classes.

On my computer, it took a fifth of a second to reverse a 30,000 character-string with the String-
Builder class and almost 14 seconds to do the same with the String class. Obviously, the StringBuilder
class is optimized for manipulating strings dynamically. With previous versions of Visual Basic,

547HANDLING STRINGS AND CHARACTERS

2877c12.qxd 11/11/01 4:18 PM Page 547

http://www.sybex.com

many programmers had to write special functions in VC++ to manipulate large strings efficiently.
Now, you can get awesome performance out of the StringBuilder class. If you have applications that
manipulate strings extensively, port them to VB.NET and watch them run circles around the old
applications written with VB’s string-manipulation functions.

The StringReversal project reads the text on the TextBox control and appends it to the STR String-
Builder variable. Then it goes through the first half of the string, one character at a time, and swaps it with
the matching character in the second half of the array. The first character, STR.Chars(0) is swapped
with the last character in the string, STR.Chars(STR.Length-1). The second character, STR.Chars(1), is
swapped with the second-to-last character, STR.Chars(STR.Length – 2), and so on. Without the tempo-
rary variable, we’d overwrite one of the characters to be swapped and wouldn’t be able to copy it to its
new location. Notice that we subtract one from the indices, because the indexing of the characters in a
StringBuilder variable starts at zero, and the location of the last character is the length of the string minus
1. By the way, the same is true for String variables. The code stores the length of the StringBuilder to the
STRLen variable to avoid calling the Length property at each iteration.

To reverse a String variable, we use the string-manipulation functions of VB. Unlike the methods
of the StringBuilder class, the equivalent VB functions use the index 1 for the first character of the
string. The Mid() function extracts a character from a string, and the Mid statement replaces one of
the existing characters with another one. Listing 12.5 is the Click event handler of the Reverse Text
(String) button. You can ignore the statements that time the operations for now—they’re discussed
in the following section.

Listing 12.5: Reversing a String Variable

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim TStart, TEnd As Date
Dim TDiff As TimeSpan
Dim STRLen As Integer
STRLen = Len(TextBox1.Text)
Dim revCrLf As String
revCrLf = vbCrLf.Chars(1) & vbCrLf.Chars(0)
TStart = Now()
Dim txt As String
txt = TextBox1.Text

Figure 12.1

The StringReversal
project’s main form

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES548

2877c12.qxd 11/11/01 4:18 PM Page 548

http://www.sybex.com

Dim aChar As String
Dim iChar As Integer
For iChar = 1 To CInt(STRLen / 2)

aChar = Mid(txt, iChar, 1)
Mid(txt, iChar, 1) = Mid(txt, STRLen - iChar - 1, 1)
Mid(txt, STRLen - iChar - 1) = aChar

Next
TEnd = Now()
TDiff = TEnd.Subtract(TStart)
Console.WriteLine(“Reversed string in “ & TDiff.TotalSeconds.ToString)
TextBox1.Text = txt.Replace(revCrLf, vbCrLf)

End Sub

Notice the line that replaces carriage returns and line feeds. On the TextBox control, each line is
terminated with the sequence Chr(10) & Chr(13). When the order of these two characters is
reversed, they will no longer change line on the TextBox control. This statement restores the line-
feed/carriage-return combination back to its original state. Listing 12.6 reverses the same string
using a StringBuilder variable (this is the code behind the Reverse Text (StringBuilder) button).

Listing 12.6: Reversing a StringBuilder Variable

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

Dim TStart, TEnd As Date
Dim TDiff As TimeSpan
Dim STR As New System.Text.StringBuilder()
Dim STRLen As Integer
STRLen = Len(TextBox1.Text)
STR.Capacity = STRLen
STR.Append(TextBox1.Text)
Dim ichar As Integer
Dim chr As Char
TStart = Now()
For ichar = 0 To CInt(STR.Length / 2 - 1)

chr = STR.Chars(ichar)
STR.Chars(ichar) = STR.Chars(STRLen - ichar - 1)
STR.Chars(STRLen - ichar - 1) = chr

Next
Dim revCrLf As String
revCrLf = vbCrLf.Chars(1) & vbCrLf.Chars(0)
STR.Replace(revCrLf, vbCrLf)
TEnd = Now()
TDiff = TEnd.Subtract(TStart)
Console.WriteLine(“Reversed string in “ & TDiff.TotalSeconds.ToString)
TextBox1.Text = STR.ToString

End Sub

549HANDLING STRINGS AND CHARACTERS

2877c12.qxd 11/11/01 4:18 PM Page 549

http://www.sybex.com

VB.NET at Work: The CountWords Project
As you have noticed, the StringBuilder doesn’t provide as many methods as the String class. The
StringBuilder class should be used to build long strings and manipulate them dynamically. If you
want to locate words or other patterns in the text, align strings in fixed-length fields, and other simi-
lar operations, use the String class. You can also combine both classes in your application, so that
you can speed both string-manipulation and -handling operations. To extract the text from a String-
Builder, use its ToString method. To assign a string to the StringBuilder variable, use its Append
method:

Dim strB As New StringBuilder
Dim str1, str2 As String
str1 = “some text”
strB.Append(str1)
{ statements to process the strB variable }
str2 = strB.ToString

Any of the String class’s methods, however, can be used with StringBuilder variables. The
ToString method of the StringBuilder class returns a string, which can be processed with the meth-
ods of the String class. For instance, the StringBuilder class lacks the IndexOf and LastIndexOf
methods. To locate an instance of a word in a StringBuilder variable, use the following statement:

pos = SB.ToString.IndexOf(“visual”)

where SB is a properly declared an initialized StringBuilder variable and pos is the index of the first
instance of the word “visual” in the StringBuilder’s text.

The CountWords application, shown in Figure 12.2, counts all instances of a user-supplied word
in a StringBuilder variable. You can do the same with the Sting class, but if you want to further
process the text, you’ll have to use the StringBuilder class anyway. The program prompts the user for
a string and attempts to locate it in the text with the following statement:

startIndex = SB.ToString.ToUpper.IndexOf(searchWord.ToUpper)

Figure 12.2

The CountWords
project counts the
instances of a user-
supplied word in
a text.

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES550

2877c12.qxd 11/11/01 4:18 PM Page 550

http://www.sybex.com

Then, it sets up a loop that locates one instance of the user-supplied word at a time. The following
statement searches for the word in text, starting at the location startIndex + searchWord.Length +
1. This expression is the location of the first character following the most recently located instance of
the word in the large string. At each iteration of the loop, the IndexOf method starts searching for the
word in the text following the previous instance of the word. Here’s the statement that locates the
next instance of the word in the text:

startIndex = SB.ToString.ToUpper.IndexOf(searchWord.ToUpper, _
startIndex + searchWord.length + 1)

This statement appears in a loop that’s repeated for as long as the startIndex variable is positive.
When all instances of the word in the text have been located, the IndexOf method returns the value –1
and the loop terminates. The complete code of the Count Words button is shown in Listing 12.7.

Listing 12.7: The CountWords Project’s Code

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim SB As New System.[Text].StringBuilder()
Dim searchWord As String
searchWord = InputBox(“Please enter the word to search for”, _

“StringBuilder Search Example”, “BASIC”)
Dim startIndex As Integer
SB.Append(Textbox1.Text)
startIndex = SB.ToString.ToUpper.IndexOf(searchWord.ToUpper)
Dim T1, T2 As Date
Dim SP As New TimeSpan()
T1 = Now()
Dim count As Integer
If startIndex = 0 Then

MsgBox(“The string you’re searching for wasn’t found”)
End If
While startIndex > 0 And startIndex + searchWord.Length < SB.Length

count = count + 1
startIndex = SB.ToString.ToUpper.IndexOf(searchWord.ToUpper, _

startIndex + searchWord.Length + 1)
End While
T2 = Now
SP = T2.Subtract(T1)
Dim msg As String
msg = “Located “ & count.ToString & “ instances of the word in “ & _

SP.Milliseconds.ToString & “ milliseconds”
MsgBox(msg)

End Sub

551HANDLING STRINGS AND CHARACTERS

2877c12.qxd 11/11/01 4:18 PM Page 551

http://www.sybex.com

When executed, this code will pop up a message box with a statement like the following:

Located 22 instances of the word in 270 milliseconds

The last few statements calculate the time it took the program to locate all the instances of the
word with the methods of the TimeSpan object, which is discussed in the following section.

Handling Dates
Another common task in coding business applications is the manipulation of dates and time. To aid
the coding of these tasks, the Framework provides the DateTime and TimeSpan classes. The Date-
Time class handles date and time values, while the TimeSpan class handles time differences. Date is
a data type, and there’s no equivalent class in the Framework. All Date variables are implemented by
the DateTime class. The two types of variables are identical, and the DateTime name is more appro-
priate, since these variables can store both dates and times. Since the Date data type has been around
for a while, I will use this name for the class. But keep in mind that there’s no Date class and you
must use the System.DateTime class to call the shared members of a Date variable.

VB.NET supports all the date and time functions of previous versions of Visual Basic, which are
described in detail in a bonus reference on the CD.

The DateTime Class
The DateTime class is used for storing date and time values, and it’s one of the Framework’s base
data types. Date and time values are stored internally as double numbers. The integer part of the
value corresponds to the data and the fractional part corresponds to the time. To convert a Date
variable to a double value, use the method ToOADateTime, which returns a value that is an OLE
Automation–compatible date. The value 0 corresponds to the midnight of December 30, 1899.

To initialize a Date variable, supply a date value enclosed in a pair of pound symbols. If the value
contains time information, separate it from the date part with a space:

Dim date1 As Date = #4/15/2001#
Dim date2 As Date = #4/15/2001 14:01:59#

You can declare the two variables as DateTime type. If you have a string that represents a date
and you want to assign it to a Date variable for further processing, use the DateTime class’s Parse and
ParseExact methods. The Parse method parses a string and returns a date value, if the string can be
interpreted as a date value. Let’s say your code prompts the user for a date and then it uses in date
calculations. The user-supplied date is read as a string, and you must convert it to a Date value:

Dim sDate1 As String
Dim dDate1 As Date
sDate1 = InputBox(“Please enter a date after 1/1/2002”)
Try

dDate1 = System.DateTime.Parse(sDate1)
{ use dDate1 in your calculations }

Catch exc As Exception
MsgBox(“You’ve entered an invalid date”)

End Try

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES552

2877c12.qxd 11/11/01 4:18 PM Page 552

http://www.sybex.com

The Parse method will convert a string that represents a date to a DateTime value regardless of
the format of the date. You can enter dates like “1/17/2001”, “Jan. 17, 2003”, or “January 17,
2003” (with or without the comma). Actually, even the string “17/1/2003” will be read as
January 17, because there are only 12 months, and this is the only interpretation that will yield a
valid date. VB assumes you’ve entered a European-style date and swaps the day and month values,
if the month value is invalid.

Properties

The Date type exposes the following properties, which are straightforward.

Date

The Date property returns the date from a date/time value and sets the time to midnight. The
statements:

Dim date1 As Date
date1 = Now()
Console.WriteLine(date1)
Console.WriteLine(date1.Date)

will print something like the following values in the Output window:

5/29/2001 2:30:17 PM
5/29/2001 12:00:00 AM

DayOfWeek, DayOfYear

These two properties return the day of the week (a number from 1 to 7) and the number of the day
in the year (an integer from 1 to 365, or 366 for leap years).

Hour, Minute, Second, Millisecond

These properties return the corresponding time part of the Date value passed as arguments. If the
current time is 1:35:22 P.M., the three properties of the DateTime class will return the following val-
ues when applied on the current date and time:

Console.WriteLine(“The current time is “ & Date.Now.TimeOfDay.ToString)
Console.WriteLine(“The hour is “ & Date.Now.Hour)
Console.WriteLine(“The minute is “ & Date.Now.Minute)
Console.WriteLine(“The second is “ & Date.Now.Second)

If you place these statement in a button’s Click event handler and execute them, the following will
be printed on the Output window:

The current time is 13:35:22.0527552
The hour is 13
The minute is 35
The second is 22

553HANDLING DATES

2877c12.qxd 11/11/01 4:18 PM Page 553

http://www.sybex.com

Day, Month, Year

These three properties return the day of the month, the month, and the year of the Date value passed
as argument. The Day and Month properties are numeric values, but you can convert them to the
appropriate string (the name of the day or month) with the WeekDayName() and MonthName()
functions. Both functions accept as argument the number of the day (a value from 1 to 7) or month
(from 1 to 13), and they return the name. Use the value 13 with a 13-month calendar (for non-U.S.
or non-European calendars). They also accept a second optional argument that is a True/False value
and indicates whether the function should return the abbreviated name (if True) or full name (if
False). The WeekDayName() function accepts a third optional argument, which determines the first
day of the week. Set this argument to one of the members of the FirstDayOfWeek enumeration. By
default, the first day of the week is Sunday.

Ticks

This property returns the number of ticks from a date/time value. Each tick is 100 nanoseconds
(or 0.0001 milliseconds). To convert ticks to milliseconds, multiply them by 10,000 (or use the
TimeSpan object’s TicksPerMillisecond property, discussed later in this chapter).

TimeOfDay

This property returns the time from a date/time value. The following statement will return a value
like the one shown after the statement, in bold:

Console.WriteLine(Now().TimeOfDay)
14:35:44.4589088

Methods

The DateTime class exposes several methods for manipulating dates. The most practical methods
add and subtract time intervals to and from an instance of the DateTime class.

Compare

Compare is a shared method that compares two date/time values and returns an integer value indi-
cating the relative order of the two values. The syntax of the Compare method is

order = System.DateTime.Compare(date1, date2)

where date1 and date2 are the two values to be compared. The method returns an integer, which is –1
if date1 is less than date2, 0 if they’re equal, and 1 if date1 is greater than date2.

DaysInMonth

This shared method returns the number of days in a specific month. Because February contains a
variable number of days depending on the year, the DaysInMonth method accepts as arguments
both the month and the year:

monDays = System.DateTime.DaysInMonth(year, month)

To find out the number of days in February 2009, use the following expression:

FebDays = System.DateTime.DaysInMonth(2, 2009)

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES554

2877c12.qxd 11/11/01 4:18 PM Page 554

http://www.sybex.com

FromOADate

This shared method creates a date/time value from an OLE Automation Date.

newDate = System.DateTime.FromOADate(dtvalue)

The argument dtvalue must be a Double value in the range from –657,434 (first day of year 100) to
2,958,465 (last day of year 9999).

IsLeapYear

This shared method returns a True/False value that indicates whether the specified year is leap or not.

Dim leapYear As Boolean
leapYear = System.DateTime.IsLeapYear(year)

Add

This method adds a TimeSpan object to the current instance of the Date class. The TimeSpan object
represents a time interval and there are many methods to create a TimeSpan object, which are all dis-
cussed in the section “The TimeSpan Class” later in this chapter. The following statements create a new
TimeSpan object that represents 3 days, 6 hours, 2 minutes, and 50 seconds, and add this TimeSpan to
the current date and time. Depending on when these statements are executed, the two date/time values
will differ, but the difference between them will always be 3 days, 6 hours, 2 minutes, and 50 seconds:

Dim TS As New TimeSpan()
Dim thisMoment As Date = Now()
TS = New TimeSpan(3, 6, 2, 50)
Console.WriteLine(thisMoment)
Console.WriteLine(thisMoment.Add(TS))

The values printed in the Output window when I tested this code segment were:

2001-04-13 16:26:38
2001-04-16 22:29:28

Subtract

This method is the counterpart of the Add method; it subtracts a TimeSpan object from the current
instance of the Date class and returns another Date value. The following statements create a new Time-
Span object that represents 3 days, 6 hours, 2 minutes, and 50 seconds, and subtracts this TimeSpan
from the current date and time. Depending on when these statements are executed, the two
date/time values will differ, but the difference between them will always be the same:

Dim TS As New TimeSpan()
Dim thisMoment As Date = Now()
TS = New TimeSpan(3, 6, 2, 50)
Console.WriteLine(thisMoment)
Console.WriteLine(thisMoment.Subtract(TS))

The values printed in the Output window when I tested this code segment were:

5/29/2001 2:52:03 PM
5/26/2001 8:49:13 AM

555HANDLING DATES

2877c12.qxd 11/11/01 4:18 PM Page 555

http://www.sybex.com

Adding Intervals to Dates

Various methods add specific intervals to a date/time value. Each method accepts the number of
intervals to add (days, hours, milliseconds, and so on). These methods are simply listed: AddYears,
AddMonths, AddDays, AddHours, AddMinutes, AddSeconds, AddMilliseconds, and AddTicks. A
tick is 100 nanoseconds and is used for really fine timing operations.

To add 3 years and 12 hours to the current date, use the following statements:

Dim aDate As Date
aDate = Now()
aDate = aDate.AddYears(3)
aDate = aDate.AddHours(12)

If the argument is a negative value, the corresponding intervals are subtracted from the current
instance of the class. The following statement subtracts 2 minutes from a Date variable:

aDate = aDate.AddMinutes(-2)

ToString

This method converts a date/time value to a string, using a specific format. The Date class recog-
nizes numerous format patterns, which are listed in the following two tables. Table 12.1 lists the
standard format patterns, and Table 12.2 lists the format characters that can format individual parts
of the date/time value. You can combine the custom format characters to format dates and times in
any way you wish.

The syntax of the ToString method is

aDate.ToString(formatSpec)

where formatSpec is a format specification. The “D” named date format, for example, formats a date
value as a long date, and the following statement will return the string shown below the statement
in bold:

Console.Writeline(#9/17/2005#.ToString(“D”))
Saturday, September 17, 2005

Table 12.1 lists the named formats for the standard date and time patterns. The format charac-
ters are case-sensitive; for example, “g” and “G” represent slightly different patterns.

Table 12.1: The Date and Time Named Formats

Named Format Output Format Name

d MM/dd/yyyy ShortDatePattern

D dddd, MMMM dd, yyyy LongDatePattern

f dddd, MMMM dd, yyyy HH:mm fulldatetimePattern (long date and short time)

F dddd, MMMM dd, yyyy HH:mm:ss FullDateTimePattern (long date and long time)

g MM/dd/yyyy HH:mm general (short date and short time)

Continued on next page

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES556

2877c12.qxd 11/11/01 4:18 PM Page 556

http://www.sybex.com

Table 12.1: The Date and Time Named Formats (continued)

Named Format Output Format Name

G MM/dd/yyyy HH:mm:ss General (short date and long time)

m, M MMMM dd MonthDayPattern

r, R ddd, dd MMM yyyy HH‘:’mm‘:’ss ‘GMT’ RFC1123Pattern

s yyyy-MM-dd HH:mm:ss SortableDateTimePattern

t HH:mm ShortTimePattern

T HH:mm:ss LongTimePattern

u yyyy-MM-dd HH:mm:ss UniversalSortableDateTimePattern

U dddd, MMMM dd, yyyy HH:mm:ss UniversalSortableDateTimePattern

y, Y MMMM, yyyy YearMonthPattern

The following examples format the current date using all of the format patterns listed in Table 12.1.
An example of the output produced by each statement is shown under each statement, in bold.

Console.WriteLine(now().ToString(“d”))
5/29/2001
Console.WriteLine(now().ToString(“D”))
Tuesday, May 29, 2001
Console.WriteLine(now().ToString(“f”))
Tuesday, May 29, 2001 3:14 PM
Console.WriteLine(now().ToString(“F”))
Tuesday, May 29, 2001 3:14:43 PM
Console.WriteLine(now().ToString(“g”))
5/29/2001 3:14 PM
Console.WriteLine(now().ToString(“G”))
5/29/2001 3:14:43 PM
Console.WriteLine(now().ToString(“m”))
May 29
Console.WriteLine(now().ToString(“r”))
Tue, 29 May 2001 15:14:43 GMT
Console.WriteLine(now().ToString(“s”))
2001-05-29T15:14:43
Console.WriteLine(now().ToString(“t”))
3:14 PM
Console.WriteLine(now().ToString(“T”))
3:14:43 PM
Console.WriteLine(now().ToString(“u”))
2001-05-29 15:14:43Z
Console.WriteLine(now().ToString(“U”))

557HANDLING DATES

2877c12.qxd 11/11/01 4:18 PM Page 557

http://www.sybex.com

Tuesday, May 29, 2001 12:14:43 PM
Console.WriteLine(now().ToString(“y”))
May, 2001

Table 12.2 lists the format characters that can be combined to build custom format date and
time values. The patterns are case-sensitive; for example, “MM” is valid, but “mm” isn’t. If the cus-
tom pattern contains spaces or characters enclosed in single quotation marks, these characters will
appear in the formatted string.

Table 12.2: Date Format Specifier

Format Character Description

d The date of the month

dd The day of the month with a leading zero for single-digit days

ddd The abbreviated name of the day of the week (a member of the AbbreviatedDay-
Names enumeration)

dddd The full name of the day of the week (a member of the DayNamesFormat
enumeration)

M The number of the month

MM The number of the month with a leading zero for single-digit months

MMM The abbreviated name of the month (a member of the AbbreviatedMonthNames
enumeration)

MMMM The full name of the month

y The year without the century (the year 2001 will be printed as 1)

yy The year without the century (the year 2001 will be displayed as 01)

yyyy The complete year

gg The period or era (this pattern is ignored if the date to be formatted does not
have an associated period, such as A.D. or B.C.)

h The hour in 12-hour format

hh The hour in 12-hour format with a leading zero for single-digit hours

H The hour in 24-hour format

HH The hour in 24-hour format with a leading zero for single-digit hours

m The minute of the hour

mm The minute of the hour with a leading zero for single-digit minutes

s The second of the hour

ss The second of the hour with a leading zero for single-digit seconds

Continued on next page

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES558

2877c12.qxd 11/11/01 4:18 PM Page 558

http://www.sybex.com

Table 12.2: Date Format Specifier (continued)

Format Character Description

t The first character in the AM/PM designator

tt The AM/PM designator

z The time-zone offset (applies to hours only)

zz The time-zone offset with a leading zero for single-digit hours (applies to
hour only)

zzz The full time-zone offset (hour and minutes) with leading zeros for single-digit
hours and minutes

The following examples format the current time using all of the format patterns listed in Table 12.2.
An example of the output produced by each statement is shown under each statement, indented and
in bold.

Console.WriteLine(now().ToString(“m/d/yyyy”))
5/29/2001
Console.WriteLine(now().ToString(“dd”))
29
Console.WriteLine(now().ToString(“ddd”))
Tue
Console.WriteLine(now().ToString(“dddd”))
Tuesday
Console.WriteLine(now().ToString(“M/yyyy”))
May 2001
Console.WriteLine(now().ToString(“MM”))
05
Console.WriteLine(now().ToString(“MMM”))
May
Console.WriteLine(now().ToString(“MMMM”))
May
Console.WriteLine(now().ToString(“m/d/y”))
29/5/1
Console.WriteLine(now().ToString(“m/d/yy”))
29/5/01
Console.WriteLine(now().ToString(“yy”))
01
Console.WriteLine(now().ToString(“yyyy”))
2001
Console.WriteLine(now().ToString(“gg”))
A.D.
Console.WriteLine(now().ToString(“hh”))
03
Console.WriteLine(now().ToString(“HH”))

559HANDLING DATES

2877c12.qxd 11/11/01 4:18 PM Page 559

http://www.sybex.com

15
Console.WriteLine(now().ToString(“h:m”))
3:26
Console.WriteLine(now().ToString(“mm”))
26
Console.WriteLine(now().ToString(“h:m:s”))
3:26:38
Console.WriteLine(now().ToString(“hh:mm:ss”))
03:26:38
Console.WriteLine(now().ToString(“h:m:s t”))
3:26:38 P
Console.WriteLine(now().ToString(“tt”))
PM
Console.WriteLine(now().ToString(“zz”))
+03
Console.WriteLine(now().ToString(“zzz”))
+03:00

To display the day of the month and the month name only, for instance, use the following
statement:

Console.WriteLine(now().ToString(“MMMM d”))
May 29

You may have noticed some overlap between the named formats and the format characters. The
character “d” signifies the short date pattern when used as a named format and the number of the day
when used as format character. The compiler figures out how it’s used based on the context. If the for-
mat argument is “d/mm”, the program will display the day and month number, while the format argu-
ment “d, mmm” will display the number of the day followed by the month’s name. If you use the
character “d” on its own, however, it will be interpreted as the named format for the short date format.

Date Conversion Methods

The Date class supports methods for converting a date/time value to many of the other base types. The
most common ones are ToInt16, ToSingle, ToString, ToUInt16, ToUInt32, and ToUInt64. When
a date/time value is converted an integer value, the time value is obviously lost. The other conversion
methods require some explanation:

ToFileTime Converts the value of the current Date instance to the format of the local system
file time. There’s also an equivalent FromFileTime method, which converts a file time value to a
Date value.

ToLocalTime Converts a UTC time value to local time.

ToLongDateString, ToShortDateString These two methods convert the date part of the cur-
rent Date instance to a string with the long (or short) date format. The following statement will
return a value like the one shown in bold, which is the long date format:

Console.WriteLine(Now().ToLongDateString)
Friday, July 16, 2001

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES560

2877c12.qxd 11/11/01 4:18 PM Page 560

http://www.sybex.com

The following statement will convert the current date to the short date format:

Console.WriteLine(Now().ToShortDateString)
7/16/2001

ToLongTimeString, ToShortTimeString These two methods convert the time part of the
current instance of the Date class to a string with the long (or short) time format. The following
statement will return a value like the one shown in bold:

Console.WriteLine(Now().ToLongTimeString)
6:40:53 PM

The following statement will convert the current time to the short date format:

Console.WriteLine(Now().ToShortTimeString)
6:40 PM

ToOADate Converts the DateTime instance into an OLE Automation–compatible date.

ToUniversalTime Converts the current instance of the DateTime class into universal coordi-
nated time (UCT). If you convert the local time of a system in New York to UCT when daylight
savings is not in effect, the value returned by this method will be a date/time value that’s five
hours ahead. The date may be the same or the date of the following day. If the statement is exe-
cuted after 7 P.M. local time, the date will be that of the following day.

Dates as Numeric Values

The Date type encapsulates very complicated operations. Manipulating dates is one of the most cumber-
some tasks in programming, if you consider that not all months have the same number of days. For years,
programmers had to write code to manipulate dates, or buy libraries with date- and time-handling func-
tions. To get an idea of how the Framework handles dates, let’s experiment a little with them. Start by
declaring two variables, a Date and a Double, and initialize the Date variable to the current date:

Dim Date1 As Date
Date1 = Now()
Dim dbl As Double

Insert a couple of statements to convert the date to a Double value and print it:

dbl = Date1.ToOADate
Console.WriteLine(dbl)

On the date I tested this code, April 10, 2001, the value was 36,991.63150635417. The integer
part of this value is the date, and the fractional part is the time. If you add one day to the current
date and then convert it to a Double again, you’ll get a Double value:

dbl = Now().AddDays(1).ToOADate
Console.WriteLine(dbl)

This time, the value 36,992.63150635417 was printed. You can add two days to the current date
by adding (48 × 60) minutes. The original integer part of the numeric value will be increased by two:

dbl = Now().AddMinutes(48 * 60).ToOADate
Console.WriteLine(dbl)

561HANDLING DATES

2877c12.qxd 11/11/01 4:18 PM Page 561

http://www.sybex.com

The value printed this time will be 36,993.631506585647.
Let’s see how the date-manipulation methods deal with leap years. We’ll add 10 years to the cur-

rent date with the AddYears method, and we’ll print the new value with a single statement:

Console.WriteLine(Now().AddYears(10).ToLongDateString)

The value that will appear in the Output window will be Sunday, April 10, 2011. This method
simply changed the value of the year. If you add 3,650 days, you’ll get a different value, because the
10-year span contains at least two leap years:

Console.WriteLine(Now().AddDays(3650).ToOADate)

The new value that will be printed on the Output window will be Friday, April 08, 2011, and the
corresponding double value will be 40,643.631506585647.

The TimeSpan Class
The last class discussed in this chapter is the TimeSpan class, which represents a time interval and
can be expressed in many different units, from ticks and milliseconds to days. The TimeSpan is usu-
ally the difference between two date/time values, but you can also create a TimeSpan for a specific
interval and use it in your calculations.

To use the TimeSpan variable in your code, just declare it with a statement like the following:

Dim TS As New TimeSpan

To initialize the TimeSpan object, you can provide a string with the number of days, hours, min-
utes, seconds, and milliseconds. The following statement initializes a TimeSpan object with a dura-
tion of 9 days, 12 hours, 1 minute, and 59 seconds:

Dim TS As TimeSpan = New TimeSpan(9, 12, 1, 59)

As you have seen, the difference between two dates calculated by the Date.Subtract method
returns a TimeSpan value. You can initialize an instance of the TimeSpan object by creating two
date/time values and getting their difference, as in the following statements:

Dim TS As New TimeSpan
Dim date1 As Date = #4/11/1985#
Dim date2 As Date = Now()
TS = date2.Subtract(date1)
Console.WriteLine(TS)

Depending on the day on which you execute these statements, they will print something like the
following on the Output window:

5992.15:58:14.4766848

The days are separated from the rest of the string with a period, while all other items are sepa-
rated with colons.

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES562

2877c12.qxd 11/11/01 4:18 PM Page 562

http://www.sybex.com

Properties

The TimeSpan type exposes the properties described in the following sections. Most of these mem-
bers are shared.

Field Properties

TimeSpan exposes the simple properties shown in Table 12.3, which are known as fields and are
all shared.

Table 12.3: The Fields of the TimeSpan Object

Property Returns

Empty An empty TimeSpan object

MaxValue The largest interval you can represent with a TimeSpan object

MinValue The smallest interval you can represent with a TimeSpan object

TicksPerDay The number of ticks in a day

TicksPerHour The number of ticks in an hour

TicksPerMillisecond The number of ticks in a millisecond

TicksPerMinute The number of ticks in one minute

TicksPerSecond The number of ticks in one second

Zero A TimeSpan object of zero duration

Interval Properties

In addition to the fields, the TimeSpan class exposes two more groups of properties that return the
various intervals in a TimeSpan value; these are the shown in Tables 12.4 and 12.5. The members of
the first group of properties return the number of specific intervals (days, hours, and so on) in a
TimeSpan value. The second group of properties returns the entire TimeSpan’s duration in one of
the intervals recognized by the TimeSpan method.

Table 12.4: The Intervals of a TimeSpan Value

Property Returns

Days The number of whole days in the current TimeSpan

Hours The number of whole hours in the current TimeSpan

Milliseconds The number of whole milliseconds in the current TimeSpan. The largest
value of this property is 999.

Minutes The number of whole minutes in the current TimeSpan. The largest value of
this property is 59.

Continued on next page

563HANDLING DATES

2877c12.qxd 11/11/01 4:18 PM Page 563

http://www.sybex.com

Table 12.4: The Intervals of a TimeSpan Value (continued)

Property Returns

Seconds The number of whole seconds in the current TimeSpan. The largest value of
this property is 59.

Ticks The number of whole ticks in the current TimeSpan

Table 12.5: The Total Intervals of a TimeSpan Value

Property Returns

TotalDays The total number of days in the current TimeSpan

TotalHours The total number of hours in the current TimeSpan

TotalMilliseconds The total number of whole milliseconds in the current TimeSpan

TotalMinutes The number of whole minutes in the current TimeSpan

TotalSeconds The number of whole seconds in the current TimeSpan

If a TimeSpan value represents 2 minutes and 10 seconds, the Seconds property will return the
value 10. The TotalSeconds property, however, will return the value 70, which is the total duration
of the TimeSpan in seconds.

Warning Be very careful when choosing the property to express the duration of a TimeSpan in a specific interval. Since
both properties will return a value, you may not notice that you’re using the wrong property for the task at hand.

Duration

This property returns the duration of the current instance of the TimeSpan. The duration is
expressed as the number of days, followed by the number of hours, minutes, seconds, and millisec-
onds. The following statements create a TimeSpan object of a few seconds (or minutes, if you don’t
mind waiting) and print its duration in the Output window. The first few statements initialize a new
instance of the Date type, the T1 variable, to the current date and time. Then a message box is dis-
played that prompts to click the OK button to continue. Wait for several seconds before closing the
message box. The last group of statements subtract the T1 variable from the current time and display
the duration (this is how long you kept the message box open on your screen).

Dim T1, T2 As Date
T1 = Now
MsgBox(“Click OK to continue”)
T2 = Now

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES564

2877c12.qxd 11/11/01 4:18 PM Page 564

http://www.sybex.com

Dim TS As TimeSpan
TS = T2.Subtract(T1)
Console.WriteLine(“Total duration = “ & TS.Duration.ToString)
Console.WriteLine(“Minutes = “ & TS.Minutes.ToString)
Console.WriteLine(“Seconds = “ & TS.Seconds.ToString)
Console.WriteLine(“Ticks = “ & TS.Ticks.ToString)
Console.WriteLine(“Milliseconds = “ & TS.TotalMilliseconds.ToString)
Console.WriteLine(“Total seconds = “ & TS.TotalSeconds.ToString)

If you place these statements in a button’s Click event handler and execute them, you’ll see a series
of values like the following in the Output window:

Total duration = 00:01:50.1183424
Minutes = 1
Seconds = 50
Ticks = 1101183424
Milliseconds = 110118.3424
Total seconds = 110.1183424

Methods

There are various methods for creating and manipulating instances of the TimeSpan class; these are
described in the following sections.

Interval Methods

The methods in Table 12.6 create a new TimeSpan object of a specific duration. Each duration is
specified as a number of intervals, accurate to the nearest millisecond.

Table 12.6: Interval Methods of the TimeSpan Object

Method Creates a New TimeSpan of This Length

FromDays Number of days specified by the argument

FromHours Number of hours specified by the argument

FromMinutes Number of minutes specified by the argument

FromSeconds Number of seconds specified by the argument

FromMilliseconds Number of milliseconds specified by the argument

FromTicks Number of ticks specified by the argument

All methods accept a single argument, which is a Double value that represents the number of the
corresponding intervals (days, hours, and so on).

565HANDLING DATES

2877c12.qxd 11/11/01 4:18 PM Page 565

http://www.sybex.com

Parse(string)

This method creates a new TimeSpan object from a string with the TimeSpan format (days, fol-
lowed by a period, followed by the hours, minutes, and seconds separated by colons). The following
statements creates a new TimeSpan variable with a duration of 3 days, 12 hours, 20 minutes, 30 sec-
onds, and 500 milliseconds:

Dim SP As New TimeSpan()
SP = TimeSpan.Parse(“3.12:20:30.500”)
Console.WriteLine(SP)
3.12:20:30.5000000

Add

This method adds a TimeSpan object to the current instance of the class; its syntax is

newTS = TS.Add(TS1)

where TS, TS1, and newTS are all TimeSpan variables. The following statements create two TimeSpan
objects and then add them:

Dim TS1 As New TimeSpan(“1:00:01”)
Dim TS2 As New TimeSpan(“2:01:09”)
Dim TS As New TimeSpan
TS = TS1.Add(TS2)

The duration of the new TimeSpan variable is 3 hours, 1 minute, and 10 seconds. A more practi-
cal example is the following, which constructs a TimeSpan object using the Fromxxx methods
described in Table 12.6. The following statements create a TimeSpan object with a duration of 3
hours, 2 minutes, 16 seconds, and 500 milliseconds:

Dim TS As New System.TimeSpan()
TS = System.TimeSpan.FromHours(3)
TS = TS.Add(System.TimeSpan.FromMinutes(2))
TS = TS.Add(System.TimeSpan.FromSeconds(16))
TS = TS.Add(System.TimeSpan.FromMilliseconds(500))
Console.WriteLine(“The total Time Span is “ & TS.ToString)

The total duration of the TS TimeSpan variable is 3 hours, 2 minutes, 16 seconds, and 500 mil-
liseconds. If you print the TS variable, its value will be: 03:02:16.5000000.

Subtract

The Subtract method subtracts a TimeSpan object from the current instance of the TimeSpan
class. The following statements create two TimeSpan objects with different durations. Then, the
two time spans are subtracted and their difference is printed in three different ways:

Dim T1, T2 As TimeSpan
T1 = New TimeSpan(3, 9, 10, 12)
T2 = New TimeSpan(0, 1, 0, 59, 3)
Dim TS As TimeSpan = T2.Subtract(T1)
Console.WriteLine(TS.Duration())

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES566

2877c12.qxd 11/11/01 4:18 PM Page 566

http://www.sybex.com

Console.WriteLine(TS.Days)
Console.WriteLine(TS.TotalDays)

The last three statements printed the following values in the Output window:

3.08:09:12.9970000
-3
-3.33973376157407

The Duration of the span is 3 days, 8 hours, 9 minutes, 12 seconds, and 997 milliseconds. The
Days method returns the number of days in the TimeSpan as a whole number. The TotalDays
method returns the same difference as a number of days with a fractional part. If you multiply the
fractional part (0.33973376157407) by 24, you’ll get 8.153610277. If you multiply the fractional
part of this number by 60, you’ll get 9.2166166. Finally, you can multiply the new fractional part by
60 to get the number of seconds: 12.996999 (a rounding error was introduced in the calculations,
but this was expected). You will get the same results by calling the TimeSpan object’s Hour, Minute,
and Second properties.

CompareTo

This method compares the current instance of the TimeSpan with another TimeSpan object; its syn-
tax is

TS.CompareTo(TS1)

where TS is a properly initialized TimeSpan object. The CompareTo method returns 0 if they’re
equal, –1 if the current instance is longer, and 1 if the TimeSpan object passed as argument is longer.

Equals

This method returns a True/False value that indicates whether two TimeSpan objects represent the
same interval. The syntax of the Equals method is

TS.Equals(TS1)

Negate

This method negates the current TimeSpan instance. A positive TimeSpan (which will yield a future
date when added to the current date) becomes negative (which will yield a past date when added to
the current date).

VB.NET at Work: Timing Operations
The TimeSpan class has a fine granularity, which makes it ideal for timing operations. To time an
operation—a sequence of statements—you measure the time right before they start executing and
right after they have executed. Then you take the difference, which is the time it took for the opera-
tion to complete. If the operation takes a very short time (a time comparable to the time it takes to
measure the time), you must execute the statements repeatedly and divide the total duration by the
number of iterations. In general, the time spent executing the statements that keep track of the time
should be negligible compared to the time spent executing the actual statements.

567HANDLING DATES

2877c12.qxd 11/11/01 4:18 PM Page 567

http://www.sybex.com

The following code outlines the code for timing a group of statements:

Dim TStart, TEnd As Date
Dim Duration As TimeSpan
TStart = Now()
{ enter here the statements to be timed }
TEnd = Now()
Duration = TEnd.Subtract(TStart)
Console.Write(“Statements took “ & TS.TotalSeconds & “ seconds to execute.”)

In the StringReversal project, earlier in this chapter, we used these statements to time the opera-
tion of reversing a String (or StringBuilder) variable’s characters. In this project, we timed the block
of statements that reverse the string in-place. The statements we timed form a loop, which goes
through the characters in the string. If you divide the duration of the operation by the number of
characters processed, you will find out how long it takes to process each character.

The timing of operations is called benchmarking, and it’s one of the most difficult aspects of com-
puting, because of the many factors that may affect a specific operation. In many cases, these factors
aren’t obvious, and different companies will come up with different benchmarks for the same soft-
ware. The technique discussed in this chapter is adequate for comparing two alternate ways of cod-
ing the same operation, but an actual benchmark is far more complicated.

Summary
In this chapter, you learned about some of the most interesting base data types. Strings, characters,
and date/time values are some of the richest data types, as they encapsulate a lot of functionality.
For the first time, you have at your disposal methods to simplify the processing of characters—like
figuring out whether a character is white space, a letter, a digit, or even a separator. The TimeSpan
class encapsulates all the functionality you need to manipulate time differences, and it gives you the
tools for timing at a very fine level. The StringBuilder class, finally, provides the fastest string-
manipulation methods VB has ever provided.

This chapter ends our discussion of the fundamental classes of the .NET Framework. This
doesn’t mean that the other classes are less important. There’s no way to cover all of the Frame-
work’s classes in a single book, especially in a book that teaches programming with VB. I’ve chosen
the classes you’ll be using most often in your applications and presented them in detail, rather than
attempting to mention just the basics of many classes.

Chapter 12 HANDLING STRINGS, CHARACTERS, AND DATES568

2877c12.qxd 11/11/01 4:18 PM Page 568

http://www.sybex.com

Chapter 13

Working with Folders and Files
Files have always been an important aspect of programming. We use files to store data, and
in many cases we have to manipulate files and folders from within applications. I need not give
examples: just about any application that allows user input must store its data to a file (or multiple
files) for later retrieval—databases excluded, of course.

Manipulating files and folders is quite common too. Organizing files into folders and process-
ing files en masse are two typical examples. I recently ran into a few Web-related tasks, that are
worth mentioning here. A program for placing watermarks on pictures was the first. A watermark
is a graphic that’s placed over an image to indicate its origin. The watermark is very transparent,
so that it doesn’t obscure the image, but it makes the image unusable on any site other than the
original site. You will see in Chapter 14 how to place a semitransparent graphic on top of an
image, and with the help of the information in this chapter, you’ll be able to scan a folder with
thousands of images and automate the process of watermarking the images.

Another example has to do with matching filenames to values stored in a database. Product
images are usually named after the product’s ID, and they’re stored in separate files. There’s a
need for programs to match product IDs to images, find out whether there’s an image for a spe-
cific product in the database, or simply move the image files around (store the images for differ-
ent product categories into different folders and so on).

You may even need to initiate some action when a file in a specific folder is created, edited, or
deleted. For example, you can process files as soon as they’re uploaded to a server or copied to a
specific folder. There are better ways to automate the workflow, but I’m not going to elaborate
on this. The fact is that many programmers still use these methods. They work, and you may
have to not only act on files, but also initiate other actions from within your applications based
on changes in the file system. In the last section, you’ll learn about the FileSystemWatcher, a
component that can detect changes in the file system and notify your application about these
changes through events.

2877c13.qxd 11/11/01 4:18 PM Page 569

http://www.sybex.com

Accessing Folders and Files
In this section, you’ll learn how to access and manipulate files and folders with the help of the Direc-
tory and File classes. The Directory class provides methods for manipulating folders, and the File
class provides methods for manipulating files. These two objects allow you to perform just about
any operation you can perform on a folder and a file, respectively, short of storing data into or read-
ing from files.

Tip Directory is another name for folder; they mean the same thing, but folder is the more familiar term in Win-
dows. When it comes to developers and administrators, Microsoft still uses the term directory (the Active Directory, the
Directory object, and so on).

Keep in mind that Directory and File objects don’t represent folders or files. The two objects that
represent these entities are the DirectoryInfo and FileInfo classes. If you’re in doubt as to which class
you should use in your code, consider that the members of the Directory and File classes are shared: you
can call them without having to explicitly create an instance of the corresponding object first. The
methods of the DirectoryInfo and FileInfo are instance methods: they apply to an instance of the cor-
responding object.

Both the Directory and the DirectoryInfo classes allow you to delete a folder, including its sub-
folders. The Delete method of the DirectoryInfo class will act on a directory you specified when you
instantiated the DirectoryInfo class:

Dim DI As New DirectoryInfo(“C:\Work Files\Assignments”)
DI.Delete()

But you can’t call Delete on a DirectoryInfo object that you haven’t specifically declared. The
DirectoryInfo.Delete method doesn’t accept the name of a folder as argument. In short, you can’t
use the DirectoryInfo class without first creating an instance of it, which references a specific folder.

The Delete method of the Directory class can be called at any time, by passing as argument the
path of the folder to be deleted:

Directory.Delete(“C:\Work Files\Assignments”)

The two classes expose similar members for performing basic file and folder operations, and it
shouldn’t come as a surprise that there’s a substantial overlap between the classes’ methods.

I will start this chapter with a detailed discussion of the Directory and File classes, which are
richer, and then I’ll go quickly through the members of the DirectoryInfo and FileInfo classes.

The Directory Class
The Directory class exposes all the members you need to manipulate folders, and you must import it
into any project that may require its members with the following statement, which must appear at
the beginning of the file, outside any class:

Imports System.IO

Methods

The Directory object exposes methods for accessing folders and their contents, which are described
in the following sections.

Chapter 13 WORKING WITH FOLDERS AND FILES570

2877c13.qxd 11/11/01 4:18 PM Page 570

http://www.sybex.com

CreateDirectory

This method creates a new folder, whose path is specified by a string passed as argument to the
method:

Directory.CreateDirectory(path)

path is the fully qualified path of the folder you want to create and can be either an absolute or a rela-
tive path. If it’s a relative path, its absolute value is determined by the current drive and path.

The CreateDirectory method returns a DirectoryInfo object, which contains information about
the newly created folder. The DirectoryInfo object is discussed later in this chapter along with the
FileInfo object.

Notice that the CreateDirectory method can create multiple nested folders in a single call. The
statement

Directory.CreateDirectory(“C:\folder1\folder2\folder3”)

will create the folder folder1 (if it doesn’t exist), then folder2 (if it doesn’t exist) under folder1,
and finally folder3 under folder2 in the C: drive. If folder1 exists already, but it doesn’t contain a
subfolder named folder2, then folder2 will be automatically created. An exception will also be
thrown if the total path is too long, or if your application doesn’t have permission to create a folder
in the specified path. However, no exception will be thrown if the specified path exists on the disk
already. The method will simply not create any new folders. It will still return a DirectoryInfo
object, which describes the existing folder.

Delete

This method deletes a folder and all the files in it. If the folder contains subfolders, the Delete
method will optionally remove the entire directory tree under the node you’re removing. The sim-
plest form of the Delete method is

Directory.Delete(path)

where path is the path of the folder to be deleted. This method will delete the specified path only. If
the specified folder contains subfolders, they will not be deleted and, therefore, the specified folder
won’t be deleted either.

To delete a folder recursively (that is, also delete any subfolders under it), use the second form of
the Delete method, which accepts a second argument:

Directory.Delete(path, force)

The force argument is a True/False value that determines whether the Delete method will delete the
subfolders under the specified folder or not. If True, the folder will be removed, along with its files
and subfolders.

The statements in Listing 13.1 attempt to delete a single folder. If the folder contains subfolders,
the Delete method will fail and an exception handler will be activated. The exception handler exam-
ines the type of exception, and if it was caused because the folder isn’t empty, it can call the second
form of the Delete method forcing it to delete the folder recursively. Create a new project, insert the
statement Imports System.IO at the beginning of the file, and then place the statements of Listing 13.1
in a button’s Click event handler to experiment with the code.

571ACCESSING FOLDERS AND FILES

2877c13.qxd 11/11/01 4:18 PM Page 571

http://www.sybex.com

Listing 13.1: Deleting a Directory

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Directory.CreateDirectory(“c:/folder1/folder2/folder3”)
Try

Directory.Delete(“c:\folder1”, False)
Catch exc As IOException

If exc.ToString.IndexOf(“The directory is not empty”) >= 0 Then
Dim reply As MsgBoxResult
reply = MsgBox(“Delete all files and subfolders?”, _

MsgBoxStyle.YesNo, exc.Message)
If reply = MsgBoxResult.Yes Then

Directory.Delete(“c:\folder1”, True)
Else

MsgBox(exc.Message)
End If

End If
End Try

End Sub

Exists

This method accepts a path as argument and returns a True/False value indicating whether the spec-
ified folder exists.

Directory.Exists(path)

The Delete method will throw an exception if you attempt to delete a folder that doesn’t exist, so
you can use the Exists method to make sure the folder exists, before attempting to delete it:

If Directory.Exists(path) Then Directory.Delete(path)

Of course, the Delete method may fail for other reasons as well, and you should provide an error
handler—for example, the Delete method will fail if the folder contains read-only files.

GetCreationTime, SetCreationTime

These methods read or set the date a specific folder was created. The GetCreationTime method
accepts a path as argument and returns a Date value:

Dim CreatedOn As Date
CreatedOn = Directory.GetCreationTime(path)

SetCreationTime accepts a path and a date value as argument and sets the specified folder’s cre-
ation time to the value specified by the second argument:

Directory.SetCreationTime(path, datetime)

You shouldn’t change the creation dates of files except on rare occasions. If you do, you will
never be able to read the file’s original creation date.

Chapter 13 WORKING WITH FOLDERS AND FILES572

2877c13.qxd 11/11/01 4:18 PM Page 572

http://www.sybex.com

GetCurrentDirectory, SetCurrentDirectory

Use these methods to retrieve and set the path of the current directory. The current directory is a basic
concept when working with the Directory class. We will use this technique in the CustomExplorer
project, later in this chapter. The first time you call the GetCurrentDirectory method, it will return the
folder in which the application is running. If you set the current folder with the SetCurrentDirectory
method, the GetCurrentDirectory method will retrieve the name of the new current folder. The
SetCurrentDirectory accepts a string argument, which is a path, and sets the current directory to
the specified path.

The expression Directory.GetCurrentDirectory will return the application’s current folder. For
the default installation, it’s something like

C:\Documents and Settings\TOOLKIT\My Documents\Visual Studio Projects\
DirectoryFileSamples\bin

(DirectoryFileSamples is the name of the project I used to test the short samples of this chapter.)
You can change the current folder with a relative path like the following:

Directory.SetCurrentDirectory(“..\..\..\My Pictures”)

The two periods are a shortcut for the parent folder. From the bin folder just named, this statement
moves up three levels to the My Documents folder and then to the My Pictures folder under My Docu-
ments (assuming that there is a folder by that name). So this SetCurrentDirectory statement switches
the current folder to

C:\Documents and Settings\TOOLKIT\My Documents\My Pictures

Notice that the value you pass to the SetCurrentDirectory method as argument must be the
name of an existing folder. If not, a FileNotFound exception will be thrown. You can also switch
to a folder on another drive, if you specify the full folder’s path, including its drive letter. To handle
possible errors, use the SetCurrentDirectory method with a structured error handler like the one in
Listing 13.2.

Listing 13.2: Changing the Current Directory

Try
Directory.SetCurrentDirectory(“..\..\..\Projects1”)
MsgBox(“Switched current folder to “ & Directory.GetCurrentDirectory)

Catch exc As FileNotFoundException
MsgBox(“Invalid folder specified, currrent directory is “ & vbCrLf & _

Directory.GetCurrentDirectory)
Catch exc As Exception

MsgBox(“Can’t access specified folder”)
End Try

The code of Listing 13.2 handles the FileNotFoundException separately with the first Catch
clause. All other exceptions are handled by the second Catch clause.

573ACCESSING FOLDERS AND FILES

2877c13.qxd 11/11/01 4:18 PM Page 573

http://www.sybex.com

GetDirectories

This method retrieves all the subfolders of a specific folder and returns their names as an array of
strings:

Dirs = Directory.GetDirectories(path)

The path argument is the path of the folder whose subfolders you want to retrieve. The Dirs array
that accepts the names of the subfolders must be declared with a statement like the following:

Dim Dirs() As String

Another form of the GetDirectories method allows you to specify search criteria for the folders
you want to retrieve, and its syntax is

Dirs = Directory.GetDirectories(path, pattern)

This statement returns an array of strings with the names of the subfolders that match the search
criteria. To retrieve all the subfolders of the C:\Windows folder with the string “System” in their
names, use the statement

Dirs = Directory.GetDirectories(“C:\Windows”, “*SYSTEM*”)

This statement will go through the subfolders of C:\Windows and return those that contain the
string “SYSTEM” (including “System32” and “MySystem”). The only special characters you can
use in the criteria specification are the question mark, which stands for any single character, and the
asterisk, which stands for any string. Listing 13.3 retrieves the names of the folders that contain the
string “System” under the C:\WINNT folder and prints them in the Output window.

Listing 13.3: Retrieving Selected Subfolders of a Folder

Dim Dirs() As String
Dirs = Directory.GetDirectories(“C:\WINNT”, “*SYSTEM*”)
Dim dir As String
Console.WriteLine(Dirs.Length & “ folders match the pattern ‘*SYSTEM*’”)
For Each dir In Dirs

Console.WriteLine(dir)
Next

GetDirectoryRoot

This method returns the root part of the path passed as argument, and its syntax is

root = Directory.GetDirectoryRoot(path)

The path argument is a string, and the return value is also a string like “C:\” or “D:\”. Notice
that the GetDirectoryRoot method doesn’t require that the path argument exists. It will return the
name of the root folder of the specified path.

Chapter 13 WORKING WITH FOLDERS AND FILES574

2877c13.qxd 11/11/01 4:18 PM Page 574

http://www.sybex.com

GetFiles

This method returns the names of the files in the specified folder as an array of strings. The syntax
of the GetFiles method is

files = Directory.GetFiles(path)

where path is the path of the folder whose files you want to retrieve and files is an array of strings,
which must be declared as follows:

Dim files() As String

This array will be dimensioned as it gets populated by the GetFiles method, so you don’t have to
specify an upper bound when declaring the array.

Another form of the GetFiles method allows you to specify a pattern and retrieve only the names
of the files that match the pattern. This form of the method accepts a second argument, which is a
string similar to the pattern argument of the GetDirectories method:

files = Directory.GetFiles(path, pattern)

The statements in Listing 13.4 retrieve all the EXE files under the \WINNT folder and print their
names in the Output window.

Listing 13.4: Retrieving Selected Files of a Folder

Dim files() As String
files = Directory.GetFiles(“C:\WINNT”, “*.EXE”)
MsgBox(“Found “ & files.Length & “ EXE files”)
Dim file As String
For Each file In files

Console.WriteLine(file)
Next

GetFileSystemEntries

This method returns an array of all items (files and folders) in a path. The simplest form of the
method is

items = Directory.GetFileSystemEntries(path)

where items is an array of FileSystemEntry, which you must declare as

Dim items() As String

As with the GetFiles method, you can specify a second argument, which filters the FileSystemEn-
try objects you want to retrieve:

Items = Directory.GetFileSystemEntries(path, matchFiles)

575ACCESSING FOLDERS AND FILES

2877c13.qxd 11/11/01 4:18 PM Page 575

http://www.sybex.com

To iterate through the items of a folder, associate a Directory object with this folder and use a
loop like the following one:

Dim itm As String
For Each itm In Directory.GetFileSystemEntries(“C:\windows”)

Console.WriteLine(itm)
Next

Since the GetFileSystemEntries method returns an array of strings, how do we know that a specific
member of the array is a file or a folder? To find out whether the current item is a file or a folder, you
can use the Exists method of the Directory object. The File object, which is equivalent to the Direc-
tory object and is discussed in the following section, also exposes an Exists method. The loop shown
in Listing 13.5 goes through the file system items in your C:\Program Files folder and displays their
names, along with the indication “FOLDER” or “FILE,” depending on the type of each item.

Listing 13.5: Retrieving the File System Items of a Folder

Dim items() As String
Dim path As String = “c:\Program Files”
items = Directory.GetFileSystemEntries(path)
Dim itm As String
For Each itm In items

If Directory.Exists(itm) Then
Console.WriteLine(“FOLDER “ & itm)

Else
Console.WriteLine(“FILE “ & itm)

End If
Next

If you execute these statements, you will see a list like the following in the Output window (only
considerably longer):

FOLDER c:\Program Files\Microsoft.NET
FOLDER c:\Program Files\HTML Help Workshop
FOLDER c:\Program Files\Microsoft Web Controls 0.6
FILE c:\Program Files\folder.htt
FILE c:\Program Files\desktop.ini

Note The GetDirectories, GetFiles, and GetFileSystemEntries methods return the items under the specified folder. If this
folder contains subfolders (as is usually the case), the GetDirectories method won’t return any subfolders beyond the ones
directly under the specified folder. To scan a folder recursively (scan all the subfolders under it to any depth), you must use
a recursive routine. You will find examples of recursive folder scanning in Chapters 16 and 18.

GetLastAccessTime, SetLastAccessTime

These two methods are equivalent to the GetCreationTime and SetCreationTime methods, only they
return and set the most recent date and time the file was accessed. The most common reason to

Chapter 13 WORKING WITH FOLDERS AND FILES576

2877c13.qxd 11/11/01 4:18 PM Page 576

http://www.sybex.com

change the last access time for a file is so that the specific file will be excluded from a routine that
deletes old files, or to include it in a list of backup files (with an automated procedure that backs up
only the files that have been changed since their last backup).

GetLastWriteTime, SetLastWriteTime

These two methods are equivalent to the GetCreationTime and SetCreationTime methods, but they
return and set the most recent date and time the file was written to.

GetLogicalDrives

This method returns an array of strings, which are the names of the logical drives on the computer.
The statements in Listing 13.6 print the names of all logical drives.

Listing 13.6: Retrieving the Names of All Drives on the Computer

Dim drives() As String
drives = Directory.GetLogicalDrives
Dim iDrive As Integer
For iDrive = 0 To drives.GetUpperBound(0)

Console.WriteLine(drives(iDrive))
Next

When executed, these statements will produce a list like the following:

A:\
C:\
D:\
E:\

GetParent

This method retrieves an object that represents the properties of a folder’s parent folder. The syntax
of the GetParent method is

parent = Directory.GetParent(path)

The return value is a DirectoryInfo object, and it must be declared with a statement like the
following:

Dim parent As DirectoryInfo

The name of the parent folder, for example, is parent.Name and its full name is parent.FullName.

Move

This method moves an entire folder to another location in the file system; its syntax is

Directory.Move(source, destination)

577ACCESSING FOLDERS AND FILES

2877c13.qxd 11/11/01 4:18 PM Page 577

http://www.sybex.com

where source is the name of the folder to be moved and destination is the name of the destination folder.
The Move method doesn’t work along different volumes, and the destination can’t be the same as the
source argument, obviously.

Notice the lack of a Copy method that would copy an entire folder to a different location. To
copy a folder, you must manually create an identical folder structure and then copy the correspon-
ding files to the proper subfolders.

The File Class
The File class exposes methods for manipulating files (copying, moving them around, opening and
closing them), similar to the methods of the Directory class. The names of the methods are self-
descriptive, and most of them accept as argument the path of the file on which they act. Use these
methods to implement the common operations users normally perform through the Windows inter-
face from within your application.

Methods

Many of the methods listed in the following sections allow you to open existing or create new files.
We’ll use some of these methods later in the chapter to write data to, and read from, text and binary files.

AppendText

This method prepares an existing text file for appending text to it and returns a StreamWriter object.
If the file doesn’t exist, it creates a new one and opens it. The syntax of the AppendText method is

FStream = File.AppendText(path)

Copy

This method copies an existing file to a new location; its syntax is

File.Copy(source, destination)

where source is the path of the file to be copied and destination is the path where the file will be copied
to. If the destination file exists, the Copy method will fail.

To overwrite the destination file, use the following form of the method, which allows you to specify
whether the destination file can be overwritten.

File.Copy(source, destination, overwrite)

If the last argument is True, the destination file is overwritten (if it exists).
The Copy method works across volumes. The following statement copies the file faces.jpg from

the folder c:\My Documents\Screen\ to the folder d:\Fun Images and changes its name to Bouncing
Face.jpg. Notice that both the source and destination paths must already exist. If not, an exception
will be thrown.

File.Copy(“c:\My Documents\Screen\faces.jpg”, _
“d:\Fun Images\Bouncing Face.jpg”)

Note The Copy method doesn’t accept wildcard characters. In other words, you can’t copy multiple files with a single
call to the Copy method.

Chapter 13 WORKING WITH FOLDERS AND FILES578

2877c13.qxd 11/11/01 4:18 PM Page 578

http://www.sybex.com

Create

This method creates a new file and returns a Stream object to this file. You can use this object to
write to or read from the file. The Stream object is discussed in detail later in this chapter, along with
the methods for writing to or reading from the file. The simplest form of the Create method accepts
a single argument, which is the path of the file you want to create:

FStream = File.Create(path)

You can also create a new file and specify the size of the buffer to be associated with this file,
with the following form of the method:

FStream = File.Create(path, bufferSize)

where bufferSize is an Integer (Int32) value.
If the specified file exists already, it’s replaced. The new file is opened for read-write operations,

and it’s opened exclusively by your application. Other applications can access it only after your
application closes it. Once the file has been created, you can use the methods of the Stream object
to write to it. These methods are discussed in the section “Accessing Files,” later in this chapter.

There are several exceptions the Create method can raise, which are described in Table 13.1.

Table 13.1: Exceptions of the Create Method

Exception Description

IOException The folder you specified doesn’t exist.

ArgumentNullException The path you specified doesn’t reference a file.

SecurityException The user of your application doesn’t have permission to create a new file
in the specified folder.

ArgumentException The path you specified is invalid.

AccessException The file can’t be opened in read-write mode. Most likely, you’ve
attempted to open a read-only file, but the File.Createmethod opens
a file in read-write mode.

DirectoryNotFoundException The folder you specified doesn’t exist.

Note that pathnames are limited to 248 characters, and filenames are limited to 259 characters.

CreateText

This method is similar to the Create method, but it creates a text file and returns a StreamWriter
object for writing to the file. The StreamWriter object is similar to the Stream object, but used for
text files only, whereas the StreamWriter object can be used with both text and binary files.

The syntax of the CreateText method is

File.CreateText(path)

579ACCESSING FOLDERS AND FILES

2877c13.qxd 11/11/01 4:18 PM Page 579

http://www.sybex.com

and it returns an object that must be declared as follows:

Dim SW As StreamWriter
SW = File.CreateText(path)

You will learn more about reading from and writing to files later in this chapter.

Delete

This method removes the specified file from the file system. The syntax of the Delete method is

File.Delete(path)

where path is the path of the File object you want to delete. This method will raise an exception if the
file is open at the time for reading or writing, or if the file doesn’t exist.

Exists

This property is a True/False value that indicates whether a file exists or not. The following state-
ments delete a file, after making sure that the file exists already:

If File.Exists(path) Then
File.Delete(path)

Else
MsgBox(“The file “ & path & “ doesn’t exist”)

End If

The Delete method will not raise an exception if the file doesn’t exist, so you don’t have to make
sure that a file exists before deleting it. You can use similar statements to confirm that a file exists
before attempting to open it.

GetAttributes

This method accepts a file path as argument and returns the attributes of the specified file. The
method returns a FileAttributes object, which contains all the attributes. A file may have more than a
single attribute (for instance, it can be hidden and compressed). Table 13.2 lists all possible attrib-
utes a file can have.

Table 13.2: The Attributes of a File

Value Description

Archive The file’s archive status. Most of the files in your file system have the Archive
attribute.

Compressed The file is compressed.

Encrypted The file is encrypted.

Hidden The file is hidden, and it doesn’t appear in an ordinary directory listing.

Normal Normal files have no other attributes, so this setting excludes all other attributes.

Continued on next page

Chapter 13 WORKING WITH FOLDERS AND FILES580

2877c13.qxd 11/11/01 4:18 PM Page 580

http://www.sybex.com

Table 13.2: The Attributes of a File (continued)

Value Description

NotContentIndexed The file isn’t indexed by the operating system’s content indexing service.

Offline The file is offline and its contents may not be available at all times.

ReadOnly The file is read-only.

SparseFile The file is sparse (a large files whose data are mostly zeros).

System A system file is part of the operating system or is used exclusively by the operating
system.

Temporary The file is temporary. Temporary files are created by applications and they’re
deleted by the same applications that created them when they terminate.

To examine whether a file has an attribute set, you must AND the value returned by the GetAt-
tributes methods with the desired attribute, which is a member of the FileAttributes enumeration.
To find out whether a file is read-only, use the following If statement:

If File.GetAttributes(fpath) And FileAttributes.ReadOnly Then
Console.WriteLine(“The file “ & fpath & “ is read only”)

Else
Console.WriteLine(“You can write to the file “ & fpath)

End If

You can also retrieve a file’s attributes through the FileInfo object, described later in this chapter.

GetCreationTime, SetCreationTime

The GetCreationTime method returns a date value, which is the date and time the file was created.
This value is set by the operating system, but you can change it with the SetCreationTime method.
The following statement returns a value like the one shown in bold underneath it:

Console.WriteLine(File.GetCreationTime(“c:\config.sys”))
6/13/2001 1:27:48 PM

The SetCreationTime allows you to change the file’s creation time; it accepts as argument the
file’s path and the new creation time:

File.SetCreationTime(path, datetime)

GetLastAccessTime, SetLastAccessTime

The GetLastAccessTime method returns a date value, which is the date and time the specified file was
accessed for the last time. Use the SetLastAccessTime method to set this value. SetLastAccessTime
accepts as arguments the file whose last access time you want to set and the desired date. Changing the
last access of a file is sometimes called “touching” the file. If you have a utility that manipulates files
according to when they were last used (for example, one that moves data files that haven’t been accessed
in the last three months to tape), you can “touch” a few files to exclude them from the operation.

581ACCESSING FOLDERS AND FILES

2877c13.qxd 11/11/01 4:18 PM Page 581

http://www.sybex.com

GetLastWriteTime, SetLastWriteTime

The GetLastWriteTime method returns a date value, which is the date and time the specified file
was written to for the last time. You can set this value with the SetLastWriteTime method.

Move

This method moves the specified file to a new location. You can also use the Move method to
rename a file, by simply moving it to another name in the same folder. Moving a file is equivalent
to copying it to another location and then deleting the original file. The Move method works across
volumes.

File.Move(sourceFileName, destFileName)

The first argument is the path of the file to be moved, and the second argument is the path of
the destination file. The following statement move the file Boston Trip.xls from the folder C:\My
Document\Business to the folder \\Accounts\Expenses\JamesK\:

File.Move(“C:\My Document\Business\Boston Trip.xls”, _
“\\Accounts\Expenses\JamesK\Boston Trip.xls”)

Open

This method opens an existing file for read-write operations. The simplest form of the method is

FStream = File.Open(path)

which opens the file specified by the path argument and returns a Stream object to this file. The fol-
lowing form of the method allows you to specify the mode in which you want to open the file:

FStream = fileObj.Open(path, fileMode)

where the fileMode argument can have one of the values shown in Table 13.3.

Table 13.3: The FileMode Enumeration

Value Effect

Append Opens the file in write mode, and all the data you write to the file are appended to its exist-
ing contents.

Create Requests the creation of a new file. If a file by the same name exists, this will be overwritten.

CreateNew Requests the creation of a new file. If a file by the same name exists, an exception will be
thrown. This mode will create and open a file only if it doesn’t already exist.

Open Requests that an existing file be opened.

OpenOrCreate Opens the file in read-write mode if the file exists, or creates a new file and opens it in read-
write mode if the file doesn’t exist.

Truncate Opens an existing file and resets its size to zero bytes. As you can guess, this file must be
opened in write mode.

Chapter 13 WORKING WITH FOLDERS AND FILES582

2877c13.qxd 11/11/01 4:18 PM Page 582

http://www.sybex.com

Another form of the Open method allows you to specify the access mode, in addition to the
file mode:

FStream = File.Open(path, fileMode, accessMode)

where the accessMode argument can have one of the values listed in Table 13.4.

Table 13.4: The FileAccess Enumeration

Value Effect

Read The file is opened in read-only mode. You can read from the Stream object that is returned,
but an exception will be thrown if you attempt to write to the file.

ReadWrite The file opened in read-write mode. You can either write to the file or read from it.

Write The file is opened in write mode. You can write to the file, but if you attempt to read from
it, an exception will be thrown.

You can also specify a fourth argument to the Open method, which specifies how the file will be
shared with other applications. This form of the method requires that the other two arguments (file-
Mode and accessMode) be supplied as well:

FStream = File.Open(path, fileMode, accessMode, shareMode)

The shareMode argument determines how the file will be shared among multiple applications and
can have one of the values from Table 13.5.

Table 13.5: The FileShare Enumeration

Value Effect

None The file can’t be shared for reading or writing. If another application attempts to open the
file, it will fail until the current application closes the file.

Read The file can be opened by other applications for reading, but not for writing.

ReadWrite The file can be opened by other applications for reading or writing.

Write The file can be opened by other applications for writing, but not for reading.

OpenRead

This method opens an existing file in read mode and returns a stream object associated with this file.
You can use this stream to read from the file.

583ACCESSING FOLDERS AND FILES

2877c13.qxd 11/11/01 4:18 PM Page 583

http://www.sybex.com

The syntax of the OpenRead method is:

FStream = fileObj.OpenRead(path)

where fileObj is a properly initialized File variable. The OpenRead method is equivalent to opening an
existing file with read-only access with the Open method.

OpenText

This method opens an existing text file for reading and returns a StreamReader object associated
with this file. Its syntax is

FStream = File.OpenText(path)

Why do we need an OpenText method in addition to the Open, OpenRead, and OpenWrite
methods? The answer is that text can be stored in different formats. It can be plain text (UTF-8
encoding), ASCII text, or Unicode text. The StreamReader object associated with the text file will
perform the necessary conversions, and you will always read the correct text from the file. The
default encoding for the OpenText method is UTF-8.

OpenWrite

This method opens an existing file in write mode and returns a StreamWriter object associated with
this file. You can use this stream to write to the file, as you will see later in this chapter.

The syntax of the OpenRead method is:

FStream = File.OpenWrite(path)

where path is the path of the file.
This ends our discussion of the Directory and File objects, which are the two major objects for

manipulating files and folders. In the following section, I will present the DirectoryInfo and FileInfo
classes briefly, and then we’ll build an application that puts together much of the information pre-
sented so far.

The DirectoryInfo Class
The DirectoryInfo and FileInfo classes are similar to the Directory and File classes, but they must be
instantiated before they are used. Their constructors specify the folder or file they will act upon, and
you don’t have to specify a folder or file when you call their methods.

To create a new instance of the DirectoryInfo class that references a specific folder, supply the
folder’s path in the class’s constructor:

Dim DI As New DirectoryInfo(path)

Methods

The members of the DirectoryInfo class are equivalent to the members of the Directory class, and
you will recognize them as soon as you see them in the IntelliSense drop-down list. Here are a couple
of methods that are unique to the DirectoryInfo class.

Chapter 13 WORKING WITH FOLDERS AND FILES584

2877c13.qxd 11/11/01 4:18 PM Page 584

http://www.sybex.com

CreateSubdirectory

This method creates a subfolder under the folder specified by the current instance of the class, and
its syntax is

CreateSubdirectory(path)

The CreateSubdirectory method returns a DirectoryInfo object that represents the new subfolder.
The path argument need not be a single folder’s name. If you specified multiple nested folders, the
CreateSubdirectory method will create the appropriate hierarchy, similar to the CreateDirectory
method of the Directory class.

GetFileSystemInfos

This method returns an array of FileSystemInfo objects, one for each item in the folder referenced
by the current instance of the class. The items can be either folders or files. To retrieve information
about all the entries in a folder, create an instance of the DirectoryInfo class and then call its Get-
FileSystemInfos method:

Dim DI As New DirectoryInfo(path)
Dim itemsInfo() As FileSystemInfo
itemsInfo = DI.GetFileSystemInfos()

You can also specify an optional search pattern as argument when you call this method:

itemsInfo = DI.GetFileSystemInfos(pattern)

The FileSystemInfo objects expose a few properties, which are not new to you. The Name, Full-
Name, and Extension return a file’s or folder’s name or full path or a file’s extension. The Creation-
Time, LastAccessTime, and LastWriteTime are also properties of the FileSystemInfo object, as well
as the Attributes property.

You will notice that there are no properties that determine whether the current item is a folder or
a file. To find out the type of an item, use the Directory member of the Attributes property:

If itemsInfo(i).Attributes And FileAttributes.Directory Then
{ current item is a folder }

Else
{ current item is a file }

End If

The code in Listing 13.7 retrieves all the items in the C:\Program Files folder and prints their
name along with the FOLDER and FILE characterization.

Listing 13.7: Processing a Folder’s Items with the FileSystemInfo Object

Dim path As String = “C:\Program Files”
Dim DI As New DirectoryInfo(path)
Dim itemsInfo() As FileSystemInfo
itemsInfo = DI.GetFileSystemInfos()
Dim item As FileSystemInfo
For Each item In itemsInfo

585ACCESSING FOLDERS AND FILES

2877c13.qxd 11/11/01 4:18 PM Page 585

http://www.sybex.com

If item.Attributes And FileAttributes.Directory Then
Console.Write(“FOLDER “)

Else
Console.Write(“FILE “)

End If
Console.WriteLine(item.Name)

Next

Notice the similarities and differences between the GetFileSystemInfos method of the Directory-
Info class and the GetFileSystemEntries of the Directory object. GetFileSystemInfos returns an array
of objects that contains information about the current item (file or folder). GetFileSystemEntries
returns an array of strings (the names of the folders and files).

The FileInfo Class
The FileInfo class exposes many properties and methods, which are equivalent to the members of
the File class, so I’m not going to repeat all of them here. The Copy/Delete/Move methods allow
you to manipulate the file represented by the current instance of the FileInfo class, similar to the
methods by the same name of the File class. Although there’s substantial overlap between the
members of the FileInfo and File classes, the difference is that with FileInfo you don’t have to
specify a path. Its members act on the file represented by the current instance of the FileInfo class.

Properties

The FileInfo object exposes a few rather trivial properties, which are mentioned briefly here.

Length

This property returns the size of the file represented by the FileInfo object in bytes. The File class
doesn’t provide an equivalent property or method.

CreationTime, LastAccessTime, LastWriteTime

These properties return a date value which is the date on which the file was created, accessed for the
last time, or written to for the last time. They are equivalent to the methods of the File object by the
same name and the “Get” prefix.

Name, FullName, Extension

These properties return the filename, full path, and extension of the file represented by the current
instance of the FileInfo class. They have no equivalents in the File class, because the File class’s
methods require that you specify the path of the file, so its path and extension are known.

Methods

The FileInfo object exposes methods for manipulating files, and most of them are equivalent to the
methods of the File object.

Chapter 13 WORKING WITH FOLDERS AND FILES586

2877c13.qxd 11/11/01 4:18 PM Page 586

http://www.sybex.com

CopyTo, MoveTo

These two methods copy and move the file represented by the current instance of the FileInfo class.
Both methods accept a single argument, which is the destination of the operation (the path to which
the file will be copied or moved). If the destination file exists already, you can overwrite it by speci-
fying a second optional argument, which has a True/False value:

FileInfo.CopyTo(path, force)

Both methods return an instance of the FileInfo class, which represents the new file—if the oper-
ation completed successfully.

Directory

This method returns a DirectoryInfo value that contains information about the file’s parent directory.

DirectoryName

This method returns a string with the file’s parent directory’s name. The following statements return
the two (identical) strings shown in bold:

Dim FI As FileInfo
FI = New FileInfo(“c:\folder1\folder2\folder3\test.txt”)
Console.WriteLine(FI.Directory().FullName)
c:\folder1\folder2\folder3
Console.WriteLine(FI.DirectoryName())
c:\folder1\folder2\folder3

Of course, the Directory method returns an object, which you can use to retrieve other properties
of the parent folder.

The Path Class
The Path class contains an interesting collection of methods, which you can think of as utilities. The
Path class’s methods perform simple tasks such as retrieving a file’s name and extension, returning
the full path description of a relative path, and so on. The Path class’s members require that you
specify the path on which they will act. In other words, there’s no constructor for the Path class that
would allow you instantiate a Path object to represent a specific path.

Properties

The Path class exposes the following properties. Notice that none of these members apply to a spe-
cific path; they’re general properties that return settings of the operating system.

AltDirectorySeparatorChar

This property returns an alternate directory separator character. For Windows 2000, the AltDirectory-
SeparatorChar property returns the slash character (/).

DirectorySeparatorChar

This property returns the directory separator character. For Windows 2000, the DirectorySepara-
torChar returns the backslash character (\).

587ACCESSING FOLDERS AND FILES

2877c13.qxd 11/11/01 4:18 PM Page 587

http://www.sybex.com

InvalidPathChars

This property returns the list of invalid characters in a path as an array of characters. The following
statements print the invalid path characters to the Output window; their output is shown in bold
below the code:

Dim p As Path
Dim invalidPathChars() As Char
invalidPathChars = p.InvalidPathChars
Dim c As Char
For Each c In invalidPathChars

Console.Write(c & vbtab)
Next

/ \ “ < > |

You can use these characters to validate user input, or pathnames read from a file. If you have a
choice, let the user select the files through the Open dialog box, so that their pathnames will always
be valid.

PathSeparator

This property returns separator character that may appear between multiple paths. For Win-
dows 2000, this character is the semicolon (;).

VolumeSeparatorChar

This property returns the volume separator character. For Windows 2000, this character is the
colon (:).

Methods

The most useful methods exposed by the Path class are like utilities for manipulating file and path-
names, and they described in the following sections. Notice that the methods of the Path class are
shared: you must specify the path on which they will act.

ChangeExtension

This method changes the extension of a file, and its syntax is

newExtension = Path.ChangeExtension(path, extension)

The return value is the new extension of the file (a string value). The first argument is the file’s
path, and the second argument is the file’s new extension. If you want to remove the file’s extension,
set the second argument to Nothing. The following statement changes the extension of the specified
file from “BIN” to “DAT”:

Dim path As String = “c:\My Documents\NewSales.bin”
Dim newExt As String = “.dat”
Path.ChangeExtension(path, newExt)

Chapter 13 WORKING WITH FOLDERS AND FILES588

2877c13.qxd 11/11/01 4:18 PM Page 588

http://www.sybex.com

Combine

This method combines two path specifications into one, and its syntax is

newPath = Path.Combine(path1, path2)

Use this method to combine a folder path with a file path. The following expression will return
the string shown in bold:

Path.Combine(“c:\textFiles”, “test.txt”)
c:\textFiles\test.txt

Notice that the Combine method inserted the separator, as needed. It’s a simple operation, but if
you had to code it yourself, you’d have to examine each path and determine whether a separator
must be inserted.

GetDirectoryName

This method returns the directory name of a path. The statement

Path.GetDirectoryName(“C:\folder1\folder2\folder3\Test.txt”)

will return the string

C:\folder1\folder2\folder3

GetFileName, GetFileNameWithoutExtension

These two methods return the filename in a path, with and without its extension, respectively.

GetFullPath

This method returns the full path of the specified path; you can use it to convert relative pathnames
to fully qualified pathnames. The following statement returned the string shown in bold on my
computer (it will be quite different on your computer, depending on the current directory):

Console.WriteLine(Path.GetFullPath(“..\..\Test.txt”))
C:\Mastering VB.NET\Chapters\Chapter 13\Projects\Test.txt

The pathname passed to the method as argument need not exist. The GetFullPath method will
return the fully qualified pathname of a nonexisting file, as long as the path doesn’t contain invalid
characters.

GetTempFile, GetTempPath

The GetTempFile method returns a unique filename, which you can use as temporary storage area
from within your application. The name of temporary file can be anything, since no user will ever
access it. In addition, the GetTempFile method creates a zero-length file on the disk, which you can
open with the Open method. A typical temporary filename is the following:

C:\DOCUME~1\TOOLKI~1\LOCALS~1\Temp\tmp105.tmp

which was returned by the following statement on my system:

Console.WriteLine(File.GetTempFile)

589ACCESSING FOLDERS AND FILES

2877c13.qxd 11/11/01 4:18 PM Page 589

http://www.sybex.com

The GetTempPath method returns the system’s temporary folder. All temporary files should be
created in this folder, so that the operating system can remove them when it’s running out of space.
Your applications should remove all the temporary files they create, but more often than not, pro-
grammers leave temporary files around.

HasExtension

This method returns a True/False value indicating whether a path includes a file extension.

VB.NET at Work: The CustomExplorer Project
The CustomExplorer application, which demonstrates the basic properties and methods of the
Directory and File objects, duplicates the functionality of Windows Explorer. Its user interface,
shown in Figure 13.1, leaves a lot to be desired, but we’ll come back to this example in Chapter 16,
where we’ll discuss the TreeView and ListView controls and you’ll see how you can build a more
elaborate user interface, but the core of the application will remain pretty much the same. In this
chapter, you’ll see how the basic members of the Directory and File objects can be used to manipu-
late the file system.

When you start the application, the names of all the logical drives will be displayed in the top-left
ComboBox control, as shown in Figure 13.1. The other controls are initially empty. To view the
folders of a drive, just select it in the ComboBox control. When the root folder’s contents appear in
the second ListBox control, you can click a folder’s name to view its subfolders and its files. The
selected folder’s subfolders will replace the contents of the FoldersList ListBox under the ComboBox
control, and the selected folder’s files will replace the contents of the FilesList ListBox.

When you’re not viewing the root folder, the parent folder’s symbol (two periods) will appear at the
top of the ListBox control with the folder names. You can click this item to move to the parent folder.
The application allows you to use simple clicks to move up and down the hierarchy of your file system.
You may wish to make the application a little more elaborate by programming the DoubleClick
event too.

The three controls are named DrivesList, FoldersList, and FilesList. When the application is initial-
ized (Listing 13.8), it calls the ShowAllDrives() subroutine, which populates the DrivesList control with
the names of the logical drives. The ShowAllDrives() subroutine calls the GetLogicalDrives method
of the Directory object and then goes through the array returned by this method and adds each logical
drive’s letter to the DrivesList control. The ShowAllDrives() subroutine is shown in Listing 13.9.

Figure 13.1

The Custom-
Explorer project

Chapter 13 WORKING WITH FOLDERS AND FILES590

2877c13.qxd 11/11/01 4:18 PM Page 590

http://www.sybex.com

Listing 13.8: CustomExplorer’s Form_Load Event Handler

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

ShowAllDrives()
DrivesList.SelectedIndex = 1
Me.Text = Directory.GetCurrentDirectory

End Sub

Listing 13.9: The ShowAllDrives() Subroutine

Sub ShowAllDrives()
Dim drives() As String
drives = Directory.GetLogicalDrives()
Dim aDrive As String
DrivesList.Items.Clear()
For Each aDrive In drives

DrivesList.Items.Add(aDrive)
Next

End Sub

When a drive is selected in the DrivesList control, the program calls the ShowFoldersInDrive
subroutine (Listing 13.10) to display the folders in the selected drive’s root folder on the FoldersList
control. The ShowFoldersInDrive() subroutine accepts a drive as argument and displays the folders
in this drive by iterating through the folders in the array returned by the Directory.GetDirectories
method.

Listing 13.10: Displaying the Folders of the Selected Drive

Private Sub DrivesList_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles DrivesList.SelectedIndexChanged

ShowFoldersInDrive(DrivesList.Text)
End Sub
Sub ShowFoldersInDrive(ByVal drive As String)

Dim folders() As String
Try

folders = Directory.GetDirectories(drive)
Catch exception As Exception

MsgBox(exception.Message)
Exit Sub

End Try
Dim fldr As String
FoldersList.Items.Clear()
Dim DI As DirectoryInfo

591ACCESSING FOLDERS AND FILES

2877c13.qxd 11/11/01 4:18 PM Page 591

http://www.sybex.com

For Each fldr In folders
DI = New DirectoryInfo(fldr)
FoldersList.Items.Add(DI.Name)

Next
Directory.SetCurrentDirectory(drive)
Me.Text = Directory.GetCurrentDirectory

End Sub

When you select a new folder in the FoldersList control (all you have to do is click the folder’s
name), the program replaces the contents of the FoldersList control with the subfolders of the
selected folder. It must also display the parent folder’s name (..), so that you can move up in the
directory tree. Listing 13.11 shows the code of the FoldersList control’s SelectedIndexChanged
event handler:

Listing 13.11: Displaying the Subfolders of the Selected Folder

Private Sub FoldersList_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FoldersList.SelectedIndexChanged

Dim DI As DirectoryInfo
Select Case FoldersList.Text

Case “”
MsgBox(“Please select a folder to expand”)
Exit Sub

Case “..”
Directory.SetCurrentDirectory(“..”)

Case Else
Directory.SetCurrentDirectory(Directory.GetCurrentDirectory & “\” & _

FoldersList.Text)
Me.Text = Directory.GetCurrentDirectory

End Select
Dim folders() As String
Dim selectedFolder As String = FoldersList.Text
folders = Directory.GetDirectories(Directory.GetCurrentDirectory)
FoldersList.Items.Clear()
If Directory.GetCurrentDirectory <> _

Directory.GetDirectoryRoot(selectedFolder) Then _
FoldersList.Items.Add(“..”)

Dim fldr As String
For Each fldr In folders

DI = New DirectoryInfo(fldr)
FoldersList.Items.Add(DI.Name)

Next
ShowFilesInFolder()

End Sub

Chapter 13 WORKING WITH FOLDERS AND FILES592

2877c13.qxd 11/11/01 4:18 PM Page 592

http://www.sybex.com

This event handler always switches to the selected folder by calling the SetCurrentDirectory
method of the Directory object. This simplifies the code considerably, because we can move to the
parent folder when the user clicks the two periods with the statement Directory.SetCurrentDirec-
tory(“..”). In other words, we don’t have to keep track of the current directory in our code—we’re
always in it. The routine that displays the files in the selected folders is also simplified—it goes
through the files of the current directory.

If the selected item in the list is the parent folder symbol (..), the program switches to the parent
directory. Otherwise, it switches to the selected folder under the current folder. The program then
retrieves all the folders under the selected one and stores them in the folders array. A For Each…Next
loop is used to iterate through the items of the array and display them on the FoldersList control,
replacing its existing contents. Then, it calls the ShowFilesInFolder subroutine, which retrieves the
files in the current folder and displays them in the FilesList control (see Listing 13.12).

Listing 13.12: The ShowFilesInFolder() Subroutine

Sub ShowFilesInFolder()
Dim file As String
Dim FI As FileInfo
FilesList.Items.Clear()
For Each file In Directory.GetFiles(Directory.GetCurrentDirectory)

FI = New FileInfo(file)
FilesList.Items.Add(FI.Name)

Next
End Sub

The code uses the FileInfo class to retrieve the file’s name. You can also use the FileInfo class’s
members to retrieve additional information about the file.

The program also prints information about any file in the Output window. Every time the user
selects a file in the FilesList control by clicking its name, the program prints the file’s name, fol-
lowed by the file’s attributes. It only prints the attributes that are set, and it does so by comparing
the Attributes property to each of the members of the FileSystemAttributes enumeration. If the file’s
attribute is normal, then the string “NORMAL FILE” is printed under the file’s name. If not,
each attribute that is set is displayed with the ATTRIBUTES heading in the Output window. The
action of the selection of a new file in the FilesList control is signaled by the SelectedIndexChanged
event, whose event handler is shown in Listing 13.13.

Listing 13.13: Retrieving a File’s Properties

Private Sub FilesList_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FilesList.SelectedIndexChanged

Dim selectedFile As String = FilesList.Text
Dim FI As New FileInfo(Directory.GetCurrentDirectory & “\” & _

selectedFile)
Console.WriteLine(FI.Name)

593ACCESSING FOLDERS AND FILES

2877c13.qxd 11/11/01 4:18 PM Page 593

http://www.sybex.com

Console.WriteLine(“ LENGTH “ & FI.Length.ToString)
Console.WriteLine(“ EXTENSION “ & FI.Extension)
Console.WriteLine(“ CREATED “ & FI.CreationTime)
Console.WriteLine(“ ACCESSED “ & FI.LastAccessTime.ToShortDateString)
If FI.Attributes = FileAttributes.Normal > 0 Then

Console.Write(“ NORMAL FILE “)
Exit Sub

End If
Console.Write(“ ATTRIBUTES “)
If FI.Attributes And FileAttributes.Archive Then Console.Write(“Archive “)
If FI.Attributes And FileAttributes.Compressed Then _

Console.Write(“Compressed “)
If FI.Attributes And FileAttributes.Directory Then _

Console.Write(“Directory “)
If FI.Attributes And FileAttributes.Encrypted Then _

Console.Write(“Encrypted “)
If FI.Attributes And FileAttributes.Hidden Then Console.Write(“Hidden “)
If FI.Attributes And FileAttributes.NotContentIndexed Then _

Console.Write(“Not Indexed “)
If FI.Attributes And FileAttributes.Offline Then Console.Write(“OffLine “)
If FI.Attributes And FileAttributes.ReadOnly Then Console.Write(“ReadOnly “)
If FI.Attributes And FileAttributes.System Then Console.Write(“System “)
If FI.Attributes And FileAttributes.Temporary Then _

Console.Write(“Temp File “)
Console.WriteLine()

End Sub

When you select a file in the FileList control, a few lines like the following will be printed in the
Output window:

desktop.ini
LENGTH 271
EXTENSION .ini
CREATED 6/9/2000 2:51:24 PM
ACCESSED 03/17/2001
ATTRIBUTES Hidden

Notice that all files are displayed in the FilesList control, because the Directory.GetFiles
method returns by default all the files (see Listing 13.12). If you want to hide certain types of files,
you must insert the appropriate code in the ShowFilesInFolder() subroutine.

Accessing Files
In the first half of the chapter, you learned how to manipulate files and folders. Now we’re going to
discuss how to access files (read from or write into them). There are two types of files, text files and
binary files. Of course, you can classify files in any way you like, but when it comes to writing to and

Chapter 13 WORKING WITH FOLDERS AND FILES594

2877c13.qxd 11/11/01 4:18 PM Page 594

http://www.sybex.com

reading from files, it’s convenient to treat them either as text or binary. A binary file is any file that
doesn’t contains plain text. Text files are usually read by line, or in their entirety into a String variable.
Binary files must be read according to the type of the information stored in them. A bitmap file, for
instance, must be read one byte at a time. Each pixel is usually represented by three or four bytes,
and you must combine the values read to reconstruct the pixel’s color. Or you can read a Color
variable at a time. A binary file that contains doubles must be read one double at a time. Most binary
files contain multiple data types, and you must know the organization of a file before you can read
it. A Double value is stored in 8 bytes, and an Integer value is stored in 4 bytes. Unless you know
how to read a binary file, you won’t get the correct values out of it.

So the division of files into text and binary is dictated by our need to store data in them or get data
out of them. In the following sections, you’ll see that the .NET Framework provides different objects
and different methods for manipulating text and binary files. It is possible to read text files as binary
files, one byte at a time, but then you must reconstruct the original characters. It is also possible to
store text into binary files and embed into it binary data types like integers, doubles, and dates.

Practically, you can distinguish text from binary files by the fact that text files can be read. Binary
files contain mostly unprintable characters, and even the numeric digits in them don’t make much
sense. You can read any strings that may be part of the file, but an integer number isn’t stored as
text. Binary files can’t be read with a text editor.

To access a file, you must first set up a Stream object. Stream objects are created by the various
methods that open or create a file, as you have seen in the previous sections, and they return infor-
mation about the file they’re connected to. Once the Stream object is in place, you create a Reader
or Writer object, which enables you to read information from or write information into the Stream.
There are two types of Reader objects: the StreamReader for text files and the BinaryReader for
binary files. Likewise, there are two Writer objects, the StreamWriter and the BinaryWriter. These
objects expose a few properties and methods for writing to files and reading from them, and these
members are discussed shortly.

Previous versions of Visual Basic supported statements for accessing the so-called random-access
files. A random-access file contains records (structures) of fixed length, and you can quickly access
any record in the file. Although you can still use random access with VB.NET, it’s not recom-
mended that you write applications based on random-access files. To support this type of applica-
tion, you need a database. I’m not going to discuss random-access files in this chapter, because
they’re already obsolete. Remember that the Serializer object can save an array of custom structures
to disk and load them back into the array. For small sets of data, use arrays of structures (or any of
the Collections discussed in Chapter 11), and for larger data sets, deploy a database.

The FileStream Object
The StreamReader/StreamWriter and BinaryReader/BinaryWriter objects allow you to read from
or write to text and binary files through a FileStream object. To prepare your application to write to
a text file, you must set up a FileStream object, which is the channel between your application and
the file. There are many ways to set up a FileStream object and associate it with a file, and they’re
described in the following sections. All the objects are contained in the System.IO namespace, so
don’t forget to import the System.IO namespace in your projects that perform file input/output. It’s
the same namespace that exposes the Directory, File, Path, and other classes discussed so far.

595ACCESSING FILES

2877c13.qxd 11/11/01 4:18 PM Page 595

http://www.sybex.com

The FileStream object exposes a few members, that convey information about the file you’re
accessing through a FileStream variable. We’ll cover these members here, and then we’ll discuss the
Reader and Writer objects that actually write data to or read it from files.

The FileStream object’s constructor is overloaded; its most common forms require that you spec-
ify the path of the file and the mode in which the file will be opened (for reading, appending, writ-
ing, and so on). The simpler form of the constructor is

Dim FS As New FileStream(path, fileMode)

The fileMode argument is a member of the FileMode enumeration (see Table 13.3). It’s the same
argument used by the Open method of the File class. Also similar to Open method of the File class,
another overloaded form of the constructor allows you to specify the file’s access mode, and the syn-
tax of this method is

Dim FS As New FileStream(path, fileMode, fileAccess)

The last argument is a member of the FileAccess enumeration (see Table 13.4). The last over-
loaded form of the constructor accepts a fourth argument, which determines the file’s sharing mode:

Dim FS As New FileStream(path, fileMode, fileAccess, fileShare)

The fileShare argument’s value is a member of the FileShare enumeration (see Table 13.5).

Properties

You can use the following properties of the FileStream object to retrieve information about the
underlying file.

CanRead

This read-only property determines whether the current stream supports reading. If the file associated
with a specific FileStream object can be read, this property returns True.

CanSeek

This read-only property determines whether the current stream supports seeking. A seek operation
in the context of files doesn’t locate a specific value in the file. It simply moves the current position
to any location within the file.

CanWrite

This read-only value determines whether the current stream supports writing. If the file associated
with a specific FileStream object can be written to, this property returns True.

Length

This read-only property returns the length of the file associated with the FileStream in bytes.

Position

This property gets or sets the current position within the stream. You can compare the Position
property to the Length property to find out whether you have reach the end of an existing file.
When these two properties are equal, there are no more data to read.

Chapter 13 WORKING WITH FOLDERS AND FILES596

2877c13.qxd 11/11/01 4:18 PM Page 596

http://www.sybex.com

Methods

The FileStream object exposes the following methods that support input/output operations. The
methods for accessing a file’s contents are discussed in the following section (you can’t access the
file’s contents with a FileStream object).

Lock

This method allows you to lock the file you’re accessing, or part of it. The syntax of the Lock
method is

Lock(position, length)

where position is the starting position and length is the length of the range to be locked. To lock the
entire file, use the statement

FileStream.Lock(1, FileStream.Length)

Seek

This method sets the current position in the file represented by the FileStream object:

FileStream.Seek(offset, origin)

The new position is offset bytes from the origin. In the place of the origin argument, use one of the
SeekOrigin enumeration members, listed in Table 13.6.

Table 13.6: The SeekOrigin Enumeration

Value Effect

Begin The offset is relative to the beginning of the file.

Current The offset is relative to the current position in the file.

End The offset is relative to the end of the file.

SetLength

This method sets the length of the file represented by the FileStream object. Use this method after
you have written to an existing file, to truncate its length. The syntax of the SetLength method is

FileStream.SetLength(newLength)

If the specified value is less than the length of the file, the file is truncated. Otherwise, the file is
expanded. The bytes after the length of the original file all the way to the end of the new file are
undefined.

The StreamWriter Object
The StreamWriter object is the channel through which you send data to the text file. To create a new
StreamWriter object, declare a variable of the StreamWriter type. The constructor of the StreamWriter

597ACCESSING FILES

2877c13.qxd 11/11/01 4:18 PM Page 597

http://www.sybex.com

object is overloaded, and its various forms are discussed next. The first form creates a new
StreamWriter object for a file:

Dim SW As New StreamWriter(path)

This form of the constructor creates a new StreamWriter object for the file specified by the path
argument. The new object has the default encoding and the default buffer size. The encoding
scheme determines how characters are saved (the default encoding is UTF-8), and the buffer size
determines the size of a buffer where data are stored before they’re sent to the file. The following
statement creates a new StreamWriter object and associates it with the specified file:

Dim SW As New StreamWriter(“c:\TextFile.txt”)

Another form of the same constructor creates a new StreamWriter object for the specified file
using the default encoding and buffer size, but it allows you to overwrite existing files. If the overwrite
argument is True, you can overwrite the contents of an existing file.

Dim SW As New StreamWriter(path, overwrite)

You can also specify the encoding for the StreamWriter with the following form of the constructor:

Dim SW As New StreamWriter(path, overwrite, encoding)

The last form of the constructor that accepts a file’s path allows you to specify both the encoding
and the buffer size:

Dim SW As New StreamWriter(path, overwrite, encoding, bufferSize)

The same forms of the constructor can be used with a FileStream object. The simplest form of
this type of constructor is

Dim SW As New StreamWriter(stream)

This form creates a new StreamWriter object for the FileStream specified by the stream argument.
To use this form of the constructor, you must first create a new FileStream object and then use it to
instantiate a StreamWriter object:

Dim FS As FileStream
FS = New FileStream(“C:\TextData.txt”, FileMode.Create)
Dim SW As StreamWriter
SW = New StreamWriter(FS)

Finally, there are two more forms of the StreamWriter constructor that accept a FileStream
object as the first argument. These forms are simply listed here:

New StreamWriter(stream, encoding)
New StreamWriter(stream, encoding, bufferSize)

Once you have created the StreamWriter object, you can call its members to manipulate the
underlying file. These are described in the following sections.

Property: NewLine

The StreamWriter object provides a very handy property, the NewLine property, which allows you
to change the string used to terminate each line in the file. This terminator is written to the text file

Chapter 13 WORKING WITH FOLDERS AND FILES598

2877c13.qxd 11/11/01 4:19 PM Page 598

http://www.sybex.com

by the WriteLine method, following the text. The default line-terminator string is a carriage return
followed by a line feed (“\r\n”).

Note The TextReader object doesn’t provide a similar property. It reads lines terminated by the carriage return (\r),
line feed (\n) or carriage return/line feed (\r\n) characters only.

Methods

To send information to the underlying file, use the following methods of the StreamWriter object.

AutoFlush

This property is a True/False value that determines whether the methods that write to the file (the
Write and WriteString methods) will also flush their buffer. If you set this property to False, then
the buffer will be flushed when the operating system gets a chance, when the Flush method is called,
or when you close the FileStream object. The False setting may help your application’s performance,
but only for very large files. When AutoFlush is True, then the buffer is flushed with every write
operation.

Close

This method closes the StreamWriter object and releases the resources associated with it to the sys-
tem. Always call the Close method after you’re done using the StreamWriter object. If you have cre-
ated the StreamWriter object on a FileStream object, you must also close the underlying stream.

Flush

This method clears writes any data in the buffer to the underlying file.

Write(data)

This method writes the data specified by the data argument to the stream on which it’s applied. The
Write method is overloaded and can accept any data type as argument. When you pass a numeric
value as argument, the Write method stores it to the file as a string. This is the same string as you’d
get with the number’s ToString method. You can write any data type to the file, except for the Date
type. To save dates to a text file, you must convert them to strings with one of the methods of the
Date data type. You can even write objects to the file, and you will see shortly how the Write
method handles objects.

There’s one form of the Write method I would like to discuss here, and this is similar to the
Console.WriteLine method, which accepts a string with embedded format arguments, followed by a
list of values, one for each argument. The following statement writes a string with two embedded
numeric values in it:

SW.Write(“Your price is ${0} plus ${1} for shipping”, 86.50, 12.99)

This statement will write the following string to the file:

Your price is $86.50 plus $12.99 for shipping

599ACCESSING FILES

2877c13.qxd 11/11/01 4:19 PM Page 599

http://www.sybex.com

WriteLine(data)

This method is identical to the Write method, but it appends a line break after saving the data to the
file (the same as the methods of the Console object by the same name).

You will find examples on using the StreamWriter object after we discuss the methods of the
StreamReader object.

The StreamReader Object
The StreamReader object provides the necessary methods for reading from a text file. It exposes
methods that match those of the StreamWriter object, methods that can read the information writ-
ten to the file through the StreamWriter’s Write and WriteLine methods.

The StreamReader object’s constructor is overloaded. You can specify the FileStream object it
will use to write data to the file, the encoding scheme, and the buffer size. The simplest form of the
constructor is

Dim SR As New StreamReader(FS)

This declaration associates the SR variable with the file on which the FS FileStream object was
created. This is the most common form of the StreamReader object’s constructor. To prepare your
application for reading the contents of the file C:\My Documents\Meeting.txt, use the following
statements:

Dim FS As FileStream
Dim SR As StreamReader
FS = New FileStream(“c:\My Documents\Meeting.txt”, _

System.IO.FileMode.OpenOrCreate, System.IO.FileAccess.Write)
SR = New StreamReader(FS)

You can also create a new StreamReader object directly on a file, with the following form of the
constructor:

Dim SR As New StreamReader(path)

To create a StreamReader object and associate it with the file of the previous example, use the
statement

Dim SR As New StreamReader(“c:\My Documents\Meeting.txt”)

With both forms of the constructor, you can specify the character encoding with a second
argument:

Dim SR As New StreamReader(FS, encoding)
Dim SR As New StreamReader(path, encoding)

You can also specify a third argument with the size of the buffer to be used with the file
input/output operations:

Dim SR As New StreamReader(FS, encoding, bufferSize)
Dim SR As New StreamReader(path, encoding, bufferSize)

Chapter 13 WORKING WITH FOLDERS AND FILES600

2877c13.qxd 11/11/01 4:19 PM Page 600

http://www.sybex.com

Methods

Close

This method closes the current instance of StreamReader and releases any system resources associ-
ated with the StreamReader.

Peek

This method returns the next character without actually removing it from the input stream. The
Peek method doesn’t reposition the current position in the stream. If there are no more characters
left in the stream, the value –1 is returned. The Peek method will also return –1 if the current stream
doesn’t allow peeking.

Read

This method reads a number of characters from the StreamReader object to which it’s applied and
returns the number of characters read. This value is usually the same as the number of characters you
specified, unless there aren’t as many characters in the file. If you have reached the end of the stream
(which is the end of the file), the method returns the value –1. The syntax of the Read method is

charsRead = Read(chars, startIndex, count)

where count is the number of characters to be read. The characters are stored in the chars array of char-
acters, starting at the index specified by the second argument. The return value is the number of
characters actually read from the file.

A simpler form of the Read method reads the next character from the stream and returns it as an
integer value:

Dim newChar As Integer
newChar = SR.Read()

where SR is a properly declared StreamReader object.

ReadBlock

This method reads a number of characters from a text file and stores them in a Character array. It
accepts the same arguments as the Read method and returns the number of characters read:

charsRead = SR.Read(chars, startIndex, count)

ReadLine

This method reads the next line from the text file associated with the StreamReader object and
returns a string. If you’re at the end of the file, the method returns the Null value. The syntax of the
ReadLine method is

Dim txtLine As String
txtLine = SR.ReadLine()

601ACCESSING FILES

2877c13.qxd 11/11/01 4:19 PM Page 601

http://www.sybex.com

A text line is a sequence of characters followed by carriage return (\r), or line feed (\n), or car-
riage return and line feed (\r\n). Notice that the NewLine character you may have specified for the
specific file with the StreamWriter object is ignored by the ReadLine method. The string returned
by the method doesn’t include the line terminator.

ReadToEnd

The last method for reading characters from a text file reads all the characters from the current posi-
tion to the end of the file. We usually call this method once to read the entire file with a single state-
ment and store its contents to a string variable. The syntax of the ReadToEnd method is

allText = SR.ReadToEnd()

Sending Data to a File
The statements in Listing 13.14 demonstrate how to send various data types to a file. You can place
the statements of this listing to button’s Click event handler and then open the file with Notepad to
see its contents. Everything is in text format, including the numeric values. Don’t forget to import
the System.IO namespace to your project.

Listing 13.14: Writing Data to a Text File

Dim SW As StreamWriter
Dim FS As FileStream
FS = New FileStream(“C:\TextData.txt”, FileMode.Create)
SW = New StreamWriter(FS)
SW.WriteLine(9.009)
SW.WriteLine(1 / 3)
SW.Write(“The current date is “)
SW.Write(Now())
SW.WriteLine()
SW.WriteLine(True)
SW.WriteLine(New Rectangle(1, 1, 100, 200))
SW.WriteLine(Color.YellowGreen)
SW.Close()
FS.Close()

Here’s the output produced by Listing 13.14:

9.009
0.333333333333333
The current date is 2001-03-16T12:14:02
True
{X=1,Y=1,Width=100,Height=200}
Color [YellowGreen]

Notice how the WriteLine method without an argument inserts a new line character in the file.
The statement SW.Write(now()) prints the current date but doesn’t switch to another line. The

Chapter 13 WORKING WITH FOLDERS AND FILES602

2877c13.qxd 11/11/01 4:19 PM Page 602

http://www.sybex.com

WriteLine method without any arguments starts a new line. The following statements demonstrate a
more complicated use of the Write method with formatting arguments:

Dim BDate As Date = #2/8/1960 1:04:00 PM#
SW.WriteLine(“Your age in years is {0}, in months is {1}, “ & _

“in days is {2}, and in hours is {3}.”, _
DateDiff(DateInterval.year, BDate, Now), _
DateDiff(DateInterval.month, BDate, Now), _
DateDiff(DateInterval.day, BDate, Now), _
DateDiff(DateInterval.hour, BDate, Now))

The SW StreamWriter must be declared with the statements at the beginning of Listing 13.14.
The day I tested these statements, the following string was written to the file:

Your age in years is 41, in months is 493, in days is 15012.027722980833, and in
hours is 360288.66535154.

Of course, the data to be stored to a text file need not be hard-coded in your application. The
code of Listing 13.15 stores the contents of a TextBox control to a text file.

Listing 13.15: Storing the Contents of a TextBox Control to a Text File

Dim SW As StreamWriter
Dim FS As FileStream
FS = New FileStream(“C:\TextData.txt”, FileMode.Create)
SW = New StreamWriter(FS)
SW.Write(TextBox1.Text)

To save the contents of a ListBox control to a text file, iterate through its Items collection and
store each item to the file. The items of the control will be stored in the file as strings. Neither the
StreamWriter nor the BinaryWriter provides a method for storing objects to or reading objects from
a file. If you want to store objects, see the discussion of serializing collections in Chapter 11.

The following statements populate a ListBox control with various items:

ListBox1.Items.Add(“First Item”)
ListBox1.Items.Add(New Rectangle(0, 0, 3, 3))
ListBox1.Items.Add(New Point(3.2, 4.01))
ListBox1.Items.Add(“Last Item”)

The code that saves each item to a separate line in the C:\Items.txt file is shown in Listing 13.16.

Listing 13.16: Saving an Items Collection to a Text File

Dim SW As StreamWriter
Dim FS As FileStream
FS = New FileStream(“C:\Items.txt”, FileMode.Create)
SW = New StreamWriter(FS)
Dim itm As Object
For Each itm In ListBox1.Items

603ACCESSING FILES

2877c13.qxd 11/11/01 4:19 PM Page 603

http://www.sybex.com

SW.WriteLine(itm.ToString)
Next
SW.Close()
FS.Close()

Notice that the Write method stores the item’s text, even though the item added to the control is
an object. If you open the Items.txt file, you will read the following:

First Item
{X=0,Y=0,Width=3,Height=3}
{X=3,Y=4}
Last Item

Listing 13.17 clears the ListBox control and populates it again by reading the items from the file.
(For more information on reading from a text file, see the discussion of the StreamReader object, in
the following section.) Since the ListBox control’s items are stored as text, you can use the
StreamWriter and StreamReader objects to write them to and read them from the file.

Listing 13.17: Reading an Items Collection From a Text File

Dim SR As StreamReader
Dim FS As FileStream
FS = New FileStream(“C:\Items.txt”, FileMode.Open)
SR = New StreamReader(FS)
Dim itm As Object
itm = SR.ReadLine()
While Not itm = Nothing

ListBox1.Items.Add(itm)
itm = SR.ReadLine()

End While
SR.Close()
FS.Close()

In the following sections, we’ll explore the BinaryWriter and BinaryReader objects, which are the
equivalents of the StreamWriter and StreamReader objects for binary files. Because of the variety of
the binary data types, these two objects provide many more methods than their text counterparts.

The BinaryWriter Object
To prepare your application to write to a binary file, you must set up a BinaryWriter object, with the
statements shown here:

Dim BW As New BinaryWriter(FS)

where FS is a properly initialized FileStream object. You can also create a new BinaryWriter object
directly on a file, with the following form of the constructor:

Dim BW As New StreamReader(path)

Chapter 13 WORKING WITH FOLDERS AND FILES604

2877c13.qxd 11/11/01 4:19 PM Page 604

http://www.sybex.com

To specify the encoding of the text in the binary file, use the following form of the method:

Dim BW As New BinaryWriter(FS, encoding)
Dim BW As New BinaryWriter(path, encoding)

You can also specify a third argument with the size of the buffer to be used with the file
input/output operations:

Dim BW As New BinaryWriter(FS, encoding, bufferSize)
Dim BW As New BinaryWriter(path, encoding, bufferSize)

Methods

The BinaryWriter object exposes the following methods for manipulating binary files.

Close

This method closes the current BinaryWriter and releases any system resources associated with it.

Flush

This method clears all buffers for the current writer and writes all buffered data to the underlying file.

Seek

This method sets the position within the current stream.

Write

This method writes a value to the current stream. This method is heavily overloaded, but it accepts a
single argument, which is the value to be written to the file. The data type of its argument deter-
mines how it will be written. The Write method can save all the base types to the file except for the
Date and Object types.

WriteString

Where all other data types can be written to a binary file with the Write method, strings must be
written with the WriteString method. This method writes a length-prefixed string to the file and
advances the current position by the appropriate number of bytes. The string is encoded by the cur-
rent encoding scheme, and the default value is UTF8Encoding.

You will find examples of using the Write and WriteString methods of the BinaryWriter object
at the end of the following section, which describes the methods of the BinaryReader object.

The BinaryReader Object
The BinaryReader object reads data from a binary file. As you have seen, binary files may also hold
text, and the BinaryReader object provides the ReadString method to read strings written to the file
by the BinaryWriter.WriteString method.

To use the methods of the BinaryReader object in your code, you must first create an instance of
the object. The BinaryReader object is associated with a FileStream object, and the simplest form of
its constructor is

Dim BR As New BinaryReader(streamObj)

605ACCESSING FILES

2877c13.qxd 11/11/01 4:19 PM Page 605

http://www.sybex.com

where streamObj is the FileStream object. You can also specify the character encoding scheme to be
used with the BinaryReader object, using the following form of the constructor:

Dim BR As New BinaryReader(streamObj, encoding)

If you omit the encoding argument, the default UTF8Encoding will be used.

Methods

The BinaryReader object exposes the following methods for accessing the contents of a binary file.

Close

This method is the same as the Close method of the StreamReader object. It closes the current
reader and releases the underlying stream.

PeekChar

This method returns the next available character from the stream without repositioning the current
pointer. The character read is returned as an integer, or –1 if there are no more characters to be read
from the stream. The name of the method doesn’t quite comply with the BinaryReader object, but
here’s why. Peeking at the next byte makes sense only if the next byte is a character. Reading the
first byte of a Double value, for example, wouldn’t help you much. A character is usually stored in a
single byte (ASCII text), but it can also be stored in two bytes (Unicode text). The PeekChar method
knows how many bytes it must read from the text (they’re determined by the current encoding), and
it always returns a character, regardless of its size in bytes. The PeekChar method’s return value is an
integer, not a character.

The Read Methods

The BinaryReader object exposes methods for reading the same base data types you can write to a
file through the BinaryWriter object. Each method returns a value of the corresponding type (the
ReadBoolean method returns a Boolean value, and so on) and only a single value of this type. To
read multiple values of the same type, you must call the same method repeatedly. The various meth-
ods for reading the base data types from the file are briefly described in Table 13.7.

Table 13.7: The Read Methods of the BinaryReader Object

Value Effect

ReadBoolean Reads and returns a True/False value.

ReadByte Reads and returns a single byte.

ReadBytes(byteArray, count) Reads and returns count bytes from the file and stores them into the Byte
array passed as the first argument.

ReadChar Reads and returns a character. Depending on how text was stored in the file,
the ReadChar method may read one or two bytes (in the case of Unicode text) ,
but it always returns a character.

Continued on next page

Chapter 13 WORKING WITH FOLDERS AND FILES606

2877c13.qxd 11/11/01 4:19 PM Page 606

http://www.sybex.com

Table 13.7: The Read Methods of the BinaryReader Object (continued)

Value Effect

ReadChars(charArray, count) Reads and returns count characters from the file and stores them in the char-
acter array specified as the first argument.

ReadDecimal Reads and returns a Decimal value from the file.

ReadDouble Reads and returns a Double value from the file.

ReadInt16 Reads and returns a short Integer (a 2-byte) value.

ReadInt32 Reads and returns an Integer (a 4-byte) value.

ReadInt64 Reads and returns a Long Integer (8-byte) value.

ReadSByte Reads and returns a signed byte.

ReadSingle Reads a Single (4-byte) value from the file.

ReadString Reads and returns a string from the file. The string must be stored in the file
prefixed by its length. This is how the WriteString method stored strings to a
text file, so there’s nothing you have to do anything special from within your
code. If the string isn’t prefixed by its length, the ReadString method will
read a string with the wrong number of characters. The method will inter-
pret the first byte as the string’s length.

ReadUInt16 Reads and returns an unsigned short Integer (2-byte) value.

ReadUInt32 Reads and returns an unsigned Integer (4-byte) value

ReadUInt64 Reads and returns an unsigned long Integer (8-byte) value

To use these methods, you’re supposed to know the structure of the data stored in the file. A file
with a price list, for example, contains the same items for each product. The first two fields are the
product’s ID and description, followed by the product’s price, and other pieces of information,
which are repeated for each product. Once you know the types of values stored in the file, you can
call the appropriate methods to read the correct values. If you misread even a single value, none of
the following values will be read correctly.

VB.NET at Work: The RecordSave Project
Let’s look at the code for saving structured information to a binary file. In this section, you’re going
to build the RecordSave application, which demonstrates how to store a price list to a disk file and
read it later from the same file. The main form of the application is shown in Figure 13.2. The Save
Records button creates a few records and then saves them to disk. The Read Records button reads
the records from the file and displays them on the ListBox control.

Each record of the price list contains the following fields:

� The product’s ID (a String)

� The product’s description (a String)

607ACCESSING FILES

2877c13.qxd 11/11/01 4:19 PM Page 607

http://www.sybex.com

� The product’s price (a Single value)

� The product’s availability (a Boolean value)

� The minimum reorder quantity (an Integer value)

The program saves each field as a separate entity, using the Write method of a BinaryStream
object. Only the string is written to the file with the WriteString method, because we want to be
able to read the string back with the ReadString method.

Since the price list contains many products, you will most likely store it in an array of custom Struc-
tures. The Product structure shown next is a simple, yet quite adequate, structure for our price list:

Structure Product
Dim ProdID As String
Dim prodDescription As String
Dim listPrice As Single
Dim available As Boolean
Dim minStock As Integer

End Structure

The code that writes the Structure to a binary file is shown in the Listing 13.18.

Listing 13.18: Saving a Record to a Binary File

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim BW As BinaryWriter
Dim FS As FileStream
FS = New FileStream(“Records.bin”, System.IO.FileMode.OpenOrCreate, _

System.IO.FileAccess.Write)
BW = New BinaryWriter(FS)
BW.BaseStream.Seek(0, SeekOrigin.Begin)
Dim p As New Product()

‘ Save first record
p.ProdID = “100-A39”
p.prodDescription = “Cellular Phone with built-in TV”

Figure 13.2

The RecordSave
project demonstrates
how to store records
in a binary file.

Chapter 13 WORKING WITH FOLDERS AND FILES608

2877c13.qxd 11/11/01 4:19 PM Page 608

http://www.sybex.com

p.listPrice = 497.99
p.available = True
p.minStock = 40
SaveRecord(BW, p)

‘ Save second record
p = New Product()
p.ProdID = “100-U300”
p.prodDescription = “Wireless Handheld”
p.listPrice = 315.5
p.available = False
p.minStock = 12
SaveRecord(BW, p)

‘ Save third record
p = New Product()
p.ProdID = “ZZZ”
p.prodDescription = “Last Gadget”
p.listPrice = .99
p.available = True
p.minStock = 1000
SaveRecord(BW, p)

BW.Close()
FS.Close()

End Sub

The code of the SaveRecord() subroutine is shown in Listing 13.19. It accepts as arguments the
BinaryWriter object that represents the binary file to which the data will be written and a Product
structure to be saved to the file.

Listing 13.19: The SaveRecord() Subroutine

Sub SaveRecord(ByVal writer As BinaryWriter, ByVal record As Product)
writer.Write(record.ProdID)
writer.Write(record.prodDescription)
writer.Write(record.listPrice)
writer.Write(record.available)
writer.Write(record.minStock)

End Sub

To read the records stored in the file, set up a BinaryReader associated with the Records.bin file
and call the appropriate Read method for each field of the record. Since we don’t know in advance
how many records are in the file, we set up a loop that keeps reading one record at a time, while the
current position (property Position of the FileStream object) is less than the length of the file (prop-
erty Length of the FileStream object). Listing 13.20 is the code behind the Read Records button.

609ACCESSING FILES

2877c13.qxd 11/11/01 4:19 PM Page 609

http://www.sybex.com

Listing 13.20: Reading Records from a Binary File

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

Dim BR As BinaryReader
Dim FS As FileStream
FS = New System.IO.FileStream(“Binarydata2.bin”, FileMode.Open, _

FileAccess.Read)
BR = New System.IO.BinaryReader(FS)
BR.BaseStream.Seek(0, SeekOrigin.Begin)
Dim p As New Product()
TextBox1.Clear()
Dim c As Integer
c = BR.PeekChar
While FS.Position < FS.Length

Console.WriteLine(c)
p = Nothing
‘ Read fields and populate structure
p.ProdID = BR.ReadString
p.prodDescription = BR.ReadString
p.listPrice = BR.ReadSingle
p.available = BR.ReadBoolean
p.minStock = BR.ReadInt32
‘ Display structure
ShowRecord(p)
c = BR.PeekChar

End While
BR.Close()
FS.Close()

End Sub

Notice that the product’s price is read with the ReadSingle method, because it was saved as a Single
variable. The ShowRecord() subroutine appends the fields of the current structure to the TextBox
control at the bottom of the form.

Using a custom Structure to store the fields simplifies the structure of the application at large, but
it doesn’t help the file I/O operation much. It’s quicker to use the Serializer object to store an entire
collection to the file at once, rather than each member of the collection individually. The Serializer
object was discussed in Chapter 11, and it addresses many of the file I/O needs of your applications.
There will be situations, however, when you must store widely different pieces of information to a text
or binary file, and the information presented in this chapter should be adequate for these situations.

The FileSystemWatcher Component
The FileSystemWatcher is a special component that has no visible interface and allows your applica-
tion to watch for changes in the file system. You can use the FileSystemWatcher component to moni-
tor changes in the local computer’s file system, a network drive, and even a remote computer’s file

Chapter 13 WORKING WITH FOLDERS AND FILES610

2877c13.qxd 11/11/01 4:19 PM Page 610

http://www.sybex.com

system (as long as the remote machine is running Windows NT or Windows 2000). The compo-
nent exposes a few properties that let you specify what type of changes you want to monitor and the
folders/files that will be monitored. Once activated, it fires an event every time one of the specified
items has been changed.

The items you can monitor are folders and files. You can specify the folders you want to monitor
as well as the file types to be monitored. You can also specify the types of actions you want to moni-
tor; each action fires its own event. The actions you can monitor are the creation, deletion, and
renaming of a file or folder and the modification of a file. The corresponding events are appropri-
ately named: Changed, Created, Deleted, and Renamed. There’s also a special event, the Error event,
that is fired when too many changes occur and the FileSystemWatcher component can’t keep track
of them all (the internal buffer overflows and this condition is signaled with the Error event).

Properties
To use a FileSystemWatcher component in your project, open the Components tab of the Toolbox
and double-click the FileSystemWatcher component’s icon. An instance of the component will be
placed in your project, and you can set the following properties in the Properties window.

NotifyFilter

This property determines the types of changes you want to monitor; its value can have one of the
values shown in the Table 13.8, the members of the IO.NotifyFilters enumeration.

Table 13.8: The NotifyFilters Enumeration

Value Description

Attributes The attributes of the file or folder

CreationTime The date of file’s or folder’s creation

DirectoryName The directory name

FileName The filename

LastAccess The date of file’s or folder’s last access

LastWrite The date of file’s or folder’s last edit

Security The security settings of the file or folder

Size The size of the file or folder

You can combine multiple types of changes with the Or operator, but only in your code. The fol-
lowing statement prepares the FileSystemWatcher1 component to monitor for changes in the date and
time of a file’s last write and last access:

FileSystemWatcher1.NotifyFilter = IO.NotifyFilters.LastWrite Or _
IO.NotifyFilters.LastAccess

611THE FILESYSTEMWATCHER COMPONENT

2877c13.qxd 11/11/01 4:19 PM Page 611

http://www.sybex.com

Path

Set this property to the path you want to monitor. The component will watch for changes in all the
files in the specified path. If you want to include the path’s subfolders, set the IncludeSubdirectories
property to True. The default value of this property is False.

Filter

This property filters the files you want to monitor through a string with wildcards. A Filter value of
*.txt tells the component to monitor for changes in text files only. The default value of the Filter
property is *.*, which includes all the files with an extension. To monitor all files, including the
ones without extension, set the Filter property to an empty string. Notice that you can’t specify mul-
tiple extensions with the Filter property.

EnableRaisingEvents

To start monitoring for changes in the file system, set the EnableRaisingEvents property to True.
While the EnableRaisingEvents property is True, the FileSystemWatcher component fires an event
for the changes you have specified through its properties.

Events
To notify your application about the changes, the FileSystemWatcher component raises the follow-
ing events, which you can handle from within your code: Changed, Created, Deleted, and Renamed.
To code the handlers of these events, select the name of the FileSystemWatcher component in the
Object drop-down list of the editor’s window and the name of the event you want to code in the
Events drop-down list.

Like all events, they include two arguments: the sender and the e argument. The second argument of
these events carries information about the type of the change through the ChangeType member. The
e.ChangeType member can be a member of the IO.WatcherChangeTypes enumeration: All, Changed,
Created, Deleted, and Renamed. The e.FullPath and e.Name properties are the path and filename of
the file that was changed, created, or deleted. In the case of a folder, use the FullPath property to
retrieve the name of the changed folder. Finally, the Renamed event’s argument exposes the Old-
FullPath and OldName members, which let you retrieve the old path and name of the renamed file.

You can write a common event handler for the Changed, Created, and Deleted events, because
they share the same arguments. The Rename event must have its own handler, because the e argu-
ment is of a different type.

All the changes detected by the FileSystemWatcher component are stored in an internal buffer,
which may overflow if too many changes take place in a short period of time. To avoid overflowing
the buffer, you should limit the number of files you monitor by setting the Filter and Path properties
appropriately. You should always limit the type of changes (you’ll rarely have to monitor for all
types of changes in a folder). If the buffer overflows, the Error event will be raised. In this event’s
handler you can increase the size of the buffer, by setting the InternalBufferSize property. You can
double the buffer’s size from within the Error event handler to prevent the loss of additional events
with the following statement:

FileSystemWatcher1.InternalBufferSize = 2 * FileSystemWatcher1.InternalBufferSize

Chapter 13 WORKING WITH FOLDERS AND FILES612

2877c13.qxd 11/11/01 4:19 PM Page 612

http://www.sybex.com

VB.NET at Work: The FileSystemWatcher Project
The FileSystemWatcher project, shown in Figure 13.3, demonstrates how to set up a FileSystem-
Watcher component and how to process the events raised by the component. The FileSys-
temWatcher component is initialized when the button is clicked. This button’s Click event handler
prepares the FileSystemWatcher component to monitor changes in text files on the root of the C:
drive. The Path property was set through the Properties window, but you may have to change it. I’ve
chosen the root folder because it’s easy to locate and it has very few files on most systems. You can
create, edit, rename, and then delete a few text files in the root folder to test the application.

After setting the properties at design time, the code sets the component’s EnableRaisingEvents
property to True to start watching for changes. These changes will be signaled though the compo-
nent’s events, which are programmed to print in the Output window the type of change detected and
the name of the corresponding file. The type of change is reported to the event handler through the
ChangeType member of the e argument. When a file is renamed, the program prints both the old
and the new name.

The Start Monitoring button is a toggle. When clicked for the first time, its caption changes to
Stop Monitoring and if you click it again, it will stop monitoring the file system. The properties of
the FileSystemWatcher component are set in the form’s Load event, which is shown in Listing 13.21.

Listing 13.21: Programming the FileSystemWatcher Component

Private Sub Form1_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles MyBase.Load

FileSystemWatcher1.Path = “c:\”
FileSystemWatcher1.IncludeSubdirectories = False
FileSystemWatcher1.Filter = “*.txt”
FileSystemWatcher1.NotifyFilter = IO.NotifyFilters.CreationTime Or _

IO.NotifyFilters.LastWrite Or IO.NotifyFilters.LastAccess Or _
IO.NotifyFilters.FileName

FileSystemWatcher1.EnableRaisingEvents = False
End Sub

Figure 13.3

The FileSystem-
Watcher project

613THE FILESYSTEMWATCHER COMPONENT

2877c13.qxd 11/11/01 4:19 PM Page 613

http://www.sybex.com

The code behind the button’s Click event handler (Listing 13.22) toggles the EnableRaisingEvents
property and the button’s caption. When this property is set to True, the FileSystemWatcher com-
ponent starts monitoring the changes in the file system.

Listing 13.22: The Code of the Start Monitoring Button

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

If Button1.Text = “Start Monitoring” Then
FileSystemWatcher1.EnableRaisingEvents = True
Button1.Text = “Stop Monitoring”

Else
FileSystemWatcher1.EnableRaisingEvents = False
Button1.Text = “Start Monitoring”

End If
End Sub

Now you must program the handlers of the FileSystemWatcher component. You need not pro-
gram all the events, only the ones you want to monitor. Since the Changed, Created, and Deleted
event handlers have the same arguments, you can write a common handler for all three and a separate
one for the Renamed event. Listing 13.23 details the event handlers of the sample applications.

Listing 13.23: The Event Handlers of the FileSystemWatcher Component

Private Sub WatcherHandler(ByVal sender As Object, _
ByVal e As System.IO.FileSystemEventArgs) _
Handles FileSystemWatcher1.Changed, FileSystemWatcher1.Created, _
FileSystemWatcher1.Deleted

ListBox1.Items.Add(e.ChangeType & vbTab & e.FullPath)
End Sub
Private Sub FileSystemWatcher1_Renamed(ByVal sender As Object, _

ByVal e As System.IO.RenamedEventArgs) _
Handles FileSystemWatcher1.Renamed

ListBox1.Items.Add(e.ChangeType & vbTab & e.OldFullPath & “ TO “ & e.FullPath)
End Sub

If you want to handle the Error event, you must stop monitoring the file system momentarily,
double the value of the InternalBufferSize property, and then enable the monitoring again, as in
Listing 13.24.

Chapter 13 WORKING WITH FOLDERS AND FILES614

2877c13.qxd 11/11/01 4:19 PM Page 614

http://www.sybex.com

Listing 13.24: Programming the FileSystemWatcher’s Error Event

Private Sub FileSystemWatcher1_Error(ByVal sender As Object, _
ByVal e As System.IO.ErrorEventArgs) _
Handles FileSystemWatcher1.Error

Dim status As Boolean
status = FileSystemWatcher1.EnableRaisingEvents
FileSystemWatcher1.EnableRaisingEvents = False
FileSystemWatcher1.InternalBufferSize = _

2 * FileSystemWatcher1.InternalBufferSize
FileSystemWatcher1.EnableRaisingEvents = status

End Sub

Summary
The System.IO class exposes all the objects you need to interact with the file system and access files.
As you have seen, writing to and reading from files is fairly straightforward with the reader and
writer objects discussed in this chapter. However, there’s another option for saving complicated
objects to files; namely the Serializer class, which was discussed in Chapter 11.

The topic of storing data is not exhausted with the techniques discussed in this chapter. For large
amounts of data, especially structured data, you should consider setting up a database, a topic dis-
cussed in the fifth part of this book. A database is more than an elaborate mechanism for storing
data; it also allows you to retrieve data instantly based on keys, field values, even combinations of
field values.

615SUMMARY

2877c13.qxd 11/11/01 4:19 PM Page 615

http://www.sybex.com

2877c13.qxd 11/11/01 4:19 PM Page 616

http://www.sybex.com

Part IV
Intermediate
Programming

In this section:
� Chapter 14: Drawing and Painting with Visual Basic
� Chapter 15: Printing with VB.NET
� Chapter 16: The TreeView and ListView Controls
� Chapter 17: Error Handling and Debugging
� Chapter 18: Recursive Programming
� Chapter 19: The Multiple Document Interface

2877c14.qxd 11/11/01 4:19 PM Page 617

http://www.sybex.com

Chapter 14

Drawing and Painting
with Visual Basic
One of the most interesting and fun parts of a programming language is its graphics ele-
ments. In general, graphics fall into two major categories: vector and bitmap. Vector graphics are
images generated by graphics methods such as the DrawLine and DrawEllipse methods. The
drawing you create is based on mathematical descriptions of the various shapes. Bitmap graphics are
images that can be displayed on various controls and processed on a pixel-by-pixel basis. The dif-
ference between vector and bitmap graphics is that vector graphics aren’t tied to a specific moni-
tor resolution; that is, they can be displayed at various resolutions.

Vector graphics can be redrawn at any resolution. Bitmap graphics, on the other hand, have a
fixed resolution. An image 600 pixels wide and 400 pixels tall has that specific resolution. If you
attempt to use it to fill a monitor that’s 1280 pixels wide and 1024 pixels tall, you’ll have to
repeat some pixels. Image-processing software can interpolate between pixels, but when you blow
up a bitmap, you see its block-like structure.

Despite their inherent limitations, bitmap graphics are quite useful and much more common
than vector graphics. For example, you can’t create the image of a landscape with graphics com-
mands. On the other hand, it doesn’t make sense to display the bitmap of a circle when a simple
Circle command can produce the same image faster and more cleanly. Both types of graphics have
their place, and you can mix them to produce the desired result.

Text belongs to the vector graphics category, because the characters in various fonts are
described mathematically and can be rendered at various sizes with no loss of quality. Figure 14.1
shows a string printed at 96 points (at the top) and the same string printed at 48 points and
enlarged 200%. The upper string is as smooth as it can be, while the lower one has too many
artifacts around its edges. I could have made the upper string even smoother by turning on the
anti-aliasing feature, but then the comparison wouldn’t be fair. The .NET Framework provides
rich tools for rendering text, and we’ll examine them along with the other vector drawing meth-
ods. If the differences between the two strings aren’t obvious on the printed page, you can open
the file VectorBitmap.tif in this chapter’s folder on the CD, which is the electronic version of
the same image.

2877c14.qxd 11/11/01 4:19 PM Page 619

http://www.sybex.com

With VB.NET you can draw on just about any control. However, it’s quite unusual to draw on a
TextBox control and highly unlikely that you will ever draw on a ListBox control. The two objects
we usually draw on are the Form object and the PictureBox control. You can place graphics on con-
trols at design time and runtime. To load a graphic (bitmap or icon) on a control at design time, you
assign its filename to the Image, or BackgroundImage, property of the control in the Properties win-
dow. Or, you can change the setting of the same two properties at runtime.

If the graphic is assigned to a control at design time, it’s stored along with the application. Vector
drawings aren’t loaded; they are generated on-the-fly. Where bitmap graphics are copies of their
subjects (pictures of buildings, persons, landscapes, and so on), vector graphics are the descriptions
of the objects we want to display (a circle centered at a given point having a certain radius, or a
rectangle of certain width and height filled with a specific gradient) and are rendered at runtime.

Displaying Images
To load an image to a PictureBox control, locate the Image property in the Properties window and
click the button with the ellipsis next to it. An Open dialog box will appear, where you can select the
image to be displayed. The image is stored in a hidden file that has the same name as the form plus
the extension .resx. As a result, you don’t have to distribute the image with your application.

After the image is loaded, you must make sure it will fill the available space, unless you let the
user select the graphic at runtime. The PictureBox control exposes the SizeMode property, which
determines how the image will be sized and aligned on the control. Its default setting is Normal, and
in this mode the control displays the image at its normal magnification. If the image is larger than
the control, part of the image will be invisible. If the image is smaller than the control, part of the
control will be empty. If the image is smaller than the control, you can set the SizeMode property
to CenterImage to center the image on the control.

The SizeMode property can also be set to StretchImage and AutoSize. The StretchImage setting
resizes the image so that it fills the control. If the control’s aspect ratio isn’t the same as the aspect ratio
of the image, the image will be distorted in the process. If you want to use the StretchImage setting, you
must also resize one of the dimensions of the control, so that the image will be properly resized. You’ll
see how to do this in the following sample. The last setting, AutoSize, resizes the control to the image.
This is not the most convenient setting, because the control may cover other controls on the form. Fig-
ure 14.2 shows a PictureBox control with a small image in all four settings.

Figure 14.1

Enlarging strings
versus printing them
at a larger font

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC620

2877c14.qxd 11/11/01 4:19 PM Page 620

http://www.sybex.com

The most flexible setting of the SizeMode property is StretchImage. Before letting the Form
Designer stretch the image, however, you must make sure that the control has the same aspect ratio
as the image it displays. If the image is twice as wide as it is tall, the same should be true for the Pic-
tureBox control that hosts the image. If that’s the case, the image can be resized safely. If not, the
image will be distorted in the process.

Loading an image to a PictureBox control doesn’t require any code or special handling. For more
information on resizing images while maintaining their aspect ratio, see the discussion of the Image-
Load project, later in this chapter. The image itself is an object, and you can also manipulate it from
within your code. The following section describes the Image object, its properties, and a few of the
methods you can use to manipulate an image.

The Image Object
The Image property of the PictureBox control is an Image object, which contains the current bitmap
and exposes properties and methods for manipulating this image. There are several ways to create an
Image object. You can declare a variable of the Image type and then assign the Image property of the
PictureBox control of the Form object to the variable:

Dim img As Image
img = PictureBox1.Image

The img Image variable holds the bitmap of the PictureBox1 control. As you will see shortly, you
can call the Save method of the Image class to save the image to a disk file.

You can also create a new Image object from an image file, using the Image object’s FromFile
method:

Dim img As Image
img = Image.FromFile(“Butterfly.jpg”)

Figure 14.2

The settings of the
SizeMode property

621DISPLAYING IMAGES

2877c14.qxd 11/11/01 4:19 PM Page 621

http://www.sybex.com

Once the img variable has been set up, you can assign it to the Image property of a PictureBox
control:

PictureBox1.Image = img

Properties

The Image object exposes more members, some of which are discussed in the following sections.
Let’s start with the properties, which are simpler.

HorizontalResolution, VerticalResolution

These are read-only properties that return the horizontal and vertical resolution of the image, respec-
tively, in pixels-per-inch.

Width, Height

These are read-only properties that return the width and height of the image, respectively, in pixels.
If you divide the dimensions of the image (properties Width and Height) by the corresponding res-
olutions (properties HorizontalResolution and VerticalResolution), you’ll get the actual size of the
image—the dimensions of the image when printed, for instance.

PixelFormat

This is another read-only property that returns the pixel format for this Image object. The PixelFor-
mat property determines the quality of the image; there are many pixel formats, which are members
of the PixelFormat enumeration. For now, I will assume that you’re using a color display with a
depth of 24 bits per pixel. Images with 24-bit color are of the Format24bppRgb type. Rgb stands for
“red green blue” (the three basic colors) and 24bpp stands for 24 bits per pixel. Each of the basic
colors in this format is represented by one byte (8 bits).

Methods

In addition to the basic properties, the Image object exposes methods for manipulating images.
These are discussed next.

RotateFlip

This method rotates and/or flips an image, and its syntax is:

Image.RotateFlip(type)

where the type argument determines how the image will be rotated. This argument can have one of
the values of the RotateFlipType enumeration, shown in Table 14.1.

To flip vertically the image displayed on a PictureBox control, use the following statement:

PictureBox1.Image.RotateFlip(RotateFlipType.RotateNoneFlipY)
PictureBox1.Refresh()

The Refresh method redraws the control, and you must call it to display the new (flipped) image on
the control.

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC622

2877c14.qxd 11/11/01 4:19 PM Page 622

http://www.sybex.com

Table 14.1: The RotateFlipType Enumeration

Member Description

Rotate180FlipNone Rotates image by 180 degrees

Rotate180FlipX Rotates image by 180 degrees and then flips it horizontally

Rotate180FlipXY Rotates image by 180 degrees and then flips it vertically and horizontally

Rotate180FlipY Rotates image by 180 degrees and then flips it vertically

Rotate270FlipNone Rotates image by 270 degrees (which is equivalent to rotating it by –90 degrees)

Rotate270FlipX Rotates image by 270 degrees (which is equivalent to rotating it by –90 degrees)
and then flips it horizontally

Rotate270FlipXY Rotates image by 270 degrees (which is equivalent to rotating it by –90 degrees)
and then flips it vertically and horizontally

Rotate270FlipY Rotates image by 270 degrees (which is equivalent to rotating it by –90 degrees)
and then flips it vertically

Rotate90FlipNone Rotates image by 90 degrees

Rotate90FlipX Rotates image by 90 degrees and then flips it horizontally

Rotate90FlipXY Rotates image by 90 degrees and then flips it horizontally and vertically

Rotate90FlipY Rotates image by 90 degrees and then flips it vertically

RotateNoneFlipNone No rotation and no flipping

RotateNoneFlipX Flips image horizontally

RotateNoneFlipXY Flips image vertically and horizontally

RotateNoneFlipY Flips image vertically

GetThumbnailImage

This method returns the thumbnail of the specified image. The thumbnail is a miniature version of the
image, whose exact dimensions you can specify as arguments. Thumbnail images are used as visual
enhancements in selecting an image. The thumbnail takes a small fraction of the space taken by the
actual image, and we can display many thumbnails on a form to let the user select the desired one(s).
The syntax of the GetThumbnailImage method is:

Image.GetThumbnailImage(width, height, Abort, Data)

The first two arguments are the dimensions of the thumbnail. The other two arguments are call-
backs, which are used when the process is aborted. Since thumbnails don’t take long to generate,
we’ll ignore these two arguments for the purposes of this book (we’ll set them both to Nothing).
The following statements create a thumbnail of the image selected by the user and display it on a

623DISPLAYING IMAGES

2877c14.qxd 11/11/01 4:19 PM Page 623

http://www.sybex.com

PictureBox control. To test these statements, place a PictureBox and a Button control on the form.
Then place an instance of the Open dialog box on the form and insert the following statements in
the Button’s Click event handler:

Dim img As Image
img = Image.FromFile(OpenFileDialog1.FileName)
PictureBox1.Image = img.GetThumbnailImage(32, 32, Nothing, Nothing)

Using the techniques described in Chapter 13, you can scan a folder, retrieve all the image files,
and create a thumbnail for each. As for displaying them, I would suggest you create as many Picture-
Box controls as there are images in the folder and arrange them horizontally and vertically on a form.
Chapter 5 describes how to create instances of Windows controls at runtime and position them on
the form from within your code. Since this isn’t a trivial project, I’ve included a sample project on the
CD that demonstrates how to display thumbnails on a form. The project is called Thumbnails, and
you will find it in this chapter’s folder. I’ve copied the CustomExplorer project of Chapter 11,
renamed the Form, and removed the FilesList control (where the names of the files in the selected
folder were displayed). In its place, the program displays the PictureBox controls with the thumb-
nails. When the user clicks an image, the program loads the image on the PictureBox control of
another form and displays it. Figure 14.3 shows the two forms of the Thumbnails application. You
can see the thumbnails of the images on one of the forms and one image in preview mode on the
other form.

Then I adjusted the code to accommodate the display of thumbnails instead of file names. The
ShowFilesInFolder() subroutine of the original application displayed the names of the files in the
current folder on a ListBox control. This subroutine was replaced by the ShowImagesInFolder()
subroutine, which is shown in Listing 14.1.

Figure 14.3

The Thumbnails
application displays
the images in a
folder as thumbnails.

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC624

2877c14.qxd 11/11/01 4:19 PM Page 624

http://www.sybex.com

Listing 14.1: The ShowImagesInFolder Subroutine

Sub ShowFilesInFolder()
Dim file As String
Dim FI As FileInfo
Dim PBox As PictureBox, img As Image
Dim Left As Integer = 280
Dim Top As Integer = 40
Dim ctrl As Integer

‘ remove all PictureBox controls on the form
For ctrl = Me.Controls.Count - 1 To 2 Step -1

Me.Controls.Remove(Me.Controls(ctrl))
Next
Me.Invalidate()
For Each file In Directory.GetFiles(Directory.GetCurrentDirectory)

FI = New FileInfo(file)
If FI.Extension = “.GIF” Or FI.Extension = “.JPG” Or _

FI.Extension = “.BMP” Then
PBox = New PictureBox()
img = Image.FromFile(FI.FullName)
PBox.Image = img.GetThumbnailImage(64, 64, Nothing, Nothing)
If Left > 580 Then

Left = 280
Top = Top + 74

End If
PBox.Left = Left
PBox.Top = Top
PBox.Width = 64
PBox.Height = 64
PBox.Visible = True
PBox.Tag = FI.FullName
Me.Controls.Add(PBox)
AddHandler PBox.Click, New System.EventHandler(AddressOf OpenImage)
Left = Left + 74

End If
Next

End Sub

The subroutine starts by removing any PictureBox control already on the form. This is necessary
because when the user switches to another folder, we want to display this folder’s images on a clean
form. Then the code goes through each file in the selected folder and examines its extension. If it’s
JPG, GIF, or BMP (you can add more file extensions if you want), it creates a new PictureBox con-
trol, sets its size and location, loads the thumbnail of the image, and then adds it to the Controls col-
lection of the form. Each image’s path is stored in the PictureBox control’s Tag property, and it’s
retrieved later to load the image on the second form, where it can be previewed.

625DISPLAYING IMAGES

2877c14.qxd 11/11/01 4:19 PM Page 625

http://www.sybex.com

Notice how the code adds a handler for the Click event of each PictureBox control. All the
PictureBox controls share a common handler for their Click event, the OpenImage() subroutine.
This subroutine reads the selected image’s path from the Tag property of the control that fired the
Click event and displays the corresponding image on the auxiliary form. The implementation of the
OpenImage() subroutine is shown here:

Sub OpenImage(ByVal sender As Object, ByVal e As System.EventArgs)
Dim imgForm As New previewForm()
imgForm.PictureBox1.Image = Image.FromFile(sender.tag)
imgForm.Show()

End Sub

previewForm is the name of the second form of the application, where the selected image is previewed.
If you need more information about this project, please review the material of the last part of
Chapter 5, which explains how to create instances of controls at runtime. This application is a rather
advanced example of dynamic forms, rather than a demo of the GetThumbnailImage method, but
it’s an interesting application and some readers may have a good use for the techniques demonstrated
here. You will notice that all the bitmaps have the same dimensions (64 by 64), which means that
the thumbnails will be distorted (most images aren’t square). You must choose the dimensions of the
thumbnail for an image, so that the reduced image has the same aspect ratio as the original image.
For example, if the original image’s dimensions are 640×480, the thumbnail’s dimensions should be
64×48 (or 32×24, or 128×96, and so on). In the later section on the ImageLoad project, you will
learn how to resize an image and maintain its aspect ratio.

The user interface of the Thumbnails application isn’t the most functional either. If you scroll the
form to see all the thumbnails that aren’t near the top of the form, the controls with the drives and
folder names will be scrolled out of view. Use a different form to display the thumbnails, or add the
appropriate menu commands, which can’t be scrolled out of view.

Save

If your application processes the displayed image during the course of its execution and you want to
save the image, you can use the Save method of the Image property. The simplest syntax of the Save
method accepts a single argument, which is the path of the file where the image will be saved:

Image.Save(path)

To save the contents of the PictureBox1 control to a file, you must use a statement like the follow-
ing:

PictureBox1.Image.Save(“c:\tmpImage.bmp”)

The image will be saved in BMP format. Another form of the Save method allows you to specify
the format in which the image will be saved:

PictureBox1.Image.Save(“c:\tmpImage.bmp”, format)

where the format argument’s value can be one of the members of the ImageFormat enumeration. The
fully qualified name of the enumeration is System.Drawing.Imaging.ImageFormat, so you should
import the library System.Drawing.Imaging into any project that uses the enumerations mentioned
in this chapter. This way you won’t have to fully qualify the name of the enumeration.

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC626

2877c14.qxd 11/11/01 4:19 PM Page 626

http://www.sybex.com

The ImageFormat enumeration contains members for all common image formats (see Table 14.2).
Once you’ve imported the System.Drawing.Imaging class to your project, then to save the image on
the PictureBox1 control in GIF format, use the statement:

PictureBox1.Image.Save(“c:\tmpImage.gif”, ImageFormat.Gif)

Table 14.2: The ImageFormat Enumeration

Member Description Extension

Bmp Bitmap image BMP

Emf Enhanced Windows metafile EMF

Exif Exchangeable Image Format EXIF

Gif Graphics Interchange Format GIF

Icon Windows icon ICO

Jpeg Joint Photographic Experts Group format JPEG

MemoryBmp Saves the image to a memory bitmap

Png W3C Portable Network Graphics format PNG

Tiff Tagged Image File Format TIF

Wmf Windows metafile WMF

VB.NET at Work: The ImageLoad Project

The ImageLoad application (shown in Figure 14.4) demonstrates how to use the SizeMode property
to best fit an image on a PictureBox control. The PictureBox control maintains a constant size, and you
won’t have to do anything special about the other controls on the form. If the image fits on the control,
the control’s SizeMode property is set to CenterImage—the image is displayed centered on the control.
If the image’s dimensions exceed the dimensions of the PictureBox control, the code resizes the larger
dimension of the control, according to the image’s aspect ratio. The PictureBox control’s size isn’t dras-
tically different from its initial dimensions, and it never grows to cover other controls.

Figure 14.4

The ImageLoad
project

627DISPLAYING IMAGES

2877c14.qxd 11/11/01 4:19 PM Page 627

http://www.sybex.com

The application prompts the user to select an image file through the Open dialog box. Then it
compares the image’s dimensions to the dimensions of the control, and if the image is smaller than
the control in both dimensions, it sets the control’s SizeMode property to CenterImage. If not, it
calculates the image’s aspect ratio and resizes the larger dimension accordingly.

The Load command under the Image menu is implemented with the statements in Listing 14.2.

Listing 14.2: The Image ➢ Load Menu Command

Private Sub ImageLoad_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ImageLoad.Click

OpenFileDialog1.Filter = “Images|*.GIF;*.JPG;*.TIF;*.BMP”
If OpenFileDialog1.ShowDialog() = DialogResult.OK Then

PictureBox1.Image = Image.FromFile(OpenFileDialog1.FileName)
ResizeImage()

End If
End Sub

The code displays the image on the control and immediately calls the ResizeImage subroutine to
resize the image. This subroutine will display the image on a PictureBox control whose dimensions
are 400 by 400 pixels. If one of the image’s dimensions exceeds the corresponding dimension of the
control, this dimension will be resized while maintaining the aspect ratio. Listing 14.3 shows the
ResizeImage() subroutine used in the LoadImage application.

Listing 14.3: The ResizeImage() Subroutine

Private Sub ResizeImage()
PictureBox1.Width = 400
PictureBox1.Height = 400
If PictureBox1.Image.Width < PictureBox1.Width And _

PictureBox1.Image.Height < PictureBox1.Height Then
PictureBox1.SizeMode = PictureBoxSizeMode.CenterImage

Else
Dim ratio As Single
If PictureBox1.Image.Width > PictureBox1.Image.Height Then

ratio = PictureBox1.Image.Width / PictureBox1.Image.Height
PictureBox1.Height = PictureBox1.Width / ratio

Else
ratio = PictureBox1.Image.Height / PictureBox1.Image.Width
PictureBox1.Width = PictureBox1.Height / ratio

End If
End If

End Sub

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC628

2877c14.qxd 11/11/01 4:19 PM Page 628

http://www.sybex.com

The user can restore the image to its original size with the Zoom ➢ Normal command, whose
code is almost trivial:

Private Sub ZoomNormal_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ZoomNormal.Click

PictureBox1.Width = PictureBox1.Image.Width
PictureBox1.Height = PictureBox1.Image.Height

End Sub

The Auto command of the Zoom menu fits the image on the control by calling the ResizeImage()
subroutine. The last two commands in the menu, Zoom In and Zoom Out, enlarge or reduce the
magnification of the image by 25%: their implementation is also trivial. The following statements
zoom into the image by 25%:

PictureBox1.Width = PictureBox1.Width * 1.25
PictureBox1.Height = PictureBox1.Height * 1.25

As you can see, the various zooming commands don’t directly manipulate the Image object. Instead,
they control the dimensions of the image’s container (the PictureBox control) and rely on the Auto-
Size setting of the control’s SizeMode property to resize the image. The code would have been even
simpler if we didn’t want to maintain the image’s aspect ratio. We’re going to use the same subrou-
tine in the PrintBitmap project of the following chapter, where you will learn how to print bitmaps
at any magnification.

Note The PictureBox control’s Image object doesn’t change when you resize the control. Its dimensions are the dimen-
sions of the image loaded initially, regardless of the current magnification.

The Process menu of the application contains commands for rotating and flipping the image.
These commands call the RotateFlip method with different arguments. The only implication worth
mentioning here is that when we rotate an image right or left, we’re actually swapping its width with
its height. To avoid clipping images that are not square, you must swap the dimensions of the Pic-
tureBox control as well. Listing14.4 shows the code of the Rotate Right command:

Listing 14.4: Rotating an Image

Private Sub ProcessRotateRight_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ProcessRotateRight.Click

PictureBox1.Image.RotateFlip(RotateFlipType.Rotate90FlipNone)
PictureBox1.Invalidate()
Dim tmp As Integer
tmp = PictureBox1.Width
PictureBox1.Width = PictureBox1.Height
PictureBox1.Height = tmp

End Sub

629DISPLAYING IMAGES

2877c14.qxd 11/11/01 4:19 PM Page 629

http://www.sybex.com

Exchanging Images through the Clipboard
Whether you use bitmap images or create graphics from scratch with the Visual Basic drawing meth-
ods, sooner or later you’ll want to exchange them with other Windows applications. To do so, you
use the Clipboard and its GetDataObject and SetDataObject methods. The SetDataObject method
accepts the data to be placed on the Clipboard as argument. To copy the bitmap displayed on the
PictureBox1 control to the Clipboard, use the following statement:

Clipboard.SetDataObject(PictureBox1.Image)

A second form of the SetDataObject method accepts an additional argument: a True/False value
that specifies whether the contents of the Clipboard will remain on it after the application that
placed them there has terminated.

The GetDataObject method is a bit more complicated. This method returns an IDataObject,
which in turn exposes three methods:

GetData Retrieves the clipboard’s contents.

GetDataPresent Returns True if the Clipboard contains data of a specific type.

GetFormats Returns all the formats supported by the Clipboard.

The GetData method accepts a single argument, which is the format of the desired data. The
Clipboard doesn’t just return any data it may contain; instead, you must specify the type of data you
expect to read into your application when you request it. To read the bitmap stored in the Clipboard
and display it on the PictureBox1 control, you must use a statement like the following:

PictureBox1.Image = Clipboard.GetDataObject.GetData(DataFormats.Bitmap)

The DataFormats enumeration contains a member for each type of data it recognizes (it includes
types like Text, HTML, WaveAudio, and many more. If you can’t be sure whether the Clipboard con-
tains data of a specific type, use the GetDataPresent method passing as argument the desired type. If
the Clipboard’s data are of this type, the GetDataPresent method will return True:

clipboard.GetDataObject.GetDataPresent(dataFormat)

where dataFormat is a member of the DataFormats enumeration. You can also specify a second argu-
ment, which is a True/False value that determines whether the Clipboard should attempt to auto-
matically convert its data to the specified format.

VB.NET at Work: The ImageClipboard Project

The ImageClipboard project, whose main form is shown in Figure 14.5, allows you to exchange
images between your VB application and any other image-aware application running under Win-
dows through the Clipboard.

The Load Image button prompts the user to select an image with the Open dialog box (you’ve
seen this code in the ImageLoad application). The Clear Image button clears the PictureBox control
by calling the Clear method of the Graphics object (this object is discussed in the following section).
The other two buttons move a bitmap to and from the Clipboard, as explained already. Listing 14.5
shows the event handlers for all four buttons on the form.

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC630

2877c14.qxd 11/11/01 4:19 PM Page 630

http://www.sybex.com

Listing 14.5: The ImageClipboard Application

Private Sub bttnPaste_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnPaste.Click

If Clipboard.GetDataObject.GetDataPresent(DataFormats.Bitmap) Then
PictureBox1.Image = Clipboard.GetDataObject.GetData(DataFormats.Bitmap)

Else
MsgBox(“The Clipboard doesn’t contain a bitmap!”)

End If
End Sub
Private Sub bttnCopy_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles bttnCopy.Click
Clipboard.SetDataObject(PictureBox1.Image)

End Sub
Private Sub bttnLoad_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles bttnLoad.Click
OpenFileDialog1.Filter = “Images|*.bmp;*.tif;*.jpg;*.gif”
If OpenFileDialog1.ShowDialog() = DialogResult.OK Then

PictureBox1.Image = Image.FromFile(OpenFileDialog1.FileName)
End If

End Sub
Private Sub bttnClear_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles bttnClear.Click
PictureBox1.CreateGraphics.Clear(Color.Black)

End Sub

This example concludes our discussion of the Image object. So far, you have learned how to add
images to the application’s user interface, properly resize bitmaps, and perform simple geometrical
transformations like rotating and flipping. In the following section, you’ll learn how to create your
own graphics.

Figure 14.5

The ImageClipboard
application lets you
exchange images with
other applications.

631DRAWING WITH GDI+

2877c14.qxd 11/11/01 4:19 PM Page 631

http://www.sybex.com

Drawing with GDI+
GDI stands for Graphics Design Interface, and it’s a collection of classes that enables you to create graphics,
text, and images. In short, GDI is the graphics engine of Windows. GDI has been around for many
years, and its latest version is GDI+, which is the only way to create graphics in .NET. All the draw-
ing statements of VB6 are gone, and although it’s more difficult to create graphics with GDI+, the
new graphics engine is faster, richer, and common for all .NET languages.

One of the basic characteristics of GDI+ is that it’s stateless. This means that a graphics opera-
tion is totally independent of the previous one and can’t affect the following one. To draw a line,
you must specify a Pen object and the two endpoints of the line. You must do the same for the next
line you’ll draw. You can’t assume that the second line will use the same pen, or that it will start at
the point where the previous line ended. There isn’t even a default font for text-drawing methods.
Every time you draw some text, you must specify the font in which the text will be rendered, as well
as the Brush object that will be used to draw the text.

The GDI+ classes reside in the following namespaces, and you must import one or more of them
in your projects: System.Drawing, System.Drawing2D, System.Drawing.Imaging, and System.Draw-
ing.Text. In this chapter we’ll explore all three aspects of GDI+, namely vector drawing, imaging,
and typography, starting with the basic drawing objects.

Before you start drawing, you must select the surface you want to draw on, the type of shapes you
want to draw, and the instrument you’ll use to draw with. The surface on which you can draw is a
Graphics object. This object exposes numerous methods for drawing basic (and not so basic) shapes.
To draw on a form, or a control, we request the proper Graphics object, which exposes all the draw-
ing methods.

The next step is to decide what instrument you’ll use to draw with. There are two major drawing
instruments, the Pen object and the Brush object. You use pens to draw stroked shapes (lines, rectangles,
curves) and brushes to draw filled shapes (any area enclosed by a shape). The main characteristics of
the Pen object are its color and its width (the size of the trace left by the pen). The main characteristic
of the Brush object is the color or pattern that will fill the shape. An interesting variation of the Brush
object is the gradient brushes, which change color as you move from one point of the shape you want
to fill to another. You can start filling a shape with red in the middle and specify that as you move
toward the edges of the shape, the fill color fades to yellow.

After you have specified the drawing surface and the drawing instrument, you draw an actual
shape by calling the appropriate method of the Graphics object. Here’s a simple example of a few
statements that draw a line on the form.

Dim redPen As Pen = New Pen(Color.Red, 2)
Dim point1 As Point = New Point(10,10)
Dim point2 As Point = New Point(120,180)
Me.CreateGraphics.DrawLine(redPen, point1, point2)

The first statement declares a new Pen object, which is initialized to draw in red with a width of 2
pixels. The following two statements declare and initialize two points, which are the line’s starting and
ending points. The coordinates are expressed in pixels, and the origin is at the form’s top-left corner.
The last statement draws a line by calling the DrawLine method. The expression Me.CreateGraphics
retrieves the Graphics object of the form, which exposes all the drawing methods, including the DrawLine

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC632

2877c14.qxd 11/11/01 4:19 PM Page 632

http://www.sybex.com

method. The Graphics object is the drawing surface, and all drawing methods produce some output
on this surface. You can also create a new Graphics object and associate it with the form:

Dim G As Graphics
G = Me.CreateGraphics
G.DrawLine(redPen, point1, point2)

The DrawLine method accepts as argument the pen it will use to draw and the line’s starting and
ending points. I have used two Point objects to make the code easier to read. The DrawLine method,
like all other drawing methods, is heavily overloaded. You can omit the declarations of the two points
and pass their coordinates as arguments to the DrawLine method with the following statement:

Me.CreateGraphics.DrawLine(redPen, 10, 10, 120, 180)

You can also omit the declaration of a Pen object variable and initialize it in the same statement
that draws the line:

Me.CreateGraphics.DrawLine(New Pen(Color.Red, 2), 10, 10, 120, 180)

All coordinates are expressed by default in pixels. It’s possible to specify coordinates in different
units and let GDI+ convert them to pixels before drawing. If you’re drawing molecules, your units
will be tiny fractions of a millimeter (microns), while if you’re drawing the trajectories of planets,
your units will be millions or billions of miles. For now, we’ll use pixels, which are quite appropriate
for simple objects. Once you’ve familiarized yourself with the drawing methods, you’ll learn how to
specify different coordinate systems.

The Basic Drawing Objects
This is a good point to introduce some of the objects we’ll be using all the time in drawing. Instead
of interrupting the discussion of the more interesting drawing methods that will follow, I’d rather
discuss here all the auxiliary objects used in drawing. No matter what you draw, or what drawing
instrument you’re using, one or more of the objects discussed in this section will be required.

The Graphics Object

The Graphics object is the drawing surface. Every control you can draw on exposes a Graphics prop-
erty, which is an object. The Graphics object exposes all the methods for drawing on the surface of
the control. It goes without saying that the PictureBox control exposes a Graphics property, but so
does the TextBox control, as well as many controls you wouldn’t expect. It’s not recommended that
you draw on a TextBox control, of course, unless you’re coding a peculiar application. Bear in mind
that anything you draw on the TextBox control will disappear as you start typing. You must first
place the text on the control and then draw on its surface.

To retrieve the Graphics object of a control, call the control’s CreateGraphics method. Because
this method returns a Graphics object, it also exposes all the methods and properties you will use to
create graphics on the control. If you enter the string Me.CreateGraphics and a period, you will see a
list of the members of the Graphics object in a drop-down list. The DpiX and DpiY properties, for
example, return the horizontal and vertical resolution of the form. On an average monitor, these two
properties return a resolution of 96 dots per inch.

633DRAWING WITH GDI+

2877c14.qxd 11/11/01 4:19 PM Page 633

http://www.sybex.com

To use the Graphics object, you must first import the library Drawing2D into your project with
the following statement (if not, you will have to fully qualify the references to the drawing methods):

Imports System.Drawing.Drawing2D

Then, declare a variable of the Graphics type and initialize it to the Graphics object returned by
the control’s CreateGraphics method:

Dim G As Graphics
G = PictureBox1.CreateGraphics

At this point you’re ready to start drawing on the PictureBox1 control with the methods we’ll
discuss in the following sections. If you want to draw on the form, create a Graphics object with the
form’s CreateGraphics method:

Dim G As Graphics
G = Me.CreateGraphics

You can actually draw on any control that provides a CreateGraphics method.

Note The Graphics object is initialized to the control’s drawing surface the moment you create it. If the form is resized at
runtime, the Graphics object won’t change and part of the drawing surface may not be available for drawing. If you create a
Graphics object to represent a form in the form’s Load event handler, this object will represent the surface of the control the
moment the Graphics object was created. If the form is resized at runtime, the drawing methods you apply to the Graphics
object will take effect in part of the form. The most appropriate event for initializing the Graphics object and inserting the paint-
ing code is the form’s Paint event. This event is fired when the form must be redrawn. Insert your drawing code there and
create a Graphics object in the Paint event. Then draw on the Graphics object and release it when you’re done.

The Graphics object exposes the following basic properties, in addition to the drawing methods
discussed in the following sections.

DpiX, DpiY The horizontal and vertical resolutions of the drawing surface. These properties
are expressed in pixels per inch (or dots per inch, if the drawing surface is your printer). A dis-
tance of Graphics.DpiX pixels will be exactly one inch on the monitor. If you plan to work with a
unit other than pixels, you should take advantage of the PageUnit property.

PageUnit The unit in which you want to express the coordinates on the Graphics object. Its
value can be a member of the GraphicsUnit enumeration (Table 14.3).

TextRenderingHint This property specifies how the Graphics object will render text; its value
is one of the members of the TextRenderingHint enumeration: AntiAlias, AntiAliasGridFit,
ClearTypeGridFit, SingleBitPerPixel, SingleBitPerPixelGridFit, and SystemDefault.

SmoothingMode This property is similar to the TextRenderingHint, but it applies to all
shapes, not just text. Its value is one of the members of the SmoothingMode enumeration:
AntiAlias, Default, HighQuality, HighSpeed, Invalid, and None.

Figure 14.6 shows an ellipse drawn with the SmoothingMode property set to AntiAlias (the one
on the left) and to HighSpeed (on the right). Parts of the two ellipses were blown up with an image-
processing application, so that you can see the difference in the two modes. Anti-aliased shapes

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC634

2877c14.qxd 11/11/01 4:19 PM Page 634

http://www.sybex.com

(or text, for that matter) are smoother because their edges contain shades between the drawing and
background colors. These shades are introduced by GDI+ automatically when you render shapes to
lessen the contrast between the two colors. As a result, anti-aliased drawings look smoother.

Table 14.3: The GraphicsUnit Enumeration

Value Description

Display The unit is 1⁄75 of an inch.

Document The unit is 1⁄300 of an inch.

Inch The unit is one inch.

Millimeter The unit is one millimeter.

Pixel The unit is one pixel (the default value).

Point The unit is a printer’s point (1⁄72 of an inch).

World The developer specifies the unit to be used.

Figure 14.7 shows the effect of the TextRenderingHint property on text. The anti-aliased text
looks much better on the monitor. The ClearType setting has no effect on CRT monitors. You can
see the difference only when you render text on LCD monitors, such as the new flat panel monitors
or notebook monitors.

Figure 14.6

SmoothingMode
set to (left) Anti-
Alias and (right)
HighSpeed

635DRAWING WITH GDI+

2877c14.qxd 11/12/01 2:55 PM Page 635

http://www.sybex.com

The Point Object

The Point object represents a point on the drawing surface and is expressed as a pair of (x, y) coordi-
nates. The x coordinate is its horizontal distance from the origin, and the y coordinate is its vertical
distance from the origin. The origin is the point with coordinates (0, 0), and this is the top-left cor-
ner of the drawing surface. Figure 14.8 shows the coordinates of the two opposite corners of the
Graphics object and a point in its interior.

To create a new Point object, you must specify its x and y coordinates, represented as X and Y
properties of the object. The constructor of the Point object is:

Dim P1 As Point
P1 = New Point(X, Y)

where X and Y are integer values, the point’s horizontal and vertical distances from the origin. Alter-
natively, you can declare a Point object and then set its X and Y properties:

Dim P1 As Point
P1.X = 34
P1.Y = 50

Figure 14.8

The origin of the
default coordinate
system is at the top-
left corner of the
drawing surface.

Figure 14.7

TextRenderingHint
set to (top)
ClearType and
(bottom)
AntiAlias

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC636

2877c14.qxd 11/11/01 4:19 PM Page 636

http://www.sybex.com

As you will see later, coordinates can also be specified as Single numbers (if you choose to use a
coordinate system other than pixels). In this case, use the PointF object, which is identical to the
Point object with the exception that its coordinates are non-integers (F stands for floating-point, and
floating-point numbers are represented by the Single or Double data type).

The Rectangle Object

Another object quite common in drawing is the Rectangle object. Its constructor accepts as argu-
ments the coordinates of the rectangle’s top-left corner and its width and height.

Dim box As Rectangle
box = New Rectangle(X, Y, width, height)

The following statement creates a rectangle whose top-left corner is 1 pixel to the right and 1
pixel down from the origin and whose dimensions are 100 and 20 pixels:

box = New Rectangle(1, 1, 100, 20)

The box variable represents a rectangle, but it doesn’t generate any output on the monitor. If you
want to draw the rectangle, you can pass it as argument to the DrawRectangle or FillRectangle
method, depending on whether you want to draw the outline of the rectangle or a filled rectangle.

Another form of the Rectangle constructor uses the Size object to specify the dimensions of the
rectangle:

box = New Rectangle(point, size)

To create the same Rectangle object as in the last example with this form of the constructor, use
the following statement:

Dim P As Point
P.X = 1
P.Y = 1
Dim S As Size
S.Width = 100
S.Height = 20
box = New Rectangle(P, S)

Both sets of statements create a rectangle that extends from point (1, 1) to the point ([1 + 100],
[1 + 20]) or (101, 21), in the same manner as the ones shown in Figure 14.9.

Figure 14.9

Specifying rectangles
with the coordinates
of their top left
corner and their
dimensions

637DRAWING WITH GDI+

2877c14.qxd 11/11/01 4:19 PM Page 637

http://www.sybex.com

Alternatively, you can declare a Rectangle object and then set its properties, as shown here:

Dim box As new Rectangle
box.X = 1
box.Y = 1
box.Width = 100
box.Height = 20

The Color Object

The Color object represents a color, and there are many ways to specify a color. We’ll discuss the
Color object in more detail later in this chapter, in the discussion of bitmaps. In the meantime, you
can specify colors by name. Declare a variable of the Color type, and initialize it to one of the named
colors exposed by the Color object:

Dim myColor As Color
myColor = Color.Azure

The 128 named members of the Color object will appear in a drop-down list as soon as you enter
the period following the keyword Color. You can also use the FromARGB method, which creates a
new color from its basic color components (the Red, Green, and Blue components). For more infor-
mation on specifying colors with this method, see the section “Specifying Colors” later in this chapter.

The Color object is used to set the color of the Pen object you draw with or the color in which a
string will be rendered. You can also use the same object to assign values to any color-related prop-
erty, such as the BackColor property of any control. To set the background color of a TextBox con-
trol, use the following statement:

TextBox1.BackColor = Color.Beige

The Font Object

The Font object represents the font to be used when rendering strings with the DrawString method.
To specify a font, you must create a new Font object, set its family name, size, and style, and then
pass it as argument to the DrawString method. Alternatively, you can prompt the user for a font
with the Font common dialog box and use the object returned by the dialog box’s Font property as
argument with the DrawString method.

To create a new Font object, use a few statements like the following:

Dim drawFont As New Font(“Comic Sans MS”, FontStyle.Bold)

The Font constructor has 13 forms in all. Two of the simpler forms of the constructor, which
allow you specify the size and the style of the font, are shown next:

Dim drawFont As New Font(name, size)
Dim drawFont As New Font(name, size, style)

where size is an integer and style is a member of the FontStyle enumeration (Bold, Italic, Regular,
Strikeout, and Underline). To specify multiple styles, combine them with the Or operator:

FontStyle.Bold Or FontStyle.Italic

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC638

2877c14.qxd 11/11/01 4:19 PM Page 638

http://www.sybex.com

You can also initialize a Font variable to an existing font. The following statement creates a Font
object and initializes it to the current font of the form:

Dim textFont As New Font
textFont = Me.Font

The Font object provides the Size, Bold, and Italic properties. Unfortunately, these properties are
read-only and return the attributes of the font in use. You can’t turn on the bold attribute by setting
the Font.Bold property to True. It would be very convenient to be able to quickly adjust the proper-
ties of an existing font and create a new one, but this isn’t the case.

Of course, you can use the current settings of an existing font to create a new Font object. The
following statements build a new Font object based on the settings of the form’s current font. The
new font belongs to the same family as the form’s current font, is twice the size of this font, and has
the same attributes as the form’s font plus the bold attribute.

Dim textFont As Font
textFont = New Font(Me.Font.FontFamily, 2 * Me.Font.Size, _

Me.Font.Style Or FontStyle.Bold)

The Pen Object

The Pen object represents a virtual pen, which you use to draw on the Graphics object’s surface. To
construct a Pen object, you must specify a color and the pen’s width in pixels. The following state-
ments declare three Pen objects with the same color and different widths:

Dim thinPen, mediumPem, thickPen As Pen
thinPen = New Pen(Color.Black, 1)
mediumPen = New Pen(Color.Black, 3)
thickPen = New Pen(Color.Black, 5)

If you omit the second argument, a pen with a width of a single pixel will be created by default.
Another form of the Pen object’s constructor allows you to specify a brush, instead of a color:

Dim patternPen as Pen
patternPen = New Pen(brush, width)

where brush is a Brush object (which is discussed later in this chapter). As you will see, the drawing meth-
ods generate two types of drawings: stroked shapes and filled shapes. Stroked shapes (or outlines) are
drawn with a pen, while filled shapes are drawn with a brush. To draw the outline of a shape with a pat-
tern, you must create a Pen object based on an existing brush, and then use it with a drawing method.

The quickest method of creating a new Pen object is to use the built-in Pens collection, which
creates a Pen with a width of one pixel and the color you specify. The following statement can
appear anywhere a Pen object is required and will draw shapes in blue color:

Pens.Blue

Note There’s an important distinction between Pens and Brushes you should bear in mind as you draw with VB.NET.
You can’t draw a shape with a Brush object, and you can’t fill a closed shape with a Pen. It is possible, however, to draw
a shape with a pattern, as long as you assign the pattern to the Pen object. Likewise, you can fill a shape with a solid color,
as long as you set the color of the Brush object you’re using to fill with.

639DRAWING WITH GDI+

2877c14.qxd 11/11/01 4:19 PM Page 639

http://www.sybex.com

The Pen object exposes these properties:

LineJoin Determines how two consecutive line segments will be joined. Its value is one of the
members of the LineJoin enumeration: Bevel, Miter, MiterClipped, and Round.

StartCap, EndCap Determine the caps at the beginning and end of a line segment respectively.
Their value is one of the members of the LineCap enumeration: Round, Square, Flat, Diamond,
and so on.

DashCap Determines the cap to be used at the beginning and end of a dashed line. Its value is
one of the members of the DashCap enumeration: Flat, Round, and Triangle.

DashStyle Determines the style of the dashed lines drawn with the specific Pen. Its value is one of
the members of the DashStyle enumeration (Solid, Dash, DashDot, DashDotDot, Dot, and Custom)

PenType Determines the style of the Pen. Its value is one of the members of the PenType
enumeration: HatchFilled, LinearGradient, PathGradient, SolidColor, and TextureFill.

The Path Object

The Path object is a combination of the various drawing entities, like lines, rectangles, and curves.
You can create as many of these drawing entities and build a new entity, which is called Path. Paths
are usually closed and filled with a color, a gradient or a bitmap. You can create a path in several
ways. The simplest method is to create a new Path object and then use one of these methods to
append the appropriate item to the path:

AddArc AddEllipse AddPolygon

AddBezier AddLine AddRectangle

AddCurve AddPie AddString

These methods add to the path the same shapes you can draw on the Graphics object with the
methods discussed in the later section “Drawing Shapes with the Graphics Object.” There’s even an
AddPath method, which adds an existing path to the current one. The syntax of the various methods
that add shapes to a path is identical to the corresponding methods that draw. We simply omit the
first argument (the Pen object), because all the shapes will be rendered with the same pen. The fol-
lowing method draws an ellipse:

Me.CreateGraphics.DrawEllipse(pen, 10, 30, 40, 50)

To add the same ellipse to a Path object, use the following statement:

Dim myPath As New Path
myPath.AddEllipse(10, 30, 40, 50)

To display the path, call the DrawPath method passing a Pen and the Path object as arguments:

Me.CreateGraphics.DrawPath(myPen, myPath)

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC640

2877c14.qxd 11/11/01 4:19 PM Page 640

http://www.sybex.com

Why combine shapes into paths instead of drawing individual shapes? There are many reasons
for maintaining multiple shapes as a single entity. Once the shape has been defined, you can draw
multiple instances of it on the monitor, draw the same path with a different pen, or fill the path’s
constituent shapes with the same bitmap or gradient. Paths are also used to create the ultimate type
of gradient, the PathGradient, as you will see in the section “Path Gradients,” later in this chapter.

Later in this chapter, we’ll build an application for plotting functions. To plot a function, we’ll cre-
ate a shape with all the points along the curve and draw it with a single call the DrawPath method.

The Brush Object

The Brush object is the instrument for filling shapes, and you can create brushes that fill with a solid
color, a pattern, or a bitmap. In reality, there’s no Brush object. The Brush class is actually an abstract
class that is inherited by all the objects that implement a brush, but you can’t declare a variable of the
Brush type in your code. The brush objects are:

Brush Object Type Fills Shapes With

SolidBrush A solid color

HatchBrush A hatched pattern

LinearGradientBrush A linear gradient

PathGradientBrush A gradient that has one starting color and many ending colors

TextureBrush A bitmap

Solid Brushes

To fill a shape with a solid color, you must create a SolidBrush object with the following constructor:

Dim sBrush As SolidBrush
sBrush = New SolidBrush(brushColor)

where brushColor is a color value, specified with the help of the Color object. Every filled object you
draw with the sBrush object will be filled with the color of the brush.

Hatched Brushes

To fill a shape with a hatch pattern, you must create a HatchBrush object with the following con-
structor:

Dim hBrush As HatchBrush
HBrush = New HatchBrush(hatchStyle, hatchColor, backColor)

The first argument is the style of the hatch, and it can have one of the values shown in Table 14.4.
The other two arguments are the colors to be used in the hatch. The hatch is a pattern of lines drawn
on a background, and the two color arguments are the color of the hatch lines and the color of the
background on which the hatch is drawn.

641DRAWING WITH GDI+

2877c14.qxd 11/11/01 4:19 PM Page 641

http://www.sybex.com

Table 14.4: The HatchStyle Enumeration

Value Effect

BackwardDiagonal Diagonal lines from top-right to bottom-left

Cross Vertical and horizontal crossing lines

DiagonalCross Diagonally crossing lines

ForwardDiagonal Diagonal lines from top-left to bottom-right

Horizontal Horizontal lines

Vertical Vertical lines

Gradient Brushes

A gradient brush fills a shape with a specified gradient. The LinearGradientBrush fills a shape with
a linear gradient, and the PathGradientBrush fills a shape with a gradient that has one starting color
and many ending colors. Gradient brushes are discussed in detail in the section “Gradients” later in
this chapter.

Textured Brushes

In addition to solid and hatched shapes, you can fill a shape with a texture using a TextureBrush
object. The texture is a bitmap that is tiled as needed to fill the shape. Textured brushes are used in
creating rather fancy graphics, and we’ll not explore them in this chapter.

Drawing Shapes
In this section, you will learn the drawing methods of the Graphics object. Before getting into the
details of the drawing methods, however, let’s write a simple application that draws a couple of
simple shapes on a form. First, we must create a Graphics object with the following statement:

Dim G As Graphics
G = Me.CreateGraphics

Everything you draw on the surface represented by the G object will appear on the form. Then, we
must create a Pen object to draw with. The following statement creates a Pen object that draws in blue:

Dim P As New Pen(Color.Blue)

You’ve created the two basic objects for drawing: the drawing surface and the drawing instru-
ment. Now you can draw shapes by calling the Graphics object’s methods. The following statement
will print a rectangle with its top-left corner near the top-left corner of the form (at a point that’s 10
pixels to the right and 10 pixels down from the form’s corner) and is 200 pixels wide and 150 pixels
tall. These are the values you must pass to the DrawRectangle method as arguments, along with the
Pen object that will be used to render the rectangle:

G.DrawRectangle(P, 10, 10, 200, 150)

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC642

2877c14.qxd 11/11/01 4:19 PM Page 642

http://www.sybex.com

Let’s add the two diagonals of the rectangle. The diagonals are two lines, one from the top-left to
the bottom-right corner of the rectangle and another from top-right to bottom-left. Here are the
two statements that draw the diagonals:

G.DrawLine(P, 10, 10, 210, 160)
G.DrawLine(P, 210, 10, 10, 160)

We’ve written all the statements to create a shape on the form, but where do we insert them? Let’s
try a Button. Start a new project, place a button on it, and then insert the statements of Listing 14.6
in the Button’s Click event handler.

Listing 14.6: Drawing Simple Shapes

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim G As Graphics
G = Me.CreateGraphics
Dim P As New Pen(Color.Blue)
G.DrawRectangle(P, 10, 10, 200, 150)
G.DrawLine(P, 10, 10, 210, 160)
G.DrawLine(P, 210, 10, 10, 160)

End Sub

Run the application and click the button. You will see the shape shown in Figure 14.10. This fig-
ure was created by the SimpleShapes application on the CD.

Persistent Drawing

If you switch to the Visual Studio IDE, or any other window, and then return to the form of the
SimpleShapes application, you’ll see that the drawing has disappeared! If you’re a VB6 programmer,
you’ve recognized that the form’s AutoRedraw property isn’t True. But there’s no AutoRedraw
property in VB.NET. Only the bitmap of the PictureBox is persistent. Everything you draw on the
Graphics object is temporary. It doesn’t become part of the Graphics object and is visible only while
the control, or the form, need not be redrawn. As soon as the form is redrawn, the shapes disappear.

Figure 14.10

The output of
Listing 14.6

643DRAWING WITH GDI+

2877c14.qxd 11/11/01 4:19 PM Page 643

http://www.sybex.com

So, how do we make the output of the various drawing methods permanent on the form?
Microsoft suggests placing all the graphics statements in the OnPaint method, which is activated
automatically when the form is redrawn. OnPaint is a method of the form, which is invoked auto-
matically by the operating system and, in turn, it invokes the Paint event. To draw something every
time the form is redrawn, place the necessary statements in the OnPaint method.

The OnPaint method accepts a single argument, the e argument, which, among other properties,
exposes the form’s Graphics object. You can create a Graphics object in the OnPaint method and
then draw on this object. Listing 14.7 is the OnPaint event handler that creates the shape shown in
Figure 14.10 and refreshes the form every time it’s totally or partially covered by another form.
Delete the code in the button’s Click event handler and insert the subroutine from the listing into
the form’s code window.

Listing 14.7: Programming the OnPaint Event

Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)
Dim G As Graphics
G = e.Graphics
Dim P As New Pen(Color.Blue)
G.DrawRectangle(P, 10, 10, 200, 150)
G.DrawLine(P, 10, 10, 210, 160)
G.DrawLine(P, 210, 10, 10, 160)

End Sub

If you run the application now, it works like a charm. The shapes appear to be permanent, even
though they’re redrawn every time you switch to the form. All the samples that come with Visual
Studio place the graphics statements in the OnPaint method, so that they’re executed every time the
form is redrawn.

This technique is fine for a few graphics elements you want to place on the form to enhance its
appearance. But many applications draw something on the form in response to user actions, like the
click of a button or a menu commands. Using the OnPaint method in a similar application is out of
the question. The drawing isn’t the same, and you must figure out from within your code which
shapes you have to redraw at any given time. Consider a drawing application. The current drawing
evolves according to the commands you issue. The code in the OnPaint method can’t execute a few
drawing commands to regenerate the drawing. Keeping track of the drawing commands that were
executed and the order in which they were executed is quite a task. The solution is to make the
drawing permanent on the Graphics object, so it won’t have to be redrawn every time the form is
hidden or resized.

It is possible to make the graphics permanent by drawing not on the Graphics object, but directly
on the control’s (or the form’s) bitmap. The Bitmap object contains the pixels that make up the image
and is very similar to the Image object. As you will see, you can create a Bitmap object and assign it to
an Image object. In the image-processing application we’ll develop toward the end of this chapter,

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC644

2877c14.qxd 11/11/01 4:19 PM Page 644

http://www.sybex.com

you’ll learn how to extract the bitmap from a PictureBox control, process the pixels of a bitmap, and
then assign the processed bitmap back to the control’s Image property. In the meantime, you can use
the code of Listing 14.7 to create a drawing surface that doesn’t have to be constantly redrawn.

To create this “permanent” drawing surface, you must first create a Bitmap object that has the
same dimensions as the PictureBox control you want to draw on:

Dim bmp As Bitmap
bmp = New Bitmap(PictureBox1.Width, PictureBox1.Height)

The bmp variable represents an empty bitmap. Then, we set the control’s Image property to this
bitmap with the following statement:

PictureBox1.Image = bmp

Immediately after that, you must set the bitmap to the control’s background color with the Clear
method:

G.Clear(PictureBox1.BackColor)

After the execution of this statement, anything we draw on the bmp bitmap is shown on the sur-
face of the PictureBox control and is permanent. All we need is a Graphics object that represents the
bitmap, so that we can draw on the control. The following statement creates a Graphics object based
on the bmp variable:

Dim G As Graphics
G = Graphics.FromImage(bmp)

Now, we’re in business. We can call the G object’s drawing methods to draw and create perma-
nent graphics on the PictureBox control. You can put all the statements presented so far in a func-
tion that returns a Graphics object (Listing 14.8) and use it in your applications.

Listing 14.8: Retrieving a Graphics Object from a PictureBox’s Bitmap

Function GetGraphicsObject(ByVal PBox As PictureBox) As Graphics
Dim bmp As Bitmap
bmp = New Bitmap(PBox.Width, PBox.Height)
PBox.Image = bmp
Dim G As Graphics
G = Graphics.FromImage(bmp)
Return G

End Function

To create permanent drawings on the surface of the PictureBox control, you must call the Get-
GraphicsObject() function to obtain a Graphics object from the control’s bitmap. The Form object
doesn’t expose an Image property, so you must use its BackgroundImage property. Listing 14.9 is
the revised GetGraphicsObject() function for the Form object.

645DRAWING WITH GDI+

2877c14.qxd 11/11/01 4:19 PM Page 645

http://www.sybex.com

Listing 14.9: Retrieving a Graphics Object from a Form’s Bitmap

Function GetGraphicsObject() As Graphics
Dim bmp As Bitmap
bmp = New Bitmap(Me.Width, Me.Height)
Dim G As Graphics
Me.BackgroundImage = bmp
G = Graphics.FromImage(bmp)
Return G

End Function

Let’s revise the SimpleShapes application so that it draws permanent shapes on the form. Create a
new project and place two Button controls on it. Insert the GetGraphicsObject() function in the
form’s code window and then the statements shown in Listing 14.10 behind each button. The list-
ing shows the entire code of the SimpleGraphics application, which is on the CD.

Listing 14.10: The SimpleGraphics Application

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim G As Graphics
G = GetGraphicsObject()
G.Clear(Color.Silver)
Dim P As New Pen(Color.Blue)
G.DrawRectangle(P, 10, 10, 200, 150)
G.DrawLine(P, 10, 10, 210, 160)
G.DrawLine(P, 210, 10, 10, 160)
Me.Invalidate()

End Sub
Private Sub Button2_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button2.Click
Me.CreateGraphics.DrawEllipse(Pens.Red, 10, 10, 200, 150)

End Sub
Function GetGraphicsObject() As Graphics

Dim bmp As Bitmap
bmp = New Bitmap(Me.Width, Me.Height)
Dim G As Graphics
Me.BackgroundImage = bmp
G = Graphics.FromImage(bmp)
Return G

End Function

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC646

2877c14.qxd 11/11/01 4:19 PM Page 646

http://www.sybex.com

The first button (the Draw On Bitmap button of the SimpleGraphics application) draws on the
Graphics object derived from the form’s background bitmap. Anything drawn on this object is per-
manent. The second button (the Draw On Graphics button) uses the Graphics object returned by
the form’s CreateGraphics method to draw an ellipse in red color, inscribed in the rectangle. The
ellipse isn’t permanent. If you click both buttons, you will see the rectangle and its two diagonals, as
well as the ellipse. Switch to another window and then bring the application to the foreground. The
ellipse will not be there, because it wasn’t drawn permanently on the form.

As you can guess, it’s possible to combine the two methods and draw shapes that are permanent
and shapes that are not. To erase the non-permanent shapes, call the control’s Invalidate method,
which redraws the control. Anything drawn on the Graphics object returned by the control’s Create-
Graphics method will disappear. The Invalidate method can be called without an argument to
refresh (invalidate) the entire control. Or it can be called with a Rectangle object as argument, in
which case it will invalidate the area of the control specified by the Rectangle object.

Now that you know how to draw on the Graphics object and you’re familiar with the basic draw-
ing objects, we can discuss the drawing methods in detail. In the following sections, I use the Create-
Graphics method to retrieve the drawing surface of a PictureBox or form to keep the examples short.
You can modify any of the projects to draw on the Graphics object derived from a bitmap. All you
have to do is change the statements that create the G variable.

Drawing Methods
With basic objects out of the way, we can now focus on the drawing methods themselves. There are
many drawing methods, one for each basic shape. You can create much more elaborate shapes by
combining the methods described in the following sections.

All drawing methods have a few things in common. The first argument is always a Pen object,
which will be used to render the shape on the Graphics object. The following arguments are the
parameters of a shape: they determine the location and dimensions of the shape. The DrawLine
method, for example, needs to know the endpoints of the line to draw, while the DrawRectangle
method needs to know the origin and dimensions of the rectangle to draw. The parameters needed
to render the shape are passed as arguments to each drawing method, following the Pen object.

The drawing methods can also be categorized in two major groups: the methods that draw
stroked shapes (outlines) and the methods that draw filled shapes. The methods in the first group
start with the “Draw” prefix (DrawRectangle, DrawEllipse, and so on). The methods of the second
group start with the “Fill” prefix (FillRectangle, FillEllipse, and so on). Of course, some DrawXXX
methods don’t have an equivalent FillXXX method. For example, you can’t fill a line or an open
curve, so there are no FillLine or FillCurve methods.

Another difference between the drawing and filling methods is that the filling methods use a Brush
object to fill the shape—you can’t fill a shape with a pen. So, the first argument of the methods that
draw filled shapes is a Brush object, not a Pen object. The remaining arguments are the same, because
you must still specify the shape to be filled, just as you would specify the shape to be drawn. In the
following sections, I will present in detail the shape-drawing methods but not the shape-filling meth-
ods. If you can use a drawing method, you can just as easily use its filling counterpart.

Table 14.5 shows the names of the drawing methods. The first column contains the methods for
drawing stroked shapes and the second column contains the corresponding methods for drawing
filled shapes (if there’s a matching method).

647DRAWING WITH GDI+

2877c14.qxd 11/11/01 4:19 PM Page 647

http://www.sybex.com

Table 14.5: The Drawing Methods

Drawing Method Filling Method Description

DrawArc Draws an arc

DrawBezier Draws very smooth curves with fixed endpoints, whose
exact shape is determined by two control points

DrawBeziers Draws multiple Bezier curves in a single call

DrawClosedCurve FillClosedCurve Draws a closed curve

DrawCurve Draws curves that pass through certain points

DrawEllipse FillEllipse Draws an ellipse

DrawIcon Renders an icon on the Graphics object

DrawImage Renders an image on the Graphics object

DrawLine Draws a line segment

DrawLines Draws multiple line segments in a single call

DrawPath FillPath Draws a GraphicsPath object

DrawPie FillPie Draws a pie section

DrawPolygon FillPolygon Draws a polygon (a series of line segments between points)

DrawRectangle FillRectangle Draws a rectangle

DrawRectangles FillRectangles Draws multiple rectangles in a single call

DrawString Draws a string in the specified font on the drawing surface

FillRegion Fills a Region object

Some of the drawing methods allow you to draw multiple shapes of the same type, and they’re prop-
erly named DrawLines, DrawRectanlges, and DrawBeziers. We simply supply more shapes as arguments,
and they’re drawn one after the other with a single call to the corresponding method. The multiple
shapes are stored in arrays of the same type, as the individual shapes. The DrawRectangle method, for
example, accepts as argument the Rectangle object to be drawn. The DrawRectangles method accepts as
argument an array of Rectangle objects and draws them in a single call.

DrawLine

The DrawLine method draws straight line-segments between two points with a pen supplied as
argument. The simplest forms of the DrawLine method are the following:

Graphics.DrawLine(pen, X1, Y1, X2, Y2)
Graphics.DrawLine(pen, point1, point2)

where the coordinates are expressed in pixels (or the current coordinate system) and point1 and point2
are either Point or PointF objects, depending on the coordinate system in use.

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC648

2877c14.qxd 11/11/01 4:19 PM Page 648

http://www.sybex.com

DrawRectangle

The DrawRectangle method draws a stroked rectangle and has two forms:

Graphics.DrawRectangle(pen, rectangle)
Graphics.DrawRectangle(pen, X1, Y1, width, height)

The rectangle argument is a Rectangle object that specifies the shape to be drawn. In the second
form of the method, the arguments X1 and Y1 are the coordinates of the rectangle’s top-left corner
and the other two arguments are the dimensions of the rectangle. All these arguments can be integers
or singles, depending on the coordinate system in use. However, they must be all of the same type.

The following statements draw two rectangles, one inside the other. The outer rectangle is drawn
with a red pen with the default width, while the inner rectangle is drawn with a 3-pixel-wide green pen.

Graphics.DrawRectangle(Pens.Red, 100, 100, 200, 100)
Graphics.DrawRectangle(New Pen(Color.Green, 3), 125, 125, 75, 50)

DrawEllipse

An ellipse is an oval or circular shape, determined by the rectangle that encloses it. The two dimen-
sions of this rectangle are the ellipse’s major and minor diameters. Instead of giving you a mathemat-
ically correct definition of an ellipse, I’ve prepared a few ellipses with different ratios of their two
diameters. These ellipses are shown in Figure 14.11. The figure was prepared with the GDIPlus
application, which demonstrates a few more graphics operations; you will find it in this chapter’s
folder on the CD. The ellipse is oblong along the direction of the major diameter and squashed
along the direction of the minor diameter. If the two diameters are exactly equal, the ellipse
becomes a circle. Indeed, the circle is just a special case of the ellipse.

To draw an ellipse, call the DrawEllipse method, which has two basic forms:

Graphics.DrawEllipse(pen, rectangle)
Graphics.DrawEllipse(pen, X1, Y1, width, height)

Figure 14.11

Two ellipses with
their enclosing rec-
tangles

649DRAWING WITH GDI+

2877c14.qxd 11/11/01 4:19 PM Page 649

http://www.sybex.com

The arguments are the same as with the DrawRectangle method, because an ellipse is basically
a circle deformed to fit in a rectangle. The two ellipses and their enclosing rectangles shown in Fig-
ure 14.11 were generated with the statements of Listing 14.11.

Listing 14.11: Drawing Ellipses and Their Enclosing Rectangles

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim G As Graphics
G = PictureBox1.CreateGraphics
G.SmoothingMode = Drawing.Drawing2D.SmoothingMode.AntiAlias
G.FillRectangle(Brushes.Silver, ClientRectangle)
Dim R1, R2 As Rectangle
R1 = New Rectangle(10, 10, 160, 320)
R2 = New Rectangle(200, 85, 320, 160)
G.DrawEllipse(New Pen(Color.Black, 3), R1)
G.DrawRectangle(Pens.Black, R1)
G.DrawEllipse(New Pen(Color.Black, 3), R2)
G.DrawRectangle(Pens.Red, R2)

End Sub

The ellipses were drawn with a pen that is three pixels wide. As you can see in the figure, the
width of the ellipse is split to the inside and outside of the enclosing rectangle, which is drawn with a
1-pixel-wide pen.

DrawPie

A pie is a shape similar to a slice of a pie: an arc along with the two line segments that connect its
endpoints to the center of the circle, or the ellipse, to which the arc belongs. The DrawPie method
accepts as arguments the pen with which it will draw the shape, the circle to which the pie belongs,
the arc’s starting angle, and its sweep angle. The circle (or the ellipse) of the pie is defined with a rec-
tangle. The starting and sweeping angles are measured clockwise. The DrawPie method has two
forms, which are:

Graphics.DrawPie(pen, rectangle, start, sweep)
Graphics.DrawPie(pen, X, Y, width, height, start, sweep)

The two forms of the method differ in how the rectangle is defined (a Rectangle object versus its
coordinates and dimensions). The start argument is the pie’s starting angle, and sweep is the angle of
the pie. The ending angle is start+sweep. Angles are measured in degrees (there are 360 degrees in a
circle) and increase in a clockwise direction. The 0 angle corresponds to the horizontal axis, and the
vertical axis forms a 90-degree angle with the horizontal axis.

The following statements create a pie chart by drawing individual pie slices. Each pie starts where
the previous one ends, and the sweeping angles of all pies add up to 360 degrees, which corresponds
to a full rotation (a full circle). Figure 14.12 shows the output produced by the Listing 14.12.

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC650

2877c14.qxd 11/11/01 4:19 PM Page 650

http://www.sybex.com

Listing 14.12: Drawing a Simple Pie Chart with the FillPie Methods

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

Dim G As System.Drawing.Graphics
G = Me.CreateGraphics
Dim brush As System.drawing.SolidBrush
Dim rect As Rectangle
brush = New System.Drawing.SolidBrush(Color.Green)
Dim Angles() As Single = {0, 43, 79, 124, 169, 252, 331, 360}
Dim Colors() As Color = {Color.Red, Color.Cornsilk, Color.Firebrick, _

Color.OliveDrab, Color.LawnGreen, _
Color.SandyBrown, Color.MidnightBlue}

G.Clear(Color.Ivory)
rect = New Rectangle(100, 10, 300, 300)
Dim angle As Integer
For angle = 1 To Angles.GetUpperBound(0)

brush.Color = Colors(angle - 1)
G.FillPie(brush, rect, Angles(angle - 1), _

Angles(angle) - Angles(angle - 1))
Next
G.DrawEllipse(Pens.Black, rect)

End Sub

The code sets up two arrays, one with angles and another with colors. The Angles array holds the
starting angle of each pie. The sweep angle of each pie is the difference between its own starting
angle and the starting angle of the following pie. The sweep angle of the first pie is Angles(1) –
Angles(0), which is 43 degrees. The loop goes through each pie and draws it with a color it picks
from the Colors array, based on the angles stored in the Angles array.

The second button on the PieChart project’s form draws the same pie chart, but it also connects
each slice’s endpoints to the center of the circle. The code behind this button is identical to the code

Figure 14.12

A simple pie chart
generated with the
PieChart method

651DRAWING WITH GDI+

2877c14.qxd 11/11/01 4:19 PM Page 651

http://www.sybex.com

shown in Listing 14.6 with the exception that after calling the FillPie method (which draws the
filled pie shape), it calls the DrawPie method to draw the outline of the pie.

Notice that the FillPie method doesn’t connect the pie’s endpoints to the center of the ellipse.
Use the DrawEllipse method to draw the complete outline of the pie.

DrawPolygon

This method draws an arbitrary polygon. It accepts two arguments, which are the Pen that it will use
to render the polygon and an array of points that define the polygon. The polygon has as many sides
(or vertices) as there are points in the array, and it’s always closed, even if the first and last points are
not identical. In fact, you need not repeat the starting point at the end, because the polygon will be
automatically closed. The syntax of the DrawPolygon method is:

Graphics.DrawPolygon(pen, points())

where points is an array of points, which can be declared with a statement like the following:

Dim points() As Point = {New Point(x1, y1), New Point(x2, y2), …}

DrawCurve

Curves are smooth lines drawn as cardinal splines. A real spline was a flexible object (made of soft
wood) that designers used to flex on the drawing surface with spikes. The spline would go through
all the fixed points, but the shape between the fixed points was a smooth curve. The entire spline
yielded a smooth curve that passed through all the spikes that held it in place. If the spline weren’t
flexible enough, it would break. In modern computer graphics, there are mathematical formulas that
describe the path of the spline through the fixed points and take into consideration the tension (the
degree of flexibility) of the spline. A more flexible spline yields a curve that bends easily. Less flexible
splines do not bend easily around their fixed points. Computer-generated splines do not break, but
they can take unexpected shapes.

To draw a curve with the DrawCurve method, you specify the locations of the spikes (the points
which the spline must go through) and the spline’s tension. If the tension is 0, the spline is totally
flexible, like a rubber band: all the segments between points are straight lines. The higher the tension,
the smoother the curve will be. Figure 14.13 shows four curves passing through the same points, but
each curve is drawn with a different tension value. The curves shown in the figure were drawn with
the GDIPlus project (using the Ordinal Curves button).

The simplest form of the DrawCurve method has the following syntax:

Graphics.DrawCurve(pen, points, tension)

where points is an array of points. The first and last elements of the array are the curve’s endpoints,
and the curve will go through the remaining points.

An alternate form of the method lets you specify the curve’s first fixed point in the array, as well
as the number of segments that make up the curve:

Graphics.DrawCurve.(pen, points, offset, segments, tension)

The offset and segments arguments allow you to work with a portion of the points array, rather than
with the entire array. The points array must contain at least four points—the two endpoints and two
more control points along the curve. The tension argument is optional, and if you omit it, the curve
will be drawn with a tension of 1.

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC652

2877c14.qxd 11/11/01 4:19 PM Page 652

http://www.sybex.com

The curves shown in Figure 14.13 were produced by the code shown in Listing 14.13. Notice
that a tension of 0.5 is practically the same as 0 (the spline bends around the fixed points like a rub-
ber band). If you drew the same curve with a tension of 5, you’d get an odd curve indeed. The rea-
son is, although a physical spline would break, the mathematical spline takes an unusual shape to
accommodate the fixed points.

Listing 14.13: Curves with Common Fixed Points and Different Tensions

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

Dim G As Graphics
G = PictureBox1.CreateGraphics
G.SmoothingMode = Drawing.Drawing2D.SmoothingMode.HighQuality
Dim points() As Point = {New Point(20, 50), New Point(220, 190), _

New Point(330, 80), New Point(450, 280)}
G.DrawCurve(Pens.Blue, points, 0.1)
G.DrawCurve(Pens.Red, points, 0.5)
G.DrawCurve(Pens.Green, points, 1)
G.DrawCurve(Pens.Black, points, 2)

End Sub

DrawBezier

The DrawBezier method draws Bezier curves, which are smoother than cardinal splines. A Bezier
curve is defined by two endpoints and two control points. The control points act as magnets.
The curve is the trace of a point that starts at one of the endpoints and moves toward the second
one. As it moves, the point is attracted by the two control points. Initially, the first control point’s
influence is predominant. Gradually, the curve comes into the second control point’s field, and it
ends at the second endpoint.

Figure 14.13

These curves go
through the same
points, but they have
different tensions.

653DRAWING WITH GDI+

2877c14.qxd 11/11/01 4:19 PM Page 653

http://www.sybex.com

The DrawBezier method accepts a pen and four points as arguments:

Graphics.DrawBexier(pen, X1, Y1, X2, Y2, X3, Y3, X4, Y4)
Graphics.DrawBezier(pen, point1, point2, point3, point4)

Figure 14.14 shows four Bezier curves, which differ in the y coordinate of the third control point.
All control points are marked with little squares: one each for the three points that are common to
all curves and four in a vertical column for the point that differs in each curve. The code, shown in
Listing 14.14, draws the little squares at the control points and then draws the four Bezier curves.
The endpoints and one control point (P1, P2, and P4) remain the same, while the other control
point (P3) is set to four different values. Notice how far the control point must go to have a
significant effect on the curve’s shape.

Listing 14.14: Drawing Bezier Curves and Their Control Points

Private Sub Button3_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button3.Click

Dim G As Graphics
G = PictureBox1.CreateGraphics
G.SmoothingMode = Drawing.Drawing2D.SmoothingMode.AntiAlias
G.FillRectangle(Brushes.Silver, ClientRectangle)
Dim P1 As New Point(120, 150)
Dim P2 As New Point(220, 90)
Dim P3 As New Point(330, 30)
Dim P4 As New Point(410, 110)
Dim sqrSize As New Size(6, 6)
G.FillRectangle(Brushes.Black, New Rectangle(P1, sqrSize))
G.FillRectangle(Brushes.Black, New Rectangle(P2, sqrSize))
G.FillRectangle(Brushes.Red, New Rectangle(P3, sqrSize))
G.FillRectangle(Brushes.Black, New Rectangle(P4, sqrSize))
G.DrawBezier(Pens.Blue, P1, P2, P3, P4)

Figure 14.14

Bezier curves and
their control points

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC654

2877c14.qxd 11/11/01 4:19 PM Page 654

http://www.sybex.com

P3 = New Point(330, 130)
G.FillRectangle(Brushes.Red, New Rectangle(P3, sqrSize))
G.DrawBezier(Pens.Blue, P1, P2, P3, P4)
P3 = New Point(330, 230)
G.FillRectangle(Brushes.Red, New Rectangle(P3, sqrSize))
G.DrawBezier(Pens.Blue, P1, P2, P3, P4)
P3 = New Point(330, 330)
G.FillRectangle(Brushes.Red, New Rectangle(P3, sqrSize))
G.DrawBezier(Pens.Blue, P1, P2, P3, P4)

End Sub

The calls to the FillRectangle method draw the little boxes that represent the control points. To
draw the curve, all you need is to specify the four control points and pass them along with a Pen
object to the DrawBezier method.

DrawPath

This method accepts a Pen object and a Path object as arguments and renders the specified path on
the screen:

Graphics.DrawPath(pen, path)

To construct the Path object, use the AddXXX methods (AddLine, AddRectangle, and so on),
as discussed in the section “The Path Object,” earlier in this chapter. You will find an example of
how to use the Path object later in this chapter, when you’ll learn how to plot functions.

DrawString

The DrawString method renders a string on the drawing surface. The string may be rendered on a
single line or multiple lines (there are different forms of the DrawString method for each type of
text rendering). As a reminder, the TextRenderingHint property of the Graphics object allows you
to specify the quality of the rendered text.

The simplest form of the DrawString method is:

Graphics.DrawString(string, font, brush, X, Y)

The first argument is the string to be rendered in the font specified with the second argument. The
text will be rendered with the Brush object specified with the brush argument. Here, X and Y are the
coordinates of the string’s top-left corner when it will be rendered.

While working with strings, you frequently need to know the actual dimensions of the string
when rendered with the DrawString method in a specific font. The MeasureString method allows
you to retrieve the metrics of a string before actually drawing it. This method returns a SizeF struc-
ture with the width and height of the string when rendered. Having this information allows you to
align your strings on the drawing surface. You can also pass a Rectangle object as argument to the
MeasureString method to find out how many lines it will take to render the string on the rectangle.

The simplest form of the MeasureString method is:

Dim textSize As SizeF
textSize = Me.Graphics.MeasureString(string, font)

655DRAWING WITH GDI+

2877c14.qxd 11/11/01 4:19 PM Page 655

http://www.sybex.com

where string is the string to be rendered and font is the font in which the string will be rendered. To
center a string on the form, use the X coordinate returned by the following expression:

Dim textSize As SizeF
Dim X As Integer, Y As Integer = 0
textSize = Me.Graphics.MeasureString(string, font)
X = (Me.Width – textSize.Width) / 2
G.DrawString(“Centered string”, font, brush, X, Y)

We subtract the rendered string’s length from the form’s width, and we split the difference in half
at the two sides of the string.

Figure 14.15 shows a string printed at the center of the form (by the Draw Centered String but-
ton of the TextEffects project), and the two lines pass through the same point. Listing 14.15 shows
the statements that produced the string at the middle of this form. This listing is part of the TextEf-
fects project, which you will find in this chapter’s folder on the CD.

Listing 14.15: Print a String Centered on the Form

Private Sub Center(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnCentered.Click

Dim G As Graphics
G = Me.CreateGraphics
G.FillRectangle(New SolidBrush(Color.Silver), ClientRectangle)
G.TextRenderingHint = Drawing.Text.TextRenderingHint.AntiAlias
FontDialog1.Font = Me.Font
FontDialog1.ShowDialog()
Dim txtFont As Font
txtFont = FontDialog1.Font
G.DrawLine(New Pen(Color.Green), CInt(Me.Width / 2), CInt(0), _

CInt(Me.Width / 2), CInt(Me.Height))
G.DrawLine(New Pen(Color.Green), 0, CInt(Me.Height / 2), _

CInt(Me.Width), CInt(Me.Height / 2))
Dim txtLen, txtHeight As Integer
Dim txtSize As SizeF

Figure 14.15

Centering a string on
a form

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC656

2877c14.qxd 11/11/01 4:19 PM Page 656

http://www.sybex.com

txtSize = G.MeasureString(“Visual Basic.NET”, txtFont)
Dim txtX, txtY As Integer
txtX = (Me.Width - txtSize.Width) / 2
txtY = (Me.Height - txtSize.Height) / 2
G.DrawString(“Visual Basic.NET”, txtFont, New SolidBrush(Color.Red), _

txtX, txtY)
End Sub

As you can see, the coordinates passed to the DrawString method (variables txtX and txtY) are the
coordinates of the top-left corner of the rectangle that encloses the first character of the string. After
drawing the string, the code calls the MeasureString method to retrieve the rectangle that encloses
the string (the boxSize variable) and prints this rectangle on the form.

Another form of the DrawString method accepts a rectangle as argument and draws the string in
this rectangle, breaking the text into multiple lines if needed. The syntax of this form of the method is:

Graphics.DrawString(string, font, brush, rectanglef)
Graphics.DrawString(string, font, brush, rectanglef, stringFormat)

If you want to render text in a box, you will most likely use the equivalent form of the Measure-
String method to retrieve the metrics of the text on the rectangle. This form of the MeasureString
method returns the number of lines it will take to render the string on the rectangle, and it has the
following syntax:

e.Graphics.MeasureString(string, Font, fitSize, StringFormat, lines, cols)

string is the text to be rendered, and Font is the font in which the string will be rendered. The fitSize
argument is a SizeF object that represents the width and height of a rectangle, where the string must
fit. The lines and cols variables are passed by reference, and they are set by the MeasureString method
to the number of lines and number of characters that will fit in the specified rectangle. The exact
location of the rectangle doesn’t make any difference—only its dimensions matter, and that’s why
the third argument is a SizeF object and not a Rectangle object.

Figure 14.16 shows a string printed in two different rectangles. The sample code can be found in
the TextEffects project on the CD, and Figure 14.16 was created with the Draw Boxed Text button.
The code that produced the figure is shown in Listing 14.16.

Figure 14.16

Printing text in a
rectangle

657DRAWING WITH GDI+

2877c14.qxd 11/11/01 4:19 PM Page 657

http://www.sybex.com

Listing 14.16: Printing Text in a Rectangle

Private Sub BoxedText(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnBoxed.Click

Dim G As Graphics
G = Me.CreateGraphics
G.FillRectangle(New SolidBrush(Color.Silver), ClientRectangle)
Dim txt As String = “This text was rendered in a rectangle with the “ & _

“DrawString method of the form’s Graphics object.”
‘ Make the string longer

txt = txt & txt & txt & txt & txt
G.DrawString(txt, New Font(“verdana”, 12, FontStyle.Regular), _

Brushes.Black, New RectangleF(100, 80, 180, 250))
G.DrawRectangle(Pens.Red, 100, 80, 180, 250)
G.DrawString(txt, New Font(“verdana”, 12, FontStyle.Regular), _

Brushes.Black, New RectangleF(350, 100, 400, 150))
G.DrawRectangle(Pens.Red, 350, 100, 400, 150)

End Sub

Some of the overloaded forms of the DrawString method accept an argument of the StringFor-
mat type. This argument determines characteristics of the text and exposes a few properties of its
own, which include the following:

Alignment Determines the alignment of the text. Its value is one of the members of the
StringAlignment enumeration: Center (text is aligned in the center of the layout rectangle), Far
(text is aligned far from the origin of the layout rectangle) and Near (text is aligned near the ori-
gin of the layout rectangle).

Trimming Determines how text will be trimmed if it doesn’t fit in the layout rectangle. Its value is
one of the members of the StringTrimming enumeration: Character (text is trimmed to the nearest
character), EllipsisCharacter (trimmed to the nearest character and an ellipsis is inserted at the
end to indicate that some of the text is missing), EllipsisPath (text at the middle of the string is
removed and replaced by an ellipsis), EllipsisWord (trimmed to the nearest word and an ellipsis is
inserted at the end), None (no trimming), and Word (trimmed to the nearest word).

FormatFlags Specifies layout information for the string. Its value can be one of the members of
the StringFormatFlags enumeration. The two members of this enumeration you may need often
are DirectionRightToLeft (prints to the left of the specified point) and DirectionVertical.

To use the stringFormat argument of the DrawString method, instantiate a variable of this type, set
the desired properties, and then pass it as argument to the DrawString method, as shown here:

Dim G As Graphics = Me.CreateGraphics
Dim SF As New StringFormat()
SF.FormatFlags = StringFormatFlags.DirectionVertical
G.DrawString(“Visual Basic”, Me.Font, Brushes.Red, 80, 80, SF)

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC658

2877c14.qxd 11/11/01 4:19 PM Page 658

http://www.sybex.com

The call to the DrawString method will print the string from top to bottom. It will also rotate
the characters. The DirectionRightToLeft will print the string to the left of the specified point, but
it will not mirror the characters. In effect, it shifts the string to the left of the point specified with
the DrawString method, by the length of the string, and then prints it.

You can find additional examples of the MeasureString method in Chapter 15, where we’ll use this
method to fit strings on the width of the page. The third button on the form of the TextEffect project
draws text with a three-dimensional look by overlaying a semitransparent string over an opaque string.
This technique is explained in the section “Alpha Blending,” later in this chapter, where you’ll learn
how to use transparency. You may also wonder why none of the DrawString methods’ forms accept
as argument an angle of rotation for the text. You can draw text, or any shape, at any orientation as
long as you set up the proper rotation transformation. This topic is discussed in the section “Coordi-
nate Transformations,” also later in this chapter.

DrawImage

The DrawImage method renders an image on the Graphics object, at a specified location. The
DrawImage method is heavily overloaded and quite flexible. The following form of the method
draws the image at its original magnification at the specified location. Both the image and the loca-
tion of its top-left corner are passed to the method as arguments:

Graphics.DrawImage(img, point)

img is an Image object, and point is a Point object that specifies the location of the image’s top-left
corner on the drawing surface.

Another form of the method draws the specified image within the specified rectangle. If the rec-
tangle doesn’t match the original dimensions of the image, the image will be resized to fit in the
rectangle. The rectangle should have the same aspect ratio as the Image object, so that the image
won’t be distorted in the process.

Graphics.DrawImage(img, rectangle)

Another form of the method allows you to change not only the magnification of the image, but
its shape as well. This method accepts as argument not a rectangle, but an array of three points that
specify a parallelogram. The image will be sheared to fit in the parallelogram.

Graphics.DrawImage(img, points())

where points is an array of points that define a parallelogram. The array holds three points, which are
the top-left, top-right, and bottom-left corners of the parallelogram. The fourth point is determined
uniquely by the other three, and you need not supply it.

The last important form of the method allows you to set the attributes of the image:

Graphics.DrawImage(image, points(), srcRect, units, attributes)

The first two arguments are the same as in the previous version of the method. The srcRect argument
is a rectangle that specifies the portion of image to draw, and units is a constant of the GraphicsUnit
enumeration. It determines how the units of the rectangle are measured (pixels, inches, and so on).
The last argument is an ImageAttributes object that contains information about the attributes of the
image you want to change (such attributes include the gamma value, and a transparent color value, or

659DRAWING WITH GDI+

2877c14.qxd 11/11/01 4:19 PM Page 659

http://www.sybex.com

color key). The ImageAttributes object provides methods for setting image attributes, and they’re
discussed shortly.

The DrawImage method is quite flexible, and you can use it for many special effects, including
wipes. A wipe is the gradual appearance of an image on a form or PictureBox control. You can use
this method to draw stripes of the original image, or start with a small rectangle in the middle and
enlarge it until the entire image is covered.

You can also correct the color of the image by specifying the attributes argument. To specify the
attributes argument, create an ImageAttributes object, with a statement like the following:

Dim attr As New System.Drawing.Imaging.ImageAttributes

The ImageAttributes object provides the following methods.

SetWrapMode

Specifies the wrap mode that is used to decide how to tile a texture across a shape. This attribute is
used with textured brushes, and I don’t discuss it in this book.

SetGamma

This method sets the gamma value for the image’s colors and accepts a Single value, which is the
gamma value to be applied. A gamma value of 1 doesn’t affect the colors of the image. A smaller
value darkens the colors, while a larger value makes the image colors brighter. Notice that the gamma
correction isn’t the same as manipulating the brightness of the colors. The gamma correction takes
into consideration the entire range of values in the image; it doesn’t apply equally to all the colors. In
effect, it takes into consideration both the brightness and the contrast and corrects them in tandem,
with a fairly complicated algorithm. The syntax of the SetGamma method is:

ImageAttributes.SetGamma(gamma)

The following statements render the image stored in the img Image object on the G Graphics
object, and they gamma-correct the image in the process by a factor of 1.25:

Dim attrs As New System.Drawing.Imaging.ImageAttributes()
attrs.SetGamma(1.25)
Dim dest As New Rectangle(0, 0, PictureBox1.Width, PictureBox1.Height)
G.DrawImage(img, dest, 0, 0, img.Width, img.Height, GraphicsUnit.Pixel, attrs)

SetOutputChannel

If you plan to create high-quality printouts of your images, you must separate them into four
different channels. Each channel represents a different color, but these colors aren’t red, green and
blue. Typographers use four different basic colors, which are cyan, magenta, yellow, and black. The
process of breaking an image into four channels is known as color separation, and you can separate your
images with SetOutputChannel. Call this method four times, each time with a different channel.
The syntax of the SetOutputChannel method is:

ImageAttributes.SetOutputChannel(colorChannel)

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC660

2877c14.qxd 11/11/01 4:19 PM Page 660

http://www.sybex.com

where the colorChannel argument can have one of the following values: ColorChannelC (cyan channel),
ColorChannelM (magenta channel), ColorChannelY (yellow channel), ColorChannelK (black channel),
and ColorChannelLast (the same channel as in the last time you called the method). The four chan-
nels produced by the SetOutputChannel method are monochrome (grayscale), and each one is
printed with a different ink. All four channels, however, are printed on the same page, and the result
is the original image’s colors.

Gradients
In this section we’ll look at the tools for creating gradients. The techniques for gradients can get
quite complicated, but I will limit the discussion to the types of gradients you’ll need for business or
simple graphics applications.

Linear Gradients

Let’s start with linear gradients. Like all other gradients, they’re part of the System.Drawing class and
are implemented as brushes. To use a gradient, you must create the appropriate brush with the
appropriate constructor. To draw a linear gradient, you must create a LinearGradientBrush with a
statement like

Dim lgBrush As LinearGradientBrush
lgBrush = New LinearGradientBrush(rect, startColor, endColor, gradientMode)

To understand how to use the arguments, you must understand how the linear gradient works.
This method creates a gradient that fills a rectangle, specified by the rect object passed as the first
argument. This rectangle isn’t filled with any gradient; it simply tells the method how long (or how
tall) the gradient should be. The gradient starts with the startColor at the left side of the rectangle and
ends with the endColor at the opposite side. The gradient changes color slowly as it moves from one
end to the other. The last argument, gradientMode, specifies the direction of the gradient and can have
one of the values shown in Table 14.6.

Table 14.6: The Gradient’s Mode

Value Effect

BackwardDiagonal The gradient fills the rectangle diagonally, from the top-right corner (startColor) to
the bottom-left corner (endColor).

ForwardDiagonal The gradient fills the rectangle diagonally, from the top-left corner (startColor) to
the bottom-right corner (endColor).

Horizontal The gradient fills the rectangle from left (startColor) to right (endColor).

Vertical The gradient fills the rectangle from top (startColor) to bottom (endColor).

661DRAWING WITH GDI+

2877c14.qxd 11/11/01 4:19 PM Page 661

http://www.sybex.com

Notice that in the descriptions of the various modes, I stated that the gradient fills the rectangle,
not the shape. The gradient is calculated according to the dimensions of the rectangle specified with
the first argument. If the actual shape is smaller than this rectangle, only a section of the gradient
will be used to fill the shape. If the shape is larger than this rectangle, the gradient will repeat as
many times as necessary to fill the shape.

Let’s say you want to use the same gradient that extends 300 pixels horizontally to fill two rec-
tangles, one that’s 200 pixels wide and another one that’s 600 pixels wide. We’ll fill this shape with
two similar LinearGradientBrushes that differ only in the size of the rectangle specified with the first
argument. The first brush will use a rectangle 200 pixels wide, filled with two thirds of the gradient;
the second will use a rectangle 600 pixels wide and be filled with a gradient that’s repeated twice.
The code in Listing 14.17 corresponds to the GDIPlusGradients projects on the CD.

Listing 14.17: Filling Rectangles with a Linear Gradient

Private Sub LinearGradient_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnLinearGradient.Click

Dim G As Graphics
G = Me.CreateGraphics
Dim R As New RectangleF(20, 20, 300, 100)
Dim startColor As Color = Color.BlueViolet
Dim EndColor As Color = Color.LightYellow
Dim LGBrush As New System.Drawing.Drawing2D.LinearGradientBrush _

(R, startColor, EndColor, LinearGradientMode.Horizontal)
G.FillRectangle(LGBrush, New Rectangle(20, 20, 200, 100))
G.FillRectangle(LGBrush, New Rectangle(20, 150, 600, 100))

End Sub

For a horizontal gradient, only the width of the rectangle is used; the height is irrelevant. For a
vertical gradient, only the height of the rectangle matters. When you draw a diagonal gradient, then
both dimensions are taken into consideration.

You can also use a LinearGradientBrush to fill any shape, including closed polygons and closed
curves. How does the brush handle irregular shapes? It doesn’t, really. It fills, with the specified gra-
dient, a rectangle that completely encloses the shape, and it shows only the pixels that fall within the
shape. It’s like building a larger gradient and looking at it through an irregularly shaped (nonrectan-
gular) window.

You can create gradients at any direction by setting the gradientMode argument of the LinearGradi-
entBrush object’s constructor. The Diagonal Linear Gradient button on the GDIPlusGradients proj-
ect does exactly that.

The button Gradient Text on the form of the GDIPlusGradients project on the CD renders
some text with a linear gradient. As you recall from our discussion of the DrawString method,
strings are rendered with a Brush object, not a Pen object. If you specify a LinearGradientBrush
object, the text will be rendered with a linear gradient. The text shown in Figure 14.17 was produced
by the Gradient Text button, whose code is shown in Listing 14.18.

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC662

2877c14.qxd 11/11/01 4:19 PM Page 662

http://www.sybex.com

Listing 14.18: Rendering Strings with a Linear Gradient

Private Sub bttnGradientText_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnGradientText.Click

Dim G As Graphics
G = Me.CreateGraphics
G.Clear (me.BackColor)
G.TextRenderingHint = System.Drawing.Text.TextRenderingHint.AntiAlias
Dim largeFont As New Font(“Comic Sans MS”, 48, _

FontStyle.Bold, GraphicsUnit.Point)
Dim gradientStart As New PointF(0, 0)
Dim txt As String = “Gradient Text”
Dim txtSize As New SizeF()
txtSize = G.MeasureString(txt, largeFont)
Dim gradientEnd As New PointF()
gradientEnd.X = txtSize.Width
gradientEnd.Y = txtSize.Height
Dim grBrush As New LinearGradientBrush(gradientStart, gradientEnd, _

Color.Yellow, Color.Blue)
G.DrawString(txt, largeFont, grBrush, 20, 20)

End Sub

The code of Listing 14.18 is a little longer than it could be (or than you might expect). Because
linear gradients have a fixed size and don’t expand or shrink to fill the shape, you must call the Mea-
sureString method to calculate the width of the string and then create a linear gradient with the exact
same width. This way, the characters will be filled exactly with the specified gradient.

Path Gradients

This is the ultimate gradient tool. Using a PathGradientBrush, you can create a gradient that starts at
a single point and fades into multiple different colors in different directions. You can fill a rectangle

Figure 14.17

Drawing a string
filled with a gradient

663DRAWING WITH GDI+

2877c14.qxd 11/11/01 4:19 PM Page 663

http://www.sybex.com

starting from a point in the interior of the rectangle, which is colored, say, black. Each corner of the
rectangle may have a different ending color. The PathGradientBrush will change color in the interior
of the shape and will generate a gradient that’s smooth in all directions. Figure 14.18 shows a rectangle
filled with a path gradient, but the gray shades on the printed page won’t show the full impact of the
gradient. Open GDIPlusGradients project on the CD to see the same figure in color (button Path
Gradient).

To fill a shape with a path gradient, you must first create a path object. The PathBrush will be
created for the specific path and can be used to fill this path—but not any other shape. Actually, you
can fill any other shape with the PathBrush created for a specific path, but the gradient won’t fit the
new shape. A path gradient must be applied only to the Path object for which it was created. To cre-
ate a PathGradientBrush, use the following syntax:

Dim pgBrush As PathGradientBrush
pgBrush = New LinearGradientBrush(path)

where path is a properly initialized Path object.
The pgBrush object provides properties that determine the exact coloring of the gradient. First, you

must specify color of the gradient at the center of the shape, using the CenterColor property. The
SurroundColors property is an array, with as many elements as there are vertices (corners) in the
Path object. Each element of the SurroundColors array must be set to a color value, and the resulting
gradient will have the color of the equivalent element of the SurroundColors array.

The following declaration creates an array of three different colors and assigns them to the Sur-
roundColors property of a PathGradientBrush:

Dim Colors() As Color = {Color.Yellow, Color.Green, Color.Blue}
pgBrush.SurroundColors = Colors

After setting the PathGradientBrush, you can fill the corresponding Path object by calling the
FillPath method. The Path Gradient button on the form of GDIPlusGradient creates a rectangle
filled with a gradient that’s red in the middle of the rectangle and has a different color at each corner.
Listing 14.19 shows the code behind the Path Gradient button.

Figure 14.18

A path gradient
starting at the
middle of the
rectangle

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC664

2877c14.qxd 11/11/01 4:19 PM Page 664

http://www.sybex.com

Listing 14.19: Filling a Rectangle with a Path Gradient

Private Sub bttnPathGradient_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnPathGradient.Click

Dim G As Graphics
G = Me.CreateGraphics
Dim path As New System.Drawing.Drawing2D.GraphicsPath()
path.AddLine(New Point(10, 10), New Point(400, 10))
path.AddLine(New Point(400, 10), New Point(400, 250))
path.AddLine(New Point(400, 250), New Point(10, 250))
Dim pathBrush As New System.Drawing.Drawing2D.PathGradientBrush(path)
pathBrush.CenterColor = Color.Red
Dim surroundColors() As Color = _

{Color.Yellow, Color.Green, Color.Blue, Color.Cyan}
pathBrush.SurroundColors = surroundColors
G.FillPath(pathBrush, path)

End Sub

The gradient’s center point is, by default, the center of the shape. You can also specify the center
of the gradient (the point that will be colored according to the CenterColor property). You can
place the center point of the gradient anywhere by setting its CenterPoint property to a Point or
PointF value.

The GDIPlusGradients application has a few more buttons that create interesting gradients, which
you can examine on your own. The Rectangle Gradient button fills a rectangle with a gradient that
has a single ending color all around. All the elements of the SurroundColors property are set to the
same color. The Animated Gradient animates the same gradient by changing the coordinates of
the PathGradientBrush object’s CenterPoint property.

Clipping
Anyone who has used drawing or image-processing applications already knows that many of the
tools of a similar application make use of masks. A mask is any shape that limits the area in which you
can draw. If you want to place a star or heart on an image and print something in it, you create the
shape in which you want to limit your drawing tools, then convert this shape into a mask. When you
draw with the mask, you can start and end your strokes anywhere on the image. Your actions will
have no effect outside the mask, however.

The mask of the various image-processing applications is a clipping region. A clipping region can be
anything, as long as it’s a closed shape. While the clipping region is activated, drawing takes place in
the area of the clipping region. To specify a clipping area, you must call the SetClip method of the
Graphics object. The SetClip method accepts the clipping area as argument, and the clipping area
can be the Graphics object itself (no clipping), a Rectangle, a Path, or a Region.

Note A Region is a structure made up of simple shapes. There many methods to create a Region object—you can com-
bine and intersect shapes, or exclude shapes from a region—but we aren’t going to discuss the Region object in this chapter,
because it’s not among the common objects we use to generate the type of graphics discussed in the context of this book.

665DRAWING WITH GDI+

2877c14.qxd 11/12/01 2:55 PM Page 665

http://www.sybex.com

The SetClip method has the following forms:

Graphics.SetClip(Graphics)
Graphics.SetClip(Rectangle)
Graphics.SetClip(GraphicsPath)
Graphics.SetClip(Region)

All methods accept a second optional argument, which determines how the new clipping area will be
combined with the existing one. The second argument is the combineMode argument, and its value can
be one of the members of the CombineMode enumeration: Complement, Exclude, Intersect,
Replace, Union, and XOR.

Once a clipping area has been set for the Graphics object, drawing is limited to that area. You
can specify any coordinates, but only the part of the drawing that falls inside the clipping area is
visible. The Clipping project demonstrates how to clip text and images within an elliptical area
(see Figure 14.19). The button Boxed Text draws a string in a rectangle. The button Clipped Text
draws the same text but first applies a clipping area. The clipping area is an ellipse. The Clipped
Image button uses the same rectangle to clip an image. Since there’s no form of the SetClip method
that accepts an ellipse as argument, we must construct a Path object, add the ellipse to the path, and
then create a clipping area based on the path.

The following statements create the clipping area for the text, which is an ellipse. The path is cre-
ated by calling the AddEllipse method of the GraphicsPath object. This path is then passed as argu-
ment to the Graphics object’s SetClip method:

Dim P As New System.Drawing.Drawing2D.GraphicsPath()
Dim clipRect As New RectangleF(30, 30, 250, 150)
P.AddEllipse(clipRect)
Dim G As Graphics
G = PictureBox1.CreateGraphics
G.SetClip(P)

The listing behind the Clipped Text and Clipped Image buttons is shown next. The first button
prints some text in a rectangular area that is centered over the clipping area. The first button, Boxed
Text, shows how the text is printed within the rectangle. The same rectangle and its text are then

Figure 14.19

Clipping text and
images in an ellipse

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC666

2877c14.qxd 11/11/01 4:19 PM Page 666

http://www.sybex.com

printed at a different location, right behind the clipping area. Both the rectangle and the ellipse are
based on the same Rectangle object. Listing 14.20 shows the code behind the Boxed Text and the
Clipped Text buttons.

Listing 14.20: The Boxed Text and Clipped Text Buttons

Private Sub bttnBoxedText_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnBoxedText.Click

Dim Rect As New RectangleF(30, 30, 250, 150)
Dim G As Graphics
G = PictureBox1.CreateGraphics
Dim format As StringFormat = New StringFormat()
format.Alignment = StringAlignment.Center
G.DrawString(txt & txt, New Font(“Verdana”, 11, FontStyle.Regular), _

Brushes.Coral, Rect, format)
End Sub
Private Sub bttnClippedText_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles bttnClippedText.Click
Dim P As New System.Drawing.Drawing2D.GraphicsPath()
Dim clipRect As New RectangleF(30, 30, 250, 150)
P.AddEllipse(clipRect)
Dim G As Graphics
G = PictureBox1.CreateGraphics
G.DrawEllipse(Pens.Red, clipRect)
G.SetClip(P)
Dim format As StringFormat = New StringFormat()
format.Alignment = StringAlignment.Center
G.DrawString(txt & txt, New Font(“Verdana”, 11, FontStyle.Regular), _

Brushes.Coral, clipRect, format)
End Sub

The difference between the two subroutines is that the second sets an ellipse as the clipping area
and draws the same ellipse. Because the Graphics object has a clipping area, anything we draw on it is
automatically clipped.

The Clipped Image button sets up a similar clipping area and then draws an image centered
behind the clipping ellipse. As you saw in Figure 14.19, only the segment of the image that’s inside
the clipping area is visible. The code behind the Clipped Image button is shown in Listing 14.21.

Listing 14.21: The Clipped Image Button

Private Sub bttnClippedImage_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnClippedImage.Click

Dim G As Graphics
G = PictureBox1.CreateGraphics
G.TranslateTransform(200, 200)

667DRAWING WITH GDI+

2877c14.qxd 11/11/01 4:19 PM Page 667

http://www.sybex.com

Dim P As New System.Drawing.Drawing2D.GraphicsPath()
Dim clipRect As New RectangleF(-150, -150, 320, 260)
P.AddEllipse(clipRect)
G.SetClip(P)
Dim path As String
path = Application.StartupPath.Remove(Application.StartupPath.Length - 4, 4)
G.DrawImage(Image.FromFile(path & “\seattle.jpg”), -150, -150)

End Sub

Coordinate Transformations
So far, we’ve been specifying our coordinates in pixels. This is a convenient coordinate system for
drawing simple shapes and experimenting with the various drawing methods, but in real applications
you need a more familiar method of specifying coordinates. No physical object’s dimensions are
declared in pixels; we measure objects in inches, meters, or even miles. Other objects are measured in
millionths of a centimeter. Since pixels are the natural units for displays, we must map the actual
units to pixels. In this section, we’ll look at techniques for mapping real-world coordinates to pixels.

The coordinate system is similar to a city map. Each square on the map has its own unique
address: a combination of a column and a row number. The row number is the vertical coordinate,
or y coordinate. The column number is the horizontal coordinate, or x coordinate. Any point on the
form can be identified by its x and y coordinates, and we refer to it as the point at coordinates (x, y)
or simply the point (x, y).

The point with the smallest coordinates is the origin of the coordinate system. The origin of a coordi-
nate system is the point (0, 0), and it’s the top-left point of the Graphics object. The x coordinates
increase to the right, and the y coordinates increase downward. Each coordinate is a number that
may or may not correspond to a meaningful unit. For example, the letter and number coordinates on
a city map don’t correspond to meaningful units; they are arbitrary. The coordinates on a topologi-
cal map, though, correspond to physical distances (e.g., kilometers or miles). The physical interpreta-
tion of the coordinates depends on the intended application.

If you want to draw a plan for your new house, you need to use a coordinate system in inches or
centimeters so that there will be some relation between units and the objects you draw. If you’re
going to draw some nice geometrical shapes, any coordinate system will do. Finally, if you’re going
to display and process images, you’ll want a coordinate system that uses pixels as units. Actually, pix-
els aren’t the best units for any application, except for image-processing applications.

GDI+ lets you define your own coordinate system. All you have to do is set the PageUnit prop-
erty to the appropriate constant. If you set PageUnit property to Inches, the dimensions of your
shapes, as well as their locations on the Graphics object, must be specified in inches. In this case, two
points that are one unit apart are one inch from each other. You can also specify decimal distances
such as 0.1, which corresponds to 1/10 of an inch. Changing the PageUnit property doesn’t resize or
otherwise affect the form or the printer’s page. It simply changes the density of the grid you use to
address the points on the control. The benefit of using the PageUnit property is that you don’t have
to map your coordinates to pixels on the monitor or to dots on the printed page. GDI+ knows how
many pixels are in an inch on the monitor, and it will scale the coordinates accordingly. A statement

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC668

2877c14.qxd 11/11/01 4:19 PM Page 668

http://www.sybex.com

that draws a rectangle one inch tall and three inches wide will produce the correct shape on any
monitor or printer, regardless of its resolution.

If you want to know the density of the pixels on the current monitor, read the DpiX and DpiY
properties of the Graphics object. These properties return the pixels per inch in x and y directions of
the monitor. If the Graphics object is the printer’s page, they will return the dots per inch for the
specific printer. These properties are determined by the device’s capabilities and are read-only.

The PageUnit property affects all the entities drawn on the control, even the width of the Pen. A
Pen with a width of 1 will draw lines one inch wide. To specify pen widths in pixels, use the inverse
of the property DpiX, which is one pixel. To specify a 2-pixel-wide pen, use a statement like this one:

Dim myPen = New Pen(Color.Black, 2 * (1 / Graphics.DpiX))

Using coordinates that correspond to physical units of length—such as inches, points, and mil-
limeters—is straightforward. The most interesting, and flexible, coordinate system is one that suits
your needs—in other words, a custom coordinate system. A custom coordinate system is dictated by the
application and can be anything, from a fraction of a millimeter, to a mile, or a light year. Custom
coordinate systems need not correspond to length units. When you plot the number of users hitting
your site each hour, you need a coordinate system to represent the hour of the day along the
x axis and the number of visitors (or the number of hits, or any other quantity you care to measure)
along the y axis. This coordinate system goes from 1 to 24 along the horizontal axis and from 0 to a
large value like 100, or 10,000, in the vertical axis. Another chart might involve month numbers and
units sold. If you want to draw the trajectory of the earth around the sun, and the sun is a circle at
the middle of the drawing surface, the coordinates along the two axes must go from a very large neg-
ative value to a very large positive value.

To summarize, your starting point is a coordinate system that represents the physical dimensions
of the entity you want to plot on the form. This is the world coordinate system. The dimensions of the
form are also known: they’re the form’s Width and Height properties. This is the page coordinate system.
The world coordinates must be mapped onto page coordinates, and this mapping is known as a
transformation.

Specifying Transformations
In computer graphics, there are three types of transformations: scaling, translation, and rotation. The
scaling transformation changes the dimensions of a shape but not its form. If you scale an ellipse by
0.5, you’ll get another ellipse that’s half as wide and half as tall as the original one. The translation
transformation moves a shape by a specified distance. If you translate a rectangle by 30 pixels along
the x axis and 90 pixels along the y axis, the new origin will be 30 pixels the right and 90 pixels down
from the original rectangle’s top-left corner. The rotation transformation rotates a shape by a speci-
fied angle, expressed in degrees. 360 degrees correspond to a full rotation. and the shape appears the
same. A rotation by 180 degrees is equivalent to flipping the shape vertically and horizontally.

Transformations are stored in a 5×5 matrix, but you need not set it up yourself. The Graphic
object provides the ScaleTransform, TranslateTransform, and RotateTransform methods, and you
can specify the transformation to be applied to the shape by calling one or more of these methods
and passing the appropriate argument(s). The ScaleTransform accepts as arguments scaling factors
for the horizontal and vertical directions:

Graphics.ScaleTransformation(Sx, Sy)

669COORDINATE TRANSFORMATIONS

2877c14.qxd 11/11/01 4:19 PM Page 669

http://www.sybex.com

If an argument is smaller than one, the shape will be reduced in the corresponding direction; if it’s
larger than one, the shape will be enlarged in the corresponding direction. We usually scale both
directions by the same factor to retain the shape’s aspect ratio. If you scale a circle by different fac-
tors in the two dimensions, the result will be an ellipse, and not a smaller or larger circle.

The TranslateTransform method accepts two arguments, which are the displacements along the
horizontal and vertical directions:

Graphics.TranslateTransform(Tx, Ty)

The Tx and Ty arguments are expressed in the coordinates of the current coordinate system. The
shape is moved to the right by Tx units and down by Ty units. If one of the arguments is negative,
the shape is moved in the opposite direction (to the left or up).

The RotateTransform method accepts a single argument, which is the angle of rotation, and it’s
expressed in degrees:

Graphics.RotateTransform(rotation)

If the rotation argument is 360, the shape is rotated a full circle—no change at all. The rotation
takes place about the origin. As you will see, the final position and orientation of a shape is different
if two identical rotation and translation transformations are applied in different order.

Every time you call one of these methods, the elements of the transformation matrix are set
accordingly. All transformations are stored in this matrix, and they have a cumulative effect. If you
specify two translation transformations, for example, the shape will be translated by the sum of the
corresponding arguments in either direction. The following two transformations:

Graphics.TranslateTransform(10, 40)
Graphics.TranslateTransform(20, 20)

are equivalent to the following one:

Graphics.TranslateTransform(30, 60)

To start a new transformation after drawing some shapes on the Graphics object, call the Reset-
Transform method, which clears the transformation matrix.

The effect of multiple transformations may be cumulative, but the order in which transforma-
tions are performed makes a big difference. The GDIPlusTransformations project allows you to
experiment with the various transformations. The shape being transformed is a rectangle that con-
tains a string and a small bitmap, as shown in Figure 14.20. Each button on the right performs a dif-
ferent transformation or combination of transformations. The code is quite short, and you can easily
add additional transformations, or change their order, and see how the shape is transformed. Keep in
mind that some transformations may bring the shape entirely outside the form. In this case, just
apply a translation transformation in the opposite direction.

The code behind the buttons Translate, Rotate, and Scale is shown in Listing 14.22. The buttons
set the appropriate transformations and then call the DrawShape() subroutine, passing the current
Graphic object as argument:

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC670

2877c14.qxd 11/11/01 4:19 PM Page 670

http://www.sybex.com

Listing 14.22: The Buttons of the GDITransform Project

Private Sub bttnTranslate_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnTranslate.Click

Dim G As Graphics = PictureBox1.CreateGraphics
G.TranslateTransform(200, 90)
DrawShape(G)

End Sub
Private Sub bttnRotate_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles bttnRotate.Click
Dim G As Graphics = PictureBox1.CreateGraphics
G.RotateTransform(45)
DrawShape(G)

End Sub
Private Sub bttnTranslateRotate_Click(ByVal sender As System.Object,_

ByVal e As System.EventArgs) Handles bttnTranslateRotate.Click
Dim G As Graphics = PictureBox1.CreateGraphics
G.TranslateTransform(200, 90)
G.RotateTransform(45)
DrawShape(G)

End Sub

The DrawShape() subroutine, which draws the rectangle, the string, and the bitmap, is called by
all the buttons after setting up the appropriate transformation(s). Listing 14.23 shows the Draw-
Shape() subroutine.

Figure 14.20

The GDIPlusTrans-
formations project

671COORDINATE TRANSFORMATIONS

2877c14.qxd 11/11/01 4:19 PM Page 671

http://www.sybex.com

Listing 14.23: The DrawShape() Subroutine

Sub DrawShape(ByVal GraphicObject As Graphics)
Dim Font As Font = New Font(“Comic Sans MS”, 36, FontStyle.Bold, _

GraphicsUnit.Pixel)
Dim Pen As Pen = New Pen(Color.Red, 2)
GraphicObject.DrawRectangle(Pen, New Rectangle(1, 1, 200, 120))
GraphicObject.DrawRectangle(Pen, New Rectangle(1, 1, 200, 120))
GraphicObject.DrawString(“VB.NET”, Font, Brushes.Violet, 25, 5)
GraphicObject.DrawImage(Image.FromFile(Application.StartupPath & _

“\Butterfly.jpg”), New PointF(50, 50))
End Sub

The reason we pass the Graphics object as argument to the DrawShape() subroutine (as opposed to
creating the appropriate Graphics object in the subroutine’s code) is because the transformations we
defined earlier apply to this object. By passing the G argument to the DrawShape() subroutine, we’re
actually passing all the transformations applied to the Graphics object. The shapes drawn on the
Graphics objects by the code in the DrawShape() subroutine will undergo the specified transformation.

Run the GDIPlusTransformations project and examine its code. You can add more buttons with
your own transformations to the form, or change the parameters of the various transformations.
Notice how the order of the various transformations affects the placement, orientation, and size of
the final image.

In the following section, we’ll look at an interesting example of the DrawImage method com-
bined with coordinate transformations. The example you’ll build in the following section will render
a cube with different images plastered on each side of the cube. Later in this chapter we’ll use trans-
formations to plot a function, in an interesting and practical application. Even if you’re not inter-
ested in graphics or math, you should understand how to use the basic transformations, because in
the following chapter we’ll use them to create printouts.

VB.NET at Work: The ImageCube Project

As you recall, the DrawImage method can render images on any parallelogram, not just a rectangle,
with the necessary distortion. A way to look at these images is not as distorted, but as perspective
images. Looking at a printout from an unusual angle is equivalent to rendering an image within a
parallelogram. Imagine a cube with a different image glued on each side. To display such a cube on
your monitor, you must calculate the coordinates of the cube’s edges and then use these coordinates
to define the parallelograms on which each image will be displayed. Figure 14.21 shows a cube with
a different image on each side.

If you’re good at math, you can rotate a cube around its vertical and horizontal axes and then map
the rotated cube on the drawing surface. You can even apply a perspective transformation, which will
make the image look more like the rendering of a three-dimensional cube. This is more involved than
the topics discussed in this book; actually, it’s a good topic for a book on 3D graphics, but not for a
general programming book. Instead of doing all the calculations, I’ve come up with a set of coordinates
for the parallelogram that represents each vertex (corner) of the cube. For a different orientation, you
can draw a perspective view of a cube on paper and measure the coordinates of its vertices. Once you

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC672

2877c14.qxd 11/11/01 4:19 PM Page 672

http://www.sybex.com

can define the parallelogram that corresponds to each visible side, you can draw an image with the
DrawImage method on each parallelogram. The DrawImage method will shear the image as necessary
to fill the specified area. The result is the representation of a cube covered with images on the flat sur-
face of your monitor.

The ImageCube project on the CD does exactly that. It sets up the coordinates of the vertices of a
cube projected onto a two-dimensional drawing surface. Then, it calls the DrawImage method once
for each side of the cube, passing as arguments the image to be rendered on the corresponding side
of the cube and an array with the coordinates of the three out of the four corners of the side.

The code that produced Figure 14.21 starts by setting up the coordinates of each side. Notice
that we only need the coordinates of three points to identify each parallelogram, and the arrays face1,
face2, and face3 correspond to the three visible faces of the cube. Each of these arrays contains three
elements, all of the Point type, which are the coordinates of the three vertices of the corresponding
side of the cube. Then the DrawImage method is called for each face, with the appropriate coordinates
and a different image. The complete listing behind the Draw Cube button is shown in Listing 14.24.
I’m using the random-number generator to randomly assign images to each of the cube’s side, so that
each time you click the Draw Cube button, a new cube is drawn. To keep the code simple, I’m not
checking each random number to make sure a different image is mapped to each side of the cube, but
you can add the necessary logic to avoid reusing the same image for more than one side.

Listing 14.24: Rendering the ImageCube

Private Sub bttnDrawCube_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnDrawCube.Click

Dim G As Graphics
G = GetGraphicsObject()

Figure 14.21

This cube was cre-
ated with a call to
the DrawImage
method for each
visible side.

673COORDINATE TRANSFORMATIONS

2877c14.qxd 11/11/01 4:19 PM Page 673

http://www.sybex.com

G.Clear(Color.SandyBrown)
G.TranslateTransform(250, 200)

Dim images(2) As Image
Dim path As String
path = Application.StartupPath.Remove(Application.StartupPath.Length - 4, 4)
images(0) = Image.FromFile(path & “\image1.jpg”)
images(1) = Image.FromFile(path & “\image2.jpg”)
images(2) = Image.FromFile(path & “\image3.jpg”)

Dim face1(2) As Point
face1(0) = New Point(-150, -20)
face1(1) = New Point(150, -20)
face1(2) = New Point(-150, 230)

Dim face2(2) As Point
face2(0) = New Point(-30, -140)
face2(1) = New Point(270, -140)
face2(2) = New Point(-150, -20)

Dim face3(2) As Point
face3(0) = New Point(150, -20)
face3(1) = New Point(270, -140)
face3(2) = New Point(150, 230)
Dim imgIndex As Integer
Dim rnd As New System.Random()
imgIndex = rnd.Next(0, 3)
G.DrawImage(images(imgIndex), face1)
imgIndex = rnd.Next(0, 3)
G.DrawImage(images(imgIndex), face2)
imgIndex = rnd.Next(0, 3)
G.DrawImage(images(imgIndex), face3)

End Sub

The GetGraphicsObject() function retrieves a Graphics object from the PictureBox control’s
bitmap, and its code was shown earlier in Listing 14.8. This is necessary if you want to draw persist-
ently, instead of having to redraw the cube from within the OnPaint event. If you want to use the
OnPaint method, you must also store the images (or the random numbers that correspond to the
three images) in global variables; otherwise every time the OnPaint event handler is executed, a new
cube will be displayed.

Notice that the cube is (approximately) centered at the origin of the form, so I’ve introduced a
translation transformation to push the cube toward the middle of the form. You can add a rotation
transformation too, but you may have to modify the translation transformation, should the image end
up partially outside the form.

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC674

2877c14.qxd 11/11/01 4:19 PM Page 674

http://www.sybex.com

VB.NET at Work: Plotting Functions
Many programmers will use graphics to plot functions or user-supplied data sets. A plot is a visual
representation of the values of a function over a range of an independent variable. Figure 14.22
shows the following function plotted against time in the range from –0.5 to 5:

10 + 35 * Sin(2 * X) * Sin(0.80 / X)

The plot of Figure 14.22 was created with the Plotting project, which is described in this section.
The variable x represents time and goes from –0.5 to 5. The time is mapped to the horizontal axis,
and the vertical axis is the magnitude of the function. For each pixel along the horizontal axis, we
calculate the value of the function and turn on the pixel that corresponds to the calculated value.

Functions can be plotted in very small, or quite large, ranges. The same is true for their values.
One function may extend from –2 to –1, while another function may extend from 0 to 10,000.
Obviously, we can’t use pixels as our units because most plots will not even fall in the range covered
by the pixels of the bitmap. Somehow, we must map the function values to pixels and scale them, so
that the function we’re plotting fills the available area. This mapping takes place through two trans-
formations: a scaling transformation and a translation transformation.

A scaling transformation changes the size of a shape or curve. If the curve extends vertically from –1
to 5 and the area on which you’re plotting goes from 0 to 399 pixels, you must scale the plot up so that
it fills the available area. If the curve extends from –1,000 to 500 vertically, you must also scale it to fill
the available area, only this time you must reduce the size of the plot. In the first example, you must fit
6 units along the x axis to 400 units. The scaling factor is 400 / 6, or 67 approximately. If the func-
tion extends vertically from 1 to 3 and the control’s drawing surface’s height is 250 pixels, the scaling
factor along the vertical axis is 250 / 2, or 125.

The scaling will make the area of the plot equal to the drawing area. But the plot may not fall in
the range of pixels on the control. If you’re plotting the function in the range from –10 to 0, the
curve falls to the left of the drawing surface. The proper translation transformation must push all
values to the right so that the smallest value (–10) corresponds to the leftmost pixel on the control
and the largest value corresponds to the rightmost pixels on the control. Likewise, you must translate
the plot vertically to bring it within the control’s visible area.

Figure 14.22

Plotting math func-
tions with VB.NET

675COORDINATE TRANSFORMATIONS

2877c14.qxd 11/11/01 4:19 PM Page 675

http://www.sybex.com

GDI+ allows you to define global transformations, which apply to all drawing actions. The global
transformations apply to all graphics objects, including the pen you’re drawing with, so you can’t use
them to map the function values onto pixels. Another type of transformation applies to individual
shapes, and this is what we want. We want to transform the curve, but not the pen we draw with.

To plot a function on a PictureBox, you can either color individual pixels, or draw line segments
between consecutive points of the function. In this example, we’ll use a path to represent the plot of
a function. We’ll calculate the function along the values of the independent variable, and we’ll form a
point defined by its two coordinates, x and y. x is the value of the independent variable and y is the
function’s value at this point. Once we have the path, we’ll apply a transformation to the entire path
and render it with a Pen object on the drawing surface.

One advantage of this approach is that you can store the Path object that represents the plot to a
global variable and reuse it to redraw the plot, or even apply a new transformation and plot the func-
tion at a different scale or location. If you discard the path after rendering it, you must recalculate all
the points of the function along the x axis. The sample project doesn’t reuse the path, but you may
have to do so in your applications.

The quantity represented on the horizontal axis is the independent variable. You can select any
range to plot by setting a minimum and a maximum value for the x variable. The function must be
evaluated along the horizontal axis, and it’s determined by the current value of the independent vari-
able. When you’re plotting a function like sin(x)*cos(x), you must evaluate the function for each
point in the range of values of the independent variable x. You may choose to plot the function in
the range from –1 to 1, or in the range from –1,000 to 1,000.

Depending on the range of the independent variable, the function’s range may also change. In the
range –1 to 1, the function may extend from –0.5 to 2.5, but in a different range, it may extend over
a much larger range of values. The range of values of the function determines the units along the y
axis. The vertical size of the plot doesn’t change; it’s the height of the control on which you’re draw-
ing. However, you must map the physical values of the function you’re plotting to pixel coordinates.

Let me explain how the code of the Plotting application sets up the appropriate transformation.
The function’s plot extends over a user-specified area in the horizontal direction (from –0.5 to 5 in
our case) and over a different range in the vertical axis. The vertical range is calculated by the pro-
gram—unless you want to specify the vertical range as well. First, we must scale the plot so that the
range from –0.5 to 5 is mapped to the width of the PictureBox. The function is plotted over a range
of 5.5 units horizontally, and they must be mapped to Picture1.Width pixels. The function must be
scaled horizontally by the factor Picture1.Width/5.5. The vertical scaling factor is calculated in a
similar manner. You must first iterate through all the function values you’re going to plot and find
out the smallest and largest values. Let’s say the function extends vertically from –4 to 20. The verti-
cal scaling factor is Picture1.Height/24.

The origin of the drawing area is at the top-left corner of the form or control. The origin of the
plot, the point (0, 0), is at a different location, so we must translate the drawing. The physical coor-
dinate –0.5 must be mapped to a pixel with a x coordinate 0. The translation transformation along
the horizontal axis is the negative of the smallest x value. In our example, it is –(–0.5), or 0.5.

Let’s see how the two transformations are combined. The first endpoint’s x coordinate is –0.5. I
will assume that the width of the PictureBox is 500 pixels. The first point must be translated hori-
zontally by 0.5 and then scaled horizontally by 500 / 5.5:

(-0.5 + 0.5) * 500 / 5.5 = 0

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC676

2877c14.qxd 11/11/01 4:19 PM Page 676

http://www.sybex.com

So the first endpoint’s x coordinate is 0. The last point’s x coordinate is:

(5 + 0.5) ∗ 500 / 5.5 = 500

The middle physical coordinate along the horizontal axis is 2.25, and it will be mapped to the
following pixel coordinate:

(2.25 + 0.5) * 500 / 5.5 = 250

which is the middle point of the horizontal axis. The exact same calculation will be performed for
the vertical axis. The translation and scaling transformations map the box that encloses the function
to the corners of the PictureBox control.

Note As you may have noticed, the translation transformation is applied first, and then the scaling transformation. If
you reverse the order of the transformations, the result won’t be the same. If you first scale the coordinate 1 and then trans-
late it, it will end up at the following x coordinate: 1 × 500 / 5.5 + 0.5 = 91.5, which isn’t the coordinate of the
middle point along the x axis.

To specify the transformations we want to perform on each point, we set up a transformation
matrix, the World transformation matrix:

World = New System.Drawing.Drawing2D.Matrix()

Then, we apply the two transformations:

World.Scale(((PictureBox1.Width - 4) / (Xmax - Xmin)), _
-(PictureBox1.Height – 4) / (Ymax - Ymin))

World.Translate(-Xmin, -Ymax)

(We subtract 4 pixels from the control’s dimensions to make up for the PictureBox control’s border
and leave a tiny margin between the extremes of the plot and the border.) At this point, the World
transformation contains the definitions of the required transformations, and it will apply them to
each point drawn on the Graphics object.

Now that you have seen how the function’s points are mapped to pixels, let’s look at the actual code.
First, we calculate the range of y values in the specified range of x values. Since we can’t address sub-pixels,
it makes no sense to calculate the function value at more points than there are pixels along the x axis; so
the value is calculated at as many points as there are pixels. This is done in a loop, and we keep track
of the minimum and maximum values. The same calculations must be repeated for all the functions to
be plotted and then we keep the minimum and maximum value over all functions. These values are
stored in YMin and YMax variables, and they’re used later in the code to set up the appropriate transfor-
mation. If the function returns a nonnumeric value (a value like NaN or Infinity), the program aborts.

Then, the program sets up the scaling and translation transformations as explained already. The
transformations are stored in the World matrix, which is then used to apply them to a Path object.

In the last section, the code builds a path for the function to be plotted by adding line segments
that connect the last point to the current one. The last step is to draw the path, when it’s complete.
Before drawing the path, we apply the World transformation to it, so that the world coordinates will
be mapped correctly to pixel coordinates:

plot1.Transform(World)
G.DrawPath(plotPen, plot1)

677COORDINATE TRANSFORMATIONS

2877c14.qxd 11/11/01 4:19 PM Page 677

http://www.sybex.com

where plot1 is the name of the Path object that contains the points to be plotted. Listing 14.25 is the
complete code of the Plot() subroutine, which is called from within the Plot button’s Click event
handler.

Listing 14.25: Plotting Functions

Private Sub plot()
If Not (CheckBox1.Checked Or CheckBox2.Checked) Then Exit Sub
Dim G As Graphics
G = PictureBox1.CreateGraphics
G.Clear(PictureBox1.BackColor)

Dim t As Double
Dim Xmin, Xmax As Single
Dim Ymax, Ymin As Single
Ymin = System.Single.MaxValue
Ymax = -System.Single.MaxValue
Xmin = txtXMin.Text
Xmax = txtXMax.Text
Dim val As Single
Dim XPixels As Integer = PictureBox1.Width - 1

For t = Xmin To Xmax Step (Xmax - Xmin) / (PictureBox1.Width - 2)
If CheckBox1.Checked Then

val = Function1Eval(t)
If System.Double.IsInfinity(val) Or _

System.Double.IsNaN(val) Then
MsgBox(“Can’t plot this function in “ & _

“the specified range!”)
Exit Sub

End If
Ymax = Math.Max(val, Ymax)
Ymin = Math.Min(val, Ymin)

End If
If CheckBox2.Checked Then

val = Function2Eval(t)
If System.Double.IsInfinity(val) Or _

System.Double.IsNaN(val) Then
MsgBox(“Can’t plot this function in “ & _

“the specified range!”)
Exit Sub

End If
Ymax = Math.Max(val, Ymax)
Ymin = Math.Min(val, Ymin)

End If
Next
World = New System.Drawing.Drawing2D.Matrix()

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC678

2877c14.qxd 11/11/01 4:19 PM Page 678

http://www.sybex.com

World.Scale(((PictureBox1.Width - 2) / (Xmax - Xmin)), - _
(PictureBox1.Height - 2) / (Ymax - Ymin))

World.Translate(-Xmin, -Ymax)
‘ the following paths correspond to the two axes
Dim Xaxis As New System.Drawing.Drawing2D.GraphicsPath()
Dim Yaxis As New System.Drawing.Drawing2D.GraphicsPath()
Xaxis.AddLine(New PointF(Xmin, 0), New PointF(Xmax, 0))
Yaxis.AddLine(New PointF(0, Ymax), New PointF(0, Ymin))
Dim oldX, oldY As Single
Dim X, Y As Single
‘ Each segment in the path goes from (oldX, oldY) to (X, y)
‘ At each iteration (X, Y) becomes (oldX, oldY) for the next point
‘ the following two paths correspond to the functions to be plotted
Dim plot1 As New System.Drawing.Drawing2D.GraphicsPath()
Dim plot2 As New System.Drawing.Drawing2D.GraphicsPath()
Dim plotPen As Pen = New Pen(Color.BlueViolet, 1)
‘ Calculate the min and max points of the plot
If CheckBox1.Checked Then

oldX = Xmin
oldY = Function1Eval(Xmin)
For t = Xmin To Xmax Step (Xmax - Xmin) / _

(PictureBox1.Width - 1)
X = t
Y = Function1Eval(t)
plot1.AddLine(oldX, oldY, X, Y)
oldX = X
oldY = Y

Next
End If
If CheckBox2.Checked Then

oldX = Xmin
oldY = Function2Eval(Xmin)
For t = Xmin To Xmax Step (Xmax - Xmin) / _

(PictureBox1.Width - 1)
X = t
Y = Function2Eval(t)
plot2.AddLine(oldX, oldY, X, Y)
oldX = X
oldY = Y

Next
End If
‘ create the plot1 and plot2 paths
G.Clear(PictureBox1.BackColor)
If RadioButton1.Checked Then SmoothingMode = _

Drawing.Drawing2D.SmoothingMode.AntiAlias
If RadioButton2.Checked Then SmoothingMode = _

Drawing.Drawing2D.SmoothingMode.Default
If RadioButton3.Checked Then SmoothingMode = _

679COORDINATE TRANSFORMATIONS

2877c14.qxd 11/11/01 4:19 PM Page 679

http://www.sybex.com

Drawing.Drawing2D.SmoothingMode.HighQuality
If RadioButton4.Checked Then SmoothingMode = _

Drawing.Drawing2D.SmoothingMode.HighSpeed
G.SmoothingMode = SmoothingMode
‘ and finally draw everything
Xaxis.Transform(World)
plotPen.Color = Color.Red
G.DrawPath(plotPen, Xaxis) ‘ The X axis
Yaxis.Transform(World)
plotPen.Color = Color.Red
G.DrawPath(plotPen, Yaxis) ‘ The Y axis
If CheckBox1.Checked Then

plotPen.Color = Color.DarkMagenta
plot1.Transform(World) ‘ The first function
G.DrawPath(plotPen, plot1)

End If
If CheckBox2.Checked Then

plotPen.Color = Color.DarkGreen
plot2.Transform(World)
G.DrawPath(plotPen, plot2) ‘ The second function

End If
End Sub

Notice that the Plot() subroutine draws on the Graphics object returned by the CreateGraphics
method of the PictureBox control. You can click the Plot button to redraw the function(s) at any
time. You can draw the function on the control’s bitmap and not have to worry about redrawing the
function when the form is covered by another form. You should also call the Plot() subroutine from
within the form’s Resize event to redraw the function when the form is resized, because the Picture-
Box control is anchored on all four sides of the form.

The functions Function1Eval() and Function2Eval() calculate the value of each function for any
value of the independent variable, and their implementation is shown here:

Function Function1Eval(ByVal X As Double) As Double
Function1Eval = 5 + 20 * Cos(X * 3) * Cos(X * 5) / Sin(X / 3)

End Function
Function Function2Eval(ByVal X As Double) As Double

Function2Eval = 10 + 35 * Sin(2 * X) * Sin(0.80 / X)
End Function

The FunctionPlot application plots always the same two functions. You can specify a different
range, but this doesn’t make the application any more flexible. Allowing users to specify their own
functions to plot isn’t trivial, unless you use the Script ActiveX control. This control can evaluate
any expression written in VBScript (a variation of VB), and you can bring this functionality in your
application by adding an instance of the Script control to your form.

To add an instance of the Script control to your project, select Project ➢ Add Reference. When
the Add Reference dialog box appears, click the COM tab and locate the item Microsoft Script

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC680

2877c14.qxd 11/11/01 4:19 PM Page 680

http://www.sybex.com

Control 1.0. If the control isn’t there, you must download from http://msdn.microsoft.com/
scripting and install it on your computer. Once installed, it will appear in the Add Reference dialog
box and you can add it to your project.

Using the Script control to evaluate a function is quite simple. All you have to do to evaluate a
function for a value of its independent variable is to execute a script like the following:

X = 0.04
Y = 5 + 20 * Cos(X * 3) * Cos(X * 5) / Log(Abs(Sin(X)) / 10)

You can execute these statements with the help of the Script control and retrieve the value of the
function for the specified value of the X variable. Revise the Function1Eval() and Function2Eval()
functions as shown in Listing 14.26.

Listing 14.26: Evaluating Arbitrary Math Expressions at Runtime

Function Function1Eval(ByVal X As Double) As Double
Try

AxScriptControl1.ExecuteStatement(“X=” & X)
Function1Eval = AxScriptControl1.Eval(txtFunction1.Text)

Catch exc As Exception
Throw New Exception(“Can’t evaluate function at X=” & X)

End Try
End Function
Function Function2Eval(ByVal X As Double) As Double

Try
AxScriptControl1.ExecuteStatement(“X=” & X)
Function2Eval = AxScriptControl1.Eval(txtFunction2.Text)

Catch exc As Exception
Throw New Exception(“Can’t evaluate function at X=” & X)

End Try
End Function

If an error occurs in the script (division by zero, an attempt to calculate the logarithm of a nega-
tive value, and so on), a custom exception is raised. This exception must be caught by the Plot() sub-
routine and abort the plotting of the function.

The revised function is called FunctionPlotting, and you will find it in this chapter’s folder on the
CD. The only difference is how the function is evaluated at each point along the x axis and how the
program handles math errors. The Script control is an old one and can’t handle values like NaN and
Infinity.

Bitmaps
The type of graphics we explored so far are called vector graphics, because they can be scaled to any
extent. Since they’re based on mathematical equations, you can draw any details of the picture with-
out losing any accuracy. Vector graphics, however, can’t be used to describe the type of images you

681BITMAPS

2877c14.qxd 11/11/01 4:19 PM Page 681

http://www.sybex.com

capture with your digital camera. These images belong to a different category of graphics, the bitmap
graphics. A bitmap is a collection of colored pixels, arranged in rows and columns.

So, what’s the difference between a Bitmap object and an Image object? The Image object is
static. It provides properties that retrieve the attributes of the image stored in the object, but you
can’t edit the image’s pixels. The Bitmap object, on the other hand, provides methods that allow you
to read and set its pixels. In the last section of this chapter, you’re going to build an image-processing
application. But first, let’s look at the information stored in a Bitmap or Image object. Both bitmaps
and image are made up of color values (the color of each pixel), so it’s time to look at how GDI+
stores and handles colors in detail.

Specifying Colors
You’re already familiar with the Color common dialog box, which lets you specify colors by manip-
ulating their basic components. If you attempt to specify a Color value through the common dialog
box, you’ll see three boxes—Red, Green, and Blue (RGB)—whose values change as you move the
cross-shaped pointer over the color spectrum. These are the values of the three basic colors that
computers use to specify colors. Any color that can be represented on a computer monitor is speci-
fied by means of the RGB colors. By mixing percentages of these basic colors, you can design almost
any color.

The model of designing colors based on the intensities of their RGB components is called the
RGB model, and it’s a fundamental concept in computer graphics. If you aren’t familiar with this
model, this section is well worth reading. Every color you can imagine can be constructed by mixing
the appropriate percentages of the three basic colors. Each color, therefore, is represented by a triplet
in which red, green, and blue are three bytes that represent the basic color components. The smallest
value, 0, indicates the absence of color. The largest value, 255, indicates full intensity, or saturation.
The triplet (0, 0, 0) is black, because all colors are missing, and the triplet (255, 255, 255) is white.
Other colors have various combinations: (255, 0, 0) is a pure red, (0, 255, 255) is a pure cyan (what
you get when you mix green and blue), and (0, 128, 128) is a mid-cyan (a mix of mid-green and
mid-blue tones). The possible combinations of the three basic color components are 256 × 256 × 256,
or 16,777,216 colors.

Note Each color you can display on a computer monitor can be defined in terms of three basic components: red, green,
and blue.

Notice that we use the term basic colors and not primary colors, which are the three colors used in
designing colors with paint. The concept is the same; you mix the primary colors until you get
the desired result. The primary colors used in painting, however, are different. They are the colors
red, yellow, and blue. Painters can get any shade imaginable by mixing the appropriate percentages
of red, yellow, and blue paint. On a computer monitor, you can design any color by mixing the
appropriate percentages of red, green, and blue.

Note Just as painters don’t work with three colors only, you’re not limited to the three basic colors. The Color object
exposes the names of 128 colors, and you can specify colors by name.

The process of generating colors with three basic components is based on the RGB color cube,
shown in Figure 14.23. The three dimensions of the color cube correspond to the three basic colors.

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC682

2877c14.qxd 11/11/01 4:19 PM Page 682

http://www.sybex.com

The cube’s corners are assigned each of the three primary colors, their complements, and the colors
black and white. Complementary colors are easily calculated by subtracting the Color values from
255. For example, the color (0, 0, 255) is a pure blue tone. Its complementary color is (255 – 0,
255 – 0, 255 – 255), or (255, 255, 0), which is a pure yellow tone. Blue and yellow are complemen-
tary colors, and they are mapped to opposite corners of the cube. The same is true for red and cyan,
green and magenta, and black and white. If you add a color to its complement, you get white.

Notice that the components of the colors at the corners of the cube have either zero or full
intensity. As you move from one corner to another along the same edge of the cube, only one of its
components changes value. For example, as you move from the green to the yellow corner, the red
component changes from 0 to 255. The other two components remain the same. As you move
between these two corners, you get all the available tones from green to yellow (256 in all). Simi-
larly, as you move from the yellow to the red corner, the only component that changes is the green,
and you get all the available shades from yellow to red. As you can guess, this is how GDI+ calcu-
lates the gradients: it draw a (imaginary) line between the two points that represent the starting and
ending colors of the gradient and picks the colors along this line.

Although you can specify a little more than 16 million colors, you can’t have more than 256
shades of gray. The reason is that a gray tone, including the two extremes (black and white), is made
up of equal values of all three primary colors. You can see this on the RGB cube. Gray shades lie on
the cube’s diagonal that goes from black to white. As you move along this path, all three basic com-
ponents change value, but they are always equal. The value (128, 128, 128) is a mid-gray tone, but
the values (127, 128, 128) and (129, 128, 128) aren’t gray tones, although they are too close for the
human eye to distinguish. That’s why it’s wasteful to store grayscale pictures using a 3-bytes-per-
pixel format. A 256-color file format stores a grayscale just as accurately and more compactly. Once
you know an image is grayscale, you needn’t store all three bytes per pixel—one value is adequate
(the other two components have the same value).

Defining Colors
For defining colors, the Color object provides the FromARGB method, which accepts three
arguments:

Color.FromARGB(Red, Green, Blue)

Figure 14.23

Color specification
of the RGB color
cube

683BITMAPS

2877c14.qxd 11/11/01 4:19 PM Page 683

http://www.sybex.com

The FromARGB method can produce any color imaginable. I mentioned earlier that the triplet
(255, 255, 0) is a pure yellow tone. To specify this Color value with the FromARGB method, you
can use a statement such as

newColor = Color.FromARGB(255, 255, 0)

The newColor variable is a Color value, and you can use it anywhere you could use a color value. To
change the form’s background color to yellow, you can assign the newColor variable to the BackColor
property, like this:

Form1.BackColor = newColor

or you can combine both statements into one like this:

Form1.BackColor = Color.FromARGB(255, 255, 0)

There another form of the FromARGB method that accepts four arguments. The first argument
in the method is the transparency of the color, and it can be a value from 0 (totally transparent) to 255
(totally opaque). The other three arguments are the usual red, green, and blue color components. For
more information on transparent colors, see the following section, “Alpha Blending.”

You can also retrieve the three basic components of a Color value with the R, G, and B methods.
The following statements print in the Output window the values of the three components of one of
the named colors:

Dim C As Color = Color.Beige
Console.WriteLine “Red Component = “ & C.R.ToString
Console.WriteLine “Green Component = “ & C.G.ToString
Console.WriteLine “Blue Component = “ & C.B.ToString

In an image-processing application, such as the one we’ll develop later in this chapter, we want to
read pixel values, isolate their color components, and then process them separately.

Alpha Blending

Besides the red, green, and blue components, a color value may also contain a transparency compo-
nent. This value determines whether the color is opaque, or transparent. In the case of transparent
colors, you can specify the degree of transparency. This component is the alpha component. The follow-
ing statement creates a new color value, which is yellow and 25 percent transparent:

Dim trYellow As Color
trYellow = Color.FromARGB(192, Color.Yellow)

If you want to “wash out” the colors of an image on a form, draw a white rectangle with a trans-
parency of 50 percent or more. The size of the rectangle must be the same as the size of the form, so
you can use the ClientRectangle object to retrieve the area taken by the form. Then create a solid
brush with a semitransparent color with the Color.FromARGB method. The following code segment
does exactly that:

Dim brush As New SolidBrush(Color.FromARGB(128, Color.White))
Me.CreateGraphics.FillRectangle(brush, ClientRectangle)

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC684

2877c14.qxd 11/11/01 4:19 PM Page 684

http://www.sybex.com

If you execute these statements repeatedly, the form will eventually become white. Another use
of transparent drawing is to place watermarks on images you’re going to publish on the Web. A
watermark is a string or logo that’s drawn transparently on the image. It doesn’t really disturb the
viewers, but it makes the image unusable on another site. It’s a crude but effective way to protect
your images on the Web.

The following statements place a watermark with the string “MySite.Com” on an image. The
font is fairly large and bold, and the code assumes that the text fits in the width of the image.

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim WMFont As New Font(“Comic Sans MS”, 20, FontStyle.Bold)
Dim WMBrush As New SolidBrush(Color.FromARGB(92, 230, 80, 120))
PictureBox1.CreateGraphics.DrawString(“MySite.com”, WMFont, WMBrush, 100, 40)

End Sub

You can combine these statements with a simple program that scans all the images in a folder
(you’ll find this information in Chapter 13) to write an application that watermarks a large number of
files en masse. Figure 14.24 shows the watermarked image produced by the previous code segment.

Another interesting application of transparency is to superimpose a semitransparent drawing over
an opaque one. Figure 14.25 shows some text with a 3D look. To achieve this effect, you render a
string with a totally opaque brush. Then you superimpose the same string drawn with a partially
transparent brush. The superimposed string is displaced by a few pixels in relation to the first one.
The amount of displacement, its direction, and the colors you use determine the type of 3D effect
(raised or depressed). The second brush can have any color, as long as the color combination pro-
duces a pleasant effect. The strings shown in Figure 14.25 were generated with the TextEffects proj-
ect (button Draw Semi-Transparent Text). If you run the application and look at the rendered
strings carefully, you’ll see that they’re made up of three colors. The two original colors appear
around the edges. The inner area of each character is what the transparency of the second color
allows us to see.

The code behind the Draw Semi-Transparent Text button is quite simple, really. It’s a bit
lengthy, but I will include its listing anyway. The code draws the first string with the solid blue
brush:

brush = New SolidBrush(Color.FromARGB(255, 0, 0, 255))

Then another instance of the same string is drawn, this time with a different brush:

brush.Color = Color.FromARGB(192, 0, 255, 255)

Figure 14.24

Watermarking an
image with a semi-
transparent string

685BITMAPS

2877c14.qxd 11/11/01 4:19 PM Page 685

http://www.sybex.com

This is a semitransparent shade of cyan. The two superimposed strings are displaced a little with
respect to one another. The statements in Listing 14.26 produced the two upper strings of Figure 14.25.

Listing 14.27: Simple Text Effects with Transparent Brushes

brush = New SolidBrush(Color.FromARGB(255, 0, 0, 255))
drawFont = New Font(“Comic Sans MS”, 72, Drawing.FontStyle.Bold)
G.DrawString(“Visual Basic.NET”, drawFont, brush, 10, 30)
brush.Color = Color.FromARGB(192, 0, 255, 255)
G.DrawString(“Visual Basic.NET”, drawFont, brush, 7, 27)
brush.Color = Color.FromARGB(255, 0, 0, 255)
drawFont = New Font(“Comic Sans MS”, 72, Drawing.FontStyle.Bold)
G.DrawString(“Visual Basic.NET”, drawFont, brush, 10, 130)
brush.Color = Color.FromARGB(128, 0, 255, 255)
G.DrawString(“Visual Basic.NET”, drawFont, brush, 7, 127)

Processing Bitmaps
Images are arrays of color values. These values are stored in disk files, and when an image is dis-
played on a PictureBox or Form control, each of its color values is mapped to a pixel on the Picture-
Box or form. As you’ll see, image processing is nothing more than simple arithmetic operations on
the values of the image’s pixels. The ImageProcessing application we’ll build to demonstrate the vari-
ous image-processing techniques is slow compared with professional applications, but it demon-
strates the principles of image-processing techniques and can be used as a starting point for custom
applications.

We’ll build a simple image-processing application that can read all the image types VB can handle
(BMP, GIF, TIFF, JPEG, and so on), process them, and then display the processed images. There
are simpler ways to demonstrate Visual Basic pixel-handling methods, but image processing is an
intriguing topic, and I hope many readers will experiment with its techniques in the ImageProcessing
application.

Figure 14.25

Creating a 3D effect
by superimposing
transparency on an
opaque and a semi-
transparent string

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC686

2877c14.qxd 11/11/01 4:19 PM Page 686

http://www.sybex.com

An image is a two-dimensional array of pixels in which each pixel is represented by one or more
bits. In a black-and-white image, each pixel is represented by a single bit. Image formats that use 256
colors store each pixel in a byte. The best quality images, however, use three bytes per pixel, one for
each RGB color component. (For this example, we’ll ignore the alpha channel.)

Let’s look at a simple technique, the inversion of an image’s colors. To invert an image, you must
change all pixels to their complementary colors—black to white, green to magenta, and so on (the
complementary colors are on opposite corners of the RGB cube, shown in Figure 14.23, earlier in
this chapter).

To calculate complementary colors, you subtract each of the three color components from 255.
For example, a pure green pixel whose value is (0, 255, 0) will be converted to (255 – 0, 255 – 255,
255 – 0) or (255, 0, 255), which is magenta. Similarly, a mid-yellow tone (0, 128, 128) will be con-
verted to (255 – 0, 255 – 128, 255 – 128) or (255, 127, 127), which is a mid-brown tone. If you
apply this color transformation to all the pixels of an image, the result will be the negative of the
original image (what you’d see if you looked at the negative from which the picture was obtained).

Other image-processing techniques aren’t as simple, but the important thing to understand is that,
in general, image processing is as straightforward as a few arithmetic operations on the image’s pixels.
After we go through the ImageProcessing application, you’ll probably come up with your own tech-
niques and be able to implement them.

VB.NET at Work: The ImageProcessing Project

The application we’ll develop in this section is called ImageProcessing; it’s shown in Figure 14.26.
It’s not a professional tool, but it can be easily implemented in Visual Basic, and it will give you the
opportunity to explore various image-processing techniques on your own. To process an image with
the application, choose File ➢ Open to load it to the PictureBox control and then select the type of
action from the Process menu. Using the ImageProcessing application, you can apply the following
effects to an image:

Smooth Reduces the amount of detail in the image by smoothing areas with abrupt changes in
color and/or intensity.

Sharpen Brings out the detail in the image by amplifying the differences between similarly col-
ored pixels.

Emboss Adds a raised (embossed) look to the image.

Diffuse Gives the image a “painterly” look.

Next, let’s look at how each algorithm works and how it’s implemented in Visual Basic.

How the Application Works

Let’s start with a general discussion of the application’s operation before we get down to the actual
code. Once the image is loaded on a PictureBox control, you can access the values of its pixels with
the GetPixel method of the bitmap object that holds the image. The GetPixel method returns a
Color value, and you can use the R, G, and B methods of the Color object to extract the basic color
components. This is a time-consuming step, and for most algorithms, it must be performed more
than once for each pixel.

687BITMAPS

2877c14.qxd 11/11/01 4:19 PM Page 687

http://www.sybex.com

All image-processing algorithms read a few pixel values and process them to calculate the new
value of a pixel. This value is then written into the new bitmap with the SetPixel method. The syntax
of the SetPixel and GetPixel methods of the Bitmap object are as follows:

color = Bitmap.GetPixel(X, Y)
Bitmap.SetPixel(X, Y, color)

where X and Y are the coordinates of the pixel whose value you’re reading, or setting. The GetPixel
method returns the color of the specified pixel, while the SetPixel method sets the pixel’s color to
the specified value.

All image-processing algorithms share a common structure as well. We set up two nested loops,
one that scans the rows of pixels and an inner loop that scans the pixels in each row. In the inner
loop’s body, we calculate the current pixel’s new value, taking into consideration the values of the
surrounding pixels. Because of this, we can’t save the new pixel values to the original bitmap. When
processing the next pixel, some of the surrounding pixels will have their original values, while some
other will have the new values. As a result, we must create copy of the original bitmap and use this
bitmap to retrieve the original values of the pixels. The processed values are displayed on the bitmap
of the PictureBox control, so that you can watch the progress of the processing.

The following is the outline of all the algorithms we’ll implement shortly:

bmap = New Bitmap(PictureBox1.Image)
PictureBox1.Image = bmap
Dim tempbmp As New Bitmap(PictureBox1.Image)
Dim i, j As Integer
With tempbmp

For i = DX To .Height - DX - 1
For j = DY To .Width - DY - 1

{ calculate new pixel value }
bmap.SetPixel(j, i, new_pixel_value)

Next
If i Mod 10 = 0 Then

PictureBox1.Invalidate()

Figure 14.26

The ImageProcess-
ing application
demonstrates several
image-processing
techniques that can
be implemented
with VB.

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC688

2877c14.qxd 11/11/01 4:19 PM Page 688

http://www.sybex.com

PictureBox1.Refresh()
End If

Next
End With

Here’s how it works. First, we create a Bitmap object from the image on the PictureBox control.
This is the bmap variable, which is then assigned back to the Image property of the control. Every-
thing you draw on the bmap object will appear on the control’s surface. We then create another iden-
tical Bitmap object, the tempbmp variable. This object holds the original values of all the pixels of the
image.

The two nested loops go through every pixel in the image. In the inner loop’s body, we calculate
the new value of the current pixel and then write this value to the matching location of the bmap
object. The new pixel will appear on the control when we refresh it, by calling the control’s Invali-
date method. This method isn’t called every time we display a new pixel. It would introduce a signif-
icant delay, so we invalidate the control after processing 10 rows of pixels. This is a good balance
between performance and a constant visual feedback.

Applying Effects

In the following sections, you’ll find a short description and the implementation of a few image-pro-
cessing techniques (the ones you can apply to the image with the commands of the Process menu).

Smoothing Images

One of the simplest and most common operations in all image-processing programs is the smooth-
ing (or blurring) operation. The smoothing operation is equivalent to low-pass filtering: just as you
can cut off a stereo’s high-frequency sounds with the help of an equalizer, you can cut off the high
frequencies of an image. If you’re wondering what the high frequencies of an image are, think of
them as the areas with abrupt changes in the image’s intensity. These are the areas that are mainly
affected by the blurring filter.

The smoothed image contains less abrupt changes than the original and looks a lot like the origi-
nal image seen through a semitransparent glass. Figure 14.27 shows a smoothed image, obtained
with the ImageProcessing application.

Figure 14.27

Smoothing an image
reduces its detail, but
can make the image
less “noisy” and
“busy.”

689BITMAPS

2877c14.qxd 11/11/01 4:19 PM Page 689

http://www.sybex.com

To smooth an image, you must reduce the large differences between adjacent pixels. Let’s take a
block of nine pixels, centered on the pixel we want to blur. This block contains the pixel to be
blurred and its eight immediate neighbors. Let’s assume that all the pixels in this block are green,
except for the middle one, which is red. This pixel is drastically different from its neighbors, and for
it to be blurred, it must be pulled toward the average value of the other pixels. Taking the average of
a block of pixels is, therefore, a good choice for a blurring operation. If the current pixel’s value is
similar to the values of its neighbors, the average won’t affect it significantly. If its value is different,
the remaining pixels will pull the current pixel’s value toward them. In other words, if the middle
pixel was green, the average wouldn’t affect it. Being the only red pixel in the block, though, it’s
going to come closer to the average value of the remaining pixels. It’s going to assume a green tone.

Here’s an example with numbers: if the value of the current pixel is 10 and the values of its eight
immediate neighbors are 8, 11, 9, 10, 12, 10, 11, and 9, the average value of all pixels will be

(8 + 11 + 9 + 10 + 12 + 10 + 11 + 9 + 10) / 9 = 10

The pixel under consideration happens to be right on the average of its neighboring pixels. The
results would be quite different if the value of the center pixel was drastically different. If the center
pixel’s value was 20, the new average would be 11. Because the neighboring pixels have values close
to 10, they would pull the “outlier” toward them. This is how blurring works. By taking the average
of a number of pixels, you force the pixels with values drastically different from their neighbors to
get closer to them.

Another factor affecting the amount of blurring is the size of the block over which the average is
calculated. We used a 3×3 block in our example, which yields an average blur. To blur the image
even more, use a 5×5 block. Even larger blocks will blur the image to the point that useful informa-
tion will be lost. The actual code of the Smooth operation scans all the pixels of the image (exclud-
ing the edge pixels that don’t have neighbors all around them) and takes the average of their RGB
components. It then combines the three values with the method Color.FromARGB to produce the new
value of the pixel.

The code that implements the smoothing operation (shown in Listing 14.28) is lengthy, but it’s
not really complicated. The long statements combine the color components of all nine neighboring
pixels. The current pixel has coordinates (i, j), and the neighboring pixels have indices from i – 1
to i + 1 and from j – 1 to j + 1. A more elegant approach would be to use two nested loops to iter-
ate through the nine pixels, but this would make the code a little harder to follow.

Listing 14.28: Smoothing an Image

Private Sub ProcessSmooth_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ProcessSmooth.Click

bmap = New Bitmap(PictureBox1.Image)
PictureBox1.Image = bmap
Dim tempbmp As New Bitmap(PictureBox1.Image)
Dim DX As Integer = 1
Dim DY As Integer = 1
Dim red, green, blue As Integer
Dim i, j As Integer

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC690

2877c14.qxd 11/11/01 4:19 PM Page 690

http://www.sybex.com

With tempbmp
For i = DX To .Height - DX - 1

For j = DY To .Width - DY - 1
red = CInt((CInt(.GetPixel(j - 1, i - 1).R) + _

CInt(.GetPixel(j - 1, i).R) + _
CInt(.GetPixel(j - 1, i + 1).R) + _
CInt(.GetPixel(j, i - 1).R) + _
CInt(.GetPixel(j, i).R) + _
CInt(.GetPixel(j, i + 1).R) + _
CInt(.GetPixel(j + 1, i - 1).R) + _
CInt(.GetPixel(j + 1, i).R) + _
CInt(.GetPixel(j + 1, i + 1).R)) / 9)

green = CInt((CInt(.GetPixel(j - 1, i - 1).G) + _
CInt(.GetPixel(j - 1, i).G) + _
CInt(.GetPixel(j - 1, i + 1).G) + _
CInt(.GetPixel(j, i - 1).G) + _
CInt(.GetPixel(j, i).G) + _
CInt(.GetPixel(j, i + 1).G) + _
CInt(.GetPixel(j + 1, i - 1).G) + _
CInt(.GetPixel(j + 1, i).G) + _
CInt(.GetPixel(j + 1, i + 1).G)) / 9)

blue = CInt((CInt(.GetPixel(j - 1, i - 1).B) + _
CInt(.GetPixel(j - 1, i).B) + _
CInt(.GetPixel(j - 1, i + 1).B) + _
CInt(.GetPixel(j, i - 1).B) + _
CInt(.GetPixel(j, i).B) + _
CInt(.GetPixel(j, i + 1).B) + _
CInt(.GetPixel(j + 1, i - 1).B) + _
CInt(.GetPixel(j + 1, i).B) + _
CInt(.GetPixel(j + 1, i + 1).B)) / 9)

red = Math.Min(Math.Max(red, 0), 255)
green = Math.Min(Math.Max(green, 0), 255)
blue = Math.Min(Math.Max(blue, 0), 255)
bmap.SetPixel(j, i, Color.FromARGB(red, green, blue))

Next
If i Mod 10 = 0 Then

PictureBox1.Invalidate()
PictureBox1.Refresh()
Me.Text = Int(_

100 * i / (PictureBox1.Image.Height - 2)).ToString & “%”
End If

Next
End With
PictureBox1.Refresh()
Me.Text = “Done smoothing image”

End Sub

691BITMAPS

2877c14.qxd 11/11/01 4:19 PM Page 691

http://www.sybex.com

Sharpening Images

Since the basic operation for smoothing an image is addition, the opposite operation will result in
sharpening the image. The sharpening effect is more subtle than smoothing, but also more common
and more useful. Nearly every image published, especially in monochrome (“one-color”) publica-
tions, must be sharpened to some extent. For an example of a sharpened image, see Figure 14.28.
Sharpening an image consists of highlighting the edges of the objects in it, which are the very same
pixels blurred by the previous algorithm. Edges are areas of an image with sharp changes in intensity
between adjacent pixels. The smoothing algorithm smoothed out these areas; now we want to
emphasize them.

In a smooth area of an image, the difference between two adjacent pixels will be zero or a very
small number. If the pixels are on an edge, the difference between two adjacent pixels will be a large
value (perhaps negative). This is an area of the image with some degree of detail that can be sharp-
ened. If the difference is zero, the two pixels are nearly identical, which means that there’s nothing to
sharpen there. This is called a “flat” area of the image. (Think of an image with a constant back-
ground. There’s no detail to bring out on the background.)

The difference between adjacent pixels isolates the areas with detail and completely flattens out
the smooth areas. The question now is how to bring out the detail without leveling the rest of the
image. How about adding the difference to the original pixel? Where the image is flat, the difference
is negligible, and the processed pixel practically will be the same as the original one. If the difference
is significant, the processed pixel will be the original plus a value that’s proportional to the magni-
tude of the detail. The sharpening algorithm can be expressed as follows:

new_value = original_value + 0.5 * difference

If you simply add the difference to the original pixel, the algorithm brings out too much detail.
You usually add a fraction of the difference; a 50% factor is common. The code that implements
the Sharpen command is shown in Listing 14.29.

Figure 14.28

The sharpening
operation brings out
detail that isn’t evi-
dent in the original
image.

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC692

2877c14.qxd 11/11/01 4:19 PM Page 692

http://www.sybex.com

Listing 14.29: Sharpening an Image

Private Sub ProcessSharpen_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ProcessSharpen.Click

bmap = New Bitmap(PictureBox1.Image)
PictureBox1.Image = bmap
Dim tempbmp As New Bitmap(PictureBox1.Image)
Dim DX As Integer = 1
Dim DY As Integer = 1
Dim red, green, blue As Integer
Dim i, j As Integer
With tempbmp

For i = DX To .Height - DX - 1
For j = DY To .Width - DY - 1

red = CInt(.GetPixel(j, i).R) + 0.5 * _
CInt((.GetPixel(j, i).R) - _

CInt(bmap.GetPixel(j - DX, i - DY).R))
green = CInt(.GetPixel(j, i).G) + 0.5 * _

CInt((.GetPixel(j, i).G) - _
CInt(bmap.GetPixel(j - DX, i - DY).G))

blue = CInt(.GetPixel(j, i).B) + 0.5 * _
CInt((.GetPixel(j, i).B - _

CInt(bmap.GetPixel(j - DX, i - DY).B)))
red = Math.Min(Math.Max(red, 0), 255)
green = Math.Min(Math.Max(green, 0), 255)
blue = Math.Min(Math.Max(blue, 0), 255)
bmap.SetPixel(j, i, Color.FromARGB(red, green, blue))

Next
If i Mod 10 = 0 Then

PictureBox1.Invalidate()
PictureBox1.Refresh()
Me.Text = Int(_

100 * i / (PictureBox1.Image.Height - 2)).ToString & “%”
End If

Next
End With
PictureBox1.Refresh()
Me.Text = “Done sharpening image”

End Sub

The variables DX and DY express the distances between the two pixels being subtracted. You can
subtract adjacent pixels on the same row, adjacent pixels in the same column, or diagonally adjacent
pixels, which is what I did in this subroutine. Besides adding the difference to the original pixel
value, this subroutine must check the result for validity. The result of the calculations may exceed the
valid value range for a color component, which is 0 to 255. That’s why you must clip the value if it
falls outside the valid range.

693BITMAPS

2877c14.qxd 11/11/01 4:19 PM Page 693

http://www.sybex.com

Embossing Images

To sharpen an image, we add the difference between adjacent pixels to the pixel value. What do you
think would happen to a processed image if you took the difference between adjacent pixels only? The
flat areas of the image would be totally leveled, and only the edges would remain visible. The result
would be an image like the image in Figure 14.29. This effect clearly sharpens the edges and flattens
the smooth areas of the image. By doing so, it gives the image depth. The processed image looks as if
it’s raised and illuminated from the right side. This effect is known as emboss or bas relief.

The actual algorithm is based on the difference between adjacent pixels. For most of the image,
however, the difference between adjacent pixels is a small number, and the image will turn black. The
Emboss algorithm adds a constant to the difference to bring some brightness to areas of the image
that would otherwise be dark. The algorithm can be expressed as follows:

new_value = difference + 128

As usual, you can take the difference between adjacent pixels in the same row, adjacent pixels in
the same column, or diagonally adjacent pixels. The code that implements the Emboss filter in the
ImageProcessing application uses differences in the x and y directions (set the values of the variables
DispX or DispY to 0 to take the difference in one direction only). The Emboss filter’s code is shown
in Listing 14.30.

Listing 14.30: Embossing an Image

Private Sub ProcessEmboss_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ProcessEmboss.Click

bmap = New Bitmap(PictureBox1.Image)
PictureBox1.Image = bmap

Figure 14.29

The Emboss special
effect

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC694

2877c14.qxd 11/11/01 4:19 PM Page 694

http://www.sybex.com

Dim tempbmp As New Bitmap(PictureBox1.Image)
Dim i, j As Integer
Dim DispX As Integer = 1, DispY As Integer = 1
Dim red, green, blue As Integer
With tempbmp

For i = 0 To .Height - 2
For j = 0 To .Width - 2

Dim pixel1, pixel2 As System.Drawing.Color
pixel1 = .GetPixel(j, i)
pixel2 = .GetPixel(j + DispX, i + DispY)
red = Math.Min(Math.Abs(CInt(pixel1.R)-CInt(pixel2.R))+128, 255)
green = Math.Min(Math.Abs(CInt(pixel1.G)-CInt(pixel2.G))+128, 255)
blue = Math.Min(Math.Abs(CInt(pixel1.B)-CInt(pixel2.B))+128, 255)
bmap.SetPixel(j, i, Color.FromARGB(red, green, blue))

Next
If i Mod 10 = 0 Then

PictureBox1.Invalidate()
PictureBox1.Refresh()
Me.Text = Int(_

100 * i / (PictureBox1.Image.Height - 2)).ToString & “%”
End If

Next
End With
PictureBox1.Refresh()
Me.Text = “Done embossing image”

End Sub

The variables DispX and DispY determine the location of the pixel being subtracted from the one
being processed. Notice that the pixel being subtracted is behind and above the current pixel. If you
set the DispX and DispY variables to –1, the result is similar, but the processed image looks engraved
rather than embossed.

Diffusing Images

The Diffuse special effect is different from the previous ones, in the sense that it’s not based on the
sums or the differences of pixel values. This effect uses the Rnd() function to introduce some ran-
domness to the image and give it a “painterly” look, as demonstrated in Figure 14.30.

This time we won’t manipulate the values of the pixels. Instead, the current pixel will assume the
value of another one, selected randomly in its 5×5 neighborhood with the help of the Random class.

The Diffuse algorithm is the simplest one. It generates two random variables, DX and DY, in the
range –3 to 3. These two variables are added to the coordinates of the current pixel to yield the
coordinates of another pixel in the neighborhood. The original pixel is replaced by the value of the
pixel that (DX, DY) pixels away. The code that implements the Diffuse operation is shown in List-
ing 14.31.

695BITMAPS

2877c14.qxd 11/11/01 4:19 PM Page 695

http://www.sybex.com

Listing 14.31: Diffusing an Image

Private Sub ProcessDiffuse_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ProcessDiffuse.Click

bmap = New Bitmap(PictureBox1.Image)
PictureBox1.Image = bmap
Dim tempbmp As New Bitmap(PictureBox1.Image)
Dim i As Integer, j As Integer
Dim DX As Integer
Dim DY As Integer
Dim red As Integer, green As Integer, blue As Integer
With tempbmp

For i = 3 To .Height - 3
For j = 3 To .Width - 3

DX = Rnd() * 4 - 2
DY = Rnd() * 4 - 2
red = .GetPixel(j + DX, i + DY).R
green = .GetPixel(j + DX, i + DY).G
blue = .GetPixel(j + DX, i + DY).B
bmap.SetPixel(j, i, Color.FromARGB(red, green, blue))

Next
Me.Text = Int(100 * i / (.Height - 2)).ToString & “%”
If i Mod 10 = 0 Then

PictureBox1.Invalidate()

Figure 14.30

The Diffuse special
effect gives the
image a painterly
look.

Chapter 14 DRAWING AND PAINTING WITH VISUAL BASIC696

2877c14.qxd 11/11/01 4:19 PM Page 696

http://www.sybex.com

PictureBox1.Refresh()
Me.Text = Int(_

100 * i / (PictureBox1.Image.Height - 2)).ToString & “%”
End If

Next
End With
PictureBox1.Refresh()
Me.Text = “Done diffusing image”

End Sub

Open the ImageProcessing application and experiment with the algorithms described in this chap-
ter. Change the parameters of the various algorithms and see how they affect the processed image.
You can easily implement new algorithms by inserting the appropriate code in the inner loop’s body.
The rest of the code remains the same. Some simple ideas include clipping one or more colors (force
the red color component of each pixel to remain within a range of values), substituting one component
for another (replace the red component of each pixel with the green or blue component of the same
pixel), inverting the colors of the image (subtract all three color components of each pixel from 255),
and so on. With a little imagination, you can create interesting effects for your images.

Summary
It’s been a long chapter, but graphics have never been simple. This may explain why they’re not
among the most favorite programming topics, but they sure are fun. GDI+ brings VB graphics to a
new level. GDI+ exposes a whole lot of functionality, and you have seen most of it in this chapter.

The basic object you’ll be using in your code to generate graphics is the Graphics object, and you
can retrieve the Graphics object of a form or control with the CreateGraphics method. Then you can
call this object’s drawing methods to generate graphics. If you’re going to display a few graphics ele-
ments on your form, you can put the corresponding statements in a subroutine that overwrites the
OnPaint method, so that the form is redrawn every time it’s refreshed.

If you want to create graphics in response to user actions, keep in mind that anything you draw
on the Graphics object returned by the CreateGraphics method is not permanent; it will be ignored
when the form is refreshed. To generate permanent graphics on a form or PictureBox control, you
must create a Graphics object based on the bitmap of the control. The bitmap is permanent, and it’s
refreshed properly when the form is resized or temporarily covered by another form. As far as the
drawing methods go, they’re the same no matter how you created the Graphics object.

697SUMMARY

2877c14.qxd 11/11/01 4:19 PM Page 697

http://www.sybex.com

2877c14.qxd 11/11/01 4:19 PM Page 698

http://www.sybex.com

Chapter 15

Printing with VB.NET
The topic of printing with Visual Basic hasn’t received much publicity in previous versions
of the language, mostly because it’s a non-trivial topic and many developers used third-party tools
to add print capabilities to their applications. VB.NET has simplified printing a little, but in
some ways printing with VB.NET is more complicated than it used to be. The .NET Framework
introduced mechanisms for generating printouts, but printing from within a VB application isn’t
trivial. As you already know, there’s no control with built-in printing capabilities. It would be nice
if certain controls, like the TextBox or the TreeView control, would print their contents, but this
is not the case. The VB6 version of the RichTextBox control provided a printing method (the
SelPrint method), which is no longer supported by the new version of the control that comes
with VB.NET. If you want to print a few text paragraphs entered by the user on a TextBox con-
trol, you must provide your own code for that.

Printing with VB isn’t really complicated, but it requires a lot of code—most of it calling
graphics methods. You must carefully calculate the coordinates of each graphic element placed on
the paper, take into consideration the settings of the printer and the current page, and start a new
page when the current one is filled. It’s like generating graphics for the monitor, so you need a
basic understanding of the graphics methods, even if you’re only going to develop business appli-
cations. If you need to generate elaborate printouts, I would suggest that you look into third-
party controls with built-in printing capabilities. In this chapter, you will find all the information
you need, but before you decide to generate your own reports, weigh the complexity of your code
versus a specialized tool. On the other hand, if you can group your project’s printouts into a few
different types with common characteristics, you can then develop a class for each type of report
and reuse these classes to produce all the printouts.

The first step in adding printing capabilities to an application is to decide what it is that you
want to print and then design an application that allows users to specify what they want to print.
The simplest printing job is to generate a printout from the contents of a TextBox control. Even
this seemingly trivial task requires that you break the text lines, make sure that they’re confined
within the page’s margins, detect when you have reached the end of the page, and start a new page
as needed. You can’t even take for granted things like printing page numbers at the bottom of the
page or the document’s title at the top of the page.

2877c15.qxd 11/11/01 4:20 PM Page 699

http://www.sybex.com

Printing simple reports (tabular data) is another common printing task. You can draw an outline
of the printout on paper and then implement it with VB code. The data will most likely come from
a database, so you don’t really need to create an application with an elaborate interface. Printing
graphics is straightforward—but not typical in business applications. All the graphics commands
you use to generate a graphic on the screen can be applied to the printer as well. The most compli-
cated case is the printing of formatted text.

The examples of this section will address many of your day-to-day needs, and I’m including
examples that will serve as your starting point for some of the most typical printing needs, from
printing tabular data to bitmaps.

VB6 ➠ VB.NET

VB6 included some mechanisms to simplify the generation of simple printouts. These mechanisms are no
longer available. On the plus side, VB.NET provides a unified approach for generating all types of printouts.
Generating a preview, for example, is no longer a separate process. Whether you print on a printer or in
the preview pane, the process is identical.

The Printing Objects
We’ll start our exploration of Visual Basic’s printing capabilities with an overview of the printing
process, which is the same no matter what you print. Printing with VB.NET is equivalent to drawing
on a Form or PictureBox object. VB.NET introduced several controls for generating output for the
printer, and here’s a quick overview of these objects (you’ll find more information on these objects
and examples in the following sections). You don’t need to use all these objects in your project. Only
the PrintDocument object is required, and you will have to master the members of this control.

PrintDocument
This object represents your printer, and you must add a PrintDocument control to any project that
generates printer output. In effect, everything you draw on the PrintDocument object is sent to the
printer. The PrintDocument object represents the printing surface, and it exposes a Graphics object.
You can program against the Graphics object using all the methods discussed in Chapter 14. If you
can create drawings on a form, you can just as easily print them on your printer. To print text, for
example, you must call the DrawString method. To print headers and footers, you supply the text to
be printed, the coordinates on the page where the string will be printed, and the font in which the string
will be rendered. You can also print frames around the text with the DrawLine or DrawRectangle
method. In general, you can use all the methods of the Graphics object to prepare the printout.

To send something to the printer, you must first add an instance of the PrintDocument control
to the project. This control is invisible at runtime, and its icon will appear on the Components tray
at design time. When you’re ready to print, call the PrintDocument object’s Print method. This
method isn’t going to produce any output, but it will raise the PrintPage event. This is where you
must insert the code that generates output for the printer. The PrintPage event passes the e argu-
ment, which exposes the Graphics property of the current Printer object, among other members.

Chapter 15 PRINTING WITH VB.NET700

2877c15.qxd 11/11/01 4:20 PM Page 700

http://www.sybex.com

This is same object we used in the previous chapter to generate all kinds of graphics. The printer has
its own Graphics object, which represents the page you print on. All the methods that generate
graphics can be applied to the printer’s Graphics object to print graphics on the page. The following
statement initiates the printing:

PrintDocument1.Print

This statement is usually placed in a button’s or a menu item’s Click event handler. To experi-
ment with simple printouts, create a new project, place a button on the form, and add an instance of
the PrintDocument object to the project. Enter the previous statement in the button’s Click event
handler.

After the execution of this statement, the PrintDocument1_PrintPage event handler takes over.
This event is fired for each page, so you insert the code to print the first page in this event’s handler.
If you need to print additional pages, you set the e.HasMorePages property to True just before you
exit the event handler. This will fire another PrintPage event. The same process will repeat until
you’ve printed everything. When you’ve finished, you set the e.HasMorePages property to False, and
no more PrintPage events will be fired. Figure 15.1 outlines the printing process.

The code in Listing 15.1 shows the structure of a typical PrintPage event handler. The PrintPage
event handler prints three pages with the same text and a different page number on each page.

Listing 15.1: A Simple PrintPage Event Handler

Private Sub PrintDocument1_PrintPage(ByVal sender As Object, _
ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
Handles PrintDocument1.PrintPage

Static pageNum As Integer

Initialize the printing process… and program these events to handle the printing.

PrintDocument.Print

Event Handlers

BeginPrint
Insert initialization code here

PrintPage
Insert code to print next page

EndPrint
Insert clean-up code here

HasMorePages = True

HasMorePages = False

Figure 15.1

All printing takes
place in the Print-
Page event handler of
the PrintDocument
object.

701THE PRINTING OBJECTS

2877c15.qxd 11/11/01 4:20 PM Page 701

http://www.sybex.com

Dim prFont As New Font(“Verdana”, 24, GraphicsUnit.Point)
e.Graphics.DrawString(“PAGE “ & pageNum + 1, prFont, _

Brushes.Black, 700, 1050)
e.Graphics.DrawRectangle(Pens.Blue, 0, 0, 300, 100)
e.Graphics.DrawString(“Printing with VB.NET”, prFont, _

Brushes.Black, 10, 10)
‘ Add more printing statements here
‘ Following is the logic that determines whether we’re done printing

pageNum = pageNum + 1
If pageNum <= 3 Then

e.HasMorePages = True
Else

e.HasMorePages = False
End If

End Sub

Notice that the page number is printed at the bottom of the page, but the corresponding state-
ment is the first one in the subroutine. I’m assuming you’re using an letter-size page, so I’ve hard-
coded the coordinates of the various elements in the code. Later in this chapter, you’ll learn how to
take into consideration not only the dimensions of the physical page but its orientation, too.

You can draw anywhere you like on the page. The PrintDocument object accumulates all the
graphics commands and sends them to the printer when the PrintPage event handler terminates. So,
the order in which you place the various elements on the page doesn’t matter. You can also draw
overlapping shapes, like placing text over a bitmap or drawing arrows over a chart.

The code of Listing 15.1 prints three pages, with the same text and different page numbers.
While there are more pages to be printed, the program sets the e.HasMorePages property to True.
After printing the last page, it sets the same argument to False to prevent further invocations of the
PrintPage event. Note that the pageNum variable was declared as static, so that it will retain its value
between calls.

The entire printout is generated by the same subroutine, one page at a time. Because pages are not
totally independent of one another, we need to keep some information in variables that are not ini-
tialized every time the PrintPage event handler is executed. The page number, for example, must be
stored in a variable that will maintain its value between successive invocations of the PrintPage event
handler, and it must be increased every time a new page is printed. If you’re printing a text file, you
must keep track of the current text line, so that each page will pick up where the previous one ended
and not from the beginning of the document. You can use static variables or declare variables on the
form’s level, whatever suits you best. This is a recurring theme in programming the PrintPage event,
and you’ll see many more examples of this technique in the following sections.

PrintDialog
The PrintDialog control displays the standard Print dialog box, shown in Figure 15.2, which allows
users to select a printer and set its properties. If you don’t display this dialog box, the output will be
sent automatically to the default printer and will use the default settings of the printer. The Print

Chapter 15 PRINTING WITH VB.NET702

2877c15.qxd 11/11/01 4:20 PM Page 702

http://www.sybex.com

dialog box was discussed in Chapter 7, and you already know how to retrieve the selected printer, as
well as the settings specified by the user, in the dialog box. In this chapter, you’ll see how to use these
settings in the code that generates output for the printer.

Among other settings, the Print dialog box allows you to specify the range of pages to be printed.
Before allowing users to select a range of pages, be sure that you have a way to skip any number of
pages. If the user specifies pages 10 through 19, your code must calculate the section of the docu-
ment that would normally be printed on the first nine pages, skip it, and start printing after that. If
the printout is a report with a fixed number of rows per page, skipping pages is trivial. If the print-
out contains formatted text, you must repeat all the calculations to generate the first nine pages and
ignore them (skip the statements that actually print the graphics). Starting a printout at a page other
than the first one can be a challenge.

When you select a printer from this dialog box, it automatically becomes the active printer and
any printout generated after the selection of the printer will be sent to this printer; you don’t have to
insert any code to switch printers.

The actual printer to which you will send the output of your application is almost transparent to
the printing code. The same commands will generate the same output on any printer. If you’re using
a color printer, you may insert additional code to generate colored output. If you’re using a plotter,
you’ll also want to print all the components of the same color together, to minimize the time spent
by the plotter in changing pens. For the most common printers—that is, ink-jet and PostScript
printers—you don’t have to modify a single statement. The same code will work with all printers.

It is also possible to set the printer from within your code with a statement like the following:

PrintDocument1.PrinterSettings.PrinterName = printer

where printer is the name of one of the installed printers. For more information on selecting a printer
form within your code, see the section “Printer and Page Properties,” later in this chapter. There are
situations where you want to set a printer from within your code and not give users a chance to
change it. An application that prints invoices and reports, for example, must use a different printer
for each type of printout.

Figure 15.2

The Print dialog box

703THE PRINTING OBJECTS

2877c15.qxd 11/11/01 4:20 PM Page 703

http://www.sybex.com

PageSetupDialog
This control displays the Page Setup dialog box, which allows users to set up the page (its orientation
and margins). The dialog box, shown in Figure 15.3, returns the current page settings in a PageSettings
object, which exposes the user-specified settings as properties. These settings don’t take effect on their
own; you simply examine their values and take them into consideration as you prepare the output for
the printer from within your code. The PageSetup dialog box is shown in Figure 15.3. As you can see,
there aren’t many parameters to set on this dialog box, but you should display it and take into account
the settings specified by the user.

To display this dialog box in your application, you must drop the PageSetupDialog control on
the Form and then call its ShowDialog method. The single property of this control you’ll be using
exclusively in your projects is the PageSettings property. PageSettings is an object that exposes a
number of properties reflecting the current settings of the page (margins and orientation). These set-
tings apply to an entire document. The PrintDocument object has an analogous property, the
DefaultPageSettings property. After the user closes the PageSetup dialog box, we assign its PageSet-
tings object to the DefaultPageSettings object of the PrintDocument object to make the user-speci-
fied settings available to our code. Here’s how we usually display the dialog box from within our
application and retrieve its PageSettings property:

PageSetupDialog1.PageSettings = PrintDocument1.DefaultPageSettings
If PageSetupDialog1.ShowDialog() = DialogResult.OK Then _

PrintDocument1.DefaultPageSettings = PageSetupDialog1.PageSettings

Notice that first line that initializes the dialog box is mandatory. If you attempt to display the
dialog box without initializing its PageSettings property, an exception will be thrown. You will find
more information on the PageSettings object later in this chapter, and we’ll use it in most of the
examples of this chapter.

The statements that manipulate the printing objects can get fairly lengthy. It’s common to use the
With structure to make the statements shorter. The last example can also be coded as follows:

With PageSetupDialog1
.PageSettings = PrintDocument1.DefaultPageSettings
If .ShowDialog() = DialogResult.OK Then _

PrintDocument1.DefaultPageSettings = .PageSettings
End With

Figure 15.3

The Page Setup
dialog box

Chapter 15 PRINTING WITH VB.NET704

2877c15.qxd 11/11/01 4:20 PM Page 704

http://www.sybex.com

PrintPreviewDialog
This is another dialog box that displays a preview of the printed document. It exposes a lot of function-
ality and allows users to examine the output and, when they’re happy with it, send it to the printer. The
Print Preview dialog, shown in Figure 15.4, is made up of a preview pane, where you can display one or
more pages at the same time at various magnifications, and a toolbar. The buttons on the toolbar allow
you to select the magnification, set the number of pages that will be displayed on the preview pane,
move to any page of a multi-page printout, and send the preview document to the printer.

Once you’ve written the code to generate the printout, you can direct it to the PrintPreview con-
trol. You don’t have to write any additional code; just place an instance of the control on the form
and set its Document property to the PrintDocument control on the form. Then show the control
instead of calling the Print method of the PrintDocument object:

PrintPreviewDialog1.Document = PrintDocument1
PrintPreviewDialog1.ShowDialog

After the execution of these two lines, the PrintDocument object takes over. It fires the PrintPage
event as usual, but it sends its output to the preview dialog box and not to the printer. The dialog box
contains a Print button, which the user can click to send the document being previewed to the printer.
The exact same code that generated the preview document will print the document on the printer.

The PrintPreview control will save you a lot of paper and toner while you’re testing your printing
code because you don’t have to actually print every page to see what it looks like. Since the same code
generates both the preview and the actual printed document, and the Print Preview option adds a profes-
sional touch to your application, there’s no reason why you shouldn’t add this feature to your projects.

Tip The PrintPreview control generates output that would normally appear to the default printer (or the printer selected
in the Print dialog box). If this printer is a networked printer that your computer can’t access at the time, the Print Pre-
view dialog box will not be displayed. Instead, an exception will be thrown, which you must catch from within your code.

Figure 15.4

The Print Preview
dialog box

705THE PRINTING OBJECTS

2877c15.qxd 11/11/01 4:20 PM Page 705

http://www.sybex.com

The first example of this chapter, discussed a few pages earlier in Listing 15.1, prints three simple
pages to the printer. To redirect the output of the program to the PrintPreview control, replace the
statement that calls the PrintDocument1.Print method in the button’s Click event handler with the
following statements:

PrintPreviewDialog1.Document = PrintDocument1
PrintPreviewDialog1.ShowDialog

If you run the project, this time you’ll be able to preview the document on your monitor. If you’re
satisfied with its appearance, you can click the Print button to send the document to the printer. As
you can see, providing a Print Preview feature is really trivial. All the work is done by the Print-
PreviewDialog control.

To avoid runtime errors, you can use the following exception handler:

Try
PrintPreviewDialog1.Document = PrintDocument1
PrintPreviewDialog1.ShowDialog

Catch exc As Exception
MsgBox “The printing operation failed” & vbCrLf & exc.Message

End Try

PrintPreviewControl
The PrintPreviewControl control is the preview pane of the Print Preview dialog box. The control
has no buttons, and you must provide your own interface to allow users to navigate through the doc-
ument’s pages or change the current magnification. There are no compelling reasons to use this con-
trol, but it’s an alternative to the PrintPreviewDialog control. Once you’ve understood how the
PrintPreviewDialog control works, you will find it easy to program to control and preview the docu-
ments on a form of your own.

At this point, you’d expect to see some more examples of printing. However, there are a few more
objects we’ll be using in our examples, and I must discuss them before I can show you some non-
trivial examples. Please bear with me for a few more pages and you’ll find several examples of com-
mon printing tasks shortly. In the next two sections, you’ll learn how to retrieve the dimensions of
the page in the printer and how to specify coordinates on the page. This will allow you to generate
printouts that are not tied to a specific page size and/or orientation.

Printer and Page Properties
One of the most common tasks in generating printouts is to retrieve the settings of the current
printer and page, and this is a good place to present the members of these two objects, as we’ll use
them extensively in the examples of the following sections. The properties of these two items are
reported to your application through the PrinterSettings and the PageSettings objects. The PageSet-
tings object is a property of the PrintPageEventArgs class, and you can access it through the e argu-
ment of the PrintPage event handler. The DefaultPageSettings property of the PrintDocument
object is an object, which exposes the current page’s settings.

Chapter 15 PRINTING WITH VB.NET706

2877c15.qxd 11/11/01 4:20 PM Page 706

http://www.sybex.com

The PrinterSettings object is a property of the PrintDocument object, as well as a property of the
PageSetupDialog and PrintDialog controls. Finally, one of the properties exposed by the PageSettings
object is the PrinterSettings object. These two objects provide all the information you may need about
the selected printer and the current page through the properties listed in Tables 15.1 and 15.2.

Table 15.1: The Properties of the PageSettings Object

Property Description

Bounds Returns the bounds of the page (Bounds.Width and Bounds.Height). If the current
orientation is landscape, the width is larger than the height.

Color Returns, or sets, a True/False value indicating whether the current page should be
printed in color. On a monochrome printer, this property is always False.

Landscape A True/False value indicating whether the page is printed in landscape or portrait
orientation.

Margins The margins for the current page (Margins.Left, Margins.Right,
Margins.Bottom, and Margins.Top).

PaperSize The size of the current page (PaperSize.Width and PaperSize.Height).

PaperSource The page’s paper tray.

PrinterResolution The printer’s resolution for the current page.

PrinterSettings This property returns, or sets, the printer settings associated with the page. For more
information on the PrinterSettings object and the properties it exposes, see the follow-
ing table.

Table 15.2: The Members of the PrinterSettings Object

Member Description

InstalledPrinters This method retrieves the names of all printers installed on the computer. The
same printer names also appear in the Print dialog box, where the user can select
any one of them.

CanDuplex A read-only property that returns a True/False value indicating whether the
printer supports double-sided printing.

Collate Another read-only property that returns a True/False value indicating whether
the printout should be collated or not.

Copies This property returns the requested number of copies of the printout.

DefaultPageSettings This property is the PageSettings object that returns, or sets, the default page set-
tings for the current printer.

Duplex This property returns, or sets, the current setting for double-sided printing.

Continued on next page

707PRINTER AND PAGE PROPERTIES

2877c15.qxd 11/11/01 4:20 PM Page 707

http://www.sybex.com

Table 15.2: The Members of the PrinterSettings Object (continued)

Member Description

FromPage, ToPage The printout’s starting and ending pages, as specified in the Print dialog box by
the user.

IsDefaultPrinter Returns a True/False value indicating whether the selected printer (the one iden-
tified by the PrinterName property) is the default printer. Note that selecting a
printer other than the default one in the Print dialog box doesn’t change the
default printer.

IsPlotter Returns a True/False value indicating whether the printer is a plotter.

IsValid Returns a True/False value indicating whether the PrinterName corresponds to a
valid printer.

LandscapeAngle Returns an angle, in degrees, by which the portrait orientation must be rotated to
produce the landscape orientation.

MaximumCopies Returns the maximum number of copies that the printer allows you to print at
a time.

MaximumPage Returns, or sets, the largest value the FromPage and ToPage properties can have.

MinimumPage Returns, or sets, the smallest value the FromPage and ToPage properties can have.

PaperSizes Returns all the paper sizes that are supported by this printer.

PaperSources Returns all the paper source trays on the selected printer.

PrinterName Returns, or sets, the name of the printer to use.

PrinterResolutions Returns all the resolutions that are supported by this printer.

PrintRange Returns, or sets, the numbers of the pages to be printed, as specified by the user.
When you set this property, the value becomes the default setting when the Print
dialog box is opened.

SupportsColor Returns a True/False value indicating whether this printer supports color printing.

CreateMeasurementGraphics Returns a Graphics object that contains printer information you can use in the
PrintDocument.Print event handler.

To retrieve the names of the installed printers, use the InstalledPrinters collection of the Printer-
Settings object. This collection contains the names of the printers as strings, and you can access them
with the following loop:

Dim i As Integer
With PrintDocument1.PrinterSettings.InstalledPrinters

For i = 0 To .Count – 1
Console.WriteLine(.Item(i))

Next
End With

Chapter 15 PRINTING WITH VB.NET708

2877c15.qxd 11/11/01 4:20 PM Page 708

http://www.sybex.com

These statements will produce output like the following when executed:

Fax
HPLaser
\\EXPERT\XEROX

The first two printers are local (Fax isn’t even a printer; it’s a driver for the fax and it’s installed
by Windows). The last printer’s name is XEROX and it’s a network printer, connected to the
EXPERT workstation.

You can also change the current printer by setting the PrinterName property of the PrinterSet-
tings property with either of the following statements:

PrintDocument1.PrinterSettings.PrinterName = “HPLaser”
PrintDocument1.PrinterSettings.PrinterName = _

PrintDocument1.PrinterSettings.InstalledPrinters(1)

Another property that needs additional explanation is the PrinterResolution object. The Printer-
Resolution object provides the Kind property, which returns, or sets, the current resolution of the
printer, and its value is one of the PrinterResolutionKind enumeration’s members: Custom, Draft,
High, Low, and Medium. To find out the exact horizontal and vertical resolutions, read the X and Y
properties of the PrinterResolution object. When you set the PrinterResolution.Kind property to
Custom, you must specify the X and Y properties.

Note that the PrinterResolution object is a property of the PageSettings object. The Printer-
Settings object exposes a similarly named object, the PrinterResolutions property. This property is a
collection that returns all resolution kinds, which are the members of the PrinterResolutionKind
enumeration.

Page Geometry
Printing on a page is similar to generating graphics on your screen. Like the drawing surface on the
monitor (the client area), the page on which you’re printing has a fixed size and resolution. The
most challenging aspect of printing is the calculation of the coordinates, where each graphic element
will appear. In business applications, the most common elements are strings (rendered in various
fonts, styles, and sizes), lines, and rectangles, which are used as borders for tabular data. Although
you can print anywhere on the page (if you want, you can start filling the page from the bottom up),
we usually print one element at a time, calculate the space it takes on the page, and then print the
next element next or below it. Printing code makes heavy use of the MeasureString method, and
nearly all of the examples in this chapter make use of this method.

The printable area is determined by the size of the paper you’re using, and in most cases it’s
8.5×11 inches (keep in mind that most printers can’t print near the edge of the page). Printed pages
have a margin on all four sides, and you can set a different margin on every side. The user determines
the margins through the Page Setup dialog box, and your program is confined to drawing within the
specified margins.

You can access the current page’s margins through the Margins property of the PrintDocument1
.DefaultPageSettings object. This object exposes the Left, Right, Top, and Bottom properties,
which are the values of the four margins. The margins, as well as the page coordinates, are expressed in
hundredths of an inch. The width of a standard letter-sized page, for example, is 8,500 units and its height

709PRINTER AND PAGE PROPERTIES

2877c15.qxd 11/11/01 4:20 PM Page 709

http://www.sybex.com

is 11,000 units. Of course, you can use non-integer values for even greater granularity, but you won’t
see two straight lines printed at less than one hundredth of an inch apart. You can use other units,
which are all members of the PageUnit enumeration, which was discussed in the previous chapter.

Note In the examples of this chapter, I’m using the default units, and since there are 100 units in an inch, all the
variables that represent coordinates and sizes are declared as Integer. You can also declare them as Single, but a fraction of
a hundredth of an inch isn’t going to make any difference in your printout.

Another property exposed by the DefaultSettings object is the PageSize property, which in turn
exposes the Width and Height properties. The width and height of the page are given by the follow-
ing expressions:

PrintDocument1.DefaultPageSettings.PaperSize.Width
PrintDocument1.DefaultPageSettings.PaperSize.Height

The top of the page is at coordinates (0, 0), which corresponds to the top-left corner of the page.
We never actually print at this corner. The coordinates of the top-left corner of the printable area of
the page are given by the following expressions:

PrintDocument1.DefaultPageSettings.Margins.Top
PrintDocument1.DefaultPageSettings.Margins.Left

VB.NET at Work: The SimplePrintout Project

Let’s start with a very simple application that prints a string at the top-left corner of the page (the
origin of the page) and a rectangle that delimits the page’s printable area. To print something, start
by dropping the PrintDocument object on your form. An instance of the control will appear in the
Components tray, as this control is invisible at runtime. Then place a button on the form and in its
Click event handler enter the following statement:

PrintDocument1.Print()

This tells the PrintDocument object that you’re ready to print. The PrintDocument object will
fire the BeginPrint event, where you can place any initialization code. Then, it will fire the PrintPage
event, whose definition is

Private Sub PrintDocument1_PrintPage(ByVal sender As Object, _
ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
Handles PrintDocument1.PrintPage

End Sub

This event doesn’t signal an external action; it’s the PrintDocument object’s way of receiving your
printing statements (it tells the application “I’m ready to print another page, so please tell me what
to print”). As implied by its name, the PrintPage event is fired once for each page. You must place
the VB code required to produce the desired output in this event’s handler. So, how do we access the
printer from within this event?

The e argument exposes several members, the most important of them being the Graphics prop-
erty. The e.Graphics property is a Graphics object, which you can use to draw on the page. Any-
thing you draw on this object is printed on paper. As you recall from the previous chapter, the

Chapter 15 PRINTING WITH VB.NET710

2877c15.qxd 11/11/01 4:20 PM Page 710

http://www.sybex.com

e.Graphics object represents the drawing surface. When printing, the same object represents the
paper in your printer’s tray.

Let’s start by printing a single word at the origin of the page, which is its top-left corner. To draw
a string, call the Graphic object’s DrawString method, as shown here:

Dim pFont As Font
pFont = New Font(“Comic Sans MS”, 20)
e.Graphics.DrawString(“ORIGIN”, pFont, Brushes.Black, 0, 0)

The last two arguments of the DrawString method are the coordinates of a point, where the string
will be printed. As you notice, the string is printed below the origin so that it’s visible. If you attempt
to print a string at the bottom-right corner of the page, the entire string will fall just outside the page
and no visible output will be produced.

No matter what your default printer is, it’s highly unlikely that it’s been set to no margins. As you
can see, the page’s margins aren’t enforced by the PrintDocument object; you must respect them
from within your code, as it is possible to print anywhere on the page. To take into consideration
the page’s margins, change the coordinates from (0, 0) to the left and top margins.

You can also use the other members of the Graphics object, as you did in the previous chapter to
generate graphics. The following statement will render the text on the page using an anti-alias tech-
nique (anti-aliased text looks much smoother than text rendered with the default method):

e.Graphics.TextRenderingHint = Drawing.Text.TextRenderingHint.AntiAlias

Next, we’ll print a rectangle around the area of page in which we’re allowed to print—a rectangle
delimited by the margins of the page. To draw this rectangle, we need to know the size of all four
margins, and the size of the page, obviously. To read (or set) the page’s margins, use the PrintDocu-
ment1.DefaultPageSettings.Margin object, which provides the Left, Right, Top, and Bottom prop-
erties. We’re also going to need the dimensions of the page, which we can read through the Width
and Height properties of the PrintDocument1.DefaultPageSettings.PaperSize object. The four
margins are calculated and stored in four variables with the following statements:

Dim Lmargin, Rmargin, Tmargin, Bmargin As Integer
With PrintDocument1.DefaultPageSettings.Margins

Lmargin = .Left
Rmargin = .Right
Tmargin = .Top
Bmargin = .Bottom

End With

The rectangle we want to draw should start at the point (Lmargin, Tmargin) and extend PrintWidth
units to the right and PrintHeight units down. These two variables are the width and height of the
page minus the respective margins, and they’re calculated with the following statements:

Dim PrintWidth, PrintHeight As Integer
With PrintDocument1.DefaultPageSettings.PaperSize

PrintWidth = .Width - Lmargin - Rmargin
PrintHeight = .Height - Tmargin - Bmargin

End With

711PRINTER AND PAGE PROPERTIES

2877c15.qxd 11/11/01 4:20 PM Page 711

http://www.sybex.com

Then insert the following statements in the PrintPage event handler to draw the rectangle:

Dim R As Rectangle
R = New Rectangle(Lmargin, Tmargin, PrintWidth, PrintHeight)
e.Graphics.DrawRectangle(Pens.Black, R)

You’ve seen all the statements that will generate the desired output and they’re all familiar to you
from the previous chapter. You will find these statements in the SimplePrintout project, which con-
sists of a form with a button. In summary, here’s how you’ll build the SimplePrintout project from
scratch. First, create the interface (a single button on the form will suffice). Then drop an instance
of the PrintDocument control on the form. This control must exist on every form that sends data to
the printer. The code behind the button initiates the printing with the following statement:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

PrintDocument1.Print()
End Sub

The action takes place from within the PrintPage event handler, which is shown in Listing 15.2. The
event handler contains all the statements presented in the previous paragraphs and a few comments.

Listing 15.2: Generating a Simple Printout

Private Sub PrintDocument1_PrintPage(ByVal sender As Object,_
ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
Handles PrintDocument1.PrintPage

‘ Turn on antialias for text
e.Graphics.TextRenderingHint = Drawing.Text.TextRenderingHint.AntiAlias

‘ Print a string at the origin
Dim pFont As Font
pFont = New Font(“Comic Sans MS”, 20)
e.Graphics.DrawString(“ORIGIN”, pFont, Brushes.Black, 0, 0)

‘ Read margins into local variables
Dim Lmargin, Rmargin, Tmargin, Bmargin As Integer
With PrintDocument1.DefaultPageSettings.Margins

Lmargin = .Left
Rmargin = .Right
Tmargin = .Top
Bmargin = .Bottom

End With
‘ Calculate the dimensions of the printable area

Dim PrintWidth, PrintHeight As Integer
With PrintDocument1.DefaultPageSettings.PaperSize

PrintWidth = .Width - Lmargin - Rmargin
PrintHeight = .Height - Tmargin - Bmargin

End With
‘ Now print the rectangle

Dim R As Rectangle
R = New Rectangle(Lmargin, Tmargin, PrintWidth, PrintHeight)
e.Graphics.DrawRectangle(Pens.Black, R)

End Sub

Chapter 15 PRINTING WITH VB.NET712

2877c15.qxd 11/11/01 4:20 PM Page 712

http://www.sybex.com

VB.NET at Work: The PageSettings Project

Let’s put together the information presented so far by printing something more elaborate. This
example prints a rectangle bounded by the margins of the page as before. In addition to the rectangle,
it also prints four strings, one in each margin (as seen in Figure 15.5). These strings will have different
orientations, as shown in the following figure. The project that generated the output is called PageSet-
tings, and you will find it in this chapter’s folder on the CD. The same project also demonstrates how
to display the PageSetup dialog box from within your code and generate a printout according to the
settings on this dialog box. It may not be the most practical example, but it demonstrates some basic
printing techniques.

The statements of the previous example print a rectangle enclosing the printable area of the page.
Printing the labels is a bit involved. As you can see, the four strings appear in all four orientations,
and therefore some rotation transformation is involved. We’ll discuss the code for printing the cap-
tions later. For now, let’s demonstrate the PageSetupDialog control and how you take the settings
on this dialog box from within your code.

Setting Up the Page

To display this dialog box from within your code, first place an instance of the PageSetupDialog
control on your form—it will actually appear in the Components tray below the form, because it’s
invisible at runtime. Then set its PageSettings property to a PageSettings object that contains the
default settings for the printer. We usually set this property to the DefaultPageSettings property of
the PrintDocument object, although you can create a new PageSettings object and set its properties
from within your code. Finally, display the dialog box by calling its ShowDialog method:

PageSetupDialog1.PageSettings = PrintDocument1.DefaultPageSettings
PageSetupDialog1.ShowDialog()
PrintDocument1.DefaultPageSettings = PageSetupDialog1.PageSettings

Figure 15.5

The output of the
PageSettings project

713PRINTER AND PAGE PROPERTIES

2877c15.qxd 11/11/01 4:20 PM Page 713

http://www.sybex.com

Upon return, we assign the PageSettings property of the control to the DefaultPageSettings prop-
erty of the PrintDocument object. Now, we must take into consideration the settings specified on
the dialog box from within the PrintPage event’s code. The area on the page in which you must
restrict your output is a rectangle, with its top-left corner at the left and top margin, and its dimen-
sions are the width and height of the page less the corresponding margins. The only implication is
when the user changes the orientation of the page. When you’re printing in landscape mode, the size
of the paper doesn’t change. If you examine the Width and Height properties of the PaperSize
object, you’ll realize that the page is always taller than it is wide. This means that we must swap the
width and height from within our code. The margins, however, remain the same.

To find out whether the user has changed the page’s orientation, examine the Landscape property
of the DefaultPageSettings object. If it’s True, it means that the user wants to print in landscape
mode and you must swap the page’s width and height units. The following statements calculate the
dimensions of the area of the page within the margins, where all the printing will take place, as well
as the new width and height of the page:

If PrintDocument1.DefaultPageSettings.Landscape Then
With PrintDocument1.DefaultPageSettings.PaperSize

PrintWidth = .Height - Tmargin - Bmargin
PrintHeight = .Width - Rmargin - Lmargin
PageWidth = .Height
PageHeight = .Width

End With
End If

If you run the PageSettings project now, you will see that it prints the string “ORIGIN” at the
top-left corner of the page, regardless of the page’s orientation. These few statements in effect turn
around the “image” of the printout, and the rest of the code will work in either orientation.

Printing the Labels

Now we can focus on the code that prints the captions in the space of the four margins, which is
considerably more elaborate. The top margin’s caption isn’t rotated; it’s printed at the default orien-
tation. The caption in the right margin is rotated by 90 degrees, and the caption of the bottom mar-
gin is rotated by 180 degrees. The caption of the left margin is rotated by –90 degrees. These
rotations take place around the origin, so the labels must also be moved to their places with a trans-
lation transformation.

Let’s look at the code that prints the “Right Margin String” caption, shown in Listing 15.3. The
following statements are responsible for printing the caption in the right margin. They make use of
the variables that hold the margins and the page’s dimensions, which were discussed already.

Listing 15.3: Printing a Caption in the Right Margin

strWidth = e.Graphics.MeasureString(RMarginCaption, pFont).Width
strHeight = e.Graphics.MeasureString(RMarginCaption, pFont).Height
X = PageWidth - (Rmargin - strHeight) / 2
Y = TMargin + (PrintHeight - strWidth) / 2
e.Graphics.ResetTransform()

Chapter 15 PRINTING WITH VB.NET714

2877c15.qxd 11/11/01 4:20 PM Page 714

http://www.sybex.com

e.Graphics.TranslateTransform(X, Y)
e.Graphics.RotateTransform(90)
e.Graphics.DrawString(RMarginCaption, pFont, Brushes.Black, 0, 0)

First we calculate the string’s width and height. The string will be rotated by 90 degrees before
being printed. The rotation alone would place the string just outside the left margin, so we must
translate it to the right. The amount of the translation is the page’s width minus half the difference
between the string’s height and the right margin. Translating the caption by the width of the page
would bring it to the very right edge of the paper. To center it in the right margin, we must split the
difference of the string’s height from the right margin on either side of the string. We’re using the
string’s height in calculating the X coordinate and the string’s width in calculating the Y coordinate,
because after the string is rotated by 90 degrees, the width and height will be swapped. X and Y are
the amounts by which the string must be moved along the horizontal and vertical axis. This move-
ment will be performed by a translation transformation. The rotation of the string will be performed
by a rotation transformation (for more information on transformations, see Chapter 14). Because
transformations are cumulative, the code resets any existing transformations and applies two new
ones. Then, the DrawString method is called to print the string. The DrawString method draws the
string at the point (0, 0), but the two transformations will place it at the proper place.

The code for placing the other three captions is quite analogous. It uses the proper translation
and rotation transformations, and the only complication is the calculation of the coordinates of the
translation transformation. The listing of the PrintPage event handler of the PageSettings project is
fairly lengthy, but it’s included in Listing 15.4 for your convenience.

Listing 15.4: Printing the Rectangle and the Margin Captions

Private Sub PrintDocument1_PrintPage(ByVal sender As Object, _
ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
Handles PrintDocument1.PrintPage

Dim R As Rectangle
Dim strWidth, strHeight As Integer
Dim pFont As Font
pFont = New Font(“Comic Sans MS”, 20)
e.Graphics.DrawString(“ORIGIN”, pFont, Brushes.Black, 0, 0)
pFont = New Font(“Comic Sans MS”, 40)
Dim X, Y As Integer
Dim TMarginCaption As String = “Top Margin String”
Dim LMarginCaption As String = “Left Margin String”
Dim RMarginCaption As String = “Right Margin String”
Dim BMarginCaption As String = “Bottom Margin String”
Dim LMargin, RMargin, TMargin, BMargin As Integer
With PrintDocument1.DefaultPageSettings.Margins

LMargin = .Left
RMargin = .Right
TMargin = .Top
BMargin = .Bottom

715PRINTER AND PAGE PROPERTIES

2877c15.qxd 11/11/01 4:20 PM Page 715

http://www.sybex.com

End With
Dim PrintWidth, PrintHeight, PageWidth, PageHeight As Integer
With PrintDocument1.DefaultPageSettings.PaperSize

PrintWidth = .Width - LMargin - RMargin
PrintHeight = .Height - TMargin - BMargin
PageWidth = .Width
PageHeight = .Height

End With
If PrintDocument1.DefaultPageSettings.Landscape Then

With PrintDocument1.DefaultPageSettings.PaperSize
PrintWidth = .Height - TMargin - BMargin
PrintHeight = .Width - RMargin - LMargin
PageWidth = .Height
PageHeight = .Width

End With
End If

‘ Draw rectangle
R = New Rectangle(LMargin, TMargin, PageWidth - LMargin - RMargin, _

PageHeight - BMargin - TMargin)
e.Graphics.DrawRectangle(Pens.Black, R)

‘ Draw top margin’s caption
strWidth = e.Graphics.MeasureString(TMarginCaption, pFont).Width
strHeight = e.Graphics.MeasureString(TMarginCaption, pFont).Height
X = LMargin + (PrintWidth - strWidth) / 2
Y = (TMargin - strHeight) / 2
e.Graphics.TranslateTransform(X, Y)
e.Graphics.DrawString(TMarginCaption, pFont, Brushes.Black, 0, 0)

‘ Draw right margin’s caption
strWidth = e.Graphics.MeasureString(RMarginCaption, pFont).Width
strHeight = e.Graphics.MeasureString(RMarginCaption, pFont).Height
X = PageWidth - (RMargin - strHeight) / 2
Y = TMargin + (PrintHeight - strWidth) / 2
e.Graphics.ResetTransform()
e.Graphics.TranslateTransform(X, Y)
e.Graphics.RotateTransform(90)
e.Graphics.DrawString(RMarginCaption, pFont, Brushes.Black, 0, 0)

‘ Draw bottom margin’s caption
strWidth = e.Graphics.MeasureString(BMarginCaption, pFont).Width
strHeight = e.Graphics.MeasureString(BMarginCaption, pFont).Height
X = PageWidth - RMargin - (PrintWidth - strWidth) / 2
Y = PageHeight - (BMargin - strHeight) / 2
e.Graphics.ResetTransform()
e.Graphics.TranslateTransform(X, Y)
e.Graphics.RotateTransform(180)
e.Graphics.DrawString(BMarginCaption, pFont, Brushes.Black, 0, 0)

‘ Draw left margin’s caption
strWidth = e.Graphics.MeasureString(LMarginCaption, pFont).Width
strHeight = e.Graphics.MeasureString(LMarginCaption, pFont).Height

Chapter 15 PRINTING WITH VB.NET716

2877c15.qxd 11/11/01 4:20 PM Page 716

http://www.sybex.com

X = (LMargin - strHeight) / 2
Y = TMargin + (PrintHeight + strWidth) / 2
e.Graphics.ResetTransform()
e.Graphics.TranslateTransform(X, Y)
e.Graphics.RotateTransform(-90)
e.Graphics.DrawString(LMarginCaption, pFont, Brushes.Black, 0, 0)

End Sub

As always, you must call the PrintDocument object’s Print method for this event handler to be
activated. You can use the Print method of the PrintDocument object, but the project you’ll find on
the CD uses the PrintPreviewDocument object to display a preview of the printout. Listing 15.5
shows the code behind the button on the form:

Listing 15.5: The Print Button

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Try
PrintPreviewDialog1.Document = PrintDocument1
PageSetupDialog1.PageSettings = PrintDocument1.DefaultPageSettings
PageSetupDialog1.ShowDialog()
PrintDocument1.DefaultPageSettings = PageSetupDialog1.PageSettings
PrintPreviewDialog1.ShowDialog()

Catch exc As Exception
MsgBox(“Printing Operation Failed” & vbCrLf & exc.Message)

End Try
End Sub

The code uses an error handler to prevent the program from crashing with a runtime exception if
there’s a problem with the printer. The application should work if there’s a default printer; it will fail
to generate a preview only if the default printer is a network printer and you have no access to it at
the time.

The first statement sets up the PrintPreview control by setting its Document property to the Print-
Document object. The second statement assigns the default page settings to the PageSetupDialog con-
trol and the following statement displays the Page Setup dialog box. Once the user has specified the
desired settings and closes the dialog box, the new settings are assigned to the PrintDocument object’s
DefaultPageSettings property. The last statement displays the Print Preview dialog box. This statement
initiates the printing process, which sends its output to the preview pane, instead of the printer. That’s
all it takes to add a preview feature to your application. The PrintPreviewDialog control is discussed
later in this chapter.

If you feel uncomfortable with the transformations, especially the rotation transformation,
Figure 15.6 shows what happens to a string when it’s rotated in all four directions around the origin.
The origin—the point with coordinates (0, 0)—is where the two axes meet.

717PRINTER AND PAGE PROPERTIES

2877c15.qxd 11/11/01 4:20 PM Page 717

http://www.sybex.com

The statements in Listing 15.6 rotate the string “GDI+ Graphics” around the origin by 90, 180,
and 270 degrees. The numbers in parentheses indicate the angle of rotation for each string. Of course,
I couldn’t print to the left of the origin, or above the origin, so the rotated strings were translated by
50 percent of the page’s width to the right and 50 percent of the page’s height down to appear at the
middle of the page. The two axes were also translated by the same amounts in the two directions. This
illustration’s purpose is to help you visualize how the string is rotated around the origin. Besides the
string itself, the enclosing rectangle is also printed. This is the rectangle returned by the Measure-
String method, subject to the same transformations as the string it encloses. Listing 15.6 shows the
statements that generated the output shown in Figure 15.6. The project described here is the Rotated-
Strings project, and you will find it in this chapter’s folder on the CD.

Listing 15.6: Rotation and Translation Transformations

Private Sub PrintDocument1_PrintPage(ByVal sender As Object, _
ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
Handles PrintDocument1.PrintPage

Dim Tx, Ty As Integer
‘ Tx, Ty are the coordinates of the center point on the page

Tx = e.PageSettings.PaperSize.Width / 2
Ty = e.PageSettings.PaperSize.Height / 2

‘ Draw a crosshair line at the middle of the page
e.Graphics.DrawLine(New Pen(Color.Red, 2), Tx, 0, Tx, Ty * 2)
e.Graphics.DrawLine(New Pen(Color.Red, 2), 0, Ty, Tx * 2, Ty)
Dim fnt As Font = New Font(“Comic Sans MS”, 24, FontStyle.Bold)
Dim RectSize As SizeF
Dim Rect As Rectangle

‘ Print string without rotation
e.Graphics.TranslateTransform(Tx, Ty)
e.Graphics.DrawString(“GDI+ Graphics (0)”, fnt, Brushes.Black, 0, 0)
RectSize = e.Graphics.MeasureString(“GDI+ Graphics (0)”, fnt)
Rect = New Rectangle(0, 0, RectSize.Width, RectSize.Height)
e.Graphics.DrawRectangle(Pens.Green, Rect)

‘ Print string rotated 90 degrees

Figure 15.6

Rotating a string
around the origin

Chapter 15 PRINTING WITH VB.NET718

2877c15.qxd 11/11/01 4:20 PM Page 718

http://www.sybex.com

e.Graphics.ResetTransform()
e.Graphics.TranslateTransform(Tx, Ty)
e.Graphics.RotateTransform(90)
e.Graphics.DrawString(“GDI+ Graphics (90)”, fnt, Brushes.Black, 0, 0)
RectSize = e.Graphics.MeasureString(“GDI+ Graphics (90)”, fnt)
Rect = New Rectangle(0, 0, RectSize.Width, RectSize.Height)
e.Graphics.DrawRectangle(Pens.Green, Rect)

‘ Print string rotated 270 degrees
e.Graphics.ResetTransform()
e.Graphics.TranslateTransform(Tx, Ty)
e.Graphics.RotateTransform(270)
e.Graphics.DrawString(“GDI+ Graphics (270)”, fnt, Brushes.Black, 0, 0)
RectSize = e.Graphics.MeasureString(“GDI+ Graphics (270)”, fnt)
Rect = New Rectangle(0, 0, RectSize.Width, RectSize.Height)
e.Graphics.DrawRectangle(Pens.Green, Rect)

‘ Print string rotated 180 degrees
e.Graphics.ResetTransform()
e.Graphics.TranslateTransform(Tx, Ty)
e.Graphics.RotateTransform(180)
e.Graphics.DrawString(“GDI+ Graphics (180)”, fnt, Brushes.Black, 0, 0)
RectSize = e.Graphics.MeasureString(“GDI+ Graphics (180)”, fnt)
Rect = New Rectangle(0, 0, RectSize.Width, RectSize.Height)
e.Graphics.DrawRectangle(Pens.Green, Rect)

End Sub

As you know by now, to activate the PrintPage event handler, you must call the Print method of
the PrintDocument object or display the Print Preview dialog box by calling its ShowDialog
method. The following statements display the rotated strings on a Print Preview dialog box:

PrintPreviewDialog1.Document = PrintDocument1
PrintPreviewDialog1.UseAntiAlias = True
PrintPreviewDialog1.ShowDialog()

Printing Examples
Using the Framework’s printing objects is straightforward, in principle. Depending on the type of
the printout you want to generate, however, the code of the PrintPage event handler can get quite
complicated. Since there are no techniques that you can apply to all situations, I’ve included a few
typical examples to demonstrate how to use the same objects to perform very different tasks. The
first example demonstrates how to print tabular reports. A tabular report has the form of a grid, with
columns of different width and rows of different height.

The second example is the printing of text and, even though this is the least exciting type of
printout, you should be able to send text to the printer. As you will see, it’s not a trivial operation.
The last example prints bitmaps, probably the simplest type of printout. The only challenge with
printing bitmaps is that you may have to reduce the size of the bitmap to make it fit in the width, or
the height, of the page.

719PRINTING EXAMPLES

2877c15.qxd 11/11/01 4:20 PM Page 719

http://www.sybex.com

Printing Tabular Data
This is the printing operation you’ll be using most often in typical business applications that require
custom printing. Figure 15.7 shows an example of a printout with tabular data. This printout was
generated by the PrintTable project, which you can find in this chapter’s folder on the CD, and its
code is discussed in detail here.

The ISBN column contains a 10-character string, and it’s quite simple to handle. All you have to
do is make sure that the ISBN will fit in the corresponding column. If you allow the user to select
the font at runtime and you can’t set a fixed width for this column, you should print only as many
characters as will fit in the reserved width. In this example, we aren’t going to do anything special
about the ISBN column.

The Title column has a variable length, and you may have to break long titles into two or more
printed lines—and this is the real challenge of this application. As you recall from the discussion of
the DrawString method in Chapter 14, this method can print a string in a rectangle you pass as an
argument. The width of this rectangle must be the same as the width of the Title column. The height
of the rectangle should be enough for the entire text to fit in it. In our code, we’ll use a rectangle with
the appropriate width and adequate height to make sure that the entire title will be printed. Alternatively,
you can trim the title if it’s too long, but there’s no point in trimming substantial information.

Of course, depending on its length, the title may take up one, two, or even more lines on the page.
You must also keep track of the height of the title’s cell and take it into consideration in printing the
next row of the table.

The last intricacy of this application is the Authors column. Each book may have no authors or
one or more authors, and we’ll print each author on a separate line. As you realize, the total height of

Figure 15.7

Using the Print-
Table application to
print data in a tabu-
lar arrangement

Chapter 15 PRINTING WITH VB.NET720

2877c15.qxd 11/11/01 4:20 PM Page 720

http://www.sybex.com

each row depends on the height of the Title or Author cell. We must keep track of the height of
these two cells and move down accordingly before printing the following row. Where the height
of the Authors cells is determined by the number of authors—we’ll print each author on a single
line and assume that the name does not exceed the width of the page—we must provide the code
to break the title into multiple lines.

So, where does the data come from? It could come from a text file, an XML document, or a data-
base. It doesn’t really make a difference, as long as you can access one row at a time and extract its
fields. For the purposes of this example, and since we haven’t discussed databases yet, I’m using a
ListView control to store the data. The ListView control is populated in the form’s Load event han-
dler. Each book is a different item in the ListView, and the various fields are subitems. The main
item’s Text property is the book’s ISBN, and the remaining fields are stored as subitems. I will not
show the code that populates the ListView control here, just the statements that populate the first
two items. I’ve taken sample data from an online bookstore and, in some cases, edited their titles to
make them long or added fictitious authors. For all intents and purposes, the data used in this sample
application should be considered fictitious.

Dim BookItem As New ListViewItem()
BookItem.Text = “0393049515”
BookItem.SubItems.Add(“The Dream of Reason: “ & _

“A History of Philosophy from the Greeks to the Renaissance”)
BookItem.SubItems.Add(“Anthony Gottlieb”)
ListView1.Items.Add(BookItem)
BookItem = New ListViewItem()
BookItem.Text = “0156445085”
BookItem.SubItems.Add(“In Search of the Miraculous: “ & _

“Fragments of an Unknown Teaching”)
BookItem.SubItems.Add(“P. D. Ouspensky”)
ListView1.Items.Add(BookItem)

You can open the PrintTable project on the CD and examine the code of the button that popu-
lates the ListView control. Once the list has been populated, you can click the Preview & Print but-
ton to generate the preview and print the report. The main form of the PrintTable project, populated
with the data shown in the sample printout, is shown in Figure 15.8.

Figure 15.8

The PrintTable pro-
ject’s main form

721PRINTING EXAMPLES

2877c15.qxd 11/11/01 4:20 PM Page 721

http://www.sybex.com

Formatting the Cells

The report is generated one row at a time. The vertical coordinate of the row is stored in the variable
Y, which is incremented accordingly for each new row. This coordinate applies to all cells, and if a
cell contains multiple lines, the y coordinate is adjusted accordingly for each line. The x coordinate
of each column is the same for all rows. These coordinates are calculated at the beginning and they
don’t change from row to row.

Breaking a string into multiple lines isn’t trivial. You should include as many words as you can on
each line without exceeding the available width. Fortunately, the Graphics object’s MeasureString
method can break a string into the required number of lines to fit the string into a rectangle and
report the number of lines. This form of the MeasureString method is

Graphics.MeasureString(string, font, size, format, cols, lines)

The first argument is the string to be printed, and it will be rendered in the font specified by the
second argument. The size argument is the width and height of the rectangle in which the string must
fit. In our case, the width of the size argument is the width of the cell in which the string must fit.
The last two arguments are the number of characters that will fit across the rectangle and the num-
ber of lines the string must be broken into. Even though we don’t know the height of the rectangle
in advance, we can use an absurdly large value. The MeasureString method will tell us how many text
lines it needs, and we’ll use this value to calculate the height of the rectangle. To calculate the height
of the cell in which the title will fit, the program uses the following statements:

Dim cols, lines As Integer
e.Graphics.MeasureString(strTitle, tableFont, New SizeF(W2, 100), _

New StringFormat(), lines, cols)

strTitle is a string variable that holds the title, and tableFont is the font in which the string will be ren-
dered. W2 is the width of the second column of the grid, where the title appears. This is a fixed
value, calculated ahead of time. The initial height of the rectangle is 100 pixels, and we hope that
even the longest title will fit in this rectangle. You can make the cell even taller, but this sample
project will work as advertised with reasonably sized fields. It is possible for a given cell’s text to be
so long that it will take a page and a half to print. The PrintTable project can’t handle similar
extreme situations. You will have to provide additional code to handle the overflow of a cell to the
following page.

The lines and cols variables are passed by reference, and they are set by the MeasureString method
to the number of lines and number of characters that will fit in the specified rectangle. The exact
location of the rectangle doesn’t make any difference; only its dimensions matter, and that’s why the
third argument is a SizeF object and not a Rectangle object.

Once we have the number of lines it takes for the title to be printed in the specified width, we can
advance the vertical coordinate by the following amount:

lines * tableFont.GetHeight(e.Graphics)

tableFont is the font we use to print the table. Its GetHeight method returns the height of the font
when rendered on the Graphics object passed as argument. This will take care of breaking long titles
into multiple lines, which is the most challenging aspect of the code. The last cell in each row contains

Chapter 15 PRINTING WITH VB.NET722

2877c15.qxd 11/11/01 4:20 PM Page 722

http://www.sybex.com

a line for each author. The following loop goes through all the authors and prints them, each one on a
separate line:

For subitm = 2 To ListView1.Items(itm).SubItems.Count - 1
str = ListView1.Items(itm).SubItems(subitm).Text
e.Graphics.DrawString(str, tableFont, Brushes.Black, X3, Yc)
Yc = Yc + tableFont.Height + 2

Next

The y coordinate of the last author is stored in the variable Yc. To calculate the y coordinate of
the next row of the table, we compare the Y and Yc variables and keep the larger value. This value,
plus a small displacement, is used as the y coordinate for the following line. Listing 15.7 is the com-
plete listing of the PrintPage event handler of the PrintTable project.

Listing 15.7: The PrintPage Event Handler of the PrintTable Project

Private Sub PrintDocument1_PrintPage(ByVal sender As Object, _
ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
Handles PrintDocument1.PrintPage

Y = PrintDocument1.DefaultPageSettings.Margins.Top + 20
e.Graphics.DrawString(“ISBN”, TitleFont, Brushes.Black, X1, Y)
e.Graphics.DrawString(“Title”, TitleFont, Brushes.Black, X2, Y)
e.Graphics.DrawString(“Author(s)”, TitleFont, Brushes.Black, X3, Y)
Y = Y + 30
While itm < ListView1.Items.Count

Dim str As String
str = ListView1.Items(itm).Text
e.Graphics.DrawString(str, tableFont, Brushes.Black, X1, Y)
str = ListView1.Items(itm).SubItems(1).Text
Dim R As New RectangleF(X2, Y, W2, 80)
e.Graphics.DrawString(str, tableFont, Brushes.Black, R)
Dim lines, cols As Integer
e.Graphics.MeasureString(str, tableFont, New SizeF(W2, 50), _

New StringFormat(), cols, lines)
Dim subitm As Integer, Yc As Integer
Yc = Y
For subitm = 2 To ListView1.Items(itm).SubItems.Count - 1

str = ListView1.Items(itm).SubItems(subitm).Text
e.Graphics.DrawString(str, tableFont, Brushes.Black, X3, Yc)
Yc = Yc + tableFont.Height + 2

Next
Y = Y + lines * tableFont.Height + 5
Y = Math.Max(Y, Yc)
With PrintDocument1.DefaultPageSettings

e.Graphics.DrawLine(Pens.Black, .Margins.Left, Y, _
.PaperSize.Width - .Margins.Right, Y)

If Y > 0.95 * (.PaperSize.Height - .Margins.Bottom) Then
e.HasMorePages = True

723PRINTING EXAMPLES

2877c15.qxd 11/11/01 4:20 PM Page 723

http://www.sybex.com

Exit Sub
End If

End With
itm = itm + 1

End While
e.HasMorePages = False

End Sub

The code makes use of a few variables that are declared on the Form level with the following
statements:

Dim tableFont, titleFont As Font
Dim X1, X2, X3 As Integer
Dim W1, W2, W3 As Integer
Dim Y As Integer
Dim itm As Integer

Before we can print, we must specify the widths of the columns. Since we know the information
we’re going to display in each column, we can make a good estimate of the column widths. The first
column, where the ISBN is displayed, starts at the left margin of the page and extends 100 units to
the right. The default unit is 1/100 of an inch, so the ISBN column’s width is 1 inch. The title col-
umn should take up most of the page’s width. In the PrintTable example, I’ve given 50 percent of
the available page width to this column. The remaining space goes to the Author column. The vari-
ables X1, X2, and X3 are the x coordinates of the left edge of each column, while the variables W1,
W2, and W3 are the widths of the columns. These variables are set in the Print button’s Click event
handler. Then, the subroutine displays the PrintPreview dialog box to display the document, as it
will be printed on the page. Listing 15.8 shows the Print button’s Click event handler.

Listing 15.8: Setting Up the Columns and Printing the Table

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

PageSetupDialog1.PageSettings = PrintDocument1.DefaultPageSettings
If PageSetupDialog1.ShowDialog() Then

PrintDocument1.DefaultPageSettings = PageSetupDialog1.PageSettings
End If
tableFont = New Font(“Arial”, 8)
titleFont = New Font(“Arial”, 12, FontStyle.Bold)
X1 = PrintDocument1.DefaultPageSettings.Margins.Left
Dim pageWidth As Integer
With PrintDocument1.DefaultPageSettings

pageWidth = .PaperSize.Width - .Margins.Left - .Margins.Right
End With
X2 = X1 + 100
X3 = X2 + pageWidth * 0.5

Chapter 15 PRINTING WITH VB.NET724

2877c15.qxd 11/11/01 4:20 PM Page 724

http://www.sybex.com

W1 = X2 - X1
W2 = X3 - X2
W3 = pageWidth - X3
PrintPreviewDialog1.Document = PrintDocument1
PrintPreviewDialog1.ShowDialog()
itm = 0

End Sub

The global variables are set in the Print button’s Click event handler, but they’re all declared out-
side any procedure, because they must be accessible by the PrintPage event handler. After setting the
variables, you can call the ShowDialog method of the PrintPreviewDialog control to preview the
document.

The PrintPage event is fired whenever a new page must start. First, we print the header of the
table with the following statements:

Y = PrintDocument1.DefaultPageSettings.Margins.Top + 20
e.Graphics.DrawString(“ISBN”, titleFont, Brushes.Black, X1, Y)
e.Graphics.DrawString(“Title”, titleFont, Brushes.Black, X2, Y)
e.Graphics.DrawString(“Author(s)”, titleFont, Brushes.Black, X3, Y)
Y = Y + 30

titleFont is a Font object that represents the font we use for the table header and is declared on the
Form level. The rest of the program uses the tableFont object, which represents the font in which the
table’s text will be rendered. Here are the declarations of these two objects:

Dim tableFont As Font
tableFont = New Font(“Arial”, 8)
Dim titleFont As Font
titleFont = New Font(“Arial”, 12, FontStyle.Bold)

Then we set up two nested loops. The outer loop goes through all the items on the ListView
control, and the inner loop goes through the subitems of the current item. The structure of the two
loops is the following:

While itm < ListView1.Items.Count
{ print current item }
For subitm = 2 To ListView1.Items(itm).SubItems.Count - 1

{ print all subitems }
Next

End While

The PrintTable project is based on the assumption that the author names will fit in the specified
width. If not, part of the author name will flow over the right margin. You can either break long
author names (similar to breaking the title into multiple lines) or truncate author names. If you want
to print a box around the report, you must definitely truncate the author names, so that they won’t
run over the right margin. Alternatively, you can print the report in landscape mode—you may have
to adjust the widths of the Title and Author columns.

725PRINTING EXAMPLES

2877c15.qxd 11/11/01 4:20 PM Page 725

http://www.sybex.com

The PrintTable project is the starting point for tabular reports, and it demonstrates the core of an
application that prints tables. You will have to add a title to each page, a header and a footer for each
page (with page numbers and dates), and quite possibly a grid to enclose the cells. Experiment with
the PrintTable project by adding more features to it. You can become as creative as you wish with this
application. I should also bring to your attention the fact that the PrintTable application ends the page
when the report’s height exceeds the 95 percent of the page’s printable area. This test takes place
after printing each item. If the last title printed on a page has a dozen different authors, it will run
over the bottom of the page.

Using Static Variables

The PrintPage event handler produces all the pages, one after the other. These pages, however, are
not independent of one another. When you print a long text file, for example, you must keep track
of the pages printed so far or the current line. If you set up a variable that keeps track of the current
line, you shouldn’t reset this variable every time the PrintPage event handler is executed. One way to
maintain the value of a variable between consecutive calls of the same procedure is to declare it with
the Static keyword. Static variables maintain their values between calls, unlike the private variables.

In the PrintTable project, I’ve used the itm variable to keep track of the item being printed. Each
time a page is filled, the PrintPage event handler is terminated and we start printing on a new page.
By making the variable itm static, we’re sure that it won’t be reset every time the PrintPage event han-
dler is entered. Instead, all items are printed sequentially on one or more pages.

Printing Plain Text
In this section we’ll examine a less-exciting operation, the printing of a text file. It should be a trivial
task after the program that prints the tabular reports, but it’s not nearly as trivial as you may think.
But why bother with a simple operation like printing plain text? The reason is that no control has
built-in printing capabilities, and text files are still quite common. Printing formatted text is even
more complicated, so we’ll start with plain text files.

Plain text means that all characters are printed in the same font, size, and style, just like the text
you enter on a TextBox control. Your task is to start a new page when the current page fills and
break the lines at, or before, the left margin. Because the text is totally uniform, you know in advance
the height of each line and you can easily calculate the number of lines per page ahead of time.

If you look up the printing examples that come with Visual Studio, they’re all based on the
assumption that each text line fits across the page. As we all know, this is rarely true. The sample code
provided simply dumps each text line to the printer and is much faster than the code you’ll find in this
section, but it’s of little practical use and here’s why. Text files are made up of lines, which may exceed
by far the width of the page. It’s your responsibility to break the long lines into shorter ones and fit
them on the page. As you know, each paragraph in a text file is a separate line and rarely fits on a
single line on the printed page. The TextBox control, for example, breaks lines according to its width,
and if you resize the control at runtime, the line breaks will be recalculated. Your code must do
exactly that: calculate the proper page breaks, so that the lines will fit on the page.

Note The PrintText project discussed in the following section takes approximately 10 seconds to prepare a page of text
on an 850 MHz computer. Following the discussion of the PrintText project, you will find a much faster technique for
printing text, but it’s not as flexible as the methods described in the following section.

Chapter 15 PRINTING WITH VB.NET726

2877c15.qxd 11/11/01 4:20 PM Page 726

http://www.sybex.com

VB.NET at Work: The PrintText Project

In this section, we’re going to build the PrintText application. The main form of this application
contains a TextBox control and a button that prints the text on the control. The program displays
a preview of the text on a PrintPreview dialog box, and you can print the text by clicking the
Print button on the dialog box. Figure 15.9 shows a section of a text previewed with the
PrintText application.

You can use the TextBox control to enter a few paragraphs or a few pages of text and then print
them. Before we examine the code, let me describe shortly the process of breaking the text into lines
that fit across the page. We’ll start reading the text one word at a time (including white space, punc-
tuation, and line feeds) and calculate the length of the word when printed on paper. If the length of
the current line plus the length of the word don’t exceed the width of the printable area, we’ll
append the word to the string and continue. At each step we’ll call the MeasureString method to cal-
culate the length of the string when printed. When this string exceeds the width of the printable area
of the page, we’ll print the string and create a new string with the word that wouldn’t fit on the pre-
vious line, and then we’ll start over again. The string will grow by one word at a time, until it’s just
right to be printed.

Let’s start with the function that extracts the next word of the document on the TextBox control.
This is the GetNextWord() function, which reads consecutive words from a text file and slowly
builds a string by appending each word to the string. When the length of the string plus the length
of the next word exceed the width of the page (excluding the margins, of course), we print the line
and start a new line with the last word. The process continues until all the words in the document
are exhausted. The GetNextWord() function, shown in Listing 15.9, keeps track of the current loca-
tion in the document, so that it can read the next word every time it’s called. To do so, it uses the
currPosition variable, which is declared as Static. This variable is the index of the next word’s first
character in the text.

Figure 15.9

Printing and pre-
viewing documents
with the PrintText
application

727PRINTING EXAMPLES

2877c15.qxd 11/11/01 4:20 PM Page 727

http://www.sybex.com

Listing 15.9: The GetNextWord() Function

Function GetNextWord(Optional ByVal reset As Boolean = False) As String
Static currPos As Integer
Dim word As String
If reset Then currPos = 0
If currPos >= TextBox1.Text.Length Then Return “”
While Not System.Char.IsLetterOrDigit(TextBox1.Text.Chars(currPos))

word = word & TextBox1.Text.Chars(currPos)
currPos = currPos + 1
If currPos >= TextBox1.Text.Length Then Return word

End While
While Not (System.Char.IsWhiteSpace(TextBox1.Text.Chars(currPos)))

word = word & TextBox1.Text.Chars(currPos)
currPos = currPos + 1
If currPos >= TextBox1.Text.Length Then Return word

End While
Return word

End Function

The GetNextWord() function accepts an optional argument, the reset argument. This argument
forces the function to start reading words from the beginning of the text. Otherwise, you wouldn’t
be able to reuse it in the same session. After scanning the text once, it would return the empty string,
indicating that there are no more words to be read. This function encapsulates all the complexity of
isolating words and their surrounding spaces from the rest of the application, and you can use it in
your applications in similar situations. However, you will have to modify it a little. This implemen-
tation of the GetNextWord() function doesn’t ignore spaces and punctuation marks. In printing a
document, all characters are significant, and you can’t afford to ignore a single space. To extract
individual words from a text document, you should treat punctuation marks as delimiters and ignore
them, as well as trim all the spaces around the words.

We must also keep track of the height of the text, so that we can start a new page when needed.
To start a new page we simply set the e.HasMorePages argument to True and exit the PrintPage
event handler. The PrintDocument object will fire another PrintPage, in which we’ll print a new
page, and we’ll continue until we run out of words.

To initiate the printout, the Print button contains the following statements:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

PrintPreviewDialog1.Document = PrintDocument1
PrintPreviewDialog1.ShowDialog()
GetNextWord(True)

End Sub

Now we can focus on the code that creates the actual printout, which is shown in Listing 15.10.
The code reads a word at time, adds its length to the length of the current line, and then compares it
to the width of the printable area of the page. If the total length fits on the page, we proceed with
the next word. If not, we print the line, advance vertically by a little more than the line’s height, and

Chapter 15 PRINTING WITH VB.NET728

2877c15.qxd 11/11/01 4:20 PM Page 728

http://www.sybex.com

start a new line with the last word that didn’t make it on the line just printed. This technique
assumes that the text doesn’t contain words that can’t fit on the width of the printable area of the
page. You must add your own code to arbitrarily break such awfully long lines.

Listing 15.10: The PrintText Project’s PrintPage Event Handler

Private Sub PrintDocument1_PrintPage(ByVal sender As Object, _
ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
Handles PrintDocument1.PrintPage

Dim txtFont As New Font(“Arial”, 10)
Dim txtH As Integer = _

PrintDocument1.DefaultPageSettings.PaperSize.Height - _
PrintDocument1.DefaultPageSettings.Margins.Top - _
PrintDocument1.DefaultPageSettings.Margins.Bottom

Dim LMargin As Integer = PrintDocument1.DefaultPageSettings.Margins.Left
Dim TMargin As Integer = PrintDocument1.DefaultPageSettings.Margins.Top
Dim txtW As Integer = _

PrintDocument1.DefaultPageSettings.PaperSize.Width - _
PrintDocument1.DefaultPageSettings.Margins.Left - _
PrintDocument1.DefaultPageSettings.Margins.Right

Dim linesPerPage As Integer = _
e.MarginBounds.Height / txtFont.GetHeight(e.Graphics)

Dim R As New RectangleF(LMargin, TMargin, txtW, txtH)
Static line As String
Dim word As String
Dim cols, lines As Integer
word = GetNextWord()
While word <> “” And lines < linesPerPage

line = line & word
word = GetNextWord()
e.Graphics.MeasureString(line & word, txtFont, New SizeF(txtW, txtH), _

New StringFormat(), cols, lines)
End While
If word = “” And Trim(line) <> “” Then

e.Graphics.DrawString(line, txtFont, Brushes.Black, R, _
New StringFormat())

e.HasMorePages = False
Exit Sub

End If
e.Graphics.DrawString(line, txtFont, Brushes.Black, R, New StringFormat())
e.HasMorePages = True
line = word

End Sub

When the PrintPage event handler starts executing, it calculates the page’s geometry (the margins
and the dimensions of the printable area of the page), as well as the number of text lines that can fit
on the page (variable linesPerPage). Then, it starts calling the GetNextWord() function from within a

729PRINTING EXAMPLES

2877c15.qxd 11/11/01 4:20 PM Page 729

http://www.sybex.com

loop, which terminates when the printed text exceeds the height of the page (minus the margins, of
course). Every time a new page is filled, it sets the e.HasMorePages property to True and then exits.

When the GetNextWord() function runs out of words, which means we’ve reached the end of
the text, it returns an empty string and the PrintPage event handler sets the e.HasMorePages property
to False and exits.

As you can see, the most complicated part of the application is the retrieval of the next word to
be printed. By implementing the GetNextWord() function and inserting all the logic of isolating
words—including their surrounding space and punctuation—into this function, we simplified the
logic of the PrintPage event handler.

To experiment with the printing methods, you can insert the code to print the document’s name
and the current page number at the top of the page, or you can place a rectangle around the text. For
an interesting effect, you can use a larger font, space vertically the text lines, and draw a light gray
line under each text line. You can also insert the code presented earlier in this chapter to handle both
landscape and portrait orientation.

You can also adjust the code to handle program listings. Program listings are plain text files, like
the ones you can print with this application, but you must mark long code lines that are broken to
fit on the page. You can insert a special symbol either at the end of a code line that continues on the
following line on the page or in front of the continued line. This symbol is usually a bent arrow that
resembles the Return key.

The PrintText project doesn’t send its output directly to the printer; instead, it generates a pre-
view that allows you to examine the printout on the screen until you get your code right. You will
notice that the generation of the preview is a slow process. There are many things you can do to
speed up the code. For example, you can read several words at a time. It’s very unlikely that a line
contains fewer than five or six words, so why waste time calculating the width of a very short line?
You can also estimate the number of words that will fit on a page, read as many words, and then cal-
culate how many lines they will take on the printed page with the MeasureString method. If they all
fit on the page, you can add one word at a time (as we did earlier) until you fill the page. If the
printed text exceeds the height of the page, you must subtract words until you fill the page, but no
more. This is a fairly complicated logic that would overwhelm the discussion of the basic printing
objects. Once you understand how the text is broken into lines and how to figure out when to
change pages, you can make the algorithms as complicated as you wish.

VB.NET at Work: The PrintText2 Project

The PrintText project is fairly slow. It takes just over 10 seconds to prepare each page, which is
quite slow compared to printing text with Notepad or even WordPad. Some readers may have
already guessed how to speed up the printing of plain text. Why use the MeasureString method on
individual words to find out whether they fit on the current line; why not pass the entire text as
argument to this method, along with a rectangle that represents the printable area of the page? The
method will return the number of characters that can be printed on the page, and then we can repeat
the process with the rest of the text. Indeed, this is the way to print straight text.

The idea is to instantiate a Rectangle object that represents the printable area of the page. Then call
the MeasureString method to find out how many characters will fit into the rectangle and print so
many characters with the DrawString method. Just two method calls, and the first page is ready. Repeat
the same process for the following pages, starting with the character following the last character printed

Chapter 15 PRINTING WITH VB.NET730

2877c15.qxd 11/11/01 4:20 PM Page 730

http://www.sybex.com

on the previous page. This method is fast and works with all text files. However, it’s not as flexible as
the method that prepares the printout one word at a time—I’ll discuss the drawbacks of this method
at the end of the section.

The text to be printed is stored in the textToPrint variable, which is declared outside any proce-
dure with the statement

Dim textToPrint As String

To make the application more flexible, I’ve added a Page Setup dialog box, where users can specify
the margins and the orientation of the printout. The code starts by displaying the Page Setup dialog
box by calling the ShowDialog method of the PageSetupDialog control. Then it initiates printing on
an instance of the PrintPreviewDialog control, by calling its ShowDialog method. Listing 15.11
shows the code behind the Preview & Print button on the form, which initiates the printing.

Listing 15.11: Initiating the Printing of Plain Text

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

textToPrint = TextBox1.Text
PageSetupDialog1.PageSettings = PrintDocument1.DefaultPageSettings
If PageSetupDialog1.ShowDialog() = DialogResult.OK Then

PrintDocument1.DefaultPageSettings = PageSetupDialog1.PageSettings
End If
Try

PrintPreviewDialog1.Document = PrintDocument1
PrintPreviewDialog1.ShowDialog()

Catch exc As Exception
MsgBox(“Print operation failed “ & vbCrLf & exc.Message)

End Try
End Sub

The ShowDialog method of the PrintPreviewDialog control is equivalent to calling the Print method
of the PrintDocument control. After that, a series of PrintPage events will follow. Listing 15.12 shows
the code in the PrintPage event’s handler.

Listing 15.12: A Simpler Method of Printing Plain Text

Private Sub PrintDocument1_PrintPage(ByVal sender As Object, _
ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
Handles PrintDocument1.PrintPage

Static currentChar As Integer
Dim txtFont As New Font(“Arial”, 10)
Dim txtH, txtW As Integer
Dim LMargin, TMargin As Integer
With PrintDocument1.DefaultPageSettings

txtH = .PaperSize.Height - .Margins.Top - .Margins.Bottom

731PRINTING EXAMPLES

2877c15.qxd 11/11/01 4:20 PM Page 731

http://www.sybex.com

txtW = .PaperSize.Width - .Margins.Left - .Margins.Right
LMargin = PrintDocument1.DefaultPageSettings.Margins.Left
TMargin = PrintDocument1.DefaultPageSettings.Margins.Top

End With
If PrintDocument1.DefaultPageSettings.Landscape Then

Dim tmp As Integer
tmp = txtH
txtH = txtW
txtW = tmp

End If
Dim linesperpage As Integer = txtH / txtFont.Height
Dim R As New RectangleF(LMargin, TMargin, txtW, txtH)
Dim lines, chars As Integer
Dim fmt As New StringFormat(StringFormatFlags.LineLimit)
e.Graphics.MeasureString(Mid(textToPrint, currentChar + 1), _

txtFont, New SizeF(txtW, txtH), fmt, chars, lines)
e.Graphics.DrawString(Mid(textToPrint, currentChar + 1), _

txtFont, Brushes.Black, R, fmt)
currentChar = currentChar + chars
If currentChar < textToPrint.Length Then

e.HasMorePages = True
Else

e.HasMorePages = False
currentChar = 0

End If
End Sub

The core of the printing code is concentrated in the following three statements:

e.Graphics.MeasureString(Mid(textToPrint, currentChar + 1), _
txtFont, New SizeF(txtW, txtH), fmt, chars, lines)

e.Graphics.DrawString(Mid(textToPrint, currentChar + 1), _
txtFont, Brushes.Black, R, fmt)

currentChar = currentChar + chars

The first statement determines how many characters will fit in a rectangle with dimensions txtW
and txtH when rendered on the page in the specified font. The fmt argument is crucial for the proper
operation of the application, and I will explain it momentarily.

The second statement prints the segment of the text that will fit in this rectangle. Notice that the
code is using the Mid() function to pass not the entire text, but a segment starting at the location
following the location of the last character in the previous page. The location of the first character in
the page is given by the currentChar variable, which is increased by the number of characters printed
on the current page. The number of characters printed on the current page is retrieved by the Mea-
sureString method and stored in the chars variable.

And the trick that makes this code work is how the fmt StringFormat object is declared. The
height of the printable area of the page may not (and usually does not) accommodate an integer
number of lines. The MeasureString method will attempt to fit as many text lines in the specified

Chapter 15 PRINTING WITH VB.NET732

2877c15.qxd 11/11/01 4:20 PM Page 732

http://www.sybex.com

rectangle as possible, even if the last line fits only partially in the rectangle. To force the Measure-
String and DrawString methods to work with an integer number of lines, create a FormatString
object passing the constant StringFormatFlags.LineLimit as argument:

Dim fmt As New StringFormat(StringFormatFlags.LineLimit)

If you pass the fmt object as argument to both the MeasureString and DrawString methods, they
will ignore partial lines and the rest of the printing code works as expected.

If the user changes the orientation of the page, the code switches the page’s width and height.
This is all it takes to print text in landscape orientation. The page’s margins are also accounted for.

Before ending this section, I should explain why I haven’t started with this version of the applica-
tion (which is also simpler that the PrintText project of the previous section). The PrintText2
application prints one page at a time. You have no control over the individual lines or words. The
granularity of the PrintText2 application is an entire page. If the text contains formatting informa-
tion (simple tags to turn on and off the attributes like bold and italics), you won’t be able to process
them. Assume that the text contains HTML-like tags (like the and <I> tags) to determine the
appearance of the text, or custom tags to specify the formatting of section headers. When you treat a
block of text as a single entity, you won’t be able to process individual words.

The same is true for simpler types of processing. Let’s say you want to format a program listing by
inserting a continuation symbol at the end of every code line that has to be broken into two or more
text lines. Since we rely on the DrawString method to break long code lines into multiple text lines for
us, we can’t insert the appropriate symbols, or indent the continued lines, as is customary in program
listings. It’s also common to number the lines of program listings. Even this simple operation can’t be
incorporated into the PrintText2 application’s project. So a text-printing application that prepares the
page one word at a time may be slow, but it’s flexible, and you’re more likely to write code based on
the PrintText sample application. The technique demonstrated by the PrintText2 application is a
convenient method of printing simple text files, similar to printing them with Notepad.

Printing Bitmaps
If you have a color printer, you probably want to print images, too. Printing bitmaps is quite simple.
As you have probably guessed, you call the DrawImage method to send the bitmap to the printer. As a
reminder, the simplest form of the DrawImage method of the Graphics object accepts two arguments,
which are the bitmap to be drawn (an Image object) and a rectangle in which the image will be drawn:

Graphics.DrawImage(image, rectangle)

The method will stretch the bitmap specified by the image argument to fill the rectangle specified
by the second argument. Because of this, it is imperative that you calculate carefully the dimensions
of the rectangle, so that they will retain their original aspect ratio. If not, the image will be distorted
in the process. Most applications will let the user specify a zoom factor, which is then applied to
both dimensions. If the image fits on the page, you can make the rectangle equal to the dimensions
of the image and not worry about distortions.

Since the reduced image will, most likely, be smaller than the dimensions of the paper on which it
will be printed, you must also center the image on the paper. To do so, you can subtract the image’s
width from the paper’s width and split the difference on the two sides of the image (you will do the
same for the vertical margins).

733PRINTING EXAMPLES

2877c15.qxd 11/11/01 4:20 PM Page 733

http://www.sybex.com

If you specify a rectangle the same size as the image, the image will be printed in its actual size. A
common image resolution is 72 dots per inch. If the bitmap is 1,024 pixels wide, it will take approx-
imately 14 inches across the page—this means that part of the image won’t be printed.

Before you send a bitmap to the printer, you must first make sure the bitmap will fit on the page.
If the bitmap is too large for a letter-size page, you must reduce its size. Fortunately, the Framework
can handle this for you. All you have to do is specify the size of the rectangle on the paper, in which
the image will be printed. The following statements, which must appear in the PrintDocument
event, print the image centered on the page. If the image doesn’t fit on the page, its top-left corner is
printed at the origin, and only the rightmost and bottommost parts of the image will be missing.
Notice also that the image isn’t printed in actual size; instead, it’s printed at the current magnifica-
tion. Listing 15.13 provides the code of the PrintPage event handler.

Listing 15.13: Scaling and Printing a Bitmap

Private Sub PrintDocument1_PrintPage(ByVal sender As Object, _
ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
Handles PrintDocument1.PrintPage

Dim R As Rectangle
Dim PictWidth, PictHeight, PictLeft, PictTop As Integer
PictWidth = PictureBox1.Width
PictHeight = PictureBox1.Height
With PrintDocument1.DefaultPageSettings.PaperSize

If PictWidth < .Width Then
PictLeft = (.Width - PWidth) / 2

Else
PictLeft = 0

Figure 15.10

The PrintBitmap
application resizes
bitmaps to fit the
width of the page
and prints them.

Chapter 15 PRINTING WITH VB.NET734

2877c15.qxd 11/11/01 4:20 PM Page 734

http://www.sybex.com

End If
If PictHeight < .Height Then

PictTop = (.Height - PHeight) / 2
Else

PictTop = 0
End If

End With
R = New Rectangle(PictLeft, PictTop, PictWidth, PictHeight)
e.Graphics.DrawImage(PictureBox1.Image, R)

End Sub

The PictWidth and PictHeight variables hold the dimensions of the scaled image, while PictLeft and
PictTop are the coordinates of the image’s top-left corner on the page. To initiate the printing
process, you must call the PrintDocument object’s Print method, or you can display the PrintPre-
view dialog box, which is what the following code does:

Private Sub bttnPrint_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

PrintPreviewDialog1.Document = PrintDocument1
PrintPreviewDialog1.ShowDialog()

End Sub

The user can resize and rotate the image before printing it. These rotation commands can be
found in the main form’s Process menu, while the Zoom menu has four options: Auto, Normal,
Zoom In, and Zoom Out (Figure 15.11). The last two commands zoom in and out by 25 percent
at a time. These commands change the size of the PictureBox control that holds the image, and the
PrintPage event handler uses the dimensions of this control to determine the dimensions of the
printed image. The Normal command resets the image to its actual size, and the Auto command
resizes the image proportionally so that its height is 400 pixels.

Figure 15.11

The PrintBitmap
application’s
main form

735PRINTING EXAMPLES

2877c15.qxd 11/11/01 4:20 PM Page 735

http://www.sybex.com

Using the PrintPreviewControl
The PrintPreviewControl is the core of the PrintPreviewDialog control packaged as a
Windows control. It consists of the preview pane, where the printed document can be previewed.
Other than that, it has a vertical and horizontal scroll bar but no controls to zoom or to move from
page to page. You can use this control to create a custom print-preview form for specialized applica-
tions, but you must design an interface that will allow users to navigate through the document being
viewed. You should use the PrintPreviewDialog control instead, but if you want to use a different
interface or restrict the preview pane on a form, you’ll find all the information you need to program
the PrintPreviewControl in this section.

Just like its cousin, the PrintPreviewDialog, the PrintPreviewControl requires the presence of
a PrintDocument control. This control will provide the document to be viewed and will expose the
PrintPage event, where all the action takes place. Once you’ve added a PrintPreviewControl and a
PrintDocument control to the project, you can assign the instance of the PrintDocument control to
the Document property of the PrintPreviewControl with a statement like the following, and you’re
ready to preview:

PrintPreviewControl1.Document = PrintDocument1

Unlike the PrintPreviewDialog control, the PrintPreviewControl is visible at runtime. Not only
that, but you need quite a bit of space on your form for this control to work. Figure 15.12 shows a
form with a TextBox control on the left and a PrintPreviewControl on the right. The interface for
previewing the document is quite trivial, but it demonstrates the basic properties of the control.
We’ll get to the interface shortly.

First, size the control on the form. You should probably dock it on the edges of the form, so that
users can control the preview pane’s size. Then place the Preview button on the form and enter the
following code in its Click event handler:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

PrintPreviewControl1.Columns = 2
PrintPreviewControl1.Document = PrintDocument1

End Sub

The Columns property determines how many pages appear next to each other on the control.
There’s also a Rows property, which determines how many rows of pages are on the control. To dis-
play four pages at a time on the control, set both properties to 2.

After setting the control’s Document property, you can insert the code to generate the printout in
the PrintDocument control’s PrintPage event handler. The output will be sent to the Preview con-
trol, not to the printer, or even to the PrintPreview dialog box. In this example we’ll print eight
pages, so that you can experiment with the various settings of the control. We’ll print the text on the
TextBox control on eight pages (all pages will display the same text). Each page will be differentiated
by the page number, which will appear in bold at the top of the page, as shown in Figure 15.12.
Listing 15.14 shows the code in the PrintPage event handler.

Chapter 15 PRINTING WITH VB.NET736

2877c15.qxd 11/11/01 4:20 PM Page 736

http://www.sybex.com

Listing 15.14: Printing a Simple Document to the PrintPreview Control

Private Sub PrintDocument1_PrintPage(ByVal sender As Object, _
ByVal e As System.Drawing.Printing.PrintPageEventArgs) _
Handles PrintDocument1.PrintPage

Static iPage As Integer
e.Graphics.DrawString(“PAGE # “ & (iPage+ 1).ToString, _

New Font(“Comic sans MS”, 24), Brushes.Black, 10, 10)
e.Graphics.DrawString(RichTextBox1.Text, RichTextBox1.Font, _

Brushes.Black, 50, 50)
iPage = iPage + 1
If iPage = 8 Then

e.HasMorePages = False
Else

e.HasMorePages = True
End If

End Sub

The static variable iPage is increased each time a new page is printed, and while it’s less than 8, the
HasMorePages property is set to True, to continue printing. If you run the project at this point, you
will see the first two pages on the PrintPreviewControl, but you have no way to zoom or jump to
the following pages. The default magnification is set automatically, so that you can view the width of
a page. To change the default magnification, you must set the Zoom property to the appropriate
value. A value of 1 displays the document in actual size. The magnification you see will be some-
thing close to 0.3.

Figure 15.12

Previewing a simple
document on the
PrintPreview control

737PRINTING EXAMPLES

2877c15.qxd 11/11/01 4:20 PM Page 737

http://www.sybex.com

The Zoom In and Zoom Out buttons control the magnification. The Zoom In button increases
the magnification by increasing the Zoom property by 25 percent. If the zoom value is more than 3
(three times the actual size), the Zoom property is clipped to 3.

Private Sub Button2_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Button2.Click

PrintPreviewControl1.Zoom = PrintPreviewControl1.Zoom * 1.25
If PrintPreviewControl1.Zoom > 3 Then PrintPreviewControl1.Zoom = 3

End Sub

Similarly, the Zoom Out button decreases the Zoom factor by 25 percent each time, down to a
smallest magnification of 0.3:

Private Sub Button3_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Button3.Click

PrintPreviewControl1.Zoom = PrintPreviewControl1.Zoom / 1.25
If PrintPreviewControl1.Zoom < 0.3 Then PrintPreviewControl1.Zoom = 0.3

End Sub

The other two buttons allow you to move forward and backward through the pages. The cur-
rent page on the preview pane is set by the StartPage property, so the other two buttons control the
StartPage property. If the control displays multiple pages, the Page property is the number of the first
page on the control. Our control displays two pages, so the StartPage property is increased or
decreased by 2 (which is the value of the Columns property). If you set up a PrintPreview control
with pages in multiple rows and columns, use the product of the Columns property times the Rows
property. Here’s the code behind the two navigational buttons:

Private Sub bttnNext_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnNext.Click

PrintPreviewControl1.StartPage = _
PrintPreviewControl1.StartPage + PrintPreviewControl1.Columns

End Sub
Private Sub bttnPrevious_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles bttnPrevious.Click
PrintPreviewControl1.StartPage = _

PrintPreviewControl1.StartPage - PrintPreviewControl1.Columns
End Sub

You may have noticed that the code doesn’t check the current value of the StartPage property.
Even if you attempt to set this property to an invalid value, no exception will be thrown. The reason
for this behavior is that we never know the number of the last page, so the control itself takes care of
possible erroneous settings of the StartPage property.

The PrintPreview control exposes the UseAntiAlias property, which is a True/False value that
indicates whether the control will use anti-aliasing in rendering the text. Set this property to True for
the best possible preview, since the resolution of the screen (100 pixels or so per inch) is much lower
than the resolution of a typical printer (600 to 1,200 dots per inch).

Chapter 15 PRINTING WITH VB.NET738

2877c15.qxd 11/11/01 4:20 PM Page 738

http://www.sybex.com

Summary
Printing is a major aspect of any language, and it’s not a trivial topic. In my experience, many devel-
opers purchase controls with built-in printing capabilities to simplify the task of printing from
within their applications. If you’re developing business applications, you should probably implement
a few classes for printing the basic types of reports and reuse them throughout your application. You
can even share them with coworkers, to make sure all reports have a consistent look.

The Framework provides a number of controls to simplify tasks such as setting up the printer
and page properties and previewing your printouts before sending them to the printer. These tools
can be used to generate very simple or very complicated printouts. The basic tools and the outline of
the process don’t change. Your code, however, may become considerably more complicated.

739SUMMARY

2877c15.qxd 11/11/01 4:20 PM Page 739

http://www.sybex.com

Chapter 16

The TreeView and
ListView Controls
The last two Windows controls we’re going to explore in this chapter are among the
more advanced ones, and they are certainly more difficult to program than the previous ones.
These two controls, however, are the basic makings of unique user interfaces, as you’ll see in the
examples. The TreeView and ListView controls implement two of the more advanced data struc-
tures (a topic that’s not terribly popular even among computer science students). These controls
were designed to hide much of the complexity of the data structures they implement, and they do
this very well. However, they are more difficult to use than the other controls.

The ImageList control is a simple control for storing images, which is used frequently with these
two controls. In itself, the ImageList control is very simple to use, and I will show briefly how to use
this control in conjunction with the other two controls, which are the main subject of this chapter.

I will start with a general discussion of the two controls to help you understand what they do
and when to use them. A basic understanding of the data structures they implement is also required
to use them efficiently in your applications. Then, I’ll discuss their members and demonstrate how to
use the controls. If you find the examples too difficult to understand, you can always postpone
the use of these controls in your applications. Some of the code I will present in this chapter can be
used as is in many situations, so you should take a look at the examples and see if you can incorporate
some of them in your applications. Unlike other controls, the TreeView and ListView controls
can be considered advanced, which is why I haven’t discussed them in the first part of the book.
They’re also excellent tools for designing elaborate Windows interfaces and I feel they deserve
to be covered in detail.

Examining the Advanced Controls
In Chapter 5, you learned that the ListBox control is a simple control for storing objects. The
items of a ListBox control can be sorted, but they have no particular structure. I’m sure most of
you wish the ListBox control had more “features,” such as the means to store additional informa-
tion along with each item and display them at will. For instance, a list with city and state names
should be structured so that each city appears under the corresponding state name. In a ListBox
control, you can indent some of the entries, but the control itself can’t impose or maintain any

2877c16.qxd 11/11/01 4:20 PM Page 741

http://www.sybex.com

structure on its data. The answer to the shortcomings of the ListBox control can be found in the
TreeView and ListView controls.

Figure 16.1 shows the TreeView and ListView controls used in tandem. What you see in Fig-
ure 16.1 is Windows Explorer, a utility for examining and navigating your hard disk’s structure. The
left pane, where the folders are displayed, is a TreeView control. The folder names are displayed in a
manner that reflects their structure on the hard disk. You can expand and contract certain branches
and view only the segment(s) of the tree structure you’re interested in.

The right pane is a ListView control. The items on the ListView control can be displayed in four
different ways (as large icons, as small icons, in a list, or in report form). These are the various views
you can set through the View menu of Windows Explorer. Although most people prefer to look at
the contents of the folders as icons, the most useful view is the Report view, which displays not only
filenames but their attributes as well. In the Report view, the list can be sorted according to any of
its columns, making it very easy for the user to locate any item based on various criteria (file type,
size, creation date, and so on).

VB6 ➠ VB.NET

If you’ve programmed the TreeView control that came with VB6, you’re probably dependent on the Key
property, which uniquely identified each node and allowed you to place new nodes under existing nodes by
specifying the key of the parent node. The Key property is no longer supported. The Find method of the old
version of the control, which located an item based on its key, is also gone. The new version of the control
is strictly a tool for displaying data, and it provides all the functionality needed to interact with the user.
You will miss some of the functionality of the old TreeView control that didn’t make it to the new control.
On the positive side, the new control gives more control over the appearance of the items—you can set their
font, background color, and so on. It also comes with a tool that allows you to add nodes at design time.

The new version of the control is in many respects different from the old version, and you’ll practically have
to learn to program it like a new control.

Figure 16.1

Windows Explorer
is made up of a
TreeView (left pane)
and a ListView
(right pane).

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS742

2877c16.qxd 11/11/01 4:20 PM Page 742

http://www.sybex.com

How Tree Structures Work
The TreeView control implements a data structure known as a tree. A tree is the most appropriate
structure for storing hierarchical information. The organizational chart of most companies is a tree
structure. Every person reports to another person above them, all the way to the president or CEO.
Figure 16.2 depicts a possible organization of continents, countries, and cities as a tree. (For brevity,
I sometimes abstract a bit; “America” is treated as a single continent, and I’ve omitted Antarctica
because is has no countries or cities.) Every city belongs to a country and every country to a conti-
nent. In the same way, every computer file belongs to a folder that may belong to an even bigger
folder. You can’t draw large tree structures on paper, but it’s possible to create a similar structure in
the computer’s memory without size limitations.

Each item in the tree of Figure 16.2 is called a node, and nodes can be nested to any level. Oddly,
the top node is the root of the tree and the subordinate nodes are called child nodes. If you try to visual-
ize this structure as a real tree, think of it as an upside-down tree with the branches emerging from
the root.

To locate a city, you must start at the root node and select the continent to which the city
belongs. Then, you must find the country (in the selected continent) to which the city belongs.
Finally, you can find the city you’re looking for. If it’s not under the appropriate country node, then
it doesn’t exist. You also can traverse a tree in the opposite direction. There may an identically
named city in another country, but this isn’t the one you’re looking for; it’s just a synonym.

Note The TreeView control doesn’t require that the items be unique. You can actually have identically named nodes in
the same branch—as unlikely as this may be for a real application. The nodes are strings and they can be anything. There’s
no property that makes a node unique in the tree structure, or even in its own branch.

You can start with a city and find its country. The country node is the city node’s parent node.
Notice that there is only one route from child nodes to their parent nodes, which means you can
instantly locate the country or continent of a city. The same data shown in Figure 16.2 is shown in
Figure 16.3 on a TreeView control. Only the nodes we’re interested in are expanded. The plus sign
indicates that the corresponding node contains child nodes. To view them, click the button with the
plus sign to expand the node.

The tree structure is ideal for data with parent-child relations (relations that can be described as
“belongs to” or “owns”). The continents-countries-cities data is a typical example. The folder struc-
ture on a hard disk is another typical example. Any given folder is the child of another folder or the

Figure 16.2

The world viewed as
a tree

743EXAMINING THE ADVANCED CONTROLS

2877c16.qxd 11/11/01 4:20 PM Page 743

http://www.sybex.com

root folder. If you need a method to traverse the folder structure of your hard disk quickly and con-
veniently, you must store the folders in a TreeView control. This is exactly what happens when you
use Windows Explorer to navigate your hard disk. Of course, there are other ways to navigate your
hard disk (you can do the same with an Open dialog box), but the TreeView control helps you visu-
alize the structure of the entire disk. With the Open dialog box, you can view only one segment of
the disk, namely, the current folder.

Many programs are actually based on tree structures. Computerized board games use a tree struc-
ture to store all possible positions. Every time the computer has to make a move, it locates the board’s
status on the tree and selects the “best” next move. For instance, in tic-tac-toe, the tree structure that
represents the moves in the game has nine nodes on the first level, which correspond to all the possible
positions for the first token on the board (the X or O mark). Under each possible initial position,
there are eight nodes, which correspond to all the possible positions of the second token on the board
(one of the nine positions is already taken). On the second level, there are 9 × 8, or 72 nodes. On the
third level, there are seven nodes under each node that correspond to all the possible positions of
the third token, a total of 72 × 7, or 504 nodes, and so on. In each node, you can store a value that
indicates whether the corresponding move is good or bad. When the computer has to make a move, it
traverses the tree to locate the current status of the board, and then it makes a good move.

Of course, tic-tac-toe is a very simple game. In principle, you could design a chess-playing game
using a tree. This tree, however, would grow so large so quickly that it couldn’t be stored in any rea-
sonable amount of memory. Moreover, scanning the nodes of this enormous tree would be a slow
process. If you also consider that chess moves aren’t just good or bad (there are better and not-so-
good moves), and you must look ahead many moves to decide which move is the best for the current
status of the board, you’ll realize that this ad hoc approach is totally impractical. Practically speak-
ing, such a program requires either infinite resources or infinite time. That’s why the chess-playing
algorithms use heuristic approaches, which store every recorded chess game in a database and consult this
database to pick the best next move.

Maintaining a tree structure is a fundamental operation in software design; computer science
students spend a good deal of their time implementing tree structures. Even the efficient imple-
mentation of a tree structure is a research subject. Fortunately, with Visual Basic you don’t have to
implement tree structures on your own. The TreeView control is a mechanism for storing hier-
archically structured data on a control with a visible interface. The TreeView control hides (or
encapsulates, in object-oriented terminology) the details of the implementation and allows you
to set up tree structures with a few lines of code. In short, all the gain without the pain (almost).

Figure 16.3

The tree of
Figure 16.2 imple-
mented with a
TreeView control

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS744

2877c16.qxd 11/11/01 4:20 PM Page 744

http://www.sybex.com

You may find this too good to be true, but if you’ve ever had to implement tree structures, you’ll
appreciate the simplicity of the TreeView control.

Programming the TreeView control is not as simple as programming other controls, but keep in
mind that the TreeView control implements a complicated data structure. It’s far simpler to pro-
gram the TreeView control than to implement tree structures from scratch. There’s not much you
can do about efficiency, and unless you’re developing highly specialized applications that rely on tree
structures, the TreeView control is your best bet.

The ListView control implements a simpler structure, known as a list. A list’s items aren’t struc-
tured in a hierarchy. They are all on the same level and can be traversed serially, one after the other.
You can also think of the list as an array, but the list offers more features. A list item can have
subitems and can be sorted in many ways. For example, you can set up a list of customer names (the
list’s items) and assign a number of subitems to each customer, like a contact, an address, a phone
number, and so on. Or you can set up a list of files with their attributes as subitems. Figure 16.4
shows a Windows folder mapped on a ListView control. Each file is an item, and its attributes are
the subitems. As you already know, you can sort this list by filename, size, file type, and so on. All
you have to do is click the header of the corresponding column. You can also display the list of files
in different views: as icons, as a list of filenames only, or as a report (the view shown in Figure 16.4).

The ListView control is a glorified ListBox control. If all you need is a control to store sorted
objects, use a ListBox control. If you want more features, like storing multiple items per row, sorting
them in different ways, or locating them based on any subitem’s value, then you must consider the
ListView control. It’s simpler to program than the TreeView control but still more involved than
the simple ListBox control.

To program the TreeView and ListView controls, you must understand the concept of collections.
You can’t simply add items to these controls with the Add method as you would do with the ListBox
control. Each level of nodes in the TreeView control is a collection. Each item in this collection repre-
sents a node, which may have child nodes. Each node’s child nodes form another collection. Each item

Figure 16.4

A folder’s files dis-
played in a Tree-
View control
(Report view)

745EXAMINING THE ADVANCED CONTROLS

2877c16.qxd 11/11/01 4:20 PM Page 745

http://www.sybex.com

in this collection is a TreeNode object, which in turn may have its own Nodes collection, which is another
collection of TreeNode objects. We’ll discuss these techniques in detail, but there’s something else I
would like to mention briefly and get out of the way as early as possible.

The TreeView and ListView controls are commonly used along with the ImageList control. The
ImageList control is a very simple control for storing images so they can be retrieved quickly and
used at runtime. You populate the ImageList control with images, usually at design time, and then
you recall them by an index value at runtime. Before we get into the details of the TreeView and
ListView controls, a quick overview of the ImageList control is in order. The reason I present it here
is that the ImageList control is used almost exclusively with the TreeView and ListView controls.

The ImageList Control
The ImageList control is a really simple control that stores a number of images used by other con-
trols at runtime. For example, a TreeView control may use a number of icons to identify its nodes.
The simplest and quickest method of preparing the images to be used with the TreeView control is
to create an ImageList with icons. The ImageList control maintains a series of bitmaps in memory
that the TreeView control can access very quickly at runtime. Keep in mind that the ImageList con-
trol can’t be used on its own and remains invisible at runtime.

The images stored in the ImageList control can be used for any purpose by your application, but
in this book, we’ll use them in conjunction with the TreeView and ListView controls, which use
them to identify their nodes and list items, respectively. So, before we start the discussion of the
TreeView and ListView controls, let’s look at how to store images in an ImageList control and how
to use this control in our code.

To use the ImageList control in a project, double-click its icon in the Toolbox to place an
instance of the control to your project. To load images to an ImageList control, locate the Images
property in the Properties window and click the button with the ellipses next to the property name.
The Image Collection Editor window (Figure 16.5) will pop up, and you can load all the images you
want by selecting the appropriate files. All the images should have the same dimensions—but this is
not a requirement. Notice that the ImageList control doesn’t resize the images; they must have the
same size as when you load them.

Figure 16.5

The Image Collec-
tion Editor

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS746

2877c16.qxd 11/11/01 4:20 PM Page 746

http://www.sybex.com

To add an image to the collection, click the Add button. You’ll be prompted to select an image
file through the Open File dialog box. Each image you select is added to the list. When you select an
image in this list, the properties of the image are displayed in the same window—but you can’t
change the properties. One property of the ImageList control you can set in the Properties window
is the TransparentColor property, which is a color that will be treated as transparent for all images
(this is also known as the key color).

Each image stored in the ImageList control can be identified by an Index value, which is the order
in which the image was added to the Images collection. You’ll see later how to assign an image to an
item of the TreeView or ListView control.

The other method of adding images to an ImageList control is to call the Add method of the Images
collection, which contains all the images stored in the control. The Images collection provides the usual
Add and Remove methods. To add an image at runtime, you must first create an Image object with the
image (or icon) you want to add to the control and then call the Add method as follows:

ImageList1.Images.Add(image)

where image is an Image object with the desired image. You will usually call this method as follows:

ImageList1.Images.Add(Image.FromFile(path))

where path is the full path of the file with the image. Images is a collection of Image objects, not the
files where the pictures are stored. This means that the image files need not reside on the computer
on which the application will be executed. This is another good reason to store your images in an
ImageList control, instead of copying them along with the executables.

The TreeView Control
Let’s start our discussion with a few simple properties that you can set at design time. To experiment
with the properties discussed in this section, open the TreeViewDemo project in this chapter’s
folder on the CD. The project’s main form is shown in Figure 16.6. After setting some properties
(they are discussed next), run the project and click the Populate button to populate the control.
After that, you can click the other buttons to see the effect of the various property settings on the
control. We’ll discuss the other buttons on the form in the following sections.

CheckBoxes If this option is enabled, a check box appears in front of each item. If the control
displays check boxes, you can also select multiple items. If not, you’re limited to a single selection.

FullRowSelect This True/False value determines whether the entire row of the selected item will
be highlighted and whether an item will be selected even if the user clicks outside the item’s text.

HideSelection This property determines whether the selected item will remain highlighted
when the focus is moved to another control.

HotTracking This True/False value determines whether items are highlighted as the pointer
hovers over them. When this property is True, the TreeView control behaves like a Web docu-
ment with the items acting as hyperlinks—they turn blue while the pointer hovers over them.
However, you can’t capture this action from within your code. There’s no event to report that the
pointer is hovering over an item.

747THE TREEVIEW CONTROL

2877c16.qxd 11/11/01 4:20 PM Page 747

http://www.sybex.com

Indent This property indicates the indentation level in pixels. The same indentation applies to
all levels of the tree—each level is indented by the same amount of pixels with respect to its par-
ent level.

ShowLines The ShowLines property is a True/False value that determines whether the items
on the control will be connected to their parent items with lines. The lines connect each node to
its parent node, and it’s customary to display them.

ShowPlusMinus The ShowPlusMinus property is a True/False value that determines whether
the plus/minus button is shown next to tree nodes that have children. The plus button is dis-
played when the node is collapsed, and it causes the node to expand when clicked. Likewise, the
minus sign is displayed when the node is expanded and causes the node to collapse when clicked.

ShowRootLines This is another True/False property that determines whether there will be
lines between each node and root of the tree view. Experiment with the ShowLines and Show-
RootLines properties to find out how they affect the appearance of the control.

Sorted This property determines whether the items in the control will be automatically sorted
or not. The control sorts each level of nodes separately. In our globe example, it will sort the con-
tinents, then the countries within each continent, and then the cities within each country. Once
the control has been sorted, you can’t undo the operation. The existing items will remain sorted
with respect to one another. You can turn off the Sorted property and insert more items. The
new items will not be sorted.

Text This is the text of the currently selected node. Use this property to retrieve the user’s
selection.

TopNode This is the first visible node in the TreeView control. It’s the first node in the con-
trol if its contents haven’t been scrolled, but it can be any node, at any level, if the control has
been scrolled. The TreeNode property returns a TreeNode object, which you can use to manipu-
late the node from within your code.

VisibleCount This property returns the number of items that are visible on the control.

Figure 16.6

The TreeViewDemo
project demonstrates
the basic properties
and methods of the
TreeView control.

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS748

2877c16.qxd 11/11/01 4:20 PM Page 748

http://www.sybex.com

Adding New Items at Design Time
Let’s look now at the process of populating the TreeView control. Adding an initial collection of
items to a TreeView control is trivial. Locate the Nodes property in the Property box, and you’ll see
that its value is Collection. This string simply indicates that the control’s items form a collection. To
add items, click the button with the ellipses, and the TreeView item editor window will appear, as
shown in Figure 16.7. To add the root item, just click the Add Root button. The new item will be
named Node0 by default. You can change its name by selecting the item in the list. When its name
appears in the Label box, change the item’s name to anything you like.

You can add items at the same level as the selected one by clicking the Add Root button, or you
can add items under the selected node by clicking the Add Child button. The Add Child button
adds a new node under the selected node. Follow these steps to enter the root node GLOBE, a child
node for Europe, and two more nodes under Europe: Germany and Italy. I’m assuming that you’re
starting with a clean control. If your TreeView control contains any items, clear them all by selecting
one item at a time in the list and clicking the Delete button.

Click the Add Root button first. A new node will be added automatically to the list of nodes, and
it will be named Node0. Select it with the mouse, and its name will appear in the Label box. Here
you can change its name to GLOBE.

Then click the Add Child button, which will add a new node under the GLOBAL root node.
Select it with the mouse as before, and change its name to Europe. Then select the newly added node
in the list and click the Add Child button again. Name the new node Germany. You’ve successfully
added a small hierarchy of nodes. To add another node under Europe, select the Europe node in the
list and click the Add Child button again. Name the new button Italy. Continue adding a few cities
under each country. It’s likely that you will add child nodes under the wrong parent. This will hap-
pen if you forget to select the proper parent node before clicking the Add Child button. Each new
node you add in the Editor’s window isn’t selected automatically. You must switch to the list of
nodes and select the proper parent node with the mouse.

Note that when a node is deleted, all the nodes under it are deleted, too. Moreover, this action
can’t be undone. So, be careful when deleting nodes.

Figure 16.7

The TreeNode
Editor window

749THE TREEVIEW CONTROL

2877c16.qxd 11/11/01 4:20 PM Page 749

http://www.sybex.com

Click the OK button to close the Editor’s window and return to your form. The nodes you’ve
added to the TreeView control are there, but they’re collapsed. Only the root nodes are displayed
with the plus sign in front of their names. Click the plus sign to expand the tree and see its child
nodes. The TreeView control behaves the same at design time as it does at runtime—as far as navi-
gating the tree goes, at least.

The nodes added to a TreeView control at design time will appear each time the form is initial-
ized. You can add new nodes through your code, and you will see how this is done in the following
section.

Adding New Items at Runtime
Adding items to the control at runtime is a bit more involved. You’ve read about the tree structure;
now you’ll learn how this structure is exposed by the object model of the TreeView control. All the
items belong to the control’s Nodes collection, which is made up of TreeNode objects. To access
the Nodes collection, use the following expression, where TreeView1 is the control’s name and Nodes is
a collection of TreeNode objects:

TreeView1.Nodes

This expression returns a collection of TreeNode objects, which is called TreeNodeCollection, and
it exposes the proper members for accessing and manipulating the individual nodes. The control’s
Nodes property is the collection of all root nodes.

To access the first item, use the expression TreeView.Nodes(0) (this is the GLOBE node in our
example). The Text property returns the item’s value, which is a string. TreeView1.Nodes(0).Text is the
value of the first item on the control. The second item on the same level is TreeView1.Nodes(1).Text,
and so on. The Text property is the string you’ve added to the control at design time. If you use the
TreeView control to store objects, then the object’s ToString property will be displayed at each node.

The following statements will print the strings shown below them in bold (these strings are not
part of the statements; they’re the output the statements produce).

Console.WriteLine(TreeView1.Nodes(0).Text)
GLOBE
Console.WriteLine(TreeView1.Nodes(0).Nodes(0).Text)
Europe
Console.WriteLine(TreeView1.Nodes(0).Nodes(0).Nodes(1).Text)
Italy

Let’s take a closer look at these expressions. TreeView1.Nodes(0) is the first root node, the
GLOBE node. Under this node, there’s a collection of nodes, the TreeView1.Nodes(0).Nodes collec-
tion. Each node in this collection is a continent name. The first node in this collection is Europe,
and you can access it with the expression TreeView1.Nodes(0).Nodes(0). Likewise, this node has its
own Nodes collection, which are the countries under the specific continent.

Note Notice that a TreeView control contains many Nodes collections. The TreeView.Nodes collection represents
all the root nodes. Each node in this collection has its own Nodes collection, which represents the child nodes under the root.
Each one of these nodes may have its own Nodes collection, and so on, up to any level.

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS750

2877c16.qxd 11/11/01 4:20 PM Page 750

http://www.sybex.com

The Nodes.Add Method

The Add method adds a new node to the Nodes collection. The Add method accepts as an argu-
ment a string or a TreeNode object. The simplest form of the Add method is

newNode = Nodes.Add(nodeCaption)

where nodeCaption is a string that will be displayed on the control (you can’t add objects to the Tree-
View control). Another form of the Add method allows you to add a TreeNode object directly:

newNode = Nodes.Add(nodeObj)

To use this form of the method, you must first declare and initialize a TreeNode object:

Dim nodeObj As New TreeNode
nodeObj.Text = “Tree Node”
nodeObj.ForeColor = Color.BlueViolet
TreeView1.Nodes.Add(nodeObj)

The TreeNode object exposes a number of properties for setting its appearance. You can change
its foreground and background colors, the image to be displayed in front of the node (ImageIndex
property), the image to be displayed in front of the node when the node is selected (SelectedImage-
Index property), and more, including the NodeFont property. You will see shortly how to assign
images to the nodes of a TreeView control.

The last overloaded form of the Add method allows you to specify the index in the current
Nodes collection, where the node will be added:

newNode = Nodes.Add(index, nodeObj)

The nodeObj Node object must be initialized as usual. The Add method inserts the new node into
the current Nodes collection.

Note The Add method is a method of the Nodes collection, not of the TreeView control. You can’t apply the Add
method to the control.

If you call the Add method on the TreeView1.Nodes collection, as we’ve done in the last few
examples, you’ll add a root item. If you call it on a child’s Nodes collection, you’ll add another item
to the existing collection of child items. If your control contains a root item already, then this item is
given by the expression

TreeView1.Nodes(0)

To add a child node to the root node, use a statement like the following:

TreeView1.Nodes(0).Nodes.Add(“Asia”)

The expression TreeView1.Nodes(0) is the first root node. Its Nodes property represents the nodes
under the root node, and the Add method of the Nodes property adds a new node to this collection.

To add another element on the same level as the previous one, just use the same statement with a
different argument. To add a country under Asia, use a statement like the following:

TreeView1.Nodes(0).Nodes(1).Nodes.Add(“Japan”)

751THE TREEVIEW CONTROL

2877c16.qxd 11/11/01 4:20 PM Page 751

http://www.sybex.com

This can get quite complicated, as you can understand. The proper way to add child items to a
node is to create a TreeNode variable that represents the parent node, under which the child nodes
will be added. The ContinentNode variable, for example, represents the node Europe:

Dim ContinentNode As TreeNode
ContinentNode = TreeView1.Nodes(0).Nodes(0)

The expression TreeView1.Nodes(0) is the first root node. The property Nodes(0) is the third
child of the previous node (in our case, the Europe node). Then, you can add child nodes to the
ContinentNode node:

ContinentNode.Nodes.Add(“France”)
ContinentNode.Nodes.Add(“Germany”)

To add yet another level of nodes, the city nodes, create a new variable that represents the country
of the city. The Add method actually returns a TreeNode object, so you can add a country and a few
cities with the following statements:

Dim CountryNode As TreeNode
CountryNode = ContinentNode.Nodes.Add(“Germany”)
CountryNode.Nodes.Add(“Berlin”)
CountryNode.Nodes.Add(“Frankfurt”)

Then, you can continue adding countries through the ContinentNode variable:

CountryNode = ContinentNode.Nodes.Add(“Italy”)
CountryNode.Nodes.Add(“Rome”)

VB6 ➠ VB.NET

A feature of the old TreeView control many of you will miss is the Keys property. Because there’s no Keys
property, the new Add method doesn’t support relations. With the VB6 version of the control, you could
add nodes in any order. All you had to do was to specify a relation between the new node and an existing
node. This relation was usually a parent/child relation, which would make the new node a child node of the
specified parent node. Without the Keys property, you can’t uniquely identify the parent node in the tree.

The Count Property

This property returns the number of nodes in the Nodes collection. Again, this is not the total num-
ber of nodes in the control, just the number of nodes in the current Nodes collection. The expression

TreeView1.Nodes.Count

returns the number of all nodes in the first level of the control. In the case of the Globe example, it
returns the value 1. The expression

TreeView1.Nodes(0).Nodes.Count

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS752

2877c16.qxd 11/11/01 4:20 PM Page 752

http://www.sybex.com

returns the number of continents in the Globe example. Again, you can simplify this expression with
an intermediate TreeNode object:

Dim Continents As TreeNode
Continents = TreeView1.Nodes(0)
Console.WriteLine(“There are “ & Continents.Nodes.Count.ToString & _

“ continents on the control”)

The Clear Method

The Clear method removes all the child nodes from the current node. If you apply this method to
the control’s root node, it will clear the control. To remove all the countries under the Germany
node, use a statement like the following:

TreeView1.Nodes(0).Nodes(2).Nodes(1).Nodes.Clear

This example assumes that the third node under Globe corresponds to Europe and the second
node under Europe corresponds to Germany.

The Item Property

The Item property retrieves a node specified by an index value. The expression

Nodes.Item(1)

is equivalent to the expression

Nodes(1)

The Remove Method

The Remove method removes a node from the Nodes collection. Its syntax is

Nodes.Remove(index)

where index is the order of the node in the current Nodes collection. To remove the selected node,
call the Remove method on the SelectedNode object without arguments:

TreeView1.SelectedNode.Remove

Or you can apply the Remove method to a TreeNode object that represents the node you want to
remove:

Dim Node As TreeNode
Node = TreeView1.Nodes(0).Nodes(7)
Node.Remove

The FirstNode, NextNode, PrevNode, and LastNode Properties

These four properties allow you to retrieve any node at the current segment of the tree. Let’s say the
current node is the Germany node. The FirstNode property will return the first city under Germany
(the first node in the current segment of the tree) and the LastNode will return the last city under

753THE TREEVIEW CONTROL

2877c16.qxd 11/11/01 4:20 PM Page 753

http://www.sybex.com

Germany. PrevNode and NextNode allow you to iterate through the nodes of the current segment:
they return the next and previous nodes on the current segment of the tree (the sibling nodes, as
they’re called). See the section “Enumerating the Nodes Collection,” later in this chapter, for an
example.

Assigning Images to Nodes
To display an image in front of a node’s caption, you must first initialize an ImageList control
and populate it with all the images you plan to use with the TreeView control. The Node object
exposes two image-related properties: ImageIndex and SelectedImageIndex. Both properties are the
indices of an image in an ImageList control, which contains the images to be used with the control.
To connect the ImageList control to the TreeView object (as well as the ListView object, which is
discussed later in the chapter), you must assign the name of the ImageList control to the ImageList
property of the TreeView control. Then you can specify images by their index in the ImageList
control.

The ImageIndex property is the index of the image you want to display in front of the node’s
caption. The SelectedImageIndex is the index of the image you want to display when the node is
selected (expanded). Windows Explorer, for example, uses the icon of a closed folder for all col-
lapsed nodes and the icon of an open folder for all expanded nodes. If you don’t specify a value for
the SelectedImageIndex property, then the image specified with the ImageIndex property will be
displayed. If you haven’t specified a value for this property either, then no image will be displayed
for this node.

VB.NET at Work: The TreeViewDemo Project

It’s time to demonstrate the members discussed so far with an example. The project you’ll build in
this section is the TreeViewDemo project, and you can find it in this chapter’s folder on the CD.
The project’s main form is shown in Figure 16.8.

The Add Categories button adds the three top-level nodes to the TreeView control with the
statements shown in Listing 16.1. These are the control’s root nodes. The other two buttons add
items under the root nodes.

Figure 16.8

The TreeViewDemo
project

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS754

2877c16.qxd 11/11/01 4:20 PM Page 754

http://www.sybex.com

Listing 16.1: The Add Categories Button

Protected Sub AddCategories_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

TreeView1.Nodes.Add(“Shapes”)
TreeView1.Nodes.Add(“Solids”)
TreeView1.Nodes.Add(“Colors”)

End Sub

When these statements are executed, three root nodes will be added to the list. After clicking the
Add Categories button, your TreeView control looks like the one shown at the left.

To add a few nodes under the node Colors, you must retrieve the Colors Nodes collection and
add child nodes to this collection, as shown in Listing 16.2.

Listing 16.2: The Add Colors Button

Protected Sub AddColors_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Dim cnode As TreeNode
cnode = TreeView1.Nodes(2)
cnode.Nodes.Add(“Pink”)
cnode.Nodes.Add(“Maroon”)
cnode.Nodes.Add(“Teal”)

End Sub

When these statements are executed, three nodes will be added under the Colors node, but the
Colors node won’t be expanded. Therefore, its child nodes won’t be visible. To see its child nodes,
you must double-click the Colors node to expand it (or click the plus sign in front of it, if there is
one). The same TreeView control with its Colors node expanded is shown to the left. Alternatively,
you can add a statement that calls the Expand method of the cnode object, after adding the color
nodes to the control:

cnode.Expand()

Run the project, click the first button (Add Categories) and then the second button (Add Col-
ors). If you click the Add Colors button first, you’ll get a NullReferenceException, indicating that
node can’t be inserted unless its parent node exists already. You can add a few statements in the
TreeViewDemo project’s code to disable the buttons that generate similar runtime errors.

To add child nodes under the Shapes node, use the statements shown in Listing 16.3. This is the
Shapes button’s Click event handler.

Listing 16.3: The Add Shapes Button

Protected Sub AddShapes_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Dim snode As TreeNode

755THE TREEVIEW CONTROL

2877c16.qxd 11/11/01 4:20 PM Page 755

http://www.sybex.com

snode = treeview1.Nodes(0)
snode.Nodes.Add(“Square”)
snode.Nodes.Add(“Triangle”)
snode.Nodes.Add(“Circle”)

End Sub

Add a third Command button on the form, name it Add Shapes, and insert these lines in its Click
event handler. If you run the project and click the three buttons in the order in which they appear on
the Form, the TreeView control will be populated with Colors and Shapes. If you double-click the
items Colors and Shapes, the TreeView control’s nodes will be expanded.

Notice that the code knows the order of the root node to which it’s adding child nodes. Your
application should know the node under which it must add new child nodes. You could scan the
entire tree to locate an item, but then again the node names are not unique, not even within a Nodes
collection.

This approach doesn’t work with a sorted tree. If your TreeView control is sorted, you must cre-
ate a hierarchy of nodes explicitly, with the following statements:

snode = TreeView1.Nodes.Add(“Shapes”)
snode.Add(“Square”)
snode.Add(“Circle”)
snode.Add(“Triangle”)

These statements will work regardless of the control’s Sorted property setting. The three shapes
will be added under the Shapes nodes, and their order will be determined automatically. Of course,
you can always populate the control in any way you like and then turn on the Sorted property.

Let’s revise the code we’ve written so far to display all the nodes under a header called Items. In
other words, we’ll add a new node that will act as the root node for existing nodes. It’s not a common
operation, but it’s an interesting example of how to manipulate the nodes of a TreeView control.

First, we must add the root, a node that will contain all other nodes as children. Before we do so,
however, we must copy into local variables all the first-level nodes. We’ll use these variables to add
the current root nodes under the new (and single) root node. There are three root nodes currently in
our control, so we need three local variables. The three variables are of the TreeNode type, and
they’re set to the root nodes of the original tree. Then we must clear the entire tree, add the new root
node (the Items node), and finally add all the copied nodes under the new root. The code behind the
Move Tree button is shown in Listing 16.4.

Listing 16.4: Moving an Entire Tree

Protected Sub MoveTree_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles bttnMoveTree.Click

Dim colorNode, shapeNode, solidNode As TreeNode
colorNode = TreeView1.Nodes(0)
shapeNode = TreeView1.Nodes(1)
solidNode = TreeView1.Nodes(2)
TreeView1.Nodes.Clear()
TreeView1.Nodes.Add(“Items”)

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS756

2877c16.qxd 11/11/01 4:20 PM Page 756

http://www.sybex.com

TreeView1.Nodes(0).Nodes.Add(colorNode)
TreeView1.Nodes(0).Nodes.Add(shapeNode)
TreeView1.Nodes(0).Nodes.Add(solidNode)

End Sub

You can revise this code so that it uses an array of Node objects to store all the root nodes
instead of their count. For a routine that will work with any tree, you must assume that the number
of nodes is unknown, so the ArrayList would be a better choice. The following loop stores all the
root nodes of the TreeView1 control to the TVList ArrayList:

Dim node As TreeNode
For Each node in TreeView1.Nodes

TVList.Add(node)
Next

Likewise, the following loop extracts the root nodes from the TVList object:

Dim node As TreeNode
Dim itm As Object
TreeView1.Nodes.Clear
For Each itm In TVList

node = CType(itm, TreeNode)
TreeView1.Nodes.Add(node)

Next

Enumerating the Nodes Collection

Each group of child nodes forms a Nodes collection, which exposes several methods. As you have
seen in the last example, a Node object may include an entire tree under it. When we move a node, it
takes with it the entire Nodes collection under it. The FirstNode property returns the first node in
the collection, the LastNode property returns the last node in the collection, and the NextNode and
PrevNode properties return the next and previous nodes in the collection, respectively. You can scan
all the nodes in the CurrentNode collection with a loop, which starts with the first node and then
moves to the next node with the help of the FirstNode and NextNode properties. The following
loop prints the names of all continents on the GlobeTree control:

Dim node As TreeNode
node = GlobeTree.Nodes(0).Nodes(0).FirstNode
While node <> Nothing

Console.WriteLine(node.text)
node = node.NextNode

End While

The last property demonstrated by the TreeViewDemo project is the Sorted property, which
sorts the child nodes of the node to which it’s applied. When you set the Sorted property of a node
to True, every child node you attach to it will be inserted automatically in alphabetical order.

Note If you reset the Sorted property to False and add another node, it will be appended to the end of the existing (and
sorted) nodes. This is how new child nodes are added to a parent node when its Sorted property is False.

757THE TREEVIEW CONTROL

2877c16.qxd 11/11/01 4:20 PM Page 757

http://www.sybex.com

VB.NET at Work: The Globe Project

The Globe project, which you can find in this chapter’s folder on the CD, demonstrates many of the
techniques we’ve discussed so far. It’s not the simplest example of a TreeView control, and its code
is lengthy, but it will help you understand how to manipulate nodes at runtime. As you know by
now, TreeView is not a simple control, so before ending this section I would like to show you a
fairly advanced example that you can use as a starting point for your own custom applications.
You’ll also see how to save the nodes of a TreeView control to a disk file and retrieve them later.

The Globe project consists of a single form, which is shown in Figure 16.9. The TreeView con-
trol at the left contains a tree structure with continents, countries, and cities, with a rather obvious
structure. Each city belongs to a country, and each country belongs to a continent. The control is
initially populated with the continents, which were added at design time. The countries and cities are
added from within the form’s Load event handler. The continents were added at design time, but as
you will see, there’s no particular reason not to add them to the control at runtime. It would have
been actually simpler to add all the nodes at runtime, but I’ve decided to add a few nodes at design
time just for demonstration purposes.

When a node is selected in the TreeView control, its text is displayed on the TextBox controls at
the bottom of the form. When a continent name is selected, the continent’s name appears in the first
TextBox, and the other two TextBoxes are empty. When a country is selected, its name appears in
the second TextBox, and its continent appears in the first TextBox. Finally, when a city is selected, it
appears in the third TextBox, along with its country and continent in the other two TextBoxes.

You can also use the TextBox controls to add new nodes. To add a new continent, just supply
the name of the continent in the first TextBox and leave the other two empty. To add a new coun-
try, supply its name in the second TextBox and the name of the continent it belongs to in the first
one. Finally, to add a city, supply a continent, country, and city name in the three TextBoxes.

Run the Globe application and expand the continents and countries to see the tree structure of
the data stored in the control. Add new nodes to the control, and enumerate these nodes by clicking

Figure 16.9

The Globe project

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS758

2877c16.qxd 11/11/01 4:20 PM Page 758

http://www.sybex.com

the appropriate button on the right-hand side of the form. These buttons list the nodes at a given
level (continents, countries, and cities). When you add new nodes, the code places them in their
proper place in the list. If you specify a new city and a new country under an existing continent, then
a new country node will be created under the specified continent, and a new city node will be
inserted under the specified country.

Coding the Globe Project

Let’s take a look at the code of the Globe project. We’ll start by looking at the code that populates
the TreeView control. The root node (GLOBE) and the continent names were added at design time
through the TreeNode Editor. In many cases, it is convenient to add the first few nodes, or at least
the root node, at design time.

After the continents are in place, the code adds the countries to each continent and the cities to
each country. The code in the form’s Load event goes through all the continents already on the con-
trol and examines their Text property. Depending on the continent represented by the current node,
it adds the corresponding countries and some city nodes under each country node.

If the current node is Africa, the first country to be added is Egypt. The Egypt node is added to
the ContinentNode object. The new node is returned as a TreeNode object and is stored in the Country-
Node object. Then the code uses this object to add nodes that correspond to cities under the Egypt
node. The form’s Load event handler is quite lengthy, so I’m showing (Listing 16.5) only the code
that adds the first country under each continent and the first city under each country.

Listing 16.5: Adding the Nodes of Africa

For Each ContinentNode In GlobeNode.Nodes
Select Case ContinentNode.Text

Case “Europe”
CountryNode = ContinentNode.Nodes.Add(“Germany”)
CountryNode.Nodes.Add(“Berlin”)

Case “Asia”
CountryNode = ContinentNode.Nodes.Add(“China”)
CountryNode.Nodes.Add(“Beijing”)

Case “Africa”
CountryNode = ContinentNode.Nodes.Add(“Egypt”)
CountryNode.Nodes.Add(“Cairo”)
CountryNode.Nodes.Add(“Alexandria”)

Case “Oceania”
CountryNode = ContinentNode.Nodes.Add(“Australia”)
CountryNode.Nodes.Add(“Sydney”)

Case “N. America”
CountryNode = ContinentNode.Nodes.Add(“USA”)
CountryNode.Nodes.Add(“New York”)

Case “S. America”
CountryNode = ContinentNode.Nodes.Add(“Argentina”)

End Select
Next

759THE TREEVIEW CONTROL

2877c16.qxd 11/11/01 4:20 PM Page 759

http://www.sybex.com

The remaining countries and their cities are added with similar statements, which you can exam-
ine if you open the Globe project. Notice that the GlobeTree control could have been populated
entirely at design time, but this wouldn’t be much of a demonstration. Let’s move on to a few more
interesting aspects of programming the TreeView control.

Retrieving the Selected Node

The selected node is given by the property SelectedNode. Once you can retrieve the selected node,
you can also retrieve its parent node and the entire path to the root node. The parent node of the
current control is TreeView1.SelectedNode.Parent. If this node has a parent, you can retrieve it by
calling the Parent property of the previous expression (TreeView1.SelectedNode.Parent.Parent).
Or you can use the FullPath property to retrieve the selected node’s full path. The FullPath property
of the Rome node is

GLOBE\Europe\Italy\Rome

The slashes separate the segments of the node’s path. You can specify any other character for this
purpose by setting the control’s PathSeparator property.

To remove the selected node from the tree, call the Remove method:

TreeView1.SelectedNode.Remove

If the selected node is a parent control for other nodes, the Remove method will take with it all the
nodes under the selected one. You can also use the IsSelected property of the Node object to find
out whether a specific node is selected or not. The IsSelected property returns a True/False value,
depending on the status of the node. A similar property, the IsExpanded property, allows you to find
out whether a specific node is expanded or not.

One of the operations you’ll want to perform with the TreeView control is to capture the selec-
tion of a node. The TreeView control fires the AfterSelect event, which notifies your application
of the selection of another node. If you need to know which node was previously selected, you must
use the BeforeSelect event. The second argument of both events has two properties, the Node and
Action properties, which let you find out the node that fired the event and the action that caused it.
The e.Node property is a TreeViewNode object that represents the selected node. Use it in your
code as you would use any other node of the control. The e.Action property is a member of the
TreeViewAction enumeration (ByKeyboard, ByMouse, Collapse, Expand, Unknown). Use this
property to find out the action that caused the event. The actions of expanding and collapsing a tree
branch fire their own events, which are the BeforeExpand/AfterExpand and the BeforeCollapse/
AfterCollapse events, respectively.

VB6 ➠ VB.NET

The VB6 version of the TreeView control recognized the NodeClick event, which was fired every time the
user selected another node in the control. The NodeClick event has been replaced by the AfterSelect event.

The Globe project retrieves the selected node and extracts the parts of the node’s path. The indi-
vidual components of the path are displayed in the three TextBox controls at the bottom of the
form. Listing 16.6 shows the event handler for the TreeView control’s AfterSelect event.

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS760

2877c16.qxd 11/11/01 4:20 PM Page 760

http://www.sybex.com

Listing 16.6: Processing the Selected Node

Private Sub GlobeTree_AfterSelect(ByVal sender As Object, _
ByVal e As System.Windows.Forms.TreeViewEventArgs) _
Handles GlobeTree.AfterSelect

If GlobeTree.SelectedNode Is Nothing Then Exit Sub
Dim components() As String
txtContinent.Text = “”
txtCountry.Text = “”
txtCity.Text = “”
components = Split(GlobeTree.SelectedNode.FullPath.ToString, _

GlobeTree.PathSeparator)
Console.WriteLine(GlobeTree.SelectedNode.FullPath.ToString)
If components.Length > 1 Then txtContinent.Text = components(1)
If components.Length > 2 Then txtCountry.Text = components(2)
If components.Length > 3 Then txtCity.Text = components(3)

End Sub

The Split() function of VB extracts the parts of a string that are delimited by a special character.
For the case of the TreeView control, this special character is given by the property PathSeparator,
and the default value of this property is the character “\”. If any of the captions contain this charac-
ter, you should change the default to a different character by setting the PathSeparator property to
something else.

The code behind the Delete Current Node and Expand Current Node buttons is simple. To
delete a node, call the selected node’s Remove method:

GlobeTree.SelectedNode.Remove

The other button expands the current node by calling the Expand method of the selected node:

GlobeTree.SelectedNode.Expand

The TreeNode object exposes the ExpandAll method, too, which expands not only the specified
node but all the Nodes collections under it (its child nodes).

Processing Multiple Selected Nodes

The GlobeTree TreeView control has its CheckBoxes property set to True so that users can select
multiple nodes. I’ve added this feature to demonstrate how you can retrieve the selected nodes and
process them.

As you will notice by experimenting with the TreeView control, you can check a node that has
subordinate nodes, but these nodes will not be affected. They will remain unchecked (or checked, if
you have already checked them). In most cases, however, when we check a parent node, we actually
intend to check all the nodes under it. When you check a country, for example, you’re in effect
selecting not only the country but all the cities under it. The code of the Process Selected Nodes
button assumes that when a parent node is checked, it must also check all the nodes under it.

Let’s look at the code that iterates through the control’s nodes and isolates the selected ones. It
doesn’t really process them, it simply prints them on the ListBox control. However, you can call a

761THE TREEVIEW CONTROL

2877c16.qxd 11/11/01 4:20 PM Page 761

http://www.sybex.com

function to process the selected nodes in any way you like. The code behind the Process Selected Nodes
button starts with the continents. It creates a TreeNodeCollection with all the continents and then
goes through the collection with a For Each…Next loop. At each step, it creates a new TreeNode-
Collection, which contains all the subordinate nodes (the countries under the selected continent) and
goes through the new collection. This loop is also interrupted at each step to retrieve the cities in the
current country and process them with another loop. The following pseudo-code listing outlines
the code:

Set up the Continents Collection
For Each continent In Continents

If continent is selected Then process it
Set up the Countries Collection
For Each country In Countries

If country is selected Then process it
Set up the Cities Collection
For Each city In Cities

If city is selected Then process it
Next

Next
Next

The code behind the Process Selected Nodes button implements the pseudo-code shown above
and is shown in Listing 16.7.

Listing 16.7: Processing All Selected Nodes

Protected Sub bttnProcessSelected_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

Dim continent, country, city As TreeNode
Dim Continents, Countries, Cities As TreeNodeCollection
ListBox1.Items.Clear()
Continents = GlobeTree.Nodes(0).Nodes
For Each continent In Continents

If continent.Checked Then ListBox1.Items.Add(continent.FullPath)
Countries = continent.Nodes
For Each country In Countries

If country.Checked Or country.Parent.Checked Then _
ListBox1.Items.Add(“ “ & country.FullPath)

Cities = country.Nodes
For Each city In Cities

If city.Checked Or city.Parent.Checked Or _
city.Parent.Parent.Checked Then _

ListBox1.Items.Add(“ “ & city.FullPath)
Next

Next
Next

End Sub

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS762

2877c16.qxd 11/11/01 4:20 PM Page 762

http://www.sybex.com

The code examines the Checked property of the current node, as well as the Checked property of
its parent node. If either one is True, then the node is considered selected. You should try to add the
appropriate code to select all subordinate nodes of a parent node when the parent node is selected
(whether you deselect the subordinate nodes when the parent node is deselected is entirely up to you
and the type of application you’re developing). The Nodes collection exposes the GetEnumerator
method, which should be very familiar to you by now. You can revise the last listing so that it uses
an enumerator in the place of each For Each…Next loop.

Adding New Nodes

The Add Node button lets the user add new nodes to the tree at runtime. The number and type of
the node(s) added depend on the contents of the TextBox controls:

� If only the first TextBox control contains text, then a new continent will be added.

� If the first two TextBox controls contain text, then:

� If a continent exists, a new country node is added under the specified continent.

� If a continent doesn’t exist, a new continent node is added, and then a new country node
is added under the continent’s node.

� If all three TextBox controls contain text, the program adds a continent node (if needed),
then a country node under the continent node (if needed), and finally, a city node under the
country node.

Obviously, you can omit a city, or a city and country, but you can’t omit a continent name. Like-
wise, you can’t specify a city without a country or a country without a continent. The code will prompt
you accordingly when it detects a condition that prevents it from adding the new node for any reason.
If the node exists already, then the program selects the existing node and doesn’t issue any warnings.
The Add Node button’s code is shown in Listing 16.8.

Listing 16.8: Adding Nodes at Runtime

Private Sub bttnAddNode_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnAddNode.Click

Dim nd As TreeNode
Dim Continents As TreeNode
If txtContinent.Text.Trim <> “” Then

Continents = GlobeTree.Nodes(0)
Dim ContinentFound, CountryFound, CityFound As Boolean
Dim ContinentNode, CountryNode, CityNode As TreeNode
For Each nd In Continents.Nodes

If nd.Text.ToUpper = txtContinent.Text.ToUpper Then
ContinentFound = True
Exit For

End If
Next
If Not ContinentFound Then

763THE TREEVIEW CONTROL

2877c16.qxd 11/11/01 4:20 PM Page 763

http://www.sybex.com

nd = Continents.Nodes.Add(txtContinent.Text)
End If
ContinentNode = nd
If txtCountry.Text.Trim <> “” Then

Dim Countries As TreeNode
Countries = ContinentNode
If Not Countries Is Nothing Then

For Each nd In Countries.Nodes
If nd.Text.ToUpper = txtCountry.Text.ToUpper Then

CountryFound = True
Exit For

End If
Next

End If
If Not CountryFound Then

nd = ContinentNode.Nodes.Add(txtCountry.Text)
End If
CountryNode = nd
If txtCity.Text.Trim <> “” Then

Dim Cities As TreeNode
Cities = CountryNode
If Not Cities Is Nothing Then

For Each nd In Cities.Nodes
If nd.Text.ToUpper = txtCity.Text.ToUpper Then

CityFound = True
Exit For

End If
Next

End If
If Not CityFound Then

nd = CountryNode.Nodes.Add(txtCity.Text)
End If
CityNode = nd

End If
End If

End If
End Sub

The listing is quite lengthy, but it’s not hard to follow. First, it attempts to find a continent that
matches the name in the first TextBox. If it succeeds, it need not add a new continent node. If not,
then a new continent node must be added. To avoid simple data-entry errors, the code converts the
continent names to uppercase before comparing them to the uppercase of each node’s name. The
same happens with the countries and the cities. As a result, each node’s pathname is unique. You
can’t have the same city name under the same country more than once. It is possible, however, to
add the same city name to two different countries. The example is not quite realistic, as there are
common city names in every country.

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS764

2877c16.qxd 11/11/01 4:20 PM Page 764

http://www.sybex.com

Listing Continents/Countries/Cities

The three buttons List Continents, List Countries, and List Cities populate the ListBox control with
the names of the continents, countries, and cities, respectively. The code is straightforward and is
based on the techniques discussed in previous sections. To print the names of the continents, it iter-
ates through the children of the GLOBE node. Listing 16.9 shows the complete code of the List
Continents button.

Listing 16.9: Retrieving the Continent Names

Private Sub bttnListContinents_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnListContinents.Click

Dim Nd As TreeNode, continentNode As TreeNode
Dim continent As Integer, continents As Integer
ListBox1.Items.Clear()
Nd = GlobeTree.Nodes(0)
continents = Nd.Nodes.Count
continentNode = Nd.Nodes(0)
For continent = 1 To continents

ListBox1.Items.Add(continentNode.Text)
continentNode = continentNode.NextNode

Next
End Sub

The code behind the List Countries names is equally straightforward, although longer. It must scan
each continent, and within each continent, it must scan in a similar fashion the continent’s child nodes.
To do this, you must set up two nested loops, the outer one to scan the continents and the inner one to
scan the countries. The complete code for the List Countries button is shown in Listing 16.10. Notice
that in this example, I’m using For…Next loops to iterate through the current level’s nodes, and I also use
the NextNode method to retrieve the next node in the sequence.

Listing 16.10: Retrieving the Country Names

Private Sub bttnListCountries_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnListCountries.Click

Dim Nd, CountryNode, ContinentNode As TreeNode
Dim continent, continents, country, countries As Integer
ListBox1.Items.Clear()
Nd = GlobeTree.Nodes.Item(0)
continents = Nd.Nodes.Count
ContinentNode = Nd.Nodes(0)
For continent = 1 To continents

countries = ContinentNode.Nodes.Count
CountryNode = ContinentNode.Nodes(0)
For country = 1 To countries

ListBox1.Items.Add(CountryNode.Text)

765THE TREEVIEW CONTROL

2877c16.qxd 11/11/01 4:20 PM Page 765

http://www.sybex.com

CountryNode = CountryNode.NextNode
Next
ContinentNode = ContinentNode.NextNode

Next
End Sub

When the ContinentNode.Next method is called, it returns the next node in the Continents level.
Then the ContinentNode.Nodes(0) method is called, and it returns the first node in the Countries
level. As you can guess, the code of the List Cities button uses the same two nested lists as the previ-
ous listing and an added inner loop, which scans the cities of each country.

The code behind these Command buttons requires some knowledge of the information stored in
the tree. It will work with trees that have two or three levels of nodes such as the Globe tree, but
what if the tree’s depth is allowed to grow to a dozen levels? A tree that represents the structure of a
folder on your hard disk, for example, may easily contain a dozen nested folders. Obviously, to scan
the nodes of this tree you can’t put together unlimited nested loops. The next section describes a
technique for scanning any tree, regardless of how many levels it contains. The code in the following
section uses recursion, and if you’re not familiar with recursive programming, then you should first
read Chapter 18.

Scanning the TreeView Control
The items of a TreeView control can all be accessed through the Nodes collection. You have seen
how to scan the entire tree of the TreeView control with a For Each…Next loop. This technique,
however, requires that you know the structure of the tree, and you must write as many nested loops
as there are nested levels of nodes. It works with simple trees, but it’s quite inefficient when it comes
to mapping a file system to a TreeView control.

VB.NET at Work: The TreeViewScan Project

To demonstrate the process of scanning a TreeView control, I have included the TreeViewScan
project on the CD. The application’s form is shown in Figure 16.10. The Form contains a Tree-
View control on the left, which is populated with the same data as the Globe’s TreeView control,
and a ListBox control on the right, where the tree’s nodes are listed. Child nodes on the ListBox con-
trol are indented according to the level to which they belong.

Figure 16.10

The TreeViewScan
application demon-
strates how to scan
the nodes of a
TreeView control
recursively.

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS766

2877c16.qxd 11/11/01 4:20 PM Page 766

http://www.sybex.com

Scanning the child nodes in a tree calls for a recursive procedure, or a procedure that calls itself.
Think of a tree structure that contains all the files and folders on your C: drive. If this structure con-
tained no subfolders, you’d need to set up a loop to scan each folder, one after the other. Since most
folders contain subfolders, the process must be interrupted at each folder to scan the subfolders of
the current folder. The process of scanning a drive recursively was described in detail in Chapter 13.

Recursive Scanning

To start the scanning of the TreeView1 control, start at the top node of the control with the statement

Protected Sub bttnScanTree_Click(ByVal sender As Object, _
ByVal e As System.EventArgs)

ScanNode(GlobeTree.Nodes(0))
End Sub

This is the code behind the Scan Tree button, and it doesn’t get any simpler. It calls the Scan-
Node() subroutine to scan the child nodes of a specific node, which is passed to the subroutine as an
argument. GlobeTree.Nodes(0) is the root node. By passing the root node to the ScanNode() sub-
routine, we’re in effect asking it to scan the entire tree.

This example assumes that the TreeView control contains a single root node and that all other
nodes are under the root node. If your control contains multiple root nodes, then you must set up a
small loop and call the ScanNode() subroutine once for each root node:

For Each node In GlobeTree.Nodes
ScanNode(node)

Next

Let’s look now at the ScanNode() subroutine, shown in Listing 16.11.

Listing 16.11: Scanning a Tree Recursively

Sub ScanNode(ByVal node As TreeNode)
Dim thisNode As TreeNode
Static IndentLevel As Integer
Application.DoEvents()
ListBox1.Items.Add(Space(IndentLevel) & node.Text)
If node.Nodes.Count > 0 Then

IndentLevel += 5
For Each thisNode In node.Nodes

ScanNode(thisNode)
Next
IndentLevel -= 5

End If
End Sub

This subroutine is deceptively simple. First, it adds the caption of the current node to the ListBox1
control. If this node (represented by the Node variable) contains child nodes, the code must scan them
all. The Node.Nodes.Count method returns the number of nodes under the current node. If this value

767THE TREEVIEW CONTROL

2877c16.qxd 11/11/01 4:20 PM Page 767

http://www.sybex.com

is positive, then we scan all the items of the Node.Nodes collection. To do this, the ScanNode() sub-
routine must call itself by passing a different argument. If you’re familiar with recursive procedures,
you’ll find the code quite simple. If not, this coding probably will raise many questions. You can use
the ScanNode() subroutine as is to scan any TreeView control. All you need is a reference to the root
node (or the node you want to scan recursively), which you must pass to the ScanNode() subroutine
as an argument. The subroutine will scan the entire subtree and display its nodes on a ListBox control.
The nodes will be printed one after the other. To make the list easier to read, indent the names of the
nodes by an amount that’s proportional to the levels of nesting. Nodes of the first level aren’t indented
at all. Nodes on the first level can be indented by 5 spaces, nodes on the second level can be indented by
10 spaces, and so on. The variable IndentLevel keeps track of the level of nesting and is used to specify
the indentation of the corresponding node. It’s increased by 5 when we start scanning a new subordinate
node and decreased by the same amount when we return to the next level up. The IndentLevel variable is
declared as Static so that it maintains its value between calls.

Run the TreeViewScan project and expand all nodes. Then click the Scan Tree button to populate
the list on the right with the names of the continents/countries/cities. Obviously, the ListBox control
is not a substitute for the TreeView control. The data have no particular structure; even when they’re
indented, there are no tree lines connecting its nodes, and users can’t expand and collapse the control’s
contents. So why bother to map the contents of the TreeView control to a ListBox control? The goal
was to demonstrate how to scan a tree structure and extract all the nodes along with their structure.
You can use the ScanNode() subroutine to store the nodes of a TreeView control to a disk file or
transfer them to a database or another control. The ScanNode() subroutine is the core of the subrou-
tine you need and can be adjusted to accommodate any of the operations just mentioned.

The ListView Control
The ListView control is similar to the ListBox control except that it can display its items in many
forms, along with any number of subitems for each item. To use the ListView control in your proj-
ect, place an instance of the control on a form and then sets its basic properties, which are described
in the following sections.

The View and Arrange properties There are two properties that determine how the various
items will be displayed on the control: the View property, which determines how the items will
appear, and the Arrange property, which determines how the items will be aligned on the con-
trol’s surface. The View property can have one of the values shown in Table 16.1.

Table 16.1: Settings of the View Property

Setting Description

LargeIcon (Default) Each item is represented by an icon and a caption below the icon.

SmallIcon Each item is represented by a small icon and a caption that appears to the right of the icon.

List Each item is represented by a caption.

Report Each item is displayed in a column with its subitems in adjacent columns.

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS768

2877c16.qxd 11/11/01 4:20 PM Page 768

http://www.sybex.com

The Arrange property determines how the items will be arranged on the control, and its possible
settings are show in Table 16.2.

Table 16.2: Settings of the Arrange Property

Setting Description

Default When an item is moved on the control, it remains where it is dropped.

Left Items are aligned to the left side of the control.

SnapToGrid Items are aligned to an invisible grid on the control. When the user moves an item, the item
moves to the closest grid point on the control.

Top Items are aligned to the top of the control.

HeaderStyle This property determines the style of the headers in Report view. It has no mean-
ing when the View property is set to something else, because only the Report view has columns.
The possible settings for the HeaderStyle property are shown in Table 16.3.

Table 16.3: Settings of the HeaderStyle Property

Setting Description

Clickable Visible column header that responds to clicking

Nonclickable Visible column header that does not respond to clicking

None No visible column header

AllowColumnReorder This property is a True/False value that determines whether the user
can reorder the columns at runtime. If this property is set to True, then the user can move a col-
umn to a new location by dragging its header with the mouse and dropping it in the place of
another column. This property is also meaningful only in Report view.

Activation This property specifies the action that will activate an item on the control, and it
can have one of the values shown in Table 16.4.

Table 16.4: Settings of the Activation Property

Setting Description

OneClick Items are activated with a single click. When the cursor is over an item, it changes shape and
the color of the item’s text changes.

Standard Items are activated with a double-click. No change in the selected item’s text color takes
place.

TwoClick Items are activated with a double-click and their text changes color as well.

769THE LISTVIEW CONTROL

2877c16.qxd 11/11/01 4:20 PM Page 769

http://www.sybex.com

FullRowSelect This property is a True/False value indicating whether the user can select an
entire row or just the item’s text, and it’s meaningful only in Report view.

GridLines Another True/False property. If True, then grid lines between items and subitems
are drawn. This property is meaningful only in Report view.

LabelEdit The LabelEdit property lets you specify whether the user will be allowed to edit the
text of the items. The default value of this property is False.

MultiSelect A True/False value indicating whether the user can select multiple items on the
control or not. To select multiple items, click them with the mouse while holding down the Shift
or the Control key.

Scrollable A True/False value that determines whether the scrollbars are visible or not. Even if
the scrollbars are invisible, users will still be able to bring any item into view. All they have to do
is select an item and then press the arrow keys as many times as needed to scroll a different sec-
tion of the Items collection into view.

Sorting This property determines how the items will be sorted, and as usual it’s meaningful
only in Report view. This Sorting property isn’t a simple True/False value like the Sorted prop-
erty of the TreeView control. Its setting can be None, Ascending, or Descending. A ListView con-
trol can be sorted in many ways (it has multiple columns), and each column may hold data of a
different type. You must build a custom comparer and assign it to the ListViewItemSorter
property of the ListView control. The process of sorting a ListView control is discussed in detail
in the section “Sorting the ListView Control,” later in this chapter.

The Columns Collection
To display items in Report view, you must first set up the appropriate columns. The first column
corresponds to the item, and the following columns correspond to its subitems. If you don’t set up
at least one column, no items will be displayed in Report view. Conversely, the Columns collection
is meaningful only when the ListView control is used in Report view.

The items of the Columns collection are of the ColumnHeader type. The simplest method to set
up the appropriate columns is to do so at design time with a visual tool. Locate and select the Columns
property in the Properties window, and click the button with the ellipses next to it. The Column-
Header Collection Editor window will appear, as shown in Figure 16.11, where you can add and
edit the appropriate columns.

Adding columns to a ListView control and setting their properties through the window of
Figure 16.11 is quite trivial. Don’t forget to size the columns according to the data you anticipate
to store in them and set their headers.

It is also possible to manipulate the Columns collection from within your code, with the methods
and properties discussed here.

Add method Use the Add method of the Columns collection to add a new column to the con-
trol. The syntax of the Add method is

TreeView.Columns.Add(header, width, textAlign)

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS770

2877c16.qxd 11/11/01 4:20 PM Page 770

http://www.sybex.com

The header argument is the column’s header (the string that appears on top of the items). The
width argument is the column’s width in pixels, and the last argument determines how the text will
be aligned. The textAlign argument can be Center, Justify, Left, NotSet, or Right. The NotSet set-
ting specifies that horizontal alignment is not set.

The Add method returns a ColumnHeader object, which you can use later in your code to
manipulate the corresponding column. The ColumnHeader object exposes a Name property,
which can’t be set with the Add method.

Header1 = TreeView1.Add(“Column 1”, 60, ColAlignment.Left)
Header1.Name = “COL1”

After the execution of these statements, the first column can be accessed not only by index but by
name as well.

Clear method This method removes all columns.

Count property This property returns the number of columns in the ListView control. You
can add more subitems than there are columns in the control, but the excess subitems will not be
displayed.

Remove method This method removes a column by its index:

ListView1.Columns(3).Remove

The indices of the following columns are automatically decreased by one.

The ListItem Object
As with the TreeView control, the ListView control can be populated either at design time or at
runtime. To add items at design time, click the button with the ellipsis next to the ListItems prop-
erty in the Properties window. When the ListViewItem Collection Editor window pops up, you can
enter the items, including their subitems, as shown in Figure 16.12.

Figure 16.11

The ColumnHeader
Collection Editor
window

771THE LISTVIEW CONTROL

2877c16.qxd 11/11/01 4:20 PM Page 771

http://www.sybex.com

Click the Add button to add a new item. Each item has subitems, which you can specify as mem-
bers of the SubItems collection. To add an item with three subitems, you can populate the SubItems
collection with the appropriate elements. Click the button with the ellipsis in the SubItems property
on the ListViewItem Collection Editor, and the ListViewSubItem Collection Editor will appear.
This window is very similar to the ListViewItem Collection Editor window, and you can add each
item’s subitems. Assuming that you have added the item called Item 1 in the ListViewItem Collec-
tion Editor, you can add these subitems: Item 1-a, Item 1-b, and Item 1-c. The first subitem (the
one with zero index) is actually the main item of the control.

Notice that you can set other properties, like the color and font for each item, the check box in
front of the item that indicates whether the item is selected, and the image of the item. Use this win-
dow to experiment with the appearance of the control and the placement of the items, especially in
Report view, since subitems are visible only in this view. Even then, you won’t see anything unless
you specify headers for the columns.

Unlike the TreeView control, the ListView control allows you to specify a different appearance
for each item and each subitem. To set the appearance of the items, use the Font, BackColor, and
ForeColor properties of the ListViewItem object.

Almost all ListViews are populated at runtime. Not only that, but you should be able to add and
remove items during the course of the application. The items of the ListView control are of the
ListViewItem type, and they expose a number of members that allow you to control the appearance
of the items on the control. These members are listed next:

BackColor property This property sets or returns the background color of the current item.

Checked property This property controls the status of an item. If it’s True, then the item has
been selected. You can also select an item from within your code by setting its Checked property
to True. The check boxes in front of each item won’t be visible unless you set the control’s
CheckBoxes property to True.

Font property This property sets the font of the current item. Subitems can be displayed in a
different font if you specify one with the SetSubItemFont method (see the section “The
SubItems Collection,” later in this chapter).

Figure 16.12

The ListViewItem
Collection Editor

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS772

2877c16.qxd 11/11/01 4:20 PM Page 772

http://www.sybex.com

Text property This property is the caption of the current item.

SubItems collection This property holds the subitems of the current ListViewItem. To retrieve
a specific subitem, use a statement like the following:

sitem = ListView1.Items(idx1).SubItems(idx2)

where idx1 is the index of the item and idx2 the index of the desired subitem.

To add a new subitem to the SubItems collection, use the Add method, passing the text of the
subitem as argument:

LItem.SubItems.Add(“subitem’s caption”)

The argument of the Add method can also be a ListViewItem object. If you want to add a
subitem at a specific location, use the Insert method. The Insert method of the SubItems collec-
tion accepts two arguments: the index of the subitem before which the new subitem will be
inserted and a string or ListViewItem to be inserted:

LItem.SubItems.Insert(idx, subitem)

Like the ListViewItem objects, each subitem can have its own font, which is set with the Font
property.

Remove method This method removes an item by index. When you remove an item, it takes
with it all of its subitems.

SetSubItemBackColor method This method sets the background color of the current subitem.

SetSubItemForeColor method This method sets the foreground color of the current subitem.

The items of the ListView control can be accessed through the ListItems property, which is a
collection. As such, it exposes the standard members of a collection, which are described in the fol-
lowing section.

The Items Collection
All the items on the ListView control form a collection, the Items collection. This collection exposes
the typical members of a collection that let you manipulate the control’s items. These members are
discussed next:

Add method This method adds a new item to the Items collection. The syntax of the Add
method is

ListView1.Items.Add(caption)

You can also specify the index of the image to be used along with the item and a collection of
subitems to be appended to the new item, with the following form of the Add method:

ListView1.Items.Add(caption, imageIndex)

where imageIndex is the index of the desired image on the associated ImageList control.

773THE LISTVIEW CONTROL

2877c16.qxd 11/11/01 4:20 PM Page 773

http://www.sybex.com

Finally, you can create a ListViewItem object in your code and then add it to the ListView con-
trol with the following form of the Add method:

ListView1.Items.Add(listItemObj)

The following statements create a new item, set its individual subitems, and then add the newly
created ListViewItem object to the control:

Dim LItem As New ListViewItem()
LItem.Text = “new item”
LItem.SetSubItem(0, “sub item 1a”)
LItem.SetSubItem(1, “sub item 1b”)
LItem.SetSubItem(2, “sub item 1c”)
ListView1.ListItems.Add(LItem)

Count property Returns the number of items in the collection.

Clear method Removes all the items from the collection.

Item property Retrieves an item specified by an index value.

Remove method Removes an item from the Items collection.

The SubItems Collection
Each item in the ListView control may also have subitems. You can think of the item as the key of a
record and the subitems as the other fields of the record. The subitems are displayed only in Report
mode, but they are available to your code in any view. For example, you can display all items as
icons, and when the user clicks on an icon, show the values of the selected item’s subitems on other
controls.

To access the subitems of a given item, use its SubItems collection. The following statements add
an item and three subitems to the ListView1 control:

Dim LItem As ListViewItem
Set LItem = ListView1.Items.Add(, , “Alfreds Futterkiste”)
LItem.SubItems(1) = “Maria Anders”
LItem.SubItems(2) = “030-0074321”
LItem.SubItems(3) = “030-0076545”

To access the SubItems collection, you must have a reference to the item to which the subitems
belong. The Add method returns a reference to the newly added item, the LItem variable, which is
then used to access the item’s subitems, as shown in the last example.

Displaying the subitems on the control requires some overhead. Subitems are displayed only in
Report view mode. However, setting the View property to Report is not enough. You must first
create the columns of the Report view, as explained earlier. The ListView control displays only as
many subitems as there are columns in the control. The first column, with the header Company, dis-
plays the items of the list. The following columns display the subitems. Moreover, you can’t specify
which subitem will be displayed under each header. The first subitem (“Maria Anders” in the above

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS774

2877c16.qxd 11/11/01 4:20 PM Page 774

http://www.sybex.com

example) will be displayed under the second header, the second subitem (“030-0074321” in the
same example) will be displayed under the third header, and so on. At runtime, the user can rearrange
the columns by dragging them with the mouse. To disable the rearrangement of the columns at run-
time, set the control’s AllowColumnReorder property to False (its default value is True).

Unless you set up each column’s width, all columns will have the same width. The width of indi-
vidual columns is in pixels, and it’s usually specified as a percentage of the total width of the control,
especially if the control is docked to the form. The following code sets up a ListView control with
four headers, all having the same width:

Dim LWidth As Integer
LWidth = ListView1.Width – 5
ListView1.ColumnHeaders.Add(“Company”, LWidth / 4)
ListView1.ColumnHeaders.Add(“Contact”, LWidth / 4)
ListView1.ColumnHeaders.Add(“Phone”, LWidth / 4)
ListView1.ColumnHeaders.Add(“FAX”, LWidth / 4)
ListView1.View = DetailsView

This subroutine sets up four headers of equal width. The first header corresponds to the item
(not a subitem). The number of headers you set up must be equal to the number of subitems you
want to display on the control plus one. The constant 5 is subtracted to compensate for the width of
the column separators.

VB.NET at Work: The ListViewDemo Project

Let’s put together the members of the ListView control to create a sample application that populates
a ListView control and enumerates its items. The application is called ListViewDemo and you’ll
find it in this chapter’s folder on the CD. The application’s form, shown in Figure 16.13, contains a
ListView control whose items can be displayed in all possible views, depending on the status of the
OptionButton controls in the List Style section on the right side of the form.

Figure 16.13

The ListViewDemo
project demonstrates
the basic members
of the ListView
control.

775THE LISTVIEW CONTROL

2877c16.qxd 11/11/01 4:20 PM Page 775

http://www.sybex.com

When the application starts, it sets up the headers (columns) of the ListView control. You can
comment out the lines that insert the headers in the Form’s Load event and then run the project to
see what happens when the control is switched to Report view.

Let’s start by looking at the form’s initialization code. The control’s headers and their
widths were set at design time, through the ColumnHeader Collection Editor, as explained
earlier.

To populate the ListView control, click the Populate List button, whose code is shown next.
The code creates a new ListViewItem object for each item to be added. Then it calls the Add
method of the SubItems collection to add the item’s subitems (contact, phone, and fax numbers).
After the ListViewItem has been set up, it’s added to the control with the Add method of its Items
collection.

Listing 16.12 shows the statements that insert the first two items in the list. The remaining items
are added with similar statements, which need not be repeated here. The sample data I used in the
ListViewDemo application came from the NorthWind sample database, which is installed along
with Visual Basic.

Listing 16.12: Populating a ListView Control

Dim LItem As New ListViewItem()
LItem.Text = “Alfreds Futterkiste”
LItem.SubItems.Add(“Anders Maria”)
LItem.SubItems.Add(“030-0074321”)
LItem.SubItems.Add(“030-0076545”)
LItem.ImageIndex = 0
ListView1.Items.Add(LItem)

LItem = New ListViewItem()
LItem.Text = “Around the Horn”
LItem.SubItems.Add(“Hardy Thomas”)
LItem.SubItems.Add(“(171) 555-7788”)
LItem.SubItems.Add(“(171) 555-6750”)
LItem.ImageIndex = 0
ListView1.Items.Add(LItem)

Enumerating the List

The Enumerate List button scans all the items in the list and displays them along with their
subitems in the Output window. To scan the list, you must set up a loop that enumerates all the
items in the Items collection. For each item in the list, set up a nested loop that scans all the
subitems of the current item. The complete code for the Enumerate List button is shown in
Listing 16.13.

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS776

2877c16.qxd 11/11/01 4:20 PM Page 776

http://www.sybex.com

Listing 16.13: Enumerating Items and SubItems

Private Sub bttnEnumerate_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnEnumerate.Click

Dim i, j As Integer
Dim LItem As ListViewItem
For i = 0 To ListView1.Items.Count - 1

LItem = ListView1.Items(i)
Console.WriteLine(LItem.Text)
For j = 0 To LItem.SubItems.Count - 1

Console.WriteLine(“ “ & ListView1.Columns(j).Text & _
“ “ & Litem.SubItems(j).Text)

Next
Next

End Sub

The output of this code in the Output window is shown next. The subitems appear under the
corresponding item, and they are indented by three spaces.

Alfreds Futterkiste
Company Alfreds Futterkiste
Contact Anders Maria
Telephone 030-0074321
FAX 030-0076545

Around the Horn
Company Around the Horn
Contact Hardy Thomas
Telephone (171) 555-7788
FAX (171) 555-6750

The code in Listing 16.13 uses a For…Next loop to iterate through the items of the control. You
can also set up a For Each…Next loop, as shown here:

For Each ListViewItem In ListView1.Items
{ same statements }

Next

Sorting the ListView Control

The ListView control provides a Sorting method, which allows you to specify how the list’s items
will be sorted. Each item may contain any number of subitems, and you should be able to sort the
list according to any column. The values stored in the subitems may represent different data types
(numeric values, strings, dates, and so on). The control doesn’t provide a default sorting mechanism
for all data types. Instead, it uses a custom Comparer object, which you supply, to sort the items.
The topic of building custom comparers has been discussed in detail in Chapter 11. As a reminder,
the custom comparer is implemented as a function, which compares two items and returns an integer
value (–1, 0, or 1), which indicates the order of the two items. Once this function is in place, the
control uses it to sort its items.

777THE LISTVIEW CONTROL

2877c16.qxd 11/11/01 4:20 PM Page 777

http://www.sybex.com

The ListView control’s ListViewItemSorter property accepts the name of a custom comparer,
and the items on the control are sorted according to the custom comparer as soon as you set the
Sorting property. As you may recall, you can provide several custom comparers and sort the items in
many different ways. If you plan to display subitems along with your items in Report view, you
should make the list sortable by any column. It’s customary for a ListView control to sort its items
according to the values in a specific column each time the header of this column is clicked. And this
is exactly the type of functionality you’ll add to the ListViewDemo project in this section.

The ListViewDemo control displays contact information. The items are company names, and the
first subitem under each item is the name of a contact. We’ll create two custom comparers to sort
the list according to either company name or contact. The two methods are identical since they com-
pare strings, but it’s not any more complicated to compare dates, distances, and so on.

Let’s start with the two custom comparers. Each comparer must be implemented in its own class,
and you assign the name of the custom comparer to the ListViewItemProperty of the control. List-
ing 16.14 shows the ListCompanyComparer and the ListContactComparer.

Listing 16.14: The Two Custom Comparers for the ListViewDemo Project

Class ListCompanySorter
Implements IComparer
Public Function CompareTo(ByVal o1 As Object, ByVal o2 As Object) As Integer _

Implements System.Collections.IComparer.compare
Dim item1, item2 As ListViewItem
item1 = CType(o1, ListViewItem)
item2 = CType(o2, ListViewItem)
If item1.ToString.ToUpper > item2.ToString.ToUpper Then

Return 1
Else

If item1.ToString.ToUpper < item2.ToString.ToUpper Then
Return -1

Else
Return 0

End If
End If

End Function
End Class
Class ListContactSorter

Implements IComparer
Public Function CompareTo(ByVal o1 As Object, ByVal o2 As Object) As Integer _

Implements System.collections.IComparer.compare
Dim item1, item2 As ListVewItem
item1 = CType(o1, ListViewItem)
item2 = CType(o2, ListViewItem)
If item1.SubItems(1).ToString.ToUpper > _

item2.SubItems(1).ToString.ToUpper Then
Return 1

Else

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS778

2877c16.qxd 11/11/01 4:20 PM Page 778

http://www.sybex.com

If item1.SubItems(1).ToString.ToUpper < _
item2.SubItems(1).ToString.ToUpper Then

Return -1
Else

Return 0
End If

End If
End Function

End Class

The code is straightforward. If you need additional information, see the discussion of the
IComparer interface in Chapter 11. The two functions are identical, except that the first one sorts
according to the item and the second one sorts according to the first subitem.

To test the custom comparers, you simply assign their names to the ListViewItemSorter property
of the ListView control. To take advantage of our custom comparers, we must write some code that
intercepts the clicks on the control’s headers and calls the appropriate comparer. The ListView con-
trol fires the ColumnClick event each time a column header is clicked. This event handler reports
the index of the column that was clicked through the e.Column argument, and we can use this argu-
ment in our code to sort the items accordingly. Listing 16.15. shows the event handler for the
ColumnClick event.

Listing 16.15: The ListView Control’s ColumnClick Event Handler

Public Sub ListView1_ColumnClick(ByVal sender As Object, _
ByVal e As System.WinForms.ColumnClickEventArgs) _
Handles ListView1.ColumnClick

Select Case e.column
Case 0

ListView1.ListViewItemSorter = New ListCompanySorter()
ListView1.Sorting = SortOrder.Ascending

Case 1
ListView1.LisViewtItemSorter = New ListContactSorter()
ListView1.Sorting = SortOrder.Ascending

End Select
End Sub

Processing Selected Items

The user can select multiple items on a ListView control by default. Even though you can display a
check mark in front of each item, it’s not customary. Items on a ListView control are selected with
the mouse while holding down the Ctrl or Shift key.

The selected items form the SelectedListItemCollection, which is a property of the control. You
can iterate through this collection with a For…Next loop or through the enumerator object exposed

779THE LISTVIEW CONTROL

2877c16.qxd 11/11/01 4:20 PM Page 779

http://www.sybex.com

by the collection. In the following example, I use a For Each…Next loop. Listing 16.16 is the code
behind the Selected Items button of the ListViewDemo project. It goes through the selected items
and displays each item, along with its subitems, in the Output window. Notice that you can select
multiple items in any view, even when the subitems are not visible. They’re still there, however, and
they can be retrieved through the SubItems collection.

Listing 16.16: Iterating the Selected Items on a ListView Control

Private Sub bttnIterate_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnIterate.Click

Dim LItem As ListViewItem
Dim LItems As ListView.SelectedListViewItemCollection
LItems = ListView1.SelectedItems
For Each LItem In LItems

Console.Write(LItem.Text & vbTab)
Console.Write(LItem.SubItems(0).ToString & vbTab)
Console.Write(LItem.SubItems(1).ToString & vbTab)
Console.WriteLine(LItem.SubItems(2).ToString & vbTab)

Next
End Sub

VB.NET at Work: The CustomExplorer Project

The last example in this chapter combines the TreeView and ListView controls. It’s a fairly
advanced example, but I’ve included it here for the most ambitious readers. It can also be used as the
starting point for many custom applications, so give it a try. You can always come back to this proj-
ect after you’ve mastered other aspects of the language.

The Explorer project, shown in Figure 16.14, is the core of a custom Explorer window, which
displays a structured list of folders on the left pane and the list of files in the selected folder on the
right pane. The left pane is populated when the application starts, but it takes a while. On my Pen-
tium system, it takes nearly five seconds to populate the TreeView control with the structure of the
C:\Windows folder. You can expand any folder on this pane and view its subfolders. To view the files
in a folder, click its name, and the right pane will be populated with the names of the files, along
with vital data, such as the file size, date of creation, and date of last modification. You already know
how to manipulate folders and files, and you should be able to follow the code easily. If you have to,
you can review the Directory and FileInfo objects and their properties in Chapter 13.

This section’s project is not limited to displaying folders and files; you can populate the two con-
trols with data from several sources. For example, you can display customers in the left pane (and
organize them by city or state) and their related data on the right pane (e.g., invoices and payments).
Or you can populate the left pane with product names and the right pane with the respective sales.
In general, you can use it as an interface for many types of applications. You can even use it as a cus-
tom Explorer to add features that are specific to your applications.

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS780

2877c16.qxd 11/11/01 4:20 PM Page 780

http://www.sybex.com

The left pane is populated from within the Form’s Load event handler subroutine. The code
makes use of the Directory and File objects, which were discussed earlier in the book. Following is
the code that populates the TreeView control with the subfolders of the C:\Program Files folder.

Dim Nd As New TreeNode()
Nd = TreeView1.Nodes.Add(“C:\Program Files”)
ScanFolder(“c:\Program Files”, ND)

Nd represents the control’s root node, and it’s the name of the folder to be scanned. To populate
the control with the files of another folder or drive, change the name of the path accordingly. The
code is short and, as you have guessed, all the work is done by the ScanFolder() subroutine. The
ScanFolder() subroutine is a short, recursive procedure that scans all the folders under C:\Program
Files and is shown in Listing 16.17. The second argument is the root node, under which the entire
tree of the specified folder will appear.

Listing 16.17: The ScanFolder() Subroutine

Sub ScanFolder(ByVal folderSpec As String, ByRef currentNode As TreeNode)
Dim thisFolder As String
Dim allFolders() As String
allFolders = Directory.GetDirectories(folderSpec)
For Each thisFolder In allFolders

Dim Nd As TreeNode
Nd = New TreeNode(thisFolder)
currentNode.Nodes.Add(Nd)
folderSpec = thisFolder
ScanFolder(folderSpec, Nd)

Next
End Sub

The variable thisFolder represents the current folder (the one passed to the ScanFolder() subroutine
as argument). Using this variable, the program creates the allFolders collection, which contains all the
subfolders of the current folder. Then it scans every folder in this collection and adds its name to
the TreeView control. The newly added node is the name of the folder. Within a given folder, all

Figure 16.14

The Explorer project
demonstrates how to
combine a TreeView
and a ListView con-
trol on the same
form.

781THE LISTVIEW CONTROL

2877c16.qxd 11/11/01 4:20 PM Page 781

http://www.sybex.com

subfolder names are unique. After adding a folder to the TreeView control, the procedure must scan
the subfolders of the current folder. It does so by calling itself and passing another folder’s name as
an argument. If you find the recursive implementation of the subroutine difficult to understand, go
through the material of Chapter 18. You can use the ScanFolder() subroutine as is in your projects;
just pass to it a reference to the folder you want to scan. The first argument to the ScanFolder() sub-
routine is the name of the folder to be scanned.

Notice that the ScanFolder subroutine doesn’t simply scan a folder. It also adds a node to the
TreeView control for each new folder it runs into. That’s why it accepts two arguments, the name
of the current folder and the node that represents this folder on the control. All folders are placed
under their parent folder, and the structure of the tree represents the structure of your hard disk (or
the section of the hard disk you’re mapping on the TreeView control). All this is done with a small
recursive subroutine, the ScanFolder() subroutine.

Viewing a Folder’s Files

To view the files of a folder, click the folder’s name in the TreeView control. As explained earlier,
the action of the selection of a new node is detected with the AfterSelect event. The code in the
TreeView1_AfterSelect event handler, shown in Listing 16.18, displays the selected folder’s files on
the ListView control.

Listing 16.18: Displaying a Folder’s Files

Private Sub TreeView1_AfterSelect(ByVal sender As System.Object, _
ByVal e As System.Windows.Forms.TreeViewEventArgs) _
Handles TreeView1.AfterSelect

Dim Nd As TreeNode
Dim pathName As String
Nd = TreeView1.SelectedNode
pathName = Nd.Text
ShowFiles(pathName)

End Sub

The ShowFiles() subroutine actually displays the file names, and some of their properties, in the
specified folder on the ListView control. Its code is shown in Listing 16.19.

Listing 16.19: The ShowFiles Subroutine

Sub ShowFiles(ByVal selFolder As String)
ListView1.Items.Clear()
Dim files() As String
Dim file As String
files = Directory.GetFiles(selFolder)
For Each file In files

Dim LItem As New ListViewItem()
LItem.Text = ExtractFileName(file)
Dim FI As New FileInfo(file)

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS782

2877c16.qxd 11/11/01 4:20 PM Page 782

http://www.sybex.com

LItem.SubItems.Add(FI.Length.ToString(“#,###”))
LItem.SubItems.Add(FormatDateTime(Directory.GetCreationTime(file), _

DateFormat.ShortDate))
LItem.SubItems.Add(FormatDateTime(Directory.GetLastAccessTime(file), _

DateFormat.ShortDate))
ListView1.Items.Add(LItem)

Next
End Sub

The ShowFiles subroutine creates a ListItem for each file. The item’s caption is the file’s name.
The first subitem is the file’s length. The other two items are the file’s creation and last access times.
You can add more subitems if your application needs them. The ListView control in this example
uses the Report view to display the items, so you don’t have to worry about images. If we used the
Large Icon or Small Icon view, we’d have to come up with icons for all types of files (or the most
common ones).

As mentioned earlier, the ListView control isn’t going to display any items unless you specify the
proper columns through the Columns collection. The columns, along with their widths and cap-
tions, were set at design time through the ColumnHeader Collection Editor.

Saving a Tree’s Nodes to Disk
You’ve learned how to populate the TreeView and ListView controls, how to manipulate them at
runtime, and how to sort the ListView control in any way you wish, but what good are all these
techniques unless you can save the tree’s nodes or the ListItems to a disk file and reuse them in a
later session?

In Chapter 11, you saw how to serialize complicated objects, like an ArrayList. It would be nice if
the TreeNode object were serializable; you could serialize the root node and all the nodes under it
with a single call to the Serialize method. Unfortunately, this is not the case. Well, how about sub-
classing the TreeNode object? Create a new class that inherits from the TreeNode class and is serial-
izable. This is an option, but it’s not simple. Besides, the subclassed TreeNode object will be specific
to an application.

Since we already know how to serialize an ArrayList, we can extract the items of the TreeView
control to an ArrayList and then serialize the ArrayList. The code of this section serializes the
strings displayed on a TreeView control. You know how to scan the nodes of a TreeView control,
and the code for serializing the control’s nodes seems trivial. It’s not quite so.

The ArrayList has a linear structure: each item is independent of any other. The TreeView con-
trol, however, has a hierarchical structure. Most of its nodes are children of other nodes, as well as
parents of other nodes. Therefore, we must store not only the data (strings), but their structure as
well. To store this information, we’ll create a new structure with two fields: one for the node’s value
and another for the node’s indentation:

<Serializable()> Structure sNode
Dim node As String
Dim level As Integer

End Structure

783SAVING A TREE’S NODES TO DISK

2877c16.qxd 11/11/01 4:20 PM Page 783

http://www.sybex.com

We want to be able to serialize this structure, so we must prefix it with the <Serializable> attribute.
The level field is the node’s indentation; the level field of all root nodes is zero. The nodes immediately
under the root have a level of 1, and so on. To serialize the TreeView control, we’ll iterate through its
nodes and store each node to an sNode variable. Each time we switch to a child node, we’ll increase the
current value of the level by one. Each time we move up to a parent node, we’ll decrease the same value
accordingly. All the sNode structures will be added to an ArrayList, which will then be serialized.

Likewise, when we read the ArrayList from the disk file, we must reconstruct the original tree. Items
with a level value of zero are root nodes. The first item with a level value of 1 is the first child node
under the most recently added root node. As long as the level field doesn’t change, the new nodes are
added under the same parent. When this value increases, we must create a new child node under the cur-
rent node. When this value decreases, we must move up to the current node’s parent and create a new
child under it. The only complication is that a level value may decrease by more than one. In this case, we
must move up to the parent’s parent, or even higher in the hierarchy. Figure 16.15 shows a typical Tree-
View control and how its nodes are stored in the ArrayList.

The control on the left is a TreeView control, populated at design time. The control on the right
is a ListBox control with the items of the ArrayList. The first column is the level field (the node’s
indentation), while the second column is the node’s text.

Now we can look at the code for serializing the control. The code presented in this section is part
of the Globe project—namely, it’s the code behind the Save Nodes and Load Nodes commands of
the File menu. The File ➢ Save Nodes command prompts the user with the File Save dialog box
for the path of a file, where the nodes will be stored. Then it calls the SaveNodes() subroutine, pass-
ing the root node of the control and the path of the file where the items will be stored. Listing 16.20
shows this menu item’s Click event handler.

Listing 16.20: The File ➢ Save Nodes MenuItem’s Event Handler

Private Sub FileSave_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FileSave.Click

SaveFileDialog1.DefaultExt = “XML”
If SaveFileDialog1.ShowDialog = DialogResult.OK Then

CreateList(GlobeTree.Nodes(0), SaveFileDialog1.FileName)
End If

End Sub

Figure 16.15

The structure of the
nodes of a TreeView
control

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS784

2877c16.qxd 11/11/01 4:20 PM Page 784

http://www.sybex.com

TheCreateList() subroutine goes through the nodes of the root node and stores them into the
GlobeNodes ArrayList. This ArrayList is declared at the Form level with the following statement:

Dim GlobeNodes As New ArrayList()

CreateList() is a recursive subroutine that scans the immediate children of the node passed as
argument. If a child node contains its own children, the subroutine calls itself to iterate through the
children. This process may continue to any depth. The code of the subroutine is shown in Listing
16.21; its structure is similar to the ScanNode() subroutine of Listing 16.11.

Listing 16.21: The CreateList() Subroutine

Sub CreateList(ByVal node As TreeNode, ByVal fName As String)
Static level As Integer
Dim thisNode As TreeNode
Dim myNode As sNode
Application.DoEvents()
myNode.level = level
myNode.node = node.Text
GlobeNodes.Add(myNode)
If node.Nodes.Count > 0 Then

level = level + 1
For Each thisNode In node.Nodes

CreateList(thisNode, fName)
Next
level = level - 1

End If
SaveNodes(fName)

End Sub

After the ArrayList has been populated, the code calls the SaveNodes() subroutine, which persists
the ArrayList to a disk file. The path of the file is the second argument of the CreateList() subroutine.
SaveNodes(), shown in Listing 16.22, is a straightforward subroutine that serializes the GlobeNodes
ArrayList to disk.

Listing 16.22: The SaveNodes() Subroutine

Sub SaveNodes(ByVal fName As String)
Dim formatter As SoapFormatter
Dim saveFile As FileStream
saveFile = File.Create(fName)
formatter = New SoapFormatter()
formatter.Serialize(saveFile, GlobeNodes)
saveFile.Close()

End Sub

785SAVING A TREE’S NODES TO DISK

2877c16.qxd 11/11/01 4:20 PM Page 785

http://www.sybex.com

Tip For more information on serializing ArrayLists, see Chapter 13.

The File ➢ Load Nodes command prompts the user for a filename and then calls the
LoadNodes() subroutine to read the ArrayList persisted in this file and load the control with its
nodes. The Click event handler of the Load Nodes command is shown in Listing 16.23.

Listing 16.23: The File ➢ Load Nodes MenuItem’s Event Handler

Private Sub FileLoad_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FileLoad.Click

OpenFileDialog1.DefaultExt = “XML”
If OpenFileDialog1.ShowDialog = DialogResult.OK Then

LoadNodes(GlobeTree, OpenFileDialog1.FileName)
End If

End Sub

The LoadNodes() subroutine loads the items read from the file into the GlobeNodes ArrayList and
then calls the ShowNodes() subroutine to load the nodes from the ArrayList onto the control. The
LoadNodes() subroutine is shown in Listing 16.24.

Listing 16.24: Loading the GlobeNodes ArrayList

Sub LoadNodes(ByVal TV As TreeView, ByVal fName As String)
TV.Nodes.Clear()
Dim formatter As SoapFormatter
Dim openFile As FileStream
openFile = File.Open(fName, FileMode.Open)
formatter = New SoapFormatter()
GlobeNodes = CType(formatter.Deserialize(openFile), ArrayList)
openFile.Close()
ShowNodes(TV)

End Sub

The most interesting code is in the ShowNodes() subroutine, which goes through the items in
the ArrayList and re-creates the original structure of the TreeView control. At each iteration, the
subroutine examines the value of the item’s level field. If it’s the same as the current node’s level,
then the new node is added under the same node as the current node (we’re on the same indenta-
tion level). If the current item’s level field is larger than the current node’s level, then the new node is
added under the current node (it’s a child of the current node). Finally, if the current item’s level
field is smaller than then current node’s level, the code moves up to the parent of the current node.
This step may be repeated several times, depending on the difference of the two levels. If the cur-
rent node’s level is 4 and the level field of the new node is 1, the code will move up three levels (it
will actually be added under the most recent root node). Listing 16.25 is the code of the Show-
Nodes() subroutine.

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS786

2877c16.qxd 11/11/01 4:20 PM Page 786

http://www.sybex.com

Listing 16.25: The ShowNodes() Subroutine

Sub ShowNodes(ByVal TV As TreeView)
Dim o As Object
Dim currNode As TreeNode
Dim level As Integer = 0
Dim fromLowerLevel As Integer
Dim i As Integer
For i = 0 To GlobeNodes.Count - 1

o = GlobeNodes(i)
If o.level = level Then

If currNode Is Nothing Then
currNode = TV.Nodes.Add(o.node.ToString)

Else
currNode = currNode.Parent.Nodes.Add(o.node.ToString)

End If
Else

If o.level > level Then
currNode = currNode.Nodes.Add(o.node.ToString)
level = o.level

Else
While o.level <= level

currNode = currNode.Parent
level = level - 1

End While
currNode = currNode.Nodes.Add(o.node.ToString)

End If
End If
TV.ExpandAll()
Application.DoEvents()

Next
End Sub

Why did I use a SoapFormatter and not a BinaryFormatter to persists the data? I just wanted to
see the structure of the data in text format. You will probably change the code to save the data in
binary format, because it’s much more compact. Of course, XML and SOAP are quite fashionable
these days. You can also claim that the data can be read on any other system and you follow industry
standards. I suggest you use mostly the binary format for storing application data. If you want to
exchange data with another system, create a DataSet in XML format—a topic discussed in Part IV
of this book.

The technique shown here persists the strings displayed on the control, and it work with most
applications. If you’re using a TreeView control to store objects, you must adjust the code of this
section to persist the objects, not just strings.

787SAVING A TREE’S NODES TO DISK

2877c16.qxd 11/11/01 4:20 PM Page 787

http://www.sybex.com

If you’re wondering what the persisted nodes look like in the XML file, here’s how the first few
items of the Globe tree are persisted. The file format is verbose indeed, but the items of interest
appear in bold (they’re the node and level fields):

- <item xsi:type=”a3:NodeSerializer+sNode” xmlns:a3=”http://schemas.microsoft.com/
clr/nsassem/Globe/Globe%2C%20Version%3D1.0.638.15776%2C%20Culture%3Dneutral%2C%20Pu
blicKeyToken%3Dnull”>
<node id=”ref-4”>Globe</node>
<level>0</level>
</item>

- <item xsi:type=”a3:NodeSerializer+sNode” xmlns:a3=”http://schemas.microsoft.com/
clr/nsassem/Globe/Globe%2C%20Version%3D1.0.638.15776%2C%20Culture%3Dneutral%2C%20Pu
blicKeyToken%3Dnull”>
<node id=”ref-5”>Africa</node>
<level>1</level>
</item>

- <item xsi:type=”a3:NodeSerializer+sNode” xmlns:a3=”http://schemas.microsoft.com/
clr/nsassem/Globe/Globe%2C%20Version%3D1.0.638.15776%2C%20Culture%3Dneutral%2C%20Pu
blicKeyToken%3Dnull”>
<node id=”ref-6”>Egypt</node>
<level>2</level>
</item>

- <item xsi:type=”a3:NodeSerializer+sNode” xmlns:a3=”http://schemas.microsoft.com/
clr/nsassem/Globe/Globe%2C%20Version%3D1.0.638.15776%2C%20Culture%3Dneutral%2C%20Pu
blicKeyToken%3Dnull”>
<node id=”ref-7”>Alexandria</node>
<level>3</level>
</item>

Persisting the items of a ListView control is even simpler. You must create a new structure that
reflects the structure of each row (the item and subitems of each row), and then create an ArrayList
with items of this type. Persisting the ArrayList is straightforward and so is the loading of the con-
trol, since the ListView control doesn’t have a hierarchical structure. Its items are organized in a lin-
ear fashion, just like the items of the ArrayList.

To reuse the subroutines that serialize and deserialize the nodes of a TreeView control, you can
create a new class that exposes the CreateList() and LoadNodes() subroutines as methods. The other
two subroutines that actually save the ArrayList to disk and load a disk file into the ArrayList are
Private to the class and can be called only from within the code of the two methods.

The Globe project on the CD contains a class, the NodeSerializer class. This class contains the
code and the declarations discussed in this section, and I will not repeat the code here. To use this
class in your code, you must create an instance of the class and call the appropriate method.

To persist the TreeView control to a file, use the following statements:

Dim NS As New NodeSerializer()
NS.CreateList(GlobeTree.Nodes(0), SaveFileDialog1.FileName)

To load a TreeView control previously saved to a file, use the following statements:

Dim NS As New NodeSerializer()
NS.LoadNodes(GlobeTree, OpenFileDialog1.FileName)

Chapter 16 THE TREEVIEW AND LISTVIEW CONTROLS788

2877c16.qxd 11/11/01 4:20 PM Page 788

http://www.sybex.com

I’ve included these statements in the Globe project on the CD, but they’re commented out. To
test the commands of the File menu of the Globe application, add a few items to the TreeView con-
trol (countries and cities) and save the tree to a disk file. Then select the root node, delete it with the
Delete Current Node button, and load the file you just saved to disk.

One last remark about the code that loads a TreeView control from a disk file. Since the Tree-
View is persisted to an XML file, the user may attempt to open an XML file that contains irrelevant
data. You must insert a structured exception handler to avoid runtime errors, or use a new extension
for these files. After looking at the XML files generated by the Serialize method for a couple of
TreeView controls, you should change the SoapFormatter to a BinaryFormatter.

Summary
The controls discussed in this chapter are among the more advanced ones. With the possible excep-
tion of the data-bound controls, which are discussed in the fourth part of the book, you have all the
information you need to start building elaborate user interfaces.

The TreeView and ListView controls are highly visual. Not only do they display the necessary
information, but they also make it easy for the user to see how the information is structured. They’re
not commonly used in the user interface design, even by intermediate programmers, but they can add
a professional touch to your applications. As you have seen, they’re not especially hard to program
either. Once you understand the relation between a node and its Nodes collection and how to create
items with subitems, you’ll be able to use them just like any other control.

The recursive procedure for scanning a TreeView control may have thrown off some of you. If
you have read Chapter 13, you have seen a similar procedure for scanning folders. As the object
models become more and more complicated, recursive programming will become a necessity in
everyday programming. If you’re not comfortable with this topic, please read a detailed tutorial on
recursive programming in Chapter 18 of this book. Recursion is a very powerful coding technique,
and it will simplify enormously some of your coding tasks, as demonstrated in the examples of this
chapter.

789SUMMARY

2877c16.qxd 11/11/01 4:20 PM Page 789

http://www.sybex.com

Chapter 17

Error Handling and Debugging
Writing a piece of software, even a relatively small one, can be an extremely complicated
task. Developers usually put careful forethought and planning into the nature of the task and the
means they will use to solve the task through the program that they intend to write.

The complex nature of software development invariably leads to errors in programming. This
chapter sets out to explain the different types of errors that you might encounter when writing
Visual Basic .NET code, some of the tools that you can use to locate these errors, and the coding
structures used to prevent these errors when users run your program.

In addition to programming errors, your application should be able to gracefully handle all the
abnormal conditions it may encounter, from user errors (when they enter a string where the pro-
gram expects a date or numeric value) to malfunctioning devices, or simpler situations such as not
being able to save data to a file because another application is using it. All these conditions may
be beyond your program’s control, but your application should be to handle them. At the very
least, your program shouldn’t crash; it’s OK to abort an operation and display a warning, but an
application shouldn’t crash.

Types of Errors
The errors caused by a computer program (regardless of the language in which the program is
written) can be categorized into three major groups: design-time, runtime, and logic.

The design-time error is the easiest to find and fix. A design-time error occurs when you write
a piece of code that does not conform to the rules of the language in which you’re writing. They
are easy to find because Visual Studio .NET tells you not only where they are, but also what part
of the line it doesn’t understand.

Runtime errors are harder to locate, because VS doesn’t give you any help in finding the error
until it occurs in your program. These errors occur when your program attempts something ille-
gal, like accessing data that doesn’t exist or a resource to which it doesn’t have the proper permis-
sions. These types of errors can cause your program to crash, or hang, unless they are handled
properly.

The third type of error, the logic error, is often the most insidious type to locate, because it
may not manifest itself as a problem in the program at all. A program with a logic error simply

2877c17.qxd 11/11/01 4:20 PM Page 791

http://www.sybex.com

means that the output or operation of your program is not exactly as you intended it. It could be as
simple as an incorrect calculation or having a menu option enabled when you wanted it disabled, or
something complex like a database that’s duplicating order information.

This section will cover and demonstrate all three types of errors, and show you tools and tech-
niques that you can use to hunt them down and squash them.

Design-Time Errors
Also called syntax errors, design-time errors occur when the Visual Basic .NET interpreter cannot
recognize one or more lines of code that you have written. Some design-time errors are simply typo-
graphical errors, where you have mistyped a keyword. Others are the result of missing items: unde-
clared or untyped variables, classes not yet imported, incorrect parameter lists in a function or
method call, or referencing members of a class that do not exist.

A program with as few as one design-time error cannot be compiled and run—you must locate
and correct the error before continuing. Fortunately, design-time errors are the easiest to detect and
correct, because VB.NET shows you the exact location of these errors and gives you good informa-
tion about what part of the code it can’t understand. What follows is a brief example showing sev-
eral design-time errors in just a few lines of code.

The event code shown in Figure 17.1 was typed into the Click event of a button named Button1.

Note the three blue squiggly lines under various parts of this brief code (under two instances of
the letter i and under the term lbNumbers). Each one of those squiggly lines represents a design-time
error. To determine what the errors are, locate the Task List window in the IDE and bring it for-
ward. The Task List displays the errors seen in Figure 17.2 for the code from Figure 17.1.

Note You can determine which squiggly blue line corresponds to which design-time error in the Task List by double-
clicking the error in the Task List. The corresponding error will become selected in the code window.

Note that two of the errors are the same: they state “The name ‘i’ is not declared.” In this case,
these errors are telling you that you’ve referenced a variable named i but you have not declared it. To
fix these two errors, you need to modify the code as shown in Figure 17.3.

Figure 17.2

Corresponding errors
in the Task List

Figure 17.1

VB.NET identifies
the locations of
design-time errors.

Chapter 17 ERROR HANDLING AND DEBUGGING792

2877c17.qxd 11/11/01 4:20 PM Page 792

http://www.sybex.com

The only error remaining now is “The name ‘lbNumbers’ is not declared.” As the programmer of
the application, you would probably have some type of idea what lbNumbers is. In this case, I was
attempting to add 100 items to a ListBox, and lbNumbers is supposed to be the name of the ListBox
on the form. This error tells me that I do not have a ListBox on the form named lbNumbers. I’ve
either forgotten to put a ListBox on the form entirely, or I did add one but did not name it
lbNumbers. To correct the problem, I can either make sure a ListBox is on my form with the correct
name, or I can change this code so that the name matches whatever I’ve named the ListBox.

I added a ListBox named lbNumbers to my form. After doing so, however, I’m still left with a syn-
tax error on the line, as seen in Figure 17.4.

Note that the text of the error is different. It reads “The name ‘add’ is not a member of ‘System
.Windows.Forms.ListBox’.” This is telling you that it now recognizes that lbNumbers is a ListBox
object, but there is no member (property, event, or method) named add on a ListBox. So what’s the
correct way to write a line of code that adds an item to a ListBox? Some brief research in the help
should yield the correct line of code—the one shown in Figure 17.5.

Notice that all blue squiggly lines are now gone, and the Task List should be empty of errors as
well. This means our program is free of syntax errors and is ready to run.

Figure 17.5

This syntax is correct.

Figure 17.4

The ListBox state-
ment still produces a
design-time error.

Figure 17.3

Once declared, the
variable doesn’t pro-
duce an error.

793TYPES OF ERRORS

2877c17.qxd 11/11/01 4:20 PM Page 793

http://www.sybex.com

Runtime Errors
Runtime errors are much more insidious to find and fix than design-time errors. Runtime errors are
problems encountered by your program while it’s running. Runtime errors can take on dozens of
different shapes and forms. Here are some examples:

� Attempting to open a file that doesn’t exist

� Trying to log in to a server with an incorrect username or password

� Trying to access a folder for which you have insufficient rights

� Requesting data from a database table that has been renamed

� Opening a file on a server that is down for maintenance

� Accessing an Internet URL that no longer exists

� Allocating a resource without the necessary available RAM

� Dividing a number by zero

� Users entering character data where a number is expected (and vice versa)

As you can see, runtime errors can occur due to an unexpected state of the computer or network
upon which your program is running, or simply because the user has supplied the wrong information
(an invalid password, a bad filename, and so on). Because of this, you can write a program that runs
fine on your own machine, and all the machines in your test environment, but fails on a customer
site due to the state of that customer’s computing resources.

As you might imagine, runtime errors can be many degrees harder to diagnose and fix in compari-
son to design-time errors. After all, any error you make in design time is right there in front of you,
on your own development PC. Not only that, but the Visual Studio compiler goes ahead and tells
you right where a design-time error is and why it’s an error. The runtime error, by comparison, may
only manifest itself in strange computing conditions on a PC halfway across the world. We’ll see in
later sections how runtime errors can be detected and managed.

Logic Errors
Logic errors also occur at runtime, and because of this, they are often difficult to track down. A logic
error occurs when a program does not do what the developer intended it to do. For example, you
might provide the code to add a customer to a customer list, but when the end user runs the pro-
gram and adds a new customer, the customer is not there. The error might lie in the code that adds
the customer to the database; or perhaps the customer is indeed being added, but the grid that lists
all the customers is not being refreshed after the add customer code, so it merely appears that the
customer wasn’t added.

A second example of a logic error: suppose you allow the end user to manually type the two-
letter state code of every customer address that they enter into your program. One of the functions
of your program might be to display a map of the U.S. that shades the states based on the number
of customers within each state. How do you suppose your shaded map will display customers with
invalid state codes? Most likely, these customers would not be displayed on the map at all. Later,

Chapter 17 ERROR HANDLING AND DEBUGGING794

2877c17.qxd 11/11/01 4:20 PM Page 794

http://www.sybex.com

the manager of the department calls you and says “The Total Customers Entered report for last
month tells me that 7,245 customers were entered into our system. However, the Density Map
report only shown 6,270 customers on it. Why don’t these two reports match?”

In this example, we’ve made a design decision—the decision to allow the end user to type the
two-digit state code—and that decision has lead to a major logic error, the fact that two reports
from the same system give different results for the number of customers entered into the system for
the same time period.

Here are some actual VB.NET code snippets that produce logic errors. Consider the following
code snippet.

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim i As Integer
i = 1
Do While i > 0

i += 1
Loop

End Sub

Here we have an integer variable set to 1 and incremented by one in a loop. Each time the loop
iterates, the number gets bigger. The loop will continue to iterate as long as the variable is greater
than 0. See any problem with this? The problem is that the value of the variable will always be
greater than 0, so the loop will never terminate. This is called an infinite loop, and it’s one of my
personal favorite types of errors (favorite in the sense that I seem to always find a way to write new
and exciting flavors of infinite loop). Of course, this loop isn’t exactly infinite—after 2 billion
iterations, an overflow will occur, but that’s a good indication as to what happened.

Here’s another simple example of a logic error:

Private Sub ColorTheLabel(ByVal lbl As Label)
If CInt(lbl.Text) < 0 Then

lbl.ForeColor = Color.Green
Else

lbl.ForeColor = Color.Red
End If

End Sub

This routine was intended to color the text of a label red if the label text contained a negative
number, and green if it contained a positive number (or 0). However, I got the logic backward—
the label text is green for numbers less than 0, and red otherwise. This code won’t produce any
design-time errors or runtime crashes. It simply does the opposite of what I intended it to do.

Note finally that logic errors may or may not manifest themselves as program crashes. In the logic
error examples above, the programs wouldn’t have crashed or produce any type of error message—
they simply did not perform as intended. Some logic errors might indeed produce a program crash,
at which point the line between a logic error and a runtime error becomes blurry. The fact that a
new customer doesn’t appear in a grid might cause a crash if your program tries to highlight that new
customer in the grid but the customer row isn’t there. In this case, we’ve made a logic error (not
adding the customer to the grid) that’s caused a runtime error (program crashes when it tries to

795TYPES OF ERRORS

2877c17.qxd 11/11/01 4:20 PM Page 795

http://www.sybex.com

highlight a row in a grid that doesn’t exist). In this case, fixing the logic error would automatically
fix the runtime error.

Exceptions and Structured Exception Handling
A runtime error in VB.NET generates an exception. An exception is a response to the error condition
that the program just generated. Figure 17.6 is an example of an exception message. This is the dia-
log that appears when you are running your program in the IDE. If the same error were to be
encountered by a user running your program, the dialog would look slightly different, as seen in
Figure 17.7.

Note that this dialog gives the user the opportunity to continue the program. In some rare cases,
this might be desirable, but in most cases you probably would not want your users attempting to
continue after a program exception has occurred. Think about it—your program has just encoun-
tered some form of data that it cannot handle correctly, and now it’s asking the user if it should
attempt to ignore that bad data and continue. It is difficult to predict what type of further problems
might result as the program continues on and attempts to handle the bad data. Most likely, further
exceptions will be generated as the subsequent lines of code attempt to deal with the same unex-
pected data.

If we don’t want our users handling an exception that the program generates, then we’ll simply
have to handle it ourselves. The Visual Basic .NET error-handling model allows us to do just that.
An error handler is a section of VB.NET code that allows you to detect exceptions and perform the
necessary steps to recover from them. What follows are some exception-handling code examples.

Figure 17.7

Runtime error
message

Figure 17.6

Design-time error
message

Chapter 17 ERROR HANDLING AND DEBUGGING796

2877c17.qxd 11/11/01 4:20 PM Page 796

http://www.sybex.com

Studying an Exception
The exception dialogs shown in Figures 17.6 and 17.7 were generated by the VB.NET code shown
in Listing 17.1.

Listing 17.1: An Unhandled Exception

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

Dim s As String
s = “answer”
Button2.Text = s.Substring(10, 1)

End Sub

This code is attempting to display the eleventh character in the string “answer”. Seeing as the
word “answer” contains only six characters, you can imagine how an exception might be generated.
Let’s examine at the exact phrasing of the exception to learn as much as possible about this particular
error.

An unhandled exception of type ‘System.ArgumentOutOfRangeException’ occurred in
mscorlib.dll
Additional information: Index and length must refer to a location within the
string.

Note This seems almost too trivial to mention, but always thoroughly read the exceptions that your program generates.
Their purpose is to give you a brief description of the condition that caused the error, which of course is necessary to know
before you can figure out how to handle it.

The first thing to notice is the fact that this message refers to this runtime error as an unhandled
exception. This means that the line of code that generated this error is not contained within an
exception-handling block.

The second interesting piece of information is that this exception is of type System.Argument-
OutOfRangeException, whatever that means. What’s important to note is that the different types of
errors can be classified in groups. This is important when we you realize that the .NET Framework
exception-handling mechanism follows the same object-oriented design principles that the rest of the
Framework follows. An exception creates an instance of an object, and that object is a descendent of
class Exception.

The error message above is telling us that the exception object instance generated is of class (type)
System.ArgumentOutOfRangeException, which is a descendent of class Exception.

The “additional information” block gives us some specific notes on the nature of the error. It
tells us that the index and length parameters of the Substring method must both lie within the
boundaries of the string. In our case, we attempted to retrieve the eleventh character of a six-character
string, clearly outside the boundary.

797EXCEPTIONS AND STRUCTURED EXCEPTION HANDLING

2877c17.qxd 11/11/01 4:20 PM Page 797

http://www.sybex.com

Getting a Handle on this Exception
Listing 17.2 is the same defective code statement as Listing 17.1, but with a simple exception
handler wrapped around it.

Listing 17.2: Handling an Exception, Version 1

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

Dim s As String
s = “answer”
Try

Button2.Text = s.Substring(10, 1)
Catch

Button2.Text = “error”
End Try

End Sub

This code attempts to do the same thing as the code above, but this time the faulty Substring
statement is wrapped around a Try…Catch…End Try block. This block is a basic exception handler. If
any of the code after the Try statement generates an exception, then program control automatically
jumps to the code after the Catch statement. If no exceptions are generated in the code under the
Try statement, then the Catch block is skipped. When this code is run, the System.ArgumentOut-
OfRangeException is generated, but now the code does not terminate with a message box. Instead,
the text property of Button2 is set to the word “error”, and the program continues along.

Listing 17.3 handles the same error in a slightly different way.

Listing 17.3: Handling an Exception, Version 2

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

Dim s As String
s = “answer”
Try

Button2.Text = s.Substring(10, 1)
Catch oEX As Exception

Call MsgBox(oEX.Message)
End Try

End Sub

In this example, the exception generates an instance of the Exception class and places that instance
in a variable named oEX. Having the exception instance variable is useful because it can give you the
text of the exception, which we display in a message box here. Of course, displaying the exception
message in a message box is pretty much the same thing that your program does when an unhandled

Chapter 17 ERROR HANDLING AND DEBUGGING798

2877c17.qxd 11/11/01 4:20 PM Page 798

http://www.sybex.com

exception is generated, so it’s doubtful that you would do this in your own program. However, you
could log the exception text to the event log or a custom error file.

Note that the exception handlers above do not differentiate between types of errors. If any excep-
tion is generated within the Try block, then the Catch block is executed. You can also write exception
handlers that handle different classes of errors, as seen in Listing 17.4.

Listing 17.4: Handling an Exception, Version 3

Private Sub Button3_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button3.Click

Try
Button3.Text = lbStates.SelectedItem.ToString

Catch oEX As System.NullReferenceException
Call MsgBox(“Please select an item first”)

Catch oEX As Exception
Call MsgBox(“Some other error: “ & oEX.Message)

End Try
End Sub

This code attempts to take the selected item in a ListBox named lbStates and display it as the cap-
tion of a button. If no item is selected in the ListBox, then a System.NullReferenceException will
be generated, and we use that information to tell the user to select an item in the ListBox. If any
other type of exception is generated, then this code displays the text of that error message.

Note that, in the list of exceptions in Listing 17.4, the more specific exception handler comes
first and the more general exception handler comes last. This is how you’ll want to code all of your
multiple Catch exception handlers so that they are handled in the correct order. If you put your more
general Catch handlers first, then they will execute first and override the more specific handlers.

Also note that the variable oEX is reused in each of the exception blocks. This is possible because
the Catch statement actually serves as a declaration of that variable (note that I didn’t have to Dim the
oEX variable anywhere) and that the oEX variable has a local scope only within the Catch block.

Note that because the Exception instance is declared in each Catch block, it has scope only within
that block. The code in Listing 17.5 is illegal for scoping reasons.

Listing 17.5: Handling an Exception, Version 4 (Illegal)

Private Sub Button3_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button3.Click

Try
Button3.Text = lbStates.SelectedItem.ToString

Catch oEX As System.NullReferenceException
Call MsgBox(“please select an item first”)

Catch oEX As Exception
Call MsgBox(“some other error”)

End Try
MsgBox(oEX.message)

End Sub

799EXCEPTIONS AND STRUCTURED EXCEPTION HANDLING

2877c17.qxd 11/11/01 4:20 PM Page 799

http://www.sybex.com

The final MsgBox is not valid because the oEX variable that it attempts to display is not in scope
at this point of the procedure. The two oEX variables have scope only in their Catch blocks.

Finally (!)
You’ll recall that when an exception is generated and handled by a Catch statement, the code execu-
tion is immediately transferred to the first relevant Catch exception handler block and then contin-
ues on out of the Try…Catch…End Try block. Sometimes, it might be necessary to perform some
cleanup before moving out of the exception-handling block. Consider the procedure demonstrated
in Listing 17.6.

Listing 17.6: A Possible Exception

Protected Sub ReadFromATextFile(cFilename as string)
Dim s As StreamReader
Dim cLine As String
Dim bDone As Boolean = False
lbresults.Items.Clear()
s = New Streamreader(cFilename)
Try

While Not bDone
cLine = s.ReadLine()
If cLine Is Nothing Then

bDone = True
Else

Call lbresults.Items.Add(cLine)
End If

End While
s.Close()

Catch oEX as Exception
Call MsgBox(“some error occurred”)

End Try
End Sub

This method attempts to read the contents of a text file and put the results into a ListBox,
line by line. Most of the reading code is wrapped within a generic exception handler. If an exception
is encountered in the main loop, then the s.Close() line will in all likelihood not be executed. This
means that our file stream will never be properly closed, possibly leading to a resource leak.

Fortunately, there is an additional type of block available in exception handlers that specifically
allow us to avoid this type of problem. This new block is called the Finally block. The code within a
Finally block always executes, whether an exception is generated or not. The code in Listing 17.7 is
the same as the method in Listing 17.6 but now modified to wrap the s.Close() method inside a
Finally block.

Chapter 17 ERROR HANDLING AND DEBUGGING800

2877c17.qxd 11/11/01 4:20 PM Page 800

http://www.sybex.com

Listing 17.7: Handling an Exception with a Finally Block

Protected Sub ReadFromATextFile(cFilename as string)
Dim s As StreamReader
Dim cLine As String
Dim bDone As Boolean = False
lbresults.Items.Clear()
s = New Streamreader(cFilename)
Try

While Not bDone
cLine = s.ReadLine()
If cLine Is Nothing Then

bDone = True
Else

Call lbresults.Items.Add(cLine)
End If

End While
Catch oEX as Exception

Call MsgBox(“some error occurred”)
Finally

s.Close()
End Try

End Sub

Here, you see that any exception within the file-reading loop will be handled with a message
box, and then the StreamReader object is closed inside the Finally block. This close statement
runs whether the code within the Try…Catch block succeeds or fails. This allows you to guarantee
that certain resources or handlers are properly disposed of when they are no longer needed.

Customizing Exception Handling
There are hundreds of exception classes built into the .NET Framework, and you may not want to
handle all of them the same way. You can customize the way certain exceptions are handled by
bringing up the Exceptions dialog (Figure 17.8) found in the Debug menu.

The exception shown in the Figure is one we saw in the earlier examples, System.NullReference-
Exception. When this exception is first encountered, the system is currently set to do whatever
the parent setting specifies. Tracing up the tree in this dialog, we eventually find that all .NET
Framework exceptions are set to continue when they are first encountered, but to break into the
debugger if they are not handled in a Try…Catch…Finally…End Try block. This is consistent
with what we saw in the earliest exception examples—a dialog would be displayed when an
exception was encountered, but that dialog would disappear once we wrote the proper exception-
handling code.

801EXCEPTIONS AND STRUCTURED EXCEPTION HANDLING

2877c17.qxd 11/11/01 4:20 PM Page 801

http://www.sybex.com

Throwing Your Own Exceptions
As you become more adept at writing VB.NET classes, you will probably encounter the need to throw
your own exceptions. Imagine writing the code for an integer property that has a certain range. If a fel-
low developer is using your class and attempts to set the property to a value beyond this range, you
would probably want to inform the developer that he has entered an invalid value. The best way to
inform him of this problem is to send him an exception. That way, the developer using your class can
choose to handle this error in his own way by writing an exception handler in his code. Listing 17.8 is
an example of “throwing” an exception.

Listing 17.8: Throwing an Exception

Private FValue As Integer = 0
Property Value() As Integer

Get
Return FValue

End Get
Set(ByVal iValue As Integer)

If iValue <= FMax Then
FValue = iValue

Else
FValue = FMax
Throw New OverflowException(_

“Cannot set ProgressBar value to greater than maximum.”)
End If
Invalidate()

End Set

Figure 17.8

The Debug ➢
Exceptions dialog

Chapter 17 ERROR HANDLING AND DEBUGGING802

2877c17.qxd 11/11/01 4:20 PM Page 802

http://www.sybex.com

This code is taken from a ProgressBar control. It is the code that implements the Value property
of the ProgressBar control. A check is done to make sure that the value that the property is set to is
less than or equal to the value of the Max property, since you can’t set the current value to be bigger
than the maximum defined value. If the property is trying to be set to a value larger than the max,
then an exception is generated via the Throw statement. This statement instantiates an exception of
class OverflowException and produces a custom error that the fellow developer can see in his own
exception handler.

Debugging
As you’ve seen, encountering errors is nearly a certainty when developing a piece of software. Syntax
errors, of course, are the easiest to detect, because the IDE tells you right where they are and what
the nature of the error is. It’s the runtime errors that are harder to locate and correct, because of the
many forms these errors can take. You’ve seen examples of errors that will cause your program to
crash, as well as errors that spiral your program off into an infinite loop, and even errors that pro-
duce no outward signs at all—they simply cause the program to behave in some unintended way.

Fortunately, Visual Studio .NET provides you with a fine selection of tools to detect and remove
the errors in your program. The act of hunting and eliminating errors is called debugging, because
you’re goal is to remove the bugs (or de-bug) the program.

Breakpoints
The breakpoint is the first and most important weapon in the war against bugs. When you set a
breakpoint in your program, you’re telling VS.NET to stop execution of the program when it reaches a
certain line in the code. Once stopped, you can examine the state of the program, including the values
of the variables, the procedure stack, and the contents of memory.

Before we can look at debugging essentials, we need some buggy code. Let’s write a program to
count all the vowels in a string. To set this program up, start a new WinForms project, then add a
button named cbCount and a TextBox named tbPhrase to the form. Add the code from Listing 17.9 to
the project.

Listing 17.9: Bug-Filled Code

Private Sub cbCount_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles cbCount.Click

cbCount.Text = CountTheVowels(cbCount.Text)
End Sub
Private Function CountTheVowels(ByVal cSomeString As String) As Integer

Dim x As Integer = 1
Dim iTot As Integer = 0
Dim iPos As Integer
Do While x <= cSomeString.Length

iPos = InStr(“aeio”, cSomeString.Substring(x, 1).ToLower)
If iPos > 0 Then

iTot += 1

803DEBUGGING

2877c17.qxd 11/11/01 4:20 PM Page 803

http://www.sybex.com

End If
Loop
Return iTot

End Function

The button click event passes the contents of the text box into the function CountTheVowels(),
which is where all the dirty work will be performed. When the count is obtained, the caption of the
button should be replaced with the vowel count. Once you get the code for the program typed in
exactly as seen above, try running the program, entering some text into the text box, and clicking the
button. Then wait. And wait. My guess is that the caption of the button will not change until you
stop the application by pressing Ctrl+Break (or select Debug ➢ Stop Debugging). If you wait long
enough, an overflow exception will occur. This means that the value of the variable iTot has exceeded
the maximum value you can represent with an Integer.

Obviously, this little function shouldn’t take very long to run, so something screwy must be going
on, like an infinite loop. Let’s set a breakpoint in the function and see if we can spot it.

To set a breakpoint, place the cursor on a line of code in the function where you want the pro-
gram to stop, and press the F9 key. The line of code should become highlighted in red, as seen in
Figure 17.9.

Once a breakpoint is set, you can begin the program, type some text into the text box, and click
the button. Like a good soldier, the debugger should come up on that same line of code, this time
highlighted in yellow. This means that the program has stopped execution on that exact line of code.

Now we can start looking around. First, take the cursor and hover it over some of the areas of
code. You should be able to see a tooltip displaying the value of the various variables you rest the
mouse over, like the one in Figure 17.10.

Figure 17.10

Tooltips display the
value of variables.

Figure 17.9

Setting a breakpoint

Chapter 17 ERROR HANDLING AND DEBUGGING804

2877c17.qxd 11/11/01 4:20 PM Page 804

http://www.sybex.com

The figure displays the first of the errors I’ve made coding this program. The value of the variable
cSomeString is “Count Vowels”, but this is not the string I typed into my text box. Why is this string
being passed into the function? A quick examination of the function call reveals this problem.

cbCount.Text = CountTheVowels(cbCount.Text)

Note that I inadvertently passed the Text property of the button cbCount, when my intention was
to pass in the value of tbPhrase.Text. This is a perfect example of a logic error. The code works fine
(well, anyway, it will work fine once we find the rest of these bugs), but it won’t count the vowels in
the string that we intended to count. The fix for this first bug is easy. First, stop the program from
running by selecting Stop Debugging from the Debug menu (shortcut key is Shift+F5).

Note Spend some time memorizing the shortcut keys for all the debugging functions. You’ll be make using these func-
tions quite a bit, and use of the shortcut keys will save a ton of time.

Once the program is stopped, change the CountTheVowels() function call as follows (note the
change marked in bold font). Now we’re passing in the string we intended.

cbCount.Text = CountTheVowels(tbPhrase.Text)

Stepping Through
As it often happens, we started looking for an infinite loop but found another, unrelated bug first.
Now that we’ve squashed that bug, we can go back to running the program and looking for the orig-
inal problem. Start up the program again, type some text into the text box, and click the button.
Once again, the program should stop at the breakpoint.

Let’s watch a few of the program lines run in sequence and see if that tells us anything. To make
the program step through the current line of code, press the F10 key. Each time you press F10, one
line of code will execute, and the yellow highlight will move to the next line of code that is about to
be executed.

Note The F11 key also steps through the code, but it will step into any procedures that are called. The F10 key steps
over the procedure calls, running them all at once and returning back to the original spot. This allows you to skip over the
line-by-line tracing of procedures that you are not currently debugging.

You can continue to trace through the loop line by line and examine variable values with the
tooltips. Can you figure out the cause of the infinite loop? Perhaps it’s time to bring in some more
debugging tools.

The Local and Watch Windows
While still stopped in debug mode, select Debug ➢ Windows ➢ Locals from the menu. The Locals
window (Figure 17.11) should be displayed in the lower section of the IDE. This window shows
you the current value of all of the locally declared variables. Now we can see the value of the vari-
ables changing as we step through the program.

Try stepping through the loop a few more times. What you might notice is that the values of the
variables aren’t changing. To get even more information, highlight the entire phrase cSomeString
.Substring(x, 1).ToLower, right-click, and select Add Watch from the context menu. This will
bring up the Watch window, as seen in Figure 17.12.

805DEBUGGING

2877c17.qxd 11/11/01 4:20 PM Page 805

http://www.sybex.com

The Watch window is similar to the Locals window, but it allows you to look at the value of
complex expressions like the one we just placed in it. Once again, try stepping through the loop a
few times. You might expect that the Substring command would be incrementing the letter in the
string as the loop iterates, but that isn’t happening. The only logical reason for this is that the value
of counter variable x isn’t changing. Let’s look at the loop again.

Do While x <= cSomeString.Length
iPos = InStr(“aeio”, cSomeString.Substring(x, 1).ToLower)
If iPos > 0 Then

iTot += 1
End If

Loop

I’ve made one of the classic looping blunders here. I set up a counter variable x to loop through
the string character by character, but I never added any code to increment the string! That’s as sure a
recipe for an infinite loop as anything. Fixing that problem is an easy remedy (see the code high-
lighted in bold).

Do While x <= cSomeString.Length
iPos = InStr(“aeio”, cSomeString.Substring(x, 1).ToLower)
If iPos > 0 Then

iTot += 1
End If
x += 1

Loop

Okay, that bug is squashed, so it’s time to remove the breakpoint and rerun the program to see if
it works. This time, however, the program crashes and burns with the following error.

An unhandled exception of type ‘System.ArgumentOutOfRangeException’ occurred in
mscorlib.dll. Additional information: Index and length must refer to a location
within the string.

Figure 17.12

The Watch window

Figure 17.11

The Locals window

Chapter 17 ERROR HANDLING AND DEBUGGING806

2877c17.qxd 11/11/01 4:20 PM Page 806

http://www.sybex.com

We’ve seen that error before—it means that we tried to look at a character beyond the length of
the string. By checking the Locals window, you should be able to eventually track down this prob-
lem. The problem here is that the loop counter x starts at character 1 and ends at value cSomeString
.Length. While that range is correct for VB version 6 and below, .NET strings are indexed starting at 0.
Oops. We need to modify our procedure as shown by the two bold items here, the zero and the less-
than sign:

Private Function CountTheVowels(ByVal cSomeString As String) As Integer
Dim x As Integer = 0
Dim iTot As Integer = 0
Dim iPos As Integer
Do While x < cSomeString.Length

iPos = InStr(“aeio”, cSomeString.Substring(x, 1).ToLower)
If iPos > 0 Then

iTot += 1
End If
x += 1

Loop
Return iTot

End Function

This modified loop starts at 0 and ends at cSomeString.Length - 1, which is the correct way to
iterate through a .NET string. Once again, you can try to remove all breakpoints and rerun the
application. This time, it should actually produce a value, like the successful test in Figure 17.13.

Finally, we got an answer! But is it the correct answer? A manual count gives 11 vowels in the test
string “The quick brown fox jumps over the lazy dog”. Since this is a fairly long test string, you
might want to try a smaller string, like the string “aeiou” shown in Figure 17.14.

Now that’s definitely wrong—it’s counted only four of the five vowels in the string. Looks like
there’s another logic error. Back to the debugging drawing board … Actually, this error is pretty
easy compared with some of the others we’ve already squashed. Look at the actual comparison of the
character to the vowel list.

iPos = InStr(“aeio”, cSomeString.Substring(x, 1).ToLower)

Where’s the u? It looks like I simply forgot to include the u in the vowel list. After adding the u
back in, the final, working code looks like Listing 17.10.

Figure 17.13

We’ve debugged
our program … or
have we?

807DEBUGGING

2877c17.qxd 11/11/01 4:20 PM Page 807

http://www.sybex.com

Listing 17.10: Bug-Free Code

Private Sub cbCount_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles cbCount.Click

cbCount.Text = CountTheVowels(tbPhrase.Text)
End Sub
Private Function CountTheVowels(ByVal cSomeString As String) As Integer

Dim x As Integer = 0
Dim iTot As Integer = 0
Dim iPos As Integer
Do While x < cSomeString.Length

iPos = InStr(“aeiou”, cSomeString.Substring(x, 1).ToLower)
If iPos > 0 Then

iTot += 1
End If
x += 1

Loop
Return iTot

End Function

This is the type of error you can only catch with exhaustive tests—that is, only a user will likely
catch this error. You can actually test the program with a string that doesn’t contain the character
“u,” see that it works nicely, and distribute it. Very soon you will receive messages to the effect that
your application doesn’t work. Yet this application has been tested and seems to work fine. The
tests, however, were not exhaustive.

You should also try to test your applications with extreme situations (a blank string, for example,
or a very large one, an invalid numeric value, and so on). The final test, of course, is to pass the
applications to users and ask for their comments. Unfortunately, we don’t write software for each
other. We write software for people knowledgeable enough to crash an application in minutes but
not knowledgeable enough to keep it running.

Figure 17.14

It’s clear that a mis-
take occurred.

Chapter 17 ERROR HANDLING AND DEBUGGING808

2877c17.qxd 11/11/01 4:20 PM Page 808

http://www.sybex.com

Note There are many more advanced debugging tools available in Visual Studio .NET. A great list of these tools can
be found in the Debug menu, under the Window submenu. (Look at the menu when you have a program running). You
can get memory dumps, disassembled versions of your program, traces of the procedure call stack, a list of running threads,
and other views of your program.

Summary
Testing and debugging is as critical a step in the complete development process as the design and
coding steps. It’s obvious that your code won’t leave the shop with any syntax errors (since you can’t
compile if you have any), but tracking down runtime errors and logic errors are just as important. All
facets and functions of the program need to be put through a rigorous test procedure to help shake
out these problems.

One excellent method of testing software involves asking users who have no preconceived notions
about its functionality to test it for you. For example, if you’re writing software for the accounting
department to use, ask members of the marketing department to test it for you. These users will have
much less familiarity with the goals of the software, as well as the expected inputs and outputs. This
gives them a larger chance of entering unexpected data, which can lead to unhandled exceptions in
your code.

Another hidden benefit of using testers from another department is for some quick usability stud-
ies. Again, these users will be unfamiliar with the day-to-day operation of the accounting depart-
ment, and the task flow of your software won’t be intuitively obvious to them. This makes for a
good test of how easy your software is to use.

809SUMMARY

2877c17.qxd 11/11/01 4:20 PM Page 809

http://www.sybex.com

Chapter 18

Recursive Programming
This chapter is slightly different from the previous ones because it doesn’t describe spe-
cific Visual Basic techniques or controls. Instead, it introduces a powerful technique for imple-
menting efficient, compact programs. Recursion is a special topic in computer programming that’s
one of the least understood among beginners and even among some advanced programmers. It’s
surrounded by an aura of mystery, and most BASIC programmers ignore it. The truth is, recur-
sive programming is no more complicated than any other programming approach, once you
understand how it works and when to use it.

Some readers may think that the material in this chapter is of little use to the average program-
mer. Recursive procedures are extremely useful, however, and you have already seen recursive
routines in the previous chapters. If you have read the previous chapters, you should have a good
idea of the type of procedures that are implemented recursively. Recursion was a novel technique
with earlier versions of Visual Basic, but with VB.NET it’s commonplace. Toward the end of
this chapter, you’ll learn how to write applications that scan an entire folder and its subfolders.
The FolderMap application is a customized Windows Explorer that you can incorporate in your
applications even if you don’t quite understand how it works. In the last section of this chapter, I
will review some of the recursive procedures used in earlier chapters. As you will see, some of the
most practical and interesting applications involve recursive coding.

2877c18.qxd 11/11/01 4:20 PM Page 811

http://www.sybex.com

Basic Concepts
Recursive programming is used for implementing algorithms, or mathematical definitions, that are
described recursively, that is, in terms of themselves. A recursive definition is implemented by a pro-
cedure that calls itself; thus, it is called a recursive procedure.

Code that calls functions and subroutines to accomplish a task, such as the following segment, is
quite normal:

Function MyPayments()
{ other statements }
CarPayment = CalculateCarPayment(Interest, Duration)
HomePayment = CalculateHomePayment(Interest, Duration)
MonthlyPayments = CarPayment + HomePayment
{ more statements }

End Function

In the preceding code, the MyPayments() function calls two functions to calculate the monthly
payments for a car and home loan. There’s nothing puzzling about this piece of code because it’s lin-
ear. Here’s what it does:

1. The MyPayments() function suspends execution each time it calls a function (the Calculate-
CarPayment() and CalculateHomePayment() functions).

2. It waits for each function to complete its task and return a value.

3. It then resumes execution.

But what if a function calls itself? Examine the following code:

Function DoSomething(n As Integer) As Integer
{ other statements }
value = value - 1
If value = 0 Then Exit Function
newValue = DoSomething(value)
{ more statements }

End Function

If you didn’t know better, you’d think that this program would never end. Every time the
DoSomething() function is called, it gets into a loop by calling itself again and again, and it never
exits. In fact, this is a clear danger with recursion. It’s not only possible but also quite easy for a
recursive function to get into an endless loop. A recursive function must exit explicitly. In other
words, you must tell a recursive function when to stop calling itself and exit. The condition that
causes the DoSomething() function to end is met when value becomes zero. If the initial value of this
variable is negative, the function will never end, because value will never become zero. This is a typical
logical error you must catch from within your code.

Apart from this technicality, you can draw a few useful conclusions from this example. A func-
tion performs a well-defined task. When a function calls itself, it has to interrupt the current task to
complete another, quite similar task. The DoSomething() function can’t complete its task (whatever
this is) unless it performs an identical calculation, which it does by calling itself.

Chapter 18 RECURSIVE PROGRAMMING812

2877c18.qxd 11/11/01 4:20 PM Page 812

http://www.sybex.com

Recursion in Real Life
Do you ever run into recursive processes in your daily tasks? Suppose you’re viewing a World Wide
Web page that describes a hot new topic. The page contains a term you don’t understand, and the
term is a hyperlink. When you click the hyperlink, another page that defines the term is displayed.
This definition contains another term you don’t understand. The new term is also a hyperlink, so
you click it and a page containing its definition is displayed. Once you understand this definition, you
click the Back button to go back to the previous page where you re-read the term, knowing its
definition. You then go back to the original page.

The task at hand involves understanding a topic, a description, and a definition. Every time you
run into an unfamiliar term, you interrupt the current task to accomplish another identical task, such
as learning another term.

The process of looking up a definition in a dictionary is similar, and it epitomizes recursion. For
example, if the definition of an ASP page is “ASP pages are Web pages that contain Web controls,”
you’d probably have to look up the definition of Web controls. Once you understand what Web con-
trols are, you can go back and understand the other definitions. Let’s say that Web controls are
defined as “elements used to build ASP Web pages.” This is a sticky situation, indeed. At this point,
you’d either have to interrupt your search or look up its definition elsewhere. Going back and forth
between these two definitions won’t take you anywhere. This is the endless loop mentioned earlier.

Because endless loops can arise easily in recursive programming, you must be sure that your code
contains conditions that will cause the recursive procedure to stop calling itself. In the example of
the DoSomething() function, this condition is as follows:

If value = 0 Then Exit Function

The code reduces the value of the variable value by increments of 1 until it eventually reaches 0, at
which point the sequence of recursive calls ends (provided the initial value of the variable is positive,
because if you start with a negative value you’ll never reach zero). Without such a condition, the
recursive function would call itself indefinitely. Once the DoSomething() function ends, the sus-
pended instances of the same function resume their execution and terminate.

When you interrupt a task to perform another similar task, you’re performing some type of recur-
sion. Each new task in the process involves a different definition, but the goal is to gather all the
information you need to complete the initial task. Now, let’s look at a few practical examples and see
these concepts in action. The first example is a trivial one, but you’ll be able to follow the thread of
recursive calls and understand how recursion works. In the following sections, we’ll build more diffi-
cult, and practical, recursive procedures.

A Simple Example
I’ll demonstrate the principles of recursive programming with a simple example: the calculation of
the factorial of a number. The factorial of a number, denoted with an exclamation mark, is described
recursively as follows:

n! = n * (n-1)!

The factorial of n (n!, read as “n factorial”) is the number n multiplied by the factorial of (n – 1),
which in turn is (n – 1) multiplied by the factorial of (n – 2) and so on, until we reach 0!, which is 1
by definition.

813BASIC CONCEPTS

2877c18.qxd 11/11/01 4:20 PM Page 813

http://www.sybex.com

Here’s the process of calculating the factorial of 4:

4! = 4 * 3!
= 4 * 3 * 2!
= 4 * 3 * 2 * 1!
= 4 * 3 * 2 * 1 * 0!
= 4 * 3 * 2 * 1 * 1
= 24

For the mathematically inclined, the factorial of the number n is defined as follows:

n! = n * (n-1)! if n is greater than zero
n! = 1 if n is zero

The factorial is described in terms of itself, and it’s a prime candidate for recursive implementa-
tion. The Factorial application, shown in Figure 18.1, lets you specify the number whose factorial
you want to calculate in the box on the left and displays the result in the box on the right. To start
the calculations, click the Factorial button.

Here’s the Factorial() function that implements the previous definition:

Function Factorial(n As Integer) As Double

If n = 0 Then
Factorial = 1

Else
Factorial = n * Factorial(n - 1)

End If
End Function

The recursive definition of the factorial of an integer is implemented in a single line:

Factorial = n * Factorial(n-1)

As long as the argument of the function isn’t zero, the function returns the product of its argument
times the factorial of its argument minus 1. With each successive call of the Factorial() function, the
initial number decreases by an increment of 1, and eventually n becomes 0 and the sequence of recursive
calls ends. Each time the Factorial() function calls itself, the calling function is suspended temporarily.
When the called function terminates, the most recently suspended function resumes execution. To cal-
culate the factorial of 10, you’d call the Factorial() function with the argument 10, as follows:

MsgBox(“The factorial of 10 “ & Factorial(10))

The execution of the Factorial(10) function is interrupted when it calls Factorial(9). This func-
tion is also interrupted when Factorial(9) calls Factorial(8), and so on. By the time Factorial(0) is
called, 10 instances of the function have been suspended and made to wait for the function they

Figure 18.1

The Factorial
application

Chapter 18 RECURSIVE PROGRAMMING814

2877c18.qxd 11/11/01 4:20 PM Page 814

http://www.sybex.com

called to finish. When that happens, they resume execution. The first instance to resume its execu-
tion is the Factorial(1), then the Factorial(2), and so on.

Let’s see how this happens by adding a couple of lines to the Factorial() function. Open the Fac-
torial application and add a few statements that print the function’s status in the Output window, as
shown in Listing 18.1.

Listing 18.1: The Factorial() Recursive Function

Function Factorial(n As Integer) As Double
Console.WriteLine(“Starting the calculation of “ n & “ factorial”)
If n = 0 Then

Factorial = 1
Else

Console.WriteLine(“Calling Factorial(” & n – 1 & ”)”)
Factorial = Factorial(n - 1) * n

End If
Console.WriteLine(“Done calculating “ & n & “ factorial”)

End Function

Watching the Algorithm

You can watch the execution of the algorithm by inserting a few statements that display the progress
on the Output window (the WriteLine statements in Listing 18.1). The first WriteLine statement
tells us that a new instance of the function has been activated and gives the number whose factorial
it’s about to calculate. The second WriteLine statement tells us that the active function is about to
call another instance of itself and shows which argument it will supply to the function it’s calling.
The last WriteLine statement informs us that the factorial function is done. Here’s what you’ll see in
the Output window if you call the Factorial() function with the argument 4:

Starting the calculation of 4 factorial
Calling Factorial(3)
Starting the calculation of 3 factorial
Calling Factorial(2)
Starting the calculation of 2 factorial
Calling Factorial(1)
Starting the calculation of 1 factorial
Calling Factorial(0)
Starting the calculation of 0 factorial
Done calculating 0 factorial
Done calculating 1 factorial
Done calculating 2 factorial
Done calculating 3 factorial
Done calculating 4 factorial

This list of messages is lengthy, but it’s worth examining for the sequence of events. The first
time the function is called, it attempts to calculate the factorial of 4. It can’t complete its operation

815BASIC CONCEPTS

2877c18.qxd 11/11/01 4:20 PM Page 815

http://www.sybex.com

and calls Factorial(3) to calculate the factorial of 3, which is needed to calculate the factorial of 4.
The first instance of the Factorial() function is suspended until Factorial(3) returns its result.

Similarly, Factorial(3) doesn’t complete its calculations because it must call Factorial(2). So far, there
are two suspended instances of the Factorial() function. In turn, Factorial(2) calls Factorial(1), and Factor-
ial(1) calls Factorial(0). Now, there are four suspended instances of the Factorial() function, all waiting
for an intermediate result before they can continue with their calculations. Figure 18.2 shows this process.

When Factorial(0) completes its execution, it prints the following message and returns a result:

Done calculating 0 factorial

This result is passed to the most recently interrupted function, which is Factorial(1). This function
can now resume operation, complete the calculation of 1! (1 × 1), and then print another message
indicating that it finished its calculations.

As each suspended function resumes operation, it passes a result to the function from which it
was called, until the very first instance of the Factorial() function finishes the calculation of the fac-
torial of 4. Figure 18.3 shows this process. (In the figure, factorial is abbreviated as fact.) The arrows
pointing to the right show the direction of recursive calls, and the ones pointing to the left show the
propagation of the result.

What Happens When a Function Calls Itself

If you’re completely unfamiliar with recursive programming, you’re probably uncomfortable with the
idea of a function calling itself. Let’s take a closer look at what happens when a function calls itself.

Figure 18.3

Recursive calculation
of the factorial of 4

Figure 18.2

You can watch the
progress of the
calculation of a
factorial in the
Output window.

Chapter 18 RECURSIVE PROGRAMMING816

2877c18.qxd 11/11/01 4:20 PM Page 816

http://www.sybex.com

As far as the computer is concerned, it doesn’t make any difference whether a function calls itself or
another function. When a function calls another function, the calling function suspends execution
and waits for the called function to complete its task. The calling function then resumes (usually by
taking into account any result returned by the function it called). A recursive function simply calls
itself instead of another one.

Let’s look at what happens when the factorial in the previous function is implemented with the
following line in which Factorial1() is identical to Factorial():

Factorial = n * Factorial1(n-1)

When the Factorial() function calls Factorial1(), its execution is suspended until Factorial1() returns
its result. A new function is loaded into the memory and executed. If the Factorial() function is
called with 3, the Factorial1() function calculates the factorial of 2.

Similarly, the code of the Factorial1() function is

Factorial1 = n * Factorial2(n-1)

This time, the function Factorial2() is called to calculate the factorial of 1. The function Factor-
ial2() in turn calls Factorial3(), which calculates the factorial of 0. The Factorial3() function com-
pletes its calculations and returns the result 1. This is in turn multiplied by 1 to produce the factorial
of 1. This result is returned to the function Factorial1(), which completes the calculation of the fac-
torial of 2 (which is 2 × 1). The value is returned to the Factorial() function, which now completes
the calculation of 3 (3 × 2, or 6). As you understand, we can’t write dozens of identical functions;
accounting for this is what recursive functions do for your applications.

Recursive Calls and the Operating System

You can think of a recursive function calling itself as the operating system supplying another identi-
cal function with a different name; it’s more or less what happens. Each time your program calls a
function, the operating system does the following:

1. Saves the status of the active function

2. Loads the new function in memory

3. Starts executing the new function

If the function is recursive—in other words, if the new function is the same as the one currently
being executed—nothing changes. The operating system saves the status of the active function some-
where and starts executing it as if it was another function. Of course, there’s no reason to load the code
in memory again because the function is already there. The new instance of the function consists of a
new set of local variables. The same code will act on different variables and produce a different result.

When the newly called function finishes, the operating system reloads the function it interrupted
in memory and continues its execution. I mentioned that the operating system stores the status of a
function every time it must interrupt it to load another function in memory. The status information
includes the values of its variables and the location where execution was interrupted. In effect, after
the operating system loads the status of the interrupted function, the function continues execution as
if it was never interrupted. We’ll return to the topic of storing status information later on in the sec-
tion “The Stack Mechanism.”

817BASIC CONCEPTS

2877c18.qxd 11/11/01 4:20 PM Page 817

http://www.sybex.com

Recursion by Mistake
Recursion isn’t as complicated as you may think. Here’s an example of a recursive situation you may
have experienced without knowing it. Figure 18.4 shows a simple application that fills the back-
ground of a PictureBox with a solid color. Instead of setting the control’s BackColor property,
though, it draws vertical lines from one end of the control to the other. Every time the Color Box
button is clicked, the PictureBox control is filled slowly with vertical lines. The color of the lines is
chosen randomly. The application runs too fast for you to notice the progress of the painting, so I’ve
inserted a statement to invalidate the control after drawing each line. I’ve also included a loop that
redraws each line 20 times, to make sure the process is slow and so you can interrupt it (you’ll
understand shortly why this is necessary). If you’re running this application on a computer that’s
much faster than mine, you must increase this value to slow down the application.

VB.NET at Work: The Recurse Project

You’ll find the Recurse application in this chapter’s folder on the CD. Load it and run it. Click the
Color Box button, and the program will start filling the PictureBox with a random color from left to
right. Because of the way the control is filled, the progress of the drawing is slow, even on a fast Pen-
tium. The code behind the Color Box Command button is shown in Listing 18.2.

Listing 18.2: The Color Box Button

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Static bmp As New Bitmap(PictureBox1.ClientSize.Width, _
PictureBox1.ClientSize.Height)

Dim clr As Color
Dim rnd As New System.Random()
Dim G As Graphics
PictureBox1.Image = bmp
G = Graphics.FromImage(bmp)
clr = Color.FromARGB(rnd.Next(0, 255), rnd.Next(0, 255), rnd.Next(0, 255))

Figure 18.4

Click the Color Box
button before the
program has a
chance to fill the
control to watch a
recursive behavior.

Chapter 18 RECURSIVE PROGRAMMING818

2877c18.qxd 11/11/01 4:20 PM Page 818

http://www.sybex.com

Dim X As Integer
For X = 0 To PictureBox1.Width - 1

G.DrawLine(New Pen(clr), X, 0, X, PictureBox1.Height)
PictureBox1.Invalidate()
Application.DoEvents()

Next
End Sub

Suppose the program starts filling the picture box with red lines. Before the program has a chance
to complete its operation, click the Color Box button again. The button’s Click event handler is
interrupted, and the program starts filling the control with a new color, perhaps fuchsia. Interrupt
the process again. This time, yellow kicks in and starts filling the control from left to right. Let this
operation complete.

As soon as the picture box is filled with yellow, the interrupted process will resume. The program
completes the drawing of the fuchsia lines, but it doesn’t start drawing from the left edge of the con-
trol. It picks up from where it was interrupted. When the fuchsia color reaches the right edge of the
control, red kicks in! Can you see what’s going on here? Each time you click the Color Box button,
the Click event handler of the button is interrupted, and a new copy of the same subroutine starts
executing. The interrupted (or suspended) instance of the subroutine doesn’t die. It waits for a
chance to complete, which it gets when the newer instance of the subroutine completes its task.

This recursion is made possible by the Application.DoEvents() statement placed in the loop’s
body. Without it, you wouldn’t be able to interrupt the subroutine and invoke another instance of it.
Normally, you wouldn’t call the DoEvents() method to avoid the very behavior you witnessed in
this example. Most of the procedures you’ve written so far don’t use the DoEvents() statement; these
procedures won’t allow another procedure to start executing before they have finished.

Avoiding Recursion

If you comment out the Application.DoEvents() statement in the listing, you won’t be able to inter-
rupt the process of coloring the control. The application, however, will become less responsive. While the
loop is executing, you won’t be able to even move the window on the desktop. Can you make the applica-
tion more responsive by including the call to the DoEvents method, yet avoid the side effect of the recursive
behavior? You can set up a static variable, which will be set to True while the loop is executing. You exam-
ine this variable’s value before entering the loop. If it’s True, you must exit immediately. If it’s False, set it
to True and continue. When the loop terminates, reset it to False:

Static Executing As Boolean ‘ variable initialized to False
If Executing Then Exit Sub
Executing = True
{ procedure’s statements }
Executing = False

This is a simple technique to prevent the multiple executions of the same procedure. Obviously, this tech-
nique applies to regular procedures and shouldn’t be used with recursive procedures.

819BASIC CONCEPTS

2877c18.qxd 11/11/01 4:20 PM Page 819

http://www.sybex.com

I need to mention one important aspect of recursion here. The clr variable is local and maintains
its value while the subroutine is interrupted. Visual Basic stores the values of the local variables of
the interrupted procedures and recalls them when the procedure gets a chance to complete. This is
possible because each new copy of the procedure that starts executing has its own set of local vari-
ables. Local variables are part of the procedure’s status.

Scanning Folders Recursively
The examples of recursive functions we have looked at so far probably haven’t entirely convinced
you of the usefulness of recursion. The factorial of a number can be easily calculated with a For…Next
loop, and the Recurse subroutine is a side effect (basically, a bug). So, what good is recursion?

The answer is the FileScan application, which can’t be implemented non-recursively. I hope that
the previous examples helped you understand the principles of recursive programming and that
you’re ready for some real recursion. We’ll design an application similar to Windows Explorer,
which scans an entire folder, including its subfolders. As the application scans the files and subfold-
ers of a folder or an entire volume, it can locate files by name, size, and date. It can also move files
around and, in general, perform all the operations of Windows Explorer plus any other custom
operation you might require. Much of the functionality of this application is provided by
Windows Explorer already, but as you’ll see shortly, this application is highly customizable. It can
serve as your starting point for many file operations that Windows Explorer doesn’t provide. For
example, your custom Explorer could expand all the subfolders each time you open a folder, display
the full pathname of each folder, or even process files of a certain type (resize image files, encrypt
documents, and so on). Later in the chapter, you’ll see an application that generates a list of all the
files in a folder, including its subfolders, organized by folder.

A file-scanning application is ideal for implementing with a recursive function because its opera-
tion is defined recursively. Suppose you want to scan all the entries of a folder and locate the files
whose size exceeds 1 MB or count the files. If an entry is another folder, the same process must be
repeated for that subfolder. If the subfolder contains one or more subfolder(s) of its own, the
process must be repeated for each subfolder. This application calls for a recursive function, because
every time it runs into a subfolder, it must interrupt the scanning of the current folder and start scan-
ning the subfolder by calling itself. If you spend some time thinking about the implementation of
this algorithm, you’ll conclude that there’s no simple way to do it without recursion. Actually, once
you’ve established the recursive nature of a process, you’ll know you must code it as a recursive
procedure.

Describing a Recursive Procedure
When you’re about to write a recursive procedure, it’s helpful to start with a general written descrip-
tion of the procedure. For the FileScan application, we need a subroutine (since it’s not going to
return a result) that scans the contents of a folder: let’s call it ScanFolder(). The ScanFolder() sub-
routine must scan all the entries of the initial folder and process the files in it. If the current entry is
a file, it must act upon the file, depending on its name, size, or any of its attributes. If the current
entry is a folder, it must scan the contents of this folder. In other words, it must interrupt the

Chapter 18 RECURSIVE PROGRAMMING820

2877c18.qxd 11/11/01 4:20 PM Page 820

http://www.sybex.com

scanning of the current folder and start scanning the subfolder. And the most efficient way to scan a
subfolder is to have it to call itself. Here’s the ScanFolder() function in pseudocode:

Sub ScanFolder(current_folder)
Process files in current_folder
If current_folder contains subfolders
For each subfolder

ScanFolder(subfolder)
Next

End If

Translating the Description to Code
Now, let’s translate this description to actual code. Because we need access to each folder’s files and
subfolders, we need three controls to display the drives, the folders of the selected drive, and the files
in the selected folder, as shown in Figure 18.5. This is the FileScan project, which you can find in
this chapter’s folder on the CD. The drives are displayed on a ComboBox control. When the user
selects a drive on this ComboBox, the drive’s folders are displayed on the ListBox control under it.
When the user double-clicks a folder’s name, the ListBox control is populated with the subfolders of
the selected folder. Finally, when the user clicks the Scan Now button, the code scans the selected
folder, including its subfolders. This application is similar to the CustomExplorer application you
developed in Chapter 13. I will repeat the process for the benefit of readers who are not familiar
with recursive coding, and in the following section we’ll add a unique feature to the application.
Where the FileScan application displays the files under the current folder only, we’ll add a button to
display all the files in the selected folder, as well as the files in all subfolders under the selected one.

Displaying Drives and Folders

The Drives ComboBox control is populated when the application starts from within the
Form_Load event handler with the following statements, shown in Listing 18.3.

Figure 18.5

The FileScan
application is the
core of a custom
Explorer.

821SCANNING FOLDERS RECURSIVELY

2877c18.qxd 11/11/01 4:20 PM Page 821

http://www.sybex.com

Listing 18.3: Populating the Drives ComboBox Control

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Dim drives() As String
drives = System.IO.Directory.GetLogicalDrives
Dim iDrive As Integer
DrivesList.Items.Clear()
On Error Resume Next
For iDrive = 0 To drives.GetUpperBound(0)

DrivesList.Items.Add(drives(iDrive))
Next
DrivesList.SelectedIndex = 1

End Sub

Notice the error-trapping code, which consists of the On Error Resume Next statement. This is the
simplest type of error trapping, but that’s all we need. VB.NET will throw an exception if you attempt to
access a drive that’s not ready. This will happen if you have two floppy drives, A: and B:, and there’s no disk
in drive B: when you select the second item in the list (on most systems, the second item will be the hard
drive C:). The On Error Resume Next statement tells VB to ignore the error and continue. It will add the
names of drives A: and B: to the Drives ComboBox control even if it can’t access the selected drive.

When a drive is selected in the Drives ComboBox, the root folders on this drive are displayed
in the Folders ListBox control with the following statements, which are executed from within the
SelectedIndexChanged event handler of the Drives ListBox control. First, the code retrieves the names
of the folders in the root folder with the GetDirectories method and adds them to the FoldersList
control. Then it retrieves the files of the root folder with the GetFiles method and displays their
names on the FilesList control. Both FoldersList and FilesList are ListBox controls. The code
shown in Listing 18.4 is executed when the user selects a drive in the ComboBox control.

Listing 18.4: Displaying a Drive’s Root Folders

Private Sub DrivesList_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles DrivesList.SelectedIndexChanged

Dim directories() As String
Try

directories = System.IO.Directory.GetDirectories(DrivesList.Text)
Catch drvException As Exception

MsgBox(drvException.Message)
Exit Sub

End Try
Dim dir As String
FoldersList.Items.Clear()
For Each dir In directories

FoldersList.Items.Add(dir)
Next
FilesList.Items.Clear()

End Sub

Chapter 18 RECURSIVE PROGRAMMING822

2877c18.qxd 11/11/01 4:20 PM Page 822

http://www.sybex.com

The error handler catches any runtime exceptions, displays the appropriate message, and aborts
the execution of the application. An exception will be thrown if the user attempts to display the con-
tents of a drive that’s not ready (a CD drive that’s empty, for example).

Finally, we must add some code to the DoubleClick event handler of the FoldersList ListBox
control. This action signals the user’s intention to switch to one of the displayed folders and view its
subfolders. Listing 18.5 shows the code behind the DoubleClick event handler.

Listing 18.5: Displaying the Selected Folder’s Subfolders and Files

Private Sub FoldersList_DoubleClick(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FoldersList.DoubleClick

Dim selDir As String
selDir = FoldersList.Text
Dim dirs(), files() As String
If selDir = “..” Then

dirs = Directory.GetDirectories(parentDir)
files = Directory.GetFiles(parentDir)
Try

parentDir = Directory.GetParent(parentDir).FullName
Catch exc As Exception

parentDir = Nothing
End Try

Else
dirs = Directory.GetDirectories(selDir)
files = Directory.GetFiles(selDir)
Try

parentDir = Directory.GetParent(selDir).FullName
Catch exc As Exception

parentDir = Nothing
End Try

End If
Dim dir As String
FoldersList.Items.Clear()
If Not parentDir Is Nothing Then

FoldersList.Items.Add(“..”)
End If
For Each dir In dirs

FoldersList.Items.Add(dir)
Next

End Sub

The code in this event handler displays the subfolders of the selected folder in the same ListBox
control, replacing its current contents. The very first item added to the Folders ListBox control is
the symbol for the parent directory, which moves you to the parent folder. The code examines the
selected item and, if it’s “..”, it displays the subfolders of the parent folder. Otherwise, it displays the

823SCANNING FOLDERS RECURSIVELY

2877c18.qxd 11/11/01 4:20 PM Page 823

http://www.sybex.com

subfolders of the selected folder. The parentDir variable is declared on the Form level, and it’s used
for storing the parent folder every time the user switches to a subfolder. It’s used to navigate back to
the parent folder when the user clicks the parent folder symbol.

The error handler is actually part of the application’s logic. The code always attempts to retrieve
the parent folder. If an error occurs, which means that the current folder has no parent folder, the
parentDir variable is set to Nothing.

When the button on the form is clicked, the program starts scanning the selected folder recur-
sively—it scans the files of the selected folder and then the files of all folders under the selected one.
As it proceeds, it displays the name of the selected folder and the number of files and subfolders
scanned so far on the form’s title bar. It also displays the path name of the folder being scanned on a
Label control, above the FilesList control. Listing 18.6 is the code behind the Scan Selected Folder
button, which initiates the recursive scanning.

Listing 18.6: Initiating the Recursive Scanning of a Folder

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

FilesList.Items.Clear()
If Button1.Text = “Scan Selected Folder” Then

Button1.Text = “Stop Scanning”
interrupt = False

Else
Button1.Text = “Scan Selected Folder”
interrupt = True
Me.Text = “INTERRUPTED”

End If
Try

If FoldersList.Text = “” Then
Scanfolder(DrivesList.Text)

Else
Scanfolder(FoldersList.Text)

End If
Catch scanException As Exception

MsgBox(scanException.Message)
End Try
Button1.Text = “Scan Selected Folder”

End Sub

First, this code clears the contents of the ListBox, where the files will be displayed. Then it
changes the caption of the button to Stop Scanning, so that users will have a chance to interrupt the
scan of an entire volume. This code demonstrates a technique for interrupting a recursive process.
We set the interrupt variable to False when the scanning of the folder starts. If the user clicks the but-
ton while the scan is in progress, the interrupt variable is set to True. This variable is examined from
within the recursive procedure, and you’ll see shortly how the program uses it to interrupt the
process.

Chapter 18 RECURSIVE PROGRAMMING824

2877c18.qxd 11/11/01 4:20 PM Page 824

http://www.sybex.com

The last If…End If clause initiates the scanning of the selected folder. If a folder name was
selected in the FoldersList control, this is the folder that’s scanned recursively. If not, it attempts to
scan recursively the selected drive. The appropriate error handler will display a message, should the
user attempt to scan a drive that’s not ready or a folder that can’t be scanned successfully.

The recursive part of the application is the ScanFolder() subroutine, which is shown in Listing 18.7.

Listing 18.7: The ScanFolder() Subroutine

Sub ScanFolder(ByVal currDir As String)
If interrupt Then Exit Sub
Dim Dir As String
Dim File As String
Dim FI As FileInfo
Label1.Text = “scanning “ & currDir
For Each File In Directory.GetFiles(currDir)

FI = New FileInfo(File)
FilesList.Items.Add(FI.Name & vbTab & FI.Length & vbTab & _

FI.CreationTime)
Next
countFiles += Directory.GetFiles(currDir).Length
Me.Text = “Scanning “ & FoldersList.Text & “ — Processed “ & countFiles & _

“ files in “ & countFolders & “ folders...”
For Each Dir In Directory.GetDirectories(currDir)

countFolders += 1
Application.DoEvents()
ScanFolder(Dir)

Next
End Sub

The ScanFolder() subroutine examines the value of the interrupt variable. If it’s True, it terminates.
Because ScanFolder() is recursive, all pending instances of the subroutine must terminate. As soon as
the current instance terminates, the most recently interrupted instance of the subroutine kicks in and
completes its execution. Then the next instance kicks in, until all pending instances of the subroutine
have terminated. Depending on the complexity of the calculations performed by the recursive proce-
dure, it may take a few seconds until the process is terminated.

The code that fills the FilesFolder ListBox control is straightforward: First, the subroutine adds
the names of the files in the folder passed as argument (this is the selected folder on the FoldersList
control). In addition to the name, it displays the file’s size and its creation date. After scanning all
the files in the current folder, the program goes through each subfolder of the selected folder. Each
one of these folders must also be scanned in the same manner, so the subroutine calls itself, passing
the name of a different folder each time. This process is repeated for all the subfolders of the
selected folder, at any depth.

The ScanFolder application is an interesting example of recursive programming, but why dupli-
cate functionality that’s already available for free? One reason is that the FileScan application is
highly customizable. In the previous section, you learned how to count all the files of a given folder,

825SCANNING FOLDERS RECURSIVELY

2877c18.qxd 11/11/01 4:20 PM Page 825

http://www.sybex.com

including those in its subfolders. You can add many more useful features to the FileScan application
that aren’t available through Windows Explorer. For example, you can implement a version of the
Find utility that locates files and/or folders based on criteria that aren’t available through the Find
utility. A limitation of the Find utility is that you can’t specify exclusion criteria. For instance, you
can’t ask it to find all the files whose size exceeds 1 MB that aren’t system files (e.g., EXE, DLL) or
images (e.g., BMP, TIF, JPG). But with FileScan, you can modify the application to handle all types
of file selection or rejection criteria by designing the proper user interface. In the following section,
we’ll modify the FileScan project a little, so that it maps a folder on a RichTextBox control.

VB.NET at Work: The FolderMap Project

Here’s another customization idea for the FileScan application: Have you ever had to prepare a hard
copy of your hard disk’s structure? (If you ever have to submit the contents and structure of an entire
CD to a publisher, this utility will save you a good deal of work.) As far as I know, there is no simple
way to do it. However, you can easily modify the FileScan application so that it prints the contents
of a folder, including its subfolders, to a text box. Figure 18.6 shows the FolderMap application,
which does exactly that. The structure of a user-specified folder is printed on a RichTextBox control
so that folder names can be displayed in bold and stand out. The contents of the text box can be
copied and pasted in any other document or used in a mail message. In this example, I’m using the
RichTextBox control to format the folder and filenames differently. The FolderMap project is also
an interesting demonstration of creating formatted text from within your application with the help
of the RichTextBox control.

The code behind the Map Selected Folder button is identical to the code of the Scan Now but-
ton of the FileScan project, and it’s shown in Listing 18.8. It calls the ScanFolder() subroutine once,
passing the name of the folder to be mapped.

Figure 18.6

The FolderMap
application generates
a text file with the
structure of any
given folder.

Chapter 18 RECURSIVE PROGRAMMING826

2877c18.qxd 11/11/01 4:20 PM Page 826

http://www.sybex.com

Listing 18.8: The Map Selected Folder Button

Private Sub bttnMapFolder_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnMapFolder.Click

RichTextBox1.Clear()
Me.Cursor = System.Windows.Forms.Cursors.WaitCursor
countFiles = 0
countFolders = 1
Try

ScanFolder(FoldersList.SelectedItem)
Catch scanException As Exception

MsgBox(scanException.Message)
End Try
Me.Cursor = System.Windows.Forms.Cursors.Default

End Sub

This code isn’t new to you. Let’s examine the code of the ScanFolder() subroutine, which is
shown in Listing 18.9. It’s based on the ScanFolder() subroutine of the previous example, with the
exception of the lines that format and display the filenames on the RichTextBox control at the bot-
tom of the form. The subroutine prints the name of the current folder in bold. Then, it goes
through the files in the current folder first and prints them on the RichTextBox control. All file-
names are indented by a few spaces to the right, and they’re printed in regular font. The last For
Each…Next loop in the subroutine goes through the subfolders of the current folder and calls the
ScanFolder() subroutine for each one.

Listing 18.9: The Revised ScanFolder() Subroutine

Sub ScanFolder(ByVal currDir As String)
Dim Dir As String
Dim File As String
RichTextBox1.SelectionFont = boldFont
RichTextBox1.AppendText(currDir & vbCrLf)
For Each File In System.IO.Directory.GetFiles(currDir)

RichTextBox1.SelectionFont = textFont
RichTextBox1.AppendText(“ “ & File & vbCrLf)

Next
countFiles += System.IO.Directory.GetFiles(currDir).Length
Me.Text = “scanned “ & countFiles & “ files in “ & countFolders & _

“ folders...”
For Each Dir In System.IO.Directory.GetDirectories(currDir)

countFolders += 1
Application.DoEvents()
ScanFolder(Dir)

Next
End Sub

827SCANNING FOLDERS RECURSIVELY

2877c18.qxd 11/11/01 4:20 PM Page 827

http://www.sybex.com

At the beginning of the program, the variables boldFont and textFont are declared as follows:

Dim boldFont As New Font(“Verdana”, 11, System.Drawing.FontStyle.Bold)
Dim textFont As New Font(“Verdana”, 9, System.Drawing.FontStyle.Regular)

The code switches the RichTextBox control to bold font for printing folder names and back to
regular font for printing filenames. The actual folder and filenames are appended to the existing con-
tents with the control’s AppendText method.

While the application scans the selected folder, the pointer’s icon is switched to an hourglass,
indicating that the process will take a while. Depending on the total number of files under the folder
you’re mapping, the program may take a while to complete. Normally, you will create a printout of a
folder with a few dozen, or even a few hundred, files. If you attempt to map the Program Files folder
after the installation of Visual Studio, you will have to wait for a few minutes. Scanning the folders
isn’t a slow process, but as the number of text lines in the RichTextBox increases, it takes more and
more time to add new lines to the control.

An alternative is to append the filenames to a disk file rather than a memory variable, then open
the file and read its contents into the RichTextBox control. Or, if you don’t care about displaying
folder names in bold, you could abandon the RichTextBox control and use a TextBox or a ListBox
control. You could also use a StringBuilder variable to store all the folder and filenames in a really
long variable and then display this string on the TextBox control. I think the benefit of richly for-
matting the folder structure offsets the less-than-optimal execution speed, as long as the size of the
folder you want to map is reasonable.

Further Customization

Another customization idea is to process selected files with a specific application. Suppose your
DownLoad folder is full of ZIP files you have downloaded from various sources. Unzipping these files
into the DownLoad folder would be a disaster. Ideally, you should create a separate folder for each ZIP
file, copy a single ZIP file there, and then unzip it. You can do this manually or you can let a varia-
tion of the FileScan application do it for you. All you need is a small program that creates the folder,
moves the ZIP file there, and then unzips it with PK_UNZIP (of course, any zipping/unzipping
utility will work in a similar manner.) You could even write a DOS batch file to process the ZIP
files with the following statements:

md c:\Shareware\%2
copy %1 c:\Shareware\%2\
del %1
pkunzip c:\Shareware\%1

Tip A batch file is a program that can be started with the Shell function. To start the PK_UNZIP application from
within Visual Basic, use a statement like Shell(“pkunzip c:\zipfiles*.ZIP”).

If this batch file is named MVFiles.bat, you can call it with two arguments:

MVFILES CuteUtility.zip CuteUtility

The first argument is the name of the ZIP file to be moved and unzipped, and the second argument is
the name of the folder where the ZIP file will be moved and unzipped. You can modify the FileScan

Chapter 18 RECURSIVE PROGRAMMING828

2877c18.qxd 11/11/01 4:20 PM Page 828

http://www.sybex.com

application so that every time it runs into a ZIP file, it calls the MVFiles.bat program with the appro-
priate arguments and lets it process the ZIP file.

The Stack Mechanism
Now that you have seen examples of recursive programming and have a better understanding of this
powerful technique, let’s look at the mechanism that makes recursion possible. I mentioned earlier
that each time a procedure (function or subroutine) calls another, its status must be stored in mem-
ory so that it can later resume execution. The status of an interrupted procedure includes the loca-
tion of the line where it was interrupted and the values of the local variables the moment it was
interrupted. This information is enough for a procedure to resume operation and never be aware that
it was interrupted.

Stack Defined
The area of memory in which the procedure’s status is stored is called the stack. The stack is a pro-
tected area of the system’s memory that’s handled exclusively by the operating system. The stack
memory is regular memory, but the operating system handles it differently from the way it handles
the rest of memory. For one thing, programs can’t grab any byte from the stack. The items in this
memory are stacked on top of one another, and only the topmost item can be extracted.

Each time a program places a value on the stack, the new item is placed at the top of the stack.
When a program reads a value from the stack, it can read only the item on top, which is the item
that was placed on the stack last. This type of memory organization is called last in, first out, or LIFO.
The item that is placed on the stack last is the first one to be read. This is exactly the mechanism
used to pass arguments between procedures.

Recursive Programming and the Stack
If you aren’t familiar with the role of the stack in the computer’s operation, the following discussion
will probably help you understand the mechanics of recursion a little better. The stack is one of the
oldest models used in programming, and it’s still as useful and as popular as ever. In fact, it’s an
important part of the operating system. Microprocessors provide special commands for manipulating
the stack. Fortunately, you don’t have to worry about the stack, since it’s handled exclusively by the
operating system and your favorite programming language. The description of the stack you’ll find
in this section is a bit simplified. The goal is to explain how recursive procedures work without get-
ting too technical.

Suppose the recursive procedure is a subroutine and it accepts no arguments, similar to the Scan-
Folder() subroutine. When the ScanFolder() subroutine calls itself, it must first store its status on
the stack so that it can later resume. One component of the subroutine’s status is the line that was
executing when the program was interrupted. The ScanFolder() subroutine calls itself from within a
loop. When it resumes, it should be able to continue with the remaining loops and not start all over
again. The loop’s counter, i, is part of the subroutine’s status, and it must also be stored on the stack
along with all the information that makes up the function’s status.

The ScanFolder() subroutine’s status is stored on top of the stack, and the same subroutine starts
executing again with a fresh set of local variables (a new loop counter, for example). When this copy

829THE STACK MECHANISM

2877c18.qxd 11/11/01 4:20 PM Page 829

http://www.sybex.com

of the ScanFolder() subroutine calls itself again, its status is stored on the stack on top of the status of
the previously interrupted subroutine. As more instances of the same subroutine are called, the status
of each is stored on top of the previously interrupted subroutine’s status. Eventually, the active Scan-
Folder() subroutine terminates, and the most recently interrupted one takes over. Its status is on the
top of the stack. The operating system removes the values of its local variables from the stack so that
the subroutine can resume execution.

What’s left on the top of the stack now is the status of the subroutine that must resume execution
when the active subroutine terminates. When these values are removed from the stack, the status of
another interrupted function surfaces on the stack. This simple mechanism allows procedures to
interrupt each other and keep track of each other’s status without any complicated operations. Each
procedure finds its status on the stack, as if no other information was ever placed on top of it.

Passing Arguments through the Stack
The same mechanism is used to pass arguments from one procedure to another. Suppose your pro-
gram calls the function Payment(Amount, Interest), which expects to read two arguments (the loan
amount and an interest rate) and return the monthly payment. As you know so well by now, you
must supply the arguments in this order: first the amount, then the interest. The calling program
leaves its status and the two arguments on the stack in the same order: first its status (the values of
its local variables), then the value of the Amount argument, and finally, the value of the Interest argu-
ment. When the Payment() function takes over, it retrieves the two arguments from the top of the
stack: first the value of the last argument, then the value of the first argument. After the removal of
these two values from the stack, the status of the calling procedure is at the top of the stack. When
the Payment() function finishes, it leaves its result on the top of the stack and relinquishes control to
the calling procedure.

The calling procedure removes the value from the top of the stack (the result of the Payment()
function) and uses it for its own purposes. It then removes the values of the local variables (its sta-
tus) so that it can resume execution. As you can see, the LIFO structure is ideal for exchanging data
between procedures.

Suppose the Payment() function calls another function. Again, the arguments of the new function
are placed on the stack where the new function will find them. When the other function returns, it
leaves its result on the top of the stack where the Payment() function will find it and remove it from
the stack. It also finds its status information on the stack. No matter how many functions are called
in such a nested manner, the information required is always at the top of the stack.

The only requirement when passing arguments through the stack is that they are placed there in
the order they are needed. The procedure being called has no other means to decipher which value
corresponds to which argument. That’s why these arguments are also known as positional arguments.

VB functions support named arguments as well, and you can pass arguments to them in any order,
as long as you provide both the name and the value of the argument. If the Payment() function has a
default interest rate, you can call it as follows: Payment(Amount:=29000). Even these procedures use
the stack mechanism to pass the named arguments, but the mechanics are a bit more complicated.
The basic idea is the same: The information is always placed on top of the stack, and when it’s read,
it’s removed from the stack. In this way, each procedure is guaranteed to find the information it
leaves on the stack the moment it needs it.

Chapter 18 RECURSIVE PROGRAMMING830

2877c18.qxd 11/11/01 4:20 PM Page 830

http://www.sybex.com

A Real-Life Example

Imagine that you are so disciplined and organized that you can place every document you use in your
office on top of a document stack. Every time you’re interrupted by a visitor or a phone call, you
leave the document you were working with on top of this paper stack and remove another document
from your filing cabinet to work on. When you’ve finished, you take the document in front of you
and place it back in the filing cabinet (or if you’re interrupted again, you place this document on the
stack and retrieve another one from the filing cabinet).

What you now have in front of you is the document you were working on when you were inter-
rupted. When you’ve finished with this document, you put it back where it belongs and another
document surfaces on the stack—the document you interrupted working on to work with another
document. After you work with this document, revise it, and put it away, you have another docu-
ment before you from an even earlier interruption. If you can maintain this type of organization,
you’ll never need to waste time looking for documents (and your productivity will be at an all-time
high!). Everything will be in its filing space, and most of the time, the document you need will be
right in front of you. Thankfully, we’re not as simplistic as our computers, nor do we need to be so
rigid. But you’ll probably agree that this type of memory organization makes perfect sense for keep-
ing track of interrupted tasks on your computer.

Special Issues in Recursive Programming
Recursion is not a technique that most programmers regularly use. Only a few situations call for
recursive programming, and unfortunately, these programs can’t be implemented otherwise. As the
various object models become more and more complicated, you’ll have to implement an increasing
number of recursive procedures. The following sections discuss the dangers of recursion and give
you a few hints to help you recognize a procedure that calls for recursive programming.

It’s Easy to Write a Never-Ending Program
If you forget to specify an exit condition with a few statements that stop the procedure from calling
itself, you’ll end up with a never-ending program, or an endless loop. If this happens, your computer
will run out of memory for storing the intermediate results, and the program will end with the “Out
of stack space” error message. The memory available for storing intermediate results between proce-
dure calls is limited and it’s easy to exhaust.

The stack isn’t used only for recursive procedures. Each time a function is called, the status of the
one that’s interrupted, along with the arguments of the function being called, are stored on the stack.
It’s practically impossible to run out of stack space with regular procedures; to do so, you’d have to
call an extremely large number of procedures, one from within the other. You can run out of stack
space with recursive procedures, though, because you don’t have to write several thousand routines—
only one that calls itself and doesn’t provide an exit mechanism.

I’ve tried to produce a stack overflow by calculating the factorial of a very large number. While
this was easy with previous versions of VB, this time I’ve exhausted the accuracy of the Long data
type before generating a stack overflow. I even changed the Factorial() function’s type to Double to
fill the stack, but guess what happened: the string “Infinity” appeared on the form! The ScanFolder()
subroutine will never generate a stack overflow, because I can’t imagine a file system with nested
folders to a depth of several hundreds.

831SPECIAL ISSUES IN RECURSIVE PROGRAMMING

2877c18.qxd 11/11/01 4:20 PM Page 831

http://www.sybex.com

I had to write a dummy subroutine that calls itself to cause the stack to overflow. After more
than 40,000 recursive calls, the stack was exhausted. To be on the safe side, you can catch the Stack-
OverflowException in your code.

Knowing When to Use Recursive Programming
In addition to knowing how to implement recursive programming, you need to know when to use it.
The recursive nature of many problems isn’t obvious, so it may take a while to get the hang of it.
(We humans aren’t trained to think recursively, but once you’ve established the recursive nature of a
problem, the recursive algorithm will follow quite naturally.) An algorithm that, in the middle of
carrying out a task, has to start and complete an identical task is a prime candidate for recursive
implementation. Consider a procedure for scanning the contents of a folder. First, it counts the files.
If the folder has subfolders, the same process must be repeated for each subfolder.

If you find yourself nesting loops in many levels or if you’re trying to set up conditions to exit
these loops prematurely, your code would probably benefit from a recursive implementation. Recur-
sion bears some resemblance to iteration, and in some situations, you can implement a recursive algo-
rithm with a loop. The factorial algorithm, for instance, can be easily implemented with a For…Next
loop. But there are situations in which iterations won’t help.

Try It!

If you’re interested in recursion and would like to experiment a little, here’s a problem that can be solved
both recursively and nonrecursively: Write a program that accepts a phone number and produces all pos-
sible seven-letter combinations that match the phone number (vanity numbers, as they are called). This is
not a trivial task, no matter how you look at it. There are 3 to the power of 7, or 2,187, possible combinations,
because each number can be mapped to one of three letters and phone numbers have seven digits (exclud-
ing the area code).

I’ve mentioned already that recursive routines are quite common when programming with classes
of .NET Framework. You have already seen a few recursive routines in earlier chapters, and I would
like to go through a couple of typical examples presented in earlier chapters. In Chapter 5, you saw a
recursive procedure for scanning the items of a menu, and in Chapter 16, you saw a recursive proce-
dure for scanning the nodes of a TreeView control. Now that you have a better understanding of
how recursion works, you may wish to take a closer look at these applications. In the following sec-
tions, I will focus on the recursive nature of these routines and not on the object models used in each
example.

Printing a Menu’s Commands

In Chapter 5, you saw a subroutine that iterates through the items of a menu. If an item leads to a
submenu, the submenu’s items are also scanned, and this process is repeated to any depth. Of course,
no menu item should be nested in more than two or three levels, but this procedure will work with
any menu structure. The following code iterates through the items of a MainMenu object and prints
all the commands in the Output window. MapMenu is the name of a button on a form with a menu,

Chapter 18 RECURSIVE PROGRAMMING832

2877c18.qxd 11/11/01 4:20 PM Page 832

http://www.sybex.com

and it prints the names of the commands at the top level. It scans all the items of the menu’s Menu-
Items collection and prints their captions. After printing each command’s caption, it calls the
PrintSubMenu() subroutine, passing the current MenuItem as argument. The PrintSubMenu() sub-
routine iterates through the items of the collection passed as argument and prints their captions. The
MapMenu command’s code is shown here:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim itm As MenuItem
For Each itm In Me.Menu.MenuItems

TextBox1.AppendText(itm.Text & vbCrLf)
PrintSubMenu(itm)

Next
End Sub

The PrintSubMenu() subroutine, shown in the following code, goes through the MenuItems col-
lection of the MenuItem object passed as argument and prints the captions of its items. If the cur-
rent item leads to a submenu (in other words, if it has its own MenuItems collection), it calls the
PrintSubMenu() subroutine recursively. The PrintSubMenu() subroutine is called with a different
argument every time, and this argument is the current menu item—the item whose submenu we
want to scan.

Sub PrintSubMenu(ByVal MItem As MenuItem)
Static indentLevel As Integer
indentLevel += 5
Dim itm As New MenuItem()
For Each itm In MItem.MenuItems

TextBox1.AppendText(Space(indentLevel) & itm.Text & vbCrLf)
If itm.MenuItems.Count > 0 Then PrintSubMenu(itm)

Next
indentLevel -= 5

End Sub

When the PrintSubMenu() subroutine starts executing, it increases the variable indentLevel by 5.
This variable is the number of spaces printed in front of each item’s caption. We increase the indenta-
tion level by five spaces every time we run into a new submenu, and we decrease it every time we move
to the previous menu level. When the PrintSubMenu() subroutine finishes processing a submenu, the
indentation is decreased by five spaces, so that items on the same level have the same indentation.

Printing the Nodes of a TreeView Control

Scanning the nodes of a TreeView control is another typical example of a recursive procedure,
because each node may have a collection of nodes under it, and this can go on to any depth. For the
purposes of our example, we’ll assume that the TreeView control has a single root node. This isn’t
an unreasonable assumption, because most tree structures have a single root and you should try to
implement trees with a single root node to simplify your code. If you have a tree with multiple root
nodes, you must write a loop that iterates through the root nodes, and for each node you must call
the ScanNode() recursive procedure.

833SPECIAL ISSUES IN RECURSIVE PROGRAMMING

2877c18.qxd 11/11/01 4:20 PM Page 833

http://www.sybex.com

To start the scanning of the TreeView1 control, start at the top node of the control with the
statement

ScanNode(GlobeTree.Nodes(0))

This statement must appear in a button’s Click event handler. It calls the ScanNode() subroutine to scan
the child nodes of a specific node, which is passed to the subroutine as argument. GlobeTree.Nodes(0)
is the root node. By passing the root node to the ScanNode() subroutine, we’re in effect asking it to
scan the entire tree. The name of the TreeView control is GlobeTree, the same one we used in the
examples of Chapter 16.

Let’s look now at the ScanNode() subroutine:

Sub ScanNode(ByVal node As TreeNode)
Dim thisNode As TreeNode
Static indentLevel As Integer
Application.DoEvents()
ListBox1.Items.Add(Space(indentLevel) & node.Text)
If node.Nodes.Count > 0 Then

indentLevel += 5
For Each thisNode In node.Nodes

ScanNode(thisNode)
Next
indentLevel -= 5

End If
End Sub

The ScanNode() subroutine adds the caption of the current node to the ListBox1 control. Then
it examines the values of the Node.Nodes.Count property, which returns the number of nodes under
the current node. If this value is positive, the subroutine proceeds by scanning all the items of the
Node.Nodes collection. It does that by calling itself and passing the current node as argument.

The ScanNode() subroutine can scan any TreeView control. All you need is a reference to the
root node (or the node you want to scan recursively), which you must pass to the ScanNode() sub-
routine as argument. The subroutine will scan the entire subtree and display its nodes on a ListBox
control.

The variable indentLevel keeps track of the level of nesting and is used to specify the indentation of
the current node. It’s increased by 5 when we start scanning a new subordinate node and decreased
by the same amount when we return to the next level up—similar to the PrintSubMenu() subroutine.
The indentLevel variable is declared as static, because it must maintain its value between calls. If you
want to display the nodes on a different control, such as a RichTextBox control, or save them to a
text file, modify the statement that adds items to the ListBox1 control.

Summary
In this chapter, you learned about a powerful coding technique, recursion. Recursive procedures aren’t
among the most popular topics in programming, but as you saw, they help you write code that’s
impossible without recursion. First, you have to establish the recursive nature of the process. Once

Chapter 18 RECURSIVE PROGRAMMING834

2877c18.qxd 11/11/01 4:20 PM Page 834

http://www.sybex.com

you do, you can write a procedure that performs the basic calculations and then calls itself with a
different argument each time.

You must also make sure that the recursive procedure will eventually come to an end. You must
examine some condition and explicitly insert an Exit Sub or Exit Function statement. If not, the
procedure will keep calling itself until it causes a stack overflow.

Recursion is a very practical coding technique. I’ve used recursive techniques throughout the
book, not because I wanted to show you a more elaborate, or a more elegant, way of doing things.
None of the recursive procedures presented in this book can be implemented nonrecursively (except
the introductory example of this chapter, of course).

To the computer, a recursive procedure is no different than any other procedure. Your program
doesn’t know, and doesn’t care, whether a procedure calls itself or another one. It just loads and
executes another copy of the specified procedure. If it’s the same one it’s currently executing, it uses
the copy of the code in memory and creates a new set of local variables. In other words, it creates a
new instance of the newly called procedure in memory and executes it.

835SUMMARY

2877c18.qxd 11/11/01 4:20 PM Page 835

http://www.sybex.com

2877c18.qxd 11/11/01 4:20 PM Page 836

http://www.sybex.com

Chapter 19

The Multiple
Document Interface
The MULTIPLE DOCUMENT INTERFACE (MDI) was designed as an alternative interface for
applications that manipulate documents of the same type. It simplifies the exchange of informa-
tion among documents, all under the same roof. With an MDI application, you can maintain
multiple open windows but not multiple copies of the application. Data exchange is easier when
you can view and compare many documents simultaneously.

You almost certainly use Windows applications that can open multiple documents at the same
time and allow the user to switch among them with a mouse-click. Microsoft Word is a typical
example, although most people use it in single-document mode. Each document is displayed in its
own window, and all document windows have the same behavior. The main form, or MDI form,
is not duplicated, but it acts as a container for all other windows, and it’s called the parent window.
The windows in which the individual documents are displayed are called child windows (or document
windows). When you reposition the parent window on the Desktop, its child windows follow.
Child windows, however, exist independently of the parent window. You can open and close
child windows as you wish, and child windows can even have different functions. For example,
you can open a few text windows and a few graphics windows next to one another, although this
is rare.

Figure 19.1 shows Excel 2000 in MDI mode. The application’s main window contains five
documents, three of them in custom-size windows and two of them minimized. The menus and
the toolbars of the parent window apply to all the child windows. In reality, the menu bar of the
MDI form contains the menu of the active child form. Depending on the state of the active child
window, the MDI form’s menu may also change.

Paint Shop Pro is a very popular application (see Figure 19.2) that uses an MDI interface.
Many mail applications display each message in a separate window and allow the user to open mul-
tiple messages. Most of the popular text editors (Notepad excluded) are MDI applications, too.

2877c19.qxd 11/11/01 4:21 PM Page 837

http://www.sybex.com

MDI applications aren’t very common; not too many applications lend themselves to MDI imple-
mentation. Most of them are easier to implement with multiple forms, but some applications should
be implemented with an MDI interface. These are the applications that can open multiple documents

Figure 19.2

Paint Shop Pro, one
of the most popular
graphics applica-
tions, uses the MDI
user interface.

Figure 19.1

Using Excel in
MDI mode

Chapter 19 THE MULTIPLE DOCUMENT INTERFACE838

2877c19.qxd 11/11/01 4:21 PM Page 838

http://www.sybex.com

of the same type and use a common menu structure that applies to all open documents. In the follow-
ing sections, we are going to discuss the basic behavior of MDI applications, their differences from
regular Single Document Interface (SDI) applications, and how to build MDI applications.

MDI Applications: The Basics
MDI applications must have at least two forms, the parent form and one or more child forms. There
may be many child forms contained within the parent form, but there can be only one parent form.
The parent form is the MDI form, or MDI container, because it contains all child forms.

The parent form may not contain any controls. While the parent form is open in design mode,
the icons on the Toolbox aren’t disabled, but you can’t place any controls on the form. The parent
form can, and usually does, have its own menu. While one or more child forms are displayed, the
menu of the child forms takes over and it’s displayed on the MDI form’s menu bar. This is not a
requirement, of course, and you can manipulate the parent form’s menu with the techniques we dis-
cussed in Chapter 4. In this chapter, you’ll learn about a feature that is specific to the menus of MDI
applications, namely how to merge two different menus—the menu of the MDI form and the menu
of the child forms.

In the following section, we’re going to build a simple MDI application. In the process, we’ll dis-
cuss the steps that are unique to an MDI application.

Building an MDI Application
Building an MDI application is a fairly straightforward process, but quite a few steps are unique to
MDI applications. In this section, we’re going to build a typical MDI application that demonstrates
all the built-in features of the MDI. In a later section, we’re going to add more functionality to this
application. As you will see, once you get the interface right and you have the skeleton of a working
MDI application, adding specific functionality to it is as simple as adding functionality to an SDI
application. In effect, all the code belongs to the child form, and the MDI form is simply a container
with a few lines of supporting code.

The application we’ll build in this section is the skeleton of an MDI text-editing application, and
it’s shown in Figure 19.3. All child forms of the application are the same, and they determine the
functionality of the application. The commands of the menu are placeholders, with no code behind
them—we’ll add the code later. For now, we’re going to focus on the mechanics of designing MDIs.

Before building the application, let’s go over the basic characteristics of an MDI application.
When you start an MDI application, you see the container form. Most applications automatically
display a new document of the type they can handle. Excel, for instance, opens a new XLS file when
you start it. Closing this document disables most of the commands in Excel’s menus. Without an
active document, these commands are meaningless. They’re activated automatically again as soon as a
new document is opened on a child form. The child forms usually have more menu commands,
which are merged with the initial menu of the MDI form’s menu commands.

The child forms don’t display their own menus. When you design a child form, you add a menu
as usual, but this menu will appear on the menu bar of the MDI form—it will either replace the ini-
tial menu of the MDI form or it will be merged with it. You may have also noticed that the menu of
an MDI application changes according to the state of the document on the active child form. If you

839MDI APPLICATIONS: THE BASICS

2877c19.qxd 11/11/01 4:21 PM Page 839

http://www.sybex.com

select some text in the active document, the Cut and Copy commands will be enabled. If you switch
to another child form whose document contains no selection, these two commands will be disabled.
In effect, each child form has its own menu, and each time you switch to another child form, its
menu becomes the application’s menu. You can design an MDI application that uses child forms
with totally different menus, but this is quite unusual—at the very least, it will confuse the users.

Let’s now build the application. Start a new project and name it MDIProject. Select the project’s
form in the Solution window, and rename it from Form1.vb to MDIForm.vb. This form will become
the window that will host the child forms at runtime. To specify this function of the form, select the
MDIForm component in Solution Explorer, and in the Properties window locate the IsMdiCon-
tainer property. This property determines whether the form will act as an MDI parent form (in
other words, whether it will be a container for child forms). The default value is False, and you must
change it to True. While you’re setting the form’s properties, change the MDI form’s caption to
“MDIForm”.

We’ve taken care of the parent form. We must now create a child form. Because all child forms
are usually the same, we’ll create a single form that will serve as a template for all child windows. It is
possible for an MDI application to host child forms that are not identical, but this is rather unusual.
In this chapter, we’ll explore MDI applications with child forms that are identical.

Right-click the project’s name in the Solution Explorer window, and from the context menu
select Add ➢ Add Item. In the dialog box that appears, select Windows Form. Change its name to
ChildForm, and click Open to add it to the project. Child forms are regular forms, and you need not
set any properties to make them appear in their container. If you run the project now, you will see
the parent form and nothing more.

To display a child window at runtime, you must insert a few lines of code. Since the user is in
charge of creating and closing child forms, we must add a menu, usually a File menu, that contains a

Figure 19.3

MDIPad is an
MDI text-editing
application.

Chapter 19 THE MULTIPLE DOCUMENT INTERFACE840

2877c19.qxd 11/11/01 4:21 PM Page 840

http://www.sybex.com

New command. Before we can open a child form, we’ll build a simple menu with a command that
allows you to create a new instance of the child form and display it on the parent form.

With the MDI form in the Design window, drop a MainMenu control onto the project. Then
create a menu with the structure shown in Table 19.1.

Table 19.1: The Captions and Names of the File and Window Menus

Caption Name

File FileMenu

New FileNew

Exit FileExit

Window WindowMenu

Tile Horizontally WindowTileH

Tile Vertically WindowTileV

Cascade WindowCascade

Arrange Icons WindowArrange

The first column contains the top-level items, which are the usual File and Window menus. The
Window menu is a characteristic of all MDI applications, and we’ll come back to this topic shortly.
The File menu contains the two commands you really need when no child form is displayed. The
New command instantiates a child form, and the Exit command terminates the application.

Enter the lines in Listing 19.1 in the New menu item’s Click event handler.

Listing 19.1: Instantiating a New Child Form

Private Sub FileNew_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FileNew.Click

Static nWindow As Integer
Dim child As New ChildForm()
child.MdiParent = Me
child.Text = “Child window # “ & nWindow.ToString
child.Show()
nWindow = nWindow + 1

End Sub

Creating and displaying an instance of the child form isn’t new to you; this is the same code we
used in Chapter 4 to display a form or dialog box from within another form. We create a variable
that represents the form and then we call its Show method. In our example, we also set the caption
of the form. The nWindow variable is static so that it’s increased every time a child control is added.

841MDI APPLICATIONS: THE BASICS

2877c19.qxd 11/11/01 4:21 PM Page 841

http://www.sybex.com

This variable is used to display a different caption for each child form. Note that the nWindow vari-
able’s value isn’t decreased when a child form is closed. Therefore, there will be gaps in the number-
ing of the child forms as you close and open new documents, but they will all have a different
caption. In a real application, each child form’s caption will be the title of the document displayed.

The line that’s new to you is the following:

Child.MdiParent = Me

which makes the form a child of the MDI form. The child form will appear in its parent’s window,
and its menu will be automatically merged with the parent form’s menu. So far, we haven’t designed
a menu for the child form, but we’ll do so shortly. You’ll see how the two menus are merged—you
can actually specify how the two menus will be merged.

If you run the project now, you’ll be able to open new child forms—each one with a unique cap-
tion—resize them in the MDI form’s window, move them around, and close them when you no
longer need them. The Window menu’s items aren’t doing anything because we haven’t programmed
them yet. You have built a working skeleton of an MDI application, and you’re ready to add some
real functionality to your project.

The child form may contain any number of controls since this is the form the user will be inter-
acting with. You can place a multiline TextBox control on the form to experiment with the child
forms of the application. Place a button or two on the child form as well, so that you can enter a few
lines of code behind them as you go through the example.

Note All MDI child forms are sizable, have borders, and have the usual Control-menu, Close, and Minimize/Max-
imize buttons, regardless of the settings of the equivalent properties.

The Window Menu

All MDI applications in the Windows environment have a menu called Window that contains two
groups of commands. The first group of commands positions the child windows on the MDI form,
and the second group consists of the captions of the open child windows (see Figure 19.4). With
the commands on this menu, you can change the arrangement of the open windows (or the icons
of the minimized windows) and activate any child window.

Stop the project and right-click the Window menu item on the MDI form. On the context
menu, select Properties. In the Properties window, locate the MDIList property. This property
causes the menu to keep track of all open child forms and display their names at the bottom of the
Window submenu. This is a characteristic function of the Window menu, and it’s implemented by
setting a single property.

Figure 19.4

A Window menu of
an MDI application

Chapter 19 THE MULTIPLE DOCUMENT INTERFACE842

2877c19.qxd 11/11/01 4:21 PM Page 842

http://www.sybex.com

The other four options of the Window menu, which automatically rearrange the child forms within
the parent form’s window, are implemented with a call to the LayoutMdi method of the child form.
Windows offers three ways of arranging the windows on an MDI form. You can cascade them, tile
them vertically, or tile them horizontally. Of course, the user can resize and move the windows around,
but the automatic placement comes in handy when the MDI form becomes messy and the user can no
longer easily locate the desired window. The placement of the child windows on the form is controlled
with the LayoutMdi method, which accepts as argument one of the members of the MdiLayout enu-
meration: TileHorizontal, TileVertical, Cascade, or ArrangeIcons. If you’re not familiar with the
Window menu, check out the application, or open several documents with your favorite MDI applica-
tion (Excel being one of them) and then rearrange them on the MDI form in all possible ways. By
tiling the child forms vertically or horizontally, you can easily compare documents.

Enter the statements shown in Listing 19.2 into each of the four commands of the Window menu.

Listing 19.2: The Window Menu’s Commands

Private Sub WindowTileH_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles WindowTileH.Click

Me.LayoutMdi(MdiLayout.TileHorizontal)
End Sub
Private Sub WindowTileV_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles WindowTileV.Click
Me.LayoutMdi(MdiLayout.TileVertical)

End Sub
Private Sub WindowCascade_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles WindowCascade.Click
Me.LayoutMdi(MdiLayout.Cascade)

End Sub
Private Sub WindowArrange_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles WindowArrange.Click
Me.LayoutMdi(MdiLayout.ArrangeIcons)

End Sub

The LayoutMdi method of the parent form automatically rearranges the child forms; all you have
to do is supply the proper argument. Run the project again, open a few child forms, and see their
names in the Window menu. You can switch to any child form by selecting its name in this menu.
The active form’s name is checked automatically in the Window menu. Check out the commands
that arrange the child forms as well. The Arrange Icons command applies to forms that are mini-
mized and has no effect on the other forms.

Merging MDI and Child Menus

We now have a working MDI application, but it doesn’t do anything useful yet. We must add a
few controls and a menu to the child form in order to build a real application. The parent form has
no controls, just a few menu commands to create and close new child forms. In this section, we’re
going to add a menu to the child form and merge it with the MDI form’s menu.

843MDI APPLICATIONS: THE BASICS

2877c19.qxd 11/11/01 4:21 PM Page 843

http://www.sybex.com

Open the child form in the Design window and drop a MainMenu control on it. Then design the
menu shown in Table 19.2 (the dashes indicate separators).

Table 19.2: The Captions and Names of the File, Edit, and Format Menus

Caption Name

File FileMenu

-

Open FileOpen

Save FileSave

Save As FileSaveAs

Close FileClose

-

Preview FilePreview

Print FilePrint

Edit EditMenu

Copy EditCopy

Cut EditCut

Paste EditPaste

-

Find EditFind

Word Wrap EditWordWrap

Format FormatMenu

Font FormatFont

Text Color TextColor

Page Color PageColor

This is the menu of the MDIPad application, which we’ll build in the next few sections. MDIPad
is a text editor similar to the TextPad of Chapter 6, but it can maintain many open documents at
once with an MDI interface.

As you can see, some of the commands are missing, and they are the ones we’ve already added to
the MDI form’s menu. The MDI form has a File menu with the New and Exit commands. These
two commands are missing from the child form’s menu. We’re going to merge the two menus and
specify that the New command will be the first command in the File menu, while the Exit command
will be the last command in the same menu. This also explains why the child form’s File menu starts

Chapter 19 THE MULTIPLE DOCUMENT INTERFACE844

2877c19.qxd 11/11/01 4:21 PM Page 844

http://www.sybex.com

and ends with a separator. The top separator will be placed under the New command, while the last
separator will end up just above the Exit command. The separators aren’t placed automatically when
the menus are merged; you must insert them in the child form’s menu. You can also insert them in the
MDI form’s menu, but they will appear even when they don’t separate sections of the menu, as they’re
supposed to do.

The MDI form’s menu is really minimal because the MDI form is simply a container for the child
forms. You can’t do anything without first opening a new document. The child form’s menu contains
all the commands users need to interact with the document and edit it. The child form contains all the
code of the application, and its menu structure indicates the capabilities of the application.

Note Some applications display the full menu even when no child form is open. These menus usually lead to disabled
commands, as there’s no document for the commands to act upon. It’s possible to design an MDI form with the complete
menu of the application, but this will complicate your code.

If you run the application at this point and open a new child form with the New command, you
will see that the child form’s menu options are added to its parent’s menu. There are two File menus,
the first one with two commands (New and Exit) and the second one with the commands of the
child form’s File menu. The two menus were merged, but not exactly as we would like them. We
must set a few properties to specify how the menus are merged. By default, Form Designer displays
the commands of the MDI form followed by the commands of the child form.

Notice that the menus are actually added, not merged. The first commands are those of the MDI
form, followed by the commands of the child form. Moreover, menus are combined according to
their order in their respective forms, not their names—that’s why you see two File menus. To prop-
erly merge two menus, you must set their MergeType and MergeOrder properties.

The MergeType property determines how the items of two menus are merged. Its value can be
one of the members of the MenuMerge enumeration. The MenuMerge enumeration’s members are
listed in Table 19.3.

Table 19.3: The MenuMerge Enumeration

Member Description

Add The menu item of the child form is added to the menu items of the parent MDI form. This is
the default setting of the MenuMerge property.

MergeItems All items of a submenu on the child form are merged with the items of the submenu of the par-
ent MDI form. This setting applies to menu items that lead to submenus. The items are
merged according to their positions in the respective menus, not by their captions.

Remove The menu item is ignored when the two menus are merged

Replace The menu item replaces another item at the same position in the merged menu.

The Replace option allows you to design the complete menu on the child form and have it
replace the MDI form’s menu as soon as the first child form is opened. This, however, means that
you must duplicate the menus of the MDI form on the child form.

845MDI APPLICATIONS: THE BASICS

2877c19.qxd 11/11/01 4:21 PM Page 845

http://www.sybex.com

When menu items are merged, the parent form’s menu items appear first, followed by the child
form’s menu items. To change the order in which two items are merged, set their MergeOrder prop-
erty. This property is an integer value that determines whether an item appears in front of or after
another item. The menu items being merged need not have consecutive MergeOrder values. Those
with a smaller value appear in front of others with larger MergeOrder values. The MergeOrder prop-
erty of the main menu’s items determines the order of the top-level menu. The MergeOrder
property of the items in a specific menu determines the order of the commands in this menu.

The Window item, for example, is always the last menu in an MDI application, with the excep-
tion of the Help menu. To make sure it is the last item in the merged menu structure, set its Merge-
Order property to 99. If your application has a Help menu, set the Help item’s MergeOrder
property to 100. You need not do anything about the items of the Window menu; they follow their
parent item.

Let’s go through the settings of the menus of the MDI form and its child form of the application
you’re building. The Window menu is unique to the MDI form. To make sure it is the last menu on
the form, set its MergeType property to Add and its MergeOrder property to 99. The File menu of the
MDI form must be merged with the File menu of the child form, so you must set the MergeType
property of both items to MergeItems. The MergeOrder property doesn’t make any difference.

Then you must set the MergeOrder property of each item in the File menu of both forms. Switch
to the MDI form, select the New item under the File menu, and set its MergeOrder property to 0.
We want this item to be the first one in the File menu, even when the two menus are merged. The
Exit item must be the last one, so set its MergeOrder property to 9. The items of the File menu on
the child form should be merged with the commands of the File menu of the MDI form. Set their
MergeType property to MergeItems. The MergeOrder property of the File menu’s items need not
change. We’ve already specified that the New command must appear at the top of the menu and the
Exit command must appear at the bottom of the menu. The remaining commands will appear
between them, and they’ll have the same order as they do in the child form’s File menu.

Then select the Edit and Format menus on the child form. These menus must appear after the
File menu, in this order, so set their MergeType property to Add. Again, you don’t have to do any-
thing about their order. The two menus that are unique to the child form (Edit and Format) are
placed on the merged menu in the order in which they appear in the menu of their own form.
Figure 19.5 shows the parent and child menus, as well as the merged menu. The child menu is
shown in design mode, because this menu can’t be displayed on its own.

At this point you can run the application and check out how an MDI application handles the
menus. Notice how the parent form’s menu changes when you open new child forms and how it
shrinks back to the items of the parent form after you close the last child form.

Built-In Capabilities of MDI Applications
You’ve just created an MDI application. It doesn’t do much, but if you run the project now, you’ll see
two forms, one inside the other, as shown in Figure 19.6. To properly start the application, make sure
that the MDI form is the application’s startup form. To do this, open the project’s Properties window
and set the MDI form (whatever you have named it) as the startup object. If the startup object is the
child window, it won’t be displayed by default; you must load it from within the application code.
Notice that the child form is contained entirely within the parent form and exists only in that context.
If you close or minimize the parent form, the child form also will be closed or minimized.

Chapter 19 THE MULTIPLE DOCUMENT INTERFACE846

2877c19.qxd 11/11/01 4:21 PM Page 846

http://www.sybex.com

Use the mouse to move the child form around and change its size. If you click the child form’s
Maximize button, the two forms are combined into one, as shown in Figure 19.7.

You can also move the child form outside the parent form, in which case the appropriate scroll
bars will be attached to the parent form. In addition, both the child window and the MDI form have
a Control menu (which you can open by clicking the icon in the top-left corner) and their own Min-
imize, Restore, and Close buttons (in the top-right corner).

Note Later in this chapter, you’ll see that the way you name parent and child windows is important to maintaining the
Windows graphical user interface (GUI) guidelines. The most important rule for parent and child windows is that the par-
ent form’s caption should be the name of the application and the captions of the child forms should be the names of the doc-
uments in each of them.

Figure 19.6

The framework
of an MDI applica-
tion with a single
child form

Parent Menu

Merged Menu

Child MenuFigure 19.5

The parent menu
(top left), the child
menu (top right) and
the merged parent/
child menu (bottom)

847MDI APPLICATIONS: THE BASICS

2877c19.qxd 11/11/01 4:21 PM Page 847

http://www.sybex.com

Clicking the child form’s Minimize button reduces the child form to an icon, but always within
the parent form. You’ll never see a child form’s icon on the Desktop’s status bar, even if its ShowIn-
Taskbar property is set to True. To restore the minimized form to its original size, double-click the
icon. A child window is usually minimized instead of being closed to make room for other docu-
ments. In short, the child form behaves like a regular form on the Desktop, only its “desktop” is the
parent window.

I have just demonstrated the basic operations of an MDI application with just a few lines of
codes. These capabilities are built into the language and are available to your applications through
the settings of certain properties. We’re almost ready to build a functional MDI application. But
first, let’s see how we can access the controls on the child forms.

Accessing Child Forms
There are two different methods to access the child forms. The first method, and the most common
one, is to use the Me keyword. This keyword refers to the form in which the code resides, and since
the bulk of the code is on the child form, you can use the Me keyword to access the controls on the
child form. The MDI child forms of a text editor, for example, contain a TextBox control where the
user can enter and edit text. The following expression returns the text on the active child form:

Me.TextBox1.Text

To select all the text on the active child window, call the TextBox control’s SelectAll method
with the following statements:

Me.TextBox1.SelectAll

To access the child form from within the MDI parent form’s code, you can use the ActiveMdiChild
property, which represents the active child form. The following statement returns the caption of the
active child form:

Me.ActiveMdiChild.Text

Figure 19.7

The MDI application
from Figure 19.6
after the child
window has been
maximized

Chapter 19 THE MULTIPLE DOCUMENT INTERFACE848

2877c19.qxd 11/11/01 4:21 PM Page 848

http://www.sybex.com

To access the contents of a TextBox control on the child form from within the MDI form’s
code, use the following statement:

Me.ActiveMdiChild.TextBox1.Text

In the last two examples, the Me keyword refers to the MDI parent form, not to the child forms,
because the code resides in the MDI form.

If the various child forms weren’t identical, you’d have to insert additional code to make sure
that the active form contains the control you want to access. If some of the child forms contain a
TextBox control while others don’t, you can’t use the last statement without some error-trapping
code. MDI applications that deploy more than a single type of child form are more complicated to
code and rather uncommon.

You can also access all child windows through the MdiChildren property of the parent form.
This property returns an array whose elements represent the child forms open on the MDI form at
any one time. To find out the number of open child forms, read the Length property of this array:

Console.WriteLine(“There are “ & Me.MdiChildren.Length & “ child Forms open”)

This statement works only if it appears in the MDI parent form’s code. To access a child form
from within another child form’s code, you must first access the parent form (Me.ParentForm) and
then the parent form’s MdiChildren property. The following statements return the values shown in
bold if executed from within a child form’s code:

Console.WriteLine(Me.ParentForm.MdiChildren.GetLength(0))
3
Console.WriteLine(Me.ParentForm.ActiveMdiChild)
MDIProject.ChildForm, Text: Child window # 1

Tracking the Active Child Form

The child form you design is the prototype. An instance of a form is a copy that inherits all the prop-
erties of the original but exists in your application independently of the original. On an MDI form,
all child forms are usually instances of one basic form. All forms all have the same behavior, but the
operation of each one doesn’t affect the others. When a child form is loaded, for example, it will
have the same background color as its prototype, but you can change this from within your code by
setting the form’s BackColor property. No other child form will be affected by that change.

Each child form is totally independent of any other child form, and you can access it from within
your code through the Me keyword. This keyword identifies the current form, as long as you pro-
gram it from within its own form. When you program a command of the child form’s menu, for
example, you can access the active child form with the Me keyword.

Sometimes, we want to access an MDI child form from within another form that’s neither a par-
ent nor a child form. In a text-editing application, like the one you’re going to develop in the follow-
ing section, we want to be able to access the active child form from within the Search & Replace
dialog box. The simplest method is to maintain a variable that keeps track of the active MDI child
form, and access the child form through this variable. You will see this technique in action in the
following section.

849MDI APPLICATIONS: THE BASICS

2877c19.qxd 11/11/01 4:21 PM Page 849

http://www.sybex.com

VB.NET at Work: The MDIPad Project

In Chapter 5, you built the TextPad application, which is a simple text editor based on the TextBox
control. Now you’re going to convert it to an MDI application. An MDI application lets you open and
edit multiple documents simultaneously. You can also copy information from one window and paste it
into another, and you can arrange multiple documents on-screen so that you can view any other docu-
ment while editing the active one. All this is possible without invoking multiple instances of the appli-
cation. Figure 19.8 shows the TextPad application, and Figure 19.9 shows the MDIPad application.

Start a new project, name it MDIPad, and change the name of its form to MDIForm. Then set
its form’s IsMdiContainer property to True. Add another form and name it DocumentForm. This
is the MDI child form.

Design two menus, one for the MDI form and another one for the MDI child form. The two
menus of the application are identical to the menus of the MDIProject sample, discussed earlier (see
Tables 19.1 and 19.2). Then add a TextBox control on the child form. Set its name to Editor and
its Dock property to Fill, so that it takes up all the available space on the child form. Add a ListBox
control to the child form, too, and set its Visible property to False. We’ll use this control to store
the file’s name so that we can quickly retrieve it from within the Save command’s event handler.
We’re ready to implement the commands of the two menus, starting with the MDI form’s menu. If
you’re in doubt as to the settings of the MergeType and MergeOrder properties of the menu items,
open the MDIPad on the CD and examine their settings.

Figure 19.9

The MDIPad
application

Figure 19.8

The TextPad
application

Chapter 19 THE MULTIPLE DOCUMENT INTERFACE850

2877c19.qxd 11/11/01 4:21 PM Page 850

http://www.sybex.com

Programming the New Command

The New command of the MDI form’s File menu opens a new child form. Its implementation is
shown in Listing 19.3.

Listing 19.3: The New Command

Private Sub FileNew_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FileNew.Click

Dim child1 As New DocumentForm()
child1.MdiParent = Me
child1.Show()
child1.Text = “Untitled”

End Sub

The New command doesn’t clear the contents of the active child window, as was the case with
the TextPad application. Instead, it opens a new, blank child window. Every time you click the New
command, a new child form is displayed and its initial caption is set to “Untitled”.

Programming the Open Command

The Open command’s code is longer but not drastically different from the Open command of
the TextPad application. It prompts the user to select a text file through the Open dialog box
and then displays the text in the active child window. Listing 19.4 shows the code of the Open
command.

Listing 19.4: The Open Command

Private Sub FileOpen_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FileOpen.Click

OpenFileDialog1.DefaultExt = “*.txt”
OpenFileDialog1.ShowDialog()
If OpenFileDialog1.ShowDialog() = DialogResult.OK Then

Dim fname As String = OpenFileDialog1.FileName
Me.Text = fname.Substring(fname.LastIndexOf(“\”) + 1)
Dim StrReader As System.IO.StreamReader
StrReader = New System.IO.StreamReader(fname)
Editor.Text = StrReader.ReadToEnd
Editor.SelectionStart = 0
Editor.SelectionLength = 0
ListBox1.Items.Add(fname)
ListBox1.Items.Add(Now())

End If
End Sub

851MDI APPLICATIONS: THE BASICS

2877c19.qxd 11/11/01 4:21 PM Page 851

http://www.sybex.com

The Open command displays the Open dialog box and retrieves the name of a text file selected
by the user. The caption of the active child form is the name of the file. Because the OpenFileDialog
control returns the full pathname, we extract the last section of the pathname, which is the filename.
Then the file is read and displayed on the Editor TextBox control.

Most of the information you need about each child form can be retrieved through the Me key-
word. You will also have to maintain some information that can’t be retrieved directly from the child
form. The filename of each open document, for example, isn’t stored on the child form—unless you
want to display the file’s pathname on the form’s title bar. You may also want to maintain additional
information about each document (like the date and time it was opened, the current magnification
for an image, and so on). This information is stored in the invisible ListBox control. You can add all
kinds of information to the ListBox control and access it at any time from within your code. The
only requirement is that you must decide the order of the item in which each piece of information is
stored. The Open command’s event handler stores the path of the file in the first item of the ListBox
control and the time the file was opened in the second item of the control. The pathname will be
used later by the Save command.

Programming the Save Commands

New documents are saved with the Save As command. The code of the Save As command, shown in
Listing 19.5, is the counterpart of the Open command.

Listing 19.5: The Save As Command

Private Sub FileSaveAs_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FileSaveAs.Click

SaveFileDialog1.DefaultExt = “*.txt”
If SaveFileDialog1.ShowDialog() = DialogResult.OK Then

Dim saveFileName As String
Dim StrWriter As System.IO.StreamWriter
StrWriter = New System.IO.StreamWriter(saveFileName)
StrWriter.Write(Editor.Text)
Me.Editor.Modified = False
ListBox1.Items.Add(saveFileName)

End If
End Sub

The Save As command prompts the user for a filename. This filename is then stored in the first
item of the hidden ListBox control, to be used later in saving the document. The Save command’s code
retrieves the file’s path from the hidden control and saves the document, as shown in Listing 19.6. If
the user attempts to save a new document, the first item of the list will be empty, and the program
invokes the SaveAs command automatically.

Chapter 19 THE MULTIPLE DOCUMENT INTERFACE852

2877c19.qxd 11/11/01 4:21 PM Page 852

http://www.sybex.com

Listing 19.6: The Save Command

Private Sub FileSave_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FileSave.Click

Dim saveFileName As String
saveFileName = ListBox1.Items.Item(0)
If saveFileName = “” Then

FileSaveAs_Click(sender, e)
Else

Dim StrWriter As System.IO.StreamWriter
StrWriter = New System.IO.StreamWriter(saveFileName)
StrWriter.Write(Editor.Text)
Me.Editor.Modified = False

End If
End Sub

The Save and Save As commands also set the Modified property of the TextBox control on the
active child form to False. The reason for this is that the TextBox isn’t aware of the save operation
and doesn’t reset the Modified property. We want the Modified property to be up to date, because
we’ll examine it when the user attempts to close the application and prompt him accordingly. See the
section “Closing an MDI Application” for more information.

Finally, the Close command closes the active child form (and the current document, of course).
Its code is shown in Listing 19.7.

Listing 19.7: The Close Command

Private Sub FileClose_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FileClose.Click

Me.Close()
End Sub

The application doesn’t examine the status of the document and prompt the user if they’re about
to close a document that has been edited. As you will see, this action takes place in the child form’s
Closing event, which is discussed later in this chapter.

Programming the Format Menu

Let’s add some code behind the Text Color and Page Color commands of the Format menu. These
are really trivial operations compared to the Open and Save commands. To implement the two color
commands, you must add an instance of the ColorDialog control on the child form and then insert
the statements shown in Listing 19.8 in the Click event handlers of the Text Color and Page Color
commands.

853MDI APPLICATIONS: THE BASICS

2877c19.qxd 11/11/01 4:21 PM Page 853

http://www.sybex.com

Listing 19.8: Setting the Text and Page Colors

Private Sub TextColor_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles TextColor.Click

ColorDialog1.Color = Me.Editor.ForeColor
ColorDialog1.ShowDialog()
Me.Editor.ForeColor = ColorDialog1.Color

End Sub
Private Sub PageColor_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles PageColor.Click
ColorDialog1.Color = Me.Editor.BackColor
ColorDialog1.ShowDialog()
Me.Editor.BackColor = ColorDialog1.Color

End Sub

This is the same code you’d use to set the background and foreground colors of a TextBox con-
trol on a regular SDI application. You use the Me keyword to access the active child form. If you
run the application now, you can open any number of child forms and change their colors. Each
child form behaves independently of all others, and it maintains its settings.

The code that sets the font for the active child form is also quite trivial. We display the Font dia-
log box and then assign the font selected by the user to the Font property of the Editor control, as
shown in Listing 19.9.

Listing 19.9: Setting the Editor’s Font

Private Sub EditFont_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs)

FontDialog1.Font = Me.Editor.Font
If FontDialog1.ShowDialog() = DialogResult.OK Then

Me.Editor.Font = FontDialog1.Font
End If

End Sub

For some operations, we need to know when the user switches to another child form. This action
is signaled by the MdiChildActivate event, which is an event of the MDI parent form, and you can
use it to update internal variables in your code. In this event’s handler, we display the title of the cur-
rently active child form on the MDI form’s title bar. Listing 19.10 displays the title of the currently
active child form on the MDI form’s caption. In addition, it sets the activeChildForm variable to the
currently active child window. This variable points always to the current child window and is used
by the Find command, which acts on the document of the active child window.

Listing 19.10: Keeping Track of the Active Child Form

Private Sub MDIForm_MdiChildActivate(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles MyBase.MdiChildActivate

Chapter 19 THE MULTIPLE DOCUMENT INTERFACE854

2877c19.qxd 11/11/01 4:21 PM Page 854

http://www.sybex.com

If Me.ActiveMdiChild Is Nothing Then
Me.Text = “MDIPad - no document”

Else
Me.Text = Me.ActiveMdiChild.Text
activeChildForm = Me.ActiveMdiChild

End If
End Sub

The activeChildForm variable is declared as Public Shared on the MDI form with the following
statement:

Public Shared activeChildForm As DocumentForm

Every time another child form is activated, this variable is updated to reflect the currently active
child form. You’ll see shortly how this variable is used in the discussion of the Find command.

Programming the Edit Menu

The Edit menu’s commands handle the selected text on the Editor TextBox control. They’re straightfor-
ward: The Copy command copies the selected text to the Clipboard. The Cut command does the same,
and then it deletes the current selection. The Paste command extracts the text from the Clipboard and
uses it to replace the current selection on the TextBox control. All commands use the expression Me.Edi-
tor to access the TextBox control on the active child form, and their code is shown in Listing 19.10.

Listing 19.10: Programming the Text Editing Commands

Private Sub EditCopy_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles EditCopy.Click

If Me.Editor.SelectedText.Length > 0 Then
Me.Editor.Copy()

End If
End Sub
Private Sub EditPaste_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles EditPaste.Click
If Clipboard.GetDataObject.GetData(DataFormats.Text) Then

Me.Editor.Paste()
Else

MsgBox(“no text to paste”)
End If

End Sub
Private Sub EditCut_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles EditCut.Click
If Me.Editor.SelectedText.Length > 0 Then

Clipboard.SetDataObject(Me.Editor.SelectedText)
Me.Editor.Cut()

End If
End Sub

855MDI APPLICATIONS: THE BASICS

2877c19.qxd 11/11/01 4:21 PM Page 855

http://www.sybex.com

The Find Command

This is the most interesting part of the application. The Find command must display a Find &
Replace dialog box, shown in Figure 19.10. This dialog box must remain on top of the application’s
main form, even when it doesn’t have the focus. Design a form like the one shown in Figure 19.10,
and set its TopMost property to True.

To invoke the Find & Replace dialog box from within a child form’s code, you must create an
instance of the dialog box and then call its Show method. Insert the following declaration in the
child form’s code window, outside any procedure’s definition:

Dim extForm As Form = New FindForm()

Then add the code in Listing 19.11 to the Find command’s Click event handler. This code dis-
plays the FindForm dialog box by calling the extForm object’s Show method.

Listing 19.11: Displaying the Find & Replace dialog box

Private Sub EditFind_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles EditFind.Click

extForm.Show()
End Sub

Once the dialog box is displayed, users can search for a word or replace one or more instances of
a word with another one. The search can be case-sensitive or not, depending on the status of the
Case-Sensitive Search check box. The code of the Find button is shown in Listing 19.12.

Listing 19.12: The Find Button

Private Sub bttnFind_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnFind.Click

Dim selStart As Integer
Dim srchMode As CompareMethod
srchMode = SetSearchMode()
selStart = InStr(MDIForm.activeChildForm.Editor.Text, _

srchWord.Text, srchMode)
If selStart = 0 Then

MsgBox(“Can’t find word”)
Exit Sub

End If
MDIForm.activeChildForm.Editor.Select(selStart - 1, srchWord.Text.Length)
MDIForm.activeChildForm.Editor.ScrollToCaret()

Figure 19.10

The Find & Replace
dialog box of the
MDIPad application

Chapter 19 THE MULTIPLE DOCUMENT INTERFACE856

2877c19.qxd 11/11/01 4:21 PM Page 856

http://www.sybex.com

bttnFindNext.Enabled = True
bttnReplace.Enabled = True
bttnReplaceAll.Enabled = True

End Sub

To access the document of the active child form, the code uses the activeChildForm variable of the
MDI parent form. This variable references the active child form, and we can use it to access the
TextBox control with the document. The code uses the InStr() function because it provides an argu-
ment that allows us to perform case-sensitive and case-insensitive searches. The search mode is speci-
fied by the srchMode argument, which is calculated by the SetSearchMode() function based on the
status of the check box on the dialog box. The SetSearchMode() function examines the value of the
check box and returns a member of the CompareMethod enumeration:

Function SetSearchMode() As CompareMethod
If chkCase.Checked = True Then

Return CompareMethod.Binary
Else

Return CompareMethod.Text
End If

End Function

The code behind the Find Next button, shown in Listing 19.13, is quite similar. It uses the
InStr() function as well, except that it specifies the index of the character in the text where the search
will begin. This index is the location of the character following the current selection.

Listing 19.13: The Find Next Button

Private Sub bttnFindNext_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnFindNext.Click

Dim selStart, srchStart As Integer
Dim srchMode As CompareMethod
srchMode = SetSearchMode()
srchStart = MDIForm.activeChildForm.Editor.SelectionStart + _

MDIForm.activeChildForm.Editor.SelectionLength
selStart = InStr(srchStart + 1, MDIForm.activeChildForm.Editor.Text, _

srchWord.Text, srchMode)
If selStart = 0 Then

MsgBox(“There are no more instances of the specified word”)
bttnFindNext.Enabled = False
Exit Sub

End If
MDIForm.activeChildForm.Editor.Select(selStart - 1, srchWord.Text.Length)
MDIForm.activeChildForm.Editor.ScrollToCaret()
bttnFindNext.Enabled = True
bttnReplace.Enabled = True
bttnReplaceAll.Enabled = True

End Sub

857MDI APPLICATIONS: THE BASICS

2877c19.qxd 11/11/01 4:21 PM Page 857

http://www.sybex.com

Finally, the Replace and Replace All commands are straightforward. They call the Replace()
function to replace the word in the Search box with the word in the Replace box. Their code is
shown in Listing 19.14.

Listing 19.14: The Replace and Replace All Buttons

Private Sub bttnReplace_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnReplace.Click

MDIForm.activeChildForm.Editor.SelectedText = replaceWord.Text
bttnFindNext_Click(sender, e)

End Sub
Private Sub bttnReplaceAll_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles bttnReplaceAll.Click
Dim srchMode As CompareMethod
Dim srchStart As Integer
srchMode = SetSearchMode()
Dim pointerLocation As Integer = _

MDIForm.activeChildForm.Editor.SelectionStart
MDIForm.activeChildForm.Editor.Text = _

Replace(MDIForm.activeChildForm.Editor.Text, _
srchWord.Text, replaceWord.Text, , , srchMode)

MDIForm.activeChildForm.Editor.SelectionStart = pointerLocation
End Sub

Ending an MDI Application
In most cases, ending an application with the End statement isn’t necessarily the most user-friendly
approach. Before you end an application, you must always offer your users a chance to save their
work. Ideally, you should maintain a True/False variable whose value is set every time the user edits
the open document (the Change event of many controls is a good place to set this variable to True)
and reset every time the user saves the document (with the Save or Save As command).

Handling unsaved data in normal applications is fairly simple, as there’s only one document to
deal with. But in an MDI application, you have to cope with several possible scenarios:

� The user closes a child window by clicking its Close button. You should detect this condition
and provide the same code you’d use with an SDI application.

� The user closes a single document by selecting the Close command of the File menu. This sit-
uation is easy to handle—it’s just like a normal application.

� The user closes the MDI form. If the MDI form is closed, all the open documents will close with
it! If losing the edits in a single document is bad, imagine losing the edits in multiple documents.

Therefore, terminating an MDI application with the End statement is unacceptable. First, you need
a mechanism to detect whether a document needs to be saved or not. In a text-processing application,
you can examine the Modified property of the TextBox control. For other types of applications, you

Chapter 19 THE MULTIPLE DOCUMENT INTERFACE858

2877c19.qxd 11/11/01 4:21 PM Page 858

http://www.sybex.com

may have to maintain a list of True/False variables, one for each document. When the document is
modified, set the corresponding variable to True. When the document is saved, reset it to False to
indicate that the document can be closed without being saved first. When the user attempts to close
the document, you can examine this variable and act accordingly—prompt the user about saving the
document or create a backup copy of the document.

Tip The Modified property of the TextBox is not automatically reset to False when the document is saved. To use the
Modified property, you must explicitly set it to False when the document is saved.

When the user closes a document through the Close command, it’s easy to handle the document.
Insert the proper code in the Close command’s event handler to detect whether the document being
closed contains unsaved data and prompt the user accordingly. When the user clicks the child form’s
Close button, the child form’s Closing event is fired, this time by the child form. Finally, when the
MDI form is closed, each of the child forms receives the Closing event. In addition, the MDI form’s
Closing event is also fired. Normally, there’s no reason to program this event. As long as you handle
the Closing event of the child form, no data will be lost.

In the Closing event, you can cancel the operation of closing a document, or the MDI form itself,
by settings the e.Cancel property to True.

To close the active child form, execute the following statements (they must appear in the Close
command’s Click event handler):

Private Sub FileExit_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FileExit.Click

Me.Close()
End Sub

The Close method invokes the Closing event of the child form. In this event, you can add code to
detect whether the document has been saved or not and close the document or prompt the user
accordingly. The Closing event handler shown in Listing 19.15 examines the Modified property of
the TextBox control on the active child form. If it’s False, it doesn’t do anything (it allows the child
form to be closed). If it’s True, it prompts the user with a message box. If the user agrees to discard
the changes, the event handler terminates and the child form is closed. If the user clicks the No but-
ton, the event handler sets the e.Cancel property to True, which cancel the form’s Closing event.

Listing 19.15: The Child Form’s Closing Event Handler

Private Sub Form1_Closing(ByVal sender As Object, _
ByVal e As System.ComponentModel.CancelEventArgs) _
Handles MyBase.Closing

If Me.Editor.Modified Then
Dim reply As MsgBoxResult
reply = MsgBox(“Document “ & Me.Text & “ was modified but not saved. “ & _

“Discard the edits?”, MsgBoxStyle.YesNo)
If reply = MsgBoxResult.No Then

e.Cancel = True
End If

End If
End Sub

859MDI APPLICATIONS: THE BASICS

2877c19.qxd 11/11/01 4:21 PM Page 859

http://www.sybex.com

Even if the user closes the MDI form, the Closing event for each child form will be fired, and the
same handler will take care of the closing of all documents.

A Scrollable PictureBox
One of the shortcomings of earlier versions of Visual Basic was that you couldn’t attach scroll bars
to large forms. This is no longer a problem because the new Windows Form Designer automatically
attaches scroll bars when the form is resized below a minimum size. Many developers were wishing
the PictureBox had its own scroll bars to handle large images, but this is not the case. The Picture-
Box control can’t be scrolled. In this section, we’re going to build a scrollable PictureBox control
using the techniques discussed so far.

The scrollable PictureBox isn’t a new control; it’s not even a PictureBox with its own scroll bars.
It’s a child form filled with a PictureBox control. The size of the PictureBox is determined by the
user at runtime, but if it gets smaller than the size of the image, the scroll bars will be attached auto-
matically. This is a feature of the Form object, and child forms support it, because they inherit the
Windows.Forms.Form class. Figure 19.11 shows a child form with an image and the appropriate scroll
bars attached to it. From a user’s point of view, it looks just like a PictureBox with scroll bars.

The form shown in Figure 19.11 belongs to the ScrollingPictureBox project, which you’ll find in
this chapter’s folder on the CD. This project is an MDI application that uses child forms to display
images. To implement the scrolling form, follow these steps:

1. Start a new project.

Figure 19.11

Using an MDI form
to simulate a scrolling
PictureBox control

Chapter 19 THE MULTIPLE DOCUMENT INTERFACE860

2877c19.qxd 11/11/01 4:21 PM Page 860

http://www.sybex.com

2. Rename the form to MDIImage and set its IsMdiContainer property to True.

3. Add a child form to the project with the Project ➢ Add Windows Form command. Set the
child form’s Name property to ImageForm and its caption (property Text) to “Untitled.”

4. Add an instance of the MainMenu control to the parent form and create the menu structure
shown in Table 19.4.

5. Switch to the child form, add an instance of the MainMenu control to this form as well, and
create the menu structure shown in Table 19.5.

Table 19.4: The Captions and Names of the Parent Form’s Menu

Caption Name

File FileMenu

New Image FileNew

Exit FileExit

Window WindowMenu

Title Horizontally WindowTileH

Tile Vertically WindowTileV

Cascade WindowCascade

Arrange Icons WindowArrange

Table 19.5: The Captions and Names of the Child Form’s Menu

Caption Name

File FileMenu

Load FileLoad

Close FileClose

-

Zoom ZoomMenu

Auto ZoomAuto

200% Zoom200

100% Zoom100

75% Zoom75

50% Zoom50

25% Zoom25

Continued on next page

861A SCROLLABLE PICTUREBOX

2877c19.qxd 11/11/01 4:21 PM Page 861

http://www.sybex.com

Table 19.5: The Captions and Names of the Child Form’s Menu (continued)

Caption Name

Image ImageMenu

Rotate Left ImageRotateLeft

Rotate Right ImageRotateRight

Flip Horizontal ImageFlipH

Flip Vertical ImageFlipV

6. Enter the following code behind the New command of the parent form’s menu. This com-
mand creates a new child form and displays it on the MDI form, but doesn’t load an image.

Private Sub FileNew_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FileNew.Click

Dim childForm As New Form3()
childForm.MDIParent = Me
childForm.show()

End Sub

This code opens another child form. Initially, the child form is empty, and it has the initial
size of the child form you specified at design time. Your next step is to add the code behind
the Load command, which loads an image to the active child form.

7. Add an instance of the OpenFileDialog control on the main form, and enter the statements
shown in Listing 19.16 to the handler of the Click event of the Load command.

Listing 19.16: Loading a New Image

Private Sub FileLoad_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles FileLoad.Click

Dim imgFile As String
OpenFileDialog1.Filter = “Images|*.jpg;*.tif”
OpenFileDialog1.ShowDialog()
imgFile = OpenFileDialog1.FileName
PictureBox1.Image = Image.FromFile(imgFile)
PictureBox1.Width = PictureBox1.Image.Width
PictureBox1.Height = PictureBox1.Image.Height
Me.ZoomMenu.Enabled = True
Me.ProcessMenu.Enabled = True
Me.PrintMenu.Enabled = True

End Sub

Chapter 19 THE MULTIPLE DOCUMENT INTERFACE862

2877c19.qxd 11/11/01 4:21 PM Page 862

http://www.sybex.com

The code resizes the PictureBox control to fit the size of the image it contains in actual size. The
child form that hosts the PictureBox isn’t resized, but the proper scroll bars are attached automati-
cally. The user can then change the current magnification with one of the commands of the Zoom
menu. Even without the Zoom or the Image menu, you have a functional application that displays
multiple images in scrolling PictureBoxes. Each image is displayed in its own window, and all win-
dows are hosted in MDI form.

The project’s code on the CD contains a few more statements that I’ve omitted from Listing 19.16.
Each child form contains an invisible ListBox control, where we store information about the image
displayed on the form, such as the name and dimensions of the image. Not that you can’t read the
dimensions directly from the Image object, but I wanted to demonstrate how to maintain informa-
tion about each open document. In an SDI application, you’d probably use global variables to store
this information. The situation is different with MDI applications, because you must maintain the
same information for multiple documents, and an invisible control on the child form is the simplest
method. The last command of the Image menu, the Image Properties command, displays the properties
stored in the ListBox control in a message box.

To make the application more useful, let’s add the code behind the other menu commands. The
Zoom menu contains various zooming factors supported by the application. It’s really trivial to add
more factors or prompt the user to supply a value for the image’s magnification level. Every time an
option in the Zoom menu is clicked, we must make sure that the selected option is checked (and all
other options cleared) and resize the active child form to the specified zooming factor.

All the items of the Zoom menu are serviced by the same procedure, the ZoomImage() subrou-
tine, which is shown in Listing 19.17.

Listing 19.17: The ZoomImage Subroutine

Sub ZoomImage(ByVal sender As System.Object, ByVal e As System.EventArgs) _
Handles Zoom100.Click, Zoom200.Click, Zoom75.Click, _

Zoom50.Click, Zoom25.Click
UncheckZoomMenu()
Me.PictureBox1.Width = PictureBox1.Image.Width * _

Val(CType(sender, MenuItem).Text) / 100
Me.PictureBox1.Height = PictureBox1.Image.Height * _

Val(CType(sender, MenuItem).Text) / 100
ImageInfo.Items.Item(3) = Val(sender.text) / 100
CType(sender, MenuItem).Checked = True

End Sub

Notice that the ZoomImage() subroutine handles multiple menu items. To find out which com-
mand was selected, the code picks up the caption of the item that was clicked with the Sender.Text
expression, retrieves its numeric value (50 for 50 percent, 25 for 25 percent, and so on), and uses the
value to resize the image on the child form. For more information on writing event handlers for mul-
tiple menu items see Chapter 5.

The Auto option is the most interesting part of the application. This command resizes the Picture-
Box on the current child form so that the image will fit exactly on it. One of the dimensions of the

863A SCROLLABLE PICTUREBOX

2877c19.qxd 11/11/01 4:21 PM Page 863

http://www.sybex.com

control remains the same, while the other one is resized according to the image’s aspect ratio. The
dimension that remains unchanged is the dimension that corresponds to the smaller of the image’s
width and height. If the image is taller than it is wide, the width of the image is resized. Otherwise,
the code resizes the height of the control. In effect, the image is fit into the child window as best as
possible, without introducing any distortion. Before you select the Auto command of the Zoom menu,
resize the child form to a comfortable size for the available area. After the execution of the Zoom ➢
Auto command, the image will fill either the horizontal or the vertical dimension of the form. You
can then change the other dimension with the mouse to view the entire image. Listing 19.18 contains
the code behind the Zoom ➢ Auto command:

Listing 19.18: The Zoom ➢ Auto Command

Private Sub ZoomAuto_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ZoomAuto.Click

If PictureBox1.Image.Width > PictureBox1.Image.Height Then
PictureBox1.Height = Me.Height
PictureBox1.Width = PictureBox1.Height * _

(PictureBox1.Image.Width / PictureBox1.Image.Height)
Else

PictureBox1.Height = PictureBox1.Width * _
(PictureBox1.Image.Height / PictureBox1.Image.Width)

End If
End Sub

For more information on printing bitmaps, as well as how to resize images and maintain their
aspect ratio, see Chapter 15.

The Process menu contains a few simple commands for rotating and flipping the image. All event
handlers use the RotateFlip method of the Image object, passing as argument one of the members of
the RotateFlipType enumeration. After the image has been rotated, we must also swap the width
and height of the corresponding PictureBox control. Listing 19.19 demonstrates the implementa-
tions of the Rotate Right and Flip Vertical commands.

Listing 19.19: The Rotate Right and Flip Vertical Commands

Private Sub RotateRight_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles RotateRight.Click

PictureBox1.Image.RotateFlip(RotateFlipType.Rotate90FlipNone)
PictureBox1.Invalidate()

End Sub
Private Sub FlipVertical_Click(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles FlipVertical.Click
PictureBox1.Image.RotateFlip(RotateFlipType.Rotate180FlipX)
PictureBox1.Invalidate()

End Sub

Chapter 19 THE MULTIPLE DOCUMENT INTERFACE864

2877c19.qxd 11/11/01 4:21 PM Page 864

http://www.sybex.com

Summary
In this, the last chapter of Part IV, you learned about the Multiple Document Interface (MDI),
which allows you to write applications that open multiple documents. An MDI application consists
of a MDI form, which hosts a number of MDI child forms. Each MDI child form contains a docu-
ment. The documents are usually of the same type, but if your application can handle multiple docu-
ment types, the MDI form should be able to host all the document types.

The MDI child form is equivalent to the main form of a SDI application, like the ones we
explored in previous chapters. This form contains the code that provides most of the functionality
of the application. The MDI form is the container for the child forms and contains a simple menu.
Everything else, including the main menu of the application, resides in the child forms.

This chapter concludes the code of the Visual Basic language. In the next part of the book, we’ll
look into database programming, and in the last part of the book we’ll explore Web applications.

865SUMMARY

2877c19.qxd 11/11/01 4:21 PM Page 865

http://www.sybex.com

2877c19.qxd 11/11/01 4:21 PM Page 866

http://www.sybex.com

Part V
Database

Programming
with VB.NET

In this section:
� Chapter 20: Databases: Architecture and Basic Concepts
� Chapter 21: Building Database Applications with ADO.NET
� Chapter 22: Programming the ADO.NET Objects

2877c20.qxd 11/11/01 4:21 PM Page 867

http://www.sybex.com

Chapter 20

Databases: Architecture and
Basic Concepts
In the fifth part of the book, we’ll explore databases. In this chapter, you’ll learn the basics
of databases: how they store data, how to update a database, and how to retrieve the information
you need from a database. In the following chapters, you’ll also learn how to develop applications
that access databases. The topic of database programming could easily justify another book of
this size, and there will be many fine books on database programming in the bookstores. The
database-related topics discussed in this book were chosen to help you get started with database
programming. I’ve selected topics that will help you master basic concepts of databases and
ADO.NET, rather than attempt to touch on a large number of topics.

ADO.NET is the data-access mechanism of Visual Studio .NET. In short, it’s a class that
provides all the members you need to access and manipulate a database. It’s the most complicated
class, because it exposes a large number of members and performs very complicated operations.
We’ll have a lot to say about ADO.NET in the following chapters. In the meantime, we’ll start
with something less exciting, but equally important.

In this chapter, we’ll look at the basic concepts of the relational model and the Structured
Query Language. This chapter isn’t about VB, and you can skip it if you’re familiar with data-
bases and SQL. Because I can’t assume that all readers are comfortable with these topics, I’m
including a chapter that will help readers understand the foundations of database programming.
You may have watched demonstrations of Visual Studio where someone establishes a connection
to a database, drops a few objects on the form, sets some properties, and builds an application for
browsing, or even editing, a table almost automagically. However, you can’t expect to go far on
the visual tools alone. You must understand how data are structured in databases, how they’re
retrieved, and how you update a database.

Step-by-step instructions are fine for building menus or other simple programming tasks, but
not nearly adequate for learning database programming. Databases are based on certain principles,
and the more you learn about their structure and the mechanisms for manipulating them, the eas-
ier it will be for you to follow the material in the next few chapters, as well as continue beyond
the material of the book on your own. In the following chapters, you’ll see how to write code that
manipulates databases using the objects discussed in this chapter, so the information presented in

2877c20.qxd 11/11/01 4:21 PM Page 869

http://www.sybex.com

this chapter isn’t just of theoretical interest. Everything you will learn in this chapter is as practical
as it gets.

Another important motivation for this chapter is the fact that databases, the most important
aspect of computer science today, are among the most complicated objects in programming, yet
they’re based on common-sense principles. Once you’ve understood these principles, you’ll find that
database programming isn’t as complicated as you may have thought.

What Is a Database?
A database is an object for storing complex, structured information. The same is true for a file, or even
for the file system on your hard disk. What makes a database unique is the fact that databases are
designed to make data easily retrievable. The purpose of a database is not so much the storage of
information as its quick retrieval. In other words, you must structure your database so that it can be
queried quickly and efficiently.

Databases are maintained by special programs, such as Access and SQL Server. These programs
are called database management systems (DBMS), and they’re among the most complicated applications. A
fundamental characteristic of a DBMS is that it isolates much of the complexity of the database
from the developer. Regardless of how each DBMS stores data on disk, you see your data organized
in tables with relationships between tables. To access the data stored in the database and to update
the database, you use a special language, Structured Query Language (SQL). Unlike other areas of
programming, SQL is a truly universal language and all major DBMSs support this language.

Note The recommended DBMS for Visual Studio .NET is SQL Server 2000. You can use Access, or even non-
Microsoft databases like Oracle. Although this chapter was written with SQL Server 2000, most of the examples will work
with Access 2000 as well.

Data are stored in tables, and each table contains entities of the same type. In a database that stores
information about books, there will be a table with titles, another table with authors, and a table
with publishers. The table with the titles contains information like the title of the book, number of
pages, and the book’s description. Author names are stored in a different table, because each author
may appear in multiple titles. If author information were stored along with each title, we’d be repeat-
ing author names. This means that every time we wanted to change an author’s name, we’d have to
modify multiple entries in the titles table. Even retrieving a list of unique author names would be a
challenge, because you’d have to scan the entire database, retrieve all the authors, and then get rid of
the duplicates entries. The same is true for publishers. Publishers are stored in a separate table, and
each title contains a pointer to the appropriate row in the publishers table. If publisher information
was stored along with each title, then deleting all the books of a specific publisher would also
remove the information about the specific publisher from the database.

The reason for breaking the information we want to store in a database into separate tables is to
avoid duplication of information. This is a key point in database design. Duplication of information
will sooner or later lead to inconsistencies in the database. The process of breaking the data into
related tables that eliminate all possible forms of information duplication is called normalization, and
there rules for normalizing databases. The topic of database normalization is not discussed in this
book. However, all it really takes to design a functional database is common sense. Once you learn

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS870

2877c20.qxd 11/11/01 4:21 PM Page 870

http://www.sybex.com

how to extract data from your database’s tables with SQL statements, you’ll develop a better under-
standing of how databases should be structured.

Breaking the information into separate tables is a very convenient approach, but we must figure
out a way to reconstruct the information. For each title, we must retrieve the title’s author(s) and
publisher and put them together to display all the information about the book. To be able to recon-
struct the original information, we establish links between the various tables. These links are called
relationships, and they’re at the heart of a modern DBMS.

Relational Databases
The databases we’re interested in are relational, because they are based on relationships among the data
they contain. The data is stored in tables, and tables contain related data, or entities, such as persons,
products, orders, and so on. The idea is to keep the tables small and manageable; thus, separate enti-
ties are kept in their own tables. If you start mixing customers and invoices, products and their sup-
pliers, or books, publishers, and authors in the same table, you’ll end up repeating information—a
highly undesirable situation. If there’s one rule to live by as a database designer and programmer, this
is it: Do not duplicate information.

Of course, entities are not independent of each other. For example, orders are placed by specific
customers, so the rows of the Customers table must be linked to the rows of the Orders table that
store the orders of the customers. Figure 20.1 shows a segment of a table with customers (top left)
and the rows of a table with orders that correspond to one of the customers (bottom right). The
lines that connect the rows of the two tables represent relationships.

Figure 20.1

Linking customers
and orders with
relationships

871WHAT IS A DATABASE?

2877c20.qxd 11/11/01 4:21 PM Page 871

http://www.sybex.com

As you can see in Figure 20.1, relationships are implemented by inserting columns with matching
values in the two related tables; the CustomerID column is repeated in both tables. The rows with a
common value in their CustomerID field are related. In other words, the lines that connect the two
tables simply indicate that there are two fields, one on each side of the relationship, with a common
value. The customer with the ID value BERGS has placed the orders 10278 and 10280. The cus-
tomer BSBEV has placed the order 10289. To find all the orders placed by a customer, we can scan
the Orders table and retrieve the rows in which the CustomerID field has the same value as the ID
of the specific customer in the Customers table. Likewise, you can locate customer information for
each order by looking up the row of the Customers table that has the same ID as the one in the
CustomerID field of the Orders table.

These two fields used in a relationship are called key fields. The CustomerID field of the Cus-
tomers table is the primary key, because it identifies a single customer. The CustomerID field of the
Orders table is the foreign key of the relationship. A CustomerID value appears in a single row of the
Customers table; it’s the table’s primary key. However, it may appear in multiple rows of the Orders
table, because in this table the CustomerID field is the foreign key. In fact, it will appear in as many
rows of the Orders table as there are orders for the specific customer.

The operation of matching rows in two tables based on their primary and foreign keys is called a
join. Joins are very basic operations in manipulating tables, and they are discussed in detail in the sec-
tion “Structured Query Language,” later in this chapter.

Exploring the Northwind Database
In this section, we’ll explore the structure of a sample database that comes with both SQL Server
2000 and Access 2000. The Northwind database stores products, customers, and sales data, and
many of you are already familiar with the structure of the database. We’ll discuss the basic objects
that make up a database shortly, but it’s easier to explain these objects through examples. Besides,
you need a good understanding of the structure of this database, so that you can follow the examples
of the following sections and chapters. Unless you understand how data is stored in the tables of the
database and how the tables relate to one another, you won’t be able to retrieve information from
the database or insert new data into it.

The Northwind database is made up of tables, each storing a collection of unique entities (cus-
tomers, products, and so on). A table that stores products has a column for the product’s name,
another column for the product’s price, and so on. Each product is stored in a different row. As
products are added or removed from the table, the number of rows changes, but the number of
columns remains the same; they determine the information we store about each product.

Products Table

The Products table stores information about the products sold by the Northwind Corporation. This
information includes the product’s name, packaging information, price, and other relevant fields.
Each product (or row) in the table is identified by a unique numeric ID. Since the rows of the Prod-
ucts table are referenced by invoices (the Order Details table, which is discussed later), the product
IDs appear in the Order Details table as well.

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS872

2877c20.qxd 11/11/01 4:21 PM Page 872

http://www.sybex.com

Suppliers Table

Each product has a supplier too. Because the same supplier may offer more than one product, the
supplier information is stored in a different table, and a common field, the SupplierID field, is used
to link each product to its supplier as shown in Figure 20.2. For example, the products Chai, Chang,
and Aniseed Syrup are purchased from the same supplier, Exotic Liquids. Their SupplierID fields all
point to the same row in the Suppliers table.

Categories Table

In addition to having a supplier, each product belongs to a category. Categories are not stored along
with product names, but in a separate table, the Categories table. Again, each category is identified
by a numeric value (field CategoryID) and has a name (field CategoryName). In addition, the Cate-
gories table has two more columns: Description, which contains text, and Picture, which stores a
bitmap. The CategoryID field in the Categories table is the primary key, and the field by the same
name in the Products table is the corresponding foreign key.

Customers Table

The Customers table stores information about the company’s customers. Each customer is stored in
a separate row of this table, and customers are referenced by the Orders table. Unlike the product
IDs, the customer IDs are five-character strings.

Orders Table

The Orders table stores information about the orders placed by Northwind’s customers. The
OrderID field, which is an integer value, identifies each order. Orders are numbered sequentially, so
this field is also the order’s number. Each time you append a new row to the Orders table, the value
of the new OrderID field is generated automatically by the database.

Figure 20.2

Linking products to
their suppliers and
their categories

873WHAT IS A DATABASE?

2877c20.qxd 11/11/01 4:21 PM Page 873

http://www.sybex.com

The Orders table is linked to the Customers table through the CustomerID field. By matching
rows with identical values in their CustomerID fields in the two tables, we can recombine customers
with their orders. Figure 20.1 shows how customers are linked to their orders.

Order Details Table

You probably have noticed that the Northwind database’s Orders table doesn’t store any details
about the items ordered. This information is stored in the Order Details table (see Figure 20.3).
Each order is made up of one or more items, and each item has a price, a quantity, and a discount. In
addition to these fields, the Order Details table contains an OrderID column, which holds the ID of
the order to which the detail line belongs.

The reason details aren’t stored along with the order’s header is that the Orders and Order Details
tables store different entities. The order’s header, which contains information about the customer
who placed the order, the date of the order, and so on, is quite different from the information you
must store for each item ordered.

Employees Table

This table holds employee information. Each employee is identified by a numeric ID, which appears
in the each order. When a sale is made, the ID of the employee who made the sale is recorded in the
Orders table.

Shippers Table

Each order is shipped with one of the three shippers stored in the Shippers table. The appropriate
shipper’s ID is stored in the Orders table.

Figure 20.3

The Customers,
Orders, and Order
Details tables, and
their relations

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS874

2877c20.qxd 11/11/01 4:21 PM Page 874

http://www.sybex.com

Exploring the Pubs Database
Before looking at SQL and more practical techniques for manipulating tables, let’s look at the structure
of another sample database that comes with SQL Server, the Pubs database. Pubs is a database for
storing book, author, and publisher information, not unlike the database you may have to build
for an online bookstore (since online bookstores are so common).

The Pubs database is made up of really small tables, but it was carefully designed to demonstrate
many of the features of SQL, so it’s a prime candidate for sample code. Just about any book about
SQL Server uses the Pubs database. In the examples of the following sections, I will use the Northwind
database, because it’s a commercial database and the type of information stored in the Northwind data-
base is closer to the needs of the average VB programmer than the Pubs database. Some of the fine
points of SQL, however, can’t be demonstrated with the data of the Northwind database, and this is
where I’ll show examples that make use of the ubiquitous Pubs database.

Titles Table

The Titles table contains the information about individual books (the book’s title, ID, price, and so
on). Each title is identified by an ID, which is not a numeric value. The IDs of the books look like
this: BU2075.

Authors Table

The Authors table contains information about authors. Each author is identified by an ID, which is
stored in the au_id field. This field is a string, with a value like 172-32-1176—that is, resembling
U.S. Social Security numbers.

TitleAuthor Table

The Titles and Authors tables are not directly related. The reason is the two tables can’t be joined
with a one-to-many relation. The relation between the two tables is many-to-many. Some authors
have written many books, and some books are written by multiple authors. If you stop and think
about the relationship between the two tables, you’ll realize that it can’t be implemented with a pri-
mary and a foreign key.

To establish a many-to-many relationship, you must create a table between the other two. This
table must have a one-to-many relationship with either table. Figure 20.4 shows how the Titles and
Authors tables of the Pubs database are related to one another. The table between them holds pairs
of title IDs and author IDs. If a book was written by two authors, the TitleAuthor table contains
two entries with the same title ID and different author IDs. The book with title_id of TC7777 was
written by three authors. The IDs of the authors appear in the TitleAuthor table along with the ID
of the book. The IDs of these three authors are 267-41-2394, 472-27-2349, and 672-71-3249.
Likewise, if an author has written more than one book, the author’s ID will appear many times in the
TitleAuthor table, each time paired with a different title ID.

There will be situations where you won’t be able to establish the desired relationship directly
between two tables, and the reason is that the relationship is many-to-many. When you discover a
conflict between two tables, you must create a third one between them.

875WHAT IS A DATABASE?

2877c20.qxd 11/11/01 4:21 PM Page 875

http://www.sybex.com

Publishers Table

This table contains information about publishers. Each title has a pub_id field, which points to the
matching row of the Publishers table. Unlike the other major tables of the Pubs database, the Pub-
lishers table uses a numeric value to identify each publisher.

Other Tables

The Pubs database contains a few more tables. The Sales table contains sale information, while the
RoySched table contains royalty information about each author. The author’s payment is determined
by the sales of the corresponding titles and the author’s royalty schedule (how the royalties escalate
with sales). We are not going to use these tables in our examples, so I won’t discuss them here.

Understanding Relations
In a database, each table has a field with a unique value for every row. This field is the table’s primary
key. The primary key does not have to be a meaningful entity, because in most cases there’s no single
field that’s unique for each row. The primary key need not resemble the entity it identifies either.
The only requirement is that primary keys are unique in the entire table. In most designs, we use an
integer as the primary key. To make sure they’re unique, we even let the DBMS generate a new inte-
ger for each row added to the table. Each table can have one primary key only, and this field can’t be
Null. The DBMS can automatically generate an integer value for a primary key field every time a
new row is added. SQL Server uses the term Identity for this data type, and you can have only one
Identity field in each table.

The related rows in a table repeat the primary key of the row they are related to, in another table.
The copies of the primary keys in all other tables are called foreign keys. Foreign keys need not be
unique (in fact, they aren’t), and any field can serve as a foreign key. What makes a field a foreign
key is that it matches the primary key of another table. The CategoryID field is the primary key of
the Categories table, because it identifies each category. The CategoryID field in the Products table

Figure 20.4

The TitleAuthor
table links titles to
authors

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS876

2877c20.qxd 11/11/01 4:21 PM Page 876

http://www.sybex.com

is the foreign key, because the same value may appear in many rows (many products may belong to
the same category).

Referential Integrity

Maintaining the links between tables is not trivial task. When you add an invoice line, for instance,
you must make sure that the product ID corresponds to a row in the Products table. An important
aspect of a database is its integrity. To be specific, you must ensure that the relations are always valid,
and this type of integrity is called referential integrity. There are other types of integrity (for example,
setting a product’s value to a negative value will compromise the integrity of the database), but this is
not nearly as important as the referential integrity. The wrong price can be easily fixed. But issuing
an invoice to a customer that does not exist isn’t easy (if at all possible) to fix. Modern databases
come with many tools to help ensure their integrity. These tools are constraints you enter when you
design the database, and the DBMS makes sure the constraints are not violated as the various pro-
grams manipulate the database.

When you relate the Products and Categories tables, for example, you must also make sure that:

� Every product added to the foreign table points to a valid entry in the primary table. If you
are not sure which category the product belongs to, you can leave the CategoryID field of the
Products table empty. Or, you can create a generic category, the UNKNOWN or UNDE-
CIDED category, and use this category if no information is available.

� No rows in the Categories table are removed if there are rows in the Products table pointing
to the specific category. This would make the corresponding rows of the Products table point
to an invalid category.

These two restrictions would be quite a burden on the programmer if the DBMS didn’t protect
the database against actions that could impair its integrity. The integrity of your database depends
on the validity of the relations. Fortunately, all DBMSs can enforce rules to maintain their integrity.
You’ll learn how to enforce rules that guarantee the integrity of your database later in this chapter. In
fact, when you create the relationship, you can check a couple of boxes that tell SQL Server to
enforce the relationship (that is, not to accept any changes in the data that violate the relationship).

The Visual Database Tools

To simplify the development of database applications, Visual Studio.NET comes with some visual
tools, the most important of which are discussed in the following sections.

The Server Explorer This is the first and most prominent tool. The Server Explorer is the
Toolbox for database applications, in the sense that it contains all the basic tools for connecting
to databases and manipulating their objects.

The Query Builder This is a tool for creating SQL queries (statements that retrieve the data
we want from a database, or update the data in the database). SQL is a language in its own right,
and we’ll discuss it later in this chapter. The Query Builder lets you specify the operations you
want to perform on the tables of a database with point-and-click operations. In the background,
the Query Builder builds the appropriate SQL statement and executes it against the database.

877WHAT IS A DATABASE?

2877c20.qxd 11/11/01 4:21 PM Page 877

http://www.sybex.com

The Database Designer and Tables Designer These tools allow you to work with an entire
database or its tables. When you work with the database, you can add new tables, establish rela-
tionships between the tables, and so on. When you work with individual tables, you can manipu-
late the structure of the tables, edit their data, and add constraints. You can use these tools to
manipulate a very complicated object—the database—and its components with point-and-click
operations.

The Server Explorer
Your starting point for developing database applications with VB.NET is the Server Explorer. This
toolbox is your gateway to the databases on your system or network, and you can use it to locate and
retrieve the tables you’re interested in. Place the pointer over the Server Explorer tab to expand the
corresponding toolbox, which looks something like the one shown in Figure 20.5. The two main
objects in the Server Explorer are Data Connections and the Servers object. Under the Data Connec-
tions branch, you will see the connections to databases you’re programming against. Under the
Servers branch, you will see the database servers you can access from your computer and various
objects they expose.

Note Note that the Server Explorer’s tools are available even if no project is open at the time. These tools allow you to
work with the objects of a database, and the actions you’ll perform (like the design of a table) are not specific to a project.

Right-click the Data Connections icon and, from the context menu, select the Add Connection
command. You may also see one or more connections to your databases, if you have already created
some. Every new connection you add remains under the Data Connections branch until you decide
to remove it, and you can use it in any number of projects.

To add a new connection, select the Add Connection command and the Data Link Properties
dialog box will pop up, as shown in Figure 20.6. In the Data Link Properties dialog box, specify a
new connection to one of the databases on your system. First, you must select the database provider

Figure 20.5

The Server Explorer
contains the database
objects you can access
on your computer.

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS878

2877c20.qxd 11/11/01 4:21 PM Page 878

http://www.sybex.com

(basically, the driver you’ll use to access the database). For the examples of this part of the book, I
will use SQL Server databases.

Then switch to the Connection tab. Here you must enter the User Name and Password in the appro-
priate boxes. If you (or the administrator) have set up SQL Server to use the Windows NT integrated
security, just check the radio button named Use Windows NT Integrated Security. Then drop down the
top list box to select one of the SQL Servers your computer can access. You will see the local SQL Server,
as well as any other SQL Server on the network. Select the local SQL Server, then select the Northwind
database in the second drop-down list on the dialog box. If SQL Server is running on the same computer
as Visual Studio, you won’t see the names of the servers, but the local one is selected by default.

If you have Access 2000 installed on your system, use the Microsoft Jet 4.0 OLE DB Provider.
On the Connection tab, click the Test Connection button to make sure you can connect to the data-
base. If not, make sure SQL Server is running and that the user name and password you specified
are correct.

Click OK to close the Data Link Properties dialog box, and the name of the new connection will
appear under the Data Connections branch of the tree in the Server Explorer window. The default
name of the connection is made up of the name of the computer followed by the name of the data-
base—for my server, PowerToolkit.Northwind—but you can change it. Right-click a connection
and, from the context menu, select Rename.

Switch back to Server Explorer tab and expand the new connection. You will see the following
entries under it:

Database Diagrams This is where you can examine the various diagrams of the database. A
database diagram is a visual representation of a set of related tables, with the relations between the
tables. Relations are indicated with line segments between two related tables, and you can quickly
learn a lot about the structure of a database by looking at a database diagram.

Tables This is where you can select a table and edit it, or add a new table to the database. You
can edit the table itself (change its design by adding/removing rows or change the data types of

Figure 20.6

The Provider and
Connection tabs of
the Data Link Prop-
erties window

879THE SERVER EXPLORER

2877c20.qxd 11/11/01 4:21 PM Page 879

http://www.sybex.com

one or more columns). Finally, you can view the table’s rows and edit them, add new rows, or
delete existing rows.

Views This is where you specify the various views you want to use in your applications. Some-
times, the tables are not the most convenient, or even the most expedient, method of looking at
your data. If the database contains a table with employees and this table includes wages or other
sensitive data, you can create a view that’s identical to the table but excludes selected columns.

Views are created with SQL SELECT statements, which are discussed in detail later in this chap-
ter. A SELECT statement basically allows you to specify the information you want to retrieve
from the database. This information can be stored in a View object, which is just like another
table to your application.

Stored Procedures Stored procedures are (usually small) programs that are stored in the data-
base and perform very specific, and often repeated, tasks. By coding many of the operations you
want to perform against the database as stored procedures, you won’t have to access the database
directly. Moreover, you can call the same stored procedure from several places in your VB code,
and you can be sure that the same action is performed every time. Once created, the stored proce-
dure becomes part of the database, and programmers (as well as users) can call it by name, passing
the appropriate arguments if necessary. A typical example is a stored procedure for removing orders.
The stored procedure must remove the order details first, then remove the order (and possibly
update the customer’s balance, the stock, and so on). In general, orders shouldn’t be removed
from a database—they should be cancelled with another transaction—but with the fake orders
people place to online stores, many developers allow the removal of orders.

Functions The functions of SQL Server are just like the VB functions. They perform specific
tasks on the database (retrieve or update data) taking into consideration the arguments passed to
the functions when they were called. ADO.NET is built around SQL statements and stored pro-
cedures, so we’re not going to discuss SQL Server functions in this book.

Working with Tables
Expand the Tables tree to see the list of tables in the Northwind database. If you right-click one of
them, you will see the following (among other trivial options).

Retrieve Data from Table

This command brings the entire table onto a grid. You can edit any row and even delete rows or add
new ones. Figure 20.7 shows the data of the Customers table of the Northwind database in edit mode.

To experiment with tables, open the Categories table by double-clicking its name. Select a row by
clicking the gray button in front of the row and then click the Delete button. First, you’ll be warned
that you’re about to remove a row and that the action can’t be undone. If you click Yes, the row
should be removed. If you attempt to remove a row from the Categories table, however, you’ll get
the following warning:

DELETE statement conflicted with COLUMN REFERENCE constraint
‘FK_Products_Categories’. The conflict occurred in database ‘Northwind’, table
‘Products’, column ‘CategoryID’.
The statement has been terminated

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS880

2877c20.qxd 11/11/01 4:21 PM Page 880

http://www.sybex.com

This simply means that there’s a constraint in the database that will be violated if you remove this
line. The constraint is between the Products and Categories tables. Each product belongs to a cate-
gory, and if you remove this category, some of the products will be left without a category. Notice
that this restriction is added to the database when it was designed—it’s not SQL Server’s idea to
protect you from such mistakes. The designers of the Northwind database added the appropriate
constraints, so that users won’t violate the integrity of the database accidentally. As you will see, it’s
easy to add new constraints to a table and to protect the integrity of the database from mistakes of
programmers and users alike.

If you attempt to delete a row from the Products table, you’ll get a similar error, but this time the
conflict is between the Products and Order Details tables. Each row in the Order Details table con-
tains a product’s ID, and if you were allowed to remove a product from the Products table, some
invoices would reference nonexistent products.

However, you can delete rows from the Order Details table. Just write down the fields of the row
you’re deleting, so that you can add it later. You don’t have to add the deleted row, but be aware that
some of the queries in the following sections and chapters may not return the exact same rows as
shown in this book. To delete a row, select it by clicking the gray button in the first column of the
grid and then tap the Delete key.

To add a row, press Ctrl+End to go to the last line, place the cursor in the first cell of the row
marked with an asterisk (this is the new row), and start typing. To move to the next cell, press Tab.
To commit the new row to the database, move the pointer to another row. As long as you’re editing
a row, the icon with the pen appears in the first column of the grid. While this icon is displayed, the
original row in the table hasn’t changed yet. After you’re done entering values, move the pointer to
another row and the icon of the pen will disappear, indicating that the row has been successfully
added. If the data are not consistent with the structure of the database, the changes will be aborted
by the database. If you attempt to enter a new product with a CategoryID that doesn’t exist in the
Categories table, the new row will not be accepted. Likewise, if you attempt to create a new order for
a nonexistent customer, the new row will also be rejected.

Design Table

Close the table, return to the Server Explorer, right-click one of the tables, and this time select
Design Table. The table’s structure will appear on a grid, as shown in Figure 20.8. The first column
contains the table’s column names (the fields of each row).

Figure 20.7

Editing the Cus-
tomers table in
Visual Basic’s IDE

881THE SERVER EXPLORER

2877c20.qxd 11/11/01 4:21 PM Page 881

http://www.sybex.com

Each column has a name, a data type, and a length. To set the data type of a column, click the
Date Type cell of a field. This cell is a ComboBox displaying all available data types. Drop down the
list of data types and select the desired one. The most common data types are the char and varchar
types, which store strings, and the numeric types, including the money data type. There’s also a spe-
cial field for storing dates and times. Basically, you can use all the data types available in VB and a
few more data types that are unique to SQL Server. The difference between the char and varchar
data types is that the char type stores strings of fixed length (the length is specified by the value in
parentheses following the data type’s name) and the varchar type stored strings of variable length.
The value in parentheses is the maximum allowed length of the string for variable-length strings.

You can also set the Allow Nulls field to indicate whether a field may have no value. The Null
value is a very special value in database programming. It’s not the numeric zero and it’s not an empty
string. Null means that the field has no value. Thus, it can’t be used in comparisons and you can’t
read its value. In the Customers table, for instance, neither the CustomerID nor the CompanyName
fields may be Null. Any other field may be Null. When we enter a new customer, we may not know
the address or the phone number. But we have to assign an ID to the customer that will make the
new row unique in the entire table, and we must also specify the company’s name.

The Northwind database uses five-letter keys to identify each customer. This is rather unusual,
because we don’t want to burden the user with the task of coming up with unique keys for each cus-
tomer. This task can be left to the database, which is capable of providing a unique numeric value to
each new row added to the table. Of course, the autogenerated fields are integers, but they’re just as
good (if not better). They uniquely identify a row in the table, and they’re used to relate the rows of
one table to the rows of another. Normally, user never look up customers by their ID.

In the lower section of the window, you see additional information about the selected field. Each
field has a Description, a Default Value, and a Collation setting (the last setting applies to character
fields only). The Description field holds information that will help programmers figure out the role
of each field and is supplied by the database designer. The Default Value is a value that will be
placed in this field automatically when a new row is added to the table. If most of the customers are

Figure 20.8

The Customers table
in design view

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS882

2877c20.qxd 11/11/01 4:21 PM Page 882

http://www.sybex.com

in the U.S., you can set the Country’s default value the string “US” (without the quotes) so that
users will supply another value only for customers from another country. The Collation setting
determines how the rows will be sorted, as well as how the database will search for values in the spe-
cific column. Normally, you set a collation sequence when you set up the database. You can specify a
different sort order for a specific field by setting its Collation property. If you click the button with
the ellipses next to the Collation setting, you’ll see a large number of settings. The string “CS” and
“CI” stand for case-sensitive and case-insensitive, respectively. Searches are usually case-insensitive, so that
the argument “Mc Donald” will locate “MC Donald” and “Mc DONALD.” The strings “AS” and
“AI” stand for accent-sensitive and accent-insensitive; they’re used with languages that recognize accent marks.

Numeric fields can be integers (data type int), big integers (data type bigint) and floating-point
numbers (data type real), among others. As you can see, SQL Server’s data types are not named after
VB’s data types, but they’re mapped to the corresponding data types of Visual Basic. The bigint data
type is the same as a long integer in VB.

Integer data types have an Identity property: in each table you can have one identity field, which
is an integer value. This value is incremented by the DBMS every time a new row is added, and it’s
guaranteed to be unique. We use these fields as primary indices. The primary index is unique for
each row and is used in establishing relations between tables. The actual value of no interest to users;
they don’t even have to see this field. All you really want is that the primary key in one row has the
same value as the foreign key(s) in the related table(s).

New Table

This command adds a new table to the database. If you select it, you will see a grid like the one
shown back in Figure 20.8, only all rows will be empty. You can start adding fields by specifying a
name, a data type, and its Allow Nulls property. For the purposes of this book, I will assume that
the database has already been designed for you. Designing databases is no trivial tasks, and program-
mers shouldn’t be adding tables to simplify their code. We first organize our data into tables, create
the tables, set up relations between them, and only then can we code against the database. It’s not
uncommon to add a table to an existing database at a later stage, but this reveals some flaw in the ini-
tial database design.

Notice that once you add a table to the database, you can’t remove it through the Server Explorer.
You must open the same database with the Enterprise Manager and delete it from there.

Relationships, Indices, and Constraints
To manipulate relationships, indices, and constraints, open one of the tables in design mode. Then
right-click somewhere on the table and select Property Pages. There are four tabs on the property
pages dialog box, one for each of the major objects of the database. The first tab, Tables, displays
the name of the table you selected in the Server Explorer. Notice that you can’t select a different
table on this dialog box.

Relationships Tab

The second tab, Relationships, is where you can specify relationships between tables (Figure 20.9).
Select the Property Pages of the Categories table and you will see that there is already a relationship
between the Categories table and the Products table. The relationship is called FK_Products_Categories,

883THE SERVER EXPLORER

2877c20.qxd 11/11/01 4:21 PM Page 883

http://www.sybex.com

and it relates the primary and foreign keys of the two tables (field CategoryID). The names of the
two related tables appear in two read-only boxes. When you create a new relationship, you’ll be able
to select a table from a drop-down list. Under each table’s name, you see a list of fields. Here you
select the matching fields in the two tables. Most relationships are based on a single field, which is
common to both tables. However, you can relate two tables on multiple fields (you may have to use
relationships based on multiple fields in an accounting application). The check boxes at the bottom
of the page specify how the DBMS will handle the relationship and are discussed shortly.

To create a new relationship with another table, click the New button. A new relationship will be
added with a default name, which you can change. Like all other objects, relationships have unique
names too.

Expand the Primary Key Table box and select the name of the table with the primary key in
the relationship. Then expand the Foreign Key Table box and select the name of the other table.
The relationship’s name will change to reflect the selected tables. The default relationship names
starts with the string “FK” (which stands for foreign key), followed by an underscore character and the
name of the foreign table, followed by another underscore and the name of the primary table. You
can change the relationship’s name to anything you like.

If the relationship is based on a compound key, select all the fields that make up the primary and
foreign keys, in the same order. At the bottom of the Properties window, you see a few options that
you can set or clear:

Check existing data on creation If the existing data violate the relationship, the new relation-
ship won’t be established. You will have to fix the data and then attempt to establish the rela-
tionship again.

Enforce relationship for replication The relationship is enforced when the database is
replicated.

Figure 20.9

The Relationships
tab on the table’s
property pages

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS884

2877c20.qxd 11/11/01 4:21 PM Page 884

http://www.sybex.com

Enforce relationship for INSERTs and UPDATEs The relationship is enforced when you
add new data or update existing data. If you attempt to add data that violate the relationship, the
new data (or the update) will be rejected. SQL Server won’t let you enter data that violate the
relationship between two tables, and this option should be checked (except for rare occasions).

Cascade update related fields When you change the primary key in one table, some rows of a
related table will be left with an invalid foreign key. If you change the ID of a publisher, for
example, all the titles that pointed to this publisher will become invalid after you change the pub-
lisher’s ID. If this option is checked, SQL Server will change the foreign key of the related tables
as well.

Cascade delete related records When you delete the primary key in one table, some rows of
a related table will be left with an invalid foreign key. If you delete a publisher, for example, all
the titles that pointed to this publisher will become invalid after the deletion of the publisher. If
this option is checked, SQL Server will delete all the rows of the related table(s) with the same
foreign key.

You can also establish a relationship between two tables on the database diagram with point-and-
click operations. Figure 20.2 shows a database diagram that relates the Products table to the Suppli-
ers table. With the database diagram, you can easily visualize how the tables are organized in the
database. Relationships are depicted as lines connecting two tables, and you can easily figure out
which is the primary table (the line that connects the two tables has the symbol of a key to the end
of the primary table) and which is the foreign table (the same line has the infinity symbol at the for-
eign table).

The Northwind database doesn’t include any database diagrams, so you must create one. To
add a diagram to a database, right-click the Diagrams item and, from the context menu, select New
Diagram. You can do the same in the Enterprise Manager, if you prefer.

As soon as you select the New Diagram command, you’ll be prompted to select the names of
the tables to be added to the diagram through the Add Table dialog box. Select the first table you
want to add to the diagram and click the Add button. Repeat the same process for all the tables
you want to include in the diagram, and then click the Close button. A very simple diagram could
include the Products, Categories, and Suppliers tables. The first two tables are related through the
CategoryID field, and the latter two through the SupplierID field. Select the three tables and click
the Add button to add them to the diagram. On the next screen, click the Close button to close the
dialog.

This will create a new diagram and place the links between the tables. All you have to do is
rearrange the tables a little on the diagram pane, so that you can easily visualize them, along with
their relationships. Since the relationships between the tables exist already, it will also draw the lines
between the tables. Each table on the diagram is represented by a box that contains all the fields in
the corresponding table. Primary key fields are marked with the symbol of a key. Figure 20.10 shows
how a database diagram depicts the relationship between the Products & Categories tables and the
relationship between the Products & Suppliers tables. Close the Database Diagram window and
you’ll be prompted to enter a name for the diagram (name it Products).

885THE SERVER EXPLORER

2877c20.qxd 11/11/01 4:21 PM Page 885

http://www.sybex.com

The most common relationships are one-to-many relationships, just like the ones shown in Fig-
ure 20.10. They’re called one-to-many because each primary key may appear in multiple rows
of the foreign table. Each category ID appears in multiple rows of the Products table. Likewise,
each supplier’s ID may also appear in multiple rows of the Products table—but a primary key is
unique in its table.

To view or edit the details of a relationship, right-click the line that represents the relationship
and you will see the following commands:

Delete relationship from database This command removes the relationship between the two
tables.

Property Pages This command will bring up the property pages of the primary table, where
you can specify additional relationships or constraints.

Earlier in this chapter, you saw that you couldn’t remove a row from the Categories table, because
this action conflicted with the FK_Products_Categories constraint. If you open the first diagram
you created in this section and examine the properties of the relation between the Product and Cate-
gories tables, you’ll see that its name is FK_Products_Categories and that the relation is enforced. If
you want to be able to delete Categories, you must delete all the products that are connected to the
specific category first. SQL Server can take care of deleting the related rows for you, if you check
Cascade Delete Related Records. This is a rather dangerous practice, and you shouldn’t check it
without good reason. For the case of the Products table, you shouldn’t enable cascade deletions. The
products are also linked to the Order Details table, which means that the corresponding detail lines
would also disappear from the database. Allowing cascade deletion in a database like Northwind will
result in loss of valuable information irrevocably.

There are other situations where cascade deletion is not such a critical issue. You can enable cas-
cade deletions in the Pubs database, for instance, so that each time you delete a title, the correspon-
ding rows in the TitleAuthor table will also be removed. When you delete a book, you obviously
don’t need any information about this book in the TitleAuthor table. If you insert the same book
into the database again, you may use a different ID and the old links to the Authors table will not
work—you’ll have to link the new title to its author(s) again anyway.

Figure 20.10

A database diagram
created with SQL
Server’s Enterprise
Manager

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS886

2877c20.qxd 11/11/01 4:21 PM Page 886

http://www.sybex.com

Indexes/Keys Tab

You’ve created a few tables and have actually entered some data into them. Now the most impor-
tant thing you can do with a database is extract data from it (or else, why store the information
in the first place?). We rarely browse the rows of a single table. Instead, we’re interested in sum-
mary information that will help us make business decisions. We need answers to questions like
“What’s the most popular product in California?” or “What month has the largest sales for a spe-
cific product?” To retrieve this type of information, you must combine multiple tables. To answer
the first question, you must locate all the customers in California, retrieve their orders, sum the
quantities of the items they have purchased, and then select the product with the largest sum
of quantities. As you can guess, a DBMS must be able to scan the tables and locate the desired
rows quickly.

Computers use a special technique, called indexing, to locate information very quickly. This tech-
nique requires that the data be maintained in some order. The indexed rows need not be in a specific
physical order, as long as we can retrieve them in a specific order. If you want to retrieve the name of
the category of a specific product, the rows of the Categories table must be ordered according to the
CategoryID field. This is the value that links each row in the Products table to the corresponding
row in the Categories table. The DBMS will retrieve the CategoryID field of a specific product, and
then it will instantly locate the matching row in the Categories table, because the rows of this table
are indexed according to their CategoryID field.

Fortunately, you don’t have to maintain the rows of the tables in any order yourself. The DBMS
does it for you. You simply specify that a table be maintained in a specific order according to a col-
umn’s value, and the DBMS will take over. The DBMS can maintain multiple indexes for the same
table. You may wish to search the products by name and supplier. It’s customary to search for a cus-
tomer by name, city, postal code, country, and so on. To speed up the searches, you can maintain an
index for each field you want to search on.

Indexes are manipulated by the DBMS; all you have to do is define them. Every time a new row is
added or an existing row is deleted or edited, the table’s indexes are automatically updated. You can
use the index at any time to locate rows very quickly. Practically, indexes allow you to select a row
based on an indexed field instantly. When searching for specific rows, the DBMS will take into con-
sideration automatically any index that can speed the search.

Figure 20.11 shows the properties of the PK_Categories index of the Categories table. This index
is based on the column CategoryID of the table, and it maintains the rows of the Categories table in
ascending order according to their ID. The prefix PK stands for primary key. To specify that an index
is also the table’s primary key, you must check the option Create Unique. You can create as many
indices as necessary for each table, but only one of them can be the primary key. The Create Unique
box in Figure 20.11 is disabled, because the primary key is involved in one or more relationships—
therefore, you can’t change the table’s primary key because you’ll break some of the existing relation-
ships with other tables. To create a new index, click the New button, specify the column on which
the new index will be based, and then enter a name for the new index (or accept the default one).
You can create an index that uses multiple fields, but there are no multifield indices in the sample
databases.

887THE SERVER EXPLORER

2877c20.qxd 11/11/01 4:21 PM Page 887

http://www.sybex.com

Check Constraints Tab

A constraint is another important object of a database. The entity represented by a field may be sub-
ject to physical constraints. The Discount field, for example, should be a positive value no greater
than 1 (or 100, depending on how you want to store it). Prices are also positive values. Other fields
are subject to more complicated constraints. The DBMS can make sure that the values assigned to
those fields do not violate the constraints. Otherwise, you’d have to make sure that all the applica-
tions that access the same fields conform to the physical constraints.

Figure 20.12

The Check Con-
straints tab of the
property pages

Figure 20.11

The Indexes/Keys
tab of the property
pages

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS888

2877c20.qxd 11/11/01 4:21 PM Page 888

http://www.sybex.com

To make a constraint part of the database, open the table that contains the field on which you want
to impose a constraint, in design view. Then right-click somewhere on the table and select Property
Pages. On the dialog box that appears, select the Check Constraints tab, as shown in Figure 20.12. This
figure shows one of the constraints of the Products table. To view another constraint, expand the
Selected Constraint drop-down list and select the name of another constraint. The names of the con-
straints start with the CK prefix, followed by an underscore, the name of the table, then another under-
score and finally the name of the field on which the constraint applies. The CK_Products_UnitPrice
constraint is the expression that appears in the Constraint Expression box: the UnitPrice field must be
positive. Constraints have a syntax similar to the syntax of SQL restrictions (I’ll get into SQL in the
following section) and are quite trivial.

So far, you should have a good idea about how databases are organized, what the relationships are
for, and why they’re so critical for the integrity of the data stored in the tables. Now we’re going to
look at ways to retrieve data from a database. To specify the rows and columns you want to retrieve
from one or more tables, you must use SQL statements, which is the topic of the following section.

Note There are visual tools for specifying the information you want to retrieve from a database, and these are the tools
of choice for many developers. The visual tools are nothing more than a user-friendly interface for specifying SQL state-
ments. In the background, they generate the appropriate SQL statement, and you will get the most out of these tools if you
understand the basics of SQL. I will start with an overview of SQL; after that I’ll show you how to use the Query
Builder utility to specify a few advanced queries.

Structured Query Language
SQL (Structured Query Language) is a universal language for manipulating tables, and every data-
base management system (DBMS) supports it, so you should invest the time and effort to learn it.
You can generate SQL statements with point-and-click operations (the Query Builder is a visual tool
for generating SQL statements), but this is no substitute for understanding SQL and writing your
own statements.

SQL is a nonprocedural language. This means that SQL doesn’t provide traditional programming
structures like IF statements or loops. Instead, it’s a language for specifying the operation you want
to perform at an unusually high level. The details of the implementation are left to the DBMS. This
is good news for nonprogrammers, but many programmers new to SQL wish it had the structure of
a more traditional language. You will get used to SQL and soon be able to combine the best of both
worlds: the programming model of VB and the simplicity of SQL.

Tip SQL is not case-sensitive, but it’s customary to use uppercase for the SQL statements and keywords. In the examples
of this book, I use uppercase for SQL statements.

To retrieve all the company names from the Customers table of the Northwind database, you
issue a statement like this one:

SELECT CompanyName
FROM Customers

889STRUCTURED QUERY LANGUAGE

2877c20.qxd 11/11/01 4:21 PM Page 889

http://www.sybex.com

If the Customers table happens to have multiple rows that refer to the same company, you can
request that the query return unique names by using the DISTINCT keyword:

SELECT DISTINCT CompanyName
FROM Customers

To select customers from a specific country, you issue the following statement:

SELECT CompanyName
FROM Customers
WHERE Country = ‘Germany’

The DBMS will retrieve and return the rows you requested. As you can see, this is not how you’d
retrieve rows with Visual Basic. With a procedural language, like VB, you’d have to specify the state-
ments to scan the entire table, examine the value of the Country column, and either select or reject
the row. Then you would display the selected rows. With SQL you don’t have to specify how the
selection operation will take place. You simply specify what you want the database to do for you—
not how to do it.

SQL statements are categorized into two major categories, which are actually considered separate
languages: the statements for manipulating the data, which form the Data Manipulation Language
(DML); and the statements for defining database objects, such as tables or their indexes, which form
the Data Definition Language (DDL). The DDL is not of interest to every database developer, and
we will not discuss it in this book. The DML is covered in depth, because you’ll use these statements
to retrieve data, insert new data to the database, and edit or delete existing data.

The statements of the DML part of the SQL language are also known as queries, and there are two
types of queries: selection queries and action queries. Selection queries retrieve information from the
database. The queries return a set of rows with identical structure. The columns may come from dif-
ferent tables, but all the rows returned by the query have the same number of columns. Action queries
modify the database’s objects, or create new objects and add them to the database (new tables, rela-
tionships and so on).

Executing SQL Statements
If you are not familiar with SQL, I suggest that you follow the examples in this chapter and modify
them to perform similar operations. To follow these examples, you have two options, the Query
Analyzer and the Query Builder. The Query Analyzer executes SQL statements you design. The
Query Builder lets you build the statements with visual tools. After a quick overview of the SQL
statements, I will describe the Query Builder and show you how to use its interface to build fairly
elaborate queries.

Using the Query Analyzer

One of the applications installed with SQL Server is the Query Analyzer. To start it, select Start ➢
Programs ➢ SQL Server ➢ Query Analyzer. Initially, its window will be empty. First, select the
desired database’s name in the Database drop-down list and then enter the SQL statement you want
to execute in the upper pane. The SQL statement will be executed against the selected database when
you press Ctrl+E, or click the Run button (the button with the green arrow on the toolbar).

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS890

2877c20.qxd 11/11/01 4:21 PM Page 890

http://www.sybex.com

Alternatively, you can prefix the SQL statement with the USE statement, which specifies the data-
base against which the statement will be executed. To retrieve all the Northwind customers located
in Germany, enter this statement:

USE Northwind
SELECT CompanyName FROM Customers
WHERE Country = ‘Germany’

The USE statement isn’t part of the query; it simply tells the Query Analyzer the database
against which it must execute the query. I’m including the USE statement with all the queries so that
you know the database used for each example. Then select the Execute command from the Query
menu, or press Ctrl+E to execute the statement. The results will appear in the lower pane, as shown
in Figure 20.13. For a selection query, like the previous one, you will see the rows selected and their
count at the bottom of the Results pane. An action query that updates a table (adds a new row, edits,
or deletes an existing row) doesn’t return any rows; it simply displays the number of rows affected.

To execute another query, enter another statement in the upper pane or edit the previous state-
ment, and press Ctrl+E again. You can also save SQL statements into files, so that you won’t have
to type them again. To do so, open the File menu, select Save As or Save command, and enter the
name of the file where the contents of the Query pane will be stored. The statement will be stored
in a text file with the extension .sql. The lengthier examples of this chapter can be found in this
chapter’s folder on the companion CD. Instead of typing the statements of the examples, you can
load the corresponding SQL file from the CD and execute it.

Figure 20.13

Executing queries
with the Query
Analyzer

891STRUCTURED QUERY LANGUAGE

2877c20.qxd 11/11/01 4:21 PM Page 891

http://www.sybex.com

Selection Queries
We’ll start our discussion of SQL with the SELECT statement. Once you learn how to express the
criteria for selecting the desired rows with the SELECT statement, you’ll be able to apply this infor-
mation to other data-manipulation statements.

The simplest form of the SELECT statement is

SELECT fields
FROM tables

where fields and tables are comma-separated lists of the fields you want to retrieve from the database
and the tables they belong to. To select the contact information from all the companies in the Cus-
tomers table, use this statement:

USE Northwind
SELECT CompanyName, ContactName, ContactTitle
FROM Customers

To retrieve all the fields, use the asterisk (*) or the ALL keyword. The statement

SELECT * FROM Customers

will select all the fields from the Customers table.

WHERE Clause

The unconditional form of the SELECT statement we used in last few examples is quite trivial. You
rarely retrieve data from all rows in a table. Usually you specify criteria, such as “All companies in
Germany,” “All customers who have placed three or more orders in the last six months,” or even
more complicated expressions. To restrict the rows returned by the query, use the WHERE clause
of the SELECT statement. The most common form of the SELECT statement is the following:

SELECT fields
FROM tables
WHERE condition

The fields and tables arguments are the same as before. The syntax of the WHERE clause can get
quite complicated, so we’ll start with the simpler forms of the selection criteria.

The condition argument can be a relational expression, like the ones you use in VB. To select all the
customers from Germany, use the following condition:

WHERE Country = ‘Germany’

To select customers from multiple countries, use the OR operator to combine multiple conditions:

WHERE Country = ‘Germany’ OR
Country = ‘Austria’

You can also combine multiple conditions with the AND operator.
It is also possible to retrieve data from two or more tables with a single statement (this is the

most common type of query, actually). When you combine multiple tables in a query, you can use

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS892

2877c20.qxd 11/11/01 4:21 PM Page 892

http://www.sybex.com

the WHERE clause to specify how the rows of the two tables will be combined. Let’s say you want
a list of all product names, along with their categories. The information you need is not contained
in a single table. You must extract the product name from the Products table and the category name
from the Categories table and specify that the ProductID field in the two tables must match. The
statement

USE Northwind
SELECT ProductName, CategoryName
FROM Products, Categories
WHERE Products.CategoryID = Categories.CategoryID

will retrieve the names of all products, along with their category names. Here’s how this statement is
executed. For each row in the Products table, the SQL engine locates the matching row in the Cate-
gories table and then appends the ProductName and CategoryName fields to the result.

If a product has no category, then it will not be included in the result. If you want all the products,
even the ones that don’t belong to a category, you must use the JOIN clause, which is described later
in this chapter. Using the WHERE clause to combine rows from multiple tables may lead to
unexpected results, because it can only combine rows with matching fields. If the foreign key in the
Products table is Null, this product won’t be selected. This is a fine point in combining multiple
tables, and many programmers abuse the WHERE clause. As a result, they retrieve fewer rows from
the database, and they don’t even know it. See the section “SQL Joins” later in this chapter for more
information.

Note When fields in two different tables have the same names, you must prefix them with the table’s name to remove
the ambiguity. Also, some field names may contain spaces. These field names must appear in square brackets. The Publish-
ers table of the Pubs sample database contains a field named Publisher Name. To use this field in a query, enclose it in brack-
ets: Publishers.[Publisher Name]. The table prefix is optional (no other table contains a column by that name),
but the brackets are mandatory.

You can also combine multiple restrictions with logical operators. To retrieve all the titles pub-
lished by a specific publisher, use a statement like the following:

USE PUBS
SELECT titles.title
FROM titles, publishers
WHERE titles.pub_id = publishers.pub_id AND publishers.pub_name = ‘New Moon Books’

This statement combines two tables and selects the titles of a publisher specified by name. To
match titles and publisher, it requests that

1. The publisher’s name in the Publishers table is New Moon Books, and

2. The pub_id field in the Titles table matches the pub_id field in the Publishers table.

Notice that we did not specify the publisher’s name (field pub_name) in the SELECT list; all the
desired books have the same publisher, so we need not include the publisher’s names in the
result set.

893STRUCTURED QUERY LANGUAGE

2877c20.qxd 11/11/01 4:21 PM Page 893

http://www.sybex.com

Knowing WHERE You’re Going

If you specify multiple tables without the WHERE clause, the SQL statement, will return an enormous cur-
sor. If you issue the following statement,

SELECT ProductName, CategoryName FROM Categories, Products

you will not get a line for each product name followed by its category. You will get a cursor with 616 rows,
which are all possible combinations of product names and category names. In this example, the Categories
table has eight rows and the Products table has 77 rows, so their cross-product contains 616 rows.

AS Keyword

By default, each column of a query is labeled after the actual field name in the output. If a table con-
tains two fields named CustLName and CustFName, you can display them with different labels
using the AS keyword. The SELECT statement

SELECT CustLName, CustFName

will produce two columns labeled CustLName and CustFName. The query’s output will look much
better if you change the labels of these two columns with a statement like the following one:

SELECT CustLName AS [Last Name],
CustFName AS [First Name]

It is also possible to concatenate two fields in the SELECT list with the concatenation operator.
Concatenated fields are not labeled automatically, so you must supply your own header for the com-
bined field. The following statement creates a single column for the customer’s name and labels it
Customer Name:

SELECT CustFName + ‘, ‘ + CustLName AS [Customer Name]

TOP Keyword

Some queries may retrieve a large number of rows, while you’re interested in the top few rows only.
The TOP N keyword allows you to select the first N rows and ignore the remaining ones. Let’s say
you want to see the list of the 10 most wanted products. Without the TOP keyword, you’d have to
calculate how many items from each product have been sold, sort them according to items sold, and
examine the first 10 rows returned by the query.

The TOP keyword is used only when the rows are ordered according to some meaningful crite-
ria. Limiting a query’s output to the alphabetically top N rows isn’t very practical. When the rows
are sorted according to items sold, revenue generated, and so on, it makes sense to limit the query’s
output to N rows. You’ll see many examples of the TOP keyword later in this chapter, after you
learn how to order a query’s rows.

DISTINCT Keyword

The DISTINCT keyword eliminates any duplicates from the cursor retrieved by the SELECT state-
ment. Let’s say you want a list of all countries with at least one customer. If you retrieve all country

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS894

2877c20.qxd 11/11/01 4:21 PM Page 894

http://www.sybex.com

names from the Customers table, you’ll end up with many duplicates. To eliminate them, use the
DISTINCT keyword, as shown in the following statement:

USE NORTHWIND
SELECT DISTINCT Country
FROM Customers

LIKE Operator

The LIKE operator uses pattern-matching characters, like the ones you use to select multiple files
in DOS. The LIKE operator recognizes several pattern-matching characters (or wildcard characters)
to match one or more characters, numeric digits, ranges of letters, and so on; these are listed in
Table 20.1.

Table 20.1: SQL Wildcard Characters

Wildcard Character Description

% Matches any number of characters. The pattern program%will find program,
programming, programmer, and so on. The pattern %program%will locate
strings that contain the words program, programming, nonprogrammer, and
so on.

_ (Underscore character) Matches any single alphabetic character. The pattern
b_ywill find boy and bay, but not boysenberry.

[] Matches any single character within the brackets. The pattern Santa [YI]nez
will find both Santa Ynez and Santa Inez.

[^] Matches any character not in the brackets. The pattern %q[^u]%will find words
that contain the character q not followed by u (they are misspelled words).

[-] Matches any one of a range of characters. The characters must be consecutive in
the alphabet and specified in ascending order (A to Z, not Z to A). The pattern
[a-c]%will find all words that begin with a, b, or c (in lowercase or uppercase).

Matches any single numeric character. The pattern D1##will find D100 and
D139, but not D1000 or D10.

You can use the LIKE operator to retrieve all titles about Windows from the Pubs database, with
a statement like the following one:

USE PUBS
SELECT titles.title
FROM titles
WHERE titles.title LIKE ‘%WINDOWS%’

The percent signs mean that any character(s) may appear in front of or after the word Windows in
the title.

To include a wildcard character itself in your search argument, enclose it in square brackets. The
pattern %50[%]% will match any field that contains the string “50%”.

895STRUCTURED QUERY LANGUAGE

2877c20.qxd 11/11/01 4:21 PM Page 895

http://www.sybex.com

Null Values

A very common operation in manipulating and maintaining databases is to locate Null values in
fields. The expressions IS NULL and IS NOT NULL find field values that are (or are not) Null. A
zero-length string is not the same as a Null field. To locate the rows which have a Null value in their
CompanyName column, use the following WHERE clause:

WHERE CompanyName IS NULL

A Null price in the Products table means that the product’s price was not available at the time of
the data entry. You can easily locate the products without prices and edit them. The following state-
ment will locate products without prices:

USE NORTHWIND
SELECT * FROM Products WHERE UnitPrice IS NULL

Certain fields can’t be Null in a table. The primary key, for example, can’t be Null. It also doesn’t
make sense to enter a new customer without a name, or a book without a title. When you design the
database, you can request that certain columns can’t be Null; the DBMS will ensure that no row
with a Null value in these columns will be added to the table.

ORDER Keyword

The rows of a query are not in any particular order. To request that the rows be returned in a spe-
cific order, use the ORDER BY clause, whose syntax is

ORDER BY col1, col2, . . .

You can specify any number of columns in the ORDER list. The output of the query is ordered
according to the values of the first column (col1). If two rows have identical values in this column,
then they are sorted according to the second column, and so on. The statement

USE NORTHWIND
SELECT CompanyName, ContactName
FROM Customers
ORDER BY Country, City

will display the customers ordered by country and by city within each country.

Calculated Fields
In addition to column names, you can specify calculated columns in the SELECT statement. The Order
Details table contains a row for each invoice line. Invoice #10248, for instance, contains four lines (four
items sold), and each detail line appears in a separate row in the Order Details table. Each row holds the
number of items sold, the item’s price, and the corresponding discount. To display the line’s subtotal,
you must multiply the quantity by the price minus the discount, as shown in the following statement:

USE NORTHWIND
SELECT Orders.OrderID, ProductID,

[Order Details].UnitPrice * [Order Details].Quantity *
(1 - [Order Details].Discount) AS SubTotal

FROM Orders, [Order Details]
WHERE Orders.OrderID = [Order Details].OrderID

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS896

2877c20.qxd 11/11/01 4:21 PM Page 896

http://www.sybex.com

This statement will calculate the subtotal for each line in the invoices issued to all Northwind
customers and display them along with the order number, as shown in Figure 20.14. The order
numbers are repeated as many times as there are products in the order (or lines in the invoice). In
the following section, “Totaling and Counting,” you will find out how to calculate totals, too.

Note Long lines in a SQL statement can be broken anywhere, and there’s no need to insert a line-continuation charac-
ter, as you do with VB statements.

Tip You can shorten the preceding SQL statement by omitting the table name qualifier for the ProductID, Quantity, and
UnitPrice fields, since their names do not appear in any other table. You can’t omit the table qualifier from the OrderID
field’s name, because it appears in both tables involved in the query.

Totaling and Counting

SQL supports some aggregate functions, which act on selected fields of all the rows returned
by the query. The aggregate functions, listed in Table 20.2, perform basic calculations like
summing, counting, and averaging numeric values. Aggregate functions accept field names (or
calculated fields) as arguments, and they return a single value, which is the sum (or average) of
all values.

Figure 20.14

Calculating the
subtotals for each
item sold

897STRUCTURED QUERY LANGUAGE

2877c20.qxd 11/11/01 4:21 PM Page 897

http://www.sybex.com

Table 20.2: SQL’s Aggregate Functions

Function Returns

COUNT() The number (count) of values in a specified column

SUM() The sum of values in a specified column

AVG() The average of the values in a specified column

MIN() The smallest value in a specified column

MAX() The largest value in a specified column

These functions operate on a single column (which could be a calculated column) and return a
single value. The rows involved in the calculations are specified with the proper WHERE clause.
The SUM() and AVG() functions can process only numeric values. The other three functions can
process both numeric and text values.

These functions are used to summarize data from one or more tables. Let’s say we want to know
how many of the Northwind database customers are located in Germany. The following SQL state-
ment will return the desired value:

USE NORTHWIND
SELECT COUNT(CustomerID)
FROM Customers
WHERE Country = ‘Germany’

This is a simple demonstration of the COUNT() function. If you want to count unique values,
you must use the DISTINCT keyword along with the name of the field to count. If you want to
find out in how many countries there are Northwind customers, use the following SQL statement:

USE NORTHWIND
SELECT COUNT(DISTINCT Country)
FROM Customers

If you omit the DISTINCT keyword, the statement will return the number of rows that have a
Country field. The aggregate functions ignores the Null values, unless you specify the * argument.
The following statement will return the count of all rows in the Customers table, even if some of
them have a Null in the Country column:

USE NORTHWIND
SELECT COUNT(*)
FROM Customers

The SUM() function is used to total the values of a specific field in the specified rows. To find
out how many units of the product with ID = 11 (Queso Cabrales) have been sold, use the follow-
ing statement:

USE NORTHWIND
SELECT SUM(Quantity)

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS898

2877c20.qxd 11/11/01 4:21 PM Page 898

http://www.sybex.com

FROM [Order Details]
WHERE ProductID = 11

The SQL statement that returns the total revenue generated by a single product is a bit more
complicated. To calculate it, you must add the products of quantities times prices, taking into con-
sideration each invoice’s discount:

USE NORTHWIND
SELECT SUM(Quantity * UnitPrice * (1 - Discount))
FROM [Order Details]
WHERE ProductID = 11

You will find out that Queso Cabrales generated a total revenue of $12,901.77. If you want to
know how many items of this product were sold, add one more aggregate function to the query to
sum the quantities of each row that refers to the specific product ID:

USE NORTHWIND
SELECT SUM(Quantity),

SUM(Quantity * UnitPrice * (1 - Discount))
FROM [Order Details]
WHERE ProductID = 11

SQL Joins
Joins specify how you connect multiple tables in a query, and there are four types of joins:

� Left outer, or left join

� Right outer, or right join

� Full outer, or full join

� Inner join

A join operation combines all the rows of one table with the rows of another table. Joins are usu-
ally followed by a condition, which determines which records in either side of the join will appear in
the result. The WHERE clause of the SELECT statement is very similar to a join, but there some
fine points that will be explained momentarily.

Note The left, right, and full joins are sometimes called “outer” joins to differentiate them from an inner join. “Left
join” and “left outer join” mean the same thing.

Left Joins

This join displays all the records in the left table and only those records of the table on the right that
match certain user-supplied criteria. This join has the following syntax:

FROM (primary table) LEFT JOIN (secondary table) ON (primary table).(field)
(comparison) (secondary table).(field)

899STRUCTURED QUERY LANGUAGE

2877c20.qxd 11/11/01 4:21 PM Page 899

http://www.sybex.com

The left outer join retrieves all rows in the primary table and the matching rows from a secondary
table. The following statement will retrieve all the titles from the Pubs database along with their
publisher. If some titles have no publisher, they will be included to the result:

USE PUBS
SELECT title, pub_name
FROM titles LEFT JOIN publishers

ON titles.pub_id = publishers.pub_id

Right Joins

This join is similar to the left outer join, except that all rows in the table on the right are displayed
and only the matching rows from the left table are displayed. This join has the following syntax:

FROM (secondary table) RIGHT JOIN (primary table) ON (secondary table).(field)
(comparison) (primary table).(field)

The following statement retrieves all the publishers from the Pubs database along with their titles.
Notice that this statement is almost exactly the same as the example of the left outer join entry; I
only changed LEFT to RIGHT:

USE PUBS
SELECT title, pub_name
FROM titles RIGHT JOIN publishers

ON titles.pub_id = publishers.pub_id

Full Joins

The full join returns all the rows of the two tables, regardless of whether there are matching rows or
not. In effect, it’s a combination of left and right joins. To retrieve all the titles and all publishers,
and match publishers to their titles, use the following join:

USE PUBS
SELECT title, pub_name
FROM titles FULL JOIN publishers

ON titles.pub_id = publishers.pub_id

Inner Joins

This join returns the matching rows of both tables, similar to the WHERE clause, and has the fol-
lowing syntax:

FROM (primary table) INNER JOIN (secondary table) ON (primary table).(field)
(comparison) (secondary table).(field)

The following SQL statement combines records from the Titles and Publishers tables of the
PUBS database if their PubID fields match. It returns all the titles and their publishers. Titles with-
out publishers will not be included in the result:

USE PUBS
SELECT titles.title, publishers.pub_name FROM titles, publishers
WHERE titles.pub_id = publishers.pub_id

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS900

2877c20.qxd 11/11/01 4:21 PM Page 900

http://www.sybex.com

You can retrieve the same rows using an inner join, as follows:

USE PUBS
SELECT titles.title, publishers.pub_name
FROM titles INNER JOIN publishers ON titles.pub_id = publishers.pub_id

For more examples with joins, see the section “Specifying Left, Right, and Inner Joins,” later in
this chapter.

Grouping Rows

Sometimes you need to group the results of a query, so that you can calculate subtotals. Let’s say you
need not only the total revenues generated by a single product, but a list of all products and the rev-
enues they generated. The example of the previous section “Totaling and Counting” calculates the
total revenue generated by a single product. If you omit the WHERE clause, it will calculate the total
revenue generated by all products. It is possible to use the SUM() function to break the calculations
at each new product ID as demonstrated in the following statement. To do so, you must group the
product IDs together with the GROUP BY clause.

USE NORTHWIND
SELECT ProductID,

SUM(Quantity * UnitPrice *(1 - Discount)) AS [Total Revenues]
FROM [Order Details]
GROUP BY ProductID
ORDER BY ProductID

The above statement will produce an output like this one:

ProductID Total Revenues
1 12788.10
2 16355.96
3 3044.0
4 8567.89
5 5347.20
6 7137.0
7 22044.29

As you can see, the SUM() function works in tandem with the GROUP BY clause (when there is
one) to produce subtotals. The GROUP BY clause groups all the rows with the same values in the
specified column and forces the aggregate functions to act on each group separately. SQL Server will
sort the rows according to the column specified in the GROUP BY clause and start calculating the
aggregate functions. Every time it runs into a new group, it prints the result and resets the aggregate
function(s).

If you use the GROUP BY clause in a SQL statement, you must be aware of the following rule:

All the fields included in the SELECT list must be either part of an aggregate function or part of the GROUP BY clause.

Let’s say you want to change the previous statement to display the names of the products, rather
than their IDs. The following statement will display product names, instead of product IDs. Notice

901STRUCTURED QUERY LANGUAGE

2877c20.qxd 11/11/01 4:21 PM Page 901

http://www.sybex.com

that the ProductName field doesn’t appear as an argument to an aggregate function, so it must be
part of the GROUP BY clause.

USE NORTHWIND
SELECT ProductName,

SUM(Quantity * [Order Details].UnitPrice * (1 - Discount))
AS [Total Revenues]

FROM [Order Details], Products
WHERE Products.ProductID = [Order Details].ProductID
GROUP BY ProductName
ORDER BY ProductName

These are the first few lines of the output produced by this statement:

ProductName Total Revenues
Alice Mutton 32698.38
Aniseed Syrup 3044.0
Boston Crab Meat 17910.63
Camembert Pierrot 46927.48
Carnarvon Tigers 29171.87

If you omit the GROUP BY clause, the query will return the total revenue generated by all the
products in the database.

You can also combine multiple aggregate functions in the SELECT field. The following state-
ment will calculate the units of products sold, along with the revenue they generated and the number
of invoices that contain the specific product:

USE NORTHWIND
SELECT ProductID AS PRODUCT,

COUNT(ProductID) AS [INVOICES],
SUM(Quantity) AS [UNITS SOLD],
SUM(Quantity * UnitPrice *(1 - Discount)) AS Revenue

FROM [Order Details]
GROUP BY ProductID
ORDER BY ProductID

The following SELECT statement returns all product IDs along with the number of invoices
that contain them, and the minimum, maximum, and average quantity ordered:

USE NORTHWIND
SELECT ProductID AS PRODUCT,

COUNT(ProductID) AS [Invoices],
MIN(Quantity) AS [Min],
MAX(Quantity) AS [Max],
AVG(Quantity) AS [Average]

FROM [Order Details]
GROUP BY ProductID
ORDER BY ProductID

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS902

2877c20.qxd 11/11/01 4:21 PM Page 902

http://www.sybex.com

Limiting Groups with HAVING

The HAVING clause limits the groups that will appear in the cursor. In a way, it is similar to the
WHERE clause, but the HAVING clause allows you to use aggregate functions. The following
statement will return the IDs of the products whose sales exceed 1,000 units:

USE NORTHWIND
SELECT ProductID, SUM(Quantity)
FROM [Order Details]
GROUP BY ProductID
HAVING SUM(Quantity) > 1000

If you want to include regular restrictions, you can use the WHERE clause as well. To see prod-
uct names instead of IDs, add a slightly longer statement that includes the Products table and maps
them to the ProductIDs in the Order Details table with a WHERE clause:

USE NORTHWIND
SELECT Products.ProductName,

[Order Details].ProductID,
SUM(Quantity) AS [Items Sold]

FROM Products, [Order Details]
WHERE [Order Details].ProductID = Products.ProductID
GROUP BY [Order Details].ProductID, Products.ProductName
HAVING SUM(Quantity) > 1000
ORDER BY Products.ProductName

IN and NOT IN Keywords

The IN and NOT IN keywords are used in a WHERE clause to specify a list of values that a column
must match (or not match). They are more of a shorthand notation for multiple OR operators. The
following is statement that retrieves the names of the customers in all German-speaking countries:

USE NORTHWIND
SELECT CompanyName
FROM Customers
WHERE Country IN (‘Germany’, ‘Austria’, ‘Switzerland’)

The BETWEEN Keyword

The BETWEEN keyword lets you specify a range of values and limit the selection to the rows that
have a specific column in this range. The BETWEEN keyword is a shorthand notation for an
expression like

column >= minValue AND column <= maxValue

To retrieve the orders placed in 1997, use the following statement:

USE NORTHWIND
SELECT OrderID, OrderDate, CompanyName
FROM Orders, Customers
WHERE Orders.CustomerID = Customers.CustomerID AND

(OrderDate BETWEEN ‘1/1/1997’ AND ‘1/1/1998’)

903STRUCTURED QUERY LANGUAGE

2877c20.qxd 11/11/01 4:21 PM Page 903

http://www.sybex.com

Action Queries
In addition to the selection queries we examined so far, you can also execute queries that alter the
data in the database’s tables. These queries are called action queries, and they’re quite simple compared
to the selection queries. There are three types of actions you can perform against a database: inser-
tions of new rows, deletions of existing rows, and updates (edits) of existing rows. For each type of
action there’s a SQL statement, appropriately named INSERT, DELETE, and UPDATE. Their
syntax is very simple, and the only complication is how you specify the affected rows (for deletions
and updates). As you can guess, the rows to be affected are specified with a WHERE clause, fol-
lowed by the criteria we have discussed in selection queries.

The first difference between action and selection queries is that action queries don’t return any
rows. They return the number of rows affected, but you disable this feature by calling the statement:

SET NOCOUNT ON

This statement can be used when working with a SQL Server database. Let’s look at the syntax of
the three action SQL statements, starting with the simplest, the DELETE statement.

Deleting Rows

The DELETE statement deletes one or more rows from a table, and its syntax is:

DELETE table_name WHERE criteria

The WHERE clause specifies the criteria that the rows must meet in order to be deleted. The
criteria expression is no different than the criteria you specify in the WHERE clause of selection
query. To delete the orders placed before 1998, use a statement like

USE NORTHWIND
DELETE Orders
WHERE OrderDate < ‘1/1/1998’

Of course, the specified rows will be deleted only if the Orders table allows cascade deletions, or
if the rows to be deleted are not linked to related rows.

Inserting New Rows

The syntax of the INSERT statement is:

INSERT table_name (column_names) VALUES (values)

column_names and values are comma-separated lists of columns and their respective values. Values are
mapped to their columns by the order in which they appear in the two lists.

Notice that you don’t have to specify values for all columns in the table, but the values list must
contain as many items as there are column names in the first list. To add a new row to the Cus-
tomers table use a statement like the following:

INSERT Customers (CustomerID, CompanyName) VALUES (‘FRYOG’, ‘Fruit & Yogurt’)

This statement will insert a new row, provided that the FRYOG key isn’t already in use. Only
two of the new row’s columns are set, and they’re the columns that can’t accept Null values.

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS904

2877c20.qxd 11/11/01 4:21 PM Page 904

http://www.sybex.com

If you want to specify values for all the columns of the new row, you can omit the list of
columns. The following statement retrieves a number of rows from the Products table and inserts
them into the SelectedProducts table, which has the exact same structure:

INSERT INTO SelectedProducts VALUES (values)

If the values come from a table, you can replace the VALUES keyword with a SELECT statement:

INSERT INTO SelectedProducts
SELECT * FROM Products WHERE CategoryID = 4

There are more variations of the INSERT statement, but in this book we’ll use the simplest
form, where you specify both the column names and their values. The wizard we’ll explore the in the
following chapter generates statements like the following to insert a new row:

INSERT INTO dbo.Customers(CustomerID, CompanyName, ContactName, ContactTitle,
Address, City, Region, PostalCode, Country, Phone, Fax)

VALUES (@CustomerID, @CompanyName, @ContactName, @ContactTitle, @Address,
@City, @Region, @PostalCode, @Country, @Phone, @Fax)

The variables @CustomerID, @CompanyName, and so on are the values of the fields of the newly
created row—these values were specified by the user through the appropriate interface.

Editing Existing Rows

The UPDATE statement edits a row’s fields, and its syntax is

UPDATE table_name SET field1 = value1, field2 = value2, …
WHERE criteria

The criteria expression is no different than the criteria you specify in the WHERE clause of selec-
tion query. To change the country from “UK” to “United Kingdom” in the Customers table, use the
following statement:

UPDATE Customers SET Country=’United Kingdom’
WHERE Country = ‘UK’

This statement will locate all the rows in the Customers table that meet the specified criteria
(their Country field is “UK”) and change this field’s value to “United Kingdom.”

In Chapter 21, you’ll see UPDATE statements like the one in Listing 20.1, which are executed to
update the underlying table in the database. These statements are created automatically by the appro-
priate wizard and become part of the application. The SQL statement in Listing 20.1 was generated
automatically to update the Customers table. The variables @CustomerID, @CompanyName, and so on
are the new values of the fields. The variables @Original_CustomerID and @Original_CompanyName are
the values read from the database. The SET clause of the statement is quite simple: it sets the values
of the fields to the new values. The WHERE statement is a little complicated, because this UPDATE
statement won’t change the table if the values of the fields are not the same as the ones read from the
database.

905STRUCTURED QUERY LANGUAGE

2877c20.qxd 11/11/01 4:21 PM Page 905

http://www.sybex.com

Listing 20.1: A SQL UPDATE Statement

UPDATE dbo.Customers
SET CustomerID = @CustomerID, CompanyName = @CompanyName,

ContactName = @ContactName, ContactTitle = @ContactTitle,
Address = @Address, City = @City, Region = @Region,
PostalCode = @PostalCode, Country = @Country, Phone = @Phone, Fax = @Fax

WHERE (CustomerID = @Original_CustomerID) AND
(Address = @Original_Address OR @Original_Address1 IS NULL AND

Address IS NULL) AND
(City = @Original_City OR @Original_City1 IS NULL AND City IS NULL) AND
(CompanyName = @Original_CompanyName) AND
(ContactName = @Original_ContactName OR @Original_ContactName1 IS NULL

AND ContactName IS NULL) AND
(ContactTitle = @Original_ContactTitle OR @Original_ContactTitle1 IS NULL

AND ContactTitle IS NULL) AND
(Country = @Original_Country OR @Original_Country1 IS NULL

AND Country IS NULL) AND
(Fax = @Original_Fax OR @Original_Fax1 IS NULL AND Fax IS NULL) AND
(Phone = @Original_Phone OR @Original_Phone1 IS NULL AND Phone IS NULL) AND
(PostalCode = @Original_PostalCode OR @Original_PostalCode1 IS NULL

AND PostalCode IS NULL) AND
(Region = @Original_Region OR @Original_Region1 IS NULL AND Region IS NULL)

The variables with the original values are set when the row is read from the table. Then you can
edit the row’s fields through the appropriate interface. This may take a few seconds, or minutes (or
an hour, if you decide to take a lunch break before updating the table). There’s always a chance that
another user might edit the same row before you commit your changes to the database. If a single
field’s value is different from the value we read, it means that the row has been modified since we
read it and the UPDATE operation will fail.

In a banking application, a customer’s balance might be $2,000. When a check is cashed, we must
subtract the amount of the check from the current balance. But if another teller has already sub-
tracted an amount from the same account, there may not be enough funds to cover both checks. You
will learn more about updating tables with SQL statements (as well as stored procedures) in the fol-
lowing chapter.

I should bring to your attention that some of the complexity of the statements is due to the fact
that Null values can’t be compared. If two values are Null, they’re not equal. The very essence of the
Null value is to indicate that a field doesn’t have a value, and therefore can’t be compared. To find
out whether two fields are both Null, you must use an expression like the following:

@value1 IS NULL AND field1 IS NULL

The Query Builder
The Query Builder is a visual tool for building SQL statements. It’s a highly useful tool that gener-
ates SQL statements for you—you just specify the data you want to retrieve with point-and-click

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS906

2877c20.qxd 11/11/01 4:21 PM Page 906

http://www.sybex.com

operations, instead of typing complicated expressions. A basic understanding of SQL is obviously
required, and this is why I’ve described the basic keywords of SQL in the last section, but it is possi-
ble to build SQL queries with the Query Builder without knowing anything about SQL. I would
suggest you use this tool to quickly build SQL statements, but don’t expect that it will do your work
for you. It’s a great tool for beginners, but you can’t get far by ignoring SQL. The Query Builder is
also a great tool for learning SQL, as you specify the query with point-and-click operations but the
Query Builder builds the appropriate SQL statements. You can also edit the SQL statement manu-
ally and execute it.

There are many ways to start the Query Builder. In the following chapter, you’ll see how the
Query Builder is activated every time you need to specify a query. You can open the Views items in
the Server Explorer, right-click the name of a view, and select Design View from the context menu.
Views are based on SQL statements, and you will see the Query Builder with the statement that
implements the view you selected.

You can also create new queries by creating a new view. A view is the result of a query: it’s a vir-
tual table that consists of columns from one or more tables selected with a SQL SELECT statement.
The Query Builder’s window is shown in Figure 20.15.

The query shown in Figure 20.15 retrieved the names of all the products in the Product table,
along with the name of the category they belong to (the category name is stored in the Categories
table). To create a new query with the Query Builder, open the Northwind database’s section in the
Server Explorer, right-click the Views item, and select New View. You will see the window of Fig-
ure 20.15, but it will be empty.

The Query Builder Interface
The Query Builder contains four panes: Diagram, Grid, SQL, and Results.

Figure 20.15

Using the Query
Builder to build a
SQL statement with
point-and-click
operations

907THE QUERY BUILDER

2877c20.qxd 11/11/01 4:21 PM Page 907

http://www.sybex.com

Diagram Pane

This is where you select the tables you want to use in your queries—the tables in which the required
data reside. To select a table, right-click anywhere on the Diagram pane and you will see the Add
Table dialog box. Select as many tables as you need and then close the Add Table dialog box.

The selected tables will appear on the Diagram pane as small boxes, along with their fields, as
shown in Figure 20.15. The tables involved in the query are related to one another (although this is
not a requirement, it’s rather unlikely that you’ll retrieve data from unrelated tables). The relations are
indicated as lines between the tables. These lines connect the primary and foreign keys of the relation.
The line between the Products and Categories tables in Figure 20.15 indicates that the two tables are
related through the CategoryID field. The CategoryID field in the Categories table is the primary key,
and the same field in the Products table is the foreign key. The symbol of a key at one end of the line
shows the primary key of the relationship, and the other end of the arrow is either a key (indicating a
one-to-one relationship) or the infinity symbol (indicating a one-to-many relationship).

The little shape in the middle of the line indicates the type of join that must performed on the
two tables, and it can take several shapes. To change the type of the relation, you can right-click the
shape and select one of the options in the context menu. The diamond-shaped icon indicates an
inner join, which requires that only rows with matching primary and foreign keys will be retrieved.
By default, the Query Builder treats all joins as inner joins, but you can change the type of the join;
you’ll see how this is done in the section “Specifying Left, Right, and Inner Joins,” later in this
chapter.

The first step in building a query is the selection of the fields that will be included in the result.
Select the fields you want to include in your query by checking the box in front of their names, in
the corresponding tables. As you select and deselect fields, their names appear in the Grid pane.
Notice that all fields are prefixed by the name of the table they came from, so that there will be no
ambiguities.

Right-click the Diagram pane and select Add Table. In the dialog box that pops up, select the
Products and Categories tables, click Add, then click Close to close the dialog box.

Grid Pane

The Grid pane contains the selected fields. Some fields may not be part of the output—you may use
them only for selection purposes—but their names will appear on this pane. To exclude them from
the output, clear the box in the Output column.

The Alias column contains a name for the field. By default, the column’s name is the alias. This is
the heading of each column in the output, and you can change the default name to any string that
suits you.

SQL Pane

As you build the statement with point-and-click operations, the Query Builder generates the SQL
statement that must be executed against the database to retrieve the specified data. The statement
that retrieves product names along with their categories is shown next:

SELECT dbo.Products.ProductName, dbo.Categories.CategoryName
FROM dbo.Categories INNER JOIN dbo.Products

ON dbo.Categories.CategoryID = dbo.Products.CategoryID

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS908

2877c20.qxd 11/11/01 4:21 PM Page 908

http://www.sybex.com

If you paste this statement in the SQL pane and then execute it, you’ll see a list of product names
along with their categories. To execute the query, right-click somewhere on the Query Builder win-
dow and select Run Query. The Query Builder will first fill out the remaining panes (if you’ve cho-
sen to enter the SQL statement), and then it will execute the query. It will display the tables involved
in the query on the Tables pane, it will insert the appropriate rows in the Grid pane, and then it will
execute the query and display the results on the Results pane.

Results Pane

To execute a query, right-click somewhere on the SQL pane and select Run from the context menu.
The Query Builder will execute the statement it generated and will display the results in the Results
pane at the bottom of the window. The heading of each column is the column’s name, unless you’ve
specified an alias for the column.

In the following section, we’re going to build a few fairly complicated queries with the visual
tools of Query Builder, and in the process I will discuss additional features of the Query Builder.

SQL at Work: Calculating Sums
In this section we’ll build a query that retrieves all the products, along with the quantities sold. The
names of the products will come from the Products table, while the quantities must be retrieved
from the Order Details table. Because the same product appears in multiple rows of the tables (each
product appears in multiple invoices with different quantities), we must sum the quantities of all
rows that refer to the same product.

Create a new view in the Server Explorer to start the Query Builder, right-click the upper pane,
and select Add Table. On the Add Table dialog box, select the tables Products and Order Details,
then close the dialog box. The two tables will appear on the Diagram pane with a line connecting
them. This is their relation.

Now check the fields you want to include in the query: Select the field ProductName in the
Products table and the field Quantity in the Order Details table. Expand the options in the Sort
Type box in the ProductName row and select Ascending. The Query Builder will generate the fol-
lowing SQL statement:

SELECT dbo.Products.ProductName, dbo.[Order Details].Quantity
FROM dbo.Products INNER JOIN dbo.[Order Details]

ON dbo.Products.ProductID = dbo.[Order Details].ProductID
ORDER BY dbo.Products.ProductName

Execute this statement, and the first few lines in the Results pane will be

Alice Mutton 30
Alice Mutton 15
Alice Mutton 15
Alice Mutton 40

The Query Builder knows how the two tables are related and retrieved the matching rows from
the two tables. It has also inserted a line that links the two tables in the Tables pane. This line indi-
cates the relationship between the two tables. However, it didn’t sum the quantities for each product.

909THE QUERY BUILDER

2877c20.qxd 11/11/01 4:21 PM Page 909

http://www.sybex.com

Now you’ll specify that we want the sum the quantities. Right-click the Quantity field in the
Grid pane and select the Group By option from the context menu. A new column will be inserted
after the Sort Order column. This column is set automatically to Group By for all the fields.

Now select the Group By cell of the Quantity row, expand the drop-down list, and select the
Sum option. You have just specified that the field Quantity must be summed. The Group By option
tells the Query Builder to group together all the rows that refer to the same product. This ensures
that the sum will include all the products, because the rows of the Order Details table that refer to
the same product are grouped together).

Notice that the Alias cell of the Quantity row has become Expr1 (it’s no longer a column, but
an aggregate). Set the alias to Total Items. Something has changed in the Diagram pane too (see Fig-
ure 20.16). The summation symbol has appeared next to the Quantity field (even though this field
isn’t selected to appear in the output of the query), and the grouping symbol has appeared next to
the ProductName field.

Run the query now and see the results in the lower pane. Each product name appears only once,
and the number next to it is the total number of items sold.

If you close the Query Builder window now, you’ll be prompted as to whether you want to save
the new view and to specify a name for it. The definition will be saved to the Northwind database,
along with the other objects of the database.

SQL at Work: Counting Rows
Let’s say you want to find out the number of orders in which each product appears. Go back to the
Server Explorer and open the previous view (or the Query Analyzer). Add the Orders table, which
will be automatically related to the Order Details table with the OrderID field. Click the OrderID

Figure 20.16

A query with totals

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS910

2877c20.qxd 11/11/01 4:21 PM Page 910

http://www.sybex.com

field in the Orders table. A new line will be added to the Grid pane, and its Group By column will
be set automatically to Group By. Set it to Count Distinct and its alias to “# Of Orders.” We’re
going to sum the orders in which each product appears. The Count Distinct aggregate function is
similar to the Count function, but it will not include the same order twice (if the same product
appears in two rows of the same order). Run the query. This time you’ll get one line per product.
The Alice Mutton item has been ordered 37 times, and the total items sold are 978.

Alice Mutton 978 37
Aniseed Syrup 328 12
Boston Crab Meat 1103 41
Camembert Pierrot 1577 51

The SELECT statement generated by the SQL Builder is the following. Notice that the Orders
table isn’t involved in the query. All the information we need resides in the Order Details table. The
Products table is included so that we can display product names instead of product IDs.

SELECT TOP 100 PERCENT dbo.Products.ProductName,
SUM(dbo.[Order Details].Quantity) AS [Total Items],
SUM(dbo.[Order Details].OrderID) AS [# Of Orders]

FROM dbo.Products
INNER JOIN dbo.[Order Details] ON

dbo.Products.ProductID = dbo.[Order Details].ProductID
GROUP BY dbo.Products.ProductName
ORDER BY dbo.Products.ProductName

The phrase TOP 100 PERCENT tells SQL Server to return all qualifying rows and is optional. The
Query Builder inserted it so that you can change the value and limit the number of selected rows.
Change the default aliases of the two calculated columns and execute the query again by clicking the
button with the exclamation mark.

Limiting the Selection
So far, we’ve extracted data from all rows. Practically, we never work with all the rows in the data-
base—we select a subset based on chronological, geographical, or other criteria. In this section we’ll
modify the previous query so that it retrieves the totals over a time period. As you can guess, we’ll
use the WHERE clause to limit the selected rows.

Our selection will be chronological. We’ll sum the items sold in a year (or any other interval you
wish). This will introduce a little additional complexity to our query, because the information on
which the selection will be based doesn’t appear in the Order Details table. The date of each order is
stored in the Orders table, so we must add this table to our query.

Select the OrderDate field to the Grid pane. We want to specify two criteria for the date: it must
be after the starting date and before the ending date. So, add the Orders.OrderDate field twice. To
add a second instance of the same field, expand the first empty cell in the left column and, from the
drop-down list, select its name. Then move to the Group By column of the row of the OrderDate
field. Change its value to WHERE and, in the Criteria column, enter the following:

>= ‘1/1/1998’

911THE QUERY BUILDER

2877c20.qxd 11/11/01 4:21 PM Page 911

http://www.sybex.com

In the second instance of the same field, expand the Group By column, set it to WHERE, and
then enter the following string in the Criteria column:

<= ‘1/1/1999’

The Query Builder has generated the following SQL statement:

SELECT TOP 100 PERCENT dbo.Products.ProductName,
SUM(dbo.[Order Details].Quantity) AS [Total Items],
SUM(dbo.[Order Details].OrderID) AS [# Of Orders]

FROM dbo.Products
INNER JOIN dbo.[Order Details] ON

dbo.Products.ProductID = dbo.[Order Details].ProductID
INNER JOIN dbo.Orders ON

dbo.[Order Details].OrderID = dbo.Orders.OrderID
WHERE (dbo.Orders.OrderDate >=

CONVERT(DATETIME, ‘1998-01-01 00:00:00’, 102))
AND (dbo.Orders.OrderDate <=

CONVERT(DATETIME, ‘1999-01-01 00:00:00’, 102))
GROUP BY dbo.Products.ProductName
ORDER BY dbo.Products.ProductName

As you can see, the Query Builder inserted the appropriate statements to convert your values to dates.
You can make this statement a little more compact by using the BETWEEN operator. Remove the
cells corresponding to the OrderDate field from the first column. Then add the OrderDate field again,
set its Group By column to WHERE, and in the Criteria columns, enter the expression BETWEEN
‘1/1/1998’ AND ‘1/1/1999’. When no time is specified, it’s assumed that it’s the first second of the
specified date. The date 1/1/1998 includes the first day of the year. The date 12/31/1998 doesn’t
include the last day of the year, because it will be converted to 1998-12-31 00:00:00. If you specify the
first and last day of the year, the totals will be calculated over a period of 364 days, not 365 days (assum-
ing the year is not leap). So, you must either specify the following date, or add a time part to the date to
take into consideration the 24 hours of the final day: 12/31/1998 23:59:59.

Execute the query and you will see the following lines at the top of the Results pane:

Alice Mutton 217 11
Aniseed Syrup 108 4

Go back to the Grid pane and change the dates to calculate the same results for the year 1997.
The two criteria should be:

>= ‘1/1/1997’
<= ‘1/1/1998’

Execute the new query and you will see the same product names, only with different totals. Here’s
the revised query’s code:

SELECT TOP 100 PERCENT dbo.Products.ProductName,
SUM(dbo.[Order Details].Quantity) AS [Total Items],
SUM(dbo.[Order Details].OrderID) AS [# Of Orders]

FROM dbo.Products
INNER JOIN dbo.[Order Details] ON

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS912

2877c20.qxd 11/11/01 4:21 PM Page 912

http://www.sybex.com

dbo.Products.ProductID = dbo.[Order Details].ProductID
INNER JOIN dbo.Orders ON

dbo.[Order Details].OrderID = dbo.Orders.OrderID
WHERE (dbo.Orders.OrderDate BETWEEN

CONVERT(DATETIME, ‘1997-01-01 00:00:00’, 102)
AND CONVERT(DATETIME, ‘1998-1-1 00:00:00’, 102))

GROUP BY dbo.Products.ProductName
ORDER BY dbo.Products.ProductName

Parameterized Queries
How about running the same query with different dates? Let’s modify our query once again, and
make the two dates parameters of the queries. Each time you’ll be executing the new query, you’ll be
prompted to specify the starting and ending dates.

Replace the two dates in the Criteria column of the Grid pane with a question mark. The revised
expression should now read:

Between ? And ?

If you run the query, you’ll get an error message telling you that parameters aren’t supported for
this type of query. We’re designing a view; that’s why you can’t use parameters. Click OK to get rid
of the message, and you’ll be prompted to enter the values of the two parameters (Figure 20.17). A
question mark in a query corresponds to a parameter, and you must supply the values for the param-
eters in the order in which they appear in the query. Enter the two dates in Define Query Parameters
window and you’ll see its output in the Results pane.

In the following section, we’ll convert this statement to a stored procedure, and you’ll see how
you can pass values for the query’s parameters. Because the behavior of the query depends on the
values of its parameters, this is a parameterized query.

Calculated Columns
Let’s add yet another step of complexity to our query. We’ll modify our query so that it calculates
the total revenues generated by each product. Move down in the Field column of the Grid pane, and
in the first free cell, enter the following expression:

Quantity * UnitPrice * (1 – Discount)

Figure 20.17

Specifying the
parameters for a
query

913THE QUERY BUILDER

2877c20.qxd 11/11/01 4:21 PM Page 913

http://www.sybex.com

The wizard will replace the field names with fully qualified names:

(dbo.[Order Details].Quantity * dbo.Products.UnitPrice) * (1 - dbo.[Order
Details].Discount)

This expression calculates the subtotal for each line in the Order Details table. We multiply the
price with the quantity, taking into consideration the discount. Shortly, we’re going to sum the
subtotals for each product.

Because this is a calculated column, its Alias becomes Expr1. Change this value to Revenue. In the
Group By column, select Sum. Make sure the Output column is checked and then run the query.
Same results as before, only this time with an extra column, which is the revenue generated by the
corresponding product:

Alice Mutton 978 37 38142
Aniseed Syrup 328 12 3280
Boston Crab Meat 1103 41 20295.2

The SQL statement generated by the SQL Builder is:

SELECT dbo.Products.ProductName,
SUM(dbo.[Order Details].Quantity) AS [Total Items],
COUNT(DISTINCT dbo.Orders.OrderID) AS [Times Ordered],
SUM(dbo.[Order Details].Quantity * dbo.Products.UnitPrice) AS Revenue

FROM dbo.Products
INNER JOIN dbo.[Order Details] ON

dbo.Products.ProductID = dbo.[Order Details].ProductID
INNER JOIN dbo.Orders ON

dbo.[Order Details].OrderID = dbo.Orders.OrderID
WHERE (dbo.Orders.OrderDate > @FromDate) AND

(dbo.Orders.OrderDate < @ToDate)
GROUP BY dbo.Products.ProductName
ORDER BY dbo.Products.ProductName

This is a fairly complicated statement, and we won’t get into any more complicated statements in
this book. As you can see, you can create quite elaborate SQL statements to retrieve information
from the database with point-and-click operations. But even if you don’t want to enter your own
SQL statements, some understanding of this language is required. All the keywords have been
explained previously, and you can test your knowledge of SQL by examining the code generated by
the Query Builder.

Specifying Left, Right, and Inner Joins
This time we’ll build another query to demonstrate the differences between the various types of joins
and, most importantly, the types of (subtle) errors introduced by the wrong type of join. We’ll build
a query that retrieves all the titles from the Pubs database, along with their authors.

Open the Query Builder window, or remove all the tables from the Diagram pane if it’s already
open. This time, select the Pubs database and drop the following tables on the Diagram pane: Titles,

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS914

2877c20.qxd 11/11/01 4:21 PM Page 914

http://www.sybex.com

TitleAuthor, and Authors. Then check the fields title, au_lname, and au_fname to include in your
query. Set the Title Sort Order to 1 and run the query. The first few lines in the Results pane
will be:

But Is It User Friendly? Carson Cheryl

Computer Phobic AND Non-Phobic Individuals: Behavior Variations MacFeather Stearns

Computer Phobic AND Non-Phobic Individuals: Behavior Variations Karsen Livia

Cooking with Computers: Surreptitious Balance Sheets O’Leary Michael

Cooking with Computers: Surreptitious Balance Sheets MacFeather Stearns

If a book has multiple authors, the book’s title will appear in the results as many times as there are
authors. This is how SQL works, and you can’t change this behavior. Be aware that many queries will
return rows with identical information (the same title with each of its authors), and you must provide
the code to display all the authors along with the corresponding title, rather than repeating the same
title over and over. Later in the book, you’ll learn how to bring in selected titles and the authors that
are related to the selected titles (not all authors). For now, let’s focus on SQL statements.

Let’s start by formatting the output a little. First, change the au_lname column to au_lname + ‘,
‘ + au_fname. This will concatenate first and last names to form the author’s name. This is a calcu-
lated column, and its Alias will be set to Expr1; change it to Author. Then run the query.

The Query Builder has generated the following SQL statement:

SELECT dbo.titles.title,
dbo.authors.au_lname + ‘, ‘ + dbo.authors.au_fname AS Author

FROM dbo.authors
INNER JOIN dbo.titleauthor ON

dbo.authors.au_id = dbo.titleauthor.au_id
INNER JOIN dbo.titles ON

dbo.titleauthor.title_id = dbo.titles.title_id
ORDER BY dbo.titles.title

If you execute the query now, the following lines will appear at the top of the Results pane:

But Is It User Friendly? Carson, Cheryl

Computer Phobic AND Non-Phobic Individuals: Behavior Variations MacFeather, Stearns

Computer Phobic AND Non-Phobic Individuals: Behavior Variations Karsen, Livia

Cooking with Computers: Surreptitious Balance Sheets O’Leary, Michael

Cooking with Computers: Surreptitious Balance Sheets MacFeather, Stearns

This is an inner join, which returned 25 rows. They are all the books with one or more authors.
To include the books without an author, we must create a right join (the table to the right being the
Titles table). The right join will include all the titles whether they have an author or not.

915THE QUERY BUILDER

2877c20.qxd 11/11/01 4:21 PM Page 915

http://www.sybex.com

Right-click the line that relates the table Titles to the table TitleAuthor, and from the menu
choose Select All Rows From Titles. This action changes the inner join between the tables to a right
join. Run the new query and it will generate 26 rows in the Results pane. The last title has no
author, and the corresponding line is:

The Psychology of Computer Cooking <NULL>

The SQL statement generated by the Query Builder is:

SELECT dbo.titles.title,
dbo.authors.au_lname + ‘, ‘ + dbo.authors.au_fname AS Author

FROM dbo.titleauthor
INNER JOIN dbo.authors ON

dbo.titleauthor.au_id = dbo.authors.au_id
RIGHT OUTER JOIN dbo.titles ON

dbo.titleauthor.title_id = dbo.titles.title_id
ORDER BY dbo.titles.title

To do the opposite, select all authors whether they appear in a title or not, reset the relation
between Titles and TitleAuthor (clear the check mark in front of Select All Rows From Title), and
check the item Select All Rows From Authors. If you run the query, you’ll see that the following line
is included in the Results pane:

<NULL> Stringer, Dirk

The last type of join will return all titles and all authors. Right-click the line that connects the
Titles and TitleAuthor tables and check both options, as shown in Figure 20.18.

Figure 20.18

A query that
retrieves all the titles
and all the authors

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS916

2877c20.qxd 11/11/01 4:21 PM Page 916

http://www.sybex.com

This time the Query Builder will generate the following SQL statement:

SELECT dbo.titles.title AS Title,
dbo.authors.au_lname + ‘, ‘ + dbo.authors.au_fname AS Author

FROM dbo.authors LEFT OUTER JOIN dbo.titleauthor
ON dbo.authors.au_id = dbo.titleauthor.au_id
FULL OUTER JOIN dbo.titles
ON dbo.titleauthor.title_id = dbo.titles.title_id

When executed, this statement will return authors without books as well as titles without author:

<NULL> Greene, Morningstar

The Psychology of Computer Cooking <NULL>

Notice that the outer join is between the Titles and TitleAuthor tables, as well as between the
TitleAuthor and Authors tables. Once each title is linked to the proper row(s) in the TitleAuthor
table, the corresponding names will be easily retrieved from the Authors table with an inner join.
Each row in the TitleAuthor table points to a single row of Authors table. You can use the Diagram
pane of the SQL Query Builder to experiment with the various types of joins. Right-click the line
that connects two tables (it represents a join) and change the type of the join—check or clear the
two options on the context menu.

Stored Procedures
This is another of the objects you must familiarize yourself with. Stored procedures are short programs
that are executed on the server and perform very specific tasks. Any action you perform against the
database frequently should be coded as a stored procedure, so that you can call it from within any
application or from different parts of the same application. A stored procedure that retrieves cus-
tomers by name is a typical example, and you’ll call this stored procedure from many different placed
in your application.

You should use stored procedures for all the operations you want to perform against the data-
base. Stored procedures isolate programmers from the database and minimize the risk of impairing
the database’s integrity. When all programmers access the same stored procedure to add a new
invoice to the database, they don’t have to know the structure of the tables involved or in what order
to update these tables. They simply call the stored procedure passing the invoice’s fields as arguments.
Another benefit of using stored procedures to update the database is that you don’t risk implement-
ing the same operation in two different ways. This is especially true for a team of developers,
because some developers may have not understood the business rules thoroughly. If the business
rules change, you can modify the stored procedures accordingly, without touching the other parts of
the application.

Another advantage of using stored procedures is that they’re compiled by SQL Server and they’re
executed faster. There’s no penalty in using stored procedures versus SQL statements, and any SQL
statement can be easily turned into a stored procedure, as you will see in this section. Stored proce-
dures contain traditional programming statements that allow you to validate arguments, use default
argument values, and so on. The language you use to write stored procedure is called T-SQL, and
it’s a superset of SQL.

917STORED PROCEDURES

2877c20.qxd 11/11/01 4:21 PM Page 917

http://www.sybex.com

ADO.NET makes heavy use of stored procedures by design. You can also use SQL statements to
query or update the database, but once you’ve gotten the SQL statement right, you can very easily
turn it into a stored procedure so that all other programmers in your team can use it. Stored proce-
dures are stored in the database, and you can prevent developers from modifying them (the database
administrator will give each team the proper rights to create, edit, or delete database objects).

So, what’s the difference between stored procedures and SQL statements? As you recall, SQL is a
peculiar language: it allows you to specify what you want to do, but not how to do it. Unlike VB, it’s
a nonprocedural language. It lacks the control flow statements you expect to find in any program-
ming languages, it doesn’t use variables, and you can’t break a complicated query into smaller proce-
dures. SQL Server extends SQL by adding traditional programming structures. The new language is
called T-SQL (Transact-SQL). I won’t discuss T-SQL in depth in this book, but you’ll get a good
idea of the capabilities of T-SQL through the examples of the following sections; plus, the basic
components of the T-SQL language are overviewed in the bonus chapter “Transact-SQL” on the
companion CD. Knowing VB, you’ll have no problem learning the basics of T-SQL.

Let’s explore stored procedures by looking at an existing one. Open the Server Explorer toolbox,
connect to the Northwind database and them expand the Stored Procedures node of the Northwind
database. Locate the SalesByCategory stored procedure and double-click its name. The SalesByCate-
gory stored procedure contains the statements from Listing 20.2, which will appear on the editor’s
window:

Listing 20.2: The SalesByCategory Stored Procedure

ALTER PROCEDURE dbo.SalesByCategory
@CategoryName nvarchar(15),
@OrdYear nvarchar(4) = ‘1998’

AS
IF @OrdYear != ‘1996’ AND @OrdYear != ‘1997’ AND @OrdYear != ‘1998’
BEGIN

SELECT @OrdYear = ‘1998’
END
SELECT ProductName,

TotalPurchase = ROUND(SUM(CONVERT(decimal(14,2),
OD.Quantity * (1-OD.Discount) * OD.UnitPrice)), 0)

FROM [Order Details] OD, Orders O, Products P, Categories C
WHERE OD.OrderID = O.OrderID

AND OD.ProductID = P.ProductID
AND P.CategoryID = C.CategoryID
AND C.CategoryName = @CategoryName
AND SUBSTRING(CONVERT(nvarchar(22), O.OrderDate, 111), 1, 4) = @OrdYear

GROUP BY ProductName
ORDER BY ProductName

This type of code is probably new to you. You’ll learn it quite well as you go along, because it’s
really required in coding database applications. You can rely on the various wizards to create stored
procedures for you, but you should be able to understand how they work.

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS918

2877c20.qxd 11/11/01 4:21 PM Page 918

http://www.sybex.com

The first statement alters the procedure SalesByCategory, which is already stored in the database.
If it’s a new procedure, you can use the CREATE statement instead of ALTER, to attach a new stored
procedure to the database. The following lines until the AS keyword are the parameters of the stored
procedure. All variables in T-SQL start with the @ symbol. @CategoryName is a 15-character string,
and @OrdYear is a string that also has a default value. If you omit the second argument when calling
the SalesByCategory procedure, then the year 1998 will be used automatically.

The AS keyword marks the beginning of the stored procedure. The first IF statement makes sure
that the year is a valid one (from 1996 to 1998). If not, it will use the year 1998. The BEGIN and
END keywords mark the beginning and end of the IF block (the same block that’s delimited by the
If and End If statements in VB code).

Following the IF statement is a long SELECT statement that uses the arguments passed to the
stored procedure as parameters. This is a straight SQL statement that implements a parameterized
query. Because the stored procedure is called like a function, it will not prompt the user for the val-
ues of the parameters; these values are passed as arguments when the stored procedure is called.

Notice that each table is assigned an alias, so that we won’t have to type the name of table over
and over. The alias for the Orders table is O, the alias for the Order Details table is OD, and they’re
defined in the same line that specifies the tables from which the data will come:

FROM [Order Details] OD, Orders O, Products P, Categories C

After that, we use the shorter aliases in the place of the tables’ names.
The second half of the stored procedure’s code appears in a box on the editor’s window. Right-

click anywhere in this box and select Design SQL Block. This block is a SQL statement that retrieves
the total sales for the specified year and groups them by category. You can edit it either as a SQL seg-
ment or through the visual interface of the Query Builder. You already know how to handle SQL
statements, so everything you learned about building SQL statements applies to stored procedures as
well. The only difference is that you can embed traditional control structures, like IF statements,
AND loops, and WHILE loops, and mix them with SQL.

The stored procedure we examined returns a cursor (a set of rows). It is also possible to write
stored procedures that return one or more values, through their parameters list. A stored procedure
that returns the total items of specific product sold in a period need not return a cursor; all we need
is an integer value. You’ll see later how to return a few parameters from a stored procedure.

For now, let’s test the stored procedure. Right-click anywhere in the SQL Builder panes and
select Run Stored Procedure. A dialog box pops up and prompts you to enter the values for the two
parameters the query expects: the name of the category and the year. Enter Beverages and 1997 as
shown in Figure 20.19 and then click OK. The stored procedure will return the qualifying rows,
which will be displayed in the Output window.

Figure 20.19

Supplying the values
of a stored proce-
dure’s parameters

919STORED PROCEDURES

2877c20.qxd 11/11/01 4:21 PM Page 919

http://www.sybex.com

The SalesByCategory stored procedure returned the following lines when executed with the
parameters shown in Figure 20.19. These lines appear in the Output window.

ProductName TotalPurchase
-- ---------------------
Chai 4887
Chang 7039
Chartreuse verte 4476
Côte de Blaye 49198
Guaraná Fantástica 1630
Ipoh Coffee 11070
Lakkalikööri 7379
Laughing Lumberjack Lager 910
Outback Lager 5468
Rhönbräu Klosterbier 4486
Sasquatch Ale 2107
Steeleye Stout 5275
No more results.
(12 row(s) returned)
@RETURN_VALUE = 0
Finished running dbo.”SalesByCategory”.

This is quite a statement, but stored procedures are not difficult to design with the SQL Builder.
Let’s build a new stored procedure to calculate the number of orders placed by each customer and
the total revenue they generated.

Let’s create a new stored procedure. Right-click the Stored Procedures item in the Server
Explorer and select New Stored Procedure. You will see a new pane on the Designer surface with
the following text, which is the outline of a stored procedure:

CREATE PROCEDURE dbo.StoredProcedure1
/*

(
@parameter1 datatype = default value,
@parameter2 datatype OUTPUT

)
*/
AS

/* SET NOCOUNT ON */
RETURN

The symbols /* and */ delimit a section with comments in T-SQL. In the first commented sec-
tion, you see how the stored procedure’s variables must be declared. You must replace this section
with the declarations of your stored procedure’s arguments.

Then comes the AS keyword, where you must enter the SQL statements you want to execute in
your stored procedure. The last statement, RETURN, is optional, because the stored procedure will
terminate as soon as it reaches the last line. Use the RETURN statement to exit the stored proce-
dure prematurely.

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS920

2877c20.qxd 11/11/01 4:21 PM Page 920

http://www.sybex.com

Select all the text on the editor and replace it with the following stored procedure declaration:

CREATE PROCEDURE dbo.OrdersPerCustomer
@CustomerID nchar(5)=’ALFKI’

AS

The first line declares the name of the procedure. The next few lines declare the name and type of
the parameters expected by the procedure. If the parameter has a default value, this is also specified
on the same line as the parameter’s declaration. The OrdersPerCustomer stored procedure accepts a
single argument, which is the customer’s ID (a five-character string, as you recall from the overview
of the Northwind database earlier in this chapter).

Following the AS keyword is the SQL code that retrieves data from the database. Right-click
anywhere in the editor’s window, and from the context menu, select Insert SQL. This will open the
SQL Builder, where you can build a SQL statement with point-and-click operations.

Let’s build a SQL statement that will retrieve the orders for a specific customer. On the SQL
Builder window, clear the SQL pane, then right-click the Diagram pane and select Add Table from
the context menu. In the dialog box, select Customers, then click Add. Do the same for the Orders
table, and then close the Add Table dialog box. You have two tables in the upper pane, and the SQL
Builder inserted a line between them. This is a relation. It indicates that the CustomerID field in the
Orders is the same as one of the CustomerID fields in the Customers table.

Next we must specify what we want to see in our query. Click CompanyName in the first table
and OrderID in the second table (and clear all other fields). Column (field) names will appear in the
grid under the Column heading, and the corresponding tables they came from will appear under the
Table heading. The check mark in the output column denotes that they will be included in the out-
put. If you run the query now (choosing Run from the context menu), you’ll see the all the orders
for all customers. We don’t want all the orders per customer, just the count of the orders placed by a
single customer.

Go to the OrderID row and GroupBy column in the Grid pane. When you select the cell, a but-
ton will appear with a down arrow. Click the button and a list of options will appear. Select the
Count option. The Alias cell in the same row has become Expr1. This is the header of the Count
column; all other columns in the query are named after the table column. Change Expr1 to Total
Orders.

At this point, the statement is:

SELECT dbo.Customers.CompanyName,
COUNT(dbo.Orders.OrderID) AS [Total Orders]

FROM dbo.Customers INNER JOIN dbo.Orders ON
dbo.Customers.CustomerID = dbo.Orders.CustomerID

Now go to the CompanyName row, and in the GroupBy cell, select Group By. We want to count
all the orders per customer, so we must first group the customers and then sum their orders. This is
one of the fine points in SQL. If you make a mistake and forget to group the query appropriately,
the following message will appear when you attempt to execute it:

Column Customers.CompanyName is invalid in the select list because it is not
contained in an aggregate function and there is no GROUP BY clause.

921STORED PROCEDURES

2877c20.qxd 11/11/01 4:21 PM Page 921

http://www.sybex.com

The final SQL statement is:

SELECT dbo.Customers.CompanyName,
COUNT(dbo.Orders.OrderID) AS [Total Orders]

FROM dbo.Customers INNER JOIN dbo.Orders ON
dbo.Customers.CustomerID = dbo.Orders.CustomerID

GROUP BY dbo.Customers.CompanyName

If you execute it now, you’ll get a list of customers and the number of orders per customer.

Alfreds Futterkiste 6
Ana Trujillo Emparedados y helados 4
Antonio Moreno Taquería 7
Around the Horn 13
Berglunds snabbköp 18
Blauer See Delikatessen 7

This is not the stored procedure you’re executing. You’re still working with SQL Builder. When
you close the SQL Builder window later, the SQL statement will be placed in the SQL box in the
stored procedure’s definition.

The last step is to limit the number of customers. Add the CustomerID to the list of columns
by checking the box in front of its name in the Customers table. When it’s added to grid, clear the
check mark in the Output cell. We’ll use this field to limit our selection, but we don’t want it to
appear along with the other fields in the output list. Then go to the Criteria cell of the same row and
enter =?. The equal sign means that we want to select the customer with a specific value of the Cus-
tomerID field, which will be supplied as argument to the stored procedure. The specific value is the
question mark, which means a user-supplied value. If you entered the string “=‘ALFKI’”, the query
would always return the number of orders placed by the customer Alfreds Futterkiste. It makes more
sense to write parameterized queries, which can select different rows every time you execute them
depending on the parameter value.

Run the query. You’ll be prompted to enter the ID of a customer. Enter ALFKI, and you’ll see
the total number of orders for the specified customer in the Results pane. Now close the SQL
Builder window and the SQL statement will appear in the SQL block of the stored procedure. The
complete stored procedure is now:

CREATE PROCEDURE dbo.OrdersPerCustomer
@CustomerID nchar(5)= ‘ALFKI’

AS
SELECT dbo.Customers.CompanyName,

COUNT(dbo.Orders.OrderID) AS [Total Orders],
dbo.Customers.CustomerID

FROM dbo.Customers INNER JOIN dbo.Orders ON
dbo.Customers.CustomerID = dbo.Orders.CustomerID

GROUP BY dbo.Customers.CompanyName,
dbo.Customers.CustomerID

HAVING (dbo.Customers.CustomerID = @CustomerID)

Notice that the question mark in the SQL statement was replaced by the first argument of the
stored procedure. If there were another parameter (another question mark in the stored procedure),

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS922

2877c20.qxd 11/11/01 4:21 PM Page 922

http://www.sybex.com

it would be replaced by the second argument of the stored procedure, and so on. You may have to
edit the names of the arguments—you will have to do so if the order of the SQL statement’s param-
eters doesn’t match the order in which the arguments are passed to the stored procedure. Close the
stored procedure’s window by clicking the Close button (the little X mark) in its top-right corner.
Then select the name of the new stored procedure in the Stored Procedures branch of the tree in the
Server Explorer and select Run Stored Procedure. You’ll be prompted to enter a customer ID. If you
enter ALFKI, you’ll see the following in the Output window:

Running dbo.”OrdersPerCustomer”
(@CustomerID = ALFKI).CompanyName Total Orders CustomerID

Alfreds Futterkiste 6 ALFKI
No more results.
(1 row(s) returned)
@RETURN_VALUE = 0
Finished running dbo.”OrdersPerCustomer”.

If the Output window is not visible, open it with View ➢ Output Window to see the output of
the stored procedure.

The stored procedure we’ve built, which is basically a SQL statement that retrieves information
from the database packaged as a procedure (so that you can call it by name), is a fairly complicated
one. Stored procedures are made up of SQL statements and some T-SQL code. The different types
of code are clearly marked on the stored procedure’s design window, and you can use the Query
Builder to build and test the SQL part of the stored procedure. The rest is simple T-SQL code that
sets up variables and uses traditional programming structures to perform housekeeping tasks.

As you will see in the following chapter, stored procedures can be called like functions. In addi-
tion, they can return results to the calling procedure through their arguments. The stored procedure
that returns the number of invoices placed by a customer in a specified period need not return a cur-
sor. It can return a single value. Like VB functions, stored procedures return a single value, which is
the return value.

We could have assigned the number of orders to the stored procedure’s return value. Most practi-
cal stored procedures return multiple rows, and this is why I’ve shown you how to return a row,
rather than a single value.

Can you edit the stored procedure so that it returns the total revenue generated by the selected
customer in addition to the number of orders? You can use the Query Builder to design the query
visually, or enter the following query’s definition in the SQL pane and then watch the query update
the other panes:

SELECT Customers.CompanyName, COUNT(Orders.OrderID) AS [Total Orders],
Customers.CustomerID,
SUM([Order Details].Quantity * Products.UnitPrice) AS Total

FROM Customers INNER JOIN Orders ON
Customers.CustomerID = Orders.CustomerID INNER JOIN [Order Details]
ON Orders.OrderID = [Order Details].OrderID INNER JOIN Products
ON [Order Details].ProductID = Products.ProductID

GROUP BY Customers.CompanyName, Customers.CustomerID
HAVING (Customers.CustomerID = @CustomerID)

923STORED PROCEDURES

2877c20.qxd 11/11/01 4:21 PM Page 923

http://www.sybex.com

We’ll use this stored procedure in the following chapter in a short application that demonstrates
how to execute a stored procedure from within your VB code and how to get the results back.

Summary
It’s been a long chapter but certainly interesting. You’ve learned how data are stored in databases,
how to break the information into smaller pieces and store it into tables, and how relationships
between tables allow you to quickly locate the information you’re interested in.

All actions against databases are performed with SQL statements and stored procedure. SQL is a
universal language for accessing data in databases. SQL is not a traditional language, in that it
describes the actions you want to perform to the database but not how these actions will be carried
out. ADO.NET is based on SQL (SQL statements and stored procedures), and all the information
in this chapter will be used in the following chapters to build database applications.

So far, you’ve learned how to extract data from a database. In the following chapter, you’ll learn
how to move this information from the server (the computer running SQL Server) to the client (the
machine on which your application is running), how to store the information and process it on the
client, and how to update the database.

Chapter 20 DATABASES: ARCHITECTURE AND BASIC CONCEPTS924

2877c20.qxd 11/11/01 4:21 PM Page 924

http://www.sybex.com

Chapter 21

Building Database Applications
with ADO.NET
In this chapter, we’re going to explore the basics of database applications. The database
applications you build with VB.NET are client-server applications. The data resides in a database,
which is installed on one of the computers on the network. To test the examples of this section,
you will most likely use a copy of SQL Server installed on the same machine you use for develop-
ment. In an actual production environment, your application will be installed on many clients, and
all of the clients will be accessing the same database, installed on the server. The server knows how
to access the data very efficiently, and that’s all it does. Presenting the data to the user and/or pro-
cessing the data is your application’s responsibility. The server is the machine on which SQL
Server is running. The machines on which the application is running are the clients.

The client-server model is a very efficient one because it allows you to share the computational
load among multiple computers and each computer does what it can do best. The client com-
puter gets data, presents them to the user, optionally processes them, and sends them back to the
server. The server can focus on moving data out of and into the database. The type of client
described here is called rich client, because it can use advanced controls to present the data to the
user. It’s a workstation running Windows applications, which can process the data in many ways.
For example, it can convert the data read from the database into elaborate graphical representa-
tions. There’s absolutely no reason to pass the task of processing the data to the server.

The client-server architecture a two-tier architecture. The programs running on the client
make up the presentation tier; the database server is the data tier. Of course, you’ve all read that
ADO.NET is a great tool for three-tier, or multitier, applications. So, what’s the third tier? Let’s
consider for a moment an application that runs on the Web—an online store, for example. The
client is the browser. This is the program that runs on each client and interacts with the user.
Unlike a Windows application, the browser can’t deploy an elaborate user interface (you can’t
place any of the Windows controls on a Web page); you’re limited to the HTML controls. This
type of client is called thin client, because it has limited processing capabilities. The browser must
receive HTML pages and render them on the monitor. The HTML page may contain scripts
too, but even so you can’t duplicate the functionality of a Windows form on a Web page. In
other words, you can’t pull data from the database, download them to the client, and process

2877c21.qxd 11/11/01 4:22 PM Page 925

http://www.sybex.com

them there. If you want to convert the numeric data retrieved from the database into charts, you
must create the pages with the graphs and download them to the client, where they can be rendered
by the browser.

The processing of the data takes place on the Web server. The clients on the Web don’t see the
database server directly. Instead, they contact a program running on the Web server, which in turns
contacts the database to retrieve the requested data, format them in a way the browser can under-
stand them, and then send the HTML page to the client. The programs running on the Web server
that service the requests made by the clients form the third tier, and a Web application is the most
familiar example of the three-tier architecture. The three-tier architecture is the evolution of the
client-server model.

You can also introduce additional tiers to your applications. Let’s say your application records
orders made over the Web. When the user places an order, the application running on the Web
server may have to contact the server of a shipping company to get a quote on the shipping cost and
add it to the total cost of the order. The programs on the shipper’s server form yet another tier of
the application.

What makes VB.NET a great tool for multitier applications is that it uses XML to pass data
between layers. XML is a text-based protocol that can describe any type of data, even images. By
using the XML format, data are moved easily and reliably between layers, even between different
operating systems and databases. Since you’re probably wondering about XML, what it can do for
your applications and, especially, how well you must understand XML, let me simplify the picture a
little. You can write database applications without ever seeing a line of XML code. ADO.NET uses
XML to format the data and move them between the database and the client application (or any of
the other tiers of the application). As you work with the objects of ADO.NET, you access data in
their native format. XML is totally transparent to you.

The Architecture of ADO.NET
You already know how to retrieve data from a database with SQL statements and stored procedures.
Now you’ll learn where the data are stored on the client computer and how to process them. We’ll
get to the first few examples of database applications shortly, but first I would like to overview the
architecture of ADO.NET. Once you have a good idea of the big picture and the motivation behind
the design of ADO.NET, you’ll be able to better understand the objects of ADO.NET and how to
use them.

ADO.NET is considered to be the evolution of ADO, but it doesn’t even resemble ADO. ADO
was designed on the assumption that the client could maintain a connection to the database. When
the Web wasn’t an issue, you could set up a connection to the database and request data over this
connection, or update the database through the same connection. The client application was con-
nected to the database at all times, and it could access any table at any time. In fact, this is how most
database applications that run on local area networks are written today.

As programmers were looking for ways to access their databases over the Web, they realized that
they couldn’t write applications that maintained their own connection to the database. They still used
ADO, but they were using ADO in a disconnected mode: they wrote code to read data from the data-
base, move them to the client, and close the connection to the database. The processing of the data
took place on the client. To update the database, programmers had to establish a new connection, send

Chapter 21 BUILDING DATABASE APPLICATIONS WITH ADO.NET926

2877c21.qxd 11/11/01 4:22 PM Page 926

http://www.sybex.com

the modified data back to the server to update the tables of the database, and then close the connection
again. Microsoft kept adding features to ADO to enhance the support of disconnected sets of data.

Clearly, there was a need for a different programming paradigm, one that would completely
decouple the server from the client. This new paradigm was implemented with ADO.NET, which
uses a disconnected architecture. The client application requests the data, which are downloaded to
the client computer and stored locally. The client is your application that uses a database over the
company’s network, or a Web application that connects to a Web server through any connection,
from dial-up to T1. Even if you have a fast connection, ADO.NET doesn’t allow you to maintain a
connection to the database and access it directly. Instead, you’re required to retrieve the data you
need to the client and work with them there.

You know how to request the data you’re interested in. All you need is a structure that will hold
the data. This structure is an object called a DataSet. The DataSet is a cache for your data, and it
looks just like the database. You can edit the data in the DataSet, add new data, even combine the
data you retrieved from your database with data from another database. It is possible (but certainly
not recommended) to download all the tables to the client and work with a complete copy of the
database. Everything you do the DataSet is local to the client and doesn’t affect the tables in the data-
base. When you’re ready to update the underlying tables in the database, you establish a new connec-
tion, send the modified data, and close the connection again.

The DataSet is at the core of ADO.NET, because everything takes place in the DataSet. With
ADO, there was a similar object, the Recordset object, where you could store a table or the result
of a query and process it locally. The DataSet is far more than a Recordset: it’s a miniature data-
base, made up of tables and relations between them. Let’s say you want to work with the invoices
issued last month. The data you need are some rows of the Customers table (the customers that
placed one or more orders in this period), some rows of the Orders table (the orders placed in
the same period), and some rows of the Order Details table (the details that correspond to the
selected orders). Chances are you don’t need all the columns of these tables either. So you can spec-
ify, with SQL statements or stored procedures, the data you need and bring them into a DataSet on
the client. The data will end up in three different tables in the DataSet, and you can establish rela-
tions between tables. In essence, you’re working with a subset of the database. You can review the
data, edit them, do anything you would do if you were working directly against the database. The
DataSet can impose the same constraints and enforce referential integrity between its tables. After
you’re done processing the data, the DataSet knows how to move the changes back to the data-
base—after all, they have the same structure.

While the data is in the DataSet, other users can add new rows to the tables of the database, even
edit some of the rows you have copied into the DataSet. Unfortunately, there’s no way for you to
know in advance that one of the customer rows in a local DataSet is no longer the same as the origi-
nal row in the database. You will only find out when you attempt to update the database. As a result,
this architecture is not ideal for applications like flight reservations. If you need this type of immedi-
ate access to the database, you should request data as you need them and update the database imme-
diately. These types of applications are quite uncommon. ADO.NET is a great architecture for
typical applications most of us are faced with on a daily basis, and it’s especially well suited for the
Web. However, the current version of ADO.NET doesn’t address all the issues. It’s very likely that
the next version of ADO.NET will also support connected DataSets. If not, there will be applica-
tions that ADO.NET can’t handle.

927THE ARCHITECTURE OF ADO.NET

2877c21.qxd 11/11/01 4:22 PM Page 927

http://www.sybex.com

To get the data into a DataSet, you must first establish a connection to the database. The
Connection object allows you to specify the database you want to work with, and it’s one of the
simpler objects of ADO.NET. Between the database and the DataSet there’s another object, the
DataAdapter object. While the client application works with the data in the DataSet most of the
time, every now and then it must exchange information with the database (query the database, or
update it). The communication between the database and the DataSet takes place through the
DataAdapter. This object knows how to update the database, as well as how to move data from the
database and store them into the DataSet. As you will see, the DataAdapter object contains four
commands for retrieving rows from the database, updating and deleting existing rows, and inserting
new rows. These commands are SQL statements, and this is all the information the DataAdapter
object needs to move data between the DataSet and the underlying data source.

The first advantage of the DataSet object is that it doesn’t care where its data came from, as long
as there’s a DataAdapter object that can move data to and from the DataSet. As a result, you can cre-
ate DataSets in code, or from an XML file. You can even save (or persist) a DataSet object to a disk
file and write a database application without the database.

How About XML?
ADO.NET and XML go hand in hand, so where does XML come into the picture? XML is a
method of representing structured data, and ADO.NET uses XML to pass data between the server
and the client. Fortunately, you don’t have to write any XML code yourself, neither do you have to
parse XML documents to retrieve the information. ADO.NET uses XML for its own purposes, and
you can take advantage of it and write XML code, if you want. It is possible, for example, to create a
new DataSet with XML statements and store your data there. This DataSet is totally independent of
a database and resides in the client computer’s memory. When you’re done using it, you can store it
to a file and retrieve it from there later. In effect, this is a mechanism to create your own data store
(it’s not a database, of course, but you can have related tables), without the overhead of setting up a
SQL Server database.

Later in this chapter, you will see this technique in action. XML is an interesting technology, but
it’s not required for learning the basics of programming with ADO.NET. After mastering simpler
topics such as data binding and programming DataSets, you can explore XML on your own.

Creating a DataSet
We’ll start our exploration of database programming by creating a DataSet. In this chapter, you’ll see
how to create a DataSet with visual tools and how to display its data on a grid. In the following
chapter, you’ll learn how to create DataSets programmatically, but the visual tools are much simpler,
and in most cases there’s no reason to write code to connect to a database and populate a DataSet.

To create a new database application, start a new project as usual. When the project’s form
appears, open the Server Explorer and expand one of the databases. Select the Northwind database
and expand its icon to see the objects of the database. In the Tables section, select the Customers
table, drag it with the mouse, and drop it on the form. VB will add two new objects in the Compo-
nents tray: SqlConnection1 and SqlDataAdapter1.

Chapter 21 BUILDING DATABASE APPLICATIONS WITH ADO.NET928

2877c21.qxd 11/11/01 4:22 PM Page 928

http://www.sybex.com

The first object, SqlConnection1, is the application’s connection to the database. This object con-
tains all the information needed to connect to the database. If you look at its properties, you will see
that its ConnectionString property is:

data source=PowerToolkit;initial catalog=Northwind;integrated security=SSPI;
persist security info=False;workstation id=POWERTOOLKIT;packet size=4096

SqlDataAdapter1 is the channel between your application and the database. The DataSet doesn’t
know anything about the database—it’s not its job to know about the database. The application can
request the data through the DataAdapter object, process them and then rely on the DataAdapter to
update the database.

If you look up the properties of the SqlDataAdapter1 object (Figure 21.1), you’ll see that it has
a SelectCommand property, which is a Command object that retrieves the data from the table. The
SelectCommand object has a property called CommandText, which is a SELECT SQL statement:

SELECT CustomerID, CompanyName, ContactName, ContactTitle, Address, City, Region,
PostalCode, Country, Phone, Fax FROM dbo.Customers

This statement was generated automatically when you dropped the Customers table on the form.
VB picked up the information from the table’s structure in the database and create a SELECT state-
ment to retrieve all the columns of all rows.

If you select the SelectCommand item in the Properties window and then click the button with
the ellipsis that appears next to the item’s setting, the Query Builder window will pop up and you
can edit the SELECT statement (to exclude a few columns, or specify selection criteria to limit the
number of rows returned by the query). You can also edit the SELECT statement by selecting the
SqlDataAdapter1 object on the designer and clicking the Configure Data Adapter command at the bot-
tom of the Properties window.

The SqlDataAdapter1 also has an InsertCommand property, which is shown next:

INSERT INTO dbo.Customers(CustomerID, CompanyName, ContactName, ContactTitle,
Address, City, Region, PostalCode, Country, Phone, Fax)

Figure 21.1

The properties of
the SqlDataAdapter
object

929CREATING A DATASET

2877c21.qxd 11/11/01 4:22 PM Page 929

http://www.sybex.com

VALUES (@CustomerID, @CompanyName, @ContactName, @ContactTitle, @Address,
@City, @Region, @PostalCode, @Country, @Phone, @Fax);

SELECT CustomerID, CompanyName, ContactName, ContactTitle, Address, City,
Region, PostalCode, Country, Phone, Fax FROM dbo.Customers

WHERE (CustomerID = @Select_CustomerID)

Any string that starts with the @ symbol is a variable. The DataAdapter sets the values of all
these variables to the values of the new row to be inserted and then executes the InsertCommand
against the database. The INSERT statement will add a new row to the Customers table. The
SELECT statement following the INSERT statement selects the newly added row from the table
and returns it to the application. There are two more commands in the SqlDataAdapter object,
UpdateCommand and DeleteCommand. These two commands update a row in the Customers table
and delete a row, respectively. We’ll return to the DataAdapter object and look at its properties, as
well as how to set it up manually, later in this chapter. For now, keep in mind that the action of
adding a table to a form creates and configures a DataAdapter object.

Note If you’re working with an Access database, you’ll follow the same steps, but the objects will have different names.
The Connection object’s default name will be OleDbConnection, and the DataAdapter object’s default name will be
OleDbDataAdapter. The SQL statements that move data in and out of an Access database may use a slightly different syn-
tax, but they’re equally simple statements.

So far, you’ve created and configured a DataAdapter object that knows how to access the data-
base and retrieve the desired data. The next step is to tell the DataAdapter where to leave the data it
retrieves from the database, and where the changes reside, so that it can update the database. This is
the DataSet object. Select the DataAdapter object on the designer and locate the Generate Dataset
link at the bottom of the Properties window. Alternatively, you can open the Data menu and select
the Generate Dataset command. (The Data menu isn’t available unless the form is visible.) You will
see the Generate Dataset dialog box, which is shown in Figure 21.2. This dialog box proposes to
create a new DataSet object, named DataSet1, that will contain the table Customers. As you will see in
the following example, a DataSet may contain multiple tables—that’s why you’re given the option to
select the table(s) you want to add to the DataSet. Click OK to create the new DataSet object. In the
following examples we’ll use more descriptive names, but for this introductory example I’m going to
use the default names.

Two new items will be added to the project: the DataSet1.xsd item in the Solution Explorer and
the DataSet11 object on the design surface. DataSet1 is a class that describes the structure of the data
you’ll retrieve from the database. DataSet11 is an instance of this class—this is where the data will be
stored.

Let’s see what we have done so far. Open the Data menu and select Preview Data. Alternatively,
you can right-click the DataAdapter’s icon in the Components tray and select Preview Data. This
command will open the Data Adapter Preview window, which is shown in Figure 21.3. When the
Data Adapter Preview dialog box comes up, it will be initially empty. Click the Fill Dataset button
to execute the query, populate the DataSet, and preview the Customers table. You can see that the
query retrieved the desired data from the database. If the DataSet contains multiple tables, you’ll
have to select the name of the table you want to preview in the Data Tables list, and its rows will
appear in the preview pane.

Chapter 21 BUILDING DATABASE APPLICATIONS WITH ADO.NET930

2877c21.qxd 11/11/01 4:22 PM Page 930

http://www.sybex.com

The last step is to display the information to the user, and this is what we’ll do next. There are
many ways to present the information on a front-end application, but we’ll start with a tool designed
specifically for this purpose.

The DataGrid Control
One of the most common tasks in programming database applications is to present data to the users. We
have created the DataSet that will hold our data, so we can now design an interface to present the data
residing in the DataSet to the user. At design time, the DataSet is empty, of course. The DataSet object
contains information about the structure of the table(s) it will hold at runtime, but no actual data.

Figure 21.3

Previewing the Cus-
tomers table

Figure 21.2

To generate a
DataSet, specify its
name and the tables
you want to add to it.

931CREATING A DATASET

2877c21.qxd 11/11/01 4:22 PM Page 931

http://www.sybex.com

The primary control for displaying DataSets is the DataGrid control, which is similar to the grid
you use to edit the rows of a table with SQL Server’s Enterprise Manager or even Access. The appli-
cation you’ll develop in this section is called Customers (it’s available in this chapter’s folder on the
companion CD), and its main form is shown in Figure 21.4. The DataGrid control can display not
only single tables, but it also allows you to navigate through the rows of related tables. For example,
you can display categories, select a category, and view the products under the selected category. Let’s
start by displaying a single table on the DataGrid control.

Note By the way, the DataGrid control isn’t appropriate for all types of interfaces, and you shouldn’t give users free
access to all the rows of a DataTable. However, it’s the best tool for visualizing the structure of a DataSet, and you will
find it convenient at the beginning. As you learn more about the objects of ADO.NET and how to program them, you’ll
start using the more traditional controls to build your interfaces. The DataGrid control, however, remains a powerful tool,
especially for displaying DataSets.

Switch the project’s form and place a DataGrid control on it. To specify where the data will come
from, you must set the control’s DataSource property to a DataSet. Locate the DataSource property in
the Properties window and expand the list of possible settings for the property. You will see two set-
tings: DataSet11 and DataSet11.Customers. If you set the DataSource property to a DataSet object,
then you will have to specify which of the tables in the DataSet you want to display on the grid. Since
our DataSet contains a single table, set the DataSource property to DataSet11.Customers. Alterna-
tively, you can set the DataSource property to DataSet11 and the DataMember property Customers.

The names of all the fields will appear at the header of the DataGrid control. The data is still at
the server; the control must be populated when the user requests it. That’s why you see only the field
names and no data. By default, all columns have the same length. Clearly, you must customize the
appearance of the DataGrid control. But first, let’s see what our data looks like on the control.

If you run the application now, you won’t see any data on the control. The DataSet must be pop-
ulated explicitly by calling the Fill method of the associated DataAdapter. Place a button on the
form, name it Load Data, and insert the following code in its Click event handler:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

DataSet11.Clear()
SqlDataAdapter1.Fill(DataSet11, “Customers”)

End Sub

Figure 21.4

Displaying the Cus-
tomers table on a
DataGrid control

Chapter 21 BUILDING DATABASE APPLICATIONS WITH ADO.NET932

2877c21.qxd 11/11/01 4:22 PM Page 932

http://www.sybex.com

The first statement clears the current contents of the DataSet11 object. The Fill method of the
DataAdapter accepts as arguments the names of a DataSet and of a table in the DataSet and popu-
lates the specified table. You can omit the second argument if the DataSet contains a single table.

Run the application, click the Load Data button, and the grid will be populated with the rows of
the Customers table. You can edit the fields on the grid, but the changes are local to the DataSet and
they’re not automatically submitted to the database. To update the underlying tables, you must
explicitly call the Update method of the DataAdapter object. The Update method accepts two argu-
ments, just like the Fill method. You specify the names of the DataSet and of the table to be
updated. Enter the following statement behind the Update Table button:

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

SqlDataAdapter1.Update(DataSet11, “Customers”)
End Sub

Updating the rows in the underlying tables is not a trivial task, and it takes much more code than
a single call to the Update method. For this example, we’ll assume that you’re updating simple tables
and no other users are accessing the same tables at the same time. A more practical, robust approach
requires quite a bit of code, and we’ll discuss it in the following chapter. The Update method
updates one row at a time, and it stops as soon as it encounters an error. If the first edited row can’t
be written to the underlying table, the DataAdapter object will not attempt to update the remaining
edited rows. To continue the update process even if one or more rows fail, set the DataAdapter
object’s ContinueUpdateOnError to True.

Customizing the DataGrid Control

The default appearance of the DataGrid control is rather blunt, and you’ll always have to customize
it. The simplest customization tool for the DataGrid control is the AutoFormat command. Right-
click the DataGrid control and, from the context menu, select AutoFormat. On the dialog box that
appears, you will see a list of available styles, such as Professional, Simple, and Classic. You can
select each style on the dialog box to preview it and apply any style to the control by selecting it with
the mouse and clicking OK to close the dialog box.

You can also customize each individual element of the control. Select the DataGrid control on
the form and locate its TableStyles property in the Properties window. Click the button with the
ellipsis and you will see the DataGridTableStyle Collection Editor, shown in Figure 21.5. The Data-
Grid control can display one or more tables, and each table can have its own style. Since our DataSet
contains a single table, we must add a single DataGridTableStyle object to the collection. Click Add
and the DataGridTableStyle1 object will be added to the collection. You can change its name too, but
let’s leave the default for the first example.

Here you can set properties like the HeaderFont, the background color of the rows, as well as an
alternate background color (the AlternatingBackColor value will be used for even-numbered rows).
The DataGridTableStyle object won’t be automatically associated to any of the tables; you must set
the name of the table explicitly with the MappingName property. Locate this property in the Prop-
erties section of the dialog box, expand the list of possible values (which are the names of the tables
in the DataSet), and select the Customers table.

933CREATING A DATASET

2877c21.qxd 11/11/01 4:22 PM Page 933

http://www.sybex.com

Right above the MappingName property, you’ll see the GridColumnStyles property, which is
also a collection. Click the button with the ellipsis, and you will see the GridColumnStyles Collec-
tion Editor, shown in Figure 21.6. This collection, which is initially empty, contains one member for
each column, and each member determines the appearance of a different column in the parent table.

In the dialog box of Figure 21.6, you can set the widths, captions, and alignments of the individ-
ual columns. Don’t forget to set the MappingName property of each DataGridColumnStyle item to
the appropriate field of the table. Any DataGridColumnStyle item that’s not mapped to a column
will be ignored. The NullText property is a string that will appear in every field that’s Null.

Displaying Related Tables

In this section, we’ll build a project that involves two related tables, the Products and Categories
tables. Most of the applications you’ll write will handle related rows from multiple tables, as isolated
tables are quite rare. We’ll display the data on a DataGrid control again, but in a hierarchical way.
The DataGrid allows you to display the rows of the parent table (in our case, the Categories table)
and navigate to each parent row’s child rows. If a parent row has child rows, a plus sign is displayed
in front of its name. You can click this symbol to view the related rows. At any point you can return

Figure 21.6

Specifying the
appearance of each
column on the
DataGrid control

Figure 21.5

Specifying the
appearance of each
table in the Data-
Grid control

Chapter 21 BUILDING DATABASE APPLICATIONS WITH ADO.NET934

2877c21.qxd 11/11/01 4:22 PM Page 934

http://www.sybex.com

to the parent table, select another row, and view its child rows. The project you’ll build in this section
is called RelatedTables, and you can find it on the CD. The project’s form is shown in Figure 21.7.

The first step is to create a DataSet with two related tables. Start a new project, open the Server
Explorer, and drop the Categories and Products tables of the Northwind database onto the form.
VB will add automatically a Connection object to the form, as well as two DataAdapters. Since both
DataAdapters see the same database, a single Connection object will suffice. Now you must config-
ure the two DataAdapters. First, rename them to DACategories and DAProducts—no reason to work
with names that differ in the last digit. To configure a DataAdapter object, select it with the mouse
and click the Configure Data Adapter link at the bottom of the Properties window (or select the
same command from the DataAdapter’s context menu). The default DataAdapter object is config-
ured with a SQL statement that retrieves all columns and all rows of a table. In most cases you’ll
have to edit this statement to retrieve a subset of a table.

To configure a DataAdapter, you can use the Data Adapter Configuration Wizard. In the follow-
ing section, I will describe all the options offered by the wizard, and then we’ll use it to configure the
DACategories DataAdapter.

The Data Adapter Configuration Wizard

The Configure Data Adapter command will start the Data Adapter Configuration Wizard, and the
first screen of the wizard is a welcome screen. Click Next to view the next one, which prompts you
to select a Connection object. Accept the default connection, which was established when you
dropped the tables on the form.

Figure 21.7

Displaying a table
with related rows on
the DataGrid control

935CREATING A DATASET

2877c21.qxd 11/11/01 4:22 PM Page 935

http://www.sybex.com

Click Next to see the next screen of the wizard, which is the Choose A Query Type screen.
Here you can specify the method that will be used to retrieve the data from the database. You can
use SQL statements, use existing stored procedures, or create new stored procedures. When you’ll
be working with large application or in a team environment, you will have to design the stored
procedures first, and then you’ll start building database applications. The wizard can generate
both the SQL statements and stored procedures needed to access the database. I suggest you
familiarize yourself with SQL statements first and use stored procedures later. Let’s see how
each option works.

Select the SQL statements option and click Next. The Wizard will display the Generate The
SQL Statements screen, where it will display a SELECT statement that retrieves all rows and all
columns of the database. You can either edit the default SELECT statement or type a new state-
ment. You can also click the Query Builder button to start Query Builder. Use this tool to visually
specify the data you want to retrieve from one or more tables, as explained in Chapter 20. When you
close the Query Builder, you’ll be returned to the Generate the SQL Statements screen and the new
SELECT statement will appear on the this screen.

Chapter 21 BUILDING DATABASE APPLICATIONS WITH ADO.NET936

2877c21.qxd 11/11/01 4:22 PM Page 936

http://www.sybex.com

By default, the wizard will create all the SQL statements for retrieving and editing the table (the
INSERT, DELETE, and UPDATE statements). If you don’t plan to update the table from within
the application—you only want to present data to the user—click the Advanced Options buttons. A
dialog box will pop up where you can disable the generation of the UPDATE/INSERT/DELETE
statements. On the same dialog box, you can set two more options to control how the statements
will be generated.

The option Use Optimistic Concurrency applies to the UPDATE and DELETE statements. If
you leave this option checked, the resulting statements will not modify any rows in the underlying
table(s) in the database if these rows have been edited since your application read them. “Optimistic
concurrency” means that we don’t anticipate multiple users editing the same row at the same time. If
this happens rarely, then you can check the Optimistic Concurrency option. In the few cases that
this happens, your application won’t be able to update the rows that have already been edited.

If you clear this option, the wizard will generate SELECT statements that update the underlying
tables even if they have changed since they were read into the local DataSet. In this situation, the last
user to commit his changes to the database wins.

The last option, Refresh The DataSet, generates SQL statements that update the database and
then retrieve the rows they changed with a SQL statement. Check this option so that the application
can immediately retrieve the new rows and display them on your form.

Click OK to close the Advanced Options dialog box and return to the wizard. Click the Next
button to view the last screen that summarizes the results. Click Finish on this screen and the wizard
will generate the SQL statements according to the options you specified on the wizard.

If you choose Create New Stored Procedures in the Choose A Query Type screen of the wizard,
the next screen will display the SQL statement that retrieves all the data from the specified table.
You can click the Query Builder to specify the query with visual tools. After specifying the SQL
SELECT statement on which the stored procedures will be based, click Next to see the Create
The Stored Procedures screen.

937CREATING A DATASET

2877c21.qxd 11/11/01 4:22 PM Page 937

http://www.sybex.com

On this screen, you can specify the names of the stored procedures for each action your applica-
tion will perform against the database (select rows, insert new rows, editing existing rows, and delete
rows). You can also specify whether the wizard should generate the stored procedures and add them
to the database, or whether you want to write the stored procedures to the database yourself. You
can click the Preview SQL Script button to see the stored procedures that the wizard will generate.
You should let the wizard generate the stored procedures and edit them from within Server Explorer
if you have to. Click Next to see the last screen of the wizard that summarizes the results.

If you choose Use Existing Stored Procedures in the Choose A Query Type screen of the wizard,
the next screen will prompt you to select the four stored procedures for the actions you want to per-
form against the database. If a procedure requires parameters, you must specify the columns that
contain the parameter values as well.

Configuring the DACategories DataAdapter

Let’s return to the RelatedTables project and configure the DACategories DataAdapter. The Cate-
gories table contains an Image field, which we won’t display on our form. Accept the default settings

Chapter 21 BUILDING DATABASE APPLICATIONS WITH ADO.NET938

2877c21.qxd 11/11/01 4:22 PM Page 938

http://www.sybex.com

on the Data Adapter Configuration Wizard, and change the SQL statement by removing the name
of the Picture field. Here is the edited SQL statement you will see on the Generate the SQL State-
ments screen of the wizard:

SELECT CategoryID, CategoryName, Description
FROM dbo.Categories

Then configure the DAProducts DataAdapter by accepting all the defaults. Use the SQL statement
generated by the wizard, which retrieves all the fields of the Products table (unless you want to omit a
few columns). Once the two DataAdapters have been configured, you can generate the DataSet. Click
the link Generate Dataset (or select the command Generate Dataset from the Data menu) and you will
see the Generate Dataset dialog box (shown earlier in Figure 21.2). The wizard suggests that you create
a DataSet with a single table. Check both table names and then change the default name of the DataSet
to CategoriesProducts. You have just created a single DataSet with two tables.

When the CategoriesProducts.xsd file appears on the Solution Explorer, double-click it. The
XSD file contains the schema of the two tables in the DataSet, but not the relationship between
them. Even though the relationship between the two tables exists in the database, the wizard didn’t
relate the tables in the DataSet to one another. You must do so by establishing a relationship manu-
ally. With the two tables on the designer’s surface, open the Toolbox. The Toolbox is a new one
and contains the tools for editing XML schemas. Drag the Relation icon from the Toolbox and
drop it on the Products table. The Edit Relation window, shown in Figure 21.8, will pop up. Here,
you can specify the characteristics of the relationship between the two tables. Specifying a relation-
ship between two tables in the DataSet is no different than specifying a relationship in the database.
The Parent Element is the primary table, and the Child Element is the foreign table. After you have
specified the primary and foreign tables, you must set the key fields of each table. Notice that the
primary key can’t be changed: it’s always the parent table’s primary key. Finally, you can specify the
rules for updating, deleting, and inserting rows. For now, leave the Default option in these boxes.

Figure 21.8

Establishing a rela-
tion between two
tables in a DataSet

939CREATING A DATASET

2877c21.qxd 11/11/01 4:22 PM Page 939

http://www.sybex.com

Click the OK button to return to the XML Designer. The relationship you created is depicted
with a line between the two tables as shown in Figure 21.9. You can click the diamond-shaped icon
at the middle of this line and select Edit Relation to see a dialog box where you can modify the
relation.

If you click the XML tab at the bottom of the Designer, you will see the XML description of the
relationship:

<xsd:unique name=”Constraint1” msdata:PrimaryKey=”true”>
<xsd:selector xpath=”.//Categories” />
<xsd:field xpath=”CategoryID” />

</xsd:unique>
<xsd:unique name=”Products_Constraint1” msdata:ConstraintName=”Constraint1”
msdata:PrimaryKey=”true”>

<xsd:selector xpath=”.//Products” />
<xsd:field xpath=”ProductID” />

</xsd:unique>
<xsd:keyref name=”CategoriesProducts” refer=”Constraint1”>

<xsd:selector xpath=”.//Products” />
<xsd:field xpath=”CategoryID” />

</xsd:keyref>

I can’t get into the details of XML here, but it’s easy to see the definitions of the primary and for-
eign keys. keyref is XML’s term for a relation. The CategoriesProducts relation is between Con-
straint1 (the Categories table’s primary key) and the CategoryID field of the Products table.

We now have a DataSet with two related tables, just as they appear in the database. The DataSet
will be populated with a copy of the two tables the moment it’s created. You can work with the
copies of the tables and update the underlying tables in the database whenever you see fit (if you edit
the DataSet). The catch here is that the DataSet must be populated at once. Should you be working
with a table of half a million book titles, you’d download an enormous amount of information to
the client. If the user wants to view the first few titles in a couple of categories only, you’re wasting
system resources. In your applications, you should limit the number of rows downloaded to the
client, and you’ll see how to do this later in this chapter. Never download more data to the client
than you’re going to use. Dumping thousands of rows on a DataGrid control isn’t going to be of
much help to the user either.

To load the data to the grid, enter the statements shown in Listing 21.1 in the form’s Load event.

Figure 21.9

How a relation is
depicted on the
XML Designer

Chapter 21 BUILDING DATABASE APPLICATIONS WITH ADO.NET940

2877c21.qxd 11/11/01 4:22 PM Page 940

http://www.sybex.com

Listing 21.1: Populating a DataSet with Two Tables

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

DACategories.Fill(CategoriesProducts1, “Categories”)
DAProducts.Fill(CategoriesProducts1, “Products”)

End Sub

Run the application now. When the form comes up, it will be empty, displaying a plus symbol
where the first row should appear. Click it and you will see the names of the two tables: Categories
and Products. Select the parent table, Categories, and the grid will be populated with the rows of the
Categories table. In front of each row, you’ll see the plus symbol, which indicates that all the rows in
the Categories table are parent rows and you can expand them to see their child rows from the Prod-
ucts table.

If you click one of the plus signs, you’ll see the names of all relations that use the Categories table
as the parent table. In our example, there’s only one such relation, the CategoriesProducts relation.
Click this link and the grid will be populated with the selected category’s child rows, as shown in
Figure 21.10. At the top of the grid, you see the name of the parent table and the selected row. This
is the parent row of all the rows currently on the grid (it’s the category to which all the products
belong). At the top-left corner of the grid are two icons: The back arrow icons takes you back to the
parent row. The other icon is a toggle that hides/displays the details of the parent row.

The headers of each column are clickable. When a header is clicked, the rows on the grid are
sorted alphabetically according to the selected column. If you sort a column, a little arrow appears
next to its header, indicating the order in which the rows are sorted (ascending or descending). To
disable the sorting of the columns, set the DataGrid control’s AllowSorting property to False (its
default value is True).

As you can see, the DataGrid control can handle related tables without any code. It picks up all
the information about relations from the schema (the XSD file created for you by the wizard) and
uses it to build an elaborate interface. The DataGrid is fine for building an interface to browse one
or more tables, but when it comes to updating the underling tables, you must provide additional
code. You’re going to learn how to write robust code for updating the underlying tables in the fol-
lowing chapter. In the following section, we’ll look at another simple technique for displaying data
on a form, using the familiar Windows controls.

Figure 21.10

Viewing child rows
on the DataGrid
control

941CREATING A DATASET

2877c21.qxd 11/11/01 4:22 PM Page 941

http://www.sybex.com

Data Binding
What you’ve done so far was to bind the DataGrid control to the rows of a DataSet. This process is
called data binding, and it’s not an exclusive feature of the DataGrid control. In fact, all controls can be
bound to a DataSet and display a specific field of the current row from the DataSet. You can create
a form with TextBox controls on it and bind each control’s Text property to a different DataSet
field. As you move through the rows of the DataSet, the values on the controls will change to reflect
the values of the corresponding fields in the current row. If you edit the TextBox controls, the new
values will overwrite the ones in the DataSet. No changes, however, will be immediately sent to the
data source, because the DataSet resides on the client computer and is disconnected from its source.
To update the underlying table(s), you must call the DataAdapter object’s Update method.

Figure 21.11 shows a simple interface built with data-bound TextBox controls. Each control is
bound to a different field in the Customers table, and the control values change as you navigate
through the rows of the table with the help of the buttons at the bottom of the form. Again, the
Customers table resides in a DataSet object on the client. The form shown in the figure is the main
form of the ViewEditCustomers project, which you will find on the CD.

Before looking at the application of Figure 21.11, let me overview the process of data binding.
To begin with, there are two types of data binding: simple and complex. This distinction is neces-
sary because some controls, such as the DataGrid and ListBox, can display multiple fields and/or
rows, while other controls, including the TextBox control, can only display a single field from the
current row.

The complex data-bound controls have a DataSource and a DataMember property. DataSource
determines where the data will come from and is usually set to the name of DataSet object. If the
DataSet contains multiple tables, then you must also specify which of the tables you want to display
on the control. You do so by setting the control’s DataMember property to the name of the appro-
priate table. As you saw in the preceding section, the DataGrid control can display multiple related
tables. If that’s what you want, then don’t set the DataMember property. A DataSet may contain
(and usually does) multiple unrelated tables, in which case you must set the DataMember property
to one of the tables in the DataSet.

Simple data-bound controls don’t have a DataSource property. Instead, they have a group of
properties under the heading DataBinding. Under the DataBinding section in the control’s Proper-
ties window, you will see the names of the properties you can bind to a DataSet object. The TextBox
properties that can be bound are Text and Tag. We usually set the Text property to a general field

Figure 21.11

Viewing and editing
the Customers table
through data-bound
TextBox controls

Chapter 21 BUILDING DATABASE APPLICATIONS WITH ADO.NET942

2877c21.qxd 11/11/01 4:22 PM Page 942

http://www.sybex.com

and the Tag property to the table’s primary key, so that we can read it at any time and identify the
current row in the table. The most common scenario is to bind the Text property to the customer’s
name (or other information useful to the user) and the Tag property to the customer’s ID. With this
arrangement, we can instantly locate related rows in other tables (the customer’s orders, for example)
because we have the ID of the current customer.

The CheckBox control has more properties you can bind to data. The Checked property can be
bound to a True/False field, and the value of the field sets or clears the check mark on the control.
You can also bind the control’s CheckAlign property to a data field, but this a bit far-fetched. As
you will see in the example of the following section, you can bind one or more controls on the form
to the fields of a DataSet with point-and-click operations.

As can see, it’s actually easier to bind a so-called complex control, because you don’t have to spec-
ify which property binds to which field. You simply display all the fields. There are two controls,
the ListBox and ComboBox controls, that are a little more complicated, and you will see shortly how
to bind these two controls and use them as lookup devices. First, we’ll build a simple application for
viewing and editing the rows of a single table.

VB.NET at Work: The ViewEditCustomers Project
Start a new project and design its form like the one shown in Figure 21.11. Place the controls on
the form, then create a DataSet with the rows of the Customers table as follows. Open the Server
Explorer, open the Northwind branch, and drop the Customers table on the form. Rename the Sql-
DataAdapter1 object that will be automatically created to DACustomers. This is the DataAdapter
object that will retrieve the rows of the table and update the underlying tables. Then configure the
DataAdapter—just accept the default SQL statement that retrieves all the rows of the table. Create
the DataSet object and name it DSCustomers. The DSCustomers1 object will be placed at the controls
tray below the form’s design surface.

At this point, you can bind the controls on the form to the DSCustomers1 DataSet. Select the top
TextBox control (make sure its ReadOnly property is set to True, because we’ll use it to display the
customer’s ID, which the user isn’t allowed to edit). Open the DataBinding section in the control’s
Properties window, locate the Text item, and expand its list of possible settings (Figure 21.12). You
will see the DSCustomers1 DataSet object. Click the plus symbol in front of its name and you will see
the name of the Customers table (here you will see the names of all tables in the DataSet, but this spe-
cific DataSet contains a single table). Expand the table and you will see the names of the fields in the
table. Select the CustomerID field; this will bind the first TextBox control on the form to the Cus-
tomerID field of the Customers table. At any given time, it will display the value of the CustomerID
field on the current row.

Figure 21.12

Binding the Text
property of a
TextBox control to a
field of a table in a
DataSet

943CREATING A DATASET

2877c21.qxd 11/11/01 4:22 PM Page 943

http://www.sybex.com

Bind the remaining TextBoxes to the appropriate fields of the Customers table by repeating the
process just described.

Next, you must insert the appropriate code behind the Load Table button, which will move the
rows of the Customers table from the database to the local DataSet by calling the DataAdapter’s Fill
method:

Private Sub Button1_Click(ByVal sender As System.Object,_
ByVal e As System.EventArgs) Handles Button1.Click

DSCustomers1.Clear()
DACustomers.Fill(DsCustomers1, “Customers”)

End Sub

The BindingContext Object

The interesting code is behind the navigational buttons, which allow you to move from row to row.
To change the current location in a DataTable, use the BindingContext object. This object is a
property of the form and keeps track of the current position in each DataTable of each DataSet.
(Technically, there’s a CurrencyManager object for each DataTable, and the BindingContext object
keeps track of all the CurrencyManager objects. Since you’ll never have to program directly against
the CurrencyManager object, the BindingContext is the object you must become familiar with).

To specify the appropriate BindingContext object, pass to it as arguments the name of the DataSet
and the name of a table in the DataSet. The most important property of the BindingContext object
is the Position property, which is the current position in the table. The current position in the Cus-
tomers DataTable of the DSCustomers1 DataSet object is:

Me.BindingContext(DsCustomers1, “Customers”).Position

To move to any row, set this property to any value between 0 (the first row) and the following
expression, which is the index of the last row:

Me.BindingContext(DsCustomers1, “Customers”).Count - 1

To move to the next or previous row, increase or decrease the Position property by one. Of course,
you must take into consideration the current position, so that you won’t attempt to move beyond the
first or last row in the table. Listing 21.2 shows the minimum code for the previous button.

Listing 21.2: Moving to the Previous Row

Private Sub bttnPrevious_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnPrevious.Click

If Me.BindingContext(DsCustomers1, “Customers”).Position > 0 Then
Me.BindingContext(DsCustomers1, “Customers”).Position = _

(Me.BindingContext(DsCustomers1, “Customers”).Position - 1)
PositionChanged()

End If
End Sub

Chapter 21 BUILDING DATABASE APPLICATIONS WITH ADO.NET944

2877c21.qxd 11/11/01 4:22 PM Page 944

http://www.sybex.com

The PositionChanged() subroutine displays the current row’s number at the bottom of the
screen, and its code is shown in Listing 21.3.

Listing 21.3: The PositionChanged() Subroutine

Sub PositionChanged()
lblPosition.Text = (((Me.BindingContext(DsCustomers1, _

“Customers”).Position + 1).ToString + “ / “) + _
Me.BindingContext(DsCustomers1, “Customers”).Count.ToString)

End Sub

If you run the project now, you can iterate through the Customers table’s rows with the naviga-
tional buttons and edit any field on any row. The Update Table button submits the changes to the
database by calling the DataAdapter’s Update method:

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

DACustomers.Update(DsCustomers1)
End Sub

However, it’s easy to crash the program. If you set the CompanyName field to an empty string, a
runtime error will occur when you attempt to move to another row. The DataTable can’t accept a
row with a blank CompanyName field, because it would violate one of the restrictions.

To handle this error, we must add some error-trapping code to the handlers of the navigational
buttons. We’ll discuss the topic of updating the DataSet and the underlying tables in detail in the
following chapter. Here we’ll use a very simple error handler: If a runtime exception occurs, we’ll
cancel the edit process by calling the BindingContext object’s CancelCurrentEdit method. We’ll
display a message box with a description of the error and then call CancelCurrentEdit, which will
restore the original values of the fields on the data-bound controls. The revised event handler of
the Previous button is shown in the Listing 21.4.

Listing 21.4: Handling Update Errors

Private Sub bttnPrevious_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnPrevious.Click

Try
If Me.BindingContext(DsCustomers1, “Customers”).Position > 0 Then

Me.BindingContext(DsCustomers1, “Customers”).Position = _
(Me.BindingContext(DsCustomers1, “Customers”).Position - 1)

PositionChanged()
End If

Catch dataException As Exception
MsgBox(dataException.Message)
Me.BindingContext(DsCustomers1, “Customers”).CancelCurrentEdit()

End Try
End Sub

945CREATING A DATASET

2877c21.qxd 11/11/01 4:22 PM Page 945

http://www.sybex.com

Run the ViewEditCustomers application, browse all the customers in the DataSet, and edit a few.
You can commit the changes to the database at any time by clicking the Update Table button. Or
you can discard the edits and reload the data into the DataSet by clicking the Load Table button.

In Chapter 22, you’ll learn how to validate the data and how to commit the changes to the data-
base in a more robust manner. A sure way to crash this application is to load the data, remove one of
the customers from the underlying table (use the Enterprise Manager to delete a row of the Customers
table in the Northwind database), and then attempt to update the database. The operation will fail,
because the Update method will attempt to update a row that no longer exists in the database.

There are two more problems with this application. First, we’re downloading the entire Cus-
tomers table to the client. Northwind is a small database, but an actual table with customer informa-
tion might be quite large. It’s recommended that you move only as many rows as you need from the
database (customers from a specific country, or customers that placed an order in the last few weeks).
You can even move a single row. If the user wants to change a customer’s phone number, your appli-
cation should give the user a chance to specify the desired row and then retrieve only that row. You
should always keep in mind the fact that the DataSet resides on the client, and you shouldn’t move
too much information too frequently from the database to the client.

The other problem of this application is the user interface. If the number of customers were in
the thousands, moving to the next or previous row would clearly be out of the question. We’re going
to look at a more functional interface in the following section, where we’ll also discuss the process of
data-binding the ListBox and ComboBox controls.

Binding Complex Controls
The process of binding the ListBox and ComboBox controls is different than binding simple con-
trols, or even the DataGrid control. These two controls are commonly used as lookup and naviga-
tional devices. They can display one field and keep track of another field. For example, you can
display the customers’ names and keep track of the customer ID. In effect, the user sees names, but
your program sees IDs. The application we’ll use in the following section does exactly that: it dis-
plays the company names in a ComboBox control and lets the user select a customer by clicking a
name. The selected customer’s fields will appear in the data-bound controls, and the user can either
edit a row, or move to a different row by clicking another item on the ListBox control. The new
interface is far more functional that the previous one, and you will use it in many situations, espe-
cially if you want to present many rows to the user.

An even more common use of the complex data-bound controls is as lookup devices. Each row in
the Products table has a CategoryID field and a SupplierID field, which link each product to a cate-
gory and a supplier. The actual names of the categories and suppliers are stored in separate tables,
related to the Products table through a pair of primary/foreign keys. You’ll see how you can create a
form with data-bound controls for the Products table and use two ComboBox controls populated
with the names of the categories and suppliers. As you move through the products, the proper items
will be selected in the two ComboBox controls.

VB.NET at Work: The LookupCustomers Project

The LookupCustomers project is very similar to the ViewEditCustomers project—the only differ-
ence is in the navigational model. Copy the ViewEditCustomers project’s folder to a new location

Chapter 21 BUILDING DATABASE APPLICATIONS WITH ADO.NET946

2877c21.qxd 11/11/01 4:22 PM Page 946

http://www.sybex.com

and rename it to LookupCustomers. Then open the new project and rename it to LookupCustomers.
(Or use the project provided on the companion CD.) The main form of the new project is shown in
Figure 21.13.

Delete all the navigational controls at the bottom of the form, and place a ComboBox control to
the left side of the form (you will have to move the other controls to make room for the ComboBox
control). The ComboBox control must be populated with the names of all customers. Set the con-
trol’s DataSource property to DSCustomers1.Customers and its DisplayMember property to Com-
panyName. The ComboBox control will get its data from the Customers table and will display the
CompanyName field of each row.

Bind the TextBox controls on the form to the appropriate fields in the Customers table. The last
step is to populate the DataSet by calling the Fill method of the associated DataAdapter. Enter the
following statements in the Load button’s Click event handler:

Private Sub LoadData(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnLoad.Click

DSCustomers1.Clear()
DACustomers.Fill(DSCustomers1, “Customers”)

End Sub

If you run the application now, you’ll be able to populate the DataSet, but nothing will happen as
you click its items. You must add a few lines of code to set the current row in the DataSet every time
the user selects another customer in the ComboBox control. Since the order of the items on the
ComboBox control is the same as the order of rows in the DataSet, you can set the Position property
to the index of the selected item. This is done with a single statement:

Me.BindingContext(DsCustomers1, “Customers”).Position = ComboBox1.SelectedIndex

If you allow users to edit the current row, however, and that row contains errors, you may not be
able to move to another row. One such error would be to clear the current row’s CompanyName
field. This field can’t be empty (this column’s AllowNull property is False), and any attempt to set it
to Null will cause an exception when you attempt to leave the current row. You must insert an
exception handler to reject the changes if the current row contains errors. Listing 21.5 shows the
event handler of the ComboBox control’s SelectedIndexChanged event handler.

Figure 21.13

Using a data-bound
ComboBox control
as navigational tool

947CREATING A DATASET

2877c21.qxd 11/11/01 4:22 PM Page 947

http://www.sybex.com

Listing 21.5: Moving to a Row in the DataSet

Private Sub ComboBox1_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ComboBox1.SelectedIndexChanged

Try
Me.BindingContext(DsCustomers1, “Customers”).EndCurrentEdit()
Me.BindingContext(DsCustomers1, “Customers”).Position = _

ComboBox1.SelectedIndex
Catch updateException As Exception

MsgBox(updateException.Message)
Me.BindingContext(DsCustomers1, “Customers”).CancelCurrentEdit()
Me.BindingContext(DsCustomers1, “Customers”).Position = _

ComboBox1.SelectedIndex
End Try

End Sub

The code in the Catch clause of the exception handler displays the error message that prevented
the DataSet from moving to another row. Then it cancels the current edit action (the fields are
restored to their initial values) and, finally, moves to the new row. This isn’t the most elegant
method of handling update errors, but we’ll discuss more robust techniques in the following chapter.

VB.NET at Work: The Products Project

In this section, you’ll learn how to use a data-bound ComboBox as a lookup mechanism in your
applications. The main form of the application, shown in Figure 21.14 and available in this chapter’s
folder on the CD, allows you to navigate through the rows of the Products table with the help of a
ListBox control, a technique you’re already familiar with. Most of the fields of each row are dis-
played on TextBox controls. If you bind the CategoryID and SupplierID fields to two TextBox con-
trols, you will see two numbers, which are the foreign keys to the other two tables. By using
data-bound ComboBox controls, users see the actual names of the related fields.

Start a new project and design a form like the one shown in Figure 21.14. Then you must create a
DataSet with three tables that store product-related information: the Products, Categories, and Sup-
pliers tables. Drop the three tables on the form, configure each DataAdapter, and create the Products

Figure 21.14

Browsing and editing
the Products table

Chapter 21 BUILDING DATABASE APPLICATIONS WITH ADO.NET948

2877c21.qxd 11/11/01 4:22 PM Page 948

http://www.sybex.com

DataSet. You can select a few fields from each table, as you aren’t going to display many fields. The
SELECT statements for the three DataAdapters are as follows:

DAProducts:
SELECT ProductID, ProductName, SupplierID, CategoryID,

QuantityPerUnit, UnitPrice, UnitsInStock
FROM dbo.Products
DACategories:
SELECT CategoryID, CategoryName FROM dbo.Categories
DASuppliers:
SELECT SupplierID, CompanyName FROM dbo.SuppliersASuppliers

Then create the DSProducts DataSet and place all three tables in it. Since we want the current row
of the Categories and Suppliers tables to change each time another row of the Products table is
selected, we must establish the appropriate relationships between the tables. Double-click the
DSProducts.xsd file in the Solution Explorer window to open the DataSet in design view. Then
establish a relationship between the Products and Categories table based on the CategoryID field
and another relationship between the Products and Suppliers tables based on the SupplierID field.
Preview the DataSet to see that all tables and relations are in place. If you view one of the Categories
or Suppliers tables, you will see that each row leads to a set of related rows.

Now you must bind all the controls on the form. Bind the Text property of each of the TextBox
controls to the appropriate field of the Products table of the DataSet. The top TextBox is bound to
the expression

DsProducts1 - Products.ProductName

and it will display the ProductName field of the Products table. Do the same for the controls that
display the Price and Stock fields.

Select the ListBox control and bind it as follows:

Property Value

DataSource DSProducts1.Products

DataMember ProductName

These two properties will cause the ListBox control to be populated with the ProductName field of
the Products DataTable. Then set the control’s ValueMember property to the ProductID field.
This property connects the selected item on the control to one of the rows of the Products table in
the DSProducts1 DataSet.

The last step is to bind the two ComboBox controls to the related tables. Select the first Combo-
Box control on the form and bind it to the DataSets as follows:

Property Value

DataSource DSProducts1.Categories

DataMember CategoryName

ValueMember CategoryID

SelectedValue DSProducts1 – Products.CategoryID

949CREATING A DATASET

2877c21.qxd 11/11/01 4:22 PM Page 949

http://www.sybex.com

The ComboBox control will be populated with the names of the categories and will be connected
to the Products table through the CategoryID field. In effect, the current selection on the control
will be the name of the category of the row whose CategoryID field matches the CategoryID field of
the Products DataTable.

Binding the second ComboBox control to the Suppliers table is quite similar, so I will only list
the data-binding properties and their settings:

Property Value

DataSource DSProducts1.Suppliers

DataMember CompanyName

ValueMember SupplierID

SelectedValue DSProducts1 – Products.SupplierID

You should be very familiar with the code that populates the DataSet and updates the database
by now. The code behind the two buttons on the form is shown in Listings 21.6 and 21.7.

Listing 21.6: Populating the DSCustomers DataSet

Private Sub Button1_Click(ByVal sender As System.Object,_
ByVal e As System.EventArgs) Handles Button1.Click

DACategories.Fill(DsProducts1, “Categories”)
DASuppliers.Fill(DsProducts1, “Suppliers”)
DAProducts.Fill(DsProducts1)

End Sub

Listing 21.7: Updating the Database

Private Sub Button2_Click(ByVal sender As System.Object,_
ByVal e As System.EventArgs) Handles Button2.Click

DAProducts.Update(DsProducts1)
End Sub

The code for updating the underlying table is quite primitive. You will learn how to properly
update the underlying table in the following chapter.

The last step is to add some code to the ListBox control to turn it into a navigational tool. We
want to move to the row of the product selected on the control. We can take advantage of the fact
that the items on the ListBox appear in the same order as in the DataSet: we’ll use the control’s
SelectedIndex property to move to the appropriate row in the Products DataTable. Listing 21.8
shows how to move to the correct row of Products when the user selects another item on the
ListBox.

Chapter 21 BUILDING DATABASE APPLICATIONS WITH ADO.NET950

2877c21.qxd 11/11/01 4:22 PM Page 950

http://www.sybex.com

Listing 21.8: Navigating via the ListBox

Private Sub ListBox1_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ListBox1.SelectedIndexChanged

Me.BindingContext(DsProducts1, “Products”).Position = ListBox1.SelectedValue
End Sub

Run the application now and check out how the current product’s category and supplier are dis-
played on the two ComboBox controls. You can also change a product’s category or supplier by
selecting another item on the appropriate control. This application will crash if you enter an invalid
field value (a negative price, for example). However, it’s easy to validate the data on the controls and
make sure that they don’t violate any constraints, before you submit them to the database. Because
the current product’s category and supplier must be selected from a list, users can’t violate the
integrity of the database by mistake.

Programming the DataAdapter Object
Before we exhaust the topic of the data binding, I’d like to bring to your attention the fact that all
the applications we’ve developed so far move all the data they may need from the database server
to the client. This is the essence of disconnected DataSets: you bring the data to the client and work
with them locally. But shouldn’t there be a limit on the amount of data we move around? Indeed,
you can’t download a table with 30,000 customers just because a user wants to view (or edit) a
phone number. Likewise, you can’t move information about half a million titles to the client just
because the user wants to view a couple of them.

Disconnected DataSets are not your license to make copies of the database (or even a substantial
section of it) to every client. You must design your application so that it stores to the client only the
rows absolutely necessary for the task at hand, and no more. This is easier said than done, and we
usually pass this responsibility to the user. We design an interface that allows users to specify the
rows they need and then retrieve only the ones that meet the criteria (like products in a price range
or customers from a country). You will also bring the related rows in other tables.

The Command Objects
Each DataAdapter has four command objects, which provide the information needed to interact
with the database: DeleteCommand, InsertCommand, UpdateCommand, and SelectCommand. If an
application isn’t going to alter the database, then you need only specify SelectCommand, which
retrieves data with a SELECT statement.

Each of these objects has a CommandText property, which is the name of the stored procedure
or SQL statement that acts against the database; a Connection object, which determines the database
the command object acts upon; and a collection of Parameter objects (the Parameters collection),
which are the parameters expected by the SQL statement or stored procedure. These four Command
objects are adequate to interact with the tables in the database.

In the examples so far, we let the wizard generate the appropriate SQL statements for us. In this sec-
tion we’ll create a Connection object and a DataAdapter from scratch. This will help you understand a

951PROGRAMMING THE DATAADAPTER OBJECT

2877c21.qxd 11/11/01 4:22 PM Page 951

http://www.sybex.com

little better the basic objects of ADO.NET. In Chapter 22, we’ll go past data binding and you’ll learn
how to program the same objects.

Start a new project and name it CustomerOrders. As you would guess, this application will dis-
play customers, orders, and order details. However, this time we’ll use a more elaborate interface, and
we’ll write code that doesn’t move too much information over the network. In other words, we will
not create a DataSet with all the customers, all their orders, and all the detail lines in each order.
We’ll ask the user to specify the name of the customer by entering the first few characters of the
company name. Then, with the appropriate SELECT statement, we move only the matching names
to the client and display them on a ListBox control, as shown in Figure 21.15. When the user selects
a name in this ListBox control, the selected customer’s orders are displayed on a DataGrid control
that shows the order’s ID, the date it was placed, and its total. When an order is selected with the
mouse, the order’s details are moved from the database to the client and displayed on the second
DataGrid control.

To build this project, we’ll use the tools of the Data tab of the Toolbox. Instead of dropping
tables from the Server Explorer onto the form and letting VB configure them, we’ll place the appro-
priate objects and configure them manually.

Start by placing an OleDbConnection object on the form and set its ConnectionString property
to the following string:

Provider=SQLOLEDB.1;Integrated Security=SSPI;
Initial Catalog=Northwind;Data Source=PowerToolkit

You must change the name of the Data Source to match your installation. The OleDbConnection
is functionally equivalent to the SqlConnection object, but it uses the OLEDB drivers to access the
database. The SqlConnection object is optimized for accessing SQL Server databases, but I’ve used
the OleDbConnection object to demonstrate that the two are totally equivalent.

Then drop an OleDbDataAdapter object on the form. The Data Adapter Configuration Wizard
will start, and you must specify the following SQL statement to select a few customers:

SELECT CompanyName, ContactName, Country, CustomerID
FROM Customers
WHERE (CompanyName LIKE ?)

Figure 21.15

The CustomerOrders
application’s main
form

Chapter 21 BUILDING DATABASE APPLICATIONS WITH ADO.NET952

2877c21.qxd 11/11/01 4:22 PM Page 952

http://www.sybex.com

This is a parameterized query, and you must specify the value of the parameter before calling it
(the parameter is indicated by the question mark).

On the screen of the wizard where you specify the SQL SELECT statement, click Advanced
Options, and on the Advanced SQL Generation Options form, clear the option Generate Insert,
Update, and Delete Statements. Our application will only display data, and we won’t use any other
of these commands.

Then create a second DataAdapter object for the Orders table. This DataAdapter’s SQL state-
ment should be:

SELECT Orders.OrderID, Orders.OrderDate,
SUM(([Order Details].UnitPrice * [Order Details].Quantity) *

(1 - [Order Details].Discount)) AS OrderTotal
FROM Orders INNER JOIN [Order Details]

ON Orders.OrderID = [Order Details].OrderID
WHERE (Orders.CustomerID = ?)
GROUP BY Orders.OrderID, Orders.OrderDate

This is a fairly straightforward statement that selects a few fields of the orders of a customer
along with each order’s total. The query’s parameter is the customer’s ID, a value we’ll extract from
the ListBox control when the user selects a name in the list.

Place yet another DataAdapter on the form, the OrderDetails Adapter, and set its SELECT state-
ment to the following:

SELECT Products.ProductName, [Order Details].Quantity,
[Order Details].UnitPrice,
[Order Details].Discount

FROM [Order Details] INNER JOIN Products
ON [Order Details].ProductID = Products.ProductID

WHERE ([Order Details].OrderID = ?)

This statement selects the details of an order specified by its ID. Notice that instead of the Pro-
ductID field (which identifies the product in the Order Details table), we retrieve the name of the
product from the Products table.

Once the three DataAdapters are in place, create three DataSet objects, one for each DataAdapter
object on the form. Select the Customers DataAdapter and then use Data ➢ Generate Dataset. Set the
new DataSet’s name to DSCustomers and add only the Customers table to the DataSet. Do the same for
the other two DataAdapters and name their DataSets DSOrders and DSDetails. Figure 21.16 shows the
form’s design surface. Notice the three DataAdapter and the three matching DataSet objects.

Select the Customers DataAdapter object on the form and, in the Properties window, locate and
expand its SelectCommand object. You will see the SELECT statement you created next to the
CommandText property. The setting of the CommandType property is Text. In the following sec-
tion, you will see how to set the CommandText property to the name of a stored procedure. When
the command is a stored procedure, the CommandType property should be set to Stored Procedure.

Another of the properties under the SelectCommand section of the Properties window is the
Parameters property, which is a collection. This property contains information about the parameters
of the SQL statement or stored procedure. Click the button with the ellipsis and you will see the
OleDbParameter Collection Editor (Figure 21.17 shows the Properties window and the Collection

953PROGRAMMING THE DATAADAPTER OBJECT

2877c21.qxd 11/11/01 4:22 PM Page 953

http://www.sybex.com

Editor.) In this window you can specify the parameter’s name and data type. You will use the para-
meter’s name to assign a value to it later, and its type must match the type of the parameter in the
query or stored procedure. The parameter of the statement that selects one or more customers is a
string, while the parameter of the statement that retrieves the details of an order is an integer. You
can also set the parameter’s value in this window, but parameter values are almost always set from
within the code. The reason for using parameterized queries and stored procedures is that we want
to be able to set the parameters at runtime.

It’s time now to add some code to the application. The statement that retrieves customers must
be entered in the TextBox control’s KeyUp event handler. Every time the user presses the Enter key,
the statements of Listing 21.9 must be executed.

Figure 21.17

Setting the proper-
ties of Command’s
parameters

Figure 21.16

The CustomerOrder
project’s main form
in design mode

Chapter 21 BUILDING DATABASE APPLICATIONS WITH ADO.NET954

2877c21.qxd 11/11/01 4:22 PM Page 954

http://www.sybex.com

Listing 21.9: Selecting Customer’s by Name

Private Sub TextBox1_KeyUp(ByVal sender As Object, _
ByVal e As System.Windows.Forms.KeyEventArgs) Handles TextBox1.KeyUp

If e.KeyCode = Keys.Enter Then
ListBox1.Visible = True
Customers.SelectCommand.Parameters(“CompanyName”).Value = _

TextBox1.Text & “%”
DsCustomers1.Clear()
Customers.Fill(DsCustomers1)
ListBox1.Focus()

End If
End Sub

SelectCommand is a property of the DataAdapter object, so we can access it with the expression
Customers.SelectCommand. It’s also an object that exposes its own members, one of them being the
Parameters collection. To set the value of a parameter, you call the command’s Parameters collec-
tion, passing the name of the parameter as argument. Then set this member’s Value property to the
desired value. Each member of the Parameters collection exposes more properties, such as DbType
(use it to set the parameter’s type), IsNullable, and the Precision and Scale properties of numeric
parameters.

Notice the percent sign following the value entered by the user on the TextBox control. If the
user enters Antonio on the TextBox control, the parameter value passed to the query is Antonio%.
This parameter will return all the customers whose name begins with “Antonio” followed by any
other string.

Then the code clears the DSCustomers1 DataSet and populates it again with the rows returned by
the query of the SelectCommand (this happens when the Fill method is called). The ListBox control
is bound to the DSCustomers DataSet’s Customers table, so it’s automatically populated. The data-
binding properties of the ListBox control are as follows:

Property Value

DataSource DsCustomers1.Customers

DisplayMember CompanyName

There are no other data-binding properties to be set. The order of the rows in the ListBox con-
trol is the same as their order in the DataSet’s table, so the SelectedIndex property determines the
order of the selected rows in the Customers table of the DSCustomers DataSet.

When the user selects one of the customers in the ListBox control, the statements of Listing 21.10
are executed. They retrieve the CustomerID of the selected customer and pass it as parameter to
the SelectCommand of the Orders DataSet. Finally, the code calls the Fill method to populate
DSOrders1 DataSet.

955PROGRAMMING THE DATAADAPTER OBJECT

2877c21.qxd 11/11/01 4:22 PM Page 955

http://www.sybex.com

Listing 21.10: Retrieving the Selected Customer’s Orders

Private Sub ListBox1_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ListBox1.SelectedIndexChanged

Dim row As Integer = ListBox1.SelectedIndex
Dim CustID As String = DsCustomers1.Customers(row).CustomerID
Orders.SelectCommand.Parameters(“CustomerID”).Value = CustID
DsOrders1.Clear()
Orders.Fill(DsOrders1)

End Sub

We must also detect the selection of a row in the DataGrid control with the Orders, retrieve the
detail lines of the selected order and display them on the second DataGrid control. When a row (or
cell) is selected on the DataGrid control, the CurrentCellChanged event is fired. Listing 21.11 shows
the code that displays the selected order’s details on the second DataGrid control.

Listing 21.11: Retrieving the Selected Order’s Details

Private Sub DataGrid1_CurrentCellChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles DataGrid1.CurrentCellChanged

Dim row As Integer = DataGrid1.CurrentRowIndex
Dim OrdID As Integer = DataGrid1.Item(row, 0)
Details.SelectCommand.Parameters(“OrderID”).Value = OrdID
DsDetails1.Clear()
Details.Fill(DsDetails1)

End Sub

This is all the code required by the application, and it’s not complicated either. We determine the
parameter required by the query we want to call and then pass it to the query through the Parameters
collection of the SelectCommand object. Of course, you must set the data-binding properties of the
two DataGrid controls, so that they will update their contents when the underlying DataSets change.
To bind the two DataGrid controls, set their DataSource property to the name of the corresponding
DataSet.

The Command and DataReader Objects
Sometimes, we want to retrieve data from the database and read them sequentially. If you don’t plan
to edit the data and submit any changes back to the client, you can use the DataReader object to read
the rows sequentially. The DataReader is an object that lets you iterate through the rows retrieved by
a query. It’s faster than storing all the rows to a DataSet, but you can’t move back and forth in the
rows. Moreover, the connection to the database is open while you iterate through the rows, so the
processing should be as quick as possible. For example, you can’t prompt the user between rows; this

Chapter 21 BUILDING DATABASE APPLICATIONS WITH ADO.NET956

2877c21.qxd 11/11/01 4:22 PM Page 956

http://www.sybex.com

would tie the connection for too long. It goes without saying that you can’t use the DataReader object
to update the underlying table. The DataReader object returns a forward-only, read-only result.

As with the other major ADO.NET objects, there are two flavors of the DataReader object: the
SqlDataReader and the OleDbDataReader objects. Use the SqlDataReader object for SQL Server
databases and the OleDbDataReader for OLEDB-compliant databases. To create a DataReader
object, you must execute a query against a database through a Command object. You’ve already set
up Command objects, even though you didn’t do so explicitly. This time we’ll create a Command
object and set its Connection and CommandText properties from within our code. Once the Com-
mand object has been set up, you can execute it by calling one of the following methods:

ExecuteReader Executes the command and returns a DataReader object, which you can use to
read the results, one row at a time.

ExecuteXMLReader Executes the command and returns a XMLDataReader object, which you
can use to read the results, one row at a time.

ExecuteScalar Executes the command, returns the first column of the first row in the result,
and ignores all other rows.

ExecuteNonQuery Executes a SQL command against the database and returns the number of
rows affected. Use this method to execute a command that updates the database.

The first two methods return a DataReader object, the ExecuteNonQuery method returns an
integer (the number of rows affected), and the ExecuteScalar method returns an object (the first col-
umn of the first row in the result set). The DataReader is an abstract class and can’t be used in an
application. Instead, use the SqlDataReader or the OleDbDataReader object, depending on the
database you’re connected to.

VB.NET at Work: The DataReader Project
This section’s project demonstrates the simplest possible use of a SqlDataReader object. We’ll read
the category names from the Categories table and place them on a ListBox control. To test this code,
place an instance of the SqlConnection and SqlCommand controls on a new form. These two con-
trols must be selected from the Data tab of the Toolbox. They’re not configured, because they’re not
associated with any objects in the database. Let’s configure them.

Select the SqlConnection1 object on the designer and open its Properties window. Locate the Con-
nectionString property and, from the drop-down list, select the Northwind database. Then select the
SqlCommand1 object on the designer, open its Properties window, and locate the Connection prop-
erty. Expand the list of available connections and set it to SqlConnection1 (your project contains a
single Connection object). Then locate the CommandText property and click the button with the
ellipsis. This action will start the Query Builder, where you can create a query with the rows you want
to retrieve. Add the Categories table to the query and select the fields CategoryID and Category-
Name. Then click OK to close the Query Builder.

So far, you’ve established a connection to the Northwind database and created a command to
retrieve the names of all categories. All you have do now is to execute the command and process
its results.

957THE COMMAND AND DATAREADER OBJECTS

2877c21.qxd 11/11/01 4:22 PM Page 957

http://www.sybex.com

In our code we’ll use the ExecuteReader method to retrieve textual information. Place a Button
and a ListBox control on the form, and enter the statements from Listing 21.12 in the button’s
Click event handler.

Listing 21.12: Iterating the Rows of a SqlDataReader Object

Private Sub Button1_Click(ByVal sender As System.Object,_
ByVal e As System.EventArgs) Handles Button1.Click

SqlConnection1.Open()
Dim SQLReader As System.Data.SqlClient.SqlDataReader
SQLReader = SqlCommand1.ExecuteReader()
While SQLReader.Read

ListBox1.Items.Add(SQLReader.Item(“CategoryID”) & vbTab & _
SQLReader.Item(“CategoryName”))

End While
SqlConnection1.Close()

End Sub

First, the code opens the connection. Normally, the connection is opened by the DataAdapter
object when the application requests data, but this time we don’t have a DataAdapter object. Then it
calls the Command object’s ExecuteReader method and assigns the result to a SqlDataReader object.
The data isn’t stored in this object. Instead, we’ll use this object to iterate through the rows returned
by the query. This must take place from within a loop, which must go quickly through the data and
then close the connection.

The Read method of the SqlDataReader object returns true while there is more data to be read.
Each time you call the Read method, the DataReader moves to the next row, and you can read the
current row’s fields through the Item property. The Item property accepts as argument the name or
index of a column and returns its value. At each iteration of the loop, we read the two fields of the
current row and add them to the ListBox control.

VB.NET at Work: The StoredProcedure Project
The example of this section shows a slightly different method of retrieving just the information you
need to present to the user and no more. This time we’ll use one of the stored procedures we devel-
oped in Chapter 20. The OrdersPerCustomer stored procedure retrieves the number of orders
placed by a customer and the grand total of these orders. This stored procedure doesn’t place any
computational burden on the database server, because it applies to a single customer. What if the
user wanted to see the totals for several, or even many, customers? Would you write another proce-
dure that calculates the same totals for all customers? In a real database with thousands of customers
and many orders per customer, the computational burden is no longer insignificant.

To avoid having the computer perform unnecessary operations and return results that the user may
not even see, we’ll force users to select the customer whose totals they want. Figure 21.18 shows the
interface of the application. The user is expected to select a customer from the list on the left, and
then the selected customer’s totals will appear on the form. The totals are calculated as requested,
which may lead to many requests to the database server. However, each request is serviced in no time

Chapter 21 BUILDING DATABASE APPLICATIONS WITH ADO.NET958

2877c21.qxd 11/11/01 4:22 PM Page 958

http://www.sybex.com

at all, and it’s certainly more efficient than calculating the totals for all customers and moving the
information to the client; the user may only look at a few totals and just ignore the rest.

Start a new project and place on its form the controls you see in Figure 21.18. The ListBox control
must be populated with the names of all the companies in the Customers table. Drop the Customers
table from the Server Explorer onto the form and a new DataAdapter object will be added to the project.
Rename the DataAdapter to DACustomers and configure it so that it retrieves only the CustomerID
and CompanyName fields from the database. Here’s the DataAdapter’s SELECT statement:

SELECT CustomerID, CompanyName FROM dbo.Customers

Then generate the Customers DataSet and use it to populate the ListBox control. Set the con-
trol’s DataSource property to Customers1.Customers, its DisplayMember property to Company-
Name, and ValueMember to CustomerID. Then call the DataAdapter’s Fill method from within the
form’s Load event handler:

Private Sub Form1_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

DACustomers.Fill(Customers1)
End Sub

If you run the application now, the ListBox will be populated with the customers’ names. In the
control’s SelectedIndexChanged event handler, we must execute the OrdersPerCustomer procedure
to retrieve the two totals for the selected customer. To execute the stored procedure, add a SqlCom-
mand object to the form.

If you haven’t followed the examples in the previous chapter, you must add OrdersPerCustomer
to the Northwind database (the application expects that the stored procedure is part of the database
and will call it by name). To add a new stored procedure to a database, start Enterprise Manager,
locate the Stored Procedures section under the Northwind database, and from its context menu
select New Stored Procedure. Then add the definition shown in Listing 21.13 to the new stored
procedure and save it as OrdersPerCustomer.

Listing 21.13: The OrdersPerCustomer Stored Procedure

ALTER PROCEDURE dbo.OrdersPerCustomer
@CustomerID nchar(5)=’ALFKI’

AS

Figure 21.18

Retrieving informa-
tion from the data-
base with stored
procedures

959THE COMMAND AND DATAREADER OBJECTS

2877c21.qxd 11/11/01 4:22 PM Page 959

http://www.sybex.com

SELECT dbo.Customers.CompanyName,
COUNT(dbo.Orders.OrderID) AS [Total Orders],
dbo.Customers.CustomerID,
CAST(SUM((dbo.[Order Details].UnitPrice *

dbo.[Order Details].Quantity) *
(1 - dbo.[Order Details].Discount)) AS money) AS [Total Amount]

FROM dbo.Customers
INNER JOIN dbo.Orders

ON dbo.Customers.CustomerID = dbo.Orders.CustomerID
INNER JOIN dbo.[Order Details]

ON dbo.Orders.OrderID = dbo.[Order Details].OrderID
GROUP BY dbo.Customers.CompanyName, dbo.Customers.CustomerID
HAVING (dbo.Customers.CustomerID = @CustomerID)

Select the SqlCommand object from the Data tab of the Toolbox and drop it on the form. To
execute the stored procedure, set the SqlCommand object’s CommandText property to the name of
the stored procedure, set its CommandType to CommandType.StoredProcedure, and then create a
new parameter and set it to the ID of the selected customer.

To set up a parameter, you must first create a Parameter object and add it to the Parameters col-
lection of the SqlCommand1 object. The Parameter must be added to the collection only once. Then,
you must set the properties of the Parameter object. The two most important properties of the Para-
meter object are the Direction and Value properties. The Direction property determines whether the
parameter passes a value to the stored procedure, receives a value from the stored procedure, or both.
Its value can be one of the members of the ParameterDirection enumeration: Input, Output,
InputOutput, and ReturnValue. The parameter’s Value is the ID of the selected customer, which is
given by the SelectedValue property of the ListBox control. The SelectedValue property returns the
value of the field specified with the ValueMember property.

The last step is to execute the command and accept the results into a SqlReader object. Listing 21.14
shows the code that’s executed when the user selects a different customer in the ListBox control.

Listing 21.14: Executing a Stored Procedure with the SqlCommand Object

Private Sub ListBox1_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ListBox1.SelectedIndexChanged

SqlConnection1.Open()
SqlCommand1.CommandType = CommandType.StoredProcedure
SqlCommand1.CommandText = “OrdersPerCustomer”
If SqlCommand1.Parameters.Count = 0 Then

SqlCommand1.Parameters.Add(New _
System.Data.SqlClient.SqlParameter(“@CustomerID”, SqlDbType.NChar))

SqlCommand1.Parameters(0).Direction = ParameterDirection.Input
End If
SqlCommand1.Parameters(0).Value = ListBox1.SelectedValue.ToString
Dim SQLReader As System.Data.sqlclient.SqlDataReader
SQLReader = SqlCommand1.ExecuteReader

Chapter 21 BUILDING DATABASE APPLICATIONS WITH ADO.NET960

2877c21.qxd 11/11/01 4:22 PM Page 960

http://www.sybex.com

While SQLReader.Read
txtOrders.Text = SQLReader.Item(“Total Orders”).ToString
txtAmount.Text = SQLReader.Item(“Total Amount”).ToString

End While
SqlConnection1.Close()

End Sub

Summary
In this chapter, you’ve learned about the basic objects of ADO.NET through examples. You know
how to connect to a database, set up DataAdapter objects for each table you want to query, and pop-
ulate a DataSet object with one or more tables. The tables in a DataSet are usually related, but the
relations between tables are not copied from the database automatically. You must establish relations
between them by editing the XSD file with the schema of the DataSet

Once the data is in the DataSet, you can process it in any way you like. In this chapter, you
learned how to bind controls to the fields of the tables in the DataSet, so that users can navigate
through the rows of the tables and even edit them. The DataGrid control is a very flexible tool for
presenting multiple related tables, and you know how to use it in your applications. You also know
how to use the ListBox and ComboBox controls as lookup devices by binding them to a field in a
table.

In the following chapter, you’ll learn how to access the contents of a DataSet programmatically,
as well as how to update the database. You will also learn how to create DataSet objects in your
code and how to save them to disk files. This technique allows you to create custom data stores or
exchange data with other systems.

961SUMMARY

2877c21.qxd 11/11/01 4:22 PM Page 961

http://www.sybex.com

2877c21.qxd 11/11/01 4:22 PM Page 962

http://www.sybex.com

Chapter 22

Programming the
ADO.NET Objects
In the preceding chapter, you learned how to build applications that access databases with
point and click operations. Binding fields to controls isn’t your only option; it isn’t event the best
option. As you recall, the Update method can’t handle update errors. The DataGrid control isn’t
quite appropriate for editing rows either. It’s a great tool for displaying data, but it’s not the most
appropriate control for editing rows. A major limitation of the DataGrid control is that it can’t
display lookup fields. It can handle related rows, but at any given time it can only display the
rows of a single table—you can’t use the DataGrid control to display master/detail forms. To
keep a customer’s data, the customer’s orders, and an order’s details all visible on the form, we
had to use multiple DataGrid controls on our form.

Database applications aren’t trivial, and the process of building database applications can’t be
oversimplified. Throwing a few controls on the form and setting their data-binding properties
works for very simple applications, but for everything else you must provide quite a bit of code.
You must validate your data and minimize the amount of data moved back and forth between the
client and the server. The DataSet object’s Update method passes all the rows it contains to the
database and uses the SQL statements generated by the configuration wizard to update the under-
lying tables. In most cases, very few of the rows have been edited, and you should be able to trans-
mit only the rows that were added, deleted, or modified.

Another important consideration is how the DataSet is populated. Do we move all the data we
may need in the course of the application? This is what the DataSet object does best. It maintains
a copy of selected tables in the client computer’s memory, so that the application won’t have to
hit the server for every row the user may need to view. The more data you move into the DataSet,
the longer the user can work with the disconnected data. There are applications, however, where
this isn’t desirable. An invoicing application can’t keep the price list in memory for too long,
because prices may change in the database. It should also be able to update the current stock.

To build reliable, robust database applications, you must learn to program the objects exposed
by ADO.NET. You have seen how to use the Command and DataReader objects in the previous
chapter. In this chapter, you’ll learn how to access the data stored in the DataSet from within
your code and how to execute commands directly against the database. We’ll also explore the
DataForm wizard, a tool for building simple data-browsing and -editing applications.

2877c22.qxd 11/11/01 4:22 PM Page 963

http://www.sybex.com

The Structure of a DataSet
The main object of any ADO.NET application is the DataSet object, which is s a miniature data-
base that lives on the client. The main purpose of the Connection and DataAdapter objects is to
populate the DataSet object, as well as move information from the DataSet to the database and
update the underlying table(s). The basic concept behind ADO.NET is to move the required data
to the client, process them there, and then, optionally, update the database with the changes made by
the client application to the local data. The data on the client is a copy of the data on the server the
moment the DataSet was generated, and the DataSet is totally disconnected from the underlying
tables in the database.

The structure of the DataSet object is quite simple. VB6 programmers will have to get used to
living with client-side data, but those of you new to VB.NET will find the DataSet a convenient
method of working with subsets of tables. It’s made up of tables, which may or may not correspond
to tables of the database. You can bring in an entire table, like the Categories table. Or you can select
a few columns and/or a few rows from a table in the database and store them to a table in the Data-
Set. Finally, you can create a table by combining rows from multiple tables. For example, you can
execute a query that retrieves all product names from the Products table along with the name of the
category they belong to from the Categories tables and stores the returned rows to a new table in the
DataSet. It is also possible to add and drop tables from a DataSet at any time during the course of
the application.

Finally, you can create new tables from within your code. To do so, we create a DataTable object
to represent the new table and then a series of DataRow objects to represent the table’s rows. Each
row must have a data type, an optional default value, a length, and so on. You can create the same
table structures from within your code as you would do with the visual tools of Enterprise Manager.
After specifying the structure of the tables, you can add relations between them. Everything you can
do visually with the XSD Designer, you can also do from within your code. The process of estab-
lishing relations between tables using the Designer was described in the last chapter. The product
documentation discusses extensively how to create DataSets programmatically. You will find this
information useful in situations where the data comes from someone else’s database. As you will see
later in this chapter, it is possible to create a DataSet programmatically, populate it, and then store
its contents to a XML file. This chapter shows you how to use DataSets to manipulate databases,
which is what most of us will be doing anyway.

If the tables were totally independent of one another, the DataSet would be nothing more than a
collection of arrays. Yet it’s not. In addition to the tables, the DataSet maintains relations between
tables, as you have seen. If you need to see the product names along with the names of the categories
they belong to, you can bring both tables into the DataSet and establish a relationship between them.

DataSets are not aware of the data sources. The exchange of information between DataSets and
data sources (which, in most cases, are databases) takes place through the Data Adapter object,
described in Chapter 21. Each table in a DataSet has an associated Data Adapter object, whose func-
tion is to retrieve data from the underlying table and populate the DataSet, as well as update the
underlying table in the database with data from the DataSet.

The DataSet’s structure and its data are described with XML keywords. You don’t have to learn
much about XML, but if you open the XSD file, you’ll see the XML code that describes the struc-
ture of the DataSet. The data aren’t available at design time, but once you populate the tables of the

Chapter 22 PROGRAMMING THE ADO.NET OBJECTS964

2877c22.qxd 11/11/01 4:22 PM Page 964

http://www.sybex.com

DataSet, the data will also be described in XML. The Data Adapter formats the data as XML docu-
ments and passes them to the DataSet. It also receives data in XML format from the DataSet and
updates the underlying tables in the database.

Navigating the Tables of a DataSet
In this section, we’re going to take a closer look at the structure of the DataSet and how it organizes
data in tables. You’ll learn how to enumerate the tables in the DataSet and how to iterate through
their rows and access the values of individual columns. The information in this section will enable
you to write applications for displaying data. Later in the chapter, we’ll take a closer look at tech-
niques for updating the tables in the data source.

The DataSet object exposes members for accessing its contents. The tables in a DataSet are
exposed through the Tables collection, which is made up of DataTable objects. If the tables are
related, the relations are exposed by the Relations collection, which is made up of DataRelation
objects. The following two loops print the names of the tables and relations in a DataSet:

Dim tbl As System.Data.DataTable
For Each tbl In AllOrders1.Tables

Console.WriteLine(tbl.TableName)
Next
Dim rel As System.Data.DataRelation
For Each rel In AllOrders1.Relations

Console.WriteLine(rel.RelationName)
Next

The DataTable object’s most important property is the Rows property, which is a collection of
DataRow objects. The DataRow object, in turn, exposes the Item property, which is the value of a
specific column (field) in a row. If the DSCustomers DataSet contains the Customers table, the fol-
lowing statement returns the CustomerID field of the third row in the Customers table:

DSCustomers.Tables(“Customers”).Rows(2).Item(“CustomerID”)

There’s a simpler expression for retrieving the same value, which is the following:

DSCustomers.Customers(2).CustomerID

Obviously, the second expression is easier to write and makes your code easier to read and main-
tain. However, this notation applies only to a typed DataSet—one with a schema available at design
time. The DataSet is based on existing tables, so that their structures are known at design time and
the compiler can create typed DataSets. If you create a DataSet at runtime from within your code,
then the compiler has no way of knowing the structure of the DataSet and therefore can’t create a
typed DataSet. This chapter deals with typed datasets only.

If you’re wondering how the compiler knows about the structure of the DataSet and how it can
expose the names of the tables as members of the DataSet object, or the names of the columns as
members of the DataTable object, the answer is quite simple. It creates a class for every DataSet and
for every table you add to the DataSet. This is done on the fly, and all the information is hidden
from you. To view the class that implements the DataSet, click the Show All Files button on the
Solution Explorer. Under the XDS file with the DataSet’s schema, there’s another file with the same
name and extension VB. If you open this for a DataSet that contains the Customers table, you will

965THE STRUCTURE OF A DATASET

2877c22.qxd 11/11/01 4:22 PM Page 965

http://www.sybex.com

see that it contains the definition of the class DSCustomers, which in turn contains the classes
CustomersDataTable and CustomersRow. All these classes expose their own members, which you
can access through the DSCustomers1 object. DSCustomers1 is an instance of the DSCustomers class.

Using the DataTable, DataRelation, and DataRow objects, you can navigate through all the
tables of a DataSet, going from each row of any given table to the related rows in any other table.
Let’s say you have created a DataSet with the Customers, Orders, and Order Details tables. Obvi-
ously, data binding is not the only way to build a user interface for browsing or editing a DataSet.
You can write code to display the current row’s fields to a TextBox control and store the edited val-
ues back to the same row. You can also write code to navigate through the rows of a table or
through the tables of a DataSet. Let’s look at an example of navigating through the tables of a
DataSet and reading their fields with code.

VB.NET at Work: The Datasets Project

The Datasets project, whose main form is shown in Figure 22.1, can display the names of all tables
in a DataSet, the names of all relations in the DataSet, and finally all the data in the DataSet. The
Show Tables button displays the names of all the tables in the DataSet to the top-left ListBox con-
trol. The Show Relations button displays the names of all relations in the second ListBox control.
The Show All Data button adds the customers, their orders, and each order’s details to a TreeView
control. As you can see, the structure of the tree reflects the structure of the data in the DataSet.

The root nodes are customers (the parent table of the DataSet). Under each root node, you can
find the customer’s orders (the IDs of the orders), and under each order you can find the order’s
details. The nodes with the details contain the product ID, quantity, and price. You can modify the
SELECT statement of the Order Details table so that it displays product names instead of product
IDs, or include each order’s total. Or you can map the DataSet’s structure to a ListView control,
which gives you more control over the appearance of the data. Listing 22.1 shows the code behind
the Show Tables button, which iterates through the Tables collection of the AllOrders1 DataSet
object. The DataSet was created by dropping the Customers, Orders, and Order Details tables of the
Northwind database on the design surface, as described in the previous chapter. All three tables are
stored in the same DataSet, and the relations between tables were established on the XSD file, as
described in the previous chapter.

Figure 22.1

The Datasets project
demonstrates how to
navigate through a
DataSet and its
tables.

Chapter 22 PROGRAMMING THE ADO.NET OBJECTS966

2877c22.qxd 11/11/01 4:22 PM Page 966

http://www.sybex.com

Listing 22.1: Navigating through the Tables of a DataSet

Private Sub Tables(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnTables.Click

ListBox1.Items.Clear()
Dim tbl As System.Data.DataTable
For Each tbl In AllOrders1.Tables

ListBox1.Items.Add(tbl.TableName)
Next

End Sub

The Show Relations button is quite similar; it iterates through the Relations collection of the
DataSet and prints the names of the relations on the second ListBox control. Listing 22.2 shows the
code behind this button.

Listing 22.2: Navigating through the Relations of a DataSet

Private Sub Relations(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnRelations.Click

ListBox2.Items.Clear()
Dim rel As System.Data.DataRelation
For Each rel In AllOrders1.Relations

ListBox2.Items.Add(rel.RelationName)
Next

End Sub

When you select a relation by clicking its name, the program displays the properties of the
selected relation in a message box. If you click the CustomerOrders relation, the following will
appear on a message box:

PARENT Customers
CHILD Orders
ON CustomerID = CustomerID

The last button on the form displays the entire hierarchy of the DataSet on a TreeView control
with the statements shown in Listing 22.3.

Listing 22.3: Navigating through the Rows of Related Tables

Private Sub Data(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnData.Click

DAcustomers.Fill(AllOrders1, “Customers”)
DAOrders.Fill(AllOrders1, “Orders”)
DAOrderDetails.Fill(AllOrders1, “Order Details”)
Dim CORelation As String

967THE STRUCTURE OF A DATASET

2877c22.qxd 11/11/01 4:22 PM Page 967

http://www.sybex.com

CORelation = AllOrders1.Customers.ChildRelations(0).RelationName()
Dim ODRelation As String
ODRelation = AllOrders1.Orders.ChildRelations(0).RelationName
Dim row As AllOrders.CustomersRow
For Each row In AllOrders1.Customers

Dim Cnode As TreeNode
Cnode = TreeView1.Nodes.Add(row.CompanyName)
Dim OrderRows() As AllOrders.OrdersRow
OrderRows = row.GetChildRows(CORelation)
Dim Orow As AllOrders.OrdersRow
For Each Orow In OrderRows

Dim Onode As TreeNode
Onode = Cnode.Nodes.Add(Orow.OrderID)
Dim DetailRows() As AllOrders.Order_DetailsRow
Dim Drow As AllOrders.Order_DetailsRow
DetailRows = Orow.GetChildRows(ODRelation)
For Each Drow In DetailRows

Onode.Nodes.Add(Drow.ProductID & “ “ & Drow.Quantity & “ X “ & _
Drow.UnitPrice)

Next
Next

Next
End Sub

The code starts by populating all three tables of the DataSet. Then it retrieves the name of the
first child relation of the Customer table (the CORelation string, which is the name of the relation
between the Customers and Orders tables) and the first child relation of the Orders table (the
ODRelation string, which is the relation between the Orders and Order Details tables). We’ll use the
names of these relations to navigate from each row to its child rows.

Then the code starts scanning the rows of the Customers table with a For Each loop. In the
loop’s body, it adds a new root node to the TreeView control with the customer’s name. Then it
retrieves the child rows of the current row. The child rows are stored in an array of OrdersRow
objects with the following statement:

Dim OrderRows() As AllOrders.OrdersRow
OrderRows = row.GetChildRows(CORelation)

The GetChildRows method of the DataRow object accepts as argument the name of a relation,
and it retrieves the child rows related to the current row with the specified relation. The rows are
stored in properly declared array or OrdersRow items.

Then the code goes through the child rows and, for each row, adds a child node under the current
customer’s node in the TreeView control. As you can guess, it retrieves the current order’s child
rows, which are the order’s details. The innermost loop adds these rows under the current order’s
node. All three nested loops have the same structure, and you should examine the code to understand
how it navigates through all the rows of all tables following the relations between tables.

Chapter 22 PROGRAMMING THE ADO.NET OBJECTS968

2877c22.qxd 11/11/01 4:22 PM Page 968

http://www.sybex.com

As you can see, there’s no compelling reason to bind your controls to the fields of a DataSet.
You can access any field of any row of any table of the DataSet from within your code and display
its value on a control. You can even apply any formatting necessary to the field’s value before dis-
playing it. If the user changes the value of the field, you can validate it before it’s even stored to the
DataSet.

The examples so far have dealt mostly with the presentation of data. Now we’re going to
look into the process of updating the DataSet, as well how to update the underlying tables in the
database.

Updating DataSets
In the previous chapter, you learned how to update the tables in the database through the DataAdapter
object. This technique, however, isn’t very robust, and here’s why. You may start with a DataSet of
30 changed rows. Some of these rows may contain errors, and the DataSet won’t update the rows in
error. You’ll have to select all rows in error, figure out what went wrong, and try again. Fixing the errors
means that you must present all the information to the user and give them a chance to edit the rows
again, then try to update the database again.

Some rows may contain errors that can’t be fixed by the user. Let’s say the user has edited a
row, but in the meantime another user has removed this row from the underlying table in the
database. Obviously, the DataAdapter won’t be able to update this row, because it no longer
exists in the database. This is a typical error that may stop the DataAdapter from updating the
remaining rows.

Another messy situation arises when a table contains an identity column, one that is assigned a
value automatically by the database. The ProductID column in the Product database is such a col-
umn. Let’s say you’ve created a DataSet that contains the products of the Northwind corporation.
It is possible to add new rows to the Products table, and the DataSet will automatically assign a
new value to the ProductID field. This field is certainly unique in your DataSet, but another user
may have already added a row with the same ID to the database. Handling this type of error isn’t
trivial.

There’s a simple work-around for new databases, but this can’t be applied to existing databases.
You can use GUIDs (globally unique identifiers) instead of Identity columns. A GUID is a system-
generated number that’s globally unique. It’s generated in such a manner that’s extremely unlikely
that there will ever be a conflict with two GUIDs. In the unlikely case that there’s a conflict (the sys-
tem generates a GUID that already exists in the table), the operation will fail. But this is a remote
possibility, and we can live with it. The problem with Identity columns is that they’re used exten-
sively in existing databases, and we can’t redesign our databases.

Another problem arises with constraints other than the referential constraints. The UnitPrice col-
umn in the Products table has a constraint that prevents it from accepting a negative value (a very
reasonable constraint). Should you attempt to store a negative value in this column, the database will
reject the changes. This constraint, however, isn’t stored in the DataSet. In other words, you can edit
a row of the Products table in your DataSet, set UnitPrice to a negative value, and the changes will
be stored in the Products table of the DataSet. When you attempt to update the database, however,
the row will be rejected. To handle this type of error, you must supply all the necessary validation
code. But then again, how can we be sure that we have caught every possible error?

969THE STRUCTURE OF A DATASET

2877c22.qxd 11/11/01 4:22 PM Page 969

http://www.sybex.com

The answer to all these questions is to update the database as frequently as possible through
stored procedures. If a row fails to update, we must notify the user immediately, giving the user a
chance to review the error and make the necessary corrections. But this approach violates the whole
idea of using disconnected DataSets. Indeed, DataSets are a great tool for a disconnected world, but
not all of our applications are disconnected. An application that runs in a small business environ-
ment isn’t going to benefit much from the disconnected nature of ADO.NET. It’s very likely that
ADO.NET will be augmented in the near future to support connected DataSets as well. Until then,
you must do most of the work manually, and you’ll see in this chapter how to update the underlying
tables.

The DataForm Wizard
One of the tools that come with Visual Studio is the DataForm wizard, which creates data-entry
forms for you. Let’s look at this tool in action, then we’ll discuss its limitations. You will also find
interesting coding examples in the output generated by the wizard. The example of this section is the
EditProducts project, whose main form is shown in Figure 22.2. This form allows you to edit the
rows of the Products table of the Northwind database, enter new rows, and delete existing rows. The
interface and the code behind the controls were generated by the DataForm wizard. What you see in
Figure 22.2 is the form of the EditProducts project as it was generated by the wizard. The main
form of the EditProducts project on the CD is quite different, because we’ll edit this form exten-
sively in this section to make its interface more user-friendly.

Start a new project, name it EditProducts, and delete the Form1 component. Then right-click the
project’s name and select Add ➢ Add New Item. In the dialog box that appears, select DataForm
Wizard. A wizard starts that will take you through the steps of setting up a new DataForm. The
first screen displays a welcome message; click Next to skip it. On the next screen, you’re prompted
to specify the DataSet on which the DataForm will be based. Since the project doesn’t contain a
DataSet, specify the name of a new DataSet, which the wizard will create for you. Enter the name
DSProducts and click Next to view the next screen of the wizard.

Figure 22.2

Editing the Products
table on a form
generated by the
DataForm wizard

Chapter 22 PROGRAMMING THE ADO.NET OBJECTS970

2877c22.qxd 11/11/01 4:22 PM Page 970

http://www.sybex.com

You’re prompted to select a connection to a database or specify a new one. Select your connec-
tion to the Northwind database and click Next to see the Choose Tables Or Views screen. Here you
will see a list of all tables and views in the database, and you can select one or more items on which
the DataForm will be based. If you select multiple tables, make sure they’re related. Select the Prod-
ucts table and then click the button with the right arrow to add the Products table to the list of
selected items. Each product has a related row in the Categories table and another related row in the
Suppliers table. Add these two tables to the list of selected items and then click the Next button to
see the next screen.

On the next screen of the wizard, you’re asked to establish relationships between tables. Establish
two relationships here, one between categories and products and another one between suppliers and
products. In the Name box, enter the name of the first relationship, CategoriesProducts. The Parent
table of the relationship is the Categories table, and the Child table is Products. The Keys are the
matching columns in each table, and they are the CategoryID columns of the two tables. Then click
the button with the right arrow to add the relationship to the list of Relations.

971THE DATAFORM WIZARD

2877c22.qxd 11/11/01 4:22 PM Page 971

http://www.sybex.com

Establish another relationship between the Suppliers and Products tables in a similar manner and
add it to the list of Relations. You have established the relations between the DataSet’s tables, and
you can click Next to view the next screen of the wizard.

On the next screen of the wizard, you’re prompted to choose the tables and columns that will be
stored in the DataForm. We will not display related rows (as we did with the DataGrid control in Chap-
ter 21). We want to design a form that displays all the columns of the Products table, and you’ll see
shortly how the other two tables will be used (you can guess that we’ll use them to look up the name of
the category and supplier of each product, rather than displaying all categories and all suppliers).

By default, the wizard selects all the fields of the Products table. If you wanted to create a master/detail
form, you’d have to specify the Detail table as well. For now click Next to see the next screen of the wizard.

On the last screen, you must select the display style. You can display all rows on a DataGrid con-
trol or create a new form with separate controls for each row. Check the radio button Single Record
In Individual Controls, and the check boxes at the bottom of the window will be enabled. These
check boxes allow you to specify whether the DataForm will contain an Add button (to add new
rows to the Products table), a Delete button (to delete the current row), a Cancel button (to cancel
any changes in the DataSet and reload all rows from the underlying table) and the Navigation con-
trols (to move from row to row). Leave all the check boxes checked, as they are by default.

Chapter 22 PROGRAMMING THE ADO.NET OBJECTS972

2877c22.qxd 11/11/01 4:22 PM Page 972

http://www.sybex.com

Now click Finish to generate the DataForm. The wizard will add a new form to your project,
populate it with the necessary TextBox controls to display the field of the current row in the Prod-
ucts table, and also generate the necessary code. As you can see, all the TextBox controls have the
same width and you must adjust them according to the length of the fields they display.

The navigational buttons at the bottom of the form allow you to move to the first/last and previ-
ous/next rows in the table. You will see the navigational controls (as shown in Figure 22.2) only if
you build the project following the guidelines presented here. The EditProducts project on the CD
is an improved version of the form generated by the wizard, and you will see shortly how you can
enhance the default user interface.

You can notice immediately that the navigational method of the DataForm wizard is totally inad-
equate. We can’t expect users to keep clicking the Next button until they hit the desired row. To
make the navigational model a little more user-friendly, we’ll add a list with the product names, so
that the user can quickly locate the desired product. Figure 22.3 shows the new interface we’re going
to build based on the form generated by the wizard.

First, make the form wider. Then grab all the controls on the form with the mouse and move
them to the right to make room for a ListBox control on the left side of the form. Place a ListBox
control on the form, as shown in Figure 22.3, and set its properties as follows:

Property Value

DataSource objDSProducts.Products

DisplayMember ProductName

ValueMember ProductID

This ListBox will be populated with the names of all products in the Products list. The Value-
Member property stores the IDs of the products, so that we can retrieve the selected product’s
details by the ProductID field when the user selects a product on the list. Then enter the line of List-
ing 22.4 in the ListBox control’s SelectedIndexChanged event handler. This event is fired every time
the user clicks another item on the control, and in its handler we’ll add code to move to the selected
product’s row in the Products table in our DataSet. The various TextBox controls on the Form are
bound to the corresponding columns of the Products table. As a result, when we move to another
row of the Products, the text boxes are updated.

Figure 22.3

A more functional
form for editing the
products

973THE DATAFORM WIZARD

2877c22.qxd 11/11/01 4:22 PM Page 973

http://www.sybex.com

Listing 22.4: Moving to the Selected Product

Private Sub ListBox1_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ListBox1.SelectedIndexChanged

Me.BindingContext(objDSProducts, “Products”).Position = ListBox1.SelectedIndex
End Sub

We no longer need the so-called navigation buttons at the bottom of the form, so delete them.
Delete the Label control that displays the current row’s number as well—we can easily visualize our
approximate position in the table by looking at the ListBox control.

If you run the project now, you’ll be able to quickly locate a product in the ListBox control and
click it to view its fields. Before you run the project, however, you must specify that the DataForm1
form is its Startup object. The form behaves as expected most of time, but there are a few quirks to
this design. The product’s supplier and category are displayed as numeric values. Sure, this is how we
want to store the information to our database, but when we design forms for the end user, we want
to be able to show them a supplier name and a category name. We’ve been through this in the previ-
ous chapter, so you already know how to replace these two TextBox controls with ComboBox con-
trols that display the equivalent strings. Delete the TextBox control that corresponds to the
SupplierID field. Then place a ComboBox control in its place and set the following properties of the
control:

Property Value

DataSource objDSProducts.Suppliers

DataMember CompanyName

ValueMember SupplierID

SelectedValue objDSProducts - Products.SupplierID

Delete the TextBox control that displays the CategoryID and replace it with a ComboBox control
with the following settings:

Property Value

DataSource objDSProducts.Categories

DataMember CategoryName

ValueMember CategoryID

SelectedValue objDSProducts - Products.CategoryID

Run the project now, load the DataSet, and edit a few rows. You have a functional interface, and
you can edit the rows of a table in the DataSet. My advice is to disallow the editing of the current
row in browsing mode by turning on the ReadOnly property of the TextBox controls. Place an Edit
button on the form, which will make the controls editable by resetting their ReadOnly property.
While the user can edit the current row, disable all navigational controls on the form and force users
to end the edit operation by clicking the OK or Cancel button.

Chapter 22 PROGRAMMING THE ADO.NET OBJECTS974

2877c22.qxd 11/11/01 4:22 PM Page 974

http://www.sybex.com

The new interface is much more functional than the original one, produced by the wizard, but it’s
not very robust. Let’s say you wish to take a look at the suppliers, or categories, by expanding the
appropriate ComboBox control. It sure isn’t your intention to change the current row. Click a cate-
gory name by mistake and you’ve edited the current row. When you move to the next row, the
changes will be committed to the DataSet, and when you click the Update button the changes will
be sent to the database. Sure, my suggested approach takes a few more keystrokes, or mouse clicks,
but real-world applications must be robust.

Let’s continue our exploration of the application the wizard has generated for us. Try adding a
few products. Don’t bother specifying the new product’s ID; it will be assigned one by the database.
The Add button will add a new row to the Products table in the local DataSet. The new rows will
be submitted to the database along with the edits and deletions (if any) when you click the Update
button.

When adding a new product, make sure you click the CheckBox control (field Discontinued)
once to check it, and once again to clear it. The default state of this control isn’t cleared, even
though you don’t see a check mark. If you don’t touch the CheckBox, the application will crash with
an error message to the effect that the Discontinued field can’t be Null. The same will happen if you
don’t supply a value to the ProductName field, because this field can’t be Null. As you can see, some
of the table’s basic constraints are embedded into the DataSet’s DataTable object, and they’re
enforced. This is a good thing, but should they crash the application?

The program crashes when it attempts to move to another row in the table and the current row
has errors. We can trap this error with a structured error handler and prevent the program from
crashing. Open the SelectedIndexChanged event handler of the ListBox control and insert the code
shown in Listing 22.5.

Listing 22.5: Handling Data-Entry Errors

Private Sub ListBox1_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ListBox1.SelectedIndexChanged

Try
Me.BindingContext(objDSProducts, “Products”).Position = _

ListBox1.SelectedIndex
Catch dataException As Exception

MsgBox(dataException.Message)
Me.BindingContext(objDSProducts, “Products”).CancelCurrentEdit()
Me.BindingContext(objDSProducts, “Products”).Position = _

ListBox1.SelectedIndex
End Try

End Sub

Note OK, the problem is the statement we inserted to improve the navigational capabilities of the DataForm, so it’s not
really the wizard’s fault. But our custom code and the simplistic navigational tools inserted on the form by the wizard do
the same thing—they change the Position property of the BindingContext object—so the original code would have failed
in the same manner.

975THE DATAFORM WIZARD

2877c22.qxd 11/11/01 4:22 PM Page 975

http://www.sybex.com

If an error occurs, the exception handler will display the description of the error in a message box,
then it will clear the edits and move to the product selected in the ListBox control. The user can
select the previous row and edit it again, knowing what type of error prevented the update of the
DataSet.

If you click the Delete button, the current row will be removed from the DataSet (it will also be
removed from the ListBox control, just as new rows are added automatically to this control). But
products are referenced in the Order Details table, so how can we delete them? Remember, the
DataSet resides in the local computer and is disconnected from the database. Since the DataSet con-
tains a single table, there are no relations to be enforced and the DataSet happily removes the row
when you request it. What will happen when you attempt to update the database, however, is a dif-
ferent story. SQL Server will emphatically refuse to remove a row that’s being referenced by another
table, and the update operation will fail. Delete a row, then click the Update button. You’ll get an
error message to the effect that the row can’t be removed because this would violate the PK_Order_
Details_Products constraint.

Handling Identity Fields
I should point out the following behavior of the application. If you add a row, its ProductID field
will be assigned a value automatically. The ProductID column is an Identity column, and you can’t
set it; it must be assigned a value by the DBMS. The DataSet knows that the ProductID column is
an Identity column and, every time you add a row, it assigns the next available value to it. If the last
row’s ProductID field is 90, it will assign the value 91 to the first row you add, the value 92 to the
second row, and so on. But what will happen if another user has already added a few rows to the
table? Run the application again, add a couple of rows, and then switch to the Enterprise Manager.
Do not update the database yet.

In the Enterprise Manager, add a couple of rows to the Products table. Then switch to the appli-
cation and click the Update button. The new rows will be added to the underlying table. Write
down the IDs of the new rows. Then load the DataSet again by clicking the Load button, locate the
newly added rows, and examine their IDs. This time they’re different! They have the values assigned
to them by the database.

This is a reasonable behavior too, as we don’t really care about the IDs of the rows. Or do we? In
an application like EditProducts, no one would really care to see the actual ID of a product. There
are situations, however, where you may want to use the ID of a row as a foreign key in another table.
Let’s say you want to issue an invoice. First, you must add a row to the Orders table. The new order
will get an ID from the database. This ID, however, must appear in all the rows of the Order Details
table that refer to the specific invoice. And obviously, we must make sure that the proper ID is inserted
in the Order Details table (it must be the final ID of the order assigned by the database, not a tem-
porary ID generated by the DataSet).

Retrieving Proper IDs

There are situations where we do need to know the proper ID assigned to an identity field by the
database. The best way to handle these situations is to create a stored procedure that accepts the
fields of a new row, writes it to the database, and returns the ID assigned by the database. Although

Chapter 22 PROGRAMMING THE ADO.NET OBJECTS976

2877c22.qxd 11/11/01 4:22 PM Page 976

http://www.sybex.com

this can be done through the DataSet object, why bother with a mechanism that’s optimized for
disconnected scenarios? We want to connect to the database, commit the new row, and get back its
ID as soon as possible. You see, the DataSet was designed for a disconnected world, but not all data-
access requirements fall into this category. It’s highly unlikely that ADO.NET will remain for long a
disconnected data-access mechanism—Microsoft will have to add features to make ADO.NET
work in connected scenarios like the one described here.

Instead of using the DataSet to update the database, we can use the Command object. I discussed
the Command object in Chapter 21, but I will repeat the process here by demonstrating how to add a
new row to the Orders table. First, you must create a stored procedure that inserts a new row to the
table. The only required field for the Orders table is the ID of the customer that placed the order.
The order’s date (OrderDate field) can be assigned the current date and time by the database. The
remaining fields (the ID of the employee who made the sale, the shipping address, and so on) are
optional. To keep the complexity of the sample code to the bare minimum, I will ignore these fields.

The stored procedure in Listing 22.6 accepts as argument the ID of a customer and creates a new
row in the Orders table. After the execution of the INSERT statement, the stored procedure
retrieves the value of the identity field of the new row (it’s given by the expression @@IDEN-
TITY) and returns it to the calling application.

Listing 22.6: The NewOrder Stored Procedure

CREATE PROCEDURE NewOrder
@custID nchar(5)
AS
INSERT INTO Orders (CustomerID, OrderDate) VALUES(@custID, GetDate())
RETURN (@@IDENTITY)
GO

The value returned by the stored procedure is known as its return value, and you’ll see shortly how
you can retrieve it from within your application.

Once the stored procedure is in place, you can create a new Command object to call the stored
procedure. First we establish a Connection object to the database, then we open the connection and
assign the Connection object to the Connection property of the Command object.

The Command object’s CommandText property is set to the name of the stored procedure, and
its CommandType property is set to the constant CommandType.StoredProcedure. At this point, we
can execute the stored procedure, but we must first add some parameters to it. We create a new
Parameter object for each parameter expected by the stored procedure, set its name, type, and value,
and then add it to the Command object’s Parameters collection. Finally, we call the Command
object’s ExecuteScalar method, which returns the stored procedure’s return value. Listing 22.7 shows
how to add a new row to the Orders table and then retrieve the new row’s OrderID field. If the new
row can’t be added to the table, the stored procedure will raise an error (it will also return the value
zero). The ID of the new row is then stored in the orderID variable for further processing.

977THE DATAFORM WIZARD

2877c22.qxd 11/11/01 4:22 PM Page 977

http://www.sybex.com

Listing 22.7: Retrieving a New Row’s Identity Column

Dim myConnection As New SqlConnection()
myConnection.ConnectionString = “data source=PowerToolkit; “ & _

“initial catalog=Northwind;integrated security=SSPI”
myConnection.Open()
Dim myCommand As New SqlCommand()
myCommand.Connection = myConnection

Try
myCommand.CommandText = “NewOrder”
myCommand.CommandType = CommandType.StoredProcedure
Dim p As New SqlParameter()
p.ParameterName = “@CustID”
p.Direction = ParameterDirection.Input
p.SqlDbType = SqlDbType.Char
p.Value = “BLAUS”
myCommand.Parameters.Add(p)
p = New SqlParameter()
p.ParameterName = “RETURN”
p.Direction = ParameterDirection.ReturnValue
p.SqlDbType = SqlDbType.Int
myCommand.Parameters.Add(p)
myCommand.ExecuteScalar()
Dim orderID As Integer = CType(myCommand.Parameters(“RETURN”).Value, Integer)

Catch exc As Exception
MsgBox(exc.Message)

End Try

And what might that further processing be? In most situations, it’s the use of the ID in adding
new rows in related tables. To complete the insertion of an order to the database, we must also add a
few rows to the Order Details table. These rows must refer to the order to which they belong, so
their OrderID field must be set to the ID of the order we just inserted.

I will show you how to add the detail lines; it’s quite analogous to adding a row to the Orders
table. However, there’s a complication. What if one of the detail lines can’t be added to its table? We
should be able to cancel the entire order, not just a detail line. Performing multiple actions against a
database is a transaction, and we must first discuss the topic of transactions. After you understand
how transactions are handled, you’ll see the code for entering a new order to the Northwind database.

Transactions
The closing remark of the last section brings us to a very important topic in database programming, the
topic of transactions. A transaction is a series of actions that must either succeed, or fail, as a whole. Should
one of the actions fail, then the entire transaction fails and all the changes made to the database so far
must be undone (“rolled back” in proper database terminology). If all actions succeed, then they can be
finalized (“committed” in proper database terminology) and become part of the database. A transaction

Chapter 22 PROGRAMMING THE ADO.NET OBJECTS978

2877c22.qxd 11/11/01 4:22 PM Page 978

http://www.sybex.com

takes place while you transfer money from one account to another. The two actions are the withdrawal
of an amount from one account and the deposit of the same amount to another account. If the bank
charges you for the transaction, then a third action is involved in the transaction. If one of them fails, you
want the accounts to be restored in their initial states, as if the transaction were never attempted. You
don’t want the money to come out of your account and not appear in the other account, and you don’t
want to be charged for an unsuccessful transaction. Even if you don’t care about an amount appearing
magically in someone else’s account, the bank cares.

To implement a transaction, you mark the beginning of it. If the transaction fails, the database must
be restored to the state it was in just prior to when the transaction was initiated. Then you insert the
code for all the actions involved in the transaction, and at the end you commit the transaction. Once the
transaction is committed, other users can see its effects. Until then, however, other users can’t see the
effects of any of the steps. In other words, there are no partial transactions. If an error prevents the
completion of the transaction, then you must roll it back—bring the tables to the state they were in just
before the start of the transaction. The following pseudo-code is the skeleton of a transaction:

Begin Transaction
Try

{ statements to complete transaction }
Commit Transaction

Catch Exception
Rollback Transaction

End Try

Let’s say we want to place a new order. First, we must add a row to the Orders table. Then we
must add some rows to the Order Details table—one row per item ordered. The rows in the Order
Details table must reference the matching row in the Orders table—that is, they must use the ID of
the order as foreign key.

To add rows to the Order Details table, we’ll do something similar. We’ll write a stored procedure
that adds a new row to the Order Details table, the NewOrderLine stored procedure (Listing 22.8).
The code we’ll discuss in this section can be found in the Transaction project on the CD. This proce-
dure accepts as arguments the ID of the order to which the detail line belongs, the product ID, and
the quantity ordered. To complete the row, it picks the price of the product from the Products table.
I’ve ignored the discount in this example, but it can be added with an additional parameter.

Listing 22.8: The NewOrderLine Stored Procedure

CREATE PROCEDURE NewOrderLine
@OrderID integer, @ProductID integer, @quantity integer
AS
DECLARE @ProductPrice money
SET @ProductPrice=(SELECT UnitPrice FROM Products WHERE ProductID=@ProductID)
INSERT INTO [Order Details] (OrderID, ProductID, Quantity, UnitPrice)
VALUES (@OrderID, @ProductID, @Quantity, @ProductPrice)
GO

979TRANSACTIONS

2877c22.qxd 11/11/01 4:22 PM Page 979

http://www.sybex.com

This stored procedure must be called once for each detail line. Let’s continue with the myCommand
object of the previous example. First, we must set the Command object’s CommandText and
CommandType properties:

myCommand.CommandText = “NewOrderLine”
myCommand.CommandType = CommandType.StoredProcedure

Then we clear the Command object’s Parameters collection and add a new set of parameters,
designed for the NewOrderLine stored procedure.

myCommand.Parameters.Clear()
p = New SqlParameter()
p.ParameterName = “@OrderID”
p.Direction = ParameterDirection.Input
p.SqlDbType = SqlDbType.Int
p.Value = orderID
myCommand.Parameters.Add(p)

p = New SqlParameter()
p.ParameterName = “@ProductID”
p.Direction = ParameterDirection.Input
p.SqlDbType = SqlDbType.Int
p.Value = 15
myCommand.Parameters.Add(p)

p = New SqlParameter()
p.ParameterName = “@Quantity”
p.Direction = ParameterDirection.Input
p.SqlDbType = SqlDbType.Int
p.Value = 1
myCommand.Parameters.Add(p)
myCommand.ExecuteNonQuery()

Each parameter has a name (property ParameterName), type (property SqlDbType), direction
(property Direction), and value (property Value). Once these properties are set, we add the parame-
ter object to the Command object’s Parameters collection. After all the necessary parameters are set,
we call the ExecuteNonQuery method of the Command object, which executes the stored procedure
and returns the number of rows affected. The same process must be repeated for all the detail lines—
only you need not re-create the Parameter object, you can simply set its properties and add it to the
parameters collection. All other properties remain the same.

So, we have the code that adds a new row to the Orders table (Listing 22.6), the code that
retrieves the new order’s ID (Listing 22.7), and the code that adds rows to the Order Details table
(Listing 22.8). Let’s put all the actions together in a transaction. To create a transaction with
ADO.NET, you must create a Transaction object. A Transaction object is created on the Connec-
tion object, by calling its BeginTransaction method. This statement marks the beginning of the

Chapter 22 PROGRAMMING THE ADO.NET OBJECTS980

2877c22.qxd 11/11/01 4:22 PM Page 980

http://www.sybex.com

transaction. Then, we set the Command object’s Transaction property to the Transaction object.
This is how ADO knows which actions to undo when the transaction is rolled back:

Dim myTrans As SqlTransaction
myTrans = myConnection.BeginTransaction()
myCommand.Transaction = myTrans

Then comes an exception handler to catch any error that may occur during the processing of the
transaction. All the statements presented earlier must appear in the Try clause of the exception han-
dler. If the Catch clause is entered, we roll back the transaction by calling the Transaction object’s
RollBack method. If the transaction succeeds, we call the same object’s Commit method to commit
the transaction. Listing 22.9 shows the code that creates a new order and adds three detail lines to it.
The detail lines refer to the products with IDs of 15, 25, and 35, and the quantities are 1, 3, and 5
items of each product, respectively. You have seen most of the code already, but I’m repeating it for
your convenience here.

Listing 22.9: Performing a Transaction with the Command Object

Dim myConnection As New SqlConnection()
myConnection.ConnectionString = “dataSource=PowerToolkit;initial” & _

“catalog=Northwind;integrated security=SSPI”
myConnection.Open()
Dim myCommand As New SqlCommand()
myCommand.Connection = myConnection
Dim myTrans As SqlTransaction
myTrans = myConnection.BeginTransaction()
myCommand.Transaction = myTrans
Try

myCommand.CommandText = “NewOrder”
myCommand.CommandType = CommandType.StoredProcedure
Dim p As New SqlParameter()
p.ParameterName = “@CustID”
p.Direction = ParameterDirection.Input
p.SqlDbType = SqlDbType.Char
p.Value = “BLAUS”
myCommand.Parameters.Add(p)
p = New SqlParameter()
p.ParameterName = “RETURN”
p.Direction = ParameterDirection.ReturnValue
p.SqlDbType = SqlDbType.Int
myCommand.Parameters.Add(p)
myCommand.ExecuteScalar()
Dim orderID As Integer = CType(myCommand.Parameters(“RETURN”).Value, Integer)

‘ Set up parameters collection and add first item
myCommand.CommandText = “NewOrderLine”
myCommand.CommandType = CommandType.StoredProcedure
myCommand.Parameters.Clear()

981TRANSACTIONS

2877c22.qxd 11/11/01 4:22 PM Page 981

http://www.sybex.com

p = New SqlParameter()
p.ParameterName = “@OrderID”
p.Direction = ParameterDirection.Input
p.SqlDbType = SqlDbType.Int
p.Value = orderID
myCommand.Parameters.Add(p)
p = New SqlParameter()
p.ParameterName = “@ProductID”
p.Direction = ParameterDirection.Input
p.SqlDbType = SqlDbType.Int
p.Value = 15
myCommand.Parameters.Add(p)
p = New SqlParameter()
p.ParameterName = “@Quantity”
p.Direction = ParameterDirection.Input
p.SqlDbType = SqlDbType.Int
p.Value = 1
myCommand.Parameters.Add(p)
myCommand.ExecuteNonQuery()

‘ Add second item
p = myCommand.Parameters(“@ProductID”)
p.Value = 25
p = myCommand.Parameters(“@Quantity”)
p.Value = 2
myCommand.ExecuteNonQuery()

‘ Add third item
p = myCommand.Parameters(“@ProductID”)
p.Value = 35
p = myCommand.Parameters(“@Quantity”)
p.Value = 3
myCommand.ExecuteNonQuery()
myTrans.Commit()
Console.WriteLine(“Order written to database.”)

Catch exc As Exception
myTrans.Rollback()
Console.WriteLine(exc.Message)

MsgBox(“Could not add order to database.”)
Finally

myConnection.Close()
End Try

The last statement in the Finally section of the error handler is very important. In ADO.NET
you should never keep connections open longer than absolutely necessary. The code shown in List-
ing 22.9 will add a new order to the Northwind database by updating two tables in a transaction
(you will find this code in the Transaction project on the CD).

Chapter 22 PROGRAMMING THE ADO.NET OBJECTS982

2877c22.qxd 11/11/01 4:22 PM Page 982

http://www.sybex.com

Performing Update Operations
Now it’s time to look at a few really advanced database operations. Getting data out of a database,
storing them to a DataSet, and even processing them on the client computer is fairly straightforward.
Updating the underlying tables is also straightforward, as long as all rows and all fields have been
validated. In this section, we’ll take a look at what can go wrong in moving the data from the
DataSet back into the database.

As you have seen, there are two major approaches when working with ADO.NET: use the
DataSet’s update method, or use the Command object to execute SQL statements and stored proce-
dures directly against the database. Neither approach is necessarily better than the other; sometimes
you’ll find DataSets more convenient to work with, sometimes not. DataSets were designed for dis-
connected scenarios. You can populate a DataSet with several tables, establish relations between
them, and send it to Germany where someone might use it for their own purposes. Or you can take
it with you to a Greek island, edit it, and bring it back two weeks later. The question is what will
happen when you attempt to update the database with your DataSet’s data. If the tables are edited
frequently by other users as well, then all kinds of conflicts will arise when you call the Update
method. If the tables aren’t modified frequently, then there’s a good chance that most of the rows in
your DataSet will successfully update the underlying tables.

You can safely use DataSets to send data to other users. You can also safely receive DataSets from
other users, probably from different databases. You’ll be able to write applications to look at them,
even edit them. You can also use them to update your database. The data in a DataSet sent by someone
else most likely contains new data, and you can insert the appropriate rows in your database. If the same
data exist in your database, you’ll probably use the new DataSet to update your database. A publisher
might send you a complete list of books for your online store. It’s safe to assume that the publisher’s
data contain fewer mistakes than yours and you can use the new data to update your database.

The most complicated scenario is when you want to write applications to maintain a database.
Invoicing and similar applications are easy to write, because an invoice can’t be edited. Invoices are
entered once, they can be viewed many times, used in calculations, but no one can change an invoice.
We usually cancel an invoice in its entirety. If you want to write a front-end application for main-
taining a database where things change every day, the disconnected approach of ADO.NET may not
be your best bet. Here’s why. The DataSet can hold a small (or not so small) segment of your data-
base. To make the best of the disconnected nature of the DataSet, you must keep it on the client for
as long as possible. The longer you keep the disconnected DataSet on the client computer, the more
you increase the chances of other users to modify the same data in the database. The problem of two
or more users attempting to update the same data is as old as computers (almost) and is known as
concurrency. There are two ways to deal with concurrency, optimistic concurrency and pessimistic con-
currency. ADO.NET is based on optimistic concurrency.

Optimistic concurrency means that no other users will attempt to access the same data while you’re
editing them. As you recall, the stored procedures generated by the DataAdapter wizard for updating
the database won’t update a row if even one of its fields has changed since we last read it. If even a
single field has changed value in the underlying table, then the row we have in the DataSet has been
edited by someone else. Can we overwrite someone else’s edits?

Let’s think about it for a moment. If you’re editing the Customers table, you’re most likely chang-
ing addresses, phone numbers, and so on. If someone else happens to edit the same row at the same

983PERFORMING UPDATE OPERATIONS

2877c22.qxd 11/11/01 4:22 PM Page 983

http://www.sybex.com

time, they’re probably doing the same. Would it make any difference if you committed your edits
before, or after, another user? There are many situations where the “last-write wins.” The user that
updates the database last overwrites changes made by others. When you create the SQL statements
or stored procedures for updating the database, you’re given the option to use optimistic concur-
rency or not. If you decide that the “last-write wins” scenario works for your application, don’t use
optimistic concurrency.

In an airline reservation system, the “last-write wins” scenario is out of the question, obviously.
We don’t want agents to assign the same seat over and over again. The same is true for an applica-
tion that updates bank accounts and so on. That’s why the wizard that generates the SQL statements
for updating the database uses optimistic concurrency and doesn’t update a row if it has been
changed since it was read into the DataSet.

A DataRow’s Versions
How does the DataSet know that a row has been edited since it was last read? This is an interesting
aspect of ADO.NET. Each row in a DataTable has several versions. The values read from the data-
base are the Original values (this is how the DataSet knows whether a row has been modified since it
read it from its table). The value of a field in the DataSet is the Current value. While the user is edit-
ing a field, the new value is the Proposed value. The Proposed value will become the Current value
when the changes are written to the DataSet. Finally, the Default value is the field’s default value.

To specify which version of a field’s value you want to read, specify the second parameter of the
DataRow.Item property. The following statement retrieves the Original value of the first column of
the first row in the Products table of the DSProducts1 DataSet:

DSProducts1.Products.Rows(0).Item(“ProductName”, DataRowVersion.Original)

To experiment with the various versions of a row, open the EditProducts project and add a Show
Versions button on its form. Then enter the statements of Listing 22.10 in the button’s Click event
handler.

Listing 22.10: Reading the Versions of a DataRow

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim i As Integer
Dim row As DataRow
For i = 0 To 2

row = objDSProducts.Products.Rows(i)
If row.HasVersion(DataRowVersion.Current) Then

Console.WriteLine(“CURRENT “ & row.Item(“ProductName”, _
DataRowVersion.Current))

End If
If row.HasVersion(DataRowVersion.Default) Then

Console.WriteLine(“DEFAULT “ & row.Item(“ProductName”, _
DataRowVersion.Default))

End If

Chapter 22 PROGRAMMING THE ADO.NET OBJECTS984

2877c22.qxd 11/11/01 4:22 PM Page 984

http://www.sybex.com

If row.HasVersion(DataRowVersion.Original) Then
Console.WriteLine(“ORIGINAL “ & row.Item(“ProductName”, _

DataRowVersion.Original))
End If
If row.HasVersion(DataRowVersion.Proposed) Then

Console.WriteLine(“PROPOSED “ & row.Item(“ProductName”, _
DataRowVersion.Proposed))

End If
Next

End Sub

The event handler of Listing 22.10 displays all the versions of the first two rows in the objDS-
Products DataSet (a DataSet that holds the Products table). It displays only the ProductName field’s
values in all versions, so this is the field you must edit if you want to experiment with the versions of
the DataRow object.

As you can see, a row may not have all possible versions, so we use the HasVersion method to
find out whether a specific version exists before we attempt to retrieve it. This code prints all avail-
able versions of the first three rows of the Products table. Run the application and edit one or more
of the first three rows. Then click the Show Versions button to see the versions of the first three
rows at the time.

The second product’s name is “Chang.” Change it to “Chang1” and, without moving the focus
to another field, click the Show Versions button. This is what you will see in the Output window:

CURRENT Chang
DEFAULT Chang1
ORIGINAL Chang
PROPOSED Chang1

The Current version is the value of the ProductName field in the DataSet, and it’s “Chang.” The
Proposed value is “Chang1.” Return to the form and click another product, then back to Chang.
The action of switching to another row caused the changes to be written to the DataSet. If you click
the Show Versions button again, you will see the following:

CURRENT Chang1
DEFAULT Chang1
ORIGINAL Chang

For one, there’s no Proposed value. Once the changes are saved, there’s no longer a Proposed
value. The current value became “Chang1,” but the Original value did not change. You must com-
mit the changes to the database and reload the DataSet to change a row’s Original value.

As you can guess, the various versions of the values are used in validating the data and in deter-
mining whether a row has changed since it was last read from the database. The SQL statements
generated by the wizard that generates the DataAdapter object for each table use the various versions
of the rows to implement optimistic concurrency. The following UPDATE statement commits the

985PERFORMING UPDATE OPERATIONS

2877c22.qxd 11/11/01 4:22 PM Page 985

http://www.sybex.com

changes made to a row to the underlying table, but only if the row’s fields have the same values read
into the DataSet:

UPDATE dbo.Products SET ProductName = ?, SupplierID = ?, CategoryID = ?,
QuantityPerUnit = ?, UnitPrice = ?, UnitsInStock = ?,
UnitsOnOrder = ?, ReorderLevel = ?, Discontinued = ?

WHERE (ProductID = ?) AND
(CategoryID = ? OR ? IS NULL AND CategoryID IS NULL) AND
(Discontinued = ?) AND
(ProductName = ?) AND
(QuantityPerUnit = ? OR ? IS NULL AND QuantityPerUnit IS NULL) AND
(ReorderLevel = ? OR ? IS NULL AND ReorderLevel IS NULL) AND
(SupplierID = ? OR ? IS NULL AND SupplierID IS NULL) AND
(UnitPrice = ? OR ? IS NULL AND UnitPrice IS NULL) AND
(UnitsInStock = ? OR ? IS NULL AND UnitsInStock IS NULL) AND
(UnitsOnOrder = ? OR ? IS NULL AND UnitsOnOrder IS NULL)

The question marks correspond to parameters, and they’re substituted with actual values prior to
executing this statement. If you turn off optimistic concurrency, the wizard will generate the follow-
ing simple statement:

UPDATE dbo.Products SET ProductName = ?, SupplierID = ?, CategoryID = ?,
QuantityPerUnit = ?, UnitPrice = ?, UnitsInStock = ?,
UnitsOnOrder = ?, ReorderLevel = ?, Discontinued = ?

WHERE (ProductID = ?)

A DataRow’s States
In addition to versions, rows have states, too; a row can be in one of the following states:

Added The row has been added to the DataTable, but it hasn’t been accepted yet (rows are
accepted after they’re written to the database as well).

Deleted The row has been deleted. However, it remains in the DataSet marked as Deleted, so
that the Update method can delete the matching row of the underlying table.

Detached The row has been created but it has not been added to a DataTable yet. A row is in
this state while you set its fields and before you actually add it to a table.

Modified The row has been modified, but it hasn’t been accepted yet.

Unchanged The row hasn’t been changed yet.

The state of a row is used in updating the underlying tables. When you call the DataAdapter’s
Update method, all rows are moved to the database, where they’re committed with the appropriate
SQL statement or stored procedure. To conserve bandwidth, you can send only the modified, added,
and deleted rows to the database. This is the technique used by the DataForm wizard, and it’s worth
taking a look at the code it produces. All the action of updating the database takes place in the
UpdateDataSource() function, which returns the number of rows that were updated successfully.
Listing 22.11 shows the code of the UpdateDataSource() function.

Chapter 22 PROGRAMMING THE ADO.NET OBJECTS986

2877c22.qxd 11/11/01 4:22 PM Page 986

http://www.sybex.com

Listing 22.11: The UpdateDataSource() Function of the DataForm Wizard

Public Function UpdateDataSource(ByVal dataSet As EditProducts.DSProducts) _
As System.Int32

Me.OleDbConnection1.Open()
Dim UpdatedRows As System.Data.DataSet
Dim InsertedRows As System.Data.DataSet
Dim DeletedRows As System.Data.DataSet
Dim AffectedRows As Integer = 0
UpdatedRows = DataSet.GetChanges(System.Data.DataRowState.Modified)
InsertedRows = DataSet.GetChanges(System.Data.DataRowState.Added)
DeletedRows = DataSet.GetChanges(System.Data.DataRowState.Deleted)
Try

If (Not (UpdatedRows) Is Nothing) Then
AffectedRows = OleDbDataAdapter1.Update(UpdatedRows)
AffectedRows = (AffectedRows + OleDbDataAdapter2.Update(UpdatedRows))
AffectedRows = (AffectedRows + OleDbDataAdapter3.Update(UpdatedRows))

End If
If (Not (InsertedRows) Is Nothing) Then

AffectedRows = (AffectedRows + OleDbDataAdapter1.Update(InsertedRows))
AffectedRows = (AffectedRows + OleDbDataAdapter2.Update(InsertedRows))
AffectedRows = (AffectedRows + OleDbDataAdapter3.Update(InsertedRows))

End If
If (Not (DeletedRows) Is Nothing) Then

AffectedRows = (AffectedRows + OleDbDataAdapter1.Update(DeletedRows))
AffectedRows = (AffectedRows + OleDbDataAdapter2.Update(DeletedRows))
AffectedRows = (AffectedRows + OleDbDataAdapter3.Update(DeletedRows))

End If
Catch updateException As System.Exception

Throw updateException
Finally

Me.OleDbConnection1.Close()
End Try

End Function

This function generates three new DataSets and populates them with the added, deleted, and
modified rows of the original DataSets. In a large DataSet, the three partial DataSets will be consid-
erably smaller than the original DataSet. Then, it calls the Update method of the corresponding
DataAdapter object, passing the appropriate DataSet.

The order of the DataSets passed to the Update method is important. First it passes the rows that
were edited, then the new rows, and finally the deleted rows.

If you examine the code generated by the wizard, you’ll see that it doesn’t reload the DataSet.
Instead, it merges the rows that successfully updated the underlying tables with the existing rows in
the DataSet (it basically consolidates the changes) and then calls the DataSet object’s AcceptChanges
method. AcceptChanges sets the Original value of all fields to the Current value. In effect, the new
DataSet is the same as the one you would get by reloading it from the database. If your DataSet isn’t

987PERFORMING UPDATE OPERATIONS

2877c22.qxd 11/11/01 4:22 PM Page 987

http://www.sybex.com

excessively large, you can reload it from the database and save yourself some serious debugging. You
can also copy the code generated by the wizard and reuse it.

Updating Tables Manually
To update the underlying table(s) from within a DataSet, you must call the DataAdapter object’s
Update method. The Update method sends all the changes to the database, and through the appro-
priate stored procedures, the tables are updated. The DataAdapter object exposes the Continue-
UpdateOnError property, which determines how the DataAdapter will react when an error is
encountered. If the ContinueUpdateOnError property is False, which (mysteriously) is the default
value, the DataAdapter will terminate the update process. If the first 10 edited rows in the DataSet
contain no errors, they will be committed to the database. If the 11th row contains an error, the
DataAdapter won’t even attempt to update the remaining rows.

The ContinueUpdateOnError property should be set to True, so that the DataAdapter will
update all the rows that don’t contain errors. My guess is that all developers will make a habit of set-
ting this property to True. After calling the Update method with the ContinueUpdateOnError
property set to True, you must examine each row’s Errors property to find out whether there was an
error. Even better, you can insert the appropriate code in the DataAdapter object’s RowUpdated
event, which is fired after each attempt to update a row.

In this event, you can examine the e.Status property for the current operation. If the operation
failed, then the e.Status property will be UpdateStatus.ErrorsOccurred. You can then retrieve the
error message describing why the operation failed and present it along with the row (or the row’s key
field) to the user, or take some other course of action. There are no simple rules as to how to handle
update errors; it all depends on the application. A safe approach is to accept the changes in rows of the
DataSet that successfully updated the underlying table(s) and reset the ones that failed to update the
database to their original values. At the same time, you can create a list of all the rows that failed to
update along with the corresponding error message. Let’s see how to use this technique to build a
robust data-entry screen.

The DataEntry project’s main form, shown in Figure 22.4, displays the names of all products in a
ListBox control. To view the fields of a product on the form, click the product’s name in the list.
The technique of using a ListBox control as a navigational tool has been described earlier in this
chapter. There are actually better techniques for selecting a specific row, but the focus in this
example is how to edit a table of the DataSet and commit the changes to the database.

Figure 22.4

The DataEntry proj-
ect demonstrates
robust table-editing
techniques.

Chapter 22 PROGRAMMING THE ADO.NET OBJECTS988

2877c22.qxd 11/11/01 4:22 PM Page 988

http://www.sybex.com

To edit a row, you just change the values of its fields on the form. To change the product’s cate-
gory and supplier, simply select another item in the corresponding ComboBox control. To delete the
selected product, click the Delete Product button. To add a new product to the table, click the New
Product button. When this button is clicked, the add and delete buttons are replaced by OK and
Cancel buttons. Moreover, the ListBox control is disabled, so that you can’t select another row until
you finish editing the new row. To commit the new row to the DataSet, click OK. This action hides
the OK and Cancel buttons and restored the other two buttons on the form.

Notice that the new row is added to the DataSet, which resides on the client—no information is
sent to the database server. After editing, deleting, and adding rows to the DataSet, you can commit
the changes to the Products table of the DataSet by clicking the Update Table button. In this but-
ton’s event handler, the Update method of the matching DataAdapter object is called. Instead of
passing the entire DataSet to the server, we call the Update method three times, passing one set of
rows at a time: the edited, the added, and finally the deleted rows. Listing 22.12 is the handler of the
Click event of the Update Table button.

Listing 22.12: Calling the DataAdapter’s Update Method

Private Sub UpdateTable(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnUpdate.Click

If Not DsProducts1.GetChanges(DataRowState.Modified) Is Nothing Then _
SqlDataAdapter1.Update(DsProducts1.GetChanges(DataRowState.Modified))

If Not DsProducts1.GetChanges(DataRowState.Added) Is Nothing Then _
SqlDataAdapter1.Update(DsProducts1.GetChanges(DataRowState.Added))

If Not DsProducts1.GetChanges(DataRowState.Deleted) Is Nothing Then _
SqlDataAdapter1.Update(DsProducts1.GetChanges(DataRowState.Deleted))

End Sub

The code calls the Update method with a different group of rows, only if the group isn’t empty.
If there are rows to be updated, the Update method is called with a DataSet object that contains the
edited (modified) rows. The GetChanges method retrieves the rows whose state is the same as the
second argument.

The DataAdapter attempts to update one row at a time. After each attempt (whether it was suc-
cessful or not), it fires the RowUpdated event, which is handled by the code shown in Listing 22.13.

Listing 22.13: Handling the DataAdapter’s RowUpdated Event

Private Sub SqlDataAdapter1_RowUpdated(ByVal sender As Object, _
ByVal e As System.Data.SqlClient.SqlRowUpdatedEventArgs) _
Handles SqlDataAdapter1.RowUpdated

Select Case e.Row.RowState
Case DataRowState.Added

Console.Write(“Adding Product ID = “ & _
e.Row.Item(“ProductID”, ataRowVersion.Proposed))

Case DataRowState.Deleted

989PERFORMING UPDATE OPERATIONS

2877c22.qxd 11/11/01 4:22 PM Page 989

http://www.sybex.com

Console.Write(“Deleting Product ID = “ & _
e.Row.Item(“ProductID”, DataRowVersion.Original))

Case DataRowState.Modified
Console.Write(“Updating Product ID = “ & _

e.Row.Item(“ProductID”, DataRowVersion.Original))
End Select
If e.Status = UpdateStatus.ErrorsOccurred Then

Console.WriteLine(“Failed to update row “)
Console.WriteLine(e.Errors.Message)
e.Row.RejectChanges()

Else
Console.WriteLine(“ Updated successfully”)
e.Row.AcceptChanges()

End If
End Sub

The event reports the row being updated through the Row property of its e argument. The
expression e.Row.RowState returns the state of the row. We use the row’s state to display the type of
action (add/edit/delete) that caused the current row to be updated. We also display the key field’s
value of the current row, so that the user knows which rows failed to update the database. Notice
that new rows don’t have an original version, so we display the proposed version.

Then the code examines the e.Status property, which will be set to UpdateStatus.ErrorsOccurred
if the operation failed, and display the message returned by the database. The output produced by the
RowUpdated event handler looks like this:

Updating Product ID = 1 Updated successfully
Updating Product ID = 9 Updated successfully
Updating Product ID = 44 Updated successfully
Updating Product ID = 91 Updated successfully
Deleting Product ID = 78 Updated successfully

The product with ID of 91 was added to the table, but the RowUpdated event handler reports it
as being updated.

For each row that successfully updates the underlying table, we call the AcceptChanges method.
This method copies the original field values into the current values. For all intents and purposes, this
row looks as if it was just read from the database and hasn’t been edited yet.

This techniques works only if the SqlDataAdapter1 object’s ContinueUpdateOnError property
is set to True. If not, the update process will be interrupted the first time an error occurs. The proj-
ect uses three DataAdapter objects, one for each of the tables Products, Categories, and Suppliers.
Of the three DataAdapter objects, only the one that corresponds to the Products table contains
statements to update the database. The other two DataAdapters contain only a SELECT statement
to retrieve their data from the database.

To add a new row to the Products table, you must click the New Product button. This button’s
event handler prepares the various controls to accept the field values of the new row and displays the

Chapter 22 PROGRAMMING THE ADO.NET OBJECTS990

2877c22.qxd 11/11/01 4:22 PM Page 990

http://www.sybex.com

OK and Cancel buttons. Most important, it suspends the data binding. The TextBox controls on
the form may assume invalid values for a while, so we must disable the data binding while the fields
of the new row are being set. Data binding will resume later, when the user clicks the OK button and
the new row is actually added to the DataSet. Here’s the code behind the New Product button:

Private Sub bttnNew_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnNew.Click

Me.BindingContext(DsProducts1, “Products”).SuspendBinding()
ListBox1.Enabled = False
bttnOK.Visible = True
bttnCancel.Visible = True
bttnDelete.Visible = False
bttnNew.Visible = False

End Sub

Finally, when the OK button is clicked, the new row is committed to the database with the state-
ments of Listing 22.14.

Listing 22.14: Adding a New Row

Private Sub bttnOK_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnOK.Click

Dim newRow As DSProducts.ProductsRow
newRow = DsProducts1.Products.NewProductsRow
newRow.Item(“ProductName”) = TextBox2.Text
newRow.Item(“UnitPrice”) = TextBox3.Text
If cmbCategory.SelectedValue > 0 Then _

newRow.Item(“CategoryID”) = cmbCategory.SelectedValue
If cmbSupplier.SelectedValue > 0 Then _

newRow.Item(“SupplierID”) = cmbSupplier.SelectedValue
newRow.Item(“Discontinued”) = 0
DsProducts1.Products.AddProductsRow(newRow)
Me.BindingContext(DsProducts1, “Products”).ResumeBinding()
ListBox1.Enabled = True
bttnOK.Visible = False
bttnCancel.Visible = False
bttnDelete.Visible = True
bttnNew.Visible = True

End Sub

To add a new row, we must first create a variable that represents this row. Since we’re working
with a typed DataSet, we can declare a variable of the NewProductsRow type. Then we set the fields
of the new row and finally add the newly created row to the table with the AddProductsRow method.
After adding the row to the table, we enable the data binding again with the ResumeBinding method.

991PERFORMING UPDATE OPERATIONS

2877c22.qxd 11/11/01 4:22 PM Page 991

http://www.sybex.com

To delete a row, we call the DataRow’s Delete method. The code behind the Delete Product but-
ton executes the following statement:

DsProducts1.Products(Me.BindingContext(DsProducts1, _
“Products”).Position).Delete()

The expression

Me.BindingContext(DsProducts1, “Products”).Position

returns the index of the selected row in the DataTable—an integer value. DSProducts1.Products is a
DataTable object that represents the Products table in the DataSet. By calling this object with a
numeric value as argument, we isolate a DataRow object, which represents the selected row in the
Products table. Finally, we call the Delete method on this row to delete it. The row isn’t actually
removed from the DataSet. It will be removed only when we call the DataSet’s AcceptChanges
method—and this method must be called only after the underlying row has been successfully
removed from the underlying table.

Open the DataEntry project on the CD and experiment with its code. See how the ComboBox
controls were bound to the DataSet so that they always display the selected product’s category and
supplier. You can add more features to the application, starting with a better navigational model.
The rows on the ListBox control are displayed in the same order as they were retrieved from the
original table. In a “real” table with thousands of products, you wouldn’t want to read the entire
table into the DataSet. You should allow the user to specify the subset of the products they’re inter-
ested in and upload only the matching rows to the client.

Building and Using Custom DataSets
In this section, we’ll build a DataSet that’s not connected to a data store. We’ll create a new DataSet
by specifying its schema with the XML Schema tools of the Toolbox. Then we’ll make this DataSet
the data source of a DataGrid control, and we’ll be able to add data directly on the grid. With a few
statements, we’ll be able save the contents of the DataSet to a disk file and load it back from the disk
file into the application.

Start a new project (it’s the XMLGrid project on the CD) and add an XMLSchema component
to the project. Right-click the project’s name and, from the context menu, select Add New Item.
Select the XML Schema template, specify a name for the new component (or accept the default
name), and click OK to close the dialog box. An XMLSchema component will be added to the proj-
ect; its default name is XMLSchema1.xsd. Double-click its icon to open it on the design surface.

Open the Toolbox, which now contains the XML Schema tools, and double-click the Element
tool to add a new element to the XMLSchema. An XML element is equivalent to the table of a reg-
ular DataSet. The new XML element will be depicted on the design surface by an empty box. The
default element’s name is element1; change it to GridData. Each XML element has one or more attrib-
utes, so let’s add a few. Open the Toolbox and drag the icon of the Attribute tool on the existing
element. By default, new attributes are named attribute1, attribute2, and so on, and their default type
is “string.” Figure 22.5 shows an XML element with four attributes and the XML Toolbox.

Chapter 22 PROGRAMMING THE ADO.NET OBJECTS992

2877c22.qxd 11/11/01 4:22 PM Page 992

http://www.sybex.com

The box with the attribute’s type is a drop-down list of all the data types you can assign to an
attribute. The schema shown in Figure 22.5 contains an element with three string attributes and one
positive Integer attribute. It’s like a table with four columns—three string columns and one numeric
column. As you will see shortly, if you attempt to assign a value of the incorrect type to an attribute,
the attribute’s current value won’t change.

So far you’ve created the schema of the DataSet—the information that came from the database in
the previous examples. Now we must use the XMLSchema component to create a DataSet object.
Right-click somewhere on the XMLSchema design surface and, from the context menu, select Gen-
erate Dataset. Switch to the form and add a DataSet object. The Add Dataset dialog box pops up,
prompting you for the dataset’s schema information, as shown in Figure 22.6. Click OK and a new
typed DataSet will be added to the project.

At this point, you’re ready to use the custom DataSet. Place a DataGrid control on the form, set
the control’s DataSource property to xmlschema11.GridData (you’ll select this item from a list), and
run the project. You can optionally set some of the DataGrid control’s attributes. You have a Data-
Grid control that you can put any type of information on or use as a data-entry tool.

Figure 22.6

Adding a typed
DataSet to a project

Figure 22.5

Designing an XML
schema

993BUILDING AND USING CUSTOM DATASETS

2877c22.qxd 11/11/01 4:22 PM Page 993

http://www.sybex.com

You can also add multiple elements to the XMLSchema and relate them to one another. Create
each element separately and then add the appropriate relationships with the Relation tool.

Figure 22.7 shows the form of a simple application that allows you to populate a DataGrid con-
trol and persists the data to a file. It can also read the data from the disk file.

To persist the data on the grid to a disk file, insert the code of Listing 22.15 in the Persist Data
button’s Click event handler. The Read Data button reads the data from the same file and populates
the DataGrid control, and the code behind it is shown in Listing 22.16.

Listing 22.15: Persisting DataSets as XML Files

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim FS As Stream
FS = New FileStream(“C:\GRID.XML”, FileMode.OpenOrCreate)
XmlSchema11.WriteXml(FS)
FS.Close()

End Sub

Listing 22.16: Populating a DataGrid Control with XML Data

Private Sub Button2_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

Dim FS As Stream
FS = New FileStream(“C:\GRID.XML”, FileMode.Open)
XmlSchema11.Clear()
XmlSchema11.ReadXml(FS)
FS.Close()

End Sub

Figure 22.7

The main form of the
XMLGrid project

Chapter 22 PROGRAMMING THE ADO.NET OBJECTS994

2877c22.qxd 11/11/01 4:22 PM Page 994

http://www.sybex.com

You should also import the System.IO namespace, so that you won’t have to fully qualify the
FileStream objects. The XMLGrid project demonstrates how to design schemas for your DataSets.
You can also create generic DataSets and use them as data-entry tools for many operations.

If you open the GRID.XML file created by this application, you’ll see that it contains XML code.
Figure 22.8 shows the XML generated by the data shown in Figure 22.7, opened with Internet
Explorer.

You may wish to explore XML in depth, as it’s one of the hottest topics in the industry today.
ADO.NET uses XML to format the data as well as describe the structure of its DataSets, and you
can take advantage of this to move DataSets between computers or between applications. You’re
actually taking advantage of XML without having to write a single line of XML code.

Summary
You’ve learned a lot about ADO.NET in Chapters 21 and 22, but there’s even more to learn.
ADO.NET is one of the most elaborate and complex components of .NET, and it couldn’t be
exhausted in two chapters. These chapters were meant to help you familiarize yourself with the
visual database tools, understand the structure of a DataSet, learn how to navigate the related tables
of the DataSet and the rows of the individual DataTables, and know how to execute commands
against the database. You should also be able to improve the code generated by the DataForm wiz-
ard and generate more robust and user-friendly applications.

Figure 22.8

Viewing an XML
file with Internet
Explorer

995SUMMARY

2877c22.qxd 11/11/01 4:22 PM Page 995

http://www.sybex.com

Part VI
VB.NET on

the Web
In this section:
� Chapter 23: Introduction to Web Programming
� Chapter 24: Accessing Data on the Web
� Chapter 25: XML Web Services

2877c23.qxd 11/11/01 4:22 PM Page 997

http://www.sybex.com

Chapter 23

Introduction to
Web Programming
If there is one technology that caught on overnight and has affected more computer users
than any other, it is the World Wide Web—the set of all public Web sites and the documents
they can provide to clients. The computers that host Web sites are called servers; their service is to
provide the documents to the clients that request them. Clients are the millions of personal com-
puters connected to the Internet. To exploit the Web, all you need is a browser, such as Internet
Explorer, that can request documents and render them on your computer.

This chapter is a compendium of information on how to apply the knowledge you acquired in
previous chapters to the Web—or, to use a popular term, how to leverage your knowledge of
Visual Basic by applying it to the Web. To do so, you need a basic understanding of Hypertext
Markup Language (HTML), the language used to build Web documents, and a good understanding
of how the clients interact with the servers on the Internet. Building a Web application with
Visual Studio is very similar to building a Windows application, but there are many differences
you should be aware of.

The Internet is a global, distributed network of computers that use a common protocol to
communicate: Transmission Control Protocol/Internet Protocol (TCP/IP). TCP/IP is a simple protocol
because it had to be implemented consistently on all computers and operating systems. Indeed,
TCP/IP is a truly universal protocol, but you needn’t know much about it. It’s there when you
need it and allows your computer to connect to any other computer on the Internet.

If TCP/IP enables any two computers on the Internet to talk to each other, why do we need
any other protocol? Hypertext Transfer Protocol (HTTP) is the protocol of the Web. Whereas
TCP/IP allows two computers to connect on the hardware level, HTTP is the language servers
and clients use to exchange information. HTTP is optimized for requesting and supplying HTML
documents. The Internet is more than the Web (although it seems the Web is taking over). To
exchange files through the Internet, for example, computers use File Transfer Protocol (FTP).
The protocol that is used depends on the type of information to be exchanged. All other proto-
cols, however, run on top of TCP/IP.

2877c23.qxd 11/11/01 4:22 PM Page 999

http://www.sybex.com

Tip I need to begin with some basic concepts, such as the components of the Web and the evolution from static Web pages
to Web applications. If you’re already familiar with HTML or the Web, bear with us and pick up the discussion when we
get to material that’s new to you. If you have a good command of HTML and ASP, you can skip ahead to the section
“Building a Web Application.”

An HTML Primer
Hypertext Markup Language (HTML) is the language used to prepare most documents for online
publication. HTML documents are also called Web pages; a page is what you see in your browser at
any time. Each Web site, whether on the Internet or on an intranet, is composed of multiple related
pages on a particular server, and you can switch among pages by following hyperlinks. The collection
of public HTML pages out there makes up the World Wide Web.

A Web page is basically a text file that contains the text to be displayed and references to other
elements such as images, sounds, and of course, other documents. You can create HTML pages with
a text editor such as Notepad or with a “what you see is what you get” (WYSIWYG) application
such as Microsoft FrontPage. In either case, the result is a plain text file that computers can easily
exchange. The browser displays this text file on the client computer by interpreting part of the text
as instructions and presenting the rest as content.

Web pages are stored on computers that act as servers: they provide a page to any computer that
requests it. Each server computer has an address, or Uniform Resource Locator (URL), that is something
like the following:

http://www.example.com

The first portion, http, is the protocol used in accessing the server, and www.example.com is the
name of the server on the Internet. All computers on the Internet have a unique, four-octet numeric
address, such as 193.22.103.18. This numeric address is known as the Internet Protocol (IP) address,
which is more difficult for us humans to remember than names. The server looks up the mnemonic
names in tables and translates them into IP addresses.

To post an HTML document on a computer so that users can access and display it with their
browsers, the computer that hosts the document must run a special application called the Web server.
The Web server acknowledges requests made by other computers—the client computers—and sup-
plies the requested document. The browser, which is the application running on the client computer,
gets the document and displays it on the screen.

HTML Code Elements
The simplest component of the Web is HTML, which is a basic language for formatting documents
that are displayed in a Web browser. The primary task of the browser is to render documents
according to the HTML instructions they contain and display them on the monitor.

HTML is made up of text-formatting tags that are placed in a pair of angle brackets; they usually
appear in pairs. The first, or opening, tag turns on a formatting feature, and the matching closing tag
turns it off. To format a few words in bold, for example, enclose them with the and
tags, as shown here:

Some words in the sentence are formatted in bold.

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1000

2877c23.qxd 11/11/01 4:22 PM Page 1000

http://www.sybex.com

Of course, not all tags are as simple. The <TABLE> tag, for example, which is used to format
tables, requires additional tags, like the <TR> tag, which delimits a new row in the table, and the
<TD> tag, which delimits a new cell in a row.

Tags are also assisted by attributes, which are keywords with special meanings within a specific tag.
The <A> or “anchor” tag, which is used to insert a hyperlink in the document, recognizes the HREF
attribute. The syntax of a hyperlink to Microsoft’s home page on the Web would be something like:

This link leads to Microsoft’s home page.

The text between the <A> and tags is marked as a hyperlink (displayed in a different
color and underlined). The HREF attribute in the <A> tag tells the browser which URL, or
address, to jump to when a user clicks this hyperlink. (For more on attributes, see the section
“Attributes” later in this chapter.)

HTML Syntax and XHTML

HTML 4, the last version of the language, was released in 1997. In January 2000, the World Wide Web Con-
sortium (W3C) released XHTML 1 (for Extensible HTML). This standard is a reformulation of HTML to
comply with XML syntax rules; it uses almost the same set of tags, but with several restrictions:

� HTML 4 code was not case-sensitive; for example, you could enter the opening table tag as <table> or
<TABLE>. Lowercase items will work with old or new browsers; but uppercase ones won’t work with
future versions, because XML (and therefore XHTML) won’t read them. Note: In this book, I use upper-
case for HTML tags, only so that they stand out. The projects on the CD use lowercase for tags.

� In HTML 4, attribute values only needed to be quoted in certain circumstances. In XHTML, all attribute
values must be in quotation marks.

� In HTML 4, some tags didn’t need to be closed; you could enter a <P> paragraph tag, type some text, and
start the next paragraph with another <P>, without ever using a closing </P> tag. Browsers just fig-
ured it out; they’d “know” that when the new paragraph began, that meant the old one had to end:

<P>This is a paragraph.
<P>This is a new paragraph.

In XHTML, every element must be closed. This means that any element that includes content must
have paired opening and closing tags.

<p>This is a paragraph.</p>
<p>This is a new paragraph.</p>

There are other differences, but these are the important ones during this transition phase from HTML to
XHTML. You can learn more about XHTML from books such as Mastering XHTML by Tittel et al. (Sybex, 2001)
or from the W3C Web site:

http://www.w3.org/MarkUp/

In addition to the formatting commands (HTML is basically a document-formatting language),
HTML can handle a few controls, which are known as HTML controls. These controls include text
boxes, radio buttons, check boxes, buttons (specifically, a Submit and a Reset button), and a few

1001AN HTML PRIMER

2877c23.qxd 11/11/01 4:22 PM Page 1001

http://www.sybex.com

more simple controls. The user can enter data or make selections on these controls and submit them
to the server by clicking the Submit button. The Submit button may have any caption, but its func-
tion is to submit the data on the various controls on the page to the server by appending them to the
server’s URL. The server reads these values, processes them, and prepares a new page, which is
downloaded to the client. You’ll find out more about the HTML controls and how they’re submit-
ted to the server later in this chapter.

You’re more than familiar with this interaction model, and it’s no different with ASP.NET. No
matter what you do on the server side, it’s the client’s capabilities that determine the structure of the
application running on the server. ASP.NET uses this model to interact with the browser. It does a
fine job of hiding most of the mundane details and gives you the illusion that you’re writing code for
a client that can execute VB applications. But in reality, ASP accepts the values submitted by the
client and creates a new HTML file to download to the client.

As a VB programmer, you’ll have no problem picking up the syntax of HTML. It’s a very simple
language, and you can pick up the basics as you go along. The visual tools of VB.NET allow you to
create HTML documents with point-and-click operations, so a thorough knowledge of HTML is
not really required for developing Web applications. However, you need to understand how clients
interact with Web servers.

Server-Client Interaction
A Web site consisting of HTML pages is interactive only in the sense that it allows the user to jump
from page to page through hyperlinks. The client requests documents from the server, and the server
supplies them. In this simple interaction model, which dominates the Web today, Web pages reside
on the disks of the servers waiting to be requested by a client. Obviously, updating the information
entails editing the HTML documents; no wonder most sites can’t provide up-to-date information.

The disadvantage of this model is that the client can’t engage in a conversation with the server so
that information can flow in both directions. The development of gateway interfaces such as the
Common Gateway Interface (CGI) has enabled Web authors to add dynamic content to the Web. The
client can send specific requests to the server (e.g., “show me the invoices issued last month” or
“show me the customers in North America”). The server doesn’t return a static page (a page that
exists on the disk and can be called by its name). Instead, it executes a script, or application, that
extracts “live” data from a database, formats the data as an HTML document, and sends the docu-
ment to the client. The client sees up-to-date, accurate information.

The disadvantage of gateway programs is that they are difficult to implement and maintain.
To simplify CGI programming, Microsoft introduced several technologies, the most recent and
popular being Active Server Pages (ASP). An Active Server Page is a program (or script), usually written
in VBScript, which interacts with the client. ASP scripts can also interact with other components
on the server. The clients can’t access a database directly, for example, but an ASP script can. By
passing the proper parameters to the ASP script, an HTML page can request data from the database.
The latest version of ASP, ASP.NET, is a greatly improved version of ASP and allows you to write
scripts that run on the server in VB.NET. The first advantage of using VB.NET on the server is
that the application running on the server is compiled and runs much faster that a script written in
VBScript. Actually, you can use any language that runs in the environment of Visual Studio to write
an ASP application—you can write Web applications in COBOL, if you wish. There are many
more advantages, such as exploiting the features of the IDE.

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1002

2877c23.qxd 11/11/01 4:22 PM Page 1002

http://www.sybex.com

ASP was limited to the HTML controls. ASP.NET uses a new family of controls, the Web con-
trols. The Web controls exist on the server, and you can program against them, just as you program
Windows controls. Your code resides on the server and manipulates Web controls. When it’s time
to send a response to the client, ASP.NET translates the Web controls into HTML controls and
HTML code, and sends to the client a page that can be rendered by the browser. As you will realize
after reading this and the following chapter, ASP.NET abstracts much of the mundane tasks of
client/server interaction and makes the process look like programming a Windows application.

I should clarify this point for the benefit of readers who are already familiar with ASP. If you’re new
to Web programming, please bear with me. Before you reach the end of this chapter, everything will
make perfect sense. With ASP, the browser submits the contents of the controls on the current page to
the server when a special button is clicked, the Submit button. This button may be named anything: Go,
Show Results, Place Order, whatever. The HTML code of the page uses a Submit button to send the
data on the current page to the server (or post the page back to the server, as this process is known).

The ASP script on the server knows the names of the controls on the page and must extract their
values from the QueryString property of the Request object. If the page being submitted contains
two Text controls, named ProdID and Quantity, it must use the following statements to extract the
values on these two controls:

ProductID = Request.QueryString(“ProdID”)
Quantity = Request.QueryString(“Quantity”)

Then, it must process them (retrieve the price of the specified product from a database, multiply
it by the quantity ordered, and apply some discount) and create a page to send to the client. The
page is created by sending HTML code to the client through the Write method of the Response
object:

Response.Write “Thank you for ordering”
Response.Write “Your total is “ & price * Quantity

where price is a variable that holds the product’s price (I’m not showing the code that retrieves this
value from the database).

With ASP.NET, you can use the TextBox Web control, which is very similar to the
Windows TextBox control. Let’s say that the names of the two TextBoxes are ProdID and Quantity,
and that the form also contains a Label control. To program the application, you double-click the
Submit button and insert the following statements in its Click event handler:

Label1.Text = “Thank you for ordering” & vbCrLf
Label1.Text = Label1.Text & “Your total is “ & price * Quantity.Text

This is VB.NET code, which will be compiled and executed on the server. You don’t have to use the
Request object to retrieve the values of the TextBox controls, and you don’t have to use the Response
object to create a new page. The results of the processing are placed on a Label control on the current
form, which is then sent to the client. Obviously, ASP.NET parses the data submitted by the client
through the QueryString object and makes them available to your code as control properties.

In short, ASP.NET is a vastly improved version of ASP, abstracting many of the tasks in
client/server interaction. It makes the whole process look like a Windows application to the devel-
oper, but behind the scenes it generates the HTML that will produce the desired page on the client.
This page contains straight HTML code.

1003AN HTML PRIMER

2877c23.qxd 11/11/01 4:22 PM Page 1003

http://www.sybex.com

The Structure of HTML Documents
HTML files are text files that contain text and formatting commands. The commands are strings
with a consistent syntax, so that the browser can distinguish them from the text. Every HTML tag
appears in a pair of angle brackets (<>). The tag <I> turns on the italic attribute, and the following
text is displayed in italics until the </I> tag is found. The statement

HTML is <I>the</I> language of the Web.

will render the following sentence on the browser, without the tags and with the word the in italics:

HTML is the language of the Web.

As I said earlier in the chapter, most tags act upon a portion of the text and appear in pairs. One
tag turns on a specific feature, and the other turns it off. The <I> tag is an example, and so are the
 and <U> tags, which turn on the bold and underline attributes. The tag that turns off an
attribute is always preceded by a slash character. To display a segment of text in bold, enclose it with
the tags and .

The structure of an HTML document is shown next. If you store the following lines in a text file
with the extension HTM and then open it with Internet Explorer, you will see the traditional greet-
ing. Here’s the HTML document:

<HTML>
<HEAD>

<TITLE>Your Title Goes Here</TITLE>
</HEAD>
<BODY>

Hello, World!
</BODY>

</HTML>

To create the most fundamental HTML document, you must start with the <HTML> tag and
end with the </HTML> tag. Within these tags should be a HEAD section and a BODY section.
The BODY of the document is the portion that is presented within the browser window. The docu-
ment’s HEAD, marked with the <HEAD> and </HEAD> tags, is where you normally place the
following elements:

� The document’s title

� Information about the document, such as the META and BASE tags

� Scripts

The title is the text that appears in the title bar of the browser’s window and is specified with the
<TITLE> and </TITLE> tags. META tags don’t display anywhere on the screen but contain
useful information regarding the content of the document, such as a description and keywords used
by search engines. For example:

<HTML>
<HEAD>

<TITLE>Your Title Goes Here</TITLE>

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1004

2877c23.qxd 11/11/01 4:22 PM Page 1004

http://www.sybex.com

<META NAME=”Keywords”
CONTENT=”health, nutrition, weight control, chronic illness”>

</HEAD>
<BODY>

Hello, World!
</BODY>

</HTML>

Attributes

Many HTML tags understand special keywords, which are called attributes. The <BODY> tag,
which marks the beginning of the document’s body, for instance, recognizes the BACKGROUND
attribute, which lets you specify an image to appear in the document’s background. You can also
specify the document’s text color and its background color (if there’s no background image) with the
TEXT and BGCOLOR attributes, respectively:

<HTML>
<HEAD>

<TITLE>Your Title Goes Here</TITLE>
</HEAD>
<BODY BACKGROUND=”paper.jpg” BGCOLOR=”yellow” TEXT=”black”>
<H1>Tiled Background</H1>

<P>The background of this page was created with a small image, which is tiled
vertically and horizontally by the browser. If the image can’t display, the page
will have a solid yellow background. Either way, the text will be black.</P>

</BODY>
</HTML>

Background images start tiling at the top-left corner and work their way across and then down
the screen. Many HTML tags accept attribute parameters that position them precisely on the page.
Unfortunately, not all browsers understand these elements, so the same page may look perfect in
Internet Explorer or Netscape and totally misaligned in another browser. The good news is that you
don’t have to learn all these attributes; if you’re working with the Visual Studio IDE, the designer
will insert them for you.

URLs and Hyperlinks
The key element in a Web page is the hyperlink, a special instruction embedded in the text that
causes the browser to load another page. A hyperlink is a string that appears in different formatting
from the rest of the text (usually in a different color and underlined); when the mouse pointer is
over a hyperlink, the cursor changes, typically into a finger. When you click the mouse button over
a hyperlink, the browser requests and displays another document, which could be on the same or
another server.

To connect to another computer and request a document, the hyperlink must contain the name
of the computer that hosts the document and the name of the document. Just as each computer on
the Internet has a unique name, each document on a computer also has a unique name. Thus, each

1005AN HTML PRIMER

2877c23.qxd 11/11/01 4:22 PM Page 1005

http://www.sybex.com

document on the World Wide Web has a unique address, which is called a Uniform Resource
Locator (URL). The URL for a document is something like the following:

http://www.someserver.com/docName.htm

Note You will notice that some HTML URLs end in htm and some end in html. They are identical; some older oper-
ating systems don’t support long extensions, that’s all.

Every piece of information on the World Wide Web has a unique address and can be accessed via
its URL. What the browser does depends on the nature of the item. If it’s a Web page (file extension
.html or .htm) or an image (such as a .gif file), the browser displays it. If it’s a sound file (such as a
.wav file), the browser plays it back. Today’s browsers can process many types of documents; older
versions can’t. When a browser runs into a document it can’t handle, it asks whether the user wants to
download and save the file on disk or open it with an application that the user specifies.

The tag that makes HTML documents come alive is the <A> tag, or anchor tag, which inserts
hyperlinks in a document. The <A> and tags enclose one or more words that will be high-
lighted as hyperlinks. In addition, you must specify the URL of the hyperlink’s destination. For
example, the URL of the Sybex home page is:

http://www.sybex.com

The URL to jump to is indicated with the HREF attribute of the <A> tag. To display the string
“Visit the SYBEX home page” and to use the word SYBEX as the hyperlink, you enter the following
in your document:

Visit the SYBEX home page

This inserts a hyperlink in the document, and each time the user clicks the SYBEX hyperlink, the
browser displays the main page at the specified URL.

Note You often need not specify a document name in the hyperlink. Servers are commonly configured to supply the default
page, which is known as the home page. The home page is usually the entry to a specific site and contains hyperlinks to
other pages making up the site.

To jump directly to a specific page on a Web site, use a hyperlink such as the following:

View a document on HTML
programming on this site.

Most hyperlinks on a typical page jump to other documents that reside on the same server. These
hyperlinks usually contain a relative reference to another document on that server. For example, to spec-
ify a hyperlink to the document Images.htm that resides in the same folder as the current page, use
the following tag:

Click here to view the images.

The Basic HTML Tags
HTML is certainly easy for a Visual Basic programmer to learn and use. The small part of HTML
presented here is all you need to build functional Web pages.

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1006

2877c23.qxd 11/11/01 4:22 PM Page 1006

http://www.sybex.com

Although you can use the visual tools of the IDE, many times it’s actually simpler to open the
HTML file and edit it. The following are the really necessary tags for creating no-frills HTML doc-
uments, grouped by category.

Headers

Headers separate sections of a document. Like documents prepared with a word processor, HTML
documents can have headers, which are inserted with the <Hn> tag. There are six levels of headers,
starting with <H1> (the largest) and ending with <H6> (the smallest). To place a level 1 header in
the document, use the tag <H1>:

<H1>Welcome to Our Fabulous Site</H1>

A related tag is the <HR> tag, which displays a horizontal rule and is frequently used to separate
sections of a document. The document in Figure 23.1, which demonstrates the HTML tags dis-
cussed so far, was produced with the following HTML file:

<HTML>
<HEAD>

<TITLE>
Document title

</TITLE>
</HEAD>
<BODY>

<H1>Sample HTML Document</H1>
<HR>
<H3>The document’s body may contain:</H3>
<H4>Text, images, sounds and HTML commands</H4>

</BODY>
</HTML>

Figure 23.1

A simple HTML
document with
headers and a rule

1007AN HTML PRIMER

2877c23.qxd 11/11/01 4:22 PM Page 1007

http://www.sybex.com

Paragraph Formatting

HTML won’t break lines into paragraphs whenever you insert a carriage return in the text file. The
formatting of the paragraphs is determined by the font(s) used in the document and the size of the
browser’s window. To force a new paragraph, you must explicitly tell the browser to insert a carriage
return with the <P> tag. The <P> tag also causes the browser to insert additional vertical space. To
insert a line break without the additional vertical space, use the
 tag.

Character Formatting

HTML provides tags for formatting words and characters. Table 23.1 shows the basic character-
formatting tags. The tags listed in pairs can be used alternately for the same effect; …
produces the same look as … in most browsers.

Table 23.1: The Basic HTML Character-Formatting Tags

Tag What It Does

 or Specifies bold text

 Specifies text characteristics such as typeface, size, and color

<I> or Specifies italic text (for emphasis)

<TT> or <CODE> Specifies the “typewriter” attribute, so text is displayed in a monospaced font; used
frequently to display computer listings

The tag specifies the name, size, and color of the font to be used. The tag
takes one or more of the following attributes:

SIZE Specifies the size of the text in a relative manner. The value of the SIZE argument is not
expressed in points, pixels, or any other absolute unit. Instead, it’s a number in the range 1 (the
smallest) through 7 (the largest). The following tag displays the text in the smallest possible size:

tiny type

The following tag displays text in the largest possible size:

HUGE TYPE

FACE Specifies the font family. If the specified font does not exist on the client computer, the
browser substitutes a similar font. The following tag displays the text between FONT and its
matching tag in the Comic Sans MS typeface:

Some text

COLOR Specifies the color of the text.

Tip The XHTML specification recommends, but doesn’t yet require, using external cascading style sheets instead
of most formatting tags. (In technical language, tags such as are deprecated.) At some point, browsers
might not recognize formatting within your HTML document, but you can keep using it during this transition period.

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1008

2877c23.qxd 11/11/01 4:22 PM Page 1008

http://www.sybex.com

Inserting Graphics
Graphics play an important role in Web page design. Almost every page on the World Wide Web
uses graphics, and some pages contain hardly any text. Graphics are not inserted in the HTML doc-
ument directly. The document itself contains special tags that reference the image to be inserted by
the browser when the page is opened. Because of this, graphics files are downloaded separately and
placed on the page by the browser.

On the Web, where every byte counts and downloads must be fast, images must contain as much
information in as few bytes as possible. Despite the large number of graphics formats available today,
two formats have dominated the Web:

� JPEG (Joint Photographic Experts Group)

� GIF (Graphics Interchange Format)

These formats are used because they compress graphics files to a manageable size. JPEG files can
be compressed a good deal (albeit with some loss of detail), but they maintain a good image quality
overall. The problems become evident when the compressed image is enlarged, but the graphics on
Web pages are meant to be viewed in the context of the Web page to which they belong. The GIF
file format is an old one, and it supports only 256-color images, but it has a few really handy fea-
tures. It’s the only format that supports transparency, and its compression ratio is even better than
JPEG without losing detail.

To insert an image at the current location in the document, use the tag with the SRC
attribute, which specifies the image to be displayed. Figure 23.2 shows a page with a simple graphic,
centered across the page.

Here is the HTML source code that produced the page in Figure 23.2:

<HTML>
<HEAD>

<TITLE>Graphics on Web pages</TITLE>
</HEAD>

Figure 23.2

Inserting a simple
graphic file

1009AN HTML PRIMER

2877c23.qxd 11/11/01 4:22 PM Page 1009

http://www.sybex.com

<BODY>
<CENTER>

<H1>Placing an Image on a Web page</H1>

Our small planet, centered on the page

</CENTER>
</BODY>

</HTML>

The tag has the following syntax:

The tag recognizes additional attributes, but you must include the SRC attribute, which is
the location of an image file on the server or any URL on the Web. When you use the following
attributes with the tag, the browser can manipulate the image in several ways:

ALIGN aligns the image to the left, right, center, top, bottom, or middle of the screen.

WIDTH and HEIGHT specify the width and height of the image.

BORDER adds a border to the image, which is visible only if the image is a hyperlink.

VSPACE and HSPACE clear space around the image vertically or horizontally. The empty space
is specified in pixels.

ALT includes a text message to be displayed if the user has turned off graphics.

If you want to change the size of an image, you can specify the size with the WIDTH and
HEIGHT attributes, and the browser will size the existing file to the new values. For instance, to
create a straight vertical line two pixels wide, simply use a square image two pixels on each side, and
set the tag’s WIDTH and HEIGHT properties:

Your image will stretch 200 pixels high. You can also distort bitmaps with the WIDTH and
HEIGHT attributes.

The BORDER attribute specifies the width of the border to appear around an image. Borders
two pixels wide automatically surround any image used as a hyperlink. You may want to eliminate
this automatic border with the BORDER=”none” attribute.

One aspect affecting the appearance of images, especially when they are surrounded by text, is the
amount of space between the image and surrounding text. Space can be cleared horizontally and ver-
tically with the HSPACE and VSPACE attributes. Simply specify the amount of space in pixels, for
example, HSPACE=”10” or VSPACE=”20”.

The ALT attribute displays alternative text for users whose browsers don’t display images (to
speed up the loading of the page or perhaps to use special software to accommodate a disability).
The attribute ALT=”Company Logo” tells the user that the image is not displayed in the browser. In
addition, if the image takes a long time to download, the message “Company Logo” is displayed in
the image’s space on the page. If for some reason your images are not transmitted or don’t show
up, the user can still navigate your Web site and get the picture, so to speak.

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1010

2877c23.qxd 11/11/01 4:22 PM Page 1010

http://www.sybex.com

Tables
Tables are invaluable tools for organizing and presenting data in a grid or matrix. Tables are used in
an HTML document for the same reasons they are used in any other document. There is, however,
one more reason for using tables with an HTML document: to align the elements on a page. A
table’s cell may contain text, hyperlinks, or images, and you can use the cell to align these elements
on the page in ways that are simply impossible with straight HTML or even other tables. You can
even use tables without borders, so your audience doesn’t see how you accomplished your amazing
(for HTML) feats of graphic design.

The Basic Table Tags

Every table begins with the <TABLE> tag and ends with the </TABLE> tag. The attributes of
the <TABLE> tag allow you to specify whether the table has borders, the width of borders, the dis-
tance between cells, and the proximity of cell contents to the edge of the cell. You can specify the
width and height of the table either in pixels or as a percentage of total screen size.

Within the <TABLE> tags, each table row is marked by the <TR> tag. Each row’s cells are
marked by the <TD> tag. Here’s the structure of a simple table. If you create an HTML file with
the following lines and open it with your browser, you will see the items arranged as a table without
any lines around them.

<HTML>
<TABLE>

<TR>
<TD> Row 1, Column 1 </TD>
<TD> Row 1, Column 2 </TD>
<TD> Row 1, Column 3 </TD>

</TR>
<TR>

<TD> Row 2, Column 1 </TD>
<TD> Row 2, Column 2 </TD>
<TD> Row 2, Column 3 </TD>

</TR>
<TR>

<TD> Row 3, Column 1 </TD>
<TD> Row 3, Column 2 </TD>
<TD> Row 3, Column 3 </TD>

</TR>
</TABLE>

</HTML>

Aligning Cell Contents

The ALIGN and VALIGN attributes specify the alignment of the cell’s contents. The ALIGN
attribute is used for horizontal alignment and can have the value LEFT, CENTER, or RIGHT.
The VALIGN attribute specifies the vertical alignment of the text, and it can have the value TOP,
MIDDLE, or BOTTOM. The default alignment is LEFT (horizontal alignment) and MIDDLE
(vertical alignment).

1011AN HTML PRIMER

2877c23.qxd 11/11/01 4:22 PM Page 1011

http://www.sybex.com

A great deal of control over the alignment, spacing, and placement of cell contents within tables
translates directly into excellent formatting capability for documents that would not ordinarily be
built as tables. In fact, in HTML there are some effects you just can’t get (in a practical way) with-
out the effective use of tables.

Table Width and Alignment

All the examples we have looked at so far use the default table width, which is determined by the
entries of the individual cells. If a column contains a very long entry, the browser will wrap its con-
tents to make sure that all columns are visible. However, it is possible to specify the width of the
entire table with the WIDTH attribute of the <TABLE> tag.

The WIDTH attribute can be a value that specifies the table’s width in pixels or as a percentage
of the window’s width. The table defined as <TABLE WIDTH=”50%”> occupies one-half of the win-
dow’s width.

The table defined as <TABLE WIDTH=”200”> will be 200 pixels wide, regardless of its contents
and/or the window’s size. If the window is less than 200 pixels wide, part of the table will be invis-
ible. To display the part of the table that’s outside the window, you’ll have to use the horizontal
scroll bar.

The <TABLE> tag can also take the ALIGN attribute, but instead of aligning the table con-
tents, this aligns the table itself. If you don’t include an ALIGN attribute, the table will be left-
aligned in the browser’s window.

Tip This is true of most elements; paragraphs (<P>) and images () can also use ALIGN, and if it’s not
present they default to aligning left.

Multiple Row and Multiple Column Cells

Quite often, tables don’t contain identically sized rows and columns. Some rows may contain fewer
and wider cells than the others, and some columns may span multiple rows. The figures in this sec-
tion contain tables with peculiar formatting.

Figure 23.3 shows a table with cells that span multiple columns and rows. These cells use the
ROWSPAN and COLSPAN attributes, which let you create really elaborate tables. Either or both
can appear in a <TD> tag, and they merge the current cell with one or more of its adjacent cells on
the same row (in the case of the COLSPAN attribute) or column (in the case of the ROWSPAN
attribute). The number of adjacent cells to be merged is the value of the COLSPAN and ROWS-
PAN attributes; COLSPAN=”2” means that the current cell covers two columns.

The table in Figure 23.3 was created with the HTML lines shown in Listing 23.1. The only
thing I’ve done differently here is add the COLSPAN attribute in the appropriate <TD> tags to
force some cells of the first row to span two columns, and I’ve added the ROWSPAN attribute
to force some cells in the first column to span multiple rows. (The <TH> tag is simply a special
table cell that indicates a table heading.) Other than that, the new table is as simple as those in the
previous examples.

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1012

2877c23.qxd 11/11/01 4:22 PM Page 1012

http://www.sybex.com

Listing 23.1: The ROWSPAN and COLSPAN Attributes

<HTML>
<HEAD>

<TITLE>ROWSPAN - COLSPAN Examples</TITLE>
</HEAD>
<BODY>

<TABLE BORDER=”1” ALIGN=”CENTER”>
<CAPTION>ROWSPAN & COLSPAN Demo</CAPTION>
<TR>

<TD COLSPAN=”2” ROWSPAN=”2”>Source:
1991 Census</TD>
<TH COLSPAN=”2”>Average</TH>

</TR>
<TR>

<TH>Height</TH>
<TH>Weight</TH>

</TR>
<TR>

<TH ROWSPAN=”2”>Gender</TH>
<TH>Males</TH>
<TD>5.83</TD>
<TD>195.5</TD>

</TR>
<TR>

<TH>Females</TH>
<TD>5.22</TD>
<TD>167.8</TD>

</TR>
</TABLE>

</BODY>
</HTML>

Figure 23.3

This table contains
cells that span
multiple rows and
columns.

1013AN HTML PRIMER

2877c23.qxd 11/11/01 4:22 PM Page 1013

http://www.sybex.com

Forms and Controls
As you know already, HTML pages contain controls that let the user enter information, similar to
the usual Windows controls: text boxes, option buttons, and so on. The areas on the HTML page
where these controls appear are called forms (or Web forms), and the controls themselves are called
intrinsic controls. HTML provides special tags for placing intrinsic controls on a form.

Before placing a control on the page, you must create a form with the <FORM> tag. Its
syntax is:

<FORM NAME=”name” ACTION=”action” METHOD=”method”>
</FORM>

All the controls must appear between these two tags. The NAME attribute is the name of the
form and is used when a page contains multiple forms. The ACTION attribute is the name of an
application on the server that will be called to process the information. The METHOD attribute
specifies how the controls’ values will be transmitted to the server. All the information needed by the
browser to contact an application in the server is contained in the <FORM> tag. But more on this
later, in the section “Passing Parameters to the Server.”

HTML provides support for the following intrinsic controls. Figure 23.4 shows a Web page
with a form that contains most of HTML’s intrinsic controls. You are going to see the HTML
code that produced the page seen in the figure in the section “Processing Requests on the Server,”
later in this chapter.

The Text Control

The Text control is a box in which visitors can enter a single line of text (such as name, address, and
so on). To insert a Text control on a form, use the following tag:

<INPUT TYPE=”text” NAME=”Publisher” VALUE=”Sybex”>

Figure 23.4

This form contains
the intrinsic HTML
controls.

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1014

2877c23.qxd 11/11/01 4:22 PM Page 1014

http://www.sybex.com

The VALUE attribute specifies the initial value. After the visitor changes this entry, VALUE
holds the new string. To edit the contents of a Text control, the visitor can use the common editing
keys (Home, Del, Insert, and so on), but the text can’t be formatted.

To control the size and contents of the control, use the SIZE and MAXLENGTH attributes.
The SIZE attribute specifies the size of the control on the form, in number of characters, and the
MAXLENGTH attribute specifies the maximum number of characters the user can type in the con-
trol. A variation of the Text control is the Password control, which looks identical but doesn’t dis-
play the characters as they are typed. Instead, it displays asterisks, and it is used to enter passwords.

The TextArea Control

The TextArea control is similar to the Text control, but it allows the entry of multiple lines of text.
All the usual navigation and editing keys work with the TextArea control. To place a TextArea con-
trol on a form, use the <TEXTAREA> tag:

<TEXTAREA NAME=”Comments” ROWS=”10” COLS=”30”>The best editor I’ve ever
used!</TEXTAREA>

Because the TextArea control allows you to specify multiple lines of initial text, it’s not inserted
with the usual <INPUT> tag, but with a pair of <TEXTAREA> tags. The ROWS and COLS
attributes specify the dimensions of the control on the page, in number of characters. Unlike the rest
of an HTML document, white space in the content between the two <TEXTAREA> tags is pre-
served when the text is displayed on the control; line breaks you insert, for instance, will appear in the
browser. Even if you include HTML tags in the initial text, they will appear as text on the control.

The CheckBox Control

The CheckBox control is a little square with an optional checkmark, which acts as a toggle. Every
time the visitor clicks it, it changes state. It is used to present a list of options, from which the user
can select one or more. To insert a CheckBox control on a form, use the <INPUT> tag:

<INPUT TYPE=”checkbox” NAME=”Check1”>

To initially check a CheckBox control, specify the CHECKED attribute in the corresponding
<INPUT> tag. The control’s value can be ON and OFF (or 1 and 0), indicating whether it’s
checked or cleared, respectively.

The RadioButton Control

The RadioButton control is round and contains a dot in the center. RadioButton controls are used
to present lists of options, similar to the CheckBox controls, but only one of a set can be selected at
a time. Each time a new option is checked by the visitor, the previously selected one is cleared. To
insert a RadioButton control on a form use the following:

<INPUT TYPE=”radio” NAME=”Radio1”>

Whereas each CheckBox control has a different name, a group of RadioButtons all have the same
name. This is how the browser knows which RadioButton controls belong to the same group and
that only one of them can be checked at a time. To specify the control that will be initially checked

1015AN HTML PRIMER

2877c23.qxd 11/11/01 4:22 PM Page 1015

http://www.sybex.com

in the group, use the CHECKED attribute. The following lines insert a group of four RadioButton
controls on a form:

<INPUT TYPE=”radio” NAME=”Level”>Beginner

<INPUT TYPE=”radio” NAME=”Level”>Intermediate

<INPUT TYPE=”radio” NAME=”Level” CHECKED=”checked”>Advanced

<INPUT TYPE=”radio” NAME=”Level”>Expert

The Multiple Selection Control

The Multiple Selection control is basically a list of options. The visitor can select none, one, or mul-
tiple items in the list. The list is delimited with a pair of <SELECT> tags. Each item in the list is
inserted with a separate <OPTION>. To place a Multiple Selection List on the form, add the fol-
lowing lines:

<SELECT NAME=”MemoryOptions” SIZE=”3” MULTIPLE=”multiple”>
<OPTION VALUE=”16”>16 MB</OPTION>
<OPTION VALUE=”32”>32 MB</OPTION>
<OPTION VALUE=”64”>64 MB</OPTION>
<OPTION VALUE=”128”>128 MB</OPTION>
<OPTION VALUE=”256”>256 MB</OPTION>

</SELECT>

The SIZE attribute specifies how many lines will be visible. If you omit it, the list will be reduced
to a single line, and the visitor must use the up and down arrow keys to scroll through the available
options. If the list contains more lines, a vertical scroll bar is automatically attached to help the visi-
tor locate the desired item. The MULTIPLE attribute specifies that the visitor can select multiple
items in the list by clicking their names while holding down the Shift or Ctrl key. If you omit the
MULTIPLE attribute, each time an item is selected, the previously selected one is cleared.

The <OPTION> tag has a VALUE attribute that represents the value of the selected item. If
the user selects the 64 MB option in the earlier list, the value 64 is transmitted to the server. Finally,
to initially select one or more options, specify the SELECTED attribute:

<OPTION SELECTED=”selected” VALUE=”128”> 128 MB</OPTION>

The Command Button Control

Clicking a Command button triggers certain actions. Without VBScript, Command buttons can
trigger only two actions:

� Submit the data entered on the controls to the server.

� Reset all control values on the form to their original values.

With VBScript, Command buttons can trigger any actions you can program in your pages. You
can place three types of buttons on a form: Submit, Reset, and General.

The most important button is Submit. It transmits the contents of all the controls on the form to
the server (the values will be processed by an application whose URL is specified in the ACTION
attribute of the <FORM> tag). The Reset button resets the values of the other controls on the

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1016

2877c23.qxd 11/11/01 4:22 PM Page 1016

http://www.sybex.com

form to their initial values. The Reset button doesn’t submit any values to the server. Most forms
contain Submit and Reset buttons, which are inserted like this:

<INPUT TYPE=”submit” VALUE=”Send Data”>
<INPUT TYPE=”reset” VALUE=”Reset Values”>

The VALUE attribute specifies the string that will appear on the button—its caption. The
Submit button reads the name of the application that must be contacted on the server (the
<FORM> tag’s ACTION attribute), appends the values of the controls to this URL, and
transmits it to the server.

Processing Requests on the Server
The RegisterForm.htm page, previously shown in Figure 23.4, contains several of the controls you
can place on a Web page to request information from the user. The FORM section of the page is
defined with the following tag:

<FORM ACTION=”ASP/Register.asp” METHOD=”GET”>

The data collected on this page will be transmitted to the application Register.asp on the same
server, and they will be processed there. Chapter 24 will show how to write a program to process the
data submitted by the client. What you must keep in mind for now is that the browser will automat-
ically submit the controls’ values to the server. All you have to do is specify the URL of the program
to intercept them on the server in the <FORM> tag. The URL used in this example begins with
the ASP folder. With no protocol, domain, or other parent folder specified, the ASP folder has to be
in the same location as the current document, and the browser remembers where that is. The URL
of this example is equivalent to http://www.example.com/ASP/Register.asp (where the first part of
the address is the location of the HTML page with the form). The data will be transmitted to the
server when the Submit button (Register Now) at the bottom of the form is clicked.

The rest of the code is trivial. It uses the <INPUT> tag to display the various controls and most of
the controls are grouped into tables for alignment purposes. You can open the RegisterForm.htm file,
from this chapter’s folder on the CD, to see the statements for creating the page shown in Figure 23.4.
Listing 23.2 shows how the various inputs are constructed; I’ve listed the tags for the intrinsic controls
only, omitting the table and text-formatting tags in the interest of conserving space.

Listing 23.2: Key Elements from the RegisterForm.htm Page

<FORM ACTION=”ASP/Register.asp” METHOD=”GET”>
Last Name

<INPUT TYPE=”text” SIZE=”20” MAXLENGTH=”20” NAME=”LName”>
First Name

<INPUT TYPE=”text” SIZE=”20” MAXLENGTH=”20” NAME=”FName”>
E-Mail Address

<INPUT TYPE=”text” SIZE=”46” MAXLENGTH=”256” NAME=”EMail”>
My computer is:

<INPUT TYPE=”radio” CHECKED=”checked” NAME=”Hardware” VALUE=”PC”>PC

<INPUT TYPE=”radio” NAME=”Hardware” VALUE=”Mac”>Macintosh

<INPUT TYPE=”radio” NAME=”Hardware” VALUE=”OtherHardware”>Other

1017AN HTML PRIMER

2877c23.qxd 11/11/01 4:22 PM Page 1017

http://www.sybex.com

My browser is:
<INPUT TYPE=”radio” CHECKED=”checked” NAME=”Browser” VALUE=”IE”>Internet

Explorer
<INPUT TYPE=”radio” NAME=”Browser” VALUE=”Netscape”>Netscape
<INPUT TYPE=”radio” NAME=”Browser” VALUE=”OtherBrowser”>Other

When I connect I want to see:
<INPUT TYPE=”checkbox” NAME=”Sports” VALUE=”ON”>Sports
<INPUT TYPE=”checkbox” NAME=”News” VALUE=”ON”>News
<INPUT TYPE=”checkbox” NAME=”Stock” VALUE=”ON”>Stock Prices
<INPUT TYPE=”checkbox” NAME=”Weather” VALUE=”ON”>Weather
<INPUT TYPE=”checkbox” NAME=”Bargains” VALUE=”ON”>Our Bargains

Do you want to receive e-mail messages?
<INPUT TYPE=”radio” CHECKED=”checked” NAME=”Mail” VALUE=”YES”>Yes
<INPUT TYPE=”radio” NAME=”Mail” value=”NO”>No

Click here to submit your registration
<INPUT TYPE=”submit” NAME=”Register” VALUE=”Register Now!”>

</FORM>

If you click the Register Now button, the browser displays a warning, indicating that it couldn’t
find the Register.asp application. This page can’t be tested without a Web server running that pro-
gram (otherwise, you’d get a result similar to that shown in Figure 23.5). You can view its contents
like any other page, but it can’t contact the server unless it’s opened on a Web server.

To see how this form works with the Register application, copy the RegisterForm.htm file from
the CD to the root folder of your Web server. The default root folder is C:\InetPub\wwwroot. Even
better, create a subfolder under the root folder of the Web server and store the file there. For the
example of this section, I have used the ASP folder. Then create a new file with the statements of
Listing 23.3, name it Register.asp, and copy it into the same folder as the HTML file (or copy the
Register.asp file from the CD to the ASP folder).

Figure 23.5

The output of the
RegisterForm
.htm page

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1018

2877c23.qxd 11/11/01 4:22 PM Page 1018

http://www.sybex.com

Listing 23.3: Reading the Parameter Values Passed to the Server

<HTML>
<BODY>
<%
Response.Write Request.QueryString
Response.Write “<HR>”
Response.Write “<TABLE BORDER=’1’ RULES=’ALL’>”
Response.Write “<TR><TD>Parameter Name</TD><TD>Parameter
Value</TD></TD>”
Set Params = Request.QueryString
For Each PValue in Params
Response.Write “<TR><TD>” & PValue & “</TD><TD>” & Params(PValue) & “</TD></TR>”
Next
Response.Write “</TABLE>”
%>
</BODY>
</HTML>

Let me go through this script quickly. The tags <% and %> delimit the script, which is executed
on the server. Anything that appears outside these two tags must be straight HTML code, which is
sent to the client as is. The first two lines, as well as the last two, are sent to the client without any
further processing. The lines between the <% and %> tags are considered statements and are exe-
cuted on the server. The output they produce replaces them in the output. For example, the follow-
ing code is a script that can be embedded anywhere on a page:

The date on the server is <% = Date %>.

When executed, this statement will send a string like “The date on the server is 3/21/2001.”
The ASP script must prepare a new page to send to the client. Therefore, it must emit HTML

code. The Response object represents the information you want to send to the client and you use the
Write method of the Response object to send HTML code to the client. The Request object repre-
sents the request made by the client, and the QueryString property of the Request object holds the
data passed to the server along with the request.

Now start Internet Explorer and open the RegisterForm.htm file by entering the following URL
in the browser’s Address bar:

http://127.0.0.1/ASP/RegisterForm.htm

Enter some values on the controls and click the Register Now button. The browser will request
another page with a URL like the following:

http://127.0.0.1/ASP/Register.asp?LName=Doe&FName=Joe&EMail=JoeDoe@example.com&
Hardware=PC&Browser=Netscape&Sports=ON&Stock=ON&Mail=YES&Register=Register+Now%21

This is a long URL, but notice that it starts with the address of the ASP file that will process
this page on the server. Following the question mark is a long string with the values you have
entered on the controls. Each value is submitted to the server as a pair of a name and a value, and

1019AN HTML PRIMER

2877c23.qxd 11/11/01 4:22 PM Page 1019

http://www.sybex.com

each name/value pair is delimited with the & symbol. This long string will be stored in the
Request.QueryString property, and you can access this property from within the script’s code. The
expression Request.QueryString will return the string with the parameters following the name of
the script. You can also access individual parameters by name. The value of the LName TextBox is
returned by the expression Request.QueryString(“LName”).

The RegisterForm.htm page passes the parameters with the GET method. An alternative method
of passing the parameters is the POST method (this is specified in the FORM tag). If you use the
POST method, the parameter values are not displayed on the address bar and you can retrieve their
values on the server through the Form property of the Request object. Change the <FORM> tag in
the HTML page from

<FORM ACTION=”ASP/Register.asp” METHOD=”GET”>

to

<FORM ACTION=”ASP/Register.asp” METHOD=”POST”>

and then change the script as follows:

<%
Response.Write Request.Form
Response.Write “<HR>”
Response.Write “<BODY>”
Response.Write “<TABLE BORDER=’1’ RULES=’ALL’>”
Response.Write “<TR><TD>Parameter Name</TD>
Response.Write “<TD>Parameter Value</TD></TR>"
Set Params = Request.Form
For Each PValue in Params

Response.Write “<TR><TD>” & PValue & “</TD><TD>” & Params(PValue) & “</TR></TR>”
Next
Response.Write “</TABLE>”
%>

The changes are trivial: just replace all instances of the QueryString property with the Form
property. The two methods of passing parameter values to the server are equivalent, but the POST
method allows you to pass longer strings and doesn’t append the parameter values to the URL.

This is how ASP processes the requests. It’s also how ASP.NET processes the requests, but
ASP.NET makes it look as if you’re working with a Windows form. As you will see shortly, it pre-
tends that the LName control is a TextBox that exposes the Text property, and it allows you to
access the contents of the LName control with the expression LName.Text. It generates a lot of code
behind the scenes, but fortunately you don’t have to see it. You work as if you’re writing code for a
Windows application, but what you get is an application that works with the browser.

The IDE may hide many of the low-level details of ASP.NET from you, but this doesn’t mean
you can ignore the structure of ASP applications and pretend it’s almost like building Windows
applications. As you will see, you will have to use ASP.NET objects, like the Request and Response
object, from within your VB code.

You’re halfway through this chapter, and you haven’t seen any of the new tools for designing
Web pages yet. That’s what we’re going to do in the second half of the chapter. This overview was

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1020

2877c23.qxd 11/11/01 4:22 PM Page 1020

http://www.sybex.com

meant for people who are new to ASP programming, and it should help you understand how clients
interact with servers. The interaction model is totally different from the one used in Windows appli-
cations, and it’s essential to understand it before you start using the visual tools of Visual Studio to
build ASP.NET applications.

Building a Web Application
In this section, you’ll build a Web application similar to the RegisterForm application of the preced-
ing section. The first difference you will note between the two applications is that the new one dis-
plays the results on the same page. Typical Web applications don’t let you display new information
on the same page that submitted the data to the server (the reason being that it’s much easier to cre-
ate a new page, rather than reconstruct the page that submitted the request). ASP.NET makes it very
easy to display the results of the processing on the same page that invoked the script. The control on
which the results are displayed is a Label control, which is initially empty.

Start a new ASP.NET Web Application and name it Register. The project will be created in the
Register folder under the Web server’s root folder, which is c:\Inetpub\wwwroot by default. A
Web project isn’t compiled to an EXE file that can be executed by double-clicking its icon. You
must start Internet Explorer, connect to the Web server where the Web application resides, and
open its startup page, which is a file with extension ASPX.

Several items will be added to the Solution Explorer automatically, one of them being the Web-
Form1 item. This is the equivalent of a Windows form, and it’s the page users will see on their
browser. The main pane of the IDE shows the WebForm1.aspx form in design view. You can open
the Toolbox and select controls to place on the form. The Toolbox contains two tabs with controls
you can use on a Web page: the Web Controls tab and the HTML Controls tab. The Web controls
are a superset of the HTML controls, and you’ll hardly ever use the plain HTML controls. You can
actually turn any HTML control into a Web control by right-clicking the instance of the control on
the form and selecting the Run At Server option.

Designing a WebForm is no different than designing a Windows form: just place controls on the
form, size and align them, and set their properties, and you have built the Web application’s user
interface. The Web controls don’t have as many properties as their Windows counterparts, but they
have many more properties than the HTML controls. One property that’s common to all Web con-
trols is the EnableViewState property, which is True by default. This property determines whether
the control’s state is automatically saved during round trips to the server. Leave this property to True
so that each time the page is returned to the client, the controls will retain their values. For example,
if the user forgets to supply a value to a required field, don’t make them retype everything. The con-
trols will maintain their values, and the user can edit the one that’s in error.

When you work with Web forms, the Toolbox displays the controls of the Web Controls tab.
These are the controls you can use on a Web form. In addition to the Web controls, you can also
place HTML controls on the form, but there’s no good reason to do so. Web controls provide more
properties and are easier to program. Add the appropriate controls to create the page of Figure 23.6.
At the bottom of the page is a Label control, where we’ll display the data entered by the user on the
form. The Label control is invisible the first time the page is opened, because it has the same back-
ground color as the page. You can also set its Visible property to False and turn it back on when you
want to display something on the control.

1021BUILDING A WEB APPLICATION

2877c23.qxd 11/11/01 4:22 PM Page 1021

http://www.sybex.com

When you design a page visually in the IDE, you see a grid and you can align the controls to the grid.
The page has a property called pageLayout, which has two settings: GridLayout and FlowLayout. The
default setting allows you to position controls anywhere on the form and use the alignment tools of
the Format menu. The FlowLayout setting takes you back to plain HTML, where controls are
placed next to one another. If you switch to the FlowLayout mode, you won’t be able to precisely
position your controls on the form.

Now we must add some code behind the Register button. When this button is clicked, the values
entered by the user on the form are submitted to the server. All you have to do is read these values
and display them on the Label control at the bottom of the form (the Values label). Our application
won’t process the values, but once you know how to read them, you can store them in a database,
prepare a new page with the specified settings, and so on. Double-click the button on the form and
you will see the declaration of the Click event:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

End Sub

This is clearly VB code. With ASP.NET, the code running on the server is no longer VBScript; you
can write VB code, which will be compiled and executed as needed. The Click event of the Button1
control isn’t fired when the user clicks the button on his browser. It will be fired when a request from
this page arrives to the server. ASP.NET simply lets you program the Click event of the Button Web

Figure 23.6

This page is similar
to the one shown in
Figure 23.4, only it
was designed with
Visual Studio.

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1022

2877c23.qxd 11/11/01 4:22 PM Page 1022

http://www.sybex.com

control as if it were a Windows Button control. Insert the statements of Listing 23.4 in the Click event
handler, which will display the parameter values on a Label control. The Label control is another Web
control that can render HTML code.

Listing 23.4: Displaying the Parameters Passed to the WebForm

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Values.Text = “LAST NAME “ & txtLName.Text
Values.Text = Values.Text & “
” & “FIRST NAME “ & txtFName.Text
Values.Text = Values.Text & “
” & “EMAIL “ & txtEMail.Text
Values.Text = Values.Text & “
” & “COMPUTER “ & _

radioHardware.SelectedItem.ToString
Values.Text = Values.Text & “
” & “BROWSER “ & _

radioBrowser.SelectedItem.ToString
Dim i As Integer
Values.Text = Values.Text & “
Preferences”
For i = 0 To chkView.Items.Count - 1

If chkView.Items(i).Selected Then
Values.Text = Values.Text & “
” & chkView.Items(i).Value.ToString

End If
Next

End Sub

As you can see, this is straight Visual Basic (and it could have been any other language running in
the Visual Studio environment, from C# to COBOL and FORTRAN). You’re programming Web
pages as if they were Windows forms. Of course, this is an illusion. Let’s see what’s sent down to the
client. Press F5 to run the application, and Internet Explorer will pop up showing the page you
designed. Before filling out the form, open the View menu and select Source. The page’s source code
will be displayed on Notepad. I will not repeat the code here, but it’s plain HTML code that
describes the contents of the page. The first TextBox control is inserted on the page with the follow-
ing tag:

<INPUT NAME=”txtLast” TYPE=”text” ID=”txtLast” TABINDEX=”1”
STYLE=”z-index: 102; left: 120px; position: absolute; top: 12px” />

The TABINDEX attribute determines the position of the control in the Tab order (some
browsers may not interpret this attribute) and the STYLE attribute determines the dimensions and
position of the control.

Enter values on the controls and click the Register button. The form will be submitted to the
server, where the VB code will prepare the new page. The new page isn’t created from scratch. The
code will send out the same page, but this time the Label control at the bottom of the form will con-
tain the values submitted to the server.

If you view the new page’s source code, the tag of the first TextBox has become:

<INPUT NAME=”txtLast” TYPE=”text” VALUE=”Doe” ID=”txtLast” TABINDEX=”1”
STYLE=”z-index: 102; left: 120px; position: absolute; top: 12px” />

1023BUILDING A WEB APPLICATION

2877c23.qxd 11/11/01 4:22 PM Page 1023

http://www.sybex.com

The only difference is that the VALUE attribute was added. This is what the EnableViewState
property does: it causes the various controls to retain their values when a page is updated. If you
refresh the page by pressing F5, the controls will be reset to their initial values.

Interacting with a Web Application
Here’s what goes on when a Web application is executed. The first time a user connects to the server
and requests the application’s startup Web page, the VB code is compiled—that’s why it takes several
seconds for the page to be displayed. The compilation won’t take place in subsequent requests. VB
generates a new class that handles the interaction with the browser. This class reads the parameter val-
ues sent by the browser along with the request, processes them, and emits HTML code, which is sent
to the client. You can create a new page and send it to the client, or you can change the values of the
controls on the same page. This model of client/server interaction is closer to a Windows application.
With ASP, it was easier to generate a new page with the results, rather than add a few more elements
on the same page. The reason was that programmers had to generate all the elements of the current
page from within their script and then add the new elements—and of course, it was simpler to create
a new page with the new elements only. If this were a Windows application, you wouldn’t display the
results on a different form. Why do it with Web applications? It’s a subtle departure from the tradi-
tional Web model, and it doesn’t cost you anything. It’s all done by the class that handles the request,
and this class is generated and compiled on-the-fly; it doesn’t even appear in the Solution Explorer.

Building a Web application is, in many ways, similar to building a Windows application. Of
course, you should be aware of the limitations of the Web and not expect that a Web application
will have the same capabilities and responsiveness as a Windows application. You should also keep
in mind that the Web application’s code runs on the server and “sees” the values of the controls only
when the client submits them (that is, when the user clicks a button that submits the form to the
server). While the form is open on the client’s browser, the application doesn’t even execute on the
server. This is probably the most important difference between Web and Windows applications: the
Web application isn’t running at all times on the server. It starts every time the client submits a
request to the server. It runs for a second (or many seconds), generates a new page, and then termi-
nates. It doesn’t remain inactive; it simply dies when it’s done. And this raises the following question:
what if we want to maintain the values of some variables between consecutive invocations of the
server application?

This is a good point at which to overview the structure of Web applications. A Web application
consists of a Web form (or multiple Web forms, as you will soon see). Each Web form consists of
HTML tags and VB statements. The HTML part of the page is transmitted as is to the client,
where it’s rendered by the browser. In the context of this book, the HTML part is the form on
which users enter data—I’m assuming another member of the team is responsible for generating a
pretty page.

Another way to look at a Web application is to think of it as a Windows application written in
VB, which is executing in the browser. The application’s code is executed on the server, of course,
but the application’s interface is displayed on the browser. This is the very essence of a Web applica-
tion: a visually rich application that appears to be executing in the browser.

Why execute an application in the environment of the browser? First, it’s the simplest type of
application to install—you don’t install it. To use it, you just enter a URL in the browser’s Address

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1024

2877c23.qxd 11/11/01 4:22 PM Page 1024

http://www.sybex.com

box. Because the application is not installed on your computer, you don’t have to worry about patches
or updates. Every time you connect to the server that hosts the application, you’re executing the latest
version of it. It doesn’t take up any space on the disk, and you don’t have to spend hundreds of dollars
to buy it. You pay a small subscription, or you’re charged for the time you use it. There are already
sites that charge you to use resources like encyclopedias, news services, and so on. In the future, we’ll
see more online services, especially if Web services catch on as Microsoft hopes they will.

The VB code resides on the server and will be executed automatically when certain events are
“fired.” In reality, no event is fired. When the user clicks a button on the form, the client submits the
data entered by the user on the form to the client. This action is called postback: the client sends the data
on the current form to the server, and the server executes the appropriate event handler. Your VB
code in the event handler reads the values entered by the user on the form by reading the properties
of the various Web controls, processes them, and updates the values of certain controls on the same
page or prepares a new page to download to the client. The Web controls are replaced by the plain
HTML controls and, in some cases, one or more scripts in JavaScript.

There’s a point I should stress here: the values of the various controls are not read directly off the
controls. The controls reside on a page at the client. When a page is submitted to the server, the val-
ues of all the controls on the page are also uploaded to the server. Once the code on the server has
prepared a new page (or updated the existing page) and sent it to the client, it forgets all about the
interaction. That’s why the client submits all the data to the server with every postback.

This observation raises naturally the following question: how can we maintain some variables
through a session? How do we know that we’re talking to the same client, for example, and how can
we retrieve the customer’s basket and add new products to it? There many ways to maintain state
among multiple pages of a Web application, or multiple invocations of the same page, and we’ll
examine them in the following section.

Maintaining State
The second major difference between ASP applications and Windows applications is that HTML
pages (and, therefore, Web forms) are totally independent from one another. If you want to persist
some information between successive invocations of the same page, or multiple pages of the same
application, you must do some extra work. The information you want to maintain is known as
the application’s state.

There are several methods to maintain state across the pages of a Web application. The simplest
method is to create a few variables through the Session object. The Session object represents a spe-
cific session; it’s created when a new user connects to the server and released when the user leaves
the site. The Session object is discussed later in this chapter, but here’s how you can add two vari-
ables named Items and UID to the Session object, and set their value to a number and a string
respectively:

Session(“Items”) = 3
Session(“UID”) = “anonymous”

If a variable of the same name exists already, its value is overwritten. Session variables should be
used to store relatively small pieces of information that apply to all the pages of the application, such
as the user’s name, ID, or preferences.

1025BUILDING A WEB APPLICATION

2877c23.qxd 11/11/01 4:22 PM Page 1025

http://www.sybex.com

Another method of maintaining state is to use an ID that uniquely identifies a session. This ID is
generated by the SessionID property of the Session object. Once you obtain an ID for the current
session, you can store it in a Session variable and use it in your code to identify the session. This ID
is passed back and forth between the client and the server and maintains its value for the duration of
the session. You can use this value as a key to a table in a database that contains information such
as the items ordered by a user—or any other data you want to access from within multiple pages or
multiple invocations of the same page.

In the past, Web developers used to pass cookies and store them on the client computer. Many
users are disabling cookies on their computers, so you can’t rely on this technique for all clients. If
the client computer doesn’t accept cookies, your application should be prepared to maintain its state
with a different method. If the client accepts cookies, use them to store information you want to
maintain between sessions, like the basket’s contents. The clients that accept cookies can place items
in their basket and terminate the application without placing an order. The next time they will con-
nect to your site, the items will still be in their basket. Cookies are discussed in detail later in this
chapter.

A last, and very reliable, method of maintaining state among multiple pages and requests is to
embed hidden fields in your pages and read them when the pages are submitted back to the client.
This technique is equivalent to maintaining global variables, only the variables don’t reside on the
server. They travel back and forth and are always available when you want to process a page. This
technique is used heavily by ASP.NET applications. If you open the source file of any page on the
client, you will find statements like the following:

<INPUT TYPE=”hidden” NAME=”__VIEWSTATE” VALUE=”dDwtMTMzNTkzMTE2Mjs7Pg==” />

This is a hidden field. Its name attribute is the name of the variable, and its value attribute is the
variable’s value. This variable is used on the server to maintain the state of the controls on the form
throughout the session. The Hidden field is an HTML control, and there’s no equivalent Web con-
trol. Normally, you need not add your own Hidden fields, but you can do so by adding one or more
instances of the Hidden HTML control on a page.

The Web Controls
As you saw in the previous section, when you design a Web form, the Toolbox displays by default
the tab with the Web controls. Many of these controls—the simple Web controls—have equivalent
HTML controls. The Web controls provide more properties, and you have more control over their
appearance. Of course, they’re not real controls; when the page is sent to the client, they’re rendered
as HTML controls.

You’re probably wondering when and how the Web controls are converted to HTML controls.
When the page is executed (that is, when the client requests the page for the first time), the Com-
mon Language Runtime (CLR) creates a class behind the scenes and compiles it. You never see this
class, but a DLL is created in the Debug or Bin folder of the application. This DLL, which is named
after the application, handles the request and emits the proper HTML code to the client. Using the
simple Web controls, like the TextBox and CheckBox controls, is straightforward—it’s like using
the equivalent Windows controls, only they don’t have as many members. I will not discuss the triv-
ial controls in this chapter; you already know how to use them.

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1026

2877c23.qxd 11/11/01 4:22 PM Page 1026

http://www.sybex.com

In addition to the simple Web controls, the Web Controls tab of the Toolbox contains some
advanced controls, which are known as rich Web controls. Among these are the validation controls (a
group of controls for various types of data validation), the Calendar control, and the TreeView con-
trol. In the following sections, you’ll find an overview of the most useful rich Web controls.

The Validation Controls

If there’s a universal task in programming Web applications, it’s the validation of the values of the
various controls. Most sites validate the controls on the server, and if there’s a problem with the
user-supplied data, they display the same page along with a message describing the error. Many pro-
grammers will also deploy client-side scripts to save the trip to the server. To simplify the validation
of the data submitted to the server, ASP.NET provides five controls, collectively known as valida-
tion controls, and another control that displays the errors detected by the five validation controls:

RequiredFieldValidator This validator ensures that all required fields have a value.

CompareValidator This validator compares a control’s value to a constant value, a property of
another control, or even a database field. If the comparison fails, the control is in error and the
user must supply a different value.

RangeValidator This validator ensures that the value entered by the user in a control falls
within a lower and upper bound. If not, the control is in error.

RegularExpressionValidator This validator compares the value of a control against a regular
expression. If the comparison fails, the control is in error.

CustomValidator This control allows you to supply your own validation logic, and it’s the
most flexible validator. However, you must supply your own code.

ValidationSummary This control can automatically display all the errors caught by the other
validation controls on the form. Normally, we prefer to display the messages next to the control
in error.

A regular expression is a string that determines the structure of the user-supplied value. The string
...\d\d means three characters followed by two digits. A string like ABC99 will pass the test, while
a string like 9AA99 will fail the test. The period (.) stands for a character, the asterisk stands for
any number of characters, and \d stands for a digit. The expression [A-Z] means any uppercase char-
acter between A and Z, and the expression [a-e] means any lowercase character between a and e. If
a specific pattern is repeated a number of times, specify a numeric value in braces. The expression
[0-9]{5} means five digits (use this regular expression to validate ZIP codes).

Each of the validation controls performs a specific type of validation on a specific control, which
is specified with the validation control’s ControlToValidate property. You can set this property in
the Properties window, where all the names of the controls on the form will be displayed in a drop-
down list and you can select the control to be validated. If a control must undergo multiple validations,
you can have multiple validation controls for the same control (that is, multiple validation controls
with their ControlToValidate property set to the same control ID). Each of the validation controls
will perform a single validation.

1027BUILDING A WEB APPLICATION

2877c23.qxd 11/11/01 4:22 PM Page 1027

http://www.sybex.com

Each validation control has a Text property, which is displayed on the validation control when a
control on the form fails the validation test. To make sure that a TextBox control isn’t left blank,
place a RequiredFieldValidator control next to it and set its Text property to a string “This is a
required field” or “You cannot submit a page without a user ID.” Normally, the validation control
remains blank. If the user attempts to submit the form without entering something in this field, the
string will appear on the validation control (and the Submit button will not send anything to the
server). Each validation control also has an ErrorMessage property, which you can read from within
your code. The ErrorMessage property is displayed on the ValidationSummary control, if the form
contains one.

Some of the validation controls have additional properties. The RangeValidator control, for
example, has MinimumValue and MaximumValue properties, which are the valid minimum and
maximum for the validated control. The CompareValidator control has ControlToCompare and
ValueToCompare properties. If you want to compare a control’s value to a constant, set the Value-
ToCompare property to this constant. If you want to compare the control to value of another con-
trol, set the CompareValidator control’s ControlToCompare property to the ID of another control
on the form. To specify the type of comparison, set the CompareValidator control’s Operator prop-
erty to a comparison operator (Equal, Greater Than, Less Than, and so on). The valid settings of
this property appear in a drop-down list in the Properties window. The CompareValidator control
will compare the value of the control specified by the CompareTo property to the setting of the
ValueToCompare or ControlToCompare property using the specified operator. If the comparison
fails, an error message will appear on the validator control.

The last control in this family doesn’t perform any validation. Instead, it displays all the errors
on the form. In effect, it’s a Label control on which the ErrorMessage properties of all validation
controls is displayed. The validation control’s Text property is displayed on the validation control,
which is usually placed next to the control to be validated. The ErrorMessage property is the string
that appears in the ValidationSummary control. You can set both the Text and ErrorMessage prop-
erties to the same string. Let’s see some of the validation controls in action.

In Chapter 2, you developed a Web application that calculates the monthly payment of a loan.
Let’s add the appropriate validation controls to the WebLoanCalculator application. First, make
a copy of the existing application. The new application is called WebLoanCalculator1, and you
will find it on the CD. I’ve chosen this name because both applications must reside in the Web
server’s root folder—you can copy them to different subfolders of the root folder and name the
project WebLoanCalculator. Or, instead of copying the original project application, you can open
the WebLoanCalculator1 project on the CD and edit it.

Add three RequiredFieldValidator controls on the form, and place them next to each TextBox
control, as shown in Figure 23.7. Set each validation control’s ControlToValidate property to the
ID of the Textbox next to it. Then place three RangeValidator controls on the form, place them on
top of the three RequiredFieldValidator controls, so that their messages will also appear next to the
control in error. Placing one control on top of another with the mouse can be tricky; use the com-
mands of the Format menu instead.

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1028

2877c23.qxd 11/11/01 4:22 PM Page 1028

http://www.sybex.com

Property Setting

RangeValidator1

ControlToValidate txtAmount
MinimumValue 5000
MaximumValue 500000
Text “Amount must be between $5,000 and $500,000”
ErrorMessage “Amount must be between $5,000 and $500,000”

RangeValidator2

ControlToValidate txtDuration
MinimumValue 6
MaximumValue 96
Text “Duration must be from 6 to 96 months”
ErrorMessage “Duration must be from 6 to 96 months”

RangeValidator3

ControlToValidate txtInterest
MinimumValue 0.05
MaximumValue 0.2
Text “Interest rate must be a value from 0.05 to 0.2”
ErrorMessage “Interest rate must be a value from 0.05 to 0.2”

Figure 23.7

The WebForm-
Calculator page
validates the form
before submitting it
to the server.

1029BUILDING A WEB APPLICATION

2877c23.qxd 11/11/01 4:22 PM Page 1029

http://www.sybex.com

If you run the application now and experiment with invalid values, you’ll realize that the
RangeValidator controls on the form will be ignored, if the controls are empty. The RequiredField-
Validator controls take precedence over the RangeValidator controls, for obvious reasons, so the
overlapping controls aren’t going to interfere with one another—in other words, you’ll never see two
error messages one on top of the other.

You can open the WebLoanCalculator1 project and examine the settings of the various controls.
No code is required to make the validation controls work. Just set some properties, and they’ll vali-
date the form.

You probably want to know where the validation code is running, right? Open the WebForm-
Calculator with Internet Explorer and examine its source code. Toward the end of the document,
you’ll find the following script:

<SCRIPT LANGUAGE=”javascript”>
<!--
var Page_ValidationActive = false;
if (typeof(clientInformation) != “undefined” &&
clientInformation.appName.indexOf(“Explorer”) != -1) {

if (typeof(Page_ValidationVer) == “undefined”)
alert(“Unable to find script library

‘/aspnet_client/system_web/1_0_2914_16/WebUIValidation.js’. Try placing this file
manually, or reinstall by running ‘aspnet_regiis -c’.”);

else if (Page_ValidationVer != “121”)
alert(“This page uses an incorrect version of WebUIValidation.js. The page

expects version 121. The script library is “ + Page_ValidationVer + “.”);
else

ValidatorOnLoad();
}
function ValidatorOnSubmit() {

if (Page_ValidationActive) {
ValidatorCommonOnSubmit();

}
}
// -->
</SCRIPT>

This is JavaScript, and I will not explain how it works, because most readers aren’t familiar with
JavaScript. If you examine each line, you’ll realize that it is very similar to VBScript, except for the
semicolons and curly brackets. The ASP application on the server emits code that will validate the
controls on the client. Of course, the code examines the type of browser running on the client, and if
it’s Internet Explorer, it will perform the validation on the client. In Microsoft’s terminology, Inter-
net Explorer is a so-called “up-level” browser. All other browsers are “down-level” browsers, and
they won’t perform the validation on the client. This will probably change in the near future, but
there will always be browsers that will not be able to validate the form on the client. With down-
level browsers, the form must be submitted to the server as usual, where the controls will be vali-
dated and the page with the error messages (if any) will be sent back to the client. No matter where

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1030

2877c23.qxd 11/11/01 4:22 PM Page 1030

http://www.sybex.com

the validation takes place, you don’t have to do anything special. Just place the validation controls
on the Web form, set their properties, and let ASP.NET handle the validation.

The Calendar Control

The Calendar control (Figure 23.8) provides similar functionality to the MonthCalendar Windows
control. It displays the current month’s calendar, and the user can select one or more days or weeks
with the mouse. Your code on the server can detect the selected date(s) and act accordingly: display
meetings, events, set reminders, and so on. While the Calendar you see on your Web form at design
time looks like a separate control, at runtime it’s rendered on the browser as a table.

The Calendar control’s SelectionMode property determines whether users can select a single day
or a range of days, and it can be set to one of the following values: None, Day, DayWeek, DayWeekMonth.

When a new date is selected on the controls, the SelectionChanged event is fired. You can pro-
gram this event to respond to a date selection, and the event’s definition is shown next:

Public Sub Calendar1_SelectionChanged(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Calendar1.SelectionChanged

The SelectionChanged event is fired when the user selects another date (or range of dates), but
not when the selected date is changed from within your code. To retrieve information about the
selected dates, use the following properties:

SelectedDate This property is a date value that represents the date selected by the user on the
control. If multiple dates were selected on the control, this property contains the first date in
the range.

Figure 23.8

Using the Calendar
Web control on
your Web pages

1031BUILDING A WEB APPLICATION

2877c23.qxd 11/11/01 4:22 PM Page 1031

http://www.sybex.com

SelectedDates This property is a collection containing all the dates selected on the control.
The dates in this collection are sequential, as the control doesn’t allow the selection of multiple
individual dates. The number of selected dates is given by the following expression Calendar1
.SelectedDates.Count. To iterate through the selected dates, set up a control like the
following:

Dim dt As Date
For Each dt In Calendar1.SelectedDates

Response.Write(dt.ToShortDateString)
Response.Write(“
”)

Next

You can also access the selected dates by index, with the Item property of the SelectedDates
collection:

firstDate = Calendar1.SelectedDates.Item(0).Date
lastDate = Calendar1.SelectedDates.Item(Count - 1).Date

To control the appearance of the calendar, you can set the properties of the control shown in
Table 23.2, all of which are TableItemStyle objects.

Table 23.2: Style Properties of the Calendar Control

Property Represents

DayStyle The days of the current month

DayHeaderStyle The row with the names of the days

NextPrevStyle The links to the previous and next months on the upper section of the
control

OtherMonthDayStyle The days from the previous and next months that happen to appear on the cur-
rent month’s calendar

SelectedDayStyle The day selected by the user

SelectorStyle The left column that contains the links for selecting an entire week or month

TitleStyle The calendar’s title bar

TodayDayStyle The style of the current date

WeekendDayStyle The style of the weekend dates

All of the previous properties expose in turn their own properties, which are listed in Table 23.3.
All the items of the previous table are cells of a table (because this is what the calendar is), and you
can customize them by setting any of these properties in Table 23.3.

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1032

2877c23.qxd 11/11/01 4:22 PM Page 1032

http://www.sybex.com

Table 23.3: Appearance Properties of the TableItemStyle Objects

Property Represents

BackColor The background color

BorderColor The border color

BorderStyle The border

BorderWidth The border’s width

Font The text’s font

ForeColor The foreground color

Height The cell’s height

HorizontalAlign The cell’s horizontal alignment

VerticalAlign The cell’s vertical alignment

Width The cell’s width

Wrap A True/False value that indicates whether the text wraps within the cell

The TreeView Control

This is one of the more advanced Web controls, and I’m sure many of you would like to include the
functionality of this control to your pages. As you realize, the Web TreeView control (Figure 23.9) isn’t
comparable to the equivalent Windows control, but it’s as close to a TreeView as you can get on a Web
page. The first thing you must learn about this control is that, by default, every time its state changes
(you expand or collapse a branch of the tree, or make a selection), the change is posted back to the server.
The application running on the server raises the SelectedIndexChanged event. This may introduce a sub-
stantial delay. To change the default behavior of the control, you must set the AutoPostBack property to
False (and you must then provide a button that will submit the data to the server).

Figure 23.9

Using the
TreeView control
on a Web page

1033BUILDING A WEB APPLICATION

2877c23.qxd 11/11/01 4:22 PM Page 1033

http://www.sybex.com

To populate a TreeView control, locate its Nodes property in the Properties window and click
the button with the ellipsis next to it. The TreeNodeEditor dialog box will appear, where you can
add nodes to the control, just as you add nodes to the TreeView Windows control. Each node has
a Text property, which is the string displayed on the control for that node; an ID property, which
uniquely identifies a node; and a NodeData property, where you can store additional data. The
NavigateUrl property of each node allows you to specify a URL, which will be activated when the
user clicks a node.

On the server, you can intercept the SelectedIndexChanged event to monitor the changes on the
client. Every time the user selects another item on the control, the SelectedIndexChanged event is
fired. You can also place a button on the form and ignore the action of selecting individual controls.

There are several properties you can use to retrieve the selected item. The SelectedNodeIndex
returns a unique index value, which takes into consideration the hierarchy of the items on the con-
trol. The first root item’s index is 0, the index of the first child node under the root is 0.0, the next
child node’s index is 0.1, and so on. You can use this indexing scheme to retrieve all the nodes in the
path of the selected node.

There is no property that returns the text of the selected node. Instead, you can use the GetNode-
FromIndex method to retrieve a Node object by index. Since the selected node’s index is Select-
edNodeIndex, you can retrieve the selected node’s text with the following expression:

TreeView1.GetNodeFromIndex(TreeView1.SelectedNodeIndex).Text

The GetNodeFromIndex method returns a Node object, and you can use this access all the prop-
erties of the selected node. It’s fairly easy to program the Web TreeView control. Keep in mind that
it’s not quite equivalent to the Windows TreeView control.

On up-level browsers (that is, Internet Explorer), the following script is executed to handle the
expansion and collapsing of nodes. This script saves the client a trip to the server every time a node
is expanded or collapsed. On down-level browsers, every time you change the status of the TreeView
control, the form is submitted to the server, where the application generates the code that will render
the new state of the control on the browser.

<tvns:treeview id=”TreeView1” selectedNodeIndex=”0”
HelperID=”__TreeView1_State__”
systemImagesPath=”/aspnet_client/webctrl/0_6/treeimages/”
onexpand=”javascript:

if (this.clickedNodeIndex != null)
this.queueEvent(‘onexpand’, this.clickedNodeIndex)”

oncollapse=”javascript:
if (this.clickedNodeIndex != null)

this.queueEvent(‘oncollapse’, this.clickedNodeIndex)”
oncheck=”javascript:

if (this.clickedNodeIndex != null)
this.queueEvent(‘oncheck’, this.clickedNodeIndex)”

onselectedindexchanged=”javascript:
if (event.oldnodeIndex != event.newnodeIndex)

this.queueEvent(‘onselectedindexchanged’, _
event.oldnodeIndex + ‘,’ + event.newnodeIndex)”

style=”height:236px; width:187px; z-index: 101; left: 8px;
position: absolute; top: 8px”>

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1034

2877c23.qxd 11/11/01 4:22 PM Page 1034

http://www.sybex.com

The typical use of the TreeView control on a Web page is to act as an expandable table of
contents. Every time the user selects an end node on the tree (a node that doesn’t lead to another
branch), a different document is displayed on a TextBox or Label control. You can use the
control’s SelectedNodeIndex property to find out which node was clicked and then update the
page accordingly.

The File HTML Control

The control we’ll explore in this section is a plain HTML control, but it can be converted to a server
control by setting its runat property to Server. Actually, every HTML control can be turned into a
server control, but it’s simpler to start with a Web control, which is by definition a server control.
The File control allows you to upload files to the server from within your browser. Using this con-
trol, you can prompt the users of your site to select one or more files to upload to the server and
then click a Submit button to send the selected files to the server.

Once uploaded, you can access these files from within your Web application’s code through the
control’s FilePosted property. Each instance of the File control on the form can upload a single file,
and you can place as many of them on a form as you need.

The File control consists of a TextBox and a Button. Yet, it’s a single control; the button appears
next to the TextBox and you can’t move it to another location. You can’t even change the caption of
the button, which is always “Browse,” as shown in the WebFileControl sample program, illustrated
in Figure 23.10. When the Browse button is clicked, the user is prompted to select a file on the client
computer’s file system through the Open dialog box. The selected file’s path appears in the TextBox
control, and no further action is taken. To upload the select file, the user must click a Submit button
on the form. This event must be processed on the server, and it’s the responsibility of the program
that runs on the server to save the file to a disk file.

Figure 23.10

The WebFile-
Control application
lets you upload files
to a Web server
from your browser.

1035BUILDING A WEB APPLICATION

2877c23.qxd 11/11/01 4:22 PM Page 1035

http://www.sybex.com

VB.NET at Work: The WebFileControl Project

To successfully upload data to the server, you must add the following attribute to the <FORM> tag:

ENCTYPE=”multipart/form-data”

This attribute tells the form that it should upload all types of files, and you must insert it in the
<FORM> tag manually. This is what the <FORM> tag of the WebFileControl project looks like:

<FORM ID=”Form1” ENCTYPE=”multipart/form-data” RUNAT=”server”>

This attribute will not be inserted automatically to the <FORM> tag when you place a File con-
trol on the page; you must switch to the HTML view of the ASPX page and edit the <FORM> tag
manually. Then place an instance of the File control on the form. Notice that this is an HTML con-
trol, and you’ll find it in the HTML Controls tab of the Toolbox. Place two more File controls on
the form as shown in Figure 23.10, an Upload Files button below the controls and a Label control
at the bottom of the page. Double-click the button at the bottom of the form and enter the code
from Listing 23.5 in its Click event handler. The WebFileControl project contains more code, but
I’m only showing the code that handles the first file. The code for handling the other two files is
almost identical.

Listing 23.5: Processing the Uploaded Files on the Server

Private Sub UploadFiles_ServerClick(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles UploadFiles.ServerClick

Dim fileName As String
Dim filePath As String
Dim UploadFolder As String = Server.MapPath(“tempfiles”)
If File1.PostedFile.FileName <> “” Then

fileName = System.IO.Path.GetFileName(File1.PostedFile.FileName)
filePath = UploadFolder & “\” & fileName
File1.PostedFile.SaveAs(filePath)
Label4.Text = “File: “ & File1.PostedFile.FileName & “”
Label4.Text = Label4.Text & “
Size: “ & File1.PostedFile.ContentLength
Label4.Text = Label4.Text & “
Type: “ & File1.PostedFile.ContentType
Label4.Text = Label4.Text & “
Saved As: “ & filePath

End If
End Sub

The Server object’s MapPath method returns the path name of the specified folder—in the
case of the example, the tempfiles folder. This is where the uploaded files will be stored. Later, you
can copy them, or open them and process their data. tempfiles is a folder name under the applica-
tion’s folder, and the MapPath method will return a string like the ones shown at the bottom of Fig-
ure 23.10. Each instance of the File control exposes a PostedFile property. This property contains
information about the posted file, such as its name, size, and content type. The files are uploaded to
the server when you click the Upload Files button. They’re automatically saved to temporary files,

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1036

2877c23.qxd 11/11/01 4:22 PM Page 1036

http://www.sybex.com

and you can’t access them directly. You must call the PostedFile object’s Save method to save the file
to a disk file, and this must take place from within your Web application. After saving the uploaded
files to the server file system, you can open and process them just like any other file.

By now, you have a good idea of how Web applications work. The user interface of a Web appli-
cation is an HTML file that can be rendered on the browser. Since browsers haven’t changed drasti-
cally in the last couple of years, nothing really exceptional takes place at the client. All the work is
done on the server, by the code you place behind the controls of the application. The form you send
to the client consists of HTML and Web controls. Web controls are just an illusion: they look like
Windows controls, and you can program their events (which aren’t many anyway), but the client sees
HTML controls (and in some cases a few scripts).

To program a control, usually a button, enter the appropriate code in its Click event handler.
You can access the various controls on the form as if you were programming a VB application. Is
that all there is to Web applications? Hardly. This is what the IDE can hide from you, but there’s a
lot that can’t be hidden. In the following section, I will go quickly through the basic ASP.NET
objects and list their basic properties and methods. These are the objects ASP developers have had
to work with, and ASP.NET is no exception.

The ASP.NET Objects
The following objects represent the basic entities of an ASP application. To make the most of
ASP.NET, you must learn when and how to use these objects.

The Page Object
The Page object represents the page requested by the client. The requested page is an ASPX file, but
the Page object is totally independent from this file. Unlike the other ASP.NET objects, the Page
object exposes two events, the Load and Unload events, which are fired when the page is loaded and
unloaded respectively. The most important method of the Page event is the IsPostBack property,
which is True if the page is posted back. This property is False the first time the page is loaded and
True when the Submit button on the page is clicked. Nearly every ASP.NET application uses the
Load event and the IsPostBack property to determine whether it should initialize the page. If the
page is posted back, we don’t want to initialize its controls again. The following event handler is
included in most ASPX pages:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

If Not Page.IsPostBack Then
{ put user code to initialize the page here }

End If
End Sub

The Page object exposes another very interesting method, the DataBind method, which causes all
the data-bound controls on the page to be bound to their corresponding fields. You’ll find more
about binding Web controls to fields in the following chapter.

1037THE ASP.NET OBJECTS

2877c23.qxd 11/11/01 4:22 PM Page 1037

http://www.sybex.com

The Response Object
The Response object is derived from the HttpResponse object, which exposes the properties and
methods you need to manipulate the output sent to the client computer from within your Web
application’s code. The properties and methods used commonly in ASP.NET programming are the
following:

Properties

Buffer When the Buffer property is True, the server buffers its output and sends it to the client
after it has finished processing the request. When False, the output is sent to the client in pieces,
as it becomes available.

ContentType This property sets (or gets) the HTTP MIME type of the output. Its value for
an HTML page is text/html.

Cookies This property is a collection that contains the cookies placed on the client computer
by the Web application. The Cookies collection is discussed in more detail later in this chapter.

Expires This property gets or sets a period (in minutes) during which the current page in the
client’s cache will expire. Cached pages are not fetched from the server—they appear instantly
because they’ve been cached to the client.

ExpiresAbsolute This property is similar to the Expires property, but it specifies the absolute
date and time at which the page will expire.

IsClientConnected This is a read-only property that determines whether the client is still con-
nected to the server. Use this property in a program that takes long to execute to find out whether
the user has disconnected and, if so, interrupt the execution of the program, because the user will
never see the results.

Methods

ClearContent Clears all content output from the buffer stream.

ClearHeaders Clears all headers from the buffer stream.

Close Closes the connection to a client.

End Terminates the execution of the current request and sends all currently buffered output to
the client.

Flush Sends all currently buffered output to the client. If your application takes a long time to
execute, call this method from time to time so that the user knows that the application is still run-
ning on the server.

Redirect The Redirect method accepts a URL as argument and redirects the client to the spec-
ified URL. If the Web application consists of more than a single page (which is usually the case),
use the Redirect method to invoke another page. For more information on using the Redirect
method, see the section “Handling Multiple Forms in Web Applications,” later in this chapter.

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1038

2877c23.qxd 11/11/01 4:22 PM Page 1038

http://www.sybex.com

Write Call this method to add information to the output stream. The simplest form of the
Write method accepts a string as argument, but you can also send characters or even an object to
the client.

WriteFile This method sends the contents of a file on the server’s file system directly to the client.

The Request Object
The Request object is derived from the HttpRequest object, which exposes the properties and meth-
ods you need to manipulate the requests made by the client computer from within your Web appli-
cation’s code. The properties of the Request object used commonly in ASP.NET programming are
the following. The methods are fairly advanced and not as common in ASP.NET programming, so
I’ve omitted them.

Properties

ApplicationPath Returns the application’s virtual root path on the server.

Browser An object that returns information about the capabilities of the browser running on
the client. Some of the properties exposed by the Browser object are the following:

Property of the Browser Object Description
AOL True if the client is an America Online (AOL) browser

BackgroundSounds True if the browser supports background sounds

Beta True if this is a beta release of the browser

Browser The string (if any) transmitted in the User-Agent header

CDF True if client supports Channel Definition Format
(CDF) for webcasting

Cookies True if client supports cookies. If the user has turned off
the cookies, this property will still return True.

Crawler True if the browser is a Web crawler search engine

Frames True if client supports HTML frames

JavaApplets True if browser supports Java applets

JavaScript True if browser supports JavaScript

MajorVersion, MinorVersion The major and minor version numbers of the browser

Platform The name of the platform used by the client

Tables True if browser supports HTML tables

VBScript True if browser supports VBScript

1039THE ASP.NET OBJECTS

2877c23.qxd 11/11/01 4:22 PM Page 1039

http://www.sybex.com

ContentLength The length (in bytes) of the content sent by the client. As you will see shortly,
it is possible for a client to upload files to the server.

ContentType Returns the MIME content type of the incoming request. The ContentType
property of an HTML page is text/html.

Cookies Returns a collection with the cookies sent by the client.

FilePath Returns the virtual path of the current request.

IsSecureConnection True if the connection uses secure sockets (that is, HTTPS).

PhysicalPath Gets the physical file system path corresponding to the requested URL.

QueryString Gets the collection of HTTP query string variables.

RawUrl Gets the raw URL of the current request.

RequestType Gets or sets the HTTP data transfer method (GET or POST) used by the
client.

ServerVariables Gets a collection of Web server variables.

TotalBytes Gets the number of bytes in the current input stream.

Url Gets information about the URL of the current request.

UrlReferrer Gets information about the URL of the client’s previous request that linked to the
current URL.

UserHostAddress Gets the IP host address of the remote client.

UserHostName Gets the DNS name of the remote client.

UserLanguages Gets a sorted string array of client language preferences.

The Server Object
This object exposes mostly methods, which are used as helper functions in processing Web requests.

Properties

MachineName The server machine name.

ScriptTimeout The request’s time-out in seconds.

Methods

Execute Requests another page, whose URL is passed to the Execute method as argument.
Optionally, you can retrieve the output generated by the second page and include it in the current
page. See the section “Handling Multiple Forms in Web Applications” later in this chapter for
more information on using this method.

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1040

2877c23.qxd 11/11/01 4:22 PM Page 1040

http://www.sybex.com

GetLastError Returns the last exception.

HtmlDecode Accepts as argument a string that has been encoded to eliminate illegal HTML
characters and decodes it. If you pass the following string to the HtmlDecode method,

HTML tags are delimited by the < and > symbols

it will return the string

HTML tags are delimited by the < and > symbols

HtmlEncode Encodes a string so that it can be displayed on the browser. If you pass the fol-
lowing string to the HtmlEncode method,

HTML tags are delimited by the < and > symbols

it will return the string

HTML tags are delimited by the < and > symbols

You can then pass this string to the HtmlDecode method to reconstruct the original string.

MapPath Returns the physical file path of a virtual path passed as argument. Notice that the
virtual path need not exist. The MapPath method will prefix it with the path of the virtual folder
in which the application resides. If you pass to the MapPath method the name of a folder, the
method will assume that it’s relative to the application’s path.

Transfer Aborts execution of the current page and transfers control to a new page. The new
page is executed as if it were called directly by the client application. This method differs from
the Execute method in that the control is not returned to the original page.

The Transfer method accepts a second optional argument, which is a True/False value that indi-
cates whether the parameters passed to the original page (either through the QueryString or
through the Form property) will be passed to the second page. The default value is False (the
parameters are not passed to the second page).

UrlDecode Decodes an HTTP-encoded string (such as the URL submitted to the server by
the client).

UrlEncode Encodes a string for HTTP transmission. The expression

Server.UrlEncode(“who am I?”)

will return the following string:

who+am+I%3f

UrlPathEncode Encodes the path portion of a URL in a format suitable for transmission to
the client. The statement

Response.Write(Server.UrlPathEncode(“http://www.server.com/myfile.htm”))

will print this string on the page:

http%3a%2f%2fwww.server.com%2fmyfile.htm

1041THE ASP.NET OBJECTS

2877c23.qxd 11/11/01 4:22 PM Page 1041

http://www.sybex.com

Using Cookies
To access and manipulate cookies, use the Cookies collection. This collection is a property of the
Response and Request objects and contains all the cookies currently on the client. To send a new
cookie to the client, add it to the Cookies collection of the Response object.

Figure 23.11 shows the Cookies Web project, which adds three cookies to the client and then
reads them back. Click the Add button to add the corresponding cookie and the Delete button to
delete it. Click the Read All Cookies button to read the cookies currently on the client. The values
of all cookies (not necessarily three) will appear on a Label control at the bottom of the form.

To add a cookie, you must first create it; the simplest method of doing so is to call the Http-
Cookie object’s constructor passing the name of the cookie as argument:

Dim cookie As New HttpCookie(“User”)

Then you can access the properties of the cookie object. The Value property is the cookie’s value,
and the Expires property is a date/time value that determines when the cookie will expire. If you
don’t set this property explicitly from within your code, the cookie will expire at the end of the ses-
sion. You can also create a cookie with multiple names and values (an array type of cookie). To set
up this cookie, use the Values property, which is a collection of names and keys, all stored in a single
cookie. The code in Listing 23.6 creates a new cookie and adds it to the Response object’s Cookies
collection.

Listing 23.6: Adding a Cookie

Private Sub AddCookie1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles AddCookie1.Click

Dim cookie As New HttpCookie(“User”)
cookie.Value = txtCookie1.Text
Response.Cookies.Add(cookie)

End Sub

Figure 23.11

The Cookies
Web application
demonstrates how
to use the Cookies
collection.

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1042

2877c23.qxd 11/11/01 4:22 PM Page 1042

http://www.sybex.com

Note It’s possible to add new cookies to the Request object’s Cookies collection. The Request object, however, doesn’t
affect the information sent out to the client. It represents the incoming information, and any cookies you add to the
Request.Cookies collection will never be sent to the client. Use the Response.Cookies collection to send cookies out
to the client and the Request.Cookies collection to read the cookies from the client.

To delete a cookie, call the Remove method of the Cookies collection passing the name of the
cookie to be deleted. Listing 23.7 demonstrates the method that removes the “User” cookie from
the client computer.

Listing 23.7: Deleting a Cookie

Private Sub DelCookie1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles DelCookie1.Click

Request.Cookies.Remove(“User”)
End Sub

The Read All Cookies button (Listing 23.8) goes through each item of the Request.Cookies col-
lection and prints its Name and Value properties on a table. As you can see, in addition to the cook-
ies you’re adding to the client, there is one more cookie, the ASPSession_ID cookie. This is a string
that uniquely identifies the current session.

Listing 23.8: Reading All Cookies

Private Sub GetCookies_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles GetCookies.Click

Dim i As Integer
Dim cookie As HttpCookie
Label1.Text = “<TABLE>”
For i = 0 To Request.Cookies.Count - 1

cookie = Request.Cookies.Item(i)
Label1.Text = Label1.Text & “<TR><TD>” & cookie.Name.ToString & _

“</TD><TD>” & cookie.Value.ToString & “</TD></TR>”
Next
Label1.Text = Label1.Text & “</TABLE>”

End Sub

Handling Multiple Forms in Web Applications
The last topic in this chapter is the handling of multiple pages. Any nontrivial Web application con-
sists of multiple pages; you should be able to invoke a Web page from within another, and even
share parameters between two pages (in VB terms, pass arguments to the page you’re calling). The
simplest method of invoking one page from within another is through a hyperlink. Just place a
Hyperlink control on the form and set its NavigateUrl property to the ID of the form you want to
invoke. If you locate this property in the Properties window, you will see a button with an ellipsis

1043HANDLING MULTIPLE FORMS IN WEB APPLICATIONS

2877c23.qxd 11/11/01 4:22 PM Page 1043

http://www.sybex.com

next to its setting. Click this button, and the Select URL dialog box appears (Figure 23.12). All the
WebForms of the current project will be displayed, and you can select one by clicking its name. Or
you can click the Browse button to locate any other WebForm on your server. This technique will
work fine, as long as you don’t need to pass any arguments to the page you’re invoking. The new
page will be sent down to the client, and it can retrieve status information through cookies or
through session variables.

If you want to pass a few values to the new page, so that it can populate some of its controls or
perform some other tasks before it’s sent to the client, you can use either the Response.Redirect or
the Response.Execute method. Let’s look at the Redirect method first. This method accepts as argu-
ment the ID of the page to which you’re redirecting the user. As you recall from our earlier discus-
sion, the URL may contain parameter values. You can easily pass parameter values to the new page
by appending them to its URL. You must separate the parameters from the URL with a question
mark and delimit each pair or parameter name/value with the ampersand symbol (&). In addition,
you must URL encode the string with the parameters by calling the Server.UrlEncode method.

Let’s say the current page contains three TextBox controls (among other controls), and you want
to pass the values of these parameters to the second page. The following statements prepare the
URL of the page WebForm3.aspx, attach the three parameters, and then pass this string to the Redi-
rect method:

Dim params As String
params = “Var1=” & Server.UrlEncode(TextBox1.Text) & “ & “
params = params & “Var2=” & Server.UrlEncode(TextBox2.Text) & “ & “
params = params & “Var3=” & Server.UrlEncode(TextBox3.Text)
Response.Redirect(“WebForm3.aspx?” & params)

You can then read the values of the parameters from within the WebForm3 page’s code and use
them to initialize the page. The following statements in the page’s Load event handler display the
names and values of the parameters with the Response.Write method:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

Figure 23.12

Use the Select URL
dialog box to specify
the destination of a
Hyperlink control.

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1044

2877c23.qxd 11/11/01 4:22 PM Page 1044

http://www.sybex.com

‘ Put user code to initialize the page here
Response.Write(Request.QueryString(“Var1”))
Response.Write(Request.QueryString(“Var2”))
Response.Write(Request.QueryString(“Var3”))

End Sub

In an actual application, you’ll use these variables in slightly more complicated calculations. This
example demonstrates how to access the values of the parameters, and then you can do anything you
want with them.

The Execute method is different in the sense that it doesn’t actually display the new page. It
accepts the URL of a page, executes it, and appends the HTML code generated by the page to
the current page. The safest use of the Execute method is to read the output it generates into a
StringWriter object and place it on a Label or TextBox control on the current page. The following
statements call the page ShowBasket.aspx and append the output generated by this page to the cur-
rent page:

Dim pageOut As New System.IO.StringWriter()
Server.Execute(“ShowBasket.aspx”, pageOut)
Response.Write(“<H2>Your basket contains the following items:</H2>”
Response.Write(“
”)
Response.Write(pageOut.ToString)

The pageOut variable receives the output of the ShowBasket.aspx page and sends it to the client.
The Response.Write method doesn’t clear the current page; it simply appends its output so the con-
tents of the pageOut variable will appear at the bottom of the current page.

To access the controls of the current WebForm from within the page that’s called with the Exe-
cute method, use a loop like the following:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘ Put user code to initialize the page here
Dim key, value As String
Response.Write(Request.QueryString)
For Each key In Request.Form.Keys

Response.Write(key & “ = “ & Request.Form.Item(key))
Response.Write(“
”)

Next
End Sub

Compared to VB, this method of passing variables between pages is awkward. It’s true that ASP
hides many of the mundane operations you would normally have to code yourself, but this aspect of
ASP.NET isn’t as polished as it could be. Keep in mind, however, that Web pages don’t communi-
cate directly with one another. The WebMultiplePage project on the CD demonstrates how to call a
WebForm from within another form and pass parameters to it.

1045HANDLING MULTIPLE FORMS IN WEB APPLICATIONS

2877c23.qxd 11/11/01 4:22 PM Page 1045

http://www.sybex.com

Summary
This chapter was an introduction to Web applications. As you saw, developing Web applications
requires some knowledge of HTML and the ASP.NET objects and a good understanding of the
interaction model between servers and clients. The two major obstacles in programming Web appli-
cations are the lack of state and the fact the client doesn’t support the rich controls of the
Windows interface.

To maintain state during a session, you must move data between the server and the client, such as
the session’s ID. ASP.NET can deal with this problem as long as you set the AutoPostBack property
to True. As for the interfaces of Web applications, you can only use the controls supported by the
browser, which are the HTML controls. The Web controls of ASP.NET allow you to make the
most of the HTML controls.

Finally, the code that drives the Web application resides on the server and is activated every time
the client submits a page to the server. The Web application reads the data on the form, processes
them, and responds to the client’s request by submitting another page. This is how all Web applica-
tions work, and not just ASP.NET Web applications. Now that you know how to build functional
Web applications, we can look into adding data-access capabilities in a Web application.

Chapter 23 INTRODUCTION TO WEB PROGRAMMING1046

2877c23.qxd 11/11/01 4:22 PM Page 1046

http://www.sybex.com

Chapter 24

Accessing Data on the Web
Chapter 23 was an introduction to ASP.NET, a brand new technology for developing appli-
cations for the Web. At the very least, you’ve learned that ASP.NET does a lot behind the scenes
to make developing Web applications look surprisingly similar to developing Windows applica-
tions. You have also learned the basic differences between a Web and a Windows application and
how to access the native ASP.NET objects when you need them. You have also learned the dif-
ferences between Windows applications and Web applications and how these differences affect
the way you code Web applications.

Currently, the single most common type of applications running on the Web is simple applica-
tions that interact with databases. It seems as though everybody is publishing their databases on the
Web, and most companies do so to sell on the Internet. In this chapter, we’ll build a Web application
that demonstrates the basic operations of a typical Web app: search a database, display the results of a
search operation, add items to a basket, and finally place an order. We’ll record the order to the data-
base, and we’ll do so in a transaction. It’s not a trivial example, but it’s not very complicated either.
We’ll go through all the steps, examine the code line by line, and when you’re done, you’ll have a bet-
ter understanding of the structure of a Web application, as well as how to access databases through
ASP.NET. Of course, I can’t exhaust the topic of accessing data with ASP.NET, but the information
in this chapter will help you feel comfortable with the new technology and explore it on your own.

The Data-Bound Web Controls
Like Windows controls, any Web control can be bound to a data source. The interesting data-
bound controls, however, and the ones that are used most often, are the controls that can display
multiple items:

DropDownList Similar to a ListBox control that’s dropped to select an item and retracts
automatically.

DataList Displays multiple items, each one in its own cell.

DataGrid A grid control that displays one item per row.

Repeater Displays items as templates; you can have different templates for different types
of items.

2877c24.qxd 11/11/01 4:23 PM Page 1047

http://www.sybex.com

We’ll look at the first three controls in detail in this chapter. The Repeater control is the most
elaborate, and its main advantage is that you can completely customize its appearance through your
code. However, you have to design the templates yourself, and the Repeater control doesn’t provide
as much built-in functionality.

There are other types of data-bound controls as well, but either they’re simple controls (like the
TextBox or CheckBox control) or they’re similar to the DropDownList control. The ListBox,
CheckBoxList, and RadioButtonList are very similar to the DropDownList and expose similar prop-
erties, so we won’t discuss them here. The DataGrid, DataList, and Repeater controls are the only
ones that can display multiple fields, and they’re the most flexible controls. The DropDownList
control (and the other ones similar to it) can only display a single column.

To bind a Web control to a DataSet, you must set its DataSource property to the name of the
DataSet to which the control will be bound, then call the DataBind method from within the page’s
Load event handler, and do that only if the request for the page isn’t a postback. The DataBind method
applies to specific controls and also to the current page. When you apply the DataBind method to
the page (Me.DataBind), all data-bound controls are populated from their respective DataSets.

The DropDownList control has two more properties, the DataTextField and DataValueField
properties. DataTextField is the name of a DataSet column that will populate the control. The
DataValueField is the name of a DataSet column that identifies each row (usually the table’s key
field). When the user selects an item in the list, we retrieve the value of the DataValueField property
and look up the selected row in the database. To display a list of customers on a DropDownList
control, you must set the DataTextField property to the column of the DataSet that holds the cus-
tomer names and the DataValueField to the column with the customer IDs.

You already know how to create the DataSet objects you need to populate your controls. You
can use the visual tools (drop the tables on the design surface, configure the DataAdapter, create the
DataSet) or create them from within your code. Since the process of creating DataSet (necessary for
binding the various Web controls to) is the same as with Windows applications, I will assume you
already know how to retrieve data from a database (or use the Query Builder to design your queries
visually) and how to store the qualifying rows to a DataSet object. The process is described in detail
in Chapter 21.

We’ll start our exploration of data-binding techniques on the Web with a simple example that
doesn’t even use a database.

Simple Data Binding
Data-binding Web controls is similar to binding Windows controls and, in some ways, simpler. To
begin with, Web controls can be bound to many different data sources, like arrays and ArrayLists.
It’s possible to populate an array (or an ArrayList object) in your code and bind a ListBox control to
it. The list control will be populated with the elements of the list, and it will report the selected
item—an ideal mechanism for lookup tables like product categories or states.

The current implementation of ASP.NET allows the binding of one-dimensional arrays only.
Since arrays are no longer the preferred data type for storing sets of data, this isn’t much of a prob-
lem. Use an ArrayList and you’ll be able to store any number of fields, other than the one displayed
on the control. To bind an array, or an ArrayList object, to a list control, populate the array, then set
the control’s DataSource property to the name of the array or the ArrayList, and finally call the

Chapter 24 ACCESSING DATA ON THE WEB1048

2877c24.qxd 11/11/01 4:23 PM Page 1048

http://www.sybex.com

DataBind method. To demonstrate how to bind an ArrayList to a data-bound control, we’ll build
the DataBinding application, whose page is shown in Figure 24.1. The DropDownList control on the
left is expanded and contains a few names. When a name is selected in the list, more information
about the selected person is shown in the TextBox and RadioButton controls on the same form.

As you have guessed by now, we’re going to populate an ArrayList object with the data we want
to display on the form. Each element of the ArrayList object is a Contact person, based on the class
detailed in Listing 24.1.

Listing 24.1: The Contact Class

Class Contact
Dim _ID As Integer
Dim _name As String
Dim _title As String
Dim _company As String
Dim _married As Boolean
Property ID() As Integer

Get
ID = _ID

End Get
Set(ByVal Value As Integer)

_ID = Value
End Set

End Property
Property Name() As String

Get
Name = _name

End Get
Set(ByVal Value As String)

_name = Value

Figure 24.1

The DataBinding
Web application

1049THE DATA-BOUND WEB CONTROLS

2877c24.qxd 11/11/01 4:23 PM Page 1049

http://www.sybex.com

End Set
End Property
Property Title() As String

Get
Title = _title

End Get
Set(ByVal Value As String)

_title = Value
End Set

End Property
Property Company() As String

Get
Company = _company

End Get
Set(ByVal Value As String)

_company = Value
End Set

End Property
Property Married() As Boolean

Get
Married = _married

End Get
Set(ByVal Value As Boolean)

_married = Value
End Set

End Property
Public Overrides Function ToString() As String

Return (_name)
End Function

End Class

It’s a lengthy listing, but you should be quite familiar with classes that expose simple properties.
The next step is to declare an ArrayList and populate it with data. Here are the declaration of the
ArrayList and the statements that add the first item:

Dim Contacts As New ArrayList()
Dim c As New Contact()
c.ID = 0
c.Name = “Maria Anders”
c.Company = “Alfreds Futterkiste”
c.Title = “Sales Representative”
c.Married = False
Contacts.Add(c)

OK, we’re ready to build the page. Start a new ASP.NET Web application, name it DataBinding,
and insert the Contact class’s code from Listing 24.1 and the code that populates the DropDown-
List control in the form’s Load event (you can open the project on the CD and copy the statements).

Chapter 24 ACCESSING DATA ON THE WEB1050

2877c24.qxd 11/11/01 4:23 PM Page 1050

http://www.sybex.com

Then place the controls you see in Figure 24.1 on the page. The last step is to bind the DropDown-
List control to the ArrayList. Enter the following statements in the page’s Load event handler:

If Not Me.IsPostBack Then
DDListName.DataSource = Contacts
DDListName.DataTextField = “Name”
DDListName.DataValueField = “ID”
DDListName.DataBind()

End If

The control is bound to its data source only the first time the page is loaded, not with every post-
back. If you bind the control every time the page is posted back, the DropDownList control will be
populated from scratch and the first element will be selected automatically. Instead, we want the
control to maintain its state. You must set the control’s AutoPostBack property to True (so that it
will report the SelectedIndexChanged event to the application) and bind it to its data source the first
time it’s loaded. After that, every time the user selects an item on the control, the SelectedIndex-
Changed event will be fired, which will be processed by the application. The processing consists of
retrieving the ID of the selected contact and displaying the values of additional fields on the other
controls on the Web form.

The Contacts ArrayList, however, is populated with every postback (the statements that populate
it are outside the If statement). You’re probably wondering about the efficiency of this approach.
Can’t we do something better than having to populate the ArrayList every time the page is posted
back? The answer is no (short of storing the entire ArrayList to the Session object). This is the Web,
and the client is totally disconnected from the server. An ASP application must retrieve the current
status of the session when a client connects and re-create its data source. The only alternative is to
store the data in a Session variable, but this object shouldn’t be used for storing tables or excessive
amounts of information. A Web application must service a request and then “die.” If you keep it
alive (that is, if you maintain a set of local variables for each session), your server will become unre-
sponsive very quickly. A Web application shouldn’t maintain a lot of data between sessions—and an
ArrayList is a lot of information. We’ll do the same with DataSets later in this chapter. We’ll grab
the data from the database, populate our page, and then close the connection to the database and
discard the DataSet.

When the user selects a name on the DropDownList control, the SelectedIndexChanged event is
fired. This is event isn’t reported to the server by default; that’s why you had to set the control’s
AutoPostBack property to True. In this event’s handler, you must retrieve the index of the selected
contact and use it to retrieve the selected item from the ArrayList and display its fields on the other
controls. The code of the SelectedIndexChanged event handler is shown in Listing 24.2.

Listing 24.2: Displaying the Fields of the Selected Contact

Private Sub DDListName_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles DDListName.SelectedIndexChanged

Response.Write(DDListName.SelectedItem.Value)
Dim selIndex As Integer
selIndex = DDListName.SelectedIndex
txtCompany.Text = CType(Contacts(DDListName.SelectedIndex), Contact).Company

1051THE DATA-BOUND WEB CONTROLS

2877c24.qxd 11/11/01 4:23 PM Page 1051

http://www.sybex.com

txtTitle.Text = CType(Contacts(DDListName.SelectedIndex), Contact).Title
radioMarried.Checked = _

CType(Contacts(DDListName.SelectedIndex), Contact).Married
End Sub

The first statement isn’t really required, but I’ve inserted it to show you how to access the selected
string on the control. The TextBox and RadioButton controls on the form aren’t bound; we update
them from within our code.

The DataBinding project is a simple example, but it demonstrates how to bind a list that resides
on the server to a control on a Web form. To better understand how ASP.NET handles data bind-
ing, take a look at the code that was transmitted to the client. Press F5 to run the project and, when
Internet Explorer appears on your monitor, open the View menu and select Source. In the page’s
source code, locate the SELECT control’s tag. This is a plain HTML control that was placed on the
page with the following statements:

<SELECT NAME=”DDListName” ID=”DDListName” ONCHANGE=”__doPostBack(‘DDListName’,’’)”
LANGUAGE=”javascript” STYLE=”height: 22px; width: 196px; z-index: 101; left: 42px;
position: absolute; top: 60px”>

<OPTION VALUE=”0”>Maria Anders</OPTION>
<OPTION VALUE=”1”>Ana Trujillo</OPTION>
<OPTION VALUE=”2”>Thomas Hardy</OPTION>
<OPTION VALUE=”3”>Frédérique Citeaux</OPTION>
<OPTION VALUE=”4”>Elizabeth Brown</OPTION>...

Nothing unusual gets transmitted to the client. ASP.NET created a plain, vanilla HTML control
and populated it with the names of the contacts. For those who haven’t read the previous chapter, I’ll
repeat once again the recurring theme in designing Web applications. On the server’s side, you write
an application that’s no different than regular Windows applications. When you execute the appli-
cation, the compiler gets to work and generates HTML code that will render the Web form you
designed as an HTML page, and it connects the events in the browser to event handlers in your
application.

Have you noticed another difference between DataBinding and the equivalent Windows applica-
tion? Don’t you find all the code for updating the TextBox controls on the form a little heavy? In a
Windows application, we’d retrieve the SelectedItem, which is an object, cast it to the proper type
(the Contact type, in our example), and then call its properties. A statement like the following would
be adequate:

txtCompany.Text = CType(DDListName.SelectedItem).Company

That’s because a Windows ListBox (or ComboBox) control can store objects. Once you get a ref-
erence to the selected object, you can access all its members directly. But HTML wasn’t designed to
handle objects. (Actually, HTML wasn’t even designed to handle applications, and a replacement for
HTML is overdue.) That’s why we have to populate the ArrayList at every postback and use the
index of the selected item to locate the corresponding element in the ArrayList. These are the differ-
ences you must bear in mind as you develop ASP.NET applications. The design process looks and
feels like the design process of a Windows application, but it’s not quite the same, because there are
fundamental differences in the two environments.

Chapter 24 ACCESSING DATA ON THE WEB1052

2877c24.qxd 11/11/01 4:23 PM Page 1052

http://www.sybex.com

Binding to DataSets
Real Web applications use databases, and it’s time to look at the process of binding Web controls to
DataSets. The control you’ll be using most often in building data-bound Web applications is the
DataGrid control. In Chapter 23, I expressed some concerns about the use of the DataGrid control
for editing data, but most applications on the Web don’t involve editing data. They simply present
data to the users, and the DataGrid control is a fine tool for this task. Actually, the DataGrid control
is rendered on the client as an elaborate HTML table.

VB.NET at Work: The WebProducts Project

Let’s start by building a simple application (Figure 24.2), similar to the ones we’ve designed in
Chapter 21 and 22. We’ll use a ListBox control to display product names (our navigational tool)
and TextBox controls to display the fields of the selected product. The new Web application is
called WebProducts, and you will find it in this chapter’s folder on the CD.

First, we’ll build this WebProducts application using the visual tools, and then you’ll see how to
embed all the necessary code to retrieve and display the data in the page’s Load event handler. Exist-
ing ASP programmers will actually find it easier to manually code the application.

Start a new ASP.NET Web Application project and name it WebProducts. When the Web-
Form of the project appears in the designer’s surface, place a ListBox control and four TextBox con-
trols on it. The names of the TextBox controls are txtPrice, txtPackage, txtStock, and txtSupplier. The
name of the ListBox control is lstProducts.

To create the DataSet with the product information, open the Server Explorer and drop the Prod-
ucts table on the form. Then rename the DataAdapter object to DAProducts and configure it. We
want to retrieve the ProductID and ProductName columns of the Products table. This is all the infor-
mation we need in order to use the ListBox control as a navigational tool. We’ll display the product
names and keep track of the ID of the selected product. Every time the user selects an item on the list,
we’ll make a trip to the database and retrieve the relevant fields of the selected product. The SQL
statement you’ll use for the SELECT command of the DAProducts DataAdapter is the following:

SELECT ProductID, ProductName
FROM dbo.Products

Figure 24.2

The WebProducts
Web page uses a
data-bound ListBox
control as a naviga-
tional aid.

1053THE DATA-BOUND WEB CONTROLS

2877c24.qxd 11/11/01 4:23 PM Page 1053

http://www.sybex.com

In the Generate SQL Statements window of the configuration wizard, click the Advanced button
and clear the option Generate Insert, Update And Delete Statements. We only want to display data
to the users, not edit them. Create the DSProducts DataSet by clicking the Generate DataSet link on
the Properties window.

You must also create another DataAdapter that retrieves a product by its ID. This time we
want to retrieve the supplier’s name along with the product info. Building the appropriate SQL
statement shouldn’t be difficult. Drop the Products table on the design surface again, rename the
new DataAdapter object to DASelectedProduct, and configure it. If you’re using the Query Builder
to build the SQL statement, its window should look like the one shown in Figure 24.3.

The equivalent SQL statement is:

SELECT dbo.Products.QuantityPerUnit, dbo.Products.UnitPrice,
dbo.Products.UnitsInStock, dbo.Suppliers.CompanyName

FROM dbo.Products INNER JOIN
dbo.Suppliers ON dbo.Products.SupplierID = dbo.Suppliers.SupplierID

WHERE (dbo.Products.ProductID = @prodID)

Figure 24.3 shows the query executed for the product with ProductID = 4. The query’s parame-
ter must be set from within the page’s code to the ID of the selected product. Then generate the
DSSelectedProduct DataSet by clicking the Generate DataSet link on the Properties window.

OK, we’ve generated all the basic objects we’ll use in our code, let’s write some code. But first, we
should bind the ListBox control to the DSProducts1 DataSet by setting the following properties to
the values shown below:

Property Setting

DataSource DSProducts1

DataMember Products

Figure 24.3

Building a query to
retrieve the selected
product along with
its supplier’s name

Chapter 24 ACCESSING DATA ON THE WEB1054

2877c24.qxd 11/11/01 4:23 PM Page 1054

http://www.sybex.com

Property Setting

DataTextField ProductName

DataValueField ProductID

Then enter the following statements in the page’s Load event handler and run the project:

If Not Me.IsPostBack Then
DAProducts.Fill (DSProducts1, “Products”)
lstProducts.DataBind()

End If

The first statement populates the DataSet object, as usual, and the second statement binds the
ListBox control to the Products table. The details of the binding were set at design time through the
Properties window. When the Web page appears in the browser, you will see the names of all prod-
ucts on the control, but nothing on the TextBoxes. We must write some code to update the remain-
ing controls.

The TextBoxes will be bound to the second DataSet, which contains the row of the selected
product. Select the txtPrice TextBox on the form, where the UnitPrice field will be displayed. Then
locate the DataBindings property in the Properties window (it’s the first property) and click the but-
ton with the ellipsis. You will see the DataBindings dialog box for the txtPrice control, which is
shown in Figure 24.4. Expand the DSSelectedProduct1 item, then the Products item under it, then
the DefaultView (twice), and you will see the fields of the DataSet, as shown in the figure. Click the
column UnitPrice (not shown in the figure), then close the dialog box by clicking the OK button.
Bind the other TextBox controls on the form to the appropriate columns by repeating the same
process for each control.

To update the TextBox controls on the form, we must program the SelectedIndexChanged event.
To intercept this event in your code, you must set the ListBox control’s AutoPostBack property to
True. Then you must read the Value member of the SelectedItem object and use it as argument to the

Figure 24.4

Binding a TextBox
control to a column

1055THE DATA-BOUND WEB CONTROLS

2877c24.qxd 11/11/01 4:23 PM Page 1055

http://www.sybex.com

second DataAdapter object, which retrieves the details of the selected product. Enter the statements
from Listing 24.3 in the ListBox control’s SelectedIndexChanged event handler and run the project.

Listing 24.3: Binding the TextBox Control to a Single-Row DataSet

Private Sub lstProducts_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles lstProducts.SelectedIndexChanged

DASelectedProduct.SelectCommand.Parameters(“@prodID”).Value = _
lstProducts.SelectedItem.Value

DASelectedProduct.Fill(DSSelectedProducts1, “Products”)
txtPrice.DataBind()
txtPackage.DataBind()
txtStock.DataBind()
txtSupplier.DataBind()

End Sub

You will see Internet Explorer displaying a form with a ListBox control that contains all the
product names. Click a name to see the product’s details, including its supplier’s name.

The values on text boxes are reset each time we revisit a row. You can edit a field, move to
another one, and then return to the edited row to find out that your edits were discarded. Do you
see why? The DataSet is created every time you connect to the application. The server is not aware
that the same page has been visited before. Every time, it will create the page from scratch, including
its DataSet. If you find this behavior odd, consider what it would take to maintain a DataSet in
memory for every user that connects to the server that hosts the application. Users might connect to
your application and then switch to another application and keep the DataSet alive on the server for
hours. Multiply this by hundreds or thousands, and you’ll appreciate the disconnected nature of
ADO.NET. You can always read the values on the controls and update the table in the database
with a SQL statement or a stored procedure.

VB.NET at Work: The CMDProducts Project

In this section, we’ll build the WebProducts project again, only this time without the visual tools.
You’ve seen quite a bit of these tools, so it’s a good time to refresh your skills on programming the
ADO object. Start a new ASP.NET Web Application project and name it CMDProducts. You
won’t have to add any Connection or DataAdapter objects to the project; we’ll create everything
from within our code. Listing 24.4 shows the code that’s executed when the page is loaded. The
code sets up a new Command object, uses it to populate a new DataSet, and then assigns the
DataSet to the ListBox control’s DataSource property. It’s the same thing we did visually in the pre-
vious section, only in code.

Listing 24.4: Populating a DataSet with Code

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘ Put user code to initialize the page here

Chapter 24 ACCESSING DATA ON THE WEB1056

2877c24.qxd 11/11/01 4:23 PM Page 1056

http://www.sybex.com

If Not Me.IsPostBack Then
Dim cmd As New SqlClient.SqlCommand()
cmd.CommandText = “SELECT ProductID, ProductName FROM Products”
cmd.CommandType = CommandType.Text
cmd.Connection = SqlConnection1
SqlConnection1.Open()
Dim DS As New DataSet()
Dim DA As New SqlClient.SqlDataAdapter()
DA.SelectCommand = cmd
DA.Fill(DS, “Products”)
ListBox1.DataSource = DS
ListBox1.DataMember = “Products”
ListBox1.DataTextField = “ProductName”
ListBox1.DataValueField = “ProductID”
ListBox1.DataBind()
SqlConnection1.Close()

End If
End Sub

How do we bind the TextBox controls? The TextBox control doesn’t expose members for bind-
ing its text to a column. If you recall from the previous example, we had to bind the TextBox control
through its DataBindings dialog box. If you take a good look at Figure 24.4, while you specified the
column to which the TextBox control is to be bound, a lengthy expression appeared in the Custom
Binding Expression field. This is the expression we must use in our code. The DataBinder object is
equivalent to the DataBinding object we encountered in building Windows data driven applications.
Its Eval method returns the value of a field in one of the tables.

The listing of the ListBox control’s SelectedIndexChanged event handler is shown in Listing 24.5.

Listing 24.5: Retrieving the Details of the Selected Product

Private Sub ListBox1_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles ListBox1.SelectedIndexChanged

Dim prodID As Integer
prodID = ListBox1.SelectedIndex
Dim cmd As New SqlClient.SqlCommand()
cmd.CommandText = _

“SELECT QuantityPerUnit, UnitPrice, UnitsInStock, CompanyName “ & _
“FROM Products INNER JOIN Suppliers “ & _
“ON Products.SupplierID = Suppliers.SupplierID “ & _
“WHERE ProductID = “ & prodID

cmd.CommandType = CommandType.Text
cmd.Connection = SqlConnection1
SqlConnection1.Open()
Dim DS As New DataSet()
Dim DA As New SqlClient.SqlDataAdapter()
DA.SelectCommand = cmd

1057THE DATA-BOUND WEB CONTROLS

2877c24.qxd 11/11/01 4:23 PM Page 1057

http://www.sybex.com

DA.Fill(DS, “Products”)
txtPrice.Text = DataBinder.Eval(DS, _

“Tables[Products].DefaultView.[0].UnitPrice”)
txtPrice.DataBind()
txtPackage.Text = DataBinder.Eval(DS, _

“Tables[Products].DefaultView.[0].QuantityPerUnit”)
txtPackage.DataBind()
txtStock.Text = DataBinder.Eval(DS, _

“Tables[Products].DefaultView.[0].UnitsInStock”)
txtStock.DataBind()
txtSupplier.Text = DataBinder.Eval(DS, _

“Tables[Products].DefaultView.[0].CompanyName”)
txtSupplier.DataBind()
SqlConnection1.Close()

End Sub

VB.NET at Work: The ProductsPerCategory Project

In this section, we’ll develop a Web application that allows the user to select a category and then dis-
plays the products in the selected category. We’ll implement two forms with same functionality, one
using the DataList control and another using the DataGrid control. Displaying the data on these
two controls is adequate for many types of applications, but for an application of this type to be
really useful, you must be able to detect when the user selects an item on the control.

The ProductsPerCategory project has two forms, and you must change the project’s startup page
to set the other one. The form with the DataGrid control is shown in Figure 24.5, and the form
with the DataList control is shown in Figure 24.6.

Figure 24.5

The DataGridForm
of the Products-
PerCategory project

Chapter 24 ACCESSING DATA ON THE WEB1058

2877c24.qxd 11/11/01 4:23 PM Page 1058

http://www.sybex.com

The DataGrid control on the form displays the products in the selected category. The Select but-
tons in the first column allow you to select a row, which is displayed with a different background
color and in bold. The ID of the selected product is also displayed on a Label control at the top of
the form. Once you can extract the key of the selected row, you can access the matching row in the
database and manipulate it directly.

To build the application, you must create the appropriate objects to access the database. Drop the
Categories and Products tables from the Server Explorer onto the form. Then configure the two
DataAdapters and create two DataSets, one with all the rows of the Categories table and another
with the products of a specific category. The process of creating DataSets has been described in
detail in previous chapters, so I will only show you the SELECT statements for each DataAdapter.
None of the DataAdapters support the update of the underlying tables.

The SELECT statement for DACategories is:

SELECT CategoryID, CategoryName, Description, Picture
FROM dbo.Categories

The SELECT statement for DAProductsInCategory is:

SELECT ProductID, ProductName, QuantityPerUnit, UnitPrice
FROM dbo.Products
WHERE (CategoryID = @CatID)

Both forms have a DropDownList control, where the names of all categories are displayed. Here
are the properties of the DropDownList control on both forms.

Property Setting

DataSource DSCategories1

DataMember Categories

Figure 24.6

The DataListForm
of the Products-
PerCategory project

1059THE DATA-BOUND WEB CONTROLS

2877c24.qxd 11/11/01 4:23 PM Page 1059

http://www.sybex.com

Property Setting

DataTextField CategoryName

DataValueField CategoryID

When the page is loaded for the first time, we must populate the DropDownList control with
the category names, using the code in Listing 24.6.

Listing 24.6: Populating the DropDownList Control

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘ Put user code to initialize the page here
If Not Me.IsPostBack Then

DACategories.Fill(DSCategories1)
DropDownList1.DataBind()

End If
End Sub

In our code, we want to detect when an item was selected on the control. This action is signaled
to the Web application through the control’s SelectedIndexChanged, and we must insert the appro-
priate code in this event’s handler to populate the DataGrid (or DataList) control with the products
of the selected category. This event won’t be fired unless you set the control’s AutoPostBack prop-
erty to True. Listing 24.7 presents the SelectedIndexChanged event handler of the DropDownList
control.

Listing 24.7: Displaying the Products in the Selected Category

Private Sub DropDownList1_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles DropDownList1.SelectedIndexChanged

DAProductsInCategory.SelectCommand.Parameters(“@catID”).Value = _
DropDownList1.SelectedItem.Value

DAProductsInCategory.Fill(DSProducts1)
DataGrid1.DataBind()

End Sub

The code retrieves the ID of the selected category and passes it as argument to the DataAdapter’s
SelectCommand. This command is executed when the Fill method is called, and it populates the
DSProducts1 DataSet with the matching rows. The last statement binds the DataGrid control to the
newly created DataSet. The DataBind method instructs the compiler to use the data in the DataSet
to create a grid-like structure with HTML statements to send to the client. After that, the DataSet is
discarded.

Chapter 24 ACCESSING DATA ON THE WEB1060

2877c24.qxd 11/11/01 4:23 PM Page 1060

http://www.sybex.com

The code of the Load event handler in the DataListForm is identical to Listing 24.6.
And so is the code—almost—of the SelectedIndexChanged event handler of the DropDown-

List control. It differs in that it calls the DataBind method to bind a different control to the
DataSet:

Private Sub DropDownList1_SelectedIndexChanged(ByVal sender As System.Object, _
ByVal e As System.EventArgs) _
Handles DropDownList1.SelectedIndexChanged

DAProductsInCategory.SelectCommand.Parameters(“@catID”).Value = _
DropDownList1.SelectedItem.Value

DAProductsInCategory.Fill(DSProducts1)
DataGrid1.DataBind()

End Sub

Let’s switch our attention to the design of the DataList control. Unlike the DataGrid control, the
DataList control doesn’t autogenerate its items based on the columns of its data source. You’ll have to
step in and actually add a few lines of HTML code. What’s really needed is a designer similar to the
Web page designer for the cells of the control. Right-click the control and select Edit Templates ➢
Item Templates. You’re ready to customize the template for each item.

In the gray area under the ItemTemplate heading, enter any strings you want to appear in the
item’s area. Enter the names of the fields as shown in Figure 24.7, and then format them. To specify
the data-bound values that will appear next to the heading string, click the HTML tab at the bottom
of the design surface, and you will see something like the HTML code shown in Figure 24.8. This is
the HTML behind your page. As you can see, everything you do on the design surface with visual
tools is translated into HTML, which can be sent to the client.

Figure 24.7

Customizing the
appearance of a
DataList control

1061THE DATA-BOUND WEB CONTROLS

2877c24.qxd 11/11/01 4:23 PM Page 1061

http://www.sybex.com

Locate the captions you entered on the ItemTemplate box and modify them to look like Listing 24.8
(I’m showing the entire ItemTemplate and AlternatingItemTemplate here). After each title, insert the
appropriate DataBinder expression to display each field next to its caption. You will also see many <P>
and </P> tags (paragraphs), which insert vertical space. Remove most of them to conserve space on the
cell, and use the
 tag to move to the next line. (The
 tag inserts a newline character but no
additional vertical space.)

Listing 24.8: Customizing the ItemTemplate and AlternatingItemTemplate Objects

<ItemTemplate>
Product
<I><%# DataBinder.Eval(Container.DataItem, “ProductName”) %></I>

Price

Packaging
<I><%# DataBinder.Eval(Container.DataItem, “QuantityPerUnit”) %></I>

<asp:Button id=”bttnSeect” runat=”server” width=”53px” height=”24px”

text=”Select”></asp:Button>
</ItemTemplate>
<HeaderStyle Font-Bold=”True” ForeColor=”#E7E7FF” BackColor=”#4A3C8C”>
</HeaderStyle>
<AlternatingItemTemplate>

Product
<I><%# DataBinder.Eval(Container.DataItem, “ProductName”) %></I>

Price
<I><%# DataBinder.Eval(Container.DataItem, “UnitPrice”) %></I>

Packaging
<I><%# DataBinder.Eval(Container.DataItem, “QuantityPerUnit”) %></I>

<asp:Button id=”bttnSelect” runat=”server” width=”53px” height=”24px”

text=”Select”></asp:Button>
</AlternatingItemTemplate>

Figure 24.8

This is what the
HTML code that
implements your
page looks like in
the editor.

Chapter 24 ACCESSING DATA ON THE WEB1062

2877c24.qxd 11/11/01 4:23 PM Page 1062

http://www.sybex.com

This code will retrieve the proper values from the DataSet and place them on the Item box at
runtime. Designing the cells of the DataList control will turn out to be a trial-and-error process,
because you must understand the code generated by the wizard and then insert your own HTML
tags in it. My suggestion is to edit the cell visually, insert placeholders (like ID, Name, Price, and so
on), format the strings as if they were the actual field values, and then replace the strings in the
HTML code with the proper DataBinder expressions.

So far you’ve seen how the two controls are populated. How do we handle the selection of
another row in the DataGrid control? If you run the application now, you will see two forms simi-
lar to the ones of Figures 24.5 and 24.6. We have not yet added the buttons on each product’s row
(for the DataGrid control) or each product’s cell (for the DataList control). You will see one form
at a time—whichever one is the project’s Startup Page. Change the project’s Startup Page to view
the other.

Adding the Selection Buttons

Now we’ll add the selection button in the first column of the grid (and in each item of the list).
The buttons won’t do anything special; they will simply print the ID of the selected item in a Label
control. As you can understand, once you extract the key of the selected item, you can retrieve any
related information from the database and display it on the Web form, or process it from within
your code. In the section “A Master/Detail Form,” later in this chapter, you’ll see how you can pro-
gram the Select buttons to update another control.

Right-click the DataGrid control and select Property Builder. In the DataGrid1 Properties dialog
box (Figure 24.9), select the Columns tab. Clear the box Create Columns Automatically At Run-
time, then add the Button Column item from the Available Columns list to the Selected Columns
list. Set the new item’s Text property to “Select” and its CommandName property to “Select” also.
When a Select button is clicked, the ItemCommand event is raised in the application. In the Item-
Command event’s handler, insert the statements of Listing 24.9.

Figure 24.9

Setting the proper-
ties of the DataGrid

1063THE DATA-BOUND WEB CONTROLS

2877c24.qxd 11/11/01 4:23 PM Page 1063

http://www.sybex.com

Listing 24.9: Handling the Selection of a Row on the DataGrid Control

Private Sub DataGrid1_ItemCommand(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs) _
Handles DataGrid1.ItemCommand

Dim itm As Integer
itm = e.Item.ItemIndex()
Dim keys As DataKeyCollection
keys = DataGrid1.DataKeys()
Label1.Text = “SELECTED ID = “ & keys(itm).ToString

End Sub

The e.Item object represents the selected item on the control. The ItemIndex property returns
the item’s index on the control. The DataKeys property of the DataGrid object is a collection
of all the keys on the control. We retrieve the key of the selected item and display it on a Label
control. Later in this chapter, you will see how to add the selected item to a basket. As long as you
can retrieve the key of the selected item, you can access its row in the corresponding table of the
database.

To add a button to the DataList control, switch to the Item Edit mode (Edit Templates ➢ Item
Template from the context menu) and drop a Button control on the Item area and another one on
the AlternatingItem area. Then open the HTML tab of the editor and edit the code to position the
button just right on the cell. Again, this is the type of operation we should be able to perform visu-
ally, but the designer inserts far too many <P> tags in such a small area. After you’re done editing
the DataList control’s template, select End Template Editing from the context menu.

When the button is clicked at runtime, the ItemCommand event is raised. In this event, we
want to retrieve the ID of the selected product and use it in our code. The ProductsPerCategory
application doesn’t do anything with this ID except for displaying it on a Label control. The
code that retrieves the ID of the product displayed on the selected cell of the control is shown in
Listing 24.10.

Listing 24.10: Retrieving the Key Field of the Selected Product

Private Sub DataList1_ItemCommand(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataListCommandEventArgs) _
Handles DataList1.ItemCommand

Dim itm As Integer
itm = e.Item.ItemIndex()
Dim keys As DataKeyCollection
keys = DataList1.DataKeys()
Label1.Text = “SELECTED ID = “ & keys(itm).ToString

End Sub

Chapter 24 ACCESSING DATA ON THE WEB1064

2877c24.qxd 11/11/01 4:23 PM Page 1064

http://www.sybex.com

Is It a Grid, or a Table?
If you look at the source code of either page you created in the last section, you’ll realize that it’s
plain HTML. There’s no DataGrid or DataList control in the page sent down to the client—just a
long HTML table. The Web controls are design-time tools. You see them on the designer’s surface;
you know what they will look like when rendered on the client; you can set their properties visually;
but they don’t make it past the compiler. When the compiler sees a DataGrid control, it knows that
there’s no HTML equivalent and tries to build something that looks like a grid on the client, but it’s
really a table.

ASP.NET is nothing more than a way to program the Web with VB and a visual designer. It
allows you to design your pages visually and write VB code behind them. The controls you place on
your Web forms are translated into HTML. The VB code stays at the server, and it’s executed there
in response to events that originate at the client but are transmitted to the server. However, the
magic grows thin real quick, because you must understand how the Web works and learn to pro-
gram in a disconnected environment. Is ASP.NET a revolutionary new technology? In my view, it’s a
better way of living with HTML. A technology that would allow us to design forms that can be
used in both Windows and Web application—yes, that would be revolutionary. ASP.NET will buy
us another couple of years, until we figure out a way to get rid of HTML.

Getting Orders on the Web
This is a rather ambitious project for this book, but it demonstrates a lot of interesting topics. It also
shows you how to build a very practical Web application, and you can use the information presented
in this chapter as your starting point for similar projects. Let me start with a short description of the
ProductSearch project you’ll build.

Our application starts with a page that lets users select products and place them in their virtual
shopping basket. A real application that’s driven by a real database might have to display thousands
of products, and we simply can’t afford to download all the products to the client. We prompt users
to specify the products they’re interested in, and then the program downloads only a small segment
of the database. There are many ways to search the database, from very simple SELECT statements
to complicated ones. The one used here is as simple as it gets (users must supply the name of the
product, or a word that appears in the product’s name). You can design an interface that displays all
categories and downloads the products of the selected category, use price ranges, and so on. Search
operations are implemented with SELECT statements that accept one or more parameters, and you
know how to build those. Figure 24.10 shows the first form on the application.

The last column contains hyperlinks that place the corresponding products in the user’s basket.
Every time a link is clicked, another item of the product is added to the basket. If the item exists in
the basket already, its quantity is increased by one.

At any point, users can view their basket’s contents by clicking the My Basket button. This but-
ton opens the form shown in Figure 24.11, which displays the basket (the products, their prices,
subtotals, and the order total). The basket’s contents are displayed on a table, which is constructed
from within the page’s code. You could have used a DataGrid to display the items ordered, or any
other control.

1065GETTING ORDERS ON THE WEB

2877c24.qxd 11/11/01 4:23 PM Page 1065

http://www.sybex.com

Once the user reviews the basket’s contents, they can click the Proceed To Checkout button
to actually place the order. On the last form of the application they must provide shipping informa-
tion, as shown in Figure 24.12. The user is required to log into the database by supplying a UserID,
which is the CustomerID field of the Customers table. You can use any authentication technique
you deem appropriate, but this is a very simple one that doesn’t require additional code. The ID is in
the database, and you can easily identify the user.

Figure 24.11

Reviewing the bas-
ket’s contents

Figure 24.10

Adding selected
products to one’s
basket

Chapter 24 ACCESSING DATA ON THE WEB1066

2877c24.qxd 11/11/01 4:23 PM Page 1066

http://www.sybex.com

The Forms of the ProductSearch Application
Now we’ll discuss the design process and the code behind the pages of the application. Start a new
ASP.NET Web application project and add two more Web forms to it. The ProductSearch appli-
cation’s Web forms are called OrderForm, BasketForm, and BuyForm.

The OrderForm Web Form

This is the application’s startup page (shown in Figure 24.10), and it contains a TextBox (where
users enter the search criteria), two buttons, and a DataGrid control, where the selected products
are displayed. This form must retrieve data from the Products table, so we must create a DataSet
where the selected products will reside. Drop the Products table onto the design surface, configure
the DataAdapter object, and then create a DataSet object as usual. The SELECT statement of the
DataAdapter object is shown next:

SELECT TOP 100 ProductID, ProductName, QuantityPerUnit, UnitPrice
FROM dbo.Products
WHERE (ProductName LIKE ‘%’ + @name + ‘%’)

In effect, we search for product names that contain the string enter by the user on the TextBox.
The clause TOP 100 limits the size of the DataSet, because if the TextBox is blank, then the query
will return all rows in the table. We don’t want this to happen in a real application that could down-
load 100,000 rows to the client.

Figure 24.12

Finalizing an
online order

1067GETTING ORDERS ON THE WEB

2877c24.qxd 11/11/01 4:23 PM Page 1067

http://www.sybex.com

With the DataSet object in place, you can configure the DataGrid control. Start by setting the
following properties to these values:

Property Setting

DataSource DSPrducts1

DataMember Products

DataKeyField ProductID

The DataKeyField is the primary key (a value that’s unique among all the rows of the control). The
DataGrid will automatically generate one grid column for each column in the table. We want to create
the structure of the DataGrid ourselves, so set the control’s AutoGenerateColumns property to False.

Then right-click the DataGrid control on the form and select Property Builder. You will see the
control’s Properties dialog box, where you can specify the appearance of the control. On the General
tab of the dialog box, you set the data-binding properties. We’ve already specified the setting of
these properties in the Properties window, so the dialog box should look like Figure 24.13.

Switch to the Columns tab, where you specify the columns to be displayed on the control, as
shown in Figure 24.14. The option Create Columns Automatically At Runtime must be cleared.
Select the table columns you want to display on your control from the Available Columns list, and
move them to the Selected Columns list by clicking the arrow button. As you add each table column,
set the header of the equivalent grid column to the string you want to display at runtime.

Add all the fields and then locate the item Hyperlink Column in the list of available columns.
The new column will contain a hyperlink for each row in the table, and you’ll be able to program
this hyperlink. Set the hyperlink’s Text property to “Buy.” You could also place a button in the col-
umn by adding the Select button item from the Available Columns list to the Selected Columns list.

Figure 24.13

The General tab of
the DataGrid con-
trol’s Properties dia-
log box

Chapter 24 ACCESSING DATA ON THE WEB1068

2877c24.qxd 11/11/01 4:23 PM Page 1068

http://www.sybex.com

On the next tab of the dialog box, Paging (Figure 24.15), you can specify how the DataGrid will
handle multiple pages of data (instead of displaying too many rows at once). You can enable paging
and can set the page’s size (number of rows per page), the navigational buttons, and the navigational
mode (whether there will be only Next and Previous buttons or a list of page numbers). You can
also customize the appearance of the paging by supplying your own code. We’ll discuss the topic of
paging briefly in the following section.

Figure 24.15

The Paging tab of
the DataGrid con-
trol’s Properties
dialog box

Figure 24.14

The Columns tab of
the DataGrid con-
trol’s Properties dia-
log box

1069GETTING ORDERS ON THE WEB

2877c24.qxd 11/11/01 4:23 PM Page 1069

http://www.sybex.com

On the other two tabs of the Properties dialog box, the Format and Borders tabs, you can cus-
tomize the appearance of the control by setting its font, colors, borders, and so on. There are many
options here, but it’s relatively easy to figure out what they do. Experiment with the settings on these
two tabs to get the hang of customizing your DataGrid controls.

The Format tab, shown in Figure 24.16, allows you to set the appearance of normal items and
alternating items. Normal items are the odd-numbered rows and alternating items are the even-
numbered rows. We usually set the background color of the two types of items to different values.
The selected and edit mode items are discussed briefly in the following section.

Now we must add some code behind the Product Search button. When this button is clicked, we
pick the user-supplied search argument from the TextBox control and use it with the DAProducts
DataAdapter’s SelectCommand. We must execute the SELECT statement that retrieves the qualify-
ing rows and then bind the DataGrid control to the DataSet. Listing 24.9 shows the code behind
the Product Search button.

Listing 24.11: Displaying the Qualifying Rows from the Products Table on a DataGrid

Private Sub ProductSearch(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnSearch.Click

DAProducts.SelectCommand.Parameters(“@name”).Value = TextBox1.Text
DAProducts.Fill(DSProducts1, “Products”)
DataGrid1.DataSource = DSProducts1.Products
DataGrid1.DataBind()
DataGrid1.Visible = True

End Sub

Figure 24.16

Setting the appear-
ance of a column’s
cells on the Data-
Grid control

Chapter 24 ACCESSING DATA ON THE WEB1070

2877c24.qxd 11/11/01 4:23 PM Page 1070

http://www.sybex.com

Every time the user clicks one of the Buy hyperlinks, we must extract the ID of the selected prod-
uct and add it to the basket. The basket in this application is stored in the Session object. We create
a new Session variable for each item added to the basket, set the name of the variable to the ID of
the product, and set its value to the number of items ordered. If the user clicks multiple times on the
same link, the quantity of the specific product in the basket increases.

How do we intercept the clicking of the Buy link in our code? Every time a link is clicked on the
page, the ItemCommand event is raised in the application. Open the ItemCommand event handler
for the DataGrid1 object and enter the code shown in Listing 24.12.

Listing 24.12: Handling the Click of the Buy Links

Private Sub DataGrid1_ItemCommand(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs) _
Handles DataGrid1.ItemCommand

Dim ItemID As Integer
If e.Item.ItemType = ListItemType.Pager Then Exit Sub
ItemID = e.Item.Cells(0).Text
Dim sItemID As String = ItemID
If Session(sItemID) Is Nothing Then

Session(sItemID) = 1
Else

Session(sItemID) = Session(sItemID) + 1
End If

End Sub

Notice that the second argument carries information about the link that was clicked. Because the
page numbers displayed at the bottom of the page also raise the same event, we examine the type of
the item that raised the event. If the item was a pager item, we exit the subroutine.

If not, we add another item to the basket (or increase the quantity of the items ordered if the
product exists in the basket). This application uses the Session object to store the IDs and quantities
of the ordered products. You’ll see how this information is used in the subsequent page. I suggest
you modify the application so that it uses cookies instead (use the Request.Cookies collection to
read the cookies and the Response.Cookies collection to add a new cookie or change the value of an
existing cookie).

The other button on the form redirects the user to the BasketForm page, where the ordered items
are displayed, and its code is shown next:

Private Sub bttnBasket_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles bttnBasket.Click

Response.Redirect(“BasketForm.aspx”)
End Sub

Run the project and check out how the OrderForm page works. Add items to the basket, bring in
a different DataSet, and keep adding to the basket.

1071GETTING ORDERS ON THE WEB

2877c24.qxd 11/11/01 4:23 PM Page 1071

http://www.sybex.com

The BasketForm Web Form

The BasketForm page doesn’t interact with the user; it simply displays the basket’s contents on a
table. The user can click the Back button to jump back to the OrderForm page, or click the Proceed
To Checkout button to place the order. All the action on the page takes place in its Load event han-
dler. Before you can write any code, you must add the appropriate objects for accessing the database.
When this page is invoked, all the information we have at hand are the IDs of the products in the
basket and their matching quantities. We must retrieve all the product prices from the Products
table, multiply them with the corresponding quantities, calculate each line’s subtotal as well as the
order’s total, and create the table.

We’re going to build a SELECT statement to retrieve the products ordered from the Products
table in our code. Open the Server Explorer and drop the Products table onto the design surface.
You need not configure the DataAdapter object; just clear its SelectCommand.CommandText property
in the Properties window. Then enter the code of Listing 24.13 in the page’s Load event handler.

Listing 24.13: Displaying the Basket’s Contents

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘ Put user code to initialize the page here
Dim ck As Object, cmd As String
cmd = “SELECT ProductID, ProductName, UnitPrice “ & _

“FROM Products WHERE ProductID IN (“
For Each ck In Session

cmd = cmd & ck.ToString & “, “
Next
cmd = cmd.Substring(0, cmd.Length - 2) & “)”
SqlConnection1.Open()
DASelectedProducts.SelectCommand.CommandText = cmd
DASelectedProducts.SelectCommand.CommandType = CommandType.Text
Dim Reader As Data.SqlClient.SqlDataReader = _

DASelectedProducts.SelectCommand.ExecuteReader
Dim prodName As String, prodID As Integer, prodPrice As Decimal
Dim subTotal As Decimal, table As String
table = “<TABLE BORDER=’1’><TR>”
table = table & “<TD>Product Name</TD><TD>Quantity</TD>”
table = table & “<TD>Price</TD><TD>Subtotal</TD></TR>”
While Reader.Read

table = table & “<TR><TD>”
prodName = Reader.Item(“ProductName”)
prodID = Reader.Item(“ProductID”)
prodPrice = Reader.Item(“UnitPrice”)
table = table & prodName & “</TD>”
table = table & “<TD ALIGN=’right’>” & Session(CStr(prodID)) & “</TD>”
table = table & “<TD ALIGN=’right’>” & prodPrice & “</TD>”
subTotal = prodPrice * Session(CStr(prodID))

Chapter 24 ACCESSING DATA ON THE WEB1072

2877c24.qxd 11/11/01 4:23 PM Page 1072

http://www.sybex.com

table = table & “<TD ALIGN=’right’>” & subtotal & “</TD></TR>”
total = total + subTotal

End While
table = table & “</TABLE>”
table = table & “<P>Your total is “ & total.ToString & “</P>”
lblBasket.Text = table
SqlConnection1.Close()

End Sub

The code builds a SELECT statement with the IN keyword, by reading the IDs of the selected
products from the Session object, one at a time. If the basket contains three IDs, the corresponding
SQL statement will be something like:

SELECT ProductID, ProductName, UnitPrice
FROM Products
WHERE ProductID IN (32, 40, 8)

When this statement is executed against the database, it will retrieve the IDs, names, and prices of
the products in the user’s basket. These rows aren’t stored in a DataSet. In this page, I’ve used a
DataReader object to go through the rows returned by the query and create the table with the bas-
ket’s items on-the-fly. The products are returned in the same order as their IDs appear in the Session
object. The first product’s quantity is given by the expression: Session(CStr(prodID)). The prodID
variable is numeric, so we must convert it to a string before using it as Session variable name. If the
ID of the first selected product is 14, its quantity is Session(“14”). The code shown here will work
with nonnumeric product keys as well.

The table is built one row at time, as we go through the rows of the DataReader object. The
three fields of the current row are stored in the variables prodID, prodName, and prodPrice, and these
variables are used to build the table displayed on a Label control.

The Proceed To Checkout button redirects the user to the third page of the application, where
he’s asked to supply shipping and billing information to finalize the order. How do we redirect the
user to the last page of the application? The Redirect method will work, but this time we want to
pass some additional information to the page, which is the order’s total. The last page displays the
order’s total on a Label control at the top, and there’s no reason to recalculate the total—it’s already
been calculated on the current page. To pass the total as argument to the last page, we must append
it to the URL of the destination. Instead of specifying the URL of the form, we can build a destina-
tion URL that includes a parameter, like the following:

BuyForm.aspx?Total=193.4

This is what takes place in the Click event handler of the Proceed to Checkout button, which is
shown next:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Response.Redirect(“BuyForm.aspx?Total=” & Server.UrlEncode(total))
End Sub

1073GETTING ORDERS ON THE WEB

2877c24.qxd 11/11/01 4:23 PM Page 1073

http://www.sybex.com

The code reads the value of the total variable (which is declared outside any procedure) and passes
it to the BuyForm.aspx page. The UrlEncode method converts the value of the total variable to a
URL-compliant format. On the last form of the application, we’ll use the UrlDecode method to
convert the argument back to its original format.

The BuyForm Web Form

When the Login button is clicked on the BuyForm Web form, the code shown in Listing 24.14 is exe-
cuted. This event handler attempts to read the row with the specified ID from the Customers table. If it
succeeds, it displays the customer’s shipping address on a TextBox control and waits for the user to set
the remaining fields and accept the order. If the specified ID doesn’t match one of the IDs in the data-
base, a warning appears next to the Login button in red and no further action is taken. The user must
either supply a valid ID or click the Back button to return the previous page of the application.

Listing 24.14: Verifying a User’s ID

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

DACustomers.SelectCommand.Parameters(“@CustID”).Value = TextBox1.Text
DACustomers.Fill(DSCustomers1, “Customers”)
If DSCustomers1.Customers.Rows.Count <> 1 Then

lblError.Visible = True
Else

lblError.Visible = False
Dim Address As String
Address = DSCustomers1.Customers.Item(0).CompanyName & vbCrLf & _

DSCustomers1.Customers.Item(0).ContactName & vbCrLf & _
DSCustomers1.Customers.Item(0).Address & vbCrLf & _
DSCustomers1.Customers.Item(0).City & vbCrLf & _
DSCustomers1.Customers.Item(0).PostalCode & vbCrLf & _
DSCustomers1.Customers.Item(0).Country

txtAddress.Text = Address
bttnShip.Visible =true

End If
End Sub

This example doesn’t authenticate the user; it simply allows users to log in using an ID, which
presumably isn’t given to other users. In a real application, you should prompt for the user’s e-mail
or ID and a password.

The last piece of code in the form displays the order’s total on a Label control with the following
statement, which is executed in the page’s Load event handler:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

‘ Put user code to initialize the page here
lblTotal.Text = “Your Order’s Total is “ & Request.QueryString(“Total”)

End Sub

Chapter 24 ACCESSING DATA ON THE WEB1074

2877c24.qxd 11/11/01 4:23 PM Page 1074

http://www.sybex.com

One drawback of the ProductSearch application is that it doesn’t allow the user to remove an
item from the basket. You can add a second column with hyperlinks or buttons to the DataGrid of
the first page and, every time the user clicks it, remove the corresponding product from the basket.
To add a column with Remove buttons, open the Property Builder of the DataGrid control on the
form. Add a new Button column and set its Text property to Remove and its CommandName prop-
erty to RemoveItem.

When any of the buttons in this column are clicked, the ItemCommand event will be raised. You
must add some code in this event’s handler to figure out what button was clicked (the Buy or Remove
link) and act accordingly. Here’s the code you must insert in the ItemCommand event handler:

If e.CommandName = “RemoveItem” Then
If Not Session(sItemID) Is Nothing Then

Session.Remove(sItemID)
End If
Exit Sub

End If

The ProductSearch project on the CD contains the code for saving the new order to the database.
It requires that the NewOrder and NewOrderLine stored procedures (from Chapter 22) be attached
to the database.

Paging Large DataSets
Large DataSets have always been a problem in presenting data on Web pages. Displaying hundreds
of rows on a single page isn’t very practical, and designers have come up with a technique for break-
ing the DataSet into pages. A page is a group of rows that are displayed on the same form. At the bot-
tom of the form, there are usually links for the next and previous page, or links to all the pages that
make up the DataSet. The user can click a link and jump to any other page of the DataSet. Paged
DataSets are useful when they contain a relatively small number of pages. A DataSet with 300 pages
isn’t very practical, even though you’re not displaying all the rows at once. How’s the user supposed
to figure out which page contains the row he’s interested in? Very large DataSets aren’t appropriate
for typical Web applications. If a search returns more than 100 rows, you should probably ask users
to be more specific.

Among its many other features, the DataGrid control supports paging. It provides properties and
recognizes events that simplify displaying the page numbers at the bottom of the control and moving
to the appropriate page when a page hyperlink is clicked. To enable paging, you must set the con-
trol’s AllowPaging property to True and the PageSize property to the number of rows per page. The
PagerStyle property determines the layout of the paging section of the control. This property is an
object that exposes properties for setting the background/foreground color of the pager, the font,
and so on. One of the properties is exposes is the Mode property, which can have one of the two val-
ues: NextPrev and NumericPages. These are the two pager modes that are supported automatically.
You can also turn on AllowCustomPaging, in which case you must provide your own mechanism for
paging through the DataSet (we will not discuss custom paging techniques in this book).

Once you’ve enabled paging, the control will receive the PageIndexChanged event every time one
of the paging links is clicked. These links may be the previous/next arrows or page numbers. In this
event’s handler, you must set the page to jump to, and refill the DataSet. Listing 24.15 is a typical
PageIndexChanged event handler.

1075GETTING ORDERS ON THE WEB

2877c24.qxd 11/11/01 4:23 PM Page 1075

http://www.sybex.com

Listing 24.15: Handling Paging Events

Private Sub DataGrid1_PageIndexChanged(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataGridPageChangedEventArgs) _
Handles DataGrid1.PageIndexChanged

DataGrid1.CurrentPageIndex = e.NewPageIndex
DACustomers.Fill(DSCustomerNames1, “Customers”)
DataGrid1.DataBind()

End Sub

The property e.NewPageIndex is the page number selected by the user on the control. The transi-
tion to the new page isn’t automatic; you must explicitly set the CurrentPageIndex property. You
can also set this property to –1 to effectively cancel the paging action.

Then you must refill the DataSet and bind the control to it again to force its contents to change.
The DataSet doesn’t reside anywhere in the server’s memory, so you must recreate it.

There’s one last implication in programming DataSet paging events. Every time an item is clicked
on the control, the ItemCommand event is also fired. We use this event to retrieve the selected item’s
ID, in order to retrieve additional information from the database and update another control on the
form. This event will also take place even when a paging link is clicked; you must ignore this type
of event in the ItemCommand event by inserting the following line at the beginning of the Item-
Command event handler:

If e.Item.ItemType = ListItemType.Pager Then Exit Sub

When to Use Paged DataSets

A word of caution on using the paging capabilities of the DataGrid control. The control doesn’t
know how to retrieve the rows of the current page from the database. Instead, it retrieves all the
qualifying rows and then displays the appropriate subset, taking into consideration the current pag-
ing settings. Every time you click the Next button, for example, you read all the qualifying rows
from the database, display a small subset of the rows, and discard the rest. This isn’t the most effi-
cient method of handling paging. If you want to add paging capabilities to your application, you
must customize the default pager and provide your own code. However, we have already limited the
number of qualifying rows to 100. We can use the default pager to create 10 pages of 10 rows each
(at most) without placing a real burden on the database server. I have seen paging schemes on the
Web with lists of page numbers that take up a dozen lines on the page. Use the DataGrid’s built-in
paging features carefully, and make sure your pages will look good even if users select an enormous
DataSet, like all history books. There’s nothing wrong with limiting the selection to 100 or 200
rows. Users will have to be more specific about the rows they’re searching for. Besides, what’s the
average user going to do with 2,500 rows that meet their criteria?

Paging has always been a sore point in designing Web applications, and programmers have tried all
kinds of paging schemes. The problem is that the rows in a table are not numbered, and there’s no
SQL statement that can retrieve the N rows following a specific row. Even if the existing rows were
numbered, how would you handle insertions and deletions? Paging is a technique for guiding the user
close to the desired row. To use paging techniques efficiently, limit the number of rows returned by a
query with the TOP keyword, so that you won’t have to display 300 pages of 20 rows each.

Chapter 24 ACCESSING DATA ON THE WEB1076

2877c24.qxd 11/11/01 4:23 PM Page 1076

http://www.sybex.com

A Master/Detail Web Page
This is one of the most common types of Web applications. Figure 24.17 shows a page with cus-
tomers, orders, and order details. The top DataGrid control displays 10 customers at a time in paged
mode. As explained already, paging doesn’t save you from downloading the entire Customers table
every time the user switches to another page. If your Customers table contains thousands of cus-
tomers, you should combine this application with the techniques discussed in the WebProducts or
ProductSearch applications to limit the number of customers in the DataSet (you can force users to
select customers by country or state, company, and so on).

When the Orders button on a customer row is clicked, the selected customer’s orders are dis-
played on the DataGrid below. This DataGrid control isn’t paged (you can limit the orders to the
current year, or even month, to make sure that the page doesn’t grow too long or you can add paging
to this control as well). When the Details button on an order row is clicked, the order’s details are
displayed on the third DataGrid control. MasterDetail is an interesting application that demon-
strates data binding in a Web app, how to customize the DataGrid, and how to program the events
of the DataGrid control.

Building the MasterDetail application is a lengthy process, but it’s also an overview of the mate-
rial covered in Chapter 21 (how to populate DataSets with the visual tools). Start a new ASP.NET
Web application and name it MasterDetail. Then drop the Customers, Orders, and Order Details

Figure 24.17

A master/detail
Web form with two
nested tables

1077A MASTER/DETAIL WEB PAGE

2877c24.qxd 11/11/01 4:23 PM Page 1077

http://www.sybex.com

tables from the Server Explorer onto the design surface. Rename the three DataAdapter object that
will be created to DACustomers, DAOrders, and DADetails. Configure them as follows.

DACustomers This DataAdapter retrieves all the customers of the Northwind database with
the following SELECT statement:

SELECT CustomerID, CompanyName, ContactName FROM dbo.Customers

DAOrders This DataAdapter retrieves the orders of a selected customer. In Figure 24.17,
you’ll see that it includes a calculated field, the Order Total field. The total of an order isn’t
stored anywhere in the database and must be calculated by the SELECT statement that retrieves
the orders. The DAOrders object’s SELECT command is shown next (I’ve removed the table
qualifiers to fit it nicely on the printed page):

SELECT Orders.OrderID, Orders.OrderDate,
SUM ((UnitPrice * Quantity) * (1 - Discount)) AS Total

FROM dbo.Orders INNER JOIN Order Details
ON dbo.Orders.OrderID = dbo.[Order Details].OrderID

WHERE (Orders.CustomerID = @CustID)
GROUP BY Orders.OrderID, OrderDate

DADetails This DataAdapter retrieves the details of a selected order and also calculates the
subtotal of each line (quantity × price × (1 – discount)). Here’s the SELECT statement of the
DataAdapter:

SELECT [Order Details].OrderID, [Order Details].ProductID,
[Order Details].UnitPrice, [Order Details].Quantity,
[Order Details].Discount, Products.ProductName,
[Order Details].UnitPrice * [Order Details].Quantity) *

(1 - dbo.[Order Details].Discount) AS Total
FROM dbo.[Order Details] INNER JOIN dbo.Products

ON dbo.[Order Details].ProductID = dbo.Products.ProductID
WHERE ([Order Details].OrderID = @orderID)

After configuring the three DataAdapters, create the corresponding DataSets. Create a separate
DataSet for each DataAdapter, and name them DSCustomerNames, DSOrders, and DSDetails.
Three instances of the DataSet class will appear on the Component tray, and they’ll be named after
the corresponding DataSet suffixed by the digit 1.

Your next step is to bind the DataGrid controls to the corresponding DataSets. The data-binding
properties of the three controls are shown next:

Property Setting

DataGrid1 Control

DataSource DSCustomerNames1

DataMember Customers

DataKeyField CustomerID

Chapter 24 ACCESSING DATA ON THE WEB1078

2877c24.qxd 11/11/01 4:23 PM Page 1078

http://www.sybex.com

Property Setting

DataGrid2 Control

DataSource DSOrders1

DataMember Orders

DataKeyField OrderID

DataGrid3 Control

DataSource DSDetails1

DataMember Order Details

Customizing the Appearance of the DataGrid Control
At this point comes the most challenging part of the project, and it isn’t its code. We must cus-
tomize the DataGrid controls, and there are quite a few items you can customize: the pager section
at the bottom of the top DataGrid control, the formatting of the date and numeric fields, and the
alignment of the numeric fields (they must be aligned to the right).

All the formatting options are clustered together in the Properties dialog box of the DataGrid
control. Right-click the DataGrid control you want to customize and select Property Builder. On
the dialog box that appears, select Format, and you will see a list of items you can format separately
(shown previously in Figure 24.16):

DataGrid Here you can specify the overall appearance of the DataGrid (its font, its foreground
and background colors, and so on).

Header Here you can specify the appearance of the control’s header.

Footer Here you can specify the appearance of the control’s footer.

Pager Here you can specify the appearance of the pager.

Items An item is a row of the control, and there are several groups of rows. All rows in a group
have common formatting. Here you can specify the appearance of the normal and alternating
items, the appearance of the selected item, as well as the appearance of the row in edit mode.

Columns Here you can specify the contents of each column (you can also leave it to the control
to automatically generate a column for each field in the DataSet).

Expand the Columns item in the Objects list, then expand one of the Columns. You will see the
names of the columns, and under each column are three categories of items you can customize: the
column’s Header, Footer, and Items. Each cell in the specific column is formatted according to the
settings of the Items object. You can set the foreground/background colors of the cell’s text, the
font and the alignment of the cell.

Besides the appearance of the cells, you will also have to specify how dates and numeric values
will be formatted. In the Columns tab of the control’s Properties dialog box, select a numeric or date
field and enter the appropriate formatting expression in the Data Formatting Expression box. This

1079A MASTER/DETAIL WEB PAGE

2877c24.qxd 11/11/01 4:23 PM Page 1079

http://www.sybex.com

expression is the same one you would use with the ToString method. The formatting expression
{0: #,###.00} signifies that the amount (represented by the argument 0) must be formatted with a
thousands separator and two decimal digits (the second argument is the format specification). A
value like 14302.5785 will be formatted as 14,302.58, and a value like 14.496 will be formatted
as 14.50. The same is true for dates. The specification {0:dd MMMM yyyy} will format the date
9/7/2001 as “07 September 2001.”

On the Columns tab, clear the option Create Columns Automatically At Runtime and add the
columns you want to display on the control (CompanyName and ContactName) from the Available
Columns list to the Selected Columns list. (Figure 24.14 shows the same tab for another DataGrid
control). Select each field in the Selected Columns list and set its text. Then add a Button column to
the control, set the button’s Text property to Orders, and set its ButtonType property to PushBut-
ton. This is the column with the buttons, and each one of them will populate the second DataGrid
control with the selected customer’s orders.

Do the same for the second DataGrid control with the Orders. Additionally, you must set the
Data Formatting Expression for the OrderDate and OrderTotal columns. The formatting string for
the OrderDate field is {0:dd MMM yyyy}, and for the OrderTotal field it’s {0: #,###.00}. Finally,
add the Details button.

Customize the third DataGrid control as discussed earlier, and set the formatting string for the
SubTotal column to {0: #,###.00}.

Programming the Select Button
As for the code of the application, this is the simplest part. When the form is loaded for the first
time, the DSCustomerNames DataSet is loaded and is used to populate the DataGrid control:

Private Sub Page_Load(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles MyBase.Load

If Not Me.IsPostBack Then
DACustomers.Fill(DSCustomerNames1, “Customers”)
DataGrid1.DataBind()

End If
End Sub

The following code populates the second DataGrid control with the orders of the selected cus-
tomer. This code must reside in the event handler that’s raised when one of the buttons in the last
column of the top DataGrid is clicked. This is the control’s ItemCommand event:

Private Sub DataGrid1_ItemCommand(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs)
Handles DataGrid1.ItemCommand

If e.Item.ItemType = ListItemType.Pager Then Exit Sub
Dim custID As String = DataGrid1.DataKeys(e.Item.ItemIndex)
DAOrders.SelectCommand.Parameters(“@CustID”).Value = custID
DAOrders.Fill(DSOrders1, “Orders”)
DataGrid2.DataBind()

End Sub

Chapter 24 ACCESSING DATA ON THE WEB1080

2877c24.qxd 11/11/01 4:23 PM Page 1080

http://www.sybex.com

The ItemCommand event is raised when any button or hyperlink on the control is clicked; that’s
why the code examines whether the event was fired by a pager item. In this case, the event handler is
terminated. If the event was fired by a button, the code executes the DAOrders object’s SelectCom-
mand passing the selected customer’s ID as argument and then fills the DSOrders1 DataSet. The
last step is to refresh the DataGrid control with the orders by calling its DataBind method.

With similar statements, the third DataGrid control on the form is populated with the selected
order’s detail lines:

Private Sub DataGrid2_ItemCommand(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs) _
Handles DataGrid2.ItemCommand

Dim orderID As Integer = DataGrid2.DataKeys(e.Item.ItemIndex)
DADetails.SelectCommand.Parameters(“@OrderID”).Value = orderID
DADetails.Fill(DSDetails1, “Order Details”)
DataGrid3.DataBind()

End Sub

For the sake of completeness, I’m including the listing of the control’s PageIndexChanged event
handler, which enables the user to navigate to another page of the DSCustomers DataSet by clicking
one of the page links at the bottom of the control:

Private Sub DataGrid1_PageIndexChanged(ByVal source As Object, _
ByVal e As System.Web.UI.WebControls.DataGridPageChangedEventArgs) _
Handles DataGrid1.PageIndexChanged

DataGrid1.CurrentPageIndex = e.NewPageIndex
DACustomers.Fill(DSCustomerNames1, “Customers”)
DataGrid1.DataBind()

End Sub

The MasterDetail Web application is quite functional and is typical of the type of application
you’ll be called to develop, along with order-processing applications. The code is minimal, and all
the functionality required to build the application resides in the control itself. It will take you longer
to set the properties of the DataGrid control than to actually write the code.

Summary
This chapter was about ADO.NET on the Web. We focused on data-binding techniques and the
visual tools, because this is how you’re supposed to make the most of a rapid application develop-
ment (RAD) environment like VB. Just about everything we did with point-and-click operations in
this chapter can be done with code. As you familiarize yourself with both ASP.NET and ADO.NET,
you’ll be able to switch between the visual tools and the code at will.

If you were asked to compare the ease of use of ADO.NET with Windows applications and
Web applications, wouldn’t you agree that ADO.NET is better suited for Web applications?
ADO.NET was designed for disconnected applications, and the only true disconnected applications
are the ones that run on the Web. In Chapter 25, the last chapter of the book, you’ll learn yet
another way to use ADO.NET on the Web, through Web services. Web services are the hottest
topic in the industry (along with XML, of course).

1081SUMMARY

2877c24.qxd 11/11/01 4:23 PM Page 1081

http://www.sybex.com

Chapter 25

XML Web Services
The last topic discussed in this book is one of the hottest new features of Visual Studio
.NET, XML Web services, or simply Web services. A Web service is a Class that resides on a
Web server and services requests, just like an ASP application. The difference is that the Web
service doesn’t furnish HTML pages to the client. Instead, it behaves like a function: clients call
the function by name, pass arguments (if needed), and get back a result. The result can be num-
ber, a string, an object like a DataSet, or an image. In the examples of this chapter, you’ll see how
you can write Web services that return DataSets and how these DataSets can be used to populate
DataGrids or other data-bound controls on the client. You can also save the DataSet’s rows to a
local file in XML format and use it in other applications. This is actually a very efficient method
of making data like price lists available to a large number of recipients.

This is literally a how-to chapter that shows you how to build Web services. No special pro-
gramming background is required to build Web services; if you can write a function in VB, you can
write a Web service. Of course, if your VB function must be executed in the environment of Inter-
net Information Services (IIS), it must encode its result in a form suitable for transmission over the
HTTP protocol so that it can respond to requests made over the Web. Theoretically, you can write
an ASP application that does the same, but it’s not an easy task. Visual Studio makes building and
using Web services as easy as writing and using VB functions in a Windows application. Visual Stu-
dio does a lot for you behind the scenes, so that you can think of Web services as regular classes that
expose methods—except these methods are available on the Web.

How to Serve the Web
A Web service is a Class that exposes methods, which are in effect functions. To contact the serv-
ices of a Web service, you must create an object variable that references the specific Web service,
just as you can access the members of any class through a variable. Programmers and managers at
Microsoft think that Web services will take the Web by storm and that they’ll change the way we
program on the Web. It just might happen. You may remember the Web Classes (a tool for
abstracting ASP applications that came with VB6). No real developer ever used this tool to build
ASP pages; they would much rather build ASP pages with VBScript.

2877c25.qxd 11/11/01 4:23 PM Page 1083

http://www.sybex.com

Web services are not clumsy, like Web Classes were. It’s a nicely implemented feature, and we
should see many sites offering their services on the Web in the form of Web services. If you’re won-
dering what type of services you might offer on the Web, I’ll give a few examples momentarily. But
first, I would like to make clear that Web services are nothing more than glorified classes or func-
tions. If we pretend for a moment that we know nothing (or don’t care) about the complexity of the
Web or the problems with firewalls and security, we should be asking ourselves: If we can write a
VB function and use in multiple Windows applications, why not be able to do the same with the
Web? If this question sounds reasonable to you, then Web services are just classes that make their
functionality available on the Web.

To better understand the need for Web services, I’ll discuss a couple of examples. Let’s say you’re
working for a publisher and you get requests from online stores for information about the books
your company publishes. Webmasters need book descriptions, cover photos, anything that will help
them better present your books on their site. You can create new documents and send them out on a
daily basis, or come up a centralized mechanism for distributing the same information to multiple
destinations. As you can guess, different sites may request this information in drastically different
formats, from text or Excel files to XML documents.

The centralized mechanism is a business-to-business site that people can connect to and request
information from. If they don’t have the cover photo for a specific book, they should be able to con-
nect to this site and make a request like “send me the cover image of the book with ISBN=xxx.”
This request should be implemented with a function like GetCoverByISBN(isbnNumber). The Get-
CoverByISBN() function will return an image, which the other site can either store on its server and
reuse or embed directly in its output for a specific client. You can do something similar by opening
the HTML page of the book and downloading the file with the cover photo. This means that you
must write a bit of code to parse the page, locate the name of the file, and then download it from the
server. If the layout of the page changes, you must also change the code that parses the page.

If you could provide a function that could be called over the Web and return a single GIF file,
then every online store could use this function. Programmers could even insert the name of the func-
tion in the place where the image would normally appear on the page. This way, every time a visitor
hits the page, the image will be requested from your server and embedded in their page.

Another example is a function that returns the current price of a product. Any online store that sells
your products will offer up-to-date prices and specials without any special arrangements. Or you can
post a list of special offers and know that other sites can grab this information and use it immediately.

Other more advanced examples include integrated financial services. A highly secure site could
collect information from banks, brokers, and credit organizations and present a unified picture of
your finances. We expect to see this type of application in the very near future. Whether the infor-
mation will flow from Web service to Web service remains to be seen, but this is one of Microsoft’s
contributions to an interconnected world of dissimilar computers.

But will other operating systems and Web servers be able to interact with Web services? The
secret ingredients that make it all work are XML and SOAP (Simple Object Access Protocol).
They’re both open standards and are not very difficult to implement. You can actually write an ASP
page that returns one or more values in XML or SOAP format and send it to the client instead of an
HTML page. These two formats allow you to send any type of information over the HTTP proto-
col and through firewalls, so if the other end is capable of handling the XML tag, it will be able to
use the Web service. As of now, all major players are promising to support XML, and this makes
Web services a very promising technology, because they’re based on standards.

Chapter 25 XML WEB SERVICES1084

2877c25.qxd 11/11/01 4:23 PM Page 1084

http://www.sybex.com

Building a Web Service
In all previous chapters, I’ve used the visual tools for just about anything. Here I’ll make an excep-
tion to show you how easy it really is to build a Web service. You’ll build your first Web service
with Notepad. The following listing is a simple class that exposes two simple members. The same
class could appear in any VB project. Its two methods are way too simple, but they contain straight
VB code and you can make them as complicated as you wish.

Public Class MasteringServices
Public Function Add(ByVal a As Decimal, ByVal b As Decimal) As Decimal

Return(a + b)
End Function
Public Function Multiply(ByVal a As Decimal, ByVal b As Decimal) As Decimal

Return(a * b)
End Function

End Class

To turn this class into a Web service, insert the following statements at the beginning of the file:

<%@ webservice class=”MasteringServices” language=”vb” %>
Imports System.Web.Services

The first statement is a directive that tells the compiler that the rest of the file is a Web service,
written in Visual Basic. The name of the class is MasteringServices, but it will normally be a name
made up from your company’s (or department’s) name and a name that reflects the functionality of
the class. The second statement imports the System.Web.Services class, necessary for all Web serv-
ices. Then prefix each method’s definition with the following tag:

<WebMethod()>

The <WebMethod()> tag tells the compiler that the specific method is to be exposed to HTTP
requests; the class may also contain private members. The WebMethod tag may also contain attrib-
utes, similar to the attributes of the members exposed by the controls. One of them is the Descrip-
tion attribute, whose syntax is shown next:

<WebMethod(“Description”, “This method adds two numbers”)>

Listing 25.1 shows the code of your first Web service. Create a text file with these statements,
and save it under the filename Mastering.asmx (the extension must be ASMX) in the Web server’s
root folder. You’re actually ready to test your Web service.

Listing 25.1: The Structure of a Web Service

<%@ webservice class=”MasteringServices” language=”vb” %>
Imports System.Web.Services
Public Class MasteringServices

<WebMethod()> _
Public Function Add(ByVal a As Decimal, ByVal b As Decimal) As Decimal

Return(a + b)

1085BUILDING A WEB SERVICE

2877c25.qxd 11/11/01 4:23 PM Page 1085

http://www.sybex.com

End Function
<WebMethod()> _
Public Function Multiply(ByVal a As Decimal, ByVal b As Decimal) As Decimal

Return(a * b)
End Function

End Class

To test the new service, start Internet Explorer and connect to the following URL:

http://localhost/Mastering.asmx

If you’re using a Web server on another machine, replace the localhost specification with the
appropriate server address or name. A few seconds later, you will see the page shown in Figure 25.1.

The page shown in Figure 25.1 isn’t your page. Obviously, it was created on the fly and contains
information about the MasteringServices Web service. Actually, you won’t find this page anywhere
on your server. When you contact the Web service for the first time, it’s compiled and the compiler
generates code to display the test pages as well.

Below the title of the Web service is a list of the members it exposes, the Add and Multiply
methods. There’s also a warning to the effect that it uses the default namespace, which is http://
tempuri.org/. That’s a placeholder domain name owned by Microsoft and stands for “temporary
URI.” When you post a Web service on the Web so that others can connect to it, you’ll add the fol-
lowing attribute to the WebService tag:

namespace=”http://your.server.com/yourservices”

as suggested at the bottom of the page.

Figure 25.1

Testing the
MasteringServices
Web service

Chapter 25 XML WEB SERVICES1086

2877c25.qxd 11/11/01 4:23 PM Page 1086

http://www.sybex.com

The two methods are hyperlinks. Click the Add hyperlink and you’ll see the arguments of the
method on a new page, which is shown in Figure 25.2. On this page, you can enter two numeric
values to be added and then click the Invoke button. A new page will appear, with the result returned
by the Add method. The result returned by the method is:

<?xml version=”1.0” encoding=”utf-8” ?>
<decimal xmlns=”http://tempuri.org/”>18</decimal>

This is the XML description of a decimal value. Had you entered the values –0.91 and 1.92, the
Add method would have returned the following value:

<?xml version=”1.0” encoding=”utf-8” ?>
<decimal xmlns=”http://tempuri.org/”>1.01</decimal>

Test the Multiply function as well; nothing will differ. You can also add more members to the
test class; you can use any VB statement or function, as well as any of the Framework’s classes,
because the method’s code is executed on a machine that has access to the .NET Framework.

A Web service is a Class that resides on a Web server and makes its members (usually methods)
available to any client. In addition, it displays information about itself on a page that’s built auto-
matically when you attempt to contact one of the members of the Web service. This information
includes the service’s name and the members it exposes. As you saw, you can even test these members
from within Internet Explorer. Of course, the format of the output is a little unusual, but this is the
only way to get information to the client through the HTTP protocol. Besides, only text will go
through firewalls. Web services use XML to format their return value and pass it to the client. In
effect, the Web service and its consumer (the application that makes use of the Web service) pretend
they’re exchanging requests and HTML pages, all in textual format. As you can see, no special com-
ponent needs to be installed on the client or the server.

Figure 25.2

Connecting to a
Web service with
your browser

1087BUILDING A WEB SERVICE

2877c25.qxd 11/11/01 4:23 PM Page 1087

http://www.sybex.com

Web services aren’t necessarily text files created with Notepad. You will see in the following sec-
tion how to create Web services in the environment of Visual Studio, but I wanted to demonstrate
how easy it is to build a Web service.

Consuming the Web Service
The Web service is in place, and you have tested it with your browser. The ultimate goal is for an
application to consume this Web service, so let’s build one. Actually, we’ll build two applications
that consume the same Web service, a Windows app and an ASP Web app.

Start a new Windows Application project and place a Button control on its form. Since VB cal-
culates sums too quickly to notice, let’s use the Add method of the MasteringServices Web service.
To access the members of a Web service, you must add a reference to it through the Project ➢ Add
Web Reference command. When the Add Web Reference dialog box appears, enter the URL of the
ASMX file in its Address bar and press Enter. You will see the description of the MasteringServices
Web service on the dialog box, as shown in Figure 25.3. At this point, you can click the Add Refer-
ence button at the bottom of the window to add the Web service to the current project. This is sim-
ilar to adding a reference to a regular class.

When you first open the Add Web Reference dialog box and before you select a Web service,
you’ll see a link that displays the Web services on the localhost (the Web References On Local Web
Server link). In addition, you will see two links for the Microsoft’s UDDI directory and Microsoft’s
UDDI test directory. Click the link to display the Web references on your local Web server. You
will see the names of the Web services you may have already built, but the Mastering service won’t
be listed.

Figure 25.3

Referencing a Web
service in a project

Chapter 25 XML WEB SERVICES1088

2877c25.qxd 11/11/01 4:23 PM Page 1088

http://www.sybex.com

As you can see, each Web service is represented by a .vsdico file. This is called a discovery file and
contains information about your service, and this is how clients that connect to your server can find
out what services it provides. This file is created automatically by Visual Studio when you create a
Web Service project, but we haven’t created this project in VS—we simply creates an ASMX file to
the Web server’s root folder. We’ll do so shortly, but in the meantime you can add a reference to the
new Web service explicitly. Enter the URL of the Mastering.asmx file in the Address box of the
Add Web Reference dialog box. This URL is the following:

http://localhost/mastering.asmx

You will see the names of the two methods in the left pane of the dialog box. Click the Add Ref-
erence button to close the dialog box and return to the project.

Then insert the following code in the button’s Click event handler:

Private Sub Button1_Click(ByVal sender As System.Object,_
ByVal e As System.EventArgs) Handles Button1.Click

Dim WS As New localhost.MasteringServices()
MsgBox(WS.Add(43.32, 22.1))

End Sub

You don’t really need an elaborate interface to test the members of the simple Web service. Run
the project, click the button, wait, and the sum of the two values should appear on a message box.
The delay, which is more than noticeable, is due to the fact that the ASMX file must be compiled
and contacted through the HTTP protocol. There’s a lot of overhead, but then again Web services
are not usual Classes. If you insert another call to the Add method (or a call to the Multiply
method) in the Click event handler, the second call will be serviced immediately, because the class
has been compiled and is ready to be used by any client.

ASP.NET Web Service Projects
In this section, we’ll build a slightly more complicated Web service that exposes a single method to
calculate monthly payments on a loan. We’ll add some error handling to the method, to make it
more robust than the first one. We’ll also use the tools of the IDE to build the new service.

Start a new project and select the ASP.NET Web Service template. Call the new project
WSLoan. Notice that, by default, all Web service projects are stored in the localhost virtual folder
(this is the root folder of the Web server). Initially, the Designer will add to the project an ASMX
file called Service1, a configuration file, and a discovery file. The configuration file contains configu-
ration information for the Web server, and the discovery file (the one with extension .vsdisco) con-
tains information that allows other applications that connect to your server to locate the specific
service and see its “contract” (the names and the syntax of its members). The initial configuration of
the IDE for an ASP.NET Web service project is shown in Figure 25.4.

The project we’ll build in this section is within this chapter’s folder on the CD. Copy the entire
Loan folder in the Web server’s root folder, and then open it with VB.

Ready to build another loan calculator? This example isn’t going to be quite as trivial as you
think. You’ll see how you can raise exceptions from within a Web service and catch them in your
VB code. Listing 25.2 shows the Loan class’s source code. Right-click the design surface of Service1,
select View Code from the context menu, and then enter the listing’s statements in the editor.

1089ASP.NET WEB SERVICE PROJECTS

2877c25.qxd 11/11/01 4:23 PM Page 1089

http://www.sybex.com

Listing 25.2: The Loan Web Service

Imports System.Web.Services
Public Class Service1

Inherits System.Web.Services.WebService
<WebMethod()> _
Public Function Loan(ByVal Amount As Decimal, ByVal Duration As Integer, _

ByVal Rate As Decimal, ByVal PayEarly As Boolean) As Decimal
If Rate < 0 Then

Throw New Exception(“Interest rate can’t be negative!”)
End If
If Rate < 1 Then

Rate = Rate / 12
Else

Rate = Rate / (12 * 100)
End If
Return Pmt(Rate, Duration, Amount, 0, PayEarly)

End Function
End Class

The actual project on the CD contains one more method, which will be discussed shortly.
The Web service is ready to be tested. Press F5 and Internet Explorer will come up with the

description of the new Web service. Click the Loan hyperlink to test the Loan method. On the page

Figure 25.4

Starting a new Web
service project

Chapter 25 XML WEB SERVICES1090

2877c25.qxd 11/11/01 4:23 PM Page 1090

http://www.sybex.com

that appears (Figure 25.5), enter the parameters of the loan and click the Invoke button as before.
The result for the loan shown in Figure 25.5 is:

<?xml version=”1.0” encoding=”utf-8” ?>
<decimal xmlns=”http://tempuri.org/”>-740.680595446082</decimal>

The Web service works; let’s copy it to the Web server so that other applications can use it. Stop
the project, and select the Copy Project command in the Project menu. In the subsequent dialog box
(see Figure 25.6), specify the Loan folder under the Web server’s root folder and click OK. All the
files needed for the discovery and use of the Loan Web service will be copied in the specified folder.

Now start a new Windows application that will contact the Loan service. The test project on the
CD is called TestLoan (unlike the Web Service project, the test project may appear anywhere on
your hard disk). Make sure that you change the project type in the New Project dialog box, because

Figure 25.6

Copying a project’s
files to the Web
server

Figure 25.5

Testing the Loan
method of the Ser-
vice1 Web service

1091ASP.NET WEB SERVICE PROJECTS

2877c25.qxd 11/11/01 4:23 PM Page 1091

http://www.sybex.com

the IDE remembers the type of the last project and will create another Web Service project. The test
application’s form is shown in Figure 25.7. To make use of the Web service, add a reference to it as
explained in the previous example and enter the code of Listing 25.3 behind the Monthly Payment
button.

Listing 25.3: Consuming a Web Service from within a Windows Application

Private Sub Button1_Click(ByVal sender As System.Object,_
ByVal e As System.EventArgs) Handles Button1.Click

Dim ws As New localhost.Service1()
Dim amount, duration, rate As Decimal
Dim payEarly As Boolean
Try

amount = CDec(txtAmount.Text)
duration = CInt(txtDuration.Text)
rate = CSng(txtRate.Text)
payEarly = False
If chkPayEarly.Checked Then payEarly = True

Catch DataException As SystemException
MsgBox(DataException.ToString)
Exit Sub

End Try
Try

txtPayment.Text = -Math.Round(ws.Loan(amount, duration, rate, payEarly), 2)
Catch calcException As Exception

MsgBox(calcException.Message)
End Try

End Sub

Run the application and see that it calculates the monthly payments of properly defined loans.
Set the interest rate to a negative value, and the exception raised in the Web service’s class will be
caught in your VB application. But of course you should improve the exception-handling code; the
exception’s message is too lengthy and too technical for the average user (it’s meant to help the
developer, not the user). Figure 25.8 shows the error message cause by a negative interest rate. The

Figure 25.7

The TestLoan appli-
cation’s form

Chapter 25 XML WEB SERVICES1092

2877c25.qxd 11/11/01 4:23 PM Page 1092

http://www.sybex.com

original error message is embedded in the Exception.Message property, but it’s a rather scary mes-
sage for the end user.

Maintaining State in Web Services
Like ASP.NET applications, Web services can also maintain state with the Application and Session
objects. By default, a Web service doesn’t maintain its state, but you can change the default behavior
by setting the EnableSession attribute of the WebMethod tag to True. Listing 25.4 shows the Get-
MyID method, which returns the ID of the current client. The program sets the ID when requested,
but this is for demonstration purposes only. You should probably set this variable when the client
goes through the authentication process.

Listing 25.4: Maintaining State with a Web Service

<WebMethod(EnableSession:=True)> Public Function GetMyID() As Guid
If Session(“MyID”) Is Nothing Then

Session(“MyID”) = Guid.NewGuid
End If
Return Session(“MyID”)

End Function

The variable MyID maintains its value through the duration of the session. You can also maintain
application-level variables with the Application object.

A Data-Driven Web Service
I’m sure you had enough with trivial examples; let’s move on to something more practical. In this
section, we’ll build a Web service that moves DataSets to the client. This is the most practical thing
you can do with Web services, and we’ll consume this service from within an ASP application, as
well as a VB application. Our Web service will expose two methods, the GetCategories and Get-
Products methods. The first DataSet contains the product categories of the Northwind database.
This is a very simple DataSet. The GetProducts method returns a DataSet with the Categories and
Products tables. As you will see, we’ll be able to bind a DataGrid control to this DataSet and display
it hierarchically on the browser.

Figure 25.8

This exception was
raised by the Web
service’s class.

1093A DATA-DRIVEN WEB SERVICE

2877c25.qxd 11/11/01 4:23 PM Page 1093

http://www.sybex.com

Start a new Web service project, name it Products, and drop the Categories and Products tables
from the Server Explorer on the Service1.asmx file’s designer surface. Two DataAdapter objects
will be created automatically, one for each table. Rename them to DACategories and DAProducts.
Then generate two DataSets, the DSCategories and DSProducts DataSets. I need not repeat the
entire process here (it’s described in detail in Chapters 21 and 22), so I’ll only show you the
SELECT statements for the two DataAdapters. The statement for the DACategories Data-
Adapter is

SELECT CategoryID, CategoryName, Description
FROM dbo.Categories

Here’s the statement for the DAProducts DataAdapter:

SELECT ProductID, ProductName, SupplierID,
CategoryID, QuantityPerUnit, UnitPrice,
UnitsInStock, UnitsOnOrder, ReorderLevel,
Discontinued

FROM dbo.Products

Once the two DataAdapters are in place, create two DataSets, the DSCategories and DSProducts
DataSets. Don’t forget to check the option Add This DataSet To The Designer on the Generate
DataSet dialog box. There should be five items on the service’s design surface: the SqlConnection1
object, the two DataAdapter objects, and one instance of each DataSet object (DSCategories1 and
DSProducts1), as shown in Figure 25.9.

Figure 25.9

Adding DataSets to
a Web service

Chapter 25 XML WEB SERVICES1094

2877c25.qxd 11/11/01 4:23 PM Page 1094

http://www.sybex.com

This is a good point to change the default name of the Web service from Service1.asmx to
Products.asmx. Changing the name of the component on the Solution Explorer isn’t adequate; for
some reason, the IDE doesn’t change the name of the class that implements the Web service. Right-
click the design surface of the service and select View Code. The second line in this class is:

Public Class Service1

and you must change it to

Public Class Products

Now add the two methods to the class, using the code from Listing 25.5.

Listing 25.5: The GetCategories and GetPRoducts Methods

<WebMethod()> Public Function GetCategories() As DataSet
DACategories.Fill(DSCategories1, “Categories”)
Return DSCategories1

End Function
<WebMethod()> Public Function GetProducts() As DataSet

DAProducts.Fill(DSProducts1, “Products”)
DACategories.Fill(DSProducts1, “Categories”)
Return DSProducts1

End Function

Each method fills the appropriate DataSet and returns it to the calling application. In our case,
the calling application is an application running remotely, but Visual Studio hides all the details
from us. We write code as if the Web service’s methods were local functions.

We have built our Web service, so let’s test it. Press F5 and, a few seconds later, you’ll see Inter-
net Explorer displaying the summary of the Products Web service. Click the GetCategories link, and
on the following page click the Invoke button (there are no arguments to specify here). You will see
the page of Figure 25.10, which shows the rows of the Categories table in XML format. Close this
window and then follow the Products hyperlink. This time you’ll see all the categories and all prod-
ucts. The Categories DataSet contains the rows of the Categories table, but the Products table con-
tains the rows of both the Categories and Products tables. The tables of the Products DataSet are
not related. You can add a relationship between the two tables in the DataSet designer, but I’ll show
you later how to add a relation in the consumer application’s code.

The Web service works. You can stop it and start building a consumer application for this serv-
ice. Testing a Web service as a stand-alone application is straightforward and helps you make sure
the Web service returns the correct result. If you want to call its method from within another appli-
cation (probably a remote application), you must deploy it on your Web server.

Select Project ➢ Copy Project, and on the dialog box that appears (shown in Figure 25.6), spec-
ify the name of the Web service’s root folder. Let’s put our Web service in the folder Merchant
under the server’s root folder.

1095A DATA-DRIVEN WEB SERVICE

2877c25.qxd 11/11/01 4:23 PM Page 1095

http://www.sybex.com

Now we’re ready to build the test applications. Let’s start with an ASP.NET Web application that
will display a single page with a DataGrid control bound to the Categories DataSet. Create a new ASP
application project to test the new Web service. The new project is called NWTest, and it’s a single
page with a DataGrid control and a Button control on it. The DataGrid’s DataSource property will
be set to the GetCategories method at runtime, every time the button is clicked. The application will
go out to the Service1 Web service, request the GetCategories method, and then bind the DataSet
returned by the method to the DataGrid1.DataSet property. Figure 25.11 shows the NWTest page
with the DataGrid populated with the categories. The appearance of the DataGrid control leaves a lot
to be desired, but you saw how to customize the control in the previous chapter.

As before, you must add a reference to the Web service through the Project ➢ Add Web Refer-
ence command. Place a DataGrid control and a Button control on the Web form, and then enter the
following code in the button’s Click event handler:

Private Sub Button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button1.Click

Dim WS As New localhost.Service1()
DataGrid1.DataSource = WS.GetCategories
DataGrid1.DataBind()

End Sub

Consuming the Products Web Service in VB
Now we’ll build a Windows application to consume the Products Web service. The .NET version
of the DataGrid control can display related tables, and we’ll take advantage of this feature of the
control. As you recall, the GetProducts method returns a DataSet that contains two tables, but no
relationship between them. The test project is called WSDataSet, and you will find it on the CD.
The main form of the application is shown in Figure 25.12.

Figure 25.10

Viewing a DataSet
on the browser

Chapter 25 XML WEB SERVICES1096

2877c25.qxd 11/11/01 4:23 PM Page 1096

http://www.sybex.com

As usual, add a reference to the Web service, then enter the code shown in Listing 25.6 behind
the Populate Grid button.

Listing 25.6: Binding a Windows DataGrid Control to a Member of a Web Service

Private Sub Button1_Click(ByVal sender As System.Object,_
ByVal e As System.EventArgs) Handles Button1.Click

Dim WS As New localhost.Service1()
Dim localDS As DataSet
localDS = WS.GetProducts

Figure 25.12

The WSDataSet
project consumes
the Products Web
service.

Figure 25.11

Binding a DataGrid
Web control to a
method of a Web
service

1097A DATA-DRIVEN WEB SERVICE

2877c25.qxd 11/11/01 4:23 PM Page 1097

http://www.sybex.com

Dim Prods As DataTable = localDS.Tables(“Products”)
Dim Cats As DataTable = localDS.Tables(“Categories”)
Dim CatProds As New DataRelation(“CategoriesProducts”, _

Cats.Columns(“CategoryID”), Prods.Columns(“CategoryID”))
localDS.Relations.Add(CatProds)
DataGrid1.DataSource = localDS

End Sub

The code first reads the data returned by the GetProducts method into a local DataSet. Then it
establishes a relationship between the two tables based on the field CategoryID, which is common to
both tables. The code then binds the DataGrid control to the DataSet by assigning the localDS vari-
able to the control’s DataSource property. If you want to bind the grid to a single table, set the con-
trol’s DataMember property to the name of the appropriate table.

The second button on the form does something even more useful: it persists the data to a local
file in XML format. The XML file can be used in another project, or move the data to a different
database. Just add the file to the project (with the Add Existing Item command of the project’s con-
text menu). To persist the data to a file, the Save Data button calls the WriteXML method of the
DataSet object:

Private Sub Button2_Click_1(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles Button2.Click

localDS.WriteXML(“c:\Products.xml”)
End Sub

Summary
Visual Studio .NET allows you to build Web services with the same tools as for regular classes that
expose methods. You’ve seen how easy it is to build Web services and how to consume them from
within Web and Windows apps. The client applications contact a URL, which consists of the name
of the server where the Web service is running, followed by the name of the service and the name of
a method. The method returns its result in XML format, and you can use it in your code as if it
were the result of a function call.

You’re already seeing the value of XML. Throughout the book, I’ve tried not to shift the focus
from VB and the visual tools to XML. Ideally, XML should be made transparent to the developer,
and as you have seen, you don’t need to know XML to create DataSets or XML Web services. It’s
good to know that there’s a format that makes it all possible, but why should we have to get down to
the details of that protocol? There are tools to manipulate XML files, but I’ve decided that the lan-
guage, the visual tools, and the framework are plenty to keep you busy for a long time. Once you
develop a solid understanding of .NET, you can move into XML and enjoy it.

Chapter 25 XML WEB SERVICES1098

2877c25.qxd 11/11/01 4:23 PM Page 1098

http://www.sybex.com

	Using Your Sybex Electronic Book
	Mastering Visual Basic .NET
	Acknowledgments
	Contents at a Glance
	Introduction
	Who Should Read This Book?
	How About the Advanced Topics?
	The Structure of the Book
	How to Reach the Author

	Chapter 1: Getting Started with VB.NET
	The Integrated Development Environment
	The Start Page
	Project Types

	Your First VB Application
	Making the Application More Robust
	Making the Application More User-Friendly

	The IDE Components
	The IDE Menu
	The Toolbox Window
	The Solution Explorer
	The Properties Window
	The Output Window
	The Command Window
	The Task List Window

	Environment Options
	A Few Common Properties
	A Few Common Events
	A Few Common Methods
	Building a Console Application
	Summary

	Chapter 2: Visual Basic Projects
	Building a Loan Calculator
	How the Loan Application Works
	Designing the User Interface
	Programming the Loan Application
	Validating the Data

	Building a Math Calculator
	Designing the User Interface
	Programming the MathCalculator App
	Adding More Features
	Exception Handling

	Taking the LoanCalculator to the Web
	Working with Multiple Forms
	Working with Multiple Projects
	Executable Files

	Distributing an Application
	VB.NET at Work: Creating a Windows Installer
	Finishing the Windows Installer
	Running the Windows Installer
	Verifying the Installation

	Summary

	Chapter 3: Visual Basic: The Language
	Variables
	Declaring Variables
	Types of Variables
	Converting Variable Types
	User-Defined Data Types
	Examining Variable Types
	Why Declare Variables?
	A Variable’s Scope
	The Lifetime of a Variable

	Constants
	Arrays
	Declaring Arrays
	Initializing Arrays
	Array Limits
	Multidimensional Arrays
	Dynamic Arrays
	Arrays of Arrays

	Variables as Objects
	So, What’s an Object?
	Formatting Numbers
	Formatting Dates

	Flow-Control Statements
	Test Structures
	Loop Structures
	Nested Control Structures
	The Exit Statement

	Summary

	Chapter 4: Writing and Using Procedures
	Modular Coding
	Subroutines
	Functions
	Calling Functions and ubroutines

	Arguments
	Argument-Passing Mechanisms
	Event-Handler Arguments
	Passing an Unknown Number of Arguments
	Named Arguments
	More Types of Function Return Values
	Overloading Functions

	Summary

	Chapter 5: Working with Forms
	The Appearance of Forms
	Properties of the Form Control
	Placing Controls on Forms
	Setting the TabOrder
	VB.NET at Work: The Contacts Project
	Anchoring and Docking
	The Form's Events

	Loading and Showing Forms
	The Startup Form
	Controlling One Form from within Another
	Forms vs. Dialog Boxes
	VB.NET at Work: The MultipleForms Project

	Designing Menus
	The Menu Editor
	The MenuItem Object's Properties
	Manipulating Menus at Runtime
	Iterating a Menu's Items

	Building Dynamic Forms at Runtime
	The Form.Controls Collection
	VB.NET at Work: The DynamicForm Project
	Creating Event Handlers at Runtime

	Summary

	Chapter 6: Basic Windows Controls
	The TextBox Control
	Basic Properties
	Text-Manipulation Properties
	Text-Selection Properties
	Text-Selection Methods
	Undoing Edits
	VB.NET at Work: The TextPad Project
	Capturing Keystrokes

	The ListBox, CheckedListBox, and ComboBox Controls
	Basic Properties
	The Items Collection
	VB.NET at Work: The ListDemo Project
	Searching
	The ComboBox Control

	The ScrollBar and TrackBar Controls
	The ScrollBar Control
	The TrackBar Control

	Summary

	Chapter 7: More Windows Controls
	The Common Dialog Controls
	Using the Common Dialog Controls
	The Color Dialog Box
	The Font Dialog Box
	The Open and Save As Dialog Boxes
	The Print Dialog Box

	The RichTextBox Control
	The RTF Language
	The RichTextBox's Properties
	Methods
	Advanced Editing Features
	Cutting and Pasting
	Searching in a RichTextBox Control
	Formatting URLs
	VB.NET at Work: The RTFPad Project

	Summary

	Chapter 8: Building Custom Classes
	What Is a Class?
	Building the Minimal Class
	Adding Code to the Minimal Class
	Property Procedures
	Customizing Default Members
	Custom Enumerations
	Using the SimpleClass in Other Projects
	Firing Events
	Shared Properties

	A "Real" Class
	Parsing a Filename String
	Reusing the StringTools Class
	VB:NET at Work: The ClassContacts Project
	Encapsulation and Abstraction

	Inheritance
	Inheriting Existing Classes

	Polymorphism
	The Shape Class
	Object Constructors and Destructors
	Instance and Shared Methods

	Who Can Inherit What?
	Parent Class Keywords
	Derived Class Keyword
	Parent Class Member Keywords
	Derived Class Member Keyword
	MyBase and MyClass
	VB:NET at Work: The Matrix Class

	Summary

	Chapter 9: Building Custom Windows Controls
	On Designing Windows Controls
	Enhancing Existing Controls
	Building the FocusedTextBox Control

	Building Compound Controls
	VB.NET at Work: The ColorEdit Control

	Building User- Drawn Controls
	VB.NET at Work: The Label3D Control
	Raising Events
	Using the Custom Control in Other Projects
	VB.NET at Work: The Alarm Control

	Designing Irregularly Shaped Controls
	Building Owner- Drawn Controls
	Designing Owner-Drawn Menus
	Designing Owner-Drawn ListBox Controls

	Using ActiveX Controls
	Summary

	Chapter 10: Automating Microsoft Office Applications
	Programming Word
	Objects That Represent Text
	The Documents Collection and the Document Object
	Spell-Checking Documents

	Programming Excel
	The Worksheets Collection and the Worksheet Object
	The Range Object
	Using Excel as a Math Parser

	Programming Outlook
	Retrieving Information
	Recursive Scanning of the Contacts Folder

	Summary

	Chapter 11: Storing Data in Collections
	Advanced Array Topics
	Sorting Arrays
	Searching Arrays
	Other Array Operations
	Array Limitations

	The ArrayList Collection
	Creating an ArrayList
	Adding and Removing Items

	The HashTable Collection
	VB.NET at Work: The WordFrequencies Project

	The SortedList Class
	The IEnumerator and IComparer Interfaces
	Enumerating Collections
	Custom Sorting
	Custom Sorting of a SortedList

	The Serialization Class
	Serializing Individual Objects
	Serializing a Collection
	Deserializing Objects

	Summary

	Chapter 12: Handling Strings, Characters, and Dates
	Handling Strings and Characters
	The Char Class
	The String Class
	The StringBuilder Class
	VB.NET at Work: The StringReversal Project
	VB.NET at Work: The CountWords Project

	Handling Dates
	The DateTime Class
	The TimeSpan Class
	VB.NET at Work: Timing Operations

	Summary

	Chapter 13: Working with Folders and Files
	Accessing Folders and Files
	The Directory Class
	The File Class
	The DirectoryInfo Class
	The FileInfo Class
	The Path Class
	VB.NET at Work: The CustomExplorer Project

	Accessing Files
	The FileStream Object
	The StreamWriter Object
	The StreamReader Object
	Sending Data to a File
	The BinaryWriter Object
	The BinaryReader Object
	VB.NET at Work: The RecordSave Project

	The FileSystemWatcher Component
	Properties
	Events
	VB.NET at Work: The FileSystemWatcher Project

	Summary

	Chapter 14: Drawing and Painting with Visual Basic
	Displaying Images
	The Image Object
	Exchanging Images through the Clipboard

	Drawing with GDI+
	The Basic Drawing Objects
	Drawing Shapes
	Drawing Methods
	Gradients

	Coordinate Transformations
	Specifying Transformations
	VB.NET at Work: Plotting Functions

	Bitmaps
	Specifying Colors
	Defining Colors
	Processing Bitmaps

	Summary

	Chapter 15: Printing with VB.NET
	The Printing Objects
	PrintDocument
	PrintDialog
	PageSetupDialog
	PrintPreviewDialog
	PrintPreviewControl

	Printer and Page Properties
	Page Geometry

	Printing Examples
	Printing Tabular Data
	Printing Plain Text
	Printing Bitmaps
	Using the PrintPreviewControl

	Summary

	Chapter 16: The TreeView and ListView Controls
	Examining the Advanced Controls
	How Tree Structures Work
	The ImageList Control

	The TreeView Control
	Adding New Items at Design Time
	Adding New Items at Runtime
	Assigning Images to Nodes
	Scanning the TreeView Control

	The ListView Control
	The Columns Collection
	The ListItem Object
	The Items Collection
	The SubItems Collection

	Saving a Tree's Nodes to Disk
	Summary

	Chapter 17: Error Handling and Debugging
	Types of Errors
	Design-Time Errors
	Runtime Errors
	Logic Errors

	Exceptions and Structured Exception Handling
	Studying an Exception
	Getting a Handle on this Exception
	Finally (!)
	Customizing Exception Handling
	Throwing Your Own Exceptions

	Debugging
	Breakpoints
	Stepping Through
	The Local and Watch Windows

	Summary

	Chapter 18: Recursive Programming
	Basic Concepts
	Recursion in Real Life
	A Simple Example
	Recursion by Mistake

	Scanning Folders Recursively
	Describing a Recursive Procedure
	Translating the Description to Code

	The Stack Mechanism
	Stack Defined
	Recursive Programming and the Stack
	Passing Arguments through the Stack

	Special Issues in Recursive Programming
	It's Easy to Write a Never-Ending Program
	Knowing When to Use Recursive Programming

	Summary

	Chapter 19: The Multiple Document Interface
	MDI Applications: The Basics
	Building an MDI Application
	Built-In Capabilities of MDI Applications
	Accessing Child Forms
	Ending an MDI Application

	A Scrollable PictureBox
	Summary

	Chapter 20: Databases: Architecture and Basic Concepts
	What Is a Database?
	Relational Databases
	Exploring the Northwind Database
	Exploring the Pubs Database
	Understanding Relations

	The Server Explorer
	Working with Tables
	Relationships, Indices, and Constraints

	Structured Query Language
	Executing SQL Statements
	Selection Queries
	Calculated Fields
	SQL Joins
	Action Queries

	The Query Builder
	The Query Builder Interface
	SQL at Work: Calculating Sums
	SQL at Work: Counting Rows
	Limiting the Selection
	Parameterized Queries
	Calculated Columns
	Specifying Left, Right, and Inner Joins

	Stored Procedures
	Summary

	Chapter 21: Building Database Applications with ADO. NET
	The Architecture of ADO. NET
	How About XML?

	Creating a DataSet
	The DataGrid Control

	Data Binding
	VB.NET at Work: The ViewEditCustomers Project
	Binding Complex Controls

	Programming the DataAdapter Object
	The Command Objects

	The Command and DataReader Objects
	VB.NET at Work: The DataReader Project
	VB.NET at Work: The StoredProcedure Project

	Summary

	Chapter 22: Programming the ADO. NET Objects
	The Structure of a DataSet
	Navigating the Tables of a DataSet
	Updating DataSets

	The DataForm Wizard
	Handling Identity Fields

	Transactions
	Performing Update Operations
	A DataRow's Versions
	A DataRow's States
	Updating Tables Manually

	Building and Using Custom DataSets
	Summary

	Chapter 23: Introduction to Web Programming
	An HTML Primer
	HTML Code Elements
	Server-Client Interaction
	The Structure of HTML Documents
	URLs and Hyperlinks
	The Basic HTML Tags
	Inserting Graphics
	Tables
	Forms and Controls
	Processing Requests on the Server

	Building a Web Application
	Interacting with a Web Application
	Maintaining State
	The Web Controls

	The ASP.NET Objects
	The Page Object
	The Response Object
	The Request Object
	The Server Object

	Using Cookies
	Handling Multiple Forms in Web Applications
	Summary

	Chapter 24: Accessing Data on the Web
	The Data-Bound Web Controls
	Simple Data Binding
	Binding to DataSets
	Is It a Grid, or a Table?

	Getting Orders on the Web
	The Forms of the ProductSearch Application
	Paging Large DataSets

	A Master/ Detail Web Page
	Customizing the Appearance of the DataGrid Control
	Programming the Select Button

	Summary

	Chapter 25: XML Web Services
	How to Serve the Web
	Building a Web Service
	Consuming the Web Service

	ASP. NET Web Service Projects
	Maintaining State in Web Services

	A Data-Driven Web Service
	Consuming the Products Web Service in VB

	Summary

	link:
	copyright: Copyright ©2002 SYBEX, Inc., Alameda, CA
	start:

