
 7-1

Learn Visual Basic 6.0

7. Graphics Techniques with Visual Basic

Review and Preview

 In past classes, we've used some graphics tools: line tools, shape tools,
image boxes, and picture boxes. In this class, we extend our graphics
programming skills to learn how to draw lines and circles, do drag and drop,
perform simple animation, and study some basic plotting routines.

Graphics Methods

 Graphics methods apply to forms and picture boxes (remember a picture box
is like a form within a form). With these methods, we can draw lines, boxes,
and circles. Before discussing the commands that actually perform the

graphics drawing, though, we need to look at two other topics: screen

management and screen coordinates.

 In single program environments (DOS, for example), when something is drawn
on the screen, it stays there. Windows is a multi-tasking environment. If you
switch from a Visual Basic application to some other application, your Visual
Basic form may become partially obscured. When you return to your Visual
Basic application, you would like the form to appear like it did before being
covered. All controls are automatically restored to the screen. Graphics
methods drawings may or may not be restored - we need them to be, though.

To accomplish this, we must use proper screen management.

 The simplest way to maintain graphics is to set the form or picture box's

AutoRedraw property to True. In this case, Visual Basic always maintains a

copy of graphics output in memory (creates persistent graphics). Another
way to maintain drawn graphics is (with AutoRedraw set to False) to put all

graphics commands in the form or picture box's Paint event. This event is
called whenever an obscured object becomes unobscured. There are
advantages and disadvantages to both approaches (beyond the scope of
discussion here). For now, we will assume our forms won't get obscured and,
hence, beg off the question of persistent graphics and using the AutoRedraw
property and/or Paint event.

7-2 Learn Visual Basic 6.0

 All graphics methods described here will use the default coordinate system:

Note the x (horizontal) coordinate runs from left to right, starting at 0 and

extending to ScaleWidth - 1. The y (vertical) coordinate goes from top to

bottom, starting at 0 and ending at ScaleHeight - 1. Points in this coordinate

system will always be referred to by a Cartesian pair, (x, y). Later, we will see
how we can use any coordinate system we want.

ScaleWidth and ScaleHeight are object properties representing the “graphics”
dimensions of an object. Due to border space, they are not the same as the
Width and Height properties. For all measurements in twips (default
coordinates), ScaleWidth is less than Width and ScaleHeight is less than
Height. That is, we can’t draw to all points on the form.

 PSet Method:

To set a single point in a graphic object (form or picture box) to a particular

color, use the PSet method. We usually do this to designate a starting point
for other graphics methods. The syntax is:

ObjectName.PSet (x, y), Color

where ObjectName is the object name, (x, y) is the selected point, and Color
is the point color (discussed in the next section). If the ObjectName is omitted,
the current form is assumed to be the object. If Color is omitted, the object's

ForeColor property establishes the color. PSet is usually used to initialize
some further drawing process.

ScaleWidth

(0, 0)

Scale
Height

y

x

 Graphics Techniques with Visual Basic 7-3

 Pset Method Example:

This form has a ScaleWidth of 3975 (Width 4095) and a ScaleHeight of 2400
(Height 2805). The command:

PSet (1000, 500)

will have the result:

The marked point (in color ForeColor, black in this case) is pointed to by the
Cartesian coordinate (1000, 500) - this marking, of course, does not appear on
the form. If you want to try this example, and the other graphic methods, put
the code in the Form_Click event. Run the project and click on the form to see
the results (necessary because of the AutoRedraw problem).

 CurrentX and CurrentY:

After each drawing operation, the coordinate of the last point drawn to is

maintained in two Visual Basic system variables, CurrentX and CurrentY.
This way we always know where the next drawing operation will begin. We
can also change the values of these variables to move this last point. For
example, the code:

CurrentX = 1000
CurrentY = 500

is equivalent to:

PSet(1000, 500)

(1000, 500)

4095

3975

2805

2400

7-4 Learn Visual Basic 6.0

 Line Method:

The Line method is very versatile. We can use it to draw line segments,
boxes, and filled boxes. To draw a line, the syntax is:

ObjectName.Line (x1, y1) - (x2, y2), Color

where ObjectName is the object name, (x1, y1) the starting coordinate, (x2,

y2) the ending coordinate, and Color the line color. Like PSet, if ObjectName
is omitted, drawing is done to the current form and, if Color is omitted, the

object’s ForeColor property is used.

To draw a line from (CurrentX, CurrentY) to (x2, y2), use:

ObjectName.Line - (x2, y2), Color

There is no need to specify the start point since CurrentX and CurrentY are
known.

To draw a box bounded by opposite corners (x1, y1) and (x2, y2), use:

ObjectName.Line (x1, y1) - (x2, y2), Color, B

and to fill that box (using the current FillPattern), use:

ObjectName.Line (x1, y1) - (x2, y2), Color, BF

 Graphics Techniques with Visual Basic 7-5

 Line Method Examples:

Using the previous example form, the commands:

Line (1000, 500) - (3000, 2000)
Line - (3000, 1000)

draws these line segments:

The command:

Line (1000, 500) - (3000, 2000), , B

draws this box (note two commas after the second coordinate - no color is
specified):

(3000, 2000)

(3000,2000)

(1000, 500)

(1000, 500)

(3000, 1000)

7-6 Learn Visual Basic 6.0

 Circle Method:

The Circle method can be used to draw circles, ellipses, arcs, and pie slices.
We'll only look at drawing circles - look at on-line help for other drawing
modes. The syntax is:

ObjectName.Circle (x, y), r, Color

This command will draw a circle with center (x, y) and radius r, using Color.

 Circle Example:

With the same example form, the command:

Circle (2000, 1000), 800

produces the result:

 Print Method:

Another method used to 'draw' to a form or picture box is the Print method.
Yes, for these objects, printed text is drawn to the form. The syntax is:

ObjectName.Print [information to print]

Here the printed information can be variables, text, or some combination. If no
object name is provided, printing is to the current form.

Information will print beginning at the object's CurrentX and CurrentY value.

The color used is specified by the object's ForeColor property and the font is

specified by the object's Font characteristics.

(2000, 1000)

800

 Graphics Techniques with Visual Basic 7-7

 Print Method Example:

The code (can’t be in the Form_Load procedure because of that pesky
AutoRedraw property):

CurrentX=200
CurrentY=200
Print "Here is the line of text"

will produce this result (I’ve used a large font):

 Cls Method:

 To clear the graphics drawn to an object, use the Cls method. The syntax is:

 ObjectName.Cls

 If no object name is given, the current form is cleared. Recall Cls only clears

the lowest of the three display layers. This is where graphics methods draw.

 For each graphic method, line widths, fill patterns, and other graphics features
can be controlled via other object properties. Consult on-line help for further
information.

7-8 Learn Visual Basic 6.0

Using Colors

 Notice that all the graphics methods can use a Color argument. If that

argument is omitted, the ForeColor property is used. Color is actually a
hexadecimal (long integer) representation of color - look in the Properties
Window at some of the values of color for various object properties. So, one
way to get color values is to cut and paste values from the Properties Window.
There are other ways, though.

 Symbolic Constants:

Visual Basic offers eight symbolic constants (see Appendix I) to represent

some basic colors. Any of these constants can be used as a Color argument.

Constant Value Color
vbBlack 0x0 Black
vbRed 0xFF Red
vbGreen 0xFF00 Green
vbYellow 0xFFFF Yellow
vbBlue 0xFF0000 Blue
vbMagenta 0xFF00FF Magenta
vbCyan 0xFFFF00 Cyan
vbWhite 0xFFFFFF White

 QBColor Function:

For Microsoft QBasic, GW-Basic and QuickBasic programmers, Visual Basic

replicates the sixteen most used colors with the QBColor function. The color
is specified by QBColor(Index), where the colors corresponding to the Index
are:

Index Color Index Color
0 Black 8 Gray
1 Blue 9 Light blue
2 Green 10 Light green
3 Cyan 11 Light cyan
4 Red 12 Light red
5 Magenta 13 Light magenta
6 Brown 14 Yellow
7 White 15 Light (bright) white

 Graphics Techniques with Visual Basic 7-9

 RGB Function:

The RGB function can be used to produce one of 2
24

 (over 16 million) colors!
The syntax for using RGB to specify the color property is:

RGB(Red, Green, Blue)

where Red, Green, and Blue are integer measures of intensity of the
corresponding primary colors. These measures can range from 0 (least
intensity) to 255 (greatest intensity). For example, RGB(255, 255, 0) will
produce yellow.

 Any of these four representations of color can be used anytime your Visual
Basic code requires a color value.

 Color Examples:

frmExample.BackColor = vbGreen
picExample.FillColor = QBColor(3)
lblExample.ForeColor = RGB(100, 100, 100)

7-10 Learn Visual Basic 6.0

Mouse Events

 Related to graphics methods are mouse events. The mouse is a primary
interface to performing graphics in Visual Basic. We've already used the

mouse to Click and DblClick on objects. Here, we see how to recognize other
mouse events to allow drawing in forms and picture boxes.

 MouseDown Event:

The MouseDown event procedure is triggered whenever a mouse button is
pressed while the mouse cursor is over an object. The form of this procedure
is:

Sub ObjectName_MouseDown(Button As Integer, Shift As Integer, X As
Single, Y As Single)
 .
 .
End Sub

The arguments are:

Button Specifies which mouse button was pressed.

Shift Specifies state of Shift, Ctrl, and Alt keys.

X, Y Coordinate of mouse cursor when button was
pressed.

Values for the Button argument are:

Symbolic Constant Value Description
vbLeftButton 1 Left button is pressed.
vbRightButton 2 Right button is pressed.
vbMiddleButton 4 Middle button is pressed.

Only one button press can be detected by the MouseDown event. Values for
the Shift argument are:

Symbolic Constant Value Description
vbShiftMask 1 Shift key is pressed.
vbCtrlMask 2 Ctrl key is pressed.
vbAltMask 4 Alt key is pressed.

The Shift argument can represent multiple key presses. For example, if Shift =
5 (vbShiftMask + vbAltMask), both the Shift and Alt keys are being pressed
when the MouseDown event occurs.

 Graphics Techniques with Visual Basic 7-11

 MouseUp Event:

The MouseUp event is the opposite of the MouseDown event. It is triggered
whenever a previously pressed mouse button is released. The procedure
outline is:

Sub ObjectName_MouseUp(Button As Integer, Shift As Integer, X As
Single, Y As Single)
 .
 .
End Sub

The arguments are:

Button Specifies which mouse button was released.

Shift Specifies state of Shift, Ctrl, and Alt keys.

X, Y Coordinate of mouse cursor when button was
released.

The Button and Shift constants are the same as those for the MouseDown
event.

 MouseMove Event:

The MouseMove event is continuously triggered whenever the mouse is being
moved. The procedure outline is:

Sub ObjectName_MouseMove(Button As Integer, Shift As Integer, X As
Single, Y As Single)
 .
 .
End Sub

The arguments are:

Button Specifies which mouse button(s), if any, are
pressed.

Shift Specifies state of Shift, Ctrl, and Alt keys

X, Y Current coordinate of mouse cursor

7-12 Learn Visual Basic 6.0

The Button and Shift constants are the same as those for the MouseDown
event. A difference here is that the Button argument can also represent
multiple button presses or no press at all. For example, if Button = 0, no
button is pressed as the mouse is moved. If Button = 3 (vbLeftButton +
vbRightButton), both the left and right buttons are pressed while the mouse is
being moved.

 Graphics Techniques with Visual Basic 7-13

Example 7-1

Blackboard

1. Start a new application. Here, we will build a blackboard we can scribble on

with the mouse (using colored ‘chalk’).

2. Set up a simple menu structure for your application using the Menu Editor.

The menu should be:

 File
 New

 Exit

 Properties for these menu items should be:

 Caption Name
 &File mnuFile
 &New mnuFileNew
 - mnuFileSep
 E&xit mnuFileExit

3. Put a picture box and a single label box (will be used to set color) on the form.

Set the following properties:

 Form1:
 BorderStyle 1-Fixed Single
 Caption Blackboard
 Name frmDraw

 Picture1:
 Name picDraw

 Label1:
 BorderStyle 1-Fixed Single
 Caption [Blank]
 Name lblColor

7-14 Learn Visual Basic 6.0

 The form should look something like this:

4. Now, copy and paste the label box (create a control array named lblColor)
until there are eight boxes on the form, lined up vertically under the original
box. When done, the form will look just as above, except there will be eight
label boxes.

5. Type these lines in the general declarations area. DrawOn will be used to
indicate whether you are drawing or not.

 Option Explicit

 Dim DrawOn As Boolean

 Graphics Techniques with Visual Basic 7-15

6. Attach code to each procedure.

 The Form_Load procedure loads colors into each of the label boxes to allow

choice of drawing color. It also sets the BackColor to black and the

ForeColor to Bright White.

 Private Sub Form_Load()

 'Load drawing colors into control array

 Dim I As Integer

 For I = 0 To 7

 lblColor(I).BackColor = QBColor(I + 8)

 Next I

 picDraw.ForeColor = QBColor(15) ‘ Bright White

 picDraw.BackColor = QBColor(0) ‘ Black

 End Sub

 In the mnuFileNew_Click procedure, we check to see if the user really wants

to start over. If so, the picture box is cleared with the Cls method.

 Private Sub mnuFileNew_Click()

 'Make sure user wants to start over

 Dim Response As Integer

 Response = MsgBox("Are you sure you want to start a new

drawing?", vbYesNo + vbQuestion, "New Drawing")

 If Response = vbYes Then picDraw.Cls

 End Sub

 In the mnuFileExit_Click procedure, make sure the user really wants to stop
the application.

 Private Sub mnuFileExit_Click()

 'Make sure user wants to quit

 Dim Response As Integer

 Response = MsgBox("Are you sure you want to exit the

Blackboard?", vbYesNo + vbCritical + vbDefaultButton2,

"Exit Blackboard")

 If Response = vbYes Then End

 End Sub

7-16 Learn Visual Basic 6.0

 When the left mouse button is clicked, drawing is initialized at the mouse

cursor location in the picDraw_MouseDown procedure.

 Private Sub picDraw_MouseDown(Button As Integer, Shift As

Integer, X As Single, Y As Single)

 'Drawing begins

 If Button = vbLeftButton Then

 DrawOn = True

 picDraw.CurrentX = X

 picDraw.CurrentY = Y

 End If

 End Sub

 When drawing ends, the DrawOn switch is toggled in picDraw_MouseUp.

 Private Sub picDraw_MouseUp(Button As Integer, Shift As

Integer, X As Single, Y As Single)

 'Drawing ends

 If Button = vbLeftButton Then DrawOn = False

 End Sub

 While mouse is being moved and DrawOn is True, draw lines in current color

in the picDraw_MouseMove procedure.

 Private Sub picDraw_MouseMove(Button As Integer, Shift As

Integer, X As Single, Y As Single)

 'Drawing continues

 If DrawOn Then picDraw.Line -(X, Y), picDraw.ForeColor

 End Sub

 Finally, when a label box is clicked, the drawing color is changed in the

lblColor_Click procedure.

 Private Sub lblColor_Click(Index As Integer)

 'Make audible tone and reset drawing color

 Beep

 picDraw.ForeColor = lblColor(Index).BackColor

 End Sub

7. Run the application. Click on the label boxes to change the color you draw

with. Fun, huh? Save the application.

 Graphics Techniques with Visual Basic 7-17

8. A challenge for those who like challenges. Add Open and Save options that
allow you to load and save pictures you draw. Suggested steps (may take a
while - I suggest trying it outside of class):

A. Change the picture box property AutoRedraw to True. This is
necessary to save pictures. You will notice the drawing process

slows down to accommodate persistent graphics.

B. Add the Open option. Write code that brings up a common dialog
box to get a filename to open (will be a .bmp file) and put that picture

in the picDraw.Picture property using the LoadPicture function.

C. Add the Save option. Again, add code to use a common dialog box

to get a proper filename. Use the SavePicture method to save the

Image property of the picDraw object. We save the Image property,
not the Picture property, since this is where Visual Basic maintains
the persistent graphics.

D. One last change. The Cls method in the mnuFileNew_Click code
will not clear a picture loaded in via the Open code (has to do with
using AutoRedraw). So, replace the Cls statement with code that

manually erases the picture box. I'd suggest using the BF option of

the Line method to simply fill the space with a box set equal to the
BackColor (white). I didn't say this would be easy.

7-18 Learn Visual Basic 6.0

Drag and Drop Events

 Related to mouse events are drag and drop events. This is the process of
using the mouse to pick up some object on a form and move it to another
location. We use drag and drop all the time in Visual Basic design mode to
locate objects on our application form.

 Drag and drop allows you to design a simple user interface where tasks can be
performed without commands, menus, or buttons. Drag and drop is very
intuitive and, at times, faster than other methods. Examples include dragging
a file to another folder or dragging a document to a printer queue.

 Any Visual Basic object can be dragged and dropped, but we usually use

picture and image boxes. The item being dragged is called the source

object. The item being dropped on (if there is any) is called the target.

 Object Drag Properties:

If an object is to be dragged, two properties must be set:

DragMode Enables dragging of an object (turns off ability to
receive Click or MouseDown events). Usually use

1-Automatic (vbAutomatic).

DragIcon Specifies icon to display as object is being dragged.

As an object is being dragged, the object itself does not move, only the

DragIcon. To move the object, some additional code using the Move method
(discussed in a bit) must be used.

 DragDrop Event:

 The DragDrop event is triggered whenever the source object is dropped on
the target object. The procedure form is:

 Sub ObjectName_DragDrop(Source As Control, X As Single, Y As Single)
 .
 .
 End Sub

 The arguments are:

 Source Object being dragged.

 X, Y Current mouse cursor coordinates.

 Graphics Techniques with Visual Basic 7-19

 DragOver Event:

The DragOver event is triggered when the source object is dragged
over another object. Its procedure form is:

Private Sub ObjectName_DragOver(Source As Control, X As Single,
Y As Single, State As Integer)
 .
 .
End Sub

The first three arguments are the same as those for the DragDrop event. The

State argument tells the object where the source is. Its values are 0-Entering

(vbEnter), 1-Leaving (vbLeave), 2-Over (vbOver).

 Drag and Drop Methods:

Drag Starts or stops manual dragging (won't be addressed
here - we use Automatic dragging)

Move Used to move the source object, if desired.

Example

To move the source object to the location specified by coordinates X and Y,
use:

Source.Move X, Y

The best way to illustrate the use of drag and drop is by example.

7-20 Learn Visual Basic 6.0

Example 7-2

Letter Disposal

1. We'll build a simple application of drag and drop where unneeded

correspondence is dragged and dropped into a trash can. Start a new
application. Place four image boxes and a single command button on the
form. Set these properties:

 Form1:
 BackColor White
 BorderStyle 1-Fixed Single
 Caption Letter Disposal
 Name frmDispose

 Command1:
 Caption &Reset
 Name cmdReset

 Image1:
 Name imgCan
 Picture trash01.ico
 Stretch True

 Image2:
 Name imgTrash
 Picture trash01.ico
 Visible False

 Image3:
 Name imgBurn
 Picture trash02b.ico
 Visible False

 Image4:
 DragIcon drag1pg.ico
 DragMode 1-Automatic
 Name imgLetter
 Picture mail06.ico
 Stretch True

 Graphics Techniques with Visual Basic 7-21

 The form will look like this:

 Some explanation about the images on this form is needed. The letter image

is the control to be dragged and the trash can (at Image1 location) is where it
will be dragged to. The additional images (the other trash can and burning
can) are not visible at run-time and are used to change the state of the trash
can, when needed. We could load these images from disk files at run-time,
but it is much quicker to place them on the form and hide them, then use them
when required.

2. The code here is minimal. The Form_DragDrop event simply moves the letter
image if it is dropped on the form.

 Private Sub Form_DragDrop(Source As Control, X As Single,

Y As Single)

 Source.Move X, Y

 End Sub

3. The imgCan_DragDrop event changes the trash can to a burning pyre if the
letter is dropped on it.

 Private Sub imgCan_DragDrop(Index As Integer, Source As

Control, X As Single, Y As Single)

 'Burn mail and make it disappear

 imgCan.Picture = imgBurn.Picture

 Source.Visible = False

 End Sub

Image1

Image2

Image4

Image3

7-22 Learn Visual Basic 6.0

4. The cmdReset_Click event returns things to their original state.

 Private Sub cmdReset_Click()

 'Reset to trash can picture

 imgCan.Picture = imgTrash.Picture

 imgLetter.Visible = True

 End Sub

5. Save and run the application. Notice how only the drag icon moves. Notice

the letter moves once it is dropped. Note, too, that the letter can be dropped
anywhere. The fire appears only when it is dropped in the trash.

 Graphics Techniques with Visual Basic 7-23

Timer Tool and Delays

 Many times, especially in using graphics, we want to repeat certain operations

at regular intervals. The timer tool allows such repetition. The timer tool does
not appear on the form while the application is running.

 Timer tools work in the background, only being invoked at time intervals you
specify. This is multi-tasking - more than one thing is happening at a time.

 Timer Properties:

Enabled Used to turn the timer on and off. When on, it
continues to operate until the Enabled property is
set to False.

Interval Number of milliseconds between each invocation of
the Timer Event.

 Timer Events:

The timer tool only has one event, Timer. It has the form:

Sub TimerName_Timer()
 .
 .
End Sub

This is where you put code you want repeated every Interval seconds.

 Timer Example:

To make the computer beep every second, no matter what else is going on,

you add a timer tool (named timExample) to the form and set the Interval
property to 1000. That timer tool's event procedure is then:

Sub timExample_Timer()
Beep
End Sub

 In complicated applications, many timer tools are often used to control
numerous simultaneous operations. With experience, you will learn the
benefits and advantages of using timer tools.

7-24 Learn Visual Basic 6.0

 Simple Delays:

If you just want to use a simple delay in your Visual Basic application, you

might want to consider the Timer function. This is not related to the Timer
tool. The Timer function simply returns the number of seconds elapsed since
midnight.

To use the Timer function for a delay of Delay seconds (the Timer function
seems to be accurate to about 0.1 seconds, at best), use this code segment:

Dim TimeNow As Single
 .
 .
TimeNow = Timer
Do While Timer - TimeNow < Delay
Loop

One drawback to this kind of coding is that the application cannot be
interrupted while in the Do loop. So, keep delays to small values.

Animation Techniques

 One of the more fun things to do with Visual Basic programs is to create

animated graphics. We'll look at a few simple animation techniques here. I'm
sure you'll come up with other ideas for animating your application.

 One of the simplest animation effects is achieved by toggling between two

images. For example, you may have a picture of a stoplight with a red light.
By quickly changing this picture to one with a green light, we achieve a

dynamic effect - animation. Picture boxes and image boxes are used to
achieve this effect.

 Another approach to animation is to rotate through several pictures - each a
slight change in the previous picture - to obtain a longer animation. This is the
principle motion pictures are based on - pictures are flashed by us at 24
frames per second and our eyes are tricked into believing things are smoothly

moving. Control arrays are usually used to achieve this type of animation.

 More elaborate effects can be achieved by moving an image while, at the
same, time changing the displayed picture. Effects such as a little guy walking

across the screen are easily achieved. An object is moved using the Move

method. You can do both absolute and relative motion (using an object's Left

and Top properties).

 Graphics Techniques with Visual Basic 7-25

For example, to move a picture box named picExample to the coordinate
(100, 100), use:

picExample.Move 100, 100

To move it 20 twips to the right and 50 twips down, use:

picExample.Move picExample.Left + 20, picExample.Top + 50

Quick Example: Simple Animation

1. Start a new application. Place three image boxes on the form. Set the

following properties:

 Image1:
 Picture mail02a.ico
 Visible False

 Image2:
 Picture mail02b.ico
 Visible False

 Image3:
 Picture mail02a.ico
 Stretch True

 Make Image3 larger than default size, using the ‘handles.’

 A few words about what we're going to do. Image1 holds a closed envelope,

while Image2 holds an opened one. These images are not visible - they will

be selected for display in Image3 (which is visible) as Image3 is clicked. (This
is similar to hiding things in the drag and drop example.) It will seem the
envelope is being torn opened, then repaired.

2. Attach the following code to the Image3_Click procedure.

 Private Sub Image3_Click()

 Static PicNum As Integer

 If PicNum = 0 Then

 Image3.Picture = Image2.Picture : PicNum = 1

 Else

 Image3.Picture = Image1.Picture : PicNum = 0

 End If

 End Sub

7-26 Learn Visual Basic 6.0

 When the envelope is clicked, the image displayed in Image3 is toggled

(based on the value of the static variable PicNum).

3. Run and save the application.

Quick Example: Animation with the Timer Tool

1. In this example, we cycle through four different images using timer controlled

animation. Start a new application. Put two image boxes, a timer tool, and a
command button on the form. Set these properties:

 Image1:
 Picture trffc01.ico
 Visible False

 Now copy and paste this image box three times, so there are four elements

in the Image1 control array. Set the Picture properties of the other three
elements to:

 Image1(1):
 Picture trffc02.ico

 Image1(2):
 Picture trffc03.ico

 Image1(3):
 Picture trffc04.ico

 Image2:
 Picture trffc01.ico
 Stretch True

 Command1:
 Caption Start/Stop

 Timer1:
 Enabled False
 Interval 200

 Graphics Techniques with Visual Basic 7-27

 The form should resemble this:

2. Attach this code to the Command1_Click procedure.

 Private Sub Command1_Click()

 Timer1.Enabled = Not (Timer1.Enabled)

 End Sub

 The timer is turned on or off each time this code is invoked.

3. Attach this code to the Timer1_Timer procedure.

 Private Sub Timer1_Timer()

 Static PicNum As Integer

 PicNum = PicNum + 1

 If PicNum > 3 Then PicNum = 0

 Image2.Picture = Image1(PicNum).Picture

 End Sub

 This code changes the image displayed in the Image2 box, using the static

variable PicNum to keep track of what picture is next.

4. Save and run the application. Note how the timer tool and the four small icons

do not appear on the form at run-time. The traffic sign appears to be spinning,
with the display updated by the timer tool every 0.2 seconds (200
milliseconds).

5. You can make the sign ‘walk off’ one side of the screen by adding this line

after setting the Picture property:

Image2.Move Image2.Left + 150

7-28 Learn Visual Basic 6.0

Random Numbers (Revisited) and Games

 Another fun thing to do with Visual Basic is to create games. You can write
games that you play against the computer or against another opponent.

 To introduce chaos and randomness in games, we use random numbers.
Random numbers are used to have the computer roll a die, spin a roulette
wheel, deal a deck of cards, and draw bingo numbers. Visual Basic develops

random numbers using its built-in random number generator.

 Randomize Statement:

The random number generator in Visual Basic must be seeded. A Seed value

initializes the generator. The Randomize statement is used to do this:

Randomize Seed

If you use the same Seed each time you run your application, the same
sequence of random numbers will be generated. To insure you get different
numbers every time you use your application (preferred for games), use the

Timer function to seed the generator:

Randomize Timer

With this, you will always obtain a different sequence of random numbers,
unless you happen to run the application at exactly the same time each day.

 Rnd Function:

The Visual Basic function Rnd returns a single precision, random number
between 0 and 1 (actually greater than or equal to 0 and less than 1). To
produce random integers (I) between Imin and Imax (again, what we usually
do in games), use the formula:

I = Int((Imax - Imin + 1) * Rnd) + Imin

 Rnd Example:

To roll a six-sided die, the number of spots would be computed using:

NumberSpots = Int(6 * Rnd) + 1

To randomly choose a number between 100 and 200, use:

Number = Int(101 * Rnd) + 100

 Graphics Techniques with Visual Basic 7-29

Randomly Sorting N Integers

 In many games, we have the need to randomly sort a number of integers. For
example, to shuffle a deck of cards, we sort the integers from 1 to 52. To
randomly sort the state names in a states/capitals game, we would randomize
the values from 1 to 50.

 Randomly sorting N integers is a common task. Here is a ‘self-documenting’
general procedure that does that task. Calling arguments for the procedure

are N (the largest integer to be sorted) and an array, NArray, dimensioned to

N elements. After calling the routine N_Integers, the N randomly sorted
integers are returned in NArray. Note the procedure randomizes the integers
from 1 to N, not 0 to N - the zeroth array element is ignored.

Private Sub N_Integers(N As Integer, Narray() As Integer)
'Randomly sorts N integers and puts results in Narray
Dim I As Integer, J As Integer, T As Integer
'Order all elements initially
For I = 1 To N: Narray(I) = I: Next I
'J is number of integers remaining
For J = N to 2 Step -1
 I = Int(Rnd * J) + 1
 T = Narray(J)
 Narray(J) = Narray(I)
 Narray(I) = T
Next J
End Sub

7-30 Learn Visual Basic 6.0

Example 7-3

One-Buttoned Bandit

1. Start a new application. In this example, we will build a computer version of a

slot machine. We'll use random numbers and timers to display three random
pictures. Certain combinations of pictures win you points. Place two image
boxes, two label boxes, and two command buttons on the form.

2. Set the following properties:

 Form1:
 BorderStyle 1-Fixed Single
 Caption One-Buttoned Bandit
 Name frmBandit

 Command1:
 Caption &Spin It
 Default True
 Name cmdSpin

 Command2:
 Caption E&xit
 Name cmdExit

 Timer1:
 Enabled False
 Interval 100
 Name timSpin

 Timer2:
 Enabled False
 Interval 2000
 Name timDone

 Label1:
 Caption Bankroll
 FontBold True
 FontItalic True
 FontSize 14

 Graphics Techniques with Visual Basic 7-31

 Label2:
 Alignment 2-Center
 AutoSize True
 BorderStyle 1-Fixed Single
 Caption 100
 FontBold True
 FontSize 14
 Name lblBank

 Image1:
 Name imgChoice
 Picture earth.ico
 Visible False

 Copy and paste this image box three times, creating a control

element (imgChoice) with four elements total. Set the Picture
property of the other three boxes.

 Image1(1):
 Picture snow.ico

 Image1(2):
 Picture misc44.ico

 Image1(3):
 Picture face03.ico

 Image2:
 BorderStyle 1-Fixed single
 Name imgBandit
 Stretch True

 Copy and paste this image box two times, creating a three element

control array (Image2). You don't have to change any properties of
the newly created image boxes.

7-32 Learn Visual Basic 6.0

 When done, the form should look something like this:

 A few words on what we're doing. We will randomly fill the three large
image boxes by choosing from the four choices in the non-visible image

boxes. One timer (timSpin) will be used to flash pictures in the boxes.

One timer (timDone) will be used to time the entire process.

3. Type the following lines in the general declarations area of your form's code

window. Bankroll is your winnings.

 Option Explicit

 Dim Bankroll As Integer

4. Attach this code to the Form_Load procedure.

 Private Sub Form_Load()

 Randomize Timer

 Bankroll = Val(lblBank.Caption)

 End Sub

 Here, we seed the random number generator and initialize your bankroll.

5. Attach the following code to the cmdExit_Click event.

 Private Sub cmdExit_Click()

 MsgBox "You ended up with" + Str(Bankroll) + " points.",

vbOKOnly, "Game Over"

 End

 End Sub

 When you exit, your final earnings are displayed in a message box.

Image1
control
array
(not

visible)

Image2
control
array

(visible)

 Graphics Techniques with Visual Basic 7-33

6. Attach this code to the cmdSpin_Click event.

 Private Sub cmdSpin_Click()

 If Bankroll = 0 Then

 MsgBox "Out of Cash!", vbOKOnly, "Game Over"

 End

 End If

 Bankroll = Bankroll - 1

 lblBank.Caption = Str(Bankroll)

 timSpin.Enabled = True

 timDone.Enabled = True

 End Sub

 Here, we first check to see if you're out of cash. If so, the game ends. If not,

you are charged 1 point and the timers are turned on.

7. This is the code for the timSpin_Timer event.

 Private Sub timSpin_Timer()

 imgBandit(0).Picture = imgChoice(Int(Rnd * 4)).Picture

 imgBandit(1).Picture = imgChoice(Int(Rnd * 4)).Picture

 imgBandit(2).Picture = imgChoice(Int(Rnd * 4)).Picture

 End Sub

 Every 0.1 seconds, the three visible image boxes are filled with a random

image. This gives the effect of the spinning slot machine.

8. And, the code for the timDone_Timer event. This event is triggered after the
bandit spins for 2 seconds.

 Private Sub timDone_Timer()

 Dim P0 As Integer, P1 As Integer, P2 As Integer

 Dim Winnings As Integer

 Const FACE = 3

 timSpin.Enabled = False

 timDone.Enabled = False

 P0 = Int(Rnd * 4)

 P1 = Int(Rnd * 4)

 P2 = Int(Rnd * 4)

 imgBandit(0).Picture = imgChoice(P0).Picture

 imgBandit(1).Picture = imgChoice(P1).Picture

 imgBandit(2).Picture = imgChoice(P2).Picture

7-34 Learn Visual Basic 6.0

 If P0 = FACE Then

 Winnings = 1

 If P1 = FACE Then

 Winnings = 3

 If P2 = FACE Then

 Winnings = 10

 End If

 End If

 ElseIf P0 = P1 Then

 Winnings = 2

 If P1 = P2 Then Winnings = 4

 End If

 Bankroll = Bankroll + Winnings

 lblBank.Caption = Str(Bankroll)

 End Sub

 First, the timers are turned off. Final pictures are displayed in each position.

Then, the pictures are checked to see if you won anything.

9. Save and run the application. See if you can become wealthy.

10. If you have time, try these things.

A. Rather than display the three final pictures almost simultaneously,
see if you can stop each picture from spinning at a different time.

You'll need a few more Timer tools.

B. Add some graphics and/or printing to the form when you win. You'll

need to clear these graphics with each new spin - use the Cls
method.

C. See if you can figure out the logic I used to specify winning. See if

you can show the one-buttoned bandit returns 95.3 percent of all the
'money' put in the machine. This is higher than what Vegas
machines return. But, with truly random operation, Vegas is
guaranteed their return. They can't lose!

 Graphics Techniques with Visual Basic 7-35

User-Defined Coordinates

 Another major use for graphics in Visual Basic is to generate plots of data.

Line charts, bar charts, and pie charts can all be easily generated.

 We use the Line tool and Circle tool to generate charts. The difficult part of
using these tools is converting our data into the Visual Basic coordinate
system. For example, say we wanted to plot the four points given by:

 x = 0, y = 2
 x = 2, y = 7
 x = 5, y = 11
 x = 6, y = 13

 To draw such a plot, for each point, we would need to scale each (x, y) pair to

fit within the dimensions of the form specified by the ScaleWidth and

ScaleHeight properties. This is a straightforward, but tedious computation.

 An easier solution lies in the ability to incorporate user-defined coordinates in
a Visual Basic form. The simplest way to define such coordinates is with the

Scale method. The form for this method is:

 ObjectName.Scale (x1, y1) - (x2, y2)

 The point (x1, y1) represents the top left corner of the newly defined

coordinate system, while (x2, y2) represents the lower right corner. If

ObjectName is omitted, the scaling is associated with the current form.

 Once the coordinate system has been redefined, all graphics methods must
use coordinates in the new system. To return to the default coordinates, use

the Scale method without any arguments.

(0,2)

(2,7)

(5,11)

(6,13)

7-36 Learn Visual Basic 6.0

 Scale Example:

 Say we wanted to plot the data from above. We would first define the following

coordinate system:

 Scale (0, 13) - (6, 2)

 This shows that x ranges from 0 (left side of plot) to 6 (right side of plot), while

y ranges from 2 (bottom of plot) to 13 (top of plot). The graphics code to plot
this function is then:

 Pset (0, 2)
 Line - (2, 7)
 Line - (5, 11)
 Line - (6, 13)

 Note how much easier this is than would be converting each number pair to

twips.

Simple Function Plotting (Line Charts)

 Assume we have a function specified by a known number of (x, y) pairs.

Assume N points in two arrays dimensioned to N - 1: x(N - 1), and y(N - 1).
Assume the points are sorted in the order they are to be plotted. Can we set

up a general procedure to plot these functions, that is create a line chart? Of
course!

 The process is:

1. Go through all of the points and find the minimum x value (Xmin) ,

maximum x value (Xmax), minimum y value (Ymin) and the

maximum y value (Ymax). These will be used to define the
coordinate system. Extend each y extreme (Ymin and Ymax) a little
bit - this avoids having a plotted point ending up right on the plot
border.

2. Define a coordinate system using Scale:

 Scale (Xmin, Ymax) - (Xmax, Ymin)

 Ymax is used in the first coordinate because, recall, it defines the

upper left corner of the plot region.

 Graphics Techniques with Visual Basic 7-37

3. Initialize the plotting procedure at the first point using PSet:

 PSet (x(0), y(0))

4. Plot subsequent points with the Line procedure:

 Line - (x(i), y(i))

 Here is a general procedure that does this plotting using these steps. It
can be used as a basis for more elaborate plotting routines. The

arguments are ObjectName the name of the object (form or picture

box) you are plotting on, N the number of points, X the array of x points,

and Y the array of y points.

 Sub LineChart(ObjectName As Control, N As Integer, X() As Single, Y()

As Single)
 Dim Xmin As Single, Xmax As Single
 Dim Ymin As Single, Ymax As Single
 Dim I As Integer
 Xmin = X(0): Xmax = X(0)
 Ymin = Y(0): Ymax = Y(0)
 For I = 1 To N - 1
 If X(I) < Xmin Then Xmin = X(I)
 If X(I) > Xmax Then Xmax = X(I)
 If Y(I) < Ymin Then Ymin = Y(I)
 If Y(I) > Ymax Then Ymax = Y(I)
 Next I
 Ymin = (1 - 0.05 * Sgn(Ymin)) * Ymin ‘ Extend Ymin by 5 percent
 Ymax = (1 + 0.05 * Sgn(Ymax)) * Ymax ‘ Extend Ymax by 5 percent
 ObjectName.Scale (Xmin, Ymax) - (Xmax, Ymin)
 ObjectName.Cls
 ObjectName.PSet (X(0), Y(0))
 For I = 1 To N - 1
 ObjectName.Line - (X(I), Y(I))
 Next I
 End Sub

7-38 Learn Visual Basic 6.0

Simple Bar Charts

 Here, we have a similar situation, N points in arrays X(N - 1) and Y(N - 1). Can
we draw a bar chart using these points? The answer again is yes.

 The procedure to develop a bar chart is similar to that for line charts:

1. Find the minimum x value (Xmin), the maximum x value (Xmax), the

minimum y value (Ymin) and the maximum y value (Ymax). Extend
the y extremes a bit.

2. Define a coordinate system using Scale:

 Scale (Xmin, Ymax) - (Xmax, Ymin)

3. For each point, draw a bar using the Line procedure:

 Line (x(i), 0) - (x(i), y(i))

 Here, we assume the bars go from 0 to the corresponding y value. You
may want to modify this. You could also add color and widen the

bars by using the DrawWidth property (the example uses blue
bars).

 Graphics Techniques with Visual Basic 7-39

 Here is a general procedure that draws a bar chart. Note its similarity to
the line chart procedure. Modify it as you wish. The arguments are

ObjectName the name of the object (form or picture box) you are

plotting on, N the number of points, X the array of x points, and Y the
array of y points.

 Sub BarChart(ObjectName As Control, N As Integer, X() As Single, Y() As

Single)
 Dim Xmin As Single, Xmax As Single
 Dim Ymin As Single, Ymax As Single
 Dim I As Integer
 Xmin = X(0): Xmax = X(0)
 Ymin = Y(0): Ymax = Y(0)
 For I = 1 To N - 1
 If X(I) < Xmin Then Xmin = X(I)
 If X(I) > Xmax Then Xmax = X(I)
 If Y(I) < Ymin Then Ymin = Y(I)
 If Y(I) > Ymax Then Ymax = Y(I)
 Next I
 Ymin = (1 - 0.05 * Sgn(Ymin)) * Ymin ‘ Extend Ymin by 5 percent
 Ymax = (1 + 0.05 * Sgn(Ymax)) * Ymax ‘ Extend Ymax by 5 percent
 ObjectName.Scale (Xmin, Ymax) - (Xmax, Ymin)
 ObjectName.Cls
 For I = 0 To N - 1
 ObjectName.Line (X(I), 0) - (X(I), Y(I)), vbBlue
 Next I
 End Sub

7-40 Learn Visual Basic 6.0

Example 7-4

Line Chart and Bar Chart Application

1. Start a new application. Here, we’ll use the general line chart and bar chart

procedures to plot a simple sine wave.

2. Put a picture box on a form. Set up this simple menu structure using the Menu

Editor:

 Plot
 Line Chart
 Bar Chart
 Spiral Chart

 Exit

 Properties for these menu items should be:

 Caption Name
 &Plot mnuPlot
 &Line Chart mnuPlotLine
 &Bar Chart mnuPlotBar
 &Spiral Chart mnuPlotSpiral
 - mnuPlotSep
 E&xit mnuPlotExit

 Other properties should be:

 Form1:
 BorderStyle 1-Fixed Single
 Caption Plotting Examples
 Name frmPlot

 Picture1:
 BackColor White
 Name picPlot

 Graphics Techniques with Visual Basic 7-41

 The form should resemble this:

3. Place this code in the general declarations area. This makes the x and y
arrays and the number of points global.

 Option Explicit

 Dim N As Integer

 Dim X(199) As Single

 Dim Y(199) As Single
 Dim YD(199) As Single

4. Attach this code to the Form_Load procedure. This loads the arrays with the
points to plot.

 Private Sub form_Load()

 Dim I As Integer

 Const PI = 3.14159

 N = 200

 For I = 0 To N - 1

 X(I) = I

 Y(I) = Exp(-0.01 * I) * Sin(PI * I / 10)

 YD(I) = Exp(-0.01 * I) * (PI * Cos(PI * I / 10) / 10 -

0.01 * Sin(PI * I / 10))

 Next I

 End Sub

5. Attach this code to the mnuPlotLine_Click event. This draws the line chart.

 Private Sub mnuPlotLine_Click()

 Call LineChart(picPlot, N, X, Y)

 End Sub

7-42 Learn Visual Basic 6.0

6. Attach this code to the mnuPlotBar_Click event. This draws the bar chart.

 Private Sub mnuPlotBar_Click()

 Call BarChart(picPlot, N, X, Y)

 End Sub

7. Attach this code to the mnuPlotSpiral_Click event. This draws a neat little
spiral. [Using the line chart, it plots the magnitude of the sine wave (Y array)
on the x axis and its derivative (YD array) on the y axis, in case you are
interested.]

 Private Sub mnuPlotSpiral_Click()

 Call LineChart(picPlot, N, Y, YD)

 End Sub

8. And, code for the mnuPlotExit_Click event. This stops the application.

 Private Sub mnuPlotExit_Click()

 End

 End Sub

9. Put the LineChart and BarChart procedures from these notes in your form as
general procedures.

10. Finally, save and run the application. You’re ready to tackle any plotting job

now.

11. These routines just call out for enhancements. Some things you might try.

A. Label the plot axes using the Print method.

B. Draw grid lines on the plots. Use dotted or dashed lines at regular

intervals.

C. Put titling information on the axes and the plot.

D. Modify the line chart routine to allow plotting more than one function.

Use colors or different line styles to differentiate the lines. Add a
legend defining each plot.

E. See if you can figure out how to draw a pie chart. Use the Circle method
to draw the pie segments. Figure out how to fill these segments with
different colors and patterns. Label the pie segments.

 Graphics Techniques with Visual Basic 7-43

Exercise 7-1

Blackjack

Develop an application that simulates the playing of the card game Blackjack.
The idea of Blackjack is to score higher than a Dealer’s hand without exceeding
twenty-one. Cards count their value, except face cards (jacks, queens, kings)
count for ten, and aces count for either one or eleven (your pick). If you beat the
Dealer, you get 10 points. If you get Blackjack (21 with just two cards) and beat
the Dealer, you get 15 points.

The game starts by giving two cards (from a standard 52 card deck) to the Dealer
(one face down) and two cards to the player. The player decides whether to Hit
(get another card) or Stay. The player can choose as many extra cards as
desired. If the player exceeds 21 before staying, it is a loss (-10 points). If the
player does not exceed 21, it becomes the dealer’s turn. The Dealer add cards
until 16 is exceeded. When this occurs, if the dealer also exceeds 21 or if his total
is less than the player’s, he loses. If the dealer total is greater than the player
total (and under 21), the dealer wins. If the dealer and player have the same total,
it is a Push (no points added or subtracted). There are lots of other things you
can do in Blackjack, but these simple rules should suffice here. The cards should
be reshuffled whenever there are fewer than fifteen (or so) cards remaining in the
deck.

7-44 Learn Visual Basic 6.0

My Solution (not a trivial problem):

Form:

There are so many things here, I won’t label them all. The button names are
obvious. The definition of the cards is not so obvious. Each card is made up of
three different objects (each a control array). The card itself is a shape

(shpDealer for dealer cards, shpPlayer for player cards), the number on the card

is a label box (lblDealer for dealer cards, lblPlayer for player cards), and the suit

is an image box (imgDealer for dealer cards, imgPlayer for player cards). There
are six elements (one for each card) in each of these control arrays, ranging from
element 0 at the left to element 5 at the right. The zero elements of the dealer

card controls are obscured by shpBack (used to indicate a face down card).

lblResults lblWinnings

imgSuit

 Graphics Techniques with Visual Basic 7-45

Properties:

Form frmBlackJack:
 BackColor = &H00FF8080& (Light Blue)
 BorderStyle = 1 - Fixed Single
 Caption = Blackjack Game

CommandButton cmdDeal:
 Caption = &DEAL
 FontName = MS Sans Serif
 FontSize= 13.5

CommandButton cmdExit:
 Caption = E&xit

CommandButton cmdStay:
 Caption = &STAY
 FontName = MS Sans Serif
 FontSize= 13.5

CommandButton cmdHit:
 Caption = &HIT
 FontName = MS Sans Serif
 FontSize= 13.5

Image imgSuit:
 Index = 3
 Picture = misc37.ico
 Visible = False

Image imgSuit:
 Index = 2
 Picture = misc36.ico
 Visible = False

Image imgSuit:
 Index = 1
 Picture = misc35.ico
 Visible = False

Image imgSuit:
 Index = 0
 Picture = misc34.ico
 Visible = False

7-46 Learn Visual Basic 6.0

Shape shpBack:
 BackColor = &H00FF00FF& (Magenta)
 BackStyle = 1 - Opaque
 BorderWidth = 2
 FillColor = &H0000FFFF& (Yellow)
 FillStyle = 7 - Diagonal Cross
 Shape = 4 - Rounded Rectangle

Label lblPlayer:
 Alignment = 2 - Center
 BackColor = &H00FFFFFF&
 Caption = 10
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 18
 ForeColor = &H00C00000& (Blue)
 Index = 5, 4, 3, 2, 1, 0

Image imgPlayer:
 Picture = misc35.ico
 Stretch = True
 Index = 5, 4, 3, 2, 1, 0

Shape shpPlayer:
 BackColor = &H00FFFFFF& (White)
 BackStyle = 1 - Opaque
 BorderWidth = 2
 Shape = 4 - Rounded Rectangle
 Index = 5, 4, 3, 2, 1, 0

Label lblDealer:
 Alignment = 2 - Center
 BackColor = &H00FFFFFF&
 Caption = 10
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 18
 ForeColor = &H00C00000& (Blue)
 Index = 5, 4, 3, 2, 1, 0

Image imgDealer:
 Picture = misc35.ico
 Stretch = True
 Index = 5, 4, 3, 2, 1, 0

 Graphics Techniques with Visual Basic 7-47

Shape shpDealer:
 BackColor = &H00FFFFFF& (White)
 BackStyle = 1 - Opaque
 BorderWidth = 2
 Shape = 4 - Rounded Rectangle
 Index = 5, 4, 3, 2, 1, 0

Label Label2:
 BackColor = &H00FF8080& (Light Blue)
 Caption = Player:
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 18

Label lblResults:
 Alignment = 2 - Center
 BackColor = &H0080FFFF& (Light Yellow)
 BorderStyle = 1 - Fixed Single
 FontName = MS Sans Serif
 FontSize = 18

Label Label3:
 BackColor = &H00FF8080& (Light Blue)
 Caption = Won
 FontName = MS Sans Serif
 FontBold = True
 FontSize = 18

Label lblWinnings:
 Alignment = 2 - Center
 BackColor = &H0080FFFF& (Light Yellow)
 BorderStyle = 1 - Fixed Single
 Caption = 0
 FontName = MS Sans Serif
 FontSize = 18

7-48 Learn Visual Basic 6.0

Code:

General Declarations:

Option Explicit

Dim CardName(52) As String

Dim CardSuit(52) As Integer

Dim CardValue(52) As Integer

Dim Winnings As Integer, CurrentCard As Integer

Dim Aces_Dealer As Integer, Aces_Player As Integer

Dim Score_Dealer As Integer, Score_Player As Integer

Dim NumCards_Dealer As Integer, NumCards_Player As Integer

Add_Dealer General Procedure:

Sub Add_Dealer()

Dim I As Integer

'Adds a card at index I to dealer hand

NumCards_Dealer = NumCards_Dealer + 1

I = NumCards_Dealer - 1

lblDealer(I).Caption = CardName(CurrentCard)

imgDealer(I).Picture = imgSuit(CardSuit(CurrentCard)).Picture

Score_Dealer = Score_Dealer + CardValue(CurrentCard)

If CardValue(CurrentCard) = 1 Then Aces_Dealer = Aces_Dealer

+ 1

CurrentCard = CurrentCard + 1

lblDealer(I).Visible = True

imgDealer(I).Visible = True

shpDealer(I).Visible = True

End Sub

Add_Player General Procedure:

Sub Add_Player()

Dim I As Integer

'Adds a card at index I to player hand

NumCards_Player = NumCards_Player + 1

I = NumCards_Player - 1

lblPlayer(I).Caption = CardName(CurrentCard)

imgPlayer(I).Picture = imgSuit(CardSuit(CurrentCard)).Picture

Score_Player = Score_Player + CardValue(CurrentCard)

If CardValue(CurrentCard) = 1 Then Aces_Player = Aces_Player

+ 1

lblPlayer(I).Visible = True

imgPlayer(I).Visible = True

shpPlayer(I).Visible = True

CurrentCard = CurrentCard + 1

End Sub

 Graphics Techniques with Visual Basic 7-49

End_Hand General Procedure:

Sub End_Hand(Msg As String, Change As Integer)

shpBack.Visible = False

lblResults.Caption = Msg

'Hand has ended - update winnings

Winnings = Winnings + Change

lblwinnings.Caption = Str(Winnings)

cmdHit.Enabled = False

cmdStay.Enabled = False

cmdDeal.Enabled = True

End Sub

New_Hand General Procedure:

Sub New_Hand()

'Deal a new hand

Dim I As Integer

'Clear table of cards

For I = 0 To 5

 lblDealer(I).Visible = False

 imgDealer(I).Visible = False

 shpDealer(I).Visible = False

 lblPlayer(I).Visible = False

 imgPlayer(I).Visible = False

 shpPlayer(I).Visible = False

Next I

lblResults.Caption = ""

cmdHit.Enabled = True

cmdStay.Enabled = True

cmdDeal.Enabled = False

If CurrentCard > 35 Then Call Shuffle_Cards

'Get two dealer cards

Score_Dealer = 0: Aces_Dealer = 0: NumCards_Dealer = 0

shpBack.Visible = True

Call Add_Dealer

Call Add_Dealer

'Get two player cards

Score_Player = 0: Aces_Player = 0: NumCards_Player = 0

Call Add_Player

Call Add_Player

'Check for blackjacks

If Score_Dealer = 11 And Aces_Dealer = 1 Then Score_Dealer =

21

If Score_Player = 11 And Aces_Player = 1 Then Score_Player =

21

If Score_Dealer = 21 And Score_Player = 21 Then

 Call End_Hand("Two Blackjacks!", 0)

 Exit Sub

7-50 Learn Visual Basic 6.0

ElseIf Score_Dealer = 21 Then

 Call End_Hand("Dealer Blackjack!", -10)

 Exit Sub

ElseIf Score_Player = 21 Then

 Call End_Hand("Player Blackjack!", 15)

 Exit Sub

End If

End Sub

N_Integers General Procedure:

Private Sub N_Integers(N As Integer, Narray() As Integer)

'Randomly sorts N integers and puts results in Narray

Dim I As Integer, J As Integer, T As Integer

'Order all elements initially

For I = 1 To N: Narray(I) = I: Next I

'J is number of integers remaining

For J = N to 2 Step -1

 I = Int(Rnd * J) + 1

 T = Narray(J)

 Narray(J) = Narray(I)

 Narray(I) = T

Next J

End Sub

Shuffle_Cards General Procedure:

Sub Shuffle_Cards()

'Shuffle a deck of cards. That is, randomly sort

'the integers from 1 to 52 and convert to cards.

'Cards 1-13 are the ace through king of hearts

'Cards 14-26 are the ace through king of clubs

'Cards 27-39 are the ace through king of diamonds

'Cards 40-52 are the ace through king of spades

'When done:

'The array element CardName(i) has the name of the ith card

'The array element CardSuit(i) is the index to the ith card

suite

'The array element CardValue(i) has the point value of the

ith card

Dim CardUsed(52) As Integer

Dim J As Integer

Call N_Integers(52, CardUsed())

For J = 1 to 52

 Select Case (CardUsed(J) - 1) Mod 13 + 1

 Case 1

 CardName(J) = "A"

 CardValue(J) = 1

 Graphics Techniques with Visual Basic 7-51

 Case 2

 CardName(J) = "2"

 CardValue(J) = 2

 Case 3

 CardName(J) = "3"

 CardValue(J) = 3

 Case 4

 CardName(J) = "4"

 CardValue(J) = 4

 Case 5

 CardName(J) = "5"

 CardValue(J) = 5

 Case 6

 CardName(J) = "6"

 CardValue(J) = 6

 Case 7

 CardName(J) = "7"

 CardValue(J) = 7

 Case 8

 CardName(J) = "8"

 CardValue(J) = 8

 Case 9

 CardName(J) = "9"

 CardValue(J) = 9

 Case 10

 CardName(J) = "10"

 CardValue(J) = 10

 Case 11

 CardName(J) = "J"

 CardValue(J) = 10

 Case 12

 CardName(J) = "Q"

 CardValue(J) = 10

 Case 13

 CardName(J) = "K"

 CardValue(J) = 10

 End Select

 CardSuit(J) = Int((CardUsed(J) - 1) / 13)

Next J

CurrentCard = 1

End Sub

cmdDeal Click Event:

Private Sub cmdDeal_Click()

Call New_Hand

End Sub

7-52 Learn Visual Basic 6.0

cmdExit Click Event:

Private Sub cmdExit_Click()

'Show final winnings and quit

If Winnings > 0 Then

 MsgBox "You won" + Str(Winnings) + " points!", vbOKOnly,

"Game Over"

ElseIf Winnings = 0 Then

 MsgBox "You broke even.", vbOKOnly, "Game Over"

Else

 MsgBox "You lost" + Str(Abs(Winnings)) + " points!",

vbOKOnly, "Game Over"

End If

End

End Sub

cmdHit Click Event:

Private Sub cmdHit_Click()

'Add a card if player requests

Call Add_Player

If Score_Player > 21 Then

 Call End_Hand("Player Busts!", -10)

 Exit Sub

End If

If NumCards_Player = 6 Then

 cmdHit.Enabled = False

 Call cmdStay_Click

 Exit Sub

End If

End Sub

cmdStay Click Event:

Private Sub cmdStay_Click()

Dim ScoreTemp As Integer, AcesTemp As Integer

'Check for aces in player hand and adjust score

'to highest possible

cmdHit.Enabled = False

cmdStay.Enabled = False

If Aces_Player <> 0 Then

 Do

 Score_Player = Score_Player + 10

 Aces_Player = Aces_Player - 1

 Loop Until Aces_Player = 0 Or Score_Player > 21

 If Score_Player > 21 Then Score_Player = Score_Player - 10

End If

'Uncover dealer face down card and play dealer hand

 Graphics Techniques with Visual Basic 7-53

shpBack.Visible = False

NextTurn:

ScoreTemp = Score_Dealer: AcesTemp = Aces_Dealer

'Check for aces and adjust score

If AcesTemp <> 0 Then

 Do

 ScoreTemp = ScoreTemp + 10

 AcesTemp = AcesTemp - 1

 Loop Until AcesTemp = 0 Or ScoreTemp > 21

 If ScoreTemp > 21 Then ScoreTemp = ScoreTemp - 10

End If

'Check if dealer won

If ScoreTemp > 16 Then

 If ScoreTemp > Score_Player Then

 Call End_Hand("Dealer Wins!", -10)

 Exit Sub

 ElseIf ScoreTemp = Score_Player Then

 Call End_Hand("It's a Push!", 0)

 Exit Sub

 Else

 Call End_Hand("Player Wins!", 10)

 Exit Sub

 End If

End If

'If six cards shown and dealer hasn't won, player wins

If NumCards_Dealer = 6 Then

 Call End_Hand("Player Wins!", 10)

 Exit Sub

End If

'See if hit is needed

If ScoreTemp < 17 Then Call Add_Dealer

If Score_Dealer > 21 Then

 Call End_Hand("Dealer Busts!", 10)

 Exit Sub

End If

GoTo NextTurn

End Sub

Form_Load Event:

Private Sub Form_Load()

'Seed random number generator, shuffle cards, deal new hand

Randomize Timer

Call Shuffle_Cards

Call New_Hand

End Sub

7-54 Learn Visual Basic 6.0

Exercise 7-2

Information Tracking Plotting

Add plotting capabilities to the information tracker you developed in Class 6. Plot
whatever information you stored versus the date. Use a line or bar chart.

My Solution:

Form (like form in Homework 6, with a picture box and Plot menu item added):

New Properties:

Form frmWeight:
 FontName = MS Sans Serif
 FontSize = 10

PictureBox picPlot:
 BackColor = &H00FFFFFF& (White)
 DrawWidth = 2

Menu mnuFilePlot:
 Caption = &Plot

picPlot

 Graphics Techniques with Visual Basic 7-55

New Code:

mnuFilePlot Click Event:

Private Sub mnuFilePlot_Click()

Dim X(100) As Integer, Y(100) As Integer

Dim I As Integer

Dim Xmin As Integer, Xmax As Integer

Dim Ymin As Integer, Ymax As Integer

Dim Legend As String

Xmin = 0: Xmax = 0

Ymin = Val(Weights(1)): Ymax = Ymin

For I = 1 To NumWts

 X(I) = DateDiff("d", Dates(1), Dates(I))

 Y(I) = Val(Weights(I))

 If X(I) < Xmin Then Xmin = X(I)

 If X(I) > Xmax Then Xmax = X(I)

 If Y(I) < Ymin Then Ymin = Y(I)

 If Y(I) > Ymax Then Ymax = Y(I)

Next I

Xmin = Xmin - 1: Xmax = Xmax + 1

Ymin = (1 - 0.05 * Sgn(Ymin)) * Ymin

Ymax = (1 + 0.05 * Sgn(Ymax)) * Ymax

picplot.Scale (Xmin, Ymax)-(Xmax, Ymin)

Cls

picplot.Cls

For I = 1 To NumWts

 picplot.Line (X(I), Ymin)-(X(I), Y(I)), QBColor(1)

Next I

Legend = Str(Ymax)

CurrentX = picplot.Left - TextWidth(Legend)

CurrentY = picplot.Top - 0.5 * TextHeight(Legend)

Print Legend

Legend = Str(Ymin)

CurrentX = picplot.Left - TextWidth(Legend)

CurrentY = picplot.Top + picplot.Height - 0.5 *

TextHeight(Legend)

Print Legend

End Sub

7-56 Learn Visual Basic 6.0

This page intentionally not left blank.

