
Learning Java® with JBuilder™

VERS ION 4

Inprise Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249

Borland®

JBuilder™

Refer to the file DEPLOY.TXT located in the JBuilder 4 redist directory of your JBuilder product for a complete list of
files that you can distribute in accordance with the JBuilder License Statement and Limited Warranty.

Inprise may have patents and/or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

Apache Software Foundation conditions and disclaimer

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

The end-user documentation included with the redistribution, if any, must include the following acknowledgment:
“This product includes software developed by the Apache Software Foundation (http://www.apache.org/).”
Alternately, this acknowledgment may appear in the software itself, if and wherever such third-party
acknowledgments normally appear.

The names “Apache” and “Apache Software Foundation” must not be used to endorse or promote products
derived from this software without prior written permission. For written permission, please contact
apache@apache.org.

Products derived from this software may not be called “Apache”, nor may “Apache” appear in their name, without
prior written permission of the Apache Software Foundation.

THIS SOFTWARE (Tomcat) IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE
FOUNDATION OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

COPYRIGHT © 1997, 2000 Inprise Corporation. All rights reserved. All Inprise and Borland brands and product names
are trademarks or registered trademarks of Inprise Corporation. Other product names are trademarks or registered
trademarks of their respective holders.

Printed in the U.S.A.

JBE0040WW21000 1E0R0800
0001020304-9 8 7 6 5 4 3 2 1
D3

i

Chapter 1
Introduction 1-1
Contacting Borland developer support 1-2
Online resources 1-2

World Wide Web 1-2
Borland newsgroups 1-3
Usenet newsgroups 1-3

Documentation conventions 1-3

Part I
JBuilder Quick Start

Chapter 2
What’s new in JBuilder 4 2-1
Web Development 2-1

JavaServer Pages and servlet support 2-2
XML support 2-2
InternetBeans Express 2-2

Enterprise JavaBeans 2-3
Application server support 2-4
Team development. 2-4

Version tracking and control 2-4
OpenTools API 2-5
User Interface changes 2-5

JBuilder IDE. 2-5
Wizards . 2-6
Editor . 2-7

Keymaps 2-7
Search and Save 2-8

Running and Debugging 2-8
Database tools 2-9

JDataStore . 2-9
JDBC Explorer improvements 2-10

Using JBuilder’s online help 2-10
How to get Help 2-10

Chapter 3
Introducing JBuilder 3-1
What is JBuilder?. 3-1
Introducing the AppBrowser 3-2

AppBrowser design view 3-4
AppBrowser message pane in

debugger view 3-5
Navigating in the AppBrowser 3-5

Java language support 3-6
Learning more about JBuilder 3-7

The JBuilder documentation set 3-7
Learning more about Java 3-8

Chapter 4
Using the editor 4-1
Completing code with CodeInsight. 4-3
Using code templates 4-4
Keymaps for editor emulations 4-5

Cursor movement 4-5
Selection . 4-7
Editing text . 4-8
Clipboard. 4-10
Search and replace. 4-10
Buffers and Files 4-11
Compile and Debug 4-11
CodeInsight 4-12
Code Templates 4-12
View and Help 4-12

Chapter 5
Automating application
development 5-1

Using wizards . 5-1
Using the object gallery 5-2
Additional JBuilder tools. 5-3
Working with projects 5-4

Saving projects. 5-4
Using the Project wizard 5-5

Project wizard: Step 1 5-5
Project Wizard: Step 2 5-6
Project Wizard: Step 3 5-7

Displaying project files 5-8
Setting project properties 5-9
Managing projects. 5-10

Opening projects 5-10
Adding and removing files 5-10
Saving and closing projects 5-11
Renaming projects and files 5-11
Working with multiple projects 5-12

Creating JavaBeans 5-13
Working with applets. 5-14

Using the Applet wizard 5-14

Contents

ii

Chapter 6
Building a user interface 6-1
Using the UI designer 6-2

Viewing a file 6-3
Adding and manipulating components . . . 6-3

Designing menus 6-3
Setting component properties and events 6-4

Opening the Inspector 6-5
Designing layouts with layout managers 6-5

Chapter 7
Compiling and running
Java programs 7-1

Compiling Java programs. 7-1
Running Java programs 7-2
Debugging Java programs 7-3

Debugging 7-4
Deploying Java programs 7-5

Using the Archive Builder. 7-5
Deploying CORBA applications 7-6
Deploying web-based applications. 7-7
Running deployed programs 7-7

Using command line tools 7-8

Chapter 8
Building distributed applications 8-1
Team development. 8-1
Java technologies. 8-2
Building database applications 8-4
Developing international applications 8-5

Internationalization features in JBuilder . . . 8-6

Part II
Getting Started with Java

Chapter 9
Java language basics 9-1
Java syntax . 9-1

Identifiers . 9-2
Literals. 9-3

Integer literals 9-3
Floating-point literals 9-4
Boolean literals 9-4
Character literals 9-4
String literals 9-5

Keywords . 9-5
Statements . 9-6
Code blocks 9-6
Comments . 9-7
Expressions. 9-8
Operators. . 9-8

Arithmetic operators 9-9
Logical operators. 9-10
Comparison operators 9-10
Assignment operators 9-11
Bitwise operators 9-12
A special operator: The ?: operator . . . 9-12

Java’s data types 9-13
Variables . 9-13
Built-in data types 9-14

Numeric data types 9-14
Boolean data types. 9-14
Character data types. 9-15

Composite data types 9-15
Arrays . 9-15
Strings. 9-16

Type casting 9-17
Implicit casting 9-18

Scope rules 9-18
Flow control structures 9-19

Loops . 9-19
The while loop 9-19
The do loop 9-20
The for loop. 9-20

Loop control statements 9-21
The break statement 9-21
The continue statement 9-22

Conditional statements 9-22
The if-else statement. 9-22
The switch statement 9-23

Summary. . 9-24

Chapter 10
Object-oriented programming
in Java 10-1

Introduction to OOP 10-1
Classes . 10-2

Declaring and instantiating classes 10-2
Data members 10-3
Class methods 10-3
Constructors and finalizers. 10-4

iii

Case study: A simple OOP example 10-4
Class inheritance 10-6

Using this and super 10-8
Access modifiers 10-9

Access from within class’s package 10-9
Access outside of a class’s package 10-9

Accessor methods 10-10
Abstract classes 10-11

Polymorphism 10-13
Method overloading 10-13
Using interfaces. 10-13

Java packages. 10-17
The import statement 10-17
Declaring packages. 10-18
Project options related to packages. 10-19

Summary . 10-19

Chapter 11
The Java class libraries 11-1
Introduction . 11-1
The Language package 11-2

The Object class 11-2
Type wrapper classes 11-2
The Math class 11-3
The String class 11-4
The StringBuffer class 11-5
The System class 11-6

The Utilities package 11-6
The Enumeration interface 11-7
The Vector class 11-7

The I/O package 11-9
Input stream classes 11-9
Output Stream classes 11-11
File classes. 11-12
The StreamTokenizer class 11-13

Summary . 11-13

Chapter 12
Threading techniques 12-1
Overview . 12-1

Why are threads useful? 12-1
Why haven’t I heard of threads before? . . . 12-2

Creating a thread. 12-2
Subclassing the Thread class 12-2

Example: Implementing
countingThread 12-3

Implementing the Runnable interface 12-4

The Thread API 12-5
Constructors 12-5
The start() method. 12-6
The sleep() method 12-6
The yield() method 12-6
The join() method 12-6

A thread’s lifecycle 12-7
Making your code thread-safe. 12-7

The synchronized keyword 12-7
Monitors . 12-8

Summary. . 12-9

Chapter 13
Serialization 13-1
Overview . 13-1
Why serialize? 13-1
Serialization in JDK 1.1 13-2

The Serializable interface 13-2
Using output streams. 13-3

ObjectOutputStream methods 13-4
Using input streams 13-4

ObjectInputStream methods 13-6
Writing and reading object streams 13-6
Summary. . 13-6

Chapter 14
Java Virtual Machine security 14-1
Overview . 14-1

Why is the Java VM necessary? 14-2
What are the main roles of the JVM? 14-2

Java VM security 14-3
The security model 14-3

The Java verifier 14-3
The Security Manager 14-4
The class loader 14-5
Java’s safety as a language 14-6

What about Just-In-Time compilers? 14-6
Summary. . 14-7

Chapter 15
Working with the native code
interface 15-1

Overview . 15-1
Using the JNI. 15-1
Using the native keyword 15-2
Using the javah tool 15-3

 Summary . 15-3

iv

Part III
Tutorials

Chapter 16
Building an application 16-1
Step 1: Creating the project 16-1
Step 2: Generating your source files 16-4

Changing the project properties 16-6
Step 3: Compiling and running your

application . 16-7
Step 4: Customizing your application’s

user interface 16-7
Step 5: Adding a component to your

application 16-10
Step 6: Editing your source code 16-11
Step 7: Compiling and running your

application 16-12
Step 8: Running your application from the

command line 16-13
Step 9: Adding more components to your

application 16-14
Step 10: Preparing your application for

deployment 16-16
Step 11: Running your deployed

application from the command line 16-17
HelloWorld source code. 16-18

Source code for HelloWorldFrame.java . . 16-18
Source code for HelloWorldClass.java . . . 16-21

Chapter 17
Building an applet 17-1
Overview . 17-2
Step 1: Creating the project 17-3

Changing the project properties 17-5
Step 2: Generating your source files 17-6
Step 3: Compiling and running your applet . 17-10
Step 4: Customizing your applet’s

user interface 17-11
Step 5: Adding AWT components to

your applet 17-15
Step 6: Editing your source code 17-18
Step 7: Deploying your applet 17-22

Deploying your applet with the jar tool . . 17-23
Deploying your applet with the

Archive Builder 17-24
Step 8: Modifying the HTML file. 17-26

Step 9: Running your deployed
applet from the command line. 17-28

Step 10: Testing your deployed applet
on the Web 17-29

Applet source code 17-29
Applet HTML source code 17-29
Applet class source code 17-30

Chapter 18
Compiling, running, and debugging 18-1
About this tutorial 18-1
Step 1: Opening the sample project 18-2
Step 2: Fixing syntax errors 18-3

Saving files and running the program . . . 18-4
Step 3: Fixing compiler errors 18-4

Saving files and running the program . . . 18-8
Step 4: Fixing the subtractValues() method . . 18-8

Saving files and running the program . . 18-13
Step 5: Fixing the divideValues() method . . 18-14

Saving files and running the program . . 18-17
Step 6: Fixing the oddEven() method 18-18
Step 7: Finding runtime exceptions 18-21

Chapter 19
Building a Java text editor 19-1
About this tutorial 19-1

Overview . 19-1
What this tutorial demonstrates 19-2

Step 1: Creating the project 19-2
Using the Project wizard 19-2
Changing the project properties 19-4
Selecting the project’s code style options . . 19-4

Choosing the event handler type 19-5
Choosing how to instantiate objects . . . 19-5

Using the Application wizard 19-5
Suppressing automatic hiding of JFrame . . 19-6
Setting the look and feel 19-7

Design time look and feel 19-7
Runtime look and feel 19-7

Step 2: Adding a text area 19-8
Step 3: Creating the menus. 19-11
Step 4: Adding a FontChooser dialog. 19-13

Setting the dialog’s frame and title
properties 19-13

Creating an event to launch the
FontChooser 19-14

v

Step 5: Attaching a menu item event to
the FontChooser 19-15

Step 6: Attaching menu item events to
JColorChooser 19-18

Step 7: Adding a menu event handler
to clear the text area 19-19

Step 8: Adding a file chooser dialog 19-20
Internationalizing Swing

components 19-20
Step 9: Adding code to read text from

a file . 19-21
Step 10: Adding code to menu items

for saving a file 19-23
Step 11: Adding code to test if a file has

been modified 19-25

Step 12: Activating the toolbar buttons 19-27
Specifying button tool tip text 19-27
Creating the button events 19-28
Creating a fileOpen() method 19-28
Creating a helpAbout() method 19-29

Step 13: Hooking up event handling to
the text area 19-30

Step 14: Adding a right-click menu to
the text area 19-32

Step 15: Showing filename and state in
the window title bar 19-33

Step 16: Deploying the “Text Editor”
application to a JAR file 19-36

Overview 19-37
Running the Archive Builder 19-37
Running the application from the

command line 19-42

Index I-1

vi

1.1 Typeface and symbol conventions 1-3
1.2 Platform conventions and directories . . . 1-4
3.1 Navigation keyboard shortcuts 3-5
4.1 Editor features 4-1

Keymaps for editor emulations 4-5
5.1 JBuilder tools 5-3
6.1 JBuilder’s visual design tools 6-2

Tables

6.1 The AppBrowser and the UI
designer. 6-1

10.1 OOP1 form showing two
instantiated objects 10-5

10.2 New version of the sample
application with Speed and Speak
buttons added 10-16

11.1 Vector and Enumeration example 11-9
13.1 Saving a user name and password 13-2
13.2 The serialized object 13-4
13.3 The object restored 13-5
16.1 AppBrowser elements 16-6
16.2 UI designer elements 16-8
19.1 JBuilder in design view 19-6

Figures

I n t r o d u c t i o n 1-1

C h a p t e r

1
Chapter1Introduction

Learning Java with JBuilder provides introductory material to JBuilder and the
Java programming language. This book contains the following three parts:

• Part I, “JBuilder Quick Start”

Provides information about the development environment, explains
how to create and manage projects, design your user interface, and
compile and debug Java programs. Also provides general information
about JBuilder and its documentation.

• Part II, “Getting Started with Java”

Explores basics of programming in Java, including threading
techniques, serialization, and using the Native Code Interface.

• Part III, “Tutorials”

Provides several step-by-step tutorials designed to get you up, running,
and productive using the JBuilder integrated development environment
(IDE).

• “Building an application”

Creates a simple "Hello World" application.

• “Building an applet”

Takes you through the process of creating an AWT applet.

• “Compiling, running, and debugging”

Shows you how to find and fix syntax errors, compiler errors, and
runtime errors using JBuilder.

• “Building a Java text editor”

Build a simple text editor capable of reading, writing, and editing
text files.

1-2 L e a r n i n g J a v a w i t h J B u i l d e r

C o n t a c t i n g B o r l a n d d e v e l o p e r s u p p o r t

Contacting Borland developer support
Borland offers a variety of support options. These include free services on
the Internet, where you can search our extensive information base and
connect with other users of Borland products. In addition, you can choose
from several categories of support, ranging from support on installation of
the Borland product to fee-based consultant-level support and detailed
assistance.

For more information about Borland's developer support services, see our
web site at http://www.borland.com/devsupport/, call Borland Assist at
(800) 523-7070, or contact our Sales Department at (831) 431-1064.

When contacting support, be prepared to provide complete information
about your environment, the version of the product you are using, and a
detailed description of the problem.

For support on third-party tools, contact the vendor.

Online resources
You can get information from any of these online sources:

World Wide Web

Check www.borland.com regularly. The JBuilder Product Team will post
white papers, competitive analyses, answers to frequently asked
questions, sample applications, updated software, updated
documentation, and information about new and existing products.

You may want to check these URLs in particular:

• http://www.borland.com/jbuilder/ (updated software and other files)

• http://www.borland.com/techpubs/jbuilder/ (updated
documentation and other files)

World Wide Web http://www.borland.com/

FTP ftp.borland.com
Technical documents available by anonymous ftp.

Listserv To subscribe to electronic newsletters, use the online
form at:
 http://www.borland.com/contact/listserv.html
or, for Borland's international listserver,
 http://www.borland.com/contact/intlist.html

TECHFAX 1-800-822-4269 (North America)
Technical documents available by fax.

I n t r o d u c t i o n 1-3

D o c u m e n t a t i o n c o n v e n t i o n s

Borland newsgroups
You can register JBuilder and participate in many threaded discussion
groups devoted to JBuilder.

You can find user-supported newsgroups for JBuilder and other Borland
products at http://www.borland.com/newsgroups/

Usenet newsgroups
The following Usenet groups are devoted to Java and related
programming issues:

• news:comp.lang.java.advocacy
• news:comp.lang.java.announce
• news:comp.lang.java.beans
• news:comp.lang.java.databases
• news:comp.lang.java.gui
• news:comp.lang.java.help
• news:comp.lang.java.machine
• news:comp.lang.java.programmer
• news:comp.lang.java.security
• news:comp.lang.java.softwaretools

These newsgroups are maintained by users and are not official Borland sites.

Documentation conventions
The Borland printed documentation for JBuilder uses the typefaces and
symbols described in the table below to indicate special text.

Table 1.1 Typeface and symbol conventions

Typeface Meaning

Monospace type Monospaced type represents the following:
• text as it appears onscreen
• anything you must type, such as “Enter Hello World in the Title

field of the Application wizard.”
• file names
• path names
• directory and folder names
• commands, such as SET PATH, CLASSPATH
• Java code
• Java identifiers, such as names of variables, classes, interfaces,

components, properties, methods, and events
• package names
• argument names
• field names
• Java keywords, such as void and static

1-4 L e a r n i n g J a v a w i t h J B u i l d e r

D o c u m e n t a t i o n c o n v e n t i o n s

JBuilder is available on multiple platforms. See the table below for a
description of platform and directory conventions used in the
documentation.

Bold Bold is used for java tools, bmj (Borland Make for Java), bcj (Borland
Compiler for Java), and compiler options. For example: javac, bmj,
-classpath.

Italics Italicized words are used for new terms being defined and for book
titles.

Keycaps This typeface indicates a key on your keyboard. For example, “Press
Esc to exit a menu.”

[] Square brackets in text or syntax listings enclose optional or variable
items. Do not type the brackets.

< > Angle brackets in text or syntax listings indicate a variable string;
type in a string appropriate for your code. Do not type the angle
brackets. Angle brackets are also used for HTML tags.

... An ellipsis in syntax listing indicates code that is missing from the
example.

Table 1.2 Platform conventions and directories

Item Meaning

Paths All paths in the documentation are indicated with a forward
slash (/).
For the Windows platform, use a backslash (\).

Home directory The location of the home directory varies by platform.
• For UNIX and Linux, the home directory can vary. For

example, it could be /user/[username] or /home/[username]
• For Windows 95/98, the home directory is C:\Windows
• For Windows NT, the home directory is C:\Winnt\

Profiles\[username]

• For Windows 2000, the home directory is C:\Documents and
Settings\[username]

.jbuilder4 directory The .jbuilder4 directory, where JBuilder settings are stored,
is located in the home directory.

jbproject directory The jbproject directory, which contains project, class, and
source files, is located in the home directory. JBuilder saves
files to this default path.

Screen shots Screen shots reflect JBuilder’s Metal Look & Feel on various
platforms.

Table 1.1 Typeface and symbol conventions (continued)

Typeface Meaning

J B u i l d e r Q u i c k S t a r t

P a r t

I
Part IJBuilder Quick Start

W h a t ’ s n e w i n J B u i l d e r 4 2-1

C h a p t e r

2
Chapter2What’s new in JBuilder 4

JBuilder 4 has several suites of new features and customer-requested
enhancements of existing features.

• Web Development, Enterprise JavaBeans, and Team development are
the focus of new features in this release.

• The OpenTools API has been extended and is easier to work with.

• Application server support has expanded.

• The User Interface is redesigned, notably the File|Open dialogs and
many of the wizards, including the Archive Builder.

• The debugger feature set is expanded.

• Database handling is easier with improvements to JDataStore and
JDBC Explorer.

JBuilder 4 is tested on Solaris, Linux, and Windows 98, NT, and 2000.
JBuilder 4 is hosted on JDK version 1.3 in order to take advantage of its
debugging capabilities and enhanced client-side performance. You can
still build applications for any prior version of the JDK.

Web Development
JBuilder 4 supports the development of web applications in a number of
ways. It provides expanded XML support. It provides better servlet and
JSP support. InternetBeans Express, a suite of components, allows you to
transfer data between Java and HTML seamlessly. Web Debug and Web
Run let you test your web applications right from the AppBrowser.
Right-click in the project pane to access these two features.

2-2 L e a r n i n g J a v a w i t h J B u i l d e r

W e b D e v e l o p m e n t

JavaServer Pages and servlet support

JBuilder 4 lets you run and debug servlets and JSPs on Tomcat™ 3.1, the
reference implementation of Servlet 2.2/JSP 1.1. For more information on
Tomcat, refer to Apache Software Foundation’s Jakarta web site at
http://jakarta.apache.org

Each servlet may have an alias (servlet-name) and init() parameters, and
can be executed directly without an SHTML file. The web server can also
have context parameters and a context path to make the development
configuration match the deployment configuration more closely.

JBuilder 4 provides extended JSP support. Debugging your JSP is easy, as
you can debug your source code directly. CodeInsight, ErrorInsight, and
syntax highlighting are supported in JSP files.

For more information on JSPs, see “Developing JavaServer Pages” in Part
III, “Distributed Application Developer’s Guide” of the Enterprise
Application Developer’s Guide. For more information on servlets, see
“Developing Servlets” in Part III, “Distributed Application Developer’s
Guide” of the Enterprise Application Developer’s Guide.

This product includes software developed by the Apache Software
Foundation (http://www.apache.org/) which is released with the
following copyright:

Copyright (c) 2000 The Apache Software Foundation. All rights reserved.

This software from the Apache Software Foundation is being distributed
according to the conditions and disclaimer on the copyright page.

XML support
This version of JBuilder provides features that speed and simplify the
development of XML files. These features include syntax highlighting to
review your XML code and a structure pane for XML files so you can
navigate within your tree more easily. JBuilder includes a new Help
viewer that supports XML, providing a natural browser view of your
XML files.

InternetBeans Express
InternetBeans Express is a set of components that enables dynamic
content generation in web pages through both servlets and JSPs. In
addition to generic content, InternetBeans Express leverages DataExpress
to make it easy to display, navigate, update and append data sets.

To access InternetBeans Express, click the Design tab at the bottom of your
content pane. InternetBeans Express is on a tab of the component palette.
If necessary, scroll the tabs left to reveal the InternetBeans Express tab.

W h a t ’ s n e w i n J B u i l d e r 4 2-3

E n t e r p r i s e J a v a B e a n s

For more information, see “Using InternetBeans Express” in Part III,
“Distributed Application Developer’s Guide” of the Enterprise Application
Developer’s Guide.

Enterprise JavaBeans
JBuilder 4 makes it easier to create and deploy both session and entity
bean components. A number of wizards (including EJB Group) streamline
the creation, handling, and deployment of Enterprise JavaBeans. JBuilder
4 provides tools that simplify modeling and server configuration. It has
Inprise Application Server’s Deployment Descriptor Editor built into the
JBuilder IDE. JBuilder supports BEA’s WebLogic™ Server 5.1.

One new aspect of JBuilder 4 is the EJB Group functionality. Each EJB
Group represents a single deployable JAR that is created automatically by
Make or Rebuild. Using the EJB Group wizard, you can also migrate
existing EJBs. You can have multiple EJB groups per project.

The Entity Bean Modeler lets you create entity beans that map to existing
tables. The modeler will both create all the necessary Java code and
update the deployment descriptor stored in the EJB Group. Select an EJB
Group to bring up the Entity Bean Modeler dialog.

With JBuilder 4, you can:

• Create entity and session beans using EJB wizards.

• Map entity beans to existing tables with the Entity Bean Modeler.

• Create EJB groups with the EJB Group wizard, so you can have any
number of EJBs in a given application.

• Migrate existing EJBs into a new group or create an empty group from
the EJB Group wizard.

• Use multiple EJB groups in a project.

• Create deployable JARs automatically using Make or Rebuild.

• View JAR contents in the node viewer.

• Test your applications in a local container or on your EJB 1.1-compliant
application server with the Test Client wizard.

• Run EJBs from the EJB Run dialog in a local container or application
server selected for the project.

• Deploy EJBs automatically when you run or debug them.

• View and edit your application server deployment descriptor using the
Deployment Descriptor Editor.

To select any of the wizards or modelers mentioned above, choose File|
New, select the Enterprise tab, and choose from the icons available.

2-4 L e a r n i n g J a v a w i t h J B u i l d e r

A p p l i c a t i o n s e r v e r s u p p o r t

Part IV, “Enterprise JavaBeans Developer’s Guide” of the Enterprise
Application Developer’s Guide provides a comprehensive overview of what
these features do and how to use them.

Application server support
JBuilder 4 allows you to choose which application server to run on,
allowing you to maintain different configurations for each one. To do so,
select Project|Project Properties, select the Run tab and then the EJB tab.
Default parameters are for the Inprise Application Server, but BEA’s
WebLogic™ Server 5.1 can also be used directly from the JBuilder IDE:
choose Tools|Enterprise Setup, select the Application Server tab, select
the WebLogic tab, then set the directory path.

You may plug in other application servers through the OpenTools API.

JDBC connections are verified by JBuilder 4. Column data is available on
the Persistence tab of the Deployment Descriptor Editor (DDE) view in the
content pane.

The Deployment Descriptor Editor is compliant with JDK 1.3 and can read
and write to EJB groups. The Deployment Descriptor Editor is integrated
into the JBuilder interface. When used with WebLogic™, it creates
WebLogic deployment descriptors, so you can target your beans for the
WebLogic server from within JBuilder.

Team development
JBuilder 4 provides features that make team development faster,
smoother, and easier.

Project files (.jpr and .jpx) are in two parts: private and shared. Windows,
watches, and breakpoints are stored in the private side, while libraries and
compiler options are stored in the shared side. This simplifies the process
of sharing projects.

Version tracking and control

JBuilder 4 provides revision support in every edition. To see version
information for a file, click on the History tab at the bottom of the content
pane. Tabs on the History page provide different views of revision
information. Availability of views depends on your JBuilder edition. For
more information on the History page, put your cursor in the History
page and press F1.

JBuilder automatically keeps backup copies of your file. You can store
backup files outside your source directory, so it’s easier to share your

W h a t ’ s n e w i n J B u i l d e r 4 2-5

O p e n T o o l s A P I

source. You can set how many backups to keep. The History page can use
these multiple backup copies as a rudimentary version management
system: you can access prior versions, and, in JBuilder Professional and
Enterprise, you can apply the Diff engine to different versions of the same
file.

The following features are
available in JBuilder

Enterprise edition

JBuilder 4 provides seamless intergration with CVS (Concurrent Versions
System), a popular Open Source version control system. CVS is included
in the Companion Tools CD that comes with the Enterprise edition of
JBuilder 4. Other version control systems can be incorporated using the
OpenTools API.

For more information on version control in JBuilder, see “Version control”
in Building Applications with JBuilder.

OpenTools API
The OpenTools API has been expanded and made easier to use and
understand. You can alter something as specific as a default path or
design something as complex as your own wizard. The OpenTools
features show you how.

Concept documents discuss the structure and nature of the elements of
JBuilder that are included in the API. Expanded JavaDoc provides more
specific and detailed technical information from within the source code.
Samples show how to use OpenTools in real-life settings. For example,
you can:

• Add root directories and define your favorite locations on the File|
Open dialogs.

• Add keymaps.

• Plug in the servlet engine of your choice.

• Incorporate version control systems in addition to CVS.

• Customize the look and feel of the JBuilder interface.

The Concept Documents and JavaDoc are available from the Help viewer.
Choose Help|Help Topics. The samples are in the samples directory of
your JBuilder installation.

User Interface changes

JBuilder IDE

Most dialogs support multiple selection. When you start up, JBuilder
remembers your last cursor position in open source files. You can choose

2-6 L e a r n i n g J a v a w i t h J B u i l d e r

U s e r I n t e r f a c e c h a n g e s

URLs in pathnames. JBuilder can search for source packages
automatically. The Package Migration tool tunes packages created in
previous versions of JBuilder to be compatible with the new JDK and
expanded feature set.

The AppBrowser lets you open multiple instances of it. If you have the
same file open in different instances, changes you make to one are
reflected in the others. In the content pane, file tabs are displayed only for
the project that is displayed in the project pane. If you select a different
project, the file tabs change accordingly.

For more information on the AppBrowser, see “Introducing the
AppBrowser” on page 3-2.

JBuilder 4 allows you to:

• Browse hierarchies and drill down into subclasses with a click.

• Set your own pathnames and filenames for the files you create, change,
and move.

• Delete files from your drive as well as from your project by
right-clicking in the project pane.

File|Open dialogs appear in a split window that simplifies navigation and
selection. The left pane shows nodes; it can be expanded as needed. The
right pane shows the contents of what is selected in the left pane. There is
a navigation bar on the left edge that lets you select frequently-used
locations with a single click. From this window, you can choose a root
directory and select single or multiple files.

The File|Open dialogs let you:

• Expand directory trees with a click.

• Search tree variants by typing inside the tree.

• Drill into .zip and .jar files by clicking on them in the tree.

• Add root directories using the OpenTools API.

• Navigate to frequently-used locations with a single click on the
left-hand icon bar.

• Select multiple files.

• Create folders by clicking on the New Folder icon at the top of the
window.

Wizards
Many new wizards have been added and many existing wizards have
been redesigned or expanded to make them easier to use and more
powerful and effective. Wizards yield JavaDoc commentary. There is a
new category of EJB wizards. Wizards that create components, such as

W h a t ’ s n e w i n J B u i l d e r 4 2-7

U s e r I n t e r f a c e c h a n g e s

panels and dialogs, are more accessible. The utility wizards are more
sophisticated, including EJB, CORBA, and data module utilities.

• The Archive Builder supersedes the Deployment wizard. It builds a
comprehensive archive of deployment preferences, based on the kind
of application you’re deploying. It’s available from the Wizards menu.
To learn more about the Archive Builder, see “Deploying Java
programs” on page 7-5, or “Deploying Java programs” in Building
Applications with JBuilder.

• The Project wizard is extended. It lets you select an existing project as a
template for a new project, change source and output directories, add
required libraries, and edit root, project, source, backup, and output
paths. To learn more about the new Project wizard, see “Working with
projects” on page 5-4 or “Creating and managing projects” in Building
Applications with JBuilder.

• New Library and New JDK wizards automatically search the directory
you choose for the files you need. They are available from the Tools menu.
Select Configure Libraries or Configure JDKs then click the New button.

• EJB wizards let you create, group, test, debug, and deploy Enterprise
JavaBeans. The new EJB wizard matrix includes EJB Group, EJB Group
From Descriptors, Enterprise JavaBean, EJB Entity Bean Modeler, and
EJB Test Client from the Enterprise page of the object gallery, plus EJB
Interfaces and Use EJB Test Client from the Wizards menu. These are
covered in “Enterprise JavaBeans” on page 2-3.

To use wizards, select File|New or select Wizards from the main menu.
Some wizards are in both places.

Editor
To see the Editor menu, right-click in the Source pane. This menu is
adjusted dynamically and has a Select All option.

• The editor supports tags, such as @todo tags.

• It places curly braces according to your Code Style settings.

• It aligns closing curly braces. If you are using this in a JSP file make
sure Java and JSP code are not on the same line.

• In CodeInsight, MemberInsight provides autocompletion as you type.

The editor has expanded in other key aspects: keymaps and keybinding
customization, and Search and Save options.

Keymaps
Keyboard Mappings include emulations of four editors: CUA, Emacs,
Brief, and Visual Studio. Visual Studio is keystroke compatible with
VisualStudio™.

2-8 L e a r n i n g J a v a w i t h J B u i l d e r

R u n n i n g a n d D e b u g g i n g

You can check or customize individual keybindings, including
CodeInsight keybindings, in any editor emulation. To do so, select Tools|
Editor Options, choose the Editor tab, and click the Customize button.

A grid of the keymaps is available from Help|Keyboard Mappings.

Search and Save
The editor includes expanded Search and Save options. To view or change
Save options, click on Tools|Editor Options and select the Editor tab.
Expand Save Options to view the list of options. They are:

• Strip Trailing Whitespace
• Change Leading Tabs To Spaces
• Change Leading Spaces To Tabs

Global search options are: Show Dialog When Search Fails (as opposed to
showing a status bar message) and Search Word At Cursor. To access
these, choose Tools|Editor Options, select the Editor tab, and expand
Search Options.

Other search options are on the Find/Replace Text dialog. To access it,
choose Search|Find. These options allow you to refine the textual
parameters of your search.

Still more options are available in the Search|Find In Path dialog. You can
define the paths as well as the textual parameters of your search.

CodeInsight’s MemberInsight can automatically complete your code as
you type.

For more information on the Editor, see Chapter 4, “Using the editor.”
You can also use F1 Help in the dialog boxes.

Running and Debugging
You can create new runtime configurations based on existing ones by
choosing Run|Configurations and clicking Copy.

The debugger feature set has been expanded considerably. All debugger
lists support multiple selection. Data and threads can be seen in a split
view. You can toggle floating windows for debugger views: threads,
breakpoints, and so on.

The list of enhancements include:

• Tool tip variable inspection.

• Evaluator method call evaluation.

• Evaluator variable inline assignment.

• Show/hide null value for any array type.

W h a t ’ s n e w i n J B u i l d e r 4 2-9

D a t a b a s e t o o l s

• Type in your own log message in the Breakpoint Properties dialog
(select Run|Add Breakpoint and choose the kind of breakpoint).

• Cross-process breakpoint for client/server applications.

• Keep thread suspended option.

• Debug tab in the Runtime Properties dialog (select Run|
Configurations) to set debugging preferences.

• Improved sourceless debugging.

For more information on the debugger, see “Debugging Java programs”
in Building Applications with JBuilder. For more information on debugging
distributed applications, see “Debugging distributed applications” in Part
III, “Distributed Application Developer’s Guide” of the Enterprise
Application Developer’s Guide.

Database tools
The usability and functionality of the database tools is improved. There is
a new UI for setting up database authentication.

JDataStore

JDataStore is faster and more flexible. The underlying connection pool
provides significant performance gains. JBuilder 4’s support for JTA
allows JDataStore connections to participate in distributed transactions
using standard XA interfaces.

JDataStore Explorer allows you to create and manipulate tables
graphically. It can create indexes for its tables.

JDataStore now supports cross joins, inner joins, and left, right, and full
outer joins. (In this release, specify join columns by using the “natural” or
“using” keywords.) JDataStore supports the SQL-92 join sequence and the
JDBC “oj” escape sequence. It supports scalar subqueries.

JDataStore Server options are under the Options tab. The new UI shows
more information about the server, including:

• Users connected.
• Open databases.
• History of events.

Database authentication allows you to password protect your JDataStore.
There are two stages to the process: password protecting it, and opening it
for different levels of access.

For more information on JDataStore, see the JDataStore Developer’s Guide.

2-10 L e a r n i n g J a v a w i t h J B u i l d e r

U s i n g J B u i l d e r ’ s o n l i n e h e l p

JDBC Explorer improvements

The JDBC feature set has expanded:

• You can create tables graphically. To do so, select File|Create Table.

• Drivers not in the classpath are now displayed in red when defining a
new URL.

• The Options dialog gives you more ways to control the JDBC Explorer.

• You can visually manipulate jdbcexplorer.properties.

For more information about the JDBC Explorer, see “JDBC Explorer:
Overview” in the Database Application Developer’s Guide.

Using JBuilder’s online help
JBuilder displays online help topics in the Help Viewer. Topics can also be
displayed in the AppBrowser or in a web browser.

How to get Help

You can get help on a topic when you are using JBuilder in the following
ways:

• From the IDE:

• Choose Help|Help Topics from the JBuilder main menu to open the
Help Viewer.

• Click the Help button displayed on a dialog box, or press F1.

• Choose Search|Browse Symbol and enter a class name. Click the
Doc tab.

W h a t ’ s n e w i n J B u i l d e r 4 2-11

U s i n g J B u i l d e r ’ s o n l i n e h e l p

• From the AppBrowser:

• Double-click a class name in the structure pane and click the Doc tab
to see the reference documentation for the class if a JavaDoc is
available for that class.

• Click a class name in the structure pane and press Enter; then click the
Doc tab. (same as double-clicking)

• Right-click a class name in the source pane and choose Browse
Symbol. Click the Doc tab.

• From the Inspector, choose a property or event and press F1.

For more information, see “Using JBuilder’s online help” in the “Learning
more about JBuilder” chapter of the online Quick Start.

2-12 L e a r n i n g J a v a w i t h J B u i l d e r

I n t r o d u c i n g J B u i l d e r 3-1

C h a p t e r

3
Chapter3Introducing JBuilder

Welcome to JBuilder! This Quick Start provides an overview of the
JBuilder integrated development environment (IDE). It helps you start
using the product immediately, and it shows you where to find more
detailed information about Java programming in JBuilder.

What is JBuilder?
JBuilder is a comprehensive group of highly productive tools for creating
scalable, high-performance, platform-independent applications using the
Java programming language.

Scalable and component-based, JBuilder is designed for all levels of
development projects, ranging from applets to applications that require
networked database connectivity to enterprise-wide, distributed,
multi-tier solutions.

The JBuilder environment is 100% Pure Java. Any program written in Java
can be run, debugged, and worked on from within JBuilder. JBuilder
provides tools for developing programs using a variety of Java
technologies, including:

• JavaBeans

• Java 2

• Java Development Kit (JDK); based on version 1.3, it can compile for
any previous version

• JFC/Swing

• OpenTools development

3-2 L e a r n i n g J a v a w i t h J B u i l d e r

I n t r o d u c i n g t h e A p p B r o w s e r

JBuilder Professional provides tools for these additional technologies:

• Servlets and servlet engines

• Remote Method Invocation (RMI)

• Java Database Connectivity (JDBC)

• Open Database Connectivity (ODBC)

• Structured Query Language (SQL)

• All major corporate database servers

JBuilder Enterprise provides tools for these additional technologies:

• Enterprise JavaBeans (EJB)

• Version control systems

• Extensible Markup Language (XML)

• JavaServer Pages (JSP)

• Common Object Request Broker Architecture (CORBA)

JBuilder also provides developers with a flexible, open architecture that
makes it easy to incorporate new JDKs, third-party tools, add-ins, and
JavaBean components. OpenTools resources such as expanded JavaDoc
commentary and Concept Documents make this easier.

For more information on what JBuilder can do, visit the Borland JBuilder
web site at http://www.borland.com/jbuilder

Introducing the AppBrowser
The JBuilder integrated development environment provides a single
window that is equipped to handle the large majority of development
functions. This window is called the AppBrowser. From the AppBrowser
you can create, edit, and manage files and projects, visually design visual
features, and compile, debug, and run your applications.

For more information on the AppBrowser, see the “Welcome Project” and
the “AppBrowser” topic in the “JBuilder environment” topic available
from Help|JBuilder Environment.

The AppBrowser has several panes and panels designed for performing
its functions. These elements are shown below.

I n t r o d u c i n g J B u i l d e r 3-3

I n t r o d u c i n g t h e A p p B r o w s e r

These elements of the AppBrowser perform the following functions:

The AppBrowser can be customized using the OpenTools API.

For more information on one of the items above, search for the item you
want to know about in the online help.

AppBrowser element Description

Main menu bar Provides access to many menus, such as File, Edit, Search,
Run, and Wizards.

Main toolbar Composed of small toolbars grouped by functionality.
Buttons on the toolbar provide shortcuts to commands.

Project pane Displays the contents of the project currently selected from
the project drop-down list. The project tree can be navigated
and manipulated without opening files.

Project toolbar Contains a drop-down list of currently open projects and
buttons for adding and removing files, closing the project,
and refreshing the project files in the project pane.

Structure pane Contains icons, sort options, and error display. Supports
JavaDoc @todo tags. The structure pane shows the structure
of the file currently selected in the content pane. For a Java
file, this structure is displayed in the form of a tree showing
all the methods, properties, and events defined in the file.
The structure pane provides a drill-down feature.
Double-click a class or interface to see its ancestor. Other file
types may have their structure displayed differently.

Content pane Where open files are viewed. Each open file has a tab that
displays the file name (file tab) and tabs at the bottom for its
different available views (file view tabs).

File view tabs Allow you to change the view of the content pane to source,
design, bean, doc, or history view.

File tabs Display the names of open files. Only the file tabs of the
active project are shown. To view an open file, select its file
tab.

Message pane A tabbed display area for messages from subsystems, such
as designers, search results, and compiler, debugger, and
runtime processes. The message pane is visible when these
subsystems are activated. It also houses the debugger user
interface.

Status bars Keep you updated on any processes and their results. There
are three status bars. The main status bar is displayed at the
bottom of the AppBrowser window. The file status bar is
displayed at the bottom of the open file in the source view of
the content pane. The message status bar is displayed at the
bottom of the message pane, above the message tab.

3-4 L e a r n i n g J a v a w i t h J B u i l d e r

I n t r o d u c i n g t h e A p p B r o w s e r

AppBrowser design view

You can use the UI designer to design your application visually.

To view a file in the UI designer, select the Design tab at the bottom of the
content pane. The design view for the file is displayed and the component
palette, available only in the design view, appears at the top of the content
pane.

To create a UI, drag and drop components from the component palette in
the content pane or in the structure pane on the appropriate node. The
resulting code is automatically generated and inserted into your file. Use
the Inspector to adjust the properties of the components you choose.

For more information, see “Designing a user interface” in Building
Applications with JBuilder.

I n t r o d u c i n g J B u i l d e r 3-5

I n t r o d u c i n g t h e A p p B r o w s e r

AppBrowser message pane in debugger view

When you run the debugger, it appears in the message pane. Multiple
debugging sessions are displayed as tabs along the bottom of the
AppBrowser.

To use the debugger, select Run|Debug Project.

For more information, see “Debugging Java programs” in Building
Applications with JBuilder.

Navigating in the AppBrowser

Use the following keyboard shortcuts to move the cursor around within
the AppBrowser.

Table 3.1 Navigation keyboard shortcuts

Keyboard shortcut Action

Ctrl+Tab Moves forward in rotation order to the next AppBrowser
pane. The rotation order is project pane, structure pane,
content pane, message pane tab, and message pane text area.

Shift+Ctrl+Tab Moves backwards in rotation order to the previous
AppBrowser pane.

Up / Down arrows Moves the selection cursor up and down in a tree.

3-6 L e a r n i n g J a v a w i t h J B u i l d e r

J a v a l a n g u a g e s u p p o r t

For more information, see the “Navigating and searching in the
AppBrowser” topic in “The JBuilder environment” chapter of Building
Applications with JBuilder.

Java language support
More than any other Java development environment, JBuilder gives you
easy access to the programming power of the Java language. When you’re
developing cutting-edge applications, you need the most efficient tools
available to simplify your programming. JBuilder provides the tools and
language support you need for developing your applications.

JBuilder includes the following language support:

• JavaBeans for reusable components
• JFC/Swing components for Java user interface development

JBuilder Professional includes language support for

• JDBC

• Servlets

• Multiple Java Development Kits (JDKs)

JBuilder starts RMI registry and can compile using RMIC.

JBuilder allows you to build applications and applets for different
versions of the JDK from JDK 1.1x on up. Any existing 100% Java 2
compliant program can be added to, worked on, and run from the
JBuilder environment. Select Project|Project Properties and the Paths
tab to change the JDK version to compile against.

For more information, see http://www.javasoft.com.

JBuilder Enterprise includes language support for

• Enterprise JavaBeans (EJB) for server-side component architecture and
EJBExpress for visually creating Enterprise JavaBeans

• CORBA

• JavaServer Pages (JSP) for web-based applications

Enter or
Left / Right arrows

Project and structure pane - expands and collapses top level
tree node branches.

Enter Project pane - opens a selected source file and places cursor in
Source view. This is equivalent to a double-click.
Structure pane - drills down into the superclass or interface of
the selected class. This is equivalent to a double-click.

Table 3.1 Navigation keyboard shortcuts (continued)

Keyboard shortcut Action

I n t r o d u c i n g J B u i l d e r 3-7

L e a r n i n g m o r e a b o u t J B u i l d e r

For more information on JavaBeans, see “Creating JavaBeans with
BeansExpress” in Building Applications with JBuilder. For more information
on Enterprise JavaBeans, see the Enterprise Application Developer’s Guide.

Learning more about JBuilder

The JBuilder documentation set
The following JBuilder titles are available:

JBuilder also includes the following online documents about Java:

• API reference documentation for the Sun Java Development Kit (JDK)

You can access this documentation several formats:

• Choose Java Reference on the Help menu.
• Choose the Doc tab in the content pane when viewing a JDK file.

• Java Language Specification

• Getting Started with Java

• Additional third-party documentation

Quick Start Explains what’s new in this version of JBuilder,
introduces the development environment, and provides
several step-by-step tutorial for creating your first
application and applet with JBuilder.

Building Applications
with JBuilder

Explains how to create and manage projects, design user
interfaces, use layout managers, compile and debug Java
programs, create applets, deploy programs, and
internationalize programs. The online version includes
information on version control, CVS, and using command
line tools.

Database Application
Developer’s Guide

Information on using JBuilder’s DataExpress database
architecture. Explains the relationships between the main
DataExpress data components and classes, and how to
use them to create your database applications.

Enterprise Application
Developer’s Guide

Information on developing and debugging distributed
Java and Web applications using CORBA and RMI and
developing Enterprise JavaBeans. The printed version
includes information on version control and CVS.

JDataStore Programmer’s
Guide

Explains how to make effective use of JDataStore
functionality. JDataStore is a high-performance,
small-footprint, 100% Pure Java database.

DataExpress Component
Library Reference

Detailed information on all the borland.com value-added,
data-aware components, classes, properties, methods, and
events (online only).

Context-sensitive
online help

Information related specifically to the JBuilder user
interface from which you called Help.

3-8 L e a r n i n g J a v a w i t h J B u i l d e r

L e a r n i n g m o r e a b o u t J a v a

Documentation is available in the following ways:

* This documentation is also available from the JavaSoft web site at
http://developer.java.sun.com/developer/infodocs/index.shtml.

The JBuilder web site at http://www.borland.com/jbuilder/ and the
Borland Community web site at http://community.borland.com/ have
additional information about JBuilder and Java.

Learning more about Java
These are Sun Microsystem’s online Java glossaries:

• Sun Microsystem’s Java glossary in HTML:
http://java.sun.com/docs/glossary.nonjava.html#top

• Sun Microsystem’s Java glossary in Java:
http://java.sun.com/docs/glossary.html

Books that tell you more about Java programming are listed below. The
first half of the list is in ascending order of difficulty. The second half
covers special topics such as network programming and JavaBeans.

Document Print PDF Help HTML

All editions
Quick Start X X X X
Getting Started with Java X X X X
Building Applications with JBuilder X X X
Tutorials printed in various books X X X
Developing OpenTools for JBuilder X X
OpenTools API Reference X X
JDK 1.3 documentation X *
Java language specification X *

Professional and Enterprise editions
Database Application Developer’s Guide X X X X
JDataStore Programmer’s Guide X X X X
DataExpress Component Library Reference X X

Enterprise edition
Enterprise Application Developer’s Guide X X X X

Books Authors Audience

Java for the World Wide Web:
Visual Quickstart Guide
(Peachpit Press)

Dori Smith no programming
background

A Little Java, A Few Patterns
(MIT Press)

Mattias Felleisen and
Daniel P. Friedmens

novice to advanced *

I n t r o d u c i n g J B u i l d e r 3-9

L e a r n i n g m o r e a b o u t J a v a

* Philosophical in tone. Good for understanding concepts: not good for “how-to”.

For books on JBuilder, visit http://www.borland.com/jbuilder/books/.

Beginning Java 2
(Wrox Press)

Ivor Horton novice

Java: How to Program
(Prentice Hall)

Harvey M. Deitel and
Paul J. Deitel

novice

Core Java 2, Volume 1:
Fundamentals
(Prentice Hall)

Cay S. Horstmann and
Gary Cornell

intermediate to
advanced

Java in a Nutshell
(O’Reilly and Assoc.)

Mike Loukides, ed. intermediate to
advanced

Just Java 2
(Prentice Hall)

Peter van der Linden intermediate to
advanced

Thinking in Java
(Prentice Hall)

Bruce Eckel intermediate to
advanced

The Complete Java 2 Certification
Study Guide
(Sybex, Inc.)

Simon Roberts, et al. advanced

Data Structures and Algorithms in
Java
(Waite Group Press)

Mitchell Waite and
Robert Lafore

advanced

Books Authors Topic

Graphic Java 2: Mastering the JFC,
Volume 2: Swing
(Prentice Hall)

David M. Geary Swing

Developing JavaBeans
(O’Reilly and Assoc.)

Robert Englander JavaBeans

Enterprise JavaBeans
(O’Reilly and Assoc.)

Richard
Monson-Haefel

network JavaBeans

Java 2 Networking
(McGraw Hill)

Justin Couch network
programming

The Java Virtual Machine
Specifications
(Addison Wesley)

Tim Lindholm and
Frank Yellin

network
programming

Java Programming with CORBA
(John Wiley and Sons, Inc.)

Andreas Vogel and
Keith Duddy

network
programming

JDBC Database Access with Java: a
Tutorial and Annotated Reference
(Addison Wesley)

Graham Hamilton,
Maydene Fisher, Rick
Cattell

JDBC

Inside Servlets: Server-Side
Programming for the Java Platform
(Addison Wesley Pub. Co.)

Dustin R. Callaway servlets

Java: Servlet Programming
(O’Reilly and Assoc.)

Jason Hunter and
William Crawford

servlets

Books Authors Audience

3-10 L e a r n i n g J a v a w i t h J B u i l d e r

U s i n g t h e e d i t o r 4-1

C h a p t e r

4
Chapter4Using the editor

JBuilder includes a full-featured, customizable editor that you can use to
write your Java code. With Two-Way-Tools™, changes you make to the
code in the editor are simultaneously reflected in the design view. The
editor supports the use of tags, such as @todo tags.

Other productivity-enhancing features in the editor include:

Table 4.1 Editor features

Editor features Description

Text Search Finds and replaces text, searches across multiple files, and
searches incrementally. Allows you to restart the search
from the top of the file if the first search fails.

Syntax highlighting Highlights specified syntax elements in .java, .c, .cpp, .html,
.jsp, .xml, .xsl, .sql, and .idl files.

Code templates Inserts code from an expanded list of user-defined
templates.

Code style Sets curly brace placement, event handling, and visibility of
instance variables.

CodeInsight Displays a pop-up window in the editor that provides help
with completing code. Displays tool tip expressions for
showing values when debugging. Available in .java and
.jsp files.

4-2 L e a r n i n g J a v a w i t h J B u i l d e r

U s i n g t h e e d i t o r

To access the editor, select the Source tab at the bottom of the content pane
on an open, text-based file.

For more information, see the “Editor” topic in “The JBuilder
Environment” chapter of Building Applications with JBuilder.

You can customize your editing environment in a number of ways. Two
menus apply: Tools|IDE Options and Tools|Editor Options.

In Tools|IDE Options, under the Browser tab, you can change the look
and feel, the keymapping scheme, and the file tab orientation in the
content pane. Under the File Types tab, you can add file types and
associated extensions. Under the Run/Debug tab, you can set runtime
update intervals and debugger update intervals.

The tabs under Tools|Editor Options let you set the following:

Editor Smart keys, tab size and block indentation, caret
display, the number of backups to keep, search options,
and save options. You can also change or customize
your editor emulation from here.

Display Change margins and font.

Color Choose how to highlight your code and color your text
and screen elements in order to indicate what
something is doing or what’s happening to it.

CodeInsight Set auto pop-up option and its delay timing. Set which
parts of CodeInsight to use. Advanced Options let you set
parameters. You can also set display options and the
keystrokes used to invoke CodeInsight. See “Completing
code with CodeInsight” on page 4-3 for more on this topic.

U s i n g t h e e d i t o r 4-3

C o m p l e t i n g c o d e w i t h C o d e I n s i g h t

For more information, click the Help button on the Editor Options or IDE
Options dialog pages (Tools|Editor Options, Tools|IDE Options). For
more information on keymaps, choose Help|Keyboard Mappings.

Completing code with CodeInsight
JBuilder’s CodeInsight displays a context-sensitive pop-up window
within the editor to help you complete your code.

CodeInsight displays:

• A list of accessible data members and methods for the current context
(MemberInsight).

• A list of parameters expected for the method being coded
(ParameterInsight).

• A list of classes accessible through the current class path (ClassInsight).

• Errors in the structure pane (ErrorInsight).

Available in JBuilder
Professional and

Enterprise.

• Tool tip expression evaluation that displays variable values when
debugging.

You can configure CodeInsight so that it provides the type of information
you want while coding.

1 Select Tools|Editor Options to open the Editor Options dialog box.

2 Select the CodeInsight tab and change the appropriate options.

Templates Select code templates. In JBuilder Professional and
Enterprise, you can add, edit, and delete code
templates.

Java Structure Adjust the parse delay and the structure order.

4-4 L e a r n i n g J a v a w i t h J B u i l d e r

U s i n g c o d e t e m p l a t e s

3 Select the Display Options button to customize displayed code in the
pop-up windows.

Configure CodeInsight keys by selecting the Keystrokes button on the
CodeInsight page. A listing of the default keyboard shortcuts is in
Help|Keyboard Mappings.

For more information, see the “CodeInsight” topic in “The JBuilder
environment” chapter of Building Applications with JBuilder.

Using code templates
JBuilder includes such default code templates as class declaration, if, if
else, try/catch, and while statements. You can use code templates in the
editor to speed up the coding process. Enter the code template name, and
the editor automatically displays the template. Press Ctrl + j to expand a
displayed template or to access the menu of templates.

In JBuilder Professional and Enterprise, code templates are fully
customizable. Edit, add, and delete code templates on the Templates page
of the Editor Options dialog box (Tools|Editor Options).

For more information, see “Using code templates” in “The JBuilder
environment” chapter of Building Applications with JBuilder.

U s i n g t h e e d i t o r 4-5

K e y m a p s f o r e d i t o r e m u l a t i o n s

Keymaps for editor emulations
You can customize the JBuilder environment to emulate your favorite
editor. JBuilder provides the following editor emulation keymaps:

• Default/CUA
• Emacs
• Brief
• Visual Studio®

Most of these keymaps are also available as samples, which you can use as
general models for creating new keymaps. You can easily customize any
editor emulation. To learn how to use the Keymap Editor, click the Help
button in the Keymap Editor dialog.

To change or customize JBuilder’s editor emulation,

• Choose Tools|IDE Options. Select the Browser tab. Or,
• Choose Tools|Editor Options. Select the Editor tab.

To view standard keyboard shortcuts in these emulations, choose one of
the topics below. In these tables, all keystrokes are in regular type.

Solaris users, note that both sets of arrow keys have been mapped to the
same actions.

Cursor movement
Note In the Brief emulation, if you use Alt + l, Alt + c, Alt + m, or Alt + a commands,

any cursor movement will select what the cursor traverses.

Some keys are not available on all platforms.

• Cursor movement
• Selection
• Editing text
• Clipboard
• Search and replace
• Buffers and Files
• Compile and Debug
• CodeInsight
• Code Templates
• View and Help

page 4-5
page 4-7
page 4-8
page 4-10
page 4-10
page 4-11
page 4-11
page 4-12
page 4-12
page 4-12

Keymaps for editor
emulation
s

Command Default / CUA Emacs Brief Visual Studio®

Left one character Left arrow Ctrl + b, Left arrow Left arrow, Solaris
Left arrow

Left arrow, Solaris
Left arrow

Right one character Right arrow Ctrl + f, Right arrow Right arrow, Solaris
Right arrow

Right arrow, Solaris
Right arrow

4-6 L e a r n i n g J a v a w i t h J B u i l d e r

K e y m a p s f o r e d i t o r e m u l a t i o n s

Left one word Ctrl + Left arrow Alt + b, Ctrl + Left
arrow

Ctrl + Left arrow,
Ctrl + Solaris Left
arrow

Ctrl + Left arrow,
Ctrl + Solaris Left
arrow

Right one word Ctrl + Right arrow Alt + f, Ctrl + Right
arrow

Ctrl + Right arrow,
Ctrl + Solaris Right
arrow

Ctrl + Right arrow,
Ctrl + Solaris Right
arrow

Up one line Up arrow Ctrl + p, Up arrow Up arrow Up arrow

Down one line Down arrow Ctrl + n, Down
arrow

Down arrow Down arrow

Beginning of line Home Ctrl + a Home

Beginning of line/
top of window/
start of file

Home, Shift +
Home

End of line End Ctrl + e End

End of line/
bottom of window/
end of file

End, Shift + End

Top of window Ctrl + Page Up Ctrl + Home Ctrl + Page Up

Bottom of window Ctrl + Page Down Ctrl + End Ctrl + Page Down

Up one screen Page Up Alt + v, Page Up Page Up Page Up

Down one screen Page Down Ctrl + v, Page
Down

Page Down Page Down

Top of file Ctrl + Home Home, Alt + < Ctrl + Page Up Ctrl + Home

Bottom of file Ctrl + End End, Alt + > Ctrl + Page Down Ctrl + End

Next tab stop Tab Tab Tab Tab

Previous tab stop Shift + Tab Shift + Tab Shift + Tab Shift + Tab

Scroll window up
one line

Ctrl + Up arrow Ctrl + u, Ctrl + e,
Ctrl + Up, Ctrl +
Solaris Up arrow

Ctrl + Up Arrow,
Ctrl + Solaris Up
arrow

Scroll window
down one line

Ctrl + Down arrow Ctrl + d, Ctrl +
Down, Ctrl +
Solaris Down arrow

Ctrl + Down
Arrow, Ctrl +
Solaris Down arrow

Recenter Ctrl + l Ctrl + c

Go to line Ctrl + g Ctrl + x g Alt + g Ctrl + g

Find matching
brace, bracket or
parenthesis

Alt + [, Alt +] , Ctrl
+ [, Ctrl +]

Ctrl + Alt + b,
Ctrl + Alt + f

Ctrl +] Alt +]

Command Default / CUA Emacs Brief Visual Studio®

U s i n g t h e e d i t o r 4-7

K e y m a p s f o r e d i t o r e m u l a t i o n s

Selection
Some keys are not available on all platforms.

Set numbered
bookmark

Ctrl + Shift + <#> Alt + j

Toggle
unnumbered
bookmark

Ctrl + F2

Jump to numbered
bookmark

Ctrl + <#> Alt + <#>, Ctrl +
<#>

Go to next
bookmark

F2

Go to previous
bookmark

Shift F2

Clear all bookmarks
in current file

Ctrl + Shift + F2

Back to indentation Alt + m

Command Default / CUA Emacs Brief Visual Studio®

Command Default / CUA Emacs Brief Visual Studio®

Select left one character Shift + Left arrow Shift + Left arrow,
Shift + Solaris Left
arrow

Select right one character Shift + Right
arrow

Shift + Right
arrow, Shift +
Solaris Right
arrow

Select current word Ctrl + w

Select to start of current
word

Ctrl + Shift + Left
arrow

Ctrl + Shift + Left
arrow, Ctrl + Shift
+ Solaris Left
arrow

Select to end of current word Ctrl + Shift +
Right arrow

Ctrl + Shift + Right
arrow, Ctrl + Shift
+ Solaris Right
arrow

Select current line Ctrl + l Ctrl + l

Select to start of line Shift + Home Shift + Home

Select to end of line Shift + End Shift + End

Select up one line Shift + Up arrow Shift + Up arrow

Select down one line Shift + Down
arrow

Shift + Down
arrow

4-8 L e a r n i n g J a v a w i t h J B u i l d e r

K e y m a p s f o r e d i t o r e m u l a t i o n s

Editing text

Some keys are not available on all platforms.

Select to top of window Ctrl + Shift +
Page Up

Ctrl + Shift + Page
Up

Select to bottom of window Ctrl + Shift +
Page Down

Ctrl + Shift + Page
Down

Select up one screen Shift + Page Up Shift + Page Up

Select down one screen Shift + Page
Down

Shift + Page Down

Select to top of file Ctrl + Shift +
Home

Ctrl + Shift +
Home

Select to bottom of file Shift + Ctrl + End Ctrl + Shift + End

Select all
(mark-whole-buffer)

Ctrl + a Ctrl + x h Ctrl + a

Set mark Ctrl + Space, Ctrl
+ @

Alt + a F8

Set mark, select character Alt + m Ctrl + Shift + F8

Set mark, select line Ctrl + F8

Select code between
matching braces

Ctrl + Shift +] ,
Ctrl + Shift + [,
Alt + Shift +] ,
Alt + Shift + [

Ctrl + Shift +] Ctrl + Shift +] Alt + Shift +]

Exchange point and mark Ctrl + x Ctrl + x

Turn off special states Esc

Command Default / CUA Emacs Brief Visual Studio®

Command Default / CUA Emacs Brief Visual Studio®

Toggle Insert /
Overstrike mode

Insert Insert Alt + i Insert

Delete
character/selection

Delete Ctrl + d, Delete Delete Delete

Delete previous
character/selection

Backspace, Shift +
Backspace

Backspace, Shift +
Backspace

Backspace Backspace, Shift +
Backspace

Delete line Ctrl + y Alt + d Ctrl + Shift + l

Delete to end of line
(kill-line)

Ctrl + Shift + y Ctrl + k Alt + k Alt + Shift + l

U s i n g t h e e d i t o r 4-9

K e y m a p s f o r e d i t o r e m u l a t i o n s

Delete to end of word
(kill-word)

Ctrl + t Alt + d Alt + Backspace Ctrl + Delete

Delete to start of word
(backward-kill-word)

Ctrl + Backspace Ctrl + Delete, Alt +
Backspace, Alt +
Delete

Ctrl + Backspace Ctrl + Backspace

Indent block Ctrl + Shift + i, Tab Ctrl + x Tab

Unindent block Ctrl + Shift + u,
Shift + Tab

Insert return Enter, Shift + Enter Enter,
Shift + Enter,
Ctrl + m

Enter, Ctrl + Shift +
Enter (differs from
original Brief)

Enter, Shift + Enter

Open line Ctrl + n Ctrl + o

Comment /
uncomment lines

Ctrl + / (to
uncomment, //
must be in first
column)

Ctrl + /

Delete horizontal
space

Alt + \

Delete blank lines Ctrl + x Ctrl + o

Lowercase word Alt + l

Uppercase word Alt + u

Capitalize word Alt + c

Lowercase selection Ctrl + x Ctrl + l (if
no selection,
lowercases to
cursor

Ctrl + u

Uppercase selection Ctrl + x Ctrl + u (if
no selection,
uppercases to
cursor

Ctrl + Shift + u

Transpose characters Ctrl + t

Transpose words Alt + t

Transpose lines Ctrl + x Ctrl + t Alt + Shift + t

Undo Ctrl + z, Alt +
Backspace, Undo

Ctrl + /, Ctrl +
Underscore, Ctrl +
x u, Undo, F9

Alt + u, Numeric +
*, Undo

Ctrl + z, Solaris
Undo

Redo Ctrl + Shift + z, Alt
+ Shift +
Backspace, Again

Again, Shift + F9 Alt + y, Again Ctrl + y, Solaris
Redo

Command Default / CUA Emacs Brief Visual Studio®

4-10 L e a r n i n g J a v a w i t h J B u i l d e r

K e y m a p s f o r e d i t o r e m u l a t i o n s

Clipboard

Some keys are not available on all platforms.

Search and replace

Some keys are not available on all platforms.

Command Default / CUA Emacs Brief Visual Studio®

Cut selection Ctrl + x, Shift +
Delete, Cut

Shift + Delete Ctrl + x, Shift +
Delete, Solaris Cut

Cut selection/current line Numeric + - (minus
sign), Solaris Cut

Ctrl + l

Copy selection Ctrl + c, Ctrl +
Insert, Copy

Ctrl + Insert Ctrl + c, Ctrl + Insert,
Solaris Copy

Copy selection/current line Numeric + + (plus
sign), Solaris Copy

Paste from clipboard Ctrl + v, Shift +
Insert, Paste

Insert, Ctrl + y, Shift
+ Insert, Solaris
Paste

Ctrl + v, Shift +
Insert, Solaris Paste

Kill-region Ctrl + w

Kill-ring-save Alt + w

Clipboard-kill-region F20, Cut

Clipboard-kill-ring-save F16, Copy

Clipboard-yank F18, Paste

Yank Ctrl + y

Yank-pop Alt + y

Command Default / CUA Emacs Brief Visual Studio®

Find text Ctrl + f Find F5, Alt + s,
Solaris Find

Find again F3 Shift + F5

Find again, backwards Shift + F3

Search and replace Ctrl + r Alt + % F6, Alt + t Ctrl + h

Search in path Ctrl + p Ctrl + p Ctrl + d

Incremental search forward Ctrl + e Ctrl + s Ctrl + s Ctrl + i

Incremental search backward Ctrl + r Ctrl + r Ctrl + Shift + i

Search for selected text Ctrl + F3

Search backward for selected
text

Ctrl + Shift + F3

Turn off special states Esc

U s i n g t h e e d i t o r 4-11

K e y m a p s f o r e d i t o r e m u l a t i o n s

Buffers and Files

Compile and Debug

Command Default / CUA Emacs Brief Visual Studio®

File|New Ctrl + n Ctrl + n

File|Open Ctrl + o Ctrl + x Ctrl + f Alt + e Ctrl + o

File|Save Ctrl + s Ctrl + x Ctrl + s Alt + w Ctrl + s

File|Save As Ctrl + x Ctrl + w Alt + o

File|Save All Ctrl + Shift + a

File|Print Ctrl + p

File|Close Ctrl + F4 Ctrl + x k Ctrl + -

Save files and exit Ctrl + x</P>

delete-window Ctrl + x 0

delete-other-windows Ctrl + x 1

split-window-vertically Ctrl + x 2

split-window-horizontally Ctrl + x 3

other-window Ctrl + x o

Previous open node Ctrl + Shift + F6 F11 Shift + F6

Next open node Ctrl + F6 F12 F6

Back Ctrl + Alt + Left

Forward Ctrl + Alt + Right

Command Default / CUA Emacs Brief Visual Studio®

Make project Ctrl + F9 Ctrl + x m Ctrl + F9 F7

Make file Ctrl + Shift + F9 Ctrl + Shift + F9 Ctrl + F7

Run (Resume) F9 F9 Ctrl + F5

Debug Shift + F9 Shift + F9 F5

Step into F7 F7 F7 F11

Step over F8 F8 F8 F10

Step out Shift + F11

Reset Ctrl + F2 Ctrl + F2 Shift + F5

Toggle breakpoint F5 F5 F9

Toggle enable breakpoint Ctrl + F9

View breakpoints Alt + F9

4-12 L e a r n i n g J a v a w i t h J B u i l d e r

K e y m a p s f o r e d i t o r e m u l a t i o n s

CodeInsight

Note: CodeInsight is for .java and .jsp files only. To customize these shortcuts, select Tools|Editor options, choose the
CodeInsight tab, and click the Keystrokes button.

Code Templates

View and Help

Run to cursor F4 F4 F4 Ctrl + F10

Command Default / CUA Emacs Brief Visual Studio®

Command All Editor Emulations

Browse symbol Ctrl + –

Methods and members of current scope
(MethodInsight)

Ctrl + h, Ctrl + Space

Method parameters (ParameterInsight) Ctrl + Shift + h, Ctrl + Shift + Space

Class browser (ClassInsight) Ctrl + Alt + h, Ctrl + Alt + Space

Drill down (SymbolInsight) Ctrl + Enter, Alt + Shift + h

Command All Editor Emulations1

Code Templates Ctrl + j

Command Default / CUA Emacs Brief Visual Studio®

View project properties Alt + F7

Next message Ctrl + Shift + n Ctrl + x Ctrl + n Ctrl + Shift + n F4

Previous message Ctrl + Shift + p Ctrl + x Ctrl + p Ctrl + Shift + p Shift + F4

Toggle curtain Ctrl + Alt + z Ctrl + Alt + z Ctrl + Alt + z

Toggle project pane Ctrl + Alt + p Ctrl + Alt + p Ctrl + Alt + p

Toggle structure pane Ctrl + Alt + s Ctrl + Alt + s Ctrl + Alt + s

Toggle content pane Ctrl + Alt + c Ctrl + Alt + c Ctrl + Alt + c

Toggle message pane Ctrl + Alt + m Ctrl + Alt + m Ctrl + Alt + m

Help F1, Help F1, Solaris Help F1, Solaris Help

Context help Shift + F1 Shift + F1 Shift + F1

U s i n g t h e e d i t o r 4-13

K e y m a p s f o r e d i t o r e m u l a t i o n s

Split window horizontally Ctrl + t

Split window vertically Ctrl + Shift + t

Zoom window (close other
splits)

Ctrl + z

Close split window Ctrl + Shift + z

Next split window Ctrl + w

Command Default / CUA Emacs Brief Visual Studio®

4-14 L e a r n i n g J a v a w i t h J B u i l d e r

A u t o m a t i n g a p p l i c a t i o n d e v e l o p m e n t 5-1

C h a p t e r

5
Chapter5Automating application

development
JBuilder provides many time-saving wizards for application
development. With these wizards you can quickly create or modify files,
settings, and preferences. The wizards create the framework of your file or
application, allowing you to focus on development.

Using wizards
JBuilder has three types of wizards: wizards that create new files, wizards
that create elements of an application, and utility wizards.

The wizards available in
JBuilder vary by edition

Examples of wizards are:

• Wizards that create new sets of files. Select File|New to access such
wizards as:

• Project
• Application
• Applet
• JavaBean

• Wizards that create elements of an application. Select File|New to
access such wizards as:

• Dialog
• Frame
• Panel

• Utility wizards. Some of these are accessible from the object gallery,
some from the Wizards menu.

5-2 L e a r n i n g J a v a w i t h J B u i l d e r

U s i n g t h e o b j e c t g a l l e r y

From the New page of the object gallery, you can choose the following
utility wizards:

• Archive Builder (available in JBuilder Professional and Enterprise)
• Class
• Interface
• Data Module

You can access these additional wizards from the Tools menu:

• New Library
• New JDK

The following are features
of JBuilder Professional

and Enterprise

• Select the Wizards menu to access utility wizards such as:

• Implement Interface

• Override Method

• Archive Builder (also available from the object gallery)

• Use DataModule

• Two EJB utility wizards: Interfaces and Test Client

The following are features
of JBuilder Enterprise

• Wizards available on the Enterprise tab of the object gallery include:

• EJB wizards for creating, grouping, modeling, and testing Enterprise
JavaBeans

• CORBA wizards for creating and setting up both client and server
sides of an application

• Sample IDL wizard

• JavaServer Page wizard

For more information on wizards, search for “wizard” in the online help
index. For more information on a specific wizard, open the wizard and
click the Help button in the dialog box.

Using the object gallery
The object gallery contains many wizards you can use to create objects
quickly. These wizards vary by JBuilder edition.

A u t o m a t i n g a p p l i c a t i o n d e v e l o p m e n t 5-3

A d d i t i o n a l J B u i l d e r t o o l s

To open the object gallery, choose File|New.

The object gallery has two pages:

• New: wizards that use Java 2 Standard Edition technologies

The following is a feature
of JBuilder Enterprise

• Enterprise: wizards that use Java 2 Enterprise Edition technologies

For more information, see “Using the object gallery” in “The JBuilder
environment” chapter of Building Applications with JBuilder.

Additional JBuilder tools
These are features of

JBuilder Professional and
Enterprise.

JBuilder offers additional tools from the Tools menu.

For more information, see the Database Application Developer’s Guide,
Distributed Application Developer’s Guide, and JDataStore Programmer’s
Guide.

Table 5.1 JBuilder tools

Tools Description

BeanInsight Checks the validity of JavaBeans and displays information on
properties, property editors, and customizers.

Package Migration Tunes files created with previous versions of JBuilder so they
are compatible with the updated JDK and JBuilder
functionality.

JDBC Monitor Monitors SQL applications.

JDBC Explorer Allows you to edit data and view JDBC-based meta-database
information, tables, views, and stored procedures.

JDataStore Explorer Examines the contents of a JDataStore, performs many
JDataStore operations without writing code, and manages
queries.

JDataStore Server Provides remote access to JDataStore files.

Configure Tools Allows you to create and customize macros for command-line
tools.

RMI Registry Allows remote clients to get a reference to a remote object.

5-4 L e a r n i n g J a v a w i t h J B u i l d e r

W o r k i n g w i t h p r o j e c t s

Working with projects
To develop programs in the JBuilder environment, you must first create a
project. A project organizes the files and maintains the settings that make
a JBuilder application or applet. You can view and manage your project in
the project pane.

A JBuilder project is an organizational tool. When you put a file into a
JBuilder project, it doesn’t change that file’s location in your directory
structure. This means you can use the same file in any number of JBuilder
projects without ever moving the file. You can view and manage your
directory structure using your favorite file management tool.

The information about a JBuilder project is stored in a project file. The
project file includes the list of files and packages that are in the project and
the project properties that define the project. JBuilder uses this
information when you load, save, build, or deploy a project. You don’t
edit the project file directly; it is modified whenever you use the JBuilder
development environment to add or remove files or to set project
properties such as paths or connection settings.

The project file is shown as a node in the project pane. Listed below it are
all the files in the project:

Saving projects

While you are working on a project, you can save it to the default location
or to a directory of your choice. By default, JBuilder saves projects to the
jbproject directory of your home directory.

Each project is saved to its own directory. Each project directory includes
a project file (.jpr or .jpx), an optional file for project notes (.html), a
classes directory for class files, a src directory for source files, and a bak
directory for backup copies of your files.

By default, the project directory (with its children) is saved to jbproject.
All paths can be changed in the Project wizard and in the Project|Project
Properties dialog.

For more information on the location of the jbproject and home directories,
see Table 1.2, “Platform conventions and directories,” on page 1-4.

A u t o m a t i n g a p p l i c a t i o n d e v e l o p m e n t 5-5

W o r k i n g w i t h p r o j e c t s

Using the Project wizard

JBuilder includes a Project wizard that simplifies project creation. When
you use the Project wizard to create a new project, the wizard
automatically sets up the directory framework for the project and
develops and saves information on project properties, such as applicable
paths and JDK version. You may also create a project notes file. The
information in this file can go into the commentary of the source files the
project contains, and from there into any JavaDoc-generated
documentation you create from that project.

If you use the Application or Applet wizard without any projects open,
the Project wizard is launched first so you can create a new project to hold
the new application or applet.

For more information on the Project wizard, click the Help button in the
wizard’s dialog box. For more information about the Application or
Applet wizards, select File|New, choose the Application or Applet icon
from the object gallery, and click Help in the wizard’s dialog box.

Project wizard: Step 1
Step 1 sets the names of the files associated with the project. It also sets the
root path and the project template.

To create a new project with the Project wizard, Choose File|New Project
to open the Project wizard. This will bring up Step 1 of 3:

5-6 L e a r n i n g J a v a w i t h J B u i l d e r

W o r k i n g w i t h p r o j e c t s

1 Enter the project name.

2 Select the project file type: .jpr or .jpx.

To read about file types in JBuilder, see “File types in a JBuilder project”
in “Creating and Managing Projects” in Building Applications with
JBuilder.

3 Choose a project template. You can choose from the drop-down list of
previously opened projects, or you can click the ellipsis (...) to browse to
a project you want to use as a template.

Note You can add files at any time by selecting the Add Files/Packages icon
from the project toolbar.

4 Set the root path. You may choose from the drop-down list or click the
ellipsis to browse.

5 Enter the name of the project directory.

6 If you don’t wish to accept the default names, set the names of the
source directory, the backup directory, and the output directory.

7 Choose whether you want the project directory to be the parent to the
source and output directories. If you leave this unchecked, JBuilder will
automatically put the project and class files into separate directories off
of the root path. You can edit your paths later in the wizard.

8 Click Next. Step 2 of the Project wizard appears.

Project Wizard: Step 2
Step 2 sets the paths the project will use, the JDK version to compile
against, and the libraries the project will require. Step 2 is where you can
tell JBuilder whether to make a project notes file.

A u t o m a t i n g a p p l i c a t i o n d e v e l o p m e n t 5-7

W o r k i n g w i t h p r o j e c t s

1 Notice the project, source, backup, and output paths. The information
that you set in Step 1 shows up here.

JBuilder defaults all of these paths to the jbproject directory, but you
can change them here to suit your development needs.

2 Set the version of the JDK that you will compile against. Click on the
ellipsis (...) to bring up the Select A JDK dialog.

3 Choose the libraries the project will require. Click Add to bring up the
Select One Or More Libraries dialog. This dialog allows you to sort the
library list, select single or multiple libraries, create new libraries, and
edit or delete existing libraries.

4 Decide whether you want a project notes file.

If not, uncheck this box and click Finish. You’re done!

If so, leave the box checked and click Next in order to create this file.
Step 3 of the Project wizard appears.

Project Wizard: Step 3
Step 3 develops the project notes file. These project notes are the basis of
the About box of the application you create.

1 Enter the project’s title, author or authors, and company name. Write a
project description in the pane below.

2 Click Finish. You’re done!

The newly created project node appears at the top of the project pane with
the HTML notes file below it. To view your paths, JDK, and libraries,
right-click on the project node, select Properties, and select the Paths tab.

5-8 L e a r n i n g J a v a w i t h J B u i l d e r

W o r k i n g w i t h p r o j e c t s

To view your project notes information as JavaDoc class fields, select the
General tab in the same dialog.

For more information on projects and the Project wizard, see “Creating
and managing projects” in Building Applications with JBuilder. For a tutorial
on creating a project and an application, see Chapter 16, “Building an
application.”

Displaying project files

JBuilder displays the project file in the project pane of the AppBrowser.
The files that make up the project are listed below it. To open a file in the
content pane, double-click its name in the project pane.

Note You can only view one file at a time in the content pane. To view multiple
files simultaneously, open multiple instances of the AppBrowser. To do
so, select Window|New Browser for each instance desired.

A tab with the file name appears at the top of the content pane. If several
files are open, there will be a file tab for each one. You can look at a
different open file by selecting its file tab or by selecting the file from the
Window menu. You can customize the labeling and positioning of the file
tabs. To learn about customizing your file tabs, see the “File Tabs” topic in
“The JBuilder Environment” in Building Applications with JBuilder.

The following figure shows a project file, hello.jpr, in the project pane
with the source and image files listed below it. The project notes file,
hello.html, is selected in the content pane. The project notes are created
from the information entered in Step 3 of the Project wizard.

A u t o m a t i n g a p p l i c a t i o n d e v e l o p m e n t 5-9

W o r k i n g w i t h p r o j e c t s

Setting project properties

Project properties control the following:

• Paths: output path, source path, backup path, JDK version (in JBuilder
Professional and Enterprise), and libraries paths.

• General properties: encoding, automatic source package enabling, and
JavaDoc fields.

• Running.

• Debugging.

• Building.

• Code style.
These are features of

Enterprise edition
• EJB and JSP handling.

• Version control.

Note The project properties options vary by JBuilder edition.

You can set the properties for your project by right-clicking a .jpr or .jpx
project file in the project pane and then selecting Properties or by choosing
Project|Project Properties.

On the Paths page of the Project Properties dialog box you can specify:

• The version of the JDK to use for compiling and running. (JBuilder
Professional and Enterprise)

• Where the compiler should search for source files and place class files.

• The libraries to use.

• The backup path.

5-10 L e a r n i n g J a v a w i t h J B u i l d e r

W o r k i n g w i t h p r o j e c t s

You can also globally set the default properties for all new projects in the
Default Project Properties dialog box (Project|Default Project Properties).

For more information, see the “Setting project properties” topic in
“Creating and managing projects” in Building Applications with JBuilder.

Managing projects

From the AppBrowser, you can:

• View project files.
• Open and edit multiple files and projects, including paths and names.
• Add source files and packages to a project.
• Add project folders.
• Navigate through packages.
• Browse HTML files and web graphics.
• Drill down into the structure of classes, methods, and code elements.

Opening projects
To open a project, select File|Open Project and browse to find the project
file you want. To open a previously opened project, select File|Reopen
and select the project file from the drop-down list. Or click the Open or
Reopen buttons on the main toolbar.

Adding and removing files
You can add and remove files and packages from a project or folder by
using the Add Files/Packages or the Remove From Project buttons on the
project toolbar, or by right-clicking on a file in the project pane and selecting
Add Files/Packages or Remove From Project from the right-click menu.

A u t o m a t i n g a p p l i c a t i o n d e v e l o p m e n t 5-11

W o r k i n g w i t h p r o j e c t s

The Add Files/Packages dialog has two tabs: Packages, which shows a list
of available packages, and Explorer, which allows you to browse your
directories and files.

Tip You can create a new file from the Explorer page by entering a new file
name and clicking OK. You will get a message asking if you want to create
that file; click OK.

Saving and closing projects
To save a project, select File|Save All, File|Save Current Project, or click
the Save All button on the main toolbar.

To close a project, select File|Close Project, File|Close Files, or click the
Close Project button on the project toolbar.

Renaming projects and files
To rename a project,

1 Select the project in the project pane.
2 Select Project|Rename.
3 Enter the new name in the File Name field of the Rename dialog box.
4 Click OK.

To rename an open file,

1 Select File|Rename or right-click on the file tab at the top of the content
pane and select Rename.

2 Enter the new name in the File Name field of the Rename dialog box.

3 Click Save.

Caution Renaming projects and files does not change the references to the relevant
package and file names inside the code. You must make those changes
separately.

5-12 L e a r n i n g J a v a w i t h J B u i l d e r

W o r k i n g w i t h p r o j e c t s

Working with multiple projects
When working with multiple projects, you can open them in one instance
of the AppBrowser or in different instances. All open projects are available
from any open AppBrowser instance. However, you can only view the
files of one project at a time in each AppBrowser instance.

There are several ways to switch between multiple open projects and files:

• Select the project from the drop-down list on the project toolbar.

• Select the file from the list of open files in the Window menu. You can
also instantiate another AppBrowser or switch between open
AppBrowsers from the Window menu.

For more information, see “Creating and managing projects” in Building
Applications with JBuilder.

A u t o m a t i n g a p p l i c a t i o n d e v e l o p m e n t 5-13

C r e a t i n g J a v a B e a n s

Creating JavaBeans
A JavaBean is a collection of one or more Java classes that serves as a
self-contained, reusable component. A JavaBean can be a discrete component
used in building a user interface or a non-UI component such as a data
module or computation engine. At its simplest, a JavaBean is a public Java
class that has a constructor with no parameters. JavaBeans usually have
properties, methods, and events that follow certain naming conventions.

JavaBeans have some unique advantages over other components, such as:

• They are pure Java, cross-platform components.

• You can install them on the JBuilder component palette and use them in
the construction and design of your program, or they can be used in
other application builder tools for Java.

• They can be deployed in JAR files.

JBuilder’s BeansExpress, available in Professional and Enterprise, is the
fastest way to create JavaBeans. It consists of a set of wizards, visual
designers, and code samples that help you build JavaBeans rapidly and
easily. Once you have a JavaBean, you can use BeansExpress to make changes
to it. Or you can take an existing Java class and turn it into a JavaBean.

This is a feature of
JBuilder Professional and

Enterprise.

To access JBuilder’s JavaBean wizard to start creating a JavaBean,

1 Choose File|New Project and create a new project with the Project
wizard.

2 Choose File|New to display the object gallery.

3 Double-click the JavaBean icon on the New page of the object gallery to
open the JavaBean wizard.

5-14 L e a r n i n g J a v a w i t h J B u i l d e r

W o r k i n g w i t h a p p l e t s

For more information, see “Creating JavaBeans with BeansExpress” in
Building Applications with JBuilder.

Working with applets
Applets are Java programs that are stored on Internet/intranet web
servers. Unlike applications, applets are not stand-alone programs but
require a viewer to run, such as a web browser. Applets must be launched
from an HTML web page that includes an APPLET tag.

Before developing applets, it’s important to fully understand browser and
JDK compatibility issues. See “Working with applets” in Building
Applications with JBuilder and Chapter 17, “Building an applet” for
information on these issues.

Using the Applet wizard

JBuilder provides an Applet wizard to assist you in creating applets. The
Applet wizard creates an applet consisting of two files and adds them to
the existing project:

• An HTML file containing an APPLET tag referencing your applet class.
This is the file you should select to run or debug your applet.

• A Java class that extends JApplet or Applet. This is your main UI
container to which you’ll add UI components using the UI designer.

To open the Applet wizard,

1 Close all open projects.

2 Choose File|New. Double-click the Applet icon in the object gallery.
The Project wizard opens first. You must create a project before
creating an applet.

3 Complete the three steps of the Project wizard. The Applet wizard
opens.

A u t o m a t i n g a p p l i c a t i o n d e v e l o p m e n t 5-15

W o r k i n g w i t h a p p l e t s

4 Complete the three-step wizard to create the applet. The applet is
added to the project.

For more information on deploying applets, see “Deploying Java
programs” in Building Applications with JBuilder.

5-16 L e a r n i n g J a v a w i t h J B u i l d e r

B u i l d i n g a u s e r i n t e r f a c e 6-1

C h a p t e r

6
Chapter6Building a user interface

Using JBuilder’s visual design tools, you can quickly and easily create a
user interface (UI) for a Java application or applet. You construct the UI
using a palette that contains components such as buttons, text areas, lists,
dialogs, and menus. Then you set the values of the component properties
and attach event-handler code to the component events, telling the
program how to respond to UI events.

Figure 6.1 The AppBrowser and the UI designer

6-2 L e a r n i n g J a v a w i t h J B u i l d e r

U s i n g t h e U I d e s i g n e r

For more information, see Chapter 16, “Building an application” and
Chapter 19, “Building a Java text editor.” You can also see the online
tutorial “Creating a UI with nested layouts.”

For more information, see “Designing a user interface” in Building
Applications with JBuilder.

Using the UI designer
JBuilder provides tools for visually designing and programming Java
classes, allowing you to produce new compound or complex components.

To use the visual design tools, a file must meet the following
requirements:

• It must be a Java file (excluding Inner and Anonymous classes).
• It must be free from syntax errors.
• It must contain a class whose name matches the file name.

Note The class cannot be an Inner class or an Anonymous class. The UI designer
is used to manipulate JavaBeans that extend java.awt.Container. For
example, the JavaBean can extend any of the following classes:

• JFrame
• JPanel
• JDialog
• JApplet

Note These requirements are all met when you create files with the Application
wizard or the Applet wizard.

Table 6.1 JBuilder’s visual design tools

Design tools Description

UI designer Provides a surface for placing and editing panels and other
UI components. To access the UI designer for an open file,
select the Design tab at the bottom of the content pane.

Component palette Contains visual and nonvisual Java components.
Components on the palette vary by JBuilder edition.

Component tree Displays a structured view of all the components in your
source file and their relationships. This is shown in the
structure pane at the lower left of the AppBrowser.

Inspector Used to inspect and set the values of component properties
and to attach methods to component events. Changes made
in the Inspector are reflected visually in your design.

Menu designer Used to design menus on the design surface. To invoke it
while in the UI designer, double-click a JMenuBar or
JPopupMenu component in the component tree, or select the
component and press Enter.

Column designer Allows you to work visually with data set components. To
invoke it, double-click a data set.

Available in JBuilder
Professional and Enterprise

B u i l d i n g a u s e r i n t e r f a c e 6-3

D e s i g n i n g m e n u s

Viewing a file

1 Double-click a Java file in the project pane. The file opens in the source
editor in the content pane.

2 Select the Design tab at the bottom of the content pane. The file changes
to the design view, or the designer. The component palette and the
Inspector become available.

Adding and manipulating components

• Click a component in the component palette to select it.

• Click either in the designer or on the component’s parent in the
structure pane to drop the chosen component into the designer.

• Use the component tree in the structure pane to keep track of where
your UI components are in relation to each other. Cut and paste
components in the component tree to stack and nest them the way you
want them.

• Select the container you want to apply a layout manager to, then select
layout in the Inspector to choose and apply the desired layout manager.

• Double-click the right column fields of the Inspector to view available
values or activate text fields.

Note JBuilder keeps the designer and the Java source code synchronized. When
you change the design in the UI designer, JBuilder automatically updates
the source code, and when you change the source code, the change is
reflected in the UI designer.

For more information, see “JBuilder’s visual design tools” in “Designing a
user interface” in Building Applications with JBuilder.

Designing menus
JBuilder includes a menu designer that makes it easy to create menus. You
can visually design both drop-down and pop-up menus.

To access JBuilder’s menu designer,

1 Double-click a Java file in the project pane to open it.

2 Select the Design tab at the bottom of the content pane to change to the
designer.

3 Add a menu component by clicking a menu component from the
component palette then clicking in your design.

4 Double-click the new menu component in the component tree to
activate the menu designer.

6-4 L e a r n i n g J a v a w i t h J B u i l d e r

S e t t i n g c o m p o n e n t p r o p e r t i e s a n d e v e n t s

To return to the UI designer, double-click any component in the UI folder
of the component tree. For more information, see “Designing menus” in
Building Applications with JBuilder.

Setting component properties and events
The Inspector in the UI designer allows you to visually edit component
properties and attach code to component events. You can make changes to
the properties and events in the Inspector and the appropriate code is
automatically inserted into your source code.

B u i l d i n g a u s e r i n t e r f a c e 6-5

D e s i g n i n g l a y o u t s w i t h l a y o u t m a n a g e r s

For more information, see “Designing a user interface” in Building
Applications with JBuilder.

Using the Inspector, you can:

• Set the initial property values for components in a container and for the
container and its layout manager (initialization code).

• Create, name, and delete event listeners in a container that will receive
events from the component in the container (event handling code).

• Save text property String values to a ResourceBundle, or revert a
resourced String back to a String constant.

• Change the level of properties exposed in the Inspector.

• Expose a property as a class level variable so you can change it in the
Inspector.

Any changes you make in the Inspector are reflected immediately in the
source code and in the UI designer.

For more information, see “Handling events” in Building Applications with
JBuilder.

Opening the Inspector

To display the Inspector,

1 Select a Java file in the project pane and press Enter to open the file in the
content pane.

2 Select the Design tab at the bottom of the AppBrowser to access the
designer. The Inspector is displayed at the right of the content pane.

3 Adjust the width of the Inspector by dragging its left border.

For more information, see “Using the Inspector” in Building Applications
with JBuilder.

Designing layouts with layout managers
A program written in Java might be deployed on more than one platform.
If you were to use classic UI design techniques that specify absolute
positions and sizes for your UI components, the UI might not look as you
intended on all platforms. What looks fine on your development system
might be unusable on another platform. To solve this problem, Java
provides a system of portable layout managers.

6-6 L e a r n i n g J a v a w i t h J B u i l d e r

D e s i g n i n g l a y o u t s w i t h l a y o u t m a n a g e r s

Layout managers give you the following advantages:

• Correctly positioned components that are independent of fonts, screen
resolutions, and platform differences.

• Intelligent component placement for containers that are dynamically
resized at runtime.

• Ease of translation with different sized strings. If a string increases in
size, the components stay properly aligned.

JBuilder provides the following layout managers from Java AWT and
Swing:

• BorderLayout
• FlowLayout
• GridLayout
• CardLayout
• GridBagLayout
• Null

JBuilder Professional and Enterprise also provide these custom layouts:

• XYLayout, which keeps components you put in a container at their
original size and location (x,y coordinates)

• PaneLayout, used to divide a container into multiple panes

• VerticalFlowLayout, which is very similar to FlowLayout except that it
arranges the components vertically instead of horizontally

• BoxLayout2, a bean wrapper class for Swing’s BoxLayout, which allows it
to be selected as a layout in the Inpsector

• OverlayLayout2, a bean wrapper class for Swing’s OverlayLayout, which
allows it to be selected as a layout in the Inspector

You can create custom layouts of your own, or experiment with other
layouts such as those in the java.awt classes, new or third-party layout
managers. Many of these are public domain on the Web or accessible to
members of the Open Source community. If you want to use a custom
layout in the UI designer, you may have to provide a Java helper class file
to help the UI designer use the layout.

Most UI designs use a combination of layouts, nesting different layout
panels within each other.

For more information, see “Using layout managers” in Building
Applications with JBuilder.

C o m p i l i n g a n d r u n n i n g J a v a p r o g r a m s 7-1

C h a p t e r

7
Chapter7Compiling and running

Java programs
The JBuilder compiler has full support for the Java language, including
inner classes and Java Archive (JAR) files. You can compile (or “make”)
from within the IDE. With JBuilder Professional and Enterprise, you can
also compile from the command line using bmj (Borland Maker for Java)
or bcj (Borland Compiler for Java).

For more information on the command line tools, see “Using the
command line tools” in Building Applications with JBuilder.

The Run command compiles and runs projects, individual .java files (such
as JSPs), or HTML applets.

JBuilder’s integrated debugger allows you to run a project or file with or
without debugging it. In JBuilder Professional and Enterprise, you can set
runtime configurations that are appropriate for the kind of file or program
that you want to run, whether it’s an application, an applet, a JSP, a
servlet, or an EJB.

Compiling Java programs
A Java compiler reads Java source files, determines which additional files
need to be compiled, and produces the Java program in the form of
.class files containing bytecodes that are the machine code for the Java
Virtual Machine (VM).

Compiling produces a separate .class file for each class declaration and
interface declaration in a source file. When you run the resulting Java
program on a particular platform, the Java interpreter for that platform
runs the bytecode contained in the .class files.

7-2 L e a r n i n g J a v a w i t h J B u i l d e r

R u n n i n g J a v a p r o g r a m s

To compile the source files for an application or applet, follow these steps:

1 Open a project.

2 Do one of the following in the project pane:

• To compile an application, select the project node (.jpr or .jpx
extension).

• To compile an applet, select the HTML file that calls the applet.

3 Then, do one of the following:

• Choose Project|Make Project.

• Right-click a node and choose Make.

Note If you haven’t already set the runnable class, the Run page of the
Project Properties dialog box appears. Browse to the runnable class
and select it to continue compiling.

Compiler error messages are displayed in the message pane below the
AppBrowser content pane. Select an error message to display the relevant
source code. To get help on an error message, select the error message in
the message pane and press F1. To learn about error messages in JBuilder,
see “Error and warning messages” in Building Applications with JBuilder.

For more information, see “Compiling Java programs” in Building
Applications with JBuilder.

Running Java programs
Running a project runs the main class of that project file. If a main class
has not yet been selected, then when you try to run it, a dialog box
appears so you can make the selection. If you created your file using the
Application wizard or the Applet wizard, the main class is automatically

C o m p i l i n g a n d r u n n i n g J a v a p r o g r a m s 7-3

D e b u g g i n g J a v a p r o g r a m s

selected. You can select or change the main class by selecting Project|
Project Properties and choosing the Run tab.

If you want to run a .java file such as a JSP, it must contain a main method.

To run an applet, select the HTML file that contains the <APPLET> tag. The
HTML file calls the class found in the CODE attribute of the <APPLET> tag.
This applet class must contain an init() method.

To run in JBuilder:

1 Save the program or file that you want to run.

2 Select it in the project pane.

3 Compile it (Project|Make Project) if it’s a program.

4 Run it by choosing Project|Run Project, or right-click it in the project
pane and choose Run from the drop-down menu.

Once your program has been compiled, you can run it without compiling.

Runtime error messages are displayed in the message pane below the
AppBrowser content pane. Select an error message to display the relevant
source code. To get help on an error message, select the error message in
the message pane and press F1. To learn about error messages in JBuilder,
see “Error and warning messages” in Building Applications with JBuilder.

For more information on running programs, see “Running Java
programs” in Building Applications with JBuilder.

For more information on running applets, see “Working with applets” in
Building Applications with JBuilder.

For more information on running JSPs and servlets, see “Developing
JavaServer Pages (JSP)” and “Developing servlets” in the Distributed
Applications Developer’s Guide.

Debugging Java programs
Debugging is the process of locating and fixing errors in your programs.
JBuilder’s integrated debugger lets you debug applications and applets
within the JBuilder environment. JBuilder Professional also supports
servlet debugging and JBuilder Enterprise supports JSP debugging. Many
debugger features are accessed through the Run menu. Others are
available from the Search, View, and Tools menus.

CodeInsight and syntax highlighting make it easier to debug your source
code. JBuilder Enterprise edition also provides cross-process debugging
and remote debugging.

For more information on debugging, see “Debugging Java programs” in
Building Applications with JBuilder or “Debugging distributed applications”

7-4 L e a r n i n g J a v a w i t h J B u i l d e r

D e b u g g i n g J a v a p r o g r a m s

in the Distributed Application Developer’s Guide. For more information on
CodeInsight and syntax highlighting, see “The JBuilder environment” in
Building Applications with JBuilder.

Debugging

You may debug a file or a whole project. You may compile before
debugging or not.

To choose whether to compile before debugging, choose Project|Project
Properties and select the Run tab. Use the Compile Before Debugging
check box at the bottom of the dialog. In JBuilder Professional, you can
choose whether and how to use Smart Step. In JBuilder Enterprise, you
can choose to enable remote debugging and to make appropriate settings.
To do either of these, choose Project|Project Properties and select the
Debug tab.

To debug a file, right-click on it in the project pane and choose Debug
from the context menu. To set a breakpoint in the source code, either
choose Run|Add Breakpoint, click in the gray margin to the left of an
executable line of code in the source file, or use the keystroke sequence for
your chosen editor emulation.

To debug a project, follow these steps:

1 Open your project.

2 Select Project|Project Properties. Choose the Run tab and decide
whether JBuilder should compile before debugging.

3 To set a breakpoint in the source code, either choose Run|Add
Breakpoint, click in the gray margin to the left of an executable line of
code in the source file, or use the keystroke sequence for your chosen
editor emulation.

4 Choose Run|Debug Project or click the Debug icon in the toolbar.

The compiler and debugger work the same way on both files and projects:

• If you have set JBuilder to compile before debugging, then any
compiler errors will show on the compiler page in the message pane at
the bottom of the AppBrowser. You may click the error message to go
to the relevant line of code.

• If you have disabled the compiler, or if there are no errors, the
debugger will show in the message pane. Use your tool tip on the
left-hand tabs to see the kinds of information the debugger provides:

C o m p i l i n g a n d r u n n i n g J a v a p r o g r a m s 7-5

D e p l o y i n g J a v a p r o g r a m s

For more information on the debugger, see “Debugging Java programs”
in Building Applications with JBuilder.

Deploying Java programs
Deploying a Java program consists of bundling the various Java class files,
image files, and other files needed by the project and copying them to a
location on a server or client computer where users can access them. You
can deliver them in compressed or uncompressed archive files.

Using the Archive Builder

This is a feature of
JBuilder Professional and

Enterprise.

The JBuilder Archive Builder automatically gathers together the classes
and files your program needs. It then bundles files into a compressed or
uncompressed archive file, usually a JAR file. It can also create the
archive’s manifest file, which you can modify in JBuilder.

The Archive Builder also creates an archive node in your project, allowing
easy access to the archive file. At any time during development, you can
make the archive file, rebuild it, or reset its properties. You can also view
the contents of the archive, as well as the contents of the manifest file.

7-6 L e a r n i n g J a v a w i t h J B u i l d e r

D e p l o y i n g J a v a p r o g r a m s

To deploy a program,

1 Create and compile your code in JBuilder.

2 Run the Archive Builder to create the archive file.

3 Create an install procedure.

4 Deliver your JAR file, all necessary redistributable JAR files, and the
installation files.

For more information, see “Deploying Java programs” in Building
Applications with JBuilder.

For a tutorial on deploying to and running programs from JAR files, visit
http://java.sun.com/docs/books/tutorial/jar/basics/index.html.

Deploying CORBA applications

This is a feature of
JBuilder Enterprise.

When deploying CORBA applications with JBuilder Enterprise, the
Archive Builder collects your stubs and skeletons into a JAR file. You must
install your ORB on each machine that runs a client, middle-tier, or server
CORBA program.

C o m p i l i n g a n d r u n n i n g J a v a p r o g r a m s 7-7

D e p l o y i n g J a v a p r o g r a m s

For more information, see “Deploying Applications with VisiBroker” in
the VisiBroker for Java Programmer’s Guide if you are using VisiBroker, or
see your Application Server’s User’s Guide.

Deploying web-based applications

Web-based, multi-tier applications are deployed onto web servers.
Consult the documentation for your web server for information on
deploying web applications.

Running deployed programs

You can run a deployed program from the command line with the JDK
command line tools.

To run a program at the command line, use the -jar option with the java
command.

For more information, see “Running a program from a JAR file,” “Using
the command line tools,” and “Deploying Java programs” in Building
Applications with JBuilder.

For a tutorial on running programs from JAR files, visit
http://java.sun.com/docs/books/tutorial/jar/basics/index.html.

7-8 L e a r n i n g J a v a w i t h J B u i l d e r

U s i n g c o m m a n d l i n e t o o l s

Using command line tools
Command line tools allow you to execute global commands from your
command line window. Using standard command line tools, you can
compile and launch applications, manage your JAR files, view applets
outside of a web browser, and extract comments embedded in the code.
JBuilder provides additional command line tools that provide extended or
improved functionality.

The JDK includes the following command line tools:

• javac - the compiler for the Java programming language.

• java - the launcher for the Java applications.

• jar - manages the Java Archive (.jar) files.

• javadoc - an API documentation comments extraction utility.

• appletviewer - allows you to run applets outside of the context of a
web browser.

• native2ascii - converts a file of native encoded characters to one with
Unicode escape sequences.

JBuilder includes the following command line tools:

• JBuilder command line arguments

And, in JBuilder Professional and Enterprise:

• The bmj command line make

• The bcj command line compiler

JBuilder’s command line interface includes such options as:

• Building projects

• Displaying configuration information

• Displaying the license manager

• Disabling the splash screen

• Enabling verbose debugging mode for OpenTools authors

Note These options vary by edition.

To access the list of options available in your edition of JBuilder, open a
command-line window, navigate to the JBuilder bin directory and type
jbuilder -help.

JBuilder runs on its own launcher, which is a shell script, a batch file, or an
executable, depending on the platform you run it on. Each of these
launchers can pass arguments to JBuilder.

C o m p i l i n g a n d r u n n i n g J a v a p r o g r a m s 7-9

U s i n g c o m m a n d l i n e t o o l s

For more information on using command line tools in JBuilder, see “Using
the command line tools” in Building Applications with JBuilder.

For more information on command line arguments, see “JBuilder
command line arguments” in Building Applications with JBuilder.

For more general information on command line tools, see
http://java.sun.com/j2se/1.3/docs/tooldocs/tools.html#basic.

7-10 L e a r n i n g J a v a w i t h J B u i l d e r

B u i l d i n g d i s t r i b u t e d a p p l i c a t i o n s 8-1

C h a p t e r

8
Chapter8Building distributed applications
The JBuilder development environment greatly simplifies the creation of
distributed applications, generating many of the files, structure, settings
and paths necessary to create multi-tier, distributed applications. JBuilder
provides excellent support for distributed application development using
either Java Remote Method Invocation (RMI), or the Common Object
Request Broker Architecture (CORBA).

Once the application is generated, you can add the business logic you
need to the generated code. With JBuilder’s development environment,
distributed application development becomes rapid application
development (RAD).

JBuilder simplifies distributed application development in two ways. It
provides wizards and other interfaces for Java technologies, and it
provides tools for other aspects of distributed application development in
a team environment.

Team development
JBuilder provides the following team development features and features
that simplify the process of distributed application development:

• Version control support is built into the JBuilder IDE. A simple backup
queue provides access to prior versions of a file.

These are features of
JBuilder Enterprise

Seamless integration with Concurrent Versions System (CVS) and an
expanded API for adding your own version control system make this
feature as powerful as you want it to be.

• Project files (.jpr and .jpx) are logically divided into two parts: private
and shared. Windows, watches and breakpoints are stored in the

RMI is available in JBuilder
Professional and Enterprise

CORBA is available in
JBuilder Enterprise

8-2 L e a r n i n g J a v a w i t h J B u i l d e r

J a v a t e c h n o l o g i e s

private side, while libraries and compiler options are stored in the
shared side.

• InternetBeans Express converts data presentations between HTML and
Java. It can extract data from one and turn it into an appropriate format
in the other.

Java technologies
These are features of

JBuilder Professional and
Enterprise

JBuilder provides features that simplify distributed application
development using the following technologies:

• Remote Method Invocation (RMI)

With RMI you can create distributed Java-to-Java applications.

For more information, see the tutorial “Exploring Java RMI-based
distributed applications in JBuilder” in the Distributed Application
Developer’s Guide.

• Servlets

Use JBuilder’s Servlet wizard to quickly create servlets. These
programs are written in the Java programming language, run on a
server, and extend server functionality with such advanced features as
security, easy database access, and easier integration with Java applets.

For more information, see the tutorial “Developing servlets” in the
Distributed Application Developer’s Guide.

B u i l d i n g d i s t r i b u t e d a p p l i c a t i o n s 8-3

J a v a t e c h n o l o g i e s

These are features of
JBuilder Enterprise

You can also use JBuilder Enterprise to develop both web-based and
enterprise applications based on Java 2 Enterprise Edition (J2EE) and
these technologies:

• Common Object Request Broker Architecture (CORBA)

CORBA is an open standards-based solution for distributed application
development that allows clients and servers to be written in any
language that CORBA supports on any platform.

For more information, see the tutorial “Exploring CORBA-based
distributed applications in JBuilder” in the Distributed Application
Developer’s Guide.

• CORBA interfaces with Java (Caffeine)

VisiBroker (included with JBuilder Enterprise edition) incorporates
features, collectively known as Caffeine, which enable you to define
CORBA interfaces with Java.

For more information, see “Caffeine: defining CORBA interfaces with
Java” in the Distributed Application Developer’s Guide.

• Enterprise JavaBeans (EJB) and EJB wizards

With JBuilder’s suite of EJB wizards, you can visually create Enterprise
JavaBeans™, the server-side component architecture for the Java™
platform. EJB wizards also simplify the grouping, testing, and
deployment of EJBs by providing visual tools for creating EJB groups, a
test client, and 1.1 XML Deployment Descriptors.

For more information, see “Developing Enterprise JavaBeans (EJB)” in
the Distributed Application Developer’s Guide.

• JavaServer Pages

Use JBuilder’s JavaServer Pages wizard to create JavaServer Pages (JSP)
quickly, making it easier and faster for you to build web-based
applications using your choice of platforms and servers.

For more information, see “Developing JavaServer Pages” in the
Distributed Application Developer’s Guide.

• HTML Clients

HTML client applications are HTML forms connected to CORBA
objects.

For more information, see the tutorial “Creating an HTML CORBA
client application” in the Distributed Application Developer’s Guide.

For more information on using JavaServer Pages, Remote Method
Invocation, Enterprise JavaBeans, or CORBA on the Java platform, go to
Sun’s Java API web site at
http://www.sun.com/products-n-solutions/software/api/java.html.

8-4 L e a r n i n g J a v a w i t h J B u i l d e r

B u i l d i n g d a t a b a s e a p p l i c a t i o n s

Building database applications
These are features of

JBuilder Professional and
Enterprise.

You can use JBuilder’s DataExpress components to build all-Java
client-server applications, applets, and servlets for the Internet or intranet.
With JBuilder Enterprise you can also build JavaServer Pages™ (JSP).
Applications you build in JBuilder are all-Java at runtime and
cross-platform.

JBuilder allows you to access data and manipulate it using properties,
methods, and events defined in the com.borland.dx packages of the
DataExpress Component Library in conjunction with the
com.borland.dbswing package. By using dbSwing components, you can extend
the functionality of Swing components and provide your applications with
data-aware capabilities.

For more information, see the DataExpress Reference and dbSwing Reference
available from the Help menu.

JBuilder’s modular DataExpress architecture has many benefits, including
support for:

• Network computing
• Mobile computing
• Embedded applications
• Rapid development of user interfaces

Using the designer, you can quickly create database applications by
dragging and dropping components from the component palette onto
your design.

B u i l d i n g d i s t r i b u t e d a p p l i c a t i o n s 8-5

D e v e l o p i n g i n t e r n a t i o n a l a p p l i c a t i o n s

JBuilder applications communicate with database servers through the
Java Database Connectivity™ (JDBC) API, the JavaSoft database
connectivity specification. JDBC is the all-Java industry standard API for
accessing and manipulating database data. JBuilder database applications
can connect to any database using its JDBC driver.

JBuilder offers additional tools for developing database applications:

• JDataStore for data caching and compact persistence

• Transaction and crash recovery support

• Advanced concurrency control for increased application
performance

• JDBC 2.0 Type-4 drivers (local and remote)

• JDataStore Explorer for visually managing DataStores

• JDBC database tools

• SQL Builder for visually creating and editing SQL queries to JDBC
data sources

• JDBC Explorer for viewing database data, schema, and creating
connections to URLs

• JDBC Monitor for monitoring SQL applications

• Data Modules

• Data Module designer

• Data Modeler

• Connection URL Builder

For more information, see the Database Application Developer’s Guide, the
JDataStore Reference available from the Help menu, and the JDataStore
Programmer’s Guide.

For technical questions, visit the database newsgroup on the Borland web
page at http://www.borland.com/newsgroups/.

Developing international applications
As businesses continue to expand into the global marketplace, it is critical
to develop applications for the international market. Special features in
JBuilder make it easy to take advantage of Java’s internationalization
capabilities, allowing your applications to be customized for different
countries or languages without requiring cumbersome changes to the
code.

8-6 L e a r n i n g J a v a w i t h J B u i l d e r

D e v e l o p i n g i n t e r n a t i o n a l a p p l i c a t i o n s

Internationalization features in JBuilder

These are features of
JBuilder Professional and

Enterprise.

JBuilder includes the following features designed to help you easily create
your Java applets and applications for the international marketplace.

• Multilingual sample application (The “IntlDemo.jpr” project is located
in the samples/jbcl/multilingual directory of your JBuilder installation.)

• Resource Strings wizard to eliminate hard-coded strings

• dbSwing internationalization architecture and features

• UI designer internationalization support

• Full debugger support for Unicode

• IDE and compiler support for all JDK native encodings

For more information, see “Internationalizing programs with JBuilder” in
Building Applications with JBuilder and the Java documentation at
http://java.sun.com/j2se/1.3/docs/guide/intl/index.html.

G e t t i n g S t a r t e d w i t h J a v a

P a r t

II
Part IIGetting Started with Java

J a v a l a n g u a g e b a s i c s 9-1

C h a p t e r

9
Chapter9Java language basics

This chapter will answer the following questions:

• What are identifiers, and what are the restrictions on their declaration?

• What is a literal?

• What is an escape sequence?

• What are Java’s keywords?

• What is a code block?

• What is an expression?

• What are Java’s operators?

• What data types does Java support? How do Java’s data types differ
from those of C/C++?

• What are the looping constructs in Java?

• What are the conditional statements in Java?

Java syntax
Before you can effectively read or write programs in any language, you
need to know about the language’s syntax rules and restrictions. A
language’s syntax defines the way programs are written in that language;
more specifically, the syntax of the language defines the language
elements, the way these elements are used, and the way they are used

9-2 L e a r n i n g J a v a w i t h J B u i l d e r

J a v a s y n t a x

together. The following lists the typical language elements and shows
how the language syntax is concerned with these elements:

• Identifiers: How are variable names composed? What are the naming
restrictions and conventions?

• Literals: How are constant names composed? How are their values
assigned?

• Keywords: What are the language’s predefined words? How are they
used and how are they not used?

• Statements: What is a statement and how is one written?

• Code blocks: How are statements grouped together?

• Comments: How can the programmer add comments and notes to the
program?

• Expressions: What is an expression and how is one written?

• Operators: What are the operators used in the language? How are they
used in expressions? Can a programmer define his/her own operators?

Identifiers

An identifier is a name that uniquely identifies a variable, a method, or a
class (we will discuss variables later in this chapter; methods and classes
are discussed in Chapter 10, “Object-oriented programming in Java”). In
most languages, there are restrictions on how identifiers are composed.
The following lists Java’s restrictions on identifiers:

• All identifiers must begin with a letter, an underscore (_), or a dollar
sign ($)

• An identifier can include, but not begin with numbers

• An identifier cannot include a white space (tab, space, linefeed, or
carriage return)

• Identifiers are case-sensitive

• Java keywords cannot be used as identifiers

Note Since some C library names begin with an underscore or a dollar sign, it is
best to avoid beginning an identifier name with these characters.
Importing a C library into a program that uses an underscore or a dollar
sign to start an identifier name might cause name clashing and confusion.

In addition to these restrictions, certain conventions are used with
identifiers to make them more readable. Although these conventions do
not affect the compiler in any way, it is considered a good programming

J a v a l a n g u a g e b a s i c s 9-3

J a v a s y n t a x

practice to follow them. The following table lists some of these
conventions based on the type of identifier:

Literals

A literal, or constant, represents a value that never changes. Think of an
identifier as something that represents a value, whereas a literal is a value.
For example, the number 35 is a literal; the identifier age represents a
number which could be 35. In Java, a literal can be a number (integer or
floating-point), a Boolean, a character, or a string.

Integer literals
Integer literals are written in three formats: decimal (base 10), hexadecimal
(base 16), and octal (base 8). Decimal literals are written as ordinary
numbers, hexadecimal literals always begin with 0X or 0x, and octal
literals begin with 0. For example, the decimal number 10 is 0xA or 0XA in
hexadecimal format, and 012 in octal format.

An integer literal can be stored in the data types byte, short, int, or long.
By default, Java stores integer literals in the int data type, which is
restricted to 32-bits.

To store an integer literal in the long data type, which can store 64-bit
values, add the character l or L to the end of the literal. For example, the
literal 9999L is stored as long. The following lines of code use integer
literals:

int x = 12345; //12345 is a literal
int y = x * 4; //4 is a literal

In the first line, the literal 12345 is stored directly in the int variable x. In the
second line, the literal 4 is used to compute a value first, which in turn is
stored in the int variable y.

Note that even though an integer literal represents a constant value, it can
still be assigned to an integer variable. Think of the variable as a storage
unit that at any one time can represent a single literal value. This also
applies to the other literal types.

Type of Identifier Convention Examples

Class name The first letter of each word is
capitalized

Mammal, SeaMammal

Function name The first letter of each, except the
first, word is capitalized

getAge, setHeight

Variable name The first letter of each, except the
first, word is capitalized

age, brainSize

Constant names Every letter is capitalized and
underscores are used between words

MAX_HEIGHT,
MAX_AGE

9-4 L e a r n i n g J a v a w i t h J B u i l d e r

J a v a s y n t a x

Floating-point literals
A floating-point literal is a number with a decimal point and/or exponent.
A floating-point literal is written in either standard or scientific notation.
For example, 123.456 is in standard notation, while 1.23456e+2 is in
scientific notation.

Floating-point literals are stored in the 64-bit double type (the default
type), or the 32-bit float type. To store a floating-point literal in the float
type, append the letter f or F to the end of the number.

Boolean literals
A boolean literal represents two possible states: true or false. Boolean
literals are stored in the data type boolean. Unlike C/C++ where the states
of a Boolean value are represented by 0 (false) and 1 (true), Java represents
these states using the keywords true and false.

Character literals
A character literal represents a single Unicode character. Character literals
are always surrounded by single quotes; for example, ‘A’ and ‘9’ are
character literals. Java uses the char type to store single characters.

Note The Unicode character set is a 16-bit set that supplants the 8-bit ASCII set.
The Unicode set can define up to 65,536 values, which is enough to
include symbols and characters from other languages. Check out the
Unicode home page at www.unicode.org for more information.

Escape sequences
A special type of character literal is called an escape sequence. Like
C/C++, Java uses escape sequences to represent special control characters
and characters that cannot be printed. An escape sequence is represented
by a backslash (\) followed by a character code. The following table
summarizes these escape sequences:

Character Escape Sequence

Backslash \\

Backspace \b

Carriage return \r

Continuation \

Double quote \”

Form feed \f

Horizontal tab \t

Newline \n

Octal character \DDD

Single Quote \’

Unicode character \uHHHH

J a v a l a n g u a g e b a s i c s 9-5

J a v a s y n t a x

An octal character is represented by a sequence of three octal digits, and a
Unicode character is represented by a sequence of four hexadecimal
digits. For example, the decimal number 57 is represented by the octal
code \071, and the Unicode sequence \u0039.

To illustrate the use of escape sequences, the string in the following
statement prints out the words Name and ID separated by two tabs on one
line, and prints out "Joe Smith" and "999", also separated by two tabs, on
the second line:

String escapeDemo = new String ("Name\t\tID\n\"Joe\ Smith\"\t\t\"999\"");

Note that this statement is intentionally written on two lines; therefore,
the continuation character (\) is used to prevent a compiler error.

String literals
A string literal represents a sequence of characters. Strings in Java are
always enclosed in double quotes. Java handles strings differently than
C/C++; the latter represents a string using an array of characters, while
the former uses the classes String and StringBuffer. So, of all the literal
types we’ve discussed, only string literals are stored as objects by default.
Strings are covered in more detail in the section “Strings” on page 9-16.

Keywords
A keyword is a predefined identifier that has a special meaning to the Java
compiler, and which cannot be redefined. The following is a list of Java’s
keywords:

* Reserved but not being used.

abstract boolean break byte byvalue*

case cast* catch char class

const* continue default do double

else extends false final finally

float for future* generic* goto*

if implements import inner* instanceof

int interface long native new

null operator* outer* package private

protected public rest* return short

static super switch synchronized this

throw throws transient true try

var* void volatile while

9-6 L e a r n i n g J a v a w i t h J B u i l d e r

J a v a s y n t a x

As you may have noticed, many of Java’s keywords are borrowed from
C/C++. Also, as in C/C++, keywords are always written in lowercase.
Generally speaking, Java’s keywords can be categorized according to their
function as follows (examples are in parenthesis):

• Data declaration keywords (boolean, float, int)
• Loop keywords (continue, while, for)
• Conditional keywords (if, else, switch)
• Exception keywords (try, throw, catch)
• Structure keywords (class, extends, implements)
• Modifier and access keywords (private, public, transient)
• Miscellaneous keywords (true, null, super)

Statements
A statement represents a single command, or line of code, for the
compiler. This doesn’t mean, however, that each line of code is a
statement; in other words, there is no one-to-one mapping between
physical lines of codes and statements. As we will see later in this chapter,
some statements, such as an if statement, can be composed of multiple
lines of code.

So, if a statement can take up multiple physical lines, how does the
compiler know where each statement ends and the next begins? By using
semicolons to separate statements.

The Java compiler is not concerned with the length of each statement, as
long as statements are always separated by semicolons. For example, the
following two statements are equivalent:

x = (y + z) / q; //statement 1
x =
(y + z
) / q; //statement 2

The second statement has whitespace characters embedded in it
(whitespace characters are the space, horizontal and vertical tabs, form-
feed, and new-line). Although the Java compiler ignores all whitespace
characters embedded in statements, it is obviously bad practice to do that
since it makes the code difficult to read.

Note Recall that in the case of string values, the continuation character (\) must
be used at the end of each line to allow strings to take up multiple lines.

Code blocks

A code block is a grouping of statements that behave as a unit. Java delimits
code blocks with braces ({ and }). Examples of code blocks are class
definitions, loop statements, condition statements, exception statements,
and function bodies. In the following section of code, there are three code
blocks: the function frmResolver(), the try block, and the catch block.

J a v a l a n g u a g e b a s i c s 9-7

J a v a s y n t a x

public frmResolver() {

try {
 jbInit();
 }

 catch (Exception e) {
 e.printStackTrace();
 }

}

The above code also illustrates the concept of nested blocks: the try and
catch blocks are nested inside the main frmResolver() block.

Comments

Comments are natural-language statements written by the programmer to
make notes about the code. There are three styles of comments in Java.
The first one begins with /* and ends with */, and allows you to write
comments that span multiple lines. This style is the same as in the C
language.

The following code demonstrates the use of this style:

x = y + z; /* This is a comment.*/
z = q / p; /*This comment
extends over two lines*/

When the Java compiler encounters /*, it ignores every character that
follows it until it encounters */.

The second comment style is similar to the first one, only it begins with /**
and ends with */. The difference is that this style is used with the JDK tool
javadoc to automatically generate documentation from the source code
(Java documentation is beyond the scope of this course).

The third comment style is borrowed from C++. It begins with // and can
be written on just one line. Here’s an example:

x = y + z; //This comment cannot extend over multiple lines

Nesting comments is valid only when comments of the third style are
embedded in one of the other two styles. Nesting comments of the first
two styles is illegal.

Here is an invalid nested comment:

/*This is the beginning of the comment
 /*
 The comment ends here
 */
 this is outside the comment and will generate a compiler
 error
*/

9-8 L e a r n i n g J a v a w i t h J B u i l d e r

J a v a s y n t a x

As we mentioned earlier, the compiler ignores everything between /* and
*/; so when it encounters the first */ it thinks that the comment ended. The
last line in the code is therefore not contained in the comment.

The following is an example of a valid nested comment:

/*This is the beginning of the comment
 //This is OK
 //so is this
 this is the end of the comment.
*/

Expressions

An expression is a meaningful combination of identifiers, keywords,
symbols, and operators that has a value of some sort. Generally speaking,
everything that can be used on the right side of an assignment sign is an
expression.

Here are some examples of expressions:

s = "Hello World";
x = 123.4;
y = (x * 5) / 2;
value = getValue();
Mammal m = new Mammal();

From the previous examples, we can categorize expressions into the
following:

• Variable assignments: The first two expressions assign values to the
variables s and x.

• Operator expressions: The third expression is an example of this.
Operator expressions use combinations of variables, literals, method
calls, operators, and symbols. We will examine this kind in the next
section.

• Method calls: The fourth expression is a call to the method getValue(),
which returns a value that is assigned to value.

• Object allocation: The last expression allocates memory for the Mammal
object m. Think of object allocation expressions as special method call
expressions. We will cover both types of expressions in more detail in
Chapter 10, “Object-oriented programming in Java.”

Operators

Operators are special symbols that perform a particular function on
operands. There are five general types of operators: arithmetic operators,
logical operators, comparison operators, assignment operators, and
bitwise operators. Each of these can be further categorized into unary and

J a v a l a n g u a g e b a s i c s 9-9

J a v a s y n t a x

binary. Unary operators operate on a single operand, while binary
operators operate on two operands.

In the following sections, we will examine the different types of operators.
In addition, we will discuss the operator associativity and precedence.
Precedence determines the priority of operators, while associativity
determines the operating order of operators of equal precedence used in a
single statement.

Arithmetic operators
Java provides a full set of operators for mathematical calculations. Java,
unlike some languages, can perform mathematical functions on both
integer and floating-point values. You will probably find these operators
familiar.

The following table lists the arithmetic operators:

The modulus operator returns the remainder of dividing its first operand
by its second. The auto-increment/decrement operators are unary
operators. They modify the value of their operand by adding or
subtracting 1 to their value. When used in expressions, the outcome of the
auto-increment/decrement operation depends on whether the operator
precedes or succeeds the operand.

The following demonstrates this:

int y = 3, x, z;
x = ++y;
z = y--;

In the second statement, the y variable is incremented by 1, and then its new
value (4) is assigned to x. In the third statement, the auto-decrement operation
takes place following the assignment of y’s current value to z. In other words,
the current value of y (4) is assigned to z, then y is modified to be 3.

The following code illustrates how precedence and associativity affect
operators:

int x = 1, y = 2, z = 3, i, j;
i = x + y * z; //same as i = x + (y * z)
j = ++x + -y; //same as j = (++x) + (-y)
i = x++ + -y; //same as i = x++ + (-y)

Operator Definition Precedence Associativity

++/– – Auto-increment/decrement 1 Right

+/– Unary plus/minus 2 Right

* Multiplication 4 Left

/ Division 4 Left

% Modulus 4 Left

+/– Addition/subtraction 5 Left

9-10 L e a r n i n g J a v a w i t h J B u i l d e r

J a v a s y n t a x

Logical operators
Logical (or Boolean) operators allow the programmer to group Boolean
expressions to determine certain conditions. These operators perform the
standard Boolean operations (AND, OR, NOT, and XOR).

The following table lists the logical operators:

The evaluation operators always evaluate both operands. The short-circuit
operators, on the other hand, always evaluate the first operand, and if that
determines the value of the whole expression, they don’t evaluate the
second operand. For better understanding, consider the following code:

if (!isHighPressure && (temperature1 > temperature2)) {
}
boolean1 = (x < y) || (a > b);
boolean2 = (10 > 5) & (5 > 1);

The first statement evaluates !isHighPressure first, if it is false, it does not
evaluate the second operand (temperature1 > temperature2) since the first
operand being false means the whole expression is false. The same is true
for the second statement—the value of boolean1 will be true only if x is less
than y (the value of the second operand is never determined). In the third
statement, however, the compiler will compute the values of both
operands before making the assignment to boolean2.

Note The XOR operator produces a true value only if the operands are of
different values (true and false, or false and true).

Comparison operators
Programmers need the ability to compare values. Comparison operators,
unlike logical operators, will only evaluate a singe expression.

The following table lists the comparison operators:

Operator Definition Precedence Associativity

! Unary logical complement (NOT) 2 Right

& Evaluation AND 9 Left

^ XOR 10 Left

| Evaluation OR 11 Left
&& Short-circuit AND 12 Left

|| Short-circuit OR 13 Left

Operator Definition Precedence Associativity

< Less than 7 Left

> Greater than 7 Left

<= Less than or equal 7 Left

>= Greater than or equal 7 Left

J a v a l a n g u a g e b a s i c s 9-11

J a v a s y n t a x

The equality operator can be used to compare two object variables of the
same type (objects are discussed in Chapter 10, “Object-oriented
programming in Java”). In this case, the result of the comparison is true
only if both variables refer to the same object. Here is a demonstration:

m1 = new Mammal();
m2 = new Mammal();
boolean b1 = m1 == m2; //b1 is false

m1 = m2;
boolean b2 = m1 == m2; //b2 is true

The result of the first equality test is false because m1 and m2 refer to
different objects (even though they are of the same type). The second
comparison is true because both variables now represent the same object.

Note Most of the time, however, the equals() method is used to compare objects.
This method, defined in the Object class, must be implemented in a class
subclassed from Object, before objects of the class can be compared for
equality.

Assignment operators
Java, like all languages, allows you to assign values to variables. The
following table lists assignment operators:

The first operator should be familiar by now. The rest of the assignment
operators perform an operation first, and then store the result of the
operation in the operand on the left side of the expression. Here are some
examples:

int y = 2;
y *= 2; //same as (y = y * 2)

boolean b1 = true, b2 = false;
b1 &= b2; //same as (b1 = b1 & b2)

= = Equal 8 Left

!= Not equal 8 Left

Operator Definition Precedence Associativity

Operator Definition Precedence Associativity

= Assignment 15 Right

+= Add and assign 15 Right

–= Subtract and assign 15 Right

*= Multiply and assign 15 Right

/= Divide and assign 15 Right

&= AND with assignment 15 Right

|= OR with assignment 15 Right

^= XOR with assignment 15 Right

9-12 L e a r n i n g J a v a w i t h J B u i l d e r

J a v a s y n t a x

Bitwise operators
Bitwise operators are of two types: shift operators and boolean operators.
The shift operators are used to shift the binary digits of an integer number
to the right or the left. Consider the following example (the short integer
type is used instead of int for conciseness):

short i = 13; //i is 0000000000001101
i = i << 2; //i is 0000000000110100
i >>= 3; //i is 0000000000000110

In the second line, the bitwise left shift operator shifted all the bits of i two
positions to the left. The bitwise right shift operator then shifted the bits
three positions to the right.

Note The shifting operation is different in Java than in C/C++ –mainly in how
it is used with signed integers. A signed integer is one whose left-most bit
is used to indicate the integer’s sign (the bit is 1 if the integer is negative).
In Java, integers are always signed, whereas in C/C++ they are signed by
default. In most implementations of C/CC, a bitwise shift operation does
not preserve the integer’s sign (since the sign bit would be shifted out). In
Java, however, the shift operators preserve the sign bit (unless you use the
>>> to perform an unsigned shift). This means that the sign bit is
duplicated, then shifted (right shifting 10010011 by 1 is 11001001).

The following is a complete list of Java’s bitwise operators:

A special operator: The ?: operator
We said earlier that there are two types of operators: unary and binary.
That’s not exactly true. There is also a ternary operator that Java borrows
from C, the ?: operator. Here’s the general syntax for this operator:

expression1? expression2: expression3;

expression1 is first evaluated. If its value is true, expression2 is computed,
otherwise expression3 is. Here is a demonstration:

int x = 3, y = 4, max;
max = (x > y)? x: y; //this is basically the same as max=x;

Operator Definition Precedence Associativity

~ Bitwise complement 2 Right

<< Signed left shift 6 Left

>> Signed right shift 6 Left

>>> Zero-fill right shift (as if unsigned) 6 Left

& Bitwise AND 9 Left

| Bitwise OR 10 Left

^ Bitwise XOR 11 Left

<<= Left-shift with assignment 15 Left

>>= Right-shift with assignment 15 Left

>>>= Zero-fill right shift with assignment 15 Left

J a v a l a n g u a g e b a s i c s 9-13

J a v a ’ s d a t a t y p e s

In this code, max is assigned the value of x or y, based on whether x is
greater than y.

Note Some people mislabel this operator as being a conditional statement. It is
not a statement. The following invalid code illustrates why it is not a
statement:

(x > y)? max = x: max = y; //can't use it as if it’s a statement

Java’s data types
Data types are entities, which represent specific types of values that can be
stored in memory, and are interpreted in a specific way by the compiler.
We already introduced data types in our discussion about literals in a
previous section. We mentioned that a literal is stored in a certain data type
depending on the literal’s value; the literal 9, for example, can be stored in
the int data type, and the literal ‘c’ can be stored in the char data type.

There are two categories of data types in Java: built-in and composite data
types. Built-in (or primitive) data types can be further categorized into
three kinds: numeric, boolean, and character data types. Built-in data
types are understood by the compiler and don’t require special libraries. (A
special library basically refers to any collection of code that is not part of
the actual language definition). Composite types are of two kinds: arrays
and strings. Composite types usually require the use of special libraries.

Before explaining the different Java data types, we need to discuss
variables.

Variables

We defined a data type as something representing a specific value that can
be stored in memory. So, how do you allocate memory for that value, and
how do you access it and assign values to it? To allocate a portion of
memory for the storage of data types, you must first declare a variable of
that data type, then give the variable a name (identifier) that references it.
Here’s the general syntax of a variable declaration:

datatype identifier [= defaultValue];

The declaration begins with the type of variable, followed by the
variable’s identifier, then followed by an optional default value
assignment.

The following are examples of different types of variable declarations:

int p; //declares the variable p to store int data types
float x, y = 4.1, z = 2.2;
boolean endOfFile = false;
char char1 = ‘T’;

9-14 L e a r n i n g J a v a w i t h J B u i l d e r

J a v a ’ s d a t a t y p e s

Notice that the second line declared three variables at the same time. You
can declare multiple variables of the same type at once, as long as you
separate the variable identifiers with commas.

A variable can be declared anywhere in a program, as long as its
declaration precedes any reference to it. Java is a strongly typed language,
which means that all variables must be declared before they are used.

If we attempt to reference the variable x, without declaring it first, we
would get a compiler error:

int y = 4, z = 2;
x = y / z; //What is x? Is it a float, char, int, or what?

In the code example above, the second line generates an error because the
compiler does not know the type of x; moreover, it does not know where
in memory it is stored.

Note To avoid any problems, such as referencing a variable that does not yet
exist, it is best to declare all variables at the beginning of the code blocks
where they are used. That makes it easier for you to keep track of all your
variables.

Now that we understand what variables are, we can go on to discuss data
types.

Built-in data types

Numeric data types
The numeric data types are summarized in the following table:

If a numeric variable is not initialized by the programmer, the Java VM
will automatically initialize it to 0. Most Java compilers will also detect
uninitialized variables. This is different than C/C++, where uninitialized
variables contain random values and are not detected by the compiler.

Boolean data types
A boolean data type has two values: true and false. Unlike C/C++, which
stores Boolean data types numerically (0 for false and 1 for true), Java uses
the built-in data type boolean. Uninitialized boolean variables are

Type Size Description (smallest and largest positive values)

byte 8 bits very small signed integer (–128 ⇒127)
short 16 bits short signed integer (–32768 ⇒ 32767)
int 32 bits signed integer (–2.14e+9 ⇒ 2.14e+9)
long 64 bits long signed integer (–9.22e+18 ⇒ 9.22e+18)
float 32 bits floating-point number (1.402e–45 ⇒ 3.402e+38)
double 64 bits double precision floating-point (4.94e–324 ⇒ 1.79e+308)

J a v a l a n g u a g e b a s i c s 9-15

J a v a ’ s d a t a t y p e s

automatically set to false. The following code illustrates the use of a
boolean variable:

int a = 1, b = 0;
boolean bool = a < b; //bool is false

Character data types
Java uses the data type char to store a single Unicode character. Java’s
char type, therefore, is 16-bit wide, whereas in C/C++, it is (by default) 8-
bits wide.

Composite data types

Arrays
An array is a data structure, which can hold multiple elements of the same
type. The array’s element type can be anything: a primitive type, a
composite type, or a user-defined class. If you have used arrays in other
languages, you will probably find the way Java handles arrays interesting.
Let’s first see some examples of array declarations:

int studentID[];
char[] grades;
float coordinates[][];

There are two things to note about these array declarations:

• The array size is not specified—in most other languages the array’s size
must be included in its declaration.

• The placement of the square brackets can follow the identifier, as in the
first example, or follow the data type, as in the second example.

Creating and initializing arrays
The previous array declarations did not actually allocate any memory for
the arrays (they simply declared identifiers that will eventually store
actual arrays). For that reason, the sizes of the arrays were not specified.

To actually allocate memory for the array variables, you must use the new
operator as follows:

int studentID[] = new int[20];
char[] grades = new char[20];
float[][] coordinates = new float[10][5];

The first statement creates an array of 20 int elements, the second creates
an array of 20 char elements, and the third creates a two-dimensional 10
by 5 float array (10 rows, 5 columns). When the array is created, all its
elements are null.

Note The use of the new operator in Java is similar to using the malloc command
in C and the new operator in C++.

9-16 L e a r n i n g J a v a w i t h J B u i l d e r

J a v a ’ s d a t a t y p e s

To initialize an array, the values of the array elements are enumerated
inside a set of curly braces. For multi-dimensional arrays, nested curly
braces are used.

The following statements illustrate this:

char[] grades = {‘A’, ‘B’, ‘C’, ‘D’, ‘F’);
float[][] coordinates = {{0.0, 0.1}, {0.2, 0.3}};

The first statement creates a char array called grades. It initializes the array’s
elements with the values ‘A’ through ‘F’. Notice that we did not have to use
the new operator to create this array; by initializing the array, enough
memory is automatically allocated for the array to hold all the initialized
values. Therefore, the first statement creates a char array of 5 elements.

The second statement creates a two-dimensional float array called
coordinates, whose size is 2 by 2. The array’s first row is initialized to 0.0
and 0.1, and the second row to 0.2 and 0.3. Conceptually, coordinates is an
array of two array elements.

Accessing array elements
Array elements are accessed by subscripting (or indexing) the array
variable. Indexing an array variable involves following the array
variable’s name with the element’s number (index) surrounded by square
brackets. Arrays are always indexed starting from 0. In the case of multi-
dimensional arrays, you must use an index for each dimension to access
an element.

Here are a couple of examples:

firstElement = grades[0]; //firstElement = ‘A’
fifthElement = grades[4]; //fifthElement = ‘F’
row2Col1 = coordinates[1][0]; //row2Col1 = 0.2

The following snippet of code demonstrates the use of arrays. It creates an
array of 5 int elements called intArray, then uses a for loop to store the
integers 0 through 4 in the elements of the array:

int[] intArray = new int [5];
int index;
for (index = 0; index < 5; index++)
 intArray [index] = index;

We will discuss for loops in a later section. Basically this code uses the
loop to increment the index variable from 0 to 4, and at every pass, it stores
its value in the element of intArray indexed by index.

Strings
A string is a sequence of characters. Java uses the String data type to store
strings. This data type is a member of the java.lang package, which we
will study in Chapter 11, “The Java class libraries.” That means that it is
not a built-in type; if you want to declare a variable of type String, you

J a v a l a n g u a g e b a s i c s 9-17

J a v a ’ s d a t a t y p e s

must use the java.lang package. We will learn more about packages in
Chapter 10, “Object-oriented programming in Java.”

A String variable, once initialized, cannot be changed. How can it be a
variable and yet cannot be changed? Recall that a variable is just a
reference to a place in memory; you use it to access and change the
memory in which it points. In the case of a String variable, the memory
that a String variable points to cannot be changed; however, the variable
itself can be made to point somewhere else in memory. The following
code illustrates this:

String s = new String ("Hello");
s = "Hello World"; //s now points to a new place in memory

We first created a String variable called s that pointed to a particular place
in memory, which contains the string “Hello”. The second line made s
point to a new place in memory, which now contains “Hello World”. This is
valid because we changed the variable itself, not the memory it points to.
This point illustrates the difference between a variable and the memory it
points to.

If you want more control over your strings, use the StringBuffer class.
This class, also part of the java.lang package, provides methods that allow
you to modify the contents of strings. Here’s an example of something you
cannot do using the String class:

StringBuffer s = new StringBuffer ("Hello");
s.setCharAt (1, 'o'); //s is now "Hello"

StringBuffer’s setCharAt() method modifies the character, at the index
specified in the first parameter, to the new value specified in the second
parameter.

We will cover both string classes in more detail in Chapter 11, “The Java
class libraries.”

Type casting

In some cases, you need to convert a variable’s type to another type. You
might, for example, need to pass an int variable to a method that accepts
only float variables. Converting the type of a variable is called casting. To
cast a variable’s type, place the type you want it to cast to, in parentheses,
immediately before the variable’s identifier. The following example shows
how a method’s return variable, which is of type int, can be cast to float:

float f = (float) returnInt();

You must be careful when casting types, as some loss of information might
result. Casting a 64-bit long variable to a 32-bit int variable, for instance,
causes the compiler to discard the upper 32-bits of the long variable. If the
value of the long variable at the time of the cast were bigger than 32-bits,
the cast would assign an incorrect value to the int variable.

9-18 L e a r n i n g J a v a w i t h J B u i l d e r

J a v a ’ s d a t a t y p e s

The general rule is that the cast type must be at least equal in size to the
original type. The following table shows the casts that do not result in
information loss:

Implicit casting
There are times when a cast is performed implicitly by the compiler. The
following is an example:

if (3 > 'a') {
}

In this case, the value of ‘a’ is converted to an integer value (the ASCII
value of the letter, a) before it is compared with the number 3.

Scope rules

Scope rules determine where in a program a variable is recognized.
Variables fall into two main scope categorizes:

• Global variables: Variables that are recognized throughout the entire
program.

• Local variables: Variables that are recognized only in the code block
they were declared.

Scope rules are tightly related to code blocks. The one general scope rule is
as follows: a variable declared in a code block is visible only in that block
and any blocks nested inside it. The following code illustrates this:

class scopeDemo {
 int x = 0;
 void method1() {
 int y;
 y = x; //legal
 }
 void method2() {
 int z = 1;
 z = y; //illegal!
 }
}

Original Type Cast Type

byte short, char, int, long, float, double
short int, long, float, double
char int, long, float, double
int long, float, double
long float, double
float double

J a v a l a n g u a g e b a s i c s 9-19

F l o w c o n t r o l s t r u c t u r e s

This code declares a class called scopeDemo, which has two methods:
method1() and method2(). The class itself is considered the main code block,
and the two methods are its nested blocks.

If you’re not familiar with classes, just think of scopeDemo as being the
actual program, and the two methods, its functions. We will cover classes
and methods in Chapter 10, “Object-oriented programming in Java.”

The x variable is declared in the main block, so it is visible (recognized by
the compiler) in both method1() and method2(). Variables y and z, on the
other hand, were declared in two independent, nested blocks; therefore,
attempting to use y in method2() is illegal since y is not visible in that block.

Note A program that relies on global variables can be error-prone for two
reasons: (1) global variables are difficult to keep track of, and (2) a change
to a global variable in one part of the program can have an unexpected
side effect in another part of the program. Local variables are safer to use
since they have a limited life span. For example, a variable declared inside
a method can be accessed only from that method, so there is no danger of
it being misused somewhere else in the program.

Flow control structures

Loops

Each statement in a program is executed once. However, it is sometimes
necessary to execute one or more statements several times until a
condition is met. Java provides three ways to loop statements: while, do
and for loops.

The while loop
The while loop is used to create a block of code that will execute as long as
a particular condition is met. The following is the general syntax of the
while loop:

while (condition) {
 code to execute in a loop
}

The loop first checks the condition. If the condition’s value is true, it
executes the entire block. It then reevaluates the condition, and repeats
this process until the condition becomes false. At that point, the loop
terminates its execution. The following is a simple example:

int x = 0;

//print "Looping" 10 times
while (x < 10){
 System.out.println("Looping");
 x++;
}

9-20 L e a r n i n g J a v a w i t h J B u i l d e r

F l o w c o n t r o l s t r u c t u r e s

When the loop first starts executing, it checks whether the value of x(0) is
less than 10. Since it is, the body of the loop is executed. In this case, the
word “Looping” is printed on the screen, and then the value of x is
incremented. This loop continues until the value of x is equal to, or greater
than, 10. At that point, the loop terminates.

Make sure there is some point in the loop where the condition’s value
becomes false, and the loop terminates; otherwise, your loop would
execute forever.

Note You can also terminate loop execution by using the return, continue, or
break statements. The return statement is illustrated in Chapter 10,
“Object-oriented programming in Java”; the break and continue
statements are discussed in the next section.

The do loop
The do loop is similar to the while loop, except it evaluates the condition
after the statements—not before. The following code shows the previous
while loop converted to a do loop:

int x = 0;
do{
 System.out.println("Looping");
 x++;
}while (x < 10);

The main difference between the two loop constructs is that unlike the
while loop, the do loop is always guaranteed to execute at least once.

The for loop
The for loop is the most powerful loop construct. Here is the general
syntax of a for loop:

for (init expr; condition expr; operation expr) {
}

The for loop initialization consists of three parts: an initialization
expression, a condition expression, and an “operation” expression. The
third expression usually updates the loop variable initialized in the first
expression. Here is the for loop equivalent of our initial while loop:

for (int x = 0; x < 10; x++){
 System.out.println("Looping");
}

This loop and its equivalent while loop are practically the same. In fact,
for (almost) every for loop, there is an equivalent while loop. The way the
for loop executes is different, however. The first expression is executed
first (in this case, x is initialized). The condition is then checked, and if it is
true, the body of the loop is executed. Once the loop finishes executing,
the third loop expression is computed (x is incremented). The cycle then

J a v a l a n g u a g e b a s i c s 9-21

F l o w c o n t r o l s t r u c t u r e s

returns to the first expression. It is critical that you understand how this
works; otherwise, you would get some unexpected results.

The for loop is far more versatile than the other loop constructs; it can be
constructed in unique ways that lessen the number of lines of code and
improve the loop’s efficiency. To demonstrate the versatility of the for
loop, consider the following code:

int x = 1, z = 0;
while (x <= 20) {
 z += x;
 x++;
}

This loop simply adds the numbers from 1 to 20 (inclusive). The
equivalent for loop is as follows:

int z = 0;
for (int x=1; x <= 20; x++) {
 z+= x;
}

To cut down the number of times the loop executes in half, we can use the
following loop:

for (int x=1,y=20, z=0; x<=10 && y>10; x++, y--) {
 z+= x+y;
}

To better understand how this loop works, we will break it up into its four
main sections:

1 The initialization expression: int x =1, y=20, z=0
2 The loop condition: x<=10 && y>10
3 The “operation” expression: x++, y--
4 The main body: z+= x + y

Mathematically speaking, the second for loop is not more efficient than
the first (they both have the same order of magnitude). The purpose of this
example, was simply to demonstrate the flexibility of the for loop.

How does the outcome of the next loop differ from the previous one?

for (int x=1,y=20, z=0; x<=10 && y>10; x++, y--, z+=x+y) {
}

Loop control statements

The break statement
The break statement will allow you to exit a loop structure before the test
condition is met. Once a break statement is encountered, the loop

9-22 L e a r n i n g J a v a w i t h J B u i l d e r

F l o w c o n t r o l s t r u c t u r e s

immediately terminates, skipping any remaining code. Here is an
example:

int x = 0;
while (x < 10){
 System.out.println("Looping");
 x++;
 if (x == 5)
 break;
 else
 //do something else
}

In this example, the loop will stop executing when x equals 5.

The continue statement
The continue statement is used to skip the rest of the loop and continue
execution at the next loop iteration.

for (int x = 0 ; x < 10 ; x++){
 if(x == 5)
 continue; //go back to beginning of loop with x=6
 System.out.println("Looping");
}

This example will not print “Looping” if x is 5.

Conditional statements

Conditional statements are used to provide your code with decision-
making capabilities. There are two conditional structures in Java: the if-
else statement, and the switch statement.

The if-else statement
The syntax of an the if-else statement is as follows:

if (condition1) {
 //codeBlock 1
}
else if (condition2) {
 //codeBlock 2
}
else {
 //codeBlock 3
}

The if-else statement is typically made up of multiple blocks. Only one of
the blocks will execute when the if-else statement executes (based on
which of the conditions is true, of course). The if-else blocks and the else
block are optional. Also, the if-else statement is not restricted to three
blocks—it can contain as many of the if-else block as needed.

J a v a l a n g u a g e b a s i c s 9-23

F l o w c o n t r o l s t r u c t u r e s

The following examples demonstrate the use of the if-else statement:

if (x % 2 == 0)
 System.out.println("x is even");
else
 System.out.println("x is odd");

if (x = y)
 System.out.println("x equals y");
else if (x < y)
 System.out.println("x is less than y");
else
 System.out.println("x is greater than y");

The switch statement
In a way, the switch statement is a specialized version of the if-else
statement. Here is the general syntax of the switch statement:

switch (expression){
case value1: codeBlock1;

break;
case value2: codeBlock2;

break;
default : codeBlock3;

}

There are a number of points we need to highlight regarding the switch
statement:

• The code blocks do not need to be enclosed in braces.

• The default code block corresponds to the else block in an if-else
statement.

• The code blocks are executed based on the value of a variable or
expression, not on a condition.

• The value of expression must be of an integer type(or a type that can be
safely cast to int, such as char).

• The case values must be constant expressions of the same type as
expression.

• The break keyword is optional. It is needed to end the execution of the
switch statement once a code block executes. If, for example, it is not
used after codeBlock1 and codeBlock1 is executed, then codeBlock2
executes immediately following codeBlock1 (a side effect sometimes
useful, but most of the time, undesirable).

• If a code block should execute when expression is one of multiple
values, the values must be enumerated—each preceded with a case
keyword and followed by a colon (we will see an example next).

9-24 L e a r n i n g J a v a w i t h J B u i l d e r

S u m m a r y

Here is an example (assuming c is of type char):

switch (c){
case '1': case '3': case '5': case '7': case '9':

System.out.println("c is an odd number");
break;

case '0': case '2': case '4': case '6': case '8':
System.out.println("c is an even number");
break;

case ' ':
System.out.println("c is a space");
break;

default :
System.out.println("c is not a number or a space");

}

The switch will evaluate c and jump to the case statement whose value is
equal to c. If none of the case values equal c, the default section will be
executed. Notice how multiple values can be used for each block.

Summary
What was covered in this chapter:

• Identifiers are used to uniquely identify variables, methods and classes.
Identifiers must begin with an underscore, dollar sign, or letter. They
can include numbers and are case–sensitive.

• Literals represent constant values. They can be used in expressions and
variable assignments.

• Escape sequences represent special control characters and characters
that cannot be printed.

• Code blocks are used to group related statements together.

• An expression is something that has a certain value. Expressions can
combine identifiers, keywords, operators, and symbols.

• Java’s operators are of the following types: arithmetic, logical,
comparison, assignment, and bitwise. Some operators are unary and
others are binary. Also, Java borrows the ternary operator (?:) from
C/C++.

• Java supports primitive data types (numerical, Boolean, and character
data types), as well as composite data types (arrays and strings). Java’s
data types differ from C/C++’s in that Java does not use arrays of
characters to represent strings, and it does not represent Boolean values

J a v a l a n g u a g e b a s i c s 9-25

S u m m a r y

using 0’s and 1’s. Also, Java’s integer types are always signed; in
C/C++ they are signed by default.

• There are three looping constructs in Java: the while construct, the do
construct, and the for loop. The for loop is the most flexible looping
construct in Java.

• In Java, there are two conditional statements: the if statement and the
switch statement.

9-26 L e a r n i n g J a v a w i t h J B u i l d e r

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 10-1

C h a p t e r

10
Chapter10Object-oriented programming

in Java
This chapter will answer the following questions:

• How long has object-oriented programming existed?
• How do I declare an object and instantiate a class?
• What types can appear in a class?
• What are constructors and finalizers?
• How do I implement inheritance from a parent class to a child class?
• What are the keywords, this and super used for?
• What are accessor methods?
• What is an abstract class?
• What is polymorphism?
• What is an interface?
• What is the import statement used for?

Introduction to OOP
Object-oriented programming has been around since the introduction of
the language, Simula ’67, in 1967. However, it really came to the forefront
of programming paradigms in the mid 1980’s.

Object-oriented programming mainly differs from traditional structured
programming because it places the data and the operations that pertain to
the data within a single data structure. In structured programming, the
data and the operations on the data are separate, and this methodology
requires sending data structures to procedures and functions to operate
on them. Object-oriented programming solves many of the problems
inherent in this design because the attributes and operations are part of

10-2 L e a r n i n g J a v a w i t h J B u i l d e r

C l a s s e s

the same entity. This more closely models the real world, in which all
objects have both attributes and activities associated with them.

Java is a pure object-oriented language, meaning that the outermost level
of data structure in Java is the object. There are no stand-alone constants,
variables, or functions in Java—everything is accessed through classes and
objects. This is one of the nicest features of Java as compared to other
hybrid object-oriented languages, which have aspects of structured
languages in addition to object extensions. For example, C++ and Object
Pascal are object-oriented languages, but you can still write structured
programming constructs, which dilutes the effectiveness of the
object-oriented extensions. Such an option in Java is not available!

Classes
First, a distinction must be made between classes and objects. A class is a
type definition, whereas an object is a variable declaration. Once you
create a class, you can create as many objects based on that class as you
want. The same relationship exists between classes and objects as cherry
pie recipes and cherry pies—you can make as many cherry pies as you
want from a single recipe.

The process of creating an object from a class is referred to as instantiating
an object, or creating an instance of a class.

Declaring and instantiating classes

A class in Java can be very simple. Here is a class definition for an empty
class:

class MyClass {
}

Obviously, this class is not yet useful, but it is legal in Java. A slightly
better class would contain some data members and methods, which will
be added shortly. First, however, the syntax for instantiating a class must
be covered. To create an instance of this class, the new operator is used in
conjunction with the class name. An instance variable must be declared
for the object.

MyClass myObject;

This, however, does not allocate memory and other resources for the
object. This creates a reference called, myObject, but does not instantiate
the object. The new operator performs this task.

myObject = new MyClass();

Notice that the name of the class is used as if it were a method. This is not
coincidental (as you will see in an upcoming section). Once this line of

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 10-3

C l a s s e s

code has executed, the member variables and methods of the class (which
do not yet exist) can be accessed using the “.” operator.

Once you have created the object, you never have to worry about
destroying it. Objects in Java are automatically garbage collected. As soon
as the object reference (i.e., the variable) goes out of scope, the virtual
machine will automatically deallocate any resources allocated by the new
operator.

Data members

As stated above, a class in Java can contain both data members and
methods. Here is a class that contains just data members:

public class DogClass {
 String name,eyeColor;
 int age;
 boolean hasTail;
}

In this example, we have created a class called, DogClass, which contains
member variables for name, eyeColor, age, and a flag called hasTail. You can
include any data type as the member variable of a class (primitive,
composite, and object types). To access a data member, you must first
create an instance of the class, then access the data using the “.” operator.

Class methods

You can also include methods in classes. In fact, there are no standalone
functions or procedures in Java—all subroutines are defined as methods
of classes. Here is an example of the DogClass above with a speak() method
added:

public class DogClass {
 String name,eyeColor;
 int age;
 boolean hasTail;

public void speak() {
 Message msgSpeak = new Message();
 msgSpeak.setMessage("arf, arf");
 msgSpeak.setFrame(new Frame());
 msgSpeak.show();
 }
}

Notice that when you define methods, the implementation for the method
appears directly below the declaration. This is unlike some other object-
oriented languages where the class is defined in one location and the

10-4 L e a r n i n g J a v a w i t h J B u i l d e r

C l a s s e s

implementation code appears somewhere else. Also notice that you must
specify a return type and any parameters received by the method.

To call the method, you would access it just like you would access the
member variables. For example,

DogClass dog = new DogClass();
dog.age = 4;
dog.speak();

Constructors and finalizers

Every class has a special purpose method called a constructor. The
constructor always has the same name as the class and cannot specify a
return value. The constructor takes care of allocating all the resources
needed by the object and returning an instance of the object. When you
use the new operator, you are actually calling the constructor. The reason
that you do not need to specify a return type for the constructor is that the
instance of the object is always the return type!

Most object-oriented languages have a corresponding method called a
destructor, which is called to deallocate all the resources that the
constructor allocated. However, as stated above, Java takes care of
deallocating all the resources for you, thus, there is no destructor
mechanism in Java.

However, there are situations that require you to perform some special
cleanup that the garbage collector cannot handle, as the class goes away.
For example, you may have opened some files in the life of the object and
you want to make sure the files are closed properly when the object is
destroyed. There is another special purpose method that can be defined
for a class called a finalizer. This method (if present) is called by the
garbage collector immediately before the object is destroyed. Thus, if there
is any special cleanup that needs to be performed, the finalizer can handle
it for you. However, the garbage collector runs as a low priority thread in
the virtual machine, so you can never predict when it will actually destroy
your object. So, you should not put any time-sensitive code in the finalizer
because you cannot predict when it will be called.

Case study: A simple OOP example

In this section, we will see a simple example of defining classes and
instantiating objects. We will develop an application that creates two
objects (a dog and a man) and show their attributes on a form.

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 10-5

C l a s s e s

Here is a screenshot of the running application.

Figure 10.1 OOP1 form showing two instantiated objects

Here is a listing of the file DogClass.java:

package Oop1;

public class DogClass {
 String name,eyeColor;
 int age;
 boolean hasTail;

 public DogClass() {
 name = "Snoopy";
 eyeColor = "Black";
 age = 2;
 hasTail = true;
 }
}

As you can see, we are defining DogClass and supplying some member
variables. There is also a constructor to handle instantiating DogClass objects.

Here is the source for the ManClass (found in ManClass.java):

package Oop1;

public class ManClass {
 String name,eyeColor;
 int age;
 boolean isMarried;

 public ManClass() {
 name = "Bob";
 eyeColor = "Blue";
 age = 1;
 isMarried = true;
 }
}

There are obviously some distinct similarities (which we will take
advantage of in an upcoming section).

10-6 L e a r n i n g J a v a w i t h J B u i l d e r

C l a s s e s

Within the Frame class, we declare two instance variables as references to
our objects. Here is the source listing of the Frame1 variable declarations:

public class Frame1 extends DecoratedFrame {
 // Create a reference for the objects
 DogClass dog;
 ManClass man;

 XYLayout xYLayout2 = new XYLayout();
 BevelPanel bevelPanel1 = new BevelPanel();
 . . .

Here is the event handler code for the Create Dog button where we
instantiate the object and fill in some form text fields:

void button1_actionPerformed(ActionEvent e) {
 dog = new DogClass();
 txtfldDogName.setText(dog.name);
 txtfldDogEyeColor.setText(dog.eyeColor);
 txtfldDogAge.setText(Integer.toString(dog.age));
 chkbxDog.setState(dog.hasTail);
 }

As shown, we call the constructor for the dog object and then access its
member variables.

Here is the similar source code for the Create Man button’s event handler:

void button2_actionPerformed(ActionEvent e) {
 man = new ManClass();
 txtfldManName.setText(man.name);
 txtfldManEyeColor.setText(man.eyeColor);
 txtfldManAge.setText(Integer.toString(man.age));
 chkbxMan.setState(man.isMarried);
 }

Class inheritance

The dog and man classes we created have a lot of similarities. One of the
benefits of object-oriented programming is the ability to handle
similarities like this within a hierarchy. This ability is referred to as
inheritance. When a class inherits from another class, the child class
automatically inherits all the characteristics (member variables) and
behavior (methods) from the parent class. Notice that inheritance is
always additive – there is no way to inherit from a class and get less than
what the parent class has.

Inheritance in Java is handled through the keyword, extends. When one
class inherits from another class, the child class extends the parent class.

public class DogClass extends MammalClass {
. . .
}

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 10-7

C l a s s e s

The items that men and dogs have in common could be said to be
common to all mammals, thus we can create a MammalClass to handle
these similarities. We can then remove the declarations of the common
items from DogClass and ManClass, declare them in MammalClass
instead, and then subclass DogClass and ManClass from MammalClass.
The following is the declaration of MammalClass:

package Oop2;

public class MammalClass {
 String name,eyeColor;
 int age;

 public MammalClass() {
 name = "The Name";
 eyeColor = "Black";
 age = 0;
 }
}

Notice that the MammalClass has the common characteristics from both
the DogClass and the ManClass. Now, we can rewrite the DogClass and
ManClass to take advantage of inheritance.

package Oop2;

public class DogClass extends MammalClass {

 boolean hasTail;

 public DogClass() {
 // implied Super()
 name = "Snoopy";
 age = 2;
 hasTail = true;
 }
}

package Oop2;

public class ManClass extends MammalClass{

 boolean isMarried;

 public ManClass() {
 name = "Bob";
 eyeColor = "Blue";
 age = 1;
 isMarried = true;
 }
}

Notice that as soon as DogClass extends MammalClass, DogClass has all
the member variables and methods that the MammalClass has. In fact,
even MammalClass is inherited from another class. All classes in Java
ultimately extend the Object class; so if a class is declared that does not
extend another class, it implicitly extends the Object class.

10-8 L e a r n i n g J a v a w i t h J B u i l d e r

C l a s s e s

Classes in Java can only inherit from one class at a time (single inheritance).
Some languages (such as C++) allow a class to inherit from several classes
at once (multiple inheritance) but this is not the case in Java. A class can
only extend one class at a time. Although, there is no restriction on how
many times you can use inheritance to extend the hierarchy, you must do
so one extension at a time. Multiple inheritance is a nice feature, but it
leads to very complex object hierarchies. Java has a mechanism that
provides many of the same benefits without so much complexity, called
interfaces (covered in an upcoming section).

The MammalClass has a constructor, which sets very practical and
convenient default values, and it would be very beneficial if the sub-
classes could access this constructor.

In fact, they can. There are two ways to go about this in Java. If you do not
explicitly call the parent’s constructor, Java automatically calls it for you
as the first line of the child constructor. The only way to prevent this
behavior is to call one of the parent’s constructors, yourself, as the first line
of the child class’ constructor. The constructor calls are always chained
like this, and this mechanism cannot be defeated. This is a very nice
feature of the Java language, because in other object-oriented languages it
is a common bug not to call the parent’s constructor. Java will always do
this for you if you do not. That is the meaning of the comment in the first
line of the DogClass constructor (implied Super()). The MammalClass
constructor is called at that point, automatically. This mechanism relies on
the existence of a super class constructor, which takes no parameters. If
the constructor does not exist and you do not call one of the other
constructors as the first line of the child constructor, the class will not
compile.

Using this and super
Because you frequently want to call the super class constructor explicitly,
there is a keyword in Java that makes this easy. Super() will call the
parent’s constructor which has the appropriate supplied parameters. It is
also possible to have more than one constructor for a class (which will be
discussed in the “Overloading” section). If you are creating more than one
constructor, you typically do not want to duplicate the common code. So,
you can call a same class constructor using the this() keyword, sending it
any required parameters.

For the example application, the change in the hierarchy is the only
difference between the first two versions of the sample. The instantiation
of the objects and the main form have not changed at all. However, the
design of the application is more effective, because now if we have to
modify any of the mammal characteristics, we can do so in the
MammalClass and just recompile the child classes. Those changes will
automatically flow to the child classes.

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 10-9

C l a s s e s

Access modifiers

Another aspect of classes in Java is the accessibility of the members (both
variables and methods) in the class. There are several options in Java to
allow you to closely tailor how accessible you want these members to be.

As a general rule of thumb, you want to limit the scope of program
elements (and this includes class members) as much as possible—the
fewer places something is accessible, the fewer places it can be accessed
incorrectly.

There are four different access modifiers for class members in Java:
private, protected, public, and default (or the absence of any modifier).
This is slightly complicated by the fact that classes within the same
package have different access than classes outside the package. Thus, here
are two charts which show both the accessibility and inheritability of
classes and member variables from within the same package and from
outside the package (packages are discussed in a later section).

Access from within class’s package

This table shows how class members are accessed and inherited from,
with respect to other members in the same package. For example, a
member that is declared to be private cannot be accessed by, or inherited
from, other members of the same package. On the other hand, members
declared using the other modifiers, could be accessed by and inherited
from all other members of that package.

Access outside of a class’s package

For example, this table shows that a protected member could be inherited
from, but not accessed, by classes outside its package.

Access Modifier Inherited Accessible

default (no modifier) Yes Yes
Public Yes Yes
Protected Yes Yes
Private No No

Access Modifier Inherited Accessible

default (no modifier) No No
Public Yes Yes
Protected Yes No
Private No No

10-10 L e a r n i n g J a v a w i t h J B u i l d e r

C l a s s e s

The main item to note in the above charts is that public members are
available to anyone who wants to access them, (notice that constructors
are always public) whereas, private members are never accessible nor
inheritable outside the class. So, any member variable or method that is to
be kept strictly internal to the class, should be private.

It is common in object-oriented languages to support the idea of
information hiding within the class by making all of the member variables
of the class private and accessing them through methods that are in a
specific format called, Accessor methods.

Accessor methods

Accessor methods are methods that provide the outward public interface
to the class while keeping the actual data storage private to the class. This
is a good idea because you can, at any time in the future, change the
internal representation of the data in the class without touching the
methods that actually set those internal values.

If you do not change the public interface to the class, you do not break any
code that relies on that class and its public methods. You are free to
change the internal workings without breaking any code that relies on this
class.

Accessor methods in Java typically come in pairs: one to get the internal
value, and another to set the internal value. By convention, the Get method
uses the internal private name with “get” as a prefix and the Set method
does the same with “set”. Notice that a read-only property would only
have a “get” method. Typically, Boolean Get methods use “is” or “has” as
the prefix instead of “get”. Accessor methods also make it easy to validate
the data that is assigned to a particular member variable.

Here is an example. For our DogClass, we have made all of the internal
member variables private and added accessor methods to access the
internal values. Notice that the DogClass only creates one new member
variable, hasTail.

package Oop3;

import borland.jbcl.control.*;
import java.awt.*;

public class DogClass extends MammalClass{

 // accessor methods for properties
 // Tail
 public boolean hasTail() {
 return tail;
 }

 public void setTail(boolean value) {
 tail = value;
 }

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 10-11

C l a s s e s

 public DogClass() {
 setName("Snoopy");
 setSound("Arf, arf!");
 setAge(2);
 setTail(true);
 }

 public void Speed() {
 Message speedMessage = new Message();
 speedMessage.setMessage("30 mph");
 speedMessage.setFrame(new Frame());
 speedMessage.show();
 }

 private boolean tail;
}

Notice that tail has been moved to the bottom of the class and now is
declared as private. The location of the definition is not important, but it is
common in Java to place the private members of the class at the bottom of
the class definition (after all, you can’t get to them outside the class;
therefore, if you are reading the code, you are interested in the public
aspects, first). We also created public methods to both, get the value
(hasTail()), and set the value (setTail()). Notice that the MammalClass also
has Accessor methods for its member variables, so the DogClass
constructor uses the “set” methods to assign those values.

Abstract classes

It is possible to declare a method in a class as abstract, meaning that there
will be no implementation for the method within this class, but all classes
that extend this class must provide an implementation. Once you have an
abstract method in a class, the entire class must also be declared as
abstract. This indicates that a class which includes at least one abstract
method (and is therefore, an abstract class) cannot be instantiated.

Here is an example: We want all mammals to have the ability to report
their top running speed. However, different mammals will report this
differently. Thus, in the mammal class we have created an abstract
method called Speed(). This will force all subclasses to implement a
method that demonstrates speed. This class also demonstrates the
complete use of accessor methods (The example also demonstrates
interfaces—to be discussed in the next section).

package Oop3;

import Oop3.SoundInterface;
import java.awt.*;
import borland.jbcl.control.*;

abstract public class MammalClass implements SoundInterface {

 // accessor methods for properties
 // name

10-12 L e a r n i n g J a v a w i t h J B u i l d e r

C l a s s e s

 public String getName() {
 return name;
 }

 public void setName(String value) {
 name = value;
 }

 // eyecolor
 public String getEyeColor() {
 return eyeColor;
 }

 public void setEyeColor(String value) {
 eyeColor = value;
 }

 // sound
 public String getSound() {
 return sound;
 }

 public void setSound(String value) {
 sound = value;
 }

 // age
 public int getAge() {
 return age;
 }

 public void setAge(int value) {
 if (value > 0)
 {
 age = value;
 }
 else
 age = 0;
 }

 public MammalClass() {
 name = "The Name";
 eyeColor = "Black";
 age = 0;
 }

 public void Speak() {
 Message soundMessage = new Message();
 soundMessage.setMessage(this.sound);
 soundMessage.setFrame(new Frame());
 soundMessage.show();
 }

 abstract public void Speed();

 private String name, eyeColor, sound;
 private int age;
}

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 10-13

P o l y m o r p h i s m

Notice the declaration of the abstract method Speed() and also the
declaration of the class as abstract.

Polymorphism
Polymorphism is the ability for two separate, yet related, classes to receive
the same message but act on it in their own way. In other words, two
different (but related) classes can have the same method name but
implement it in different ways.

Thus, you can have a method in a class, which is also implemented in a
child class, and access the code from the parent’s class (similar to the
automatic constructor chaining discussed earlier). Just as in the
constructor example, you can use the keyword super to access any of the
superclass’ methods or member variables.

Here is a simple example. We have two classes (Parent and Child).

class Parent {
 int x = 1;
 int someMethod(){
 return x;
 }
}

class Child extends Parent {
 int x; // this x is part of this class
 int someMethod() { // this overrides parent's method
 x = super.x + 1; // access parent's x with super
 return super.someMethod() + x;
 }
}

Method overloading

It is possible in Java to create several methods of a class which have the
same name but have different parameters and/or return value. This is
referred to as method overloading. Java takes care of deciding which method
to call by looking at the return value and the parameters.

Using interfaces

An interface is functionally like an abstract class but with one important
difference: an interface cannot include any code. The interface mechanism
in Java is meant to replace multiple inheritance.

An interface is a specialized class declaration that can declare constants
and method declarations, but not implementation—code can never be
placed in an interface.

10-14 L e a r n i n g J a v a w i t h J B u i l d e r

P o l y m o r p h i s m

Here is an example interface declaration:

package Oop3;

interface SoundInterface {

 public void Speak();

}

Note that the interface keyword is used instead of class. All methods
declared in an interface are public by default, so there is no need to specify
accessibility. A class can implement an interface by using the implements
keyword. Also, a class can only extend one other class, but a class can
implement as many interfaces as it wants. This is how situations, which
are normally handled by multiple inheritance, are handled by interfaces in
Java. In many situations, you can treat the interface as if it were a class. In
other words, you can treat objects that implement an interface as
subclasses of the interface for convenience. However, notice that you can
only access the methods defined by that interface if you are casting an
object that implements the interface.

The following is an example of both polymorphism and interfaces: The
MammalClass definition above implements the SoundInterface shown
above. Remember that MammalClass also contains an abstract method
called Speed(). Here are the new DogClass and ManClass source files.

package Oop3;

import borland.jbcl.control.*;
import java.awt.*;

public class DogClass extends MammalClass{

 // accessor methods for properties
 // Tail
 public boolean hasTail() {
 return tail;
 }

 public void setTail(boolean value) {
 tail = value;
 }

 public DogClass() {
 setName("Snoopy");
 setSound("Arf, arf!");
 setAge(2);
 setTail(true);
 }

 public void Speed() {
 Message speedMessage = new Message();
 speedMessage.setMessage("30 mph");
 speedMessage.setFrame(new Frame());
 speedMessage.show();
 }

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 10-15

P o l y m o r p h i s m

 private boolean tail;

}

package Oop3;
import borland.jbcl.control.*;
import java.awt.*;

public class ManClass extends MammalClass {

 // accessor methods for properties
 // married
 public boolean isMarried() {
 return married;
 }

 public void setMarried(boolean value) {
 married = value;
 }

 public ManClass() {
 setName("Bob");
 setEyeColor("Blue");
 setSound("Hello there!");
 setAge(1);
 setMarried(true);
 }

 public void Speed() {
 Message speedMessage = new Message();
 speedMessage.setMessage("22 mph");
 speedMessage.setFrame(new Frame());
 speedMessage.show();
 }

 private boolean married;
}

Because both these classes extend MammalClass, they must both provide
an implementation of the Speed() method. Notice, too, that they also
implement the SoundInterface interface because it is implemented by the
MammalClass. In fact, the Speak() method is defined in MammalClass, but
the sound that each mammal will make is specified in the constructor.

There has also been some changes to the main form of the application. We
have added two buttons, Speed and Speak.

10-16 L e a r n i n g J a v a w i t h J B u i l d e r

P o l y m o r p h i s m

Figure 10.2 New version of the sample application with Speed and Speak buttons added

We have also added a couple of declarations to the form’s class.

 // Create a reference for the objects
 DogClass dog;
 ManClass man;

 //Create an Array of SoundInterface
 SoundInterface soundList[] = new SoundInterface[2];

 //Create an Array of Mammal
 MammalClass mammalList[] = new MammalClass[2];

In addition to creating references for dog and man, we also have created a
couple of arrays in terms of both Mammals and SoundInterfaces. Then,
when we create the dog and man, we add references to them in both lists.

void button1_actionPerformed(ActionEvent e) {
 dog = new DogClass();
 txtfldDogName.setText(dog.getName());
 txtfldDogEyeColor.setText(dog.getEyeColor());
 txtfldDogAge.setText(Integer.toString(dog.getAge()));
 chkbxDog.setState(dog.hasTail());
 mammalList[0] = dog;
 soundList[0] = dog;
}

void button2_actionPerformed(ActionEvent e) {
 man = new ManClass();
 txtfldManName.setText(man.getName());
 txtfldManEyeColor.setText(man.getEyeColor());
 txtfldManAge.setText(Integer.toString(man.getAge()));
 chkbxMan.setState(man.isMarried());
 mammalList[1] = man;
 soundList[1] = man;
 }

Notice that we can add both objects to both lists without any casting. This
is because they can both be thought of as mammals and objects that can
speak because of their lineage.

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 10-17

J a v a p a c k a g e s

The code under the Speed button loops through the list and tells each
object to display its speed.

void button4_actionPerformed(ActionEvent e) {
 for (int i = 0; i <= 1; i++) {
 mammalList[i].Speed();
 }
}

Notice again that we do not have to cast either object to access the Speed()
method. The first time through the list, the dog displays speed, the second
time through the list, the man displays speed. This is polymorphism in
action – two separate but related objects receiving the same message and
reacting to it in their own way.

The code under the Speak button is similar.

void button3_actionPerformed(ActionEvent e) {
 for (int i = 0; i <= 1; i++) {
 soundList[i].Speak();
 }
 }

You’ll see that we can treat the SoundInterface as a class when it is
convenient. Again, we do not have to do any casting to execute this
method against these objects. However, because this is an interface, we
cannot access the Speed() method from this reference without type casting.
But notice that the interface gives us some of the benefits of multiple
inheritance without the added complexity.

Java packages
In order to facilitate code reuse, Java allows you to group several class
definitions together in a logical grouping called a package. If, for instance,
you create a group of business rules that model the work processes of
your organization, you might want to place them together in a package.
This makes it easier to reuse code that you have previously created.

The import statement

The Java language comes with many predefined packages. For instance,
the java.applet package contains classes for working with Java applets. In
the previous example, we were declaring an applet subclass with the
following line of code:

public class Hello extends java.applet.Applet {

In this code, we were really referring to the class called Applet in the Java
package java.applet. You can imagine that it might get quite tedious to
have to repeat the entire full class name java.applet.Applet every time we

10-18 L e a r n i n g J a v a w i t h J B u i l d e r

J a v a p a c k a g e s

referred to this class. Instead, Java offers an alternative. You can choose to
import a package you will use frequently:

import java.applet.*;

This tells the compiler “if you see a class name you do not recognize, look
in the java.applet package for it.” Now, when we declare our new class,
we can say,

public class Hello extends Applet {

which is a little less verbose. However, this does present a problem if you
have two classes by the same name defined in two different packages that
are imported. In this case, you must use the fully qualified name.

Declaring packages

Creating your own packages is almost as easy as using them. For instance,
if you want to create a package called, mypackage, you would simply use
a package statement at the beginning of your file:

package mypackage;

public class Hello extends java.applet.Applet {

 public void init() {
 add(new java.awt.Label("Hello World Wide Web!"));
 }

} // end class

Now, any other program can access the classes declared in mypackage
with the statement:

import mypackage.*;

Remember, this file should be in a subdirectory called mypackage. This
allows your Java compiler to easily locate your package. JBuilder’s Project
Wizard will automatically set the directory to match the project name.
Also, keep in mind that the base directory of any package you import
must be listed in the Source Path of the JBuilder IDE or the Source Path of
your project. This is good to remember if you decide to relocate a package
to a different base directory.

“The Java Language Specification” (provided in the online
documentation) has more information about packages, including
recommended naming conventions.

O b j e c t - o r i e n t e d p r o g r a m m i n g i n J a v a 10-19

S u m m a r y

Project options related to packages

In the Paths section of the Project Properties dialog, you can set the
following package-related properties:

• Browser Source Path: this specifies the path that JBuilder’s IDE will use
to look for source files. If it does not find the files, it uses the compiler
source path.

• Compiler Source Path: JBuilder uses this path to compare .class files
from the class path with their corresponding .java files to determine
whether the .java files need to be recompiled.

• Class Path: the class path is where JBuilder looks for .class files. When
you reference a class from another package, JBuilder looks for its
package in the class path.

• Out Path: where compiled files are stored. When a Java compiler
compiles a Java class, it places the resulting bytecode in a file with the
same name as the class, but with a .class extension. The Out Path will
mirror the path in which you have created your project. So, in our case,
we created a class called, DogClass by creating a file called,
DogClass.java. This file is in a subdirectory called Oop1; therefore, the
result of compiling this file is a file called, DogClass.class, which is
stored in a subdirectory of the Out Path called Oop1.

When a piece of Java code references an external package (e.g. you use one
of the components in the java.awt package), the Java environment and
compiler will look through the Source and Class paths to find a
subdirectory with the same name as the package.

Summary
What was covered in this chapter:

• Object-oriented programming started with the language Simula ’67 in
1967 but became popular in the 80’s.

• An object is declared just like any other variable and it is instantiated
using the new keyword.

• Any type (both primitive and object) can appear in a class.

10-20 L e a r n i n g J a v a w i t h J B u i l d e r

S u m m a r y

• A constructor is a special method that allocates all resources for the
class. A finalizer is a method that is automatically called by the garbage
collector just before the object is destroyed.

• Inheritance is implemented using the extends keyword.

• The keyword, this, refers to the current class and can be used as a
method call to call another constructor of the class. The keyword,
super, can be used to refer to a member variable in a parent class or to
invoke the constructor for a parent class.

• Accessor methods are “get” and “set” methods used to encapsulate
internal data representation in the form of private member variables.

• An abstract class is a class with at least one abstract method, which
cannot be instantiated.

• Polymorphism is the ability for two separate, but related objects, to
receive the same message but react to it differently.

• An interface is like an abstract class but cannot contain any code or non-
constant member variables.

• The import statement is used to avoid having to full qualify class
names.

T h e J a v a c l a s s l i b r a r i e s 11-1

C h a p t e r

11
Chapter11The Java class libraries

This chapter will answer the following questions:

• What does the standard class libraries provide for Java development?
• What purpose does type wrapper classes serve?
• Why does Java support primitive data types?

Introduction
Most programming languages rely on pre-built libraries to support certain
functionality. For example, C has no built-in support for I/O functions.
JDK 1.1 comes with a very impressive library that includes support for
database connectivity, GUI design, I/O, and network programming.
Although JDK 1.1 contains numerous support packages, there are ten
standard packages that warrant further discussion. The following table
briefly describes these packages.

Package Description

Language The main core of the Java language

Utilities Support for utility data structures

I/O Supports various types of input/output

Networking TCP/IP support and socket programming

AWT GUI design and event-handling

Text Support for internationalization

Security Support for cryptographic security

RMI Support for distributed programming

Reflection Used to obtain runtime class information

SQL Support for querying databases using SQL

11-2 L e a r n i n g J a v a w i t h J B u i l d e r

T h e L a n g u a g e p a c k a g e

This chapter will primarily focus on the Language, Utilities and I/O
packages. Aspects of the security package will be discussed in Chapter 14,
“Java Virtual Machine security.”

The Language package
One of the most important packages in the Java class library is the
java.lang package. This Language package contains the language’s main
support classes. It is virtually impossible to write a Java program without
using the Language package. The following sections discuss some of the
more important classes contained in the Language package.

The Object class

The Object class is the parent class of all Java classes. This simply means
that all Java classes are derived from the Object class. The Object class
itself contains several methods of importance. These methods include
clone, equals, and toString.

An object that uses the clone method simply makes a copy of itself. To
accomplish this, new memory is allocated for the clone, then contents of
the original object is copied into the clone object. For example, a copy of
the Document class that contains a text and author property needs to be
created. To create a new instance of the Document class that contains both
properties and the values associated with the object, the clone method
should be used. The following code demonstrates how this would be
accomplished.

Document document1 = new Document ("docText.txt", "Joe Smith");
Document document2 = document1.clone();

The equals method compares two objects of the same type for equality by
comparing the properties of both objects. It simply returns a Boolean
value depending on the results of the object that calls it and the object that
is passed to it. For instance, if equals is called by an object that passes it an
object that is completely identical, the equals method would return a true
value.

The toString method returns a String representing the value of the object.
For this method to return proper information about different types of
objects, the object’s class must override it.

Type wrapper classes

Primitive data types are not used as objects in Java. These primitive data
types include numbers, booleans, and characters. The reasoning behind
not including these data types as objects, lies in performance.

T h e J a v a c l a s s l i b r a r i e s 11-3

T h e L a n g u a g e p a c k a g e

Treating these primitive data types as objects would greatly impact the
language’s performance (due to the overhead of processing objects).
However, some Java classes and methods require primitive data types to
be objects. Also, it would be useful in some cases to add custom methods
to these types. For these reasons, the Java type wrapper classes can be
instantiated. The following lists the primitive data types that the
Language packages support as objects.

Although each one of these classes contains its own methods, several
methods are standard throughout each object. These methods include
ClassType, typeValue, toString and Equals.

The ClassType method is the constructor for the wrapper classes. It simply
takes an argument of the class type it is wrapping. For example, the
following code demonstrates how a Character wrapper class is
constructed.

Character charWrapper = new Character ('T');

The typeValue method returns the primitive type of the wrapper class. The
following code demonstrates using the charWrapper object. Notice that
charPrimitive is a primitive data type (declared as a char).

However, using this method, primitive data types can be assigned to type
wrappers.

char charPrimitive = charWrapper.charValue();

The toString and equals methods are used similarly as in the Object class.
They are typically used for debugging purposes.

The Math class

The Math class provides useful methods that implement common math
functions. This class is not instantiated, and it is declared final, so it cannot
be subclassed. Some of the methods included in this class are: sin, cos, exp,
log, max, min, random, sqrt and tan. Some of these methods are overloaded

Type Wrapper Classes Description

Boolean True or False (1 Bit)
Byte –128 to 127 (8 bit signed integer)
Character Unicode character (16 bit)
Double +1.79769313486231579E+308 to +4.9406545841246544E–324

(64 bit)
Float +3.40282347E+28 to +1.40239846E–45 (32 bit)
Integer –2147483648 to 2147483647 (32 bit signed integer)
long –9223372036854775808 to 9223372036854775807

(64 bit signed integer)
short –32768 to 32767 (16 bit signed integer)

11-4 L e a r n i n g J a v a w i t h J B u i l d e r

T h e L a n g u a g e p a c k a g e

to accept and return different data types. Here are examples of using some
of the methods.

double d1 = Math.sin (45);
double d2 = 23.4;
double d3 = Math.exp (d2);
double d4 = Math.log (d3);
double d5 = Math.max (d2, Math.pow (d1, 10);

The Math class also declares the constants PI and E. This can easily be
used within any calculations.

Note Do not confuse the Math class with the java.math package. The java.math
package provides support classes for working with large numbers.

The String class

The String class is used to declare and manipulate strings. Unlike C/C++,
Java does not use character arrays to represent strings. The String class is
used for constant strings and is typically constructed when the Java
compiler encounters a string in quotes. However, strings can be
constructed several ways. The following lists some of the strings
constructors and what they accept.

The String class contains several important methods that are essential
when dealing with strings. The following table lists some of the more
crucial methods and declares what they accept and return.

Constructor Parameters

String ()
String (String)
String (char value[])
String (char value[], int off, int count)
String (StringBuffer)

Method Accepts Returns

length () int
charAt (int index) char
compareTo (String) int
startsWith (String prefix) boolean
endsWith (String suffix) boolean
indexOf (int ch) int
substring (int beginIndex, int endIndex) String
concat (String) String
toLowerCase () String
toUpperCase () String
valueOf (Object) String

T h e J a v a c l a s s l i b r a r i e s 11-5

T h e L a n g u a g e p a c k a g e

A very efficient and feature associated with many of these methods is that
they are overloaded for different data types. The following demonstrates
how the String class and some of its methods can be used.

String s1 = new String ("Hello World.");

char cArray[] = {'J', 'B', 'u', 'i', 'l', 'd', 'e', 'r'};
String s2 = new String (cArray); //s2 = "JBuilder"

int i = s1.length(); //i = 12
char c = s1.charAt(4); //c = 'o'
i = s1.indexOf('l'); //i = 2 (the first 'l')

String s3 = "abcdef".substring (2, 5) //s3 = "cde"
String s4 = s3.concat ("f");//s4 = "cdef"
String s5 = valueOf (i); //s5 = "2" (valueOf()is static)

The StringBuffer class

The StringBuffer class differs from the String class in that StringBuffer
objects can be modified. Like the String class, the StringBuffer class has
several constructors. The following table lists these constructors for the
StringBuffer class.

There are several important methods that separate the StringBuffer class
from the String class. These methods include: Length, Capacity, setLength,
charAt, setCharAt, Append, Insert and toString.

One method that is used quite often when dealing with StringBuffers’ is
the Append method. The Append method is used to add text to the
StringBuffer. Fortunately, the Append method is heavily overloaded.

Another important method that is commonly used with the StringBuffer is
the Capacity method. This method returns the amount of memory
allocated for the StringBuffer. This value can be greater than the value
returned by the Length method. This is due to the fact that memory
allocated for a StringBuffer can be controlled with the StringBuffer (int
length) constructor. The following code demonstrates some of the
methods associated with the StringBuffer class.

StringBuffer s1 = new StringBuffer(10);

int c = s1.capacity(); //c = 10
int l = s1.length(); //l = 0

s1.append("Bor"); //s1 = "Bor"
s1.append("land"); //s1 = "land"

Constructor Accepts

StringBuffer ()
StringBuffer (int length)
StringBuffer (String)

11-6 L e a r n i n g J a v a w i t h J B u i l d e r

T h e U t i l i t i e s p a c k a g e

c = s1.capacity(); //c = 10
l = s1.length(); //l = 7

s1.setLength(2); //s1 = "Bo"

StringBuffer s2 = new StringBuffer("Helo World");
s2.insert (3, "l"); //s2 = "Hello World"

The System class

The System class provides access to system platform independent
resources. It is a declared as a final class, so it can’t be subclassed. It also
declares its methods and variables as static. This simply allows it to be
available, without it being instantiated.

The methods in the system class provide many uses. One important
feature is the ability to get the current system time, using the
currentTimeMillis method. It is also possible to retrieve and change system
resources using the Get and Set Properties methods. Another convenient
feature that the System class provides is being able to force garbage
collection with the gc method; and finally, the System class allows
developers to load dynamic link libraries with the loadLibrary method.

The most useful aspect of the System class is the variables it declares.
These variables are used to interact with the system. These variables
include in, out, err. The in variable represents the system’s standard input
stream, whereas the out variable represents the standard output stream.
The err variable is the standard error stream. Streams will be discussed in
more detail in the I/O Package section.

The Utilities package
The java.util package contains various utility classes and interfaces that
are crucial for Java development. For the most part, they aid the developer
in designing different types of data structures. The following table
describes some of the classes associated with the Utilities Package.

Class Description

Calendar Allows use of calendar features
Date Represents dates and times
Dictionary An abstract class that is the parent class of Hashtable
Hashtable Allows key associations with values
SimpleTimeZone Represents a time zone
Stack Allows arrangement of objects in a stack
StringTokenizer Breaks String up into tokens
Vector Implements a dynamic array of objects

T h e J a v a c l a s s l i b r a r i e s 11-7

T h e U t i l i t i e s p a c k a g e

The Utility package also declares three interfaces. These interfaces are
Enumeration, EventListener and Observable. In this section, we will only
cover the Vector class and the Enumeration interface.

The Enumeration interface

The Enumeration interface is used to implement a class capable of
enumerating values. A class that implements the Enumeration interface
can facilitate the traversal of data structures.

The methods defined in the Enumeration interface allow the Enumeration
object to continuously retrieve all the elements from a data structure, one
by one. There are only two methods declared in the Enumeration
interface, hasMoreElements and nextElement.

The hasModeElements method returns true if more elements remain in the
data structure. The nextElement method is used to return the next object in
the structure being enumerated.

A simple example will be used to illustrate the implementation of the
Enumeration interface. This example will contain a class called canEnumerate,
which implements the Enumeration interface. An instance of that class can
be used to print all the elements of a Vector object (in this case v).

canEnumerate enum = v.elements();

while (enum.hasMoreElements()) {
 System.out.print (enum.nextElement());
}

There is one limitation on an Enumeration object; it can only be used once.
There is no method defined in the interface that allows the Enumeration
object to backtrack to previous elements. So, once it enumerates the entire
list, it is consumed.

The Vector class

JDK 1.1 does not include support for many dynamic data structures, such
as linked lists and queues; it only defines a Stack class. However, the
Vector class provides an easy way to implement dynamic data structures.
The following table lists some of the more important methods of the
Vector class and declares what they accept.

Method Accepts

Vector (int initialCapacity)
Vector (int initialCapacity, int capacityIncrement)
setSize (int newSize)
capacity ()
size ()

11-8 L e a r n i n g J a v a w i t h J B u i l d e r

T h e U t i l i t i e s p a c k a g e

The Vector class is efficient because it allocates more memory than needed
when adding new elements. A Vector’s capacity, therefore, is usually
greater than its actual size. The capacityIncrement parameter in the second
constructor indicates a Vector’s capacity increase whenever an element is
added to it.

The following code demonstrates the use of the Vector class. In the code, a
Vector object is created called vector1, and enumerates its elements in
three ways: using Enumeration’s nextElement method, using Vector’s
elementAt method, and using Vector’s toString method. To display the
output, an AWT component is created called textArea, and the text
property is set using the setText method. Here is the code added to the
end of the VectorTest1 constructor.

Vector vector1 = new Vector (10, 2); //initial size is 10,
 //capacityIncrement is 2
for (int i=0; i<10;i++)
 vector1.addElement(new Integer(i)); //addElement doesn't
 //accept
 //int types
//enumerate vector1
Enumeration e = vector1.elements();

frame.textArea1.setText ("The elements using Enumeration's nextElement():\n");

while (e.hasMoreElements())
 frame.textArea1.setText (frame.textArea1.getText()+
 e.nextElement()+ " | ");

frame.textArea1.setText (frame.textArea1.getText()+ "\n\n");

//enumerate using the elementAt() method
frame.textArea1.setText (frame.textArea1.getText()+ "The
 elements using Vector's elementAt():\n");

for (int i=0; i< vector1.size();i++)
 frame.textArea1.setText (frame.textArea1.getText()+
 vector1.elementAt(i) + " | ");

frame.textArea1.setText (frame.textArea1.getText()+ "\n\n");

//enumerate using the toString() method
frame.textArea1.setText (frame.textArea1.getText()+ "Here's
 the vector as a String:\n");

frame.textArea1.setText (frame.textArea1.getText()+ vector1.toString());

elements ()
elementAt (int)
firstElement ()
lastElement ()
removeElementAt (int index)
addElement (Object)
toString ()

Method Accepts

T h e J a v a c l a s s l i b r a r i e s 11-9

T h e I / O p a c k a g e

The following figure demonstrates what this code would accomplish if it
was used within an application.

Figure 11.1 Vector and Enumeration example

The I/O package
The java.io package provides support for reading and writing data to and
from different devices. The classes in this package can be divided into the
following packages: Input stream classes, Output stream classes, File
classes, and the StreamTokenizer class.

Input stream classes

An input stream is used to read data from an input source (e.g., a file, a
string, memory, etc.). There are several classes encapsulated in this
definition. These input stream classes include: InputStream,
BufferedInputStream, DataInputStream, FileInputStream, and
StringBufferInputStream.

The basic method of reading data using an Input stream class is always
the same: (1) create an instance of an input stream class, then (2) tell it
where to read the data. Input stream classes read data as a continuous
stream of bytes. If no data is currently available, the Input stream class
blocks (waits until some data becomes available).

In addition to the Input stream classes, the I/O package provides reader
classes that correspond to all the Input stream classes (except for
DataInputStream). These reader classes are as follows: Reader,
BufferedReader, FileReader and StringReader. Reader classes are identical
to Input stream classes, except that they read Unicode characters instead
of bytes.

The InputStream class is an abstract class from which all other Input
stream classes are derived. It provides the basic interface for reading a

11-10 L e a r n i n g J a v a w i t h J B u i l d e r

T h e I / O p a c k a g e

stream of bytes. The following table lists some of the InputStream methods
and what they except. Each of these methods returns an int value, except
for the close method.

The first method, abstract int read, reads a byte from the input stream and
returns it as an integer (you can cast the return type to char). It returns –1
when it reaches the end of the stream. The second method, int read(byte
b[]), reads multiple bytes and stores them in its array parameter. It returns
the number of bytes read, or –1 when the end of the stream is reached. The
last read method, int read(byte b[], int off, int len), allows the developer to set
the maximum number of bytes to read and directs where in the array to
store them.

The int available method, returns the number of input bytes that can be
read without blocking. The skip method skips a specified number of bytes
from the stream. Finally, the close method is used to close the input stream.
This method is normally called automatically, but it is safer to call it,
manually.

The FileInputStream class is very similar to the InputStream class, only it
is designed for reading from files. It contains two constructors. These
constructors are FileInputStream(String name) and FileInputStream(File
file). The first constructor takes the file’s name as a parameter. The
second simply takes a file object. The file class will be discussed later. The
following example demonstrates the use of the FileInputStream class.

import java.io.*;

class fileReader {

 public static void main (string args[]) {

 byte buff[] = new byte [80];
 try {

 InputStream fileIn = new
 FileInputStream("Readme.txt");
 int i = fileIn.read(buff);

 }
 catch(FileNotFoundException e) {
 }
 catch(IOException e) {
 }

Method Accepts

read ()
read (byte b[])
read (byte b[], int off, int len)
available ()
skip (long)
close ()

T h e J a v a c l a s s l i b r a r i e s 11-11

T h e I / O p a c k a g e

 String s = new String(buff);
 System.out.println(s);
 }
}

In this example, a character array was created that will store the input
data. Then a FileInputStream object was instantiated and passed the input
file’s name to its constructor. Next, the FileInputStreams’ read() method was
used to read a stream of characters and store them in the buff array. The
first 80 bytes are read from the Readme.txt file and stored in the buff array.
The FilerReader class could be used in place of the FileInputStream
method. The only changes needed would be a char array used in place of
the byte array, and the reader object would be instantiated as follows.

Reader fileIn = new FileReader("Readme.txt");

Finally, in order to see the result of the read call, a string object is created
using the buff array, and then it is passed to the System.out.println method.

As mentioned earlier, the class System is defined in java.lang and
provides access to system resources. System.out is a static member of
System and represents the standard output device. The println method
was called to send the output to the standard output device. The
System.out object is of type PrintStream, which will be discussed in the
Output Stream Classes section.

Another static member of the System class is the System.in object, which is
of type InputStream. Naturally, this object represents the standard input
device.

Output Stream classes

The Output stream classes are the counterparts to the Input stream
classes. They are used to output streams of data to the various output
sources. The main output stream classes in Java are: OutputStream,
PrintStream, BufferedOutputStream, DataOutputStream and
FileOutputStream.

To output a stream of data, an output stream object is created and is
directed to output the data to a particular output source. As expected,
there are also writer classes. There is a corresponding writer class for all,
except the DataOutputStream class. Since the OutputStream class is the
counterpart to the InputStream class, it defines the following methods.

Method Accepts

write (int)
write (byte b[])
write (byte b[], int off, int len)
flush ()
close ()

11-12 L e a r n i n g J a v a w i t h J B u i l d e r

T h e I / O p a c k a g e

The flush method is used to flush the output stream (i.e. it forces the
output of any buffered data). The PrintStream class is primarily designed
to output data as text. It has two constructors. These constructors are
PrintStream(OutputStream) and PrintStream(OutputStram, boolean
autoflush).

There is one difference between the two constructors. The first causes the
PrintStream object to flush the buffered data based on specified
conditions, while the second flushes the data when it encounters a new
line character (if autoflush is set to true).

Here are some of the methods PrintStream defines.

The print and println methods are overloaded for different data types. The
checkerror method flushes the stream and returns a false value if an error
was encountered.

File classes

The FileInputStream and FileOutputStream classes only provide basic
functions for handling file input and output. The java.io package provides
the File class and RandomAccessFile class for more advanced file support.
The File class provides easy access to file attributes and functions. The
RandomAccessFile class provides various methods for reading and
writing to and from a file. The File class has three constructors: File(String
path), File(String path, String name) and File(File dir, String name). The File
class also implements many important methods. The following table lists
these methods and declares what they return.

Method Accepts

checkError ()
print (Object obj)
print (String s)
println ()
println (Object obj)

Method Returns

delete boolean
canRead boolean
canWrite boolean
exists boolean
isDirectory boolean
renameTo boolean
long lastModified long
long length long

T h e J a v a c l a s s l i b r a r i e s 11-13

S u m m a r y

The RandomAccessFile class is more powerful than the FileInputStream
and FileOutputStream classes. It implements reading and writing
methods for all the primitive types. It has two constructors that are as
followed: RandomAccessFile(String name, String mode) and
RandomAccessFile(File file, String mode). The mode parameter indicates
whether the RandomAccessFile object is used for reading (“r”), or
reading/writing (“rw”). There are many powerful methods implemented
by RandomAccessFile.

The following table lists some of these methods and what they accept.

The StreamTokenizer class

This class is used to break up a stream into individual tokens. The
StreamTokenizer class implements methods used to define the lexical
syntax of tokens. This technique of processing streams into tokens is
perhaps most commonly used in writing compilers.

Summary
What was covered in this chapter:

• The standard class libraries provide many packages that are essential
for Java development. These packages include: Language, Utilities, I/
O, Networking, AWT, and Text. Security, RMI, Reflection and SQL.

getName String
getParent String
getPath String

Method Accepts

skipBytes (int)
getFilePointer ()
seek (long pos)
read ()
read (byte b[], int off, int len)
readType ()
write ()
write (byte b[], int off, int len)
length ()
close ()

Method Returns

11-14 L e a r n i n g J a v a w i t h J B u i l d e r

S u m m a r y

• Primitive data types are essential for performance related issues.
Without these primitive data types, complex calculations could
severely reduce the performance of the application.

• Type wrapper classes enable developers to treat primitive data types as
if they were objects.

• The Java Beans Component Library (JBCL) package provides
developers with several UI components. Some of these components
include: ButtonBar, ButtonControl, CheckBoxControl, CheckBoxPanel,
ListControl, ChoiceControl, GridControl and StatusBar.

• MultiCaster classes provide Java Beans an efficient means of managing
events. It uses an array, instead of a vector to keep a list of Event
Listener objects.

T h r e a d i n g t e c h n i q u e s 12-1

C h a p t e r

12
Chapter12Threading techniques

This chapter will answer the following questions:

• What is a thread?
• Why are threads useful?
• How are threads created and used?
• What are the different states of a thread?
• What is the purpose of the synchronized keyword?

Overview
Whether you are aware of it or not, threads are a part of every Java
program; when you run a Java application, the Java VM runs its main()
method inside its own thread—applets are also run in their own threads.
This fact proves how integral the concept of threads is to Java. To become
a powerful Java programmer, you need to know how threads work and
how they can be used in the development of Java programs.

Why are threads useful?

First of all, a thread is a single sequence of execution that can run
independently within an application. A multi-threaded application is one,
which supports the concurrent execution of multiple threads. To
understand why threads are useful, we’ll consider an example of how
using threads in an application can be very productive, while not using
them can be counter-productive. Consider the case where you want to use
a web browser to download a file from one site and access another site at
the same time. If your browser does not allow you to do these two things,
simultaneously, you are forced to wait for the file to finish downloading
before you can do anything else—and if that file is relatively large, you

12-2 L e a r n i n g J a v a w i t h J B u i l d e r

C r e a t i n g a t h r e a d

can imagine how annoying that can be. It certainly would be much more
productive to take advantage of the time the browser is spending
downloading the file to do other things. Luckily, most web browsers are
multi-threaded.

Why haven’t I heard of threads before?

The concept of threads has actually been around for a long time. Threads
were not as popular as they are now because, prior to Java, no API
managed to standardize the use of threads across different platforms. Java
came along with a threading API that is supported by all JVMs running on
all platforms.

Creating a thread
It’s now time to show you how a thread is created in Java. The java.lang
package defines a Thread class, which is used to create threads. So to
create a thread in your application you could have a declaration similar to
the following:

Thread myFirstThread = new Thread();

This declaration creates an instance of Thread called myFirstThread;
however, it is not a particularly useful declaration. The reason is that there
is no way you can tell myFirstThread to do what you want it to do. Thread
defines methods that define the general behavior of all threads; it has no
methods or properties that can perform the particular tasks you might
have intended for it. Does this mean that the Thread class is useless? No, it
simply means that we have not yet seen how to make good use of it. Be
patient and read on.

There are two ways used to create threads: the first involves subclassing
the Thread class, and the second involves implementing the Runnable
interface. We will look at both ways next.

Subclassing the Thread class

It was stated in the previous section that an object of type Thread cannot
be directly programmed by the user to perform a particular task. If that’s
the case, how can any thread be programmed? The answer lies in one of
the methods that the Thread class defines:

public void run() {}

This method is where the thread’s main execution logic lies; the run()
method is to a thread what the main() method is to an application. Just as,

T h r e a d i n g t e c h n i q u e s 12-3

C r e a t i n g a t h r e a d

main() is the starting point of execution for an application, run() is the first
thing that executes when a thread is started.

The default run() method basically does nothing; directly instantiating the
Thread class, therefore, results in a thread that has a useless run() method.
The obvious solution to this is to subclass Thread and override its run()
method.

Here’s an example of how this is done:

public class myUsefulThread extends Thread {
 //constructors
 public void run() {
 //do something useful
 }
}

Now, when you instantiate myUsefulThread, its object will get its
functionality from the overridden run() method.

Lastly, you need to know how to start your thread. To start a thread,
simply call its start() method, as in the following:

myUsefulThread t = new myUsefulThread();
t.start();

Example: Implementing countingThread
countingThread is a simple thread class that counts from one number to
another. While this is a simplified example, it nevertheless illustrates how
separate threads are created and how they can co-exist in the same
environment. countingThread is shown next:

public class countingThread extends Thread {
 private int start;
 private int finish;

 public countingThread(int from, int to) {
 this.start = from;
 this.finish = to;
 }

 public void run() {
 System.out.println(this.getName()+ " started executing...");
 for (int i = start; i <= finish; i++) {
 System.out.print (i + " ");
 } //for
 System.out.println(this.getName() + " finished executing.");
 } //run
}

countingThread’s constructor takes two int parameters and uses them to
initialize its properties start and finish. The run() method first identifies
the current thread object by printing its name to the screen. It then uses a
for loop to count from start to finish, and print each number to the screen.

12-4 L e a r n i n g J a v a w i t h J B u i l d e r

C r e a t i n g a t h r e a d

Before it is done, it prints a string stating that the current thread has
finished executing.

We can use countingThread in an application as follows:

public class threadTester {
 static public void main(String[] args) {
 countingThread thread1 = new countingThread (1, 10);
 countingThread thread2 = new countingThread (20, 30);
 thread1.start();
 thread2.start();
 }
}

The above main() method creates two countingThread objects: thread1 will
count from 1 to 10, and thread2 will count from 20 to 30. It then starts both
threads by calling their start() methods. When this main() method is run in
an application, the output could be similar to the following:

Thread-1 started executing…
Thread-2 started executing…
20 21 22 23 24 25 26 27 28 29 30 Thread-2 finished executing.
1 2 3 4 5 6 7 8 9 10 Thread-1 finished executing.

First, notice that the output does not show the threads’ names as thread1
and thread2, as you might have expected. Unless you specifically assign a
name to a thread, Java will automatically give it a name of the form Thread-
n, where n is a unique number. In this case, the first thread to start was
given the name Thread-1, and the second the name Thread-2. If you prefer
your own, more descriptive names, use Thread’s setName(String) method.

Next, notice that while Thread-1 started executing first, it finished last.
What’s going on here? The answer is that threads in Java are not
guaranteed to execute in any particular sequence. In fact, each time you
execute threadTester, you may get a different output. Here’s another
output generated by threadTester:

Thread-1 started executing…
1 2 3 4 5 6 7 8 Thread-2 started executing…
20 21 22 23 9 10 Thread-1 finished executing.
24 25 26 27 28 29 30 Thread-2 finished executing.

Notice how in this output, Thread-2 started executing before Thread-1 was
even finished. Basically, the process of scheduling threads is controlled by
the Java thread scheduler, and not the programmer.

Implementing the Runnable interface

As we saw in the previous section, subclassing the Thread class is one way
of creating thread objects. That’s fine if you are designing a new class
whose objects you want to execute in separate threads. But what if you
wanted objects of a preexisting class to execute in their own threads? You
would just implement the Runnable interface.

T h r e a d i n g t e c h n i q u e s 12-5

T h e T h r e a d A P I

The Runnable interface is used to add threading support to classes that do
not inherit from the Thread class. It declares only one method:

public void run() {
}

So, in order to have objects of a preexisting class execute in their own
threads, you have to do the following:

1 Make the class implement the Runnable interface
2 Implement the run() method for that class

To make countingThread2, use the Runnable interface instead of subclassing
the Thread class, we only need to change its declaration to the following:

public class countingThread2 implements Runnable {
 //the rest is not changed
}

While the implementation of the countingThread2 class did not have to
change to make it implement Runnable, the way its objects are created does
have to change. Instead of instantiating countingThread, as we did
previously, we now must create a Runnable object from countingThread2
and pass it to one of Thread’s constructors. Here’s how the thread1 object
is now created:

Runnable rThread = new countingThread2(1, 10);
Thread thread1 = new Thread(rThread);

Let’s think about why we had to do this. countingThread was subclassed
from the Thread class, so it inherited all the behavior of a Java thread. That
means that you can perform all the functionality that Thread supports on
an object of countingThread, such as calling start(). countingThread2,
however, did not inherit anything from Thread, so it did not support any
of Thread’s behavior. countingThread2 only defined the run() method,
which would be called when a countingThread2 object is run in a thread.

The Thread API

Constructors

The Thread class defines the following constructors:

public Thread()
public Thread(Runnable target)
public Thread(Runnable target, String name)
public Thread(String name)
public Thread(ThreadGroup group, Runnable target)
public Thread(ThreadGroup group, String name)
public Thread(ThreadGroup group, Runnable target, String name)

12-6 L e a r n i n g J a v a w i t h J B u i l d e r

T h e T h r e a d A P I

There are only three types of parameters used to construct Thread objects:

• A Runnable object whose run() method will execute inside the thread
• A ThreadGroup object to assign the thread to
• A String object to identify the thread

The ThreadGroup class is mainly used to organize groups of related
threads. A Web browser, for example, could set up a ThreadGroup for all
the threads of an applet.

The start() method

public void start()

To start a thread, call its start() method. If you try to call a thread’s start()
method more than once, an exception will be thrown.

The sleep() method

Use one of the following two methods to put a thread to sleep:

public static void sleep(long millisecond)
public static void sleep(long millisecond, int nanosecond)

If, for example, you want to cause a thread to sleep for a full second, call
sleep(1000) on the thread.

The yield() method

In some cases, a large number of threads could be waiting on the currently
running thread to finish executing before they can start executing. To
make the thread scheduler switch from the current running thread to
allow others to execute, call the yield() method on the current thread. In
order for yield() to work, there must be at least one thread with an equal or
higher priority than the current thread.

The join() method

public final void join()
public final void join(long millisecond)

To a have a thread wait on an executing thread to finish, call the join()
method on the thread being waited on. You can specify a timeout for
waiting on the thread by passing a time parameter to join() (in
milliseconds). join() waits on the thread until either the timeout has
expired, or the thread has terminated. To determine whether a thread has
terminated, join() uses another method, called isAlive(). If isAlive() returns

T h r e a d i n g t e c h n i q u e s 12-7

A t h r e a d ’ s l i f e c y c l e

true, join() does not return and keeps waiting on the thread. If isAlive()
returns false, join() returns and the waiting thread can start executing.

A thread’s lifecycle
A thread goes through several states from the point it starts to the point it
ends. When you first create a thread object, it is in the NEW state. When
you call the thread’s start() method, it becomes Runnable. Remember that a
thread does not necessarily start executing immediately after its start()
method is called–as we saw in the threadTester application. When in its
Runnable state, the thread can become Not Runnable or Dead. Calling
sleep(), suspend(), or wait() makes a thread Not Runnable, while calling
destroy() or stop() makes it Dead (a thread also becomes Dead when its run()
method ends). A thread can be made Runnable again by calling its resume()
method, or when sleep() runs out; but a Dead thread can never be revived.
There are other conditions that affect a thread’s lifecycle; for example, a
Runnable thread becomes Not Runnable if it has to wait for a particular
operation to end before it can execute.

Making your code thread-safe
In this section, we will examine why it is important to protect certain code
against being executed by multiple threads at the same time, and how you
can protect it. At the end of the section, we will discuss Java monitors and
their role in multi-threaded programs.

The synchronized keyword

In some cases, it is necessary to have a method or block of code executed
by only one thread at a time. The synchronized keyword is used to
achieve that. Before we discuss how synchronized is used, we need to
discuss when it needs to be used.

To better understand why using the synchronized keyword is necessary
in some cases, consider the following code:

public class Swapper {
 int from;
 int to;

 public void swap() {
 int temp = from;
 from = to;
 to = temp;
 }
}

12-8 L e a r n i n g J a v a w i t h J B u i l d e r

M a k i n g y o u r c o d e t h r e a d - s a f e

This class declares a swap() method which swaps the values of its two
properties, from and to. The method takes the from property, stores it in a
temp variable, then it stores the value of to in from and the value of temp in
to. Consider the case in which two different methods start their own
threads to execute swap() at the same time –we’ll call these threads thread1
and thread2. Now assume that thread1 executed the method first, and at the
time it began the execution, the values of from and to where 5 and 6,
respectively. thread1 executes the first line of code and assigns 5 to temp. At
the end of the second line, from is assigned the value 6. At this point,
thread2 starts executing the method. To thread2, the value of from is 6 (as
assigned by thread1) and to is also 6. thread2 executes the entire method,
swapping the values 6 and 6. Once thread2 is done, thread1 resumes its
execution at the third line and assigns the value of temp (now 6) to to.
When thread1 is done, both from and to have the value 6, and the intended
swapping operation (from 5 to 6) never took place!

To prevent the above scenario from ever taking place, we simply add the
synchronized keyword to the signature of swap(), as follows:

public synchronized void swap()

Now, only one thread can execute swap() at a time. In this case, thread1
executes the entire method, properly swapping the values of from and to.
Once thread1 is finished its execution, thread2 executes swap(), and swaps
the values back again.

Note As a rule of thumb, any method that modifies an object’s properties
should be declared synchronized.

Monitors

An environment that supports multiple threads must implement some
type of concurrency-control technique. There are several such techniques,
including semaphores, critical sections, and database record locking. Java
implements a concurrency-control mechanism known as a monitor.

Traditionally, a monitor is an object, which monitors something, such as a
procedure. The monitor’s job is to make sure that only one thread at a time
can execute the procedure it is monitoring. In Java, every object has a
monitor object associated with it. The monitor makes sure that only one
thread at a time is executing any synchronized methods belonging to the
object it is monitoring. The monitor blocks any other threads from
executing the same synchronized method, until the currently executing
thread is done. If no threads are executing the target synchronized
method, a thread can enter the monitor (or lock the monitor for itself). At
that point, no other thread can execute the method until the current thread
leaves the monitor.

Note Java monitors are not true objects, in the sense that they do not have
methods and properties. They are built into Java’s implementation of

T h r e a d i n g t e c h n i q u e s 12-9

S u m m a r y

multithreading and are not visible to the programmer. For that reason, our
discussion of monitors has been purely conceptual.

Summary
What was covered in this chapter:

• A thread represents a single sequence of execution that runs separately
in a program.

• Threads are mainly useful in cases where a program has to perform
multiple functions at the same time, without making one function
takeover entirely.

• A thread can be created in one of two ways: by subclassing the Thread
class, or by having a class implement the Runnable interface.

• During its lifetime, a thread goes through the following states: NEW,
RUNNABLE, NOT RUNNABLE, and DEAD.

• To safeguard a method against having multiple threads execute it at the
same time, add to its signature the synchronized prefix.

12-10 L e a r n i n g J a v a w i t h J B u i l d e r

S e r i a l i z a t i o n 13-1

C h a p t e r

13
Chapter13Serialization

This chapter will answer the following question:

• How can I save an object to a file and read it back again?

Overview
Object serialization is the process of storing a complete object to disk or
other storage system, ready to be restored at any time. The process of
restoring the object, in contrast, is known as deserialization. In this section,
you’ll learn why serialization is useful and how Java implements
serialization and deserialization.

An object that has been serialized is said to be persistent. Most objects in
memory, in contrast, are transient, meaning that they go away when their
references drop out of scope or the computer loses power. Persistent
objects, on the other hand, exist as long as there is a copy of them stored
somewhere on a disk, tape, or in ROM.

Why serialize?
Traditionally, saving data to a disk or other storage device required that
you define a special data format, write a set of functions to write and read
that format, and create a mapping between the file format and the format
of your data. The functions to read and write data were either simple and
lacked extensibility or were complex and difficult to create and maintain.

As you should be aware by now, Java is completely based around objects
and object-oriented programming. To this end, Java provides a storage
mechanism for objects in the form of serialization. With the Java way of
doing things, you no longer have to worry about details of file formats
and I/O. Instead, you are free to concentrate on solving your real-world

13-2 L e a r n i n g J a v a w i t h J B u i l d e r

S e r i a l i z a t i o n i n J D K 1 . 1

tasks by designing and implementing objects. If, for instance, you make a
class persistent and later add new fields to it, you do not have to worry
about modifying routines that read and write the data for you. All fields in
a serialized object will automatically be written and restored.

Serialization in JDK 1.1
Serialization is a new feature of JDK 1.1. Java’s support for serialization
consists of the Serializable interface, the ObjectOutputStream class and the
ObjectInputStream class, as well as a few supporting classes and interfaces.
We’ll examine all three of these items as we demonstrate an application
that can save user information to a disk and read it back.

Suppose, for instance, you wanted to save information about a particular
user as in the figure below. After the user types in his or her name and
password into the appropriate fields, the application should save
information about this user to disk. Of course, this is a very simple
example, but you can easily imagine saving data about user application
preferences, the last document opened, and so on.

Figure 13.1 Saving a user name and password

The Serializable interface

Let’s create an object that represents the current user. It needs to have
properties that represent both the user’s name, as well as the password:

package Serialize;

public class UserInfo implements java.io.Serializable {
 private String userName = "";
 private String userPassword = "";

 public String getUserName() {
 return userName;
 }
 public void setUserName(String s) {
 userName = s;
 }

S e r i a l i z a t i o n 13-3

U s i n g o u t p u t s t r e a m s

 public String getUserPassword() {
 return userPassword;
 }
 public void setUserPassword(String s) {
 userPassword = s;
 }
}

You’ll note that the above class implements the java.io.Serializable interface.
Serializable is known as a “tagging interface” because it specifies no methods
to be implemented, but merely “tags” its objects as being of a particular type.

Any object that you expect to serialize should implement this interface.
This is critical because the techniques used later in this chapter won’t
work otherwise. If, for instance, you try to serialize an object that does not
implement this interface, a NotSerializableException will be raised.

Using output streams
Before you serialize the UserInfo object, you should set it up with the
values that the user entered into the text fields. This is done when the user
clicks the Serialize button:

void button1_mouseClicked(MouseEvent e) {
 u.setUserName (textFieldName.getText());
 u.setUserPassword (textFieldPassword.getText());

Next, you will need to open a FileOutputStream to the file that will contain
the serialized data. In this example, the file will be called C:\userInfo.txt:

try {
 FileOutputStream file = new FileOutputStream
 ("c:\\userInfo.txt");

Then, you need to create an ObjectOutputStream that will serialize the
object and send it to the FileOutputStream.

ObjectOutputStream out = new ObjectOutputStream(file);

Now, you’re ready to send the UserInfo object to the file. This is
accomplished by calling the ObjectOutputStream’s writeObject() method.
Calling the flush() method will flush the output buffer to ensure that the
object is actually written to the file.

out.writeObject(u);
 out.flush();

Finally, you need to close the output stream to free up any resources, such
as file descriptors, used by the stream.

out.close();
 }

13-4 L e a r n i n g J a v a w i t h J B u i l d e r

U s i n g i n p u t s t r e a m s

Note that you get an IOException if there were any problems writing to the
file or if the object does not support the Serializable interface.

catch (java.io.IOException IOE) {
 labelOutput.setText ("IOException");
 }
 }

You can now verify that the object has been written by opening it in a text
editor. (Don’t try to edit it, or the file will probably be corrupted!) Notice
that a serialized object contains a mixture of ASCII text and binary data:

Figure 13.2 The serialized object

ObjectOutputStream methods
The ObjectOutputStream class contains several useful methods for data to a
stream. You are not restricted to writing objects. Calling writeInt(),
writeFloat(), writeDouble()—will write any of the fundamental types to a
stream. If you want to write more than one object or fundamental type to
the same stream, you can do so by repeatedly calling these methods
against the same ObjectOutputStream object. When you do this, however,
you must make sure to read the objects back in the same order.

Using input streams
The object now has been written to the disk, but how do you get if back?
Once the user clicks the Deserialize button, you want to read the data back
from the disk into a new object.

You can begin the process by creating a new FileInputStream object to read
from the file you just wrote:

void button2_mouseClicked(MouseEvent e) {
 try {
 FileInputStream file = new FileInputStream
 ("c:\\userInfo.txt");

Next, you need to create an ObjectInputStream, which give you the
capability to read objects from that file.

ObjectInputStream input = new ObjectInputStream(file);

S e r i a l i z a t i o n 13-5

U s i n g i n p u t s t r e a m s

After this, call the ObjectInputStream’s readObject() method to read the first
object from the file. readObject() returns type Object, so you’ll want to cast
it to the appropriate type (UserInfo).

UserInfo u = (UserInfo) input.readObject();

When you’re done reading, remember to close the ObjectInputStream, so
you free up any resources associated with it, such as file descriptors.

input.close();

Finally, you can use the u object as you would any other object of the
UserInfo class:

labelOutput.setText ("Name is: "+u.getUserName()+",
password is: "+
u.getUserPassword());

 }

Reading from a file could cause an IOException, so you should handle this
exception. You may also get a StreamCorruptedException (a subclass of
IOException) if the file has been corrupted in any way:

catch (java.io.IOException IOE) {
 labelOutput.setText ("IOException");
 }

There’s another exception you need to deal with. The readObject() method
can throw a ClassNotFoundException. This exception can occur if you
attempt to read an object for which you have no implementation. For
instance, if this object was written by another program, or you have
renamed the UserInfo class since the file was written, you’ll get a
ClassNotFoundException.

catch (ClassNotFoundException cnfe) {
 labelOutput.setText ("ClassNotFoundException");
 }

 }

Figure 13.3 The object restored

13-6 L e a r n i n g J a v a w i t h J B u i l d e r

W r i t i n g a n d r e a d i n g o b j e c t s t r e a m s

ObjectInputStream methods

ObjectInputStream also has methods such as readDouble(), readFloat(), etc.,
which are the counterparts to the writeDouble(), writeFloat(), etc. methods.
You need to call each method in sequence, the same way the objects were
written to the stream.

Writing and reading object streams
You may be wondering what happens when an object you are serializing
contains a field that refers to another object, rather than a primitive type.
In this case, both the base object and the secondary object will be written
to the stream. You should realize, however, that both objects written to the
stream need to implement the Serializable interface. If they don’t, a
NotSerializableException will be thrown when the writeObject() method is
called.

Recall that object serialization can create potential security problems. In
the example above, we wrote a password to a serialized object. While it
can be acceptable in many circumstances, keep this in mind when you
choose to serialize an object.

Finally, if you want to create a persistent object, but do not want to use the
default serialization mechanism, the Serializable interface documents two
methods, writeObject() and readObject(), which you can implement to
perform custom serialization. The Externalizable interface also provides a
similar mechanism. Consult the JDK documentation for information about
these techniques.

Summary
What was covered in this chapter:

• The Java serialization mechanism is used to store and restore an object
to and from a file.

J a v a V i r t u a l M a c h i n e s e c u r i t y 14-1

C h a p t e r

14
Chapter14Java Virtual Machine security

This chapter will answer the following questions:

• What is the Java Virtual Machine?
• What are Java bytecodes?
• What does Java really stand for?
• Why is the Java Virtual Machine necessary?
• What are the main roles of the Java Virtual Machine?
• What are the elements that make up Java’s security model?
• What is the role of the Java verifier?
• What is the role of the security manager?
• What is the role of the class loader?
• How does Java’s language specification contribute to its security?
• Do Just-In-Time compilers affect Java’s security?
• Are there any weaknesses with Java’s security model?

Overview
Before exploring the Java Virtual Machine, we will explain some of the
terminology used in this chapter. First, the Java Virtual Machine (JVM) is
the environment in which Java programs execute. It essentially defines an
abstract computer, and specifies the instructions that this computer can
execute. These instructions are called bytecodes. Generally speaking, Java
bytecodes are to the JVM what an instruction set is to a CPU. A bytecode is
a byte-long instruction that the Java compiler generates, and the Java
interpreter executes. When the compiler compiles a .java file, it produces a
series of bytecodes and stores them in a .class file. The Java interpreter can
then execute the bytecodes stored in the .class file.

Other terminology used in this chapter involves Java applications and
applets. It is sometimes appropriate to distinguish between a Java

14-2 L e a r n i n g J a v a w i t h J B u i l d e r

O v e r v i e w

application and a Java applet. In some sections of this chapter, however,
that distinction is inappropriate. In such cases, we will use the word app to
refer to both Java applications and Java applets.

Finally, it is important to clarify what the word Java really stands for. Java
is more than just a computer language; it is a computer environment. This
is because Java stands for two inseparable things: the design-time Java
(the language itself) and the runtime Java (the JVM). This interpretation of
the word Java is a more technical one. Interestingly enough, the practical
interpretation of Java is that it stands for the runtime environment—not
the language. When you say something like “this machine can run Java,”
what you really mean is that the machine supports the Java runtime
environment—more precisely, it implements a Java Virtual Machine.

Why is the Java VM necessary?

It might seem strange that a truly portable language should need a specific
“machine” to run anywhere; in other words, how can Java run on any
machine, and yet not be able to run without the JVM? The answer is quite
simple: for a language to be truly portable, it must meet the following
requirements:

• Its language specification must be precise and unchangeable.
• Its runtime environment must also be precise.

As for the first requirement, Java’s language specification is well
defined—as it stands, there is only one flavor of Java, and there exists a
standard library for it (Sun’s JDK). As for the runtime environment
requirement that is taken care of by the JVM: the JVM is the runtime
environment. That means that having Java programs run under the JVM
guarantees a common runtime environment. Even though there are
different implementations of the JVM, they all must meet certain
requirements to guarantee portability; in other words, whatever differs
among the various implementations does not affect portability.

What are the main roles of the JVM?

The JVM is responsible for performing the following functions:

• Allocating memory for created objects
• Performing garbage collection
• Handling register and stack operations
• Calling on the host system for certain functions, such as device access
• Monitoring the security of Java apps

Throughout the remaining chapter, we will focus on the last function:
Security.

J a v a V i r t u a l M a c h i n e s e c u r i t y 14-3

J a v a V M s e c u r i t y

Java VM security
One of the JVM’s most important roles is monitoring the security of Java
apps. The JVM uses a specific mechanism to force certain security
restrictions on Java apps. This mechanism (or security model) has the
following roles:

• Verify that any downloaded files are downloaded from a trusted
source

• Assure that bytecodes do not perform illegal operations
• Verify that every bytecode is generated correctly

In the following sections, we will see how these security roles are taken
care of in Java.

The security model

In this section, we will look at some of the different elements in Java’s
security model. In particular, we will examine the roles of the Java
Verifier, the Security Manager, and the class loader. These are the
components that make Java apps secure. In addition, we will see how the
Java language specification is an important factor in making Java a secure
environment.

The Java verifier
Every time a class is loaded, it must first go through a verification process.
The main role of this verification process is to ensure that each bytecode in
the class does not violate the specifications of the Java VM. Examples of
bytecode violations are syntactic errors, and overflowed or underflowed
arithmetic operations. The verification process is handled by the Java
verifier, and it consists of the following four stages:

1 Verifying the structure of class files.
2 Performing system-level verifications.
3 Validation bytecodes.
4 Performing runtime type and access checks.

The first stage of the verifier is concerned with verifying the structure of
the class file. All class files share a common structure; for example, they
must always begin with what is called the magic number, whose value is
0xCAFEBABE. Following the magic number, are four bytes representing the
minor and major versions of the compiler. At this stage, the verifier also
checks that the constant pool is not corrupted (the constant pool is where
the class file’s strings and numbers are stored). In addition, the verifier
makes sure that there are no added bytes at the end of the class file.

14-4 L e a r n i n g J a v a w i t h J B u i l d e r

J a v a V M s e c u r i t y

The second stage performs system-level verifications. This involves
verifying the validity of all references to the constant pool, and ensuring
that classes are subclassed properly.

The third stage involves validating the bytecodes. This is the most
significant and complex stage in the entire verification process. Validating
a bytecode means checking that its type is valid, and that its arguments
have the appropriate number and type. The verifier also checks that
method calls are passed the correct type and number of arguments, and
that each external function returns the proper type.

Finally, the verifier ensures that all variables are initialized correctly.

The final stage is where runtime checks take place. At this stage,
externally referenced classes are loaded, and their methods are checked.
The method check involves checking that the method calls match the
signature of the methods in the external classes. The verifier also monitors
access attempts by the currently loaded class to make sure that the class
does not violate access restrictions. Another access check is done on
variables to ensure that private and protected variables are not accessed
illegally. Also, some runtime optimizations are performed at this stage,
such as replacing direct references for indirect ones.

From this exhaustive verification process, we can see how important the
Java verifier is to the security model. It is also important to note that the
verification process must be done at the verifier level, and not at the
compiler’s, since any compiler can be programmed to generate Java
bytecodes. Clearly then, relying on the compiler to perform the
verification process is dangerous, since the compiler can be programmed
to bypass it. This point illustrates why the JVM is necessary.

The Security Manager
One of the classes defined in the java.lang package is the SecurityManager
class. This class is used to define the security policy that specifies certain
security restrictions on Java apps. The security policy’s main role is to
determine access rights. Here’s an overview of how this works: every Java
app loaded into the JVM exists in its own namespace. An app’s namespace
defines its access boundary. This means that the app cannot access any
resources beyond its namespace. Before an app can access a system
resource, such as a local or networked file, the SecurityManager object
verifies that the resource is inside the app’s namespace. If it is, the
SecurityManager object grants the access right; otherwise, it prevents it.

The SecurityManager class contains many methods used to check whether
a particular operation is permitted. The checkRead() and checkWrite()
methods, for example, check whether the method caller has the right to
perform a read or write operation, respectively, to a specified file. The
default implementation of all of SecurityManager’s methods, assume that
the operation is not permitted, and they prevent the operation from taking

J a v a V i r t u a l M a c h i n e s e c u r i t y 14-5

J a v a V M s e c u r i t y

place by throwing a SecurityException. Many of the methods in the JDK use
the SecurityManager before performing dangerous operations.

In order to specify your own security policy, you need to subclass
SecurityManager. Once you have your own SecurityManager class, you can
use the static System.setSecurityManager() method to load it into the
environment. Now, whenever a Java app needs to perform a dangerous
operation, it can consult with the SecurityManager object that is loaded
into the environment.

The way Java apps use the SecurityManager class is generally the same. An
instance of SecurityManager is first created in the following way:

SecurityManager security = System.getSecurityManager();

The System.getSecurityManager() method returns an instance of the
currently loaded SecurityManager. If no SecurityManager has been set using
the System.setSecurityManager() method, System.getSecurityManager()
returns null; otherwise, it returns an instance of the SecurityManager that
was loaded into the environment. Now, let’s assume that the app wants to
check whether it can read a file. It does so as follows:

if (security != null) {
 security.checkRead (fileName);
}

The if statement first checks whether a SecurityManager object exists, then
it makes the call to the checkRead() method. If checkRead() does not permit
the operation, a SecurityException is thrown and the operation never takes
place; otherwise, all goes well.

Note Keep in mind that although by default all of SecurityManager’s methods
automatically throw a SecurityException, unless you use
System.setSecurityManager() to specify a SecurityManager, attempting to
instantiate SecurityManager will always return null that means that the
SecurityException will never be thrown and all access operations will be
permitted.

The class loader
The class loader works alongside the security manager to monitor the
security of Java apps. The main roles of the class loader are summarized
below:

• Loads class files into the Virtual Machine

• Identifies the package to which a loaded class belongs

• Locates and loads any classes referenced by the currently loaded class

• Verifies attempts by the loaded class to access classes outside its
package

14-6 L e a r n i n g J a v a w i t h J B u i l d e r

J a v a V M s e c u r i t y

• Keeps track of the sources loaded classes, and makes sure that classes
are loaded from valid sources

• Provides certain information about loaded classes to the security
manager

Each class is associated with a class loader object. Before a class can be
loaded into a certain package, its class loader must check which package
the class belongs to. The class loader achieves this by calling
SecurityManager.checkPackageDefinition(). Once loaded, the class loader
resolves the class, which means that it loads every other class that the class
references. Resolving a class involves: verifying that the class has the right
to access the classes it references, and ensuring that referenced classes are
not loaded from invalid sources.

Java’s safety as a language
So far, we’ve seen how the Java verifier, the SecurityManager, and the class
loader work to ensure the security of Java apps. In addition to these, there
are other mechanisms not described in this chapter, such as the encryption
and signed classes, which add to the security of Java apps. All of these
mechanisms end up overshadowing the security of the Java language
itself.

There are a number of things that make Java’s language specification
secure, including:

• Array references are always checked at runtime.

• There is no way of directly manipulating pointers.

• Memory leaks are prevented by having the JVM perform automatic
memory management.

• Casts are not allowed to violate any casting rules.

What about Just-In-Time compilers?

It is appropriate to include a brief discussion of Just-In-Time (JIT)
compilers in this chapter. JIT compilers translate Java bytecodes into
native machine instructions to be directly executed by the CPU. This
obviously boosts the performance of Java apps. But if native instructions
are executed instead of bytecodes, what happens to the verification
process mentioned earlier? Actually, the verification process does not
change because the Java verifier still verifies the bytecodes before they are
translated.

J a v a V i r t u a l M a c h i n e s e c u r i t y 14-7

S u m m a r y

Summary
What was covered in this chapter:

• The Java Virtual Machine (JVM) is the environment in which Java
programs execute. This environment is essentially an abstract
computer, which runs on a special set of instructions.

• Java bytecodes are the instructions that the compiler translates from a
Java program, and the interpreter executes.

• The word Java stands for both the Java language and the Java runtime
environment (or the JVM).

• The JVM serves to guarantee the portability of Java apps.

• The main roles of the JVM are to: allocate memory for created objects,
perform garbage collection, handle register and stack operations, call
on the host system for certain functions, and monitor the security of
Java apps.

• The following elements make up Java’s security model: the Java
verifier, the SecurityManager, the class loader, and the language
specification.

• The verifier performs a four-step verification process that mainly serves
to check the validity of bytecodes.

• The SecurityManager is mainly responsible for granting access rights to
system resources.

• The class loader performs many functions, including loading class into
the JVM, and providing information about loaded class to the
SecurityManager.

• Java’s language specification is secure because it does not allow pointer
manipulation, illegal casting operations, illegal array indexing, or
memory leaks.

• JIT compilers do not affect the security of Java apps since the bytecodes
they translate are always verified first.

14-8 L e a r n i n g J a v a w i t h J B u i l d e r

W o r k i n g w i t h t h e n a t i v e c o d e i n t e r f a c e 15-1

C h a p t e r

15
Chapter15Working with the

native code interface
This chapter will answer the following questions:

• What is the Native Method Interface, and how does it work?
• How can I make a Java method native?
• How can I generate C header files for Java classes?

Overview
In this chapter, we will explain how you can invoke native methods in
Java applications using the Java Native Method Interface (JNI). We will
begin by discussing how the JNI works in the JDK 1.1. We will then
discuss the native keyword and how any Java method can become a
native method. Finally, we will examine the JDK’s javah tool, which is
used to generate C header files for Java classes.

Using the JNI

In order to achieve Java’s main goal of platform independence, Sun did
not standardize its implementation of the Java Virtual Machine; in other
words, Sun did not want to rigidly specify the internal architecture of the
JVM, but allowed vendors to have their own implementations of the JVM.
This does not preclude Java from being platform-independent, because
every JVM implementation must still comply with certain standards
needed to achieve platform independence (such as the standard structure
of a .class file). The only problem with this scenario is that accessing native
libraries from Java apps becomes difficult, since the runtime system

15-2 L e a r n i n g J a v a w i t h J B u i l d e r

O v e r v i e w

differs across the various JVM implementations. For that reason, Sun
came up with the JNI as a standard way for accessing native libraries from
Java apps.

The way native methods are accessed from Java apps changed in the JDK
1.1. The old way allowed a Java class to directly access methods in a native
library. The new implementation uses the JNI as an intermediate layer
between a Java class and a native library. Instead of having the JVM make
direct calls to native methods, the JVM uses a pointer to the JNI to make
the actual calls. This way, even if the JVM implementations are different,
the layer they use to access the native methods (the JNI) is always the
same.

Using the native keyword

There could not have been an easier way to make Java methods native.
Here is a summary of the required steps:

1 Delete the main body of the method.
2 Add a semicolon at the end of the method’s signature.
3 Add the native keyword at the beginning of the method’s signature.
4 Include the method’s body in a native library to be loaded at runtime.

For example, assume the following method exists in a Java class:

public void nativeMethod () {
 //the method’s body
}

This is how the method becomes native:

public native void nativeMethod ();

Now that you’ve declared the method to be native, where is its actual
implementation? The method’s implementation will be included in a
native library. It is the duty of the class in which this method is a member
of, to invoke the library, so that its implementation becomes available to
whoever needs it. The easiest way to have the class invoke the library is to
add the following to the class:

static
{
 System.loadLibrary (nameOfLibrary);
}

A static code block is always executed once when the class is first loaded.
You can include virtually anything in a static code block; however,
loading libraries is the most common use for it. If, for some reason, the
library fails to load, an UnsatisfiedLineError exception will be thrown once
a method from that library is called. If the library loads fine, the JVM will
add the correct extension to its name (.dll in Windows, and .so in UNIX).

W o r k i n g w i t h t h e n a t i v e c o d e i n t e r f a c e 15-3

S u m m a r y

Using the javah tool

The JDK supplies a tool called javah, which is used to generate C header
files for Java classes. The following is the general syntax for using javah:

javah [options] className

className represents the name of the class (without the .class extension)
you want to generate a C header file for. You can specify more than one
class at the command line. For each class, javah adds a .h file to the classes’
directory, by default. If you want the .h files placed elsewhere, use the -o
option. If a class is in a package, you must specify the package along with
the class name.

If, for example, you want to generate a header file for the class myClass in
the package myPackage, do the following:

javah myPackage.myClass

The generated header file will include the package name,
(myPackage_myClass.h).

Here’s a list of some of the options used with javah:

The contents of the .h file generated by javah include all the function
prototypes for the native methods in the class. The prototypes are
modified to allow the Java runtime system to find and invoke the native
methods. This modification basically involves changing the name of the
method according to a naming convention established for native method
invocation. The modified name includes the prefix Java_ to the class and
method names. So, if you have a native method called nativeMethod in a
class called, myClass, the name that appears in the myClass.h file is
Java_myClass_nativeMethod.

 Summary
What was covered in this chapter:

• The JNI is an intermediate interface used between the JVM and native
libraries. Using this interface makes it possible for different JVM
implementations to have a common way of using native libraries. If the

Option Description

-jni Creates a JNI header file
-verbose Displays progress information
-version Displays the version of javah

-o directoryName Outputs the .h file in specified directory
-classpath path Overrides the default class path

15-4 L e a r n i n g J a v a w i t h J B u i l d e r

S u m m a r y

JVM needs to access a method in a native library, it passes a pointer to
the JNI to the method.

• To make a Java method native, you simply remove the method’s
implementation and place it in a library file, add a semicolon and a
native prefix to the method’s signature, and them have the method’s
class load the library file.

• The javah is used to generate .h header files for classes that include
native methods.

T u t o r i a l s

P a r t

III
Part IIITutorials

B u i l d i n g a n a p p l i c a t i o n 16-1

C h a p t e r

16
Chapter16Building an application

This tutorial gets you up and running using the JBuilder integrated
development environment (IDE). The tutorial shows how to:

• Create a simple “Hello World” application.
• Modify the user interface of an application.
• Automatically generate the skeleton code for an event method.
• Edit the generated code.
• Compile and run the application.
• Run the application from the command line.

These are features of
JBuilder Professional and

Enterprise.

• Bundle the files for deployment.
• Run the deployed application from the command line.

For information on documentation conventions used in this tutorial, see
“Documentation conventions” on page 1-3.

For the complete source code, see the “HelloWorld source code” on
page 16-18.

For additional suggestions on improving this tutorial, send email to
jpgpubs@inprise.com.

Step 1: Creating the project
First, you need a project in which to store your application. The Project
wizard creates one for you:

16-2 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 1 : C r e a t i n g t h e p r o j e c t

1 Choose File|New and double-click the Application icon in the object
gallery.

The Project wizard opens first. After you complete this wizard, the
Application wizard opens.

2 Make the following changes to the project and directory names in
Step 1 of the Project wizard.

• Project Name: HelloWorld
• Type: .jpr
• Directory: HelloWorld

3 Accept all other defaults. Note the root path where the project is saved.

Note Projects in JBuilder are saved by default in the /[home]/jbproject
directory. It is recommended that only advanced users change this
default path.

For more information on projects, see “Creating and managing
projects” in Building Applications with JBuilder.

B u i l d i n g a n a p p l i c a t i o n 16-3

S t e p 1 : C r e a t i n g t h e p r o j e c t

4 Click Next to go to Step 2 of the Project wizard.

5 Accept the defaults in Step 2 for the project, source, backup, and output
paths and the JDK version. Note where the project, class, and source
files will be saved. Also note that the option Make Project Notes File is
checked. This option creates an HTML file that contains the project
information entered in Step 3 of the wizard.

6 Click Next to go to Step 3 of the wizard.

7 Make the following changes in the appropriate fields of Step 3:

• Type HelloWorld in the Title field.

• Enter your name, company name, and a description of your
application in the appropriate optional fields.

8 Click the Finish button.

16-4 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 2 : G e n e r a t i n g y o u r s o u r c e f i l e s

Two files, HelloWorld.jpr and HelloWorld.html, appear in the project pane
of the AppBrowser. The Application wizard is open on top of it.

See also “How JBuilder constructs paths” and “Where are my files?” in the
“Creating and managing projects” chapter of Building Applications with
JBuilder

Step 2: Generating your source files
The Application wizard creates .java files that are added to the project
you just created.

To generate source files for your application, follow these steps:

1 Accept the default package name, helloworld. By default, the wizard
takes the package name from the project file name, HelloWorld.jpr.

2 Enter HelloWorldClass in the Class field. This is a case-sensitive Java class
name.

3 Check Generate Header Comments. When you select this option, the
information you entered in Step 3 of the Project wizard appears at the
beginning of each source file that the Application wizard generates.

B u i l d i n g a n a p p l i c a t i o n 16-5

S t e p 2 : G e n e r a t i n g y o u r s o u r c e f i l e s

Step 1 of the Application wizard should look like this:

4 Click the Next button to go to Step 2 of the Application wizard.

5 Type HelloWorldFrame in the Class field to name the Frame class.

6 Type Hello World in the Title field. This text appears in the title bar of the
frame in your application.

7 Check all of the options for additional application features: Generate
Menu Bar, Generate Toolbar, Generate Status Bar, Generate About
Dialog, and Center Frame On Screen. The wizard generates the basic
code to support these features.

Step 2 of the Application wizard should look like this:

8 Click the Finish button.

The new .java class files and toolbar images are added to your project,
and the source code for HelloWorldFrame.java is open in the content pane
as shown in Figure 16.1.

16-6 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 2 : G e n e r a t i n g y o u r s o u r c e f i l e s

Figure 16.1 AppBrowser elements

9 Choose File|Save All to save the source files and the project file.

Note The source files are saved to:

/[home]/jbproject/HelloWorld/src/helloworld

The class files are saved to:

/[home]/jbproject/HelloWorld/classes/helloworld

Changing the project properties

Now, let’s change one of the project properties for this project.

1 Select Project|Project Properties and click the General tab.

2 Uncheck the Enable Source Package Discovery And Compilation
option. In most cases, it’s best to leave this option on. For a description
of this option, press the Help button on the General page of the Project
Properties dialog box.

See also “Setting project properties” in the “Creating and managing projects”
chapter of Building Applications with JBuilder

B u i l d i n g a n a p p l i c a t i o n 16-7

S t e p 3 : C o m p i l i n g a n d r u n n i n g y o u r a p p l i c a t i o n

Step 3: Compiling and running your application
Now, compile and run the application.

1 Choose Run|Run Project or click the Run button to compile and run
your application.

Tip You can also select HelloWorldClass.java in the project pane, right-click,
and select Run.

Your application is displayed and should look like this:

Note The running application in this tutorial reflects the Windows Look &
Feel.

2 Choose File|Exit in the “Hello World” application to close it.

3 Right-click the HelloWorldClass tab in the message pane at the bottom
of the AppBrowser and select “Remove HelloWorldClass Tab” to close
any compiler messages.

Step 4: Customizing your application’s user interface
Follow these steps to customize your application’s user interface.

1 Double-click HelloWorldFrame.java in the project pane if it’s not already
open.

2 Click the Design tab to change to design view. The UI designer appears
in the content pane with the Inspector on its right. You will use the
Inspector to modify properties and add events to your code. The
structure pane now contains a component tree with such folders as UI,
Menu, and Other.

16-8 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 4 : C u s t o m i z i n g y o u r a p p l i c a t i o n ’ s u s e r i n t e r f a c e

Figure 16.2 UI designer elements

3 Click the Swing Containers tab on the component palette above the UI
designer and select the JPanel component to add a panel to your design.

4 Click the center of the frame to drop the component into the center of
your design’s frame.

Note The constraints property in the Inspector should be Center. If not, click
the column to the right of the constraints property, and choose Center
from the drop-down list.

B u i l d i n g a n a p p l i c a t i o n 16-9

S t e p 4 : C u s t o m i z i n g y o u r a p p l i c a t i o n ’ s u s e r i n t e r f a c e

jPanel1 is now selected in your application design and in the
component tree.

Note The component selected in the component tree or the UI designer
displays in the status bar below the structure pane.

5 Set the background color of jPanel1 to White.

1 Click the column to the right of the background property in the
Inspector.

2 Click the Down arrow to open the color drop-down list and select
White at the top of the list.

6 Add a line border to jPanel1 and change the border color to Gray.

1 Click the column to the right of the border property in the Inspector.

2 Click the Down arrow to open the border drop-down list and select
Line.

3 Select the ellipsis button [...] to access the Border dialog box.

4 Click Black under Options|Color to access the color drop-down list
and select Gray.

5 Click OK to close the Border dialog box.

7 Change the layout manager for jPanel1 to null.

1 Click the column to the right of the layout property in the Inspector.
2 Choose null from the drop-down list.

Important Use null layout to prototype your design when laying out multiple
components. Because null layout does not use a layout manager, you
can place components exactly where you want them. Later, you can
switch to an appropriate portable layout for your design. We
recommend never leaving a container in null for deployment, because
components do not adjust when you resize the parent container.

16-10 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 5 : A d d i n g a c o m p o n e n t t o y o u r a p p l i c a t i o n

Step 5: Adding a component to your application
Now you’ll use the component palette to add a JLabel component to the
JPanel component.

1 Select the Swing tab on the component palette and click the JLabel
component.

2 Drop the component into your design’s JPanel. Use one of the following
two methods:

• Click jPanel1 in the component tree. This places it in the upper-left
corner of the panel.

• Click jPanel1 in the UI designer. The upper-left corner of the
component is placed where you click.

3 Click the middle of the label component in the designer, and drag it to
the center of the panel. Note that jLabel1 is added below jPanel1 in the
component tree. If you drop the control in the wrong place, you can
select jLabel1 in the component tree or in the designer and press the Del
key. Then re-add it.

4 Select jLabel1 in the component tree, and complete the following steps:

1 Double-click the column to the right of the text property in the
Inspector and type Hello World! Press Enter. “Hello World!” now
appears in the label.

2 Click the column to the right of the font property to set the font.
Click the ellipsis button [...] to open the Font dialog box.

3 Choose Serif from the list of fonts and check Bold and Italic. Enter 28
in the Size box, then click OK. Resize the jLabel1 by dragging the
black handles until “Hello World” is visible.

4 Click the column to the right of the foreground property in the
Inspector to set the color of the “Hello World!” text. Click the Down
arrow and select Blue from the drop-down list of colors.

B u i l d i n g a n a p p l i c a t i o n 16-11

S t e p 6 : E d i t i n g y o u r s o u r c e c o d e

Your design now looks similar to this:

5 Choose File|Save All.

Step 6: Editing your source code
You can change information in the About box by directly editing the code.
The default application version created by the Application wizard is 1.0.

1 Double-click HelloWorldFrame_AboutBox.java in the project pane to open
the file. The content pane changes to the source view where you can
edit the code in the editor.

2 Choose Search|Find. Type the following line of code in the
Find/Replace Text dialog box:

String version = "1.0";

3 Click Find.

16-12 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 7 : C o m p i l i n g a n d r u n n i n g y o u r a p p l i c a t i o n

The editor finds the selected text.

4 Select 1.0 and enter 2.0 inside the quotes.

5 Choose File|Save All.

Step 7: Compiling and running your application
Now you can compile and run the application.

1 Choose Project|Make Project.

2 Choose Run|Run Project.

The “Hello World” application is displayed:

B u i l d i n g a n a p p l i c a t i o n 16-13

S t e p 8 : R u n n i n g y o u r a p p l i c a t i o n f r o m t h e c o m m a n d l i n e

3 Choose Help|About. The version data you changed is now displayed
in the About dialog box.

4 Click OK to close the dialog box.

5 Choose File|Exit in your “Hello World” application to close it.

Step 8: Running your application from the command line
You can also run the application outside the JBuilder environment from
the command line.

You can do this using any of these methods:

• Include the JDK/bin directory in your path.
• Run the application from the JDK/bin directory.

To run the application,

1 Choose File|Close Project after compiling your project in JBuilder.

2 Open the command-line window.

3 Run the application with the following command on one line at the
command prompt:

java -classpath
/[home]/jbproject/HelloWorld/classes helloworld.HelloWorldClass

Note For Windows, use a backslash (\).

This command should be in the following form:

java -classpath package-name.main-class-name

In this example,

• classpath = /[home]/jbproject/HelloWorld/classes
• package-name = helloworld
• main-class-name = HelloWorldClass

See also “Setting the classpath” and “Basic tools” at
http://java.sun.com/j2se/1.3/docs/tooldocs/tools.html

16-14 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 9 : A d d i n g m o r e c o m p o n e n t s t o y o u r a p p l i c a t i o n

Step 9: Adding more components to your application
Next, you’ll add another Swing component to your application.

1 Reopen HelloWorld.jpr (File|Reopen). Open HelloWorldFrame.java and
click the Design tab to switch to the UI designer.

2 Click the JButton component on the Swing tab of the component palette
and drop it on either jPanel1 in the component tree or in the panel in
your design. jButton4 is added below jPanel1 in the component tree.

3 Click jButton4 in the design and drag it to the top center of the design as
shown in the image below.

4 Change the Text property in the Inspector from jButton4 to Push Me. Press
Enter. Enlarge the button by dragging the black handles until “Push Me”
shows completely.

The Inspector should look like this:

5 Click the Inspector’s Events tab to define what happens when jButton4
is pressed.

B u i l d i n g a n a p p l i c a t i o n 16-15

S t e p 9 : A d d i n g m o r e c o m p o n e n t s t o y o u r a p p l i c a t i o n

6 Double-click the column to the right of the ActionPerformed event.

JBuilder switches to the editor, where the following skeleton code has
been added for the ActionPerformed event.

void jButton4_actionPerformed(ActionEvent e) {

}

You can now enter code that defines the event.

7 Type the following code indicated in bold:

void jButton4_actionPerformed(ActionEvent e) {
jLabel1.setForeground(new Color(255,0,0));
}

Tip Use CodeInsight to complete the code for you. Type jLabel1. and wait
for the pop-up window or press Ctrl+spacebar to invoke it. Type setfor to
highlight setForeground(Color) from the pop-up window or use the
arrow keys. Press Enter. You can configure CodeInsight in the IDE
Options dialog box (Tools|IDE Options|CodeInsight).

Your edited code now looks like this:

void jButton4_actionPerformed(ActionEvent e) {
 jLabel1.setForeground(new Color (255,0,0));
}

Now, when you run the application and push the “Push Me” button,
“Hello World!” should turn red.

8 Choose File|Save All.

9 Choose Project|Make Project “hello.jpr.”

10 Choose Run|Run Project.

11 Click the “Push Me” button. The color of the “Hello World!” text turns
red.

12 Choose File|Exit to close the “Hello World” application.

JBuilder Foundation Steps 10 and 11 use features found in JBuilder Professional and Enterprise.
If you are using JBuilder Foundation, you have completed the tutorial.

16-16 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 1 0 : P r e p a r i n g y o u r a p p l i c a t i o n f o r d e p l o y m e n t

Step 10: Preparing your application for deployment
JBuilder Professional or

Enterprise.
Continue with the tutorial if you have JBuilder Professional or Enterprise.

The Archive Builder collects all the files needed to distribute your
program, and if selected as the archive type, can archive them into a JAR
file.

To deploy your application:

1 Choose Wizards|Archive Builder to open the Archive Builder.

2 Select Application from the Archive Type drop-down list.

3 Click Next to go to Step 2.

4 Accept the default name for the archive and default path for the JAR
file. Note that HelloWorld.jar will be saved to the HelloWorld directory.

5 Accept the defaults in Steps 3 through 6.

B u i l d i n g a n a p p l i c a t i o n 16-17

S t e p 1 1 : R u n n i n g y o u r d e p l o y e d a p p l i c a t i o n f r o m t h e c o m m a n d l i n e

6 Click Finish to close the Archive Builder. An archive node called
Application appears in the project pane. You can modify this file by
right-clicking and selecting Properties.

7 Select Project|Make Project to compile your application and create the
JAR file. The Archive Builder gathers all the files in the project’s output
path (Project|Project Properties|Paths) into the JAR file.

8 Expand the icon next to the Application archive node to see the
HelloWorld.jar archive file. Double-click the JAR file in the project pane.
The manifest file appears in the content pane and the contents of the
JAR file appear in the structure pane.

For more information on deployment, see “Deploying Java programs” in
Building Applications with JBuilder.

Step 11: Running your deployed application from the
command line

JBuilder Professional or
Enterprise.

Continue with the tutorial if you have JBuilder Professional or Enterprise.

To test the deployed application, you can run the JAR file from the
command line.

Note The jdk/bin directory must be on your path or you must run the
application from within the jdk/bin directory.

1 Open the command-line window.

2 Enter the following command on one line at the prompt:

java -classpath /[home]/jbproject/HelloWorld/HelloWorld.jar
 helloworld.HelloWorldClass

Note For Windows, use a backslash (\).

16-18 L e a r n i n g J a v a w i t h J B u i l d e r

H e l l o W o r l d s o u r c e c o d e

The command must have the following form:

java -classpath package-name.main-class-name

For information on JAR files, see the JAR tutorial at
http://java.sun.com/docs/books/tutorial/jar/index.html.

3 The “Hello World” application loads and runs.

Congratulations, you’ve created your first application with JBuilder. Now
that you’re familiar with JBuilder’s development environment, you’ll find
its many time-saving features make your programming easier.

HelloWorld source code
See the following sections to view the code:

• “Source code for HelloWorldFrame.java” on page 16-18
• “Source code for HelloWorldClass.java” on page 16-21

Source code for HelloWorldFrame.java

/**
 * Title: HelloWorld
 * Description: This is the "Hello World" tutorial.
 * Copyright: Copyright (c) 2000
 * Company: MyCompany
 * @author MyName
 * @version 1.0
 */

package helloworld;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;

public class HelloWorldFrame extends JFrame {
 JPanel contentPane;
 JMenuBar jMenuBar1 = new JMenuBar();
 JMenu jMenuFile = new JMenu();
 JMenuItem jMenuFileExit = new JMenuItem();
 JMenu jMenuHelp = new JMenu();
 JMenuItem jMenuHelpAbout = new JMenuItem();
 JToolBar jToolBar = new JToolBar();
 JButton jButton1 = new JButton();
 JButton jButton2 = new JButton();
 JButton jButton3 = new JButton();
 ImageIcon image1;
 ImageIcon image2;

B u i l d i n g a n a p p l i c a t i o n 16-19

H e l l o W o r l d s o u r c e c o d e

 ImageIcon image3;
 JLabel statusBar = new JLabel();
 BorderLayout borderLayout1 = new BorderLayout();
 JPanel jPanel1 = new JPanel();
 Border border1;
 JLabel jLabel1 = new JLabel();
 JButton jButton4 = new JButton();
 /**Construct the frame*/
 public HelloWorldFrame() {
 enableEvents(AWTEvent.WINDOW_EVENT_MASK);
 try {
 jbInit();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }

 /**Component initialization*/
 private void jbInit() throws Exception {
 image1 = new ImageIcon(helloworld.HelloWorldFrame.class.getResource
 ("openFile.gif"));
 image2 = new ImageIcon(helloworld.HelloWorldFrame.class.getResource
 ("closeFile.gif"));
 image3 = new ImageIcon(helloworld.HelloWorldFrame.class.getResource
 ("help.gif"));
 //setIconImage(Toolkit.getDefaultToolkit().createImage
 (HelloWorldFrame.class.getResource("[Your Icon]")));
 contentPane = (JPanel) this.getContentPane();
 border1 = BorderFactory.createLineBorder(Color.gray,1);
 contentPane.setLayout(borderLayout1);
 this.setSize(new Dimension(400, 300));
 this.setTitle("Hello World");
 statusBar.setText(" ");
 jMenuFile.setText("File");
 jMenuFileExit.setText("Exit");
 jMenuFileExit.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {
 jMenuFileExit_actionPerformed(e);
 }
 });
 jMenuHelp.setText("Help");
 jMenuHelpAbout.setText("About");
 jMenuHelpAbout.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {
 jMenuHelpAbout_actionPerformed(e);
 }
 });
 jButton1.setIcon(image1);
 jButton1.setToolTipText("Open File");
 jButton2.setIcon(image2);
 jButton2.setToolTipText("Close File");

16-20 L e a r n i n g J a v a w i t h J B u i l d e r

H e l l o W o r l d s o u r c e c o d e

 jButton3.setIcon(image3);
 jButton3.setToolTipText("Help");
 jPanel1.setBackground(Color.white);
 jPanel1.setBorder(border1);
 jPanel1.setLayout(null);
 jLabel1.setFont(new java.awt.Font("Serif", 3, 28));
 jLabel1.setForeground(Color.blue);
 jLabel1.setText("Hello World!");
 jLabel1.setBounds(new Rectangle(135, 111, 184, 56));
 jButton4.setText("Push Me");
 jButton4.setBounds(new Rectangle(157, 21, 117, 36));
 jButton4.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(ActionEvent e) {
 jButton4_actionPerformed(e);
 }
 });
 jToolBar.add(jButton1);
 jToolBar.add(jButton2);
 jToolBar.add(jButton3);
 jMenuFile.add(jMenuFileExit);
 jMenuHelp.add(jMenuHelpAbout);
 jMenuBar1.add(jMenuFile);
 jMenuBar1.add(jMenuHelp);
 this.setJMenuBar(jMenuBar1);
 contentPane.add(jToolBar, BorderLayout.NORTH);
 contentPane.add(statusBar, BorderLayout.SOUTH);
 contentPane.add(jPanel1, BorderLayout.CENTER);
 jPanel1.add(jLabel1, null);
 jPanel1.add(jButton4, null);
 }

 /**File | Exit action performed*/
 public void jMenuFileExit_actionPerformed(ActionEvent e) {
 System.exit(0);
 }
jLabel1.setf
 /**Help | About action performed*/
 public void jMenuHelpAbout_actionPerformed(ActionEvent e) {
 HelloWorldFrame_AboutBox dlg = new HelloWorldFrame_AboutBox(this);
 Dimension dlgSize = dlg.getPreferredSize();
 Dimension frmSize = getSize();
 Point loc = getLocation();
 dlg.setLocation((frmSize.width - dlgSize.width) / 2 + loc.x,
 (frmSize.height - dlgSize.height) / 2 + loc.y);
 dlg.setModal(true);
 dlg.show();
 }

B u i l d i n g a n a p p l i c a t i o n 16-21

H e l l o W o r l d s o u r c e c o d e

/**Overridden so we can exit when window is closed*/
 protected void processWindowEvent(WindowEvent e) {
 super.processWindowEvent(e);
 if (e.getID() == WindowEvent.WINDOW_CLOSING) {
 jMenuFileExit_actionPerformed(null);
 }
 }

 void jButton4_actionPerformed(ActionEvent e) {
 jLabel1.setForeground(new Color(255,0,0));
 }
}

Source code for HelloWorldClass.java

/**
 * Title: HelloWorld
 * Description: This is the "Hello World" tutorial.
 * Copyright: Copyright (c) 2000
 * Company: MyCompany
 * @author MyName
 * @version 1.0
 */

package helloworld;

import javax.swing.UIManager;
import java.awt.*;

public class HelloWorldClass {
 boolean packFrame = false;

 /**Construct the application*/
 public HelloWorldClass() {
 HelloWorldFrame frame = new HelloWorldFrame();
 //Validate frames that have preset sizes
 //Pack frames that have useful preferred size info, e.g. from their layout
 if (packFrame) {
 frame.pack();
 }
 else {
 frame.validate();
 }
 //Center the window
 Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
 Dimension frameSize = frame.getSize();
 if (frameSize.height > screenSize.height) {
 frameSize.height = screenSize.height;
 }

16-22 L e a r n i n g J a v a w i t h J B u i l d e r

H e l l o W o r l d s o u r c e c o d e

 if (frameSize.width > screenSize.width) {
 frameSize.width = screenSize.width;
 }
 frame.setLocation((screenSize.width - frameSize.width) / 2,
 (screenSize.height - frameSize.height) / 2);
 frame.setVisible(true);
 }

 /**Main method*/
 public static void main(String[] args) {
 try {
 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 new HelloWorldClass();
 }
}

B u i l d i n g a n a p p l e t 17-1

C h a p t e r

17
Chapter17Building an applet

This tutorial steps you through creating an AWT applet using the JBuilder
integrated development environment (IDE). For more information on the
IDE and its components, see “JBuilder environment” available from the
Help menu.

The tutorial shows how to:

• Create a project for the applet and set the JDK version.
• Use the Applet wizard to create an AWT applet.
• Add AWT components, such as Panel, Choice, Label, and Button.
• Edit the source code.
• Compile and run the applet.
• Deploy the applet.
• Modify the HTML file.
• Run the deployed applet from the command line.
• Test the applet.

Tip The applet source code is provided at the end of the tutorial. The
FirstApplet sample is available in samples/Tutorials/FirstApplet in your
JBuilder directory.

Important Before beginning this tutorial, read the overview which discusses
important applet issues.

For information on documentation conventions used in this tutorial, see
“Documentation conventions” on page 1-3. For additional suggestions on
improving this tutorial, send email to jpgpubs@inprise.com.

17-2 L e a r n i n g J a v a w i t h J B u i l d e r

O v e r v i e w

Overview
It’s important to remember when designing applets that browser support
for Java is limited. As of this writing, Internet Explorer and Netscape
support JDK 1.1.5. The browsers do not presently support Swing
components, introduced in JDK 1.1.7, although they may in the future. If
you are creating your applets with a more recent version of the JDK, you
must be very careful to use components that the browsers support. For
example, if you develop your applets strictly with AWT components, in
most cases your applets will run. There may be changes in the AWT
components (for example, JDK 1.1.x may have slightly different features
than JDK 1.3) and you may have to modify your applet code accordingly.
You can troubleshoot your applet in the browser by checking the Java
Console error messages. The safest way to design your applet is by using
AWT components and the JDK that the browser supports.

Note Browsers that support JDK 1.1 include Netscape 4.06 and later and
Internet Explorer 4.01 and later. JDK version support may vary by
platform.

Another option is to design your applets using the current JDK and Swing
components and provide your users with the Java Plug-in. This is usually
only possible within a controlled environment, such as a company
intranet. Browsers supported by the Java Plug-in, which provides the
browser with the Java 2 SDK 1.3 Runtime Environment (JRE), can run JDK
1.3-based applets. There are several additional steps involved in
developing applets that run with the Java Plug-in. Visit the Java Plug-in
Home Page at http://www.javasoft.com/products/plugin/index.html
for more information.

Although browsers support only JDK 1.1.5, in this tutorial we will use JDK
1.3. The applet will still run, however, because we are carefully selecting
the components that we use. We are designing only with AWT
components and avoiding any new JDK 1.3 features.

Important For information on running JDK 1.1.x and 1.2 applets in JBuilder, see the
“Runtime” topic in “Release Notes” (Help|Release Notes).

The “Good Evening” applet you create in this tutorial contains a
drop-down list of language choices. When you select a language, such as
German, the panel below the selection changes to the German translation
of “Good Evening”: “Guten Abend.”

For the complete applet code, see the “Applet source code” on page 17-29.

B u i l d i n g a n a p p l e t 17-3

S t e p 1 : C r e a t i n g t h e p r o j e c t

When you finish the tutorial, your applet will look similar to this:

For in-depth information on applets and deployment, see “Working with
applets” and “Deploying Java programs” in Building Applications with
JBuilder.

Step 1: Creating the project
Before beginning this tutorial, read the “Overview” on page 17-2 which
discusses such important applet issues as browser support, JDK versions,
and applet components.

Before creating your applet, you need a project in which to store it. The
Project wizard creates one for you:

1 Choose File|New Project to open the Project wizard.

2 Make the following changes to the project and directory names in
Step 1 of the Project wizard.

• Project Name: FirstApplet
• Type: .jpr
• Directory: FirstApplet

3 Accept all other defaults. Note the root path where the project is saved.

Note Projects in JBuilder are saved by default in the /[home]/jbproject
directory. It is recommended that only advanced users change this
default path.

17-4 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 1 : C r e a t i n g t h e p r o j e c t

For more information on projects, see “Creating and managing
projects” in Building Applications with JBuilder.

4 Click Next to go to Step 2 of the Project wizard.

5 Accept the defaults in Step 2 for the project, source, backup, and output
paths and the JDK version. Note where the project, class, and source
files will be saved. Also note that the option Make Project Notes File is
checked. This option creates an HTML file that contains the project
information completed in Step 3 of the wizard.

Tip If you prefer to create your applet using an earlier version of the JDK,
change the JDK version in this step. For JDK 1.1.x, you will also need to
download the JDK 1.1.x-specific version of the JFC. Although
Foundation does not support JDK switching, you can edit the existing
JDK in the Configure JDKs dialog box (Tools|Configure JDKs).

B u i l d i n g a n a p p l e t 17-5

S t e p 1 : C r e a t i n g t h e p r o j e c t

See also • “Setting project properties” in the “Creating and managing projects”
chapter of Building Applications with JBuilder for information on
switching or editing the JDK

• “Runtime” topic in the “Release Notes” (Help|Release Notes) for
information on running JDK 1.1.x and 1.2 applets in JBuilder

• “How JBuilder constructs paths” and “Where are my files?” in the
“Creating and managing projects” chapter of Building Applications
with JBuilder

6 Click Next to go to Step 3 of the wizard.

7 Make the following changes in the appropriate fields of Step 3:

• Type GoodEvening in the Title field.

• Enter your name, company name, and a description of your
application in the appropriate optional fields.

8 Click the Finish button.

The wizard creates a project file and a project notes file, FirstApplet.jpr
and FirstApplet.html, that appear in the project pane of the AppBrowser.
Double-click the HTML file to see the project notes in the content pane.

Changing the project properties
Now, let’s change one of the project properties for this project.

1 Select Project|Project Properties and click the General tab.

17-6 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 2 : G e n e r a t i n g y o u r s o u r c e f i l e s

2 Uncheck the Enable Source Package Discovery And Compilation
option. In most cases, it’s best to leave this option on. For a description
of this option, press the Help button on the General page.

See also “Setting project properties” topic in the “Creating and managing projects”
chapter of Building Applications with JBuilder

Step 2: Generating your source files
The Applet wizard creates a .java file and an applet HTML file and places
them in the project you just created with the Project wizard.

To generate these source files for your applet, follow these steps:

1 Select File|New and double-click the Applet icon in the object gallery
to open the Applet wizard.

2 Accept the default package name, firstapplet, in Step 1. By default, the
wizard takes the package name from the project file name,
FirstApplet.jpr.

3 Enter GoodEveningApplet in the Class field. This is a case-sensitive Java
class name.

Note The fully qualified class name (package name + class name) is
firstapplet.GoodEveningApplet.class. The class file is saved in the
following Java package structure: firstapplet/GoodEveningApplet.class.

4 Change the Base Class to java.applet.Applet.

Caution If you create your applet using the default base class,
javax.swing.JApplet, your applet won’t run in the browsers. Swing is not
yet supported by the browsers.

B u i l d i n g a n a p p l e t 17-7

S t e p 2 : G e n e r a t i n g y o u r s o u r c e f i l e s

5 Check Generate Standard Methods.

Step 1 of the Applet wizard should look like this:

6 Click Next to go to Step 2. In this step, you can add parameters to your
applet. The wizard adds the PARAM tags inside the APPLET tags in the
applet’s HTML file and also inserts code for handling parameters in the
source code. Applet parameters, the equivalent of command-line
arguments for applications, allow you to customize your applet. Do not
add any parameters.

See also “Defining and using parameters” at
http://www.java.sun.com/docs/books/tutorial/applet/appletsonly/
param.html

7 Click Next to go to Step 3 of the wizard.

8 Make the following changes in Step 3:

1 Accept the default option Check Generate HTML Page. When you
select this option, the HTML file that calls the applet is created.

2 Uncheck the option Place In Output Directory. When you uncheck
this option, the HTML file is saved to the project’s source directory
specified on the Paths page of the Project Properties dialog box
(Project|Project Properties|Paths). When you select this option, the
HTML file is saved to the project’s output directory.

3 Title: Good Evening HTML page

The title displays in the browser window when the applet is
running.

4 Accept the default values for all other attributes.

17-8 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 2 : G e n e r a t i n g y o u r s o u r c e f i l e s

Step 3 of the Applet wizard should look like this:

Some of the following attributes are found in the APPLET tag of the
HTML file:

Important The values for CODEBASE, CODE, ARCHIVE, and NAME must be in quotation
marks and are case-sensitive.

CODEBASE This optional attribute specifies the path relative to
the HTML file that the browser searches to find any
necessary class files. A value of "." specifies the
same directory as the HTML file running the applet.
The CODEBASE attribute is required when the class
files are in a different directory than the HTML file.

CODE This required attribute, which is automatically
inserted by JBuilder’s Applet wizard, is the fully
qualified class name (package name + class name) of
the applet class that contains the init() method.
You’ll see it in the HTML file when it is generated.

ARCHIVE This optional attribute, which is not listed in the
Applet wizard, is required when the applet is
deployed in a JAR, ZIP, or CAB file. Archive files
must be in the directory specified by CODEBASE.

NAME This optional attribute names the applet.

WIDTH/HEIGHT These required attributes determine the width and
height of the applet display area in pixels.

HSPACE/VSPACE These optional attributes determine the horizontal
padding (left and right margins) and vertical
padding (top and bottom margins) around the
applet in pixels.

ALIGN This optional attribute determines the alignment of
the applet on the HTML page.

B u i l d i n g a n a p p l e t 17-9

S t e p 2 : G e n e r a t i n g y o u r s o u r c e f i l e s

See also “APPLET tag attributes” topic in “Working with applets” in Building
Applications with JBuilder

9 Select Finish to close the Applet wizard.

Note that two files are created and added to the project,
GoodEveningApplet.java and GoodEveningApplet.html. Double-click each file
and select the Source tab in the content pane to view the generated code.

Look at the .java file and note the following:

• It contains the init() method. The applet HTML file must call the
class that contains the init() method for the applet to run.

• The package name firstapplet is the first line of code. The class file
will be saved in a firstapplet directory according to Java conventions.

• The import statements import AWT packages, not Swing:

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

Look at the HTML file and notice that the wizard inserted the CODE
value, firstapplet.GoodEveningApplet.class.

17-10 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 3 : C o m p i l i n g a n d r u n n i n g y o u r a p p l e t

10 Choose File|Save All to save the source files and the project file.

Note By default, JBuilder saves the source files to:

/[home]/jbproject/FirstApplet/src/firstapplet

In this tutorial, the applet HTML file is also saved to the src directory.

The class files, after compiling, are saved to:

/[home]/jbproject/FirstApplet/classes/firstapplet

Java always follows the package hierarchy when saving files. In this
example, the source and class files are saved within a firstapplet
directory on the source and output paths to reflect the firstapplet
package structure. These paths are set for the project in the Project
Properties dialog box. In this example, we accepted the default JBuilder
paths.

Step 3: Compiling and running your applet
Now, compile and run the applet.

Important For information on running JDK 1.1.x and 1.2 applets in JBuilder, see the
“Runtime” topic in “Release Notes” (Help|Release Notes).

1 Choose Run|Run Project, or click the Run button to compile and run
your applet. By default, the Applet wizard automatically selects the
runnable main class and runs the applet in JBuilder’s applet viewer
(AppletTestbed).

Tip You can also right-click GoodEveningApplet.html in the project pane and
select Run. This runs your applet in Sun’s appletviewer.

You can change the applet’s run settings on the Run page of the Project
Properties dialog box. To access this dialog box, select Project|Project
Properties or right-click FirstApplet.jpr and select Properties.

Important Applets run from the HTML file, which calls the class containing the
init() method, not from the .java file. Any attempt to run the .java file
results in an error message (unless the Can Run Standalone option was
selected in Step 1 of the Applet wizard):

java.lang.NoSuchMethodError: main
Exception in thread "main"

B u i l d i n g a n a p p l e t 17-11

S t e p 4 : C u s t o m i z i n g y o u r a p p l e t ’ s u s e r i n t e r f a c e

If there are any compile-time errors when you run your applet, the
message pane appears at the bottom of the AppBrowser. Correct these
errors and run the applet again.

Your applet is displayed and should look like this:

2 Choose Exit in the “Good Evening” applet to close it.

3 Right-click the GoodEveningApplet tab in the message pane and select
“Remove GoodEveningApplet Tab” to close any runtime messages.

Step 4: Customizing your applet’s user interface
Now that the Applet wizard has generated the applet shell, let’s
customize it with various components in the following steps.

1 Click the Design tab at the bottom of the content pane to change
GoodEveningApplet.java to design view. The UI designer appears in the
content pane with the Inspector on its right. You will use the Inspector
to modify properties and add events to your code. The structure pane
now contains a component tree with such folders as UI, Menu, and Other.

17-12 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 4 : C u s t o m i z i n g y o u r a p p l e t ’ s u s e r i n t e r f a c e

2 Change the this layout to BorderLayout in the Inspector.

To do this,

1 Select this in the component tree in the structure pane.

2 Click to the right of the layout property on the Properties page of the
Inspector. Select BorderLayout from the drop-down list of layouts.

BorderLayout arranges a container’s components in areas named North,
South, East, West, and Center. Use BorderLayout when you want to force
components to one or more edges of a container and fill the center of
the container with a component. It is also the layout you want to use to
cause a single component to completely fill its container.

Note JBuilder’s UI designer uses a default layout manager for each container,
usually the layout of the AWT parent container. In the Java AWT, all
panels use FlowLayout by default. To see the layout for each component,
click the icon in the component tree of the structure pane to expand the

B u i l d i n g a n a p p l e t 17-13

S t e p 4 : C u s t o m i z i n g y o u r a p p l e t ’ s u s e r i n t e r f a c e

selection. The layout manager displays as an item in the tree just below
the parent container.

See also • “Using layout managers” in Building Applications with JBuilder
• “Tutorial: Creating a UI with nested layouts” in the online Tutorials

3 Click the AWT tab on the component palette at the top of the UI
designer and select the Panel component to add a panel to your design.
You might need to scroll to the right on the component palette to find
the AWT tab. AWT components, unlike Swing components, are
supported by most browsers.

Caution The UI designer always opens with the Swing components on the first
page. If you select these Swing components by mistake, your applet
won’t run in the browsers. Be very careful when placing components to
work from the AWT page of the palette.

4 Click the center of the this frame to drop the component into the center
of your design’s frame. The Panel component fills the frame and
appears in the structure pane as panel1 below this.

Note The constraints property in the Inspector should be Center. If not, click
the column to the right of the constraints property, and choose Center
from the drop-down list.

panel1 is now selected in your applet design and in the component tree.

5 Change the panel1 layout to BorderLayout in the Inspector.

17-14 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 4 : C u s t o m i z i n g y o u r a p p l e t ’ s u s e r i n t e r f a c e

6 Add two panels to panel1. The top panel will contain a drop-down list
of languages to select from and a label to identify the list. The bottom
panel will contain “Good Evening” in various languages.

1 Shift+Click the Panel component on the component palette. Now you
can add multiple panels to panel1.

2 Click twice on panel1 in the structure pane.

panel2 and panel3 are added below panel1 in the structure pane. You
can also drop the components on panel1 in the designer.

3 Click the Selection Arrow on the left side of the component palette to
disable the component selection.

Note If you drop the component in the wrong location, select it in the
component tree and press Delete. Then add it again.

4 Check the constraints for the panels. The top panel in your design
should be North and the bottom panel should be Center.

5 Rename the top panel to upper. Select the component in the
component tree and double-click the column to the right of the name
property in the Inspector and enter upper.

6 Rename the bottom panel to lower.

7 Change the background color of upper to Orange in the Inspector:

1 Click the column to the right of the background property in the
Inspector.

2 Click the Down arrow to open the color drop-down list, and select
Orange from the list.

8 Change the background color of lower to Magenta.

B u i l d i n g a n a p p l e t 17-15

S t e p 5 : A d d i n g A W T c o m p o n e n t s t o y o u r a p p l e t

9 Change lower’s layout to CardLayout. The CardLayout panel will contain 5
panels, each with “Good Evening” in a different language.

Note CardLayout places components (usually panels) on top of each other in a
stack like a deck of cards. You see only one at a time, and you can flip
through the panels by using another control to select which panel
comes to the top. CardLayout is usually associated with a controlling
component, such as a check box or a list. The state of the controlling
component determines which component the CardLayout displays. The
user makes the choice by selecting something on the UI.

10 Add 5 panels (panels 2 through 6) to the lower panel. Each of these
panels will have “Good Evening” in a different language.

11 Change the layout for panels 2 through 6 to BorderLayout.

• Use Ctrl+Click to select panels 2 through 6 in the component tree.

• Change the layout property to BorderLayout in the Inspector. All 5
panels now have BorderLayout layout.

• Select another component in the component tree or the UI designer
to deselect all the panels.

12 Change each of these 5 panels to a different color.

Tip Click the ellipsis button [...] to the right of the background property in the
Inspector and use the color sliders to create a color.

13 Save the file and the project.

14 Right-click GoodEveningApplet.html and select Run. When the applet
runs, you will only see upper and the top panel on the CardLayout. The
other language panels will display later after we add the drop-down
list and add the events to the list selections.

15 Exit the applet.

16 Close the message pane by right-clicking the GoodEveningApplet tab
and selecting Remove “GoodEveningApplet” tab.

Step 5: Adding AWT components to your applet
Now you’ll use the component palette to add a Label and a Choice
component to the top panel in your design, upper.

1 Select the AWT tab on the component palette and click the Choice
component.

2 Drop the component into your design’s top orange panel, upper. Use
one of the following two methods:

• Click upper in the component tree.
• Click upper in the UI designer.

17-16 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 5 : A d d i n g A W T c o m p o n e n t s t o y o u r a p p l e t

3 Select the Label component on the palette and place it on upper to the left
of the Choice component. Note that label1 is added to upper in the
component tree.

4 Select label1 in the component tree and complete the following steps:

1 Double-click the column to the right of the text property in the
Inspector to highlight the existing text. Enter Select a language and
press Enter.

2 Click the column to the right of the font property to set the font.
Click the ellipsis button [...] to open the Font dialog box.

3 Choose Serif from the list of fonts and check Bold. Enter 20 in the Size
box, then click OK. “Select a language” now appears in the label next
to the Choice component.

4 Click the column to the right of the foreground property in the
Inspector to set the text color. Click the Down arrow and select Blue
from the drop-down list of colors.

Your design should look similar to this:

5 Add a label to each panel (panels 2 through 6) on the CardLayout panel.
Each of these labels will have “Good Evening” in a different language.

B u i l d i n g a n a p p l e t 17-17

S t e p 5 : A d d i n g A W T c o m p o n e n t s t o y o u r a p p l e t

6 Change each label to “Good Evening” in a different language. First,
select the label under each panel in the component tree and enter
“Good Evening” in the appropriate language in the text property of the
Inspector. Use these languages for the labels or choose your own:

• label2: Good Evening (English)
• label3: Guten Abend (German)
• label4: Oodgay vening eay (Pig Latin)
• label5: God Kväll (Swedish)
• label6: Gudday, Mate (Australian)

7 Select label2 through label6 using Ctrl+Click and change the font
properties for all the labels to Bold and the font size to 24. Click a
component in the component tree or in the UI designer to deselect the
labels.

8 Change the position of each label by changing the constraints property
in the Inspector to North, South, East, West, or Center as follows.

• label2: North
• label3: South
• label4: East
• label5: West
• label6: Center

Note Notice the position of the label in its BorderLayout panel. Center fills the
entire panel, while North, South, East, and West fill only a portion of
the panel.

9 Change panel 6 to null layout. You’ll add a button to this panel. In Step
6, you’ll add a button event.

Important Use null layout to prototype your design when laying out multiple
components. Because null layout does not use a layout manager, you
can place components exactly where you want them. Later, you can
switch to an appropriate portable layout for your design. We
recommend never leaving a container in null for deployment, because
components do not adjust when you resize the parent container.

10 Select the “Gudday, Mate” label in the design. Reduce the label height
and width by dragging the black nibs. Drag the label to the lower center
of the design.

11 Click the Button component on the AWT tab of the component palette
and drop it on either panel6 in the component tree or on the panel in
your design. If you drop it in the designer, it is positioned where you
drop it. button1 is added below panel6 in the component tree.

17-18 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 6 : E d i t i n g y o u r s o u r c e c o d e

12 Select button1 in the design and drag it to the top center of the design as
shown in the image below.

13 Choose File|Save All to save the project.

Step 6: Editing your source code
In this step, we’ll be adding the languages in the drop-down list. Then
we’ll add events to hook up each language panel to the Choice component.

1 Add the languages for the drop-down list to the init() method as
follows:

1 Click the Source tab in the content pane to change to the source code
in the editor.

2 Select the init() method in the structure pane. The init() method
code is highlighted in the editor.

Tip Search for a method in the structure pane by clicking in the pane and
typing the method name.

3 Position the cursor after the opening curly brace and before the
try/catch statement and press Enter to create an extra blank line.

Tip To expand the editor and hide the project and structure pane, select
View|Toggle Curtain.

4 Add the following code block indicated in bold:

//initialize the applet
 public void init() {

 choice1.addItem("English");
 choice1.addItem("German");
 choice1.addItem("Pig Latin");
 choice1.addItem("Swedish");
 choice1.addItem("Australian");

B u i l d i n g a n a p p l e t 17-19

S t e p 6 : E d i t i n g y o u r s o u r c e c o d e

 try {
 jbinit();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }

Tip Use CodeInsight to complete the code for you. Enter choice1. and
wait for the pop-up window or press Ctrl+spacebar to invoke it. Be
sure to include the dot (.) after choice. Use the arrow keys to select
addItem(String) from the pop-up window. Press Enter. You can
configure CodeInsight in the IDE Options dialog box (Tools|IDE
Options|CodeInsight).

If there are any syntax errors in your code, an Errors folder appears in
the structure pane as you type in the editor. Open the folder and select
the error message to highlight the error in the source code.

See also “About error and warning messages” in Building Applications with
JBuilder

Next, you’ll hook up the event to the language choice. When you select
a language from the drop-down list Choice component, “Good
Evening” appears in the cardLayout panel in the selected language.

2 Hook up the Choice list events as follows:

1 Return to the UI designer.

2 Select choice1 located under upper in the component tree.

3 Select the Events tab in the Inspector.

4 Double-click to the right of the itemStateChanged event. JBuilder
generates the method code and takes you to the source code with the
cursor inserted in the method.

void choice1_itemStateChanged(ItemEvent e) {

}

5 Add the following code indicated in bold to connect the correct
language panel to the language choice:

17-20 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 6 : E d i t i n g y o u r s o u r c e c o d e

void choice1_itemStateChanged(ItemEvent e) {

 if (choice1.getSelectedItem()== "English") {
 cardLayout1.show(lower, "panel2");
 }
 else if (choice1.getSelectedItem()== "German") {
 cardLayout1.show(lower, "panel3");
 }
 else if (choice1.getSelectedItem()== "Pig Latin") {
 cardLayout1.show(lower, "panel4");
 }
 else if (choice1.getSelectedItem()== "Swedish") {
 cardLayout1.show(lower, "panel5");
 }
 (choice1.getSelectedItem()== "Australian") {
 cardLayout1.show(lower, "panel6");
 }

}

Tip You can use code templates to generate code. Type if and press Ctrl+J
to access the code templates pop-up window. Use the arrow keys to
navigate the selections. Select the if/else if template and press Enter.
The code is generated:

if () {

}
else if {

}

3 Choose File|Save All.

4 Run the applet by right-clicking GoodEveningApplet.html in the project
pane and selecting Run.

If there are any errors, they appear in the message pane at the bottom of
the AppBrowser. Select an error message and press F1 for Help. Select
the error message to highlight the code in the editor. Sometimes the
error may be before or after the highlighted line of code. Fix the errors,
save the project, and run the applet again.

B u i l d i n g a n a p p l e t 17-21

S t e p 6 : E d i t i n g y o u r s o u r c e c o d e

The “Good Evening” applet runs in Sun’s appletviewer:

5 Test the drop-down list. The language selected from the list should
match the language on the panel below it.

6 Choose Exit in your “Good Evening” applet to close it.

Now, let’s add a button event for button1 on panel6. When you push the
button, the “Gudday, Mate” text on label6 changes to red.

7 Add the button event as follows:

1 Switch to the UI designer.

2 Select button1 on panel6. Change the button’s Label property in the
Inspector from button1 to Push Me. Press Enter. Resize the button until
“Push Me” fits in the button.

3 Click the Inspector’s Events tab to define what happens when
button1 is pressed.

4 Double-click the column to the right of the ActionPerformed event.
JBuilder switches to the editor in the source view, where the
following skeleton code has been added for the ActionPerformed event
just below the if/else if statements.

void button1_actionPerformed(ActionEvent e) {

}

Now, you’ll enter the code that defines the button event which will
change “Gudday, Mate” to red.

5 Type the following code indicated in bold:

void button1_actionPerformed(ActionEvent e) {
label6.setForeground(new Color(255,0,0));

}

6 Save the project.

17-22 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 7 : D e p l o y i n g y o u r a p p l e t

7 Run the applet and select “Australian” from the drop-down list.
Click the “Push Me” button. “Gudday, Mate” should turn red.

Your applet should look similar to this:

8 Exit the applet.

Step 7: Deploying your applet
Deploying a Java applet consists of bundling together the various Java
class files, image files, and other files needed by your applet and copying
them and the applet HTML file to a location on a server or client computer
where they can be executed. You can deliver the files separately, or you
can deliver them in compressed or uncompressed archive files. JAR files,
Java archive files, are the most commonly used. JAR files provide the
advantages of smaller file sizes and faster download times.

When deploying your applet, it’s important to remember the following:

• Maintain the existing directory structure. In this example,
GoodEveningApplet.class must be in a firstapplet directory to reflect the
package structure: firstapplet/GoodEveningApplet.class. If you’re
deploying to a JAR file, check the directory structure in the file and
make sure it matches.

• Deliver all the necessary classes. The class files must be in the correct
location relative to the HTML file and matching the CODEBASE attribute.

• Deliver the applet HTML file.

See also • “Deploying Java programs” in Building Applications with JBuilder

• “Step 16: Deploying the “Text Editor” application to a JAR file” of the
JBuilder tutorial “Building a Java text editor” (see page 19-36)

B u i l d i n g a n a p p l e t 17-23

S t e p 7 : D e p l o y i n g y o u r a p p l e t

Depending on the edition of JBuilder you have, there are several tools for
deploying your applet:

• Java jar tool available with the JDK

• JBuilder’s Archive Builder available in Professional and Enterprise

Caution If you are creating your applets for older JDK 1.02-compliant browsers,
keep in mind that JAR files are not supported by these older browsers.
Create a ZIP archive file instead.

Important Before creating the JAR file, review this checklist:

• Save and compile your project before deploying.

• Check that the CODE attribute in GoodEveningApplet.html has the fully
qualified class name, including the package name:
firstapplet.GoodEveningApplet.

• Check that the CODEBASE attribute in GoodEveningApplet.html specifies the
correct location of the class file relative to the HTML file. In this
example, the CODEBASE is ".", because the JAR file containing the class file
will be in the same directory as the HTML file. If the class files were
located in a different directory, such as a class directory, the value for
the CODEBASE directory would be as follows, CODEBASE = "classes".

Deploying your applet with the jar tool

JBuilder Foundation The JDK includes a jar tool in the bin directory for creating JAR files for
deployment. The jar tool, an archiving and compression tool, combines
multiple files into a single JAR archive.

The basic jar command is in the following form:

jar [options] [manifest] destination input-file [input-files]

For example,

jar cf myjarfile.jar *.class

This command creates a JAR file of all the classes in the current directory.

To include all files in the directory, use this command:

jar cf myjarfile.jar *

Note For help on additional JAR options, enter jar -help at the command line.

Create the JAR file in the following steps:

1 Save and compile your project.

2 Create an applets directory for your applet in your /[home]/jbproject
directory. This will be the testing directory where you’ll put your
applet HTML file and your JAR file.

3 Open the command-line shell or DOS window.

17-24 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 7 : D e p l o y i n g y o u r a p p l e t

4 Change to the classes directory in your FirstApplet project:
/[home]/jbproject/FirstApplet/classes. The firstapplet directory should
be in this directory.

5 Enter the JAR command.

jar cf GoodEvening.jar *

Important The JDK must be on your path. If it isn’t, use the following command. If
JBuilder is on another drive, include the drive name.

/jbuilder/jdk1.3/bin/jar cf GoodEvening.jar *

Note For Windows, use backslashes (\).

6 The JAR file is created in the current classes directory. Open the JAR
file and check that the directory structure is correct:
firstapplet/GoodEveningApplet.class.

7 Copy GoodEvening.jar to the applets directory for testing.

After creating the JAR file, continue to “Step 8: Modifying the HTML file”
on page 17-26.

See also • “Using JAR Files: The Basics” at
http://java.sun.com/docs/books/tutorial/jar/basics/index.html

• “jar-The Java Archive Tool”

Deploying your applet with the Archive Builder

This is a feature of
JBuilder Professional and

Enterprise.

JBuilder’s Archive Builder collects all the files needed to distribute your
applet and can archive them into a JAR file.

To deploy your applet with JBuilder Professional and Enterprise:

1 Save and compile your project.

2 Create an applets directory for your applet in your /[home]/jbproject
directory. This will be the testing directory where you’ll put your
applet HTML file and your JAR file.

B u i l d i n g a n a p p l e t 17-25

S t e p 7 : D e p l o y i n g y o u r a p p l e t

3 Choose Wizards|Archive Builder to open the Archive Builder.

4 Select Applet from the Archive Type drop-down list in Step 1. Click
Next to continue to the Step 2.

5 Accept the default name of Applet in the Name field.

6 Click the ellipsis button next to the Path field and browse to the applets
directory you created in the /[home]/jbproject directory. Change the
JAR file name to GoodEvening.jar.

7 Accept the default settings in Steps 3, 4, and 5. Note that in Step 5 the
option is set to create a manifest file for the archive.

Note For information on manifest files, see “About the manifest file” in
“Deploying Java programs” in Building Applications with JBuilder.

8 Click Finish to exit the Archive Builder. An archive node called Applet
appears in the project pane. You can modify this file by right-clicking
and selecting Properties.

17-26 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 8 : M o d i f y i n g t h e H T M L f i l e

9 Compile your project by selecting Project|Make Project. The Archive
Builder gathers all the files in the project’s output path (Project|Project
Properties|Paths) into the JAR file.

10 Expand the icon next to the Applet archive node to see the
GoodEvening.jar archive file. Double-click the JAR file in the project
pane. The manifest file appears in the content pane and the contents of
the JAR file appear in the structure pane. Select a file in the structure
pane to view it in the content pane.

Note If you are delivering multiple programs to the same location, you can
deliver the redistributable files separately, rather than include them in
each of your JAR files.

Step 8: Modifying the HTML file
Now that your applet is deployed in a JAR file, you need to modify the
HTML file with the ARCHIVE attribute and include the JAR file name. We’ll
also add a message inside the APPLET tags that tells users without
Java-enabled browsers that they won’t be able to see the applet unless
they enable Java in their browser or upgrade their browser.

To modify the HTML file,

1 Open GoodEveningApplet.html in JBuilder and add the ARCHIVE attribute:

1 Select the Source tab to view the HTML source code.

2 Add the following HTML code inside the APPLET tag:

ARCHIVE = "GoodEvening.jar"

The APPLET tag should look like this:

<APPLET
 CODEBASE = "."
 CODE = "firstapplet.GoodEveningApplet.class"
 ARCHIVE = "GoodEvening.jar"
 NAME = "TestApplet"
 WIDTH = 400
 HEIGHT = 300
 HSPACE = 0
 VSPACE = 0
 ALIGN = middle
>
</APPLET>

Tip If you have multiple JAR files for your applet, list them separated by a
comma as shown here:

ARCHIVE="file1.jar, file2.jar"

Note Some older browsers do not support JAR files or multiple listings of
archive files but do support a single ZIP file in the ARCHIVE tag.

B u i l d i n g a n a p p l e t 17-27

S t e p 8 : M o d i f y i n g t h e H T M L f i l e

2 Next, let’s add a message that tells users without Java-enabled
browsers that their browsers do not support Java; therefore, they can’t
see the applet. Enter the following message between the open and close
APPLET tags:

You need a Java-enabled browser to view this applet.

The APPLET tag looks like this:

<APPLET
 CODEBASE = "."
 CODE = "firstapplet.GoodEveningApplet.class"
 ARCHIVE = "GoodEvening.jar"
 NAME = "TestApplet"
 WIDTH = 400
 HEIGHT = 300
 HSPACE = 0
 VSPACE = 0
 ALIGN = middle
>
You need a Java-enabled browser to view this applet.
</APPLET>

Any browser that does not support Java ignores the APPLET tags and
displays everything between the tags. Because a Java-enabled browser
recognizes the APPLET tags, anyone with a Java-enabled browser will see
the applet and not the message.

Important Before saving the HTML file, check the CODEBASE and CODE values again.
If these values are incorrect, the applet won’t run. Remember that the
CODEBASE value is the location of the applet code (class or JAR file) in
relation to the HTML file. The value, ".", means the class file is in the
same directory as the HTML file. The CODE value must be the fully
qualified class name for the applet, including the package name.

3 Save and close the file.

4 Copy the modified GoodEveningApplet.html from the project’s src
directory to the applets directory. The applets directory should contain
two files, GoodEveningApplet.html and GoodEvening.jar.

Caution Remember, JBuilder creates two HTML files: the project notes HTML
file located at the root of the project directory and the applet HTML file
located in the project src directory. Do not copy FirstApplet.html to the
applets directory or your applet will not run.

17-28 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 9 : R u n n i n g y o u r d e p l o y e d a p p l e t f r o m t h e c o m m a n d l i n e

Step 9: Running your deployed applet from the command line
It’s a good idea to test the deployed applet locally before testing it on the
Web. You can do this from the command line using Sun’s appletviewer.
This will tell you if the browser has everything it needs to run the applet.
If any files are missing or if there are any errors in the HTML file, the
applet won’t run. You can then correct the errors before posting it on the
Web.

To run the applet at the command line,

1 Be sure a copy of GoodEveningApplet.html and GoodEvening.jar are in the
applets directory.

2 Open the command-line window.

3 Clear any CLASSPATH variables to remove any class path settings for
this session as follows:

• Windows 95, 98, NT, 2000: set CLASSPATH=

• UNIX:

• in csh shell: unsetenv CLASSPATH
• in sh shell: unset CLASSPATH

4 Change to the applets directory.

5 Run the appletviewer by entering the following command:

/jbuilder/jdk1.3/bin/appletviewer GoodEveningApplet.html

Important If JBuilder is on another drive, include the drive letter.

Note For Windows, use backslashes (\).

6 If the “Good Evening” applet loads and runs, the deployment was
successful and all the classes were found and included. If the applet
doesn’t run, check the error messages, correct them, recompile, deploy,
and test again.

The “Good Evening” applet is available as a sample in the
samples/Tutorials/FirstApplet directory of your JBuilder installation.

If you are having problems running your applet, check the “Applet source
code” on page 17-29, and see these topics for common errors:

• “Solving common applet problems” at
http://www.java.sun.com/docs/books/tutorial/applet/problems/in
dex.html

• “Common mistakes in the APPLET tag” and “Additional tips for
making applets work” in the “Working with applets” chapter of
Building Applications with JBuilder.

B u i l d i n g a n a p p l e t 17-29

S t e p 1 0 : T e s t i n g y o u r d e p l o y e d a p p l e t o n t h e W e b

Step 10: Testing your deployed applet on the Web
The final step in testing your applet is to run it on the Web. This will tell
you if it really has all the files it needs.

Complete these steps, then test your applet on the Web.

1 FTP (file transfer protocol) the applet’s HTML and JAR files to an
Internet server or copy to a Windows NT server.

1 Use an FTP utility to transfer the files.

2 Transfer archives and class files as binary files.

3 Be sure the HTML and JAR file locations match the CODEBASE attribute
in the HTML file and that the CODE attribute has the fully qualified
class name (including the package name).

2 Test the applet in various browsers. If the applet fails to load, check that
the browser is Java-enabled. Also check the browser’s Java Console for
error messages.

To open the Java Console:

1 Select Communicator|Tools|Java Console in Netscape.
2 Select View|Java Console in Internet Explorer.

Congratulations!! You’ve created your first applet with JBuilder. Now that
you’re familiar with JBuilder’s development environment, you’ll find its
many time-saving features make your programming easier.

For other applet tutorials, see:

• “The Java™ Tutorial” at
http://java.sun.com/docs/books/tutorial/index.html

• Charlie Calvert’s Part II: Applets at
http://homepages.borland.com/ccalvert/JavaCourse/index.htm

Applet source code

Applet HTML source code
Source code for GoodEveningApplet.html:

<HTML>
<HEAD>
<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=windows-1252">
<TITLE>
Good Evening HTML Page
</TITLE>
</HEAD>
<BODY>
firstapplet.GoodEveningApplet will appear below in a Java enabled browser.

17-30 L e a r n i n g J a v a w i t h J B u i l d e r

A p p l e t s o u r c e c o d e

<APPLET
 CODEBASE = "."
 CODE = "firstapplet.GoodEveningApplet.class"
 ARCHIVE = "GoodEvening.jar"
 NAME = "TestApplet"
 WIDTH = 400
 HEIGHT = 300
 HSPACE = 0
 VSPACE = 0
 ALIGN = middle
>
You need a Java-enabled browser to view this applet.
</APPLET>
</BODY>
</HTML>

Applet class source code

Source code for GoodEveningApplet.java:

package firstapplet;

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

public class GoodEveningApplet extends Applet {
 boolean isStandalone = false;
 BorderLayout borderLayout1 = new BorderLayout();
 Panel panel1 = new Panel();
 BorderLayout borderLayout2 = new BorderLayout();
 Panel lower = new Panel();
 Panel upper = new Panel();
 CardLayout cardLayout1 = new CardLayout();
 BorderLayout borderLayout4 = new BorderLayout();
 Panel panel2 = new Panel();
 Panel panel3 = new Panel();
 Panel panel4 = new Panel();
 Panel panel5 = new Panel();
 Panel panel6 = new Panel();
 Choice choice1 = new Choice();
 Label label1 = new Label();
 Label label2 = new Label();
 Label label3 = new Label();
 Label label4 = new Label();
 Label label5 = new Label();
 Label label6 = new Label();
 BorderLayout borderLayout3 = new BorderLayout();
 BorderLayout borderLayout5 = new BorderLayout();
 BorderLayout borderLayout6 = new BorderLayout();
 BorderLayout borderLayout7 = new BorderLayout();
 Button button1 = new Button();

B u i l d i n g a n a p p l e t 17-31

A p p l e t s o u r c e c o d e

 /**Get a parameter value*/
 public String getParameter(String key, String def) {
 return isStandalone ? System.getProperty(key, def) :
 (getParameter(key) != null ? getParameter(key) : def);
 }

 /**Construct the applet*/
 public GoodEveningApplet() {
 }

 /**Initialize the applet*/
 public void init() {
 choice1.addItem("English");
 choice1.addItem("German");
 choice1.addItem("Pig Latin");
 choice1.addItem("Swedish");
 choice1.addItem("Australian");
 try {
 jbInit();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }

 /**Component initialization*/
 private void jbInit() throws Exception {
 this.setLayout(borderLayout1);
 panel1.setLayout(borderLayout2);
 upper.setBackground(Color.orange);
 lower.setBackground(Color.magenta);
 lower.setLayout(cardLayout1);
 panel2.setBackground(new Color(190, 173, 255));
 panel2.setLayout(borderLayout3);
 panel3.setBackground(new Color(83, 182, 255));
 panel3.setLayout(borderLayout5);
 panel4.setBackground(new Color(255, 149, 66));
 panel4.setLayout(borderLayout6);
 panel5.setBackground(new Color(239, 107, 140));
 panel5.setLayout(borderLayout7);
 panel6.setBackground(new Color(17, 198, 99));
 panel6.setLayout(null);
 choice1.addItemListener(new java.awt.event.ItemListener() {

 public void itemStateChanged(ItemEvent e) {
 choice1_itemStateChanged(e);
 }
 });
 label1.setFont(new java.awt.Font("Serif", 1, 20));
 label1.setForeground(Color.blue);
 label1.setText("Select a language");
 label2.setFont(new java.awt.Font("Dialog", 1, 24));

17-32 L e a r n i n g J a v a w i t h J B u i l d e r

A p p l e t s o u r c e c o d e

 label2.setForeground(Color.black);
 label2.setText("Good Evening");
 label3.setFont(new java.awt.Font("Dialog", 1, 24));
 label3.setForeground(Color.black);
 label3.setText("Guten Abend");
 label4.setFont(new java.awt.Font("Dialog", 1, 24));
 label4.setForeground(Color.black);
 label4.setText("Oodgay vening eay");
 label5.setFont(new java.awt.Font("Dialog", 1, 24));
 label5.setForeground(Color.black);
 label5.setText("God Kväll");
 label6.setFont(new java.awt.Font("Dialog", 1, 24));
 label6.setForeground(Color.black);
 label6.setText("Gudday, Mate");
 label6.setBounds(new Rectangle(134, 121, 183, 58));
 button1.setLabel("Push Me");
 button1.setBounds(new Rectangle(160, 60, 107, 35));
 button1.addActionListener(new java.awt.event.ActionListener() {

 public void actionPerformed(ActionEvent e) {
 button1_actionPerformed(e);
 }
 });
 this.add(panel1, BorderLayout.CENTER);
 panel1.add(lower, BorderLayout.CENTER);
 lower.add(panel2, "panel2");
 panel2.add(label2, BorderLayout.NORTH);
 lower.add(panel3, "panel3");
 panel3.add(label3, BorderLayout.SOUTH);
 lower.add(panel4, "panel4");
 panel4.add(label4, BorderLayout.EAST);
 lower.add(panel5, "panel5");
 panel5.add(label5, BorderLayout.WEST);
 lower.add(panel6, "panel6");
 panel6.add(button1, null);
 panel6.add(label6, null);
 panel1.add(upper, BorderLayout.NORTH);
 upper.add(label1, null);
 upper.add(choice1, null);
 }

 /**Start the applet*/
 public void start() {
 }

 /**Stop the applet*/
 public void stop() {
 }

 /**Destroy the applet*/
 public void destroy() {
 }

B u i l d i n g a n a p p l e t 17-33

A p p l e t s o u r c e c o d e

 /**Get Applet information*/
 public String getAppletInfo() {
 return "Applet Information";
 }

 /**Get parameter info*/
 public String[][] getParameterInfo() {
 return null;
 }

 void choice1_itemStateChanged(ItemEvent e) {
 if (choice1.getSelectedItem()== "English") {
 cardLayout1.show(lower, "panel2");
 }
 else if (choice1.getSelectedItem()== "German") {
 cardLayout1.show(lower, "panel3");
 }
 else if (choice1.getSelectedItem()== "Pig Latin") {
 cardLayout1.show(lower, "panel4");
 }
 else if (choice1.getSelectedItem()== "Swedish") {
 cardLayout1.show(lower, "panel5");
 }
 else if (choice1.getSelectedItem()== "Australian") {
 cardLayout1.show(lower, "panel6");
 }
 }

 void button1_actionPerformed(ActionEvent e) {
 label6.setForeground(new Color(255,0,0));
 }

}

17-34 L e a r n i n g J a v a w i t h J B u i l d e r

C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 18-1

C h a p t e r

18
Chapter18Compiling, running, and

debugging

About this tutorial
This step-by-step tutorial shows you how to find and fix syntax errors,
compiler errors, and runtime errors in a sample provided with JBuilder.

• Syntax errors are identified before you compile. Syntax errors occur in
code that does not meet the syntactical requirements of the Java language.

• Compiler errors are errors generated by the compiler: the syntax may
be correct, but the compiler cannot compile the code due to missing
variables, missing classes, or incomplete statements. Note that the true
cause of an error might occur one or more lines before or after the line
number specified in the error message.

• If your program successfully compiles, but gives runtime exceptions or
hangs when you run it, you’ve encountered a runtime error. Your
program contains valid statements, but the statements cause errors
when they’re executed.

The tutorial uses the sample project that is provided in the
samples/Tutorials/DebugTutorial folder of your JBuilder installation. The
sample is a simple mathematical calculator. The program contains
introduced errors. Before running this tutorial, make sure that you have
installed the samples folder. This sample will run under all JBuilder
editions. Some steps of the tutorial use features that are available in
JBuilder Professional and Enterprise. These steps are indicated as you
work through the tutorial.

18-2 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 1 : O p e n i n g t h e s a m p l e p r o j e c t

Note The sample project in the samples/Tutorials/DebugTutorial folder will not
run and compile as provided. You must work through this tutorial,
finding and fixing the errors, in order for the program to run.

For suggestions on improving this tutorial, send email to
jpgpubs@inprise.com.

Step 1: Opening the sample project
This tutorial uses the sample project that is provided in the
samples/Tutorials/DebugTutorial folder of your JBuilder installation. Before
running this tutorial, make sure that you have installed the samples folder.

In this step, you will open the project file and open one of the files in the
project. You’ll see that syntax errors exist in one of the files.

To open the sample project,

1 Choose File|Open Project. The Open Project dialog box is displayed.

2 Navigate to the samples/Tutorials/DebugTutorial folder of your JBuilder
installation.

3 Double-click DebugTutorial.jpr. The project is opened in the project
pane. The files in the project are listed in the project pane. This project
consists of three files:

• Application1.java - The runnable file, containing the main() method.

• DebugTutorial.html - The HTML file that provides a descriptive
overview of the project.

• Frame1.java - The file that contains the frame, the components, and
the methods for the program.

4 Double-click Frame1.java. This opens the file in the editor and displays
its structure in the structure pane.

C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 18-3

S t e p 2 : F i x i n g s y n t a x e r r o r s

Notice the Errors folder in the structure pane. You will be finding and
fixing these errors in Step 2 of the tutorial.

Step 2: Fixing syntax errors
Syntax errors do not meet the syntactical requirements of the Java
language. JBuilder identifies these errors before you compile. They are
listed in the Errors folder of the structure pane. If you try to compile the
program without fixing these syntax errors, JBuilder will display the
errors in the message pane. The program cannot be compiled until these
errors are fixed.

In this step, you will find the syntax errors in the sample program and fix
them. For more information on JBuilder’s error messages, see the topic
called “Error messages” in Building Applications with JBuilder.

To find and fix syntax errors,

1 Expand the Errors folder in the structure pane.

Three errors are listed. The first error:

';' expected at line 38

indicates that a semi-colon is missing from the end of line 38.

2 Click the error in the structure pane. JBuilder moves the cursor to line
38 in the editor. If you single-click the error message, JBuilder
highlights the line of the code where the error occurred. A double-click
places the cursor in the column where the error occurred.

Tip The content pane’s status bar displays the line and column number, as
well as the insert mode.

3 Add a semi-colon to the end of the line. You’ve fixed the error, and it is
removed from the structure pane.

4 Click the next error in the structure pane:

illegal start of type at line 222

JBuilder moves the cursor to line 222 in the editor. This error is a little
trickier to decipher. The message means that a type identifier was
expected at this point in the program, but was not found. Notice that
line 222 starts with the keyword else, and that line 221 consists of a
single closing brace. If you read the code before line 222, you’ll notice
the beginning of an if statement on line 219. In Java, an if statement

18-4 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 3 : F i x i n g c o m p i l e r e r r o r s

must include an opening and closing brace. However, if you look on
line 219, you’ll see that the opening brace is missing.

5 Add an opening brace to the end of line 219. The completed line of code
will look like this:

if (valueOneOddEven) {

The remaining two syntax errors are removed from the structure pane.

Sometimes it takes a bit of detective work to correct syntax errors. Often,
fixing one syntax error will fix several errors listed in the structure pane.
In this case, for example, the third syntax error was: 'class' or 'interface'
expected at line 228. Because the closing brace did not have a
corresponding opening brace, JBuilder expected to find a class declaration
after the close of the current method. However, when the opening brace
was added, JBuilder could determine that the brace now had a match and
that the next line of code was not in error.

Tip You can find matching braces by moving your cursor to the left of the
starting or ending brace and pressing Ctrl +].

Saving files and running the program

To save your changes and run the program,

1 Click the Save All button on the main toolbar.

2 Click the Run Project button on the toolbar. The program does not run
but displays compiler errors on the Compiler tab of the message pane.
Go to Step 3 to find and fix these errors.

Step 3: Fixing compiler errors
In this step of the tutorial, you will find and fix two compiler errors. In
Step 2, you ran the program and compiler errors were displayed on the
Compiler tab of the message pane.

To find and fix compiler errors,

1 Double-click the first error on the Compiler tab:

"Frame1.java" Error #300: constructor Double() not found
in class java.lang.Double at line 39, column 31

C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 18-5

S t e p 3 : F i x i n g c o m p i l e r e r r o r s

JBuilder positions the cursor on line 39, column 31 in the editor, the
location of the error.

The error message indicates that the Java class java.lang.Double does not
contain a parameterless constructor. The highlighted statement is
attempting to create a new Double object that does not have a parameter.
If you look at the constructors in the java.lang.Double class, you’ll see
that all constructors require a parameter. Additionally, if you look a
few lines further on in the program, you’ll see that the Double object,
valueTwoDouble, is constructed with an initial value of 0.0.

Tip Position the cursor between the parenthesis and press Ctrl+Shift+Space
to display ParameterInsight, JBuilder’s pop-up window that displays
the required parameter type. You can also right-click the Double()
method and choose Browse Symbol to open the source in the editor.

2 Insert 0.0 between the parenthesis on line 39. The statement will now
read:

Double valueOneDouble = new Double(0.0)

Tip The content pane status bar now displays the word Modified, indicating
that you’ve made changes to the file.

3 Click the Save All button on the toolbar.

4 Click the Run Project button on the toolbar. The program is recompiled.
Because you fixed the first compiler error, it is no longer displayed on
the Compiler tab.

5 Double-click the first error on the Compiler tab:

"Frame1.java" Error 300: variable subtractresultDisplay not found
in class DebugTutorial.Frame1 at line 244, column 5

This error indicates that the variable subtractresultDisplay in line 243
has not been defined.

6 Choose Search|Find to display the Find/Replace Text dialog box.

Tip If the Find command is dimmed, click the file you want to search in and
then choose Search|Find.

18-6 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 3 : F i x i n g c o m p i l e r e r r o r s

7 Enter subtractresultDisplay in the Text To Find field. Make sure the
Case Sensitive option is turned off. Click the Search From Start Of File
option to start the search from the beginning of the file.

8 Click Find All. The results of the search are displayed on the Search
Results tab of the message pane.

Notice that two of the three references to this label are
subtractResultDisplay; there is an uppercase R in Result. Casing is critical
in Java: subtractresultDisplay is not the same as subtractResultDisplay.

9 Double-click the incorrect word in the Search Results tab to move the
cursor to the word in the editor. JBuilder highlights the word.

10 Change subtractresultDisplay to subtractResultDisplay.

11 Right-click the Search Results tab and choose Remove “Search Results”
Tab to close the search results.

To use CodeInsight to fix a compiler error,

1 Double-click the next compiler error in the Compiler tab. This error
indicates that there is no setTest() method in javax.swing.JLabel.

"Frame1.java" Error #300: method setTest(java.lang.String) not
found in class javax.swing.JLabel at line 255, column 27

JBuilder positions the cursor on line 255, column 27.

C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 18-7

S t e p 3 : F i x i n g c o m p i l e r e r r o r s

2 Press Ctrl+Space while the cursor is positioned after the dot (.). This will
display the CodeInsight pop-up window that displays available
member functions.

Note If the pop-up window is not displayed, choose the Keystrokes button
on the CodeInsight page of the Editor Options dialog box (Tools|Editor
Options). Use the keystrokes that are defined for your editor or
customize them. For more information, see “Keymaps for editor
emulations” on page 4-5.

3 Scroll through the window using the arrow keys. Those items that are
bolded are in this class. The items with lines through them have been
deprecated. The grayed-out items are inherited, but are available for
use.

4 Search for setText by typing setText or scrolling. Once selected,
double-click it or press Enter. The setText() method is inserted in the
editor after the dot, replacing the incorrect setTest method name. A tool
tip displays the expected method parameter type.

18-8 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 4 : F i x i n g t h e s u b t r a c t V a l u e s () m e t h o d

Saving files and running the program
To save your changes and run the program,

1 Click the Save All button on the toolbar.

2 Click the Run Project button on the toolbar. The program runs and the
UI is displayed.

3 Enter values into the program’s Value 1 and Value 2 input fields. Press
the Compute Values button. The values are computed and displayed.
However, if you look carefully at computed results, you’ll see that there
are some runtime errors; the program compiles and runs but gives
incorrect results. You will find and fix these errors in the next steps.

4 Choose File|Exit to exit the application.

5 Right-click the Application1 tab in the message pane, and choose
Remove “Application1” Tab.

Step 4: Fixing the subtractValues() method
In this step of the tutorial, you will find and fix one of three runtime
errors. To find this error, you’ll use debugger features. You’ll learn how to
start and stop the debugger; create a floating window for one of the
debugger views; set a breakpoint; step into and step over a method; trace
into a thread; set a this watch, an object watch, and a local variable watch;
and use the Evaluate/Modify dialog box.

In Step 3, you ran the program. When you entered values into the Value 1
and Value 2 input fields, and pressed Compute Values to compute the
added, subtracted, multiplied, and divided values, you may have noticed
that the subtracted value was not correct.

For example, if you enter 4 in the Value 1 field and 3 in the Value 2 field,
the subtracted result is 0.0 instead of 1.0.

C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 18-9

S t e p 4 : F i x i n g t h e s u b t r a c t V a l u e s () m e t h o d

To find this error, we’ll use the debugger. First, we’ll set a breakpoint and
start the debugger.

1 Use the Find/Replace Text dialog box (Search|Find) to find the line of
code that calls the addValues() method. This is the first method called
when the Compute Values button is pressed. Enter addValues in the Text
To Find field of the dialog box to locate the call to the method. Press the
Find button.

2 Click the gray gutter in the editor to the left of the line of code. A
breakpoint is set on this line. The red circle indicates that the
breakpoint has not been verified.

3 Click the Debug Program button on the toolbar. JBuilder starts the
debugger VM.

4 The program is now running and waiting for user input (this may take
a few moments). Enter 4 in the Value 1 field and 3 in the Value 2 field.
Press Compute Values. Before you can examine the results, the
debugger takes control. The program is minimized and the debugger is
displayed in the message pane. Blue glyphs are now displayed in the
editor next to executable lines of code, showing where valid
breakpoints can be set. The glyph for the breakpoint you just set has
changed to a red dot with a green checkmark to show that the
breakpoint is valid. The arrow indicates the execution point (in this
case, the breakpointed line is also the execution point).

For information on the debugger UI, see “The debugger UI” topic in
Building Applications with JBuilder.

18-10 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 4 : F i x i n g t h e s u b t r a c t V a l u e s () m e t h o d

5 Click the Breakpoints tab on the left side of the debugger to go to the
Data and code breakpoints view. The default breakpoint and the
breakpoint you just set are displayed. The debugger status bar displays
a message indicating that the program has stopped on the breakpoint
you set in the editor.

The next step is to trace into the stepping thread. This allows you to see
where methods are called and set watches on those methods.

1 Go to the Threads, call stacks, and data view. Notice how the view is
split, allowing you to see the contents of the item selected on the left
side on the right side. (The split view is a feature of JBuilder
Professional and Enterprise.)

Step 2 is for JBuilder
Professional and

Enterprise users only.

2 Right-click an empty area of the left side of the view and choose
Floating Window. The view now turns into a floating window and is
initially displayed at the top left of the screen. You can resize the
window or move it. Changing a view to a window allows you to look at
more than one debugger view at a time. (Note that all views, except the
Console, output, input and errors view, can be turned into floating
windows.)

Step 3 is for JBuilder
Professional and

Enterprise users only.

3 Scroll in the editor so that you can see the breakpoint and the floating
window at the same time.

4 You could have set the breakpoint on the call to the subtractValues()
method instead of the addValues() method, allowing you to get closer to
the actual area of the program you want to examine more closely.

C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 18-11

S t e p 4 : F i x i n g t h e s u b t r a c t V a l u e s () m e t h o d

To do this, click the Step Over button on the debugger toolbar. This
steps over the call to the addValues() method, positioning the execution
point on the call to the subtractValues() method.

5 Click the Step Into button to step into the subtractValues() method. The
subtractValues() method is now at the top of the right pane of the
floating Threads, call stacks and data view.

Step 6 is for JBuilder
Professional and

Enterprise users only.

6 Right-click an empty area on the left side of the floating Threads, call
stacks and data view and uncheck Floating Window to close it. The
floating window is displayed again as a debugger view.

Tip If you want to reset the debugger tabs to their default order, right-click
an empty area of the view and choose Restore Default View Order.

7 Go to the Threads, call stacks, and data view and expand the
subtractValues() method.

Tip You can use the Show Current Frame button to display only data on the
right side of the view.

The next step is to set watches on objects and variables. This allows you to
examine data values.

1 Create a this object watch by right-clicking the this object in the
expanded list:

this = {DebuggerTutorial.Frame1@3c6}

Choose the Create ‘this’ Watch command. A watch on the this object
allows you to trace through the current instantiation of the class.

18-12 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 4 : F i x i n g t h e s u b t r a c t V a l u e s () m e t h o d

2 The Add Watch dialog box is displayed, with the Enter A Watch
Description field available. Click OK.

You do not need to enter a description for the watch. If you do enter a
description, it is displayed on the same line as the watched expression
in the Data watches view. A description may make individual watches
easier to locate in the view.

3 Right-click the this object again:

this = {DebuggerTutorial.Frame1@3c6}.

This time, choose the Create Object Watch command to create an object
watch. The Add Watch dialog box is displayed. Click OK.

4 Right-click the valueOneDouble object in the expanded list to create a
watch on the first value being passed to the subtractValues()method:

valueOneDouble: java.lang.Double. = {java.lang.Double@3c7}.

Choose the Create Local Variable Watch command. The Add Watch
dialog box is displayed. Click OK.

5 Right-click the valueTwoDouble object in the expanded list to create a
watch on the second value being passed to the method:

valueTwoDouble: java.lang.Double. = {java.lang.Double@3c7}.

Choose the Create Local Variable Watch command. The Add Watch
dialog box is displayed. Click OK.

6 Go to the Data watches view.

7 Expand the first two watches: the this watch and the <reference> watch.
In this case, both the watches provide the same data, as the two watches
are identical. Note that you can watch all object data in this view
(except static data). The grayed-out items are inherited. Collapse these
two watches. The remaining two watches, the local variable watches,
watch the values of valueOneDouble and valueTwoDouble.

8 Click the Step Into button to step into the subtractValues() method.

C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 18-13

S t e p 4 : F i x i n g t h e s u b t r a c t V a l u e s () m e t h o d

9 Expand the watches on valueOneDouble and valueTwoDouble.

The two values are equal. You did not enter two equal values into the
program’s two input fields.

10 Set a watch on subtractStringResult, the result of the subtraction. This
value, a String, is written to the output label. To set the watch, click the
Add Watch button on the debugger toolbar, and enter
subtractStringResult in the Expression field. Click OK. You may have to
scroll the Data watches view to see the watch.

11 Click the Step Into button three times to step to the following line in the
editor:

subtractResultDisplay.setText(subtractStringResult)

In the Data watches view, subtractStringResult is set to 0.0 instead of
1.0, as expected.

Note You could also use the Evaluate/Modify dialog box to examine the
value of subtractStringResult. To do this, choose Run|
Evaluate/Modify. Enter subtractStringResult into the Expression input
field, and click Evaluate. The result of the evaluation is displayed in the
Result field. Note that the display is similar to expanding the watch.
Click Close to close the dialog box.

12 Step into the method two more times. The execution point returns to
the line where the next method, multiplyValues(), is called.

13 Look at the call to the subtractValues() method, the line before the
execution point. Notice that valueOneDouble is being passed twice,
instead of valueOneDouble and valueTwoDouble. Change the second
parameter to valueTwoDouble.

Saving files and running the program

To save your changes and run the program,

1 Click the Save All button on the toolbar.

2 Click the Reset Program button on the debugger toolbar.

3 Click the Run Project button on the toolbar. Enter values. The program
runs. When you enter values and press the Compute Values button, the
subtracted value is now correct. However, if you look carefully at

18-14 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 5 : F i x i n g t h e d i v i d e V a l u e s () m e t h o d

remaining results, you’ll see that the divided result is also incorrect. Go
to Step 5 to find and fix the error.

4 Exit the program before you proceed to Step 5. Remove the message
pane tabs by right-clicking the Application1 tab and choosing Remove
“Application1” Tab.

Step 5: Fixing the divideValues() method
In this step of the tutorial, you will find and fix another of three runtime
errors. You will set a breakpoint, step into a method, and learn how to use
tool tips and ExpressionInsight to locate errors.

In Step 4, you found and fixed an error with the call to the subtractValues()
method. Now, when you run the program again, you may notice that the
divided result is also incorrect. For example, if you enter 4 in the Value 1
field and and 2 in the Value 2 field, the divided result is 8.0 instead of 2.0.

To find this error, we’ll first set a breakpoint, step into the questionable
method, and use ExpressionInsight and tool tips to find the error.

1 Choose Run|View Breakpoints to remove the breakpoint you set in
Step 4. In the Breakpoints dialog box, right-click the following
breakpoint:

class DebugTutorial.Frame1; line 214; (unverified)

Choose Remove Breakpoint and click the Close button to close the
dialog box.

2 Use the Find/Replace Text dialog box to locate the call to the
divideValues() method.

3 Set a breakpoint on this line.

This step is for JBuilder
Professional and

Enterprise users only.

4 Right-click the breakpointed line, and choose Breakpoint Properties to
open the Breakpoint Properties dialog box.

C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 18-15

S t e p 5 : F i x i n g t h e d i v i d e V a l u e s () m e t h o d

This step is for JBuilder
Professional and

Enterprise users only.

5 Click the Log Message option. In the Evaluate Expression input field,
enter:

System.out.println("divideValues method reached")

The message will be written to the Console output, input and errors
view when the specified breakpoint is reached. If the Stop Execution
option is also selected the program will stop. The dialog box will look
similar to this:

Click OK to close the dialog box.

6 Click the Debug button on the main toolbar.

7 Enter 4 in the Value 1 input box and 2 in the Value 2 input box when the
program’s UI is displayed. Press Compute Values. Remember, before
you can examine the results, the debugger takes control. The program
is minimized and the debugger is displayed in the message pane.

This step is for JBuilder
Professional and

Enterprise users only.

8 Go to the Console output, input and errors view. You’ll see the
message:

divideValues method reached

During the development cycle, you can use this feature instead of
adding println statements to your code.

9 Go to the Data and code watches view. Notice that most of the watches
are no longer in scope.

10 Right-click an empty area of the view and choose Remove All.

18-16 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 5 : F i x i n g t h e d i v i d e V a l u e s () m e t h o d

11 Click the Step Into button to step into the divideValues() method.

12 Click the button three more times, so that you step past the line that
reads:

divideResult = (valueOneDoubleResult * valueTwoDoubleResult)

This step is for JBuilder
Professional and

Enterprise users only.

13 Position the mouse over the variable divideResult in the editor. A tool
tip displaying the value of divideResult pops up. Notice that the value is
incorrect. Based on what you entered, the result should be 2.0.
However, it is 8.0.

You can also press the Ctrl key plus right-click the mouse button to
display ExpressionInsight. This pop-up window shows the expression
name, its type, and its value. If the expression is an object, you can
descend into the object members, as well as use a right-click menu to
set watches, change values, and change base display values. For
example, position the cursor over divideResultDisplay in line 265. Press
the Ctrl key plus right-click the mouse button. You will see the

C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 18-17

S t e p 5 : F i x i n g t h e d i v i d e V a l u e s () m e t h o d

members of the JLabel object. As you scroll down, notice the grayed-out
items: these are inherited.

Click in the editor to close the ExpressionInsight window. The window
will also automatically close if the cursor is repositioned.

14 Carefully read this line of source code (line 264):

divideResult = (valueOneDoubleResult * valueTwoDoubleResult)

Can you find the error? The divideResult() method is multiplying
values instead of dividing them.

15 To fix the error, change the * operator to /.

Saving files and running the program

To save your changes and run the program,

1 Remove the breakpoint in the editor.

2 Click the Save All button on the toolbar.

3 Click the Reset Program button on the debugger toolbar.

4 Click the Run Project button on the toolbar. Enter values in the Value 1
and Value 2 input fields. The program runs and the divided value is
now correct. However, if you look carefully at the remaining results,
you may spot the last error. If you enter an odd number in the Value 1
field, the program incorrectly reports that the value is even. If you enter
an even value, the program says it is odd.

18-18 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 6 : F i x i n g t h e o d d E v e n () m e t h o d

5 Exit the application before you proceed to Step 6. Remove the
Application1 tab from the message pane.

Step 6: Fixing the oddEven() method
In this step of the tutorial, you will find the last of the three runtime errors.
You will use the Evaluate/Modify dialog box to evaluate a method call,
step into and over a method, set a watch, and change a boolean value
on-the-fly to test a theory.

In Step 5, you fixed an error in the divideValues() method. Now, when you
run the program again, you may notice the statement saying whether the
first value is odd or even is incorrect.

For example, if you enter 4 into the Value 1 field, the program reports it is
an odd number. However, if you enter 3, the program says that the value
is even. In this last step, you will find and fix this error.

To find this error, we’ll use the Evaluate/Modify dialog box to evaluate
the method that determines if the number is odd or even. Then we’ll set a
watch on the result returned from the method to see if it’s printing to the
screen correctly.

1 Use the Find/Replace Text dialog box to locate the call to the oddEven()
method in Frame1.java. Notice that a variable name also includes the
text OddEven. To find the method, you can turn the Case Sensitive option
on in the dialog box or search for: oddEven(

2 Set a breakpoint on this line:

oddEven(valueOneDouble);

3 Click the Debug button.

4 Enter 3 in the Value 1 input box and 4 in the Value 2 input box when the
program’s UI is displayed. Click the Compute Values button. The focus
returns to the debugger.

This step is for JBuilder
Professional and

Enterprise users only.

5 Choose Run|Evaluate/Modify to open the Evaluate/Modify dialog
box.

Tip: You can also right-click in the editor and choose Evaluate/Modify.

C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 18-19

S t e p 6 : F i x i n g t h e o d d E v e n () m e t h o d

Enter oddEven(valueOneDouble) in the Expression input box. Click
Evaluate. You’ll see that the method returns true.

Close the Evaluate/Modify dialog box.

Now, we’ll step into the method in order to evaluate what the true
value means.

6 Go to the Data watches view. Set a watch on valueOneOddEven.

7 Click the Step Into button on the debugger toolbar. When you step into
the oddEven()method, the value of valueOneOddEven is true, because the
value was initialized to true. (To see the initialization, use the Search|
Go To Line command to go to line 62 in Frame1.java. Then, use Run|
Show Execution Point to return to the cursor location.)

8 Click Step Into three more times to step further into the method. This
method determines if the value is odd or even. As you step, the value of
valueOneOddEven remains true. Is this correct? Does the result of (3
modulus 2) equal zero? It actually does not equal zero, and the value of
valueOneOddEven should be set to false.

This step is for JBuilder
Professional and

Enterprise users only.

9 Right-click valueOneOddEven in the Data watches view and choose
Change Value to test this theory. The Change Value dialog box is
displayed.

Enter false and click OK. The value of valueOneOddEven is set to false.
You just changed the method’s returned value from true to false.

Click OK to close the dialog box.

10 Click Step Out to step out of the method and return to the calling
location, then click Step Into to trace into the if statement in the next
line of code.

18-20 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 6 : F i x i n g t h e o d d E v e n () m e t h o d

11 Examine the contents of the if statement. It is actually quite simple:

If valueOneOddEven is true, print the message stating that
the number is even. However, if the value is false, print
the message stating that the number is odd.

12 Click the Step Into button again. The execution point goes to the else
statement, the line that states: “If the value of valueOneOddEven is false,
print the message stating the number is odd.”

13 Click the oddEven() method in the structure pane to go to the location of
the method in the editor. (You may have to scroll the structure pane to
see the method.)

14 Examine the modulus operation and its results. Are the true/false
results assigned correctly? If you look closely, you’ll notice that the true
and false assignments are actually mixed up. The code is stating that if
the modulus equals zero, the return value is false and the number is
odd. If the modulus does not equal zero, the return value is true and the
number is even. These statements should actually be reversed, so that
the code will read:

if (valueOneDoubleResult % 2 == 0.0)
 {
 valueOneOddEven = true;
 }
 else valueOneOddEven = false;

15 Switch the true and false values on lines 277 and 279.

C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 18-21

S t e p 7 : F i n d i n g r u n t i m e e x c e p t i o n s

To save your changes and run the program,

1 Save your files.

2 Click the Reset Program button on the debugger toolbar.

3 Run the program again.

4 Enter 3 in the Value 1 input box and 4 in the Value 2 input box. Click the
Compute Values button. The result is correct! The program now
correctly informs you that Value 1 is an odd number.

5 Click File|Exit to exit the program. Remove the Application1 tab.

In the next step, you will see what happens when a runtime exception is
generated.

Step 7: Finding runtime exceptions
In this step of the tutorial, you’ll see what happens when a runtime
exception is generated. The sample program does not do any error
handling. For example, if you enter a character in the Value 1 or Value 2
fields instead of a number, the program will generate a runtime exception
stack trace. It won’t gracefully tell you that the value was not the expected
format or provide information about valid values.

To see what a runtime exception stack trace looks like,

1 Run the program.

2 Enter eeee in the Value 1 input field. Enter 3 in the Value 2 input field.
Press Compute Values.

18-22 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 7 : F i n d i n g r u n t i m e e x c e p t i o n s

3 Minimize the program to view the message pane.

The Application1 tab now displays a NumberFormatException stack trace.
This is a trace of how your program arrived at this exception. Scroll to
the top of the pane.

This step is for JBuilder
Professional and

Enterprise users only.

4 Click the first class name in the stack trace to see where the exception is
thrown. In this case, click java.lang.FloatingDecimal.

JBuilder opens the source code for java.lang.FloatingDecimal and
highlights the line of code where the exception is thrown.

You can click other classes in the stack trace to trace through the steps
that brought the program to this exception.

To handle this exception is beyond the scope of this tutorial. To run the
program again without the exception, just close the program and run it
again entering numeric values.

C o m p i l i n g , r u n n i n g , a n d d e b u g g i n g 18-23

S t e p 7 : F i n d i n g r u n t i m e e x c e p t i o n s

Congratulations, you have finished this tutorial. You found and fixed
syntax errors, compiler errors, and runtime errors using JBuilder’s
integrated debugger. You also saw an example of a runtime exception
stack trace.

For more information on compiling, running, and debugging, read the
following chapters in the online Help book, Building Applications with
JBuilder:

• “Compiling Java programs”
• “Running Java programs”
• “Debugging Java programs”

18-24 L e a r n i n g J a v a w i t h J B u i l d e r

B u i l d i n g a J a v a t e x t e d i t o r 19-1

C h a p t e r

19
Chapter19Building a Java text editor

About this tutorial

Overview

This step-by-step tutorial builds a Java application in JBuilder called “Text
Editor,” which is a simple text editor capable of reading, writing, and
editing text files.

This text editor will be able to set the text color, as well as the background
color of the text editing region. In the JBuilder Professional and Enterprise
versions of the tutorial, it will also be able to set the text font.

The tutorial takes approximately two hours to complete.

19-2 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 1 : C r e a t i n g t h e p r o j e c t

What this tutorial demonstrates

Some steps in this tutorial
are specific to JBuilder

Professional and
Enterprise editions. This is

noted at the top of those
steps, or in the margin.

The Text Editor tutorial uses the Project and Application wizards to create
the project. Then it shows you how to use the visual design tools, modify
the UI design, hook up events, and edit source code. It steps you through
handling events for commonly used components and tasks, such as menu
items, a toolbar, a text area, and system events. It contains specific
examples that show you how to do the following:

• Use the JFileChooser dialog box to allow the user to select a file.

• Read and write text from a text file and manipulate text with a
JTextArea.

• Set foreground and background colors.

This step is for JBuilder
Professional and
Enterprise only.

• Set the font using the dbSwing FontChooser dialog.

• Display information in a status bar and in the window caption.

• Add code manually to handle UI events.

• Have a menu item and a button execute the same code by putting the
code in a new “helper” method that is called by both event handlers.

• Add a right-click menu to the JTextArea component.

• Keep track of the current filename and whether the file is dirty. Shows
you how to handle the logic of this for File|New, File|Open, File|Save,
File|SaveAs, editing, and exit.

This step is for JBuilder
Professional and
Enterprise only.

• Deploy the “Text Editor” application to a JAR file.

To see the complete source for the Text Editor sample, open the project:

• Foundation:
jbuilder/samples/swing/SimpleTextEditor/SimpleTextEditor.jpr

• Professional and Enterprise:
jbuilder/samples/TextEditor/TextEditor.jpr

Step 1: Creating the project
To start this tutorial, create a project that contains the necessary files for
building your user interface.

Using the Project wizard

There are two wizards you can use to speed up this process: the Project
wizard and the Application wizard.

B u i l d i n g a J a v a t e x t e d i t o r 19-3

S t e p 1 : C r e a t i n g t h e p r o j e c t

1 Choose File|New Project to open the Project wizard.

2 Make the following changes in the fields:

• Project Name: TextEditor

Note JBuilder uses the project file name to extract the package name for
the classes in the project.

• Type: jpr

• Project Directory Name: TextEditor

3 Accept all other defaults.

4 Click Next to go to Step 2 of the Project wizard.

5 Accept the defaults in Step 2 as shown in the image below. Note where
the project, classes, and source files will be saved. Also note that the
Make Project Notes File is checked. This option saves the project notes
filled out in Step 3 of the wizard to an HTML file.

19-4 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 1 : C r e a t i n g t h e p r o j e c t

6 Click Next to continue to Step 3 of the Project wizard.

7 Fill out the optional title, author, company, and project description fields.

8 Press Finish to create the project.

See also “How JBuilder constructs paths” and “Where are my files?” in the “Creating
and managing projects” chapter of Building Applications with JBuilder

Changing the project properties
Now, let’s change one of the project properties for this project.

1 Select Project|Project Properties and click the General tab.

2 Uncheck the Enable Source Package Discovery And Compilation
option. In most cases, it’s best to leave this option on. For a description
of this option, press the Help button on the General page.

See also “Setting project properties” in the “Creating and managing projects”
chapter of Building Applications with JBuilder

Selecting the project’s code style options
Before you go on, make sure you select the same code style options we
used for the JBuilder-generated code in the sample. You do this in the
Project Properties dialog box.

To change the code style options,

1 Right-click TextEditor.jpr in the project pane (upper left), and choose
Properties.

2 Click the Code Style tab in the Project Properties dialog box.

B u i l d i n g a J a v a t e x t e d i t o r 19-5

S t e p 1 : C r e a t i n g t h e p r o j e c t

Choosing the event handler type
First, you need to choose which style event handler to generate. JBuilder
can use either anonymous inner classes or separate adapter classes. In this
tutorial, we use separate adapter classes.

On the Project Properties Code Style tab, check Standard Adapter for the
Event Handling option.

Note Regardless of which style event handler method you use, the code you put
inside the method will be the same.

For more information on the differences between event handler styles, see
“Choosing which type of event handler to use” in the topic “Working with
events” in Building Applications with JBuilder.

Choosing how to instantiate objects
Choose which method to use for instantiating objects. JBuilder gives you
the option of instantiating objects using Beans.instantiate(), as well as
using the keyword new. This tutorial uses new.

On the Code Style tab, make sure Use Beans.instantiate is unchecked, then
press the OK button to close the Project Properties dialog box.

Using the Application wizard

Now add the application files to the project.

1 Choose File|New to open the object gallery.

2 Double-click the Application icon to open the Application wizard.

3 Change the application class name in Step 1 to:

Class: TextEditClass

4 Click Next to go to Step 2 of the Application wizard.

5 Change the name and title of the frame class on Step 2 to:

Class: TextEditFrame
Title: Text Editor

6 Check all the options on Step 2. The wizard automatically generates
code for the selected options. (Notice what each option is as you check
it off.)

7 Click the Finish button.

8 Save the project using File|Save Project.

19-6 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 1 : C r e a t i n g t h e p r o j e c t

Click the Design tab at the bottom of the AppBrowser window to open the
UI designer.

• The UI designer appears in the content pane.
• The component tree appears in the structure pane.
• The Inspector appears to the right of the designer.

Figure 19.1 JBuilder in design view

Tip If the design area is too narrow to see the entire UI in the AppBrowser,
you can maximize the JBuilder window and adjust the AppBrowser panes
by dragging their borders.

Suppressing automatic hiding of JFrame

By default, a JFrame will hide when you click its close box. This is not the
behavior we want for this tutorial, because the Application wizard added
an event handler to call System.exit(0) when the close button is pressed.
Later we will be adding code in this handler to ask the user about saving
the file on exit, and we do not want the window to automatically hide if
the user says no.

B u i l d i n g a J a v a t e x t e d i t o r 19-7

S t e p 1 : C r e a t i n g t h e p r o j e c t

To change the default behavior,

1 Select this in the component tree.

2 Click the Properties tab in the Inspector, and select the
defaultCloseOperation property.

3 Choose DO_NOTHING_ON_CLOSE from the property’s drop-down
list.

Setting the look and feel

Design time look and feel
If you have changed the JBuilder look and feel from its default, before you
start using the UI designer, set up JBuilder so the designer will use the
Metal Look & Feel. You can, of course, use others, but we’ll use Metal for
this tutorial since it is a good choice when designing cross-platform
applications.

There are two ways to change the design time look and feel:

• Right-click in the UI designer and choose Metal from the Look And Feel
pop-up list. This only changes the look and feel in the UI designer and
only for the current project. Using this method, you can design in one
look and preview it in the runtime look, all without leaving the UI
designer.

• Choose Tools|IDE Options, and select Metal from the Look And Feel
drop-down list on the Browser page. This changes the look and feel for
the JBuilder environment, but you can still use the first method to
switch the look in the designer.

Runtime look and feel
Setting the look and feel on the designer pop-up menu or in the JBuilder
IDE Options dialog box does not have any effect on how your UI will look
at runtime. To force a particular runtime look and feel, you have to
explicitly set it in the main() method of the class that runs the application
(in this case, TextEditClass.java).

By default, the Application wizard generates the following line of code in
the main() method of the runnable class:

UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

This means the runtime look and feel will be whatever the hosting system
is using.

19-8 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 2 : A d d i n g a t e x t a r e a

To specify Metal, do the following:

1 Double-click TextEditClass.java in the project pane to open the file in
the editor.

2 Click main(String[] args) in the structure pane at the bottom left, or
scroll down in the content pane until you find public static void
main(String[] args){.

3 Highlight the setLookAndFeel() line of code and copy it to the line just
below it.

4 Place two forward slashes in front of one of them to comment it out.

// UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

5 Change the parameter of the other one as follows:

UIManager.setLookAndFeel("javax.swing.plaf.metal.MetalLookAndFeel");

Note The following lines of code would be used if you wanted to specify
CDE/Motif or Windows Look & Feel:

UIManager.setLookAndFeel("com.sun.java.swing.plaf.motif.MotifLookAndFeel");

or
UIManager.setLookAndFeel("com.sun.java.swing.plaf.windows.WindowsLookAndFeel");

If you know you want your runtime to be a particular look and feel, in
this case Metal, then be sure to use the same look and feel in the UI
designer so you can see the end results. For example, Motif puts more
space around components, like buttons, and you have no control over
that.

Choose File|Save All to save the project and its files, then proceed to the
next step. (It’s a good idea to save frequently during this tutorial, for
example, at the end of each step.)

Step 2: Adding a text area
In this step, you’ll make a text area completely fill the UI frame between
the menu bar at the top and the status bar at the bottom. To accomplish
this, the layout manager for the main UI container needs to use
BorderLayout. As a result of using the Application wizard, the main
container in this UI, referred to as this in the component tree, contains a
JPanel called contentPane that has been already been changed to
BorderLayout. All you need to do now is add the components for the text
area to the contentPane.

B u i l d i n g a J a v a t e x t e d i t o r 19-9

S t e p 2 : A d d i n g a t e x t a r e a

To do this, you’ll add a scroll pane to the contentPane, then put a text area
component inside the scroll pane. The scroll pane provides the text area
with scroll bars.

1 Click the TextEditFrame.java tab at the top of the editor, then click the
Design tab.

2 Click the contentPane component in the component tree to select it.

3 Click the Swing Containers tab on the component palette and select the
JScrollPane component.

4 Click in the center of the contentPane in the UI designer. This drops the
JScrollPane component into the contentPane panel and should give it a
BorderLayout constraint of Center, making it completely fill the area
between the toolbar and the scroll bar. If you miss, choose Edit|Undo
and try again.

A BorderLayout container is divided into five areas: North, South, East,
West, and Center. Each area can hold only one component for a
maximum of five components. (Note that a panel containing multiple
components is considered as one component.) A component placed
into the Center area completely fills the container space not occupied
by any other areas containing components. For example, in this case,
the toolbar occupies the North area (top), and the status bar occupies
the South (bottom). Since no components are assigned to East and
West, the scroll pane component occupies the Center area and expands
to the left (West) and right (East) edges of the container.

5 Select the new jScrollPane1 component in the component tree.

19-10 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 2 : A d d i n g a t e x t a r e a

6 Look at its constraints property value in the Inspector and verify that it
is set to Center. If not, select Center from the property’s drop-down list.

7 Click the Swing tab on the palette and select the JTextArea component.

8 Click the jScrollPane1 component in the component tree or the UI
designer to put the JTextArea into the scroll pane.

9 Right-click the text property in the Inspector and choose Clear Property
Setting to remove jTextArea1 from the text area.

10 Finally, you need to set some properties on jTextArea1 to make it wrap
lines of text automatically and at word boundaries. In the Inspector, set
the following:

lineWrap = true
wrapStyleWord = true
background = white

B u i l d i n g a J a v a t e x t e d i t o r 19-11

S t e p 3 : C r e a t i n g t h e m e n u s

Now, compile your program and run it to see how it looks.

1 Choose Project|Make Project from the menu.

This compiles all the files in the project and creates a TextEditClass.class
file and a TextEditFrame.class in a classes folder in the project folder. It
should compile without any errors.

2 Click the Run button on the JBuilder toolbar, or choose Run|Run
Project from the menu.

Your UI should now look like this at runtime:

Notice that there are no scroll bars. This is because the
horizontalScrollBarPolicy and verticalScrollBarPolicy properties for
jScrollPane1 are set to AS_NEEDED by default. If you want scroll bars to be
visible all the time, you would need to change these property values to ALWAYS.

Choose File|Exit in the “Text Editor” application to close the runtime
window.

Next we’ll create the menus.

Step 3: Creating the menus
In this step, you are going to create the following menus:

JBuilder Foundation
users omit the Edit|Font

menu item.

1 Click the Design tab on TextEditFrame.java if it’s not already selected.

2 Double-click jMenuBar1 in the Menu folder of the component tree to switch
to the menu designer.

(Alternatively, you can select a menu item in the component tree and
press Enter.)

19-12 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 3 : C r e a t i n g t h e m e n u s

3 Select the File|Exit menu item in the menu designer or jMenuFileExit in
the component tree. The menu designer will highlight the selected item.

4 Click the Insert button on the menu designer toolbar, or press Insert on
the keyboard. A new, blank, highlighted menu item is inserted above
Exit.

5 Type New in the highlighted area.

6 Press the Down arrow to accept the new entry and move down to the next
item (in this case the Exit menu item).

7 Right-click Exit, and choose Insert Menu Item from the pop-up menu.
Type Open.

Note All the toolbar actions are also available on the right-click pop-up
menu.

8 Similarly, insert menu items for Save and Save As.

9 Select Exit and click the Separator toolbar button to insert a bar. The
File menu is now complete.

10 Right-click the Help item on the main menu bar and choose Insert
Menu. This creates a new menu between the File and Help menus.
Type Edit as the name for this menu.

11 Press Enter to move down to the next blank entry. You don’t need to
press Insert here because there are no menu items on this menu after the
current entry.

Tip To delete an entry, select it and click the Delete toolbar button, or press
the Delete key twice. (The first press of the Delete key clears the text in the
entry. The second press removes the entry from the menu.)

12 Continue to build the Edit menu as shown in the image above, adding
three items: Font (JBuilder Professional and Enterprise), Foreground
Color, and Background Color. If an entry is too wide for the edit area,
the text will automatically scroll as you type. When you press Enter, the
menu designer will adjust the width of the menu to accommodate the
longest item in the list.

13 Close the menu designer by double-clicking any component in the UI
section of the component tree. This switches the view in the content
pane back to the UI designer.

B u i l d i n g a J a v a t e x t e d i t o r 19-13

S t e p 4 : A d d i n g a F o n t C h o o s e r d i a l o g

14 Save the file, then run the application.

Your UI should now look like this at runtime:

You should be able to play with the UI and type text in the text area, but
the buttons won’t do anything yet, and only the File|Exit and
Help|About menus will work.

That’s the extent of the UI design. Now on to making it functional.

Step 4: Adding a FontChooser dialog
JBuilder Foundation users
skip Step 4 and 5, and go

to Step 6. Ignore any
directions in the rest of this

tutorial pertaining to the
Edit|Font menu item or
FontChooser dialog.

Let’s begin hooking up the menu events, starting with the Edit|Font
menu item which is going to bring up a FontChooser dialog.

First, you need to add a FontChooser dialog to your TextEditFrame class
before it can be used by the menu item:

1 Open the UI designer on the TextEditFrame.java file.

2 Select the More dbSwing tab of the component palette, and click the
FontChooser component.

3 Click anywhere in the component tree or the UI designer to add the
FontChooser to your design. This places the component into the class as
fontChooser1 and displays it in the Other folder of the component tree.

You will only see the dialog component in the component tree, not in the
UI designer.

Setting the dialog’s frame and title properties

You need to set the frame property on this dialog component for it to work
properly at runtime. The frame property must reference a java.awt.Frame, or
descendant, before being shown. In this case, the frame you need to
reference is ‘this’ frame (TextEditFrame). If you fail to do this, the dialog will
not show, and an error message occurs at runtime. You can also set the
title property so the dialog will have an appropriate caption.

19-14 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 4 : A d d i n g a F o n t C h o o s e r d i a l o g

To set the frame and title properties,

1 Select fontChooser1 in the Other folder of the component tree and click
the frame property value in the Inspector.

2 Click the property’s Down arrow and select this from the list of values.

3 Next, click the title property value, and type the word Font as its value.

4 Press Enter to commit the changes to the generated code.

As a result, the following lines are added to the source code in the jbInit()
method:

fontChooser1.setFrame(this);
fontChooser1.setTitle("Font");

Placing the FontChooser into the component tree and setting these properties
creates code in your class that instantiates a FontChooser dialog for your
class, sets its title to “Font”, and sets its frame to this. But this code won’t
display the dialog or make use of it in any way. That has to be done in the
“event handler” for the Edit|Font menu item. Let’s create that code now.

Creating an event to launch the FontChooser

Create an event for the Edit|Font menu item that will launch the
FontChooser:

1 Select the Edit|Font menu item in the component tree. It should be
jMenuItem5 (under the second menu node called jMenu1.) Notice that the
text property for this menu item in the Inspector says “Font”. (Don’t
worry if your Font menu item is a different number than this. Just make
sure you select the one for the Font menu.)

2 Click the Events tab in the Inspector, then click the value field (second
column) for the actionPerformed event.

For menus, buttons, and many other Java UI components,
actionPerformed is the main user event of interest, the one you should
hook for responding to the user operating that menu or button.

The name of the event handling method appears in the value field. If
the method doesn’t already exist, this will show the proposed default
name for a new event handling method. For this new event handler, the
suggested name is jMenuItem5_actionPerformed.

B u i l d i n g a J a v a t e x t e d i t o r 19-15

S t e p 5 : A t t a c h i n g a m e n u i t e m e v e n t t o t h e F o n t C h o o s e r

3 Double-click this event value, or press Enter to create the new event.

When an event handling method is new, double-clicking it in the
Inspector generates an empty stub for the method in your source code.
Regardless of whether the method is new or already exists, the window
focus will switch to the source code in the editor and position your
cursor inside the event handling method. For a new event handling
method, as is the case here, you will see that there is no code yet in the
body of the method.

4 Type the following line of code inside the body of this new empty
method (between the open and close curly braces):

fontChooser1.showDialog();

Your method should now look like this:

void jMenuItem5_actionPerformed(ActionEvent e) {
 fontChooser1.showDialog();
 }

Tip To get the most viewing area in the content pane, you can expand it by
choosing View|Toggle Curtain (Ctrl+Alt+Z if you’re using the CUA
keymapping). This completely expands the content pane to the width
of the JBuilder window. Of course, when you do this, the project and
structure panes are hidden, so you have to toggle back when you want
to access them.

5 Now save and run your application. The Edit|Font menu item should
open a FontChooser dialog. If not, check that you set its frame property to
this.

Nothing will happen yet if you try to change the font. This is because
you aren’t using the results from the FontChooser to change the text in
the text area. Let’s do that next.

6 Close the “Text Editor” application.

Step 5: Attaching a menu item event to the FontChooser
JBuilder Foundation

users skip this step and
go to Step 6. Ignore any
directions in the rest of

this tutorial pertaining to
the Edit|Font menu item
or FontChooser dialog.

Let’s get the FontChooser dialog to interact with the font of textArea1.

1 Click the Source tab and go to the Font menu item event handling
method (jMenuItem5_actionPerformed(ActionEvent e))) that you just
created.

Tip: To quickly locate this method in the source code, click the
following node in the structure pane (bottom left of the AppBrowser).
Note that the order of the elements in your structure pane might not
appear exactly as they do here; the order depends on the setting of the

19-16 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 5 : A t t a c h i n g a m e n u i t e m e v e n t t o t h e F o n t C h o o s e r

Structure Order options in the Java Structure page of the Structure
View Properties dialog box.

2 Insert the following code into your Font menu item (jMenuItem5) event
handling method between the opening and closing curly braces, being
sure to replace the old fontChooser1.showDialog(); code:

// Handle the "Edit Font" menu item

// Pick up the existing font from the text area
// and put it into the FontChooser before showing
// the FontChooser, so that we are editing the
// existing / previous font.
fontChooser1.setSelectedFont(jTextArea1.getFont());

// Obtain the new Font from the FontChooser.
// First test the return value of showDialog() to
// see if the user pressed OK.
if (fontChooser1.showDialog()) {

 // Set the font of jTextArea1 to the font
 // the user selected before pressing the OK button
 jTextArea1.setFont(fontChooser1.getSelectedFont());
}
//repaints menu after item is selected
this.repaint();
//Repaints text properly if some text is highlighted when font is changed.
jTextArea1.repaint();

The entire method should look like this:

void jMenuItem5_actionPerformed(ActionEvent e) {
 // Handle the "Edit Font" menu item

 // Pick up the existing font from the text area
 // and put it into the FontChooser before showing
 // the FontChooser, so that we are editing the
 // existing / previous font.
 fontChooser1.setSelectedFont(jTextArea1.getFont());

B u i l d i n g a J a v a t e x t e d i t o r 19-17

S t e p 5 : A t t a c h i n g a m e n u i t e m e v e n t t o t h e F o n t C h o o s e r

 // Obtain the new Font from the FontChooser.
 // First test the return value of showDialog() to
 // see if the user pressed OK.
 if (fontChooser1.showDialog()) {

 // Set the font of jTextArea1 to the font
 // the user selected before pressing the OK button
 jTextArea1.setFont(fontChooser1.getSelectedFont());
 }
 //repaints menu after item is selected
 this.repaint();
 //Repaints text properly if some text is highlighted when font is changed.
 jTextArea1.repaint();
}

Tip To save typing, you can copy and paste the code example above from
the Help Viewer to your source code by doing the following:

1 Use the mouse to select the code to copy in the Help Viewer. In this
example, highlight the entire event handling method, including the
last curly brace.

2 Choose Edit|Copy on the Help Viewer menu, or use the keystroke
shortcut displayed by that menu item for your editor keymapping
scheme.

3 Click the Source tab to switch to the editor in the AppBrowser.

4 Place your cursor where you want the code inserted, or, to replace
existing code, highlight the code you want to replace. In this example,
highlight the entire event handling method in your source code.

Warning Be careful where you paste. Don’t remove an important curly brace,
such as the closing one for the class definition.

5 Choose Edit|Paste from the JBuilder main menu, or use the
appropriate keyboard shortcut.

6 Check the indenting level of the inserted code and adjust to match
your code if you wish.

3 Save the application.

4 Save and run the application and type some text in the text area.

5 Select the text and use the Edit|Font menu item to change the text’s
font.

In this application, the font for the entire text area (not just the selected
text) is changed. Don’t expect the font settings to persist. We aren’t
going to enter code to enable that feature.

6 Close the “Text Editor” application.

19-18 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 6 : A t t a c h i n g m e n u i t e m e v e n t s t o J C o l o r C h o o s e r

Step 6: Attaching menu item events to JColorChooser
Now let’s create Edit|Foreground and Edit|Background menu events,
and connect them to a Swing JColorChooser dialog.

Since you don’t need to set any of the properties for JColorChooser in the
designer, there’s no need to add it to the UI in the designer. You can just
call it directly from a menu item’s actionPerformed() event handler as
follows:

1 Switch back to the designer for TextEditFrame.java.

2 Select the second menu item in the component tree under Edit
(jMenuItem6) which has “Foreground Color” in its actionCommand
property.

3 Click the Events tab in the Inspector and triple-click the
actionPerformed() event to create the following event handler:

void jMenuItem6_actionPerformed(ActionEvent e) {
}

4 Insert the following code into the stub of the event handler (including
comments if you wish):

//Handle the "Foreground Color" menu item
Color color = JColorChooser.showDialog(this,"Foreground
 Color",jTextArea1.getForeground());

if (color != null) {
jTextArea1.setForeground(color);
}
//repaints menu after item is selected
this.repaint();

5 Switch back to the designer.

6 Select the third menu item in the component tree under Edit
(jMenuItem7), which should have “Background Color” in its actionCommand
property. Create an actionPerformed() event for it as you did for
jMenuItem6.

7 Insert the following code into the actionPerformed() event for jMenuItem7:

// Handle the "Background Color" menu item
Color color = JColorChooser.showDialog(this,"Background

Color",jTextArea1.getBackground());
if (color != null) {
jTextArea1.setBackground(color);
}
//repaints menu after item is selected
this.repaint();

B u i l d i n g a J a v a t e x t e d i t o r 19-19

S t e p 7 : A d d i n g a m e n u e v e n t h a n d l e r t o c l e a r t h e t e x t a r e a

8 Save your file, then compile and run your application. Type in some
text and play around with the foreground and background colors. Here
is what it looks like if you set the foreground to white and the
background to black:

9 Close the “Text Editor” application.

Step 7: Adding a menu event handler to clear the text area
Let’s hook up the File|New menu item to an event handler that clears the
text area.

1 Switch back to the designer.

2 Select the File|New menu item in the component tree (jMenuItem1).

3 Create an actionPerformed() event, and insert the following code into
it:

// Handle the File|New menu item.
// Clears the text of the text area.
jTextArea1.setText("");

4 Save and run the application, type something into the text area, then see
what happens when you choose File|New. It should erase the contents.
Notice that it doesn’t ask you if you want to save your file first.

To handle that, you need to set up infrastructure for reading and
writing text files, for tracking whether the file has changed and needs
saving, and so on. Let’s begin the file support in the next step.

5 Close the “Text Editor” application.

19-20 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 8 : A d d i n g a f i l e c h o o s e r d i a l o g

Step 8: Adding a file chooser dialog
Let’s hook up the File|Open menu item to an event handler that presents
the user with a JFileChooser (file open dialog) for text files. If the user
selects a file and clicks the OK button, then the event handler opens that
text file and puts the text into the JTextArea.

1 Switch back to the designer and select the JFileChooser component from
the Swing Containers page of the palette.

2 Click the UI folder in the component tree to drop the component. (If you
click in the UI designer, the component will be dropped into the wrong
section of the tree.)

3 Select the File|Open menu item in the component tree (jMenuItem2).

4 Create an actionPerformed() event and insert the following code:

//Handle the File|Open menu item.
// Use the OPEN version of the dialog, test return for Approve/Cancel
if (JFileChooser.APPROVE_OPTION == jFileChooser1.showOpenDialog(this)) {

 // Display the name of the opened directory+file in the statusBar.
 statusBar.setText("Opened "+jFileChooser1.getSelectedFile().getPath());

 // Code will need to go here to actually load text
 // from file into TextArea.
}

5 Save and run the application. Using the File|Open menu, select a file
and click OK. You should see the complete directory and file name
displayed in the status line at the bottom of the window. However, no
text appears in the text area. We’ll take care of that in the next step.

6 Close the “Text Editor” application before continuing.

Internationalizing Swing components

JBuilder Foundation
users skip this step and

go to Step 9.

If you are localizing your application, you need to add a line of code so the
Swing components, JFileChooser and JColorChooser, will appear in the
language the application is running in. Add the following line of code to
the TextEditFrame class in TextEditFrame.java:

IntlSwingSupport intlSwingSupport1 = new IntlSwingSupport();

Your code now looks like this:

public class TextEditFrame extends JFrame {
 IntlSwingSupport intlSwingSupport1 = new IntlSwingSupport();
 JPanel contentPane;
 JMenuBar menuBar1 = new JMenuBar();
 JMenu menuFile = new JMenu();
 ...
}

B u i l d i n g a J a v a t e x t e d i t o r 19-21

S t e p 9 : A d d i n g c o d e t o r e a d t e x t f r o m a f i l e

Note When adding this line of code, you must also add the import statement
import com.borland.dbswing.*; and the dbSwing library. In this tutorial, this
was taken care of automatically when you added the dbSwing FontChooser
component.

Now, when you run your application in other languages, the JFileChooser
and JColorChooser will appear in the appropriate language.

See also • “Internationalizing programs with JBuilder” in Building Applications
with JBuilder

• “Adding and configuring libraries” in the “Creating and managing
projects” chapter of Building Applications with JBuilder

Step 9: Adding code to read text from a file
Next let’s add the code that actually reads text from the user-selected file
into the JTextArea.

First, you need to add a new method to your class to perform the actual
open file operation. We’ll call this method openFile().

1 Switch to the editor in TextEditFrame.java and insert the following
openFile() method. You can put this method anywhere in your class
(outside of other methods). A good place for it is just after the code for
the jbInit() method, just before the jMenuFileExit_actionPerformed()
event.

// Open named file; read text from file into jTextArea1; report to
// statusBar.
void openFile(String fileName)
{
 try
 {
 // Open a file of the given name.
 File file = new File(fileName);

 // Get the size of the opened file.
 int size = (int)file.length();

 // Set to zero a counter for counting the number of
 // characters that have been read from the file.
 int chars_read = 0;

 // Create an input reader based on the file, so we can read its data.
 // FileReader handles international character encoding conversions.
 FileReader in = new FileReader(file);

 // Create a character array of the size of the file,
 // to use as a data buffer, into which we will read
 // the text data.
 char[] data = new char[size];

19-22 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 9 : A d d i n g c o d e t o r e a d t e x t f r o m a f i l e

 // Read all available characters into the buffer.
 while(in.ready()) {
 // Increment the count for each character read,
 // and accumulate them in the data buffer.
 chars_read += in.read(data, chars_read, size - chars_read);
 }
 in.close();

 // Create a temporary string containing the data,
 // and set the string into the JTextArea.
 jTextArea1.setText(new String(data, 0, chars_read));

 // Display the name of the opened directory+file in the statusBar.
 statusBar.setText("Opened "+fileName);
 }
 catch (IOException e)
 {
 statusBar.setText("Error opening "+fileName);
 }
}

2 Add the following import to the list of imports at the top of the file:

import java.io.*;

3 Click the File|Open event handler
(jMenuItem2_actionPerformed(ActionEvent)) in the structure pane to locate
it in the source code.

4 Replace the code in the File|Open event handler if() statement that
previously said:

// Display the name of the opened directory+file in the statusBar.
statusBar.setText("Opened "+jFileChooser1.getSelectedFile().getPath());

// Code will need to go here to actually load text
// from file into JTextArea.

with this new openFile() method instead, using the concatenated
Directory and File name.

// Call openFile to attempt to load the text from file into JTextArea
openFile(jFileChooser1.getSelectedFile().getPath());
//repaints menu after item is selected
this.repaint();

5 Now try it out and see if it works. Save and run your program and open
a text file in your editor. You should have contents in the text editor.

6 Close the “Text Editor” application.

B u i l d i n g a J a v a t e x t e d i t o r 19-23

S t e p 1 0 : A d d i n g c o d e t o m e n u i t e m s f o r s a v i n g a f i l e

Step 10: Adding code to menu items for saving a file
Now you need code that writes the file back out to disk when File|Save
and File|Save As are used.

To do this, you’ll add a String instance variable to hold the name of the file
that was opened and add methods for writing the text back out to that file
and to other files.

1 Click jFileChooser1 in the structure pane. This will take you to the last
entry in the list of instance variable declarations (since jFileChooser1
was the last declaration made).

2 Add the following declarations to the end of the list after jFileChooser1:

String currFileName = null; // Full path with filename. null means
 // new/untitled.

boolean dirty = false; // True means modified text.

3 Click the openFile(String fileName) method in the structure pane to
quickly locate it in the source code. Place the cursor in that method after
the following line that reads the file into the JTextArea:

jTextArea1.setText(new String(data, 0, chars_read));

4 Insert the following code there:

// Cache the currently opened filename for use at save time...
this.currFileName = fileName;
// ...and mark the edit session as being clean
this.dirty = false;

5 Create the following saveFile() method that you can call from the
File|Save event handler. You can place it just after the openFile()
method:

// Save current file; handle not yet having a filename; report to statusBar.
boolean saveFile() {

 // Handle the case where we don't have a file name yet.
 if (currFileName == null) {
 return saveAsFile();
 }

 try
 {
 // Open a file of the current name.
 File file = new File (currFileName);

19-24 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 1 0 : A d d i n g c o d e t o m e n u i t e m s f o r s a v i n g a f i l e

 // Create an output writer that will write to that file.
 // FileWriter handles international characters encoding conversions.
 FileWriter out = new FileWriter(file);
 String text = jTextArea1.getText();
 out.write(text);
 out.close();
 this.dirty = false;
 return true;
 }
 catch (IOException e) {
 statusBar.setText("Error saving "+currFileName);
 }
 return false;
}

6 Create the following saveAsFile() method that is called from saveFile()
if there is no current filename. It will also be used from the File|Save As
menu later. Put the following code right after the saveFile() method:

// Save current file, asking user for new destination name.
// Report to statuBar.
boolean saveAsFile() {
 // Use the SAVE version of the dialog, test return for Approve/Cancel
 if (JFileChooser.APPROVE_OPTION == jFileChooser1.showSaveDialog(this)) {
 // Set the current file name to the user's selection,
 // then do a regular saveFile
 currFileName = jFileChooser1.getSelectedFile().getPath();
 //repaints menu after item is selected
 this.repaint();
 return saveFile();
 }
 else {
 this.repaint();
 return false;
 }
}

7 Switch back to the designer and create an actionPerformed() event
handler for the File|Save menu item (jMenuItem3). Insert the following
code:

//Handle the File|Save menu item.
saveFile();

8 Create an actionPerformed() event handler for the File|Save As menu
item (jMenuItem4) and insert the following code:

//Handle the File|Save As menu item.
saveAsFile();

9 Save and compile your file. Run it and try saving text to a file.

Warning This is now a functioning text editor. Don’t damage important source
files while testing it.

10 Close the “Text Editor” application.

B u i l d i n g a J a v a t e x t e d i t o r 19-25

S t e p 1 1 : A d d i n g c o d e t o t e s t i f a f i l e h a s b e e n m o d i f i e d

Step 11: Adding code to test if a file has been modified
The program needs to keep track of whether a file has been modified (is
“dirty”) since being created, opened, or saved, so you can ask the user if it
should be saved before closing the file or exiting the program. To do this,
let’s add a boolean variable called dirty.

1 Click the following File|New event-handling method in the structure
pane: jMenuItem1_actionPerformed(ActionEvent e)

2 Add the following code to the end of this method to clear the dirty and
currFileName variables. Place it immediately after the line
jTextArea1.setText(""); and before the closing curly brace.

// clear the current filename and set the file as clean:
currFileName = null;
dirty = false;

You’ll use the JOptionPane dialog to display a confirmation message box
to find out from the user whether to save a dirty file before abandoning
it when doing a File|Open, File|New, or File|Exit. This dialog is
invoked by calling a class method on JOptionPane, so you do not need to
add a JOptionPane component to your program.

3 Add the following okToAbandon() method to the source code. You can
put this new method right after the saveAsFile() method:

// Check if file is dirty.
// If so get user to make a "Save? yes/no/cancel" decision.
boolean okToAbandon() {
 int value = JOptionPane.showConfirmDialog(this, "Save changes?",
 "Text Edit", JOptionPane.YES_NO_CANCEL_OPTION) ;

 switch (value) {
 case JOptionPane.YES_OPTION:
 // yes, please save changes
 return saveFile();
 case JOptionPane.NO_OPTION:
 // no, abandon edits
 // i.e. return true without saving
 return true;
 case JOptionPane.CANCEL_OPTION:
 default:
 // cancel
 return false;
 }
}

The above method, which you’ll finish later, will be called whenever
the user chooses File|New, File|Open, or File|Exit. Its purpose is to
test to see if the text needs to be saved (is “dirty”). If it is dirty, this
method uses a Yes, No, Cancel Message dialog for asking the user
whether to save.

19-26 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 1 1 : A d d i n g c o d e t o t e s t i f a f i l e h a s b e e n m o d i f i e d

This method also calls saveFile() if the user clicks the Yes button. When
the method returns, the <CODE>boolean</CODE> return value, if
true, indicates it is OK to abandon this file because it was clean or the
user clicked the Yes or No button. If the return value is false, it means
the user clicked Cancel. The code that will actually check to see if the
file has changed will be added in a later step.

For now, this method always treats the file as dirty, even if no change
has been made to the text. Later you will add a method to set the dirty
variable to true when the user types in the text area, and you will add
code to the top of okToAbandon() to test the dirty variable.

4 Place calls to this okToAbandon() method at the top of your File|New and
File|Open event handlers, as well as in the wizard-generated File|Exit
event handler. In each case, test the value returned by okToAbandon() and
only perform the operation if the value returned is ‘true’.

Tip To find these event handlers quickly, click them in the structure pane.
You can also search in the structure pane by moving focus to the pane
and typing.

The following are the modified event handlers:

• For File|New, put a new if statement around the existing code in
the method body, so that code will only be executed if okToAbandon()
returns true. The modified method should now look like this:

void jMenuItem1_actionPerformed(ActionEvent e) {
 // Handle the File|New menu item.
 if (okToAbandon()) {
 // clears the text of the TextArea
 jTextArea1.setText("");
 // clear the current filename and set the file as clean:
 currFileName = null;
 dirty = false;
 }
}

• For File|Open, do the same, or more simply, return right away from
the method if okToAbandon() returns false. The modified method
should now look like this:

void jMenuItem2_actionPerformed(ActionEvent e) {
 //Handle the File|Open menu item.
 if (!okToAbandon()) {
 return;
 }
 // Use the OPEN version of the dialog, test return for Approve/Cancel
 if (JFileChooser.APPROVE_OPTION == jFileChooser1.showOpenDialog(this)){
 // Call openFile to attempt to load the text from file into TextArea
 openFile(jFileChooser1.getSelectedFile().getPath());
 }
 this.repaint();
}

B u i l d i n g a J a v a t e x t e d i t o r 19-27

S t e p 1 2 : A c t i v a t i n g t h e t o o l b a r b u t t o n s

• For File|Exit, put a test for okToAbandon() around the line of code that
exits the application. The modified method should now look like
this:

//File | Exit action performed
public void jMenuFileExit_actionPerformed(ActionEvent e) {
 if (okToAbandon()) {
 System.exit(0);
 }
}

Each of these menu event handling methods now only does its task if
okToAbandon() returns true.

5 Save and run the program and try opening, editing, and saving various
files. Remember that okToAbandon() isn’t completed yet (it will be
finished in a later step). Right now, it always acts like the file is dirty.
The result is that for now the confirmation message box always comes
up when you choose File|New, File|Open, or File|Exit, even if the text
hasn’t been changed.

6 Close the “Text Editor” application.

Step 12: Activating the toolbar buttons
Since you checked the Generate Toolbar option in the Application wizard,
JBuilder generated code for a JToolBar and populated it with three JButton
components that already display icons. All you have left to do is specify
the text for each button’s label and tool tip, and create an actionPerformed()
event for each button from which you’ll call the appropriate
event-handling method.

Specifying button tool tip text

To specify tool tips for the buttons,

1 Switch back to the UI designer.

2 Select jButton1 in the component tree, then click the Properties tab in the
Inspector.

3 Click the toolTipText property to highlight its entry. Type Open File, if it
doesn’t already say that, and press Enter.

4 Repeat this process for jButton2 and jButton3, using the following text:

• Type Save File for jButton2.
• Type About for jButton3.

19-28 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 1 2 : A c t i v a t i n g t h e t o o l b a r b u t t o n s

Creating the button events

Up until now, you have created event handlers through the Inspector.
Let’s use a shortcut to create the button events that’s much faster.

Many controls define a “default” event in their BeanInfo class. For
example, a button defines actionPerformed() as its default event. To quickly
generate an event handler for the default event, double-click the control in
the UI designer.

Using this shortcut, create events for the buttons as follows:

1 Double-click jButton1 in the UI designer. This should switch you to the
editor and place your cursor inside the new
jButton1_actionPerformed(ActionEvent e) event for the Open button.

2 Enter the following code to call the fileOpen() method:

//Handle toolbar Open button
fileOpen();

3 Create a jButton2_actionPerformed(ActionEvent e) event for jButton2 and
call saveFile() from it:

//Handle toolbar Save button
saveFile();

4 Create a jButton3_actionPerformed(ActionEvent e) event for jButton3, and
call helpAbout() from it:

//Handle toolbar About button
 helpAbout();

Notice that the code in the jButton1 and jButton3 event-handlers make calls
to methods which don’t exist yet: fileOpen() and helpAbout(). Let’s create
those methods now.

Creating a fileOpen() method

The purpose of the fileOpen() method will be to perform the operations that
are currently in your File|Open menu handling method. However, since
you need to perform the same operations when the Open button is pressed,
you’ll create the fileOpen() method so you can have just one copy of that
code, and call it from both the File|Open menu and the Open button.

You can use the following steps to create the method:

1 Create a fileOpen() method stub. You can put this method just above
the openFile() method. The stub should look like this:

// Handle the File|Open menu or button, invoking okToAbandon and openFile
// as needed.
 void fileOpen() {
}

B u i l d i n g a J a v a t e x t e d i t o r 19-29

S t e p 1 2 : A c t i v a t i n g t h e t o o l b a r b u t t o n s

2 Select all the code (except the first comment line) inside your existing
File|Open event handler, jMenuItem2_actionPerformed(). The code
selected should be:

if (!okToAbandon()) {
 return;
}
// Use the OPEN version of the dialog, test return for Approve/Cancel
if (JFileChooser.APPROVE_OPTION == jFileChooser1.showOpenDialog(this)) {
 // Call openFile to attempt to load the text from file into TextArea
 openFile(jFileChooser1.getSelectedFile().getPath());
}
this.repaint();

3 Cut this code from the source code to the clipboard, and paste it into
the new fileOpen() method stub.

Tip Quickly search in the editor using Search|Find.

Here is what the completed fileOpen() method should look like:

// Handle the File|Open menu or button, invoking okToAbandon and openFile
// as needed.
void fileOpen() {
 if (!okToAbandon()) {
 return;
 }
 // Use the OPEN version of the dialog, test return for Approve/Cancel
 if (JFileChooser.APPROVE_OPTION == jFileChooser1.showOpenDialog(this)) {
 // Call openFile to attempt to load the text from file into TextArea
 openFile(jFileChooser1.getSelectedFile().getPath());
 }
 this.repaint();
}

4 Now, call fileOpen() from the File|Open event handler, which you
should modify to look like this:

void jMenuItem2_actionPerformed(ActionEvent e) {
 // Handle the File|Open menu item.
 fileOpen();
}

Creating a helpAbout() method
Now do a similar thing for the Help|About menu item and the About
button. Gather the code that is currently in the Help|About event handler
into a new helpAbout() method and call it from both the menu and button
event handlers.

19-30 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 1 3 : H o o k i n g u p e v e n t h a n d l i n g t o t h e t e x t a r e a

Use the following steps to do this:

1 Place the following stub in your code for a new helpAbout() method just
before the fileOpen() method:

// Display the About box.
void helpAbout() {
}

2 Cut the following code from jMenuHelpAbout_actionPerformed() into the
new helpAbout() method stub:

TextEditFrame_AboutBox dlg = new TextEditFrame_AboutBox(this);
Dimension dlgSize = dlg.getPreferredSize();
Dimension frmSize = getSize();
Point loc = getLocation();
dlg.setLocation((frmSize.width - dlgSize.width) / 2 + loc.x,

(frmSize.height - dlgSize.height) / 2 + loc.y);
dlg.setModal(true);
dlg.show();

3 Insert the call helpAbout(); into jMenuHelpAbout_actionPerformed() so the
method looks like this:

//Help | About action performed
public void jMenuHelpAbout_actionPerformed(ActionEvent e) {
 helpAbout();
}

4 Now, save and run the application. Try the Open, Save, and About
buttons. Compare them with the File|Open, File|Save, and
Help|About menu items.

5 Close the “Text Editor” application.

Step 13: Hooking up event handling to the text area
Now let’s hook up event handling to the JTextArea so your program will be
setting the dirty flag whenever typing occurs. To do this, you need to add
a Swing DocumentListener to the jTextArea’s document (model) and check
for insert, remove, and changed events.

1 Switch to design mode and select jTextArea1.

2 Click the document property in the left column of the Inspector, then
right-click and choose Expose As Class Level Variable.

A document1 object is placed in the Other folder of the component tree
where you can now set its properties and events.

3 Select document1 in the tree, then switch to the Events tab in the Inspector
and create a changedUpdate() event. Notice that the following
DocumentListener was added to the jbInit():

document1.addDocumentListener(new
 TextEditFrame1_document1_documentAdapter(this));

B u i l d i n g a J a v a t e x t e d i t o r 19-31

S t e p 1 3 : H o o k i n g u p e v e n t h a n d l i n g t o t h e t e x t a r e a

4 Insert the following code into the new void
document1_changedUpdate(DocumentEvent e) event:

dirty = true;

5 Return to the designer, select document1, and create two more events
from the Inspector for document1: insertUpdate() and removeUpdate().
Insert the same line of code in these events that you used in the
changedUpdate() event.

This will make sure that any character typed in the text area will force
the dirty flag to true.

6 Add the following three lines to the top of the okToAbandon() method so
that now it will really be testing the dirty flag:

if (!dirty) {
 return true;
}

The okToAbandon() method should now look like this:

// Check if file is dirty.
// If so get user to make a "Save? yes/no/cancel" decision.
boolean okToAbandon() {
 if (!dirty) {
 return true;
 }
 int value = JOptionPane.showConfirmDialog(this, "Save changes?",
 "Text Edit", JOptionPane.YES_NO_CANCEL_OPTION) ;
 switch (value) {
 case JOptionPane.YES_OPTION:
 // yes, please save changes
 return saveFile();
 case JOptionPane.NO_OPTION:
 // no, abandon edits
 // i.e. return true without saving
 return true;
 case JOptionPane.CANCEL_OPTION:
 default:
 // cancel
 return false;
 }
}

7 At this point, you should save your work, run the program, and test to
see that dirty and clean states of the file work properly:

• Typing text in the text area should “dirty” the file, so that the Save
Changes prompt appears if you attempt a File|New, File|Open, or
File|Exit.

• The message box should not appear on those operations when the
file is clean.

• Close the “Text Editor” application.

19-32 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 1 4 : A d d i n g a r i g h t - c l i c k m e n u t o t h e t e x t a r e a

Step 14: Adding a right-click menu to the text area
This step is for JBuilder

Professional and
Enterprise only.

Foundation users skip
this step and go to

Step 15.

The DBTextDataBinder component adds a right-click menu to Swing text
components for performing simple editing tasks such as cutting, copying,
or pasting clipboard data. DBTextDataBinder also has built-in actions to load
and save files into a JTextArea, but they don’t allow you to retrieve the file
name loaded or saved, which you display in your status bar. For the
purposes of this tutorial, we are going to add a DBTextDataBinder, bind it to
jTextArea1, and suppress the file Open and Save actions.

1 Click the Design tab and select the DBTextDataBinder component on the
dbSwing Models tab of the palette.

2 Drop it anywhere in the designer or on the component tree. It is placed
in the Data Access folder in the tree as dBTextDataBinder1.

3 Select dBTextDataBinder1 in the component tree, and then click its
jTextComponent property in the Inspector.

4 Click the Down arrow on that property value and choose jTextArea1
from the drop-down list.

This binds dBTextDataBinder1 to jTextArea1 by placing the following line
of code in the jbInit() method.

dBTextDataBinder1.setJTextComponent(jTextArea1);

5 Select the enableFileLoading property for dBTextDataBinder1 and set its
value to false using the drop-down arrow. Do the same thing for the
enableFileSaving property.

6 Save your work, then run the application. Notice that you now have a
pop-up menu when you right-click the text area. Also notice that it does
not contain menu items for Open and Save.

Note You can actually add any of the items on the right-click menu to your
menu bar and toolbar if you wish by using the DBTextDataBinder public
static Action classes, but you would have to provide the icons and write
the code manually.

B u i l d i n g a J a v a t e x t e d i t o r 19-33

S t e p 1 5 : S h o w i n g f i l e n a m e a n d s t a t e i n t h e w i n d o w t i t l e b a r

button = productsToolBar.add(DBTextDataBinder.UNDO_ACTION);
button.setText("");
button.setPreferredSize(buttonSize);

For an example of how to do this, see the TextPane sample in the JBuilder
samples folder: jbuilder/samples/dbswing/TextPane

For more information on the DBTextDataBinder component,

1 Drill down into the TextEditFrame component in the structure pane with
TextEditFrame.java open in the editor.

2 Select the dBTextDataBinder1 component. The code is highlighted in the
editor.

3 Right-click the highlighted code in the editor and select Browse
Symbol. The DBTextDataBinder source code file opens in the editor. Click
the Doc tab to view the documentation.

Close the “Text Editor” application before continuing to the next step.

Step 15: Showing filename and state in the window title bar
In this final step, you will add code that uses the title bar of the application to
display the current filename, and to display an asterisk if the file is “dirty”.

To do this, create a new method that will update the title bar, then call it
from places where the code changes either the current file name or the
dirty flag. Name this new method updateCaption().

1 Click the jMenuFileExit_actionPerformed(ActionEvent e) method in the
structure pane. This moves the cursor to that event handling method
and highlights it in the editor. Click in the editor to place the cursor just
above this method and insert the following updateCaption() method:

// Update the title bar of the application to show the filename and its
// dirty state.
void updateCaption() {
 String caption;

 if (currFileName == null) {
 // synthesize the "Untitled" name if no name yet.
 caption = "Untitled";
 }
 else {
 caption = currFileName;
 }

 // add a "*" in the caption if the file is dirty.
 if (dirty) {
 caption = "* " + caption;
 }
 caption = "Text Editor - " + caption;
 this.setTitle(caption);
}

19-34 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 1 5 : S h o w i n g f i l e n a m e a n d s t a t e i n t h e w i n d o w t i t l e b a r

2 Now call updateCaption() from each of the places the dirty flag actually
changes or whenever you change the currFileName.

Specifically, put the call updateCaption(); in the following places:

• Inside the try block of the TextEditFrame() constructor, as the next line
immediately after the call to jbInit().

//Construct the frame
public TextEditFrame() {
 enableEvents(AWTEvent.WINDOW_EVENT_MASK);
 try {
 jbInit();
 updateCaption();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
}

• As the last line in the try block of the openFile() method.

try
{
 // Open a file of the given name.
 File file = new File(fileName);

 // Get the size of the opened file.
 int size = (int)file.length();

 // Set to zero a counter for counting the number of
 // characters that have been read from the file.
 int chars_read = 0;

 // Create an input reader based on the file, so we can read its data.
 // FileReader handles international character encoding conversions.
 FileReader in = new FileReader(file);

 // Create a character array of the size of the file,
 // to use as a data buffer, into which we will read
 // the text data.
 char[] data = new char[size];

 // Read all available characters into the buffer.
 while(in.ready()) {
 // Increment the count for each character read,
 // and accumulate them in the data buffer.
 chars_read += in.read(data, chars_read, size - chars_read);
 }
 in.close();

 // Create a temporary string containing the data,
 // and set the string into the JTextArea.
 jTextArea1.setText(new String(data, 0, chars_read));

B u i l d i n g a J a v a t e x t e d i t o r 19-35

S t e p 1 5 : S h o w i n g f i l e n a m e a n d s t a t e i n t h e w i n d o w t i t l e b a r

 // Cache the currently opened filename for use at save time...
 this.currFileName = fileName;
 // ...and mark the edit session as being clean
 this.dirty = false;

 // Display the name of the opened directory+file in the statusBar.
 statusBar.setText("Opened "+fileName);
 updateCaption();
}
catch (IOException e)
{
 statusBar.setText("Error opening "+fileName);
}

• Right after setting this.dirty=false in the try block of saveFile().

try
{
 // Open a file of the current name.
 File file = new File (currFileName);

 // Create an output writer that will write to that file.
 // FileWriter handles international characters encoding conversions.
 FileWriter out = new FileWriter(file);
 String text = jTextArea1.getText();
 out.write(text);
 out.close();
 this.dirty = false;
 updateCaption();
 return true;
}
catch (IOException e) {
 statusBar.setText("Error saving "+currFileName);
}
return false;

• As the last line of code in the if block of the File|New menu handler
jMenuItem1_actionPerformed().

void jMenuItem1_actionPerformed(ActionEvent e) {
 // Handle the File|New menu item.
 if (okToAbandon()) {
 // clears the text of the TextArea
 jTextArea1.setText("");
 // clear the current filename and set the file as clean:
 currFileName = null;
 dirty = false;
 updateCaption();
 }
}

19-36 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 1 6 : D e p l o y i n g t h e “ T e x t E d i t o r ” a p p l i c a t i o n t o a J A R f i l e

• When the dirty flag is first set in a clean file due to user typing. This
is done in each of the document1 event handlers which should be
changed to read:

void document1_changedUpdate(DocumentEvent e) {
 if (!dirty) {
 dirty = true;
 updateCaption();
 }
}

void document1_insertUpdate(DocumentEvent e) {
 if (!dirty) {
 dirty = true;
 updateCaption();
 }
}

void document1_removeUpdate(DocumentEvent e) {
 if (!dirty) {
 dirty = true;
 updateCaption();
 }
}

3 Run your application and watch the title bar as you perform the
following operations:

• Change the file name using File|SaveAs.

• Type in the text area, making the file dirty. Notice the * appear in the
title bar as soon as the file has been touched.

• Save the file, making it clean.

• If you have a right-click menu, try out the actions on it.

Congratulations! You now have a functional text editor written in
JBuilder!

For suggestions on improving this tutorial, send email to
jpgpubs@inprise.com.

JBuilder Professional and
Enterprise

JBuilder Professional and Enterprise users: Proceed to Step 16 to deploy
this application and run it from the command line.

Step 16: Deploying the “Text Editor” application to a JAR file
This step is for JBuilder

Professional and
Enterprise only.

Now that you’ve created the “Text Editor” application, you can deploy all
the files to a Java Archive File (JAR) using JBuilder’s Archive Builder.

Note If you haven’t yet completed Steps 1 - 15 of this tutorial, you can still
complete this step of the tutorial using the Text Editor sample project in

B u i l d i n g a J a v a t e x t e d i t o r 19-37

S t e p 1 6 : D e p l o y i n g t h e “ T e x t E d i t o r ” a p p l i c a t i o n t o a J A R f i l e

the samples/TextEditor directory of your JBuilder installation. To do this,
you need to convert the paths specified in the tutorial to point to
samples/TextEditor and its subdirectories.

Overview
Deployment is an advanced subject which takes some study and
experience to understand. JBuilder’s Archive Builder reduces this
complexity and helps you create an archive file that meets your
deployment requirements.

This step of the tutorial will give you the explicit instructions for
deploying the “Text Editor” application. It is not intended to be a
comprehensive example of all the situations you will run across while
deploying Java programs. Each application or applet you deploy has its
own unique set of deployment issues, so it is difficult to generalize. Links
are provided throughout this tutorial for further information on
deployment, including Sun’s Java™ Tutorial.

The first step in deploying any program is to identify which project and
library contents will be included in the archive. This will help you
determine what classes and resources, as well as dependencies, to include.
Including all classes, resources and dependencies in your archive creates a
large archive file. However, the advantage is that you don’t need to
provide your end-user with other files as the archive contains everything
needed to run the program. If you exclude some or all classes, resources or
dependencies, you’ll need to provide them to your end-user separately.

The Archive Builder will never include the JDK in your archive. It
assumes that the JDK classes already exist on the target computer in the
form of an installed JDK, Java runtime environment or Java Plug-in, or
that you will be providing it in your installation.

JBuilder’s Archive Builder also creates an archive node in your project,
allowing easy access to the archive file. At any time during development,
you can make the archive file, rebuild it, or reset its properties. You can
also view the contents of the archive, as well as the contents of the
manifest file.

Running the Archive Builder

To run the Archive Builder wizard and create the archive node and file for
the Text Editor tutorial,

1 Save all files in the project and compile it.

2 Choose Wizards|Archive Builder. Step 1 of the Archive Builder is
displayed.

19-38 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 1 6 : D e p l o y i n g t h e “ T e x t E d i t o r ” a p p l i c a t i o n t o a J A R f i l e

3 Choose Application for the Archive Type. Step 1 of the wizard should
look like this:

4 Click Next to go to Step 2 of the wizard.

5 Change the name of the archive to Text Editor Application JAR in the
Name field. This is the name of the archive node that will be displayed
in the project pane.

6 Accept the remaining defaults on this page. These options:

• Create an uncompressed JAR file in the project’s root directory.
• Rebuild the archive each time the project is made or rebuilt.

When you’re done, Step 2 of the wizard should now look like this:

7 Click Next to go to Step 3 of the wizard, where you determine what
project classes and resources are deployed. The project classes and
resources are those on your outpath, defined on the Paths page of the
Project Properties dialog box. Usually, this is set to the classes directory

B u i l d i n g a J a v a t e x t e d i t o r 19-39

S t e p 1 6 : D e p l o y i n g t h e “ T e x t E d i t o r ” a p p l i c a t i o n t o a J A R f i l e

of your project. For this tutorial, accept the default, so that the wizard
includes all classes and resources on the outpath.

Step 3 of the wizard will look like this:

8 Click Next to go to Step 4 of the wizard. In this step, you choose how
library contents are included in your archive file.

1 Select dbSwing and choose Include Required Classes And All
Resources.

2 Select DataExpress and choose Include Required Classes And All
Resources. (Even though you did not use the DataExpress library in
this tutorial, some dbSwing classes depend on DataExpress classes,
so that they need to be included in the archive file.)

Note This option is the safest and simplifies deployment. It will, however,
make the archive file larger.

Step 4 of the wizard should look like this:

19-40 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 1 6 : D e p l o y i n g t h e “ T e x t E d i t o r ” a p p l i c a t i o n t o a J A R f i l e

9 Click Next to go to Step 5, where you create the manifest file. There can
only be one manifest file in an archive, and it always has the path name
META-INF/MANIFEST.MF. For more information on the manifest file, see
“Understanding the Manifest” at
http://java.sun.com/docs/books/tutorial/jar/basics/manifest.html.

Accept the default settings for Step 5 of the wizard. These options:

• Automatically include the manifest file in the archive file.

• Automatically create the manifest file for you.

Step 5 of the wizard will look like this:

10 Click Next to go to Step 6, where you choose how the Archive Builder
finds the main class. For this tutorial, leave the default setting: Use The
Main Class Specified In The Default Runtime. This option uses the
main class specified on the Run page of the Project Properties dialog
box.

Step 6 of the wizard will look like this:

B u i l d i n g a J a v a t e x t e d i t o r 19-41

S t e p 1 6 : D e p l o y i n g t h e “ T e x t E d i t o r ” a p p l i c a t i o n t o a J A R f i l e

11 Click Finish to create the archive node. The archive node, Text Editor
Application JAR, is now displayed in the project pane. You can
right-click the archive node and make it, rebuild it, or change its
properties.

12 Select Project|Make Project to make the project.

13 Expand the archive node in the project pane to see the archive file.
Double-click the archive file, TextEditor.jar. Its contents are displayed
in the structure pane and the contents of the manifest file are displayed
in the content pane. JBuilder should now look similar to this:

Notice the following two headers in the manifest file:

Manifest-Version: 1.0 Indicates that the manifest’s
entries take the form of
“header:value” pairs and that it
conforms to version 1.0 of the
manifest specification.

Main-Class: texteditor.TextEditClass Indicates that TextEditClass.class
is the entry point for your
application (the class containing
the public static void
main(String[] args) method,
which runs the application.)

19-42 L e a r n i n g J a v a w i t h J B u i l d e r

S t e p 1 6 : D e p l o y i n g t h e “ T e x t E d i t o r ” a p p l i c a t i o n t o a J A R f i l e

Running the application from the command line

Important Before you run the application from the command line, you need to make
sure your operating system’s PATH environment variable points to the JDK
jre/bin directory, the runtime environment. The JBuilder installation
process guarantees that JBuilder knows where to find the JDK class files.
However, once you leave the JBuilder environment, your system needs to
know where the class files for the Java runtime are installed. How you set
the PATH environment variable depends on which operating system you
are using.

To run the Text Edit tutorial from the command line,

1 Switch to your command-line window and change to the TextEditor
directory. This is where the JAR file is located.

2 Set the path to the JDK jre/bin folder.

3 Enter the following command at the command line:

java -jar TextEditor.jar

where,

• java - The Java tool that runs the jar file.
• jar - The option that tells the Java VM that the file is an archive file.
• TextEditor.jar - The name of the archive file.

Since the manifest file provides the information in the Main-Class
header about which class to run, you don’t need to specify the class
name at the end of this command. And, because all classes, resources,
and dependencies are included in the archived JAR file, you don’t need
to specify a classpath or copy JBuilder libraries to this directory.

Note When you use the -jar option, the Java runtime ignores any explicit
classpath settings. If you try to run this JAR file when you’re not in the
TextEditor directory, you need to use the following Java command:

java -jar -classpath <full_path> <main_class_name>

The Java runtime looks in the JAR file for the startup class, and the
other classes used by the application. The Java VM uses three search
paths to look for the files: the bootstrap class path, the installed
extensions, and the user class path. To learn about these search paths,
see “How Classes Are Found” at
http://java.sun.com/j2se/1.3/docs/tooldocs/findingclasses.html.

That’s it! As you can see, there is a lot of information to assimilate related
to deployment. Deployment goes far beyond just creating an archive file.
Not only do you have to make sure you provide all the necessary classes
and resources, as well as libraries, in your deployment set, you have be
concerned with other issues, such as learning about the java tool and the

B u i l d i n g a J a v a t e x t e d i t o r 19-43

S t e p 1 6 : D e p l o y i n g t h e “ T e x t E d i t o r ” a p p l i c a t i o n t o a J A R f i l e

Jar tool. There are also differences between running JDK 1.1 and Java 2
applications.

Take the time to study the wealth of information available at the links to
Sun’s web site provided here and in “Deploying Java programs” in
Building Applications with JBuilder. You can also look at the Sun Tutorial
trail on Jar files at
http://java.sun.com/docs/books/tutorial/jar/index.html.

For suggestions on improving this tutorial, send email to
jpgpubs@inprise.com.

19-44 L e a r n i n g J a v a w i t h J B u i l d e r

I n d e x I-1

Symbols
. (dot) operator 10-3
?: operator 9-12
_ (underscore) as name prefix 9-2

Numerics
8-bit ASCII set 9-4

A
abstract classes 10-11
access boundaries 14-4
access modifiers 10-9
accessor methods 10-10
adding components 16-10, 16-14
addition 9-9, 9-11
allocation 9-8, 9-13, 9-15

getting StringBuffer 11-5
AND operator 9-10, 9-11, 9-12
AppBrowser 3-2
Append method 11-5
applet 5-14, 10-17, 14-2

adding components 17-15
ARCHIVE attribute 17-26
command line 17-28
deploying 17-22
event handlers 17-21
message for non-Java browsers 17-26
running 17-10, 17-28, 17-29
running at the command line 17-28
testing 17-29
tutorial 17-1

Applet wizard 5-14
tutorial for 17-6

Application wizard
tutorial 16-4

applications 14-2
adding components 16-10, 16-14
command line 16-17
deploying 7-5, 16-16
example for developing 10-4
running 12-1, 16-7, 16-12, 16-13, 16-17
running at the command line 16-13, 16-17
running deployed 7-7
tutorial 16-1

Archive Builder 7-5
tutorial 16-16, 17-22

arithmetic operators 9-9, 9-11
array types 9-15

arrays 9-15
accessing elements 9-16
representing strings 11-4

ASCII character sets 9-4
assignment 9-8

operators 9-11
auto-increment operator 9-9
Automating application development

wizards 5-1

B
BeansExpress 5-13
binary digits 9-12
bitwise operators 9-12
blocks 9-6, 11-9

static code 15-2
books in JBuilder doc set 3-7
boolean data types 9-14
boolean literals 9-4
boolean operators 9-10, 9-12
Borland

contacting 1-2
Borland Online 1-2
break statements 9-21
building database applications 8-4
building distributed applications

overview 8-1
built-in data types 9-13, 9-14
byte reads 11-10
bytecode violations 14-3
bytecodes 14-1

translating 14-6

C
C header files 15-3
calculations 9-8
Calendar class 11-6
Capacity method 11-5
casting 9-17
character arrays 11-4
character data types 9-15
character literals 9-4
character strings 9-5
charAt method 11-4
checkerror method 11-12
checkRead method 14-4
checkWrite method 14-4
child classes 10-6
choosing layouts 6-5

Index

I-2 L e a r n i n g J a v a w i t h J B u i l d e r

class definitions 10-2
grouping 10-17

class files 10-19, 14-1
class libraries 11-1
class loader 14-5
class names 9-3
class paths 10-19
classes 10-2 to 10-13

accessing members 10-9
implementing interfaces 10-14
java-specific 11-1
objects vs. 10-2

ClassNotFoundException exceptions 13-5
ClassType method 11-3
cleanup 10-4
clone method 11-2
code 4-3

Code templates 4-4
conditional execution 9-19
reusing 10-17
tutorial for editing 16-11

code blocks 9-6
static 15-2

code style options 19-4
Code templates source code 4-4
CodeInsight 4-3
collapsing AppBrowser trees 3-5
comments 9-7
Common Object Request Broker Architecture

(CORBA) 8-3
compareTo method 11-4
comparison operators 9-10
comparisons 11-2
compilers 14-1, 14-6
compiling 7-1, 16-7, 17-10

Java programs 7-1
overview 7-1

Compiling, running, debugging tutorial 18-1
complement 9-12
component palette

selecting components 16-10, 16-14
components 16-14
composite data types 9-15
composite types 9-13
concat method 11-4
concurrency-control techniques 12-8
conditional statements 9-22
constants 9-3
constructors 10-4

calling 10-8
super classes 10-8
wrapper classes 11-3

contacting Borland 1-2
World Wide Web 1-2

containers
choosing layouts 6-5

continuation character 9-5, 9-6
continue statements 9-22
control characters 9-4
control statements 9-21
control structures 9-19 to 9-24
conversions 9-17
copying objects 11-2
CORBA 8-3
CORBA applications

deploying 7-6
creating a project

with Project wizard 5-5
creating JavaBeans 5-13
creating menus 6-3
creating projects 16-1, 17-3
creating threads 12-2 to 12-5
cross-platform environments 12-2
currentTimeMillis method 11-6
custom UIs 16-7

D
data members 10-3

accessing 10-9
data structures 9-15, 11-6, 11-7
data types 9-13, 9-14 to 9-17

casting 9-17
getting 11-3
reading 13-6
writing to streams 13-4

database applications 8-4
databases 8-4

developing 8-4
new features 2-9

DataExpress architecture 8-4
Date class 11-6
deallocation 10-4
debugger

new features 2-8
debugging 7-3

overview 7-4
decimal literals 9-3
declarations

arrays 9-15
classes 10-2
interfaces 10-14
packages 10-18
threads 12-2
variables 9-13

decrement operator 9-9
default keyword 10-9
defaultCloseOperation 19-6

I n d e x I-3

deployed applications
running 7-7

deploying
CORBA applications 7-6
JAR tool 17-22
Java programs 7-5
web-based applications 7-7

deployment
applets 17-22

deployment tutorial 16-16, 19-36
deserialization 13-1

example 13-4
designing

user interface 6-1
destructors 10-4
developer support 1-2
developing applications 10-4
devices 11-9
Dictionary class 11-6
displaying project files 5-8
distributed applications

overview 8-1
division 9-9, 9-11
do loops 9-20
DO_NOTHING_ON_CLOSE 19-6
documentation conventions 1-3
documents in JBuilder doc set 3-7
dot operator 10-3
dynamic link libraries 11-6

E
editing source code 16-11
editor 4-1

CodeInsight 4-3
keybindings 4-5
new features 2-7
SpeedSetting 4-5

editor emulations 4-5
encryption 14-6
endsWith method 11-4
enhancements 2-1
Enterprise JavaBeans 3-6

new features 2-3
Enumeration interface 11-7
equality 9-11
equals method 11-2, 11-3
error stream 11-6
escape sequences 9-4
evaluation operators 9-10
event handlers 16-15

tutorial 19-19
events

creating and modifying 6-4
executing applications 16-7

expanding AppBrowser trees 3-5
exponentation 9-4
expressions 9-8
extends keyword 10-6
external packages 10-19

importing 10-18

F
file classes 11-12
file input/output 11-12
FileInputStream class 11-10, 11-12, 13-4
FileOutputStream class 11-12, 13-3
files

adding to project 5-10
compiling and building 7-1
removing from project 5-10
renaming 5-11

finalizers 10-4
floating-point literals 9-4
flow control structures 9-19 to 9-24
flush method 11-12, 13-3
FontChooser dialog tutorial 19-13, 19-15
fonts 16-10
for loops 9-20 to 9-21
freeing resources 10-4, 13-3, 13-5
function names 9-3

G
garbage collection 10-3

forcing 11-6
gc method 11-6
generating source files 16-4, 17-6
getters 10-10
getting help 2-10
global variables 9-18

caution for 9-19
greater than operator 9-10
greater than or equal operator 9-10
grouping statements 9-6

H
Hashtable class 11-6
hasModeElements method 11-7
header files 15-3
Hello World application

customizing 16-7
running 16-12, 16-13

help 2-10
about 2-10

hexadecimal literals 9-3
HIDE_ON_CLOSE 19-6
hierarchical views

navigating 3-5

I-4 L e a r n i n g J a v a w i t h J B u i l d e r

I
I/O package 11-9
identifiers 9-2

predefined 9-5
if-else statements 9-22
IIOP 8-3
implements keyword 10-14
implicit type casting 9-18
import statements 10-17
indexOf method 11-4
inequality 9-11
inheritance 10-6

interface implementation and 10-13
initializing arrays 9-15
initializing variables 9-14
input devices 11-11
input stream classes 11-9
input streams 11-6, 11-9, 11-12, 13-4
Inspector 6-4

opening 6-5
overview 6-4
using 6-4

instance variables 10-2
instantiation 10-2

abstract classes and 10-11
defined 10-2

instructions 14-1, 14-6
integers 9-3
integrated debugger 7-3
interface design 16-7

tutorial 17-11
interface keyword 10-14
interfaces 10-13, 13-2

native code 15-1
pre-built utility 11-6

internationalization 8-5, 8-6
internationalizing programs 8-5
JBuilder features 8-6

Internet InterORB Protocol (IIOP) 8-3
InternetBeans Express 2-2
introduction 3-1

J
JAR tool

deploying applets 17-22
Java 14-2

keywords 9-5
language basics 9-1
language support 3-6

.java files 16-4, 17-6
Java class libraries 11-1
Java data types 9-13

Java interpreter 14-1
Java Native Method Interface (JNI) 15-1
Java RMI 8-2
Java verifier 14-3
Java virtual machine 14-1

advantages 14-2
implementing 15-1

java.applet package 10-17
java.io package 11-9, 11-12
java.lang package 11-2
java.math package 11-4
java.util package 11-6
JavaBeans 5-13

creating 5-13
javah 15-3

options 15-3
JBuilder 3-1

new features 2-1
what it is 3-1

JBuilder tools 5-3
JColorChooser dialog tutorial 19-18
JDataStore

new features 2-9
JDBC 8-4

new features 2-10
JDK 1.1 pre-built packages 11-1
JDK switching 3-6
JFileChooser tutorial 19-20
JFrame auto-hide suppression 19-6
JINI 3-6
JIT (just-in-time) compilers 14-6
join method 12-6
JSP

JavaServer Pages 3-6
JSP support

new features 2-2
JToolBar buttons tutorial 19-27
just-in-time compilers 14-6
JVM (Java virtual machine) 14-1

advantages 14-2
implementing 15-1

K
keybindings 4-5
keyboard mappings 4-5
keymappings 4-5

Brief 4-5
CUA 4-5
default 4-5
Emacs 4-5

keymaps 4-5
keywords 9-5

I n d e x I-5

L
language elements 9-1, 9-5, 9-19
Language package 11-2
layout managers 6-5
layouts

choosing 6-5
learning JBuilder 3-7
left shift operator 9-12
length method 11-4
less than operator 9-10
less than or equal operator 9-10
libraries 9-13

accessing native 15-2
Java class 11-1
loading dynamic link 11-6
static code blocks and 15-2

linked lists 11-7
literals 9-3
loaders 14-5
loadLibrary method 11-6
local variables 9-18
localization 8-5
logical operators 9-10
look and feel

setting 19-7
loops 9-19 to 9-21

controlling execution 9-21
terminating 9-20

M
main method 12-3
main window 3-2
managing projects 5-10
Math class 11-3
math functions 11-3
math operators 9-9
math package 11-4
members 10-9
memory allocation 9-13, 9-15

getting StringBuffer 11-5
menu designer

accessing 6-3
menus

creating 6-3
tutorial 19-11

method calls 9-8, 10-4, 15-2
methods 10-3, 10-10

accessing 15-2
interfaces and 10-14
overloading 10-13
restricting implementation of 10-11

modulus 9-9

monitors 12-8
multi-dimensional arrays 9-16
multi-line comments 9-7
multi-line strings 9-6
multi-platform environments 12-2
multiple inheritance 10-13
multiple projects 5-12
multiple views 3-2
multiplication 9-9, 9-11
multi-threaded applications 12-1, 12-8

N
names 9-2

predefined 9-5
namespace 14-4
native code interface 15-1
native keyword 15-2
native machine instructions 14-6
navigating

keyboard shortcuts 3-5
nesting comments 9-7
new operator 9-15, 10-2
newsgroups 1-3
nextElement method 11-7
nonprinting characters 9-4
NOT operator 9-10
NotSerializableException exceptions 13-3
numeric data types 9-14
numeric literals 9-3

O
object allocation 9-8
Object class 11-2
object gallery 5-2

wizards 5-2
Object Request Broker (ORB) 8-3
ObjectInputStream class 13-2, 13-4, 13-6
object-oriented programming 10-1

example for 10-4
ObjectOutputStream class 13-2, 13-4
objects 13-1

classes vs. 10-2
copying 11-2
referencing 13-6

octal characters 9-5
octal literals 9-3
online resources 1-2
opening projects 5-10
OpenTools API

new features 2-5
operands 9-8
operator expressions 9-8

I-6 L e a r n i n g J a v a w i t h J B u i l d e r

operators 9-8 to 9-13
OR operator 9-10, 9-11, 9-12
ORB 8-3
out paths 10-19
output devices 11-11
output stream classes 11-11
output streams 11-6, 11-11, 11-12, 13-3
overloading methods 10-13
overview 7-1

P
package statements 10-18
packages 10-17

accessing class members 10-9
declaring 10-18
importing 10-18
project options 10-19
table of JDK 1.1 11-1

parent class 10-6, 11-2
persistent objects 13-1
platform independence 15-1
pointers 15-2
polymorphism 10-13

example 10-14
portability 14-2
predefined identifiers 9-5
primitive data types 9-13, 9-14
print method 11-12
println method 11-12
PrintStream class 11-12
private keyword 10-9
programming editor 4-1
programming language elements 9-1, 9-5, 9-19
programs

deployed 7-7
running 7-2

project files
saving 5-4
search paths 10-19
tutorial for creating 16-1, 17-3
viewing 5-8

Project wizard 5-5
creating new projects 5-5
Step 1-choosing template 5-5
Step 2-setting paths, libraries, JDK 5-6
Step 3-project notes file 5-7
tutorial 16-1, 17-3

projects
adding files 5-10
closing 5-11
compiling and building 7-1
creating with Project wizard 5-5
displaying in AppBrowser 5-8
managing 5-4, 5-10
multiple 5-12

opening 5-10
options 10-19
overview 5-4
removing files 5-10
renaming 5-11
running 7-2
saving 5-4, 5-11
setting properties 5-9

properties
setting and modifying 6-4

protected keyword 10-9
prototypes 15-3
public keyword 10-9

Q
queues 11-7

R
random values 9-14
RandomAccessFile class 11-12
reader classes 11-9
readObject method 13-5
reads 11-9, 11-12, 13-6
references 9-14, 10-2

to other objects 13-6
Remote Method Invocation (RMI) 8-2
reserved words 9-5
resources 10-4, 11-6

accessing 14-4
freeing 13-3, 13-5

restrictions 14-4
return values 10-4
right shift operator 9-12
right-click menu tutorial 19-32
RMI 8-2
run method 12-2
Runnable interface 12-4
running 7-1, 7-7

applets 17-10
applications 12-1, 16-7
deployed programs 7-7
Java programs 7-2

runtime environment 14-2

S
sample application

customizing 16-7
saving 13-1
scientific notation 9-4
scope 9-14, 9-18, 10-9
search paths 10-19
security 14-1, 14-3

monitoring 14-5

I n d e x I-7

serialization and 13-6
Security Manager 14-4
security models 14-3
SecurityException exceptions 14-5
SecurityManager class 14-4
Serializable interface 13-2
serialization 13-1

security and 13-6
servlet support

new features 2-2
setCharAt() method 9-17
setSecurityManager method 14-5
setters 10-10
setting

properties and events 6-4
setting project properties 5-9
shift operators 9-12
short-circuit AND/OR operations 9-10
shortcuts keys

AppBrowser trees 3-5
signed classes 14-6
signed integers 9-12
SimpleTimeZone class 11-6
sleep method 12-6
source code 4-3

conditional execution 9-19
reusing 10-17
tutorial for editing 16-11, 17-18

source files 10-19
tutorial for generating 16-4, 17-6

source paths 10-19
Stack class 11-6
start method 12-6
startsWith method 11-4
statements 9-6, 9-21, 9-22

grouping 9-6
static code blocks 15-2
stop method 12-6
streams 11-6, 11-9, 11-11, 11-12, 13-3, 13-4

partitioning as tokens 11-13
read/writes 13-6

StreamTokenizer class 11-13
String class 11-4
string literals 9-5
String type 9-16
StringBuffer class 9-17, 11-5
strings 9-5, 9-16, 11-2

constructing 11-4
modifying contents 9-17
multi-line 9-6

StringTokenizer class 11-6
subclassing a thread 12-2
subroutines 10-3
substring method 11-4
subtraction 9-9, 9-11

super classes 10-8
super keyword 10-8
support packages 11-1
switch statements 9-23
sychronized keyword 12-7
syntax rules and restrictions 9-1
System class 11-6
system time 11-6

T
team development

new features 2-4
technical support 1-2
ternary operator 9-12
test conditions, aborting 9-21
text area event handlers tutorial 19-30
text area tutorial 19-8
Text Editor tutorial 19-1, 19-33
text strings See strings
this keyword 10-8
Thread API 12-5
Thread class 12-2, 12-5
ThreadGroup class 12-6
threading API 12-2
threads 12-1

creating 12-2 to 12-5
defined 12-1
example for creating 12-3
lifecycle 12-7
monitoring 12-8
starting and stopping 12-6
switching 12-6
synchronizing 12-7

time 11-6
timeouts 12-6
tokens 11-13
toLowerCase method 11-4
toString method 11-2, 11-3
toUpperCase method 11-4
transient objects 13-1
trees

navigating 3-5
navigation shortcuts 3-5

tutorials
adding DBTextDataBinder 19-32
adding right-click menus 19-32
compiling, running, debugging 18-1
creating a UI 19-1
creating text editors 19-1, 19-33
deploying 16-16
deploying with Archive Builder 19-36
event handler 19-19
event handlers 19-30
FontChooser dialog 19-13, 19-15
Good Evening applet 17-1

I-8 L e a r n i n g J a v a w i t h J B u i l d e r

Hello World application 16-1
JColorChooser dialog 19-18
JFileChooser 19-20
JToolBar buttons 19-27
menus 19-11
text area 19-8
Text Editor application 19-1
window title bar and file state 19-33

type casting 9-17
type definitions 10-2
type wrapper classes 11-2
types 9-13, 9-14 to 9-17

getting 11-3
reading 13-6
writing to streams 13-4

typeValue method 11-3

U
UI

new features 2-5
UI designer 6-1

tutorial 16-7, 17-11
unary logical complement 9-10
unary operators 9-9
underscore as name prefix 9-2
unexpected side effects 9-19
Unicode characters 9-4, 9-5

reading 11-9
Unicode home page 9-4
uninitialized variables 9-14
UnsatisfiedLineError exceptions 15-2
unsigned shifts 9-12
Usenet newsgroups 1-3
user interface

designing 6-1, 16-7
new features 2-5
tutorial 17-11

using help 2-10
Utilities package 11-6
utility classes and interfaces 11-6

V
valueOf method 11-4
values 9-8, 9-13

assigning to variables 9-11, 9-13
comparing 9-10

variable assignments 9-8
variable names 9-3
variables 9-11, 9-13

caution for global 9-19
initializing 9-14
objects as 10-2
scope 9-18
type conversions 9-17

Vector class 11-6, 11-7
verification 14-3
version control system

new features 2-4
viewing project files 5-8
virtual machine 14-1, 15-1
Visual Studio 4-5

W
web development

new features 2-1
web-based applications

deploying 7-7
while loops 9-19
whitespace characters 9-6
window (JBuilder main) 3-2
wizards 5-1

Applet 5-14
Archive Builder 7-5
create files 5-1
Deployment 7-5
improvements 2-6
modify files 5-1
new features 2-6
shortcuts 5-1
source code 5-1

wrapper classes 11-2
writeObject method 13-3
writer classes 11-11
writes 11-9, 11-12, 13-4, 13-6

X
XOR operator 9-10, 9-11, 9-12

Y
yield method 12-6

	Learning Java® with JBuilder™
	Contents
	Tables
	Figures
	Ch 1: Introduction
	Contacting Borland developer support
	Online resources
	World Wide Web
	Borland newsgroups
	Usenet newsgroups

	Documentation conventions

	Part I: JBuilder Quick Start
	Ch 2: What’s new in JBuilder 4
	Web Development
	JavaServer Pages and servlet support
	XML support
	InternetBeans Express

	Enterprise JavaBeans
	Application server support
	Team development
	Version tracking and control

	OpenTools API
	User Interface changes
	JBuilder IDE
	Wizards
	Editor
	Keymaps
	Search and Save

	Running and Debugging
	Database tools
	JDataStore
	JDBC Explorer improvements

	Using JBuilder’s online help
	How to get Help

	Ch 3: Introducing JBuilder
	What is JBuilder?
	Introducing the AppBrowser
	AppBrowser design view
	AppBrowser message pane in debugger view
	Navigating in the AppBrowser

	Java language support
	Learning more about JBuilder
	The JBuilder documentation set

	Learning more about Java

	Ch 4: Using the editor
	Completing code with CodeInsight
	Using code templates
	Keymaps for editor emulations
	Cursor movement
	Selection
	Editing text
	Clipboard
	Search and replace
	Buffers and Files
	Compile and Debug�
	CodeInsight
	Code Templates
	View and Help

	Ch 5: Automating application development
	Using wizards
	Using the object gallery
	Additional JBuilder tools
	Working with projects
	Saving projects
	Using the Project wizard
	Project wizard: Step 1
	Project Wizard: Step 2
	Project Wizard: Step 3

	Displaying project files
	Setting project properties
	Managing projects
	Opening projects
	Adding and removing files
	Saving and closing projects
	Renaming projects and files
	Working with multiple projects

	Creating JavaBeans
	Working with applets
	Using the Applet wizard

	Ch 6: Building a user interface
	Using the UI designer
	Viewing a file
	Adding and manipulating components

	Designing menus
	Setting component properties and events
	Opening the Inspector

	Designing layouts with layout managers

	Ch 7: Compiling and running Java programs
	Compiling Java programs
	Running Java programs
	Debugging Java programs
	Debugging

	Deploying Java programs
	Using the Archive Builder
	Deploying CORBA applications
	Deploying web-based applications
	Running deployed programs

	Using command line tools

	Ch 8: Building distributed applications
	Team development
	Java technologies
	Building database applications
	Developing international applications
	Internationalization features in JBuilder

	Part II: Getting Started with Java
	Ch 9: Java language basics
	Java syntax
	Identifiers
	Literals
	Integer literals
	Floating-point literals
	Boolean literals
	Character literals
	String literals

	Keywords
	Statements
	Code blocks
	Comments
	Expressions
	Operators
	Arithmetic operators
	Logical operators
	Comparison operators
	Assignment operators
	Bitwise operators
	A special operator: The ?: operator

	Java’s data types
	Variables
	Built-in data types
	Numeric data types
	Boolean data types
	Character data types

	Composite data types
	Arrays
	Strings

	Type casting
	Implicit casting

	Scope rules

	Flow control structures
	Loops
	The while loop
	The do loop
	The for loop

	Loop control statements
	The break statement
	The continue statement

	Conditional statements
	The if-else statement
	The switch statement

	Summary

	Ch 10: Object-oriented programming in Java
	Introduction to OOP
	Classes
	Declaring and instantiating classes
	Data members
	Class methods
	Constructors and finalizers
	Case study: A simple OOP example
	Class inheritance
	Using this and super

	Access modifiers
	Access from within class’s package
	Access outside of a class’s package

	Accessor methods
	Abstract classes

	Polymorphism
	Method overloading
	Using interfaces

	Java packages
	The import statement
	Declaring packages
	Project options related to packages

	Summary

	Ch 11: The Java class libraries
	Introduction
	The Language package
	The Object class
	Type wrapper classes
	The Math class
	The String class
	The StringBuffer class
	The System class

	The Utilities package
	The Enumeration interface
	The Vector class

	The I/O package
	Input stream classes
	Output Stream classes
	File classes
	The StreamTokenizer class

	Summary

	Ch 12: Threading techniques
	Overview
	Why are threads useful?
	Why haven’t I heard of threads before?

	Creating a thread
	Subclassing the Thread class
	Example: Implementing countingThread

	Implementing the Runnable interface

	The Thread API
	Constructors
	The start() method
	The sleep() method
	The yield() method
	The join() method

	A thread’s lifecycle
	Making your code thread-safe
	The synchronized keyword
	Monitors

	Summary

	Ch 13: Serialization
	Overview
	Why serialize?
	Serialization in JDK 1.1
	The Serializable interface

	Using output streams
	ObjectOutputStream methods

	Using input streams
	ObjectInputStream methods

	Writing and reading object streams
	Summary

	Ch 14: Java Virtual Machine security
	Overview
	Why is the Java VM necessary?
	What are the main roles of the JVM?

	Java VM security
	The security model
	The Java verifier
	The Security Manager
	The class loader
	Java’s safety as a language

	What about Just-In-Time compilers?

	Summary

	Ch 15: Working with the native code interface
	Overview
	Using the JNI
	Using the native keyword
	Using the javah tool

	Summary

	Part III: Tutorials
	Ch 16: Building an application
	Step 1: Creating the project
	Step 2: Generating your source files
	Changing the project properties

	Step 3: Compiling and running your application
	Step 4: Customizing your application’s user interface
	Step 5: Adding a component to�your�application
	Step 6: Editing your source code
	Step 7: Compiling and running your application
	Step 8: Running your application from the command line
	Step 9: Adding more components to your application
	Step 10: Preparing your application for deployment
	Step 11: Running your deployed application from the command�line
	HelloWorld source code
	Source code for HelloWorldFrame.java
	Source code for HelloWorldClass.java

	Ch 17: Building an applet
	Overview
	Step 1: Creating the project
	Changing the project properties

	Step 2: Generating your source files
	Step 3: Compiling and running your applet
	Step 4: Customizing your applet’s user interface
	Step 5: Adding AWT components to your applet
	Step 6: Editing your source code
	Step 7: Deploying your applet
	Deploying your applet with the jar tool
	Deploying your applet with the Archive Builder

	Step 8: Modifying the HTML file
	Step 9: Running your deployed applet from the command line
	Step 10: Testing your deployed applet on the Web
	Applet source code
	Applet HTML source code
	Applet class source code

	Ch 18: Compiling, running, and debugging
	About this tutorial
	Step 1: Opening the sample project
	Step 2: Fixing syntax errors
	Saving files and running the program

	Step 3: Fixing compiler errors
	Saving files and running the program

	Step 4: Fixing the subtractValues() method
	Saving files and running the program

	Step 5: Fixing the divideValues() method
	Saving files and running the program

	Step 6: Fixing the oddEven() method
	Step 7: Finding runtime exceptions

	Ch 19: Building a Java text editor
	About this tutorial
	Overview
	What this tutorial demonstrates

	Step 1: Creating the project
	Using the Project wizard
	Changing the project properties
	Selecting the project’s code style options
	Choosing the event handler type
	Choosing how to instantiate objects

	Using the Application wizard
	Suppressing automatic hiding of JFrame
	Setting the look and feel
	Design time look and feel
	Runtime look and feel

	Step 2: Adding a text area
	Step 3: Creating the menus
	Step 4: Adding a FontChooser dialog
	Setting the dialog’s frame and title properties
	Creating an event to launch the FontChooser

	Step 5: Attaching a menu item event to the FontChooser
	Step 6: Attaching menu item events to JColorChooser
	Step 7: Adding a menu event handler to clear the text area
	Step 8: Adding a file chooser dialog
	Internationalizing Swing components

	Step 9: Adding code to read text from a file
	Step 10: Adding code to menu items for saving a file
	Step 11: Adding code to test if a file has been modified
	Step 12: Activating the toolbar buttons
	Specifying button tool tip text
	Creating the button events
	Creating a fileOpen() method
	Creating a helpAbout() method

	Step 13: Hooking up event handling to the text area
	Step 14: Adding a right-click menu to the text area
	Step 15: Showing filename and state in the window title bar
	Step 16: Deploying the “Text Editor” application to a JAR file
	Overview
	Running the Archive Builder
	Running the application from the command line

	Index
	A - C
	D
	E - H
	I - K
	L - O
	P - S
	T
	U - Z

