
Microsoft Access® Data Normalizing - A Practical Approach
Jerry Latham, MS MVP, MOS Master

Contents Overview: An explanation of data normalizing is the major part of this
document. To help learn at a ‘practical’ level, a very simple database, cars.mdb, is
available to help you visualize how it works. The end of the document takes you through
a quick walkthrough on creating forms with subforms using cars.mdb. You will need
Access 2000 or 2003 to use the database file.

Introduction: I see many people bravely attempting to move from Excel1 to Access and
I sincerely applaud those efforts. For a long time Excel has been overworked and made
to do things that are better handled with a relational database than with a spreadsheet.

The unfortunate side of this is that, through no fault of their own, they are unprepared to
deal with designing a smoothly working, efficient database application. They are “stuck”
in an Excel mindset and haven’t had anyone help them move over to the Access mindset.
The bottom line? They haven’t had any guidance in the whole purpose and philosophy of
relational databases. Hopefully this writing will help with that to some small degree.

Purpose: the whole purpose of a relational database (RDB) is to provide an efficient
storage and retrieval system for information. That’s it. The fact that you can manage that
information and retrieve it in a wide variety of ways to turn it into useful information is
just a nice side effect of RDB setups.

Example: suppose that the folks over at Merriam-Webster just kept adding words and
definitions to their dictionary as they encountered them. And suppose that was all they
did. You’d have a ton of potentially useful information but because it was all jumbled
up, most people would probably never open the book – too darned hard to find a word.
But because the dictionary (database) is ordered and presented alphabetically it becomes
useful information to us. That is what an RDB does for us: takes information and makes
it useful information.

Philosophy: The philosophy behind an RDB is that of Normalizing. Cut through all of
the icing on that cake and at the core you realize that normalization comes to mean
reducing duplicate data entry to an absolute minimum. Beth Melton, MS MVP and MOS
Master Instructor has put together an excellent presentation of normalization at the
practical level at: Databases: Normalizing Access Data I urge you to read that, it will
reinforce what I write about it here.

If you research normalizing you will find that there are 5 levels of normalizing or Normal
Form (NF), usually referred to as 1NF, 2NF, 3NF, 4NF and 5NF. The simplest level is
1NF and each of the next levels build on the earlier ones. That is to say that a 5NF data
model will also comply with the requirements of the previous four NF levels. I believe
that if you read other sources you’ll find that many others will tell you that if you reach
3NF that’s good enough. Some will disagree strongly. I personally agree that 3NF is
‘good enough’ for most casual applications. I’ll even stick my neck out some and say

1 Excel and Access are registered trademarks of Microsoft Corporation. Other product names are copyright
by their respective owner or owners.

Copyright © 2006 by Page 1 of 22
J.L. Latham

http://pubs.logicalexpressions.com/Pub0009/LPMArticle.asp?ID=88

that for many personal or small projects 2NF will meet the “good enough” test. I agree
that the better normalized your data is, the better off you are in the long run. However,
for most small projects the effort to get to 5NF is often not worth the effort. There’s a big
difference in criticality of efficiency between the database for the supply system of a
worldwide distribution company and that of your personal electronic recipe or rolodex
program.

Let us take a quick look at the levels of normalizing and you can judge for yourself how
much effort you will need to put into your database efforts. Before we can do that, I need
to make sure that we are both on the same page regarding what things like tables,
records, fields, primary key and foreign key are all about.

Table – a table in Access can be thought of much as a worksheet in Excel. Ok, I told you
to try to get out of the Excel mindset, but I did not say to forget all about it!

A table has records and they are like the rows of information on an Excel worksheet.

Each record has one or more fields that are like the columns on an Excel worksheet.

Each record (row) contains a group of related information such as a person’s name, date
of birth (DOB) and social security account number (SSAN). One row deals with just one
person’s information.

Each one of the data items (name, date of birth, social security number) is a field in the
record. Each field should be ‘atomic’, that is it should only store one piece of information
– you shouldn’t put Date of Birth and SSAN in the same field, for example.

NAME DOB SSAN

The First Normal Form (1NF)

To get a database into 1NF you need to consider three elements:

• Eliminate repeated data in individual tables.
• Create separate table(s) for each set of related data
• Identify each set of related data with a primary key

1NF R1 - I just made that up: First Normal Form, Rule 1. Eliminate repeated data in
individual tables. This means that there should not be 2 or more rows/records in a table
that contain the information about the same person, place or thing. Each record should
apply to a unique data group.

Excel = Columns
Access = Fields

Excel = Rows
Access = Records

Excel = column titles.
Access = Field Names

Copyright © 2006 by Page 2 of 22
J.L. Latham

1NF R2 – Create separate table(s) for each set of related data. This is actually a place
where some people stumble. They have difficulty deciding what “related data” means.
Related data is information that is uniquely tied to other entries in the same table. In our
example table above, each item of information is related directly to just one person.
While we may encounter duplicate names (how many John Jones’ are there in the world),
and even duplicate dates of birth (in any group of 366 people or more, guaranteed that at
least 2 of them will share a birthday), but we should NOT encounter duplicate social
security numbers. So the name is related to the date of birth and both of those are related
to the SSAN. Combined they describe one unique person. But if we were to add
information such as address and we want to keep up with their home and business
addresses, then we would possibly end up with a table with room for two sets of street,
city, state and zip codes for them. Technically, the table would still qualify as 1NF with
this in it, because each address would be unique to that individual, but it violates rule two
in that addresses are made up of “related data”. The related data being information that
makes up an address and doesn’t actually have anything to do with identifying a person.
We will deal with this in 2NF later.

1NF R3 – identify each set of related data with a primary key. By definition a primary
key is unique within the table. No record will have the same primary key as any other
record. In this case, because we are including people’s social security numbers, we could
use that field as the primary key. Another possible candidate in a business related
database would be their account number or customer ID. You may notice that in some
company’s files they know you by your phone number which turns out to be unique to
their thinking even though every member of your family shares that number. But SSANs
are supposed to be truly unique, so it would be a good choice. But there may be a better
choice: let the database assign a unique numeric value to each record in a table. Access
provides an AutoNumber data type that is superb to use as a primary key.

You may be asking “what good is a primary key – what do you use it for”? The primary
key of one table is copied into a field in other tables that contain related information.
When it is copied into those related tables, it is known as a foreign key or alien key. The
key values link the related records in the various tables together.

By using the AutoNumber feature of Access you remove a good chance of errors created
during the data entry process. While SSAN should be unique to one person, it may not
be if you make a typo when you’re entering it into the system and you may not notice the
error until you try to enter information for someone whose SSAN actually turns out to be
the one you typed in poorly weeks, months or years ago. So at the 1NF level, our table
might look like this:

PrimaryKey NAME DOB SSAN

Notice that we’ve added a new field dedicated to holding our Primary Key field for the
records in the table. We now have a table that meets the requirements of 1NF.

Copyright © 2006 by Page 3 of 22
J.L. Latham

The Second Normal Form (2NF)

To get to 2NF you only need to consider two rules:

• Create a separate table for sets of values that apply to multiple records.
• Relate the tables using a foreign key

Consider a personnel database for example. The accounting department probably needs
to know your name and SSAN along with information from your timesheet in order to cut
you a paycheck. Meanwhile the travel department needs that same information in order
to make reservations for you for your next business trip. There is no reason for the
accounting and travel departments to share any tables at all. But they do both need to be
able to identify their records with your name and SSAN. That is done by including a
copy of the primary key from your basic information table as the foreign key in their
tables where records exist that relate to you. I’ll try to show that graphically by showing
samples of the basic information table and a simple accounting department table:

PrimaryKey NAME DOB SSAN

1 John 1/1/80 1234

2 Mary 1/1/80 3456

ForeignKey Date Hours Rate

1 1/31 40 5.75

2 1/31 40 5.75

1 2/7 40 5.75

2 2/7 35 5.75

In this way you can keep pay records for numerous individuals for a long time and never
confuse them. The records in the pay table that are related to records in the basic
information table are identifiable by comparing the Primary and Foreign key values.

If anyone is asking why the pay table doesn’t include total pay – that would be a waste of
space since it can be calculated by multiplying Hours x Rate any time you need it.

On to 3NF…

Copyright © 2006 by Page 4 of 22
J.L. Latham

The Third Normal Form (3NF)

To get to 3NF you only need to consider one rule:

• Eliminate fields that do not depend on the key.

To illustrate this point, lets look at our basic information table again and consider other
information that we MIGHT want to have available about a person. Perhaps we need to
know what level of education they have achieved – so we can possibly promote them out
of that $5.75/hour position. We could simply enter the information into a separate field,
but it might not help us. Lets say we’re just starting and only have John and Mary as
employees and John is a High School Graduate and so is Mary. If we wanted a list of all
possible education levels, we can’t create it from the available information. Although we
could easily provide a list of the education levels of our current employees with what we
have.

It would be better to have a separate table that just contains a list of possible education
levels attained. It might look like this:

EdLvlPrimaryKey EducationLevelAchieved

1 Non HS Graduate

2 GED or HS Graduate

3 Trade School Cert

4 Some College

5 Bachelors Degree

6 Masters Degree

7 PhD

There are several ways of associating a basic record with an education level: you could
just include the EdLvlPrimaryKey as an added field in the basic employee record or you
could create a join table that has lists of matched up PrimaryKey values from the basic
record and an associated EdLvlPrimaryKey value from this table. Both work fine.

An added benefit of having separate ‘control list’ or ‘look up’ tables like this one is that
they provide another way of helping to assure data consistency within your database.
Suppose that you didn’t have this table and were simply typing the education level into a
field in the basic information table. Consider the possible ways to indicate a non-high
school graduate:

None

No HS

Not HS Grad

and on and on, not to mention that someone might type “no hs” instead of “No HS”. That
kind of thing makes searching thru the data later more difficult. But if you had a list to

Copyright © 2006 by Page 5 of 22
J.L. Latham

choose from that was based on the education level table, then your entries for education
level achieved would be consistent and manageable as a separate data group.

What about 4NF and 5NF?

While there are possible benefits to continuing to these levels, especially while taking a
database course in college, in the real world they can complicate the structure of your
database by requiring more and more detailed tables. This can make your system slow to
respond to queries for information from it. Complexity also tends to add risk with system
maintenance – and maintenance costs are going to be high enough as it is. Trust me.
Over the life of a ‘system’, software maintenance can account for 90% of the total cost of
the software, so that huge budget outlay to get it operational turns out to only be the tip of
the iceberg.

In point of fact, most databases you’ll look at that work well and are generally well
designed are quite possibly only going to meet the requirements of 2NF. 3NF at best.

Even the definitions for 4NF and 5NF can get difficult to contend with.

4NF says that if a table is on the “many” side of a one to many relationship (like our
example earlier) it cannot be the “many” side of any other one-to-many relationship.

5NF says that if a table has a field with values that are often repeated (like our education
levels would be if we typed them in individually) then the values should be replaced with
keys that can be related to a look up table. We actually did that. But we may not be
compliant with 5NF because we may have skipped over 4NF earlier.

Taken to the extreme, 5NF says if you have a field that could be answered only with
TRUE or FALSE or YES or NO that you should have a separate table with just those two
entries in it and keep a numeric reference (foreign key) to that table in your main table.
In reality, the inefficiency of going to that lookup table hundreds of times instead of just
storing the actual True/False/Yes/No information directly in the basic information table.

Alright, the theory is behind us for a while. How do we put it into practice? Where to
start?

As an example problem I’m going to choose a project that hopefully will be sufficiently
complex to make us think a little, but at the same time be simple enough so that we can
get our heads around it and concentrate on the database side of it more than the details of
the whatsit we will be dealing with.

How about an automobile customizing database? Most of us understand enough about
cars to make this work. At least that’s my hope. We won’t go into great and gory detail
about all possible options, but hopefully we will look at enough for you to get an idea of
how thing work and how you need to look at your own database needs.

Copyright © 2006 by Page 6 of 22
J.L. Latham

Cars – you could set up a database with every conceivable combination of options and
just let your customers browse through it and pick the one they want. But that would be a
fair sized database and your customers may tire of scrolling through the thousands of
possible combinations of colors, body styles, engine sizes, transmission types, sound
systems, seat covers, etc.

Begin by examining the whole item (car) and think of the things that make a car a car. Or
at least those things that make a car a car that your customers can pick from to
personalize their choice.

Cars can come in 2-door or 4-door models. Don’t argue with me – you may have one
with more or less, but go with me on this one. We are the T-Model of the future maker,
we have one model, but instead of just having one color, one engine, etc. we do give
people some choices.

Cars have color choices.

Cars have engine choices.

Cars have transmission choices.

Cars have different choices for interiors.

To give us a way of sending spam to our potential customers who decide not to buy our
fine product today, we start by create a basic potential purchaser record and ask them to
enter their:

Name

Address

Phone Number and the all important

eMail address.

We will need to track what their choices are so we come up with a second table that will
hold information about their choice for a car. Why not just include it as part of the basic
record? Because they may have a couple of combinations in mind and want printouts of
all of them so they can take them home and study them. He may want it in Red and she
may prefer Powder Blue.

In this case we would probably create several look up tables, on for each type of choice
that can be made.

Copyright © 2006 by Page 7 of 22
J.L. Latham

To start with we make up our two basic related tables:

First our potential customers table, with some example data:

Along with a table to record the choices the potential customer makes:

So where did the ‘1’ entries under ModelKey, ColorKey, etc come from? In the table
design, I set those as the initial, or default, value for new records. They will change as
the customer makes other selections of the features. They are related to primary key
fields in our lookup tables. Those tables might look something like these:

If we were to ‘look up’ the entries in the various tables based on what we see in the
selections key, we see that the default selection is:

A 2-door, black car with cloth interior, a 4-cylinder engine and automatic transmission.

You might ask why store a kind of unintelligible number in the selections made table
instead of the plain-English readable choice? Efficiency of storage is the answer. It takes
less room in memory to store a number than it does to store a 4 or 5 letter word. Since
we are one of the largest dealers in the country with thousands of potential customers
visiting our showrooms everyday, every bit of memory or disk space we can save is
important to us. But we will change the appearance of this later.

Copyright © 2006 by Page 8 of 22
J.L. Latham

How do the numbers in the selections table get changed? Magic? Wishful thinking?
Clean living? Not quite. How that happens is controlled by other aspects of your
database design. But to give you an idea of one solution to that ‘problem’ I’ll show you
what the Customer Acquisition Selection Handler (CASH) system could look like when
the customer is using it:

You’ll notice that the Model field turns into a list when you choose that field. The same
thing happens for each of the other fields in the frmSelectionsSubform. The values you
can choose are controlled from the contents of 5 lookup tables, one for each information
group. Another thing to note is the “CustomerKey” field that exists in both the main
form, frm_Customers, and the subform. That value is the Primary Key in tbl_Customers
and is the foreign key in tbl_SelectionsMade. That is how we know which selections
were made by which customer.

Copyright © 2006 by Page 9 of 22
J.L. Latham

How did I get those things defined? Here we get into the mechanics of Access itself.
During my table definition I indicated that the CustomerKey field would be type
“AutoNumber” and that I wanted Access to make sure that the same number was never
used twice in that table.

The Primary
Key for this
table

Choose field and click
here to indicate it is
the Primary Key field

Notice that
AutoNumber is a
Number type stored as
a Long Integer

Initially I just set CustomerKey to type AutoNumber, which as you’ll notice is a special
case of Number | Long Integer typing. It is special in that the values are created
automatically by Access when new records are created. But knowing that it is a Long
Integer gives you a big clue on how to format the associated Foreign Key in related
tables. By choosing a field and then clicking the Primary Key icon in the toolbar, the
field is automatically set up to be the key field (an entry is required and it must be unique
within the table and it is Indexed for fast lookups).

On the next page we will look at the related table, tbl_SelectionsMade is set up initially.

Copyright © 2006 by Page 10 of 22
J.L. Latham

I gave mine same name as in the primary table.
Notice that I set it up as Number with sub type of
Long Integer. This is so that copies of the
Primary Key from tbl_Customers will fit into it
properly.

You may also notice that I have chosen to just store the Primary Key values from my
lookup tables in this table. While this makes interpreting information by looking at the
raw table data difficult, it presents no problems when you set up queries to tell you what
it all means.

You now ask yourself “how does Access know that the Primary Key over in
tbl_Customers is the Foreign Key in tbl_SelectionsMade?” and same question regarding
all of the other entries in the table.

The Relationships window opens up when you choose the
Relationships icon from the toolbar.

Copyright © 2006 by Page 11 of 22
J.L. Latham

Whoa! Scary! Not really. Initially the Relationships window shows up completely
empty and you have to use Right-Click | Show tables and that brings up the Show Table
window. You just choose the tables and/or queries you want to set up relationships
between.

Then for each primary or lookup table I simply clicked-and-dragged the field in the
primary table over to the field name in the related table that I wanted to be related to it
and dropped it there. Other options pop up when you do that:

Copyright © 2006 by Page 12 of 22
J.L. Latham

The big one is the “Enforce Referential Integrity” – choosing that option says that before
a value can exist in the related table, it must already exist in the primary table. After that
you can choose to “cascade” update/delete related records. I chose to use both of those
options in this case.

Cascade Update Related Fields – mostly you want this one checked if you’ve chosen a
field that is a primary key somewhere that a user could change – such as SSAN (as when
you find out you typed one in error). If the primary key value is changed, then that
change will be made automatically where ever it is used as a foreign key.

Cascade Delete Related Records – be careful here. In this case, if we delete a Customer
record, we want to get rid of all related selections records. But if for some reason we
wanted to keep those related records for analysis or historical reasons, I wouldn’t have
chosen that option. If the option is not checked, then you won’t be able to delete
Customer records until you somehow otherwise delete the related Selections records.

What the heck is that? That is Access’s way of telling you that this is a one-to-many
relationship. That for each unique record on the “one” side, there can be:

None,

One,

Or a zillion (depending on how much memory your computer has)

Copyright © 2006 by Page 13 of 22
J.L. Latham

Related records in the “many” side table. There are other combinations as 1-to-1 and
many-to-one and even many-to-many (esthetically displeasing and logic challenging: i.e.
ugly and confusing).

We should revisit the design of some of the tables for a moment. Let’s take one of the
lookup tables, tbl_Engines, for example. The design of them all is pretty much the same,
they have 2 fields – one to hold the information and a Primary Key field that other tables
will link to them with.

I intentionally set the primary key field up as the second field in this table. You will see
why later. Notice the definition (properties) for the data field [Engine]. It is required
information and you cannot just put in a nothing (no zero length data entries). It is
indexed just in case we ever want to look using the word descriptions rather than the
numeric value of the primary key.

Keeping this in mind, lets now look at how we define our tbl_SelectionsMade using the
structure of these lookup tables to our advantage.

Copyright © 2006 by Page 14 of 22
J.L. Latham

I chose the EngineKey field here in the table and then clicked on the Lookup tab of the
Properties section. Initially it was rather sparse – there was no entry in the [Row Source]
area and the [Bound Column] and [Column Count] values were both 1, and the [Limit to
List] setting was set to No.

First thing I did was choose the table to be the source of the lookup for this field. If you
click in the [Row Source] entry area a pull-down list shows up allowing you to choose
from tables and queries that have been defined. I chose tbl_Engines.

Then I told it that the “bound column” was the second column (second field) of the table,
not the first, and went further to tell it that there were only 2 columns in the table. I could
have lied, but didn’t.

I set the [Limit to List] entry to Yes so that people cannot arbitrarily enter anything they
want – they have to choose from the list or type an exact match to an entry in it.

Why not have the primary key field in those lookup tables be the first field? Because by
having them as the 2nd field, we get Access to help us help ourselves. Remember where
we looked at tbl_SelectionsMade back on page 8 where it looked like this:

Well, using this scheme changes the appearance of things in it:

Copyright © 2006 by Page 15 of 22
J.L. Latham

Now entries in it look like this when viewed:

Aha! Words instead of numbers for everything except the CustomerKey field. Plus all of
the choices fields now have a built-in combo box for choosing from the lists of available
options. We didn’t change data types or anything in this table, in reality the table still is
storing the Primary Key field value of each of the lookup tables, but it is displaying the
contents of the first field (column) in the table (or query).

How can we take all that we’ve done so far and build up something to allow our
customers to use it easily? That’s where Access’s AutoForm Wizard comes to our
rescue.

We choose [Forms] in the database
window and then request Wizard help
for creating a new form. Even though
I’ve already created forms to show
earlier, we will create some now to
show how it was done – we’ll just use
different names for them.

The first
thing we do
is choose
the table
that will be
the “top

level”
source of
information

(the “one”
side of our
one to many
relationship.

Copyright © 2006 by Page 16 of 22
J.L. Latham

Once we’ve chosen the table, the fields in the table become available for choosing to
become part of our new form. You can choose them one at a time and use the single [>]
button to move them into the form, you can use the .[>>] button to move all remaining in
the left window over into the right window. You may want to move some one at a time,
because the sequence they end up in over in the right-hand window is the sequence they
will appear in on your form. I just clicked on the [>>] button.

At this point you could click [Next]
and move on to the next stage, but we
want to create a related form that will
automatically use the Primary Key
from this table to become part of the
records controlled in what is known as
a “subform”. You can actually go to 3
levels of forms this way. To do this,
after moving the fields from
tbl_Customers into the right hand
window, I chose the next table,
tbl_SelectionsMade and will once
again move all of its fields into the
right-hand window.

Copyright © 2006 by Page 17 of 22
J.L. Latham

Now that window looks like this and we can click the [Next] button to move on now.

Which is pretty much what we want. There is one choice you may want to look at and
possibly prefer in some cases: the [Linked forms] option. Instead of a form within a
form, you get the main form and a toggle button that displays/hides a separate form

Copyright © 2006 by Page 18 of 22
J.L. Latham

containing the related records. This might even be a good place to use that option, but we
will pass on it for now. Clicking [Next] brings this up:

This is just asking us how we want that subform to look. The two most obvious choices
are the top two, and the more compact is the default ‘Datasheet’ view. Again, click
[Next]

This one is simply checking with us as to
how pretty we want the form to be. You
can include pictures as backgrounds on a
form and set the appearance of controls
and things pretty much as you like to make
them, prettier, emphasized, or just ‘the
way you like them’. Click [Next] to
continue to the next step.

Copyright © 2006 by Page 19 of 22
J.L. Latham

Notice that this is asking for the titles to appear on the form not the actual name of the
forms as they will be shown in the database window or referenced in code, queries or
elsewhere. You can change these to suit your frame of mind. Click [Finish] and you are
done unless you want to modify the design or layout some.

The newly created forms look like this:

Copyright © 2006 by Page 20 of 22
J.L. Latham

It is kind of obvious that you need to make some modifications. For one thing, you can
hide the CustomerKey on both forms. There is no reason for anyone to ever even be
aware of its existence at this level of use. You could re-arrange the information in the
main form to be more compact, and even change labels in the sub-form. Finally, you
might resize some things so you can see all of the option choices across the sub-form
without having to scroll horizontally. But it is usable at this point in time.

Copyright © 2006 by Page 21 of 22
J.L. Latham

References:

Mike Hillyer - Mike's Bookshop MySQL related

http://dev.mysql.com/tech-resources/articles/intro-to-normalization.html

Databases: Normalizing Access Data

Beth Melton, MVP, MOS Master Instructor

http://pubs.logicalexpressions.com/Pub0009/LPMArticle.asp?ID=88

Microsoft on normalizing:

http://support.microsoft.com/kb/283878/EN-US/

George Hernandez

http://www.georgehernandez.com/h/xDatabases/aaIntro/DBStructure.htm

Copyright © 2006 by Page 22 of 22
J.L. Latham

http://dev.mysql.com/tech-resources/articles/intro-to-normalization.html
http://pubs.logicalexpressions.com/Pub0009/LPMArticle.asp?ID=88
http://support.microsoft.com/kb/283878/EN-US/
http://www.georgehernandez.com/h/xDatabases/aaIntro/DBStructure.htm

