

Programming

in

Microsoft Excel VBA

An

Introduction

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Table of Contents Page i

The most current version of the book may be downloaded, free of charge, from:

HTUhttp://www.jlathamsite.com/LearningPage.htm UT

Look for the link to the .pdf document just below the heading "Introduction to VBA Programming". I

recommend right-clicking the link and choosing "Save Target As" to get a copy of it onto your system.

In October 2012, a new publication was placed on the website. While not designed specifically

to be a companion to this introduction, I believe that many of you that are serious about

programming in Excel VBA will find it useful. It is also available through the above link,

through this direct link to it:

Bullet-Proofing Your Excel VBA Code

It also has a companion workbook demonstrating the effects of scope in Excel VBA.

SlicesOfPi.xls

And keep your eyes out for an introduction to Debugging that is now a work in progress.

Table of Contents

TOVERVIEWT .. V

TWhy T .. v

TWhatT ... v

TWho T .. v

THowT .. v

TAnticipated User Skill Requirements T .. v

TCopyright Acknowledgments T.. vi

TCreating this GuideT .. vi

TWHAT IS VBA?T ... 1

TVBA: An Event Driven LanguageT ... 1

TVBA: An Object-Based LanguageT ... 1

TTHE EXCEL VBA IDE T .. 2

TGetting to the VBA IDE T ... 3

TTo Be Explicit or NotT .. 4

TTYPES OF CODE MODULES T .. 6

TGeneral Purpose Code Modules T .. 6

TWorkbook Code Modules T .. 7
TWorkbook Events T.. 7

TWorksheet Code Modules T .. 9
TWorksheet Events T ... 9

TThe ‘Target’ and ‘Cancel’ Objects T ... 9

TClass and UserForm ModulesT .. 10
TClass Modules T ... 10

TUserForms and their Modules T ... 10

TPROCEDURES: FUNCTION AND SUB T .. 11

TFunctions T .. 11

TSubsT .. 12

TProcedures: Public or Private T .. 12

http://www.jlathamsite.com/LearningPage.htm
http://www.jlathamsite.com/Teach/VBA/WritingBulletProofCode.pdf
http://www.jlathamsite.com/Teach/VBA/SlicesOfPi.xls

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Table of Contents Page ii

TCONSTANTS, VARIABLES AND TYPINGT .. 13

TData Types T ... 13

TOur First Procedure T ... 15

TReserved Words T .. 16

TComments and Remarks T .. 16

TError Handling: A Beginning T .. 17

TConstant and Variable Declarations Revisited T .. 19
TProcedure Level Scope T ... 19

TModule Level ScopeT ... 19

TPublic ScopeT.. 20

TWhen to Use Constants and/or VariablesT ... 20

TGOOD PROGRAMMING PRACTICES T .. 21

TWhat is Good CodeT ... 21

TGood Programming Practice #2 T .. 21

TMore Good Programming Practices T ... 21

TLOOPING STRUCTURES T .. 22

TGPP #3:T .. 22

TFor … Next Loops T ... 22

TFor Each LoopsT ... 23

TDo... LoopsT ... 26

TDo Loops Control Summary T .. 29

TDECISION MAKERS T ... 30

TIf...ThenT .. 30

TIf...Then...ElseT .. 31

TIf...Then...ElseIf...ElseT ... 31

TSelect CaseT ... 32

TDATA SOURCES T ... 33

TData from Worksheets: Intro T .. 33

TData from External Sources T ... 33

TUser Provided Data T ... 33

TInput Using InputBox$() T .. 34

TUsing MsgBox$ as User InputT .. 37

TUserForm as a Data Source T ... 38

TData from Worksheets: A StudyT ... 42
TProject 1: Copy Between Workbooks T ... 42

TData from Text Files: A Study T ... 43
TProject 2: Importing Data from a Text file T ... 43

TPROGRAMMING WITH EXCEL OBJECTS T .. 45

TAdvantages of Using Object References T ... 45

TPerformance Improvements Using Object References T ... 46

TThe Excel Object Model as a ReferenceT ... 50

TPROGRAMMING WITH NAMED RANGES T ... 52

TDefining a NameT .. 52
TNaming Directly on a Worksheet T ... 52

TNaming With the Name Manager T ... 53

TUsing a Named Range for a List T ... 55

TCODE SNIPPETS AND EXAMPLES T .. 56

TSorting A RangeT .. 56

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Table of Contents Page iii

TFind the Last Used Cell in a Column T .. 58
TIdentify the Last Used Row T .. 58

TIdentify the Next Available Row T .. 58

TFind the First Empty Cell in a Column T .. 59

TGet the Address Instead of the Row T .. 59

TFind the Last Used Cell in a RowT .. 60

TConsolidating Data in a Workbook T ... 60

TUsing a TextBox to Access a Macro T .. 61

TDoing the Impossible T .. 61
THiding RowsT ... 61

TUnhiding RowsT ... 62

TAN INTRODUCTION TO DEBUGGING T .. 63

TThe Problem Example T .. 63

TOther Debugging Tips:T ... 66

TADDITIONAL EXCEL VBA RESOURCES T ... 68

TEXCEL MVP WEBSITES T ... 68

TRon deBruin’s Excel tips: T... 68

TDebra Dalgleish’s Excel TipsT ... 71

Twww.Contextures.ComT ... 71

Thttp://www.contextures.com/tiptech.html T .. 71

TF (cont'd) T .. 71

TChip Pearson’s Excel tips: T ... 75

TOzgrids Formulas w/downloads:T ... 85

TJon Peltier’s Chart Tutorials T ... 85

TCharles Williams DecisionModels.com SiteT ... 85

TTools and Downloads by Jan Karel Pieterse T .. 85

TJohn Walkenbach Free Excel Tips T .. 86
TGeneral T ... 86

TFormatting T ... 86

TFormulas T .. 87

TCharts & Graphics T .. 88

TPrinting T .. 89

TDeveloper Tips by CategoryT .. 89

TGeneral VBA T ... 89

TCommandBars & Menus T .. 89

TUserForms T ... 89

TVBA Functions T .. 90

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Table of Contents Page iv

List of Figures

TUFigure 1 Excel VBA IDE - No Code Module Displayed UT.. 2

TUFigure 2 Open the VBE from the Excel Tools Menu UT ... 3

TUFigure 3 Excel VBA IDE Major Areas UT ... 3

TUFigure 4 The VBE [View] Menu Item Expanded UT ... 4

TUFigure 5 Option Explicit in Effect UT .. 4

TUFigure 6 Setting Option Explicit Directive: Step 1UT ... 5

TUFigure 7 Setting Option Explicit Directive: Step 2UT ... 5

TUFigure 8 Insert a New General Purpose Code Module UT ... 6

TUFigure 9 VBAProject Showing the Modules Collection UT... 6

TUFigure 10 Working in the Workbook Code Module UT ... 7

TUFigure 11 Viewing the Worksheet Event List UT... 9

TUFigure 12 The VBE Debug Menu UT ... 16

TUFigure 13 MyFirstProcedure Results UT .. 16

TUFigure 14 BOOM! Unhandled Errors Are a Pain UT .. 17

TUFigure 15 For...Next Loop Counting Results UT .. 25

TUFigure 16 InputBox$() ExampleUT ... 35

TUFigure 17 InputBox$() Validation Failed Message UT .. 35

TUFigure 18 Plain Vanilla MsgBox$() Displayed UT .. 37

TUFigure 19 MsgBox Used to Obtain User Input UT ... 37

TUFigure 20 Multi-Control UserForm UT .. 38

TUFigure 21 UserForm With Text Entry Boxes UT .. 39

TUFigure 22 - Define Name Dialog: Excel 2003UT .. 53

TUFigure 23 Name Manager: Excel 2010 UT ... 54

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Overview and Copyrights Page v
Copyright © 2008 by J.L.Latham, All Rights Reserved.

0BOverview
16BWHY

Why does this book exist? I wrote this book to hopefully provide a basic introduction to learning to

program using Visual Basic for Applications (VBA) as implemented in Microsoft™ Excel©. I have

attempted to provide a balance of basic programming concepts and good programming practices. Along

the way concepts are presented that often fall into the “advanced” category in other books. I don’t believe

these concepts are “advanced” in that it takes more basic teaching to understand and use them, rather if

they are taught as part of that basic teaching they are no more difficult to learn than anything else in the

language.

The goal is not to make you all-knowing of all things VBA in Excel, but rather to try to give you a basis

for understanding what VBA for Excel is capable of, helping you put code samples you obtain from a

variety of sources to work for you, to learn how to modify and adapt recorded macros to make them more

generic and useful to you, and to encourage you to learn more about the language so that you can take full

advantage of the worlds #1 spreadsheet application.

17BWHAT

What is taught in this book? The basic elements of VBA coding are covered and hopefully taught in it.

The First Edition will pretty much just cover what I decide to cover. If anyone has specific things that

they feel would be beneficial to the budding VBA programmer, I will certainly entertain the idea of

including them in later revisions to it. You can send such suggestions via email to:

HTUHelpFrom@JLathamsite.comUTH

The difficulty in presenting this type of material is that teaching VBA coding requires knowledge of many

things that have inter-dependence on one another. This inter-dependence can be an actual physical

dependence, but more often it is a dependence based on the knowledge of many different elements of the

programming environment: the syntax or command structure for instructions; a knowledge of the

“objects” in the application and their attributes (properties) and the things you can do to or with them

(methods), along with many other things. By necessity some things must be taught before others in order

to build from a basic understanding to more complex understanding as the studies continue. In discussing

some of the basics, more advanced concepts may be used in the process and the reader must accept those

as-yet-unexplained concepts and pieces simply on faith or with an “it is what it is” attitude for a while.

Since this is an Introduction to VBA for Excel, many details of many subjects and areas are left to be

discovered by the student on their own through experience, further study and examples from other sources

in the future.

18BWHO

This book is for anyone desiring to learn how to extend the functionality and usefulness of Excel through

added capabilities often only available through VBA.

19BHOW

You will learn to begin programming in Excel VBA by reading through this book and you will use your

copy of Excel to ‘follow along’ and create procedures and observe them at work.

20BANTICIPATED USER SKILL REQUIREMENTS

This book is designed to be used by those with the Excel® knowledge typical of the ‘average’ office user.

This means that the user is expected to be familiar with general Excel® features and functions such as the

use of menu and icon toolbars, selecting worksheets and cells, creating simple formulas in cells,

‘navigating’ within Excel®, and opening, saving and closing the Excel® application and Excel® created

workbooks (.xls files).

mailto:HelpFrom@jlathamsite.com?subject=Suggested%20Improvement%20to%20Programming%20VBA%20Book

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Overview and Copyrights Page vi
Copyright © 2008 by J.L.Latham, All Rights Reserved.

21BCOPYRIGHT ACKNOWLEDGMENTS

Microsoft™ is a Registered Trademark of the Microsoft Corporation.

Excel© and Microsoft™ Excel are Copyright, the Microsoft Corporation.

Word© and Microsoft™ Word are Copyright, the Microsoft Corporation.

Microsoft™ Office is Copyright, the Microsoft Corporation.

Windows and Vista are Registered Trademarks of the Microsoft Corporation.

SnagIt is Copyright, the TechSmith Corporation.

22BCREATING THIS GUIDE

This document was created using Microsoft Word and Excel 2003, along with the Microsoft Office 2007 provided

‘publish as .pdf’ feature to generate the final document.

Graphic screen capturing was performed using SnagIt from TechSmith.

COPYRIGHT NOTICE: This document in all forms is Copyright © by Jerry L. Latham, 2008, 2009,

2011. All rights are reserved. Readers are granted permission to make copies for their personal or

educational use and even corporate/commercial use, but in no instance may the document or portion or

portions thereof be used as part of or as the totality of any package that is distributed or provided for

profit or other gain. This book is FREE and if someone charged you money for it, or charged you

money for a package that it is any part of, they stole from you and they stole from me. Those people are

thieves.

The most current version of the book may be downloaded, free of charge, from:

HTUhttp://www.jlathamsite.com/LearningPage.htm UT

Look for the link to the .pdf document just below the heading "Introduction to VBA Programming". I

recommend right-clicking the link and choosing "Save Target As" to get a copy of it onto your system.

In October 2012, a new publication was placed on the website. While not designed specifically

to be a companion to this introduction, I believe that many of you that are serious about

programming in Excel VBA will find it useful. It is also available through the above link,

through this direct link to it:

Bullet-Proofing Your Excel VBA Code

It also has a companion workbook demonstrating the effects of scope in Excel VBA.

SlicesOfPi.xls

http://www.jlathamsite.com/LearningPage.htm
http://www.jlathamsite.com/Teach/VBA/WritingBulletProofCode.pdf
http://www.jlathamsite.com/Teach/VBA/SlicesOfPi.xls

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

The VBA IDE Page 1
Copyright © 2008 by J.L.Latham, All Rights Reserved.

1BWhat is VBA?
Visual Basic for Applications (VBA) is an extensible programming language that is made up of a

core set of commands and extended on a per-application basis to be able to work directly with

objects in that application. This means that VBA for Excel knows about things like workbooks,

worksheets, cells and charts and more; while VBA for Access knows about tables, queries,

reports and data entry forms, among other things. The core can even be licensed for use by 3 P

rd
P

party companies to permit it to be used with their application(s). This was the case with Visio

before Microsoft bought the product for use under their banner.

VBA can probably be best described as an object-based (but not a true object oriented) language

that is event driven. Let’s look at the event driven side of it first.

23BVBA: AN EVENT DRIVEN LANGUAGE

Event driven means that nothing happens until something happens. Rather Zen-like isn’t it? Ok,

once again, but with a better grasp of reality. In VBA, no code executes except in response to

some event taking place (or at the command of the code once it is started by some event). An

event can be any one of many things. Opening an Excel workbook creates, or triggers, the Open

event, closing it triggers the BeforeClose event. Selecting a worksheet in the workbook will

cause a Deactivate event to occur on the page that had been selected and an Activate event to

happen to the new sheet you select. Many events occur that don’t have code associated with

them, and that’s to be expected; something doesn’t have to happen every time something else

happens. A shape (square, button, text box) actually triggers a Click event when it is clicked on

– you may or may not have code associated with one of those shapes to respond when it is

clicked on.

Event driven also means that you never know exactly when code for an event will be called upon

to run. For example, you may have a process that runs when a particular sheet is selected that

takes a long time to complete – perhaps checking for and hiding unused rows, or refreshing the

data on the sheet from another data source. While that is going on, you may click a button on the

sheet to try to do something else, such as sort the data on the sheet. Excel will, for the most part,

deal with the timing of when these processes are performed. You do need to be aware that it is

possible to request an operation to begin before another has completed. Most of the time this

does not cause any problem at all, but sometimes it can.

24BVBA: AN OBJECT-BASED LANGUAGE

Object based means that when referring to the components of the application, things like

workbooks, worksheets, cells, charts, etc. are ‘objects’. An object has certain attributes. Just a a

person has attributes like height, weight, eye and hair color, the objects in Excel have attributes

(Properties) such as value, height, width, color and more. Additionally, objects can do things or

have things done to them – these actions are known as Methods. For example, a workbook can

be opened or closed; a cell can have its shading altered, a worksheet can be deleted.

While you may use constants and variables in your code that seemingly don’t have any direct

relationship to an object, in the end the results of processing or calculations will probably be

used to alter some property of an object in the workbook: the value in a cell, the range of

information used as a data series on a chart, whether or not a particular sheet is visible or not at

any given moment. With all of this under our belt, we can now look at how to access this power.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

The VBA IDE Page 2
Copyright © 2008 by J.L.Latham, All Rights Reserved.

2BThe Excel VBA IDE
The Excel VBA IDE (Integrated Development Environment) has not changed in quite some

time. This is a good thing – the interface in Excel 2007 is the same as it was in Excel 2003, 2002

(XP), and even back to Excel 97 , and that means that no time is wasted for programmers in

learning a new interface just to be able to continue to use a language they are already familiar

with. There are 5 major areas of the IDE and I like to work with all of them visible.

Figure 1 Excel VBA IDE - No Code Module Displayed

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

The VBA IDE Page 3
Copyright © 2008 by J.L.Latham, All Rights Reserved.

25BGETTING TO THE VBA IDE

Your first question may be “How the heck did you get there!?” The quickest way to open the

VBA IDE (which I’ll simply call the VBE for Visual Basic Editor for the rest of this document),

is to press [Alt]+[F11] while in the main/normal Excel window. You can also get there from the

normal Excel menu via Tools | Macro | Visual Basic Editor:

Figure 2 Open the VBE from the Excel Tools Menu

There are also other fast ways to open the VBE to specific areas without first opening the entire

project as these two methods do. We will discuss those when we talk about code that deals with

Workbook and Worksheet related event processing.

Not all 5 major areas of the VBE may be visible when you first open it. The [View] VBE menu

option allows you to choose which of them are visible.

Figure 3 Excel VBA IDE Major Areas

The VBE menu and

normal icon toolbar.

The Project Window. If

not visible, press

[Ctrl]+[R] to bring it into

view.

The Code window – may be

empty, or may be shared for

use to display other things

such as the Object Browser.

The Properties window –

displays and allows editing

of the properties of the

currently active object.

The Immediate window –

you can type in commands,

set values, examine values

and Debug.Print results

show up in this window.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

The VBA IDE Page 4
Copyright © 2008 by J.L.Latham, All Rights Reserved.

This is the VBE [View] menu option expanded. As you can see,

it permits you to display any of the 5 major areas of the IDE and

even more that are useful in special circumstances such as the

Object Browser and the Locals and Watch windows.

Note: To close any of these windows once you’ve opened them,

simply click the classic “close window” [X] in the upper right

corner of the window.

Figure 4 The VBE [View] Menu Item Expanded

Rather than trying to make you remember what each and every window contains, what it’s used

for and how to make them work for you, we will cover using them during our discussions on

actually writing code and accessing objects during code development.

26BTO BE EXPLICIT OR NOT

Well, let’s be frank about this: we are all adults (all programmers are performing an adult task

and so, regardless of their physical age, we will give them adult status – and that does mean that

they should act as responsible adults, i.e. no intentional malicious coding allowed). Since we are

now all adults, we can be Explicit.

Figure 5 Option Explicit in Effect

Your initial view of a code module may not contain the Option Explicit statement at the

beginning of it. It should – quite simply this is your first step to responsible coding through

the use of accepted Best Practices.

Option Explicit is a directive to the compiler that says that all user defined constants and

variables must be declared before actually using them in the code. The up side of using Option

Explicit is that errors in your code due to typographic errors or reuse of a variable as the wrong

type are greatly reduced and when it does happen, the problems are more easily identified. The

down-side? Just that you have to take the time to go back and declare constants or variables that

you find you need during code development.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

The VBA IDE Page 5
Copyright © 2008 by J.L.Latham, All Rights Reserved.

To make sure that you don’t forget to always use Option Explicit, you can tell Excel’s VBE to

always start new code modules with that statement. This is a ‘permanent’ setting and affects all

projects you create in any workbook after making the setting.

Start by selecting [Tools] | Options from the VBE menu toolbar:

Figure 6 Setting Option Explicit Directive: Step 1

This is the dialog that appears once

you use [Tools] | Options from the

VBE menu toolbar.

Check the “Require Variable

Declaration” box to set up the VBE

to always place the Option Explicit

statement at the beginning of all new

code modules in the future.

Figure 7 Setting Option Explicit Directive: Step 2

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Types of Code Modules Page 6
Copyright © 2008 by J.L.Latham, All Rights Reserved.

3BTypes of Code Modules
I’ll bet you thought that all code modules were created equal. Not true – code modules don’t

have any Constitutional Rights, although they do have to follow the rules of design requirements

imposed by Microsoft and the compiler.

27BGENERAL PURPOSE CODE MODULES

These are code modules you’ll bring into existence and can contain code to do almost anything

of a ‘general purpose’ nature. Examples of code that might appear in them would be code that

responds to shapes or command buttons you might put on a worksheet; code to respond to

custom menus you might develop, user defined functions (UDF) that you develop to perform

actions and calculations by way of using the name of the UDF in a worksheet formula just like a

built-in Excel worksheet function.

Oh, By the Way Macros you record are placed into general purpose modules. Recording

macros during different sessions with the workbook results in numerous modules that may

contain as few as a single procedure (macro) in it. This results in being quite wasteful of

resources. All macros recorded during a single session are typically placed into a single module.

To create a new general purpose module you can use the [Insert] | Module

option from the VBE menu toolbar:

Figure 8 Insert a New General Purpose Code Module

After inserting the first new general purpose

module, you’ll have a new entry in the

VBAProject window.

Now you have a new collection called Modules

and the new module you just created will be listed

as one of the members of the collection. Any

more modules you add will be listed as new

members of the collection. You can double-click

on any of them and view its contents in the Code

Window.

The one property that a module has is its Name.

You can give more meaningful names than just

“Module1” or “Module2” by changing the name in

the properties window while the module is the

current Sobject of affection S active object.

Figure 9 VBAProject Showing the Modules Collection

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Types of Code Modules Page 7
Copyright © 2008 by J.L.Latham, All Rights Reserved.

There’s no rule for naming modules except that they must start with an alpha character and can't

contain certain special characters, I like to give mine names that start with “bas” (for BASIC)

followed by some description of the use of the code within them. Examples might be names

like:

basUtilities

basDeclarations

basSheet1_Operations

While there is no practical (or published) limit to the number of modules, I’m sure it’s at least

one of those “limited by available memory” things. The maximum size of any individual module

is 64K (to the best of my recollection). Trust me, you can put a LOT of code into a single

module.

28BWORKBOOK CODE MODULES

There is one and only one code module per workbook that is associated with Workbook Event

handling. At the technical level, this module, along with the worksheet event handling modules

are Class Modules. That need not concern you. Just be aware that if you want to do any

coding that deals with events that occur at the workbook level, you do it in this module.

85BWorkbook Events

Just what are the workbook events? You can get a complete list of them from the code window

while the Workbook Code module content is displayed: You can display that content by double-

clicking the ThisWorkbook object in the VBAProject window. You’ll get a display similar to

this

Figure 10 Working in the Workbook Code Module

If you use the left pulldown of the workbook’s code module you’ll see that there is a specific

Workbook entry. If you choose that item, the VBE will automatically insert a stub (just the

beginning declaration and end statement for the procedure) for the Workbook_Open() event.

You can delete that entry if you don’t need code to deal with something you want to happen

when the workbook is opened.

With your cursor placed inside of any Workbook related procedure, even just a stub, you can

then use the pulldown on the right to find a list of all the available event handlers for the

workbook. And it is quite a list.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Types of Code Modules Page 8
Copyright © 2008 by J.L.Latham, All Rights Reserved.

NOTE: If the cursor is not in a workbook event handling procedure, the list on the right will

show you a list of non-workbook event procedure names in the module.

If you write code inside any of the event procedure, then when that event is triggered the code

associated with that event will run; i.e., the code will execute. Some typical Workbook

associated events that are often provided with code are:

Workbook_Open()

Workbook_Close()

Workbook_BeforeClose()

Workbook_BeforePrint()

Workbook_BeforeSave()

Workbook_Activate()

Workbook_Deactivate

Things you might do with some of these? Well, in the Open() event you might make certain that

a particular worksheet is the one selected so that the user sees it first. Or with BeforeSave() or

BeforeClose() you might examine certain cells to make sure that all required information had

been entered into the workbook and even that it falls within acceptable limits. Activate and/or

Deactivate? These are great for determining when to create/destroy custom menus to be used in

the workbook but that you don’t want available in other workbooks.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Types of Code Modules Page 9
Copyright © 2008 by J.L.Latham, All Rights Reserved.

29BWORKSHEET CODE MODULES

There is one and only one code module per worksheet that is associated with Worksheet Event

handling. However, each sheet has its very own code module that is separate and distinct from

all of the others even though they may all have event handlers for a given event for those

worksheets. At the technical level, this module, just like the event handling module for the

workbook are Class Modules. Remember that if you want to do any coding that deals with

events that occur at the worksheet level, you do it in these modules.

86BWorksheet Events

Just what are the worksheet events? You can get a complete list of them from the code window

while any Worksheet Code module content is displayed: You can display that content by

double-clicking any worksheet object in the VBAProject window. The code module for that

sheet will be displayed. You’ll get a display similar to this

Figure 11 Viewing the Worksheet Event List

For worksheets, when you choose the Worksheet item in the left pulldown list, the default event

is the Worksheet_SelectionChange(ByVal Target As Range) event. This even triggers any time

you make a new selection on the sheet – such as simply moving to another cell. The new cell

becomes the selection, and thus you’ve had a selection change.

As with the Workbook events, you can now get a complete list of Worksheet Events available to

be programmed against by using the right-side pulldown (indicated by “(Declarations)” in the

graphic). This list is much shorter than the Workbook’s list, but even these 9 (from Excel 2003)

provide considerable versatility in dealing with worksheets. Out of the list, the Change() event is

probably the one that most often has code associated with it. A Change() occurs when a user

alters the contents (value) of one or more cells on the sheet. Worksheet formula recalculations

don’t trigger this event, but they do trigger the Calculate() event.

87BThe ‘Target’ and ‘Cancel’ Objects

Often in worksheet event stubs provided by the VBE you will see reference to two special

objects (sometimes more or others also): Cancel and/or Target.

Target represents the Range [which is an object that represents a single cell, a group of cells, one

or more rows and/or one or more columns] that is active at the time the event took place. Think

of Target as the actual object itself. Anything you do to Target is done to the actual Range that

it represents. Changes made to Target will appear on the sheet itself.

The Cancel object is a Boolean type object. A Boolean object can only have one of two

conditions assigned to it: TRUE or FALSE. By default a Boolean object is FALSE (and has a

numeric value of zero). If your code sets Cancel = TRUE then the underlying event action is

cancelled: the DoubleClick never takes place or the RightClick never gets completed. These are

handy events to use to take very special actions with – you can have someone double-click in a

cell (and set Cancel = True) to begin a series of events unique to that cell. A real world example

of this type of thing in one application I developed is that in a data area matrix that has dates in

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Types of Code Modules Page 10
Copyright © 2008 by J.L.Latham, All Rights Reserved.

the top row, a double-click on a date causes all rows with an empty cell in that column to become

hidden: a kind of auto filter based on empty cells for that one column.

30BCLASS AND USERFORM MODULES

88BClass Modules

Quite frankly we’re not going to cover Class Modules. That is an “advanced” topic in my

considered opinion, and 99.9% of all coding needs can be met without using them. Creating a

class takes much more preparation and thought than we have the time or space for in this book.

89BUserForms and their Modules

We will cover both UserForms and their underlying code modules separately later. Think of

them much as worksheets and worksheet modules. Each UserForm has its own code module that

contains the code associated with all objects on the UserForm.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Procedures: Sub and Function Page 11
Copyright © 2008 by J.L.Latham, All Rights Reserved.

4BProcedures: Function and Sub
Code modules contain code, and that code is placed into procedures, and procedures fall into two

categories: Sub (or subroutines) and Function(s).

31BFUNCTIONS

The difference between a Sub and a Function is simply that a function can return a value to the

procedure that called it. That procedure can be another Function, a Sub or even to a worksheet

cell. When it is done using a worksheet formula, the Function is known as a User Defined

Function, or UDF. Potentially all Functions are UDFs.

One other distinction between Functions and Subs is that (generally) Functions can only affect a

single cell in a workbook, while Subs can do their work and affect almost any aspect of a

workbook or worksheet. When it is used as a UDF, it can only affect the cell that it is called

from; it cannot alter the contents of other cells.

A Function starts with its declaration:

Function functionName (argument1 As Type, argument2 As Type) As fType

Where Function is a reserved word declaring the start of the definition of the function.

functionName is the name you assign to the function.

Within the parenthesis you define the list of arguments and their types that are to be passed to the

function for it to use to get its job done. You do not have to pass any arguments, but you do have

to use the parenthesis, as:

Function noArgumentFunction() As Boolean

Finally, you declare the type of value that the function will return (fType). The type can be any

valid type such as String, Boolean, Integer, Float, Double, Long, Variant, etc.

A Function ends with the End Function statement. Everything in between the function’s

declaration and the End Function statement is part of the function itself.

Here is an example of a function that calculates and returns the square of a value passed to it:

Function SquareOfNumber(anyInteger as Integer) As Long
 SquareOfNumber = anyInteger ^ 2
End Function

Here is how it might be called from another procedure:

Dim aNumber as Integer
Dim numberSquared as Long
aNumber = 15
numberSquared = SquareOfNumber(aNumber)

After all of that numberSquared will contain 225 (15 * 15, or 15^2)

The function could also be called from a worksheet in a cell like this:

=SquareOfNumber(15)
And 225 would appear in the cell. Actually, Excel would display the formula as:

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Procedures: Sub and Function Page 12
Copyright © 2008 by J.L.Latham, All Rights Reserved.

=squareofnumber(15)
Excel makes UDF names all lowercase to distinguish them from built-in worksheet functions.

32BSUBS

Sub procedures are just like Functions, except that they do not return a value in the same way

that a Function does. They can accept arguments, or not, just like a Function does.

A Sub starts with its declaration:

Sub subName (argument1 As Type, argument2 As Type)

Where Sub is a reserved word declaring the start of the definition of the procedure.

subName is the name you assign to the procedure.

Within the parenthesis you define the list of arguments and their types that are to be passed to the

Sub for it to use to get its job done. You do not have to pass any arguments, but you do have to

use the parenthesis, as:

Sub noArgumentProcess()
There is no declaration of the type of value that the sub will return because if there were, then it

would be a Function and not a Sub.

A Sub ends with the End Sub statement. Everything in between the sub’s declaration and the

End Sub statement is part of the sub itself.

33BPROCEDURES: PUBLIC OR PRIVATE

By default all procedures are “Public”. That is to say that they can pretty much be used from

anywhere in the project. For Sub procedures, it also means that they show up in the Tools |

Macro | Macros list as available to be run through that interface and for Functions, public

functions can be used as UDFs. You can explicitly declare a procedure to be Public by

preceding its declaration with the word “Public” like:

Public Sub aPublicSub()
or

Public Function aPublicFunction(arg1 As Variant) As Variant
But sometimes we don’t want the user to have access to a procedure, or don’t want other

modules to be able to use a procedure in another module. For those times, you can make a

procedure only accessible from within the code module that it exists in by preceding its

declaration with the word Private. You’ll notice that all of the Workbook and Worksheet built-in

event procedures are declared as Private. Subs that are declared as Private do not show up in the

Tools | Macro | Macros list, and private functions are not available for use as UDFs. Examples

of private declarations are:

Private Sub aPrivateSub()
or

Private Function aPrivateFunction(arg1 As Variant) As Variant
Private procedures are normally only usable by other procedures in the same module with them.

There is an exception to the rule; you can get around it by using Run “privateProcedureName”.

You can also use the Call command in a similar fashion. See the Excel VBA Help topic on

CALL for limitations in using it. When you use Run or Call the procedure is executed and

control returns to the line of code following the Run or Call statement.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Procedures: Sub and Function Page 13
Copyright © 2008 by J.L.Latham, All Rights Reserved.

5BConstants, Variables and Typing
Ready for your first programming lesson? Yeah, I know, it’s about time!

In the process of writing code you are going to find the need to be able to remember things,

compare things and change things. These things are values. You will also find times that you

want to make sure that a value you use in several places in your code does not change. VBA,

and all high level programming languages provide ways to deal with these needs. You may

declare a constant or a variable several different ways and you can decide just exactly what kind

of information that constant or variable may hold.

34BDATA TYPES

Before we jump into creating our constants and variables, let’s discuss Typing. VBA has several

data, well, types that it can deal with. Being specific with the type of data that a constant or

variable is to hold can improve performance and reduce unexpected errors of a very strange and

unexpected nature. For a complete list of data types, search the VBE Help for the topic “Data

Types”. For once, Help actually makes sense and offers real help to you by listing the numerous

types that it recognizes. These include (refer to the VBE Help topic “data type summary” for a

complete and current list for the version of Excel you are using).

Byte – whole, unsigned numbers from 0 to 255 (1 byte of memory).

Boolean – logical TRUE or False only (2 bytes of memory).

Integer – whole numbers from -32768 to 32,767 (2 bytes)

Long – whole numbers from -2,147,483,648 to 2,147,483,647 (4 bytes)

Single - floating-point numbers, ranging in value from -3.402823E38 to -1.401298E-45 for

negative values and from 1.401298E-45 to 3.402823E38 for positive values (4 bytes)

Double - floating-point numbers ranging in value from -1.79769313486231E308 to -

4.94065645841247E-324 for negative values and from 4.94065645841247E-324 to

1.79769313486232E308 for positive values (8 bytes)

Currency - numbers in an integer format, scaled by 10,000 to give a fixed-point number with 15

digits to the left of the decimal point and 4 digits to the right. This representation provides a

range of -922,337,203,685,477.5808 to 922,337,203,685,477.5807.

Decimal – this is a special type that almost doesn’t exist. The quote from Excel Help tells this

tale: “…signed integers scaled by a variable power of 10. The power of 10 scaling factor

specifies the number of digits to the right of the decimal point, and ranges from 0 to 28. With a

scale of 0 (no decimal places), the largest possible value is +/-

79,228,162,514,264,337,593,543,950,335. With a 28 decimal places, the largest value is +/-

7.9228162514264337593543950335 and the smallest, non-zero value is +/-

0.0000000000000000000000000001.

Note At this time the Decimal data type can only be used within a Variant, that is, you cannot

declare a variable to be of type Decimal. You can, however, create a Variant whose subtype is

Decimal using the CDec function.”

Date – January 1, 100 to December 31, 9999 (8 bytes)

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Procedures: Sub and Function Page 14
Copyright © 2008 by J.L.Latham, All Rights Reserved.

String – Strings are Text. Strings come in two lengths:

String: Variable Length – zero (empty string) to approximately 2 billion characters. (10 bytes

of memory plus the length of the string)

String: Fixed Length – length of the string when declared, 1 to approximately 65,400. (1 byte

per character)

And you thought I was kidding about strings coming in two lengths. To continue and now we

get to some that probably won’t make quite as much sense to you as the list has so far.

Object – a reference to an object that you declare. When a variable is declared as an object it

can take on the attributes of any legitimate object when you use the Set command to assign it to

a specific type of object. An object is much like the Variant type that you are about to see. (4

bytes)

Variant – any variable that is not defined as a specific type is by default of type variant. A

variant can take on the attributes of any other type depending on how values are assigned to it.

Generally you should refrain from declaring variables as type Variant, however sometimes it is

actually required that a Variant be used in some circumstances. Somewhat like strings, Variants

come in two variations (yeah, now I am playing word games)

Variant – with numbers a variant can take on any value up to that of type Double. (16 bytes)

Variant – with text characters a variant has the same limits as a variable length String type, but

it takes 22 bytes plus the length of the text in memory.

Finally, we get to the truly catch-all-nothing-else-will-do type, the user defined type! Yes, you

can define your own type. These are special cases where you use a combination of other types to

define your own. We will use at least one user defined type in our learning in time. For now

picture this: you create a user type that you call EmployeeRecord and it consists of a type that

can hold some text, some numbers, a date or two and even a currency value, any of which can be

referenced as a property of a variable that you declare as type EmployeeRecord.

Oh crap! I’ve forgotten an entire application worth of types!! For each application that VBA is

implemented in, any object in that application can be used as a type. So in VBA for Excel you

can declare variables as specific objects such as the Application itself, a Workbook, a

Worksheet, a Range, a chart, a style, and just about anything else that exists in the Excel world.

We will definitely deal with this kind of assignment of type later on – Excel VBA is just a

cripple if we don’t make use of this incredible ability.

Alright, let’s declare some variables and constants and discuss what we might do with them. But

we are going to do it all for real and write some code to use the constants and variables that we

define. We will start on the next page.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Procedures: Sub and Function Page 15
Copyright © 2008 by J.L.Latham, All Rights Reserved.

35BOUR FIRST PROCEDURE

Start by opening Excel with a new workbook. Press [Alt]+[F11] to enter the VBE. In the VBE

use the menu toolbar Insert | Module options to create a module that we can put some code into.

Procedure names should be at least somewhat meaningful and hopefully will give some insight

about their purpose or what they’re going to do. So naturally we will call this procedure

MyFirstProcedure. Go ahead and get it started – click anywhere in the code window below the

Option Explicit statement. If you don’t have an Option Explicit statement at the top of the code

module then start reading back at page 1, please.

This procedure will show you one way of getting an entry from the user, do something with that

data and both show the result on a worksheet and in a message to the user.

Sub MyFirstProcedure()
'this procedure accepts a numeric input from the user
'calculates that value raised to a specific power
'and places the result on a worksheet and also
'displays it in a message box to the user.
'***declare a constant to hold the name of the sheet
'that will receive the results of our calculation
'this lets you call this procedure from anywhere at
'any time and always have the result go to a
'specific sheet. If the sheet's name changes
'you can change it here and the code will
'continue to function in the same way.
 Const dataSheetName = "Sheet1" ' name of sheet
 Const raiseToPower = 2 ' square the number
 Dim theNumber As Integer ' from user
 Dim theResult As Integer ' calculated value
 'get the number from the user.
 'InputBox accepts any input, even numbers and dates,
 ‘but it accepts it as text which we may have to massage.
 'so we will have to make sure that they
 'entered a number or something that looks like one
 'we will display a prompt, a title and create a default
 'value of zero
 'because theNumber has been declared as an integer, if the
 'user enters something non-numeric, a run-time error will
 'take place. If you experiment with that and get a
 'runtime error 13 (type mismatch), just click the [END]
 'button to bring things to a safe stop.
 theNumber = InputBox("Enter a whole number", "Integer Input", 0)
 'the ^ symbol means "raise to power"
 theResult = theNumber ^ raiseToPower
 'put theResult on a worksheet in cell A1
 Worksheets(dataSheetName).Range("A1") = theResult
 'display an explanation to the user in a message box
 MsgBox theNumber & " raised to the power of " & raiseToPower & " = " & theResult
End Sub

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Procedures: Sub and Function Page 16
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Running your first procedure. There are a couple of ways

to test your code at this point. But before just trying it out,

it’s a good idea to make a couple of “desk checks”. Read

through the code again to see if you notice any obvious

errors, such as perhaps typing * (multiply) instead of ^

(raise to power). The VBE can also help you with a desk

check step, and it’s very critical of your code and can help

find problems very early on. From the VBE menu choose

[Debug] | Compile VBAProject.

If it doesn’t find anything wrong, it will simply blink and

do nothing else – it doesn’t give “all clear” message. If it

does find a problem, it will highlight the first offensive

line that it finds and tell you what the problem is.

Fix the problems and repeat the process until it doesn’t

report any more errors to you.

Figure 12 The VBE Debug Menu

You can run the code directly from within the

VBE itself. Click anywhere within a procedure

and press [F5]. This is much the same as using

[Tools] | Macro | Macros from the Excel menu

toolbar. Here is a shot of the results for your first

procedure when things go right:

Figure 13 MyFirstProcedure Results

One thing you may notice both in the code above and in the VBE itself is that some words and

phrases are in one color while others are in a different color. This is by design and is to help you

read and interpret the code. VBA ‘reserved’ words are shown as blue text, while comments are

shown as green text, while pretty much everything else is in black. Your editor may be set up to

show these things in different colors, but there will be differences in colors for the different

meanings of the code pieces. There is one more color that you may see from time to time – red

text indicates a line of code that VBA has determined to contain one or more errors.

36BRESERVED WORDS

You cannot use words unique to the VBA language as the names for your own constants and

variables. The list is pretty long, you’ll learn what you can use and what you cannot during your

coding efforts. Words like For, Next, Do, Loop, Until, Dim, Const, InStr are reserved for the

language and you can’t use them except as the instructions that they are. It is even considered

bad form to use a reserved word as part of a constant or variable name because it can confuse

anyone reading the code later, so while intNext is a valid name, it is an unwise one to use; but a

name like intNextNameInList would probably be a good one to use.

37BCOMMENTS AND REMARKS

It is always a good idea to add comments to your code. How many to add is a judgment call on

your part. But a comment should add understanding and not just repeat what the code is doing:

X = X + 1 ‘ add one to X

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Procedures: Sub and Function Page 17
Copyright © 2008 by J.L.Latham, All Rights Reserved.

That comment doesn’t add any value to the code at all. It would be better to explain why one is

being added to the value of X:

X = X + 1 ‘ increment the pointer into the array holding employee names

That would be a much more informative comment to add (assuming it’s true, of course). It tells

why the value of X is being increased, and informs the reader where to expect to see it used

somewhere else in the code (as an index or pointer into an array [list] of names).

Comments typically begin with the single quote mark as I’ve used in the examples. Everything

following the single quote mark is ignored by the VBA engine. Comments only add to the

understanding of the code and to the size of the source code file – they do not add to the time it

takes to execute the code.

I said “typically” above because you may also start a comment, or remark, with REM, as

REM increment the pointer into the array holding employee names

This is a holdover from earlier times and has its roots in the original interpreted BASIC

language. However, there are restrictions in using it that makes it inconvenient. REM must be

used as the first word in a line in the procedure, otherwise it will generate an error:

X = X + 1 REM increment the pointer into the array holding employee names

Since the single quote mark has become THE accepted VB notation for the beginning of a

comment, using the word REM can actually add some difficulty in reading the code. Using the

single quote in some places and REM in others would add even more confusion. Be consistent,

and simply use the single quote mark as the start of comments in your code.

38BERROR HANDLING: A BEGINNING

There isn’t too much that will make your users think of you often and most unfavorably than for

them to have entered a lot of important information and suddenly have the program blow up in

their face with an unhandled error (also called an exception in some languages).

If you try running MyFirstProcess

and supply a word or other non-

numeric entry to be processed you

will get a Type mismatch error

because we defined variable

theResult as an Integer type, and

words are not integers. Clicking

[End] will stop the process; clicking

[Debug] will take you to the line in

the code where the error took place.

Figure 14 BOOM! Unhandled Errors Are a Pain

So what can we do about such situations? VBA provides the On Error statement to help deal

with both anticipated errors and those not so anticipated. Using one form of it, we can change

our code just a little and keep it from failing as dramatically and allow the user to recover from

the error.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Procedures: Sub and Function Page 18
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Here is our code revisited, with some comments removed and others added, along with some

error handing added in.

Sub MyFirstProcedure()
 Const dataSheetName = "Sheet1" ' name of sheet
 Const raiseToPower = 2 ' square the number
 Dim theNumber As Integer ' from user
 Dim theResult As Integer ' calculated value
 '
 ' add a test for a possible error
 ‘ this form of On Error says “if an error occurs, just ignore it for the moment”
 ‘ but do remember that it did happen.
 On Error Resume Next
 theNumber = InputBox("Enter a whole number", "Integer Input", 0)
 'now test if special system object ERR indicates something bad happened
 If Err<>0 Then
 'something bad did happen, we don’t much care what although we can
 'presume it was the anticipated Error 13 – Type Mismatch
 MsgBox “Your Input was not numeric. Please Enter an Integer Value”, vbOKOnly, ”Error”
 'clear the error condition and exit the procedure
 Err.Clear
 'also reset error handling to let the system once again deal with problems
 On Error Goto 0
 Exit Sub
 End If
 'no error detected, continue on, but first remove
 ‘ our “error trap”
 On Error Goto 0 ‘ allows errors to be handled by the system again
 theResult = theNumber ^ raiseToPower
 'put theResult on a worksheet in cell A1
 Worksheets(dataSheetName).Range("A1") = theResult
 'display an explanation to the user in a message box
 MsgBox theNumber & " raised to the power of " & raiseToPower & " = " & theResult
End Sub

Now if you run the procedure again and enter a word or something other than a number, you are

gently requested to correct the error of your ways and allowed to try again without the entire

application crashing to the ground.

Now we will continue our interrupted discussion of declaring variables and constants.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Procedures: Sub and Function Page 19
Copyright © 2008 by J.L.Latham, All Rights Reserved.

39BCONSTANT AND VARIABLE DECLARATIONS REVISITED

We’ve written a small procedure that involved declaring and using some variables. Now we can

talk about them in a little more depth. One thing we need to discuss is SCOPE. Scope refers to

what parts of a program can see a particular variable or not. There are three levels of variable

scope in VBA:

90BProcedure Level Scope

A variable declared inside of a procedure has procedure level scope. The variables and constants

we declared in MyFirstProcedure had procedure level scope.

Procedure level variables are created when the procedure begins to execute, they are only

available to be used within the procedure and they cease to exist when the procedure ends at the

procedure’s Exit Sub or Exit Function statement.

As with any good rule, this one has an exception. If you declare the variable using the Static

declaration instead of Const or Dim statements, then the variable will retain the last value

assigned to it when the procedure ended as its initial value the next time the procedure executes.

A trivial example: try placing this code in a module and just press [F5] several times to watch the

value of myStaticCounter go up each time.

Sub StaticsAtWork()
 Static myStaticCounter As Integer
 'each time this procedure is called, myStaticCounter value will increase by one
 myStaticCounter = myStaticCounter + 1
 MsgBox myStaticCounter
End Sub

Even though myStaticCounter retains its last value, it still cannot be accessed to determine its

value outside of the procedure – it retains its procedure level scope.

You cannot use the Public or the Private declarations within a procedure. For all practical

purposes all declarations within a procedure are private to that procedure.

91BModule Level Scope

The next step up the scope food chain is module level scope. These are constants and variables

that can be used/evaluated/modified (for variables) by any procedure in the module. Module

scope variables and constants are declared in the General Declarations Section of a module.

The General Declarations Section of a module is the area ahead of any declaration of a

procedure. The Option Explicit statement that we’ve already seen is in this section of the

modules. Declare your module scope variables and constants after the Option Explicit statement

and before any procedure declaration.

You can use the Dim and Const statements to make declarations in this area but it is clearer to

the reader if you use the Private declaration statement so that readers will know later that these

variables and constants are private/local to the module:

Private anyModuleLevelScopeVariable As Variant
Private Const anyModuleLevelScopeConstant = “The whole module can see me!”

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Procedures: Sub and Function Page 20
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Why specify Private? As you are about to see, Public (or entire VBAProject scope) objects are

also declared in this section of a module, any standard module.

92BPublic Scope

Public is a term that was previously Global. A variable or constant declared as Public in the

General Declarations section of any standard module has visibility/accessibility in any procedure

in any module in the entire project.

Why not just declare everything Public and be done with it? Because in more than the simplest

application you will invariably change the value of a public variable at the wrong time/place

causing yourself mega-headaches in debugging it all. Overall it is best to keep the scope of your

declared values at the lowest level possible. You will have fewer problems and easier debugging

all around by doing that.

I personally like to put all of my Public constants and variables into a single module with

comments provided to explain where they are used and what they are used for. This provides a

single central point of management for the Public values.

What are candidates for Public values? Look for things that you find yourself using repeatedly

for the same purpose in several areas of your project – perhaps using the same worksheet name

to perform operations with the sheet; definitions of the layout of those worksheets, constants that

your logic depends on heavily and are used in multiple areas.

93BWhen to Use Constants and/or Variables

One question that comes up from time to time is “why use constants at all – why not just use

their value(s)?”. I’ll answer your question with a question: which is more informative to you

here?

If ActiveCell.Row < 4 Then

Or

If ActiveCell.Row < firstRowWithData Then

Not only is the second form more understandable, it keeps you from having to track down every

place you’ve used 4 as a value and trying to figure out if you mean the first row with data on a

sheet, or are comparing ages of pre-school children, or seeing if the word Mississippi has the

correct number of 'i's in it.

Finally, using named variables/constants helps prevent typographic errors. [Debug] | Compile

VBAProject will find errors in variable/constant name spellings rapidly, but it cannot do

anything at all to determine that you typed a 4 when you really meant to type a 5 and just had

your finger on the wrong key when you typed it. A common error, known as FFS (fat finger

syndrome).

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Good Programming Practices Page 21
Copyright © 2008 by J.L.Latham, All Rights Reserved.

6BGood Programming Practices
We’ve already discussed one good programming practice that is beneficial: having the VBE

automatically require declaration of constants and variables before their use.

Most good programming practices fall into the category of either good common sense or of

following a generally accepted standard, as with the use of the single-quote/apostrophe as the

beginning of a comment.

Good programming practices will improve your chances of actually writing Good Code.

40BWHAT IS GOOD CODE

There are probably as many definitions of “good” code as there are programmers. My definition:

Good Code is code that performs the task required and does so reliably. Good Code is also

maintainable.

Some examples of Good Code at work in this day? WinZip. IrfanView. Microsoft’s Calculator

and Notepad. They do what they’re designed to do, they do it simply, and they do it reliably.

I’m sure you can think of many more examples, just as you can think of programs written with

“bad code” – that are far less than you expected when you acquired them.

Good Code also takes the user into consideration – making things easier for them, performing the

application's tasks with a minimum of fuss, bother and annoyance. This is the human-machine

interface side of code design and development. Working closely with your client or studying

your intended audience can help you design an effective, usable interface for your application.

41BGOOD PROGRAMMING PRACTICE #2

Be consistent. If you don’t follow any published standards for conventions such as commenting,

constant/variable naming, source code listing formats or others, then at least be consistent within

your own code in the way you do these things. This will make your code more readable and

understandable to you, and will tend to making extending the code to include new features,

modify old ones and simply fix bugs than if you do things one way today and some other way

the next. That is not intended to keep you from changing the way you do things as you discover

better ways to do them.

42BMORE GOOD PROGRAMMING PRACTICES

As we encounter situations in our coding examples where a Good Programming Practice can be

demonstrated, they will be pointed out and labeled as GPP #n That may be more effective in

showing them to you ‘in context’ than just describing them in a list here.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Looping Structures Page 22
Copyright © 2008, 2014 by J.L.Latham, All Rights Reserved.

7BLooping Structures
One thing that computer code is good at doing is something dull and tedious for us human types:

repetitive actions. A macro in itself is a way of doing something repetitive, with varying levels

of complexity, over and over with ease and without boring ourselves to death doing it. Each

time we run a Macro or cause a procedure to be called, we are performing some repeated

process.

Within procedures we may also need to perform a particular task many times. The use of

looping structures such as:

For … Next

For Each … Next

Do … Loop

Do … Until

and

Do … While

All give us slightly different ways to perform actions, calculations and other processing many

times in a relatively small section of code.

43BGPP #3:

Keep the amount of work inside of a loop to a minimum. If there is something that can be done

outside of the loop before starting it, do it outside of the loop.

For example let us assume you want to take a list of numbers you have in a range and increase

those values by some percentage that you have stored. You could code it like this:

For Each anyValue In listOfValues
 anyValue = anyValue * (1 + percentIncrement)
Next

The problem with this is that each time through the loop, the value of 1 + percentIncrement must

be recalculated. You can increase the efficiency of that loop by calculating that value before

entering the loop, as:

tempValue = 1 + percentIncrement
For Each anyValue In listOfValues
 anyValue = anyValue * tempValue
Next

44BFOR … NEXT LOOPS

The simplest and oldest loop structure in Basic is the For…Next loop. The general form, or

syntax, of the command is

For counter = startCount To endCount Step stepValue
 Executable statements and comments to be performed
Next

For is a reserved word that marks the beginning of the loop.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Looping Structures Page 23
Copyright © 2008, 2014 by J.L.Latham, All Rights Reserved.

counter is a variable that is used to control how many times the code within the loop is

performed.

startCount is a variable, constant, or calculated value that determines the initial value of counter.

To is a required reserved word that separates the starting value from the ending value

endCount is a variable, constant, or calculated value that determines the maximum value that

counter may be assigned before the loop terminates.

Step (and stepValue) are optional arguments that allow you to change the way counter values

between startCount and endCount are calculated. stepValue may be a variable, constant, or

calculated value. The default, when Step stepValue are omitted from the command, is 1 (one).

Next is a reserved word that is used to mark the end of the For loop.

45BFOR EACH LOOPS

This is a special loop that works very much like the For…Next loop, but it loops with ‘objects’

within larger group of the same type of objects. The Excel engine is smart enough to figure out

that part of it. That is, if your larger group is Worksheets, it knows to work with each individual

worksheet in the group; or if your range is a group of cells, it knows to work with each individual

cell within the group.

Typical setups for using For Each might be similar to these:

Dim groupOfCells As Range ‘ remember, a range can refer to 1 or more cells
Dim anySingleCell As Range ‘ remember, a range can refer to 1 or more cells
Set groupOfCells = ThisWorkbook.Worksheets(“SomeSheetName”).Range(“A1:A500”)
For Each anySingleCell In groupOfCells
… do some work within the loop
Next

Here is an example that would protect all sheets in the active workbook without a password.

Dim anySingleSheet As Worksheet
For Each anySingleSheet In ActiveWorkbook.Worksheets
 anySingleSheet.Protect
Next

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Looping Structures Page 24
Copyright © 2008, 2014 by J.L.Latham, All Rights Reserved.

A For...Next loop will always execute at least one time. Don't believe me? Try this code:

Sub test()
 Dim x As Integer

 For x = 0 To 0
 MsgBox "inside of the loop"
 Next
End Sub

You will see the message once, proving that the code inside of the loop did run.

An exception to this rule would be if you improperly sequenced the from and to values as:

Sub test()
 Dim x As Integer

 For x = 5 To 4
 MsgBox "inside of the loop"
 Next
End Sub

To count backwards you must use the Step portion of the command and specify a negative value.

Sub test()
 Dim x As Integer

 For x = 5 To 4 Step -1
 MsgBox "inside of the loop"
 Next
End Sub

In these cases, the value of the counter after it exits the loop will be one step-value less than the

lower limit. Note that inaccuracies can creep in that generally don’t affect the actual number of

loops, but the highly critical will notice them. These are caused by the inability of a binary

system (the computer) to accurately represent all analog numbers. Try this loop to see this in

action:

Sub test()
 Dim x As Single

 For x = 1 To 0 Step -0.1
 MsgBox x
 Next
 MsgBox x
End Sub

Many of those numbers don’t look much like .9, .8, .7, .6, .5, .4, .3, .2 and .1 do they?

If a For...Next loop runs to completion, the value of the counter value will be one more than the

endCount. (but remember that In these cases, the value of the counter after it exits the loop will

be one step-value less than the lower limit.) Example:

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Looping Structures Page 25
Copyright © 2008, 2014 by J.L.Latham, All Rights Reserved.

Sub test()
 Dim x As Integer
 Dim y As Integer

 For x = 1 To 10
 y = y + 1
 Next
 MsgBox "Counter x is: " & x & vbCrLf & "Value y is: " & y
End Sub

The message displayed should be:

Figure 15 For...Next Loop Counting Results

What does this tell us? Simply that the test for the counter value is made at the For statement,

not at the Next statement. Generally this isn't information of great interest, but it can be handy to

know at times.

Note: in the MsgBox statement, vbCrLf is a built-in VBA constant that provides a newline; that

is, it provides a Carriage Return and a Line Feed, thus they called it vbCrLf.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Looping Structures Page 26
Copyright © 2008, 2014 by J.L.Latham, All Rights Reserved.

46BDO... LOOPS

There are several varieties of the Do loop and this variety makes them a bit more versatile than

the sturdy, but rather plain vanilla For...Next loop.

In exchange for this versatility, you have to do a little more work in the form of helping to

control when the loop terminates. Consider this simple loop.

Sub LoopForever()
 Do
 MsgBox "Pete and Repeat were in a boat. Pete fell out. Who was left?"
 Loop
End Sub

Use [Ctrl]+[End] to break into that code if you actually try running it.

There is nothing in that code to stop the loop from processing, so it pretty much runs forever.

While there are times when you may actually choose to implement such a loop, you usually want

a way to halt one either manually or automatically. We will rewrite the code a little to get it to

halt automatically after having annoyed you just a little.

Sub LoopForever()
 Dim loopCount As Integer
 Dim y As Integer
 Do Until loopCount = 3
 MsgBox "Looped " & y & " times."
 loopCount = loopCount + 1
 y = y + 1
 Loop
End Sub

the value of loopCount is used to exit the loop once it reaches a value of 3. How many times will

the message appear? No, not a trick question - the message will appear 3 times.

But what happens if we change it just a little bit?

Sub LoopForever()
 Dim loopCount As Integer
 Dim y As Integer
 Do While loopCount < 4
 MsgBox "Looped " & y & " times."
 loopCount = loopCount + 1
 y = y + 1
 Loop
End Sub

So I'll ask the question again: How many times will the message appear? In this case it becomes

a trick question. You'll see the message 4 times. And yet logic tells us that 3 is less than 4, but

the test must be done at the Do While statement and that means that we get an extra, sometimes

unexpected pass through the loop. The technical reason is that the loop started at ZERO!

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Looping Structures Page 27
Copyright © 2008, 2014 by J.L.Latham, All Rights Reserved.

Sub LoopForever()
 Dim loopCount As Integer
 Dim y As Integer
 Do
 MsgBox "Looped " & y & " times."
 loopCount = loopCount + 1
 y = y + 1
 Loop While loopCount < 4
End Sub

Again the message will be displayed 4 times because even though we've moved the test to the

bottom of the loop, we still have to get some value into loopCount that equals or exceeds 4 in

order to exit the loop. So be sure you know how many times your loop will execute if you are

depending on it to exit after a specific number of iterations. If we rewrite the last section like

this:

Sub LoopForever()
 Dim loopCount As Integer
 Dim y As Integer
 Do
 MsgBox "Looped " & y & " times."
 loopCount = loopCount + 1
 y = y + 1
 Loop While loopCount < 3
End Sub

Then the message will be displayed 3 times, presumably as you expected it to. You could also

change that last statement to:

 Loop Until loopCount = 3
and get the message displayed 3 times.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Looping Structures Page 28
Copyright © 2008, 2014 by J.L.Latham, All Rights Reserved.

What about a loop that needs to execute some undetermined number of times? Let's say that you

need to pull the characters off of the front of a string of characters until you encounter a numeric

character, but you don't know where in the string the number will be found. You can use a 'flag'

to indicate when you have met the requirement. Here is an example:

Sub StripToFirstDigit()
 Dim strippedText As String
 Dim positionInString As Integer
 Dim allFinished As Boolean ' default value when declared is FALSE
 Const testPhrase = "abcdef123xyz"

 Do Until allFinished ' loop until flag allFinished becomes TRUE
 positionInString = positionInString + 1
 If Mid(testPhrase, positionInString, 1) >= "a" Then
 strippedText = strippedText & Mid(testPhrase, positionInString, 1)
 Else
 'found something that's not a letter, assume a number
 allFinished = True ' set flag to exit the loop
 End If
 Loop
 MsgBox "Stripped Text is: '" & strippedText & "'"
End Sub

We had to do a little more work but we got a lot of added functionality. Try changing the value

of constant testPhrase and see how it works. Just make sure you have at least one non-alphabetic

character in the phrase since we haven't tested to see if positionInString ends up becoming

greater than the number of characters in testPhrase.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Looping Structures Page 29
Copyright © 2008, 2014 by J.L.Latham, All Rights Reserved.

47BDO LOOPS CONTROL SUMMARY

For those that may have gotten confused along the way, here is a short description of how the

different versions of Do loops work:

Do
 'your code within the loop will run (execute) until you take some action within the code to force it
 'to exit the loop using an Exit Do statement.
 'without such a control, it becomes an "infinite loop".
Loop

Do Until testCondition
 'your code within the loop will execute only while the testCondition is FALSE.
Loop

Do
 'the code executes at least one time and will continue to execute within the loop as long as the
 'testCondition is FALSE
Loop Until testCondition

Do While testCondition
 'your code within the loop will run (execute) only while the testCondition is TRUE.
Loop

Do
 'the code executes at least one time and will continue to execute within the loop as long as the
 'testCondition is TRUE
Loop While testCondition

Generally there's no accepted standard for which of the Do Loop types (While or Until) to use

other than your own personal preference. Typically you can write either type to accomplish the

same task and get the same result.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Decision Makers Page 30
Copyright © 2008 by J.L.Latham, All Rights Reserved.

8BDecision Makers
There are two primary decision making tools in VBA: If...Then and Select Case. We can look

at the loop structures as decision makers also, but they are kind of indirect decision makers. The

If...Then, and its brothers If...Then...Else and If...Then...ElseIf...Else along with Select Case

are very definitely there to assist you in changing the path of the program or the logic of a

process; i.e., they help you make decisions about what to do next based on the result of

calculations or actions at a specific point in your process.

48BIF...THEN

This is the most basic of the decision makers. Using it assumes there is pretty much only one

test to perform and only one action to take if the result of the test is true. It can be written as a

one-line statement such as:

If X = 2 Then Y = 5

Very straight forward statement: if at this point in the process X equals 2, then set Y to 5. If X

does not equal 2 at this point, Y will retain whatever value it has at the moment.

A personal preference of mine is to make even this simple statement a "block" because I think it

makes the code more readable and understandable. This is exactly the same statement, but in

"block" form:

If X = 2 Then
 Y = 5
End If

This form also allows us to easily and clearly perform more than a single action based on the

result of the decision, like this:

If X = 2 Then
 Y = 5
 Z = 9
 aStringVariable = "X was 2"
End If

So in this example, we perform three actions when we find that X has a value of 2. The End If

statement also gives us a clear view of what will be done when X = 2 by defining the end of the

If Then code block.

But what if we need to do one thing when X = 2 and do something else when it doesn't? Enter

the If...Then...Else statement.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Decision Makers Page 31
Copyright © 2008 by J.L.Latham, All Rights Reserved.

49BIF...THEN...ELSE

Taking If...Then to the next step, this decision maker lets us exercise a couple of options based

on the value of something. This next snippet of code shows us how it can be used:

If X = 2 Then
 Y = 5
 Z = 9
 aStringVariable = "X was 2"
Else
 Y = 1
 Z = 3
 aStringVariable = "X was not 2"
End If

So here we are saying that when X = 2, we set Y, Z and aStringVariable to particular values, but

if X is some value other than 2 then we set those same variables to a different set of values.

We can extend this decision making even farther using ElseIf along with what we've already

seen.

50BIF...THEN...ELSEIF...ELSE

Using this combination we can test for different values of a particular item. For this example, we

need to set Y, Z and aStringVariable to specific values when X is either 2 or 3, and another set of

values when it is not 2 or 3.

If X = 2 Then
 Y = 5
 Z = 9
 aStringVariable = "X was 2"
ElseIf X = 3 Then
 Y = 0
 Z = 99
 aStringVariable = "X was 3"
Else
 Y = 1
 Z = 3
 aStringVariable = "X was neither 2 nor 3"
End If

You may actually have many ElseIf ... Then statements before the final Else statement, making

this a multi-conditional decision maker. But for the times when you have many decisions to

make based on the value of one (or more) variable value(s), the Select Case statement is more

efficient.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Decision Makers Page 32
Copyright © 2008 by J.L.Latham, All Rights Reserved.

51BSELECT CASE

Select Case is used much like If...Then and its variants. It's just more compact, provides

improved readability and is more efficient than stringing a long series of ElseIf ... Then

statements into the code.

To show how it can work, we will use the same situation that we had for the last example in the

If...Then variants section.

Select Case X ' base our decision on the value of X
 Case Is = 2 Then
 Y = 5
 Z = 9
 aStringVariable = "X was 2"
 Case Is = 3 Then
 Y = 0
 Z = 99
 aStringVariable = "X was 3"
 Case Else
 Y = 1
 Z = 3
 aStringVariable = "X was neither 2 nor 3"
End Select

You can have any number of Case Is type statements, allowing you to make decisions based on a

large number of possible values for a variable.

You do not HAVE to have a Case Else statement, but it is wise to have one. It doesn't even have

to do anything, but having a "do nothing" section tells others reading the code later that no action

is taken if a value doesn't meet one of the stated values. Here's a "do nothing" setup:

Select Case X ' base our decision on the value of X
 Case Is = 2 Then
 Y = 5
 Z = 9
 aStringVariable = "X was 2"
 Case Is = 3 Then
 Y = 0
 Z = 99
 aStringVariable = "X was 3"
 Case Else
 ' no action required or desired when X is not 2 or 3

End Select

The Select Case block always ends with the End Select statement.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Data Sources Page 33
Copyright © 2008 by J.L.Latham, All Rights Reserved.

9BData Sources
There are lots of sources for data to work with inside of Excel:

 Cells on worksheets

 Files external to the Excel workbook (and I include things like queries to obtain data

from a variety of sources such as database files or from a networked location or internet

site)

 The user!

There are a couple of things you need to keep in mind when getting data from any source:

 You have to know where to find it, and what actions to take to get it into your VBA code

to work with, and

 Remember that what you expect to get is not always what you actually do get. We'll

cover this aspect some more in a short discussion of data validation later on.

52BDATA FROM WORKSHEETS: INTRO

Within VBA you can get data from any cell or group of cells on any worksheet in any open

workbook. Later on I'll show you how to do this without ever leaving the cell that is currently

active on your screen.

You will need to know where to look for the information or how to find it, and unless you are

working in a fairly structured situation, you may need to perform some data validation on it

before trying to use it in your code.

53BDATA FROM EXTERNAL SOURCES

The possible external sources and their types is so varied that we can't really cover them all here.

You'll need to know how to either open any external data file such as a .txt, .dat or .csv file and

read from it and you'll need to know the format of the data in the file. Usually you have an idea

about these things before you begin writing the code to access the external files, so don't worry

about it at this time. Sometimes finding out what's in a file and how it's all laid out requires

some 'legwork'; that is, you may have to open the file and bring in the data without using Excel

and simply examine it to see what's what within it.

When querying databases you will probably have some guidance from those who created the

database and maintain it as to what tables and fields within those tables you are going to need to

reference to get what you want from it. This takes us into the realm of SQL (Structured Query

Language) and that's definitely beyond the scope of this book!

54BUSER PROVIDED DATA

Working with data provided "on the fly" or in "real time" from the end user is almost an art. You

cannot EVER be certain that they'll provide the information you've requested in the form that

you need it or that it will even be the same kind/type that you asked for! User input data is

almost always in dire and desperate need of data validation before using it.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Data Sources Page 34
Copyright © 2008 by J.L.Latham, All Rights Reserved.

I can quickly think of four typical ways of getting data from a user in Excel:

 They type it into cells on worksheets and you read it from there - which goes back to the

earlier section on DATA FROM WORKSHEETS

 Data entered by the user in response to the use of the InputBox$() function in VBA. This

is useful for getting single quick input from the user when you need it.

 Evaluating the user's response to a MsgBox$() function that uses several buttons, as

[Yes], [No] and/or [Cancel] on it to allow the user to indicate their response to the prompt

you have provided as part of the message displayed. Very little data validation is needed

with this one.

 Inputs provided on a UserForm. A UserForm allows you to get many inputs at once from

the user. This is a good way to gather lots of information at once, but you're going to

need to do data validation on a lot of it of some type before actually making use of it.

We'll take some quick looks at the last 3 of these in this section, nothing in great detail, but

hopefully enough to give you an idea of the abilities of each of those 3 methods of obtaining

information from the user.

55BINPUT USING INPUTBOX$()

In VBA code the InputBox$() function is coded as shown below. For this example we are going

to ask the user to enter what we plan on using as a starting balance for a worksheet that is set up

to act as a checking account program of some type. So we are expecting a numeric input that we

will want to use as money (Currency).

Sub GetACurrencyEntry()
 Dim dataAccepted As Boolean ' a flag to tell us when we think the input is good
 Dim userInput As Variant ' use variant to accept any type of entry the user may provide
 Dim acceptedInput As Currency ' we will store the validated/accepted amount in this variable

 dataAccepted = False ' initialize to remain in the loop until a good entry is made
 Do Until dataAccepted ' implied test of dataAccepted = True
 userInput = InputBox$("Enter the Starting Balance for the account:", "Starting Balance", 0)
 If IsNumeric(userInput) Then
 'looks ok, at least it starts with numbers
 dataAccepted = True ' so that we will exit this loop
 Else
 'oops, not looking very good
 MsgBox "Please enter a dollar amount to continue..."
 End If
 Loop
 acceptedInput = Val(userInput) ' get the numeric value of the validated/accepted entry
'... continue on to use acceptedInput in your code
End Sub

As you can see, we've set up a loop to keep asking the user for some numeric entry until we get

one from them. We use the Boolean flag, dataAccepted, to tell us when we think it is alright to

use what they entered later on in our processing.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Data Sources Page 35
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Let's quickly look at the line of code that gets the input from the user:

 userInput = InputBox$("Enter the Starting Balance for the account:", "Starting Balance", 0)

InputBox$() can also be written as InputBox() but I use the $ with it as a reminder that if

something is entered, it is going to be a string/text even if it looks like something else such as a

number, currency amount, time or date.

InputBox$() takes 3 basic parameters:

 A prompt to be shown to the user,

 some text to use as a title in the dialog and

 a default value to use if the user just clicks the [OK] button.

Here's what this looks like at runtime:

Figure 16 InputBox$() Example

You can see where the three pieces of information were used when the line of code was

executed. If the user just presses [Enter] or clicks the [OK] button at this point, we get zero (the

default value we provided) as the starting balance.

But if they don't enter something that looks like numbers, they will get a reminder message and

the dialog will be shown to them again:

Figure 17 InputBox$() Validation Failed Message

But there are 2 situations that can come up here that we haven't taken into consideration in our

data validation: The user clicks the [Cancel] button or the user clicks on the close dialog X.

In both of those cases we get a zero length string back into variable userInput, not a zero or

anything else. We have to expect this to happen, look for it, and decide what to do if it happens.

That's more of the data validation process. Here is the code segment with a test for this situation

added to it:

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Data Sources Page 36
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Sub GetACurrencyEntry()
 Dim dataAccepted As Boolean ' a flag to tell us when we think the input is good
 Dim userInput As Variant ' use variant to accept any type of entry the user may provide
 Dim acceptedInput As Currency ' we will store the validated/accepted amount in this variable

 dataAccepted = False ' initialize to remain in the loop until a good entry is made
 Do Until dataAccepted ' implied test of dataAccepted = True
 userInput = InputBox$("Enter the Starting Balance for the account:", "Starting Balance", 0)

 If userInput = "" Then
 'user either clicked [Cancel] or closed the dialog window
 'we have to decide what to do in this case and code it
 'into this section
 End If

 If IsNumeric(userInput) Then
 'looks ok, at least it starts with numbers
 dataAccepted = True ' so that we will exit this loop
 Else
 'oops, not looking very good
 MsgBox "Please enter a dollar amount to continue..."
 End If
 Loop
 acceptedInput = Val(userInput) ' get the numeric value of the validated/accepted entry
'... continue on to use acceptedInput in your code
End Sub

You're probably going to ask "Well, teach, what do we do if userInput = ""?" My answer is "that

depends". It depends on how you want to handle it. You could toss up a prompt asking if they

wish to continue and put up the dialog again or you could put the default value of 0 into variable

userInput just as if they'd clicked [OK] or you might even ask them if they want to quit futzing

around with their checkbook for now and if so, shut down so they can restart everything later on.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Data Sources Page 37
Copyright © 2008 by J.L.Latham, All Rights Reserved.

56BUSING MSGBOX$ AS USER INPUT

You can use the MsgBox$() [which can also be coded as MsgBox()] as a fast, reasonably

accurate method of getting a short Yes/No answer from your user during your processing.

Normally MsgBox() just puts up a message with an [OK] prompt and continues to process after

the user hits the [Enter] key or clicks the [OK] button. Code for such a thing might look like

this:

MsgBox "We are on page 34 of the tutorial. Press [Enter] or click [OK] to continue",
vbOkOnly,"Checkpoint"

Figure 18 Plain Vanilla MsgBox$() Displayed

But what if we want the user to make a choice right now? We could change it a little bit and ask

if they want to continue reading or take a break. You can 'capture' and evaluate the user's

response to a MsgBox() by forming it as a function and using it as a test, like this:

Sub Checkpoint()
 If MsgBox("We are on page 34 of the tutorial. Would you like to continue", vbYesNo, "Checkpoint") = vbNo Then
 Application.Quit ' close Excel!!
 End If
 'just continue on here...

End Sub

Figure 19 MsgBox Used to Obtain User Input

By enclosing the prompt, button choices and title within () we have turned it into a function that

returns a code associated with the button they click. It would look like this on screen:

vbOkOnly, vbYesNo and vbNo are constants automatically available within VBA - you don't

have to predefine them anywhere in your own code. There are others that can be used with

MsgBox also, such as vbExclamation, vbCritical, vbYesNoCancel and some that let you

determine which button on a multi-button message is the default (is used if they just hit the

[Enter] key).

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Data Sources Page 38
Copyright © 2008 by J.L.Latham, All Rights Reserved.

57BUSERFORM AS A DATA SOURCE

I'm going to show you a big form from an actual project I'm working on when I'm not trying to

finish up this book. We won't discuss all of it, but we will take one or two of the controls on it

and discuss them to show things like how to validate the data and how to get it from the form out

into a cell on a worksheet.

Figure 20 Multi-Control UserForm

I chose this one because it uses many of the possible controls you can use on a user form. It

starts off using a ComboBox control to present a list of possible models of a piece of equipment

that the user can select from to begin to build up a cost for the item. The astute observer will

notice that everything except that ComboBox is disabled right now. That means that the user can

only choose a Model ID at this point. That is part of my own data validation here: they can't

choose pieces of an equipment item without first telling what equipment item they are going to

be working with. Once they choose from the list, everything else gets set up to hold and accept

legitimate values from the user. All of the other controls on this form really need no further data

validation because the form itself and the way option buttons and check boxes within groups

work does it for me automatically. What I want you to see here is the variety of controls you can

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Data Sources Page 39
Copyright © 2008 by J.L.Latham, All Rights Reserved.

put on a user form. One control that is definitely missing from this one is a plain text entry area

such as you might use to get someone's name, address or other information. Here is another

form from the same project that has lots of those.

Figure 21 UserForm With Text Entry Boxes

Each of the text entry boxes on this form has a unique name, just as each of the controls on the

other form do. That allows us to work with them in the VBA code. Actually on this form there's

not much done in the way of serious data validation because most of the entries are things that

we pretty much don't have an idea of what they should look like. But we can check to make sure

that something was entered into any areas that we consider mandatory information, and we might

check that the zip code looks like a zip code or that phone numbers look like what we expect a

phone number to look like ... or not. But even that can get almost out of hand. Unless we tell the

user how to enter a phone number somewhere, it might come to us several ways, like:

(800) 555-1212 or 800.555.1212 or 800 555-1212

or others. So I'm just taking it on faith that the user has enough common sense to enter phone

numbers in some fashion that is acceptable and understandable to others that may look at the

information later on.

On this form nothing much happens until you click one of the two buttons at the bottom of the

form. If you click the [Cancel: ...] button, well, I just close the form and that's that. But if the

user clicks the [Save and Continue] button, then there is work to be done: we have to take the

information from this user form and put it someplace more permanent. In this case it is

going to be moved to a sheet in the workbook.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Data Sources Page 40
Copyright © 2008 by J.L.Latham, All Rights Reserved.

There is a sheet in the workbook named SysSheet that is used to store information like this until

the user finally tells the program to build a quote for a customer out of all the information that's

been entered. We start putting the client's information from this form onto that sheet at cells A2

and B2, with column A being a description of what's in column B. Hopefully the names I gave

the text boxes on the userform are as informative as I hoped they would be when I created it and

you'll be able to see which ones are being moved onto the worksheet in the code. I've not shown

all of the code here because there are a lot of text boxes...

Private Sub cmd_SaveData_Click()

 ThisWorkbook.Worksheets("SysSheet").Range("A2") = "Client:"
 ThisWorkbook.Worksheets("SysSheet").Range("B2") = Me!txt_ClientCompany

 ThisWorkbook.Worksheets("SysSheet").Range("A3") = "Address 1:"
 ThisWorkbook.Worksheets("SysSheet").Range("B3") = Me!txt_Address1
'
'and it goes on and on through all of the text boxes until it gets finished and then
'it tells the user that things seem to have worked out well and after that
'it removes itself from memory with the Unload Me statement below

 MsgBox "The information has been saved."
 Unload Me

End Sub

Although I did not have to be as specific as I have been in this code, it definitely tells exactly

what to do with what:

ThisWorkbook. is optional usually. However since the person may be working on several

quotations in several workbooks, I use ThisWorkbook to tell VBA that I mean the worksheet

named SysSheet that exists in the same workbook that this code is being executed in.

Similarly, the Me! associated with the names of the two text boxes used in the example tells

VBA not to be confused by any other forms that may be open or any text boxes that it may see

laying around that have those same names.

Some of you may ask to please explain a little about how controls like the ComboBox,

checkboxes and option buttons in the first userform are referenced or tested in code. So I'll hit

them each quickly and then we'll move on.

Checkboxes and Option Buttons usually have one of two possible conditions: TRUE (has an x or

check in it or the button has a dot in the middle) or FALSE (checkbox is empty and same for the

circle of the option button). So you can write code like this:

If checkboxIncludeLadder = True Then

or

If optionButtonChoose1HPEngine = True Then

and take appropriate action based on the results of those kinds of tests.

As for the ComboBox, it has a couple of properties that can be used. You can use its .Text

property to get whatever selection was made in it verbatim. Or you can use its .ListIndex

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Data Sources Page 41
Copyright © 2008 by J.L.Latham, All Rights Reserved.

property to find out which item in the list was selected. The ListIndex values start at zero, so if

ListIndex = 0 it means that they chose the first item in the list. If they did not choose an item in

the list, the ListIndex value is a negative 1 (-1).

So How Do I Display or Remove a UserForm from the Screen?

To present a userform on the screen, you .Show it. Somewhere in your code you'll need a line

that uses the name of the form that you give it during design along with the .Show method, as:

UserForm1.Show

or

GetCustomerInformationForm.Show

You can simply write a macro to do it if you need to:

Sub ShowCustomerInfoForm()
 GetCustomerInformationForm.Show
End Sub

There are two ways to remove a form from display. The code I presented earlier uses

Unload Me

which completely removes the form from memory. This has the side effect of also removing all

information that was entered into it at that time. I could write that line as Unload Me because it

was executed from within the form's code module. If I had needed to do that from some other

section of code I could have written it as:

Unload GetCustomerInformationForm

But you can simply hide the form from view which keeps it in memory and retains the

information that was last placed on it. Two ways of doing that:

First, from within the form's own code segment:

Me.Hide
Second, in some other code segment

GetCustomerInformationForm.Hide

And that's how you deal with UserForms. That is not to say that it is all that can be done with

forms and controls on them. Remember that this is an Introduction to things, not a definitive

bible covering every aspect of every possible command, object, function and feature in VBA or

Excel. I actually used different code in my project to move the data from the form onto the

worksheet, but what I wrote above will work and hopefully was easy for you to understand at

this point in the tutorial.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Data Sources Page 42
Copyright © 2008 by J.L.Latham, All Rights Reserved.

58BDATA FROM WORKSHEETS: A STUDY

Within VBA you can get data from any cell or group of cells on any worksheet in any open

workbook. The studies here show how to access that kind of data using user defined objects that

represent the other workbooks, worksheets and ranges of cells on them. This method has some

distinct advantages:

 It’s FAST! You’re working with in-memory representations of those objects and there

simply isn’t anything faster going on in your computer than memory accessing.

 It is neat. Because you are working in memory, there’s no need to actually jump around

in within Excel selecting various workbooks, worksheets and cells. Because you can get

to these directly in memory, there’s no distracting (and slow) flickering of the screen as

you manipulate the data.

94BProject 1: Copy Between Workbooks

Ok, this one is more my project than yours – there’s no work for you to do except examine the

code and observe the results. The project consists of two workbooks:

Project01_WB01.xls and Project01_WB02.xls

They are available by clicking the appropriate link (right-click and choose Save Target As) on

this page:

HTUhttp://www.jlathamsite.com/LearningPage.htm UTH

The code is all in Project01_WB01.xls (WB01) while the other workbook, WB02, contains data

that we want to move into WB01. There are three text boxes on the first sheet of WB01 that are

associated with VBA code. The first one activates a macro that was recorded while individually

copying each of the data items from WB02 into the 3 P

rd
P worksheet in WB01.

To observe the difference in performance between the recorded macro and the custom code in

WB01, first try clicking the “Step 2” button. The object at this time is to simply see how long it

takes to copy a total of 167 entries from the WB02 into WB01. Obviously, both workbooks

must be open for this to take place.

The Step 2a and Step 2b ‘buttons’ each run a version of custom written VBA code to achieve the

same results. The only difference between the two procedures is that one of them has a slight,

but probably not humanly noticeable speed advantage over the other. But they definitely have a

visible speed advantage over the recorded macro.

Other things to notice when examining the code in WB01 is that the recorded macro is absolutely

not robust or versatile: add another item of information in WB02 and it won’t get copied over

into WB01; delete an item that’s already in WB02 and you end up with a ‘hole’ in the

information transferred over into WB01.

So now we see that not only is the custom code faster and more compact than the recorded

macro, but it is also more robust. It needs no further attention or maintenance no matter what

changes you make to the information in WB02.

The custom written VBA code demonstrates how to use objects in VBA to reference information

in an entirely separate workbook, and can easily be adapted to work for you with the same

workbook or across more than just two workbooks.

http://www.jlathamsite.com/LearningPage.htm

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Data Sources Page 43
Copyright © 2008 by J.L.Latham, All Rights Reserved.

59BDATA FROM TEXT FILES: A STUDY

95BProject 2: Importing Data from a Text file

Often you don’t have the luxury of working with another Excel file. But many applications have

the ability to either be saved as, or to export their information to what is known as an ASCII text

file. You’re probably used to seeing them as .TXT files and they can be opened and read easily

with a program such as Microsoft’s Notepad. Sometimes they are rather specially formatted

ASCII files that you see as .CSV files. CSV stands for Comma Separated Values. Actually

several different characters may be used besides a comma to separate groups of values, but the

name from the original use of the comma has stuck with them. Excel has built-in features to

import data from .CSV files, but other text files may not conform to those standards and you may

want to import those into Excel and nothing but custom code will do the trick for you.

Ok, this one is more my project than yours – there’s no work for you to do except examine the

code and observe the results. The project consists of one Excel workbook and a text file with

sample data in it:

Project02.xls and Project02DataFile.txt

They are available by clicking the appropriate link (right-click and choose Save Target As) on

this page:

HTUhttp://www.jlathamsite.com/LearningPage.htm UT

There are some useful snippets of code to take note of and possibly save for reuse. The module

named GetFilenameCode contains a routine that opens up the file browser window and will

return the full path and name of a file you select to the calling routine. This is definitely handy,

reusable code. I blatantly plagiarized that code from

http://www.cpearson.com/excel/GetFileName.aspx

No sense in reinventing the wheel unless you figure a way to make it turn faster and easier.

Chip's website, and others, provide fantastic resources like this at no cost to the user. But I do

believe that credit is always due to the benefactor, so Chip gets the plug from me along with my

gratitude for providing the code.

Within the ReadTextFileCode module, in the ReadATextFile process, there is definitely one line

that deserves some detailed discussion:

 ActiveSheet.Range("A" & Rows.Count).End(xlUp).Offset(1, 0) = oneTextLine

The ActiveSheet is the one sheet that is currently selected in Excel. There can only be one

ActiveSheet at any given time.

The .Range(“A” & Rows.Count).End(xlUp) portion of the command says look in column A

beginning at the last possible row and go up the column until you find the end of cells that match

the general character of that cell. The ‘general character’ being either empty or not empty. The

assumption here is that the last cell in the column is empty, so the command is going to find the

last cell in the column that is not empty. If the entire column is empty, it will return 1 for “the

first row is the end of this section”.

The .Offset(1, 0) portion says that once you’ve found the end of the list, move down 1 row in the

same column. So this points at the next empty cell in the column, or if the column is entirely

empty, it points to row 2 of the column.

http://www.jlathamsite.com/LearningPage.htm

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Data Sources Page 44
Copyright © 2008 by J.L.Latham, All Rights Reserved.

This is a very handy function that is used often to find the next available cell in a column or even

the next available row on a worksheet. It’s fast and it’s effective.

The ReadATextFile() process gives you the basic tools for identifying, opening and reading a

text file. You can add more code within the loop that tests for EOF to further process the lines of

data read from the file and process it as needed.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Programming With Excel Objects Page 45
Copyright © 2008 by J.L.Latham, All Rights Reserved.

10BProgramming With Excel Objects
Somehow I've got to give you a good understanding of what's going on when you program using

references to objects rather than with the objects themselves. This method of working with the

objects in Excel such as Worksheets and cells, or even with multiple workbooks, is much faster

than working with them directly, and offers a lot more flexibility for you.

Let's try a couple of examples and hope I get the idea across.

Example 1: Telephone numbers. You're going to run errands today and you know that along the

way you need to make several phone calls. You have some choices on how to 'remember' the

phone numbers you need:

You can open the phone book, look up each number and enter the information into your cell

phone contacts. You've just created a 'reference' to the numbers in the phone book.

Not wanting to take the time to punch in names and phone numbers into your cell phone contacts

list just so you can delete them later, you grab the same phone book, a sheet of paper and a pen

and write the information down on the sheet of paper. Again, you've created a reference to the

numbers you'll need.

You can drag the entire phone book with you and go through the process of looking up each

number as you need it later on. A bit cumbersome and someone back at the house might want

the phone book for some other reason anyhow.

Hopefully it's obvious that either one of the reference lists you've created will provide you easier

and faster access to the information you need than going to the phone book and looking each one

up later.

Example 2: Credit Card Info. You're on your way to apply for a loan and know that they're

going to ask for current account information such as account numbers, monthly payments and

balance. Again you have some choices:

You can gather up a big stack of most recent statements and scurry off to fill out the application

with them, or you could grab the trusty not-very-high-tech sheet of paper and pencil again and

just write down the simple facts you know you will need. Voilá!, a reference to the actual data.

In Excel, your sheet of paper is the computer's memory and your pen or pencil is the Set

command.

60BADVANTAGES OF USING OBJECT REFERENCES

I've already mentioned a big one: speed. Performance improves dramatically when you

reference these 'in-memory' objects than if you use more direct methods of coding to work with

them.

By working with the objects in memory, you often prevent having to select different sheets and

cells on them and display the updated data - this alone is a big time saver because updating the

displayed workbook/worksheets/cells is a big time user.

You don't have to actually physically "select" an object to work with it! You may even make

reference to worksheets that are hidden and to the data on them without having to unhide it and

select it and then start selecting cells one by one or in groups on that sheet. Consider the

following code:

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Programming With Excel Objects Page 46
Copyright © 2008 by J.L.Latham, All Rights Reserved.

61BPERFORMANCE IMPROVEMENTS USING OBJECT REFERENCES

The following is actually an example of the way I once worked through columns of data on

worksheets in my earlier days of programming Excel. Before I learned of the wonders of using

Objects. This code simply looks in column A of a sheet until it finds an "X" (or "x") in that

column, or until it encounters an empty cell. It presumes that there are no empty cells in column

A until the end of the list.

Sub Find_X_InColumnA_OnSheet1()
 Const SeekValue = "X"
 Dim startTime As Date
 Dim endTime As Date

 ThisWorkbook.Worksheets("Sheet1").Select ' wasted time, screen flickers, and
 ' you won't return to where your user was
 Range("A1").Select ' a little more wasted time
 startTime = Now() ' for timing the test
 'now we really annoy the user by 'scrolling down the worksheet in column A
 Do Until IsEmpty(ActiveCell)
 If Trim(UCase(ActiveCell)) = SeekValue Then
 Exit Do ' we found first "X" or "x"
 End If
 ActiveCell.Offset(1, 0).Activate ' move to next row
 Loop
 endTime = Now()
 MsgBox "It took " & Format(endTime - startTime, "ss") & " seconds to find X"
End Sub

It's difficult to see the difference in performance of that method than with others without data to

test with. So you can use the Project03_ObjectReferenceBenefits.xls file to get some test data

into a workbook and run the above code (already in that workbook), along with the variations of

it I'm about to present to you to actually see the differences in performance. But if you want to

tough it out on your own, I'll provide all of the code here and you can copy and paste into your

own workbook, just make sure that there's a "Sheet1" in it.

As usual, the file is available by clicking the appropriate link (right-click and choose Save Target

As) on this page:

HTUhttp://www.jlathamsite.com/LearningPage.htm UT

http://www.jlathamsite.com/LearningPage.htm

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Programming With Excel Objects Page 47
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Here is some code to fill Sheet1 with lots of entries to test with:

Sub FillSheet1()
 Dim LC As Integer
 Dim IL As Integer
 Dim myTestSheet As Worksheet
 Dim baseCell As Range
 Dim rowOffset As Long

 Application.ScreenUpdating = False
 Set myTestSheet = ThisWorkbook.Worksheets("Sheet1")
 myTestSheet.Cells.Clear ' delete any info on the sheet
 Set baseCell = myTestSheet.Range("A1")
 For LC = 65 To 90 ' values for A to Z
 For IL = 1 To 1000 ' 1000 rows worth of each letter
 baseCell.Offset(rowOffset, 0) = Chr$(LC)
 rowOffset = rowOffset + 1
 Next
 Next
 Set baseCell = Nothing
 Set myTestSheet = Nothing
End Sub

GPP #2: Use Application.ScreenUpdating = False to improve performance. This command tells

Excel to hold off on actually sending updated data/changes to the screen. I've seen the use of this

command improve performance as much as 10 times without any other changes to the code at

all. Think about it: work done in 1 second instead of 10, or even 1 minute instead of 10 minutes.

Application.ScreenUpdating = False is almost a 'set it and forget it' command: When the end of

your Sub is encountered, Excel will automatically turn screen updating back on without any

action or code from you at all. Within a Sub it will remain in effect until you either exit the Sub

or you give a Application.ScreenUpdating = True command.

There's one catch to that automatic reset of screen updating - if your Sub calls other Subs, then it

will be turned back on when one of the other Subs exits unless you remember to set it back to

False after making the call(s).

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Programming With Excel Objects Page 48
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Now let me prove to you that this really works. Here's our first search for X done just the same

way, but without updating the screen as Excel works through all of the cells on the sheet.

Sub FindWithoutScreenUpdating()
'probably 4 to 10 times faster than Find_X_InColumnA_OnSheet1() was
 Const SeekValue = "X"
 Dim startTime As Date
 Dim endTime As Date

 ThisWorkbook.Worksheets("Sheet1").Select ' wasted time, screen flickers, and
 ' you won't return to where your user was
 Range("A1").Select ' a little more wasted time

 Application.ScreenUpdating = False ' THE time saver here!
 startTime = Now() ' for timing the test
 'now no more annoying the user by
 'scrolling down the worksheet in column A
 Do Until IsEmpty(ActiveCell)
 If Trim(UCase(ActiveCell)) = SeekValue Then
 Exit Do ' we found first "X" or "x"
 End If
 ActiveCell.Offset(1, 0).Activate ' move to next row
 Loop
 endTime = Now()
 'because we didn't update the screen, the current active
 'cell is not 'visible', so we need to pull it up into view
 Application.Goto Range(ActiveCell.Address), True
 MsgBox "It took " & Format(endTime - startTime, "ss") & " seconds to find X"
End Sub

The time displayed in the message box should be MUCH! less than in our first attempt, even

though the only real changes we made were to turn off screen updating, which in turn 'forced' us

to use the Application.Goto command to bring the cell we found up into view. But think about it

-- we have added instructions to the code and yet we still got a rather impressive performance

improvement.

It just doesn't get much better than that. However, "much" is not "any", and we can improve the

performance more by using Object references rather than directly moving from cell to cell. We'll

see the code for that on the next page.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Programming With Excel Objects Page 49
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Here's the almost magical code that manages to improve performance even more than we've seen

with Application.Screenupdating = False alone. We have to add some variables and do some

setup that we haven't yet done, but just as with FindWithoutScreenUpdating(), even though

we've added code, we've still improved performance.

Sub FindUsingObjects()
'Just slightly faster than FindWithoutScreenUpdating(), but because
'the timer only has 1 second resolution, you may not 'see' the difference
'but when doing complex operations, this method definitely pays off.
 Const SeekValue = "X"
 Dim myTestSheet As Worksheet will represent 'Sheet1' but in memory.
 Dim seekInRange As Range ' will be used are of column A
 Dim anyCellInSeekInRange As Range ' individual cells in the range
 Dim foundAtCell As String ' to remember where we found the match at.
 Dim startTime As Date
 Dim endTime As Date

'this Set creates an in-memory reference to sheet 'Sheet1'.
'We actually don't even have to choose/select/activate 'Sheet1'
'for this code to work -- except at the very end where we use
'Application.Goto - that requires that we be on Sheet1 if we
'want things to work right for that part of the test.
 Set myTestSheet = ThisWorkbook.Worksheets("Sheet1")
 Application.ScreenUpdating = False
 startTime = Now() ' for timing the test

'this Set will assign the range from A1 down to the last row in column A
'that has any entry in it. We don't have to worry about empty cells in
'the middle of the list any more!
 Set seekInRange = myTestSheet.Range("A1:" & _
 myTestSheet.Range("A" & Rows.Count).End(xlUp).Address)
 'now we work through the individual cells in memory
 For Each anyCellInSeekInRange In seekInRange
 If Trim(UCase(anyCellInSeekInRange)) = SeekValue Then
 'remember the address of the cell with the X in it
 foundAtCell = anyCellInSeekInRange.Address
 Exit For ' we found first "X" or "x"
 End If
 Next
 endTime = Now()
 'because we didn't update the screen, the current active
 'cell is not 'visible', so we need to pull it up into view
 Application.Goto Range(foundAtCell), True
 MsgBox "It took " & Format(endTime - startTime, "ss") & " seconds to find X at " & foundAtCell
End Sub

I hope that all of this convinces you of the advantages of working with Object references to

objects in Excel. If it doesn't, then you probably might as well stop reading right here, because

you are going to see a lot more of them as we continue onward.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Programming With Excel Objects Page 50
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Keep in mind that any object that you can work with directly in VBA can be referenced by one

of these "in memory object references". This includes things like various shapes, controls,

queries, charts, chart elements, etc. But the end result of it all is that modifications you make to

those in-memory object representations are applied to the actual "see it on the screen" object they

represent, or to the unseen object (as hyperlinks or queries) in the workbook.

62BTHE EXCEL OBJECT MODEL AS A REFERENCE

So how do you learn to reference these objects or what their 'family' (technically a 'Collection' in

Excel) is? There are a couple or three of ways to do that. One of the more direct methods is to

use the Excel Object Model as a reference. So, where the heck is it at?

Once again, Excel Help actually comes to the rescue. If

you open the VBE and use it's Help feature and type in

Excel Object Model as the search criteria, it will

(should?) provide you with a link to the Object Model for

your version of Excel.

Remember that you must be in the VB Editor and use its

Help/search feature. You won't find this with the regular

Excel help/search tool.

Below is just a small example of what the Excel Object

model looks like.

But even the Object Model is not always intuitive to

use. If you look at the one from Excel 2003 (as

depicted here), it's not intuitive that a Worksheet is a

member of Worksheets. So sometimes a little stabbing

around in the dark has to be done. Or asking for help

in one of the Microsoft discussion forums!

Another way to get a quick 'skeleton' for the code you

need to piece together is to simply record a macro

while doing what you plan on getting done in your

code. You can then adapt the code to be more versatile

and robust (and more efficient) than the macro you

recorded. It is also a good way to find out which

Methods (actions) and Properties (attributes) of the

objects you are going to work with that you will need

to use in your own code.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Programming With Excel Objects Page 51
Copyright © 2008 by J.L.Latham, All Rights Reserved.

GPP #3: Don't be too proud to ask for help. If you find yourself in deep waters and can't seem

to figure out what it is you need to work with or what to do with what you have found, then by

all means ask for help.

Help sources can range from Excel's own "Help" tool, either in Excel or in the VBE to asking for

assistance in any number of very good on-line discussion communities, or just searching for

examples of code on the internet. I often find myself recording a macro to perform an operation

that may have lots of parameters that I refuse to commit to memory just to refresh my memory

on how the command should look. Sort is one of those.

Recently (as of this writing) I was faced with the problem of needing to build some user forms

that could reference an indeterminate number of selections by the user. And each new group of

controls needed to take certain action based on the user's choices on the form. I was kind of lost

- in my experience you set up a user form with controls that had a pretty definite or finite count

and you built the code for each of them as part of the user form itself. I finally threw my hands

up in the air, shouted "I Surrender" and asked if anyone had any ideas of how to get the job done.

One of my fellow Excel MVPs came to my rescue almost immediately and showed me how to

use Class Module coding to overcome the problem. Nobody knows everything, but given a large

enough group then almost everything is known by someone. All you need to do is be able to get

in touch with that someone!

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Programming With Excel Objects Page 52
Copyright © 2008 by J.L.Latham, All Rights Reserved.

11BProgramming with Named Ranges
63BDEFINING A NAME

96BNaming Directly on a Worksheet

Excel gives you the ability to assign a 'meaningful name' to a cell or group of cells (each of

which is known as a range in VBA). Assigning a name is easy to do:

Step 1: choose the cell or group of cells to be named,

Step 2: enter the name for the range in the 'Name Box' and press [Enter]

Here we have chosen cell B2 on a worksheet. It's address, B2 is

shown in the Name Box.

Next simply click inside of the Name Box to get ready to assign a

name to cell B2.

Finally, type in the name 'TaxRate' and press the [Enter] key.

NOTE: you must terminate the name entry with the [Enter] key. If

you don't, then the name is not accepted by Excel as a name.

After this is done, you can now refer to the contents of cell B2 on this sheet using its TaxRate

name. For example, you could refer to it in a formula in the workbook like this:

=1.99 * TaxRate

and the cell would show the result. Assuming there is a value of 0.875 in B2/TaxRate, then the

formula would return $0.17 (also assuming the cell with the formula in it formatted to display

currency).

You can also assign a name to a range of cells to make referencing the group easier and

'maintenance free' in your formulas and other worksheet functions.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Programming With Excel Objects Page 53
Copyright © 2008 by J.L.Latham, All Rights Reserved.

97BNaming With the Name Manager

You may define names using the Name Manager.

In Excel 2003 and earlier, you get to the name manager through Insert --> Name --> Define

This brings up the Define Name dialog in Excel 2003:

Figure 22 - Define Name Dialog: Excel 2003

You can manage existing names or create new ones using this dialog.

Excel 2010 gives us a more versatile tool, the Name Manager to perform these functions.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Programming With Excel Objects Page 54
Copyright © 2008 by J.L.Latham, All Rights Reserved.

In Excel 2010, you access the Name Manager from the Defined Names group on the [Formulas]

tab:

Figure 23 Name Manager: Excel 2010

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Programming With Excel Objects Page 55
Copyright © 2008 by J.L.Latham, All Rights Reserved.

With the Define Name or Name Manager, you can remove old name definitions, add new ones

and even change the address of the cell(s) that a name refers to.

98BUsing a Named Range for a List

Normally when you use a list of entries in a group of cells as the source for Data Validation

controlled cell entry, the list must be on the same worksheet with the cell using it as its list. But

if you have given a name to a list of cells, that list can be on another sheet in the workbook. This

gives you the ability to put several lists on a worksheet that you can even keep hidden.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Code Snippets and Examples Page 56
Copyright © 2008 by J.L.Latham, All Rights Reserved.

12BCode Snippets and Examples
In this section I’ll try to present some useful routines that can be used and reused in your own

coding efforts. The sources for these range from web sites, help forums and my own

experiences. Sorry, but they’re really not organized in any specific way, just as I have come

across them in trying to gather up content for this.

64BSORTING A RANGE

See the VB Help topic for SORT for all the details.

In setting up for a sort you need to keep in mind that you will be sorting a range of cells, and that

the various sort keys must also be ranges or references to ranges.

The setup – the variables we will need (or just want) get declared first:

Setup for single field (column) sort, which will sort an area that includes A1 to F1000 on Sheet1.

Row 1 contains labels (headers) and we will sort in ascending order based on column C.

Dim myWorksheet As Worksheet
Dim theSortRange As Range
Dim theSortKey as Range
Set myWorksheet = ThisWorkbook.Worksheets(“Sheet1”)
Set theSortRange = myWorksheet.Range(“A1:F1000”)
Set theSortKey = myWorksheet.Range(“C1”)

theSortRange.Sort Key1:=theSortKey, Order1:=xlAscending, Header:=xlYes, _
 OrderCustom:=1, MatchCase:=False, Orientation:=xlTopToBottom, _
 DataOption1:=xlSortNormal
Note: the ‘DataOption#” parameter is only valid in Excel 2003 and later versions. Leave it

off of the command if the sort will be used in an earlier version [it will still work in 2003

and later without it]

Setup for three field (column) sort, which will sort an area that includes A1 to F1000 on Sheet1

where row 1 contains labels (headers) and we will sort in ascending order based first on column

C, then on column A and finally in descending order of column F.

Dim myWorksheet As Worksheet
Dim theSortRange As Range
Dim theSortKey1 as Range
Dim theSortKey2 as Range
Dim theSortKey3 as Range
Set myWorksheet = ThisWorkbook.Worksheets(“Sheet1”)
Set theSortRange = myWorksheet.Range(“A1:F1000”)
Set theSortKey1 = myWorksheet.Range(“C1”)
Set theSortKey2 = myWorksheet.Range(“A1”)
Set theSortKey3 = myWorksheet.Range(“F1”)

theSortRange.Sort Key1:=theSortKey, Order1:=xlAscending, Order2:=xlAscending, _
 Order3:=xlDescending, Header:=xlYes, OrderCustom:=1, OrderCustom2:=1, _
 OrderCustom3:=1, MatchCase:=False, Orientation:=xlTopToBottom, _
 DataOption1:=xlSortNormal, DataOption2:=xlSortNormal, DataOption3:=xlSortNormal

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Code Snippets and Examples Page 57
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Note: the ‘DataOption#” parameter is only valid in Excel 2003 and later versions. Leave it

off of the command if the sort will be used in an earlier version [it will still work in 2003

and later without it]

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Code Snippets and Examples Page 58
Copyright © 2008 by J.L.Latham, All Rights Reserved.

65BFIND THE LAST USED CELL IN A COLUMN

This is an operation you’ll probably use over and over in your coding to find the end of a range

of data. It assumes that your data starts at the top of the sheet (row 1) or another designated row

and continues down the sheet but may include empty cells in the rows.

It’s useful when you have data on a sheet that is dynamic and that may have a different number

of rows in it at any given time.

First thing to do is to identify a column that will have some information in it in the last possible

row of data. For this example, we will assume that column A fills that need.

99BIdentify the Last Used Row

Dim lastRow As Long
lastRow = ThisWorkbook.Worksheets(“SheetName”).Range(“A” & Rows.Count).End(xlUp).Row

Now, that wasn’t all that difficult, was it?

You’ve probably noticed that I keep specifying “ThisWorkbook” – you don’t have to do that if

you know what workbook will be active when your code runs – the currently active workbook

will be the one used to determine where everything else is. But if there is any doubt, then

specify the workbook either by name or by using ThisWorkbook. ‘ThisWorkbook’ means the

workbook that the code is contained in.

So that line of code says “look in the same workbook that this code is located in, on a sheet

named SheetName, and in column A --- and here’s the trick: start looking at the cell that is on the

last possible row on the sheet (Rows.Count returns a number that is the maximum number of

rows permitted on a sheet for the version of Excel that is being used). Assumption is also made

that there is not a value in that last cell – that it is empty. The End(xlUp) part of says to look from

the referenced cell (“A” and the last possible row) upward until a cell is found that marks the end

of the section that’s like that referenced cell. So if A65536 (Excel 2003) is empty, it will look up

until it finds a cell with something in it – even just a formula that returns “” (empty string).

So that command puts the row number of the “last used cell” in the specified column into

variable lastRow.

100BIdentify the Next Available Row

There are a couple of ways to modify what we just did to find the first empty cell in the column

of data.

Method #1: Take the value of lastRow and add 1 to it. That would be the row number of the next

available empty cell in the column.

Method #2: make the addition part of the statement itself.

lastRow = ThisWorkbook.Worksheets(“SheetName”).Range(“A” & Rows.Count).End(xlUp).Row + 1

You can even modify the statement with the .Offset() option to do it:

lastRow = ThisWorkbook.Worksheets(“SheetName”).Range(“A” & Rows.Count).End(xlUp).Offset(1, 0).Row

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Code Snippets and Examples Page 59
Copyright © 2008 by J.L.Latham, All Rights Reserved.

66BFIND THE FIRST EMPTY CELL IN A COLUMN

In this case you may have a column of data that has empty cells in it and you want to find the

first row with an empty cell in it. Hopefully it is obvious that if there are no empty cells in the

data list that the first empty cell would be the one just below the last entry in the list. The

command looks much like our previous command except that it looks down from row 1 in the

column:

Dim firstEmptyCell As Long
firstEmptyCell = Worksheets(“SheetName”).Range(“A1”).End(xlDown).Row

67BGET THE ADDRESS INSTEAD OF THE ROW

You don’t have to settle for just the row, you can actually return the address of the cell you find.

Simply change the type of the variable that will receive the information from Long to String and

change .Row to .Address:

Dim cellAddress As String 'the address is returned as text
cellAddress = Worksheets(“SheetName”).Range(“A1”).End(xlDown).Address

Enough about finding those particular unique entries in a column. Now we’ll look at doing

much the same thing for rows.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Code Snippets and Examples Page 60
Copyright © 2008 by J.L.Latham, All Rights Reserved.

68BFIND THE LAST USED CELL IN A ROW

This is an operation that you probably won’t use as often as the ones for columns, but there are

still times you may need to find the last (right-most) used cell on a row.

This is complicated a bit due to the fact that it’s a little difficult to find the reference to the

column that is the last column in the version of Excel you are using. But we can work around it

using the Columns.Count property of the sheet.

Sub LastColumnInOneRow()

'Find the last used column in a Row: row 1 in this example

 Dim LastCol As Integer

 With ActiveSheet

 LastCol = .Cells(1, .Columns.Count).End(xlToLeft).Column

 End With

 MsgBox LastCol

End Sub

That comes directly from Ron De Bruin’s site at: HTUhttp://www.rondebruin.nl/last.htm UTH which leads

me to pretty much stop providing code examples, scratching my head trying to think up code that

you might find useful. Instead, the remainder of this document consists of links to various

absolutely excellent examples of VBA for Excel coding. In some cases, such as Chip Pearson’s

site, I’ve copied the table of contents with links to various Excel solutions on the sites. You can

follow those links to those code solutions.

69BCONSOLIDATING DATA IN A WORKBOOK

One of the best sources of code that may be used to combine data from several worksheets and

even workbooks can be found at Ron De Bruin’s site:

HTUhttp://www.rondebruin.nl/copy2.htm UT

http://www.rondebruin.nl/last.htm
http://www.rondebruin.nl/copy2.htm

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Code Snippets and Examples Page 61
Copyright © 2008 by J.L.Latham, All Rights Reserved.

70BUSING A TEXTBOX TO ACCESS A MACRO

Before going on to the next section, I think would be a good thing for you to know of at least one

easy way of getting rapid access to macros you create for the user to accomplish tasks with.

Using a TextBox or other shape from the Drawing Toolbar offers a good deal of flexibility. You

can set the font size and format and add color to the 'button'. Plus the code can reside in any

module in the workbook.

You don't even have to have the macro written in order to create the button in anticipation of

associating a macro with it later.

Select a shape from the Drawing toolbar (Excel 2003 and earlier) or from the Insert tab (Excel

2007 and later) and place it on the sheet and size it, add text to it, and format its colors. I also

recommend setting its properties to NOT move or resize with cells.

At any point after creating the 'button' you can assign a macro to run when you click it. Simply

right click near the edge of the shape and choose [Assign Macro] and then pick the macro to run

from the list presented to you. And that's all there is to it.

71BDOING THE IMPOSSIBLE

There are some things that simply cannot be done using Excel worksheet formulas. Hiding

either rows or columns and unhiding them again comes to mind right away. Some other things

that you can do from the keyboard such as auto-filtering and removing such a filter can't be

controlled through formulas, but they can be done using VBA code.

Providing the user with a 'button' to access these features is a nice touch because it reduces the

need to use the keyboard and the 4-click sequence of

Tools --> Macro --> Macros, select a macro and click [Run] to make it all work.

The user will definitely appreciate being able to run the macro with one click, and of being sure

to use the right macro instead of clicking the wrong one in what may be a long list of macros to

choose from.

101BHiding Rows

While you can use Data Auto-Filter to remove rows from view, sometimes it's easier to just hide

the rows with code. You need to know what condition you want to use to choose rows to be

hidden and what column values meeting the condition can be found.

Let us say that you want to hide all rows that do not have a value entered into column R.

Perhaps a row's data represents values for quantities of a product produced on certain dates and

you want to see all products that were produced on the date contained at the start of column R.

Hiding rows with no entry in column R would clean up the list for you.

Here is the code that would do the trick for you.

Start by UNHIDING all rows! This will make sure that only the rows you mean to hide will be

hidden at the end of the process, with no left over hidden rows from other similar actions taken

on other columns:

 ActiveSheet.Columns("R:R").EntireRow.Hidden = False

Actually you can pick any column! I just chose to use R since R is the column we are about to

examine for empty cells to determine whether to hide a row or not.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Code Snippets and Examples Page 62
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Now you need code to work through all possible rows. You need a column that has an entry for

every possible row used on the sheet. That is not going to be column R. For argument's sake,

assume that column A has product identifiers in it, one for all possible products. So we could

examine column A to determine what rows in column R are unused. Here is the code to set a

reference to the cells in column R that may have entries in them based on the total number of

rows used in column A.

 Set testRange = ActiveSheet.Range("R1:R" & _

 ActiveSheet.Range("A" & Rows.Count).End(xlUp).Row)

 For Each anyCell in testRange

 If IsEmpty(anyCell) Then

 anyCell.EntireRow.Hidden = True ' Hide this row!!

 End If

 Next ' end of anyCell loop

The complete procedure might look like this:

Sub HideColumnRRows()

 Dim testRange As Range

 Dim anyCell As Range

 ActiveSheet.Columns("R:R").EntireRow.Hidden = False

 Set testRange = ActiveSheet.Range("R1:R" & _

 ActiveSheet.Range("A" & Rows.Count).End(xlUp).Row)

 For Each anyCell in testRange

 If IsEmpty(anyCell) Then

 anyCell.EntireRow.Hidden = True ' Hide this row!!

 End If

 Next ' end of anyCell loop

 Set testRange = Nothing ' release resource back to the system

End Sub

102BUnhiding Rows

I've already given away this secret because we started off our Hide Rows routine by unhiding all

rows. But we will put it in a sub by itself anyhow. Just remember that this will NOT unhide

rows that are hidden because of data filtering - they are hidden in a different manner and will not

be unhidden with this code.

You can pick any column on the sheet, since any column includes all rows. For convenience

sake, it's probably easiest to simply use column A.

Sub UnhideAllRows()

 ActiveSheet.Columns("A:A").EntireRow.Hidden = False

End Sub

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Code Snippets and Examples Page 63
Copyright © 2008 by J.L.Latham, All Rights Reserved.

13BAn Introduction to Debugging
Debugging a project can be a simple "mechanical" process, sometimes it is almost an art. In this

section I can only present a few suggestions and at least introduce you to some of the tools

available to you to help examine code, determine values during execution and hunt down and

squash bugs. We take a simple routine that is giving us problems and see how some of the tools

can help us determine what the problem is. How to fix this particular one is left as a thought

exercise for the reader: validate information before trying to use it? put in code to ignore the

error? repremand the user for entering the wrong kind of information in the first place?

72BTHE PROBLEM EXAMPLE

We have a simple looking routine but it isn't working for us. Unfortunately the programmer

wasn't very generous with comments, and now we need to try to figure out just why it isn't

working for us.

Option Explicit
Public Const intRaiseToPower = 2 ' squared

Sub SquareANumber()
 Const getRow = 2
 Const getCol = 1
 Const putRow = 2
 Const putCol = 2

 Dim intMyNumber As Integer

 intMyNumber = ActiveSheet.Cells(getRow, getCol)
 ActiveSheet.Cells(putRow, putCol) = intMyNumber ^ intRaiseToPower
End Sub

When we try to use the Sub we get this error:

This tells us that we are trying to perform some operation that requires some specific 'Type' of

constant or variable, but what we are trying to use is not one of them and Excel could not trick

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Code Snippets and Examples Page 64
Copyright © 2008 by J.L.Latham, All Rights Reserved.

the constant/variable into being the proper type. But it doesn't tell us what the problem value is,

or even where it is in the code. So what do we do?

What you want to do at this point is to click the [Debug] button. Excel will then automatically

open the VB Editor (VBE) and even show you the line of code that it thinks is causing the

problem. NOTE: For some problems, Excel can get confused and point to the wrong line of

code. But that's something to cover on another day.

When we click the [Debug] button, we get this display:

Excel has pointed out the line of code that it feels there is a problem with, now it is up to us to

figure out the details.

We probably need to answer 2 or 3 questions on the way to determining the exact problem:

#1 - what sheet is the "ActiveSheet". For experienced users, this is an easy question to answer,

but if it was some object set to represent a sheet that might be hidden from view or not currently

selected, we need to know which sheet we should be examining.

An important tool you'll need to help pin the problem down and come up with a fix is the

Immediate window of the VBE.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Code Snippets and Examples Page 65
Copyright © 2008 by J.L.Latham, All Rights Reserved.

If you do not see a window in the VBE with the title "Immediate", then you can bring it into

view from the View menu option, or just press [Ctrl]+[G] to make it visible:

Normally it appears right underneath the main window in the VBE:

You can do a lot in the Immediate window: examine values, determine addresses, set values and

even issue some commands to Excel itself. For now we want to find out what sheet we are

getting a value from, so we type the following into the Immediate window and press the [Enter]

key at the end of it:

? ActiveSheet.Name

The ? is a shortcut entry for "Print" or "Show me..." and is a holdover from the very early days of

the original BASIC interpreters.

The name of the ActiveSheet is revealed to us as: Sheet1. So at least now we know what sheet

to look at, but where on that sheet do we need to be looking? We know that we should be

looking at Cells(getRow, getCol). But where the heck is that? Once again, it is the Immediate

window to the rescue. We can get it to show us the address of that cell by typing:

? Cells(getRow, getCol).Address

and pressing the [Enter] key.

By the way, you can copy from the code window into the Immediate window, which can help

prevent typos from interfering with your debugging efforts.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Code Snippets and Examples Page 66
Copyright © 2008 by J.L.Latham, All Rights Reserved.

The Immediate window now tells us that we are trying to get some value from cell A2 on Sheet1:

So we can go look there and see what is in that cell.

And there we see a problem: Cell A2 holds some text, and since we declared intMyNumber to be

type Integer, and so a text value cannot be assigned to a numerically typed variable - and there

lies the answer to why we got "Error 13: Type Mismatch" when trying to use the Sub.

Now it is up to you to determine why someone typed text into a cell you were expecting to find a

number into (or realize that you should not type text into a cell that is going to be used for some

math processing). The Debugger has done about all it can for you, what you do to prevent the

problem in the future is a decision you have to make yourself.

73BOTHER DEBUGGING TIPS:

Tip #1: You can quickly determine certain values right in the code window by simply moving

the mouse pointer/cursor over a constant or variable name and its value will be displayed as a

popup tip:

Tip #2: You can end the process by either:

 Clicking the Reset button up in the menu area of the VBE:

 Or you can simply hit the [F5] key which will bring up the error message again and you

can click the [End] button on it.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Code Snippets and Examples Page 67
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Tip #3: If you run into a rather complicated situation where some values are being calculated or

retrieved in the code and you are getting an error on down the line because one of them is

incorrect, you can examine the entire process step by step.

You can force code execution to stop by setting one or more "breakpoint"s in the code:

You do that by clicking in the area to the left of the beginning of a line of code. The dark red dot

and highlighting will indicate that a breakpoint has been set. You can remove it later by clicking

the dark red dot again, or use the [Debug] option in the menu to clear them all:

Another way to achieve much the same thing is to insert the Stop statement into the code where

you want it to break into debug mode. Simply type the word Stop on a line by itself in the code -

just don't forget to delete it after your debugging is completed.

Once you have halted the code where you want to, you can press the [F8] button to then single

step through your code and examine values and processes along the way to the problem line of

code. When you are ready to let the code run normally again during your debug session, press

the [F5] key - or you can terminate the execution using the [Reset] button and start all over

again.

You'll notice in the last screen shot that there are several ways of controlling what pieces of code

are executed associated with the [F8] and [F9] keys. They can all help in your effort to

determine the source of a problem, or just to go through code to see how it works.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 68
Copyright © 2008 by J.L.Latham, All Rights Reserved.

14BAdditional Excel VBA Resources
This section provides a list of other sites that are simply filled with useful Excel and Excel VBA

help. I’ve copied their table of contents pages where they are available, however, the contents of

any site may change at any time – it is the Internet, after all.

15BExcel MVP Websites
You can find a more complete list of many Excel MVP websites here:

HTUhttp://www.mvps.org/links.html#Excel UT

And if you go to the top of that page, you can look through the list for websites belonging to

MVPs in many areas:

HTUhttp://www.mvps.org/links.html UT

Within these sites is a veritable library of knowledge of Excel; its operation,

74BRON DEBRUIN’S EXCEL TIPS:

HTUhttp://www.rondebruin.nl/tips.htmUT

TExcel Add-ins and code for Mailing from Excel T
HTUExcel Add-ins paUgTTe TH
HTUExample Code for sending mail from Excel UTH

TExcel 2007 T
HTUWhere can I find the menu commands in Excel 2007 UTH
HTUCreate and mail PDF files with Excel 2007 UTH
HTUUse VBA SaveAs in Excel 2007 UTH
HTUCopy sheet security dialog in Excel 2007UTH
HTUSheet Direction in Excel 2007 UTH
HTUReverse compatibility problem of the old ATP functions UTH
HTUMacros are disabled when you open password protected workbooUkTTs TH
HTUShapes and VBA code in Excel 2007 UTH
HTUFiltering by the Active Cell's Value, Font Color or Fill Color in Excel 20 U0TT7 TH
HTUHelp: Different Excel file formats and Excel versions UTH
HTUDisable Excel 2003 Menu Accelerators keys in Excel 20 U0TT7 TH
HTUTable Tools in Excel 2007UTH
HTUVBA code examples for Tables in Excel 2007 or a List in Excel 2003 UTH

TExcel 2007 Ribbon and QAT pages T
HTUMenu for favorite macros in Excel 2007 (for all workbooks)UTH
HTUMenu for favorite macros in Excel 2007 (for one workbook)UTH
HTUChange the ribbon in Excel 20U0TT7 TH
HTUChange built-in groups in the RibbonUTH
HTUAdd missing built-in commands to the QAT or Ribbon UTH
HTUAdd buttons to the QAT and customize the images of the buttonsUTH
HTUMenu in the ribbon with different languagesUTH
HTUDealing with Ribbons and Menus - Avoiding Two VersionsUTH
HTUImages on custom Ribbon controlsUTH
HTUGalleries in the RibbonUTH
HTUHide or Display Custom Ribbon Tab/Group/Control with getVisible UTH

http://www.mvps.org/links.html#Excel
http://www.mvps.org/links.html
http://www.rondebruin.nl/tips.htm
http://www.rondebruin.nl/addins.htm
http://www.rondebruin.nl/sendmail.htm
http://www.rondebruin.nl/0307commands.htm
http://www.rondebruin.nl/pdf.htm
http://www.rondebruin.nl/saveas.htm
http://www.rondebruin.nl/security.htm
http://www.rondebruin.nl/sheetdirection.htm
http://www.rondebruin.nl/atp.htm
http://www.rondebruin.nl/password2007.htm
http://www.rondebruin.nl/shape.htm
http://www.rondebruin.nl/colorfilter2007.htm
http://www.rondebruin.nl/2007filesin2003.htm
http://www.rondebruin.nl/acceleratorskeys.htm
http://www.rondebruin.nl/table.htm
http://www.rondebruin.nl/tablecode.htm
http://www.rondebruin.nl/qat.htm
http://www.rondebruin.nl/qat2.htm
http://www.rondebruin.nl/ribbon.htm
http://www.rondebruin.nl/xmlribbongroups.htm
http://www.rondebruin.nl/notinribbon.htm
http://www.rondebruin.nl/imageqat.htm
http://www.rondebruin.nl/dynamic.htm
http://www.rondebruin.nl/compatiblemenu.htm
http://www.rondebruin.nl/getimage.htm
http://www.rondebruin.nl/galleries.htm
http://www.rondebruin.nl/hidevisible.htm

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 69
Copyright © 2008 by J.L.Latham, All Rights Reserved.

TCopy/Paste/Merge examples T
HTUCopy to a database sheet on the next empty rowUTH
HTUMerge cells from all or some worksheets into one Master worksheet UTH
HTUCreate a summary worksheet from all worksheets (formulas with VBA)UTH
HTUCreate a link to or Sum a cell in all worksheets (worksheet functions) UTH
HTTTUMerge data from all workbooks in a folder (1) UTTHT
HTUMerge data from all workbooks in a folder (U2 TT)TH
HTTTUMerge data from all workbooks in a folder: Add-inUTTHT
HTUCreate a summary worksheet from different workbooks (formulas with VBA) UTH
HTUMerge data from all workbooks in a folder to a txt file UTH
HTUCopy every TXT or CSV file in a new worksheet of a newly created workbook UTH
HTUMerge all CSV or TXT files in a folderUTH
HTUCopy a range from closed workbooks (ADO)UTH
HTUCopy a range from closed workbook (Local, Network and on the interne UtTT)TH
HTUCopy data from an Access database into Excel with ADOUTH
HTUChange cells or range in all workbooks in a folderUTH
HTUCopy records with the same value in a column to a new sheet or workbook UTH
HTUVBA code examples for Tables in Excel 2007 or a List in Excel 2003 UTH
HTUCreate a workbook from every worksheet in your workbook UTH
HTUCreate separate sheet for each horizontal PageBreak UTH
HTUCopy, Move and Delete files and foldeUrTTsTH
HTUHow do I create/use a sheet templateUTH

TDelete/Hide/Disable examples T
HTUDelete row if a specific value exist UTH
HTUDelete or Hide Objects/Controls on a worksheetUTH
HTUDisable command bars and controls UTH
HTUSpecialCells limit probl Ue TTmTH
HTUDisable key or key combination or run a macro if you use itUTH

TZip (compress) ActiveWorkbook, Folder, File or Files with VBA code T
HTU7-zip : Zip Activeworkbook, Folder, File or Files(VBA)UTH
HTU7-zip : Unzip a zip file (VBA) UTH
HTUZip file or files with the default Windows zip program (VB UA TT)TH
HTUUnzip zip file or files with the default Windows zip program(VBA)UTH
HTUWinZip : Zip Activeworkbook, Folder, File or Files (VBA)UTH
HTUWinZip : Unzip a zip file(VBA)UTH

TWeeknumber/Dates T
HTUUse the Calendar control to fill in dates UTH
HTUWeek numbeUrTTsTH
HTUISO Date Representatation and Week Numbering UTH

THelp informationT
HTUHelp Context IDs for Excel 2000, 2002, 2003 and 2007UTH
HTUWhere do I paste the code that I want to use in my workbook UTH
HTUHow do I create a PERSONAL.XLS(B) or Add-inUTH

TOther pagesT
HTUPrint tips for ExcUe TTlTH
HTUTest if Folder, File or Sheet exists or File is open UTH
HTUFind last row, column or last cellUTH
HTUChange formulas to values UTH
HTUFind value in Range, Sheet or Sheets with VBA UTH

http://www.rondebruin.nl/copy1.htm
http://www.rondebruin.nl/copy2.htm
http://www.rondebruin.nl/summary.htm
http://www.rondebruin.nl/linksum.htm
http://www.rondebruin.nl/copy3.htm
http://www.rondebruin.nl/fso.htm
http://www.rondebruin.nl/merge.htm
http://www.rondebruin.nl/summary2.htm
http://www.rondebruin.nl/mergetotxt.htm
http://www.rondebruin.nl/txtcsv.htm
http://www.rondebruin.nl/csv.htm
http://www.rondebruin.nl/ado.htm
http://www.rondebruin.nl/copy7.htm
http://www.rondebruin.nl/accessexcel.htm
http://www.rondebruin.nl/copy4.htm
http://www.rondebruin.nl/copy5.htm
http://www.rondebruin.nl/tablecode.htm
http://www.rondebruin.nl/copy6.htm
http://www.rondebruin.nl/hpagebreaks.htm
http://www.rondebruin.nl/folder.htm
http://www.rondebruin.nl/sheettemplate.htm
http://www.rondebruin.nl/delete.htm
http://www.rondebruin.nl/controlsobjectsworksheet.htm
http://www.rondebruin.nl/menuid.htm
http://www.rondebruin.nl/specialcells.htm
http://www.rondebruin.nl/key.htm
http://www.rondebruin.nl/7zipwithexcel.htm
http://www.rondebruin.nl/7zipwithexcelunzip.htm
http://www.rondebruin.nl/windowsxpzip.htm
http://www.rondebruin.nl/windowsxpunzip.htm
http://www.rondebruin.nl/zip.htm
http://www.rondebruin.nl/unzip.htm
http://www.rondebruin.nl/calendar.htm
http://www.rondebruin.nl/weeknumber.htm
http://www.rondebruin.nl/isodate.htm
http://www.rondebruin.nl/id.htm
http://www.rondebruin.nl/code.htm
http://www.rondebruin.nl/personal.htm
http://www.rondebruin.nl/print.htm
http://www.rondebruin.nl/exist.htm
http://www.rondebruin.nl/last.htm
http://www.rondebruin.nl/values.htm
http://www.rondebruin.nl/find.htm

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 70
Copyright © 2008 by J.L.Latham, All Rights Reserved.

HTUCleaning "Dirty" Data UTH
HTULotus Transition Formula Evaluation ErrorUsT H
HTUAnalysis ToolPak Translator 7.0 UT

http://www.rondebruin.nl/clean.htm
http://www.rondebruin.nl/transition.htm
http://www.rondebruin.nl/atptranslator.htm

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 71
Copyright © 2008 by J.L.Latham, All Rights Reserved.

75BDEBRA DALGLEISH’S EXCEL TIPS

T76BHUWWW.CONTEXTURES.COM

T77BHUHTTP://WWW.CONTEXTURES.COM/TIPTECH.H

TML

A

HTUAdvanced Filter - Basics UTH
HTUAdvanced Filter - CriteriaUTH
HTUAdvanced Filter - Different Sheet UTH HTUvideoUTH
HTUAdvanced Filter - Unique Items UTH HTUvideoUT

HTUAutoFilter - Basics UTH
HTUAutoFilter - Filter Text in Long String UTH
HTUAutoFilter - Limits to Dropdown Lists UTH
HTUAutoFilter - Programming UTH
HTUAutoFilter - Protected Sheet UTH
HTUAutoFilter - Status Bar Record Count UTH
HTUAutoFilter - Sum a Filtered List UT

B

HTUBar over character UTH 31-Oct-06

HTUBeyond the Keyboard UT

HTUBlank Cells, FillUTH HTUVideoUT

HTUBlog, Contextures UT

HTUBook List, ExcelUTH 10-Jun-07
HTUBooks -- on my bookshelf UTH
HTUBooks -- e-books, Microsoft Office UTH 10-Feb-06

C

HTUCharting - Jon Peltier's Site Index UTH
HTUCharting Links UT

HTUChristmas Planner UTH 21-Nov-08

HTUCode, Copy to a workbook UTH HTUvideoUT

HTUCoderre, Ron - Sample Workbooks UTH 17-Jul-07

HTUColumn headers show numbers (FAQ) UT

HTUCombining Data UTH

HTUComments - Add a Picture UTH HTUvideoUTH
HTUComments - BasicsUTH
HTUComments - Change Indicator Colour UTH

78BF (CONT'D)

HTUForm, Create a UserForm UTH
HTUForm, Print Selected Items UTH 23-Sep-06
HTUForm, SurveyUTH 29-Oct-05 updated 11-Oct-06

HTUForm, Worksheet Data EntryU T H 22-Sep-06

HTUFormatting Tips - Move Toolbar Palettes UTH 29-Apr-08

HTUhttp://www.contextures.com/xlfaqFun.html -

FormulaShow UTHHTUFormulas visible on Worksheet UTH 16-

Jun-07

HTUFunctions UTH
HTUFunctions -- Count cells UTH
HTUFunctions -- IFERROR UTH 31-Dec-08
HTUFunctions -- INDEX UTH 23-Nov-05
HTUFunctions -- INDIRECT UTH11-Nov-06
HTUFunctions -- MATCH UTH HTUVideoUTH
HTUFunctions -- SUBTOTALUTH
HTUFunctions -- Sum cells UTH
HTUFunctions -- VLOOKUPUTH HTUVideo UT

G-M

HTUGetPivotData UTH 23-Jan-09

HTUGift Ideas for Excel Users UTH updated 27-May-09

HTUGovier, Roger - Sample WorkbooksUTH 18-May-09

HTUGrades, Convert Percentages to Letter UTH 30-May-

09 HTUVideoUTH

HTUINDEX Function UTH

HTUINDIRECT Function UTH 11-Nov-06

HTUKeyboard Shortcuts UTH

HTUMacros, Copy to a workbook UTH HTUvideoUTH
HTUMacros Prompt, Enable or Disable (FAQ) UTH HTUvideoUTH
HTUMacro Toolbar UTH 24-Dec-05

HTUMATCH Function UTH HTUVideoUT

N-O

HTUNames -- Naming Ranges UTH HTUvideoUTH

HTUNames -- Naming Dynamic Ranges with a macro UTH
22-Feb-09
HTUNames -- Use Names in Formulas UTH 17-Jun-05

HTUNavigation Command for Sheets 2007 UTH 17-Jul-08

HTUNavigation Toolbar for Sheets 2003 UTH 21-Dec-05

http://www.contextures.com/
http://www.contextures.com/tiptech.html
http://www.contextures.com/tiptech.html
http://www.contextures.com/xladvfilter01.html
http://www.contextures.com/xladvfilter02.html
http://www.contextures.com/xladvfilter01.html#ExtractWs
http://www.contextures.com/xlVideos04.html#AdvFiltSheet
http://www.contextures.com/xladvfilter01.html#FilterUR
http://www.contextures.com/xlVideos04.html#AdvFilt2003
http://www.contextures.com/xlautofilter01.html
http://www.contextures.com/xlautofilter02.html#String
http://www.contextures.com/xlautofilter02.html#Limits
http://www.contextures.com/xlautofilter03.html
http://www.contextures.com/xlautofilter03.html#Protect
http://www.contextures.com/xlautofilter02.html#Count
http://www.contextures.com/xlFunctions01.html#Filter
http://www.contextures.com/xlfaqFun.html#bar
http://www.contextures.com/beyondthekeyboard.html
http://www.contextures.com/xlDataEntry02.html
http://www.contextures.com/xlVideos01.html#FillBlanks
http://blog.contextures.com/
http://www.contextures.com/xlbooks.html
http://www.contextures.com/xlbookshelf.html
http://www.contextures.com/xlebooks.html
http://www.contextures.com/JPChartIndex.htm
http://www.contextures.com/charts.html
http://www.contextures.com/Excel-Christmas-Planner.html
http://www.contextures.com/xlvba01.html
http://www.contextures.com/xlVideos04.html#CopyCode
http://www.contextures.com/excelfilesRon.html
http://www.contextures.com/xlfaqApp.html#HeaderNumber
http://www.contextures.com/xlCombine01.html
http://www.contextures.com/xlcomments02.html#Picture
http://www.contextures.com/xlVideos01.html#CommentPicture
http://www.contextures.com/xlcomments01.html
http://www.contextures.com/xlcomments02.html#Colour
http://www.contextures.com/xlUserForm01.html
http://www.contextures.com/xlForm03.html
http://www.contextures.com/xlForm01.html
http://www.contextures.com/xlForm02.html
http://www.contextures.com/xlFormat01.html
http://www.contextures.com/xlfaqFun.html#FormulaShow
http://www.contextures.com/xlfaqFun.html#FormulaShow
http://www.contextures.com/xlfaqFun.html#FormulaShow
http://www.contextures.com/functions.html
http://www.contextures.com/xlFunctions04.html
http://www.contextures.com/xlFunctions02.html#IFERROR
http://www.contextures.com/xlFunctions03.html
http://www.contextures.com/xlFunctions05.html
http://www.contextures.com/xlFunctions03.html
http://www.contextures.com/xlVideos08.html#Match01
http://www.contextures.com/xlFunctions01.html#Filter
http://www.contextures.com/xlFunctions01.html
http://www.contextures.com/xlFunctions02.html
http://www.contextures.com/xlVideos08.html#VLookup01
http://www.contextures.com/xlPivot06.html
http://www.contextures.com/xlGifts.html
http://www.contextures.com/excelfilesRoger.html
http://www.contextures.com/xlFunctions02.html#Range
http://www.contextures.com/xlVideos08.html#Percentages
http://www.contextures.com/xlFunctions03.html
http://www.contextures.com/xlFunctions05.html
http://www.contextures.com/excel.htm
http://www.contextures.com/xlvba01.html
http://www.contextures.com/xlVideos04.html#CopyCode
http://www.contextures.com/xlfaqMac.html#NoMacros
http://www.contextures.com/xlVideos02.html#MacroWarn
http://www.contextures.com/xlToolbar02.html
http://www.contextures.com/xlFunctions03.html
http://www.contextures.com/xlVideos08.html#Match01
http://www.contextures.com/xlNames01.html
http://www.contextures.com/xlVideos02.html#NamedRange
http://www.contextures.com/xlNames03.html
http://www.contextures.com/xlNames02.html
http://www.contextures.com/xlToolbar01b.html
http://www.contextures.com/xlToolbar01.html

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 72
Copyright © 2008 by J.L.Latham, All Rights Reserved.

HTUComments - Change Shape UTH
HTUComments - Copy Text to Adjacent Cell UTH 22-Sep-05
HTUComments - Extract Text to WordUTH
HTUComments - Format AllUTH 09-Mar-06
HTUComments - Format TextUTH 29-Sep-08

HTUhttp://www.contextures.com/xlcomments03.ht

ml - PictureUTHHTUComments - Insert Selected Picture UTH
28-Jan-06
HTUComments - Number and List UTH 22-Jan-06
HTUComments - Printing UTH
HTUComments - ProgrammingUTH
HTUComments - ResizeUTH
HTUComments - Show in Centre UTH 22-Jul-06

HTUConditional Formatting - Basics UTH
HTUConditional Formatting - Documentation UTH 07-Mar-05
HTUConditional Formatting - Hide Cells to Print UTH
HTUConditional Formatting - Hide Duplicates UTH
HTUConditional Formatting - Hide Errors UTH
HTUConditional Formatting - Lottery Numbers UTH
HTUConditional Formatting - RowUTH HTUvideoUTH
HTUConditional Formatting - Shade Alt Rows UTH 14-Feb-07
HTUConditional Formatting - Shade Bands UTH 14-Feb-07

HTUConditional Formatting - Filtered Bands UTH 23-Feb-07
HTUConditional Formatting - Coloured Shapes UTH 22-Jun-07

HTUContextures Blog UT

HTUCount Cells UTH

D

HTUData Entry - Tips UTH
HTUData Entry - Fill Blank Cells UTH HTUVideoUTH

HTUData Entry - Convert Text to Numbers UTH HTUvideoUTH
HTUData Entry - Increase Numbers by Set Amount UTH
HTUvideoUTHH H
HTUData Entry - Excel Videos UTH

HTUData Validation - Basics UTH HTUvideoUTH
HTUData Validation - Combo box UTH 15-Jan-07
HTUData Validation - Combo box Named Range UTH 15-

Jan-07
HTUData Validation - Combo box - Click UTH 18-Oct-08
HTUData Validation - Custom Criteria UTH
HTUData Validation - Dependent Dropdown- Sorted
List UTH 15-Jul-05
HTUData Validation - Dependent Lists UTH
HTUData Validation - Dependent Lists INDEX UTH 17-May-

09

HTUData Validation - Documentation UTH
HTUData Validation - Font Size, List Length UTH
HTUData Validation - Hide Used Items UTH
HTUData Validation - Input Message in Text Box UTH 05Jun-

05
HTUData Validation - Invalid Entries Allowed UTH updated 11-

HTUNewsgroup Posting Statistics -- AnnualUTH 01-Jan-09

HTUNumbers, Convert Text to UTH HTUvideoUTH
HTUNumbers, Increase by Set Amount UTH

HTUvideoUTHHTUhttp://www.contextures.com/xlDataEntry0

4.htmlUTH 18-May-08

HTUOrder Form UTH 30-Jul-05

P

HTUPaste Values Mouse Shortcut UTH HTUvideoUTH 04-Feb-09

HTUPeltierTech - Charting Site Index UTH

HTUhttp://www.contextures.com/Pubn03.html UTHHTUPivot

Tables, Beginning (Excel 2007) UTH
HTUPivot Tables, Recipe Book (Excel 2003) UTH
HTUPivot Tables, Recipe Book (Excel 2007) UTH

HTUPivot Tables - Add-in -- Pivot Power UTH 29-Apr-05
HTUPivot Tables - Add-in - Pivot Play PLUS UTH 15-Mar-08
HTUPivot Tables - Clear Old Items UTH HTUvideoUTH updated 27-Jun-08
HTUPivot Tables - Create in Excel 2007 UTH HTUvideoUTH 19-Feb-09

HTUhttp://www.contextures.com/xlPivot06.html UTH

HTUhttp://www.contextures.com/xlPivot10.html UTHHTUPiv

ot Tables - Custom Calculations UTH 07-Mar-05
HTUPivot Tables - Data Field Layout UTH HTUvideoUTH
HTUPivot Tables - Dynamic Data Source UTH
HTUPivot Tables - Field Settings UTH
HTUPivot Tables - FAQs UTH 09-Oct-06
HTUPivot Tables - Filter Source Data UTH 19-Jan-09H
TUPivot Tables - GetPivotData UTH
HTUPivot Tables - Grand Total at Top UTH 15-May-08
HTUPivot Tables - Grouping Data UTH
HTUPivot Tables - Layout, Excel 2007 video UTH 04-Jul-08
HTUPivot Tables - Multiple Consolidation Ranges UTH
HTUPivot Tables - Pivot Cache UTH 22-Mar-05
HTUPivot Tables - PrintingUTH
HTUPivot Tables - Protection UTH 23-Apr-05
HTUPivot Tables - Running Totals UTH HTUvideoUTH 13-Sep-08
HTUPivot Tables - Select Sections video UTH 31-Aug-08
HTUPivot Tables - Show and Hide Items UTH
HTUPivot Tables - Unique Items UTH
HTUPivot Tables and Pivot Chart Intro UT

Q-R-S

HTUQueries - Add-in - Pivot Play PLUS UTH 15-Mar-08

HTURanges, UTHHTUNaming UTH
HTURibbon -- Navigation Command for Sheets 2007 UTH
17-Jul-08

HTURunning Totals, Pivot Tables UTH HTUvideoUTH 13-Sep-08

http://www.contextures.com/xlcomments02.html#Shape
http://www.contextures.com/xlcomments03.html#CopyAdjacent
http://www.contextures.com/xlcomments03.html#CopyToWord
http://www.contextures.com/xlcomments03.html#Format
http://www.contextures.com/xlcomments03.html#FormatColour
http://www.contextures.com/xlcomments03.html#Picture
http://www.contextures.com/xlcomments03.html#Picture
http://www.contextures.com/xlcomments03.html#Picture
http://www.contextures.com/xlcomments03.html#Number
http://www.contextures.com/xlcomments01.html#Printing
http://www.contextures.com/xlcomments03.html
http://www.contextures.com/xlcomments03.html#Resize
http://www.contextures.com/xlcomments03.html#Centre
http://www.contextures.com/xlCondFormat01.html
http://www.contextures.com/xlCondFormat04.html
http://www.contextures.com/xlCondFormat03.html#Print
http://www.contextures.com/xlCondFormat03.html#Duplicate
http://www.contextures.com/xlCondFormat03.html#Errors
http://www.contextures.com/xlCondFormat03.html#Lottery
http://www.contextures.com/xlCondFormat02.html
http://www.contextures.com/xlVideos06.html#CondFormatRow
http://www.contextures.com/xlCondFormat03.html#Shade
http://www.contextures.com/xlCondFormat03.html#Bands
http://www.contextures.com/xlCondFormat03.html#Bands
http://www.contextures.com/xlCondFormat03.html#Shape
http://blog.contextures.com/
http://www.contextures.com/xlFunctions04.html
http://www.contextures.com/xlDataEntry01.html
http://www.contextures.com/xlDataEntry02.html
http://www.contextures.com/xlVideos01.html#FillBlanks
http://www.contextures.com/xlDataEntry03.html
http://www.contextures.com/xlVideos02.html#NumText
http://www.contextures.com/xlDataEntry04.html
http://www.contextures.com/xlVideos03.html#Paste2003
http://www.contextures.com/xlDataEntry04.html
http://www.contextures.com/Excel-Videos-Data-Entry.html
http://www.contextures.com/xlDataVal01.html
http://www.contextures.com/xlVideos07.html#DataVal01
http://www.contextures.com/xlDataVal10.html
http://www.contextures.com/xlDataVal11.html
http://www.contextures.com/xlDataVal14.html
http://www.contextures.com/xlDataVal07.html
http://www.contextures.com/xlDataVal13.html
http://www.contextures.com/xlDataVal13.html
http://www.contextures.com/xlDataVal02.html
http://www.contextures.com/xlDataVal15.html
http://www.contextures.com/xlDataVal09.html
http://www.contextures.com/xlDataVal08.html#Font
http://www.contextures.com/xlDataVal03.html
http://www.contextures.com/xlDataVal12.html
http://www.contextures.com/xlDataVal08.html#Invalid
http://www.contextures.com/xlngstatsAnnual.html
http://www.contextures.com/xlDataEntry03.html
http://www.contextures.com/xlVideos02.html#NumText
http://www.contextures.com/xlDataEntry04.html
http://www.contextures.com/xlVideos03.html#Paste2003
http://www.contextures.com/xlDataEntry04.html
http://www.contextures.com/xlDataEntry04.html
http://www.contextures.com/xlOrderForm01.html
http://www.contextures.com/xlVideos09.html#PasteValMouse
http://www.contextures.com/xlVideos09.html#PasteValMouse
http://www.contextures.com/JPChartIndex.htm
http://www.contextures.com/Pubn03.html
http://www.contextures.com/Pubn03.html
http://www.contextures.com/Pubn03.html
http://www.contextures.com/Pubn01.html
http://www.contextures.com/Pubn02.html
http://www.contextures.com/xlPivotAddIn.html
http://www.contextures.com/xlPivotPlayPLUS01.html
http://www.contextures.com/xlPivot04.html
http://www.contextures.com/xlVideos07.html#ClearOld
http://www.contextures.com/CreatePivotTable.html
http://www.contextures.com/xlVideos10.html#Create2007
http://www.contextures.com/xlPivot06.html
http://www.contextures.com/xlPivot10.html
http://www.contextures.com/xlPivot10.html
http://www.contextures.com/xlPivot10.html
http://www.contextures.com/xlPivot02.html
http://www.contextures.com/xlVideo001.html
http://www.contextures.com/xlPivot01.html
http://www.contextures.com/xlPivot05.html
http://www.contextures.com/xlfaqPivot.html
http://www.contextures.com/xlPivot-Filter-Source-Data.html
http://www.contextures.com/xlPivot06.html
http://www.contextures.com/xlPivot06.html
http://www.contextures.com/xlPivot13.html
http://www.contextures.com/xlPivot07.html
http://www.contextures.com/xlVideos07.html#Layout
http://www.contextures.com/xlPivot08.html
http://www.contextures.com/xlPivot11.html
http://www.contextures.com/xlPivot09.html
http://www.contextures.com/xlPivot12.html
http://www.contextures.com/xlPivot14.html
http://www.contextures.com/xlVideos07.html#RunTotal
http://www.contextures.com/xlVideos07.html#Select
http://www.contextures.com/xlPivot03.html
http://www.contextures.com/xlPivot07.html#Unique
http://peltiertech.com/Excel/Pivots/pivotstart.htm
http://www.contextures.com/xlPivotPlayPLUS01.html
http://www.contextures.com/xlNames01.html
http://www.contextures.com/xlNames01.html
http://www.contextures.com/xlToolbar01b.html
http://www.contextures.com/xlPivot14.html
http://www.contextures.com/xlVideos07.html#RunTotal

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 73
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Oct-06
HTUData Validation - List from Other Workbook UTH

HTUData Validation Dropdowns are Too Wide UTH
HTUData Validation - Make List Appear Larger UT
HHTUData Validation - Make List WiderUTH
HTUData Validation - Messages UTH
HTUData Validation - Missing Arrows UTH updated 11-Oct-06
HTUData Validation - Order Form UTH 11-May-05

HTUData Validation - Tips and Quirks UTH updated 11-Oct-06

HTUDynamic Ranges, Naming UTH

HTUDynamic Ranges, Naming with a Macro UTH

E

HTUExcel 2007 -- Articles List UTH updated 16-Nov-07
HTUExcel 2010 -- Articles List UTH 01-Jun-09
HTUExcel Events UTH updated 28-Mar-09
HTUExcel Links UTH
HTUExcel Sites UTH
HTUExcel StoreUTH
HTUExcel Table UTH 21-Aug-08
HTUExcel Conference, Advanced UTH

F

HTUFAQs, Excel - Application and Files UTH
HTUFAQs, Excel - Dates and Times UTH
HTUFAQs, Excel - Index UTH
HTUFAQs, Excel - Macros, VBAUTH
HTUFAQs, Excel - Pivot Tables and Pivot Charts UTH 09-Oct-

06

HTUhttp://www.contextures.com/xlfaqFun.html UTHHTUFA

Qs, Excel - Worksheet Functions and Formats UTH

HTUFile with that name is already open UTHHTU (FAQ) UTH
HTUFile size, large (FAQ) UTH
HTUFill colour doesn't work (FAQ) UTH
HTUFill pattern doesn't print (FAQ) UTH

HTUFilter, Advanced UTH
HTUFilter, AutoFilter UT

HTUSample Data UTH
HTUSample Workbooks UTH updated 10-Mar-08
HTUSample Workbooks (Ron Coderre) UTH updated 20-Sep-07
HTUSample Workbooks (Roger Govier) UTH updated 18-May-09

HTUScenarios -- Automatically ShowUTH 10-Apr-05

HTUScenarios -- Create and ShowUTH 03-Apr-05
HTUScenarios -- Programming UTH 12-Apr-05
HTUScenarios -- Scenario SummariesUTH 03-Apr-05

HTUShortcuts, Keyboard UT

HTUSorting a List UTH
HTUSorting Data -- ProgrammingUTH 06-Aug-06
HTUStore, UTHHTUThe ExcelUT

HTUSubtotalUTH
HTUSum cells UTH
HTUSum a Filtered List UTH

HTUSurvey Form UTH 29-Oct-05 updated 11-Oct-06

T-Z

HTUTable, Excel UTH 21-Aug-08

HTUhttp://www.contextures.com/xlToolbar02.html UTHHTU

Toolbar -- Macros UTH 24-Dec-05

HTUToolbar -- Navigate Workbook Sheets UTH updated 30-Oct-

07

HTUhttp://www.contextures.com/xlToolbar01.html UT

HTUTopics Index UT

HTUTrailing Minus Signs UT

HTUUsed Range, Reset (FAQ) UT

HTUUserForm, Create a UTH HTUVideoUTH

HTUUserForm with ComboBoxes UTH 23-Jan-06

HTUVBA Code, Copy to a workbook UTH

HTUVideo Index UTH H

TUVideo Instruction Clips 01 UTH 10-May-08
HTUVideo Instruction Clips 02 UTH 10-May-08
HTUVideo Instruction Clips 03 UTH 13-May-08
HTUVideo Instruction Clips 04 UTH 23-May-08

HTUVideo Instruction Clips 05UTH 01-Jun-08

HTUVideo Instruction Clips 06 UTH updated 25-Jul-08
HTUVideo Instruction Clips 07 UTH updated 31-Aug-08

HTUVideo Instruction Clips 08 UTH updated 30-May-09

HTUVideo Instruction Clips 09 UTH 05-Feb-09

HTUVideo Instruction Clips 10 UTH 19-Feb-09

http://www.contextures.com/xlDataVal05.html
http://www.contextures.com/xlDataValWidth.html
http://www.contextures.com/xlDataVal08.html#Larger
http://www.contextures.com/xlDataVal08.html#Larger
http://www.contextures.com/xlDataVal08.html#Wider
http://www.contextures.com/xlDataVal04.html
http://www.contextures.com/xlDataVal08.html#ArrowsNotVisible
http://www.contextures.com/xlOrderForm01.html
http://www.contextures.com/xlDataVal08.html
http://www.contextures.com/xlNames01.html#Dynamic
http://www.contextures.com/xlNames03.html
http://www.contextures.com/xlExcel12Info01.html
http://www.contextures.com/Excel-2010-Info.html
http://www.contextures.com/ExcelEvents.html
http://www.contextures.com/xlLinks.html
http://www.contextures.com/linksxl.html
http://www.contextures.com/excel_store.html
http://www.contextures.com/xlExcelTable01.html
http://peltiertech.com/Training/2009-06-ACNJ/AdvExcelConf200906ACNJ.html
http://www.contextures.com/xlfaqApp.html
http://www.contextures.com/xlfaqDat.html
http://www.contextures.com/xlfaqIndex.html
http://www.contextures.com/xlfaqMac.html
http://www.contextures.com/xlfaqPivot.html
http://www.contextures.com/xlfaqFun.html
http://www.contextures.com/xlfaqFun.html
http://www.contextures.com/xlfaqFun.html
http://www.contextures.com/xlfaqApp.html#AlreadyOpen
http://www.contextures.com/xlfaqApp.html
http://www.contextures.com/xlfaqApp.html#Unused
http://www.contextures.com/xlfaqApp.html#Fill
http://www.contextures.com/xlfaqApp.html#Pattern
http://www.contextures.com/xladvfilter01.html
http://www.contextures.com/xlautofilter01.html
http://www.contextures.com/xlSampleData01.html
http://www.contextures.com/excelfiles.html
http://www.contextures.com/excelfilesRon.html
http://www.contextures.com/excelfilesRoger.html
http://www.contextures.com/xlScenario03.html
http://www.contextures.com/xlScenario01.html
http://www.contextures.com/xlScenario04.html
http://www.contextures.com/xlScenario02.html
http://www.contextures.com/excel.htm
http://www.contextures.com/xlSort01.html
http://www.contextures.com/xlSort02.html
http://www.contextures.com/excel_store.html
http://www.contextures.com/excel_store.html
http://www.contextures.com/xlFunctions01.html#Filter
http://www.contextures.com/xlFunctions01.html
http://www.contextures.com/xlFunctions01.html#Filter
http://www.contextures.com/xlForm01.html
http://www.contextures.com/xlExcelTable01.html
http://www.contextures.com/xlToolbar02.html
http://www.contextures.com/xlToolbar02.html
http://www.contextures.com/xlToolbar02.html
http://www.contextures.com/xlToolbar02.html
http://www.contextures.com/xlToolbar01.html
http://www.contextures.com/xlToolbar01.html
http://www.contextures.com/xlTopics.html
http://www.contextures.com/xlDataEntry03.html
http://www.contextures.com/xlfaqApp.html#Unused
http://www.contextures.com/xlUserForm01.html
http://www.contextures.com/xlVideos05.html#UserForm01
http://www.contextures.com/xlUserForm02.html
http://www.contextures.com/xlvba01.html
http://www.contextures.com/ExcelVideoTutorials.html
http://www.contextures.com/xlVideos01.html
http://www.contextures.com/xlVideos01.html
http://www.contextures.com/xlVideos02.html
http://www.contextures.com/xlVideos03.html
http://www.contextures.com/xlVideos04.html
http://www.contextures.com/xlVideos05.html
http://www.contextures.com/xlVideos06.html
http://www.contextures.com/xlVideos07.html
http://www.contextures.com/xlVideos08.html
http://www.contextures.com/xlVideos09.html
http://www.contextures.com/xlVideos10.html

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 74
Copyright © 2008 by J.L.Latham, All Rights Reserved.

HTUhttp://www.contextures.com/xlFunctions02.ht

ml UTHHTUVLOOKUP function UTH HTUVideoUT

http://www.contextures.com/xlFunctions02.html
http://www.contextures.com/xlFunctions02.html
http://www.contextures.com/xlFunctions02.html
http://www.contextures.com/xlVideos08.html#VLookup01

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 75
Copyright © 2008 by J.L.Latham, All Rights Reserved.

79BCHIP PEARSON’S EXCEL TIPS:

HTUhttp://www.cpearson.com/excel/MainPage.aspx UT

HTUhttp://www.cpearson.com/excel/topic.aspx UTH This Tips Topics Index

A M
HUAbsolute And Relative Cell References

HUActivating Excel From Other Applications HUMacro-Sheet Function, Calling
From Worksheet Cell

HUActiveCell, Highlighting HUMacros, Adding or Deleting With
VBA Code

HUAdd-Ins, Automation, Creating HUMacros, As Opposed To Functions

HUAdd-Ins, COM, Creating With VB6 HUMacros, Ensuring Macros Are
Enabled, Technique 1 (Sheet
Visibility)

HUAdd-Ins, Creating HUMacros, Ensuring Macros Are
Enabled, Technique 2
(Calculations With Errors)

HUAdd-Ins, Installing And Loading HUMacros, Running From Worksheet
Cell

HUAdd-Ins And Utilities, Third Party HUMatrix To Vector Formulas

HUAge, Calculating HUMaximum Values, Persistent

HUALT, SHIFT, and CTRL Testing State Of Key HUMe Reference, Self-referencing an
instance of a class

HUAnalysis Tool Pack (ATP), Installing HUMenu Items, Creating Manually

HUAnalysis Tool Pack, Calling Function From VBA HUMenu Items, Creating With VBA
Code

HUAnyXML, Allowing optional and arbitrary XML
content with an XSD Schema

HUMenu Items, Creating For The
VBA Editor

HUAPI Functions, Getting Error Information HUMerging Lists Without Duplicates

HUApplication Events HUMinimum And Maximum Values

HUApplication Shutdown, Detecting And Taking Action HUMinimum And Maximum Values,
Persistent

HUApplication-Level Names HUMissing References In A VBA
Project

HUArguments, Passing ByVal And ByRef HUModified File, Returning The Most
Or Least Recently Modified File In
A Folder

HUArray Formulas, Described HUModules, Adding And Deleting
With Code

HUArray, Converting To Columns HUModules, Adding descriptions for
the Object Browser

HUArray, Testing If Allocated HUMonths, Calculating Fractional
Months

HUArray, Testing If Sorted HUMost Or Least Common Entry In A
List

HUArrays, Determining Data Type Of HUMoving A Form With The Window

HUArrays, Number Of Dimensions HUMultiple Monitors

http://www.cpearson.com/excel/MainPage.aspx
http://www.cpearson.com/excel/topic.aspx
http://www.cpearson.com/excel/relative.aspx
http://www.cpearson.com/excel/ActivateExcelMain.aspx
http://www.cpearson.com/excel/Call.htm
http://www.cpearson.com/excel/Call.htm
http://www.cpearson.com/excel/excelM.htm#HighlightActiveCell
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/AutomationAddins.htm
http://www.cpearson.com/excel/differen.htm
http://www.cpearson.com/excel/CreatingCOMAddIn.aspx
http://www.cpearson.com/excel/EnableMacros.aspx
http://www.cpearson.com/excel/EnableMacros.aspx
http://www.cpearson.com/excel/EnableMacros.aspx
http://www.cpearson.com/excel/CreateAddIn.aspx
http://www.cpearson.com/excel/EnableMacros2.aspx
http://www.cpearson.com/excel/EnableMacros2.aspx
http://www.cpearson.com/excel/EnableMacros2.aspx
http://www.cpearson.com/excel/InstallingAnXLA.aspx
http://www.cpearson.com/excel/excelM.htm#RunFromCell
http://www.cpearson.com/excel/excelM.htm#RunFromCell
http://www.cpearson.com/excel/xltools.htm
http://www.cpearson.com/excel/matrixToVector.aspx
http://www.cpearson.com/excel/datedif.aspx
http://www.cpearson.com/excel/PersistentMinMax.aspx
http://www.cpearson.com/excel/KeyTest.aspx
http://www.cpearson.com/excel/Classes.aspx
http://www.cpearson.com/excel/Classes.aspx
http://www.cpearson.com/excel/ATP.aspx
http://www.cpearson.com/excel/menus.htm#manual
http://www.cpearson.com/excel/CallingWorksheetFunctionsInVBA.aspx
http://www.cpearson.com/excel/menus.htm#vba
http://www.cpearson.com/excel/menus.htm#vba
http://www.cpearson.com/XML/AnyXML.aspx
http://www.cpearson.com/XML/AnyXML.aspx
http://www.cpearson.com/excel/VbeMenus.aspx
http://www.cpearson.com/excel/VbeMenus.aspx
http://www.cpearson.com/excel/FormatMessage.htm
http://www.cpearson.com/excel/MergeListsToDistinct.aspx
http://www.cpearson.com/excel/AppEvent.aspx
http://www.cpearson.com/excel/lists.htm#Functions
http://www.cpearson.com/excel/ExcelShutdown.htm
http://www.cpearson.com/excel/PersistentMinMax.aspx
http://www.cpearson.com/excel/PersistentMinMax.aspx
http://www.cpearson.com/excel/hidden.htm
http://www.cpearson.com/excel/MissingReferences.aspx
http://www.cpearson.com/excel/MissingReferences.aspx
http://www.cpearson.com/excel/byrefbyval.aspx
http://www.cpearson.com/excel/GetFileName.aspx
http://www.cpearson.com/excel/GetFileName.aspx
http://www.cpearson.com/excel/GetFileName.aspx
http://www.cpearson.com/excel/ArrayFormulas.aspx
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/arr2col.htm
http://www.cpearson.com/excel/CodeAttributes.aspx
http://www.cpearson.com/excel/CodeAttributes.aspx
http://www.cpearson.com/excel/IsArrayAllocated.aspx
http://www.cpearson.com/excel/FractionalMonths.aspx
http://www.cpearson.com/excel/FractionalMonths.aspx
http://www.cpearson.com/excel/IsArraySorted.aspx
http://www.cpearson.com/excel/lists.htm#MostCommon
http://www.cpearson.com/excel/lists.htm#MostCommon
http://www.cpearson.com/excel/VBAArrays.htm#DataTypeOfArray
http://www.cpearson.com/excel/SetParent.htm
http://www.cpearson.com/excel/VBAArrays.htm#NumberOfDimensions
http://www.cpearson.com/excel/MultipleMonitors.aspx

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 76
Copyright © 2008 by J.L.Latham, All Rights Reserved.

HUArrays, Passing To Procedures And Returning From
Functions

HUMy Documents Folder, Finding For
The Current User

HUArrays, Randomizing (Shuffling) Order Of Elements

HUArrays, Returning From User Defined Functions

N
HUArrays, VBA Function Library (30 procedures)

HUArrays, Reversing HUNamed Ranges

HUArrays, Sorting HUNamed Range Box, Increase The
Size Of

HUArrays Of Objects, Sorting HUNamed Range Box, Shortcut
Keystroke

HUArrays, Utility Procedures For HUNested Function, Exceeding Limit

HUAttachments In Newsgroups, Why Not HUNET Function Libraries

HUAttributes, Descriptions To Display In Object
Browser

HUNETWORKDAYS, A Better Way

HUAutomatically Closing A Workbook After Idle Time HUNewsgroups, Connecting To

HUAutomation Add-Ins And Function Libraries HUNewsgroups, Excel Related

HUAutomation Add-In And Function Libraries With NET HUNewsgroups, Hints For New
Posters

HUAveraging Values In A Range HUNewsgroups, Problems Posting To

HUAveraging Highest Or Lowest Values HUNext And Previous Worksheets

 HUNon-duplicate Random Numbers

B

HUBanding, Color Banding With Conditional Formatting

O
HUBirthdays And Age

HUBlank Cells, Eliminating HUObjects, Declaring

HUBlank Rows, Deleting HUObjects, Sorting Arrays Of Objects

HUBlinking Text HUObjects, Connected And
Disconnected

HUBracket Pricing, Formulas For HUOnTime Method In VBA

HUBrowse For Folder HUOn Error handling

HUBuilt-In Document Properties HUOptimizing VBA Code

HUButton Image, Custom Pictures HUOptional Parameters To A
Function

HUByRef and ByVal Parameter Passing HUOptional And Arbitrary XML
defined in an XSD Schema

 HUOption Explicit

 HUOrder, Reversing Cell

C
HUOrdinal Numbers In Excel

 HUOvertime Hours In Timesheets

HUCALL Worksheet Function

HUCaption of a Window and the Hide Extensions
setting P
HUCase, Converting Text To Upper or Lower Case

HUCell Contents, Displaying Hidden Characters HUParamArray parameters to a VB
Function

http://www.cpearson.com/excel/PassingAndReturningArrays.htm
http://www.cpearson.com/excel/PassingAndReturningArrays.htm
http://www.cpearson.com/excel/SpecialFolders.aspx
http://www.cpearson.com/excel/SpecialFolders.aspx
http://www.cpearson.com/excel/ShuffleArray.aspx
http://www.cpearson.com/excel/ReturningArraysFromVBA.aspx
http://www.cpearson.com/excel/VBAArrays.htm
http://www.cpearson.com/excel/VBAArrays.htm#ReversingAnArray
http://www.cpearson.com/excel/DefinedNames.aspx
http://www.cpearson.com/excel/QSort.htm
http://www.cpearson.com/excel/NameBox.aspx
http://www.cpearson.com/excel/NameBox.aspx
http://www.cpearson.com/excel/SortingArraysOfObjects.htm
http://www.cpearson.com/excel/NameBoxShortcut.htm
http://www.cpearson.com/excel/NameBoxShortcut.htm
http://www.cpearson.com/excel/VBAArrays.htm
http://www.cpearson.com/excel/nested.htm
http://www.cpearson.com/excel/Attachments.htm
http://www.cpearson.com/excel/CreatingNETFunctionLib.aspx
http://www.cpearson.com/excel/CodeAttributes.aspx
http://www.cpearson.com/excel/CodeAttributes.aspx
http://www.cpearson.com/excel/betternetworkdays.aspx
http://www.cpearson.com/excel/TimedClose.htm
http://www.cpearson.com/excel/HintsAndTipsForNewsgroupUsers.aspx
http://www.cpearson.com/excel/AutomationAddIns.aspx
http://www.cpearson.com/excel/HintsAndTipsForNewsgroupUsers.aspx
http://www.cpearson.com/excel/CreatingNETFunctionLib.aspx
http://www.cpearson.com/excel/HintsAndTipsForNewsgroupUsers.aspx
http://www.cpearson.com/excel/HintsAndTipsForNewsgroupUsers.aspx
http://www.cpearson.com/excel/lists.htm#Functions
http://www.cpearson.com/excel/links.htm#Newsgroups
http://www.cpearson.com/excel/excelF.htm#AveragingValues
http://www.cpearson.com/excel/sheetref.htm
http://www.cpearson.com/excel/Random.htm
http://www.cpearson.com/excel/banding.aspx
http://www.cpearson.com/excel/datedif.aspx
http://www.cpearson.com/excel/noblanks.htm
http://www.cpearson.com/excel/variables.htm
http://www.cpearson.com/excel/excelM.htm#DeleteBlankRows
http://www.cpearson.com/excel/SortingArraysOfObjects.htm
http://www.cpearson.com/excel/pricing.htm
http://www.cpearson.com/excel/ConnectedObject.htm
http://www.cpearson.com/excel/ConnectedObject.htm
http://www.cpearson.com/excel/pricing.htm
http://www.cpearson.com/excel/OnTime.aspx
http://www.cpearson.com/excel/BrowseFolder.aspx
http://www.cpearson.com/excel/ErrorHandling.htm
http://www.cpearson.com/excel/docprop.aspx
http://www.cpearson.com/excel/optimize.htm
http://www.cpearson.com/excel/PicturesOnCommandBarItems.aspx
http://www.cpearson.com/excel/OptionalArgumentsToProcedures.aspx
http://www.cpearson.com/excel/OptionalArgumentsToProcedures.aspx
http://www.cpearson.com/excel/byrefbyval.aspx
http://www.cpearson.com/XML/AnyXML.aspx
http://www.cpearson.com/XML/AnyXML.aspx
http://www.cpearson.com/excel/DeclaringVariables.aspx
http://www.cpearson.com/excel/excelM.htm#FlipRange
http://www.cpearson.com/excel/ordinal.htm
http://www.cpearson.com/excel/overtime.htm
http://www.cpearson.com/excel/Call.htm
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/ChangingCase.aspx
http://www.cpearson.com/excel/CellView.aspx
http://www.cpearson.com/excel/OptionalArgumentsToProcedures.aspx
http://www.cpearson.com/excel/OptionalArgumentsToProcedures.aspx

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 77
Copyright © 2008 by J.L.Latham, All Rights Reserved.

HUCell References, Absolute And Relative HUParameters, Passing ByRef And
ByVal

HUCell Values And Displayed Text HUParameters, Optional Parameters
To A Function

HUCells, Referring To Cells In Another Range HUPassing Parameters ByRef And
ByVal

HUCellView Add-In HUParent Windows, With Userforms

HUCentering The Screen On A Range Of Cells HUPassing And Returning Arrays
From Procedures

HUCharacters, Counting In A String HUPasswords, Forgotten

HUCharacters, Finding In A String HUPathCompactPathEx API Function

HUCharacters, Special characters in Excel HUPhone Numbers, Parsing

HUChild Windows with UserForms HUPictures On Command Bar Items,
Custom

HUCircular References, Example HUPivot Tables, An Introduction

HUClass Modules HUPositioning UserForms To Cells

HUClass Instances, Self-referencing HUPowerPoint, Naming Slides And
Shapes

HUClass Names, Window Class Name Of Office
Applications

HUPreventing Duplicate Entry

HUClasses, Default Member Of HUPrevious And Next Worksheets

HUClipboard, Windows HUPrinting Cell Comments To Word

HUCloning A Folder HUPricing, Progressive And Bracket

HUClose, Detecting And Taking Action When Excel
Closes

HUPrime Numbers And Prime Twins,
Testing A Number

HUClosing A Workbook Automatically After Idle Time HUPrinting Cell Formulas To Word

HUCode Modules HUProcedure Attributes For The
Object Browser

HUCode And Formula Usage, Legal Conderations HUProcedure Name, Automatically
Inserting Into Procedure with
CONST declarations

HUCodeName property HUProcedures, Scope And Visibility

HUCode Modules HUProgress Bar, Displaying while
running code

HUCollections And Dictionaries, Procedures for,
Sorting

HUProper Case, Converting Text To
Proper Case

HUColors, Counting And Summing HUProperties, Returning Workbook

HUCells Based On Font or Interior Color

HUColors, RGB Values

Q
HUColor Picker, Displaying A Color Picker To The User

HUColors, Sorting By HUQuarter, Determining From Date

HUColor Banding With Conditional Formatting HUQSort, Sorting Arrays Of Variables

HUColumn To Table Conversion HUQSort, Sorting Arrays Of Objects

HUColumn To Table Conversion, Variable Block Size HUQSortObjectCompare Example
Function

HUColumn Or Row From Table Conversion

HUCOM Add-Ins, Getting The DLL Name Of

R
HUCOM Add-Ins, Creating With VB6

http://www.cpearson.com/excel/relative.aspx
http://www.cpearson.com/excel/byrefbyval.aspx
http://www.cpearson.com/excel/byrefbyval.aspx
http://www.cpearson.com/excel/values.htm
http://www.cpearson.com/excel/OptionalArgumentsToProcedures.aspx
http://www.cpearson.com/excel/OptionalArgumentsToProcedures.aspx
http://www.cpearson.com/excel/cells.htm
http://www.cpearson.com/excel/byrefbyval.aspx
http://www.cpearson.com/excel/byrefbyval.aspx
http://www.cpearson.com/excel/CellView.aspx
http://www.cpearson.com/excel/SetParent.aspx
http://www.cpearson.com/excel/zoom.htm#center
http://www.cpearson.com/excel/PassingAndReturningArrays.htm
http://www.cpearson.com/excel/PassingAndReturningArrays.htm
http://www.cpearson.com/excel/stringformulas.aspx
http://www.cpearson.com/excel/password.htm
http://www.cpearson.com/excel/stringformulas.aspx
http://www.cpearson.com/excel/SizeString.htm#PathCompactPathEx
http://www.cpearson.com/excel/chars.htm
http://www.cpearson.com/excel/PhoneNum.htm
http://www.cpearson.com/excel/SetParent.aspx
http://www.cpearson.com/excel/PicturesOnCommandBarItems.aspx
http://www.cpearson.com/excel/PicturesOnCommandBarItems.aspx
http://www.cpearson.com/excel/PersistentMinMax.aspx
http://www.cpearson.com/excel/pivots.htm
http://www.cpearson.com/excel/Classes.aspx
http://www.cpearson.com/excel/FormPosition.htm
http://www.cpearson.com/excel/Classes.aspx
http://www.cpearson.com/PowerPoint/SlideAndShapeRenamer.htm
http://www.cpearson.com/PowerPoint/SlideAndShapeRenamer.htm
http://www.cpearson.com/excel/OfficeAppsWindowClasses.aspx
http://www.cpearson.com/excel/OfficeAppsWindowClasses.aspx
http://www.cpearson.com/excel/NoDupEntry.aspx
http://www.cpearson.com/excel/DefaultMember.aspx
http://www.cpearson.com/excel/sheetref.htm
http://www.cpearson.com/excel/clipboard.aspx
http://www.cpearson.com/excel/excelM.htm#PrintComments
http://www.cpearson.com/excel/CloneFolder.htm
http://www.cpearson.com/excel/pricing.htm
http://www.cpearson.com/excel/ExcelShutdown.htm
http://www.cpearson.com/excel/ExcelShutdown.htm
http://www.cpearson.com/excel/PrimeNumbers.aspx
http://www.cpearson.com/excel/PrimeNumbers.aspx
http://www.cpearson.com/excel/TimedClose.htm
http://www.cpearson.com/excel/excelM.htm#PrintFormulas
http://www.cpearson.com/excel/codemods.htm
http://www.cpearson.com/excel/CodeAttributes.aspx
http://www.cpearson.com/excel/CodeAttributes.aspx
http://www.cpearson.com/excel/UsageAndDistribution.aspx
http://www.cpearson.com/excel/InsertProcedureNames.htm
http://www.cpearson.com/excel/InsertProcedureNames.htm
http://www.cpearson.com/excel/InsertProcedureNames.htm
http://www.cpearson.com/excel/codemods.htm
http://www.cpearson.com/excel/Scope.aspx
http://www.cpearson.com/excel/codemods.htm
http://www.cpearson.com/excel/Progress.htm
http://www.cpearson.com/excel/Progress.htm
http://www.cpearson.com/excel/CollectionsAndDictionaries.htm
http://www.cpearson.com/excel/CollectionsAndDictionaries.htm
http://www.cpearson.com/excel/ChangingCase.aspx
http://www.cpearson.com/excel/ChangingCase.aspx
http://www.cpearson.com/excel/colors.aspx
http://www.cpearson.com/excel/excelM.htm#Properties
http://www.cpearson.com/excel/colors.aspx
http://www.cpearson.com/excel/colors.aspx
http://www.cpearson.com/excel/colors.aspx
http://www.cpearson.com/excel/SortByColor.aspx
http://www.cpearson.com/excel/datetime.htm#Quarter
http://www.cpearson.com/excel/banding.aspx
http://www.cpearson.com/excel/QSort.htm
http://www.cpearson.com/excel/ColumnToTable.aspx
http://www.cpearson.com/excel/SortingArraysOfObjects.htm
http://www.cpearson.com/excel/VariableBlockColumnToTable.aspx
http://www.cpearson.com/excel/QSortObjectCompare.htm
http://www.cpearson.com/excel/QSortObjectCompare.htm
http://www.cpearson.com/excel/TableToColumn.aspx
http://www.cpearson.com/excel/DLLNameOfComAddin.htm
http://www.cpearson.com/excel/CreatingCOMAddIn.aspx

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 78
Copyright © 2008 by J.L.Latham, All Rights Reserved.

HUCOM Add-Ins, Adding Menu Item For Dialog HURandom Numbers In Excel And
VBA

HUCOM Add-Ins, Installer HURandomize The Order Of
Elements In An Array

HUCOM Add-Ins And Automation Add-Ins, Installing HURanges, Converting To Column

HUCOM Add-Ins In Excel 2007 HURanges, Referring To Cells In
Another Range

HUConcatenating Strings, a better method than
CONCATENATE

HURanking Data In List (and
associated topics)

HUConditional Formatting HURecursive Code, Example Of

HUCommand Bar Images, Custom Pictures HURecursive Programming
Techniques

HUConditional Formatting,Using Cells On Other Sheets HURecursive Code, Illustrated With
The File System Object

HUConditional Formatting, Determining If Active HURecycle Bin

HUConnected And Disconnected Object Variables HURecycling A File Or Folder

HUConverting A Column To A Table HURecycling The Contents Of A
Folder

HUConverting A Table To A Column Or Row HUReferences, Setting To VB
Projects

HUCTRL, SHIFT and ALT, Testing State Of Key HUReferences, Missing References
In A VBA Project

HUCopyright And Trademark Usage of contents of this
site

HURegistry, Functions For Working
With The Registry

HUCounting Cells Based On Font Or Interior Color HURegistryWorx DLL Registry
Component

Counting Cells With A Specific Content
Type Counting Values Between Two
Numbers

HUReturning Every Nth Value In A
Range

HUCOUNTIF with multiple criteria HURelative And Absolute Cell
References

HUCounting Characters In A String HUReturning Arrays From User-
Defined Functions

HUCounting Words In A Cell Or On A Worksheet HUReversing A Range Of Cells

HUCSV Files, Importing Files With More Than 64K
Records

HUReversing An Array

HUCustom Document Properties, Reading And Writing
In Open And Closed Files

HURounding Errors And Precision

 HURounding Times

D
HURowLiner Cell Highlighting Add In

 HURows, Deleting Blank

HUData Validation, Using Cells On Other Sheets HURows, Deleting Duplicate

HUDate Intervals, Formulas For HURow, Returning a table into a
single row

HUDates, Adding And Subtracting HURSS Feed, Get What's New
Information via an RSS Feed

HUDates, Differences Between

HUDates, Distributing Across Months Or Years

S
HUDates, Excel Serial Format

http://www.cpearson.com/excel/AddingCOMAddInsMenuItem.aspx
http://www.cpearson.com/excel/randomNumbers.aspx
http://www.cpearson.com/excel/randomNumbers.aspx
http://www.cpearson.com/Zips/ComAddInInstaller.zip
http://www.cpearson.com/excel/ShuffleArray.aspx
http://www.cpearson.com/excel/ShuffleArray.aspx
http://www.cpearson.com/excel/COMAddInsSecurity.aspx
http://www.cpearson.com/excel/arr2col.htm
http://www.cpearson.com/excel/COMAddIn2007.aspx
http://www.cpearson.com/excel/cells.htm
http://www.cpearson.com/excel/cells.htm
http://www.cpearson.com/excel/stringconcatenation.aspx
http://www.cpearson.com/excel/stringconcatenation.aspx
http://www.cpearson.com/excel/rank.aspx
http://www.cpearson.com/excel/rank.aspx
http://www.cpearson.com/excel/cformatting.htm
http://www.cpearson.com/excel/CloneFolder.htm
http://www.cpearson.com/excel/PicturesOnCommandBarItems.aspx
http://www.cpearson.com/excel/RECURSIVEPROGRAMMING.ASPX
http://www.cpearson.com/excel/RECURSIVEPROGRAMMING.ASPX
http://www.cpearson.com/excel/cformatting.htm#DefName
http://www.cpearson.com/excel/RecursionAndFSO.htm
http://www.cpearson.com/excel/RecursionAndFSO.htm
http://www.cpearson.com/excel/CFColors.htm
http://www.cpearson.com/excel/Recycle.aspx
http://www.cpearson.com/excel/ConnectedObject.htm
http://www.cpearson.com/excel/Recycle.aspx
http://www.cpearson.com/excel/ColumnToTable.aspx
http://www.cpearson.com/excel/EmptyFolder.htm
http://www.cpearson.com/excel/EmptyFolder.htm
http://www.cpearson.com/excel/TableToColumn.aspx
http://www.cpearson.com/excel/References.htm
http://www.cpearson.com/excel/References.htm
http://www.cpearson.com/excel/KeyTest.aspx
http://www.cpearson.com/excel/MissingReferences.aspx
http://www.cpearson.com/excel/MissingReferences.aspx
http://www.cpearson.com/excel/LegaleseAndDisclaimers.aspx
http://www.cpearson.com/excel/LegaleseAndDisclaimers.aspx
http://www.cpearson.com/excel/Registry.htm
http://www.cpearson.com/excel/Registry.htm
http://www.cpearson.com/excel/colors.htm
http://www.cpearson.com/excel/registryworx.aspx
http://www.cpearson.com/excel/registryworx.aspx
http://www.cpearson.com/excel/excelF.htm#ReturningEvery
http://www.cpearson.com/excel/excelF.htm#ReturningEvery
http://www.cpearson.com/excel/array.htm
http://www.cpearson.com/excel/relative.aspx
http://www.cpearson.com/excel/relative.aspx
http://www.cpearson.com/excel/excelF.htm#CountCharacters
http://www.cpearson.com/excel/ReturningArraysFromVBA.aspx
http://www.cpearson.com/excel/ReturningArraysFromVBA.aspx
http://www.cpearson.com/excel/WordCount.htm
http://www.cpearson.com/excel/lists.htm#ReverseOrder
http://www.cpearson.com/excel/ImportBigFiles.htm
http://www.cpearson.com/excel/ImportBigFiles.htm
http://www.cpearson.com/excel/VBAArrays.htm
http://www.cpearson.com/excel/docprop.aspx
http://www.cpearson.com/excel/docprop.aspx
http://www.cpearson.com/excel/rounding.htm
http://www.cpearson.com/excel/datetime.htm#RoundingTimes
http://www.cpearson.com/excel/RowLiner.htm
http://www.cpearson.com/excel/deleting.htm#DeleteBlankRows
http://www.cpearson.com/excel/named.htm#Cheat
http://www.cpearson.com/excel/deleting.htm#DeleteDuplicateRows
http://www.cpearson.com/excel/DateIntervals.htm
http://www.cpearson.com/excel/TableToColumn.aspx
http://www.cpearson.com/excel/TableToColumn.aspx
http://www.cpearson.com/excel/datetime.htm#AddingDates
http://www.cpearson.com/RSS.xml
http://www.cpearson.com/RSS.xml
http://www.cpearson.com/excel/datedif.aspx
http://www.cpearson.com/excel/distribdates.htm
http://www.cpearson.com/excel/datetime.htm#SerialDates

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 79
Copyright © 2008 by J.L.Latham, All Rights Reserved.

HUDate, File Date And Times, Returning and Setting HUSave Copy And Zip - XLA Add-In

HUDates, Finding With VBA .Find Method HUSave Copy And Zip - COM Add-In

HUDates UHU, Julian
HUDates, Quick Entry

HUScheduling Procedures With
OnTime

HUDates, Two Digit Years HUScope Of Variables And
Procedures

HUDay Of Week, Returning Nth, Day Of Week In A
Month (VBA)

HUScreen Flicker When
Programming To The VBA Editor

HUDay Of Week, Returning HUScrolling To Center A Range

HUDaylight Savings Time HUScrolling, Detecting With VBA

HUDaylight Savings TIme Full Version HUSelf-Referencing an instance of a
class using "Me"

HUDaylight Savings Time And Time Zones HUSelecting Current Array

HUDay Of Week In A Month HUSelecting Current Named Range

HUDays Between Dates, A Better NETWORKDAYS HUSelection, Saving And Returning
To Sequence

HUDays In Month, First And Last Days In Month HUSelection, Removing Active Cell
Or Active Area

HUDATEDIF Function HUSeries, Inserting Cells And Filling
A Series

HUDebugging VBA Code HUSeries, Finding A Series Of Cells
That Sums To A Number

HUDeclaring Variables In VBA HUSeries, Testing Whether Values
Are In Correct Series Order

HUDeclaring Using Option Explicit HUSeries, Testing Missing And
Present Black Of Numbers

HUDefault Member Of A Class HUSetParent Function For
UserForms

HUDefined Names In Excel HUShading Cells

HUDefined Name Shortcut Keystroke HUSheet Name, Returning

HUDegrees, Minutes, And Seconds HUSheet Names, Returning (VBA)

HUDeleting Blank Rows HUShell Command, ShellAndWait

HUDeleting Duplicate Rows HUSHIFT, CTRL, and ALT, Testing
State Of Key

HUDeleting Duplicate Rows With Advanced Filter HUShortcut Keys

HUDeleting Contents Of A Folder HUShortenTextToChars Function

HUDeleting A File Or Folder HUShortcut Keys

HUDeleting VBA Code HUShuffling Order Of Elements In An
Array

HUDesktop, Getting Folder Name Of HUShutdown, Detecting And Acting
When Excel Shuts Down

HUDictionaries And Collections, Procedures for,
Sorting

HUSizeString Function

HUDirectories, User Specific HUSorted, Testing If An Array Is
Sorted

HUDirectories, Creating A Tree List HUSorting By Cell Color

HUDirectories, Creating Subdirectories HUSorting Arrays

HUDirTree Add-in HUSorting Arrays Of Objects

HUDistributation And Usage Of Code And Formulas HUSorting Collections And
Dictionaries

HUDistinct Items In Lists HUSorting Worksheets

HUDownload Files From The Internet HUSounds, Playing Sounds From

http://www.cpearson.com/excel/FileTimes.htm
http://www.cpearson.com/excel/SaveCopyAndZip.htm
http://www.cpearson.com/excel/datetime.htm#finding
http://www.cpearson.com/excel/SaveCopyAndZip.htm#COMAddIn
http://www.cpearson.com/excel/jdates.htm
http://www.cpearson.com/excel/DateTimeEntry.htm
http://www.cpearson.com/excel/OnTime.aspx
http://www.cpearson.com/excel/OnTime.aspx
http://www.cpearson.com/excel/datetime.htm#TwoDigitYears
http://www.cpearson.com/excel/Scope.aspx
http://www.cpearson.com/excel/Scope.aspx
http://www.cpearson.com/excel/datetime.htm#NDow
http://www.cpearson.com/excel/datetime.htm#NDow
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/datetime.htm#NthDoWYear
http://www.cpearson.com/excel/zoom.htm#center
http://www.cpearson.com/excel/LocalAndGMTTimes.htm
http://www.cpearson.com/excel/DetectScroll.htm
http://www.cpearson.com/excel/DaylightSavings.htm
http://www.cpearson.com/excel/Classes.aspx
http://www.cpearson.com/excel/Classes.aspx
http://www.cpearson.com/excel/timezoneanddaylighttime.aspx
http://www.cpearson.com/excel/excelM.htm#SelectArray
http://www.cpearson.com/excel/datetime.htm#NthDoW
http://www.cpearson.com/excel/excelM.htm#SelectRange
http://www.cpearson.com/excel/betternetworkdays.aspx
http://www.cpearson.com/excel/excelM.htm#SaveLocation
http://www.cpearson.com/excel/excelM.htm#SaveLocation
http://www.cpearson.com/excel/datetime.htm#DaysInMonth
http://www.cpearson.com/excel/UnSelect.aspx
http://www.cpearson.com/excel/UnSelect.aspx
http://www.cpearson.com/excel/datedif.aspx
http://www.cpearson.com/excel/InsertAndFill.htm
http://www.cpearson.com/excel/InsertAndFill.htm
http://www.cpearson.com/excel/Debug.htm
http://www.cpearson.com/excel/InsertAndFill.htm#SumSeries
http://www.cpearson.com/excel/InsertAndFill.htm#SumSeries
http://www.cpearson.com/excel/DeclaringVariables.aspx
http://www.cpearson.com/excel/InsertAndFill.htm#SeriesInOrder
http://www.cpearson.com/excel/InsertAndFill.htm#SeriesInOrder
http://www.cpearson.com/excel/DeclaringVariables.aspx
http://www.cpearson.com/excel/SeriesTest.aspx
http://www.cpearson.com/excel/SeriesTest.aspx
http://www.cpearson.com/excel/DefaultMember.aspx
http://www.cpearson.com/excel/SetParent.aspx
http://www.cpearson.com/excel/SetParent.aspx
http://www.cpearson.com/excel/DefinedNames.aspx
http://www.cpearson.com/excel/banding.aspx
http://www.cpearson.com/excel/NameBoxShortcut.htm
http://www.cpearson.com/excel/excelF.htm#SheetName
http://www.cpearson.com/excel/latlong.aspx
http://www.cpearson.com/excel/excelM.htm#SheetNames
http://www.cpearson.com/excel/deleting.htm#DeleteBlankRows
http://www.cpearson.com/excel/ShellAndWait.aspx
http://www.cpearson.com/excel/deleting.htm#DeleteDuplicateRows
http://www.cpearson.com/excel/KeyTest.aspx
http://www.cpearson.com/excel/KeyTest.aspx
http://www.cpearson.com/excel/DeleteDupsWithFilter.aspx
http://www.cpearson.com/excel/ShortCuts.aspx
http://www.cpearson.com/excel/EmptyFolder.htm
http://www.cpearson.com/excel/SizeString.htm#ShortenTextToChars
http://www.cpearson.com/excel/Recycle.aspx
http://www.cpearson.com/excel/ShortCuts.aspx
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/ShuffleArray.aspx
http://www.cpearson.com/excel/ShuffleArray.aspx
http://www.cpearson.com/excel/SpecialFolders.aspx
http://www.cpearson.com/excel/ExcelShutdown.htm
http://www.cpearson.com/excel/ExcelShutdown.htm
http://www.cpearson.com/excel/CollectionsAndDictionaries.htm
http://www.cpearson.com/excel/CollectionsAndDictionaries.htm
http://www.cpearson.com/excel/SizeString.htm#SizeString
http://www.cpearson.com/excel/SpecialFolders.aspx
http://www.cpearson.com/excel/IsArraySorted.aspx
http://www.cpearson.com/excel/IsArraySorted.aspx
http://www.cpearson.com/excel/FolderTree.aspx
http://www.cpearson.com/excel/SortByColor.aspx
http://www.cpearson.com/excel/MakeDirMulti.htm
http://www.cpearson.com/excel/QSort.htm
http://www.cpearson.com/excel/FolderTree.aspx
http://www.cpearson.com/excel/SortingArraysOfObjects.htm
http://www.cpearson.com/excel/UsageAndDistribution.aspx
http://www.cpearson.com/excel/CollectionsAndDictionaries.htm
http://www.cpearson.com/excel/CollectionsAndDictionaries.htm
http://www.cpearson.com/excel/Duplicates.aspx
http://www.cpearson.com/excel/sortws.aspx
http://www.cpearson.com/excel/DownloadFile.aspx
http://www.cpearson.com/excel/PlaySound.aspx

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 80
Copyright © 2008 by J.L.Latham, All Rights Reserved.

VBA

HUDuplicate Items In Lists HUSpecial Characters In Cells,
Displaying Hidden Characters

HUDistinct Items In Lists HUSpecial Folders, Returning Names
Of

HUDistinct Values VBA Functions, Returns Array Of
Distinct Values

HUStandard Time And Daylight
Savings Time

HUDLL, Error Codes From Windows DLLs HUStartup Errors In Excel

HUDLL Name Of A COM AddIn HUStatus Bar, Working With In VBA

HUDownloads HUStrings, Most Or Least Common In
A Range

HUDocument Properties, Reading Modifying In Both
Open And Closed Files

HUStrings, Concatenating With
Ranges And Arrays

HUDuplicating A Folder HUStrings, Counting Characters In

HUDuplicate Entries, Highlighting HUStrings, Finding Characters Or
Digits

HUDuplicate Entries, Preventing HUStrings, Fixed Length

HUDuplicate Entries, Replacing HUStrings, Testing For Fixed Length

HUDynamic Ranges HUStrings, Shortening With
PathCompactPathEx

 HUStrings, General Formulas

E
HUSubClassing The ActiveWindow

 HUSubfolders and Subdirectories,
Creating

HUEaster, Date Of HUSUMIF, Multiple Criteria

HUEaster, Calculation Of Date HUSumming Cells Based On Font Or
Interior Color

HUElement Common To Two Lists HUSumming Every Nth Value

HUEmptying A Folder HUSupport, Getting Support For
Excel

HUEnum Data Type HUSymbols, Using special symbols
with Excel

HUEnsuring Macros Are Enabled, Technique 1

HUEnsuring Macris Are Enabled, Technique 2

T
HUEnd User License Agreement (EULA)

HUErr.LastDllError property HUTables, Lookup Functions For
Tables

HUErrors, Diagnosing Startup Errors HUTable, Converting To Row Or
Column

HUError Handling HUTable, Creating A Table From A
Column, Variable Block Size

HUError Text From Windows API Functions HUTelephone Numbers, Parsing

HUEvents In VBA, Repsonding To And Creating
Events

HUTemporary Files And Folders

HUEvents, Application HUText Files, Importing And
Exporting

HUEvents, Suppressing In UserForms HUText Files, Importing Files With
More Than 64K Records

HUEvery Nth Row, Getting Data From A Column HUText Vs Value, Formulas And VBA

http://www.cpearson.com/excel/PlaySound.aspx
http://www.cpearson.com/excel/Duplicates.aspx
http://www.cpearson.com/excel/CELLVIEW.ASPX
http://www.cpearson.com/excel/CELLVIEW.ASPX
http://www.cpearson.com/excel/ListFunctions.aspx
http://www.cpearson.com/excel/SpecialFolders.aspx
http://www.cpearson.com/excel/SpecialFolders.aspx
http://www.cpearson.com/excel/DistinctValues.aspx
http://www.cpearson.com/excel/DistinctValues.aspx
http://www.cpearson.com/excel/DaylightSavings.htm
http://www.cpearson.com/excel/DaylightSavings.htm
http://www.cpearson.com/excel/FormatMessage.htm
http://www.cpearson.com/excel/StartupErrors.htm
http://www.cpearson.com/excel/DLLNameOfComAddin.htm
http://www.cpearson.com/excel/StatusBar.htm
http://www.cpearson.com/excel/download.htm
http://www.cpearson.com/excel/lists.htm#MostCommon
http://www.cpearson.com/excel/lists.htm#MostCommon
http://www.cpearson.com/excel/DocProp.aspx
http://www.cpearson.com/excel/DocProp.aspx
http://www.cpearson.com/excel/stringconcatenation.aspx
http://www.cpearson.com/excel/stringconcatenation.aspx
http://www.cpearson.com/excel/CloneFolder.htm
http://www.cpearson.com/excel/stringformulas.aspx
http://www.cpearson.com/excel/Duplicates.aspx
http://www.cpearson.com/excel/stringformulas.aspx
http://www.cpearson.com/excel/stringformulas.aspx
http://www.cpearson.com/excel/NoDupEntry.aspx
http://www.cpearson.com/excel/SizeString.htm
http://www.cpearson.com/excel/Duplicates.aspx
http://www.cpearson.com/excel/SizeString.htm#IsStringFixed
http://www.cpearson.com/excel/excelF.htm#DynamicRanges
http://www.cpearson.com/excel/SizeString.htm#PathCompactPathEx
http://www.cpearson.com/excel/SizeString.htm#PathCompactPathEx
http://www.cpearson.com/excel/stringformulas.aspx
http://www.cpearson.com/excel/DetectScroll.htm
http://www.cpearson.com/excel/MakeDirMulti.htm
http://www.cpearson.com/excel/MakeDirMulti.htm
http://www.cpearson.com/excel/holidays.htm#Easter
http://www.cpearson.com/excel/array.htm
http://www.cpearson.com/excel/holidays.htm#Easter
http://www.cpearson.com/excel/colors.aspx
http://www.cpearson.com/excel/colors.aspx
http://www.cpearson.com/excel/ListFunctions.aspx
http://www.cpearson.com/excel/EveryNth.aspx
http://www.cpearson.com/excel/EmptyFolder.htm
http://www.cpearson.com/excel/support.htm
http://www.cpearson.com/excel/support.htm
http://www.cpearson.com/excel/Enums.htm
http://www.cpearson.com/excel/chars.htm
http://www.cpearson.com/excel/chars.htm
http://www.cpearson.com/excel/EnableMacros.aspx
http://www.cpearson.com/excel/EnableMacros2.aspx
http://www.cpearson.com/excel/EULAFAQ.htm
http://www.cpearson.com/excel/FormatMessage.htm
http://www.cpearson.com/excel/TablesAndLookups.aspx
http://www.cpearson.com/excel/TablesAndLookups.aspx
http://www.cpearson.com/excel/StartupErrors.htm
http://www.cpearson.com/excel/TableToColumn.aspx
http://www.cpearson.com/excel/TableToColumn.aspx
http://www.cpearson.com/excel/ErrorHandling.htm
http://www.cpearson.com/excel/VariableBlockColumnToTable.aspx
http://www.cpearson.com/excel/VariableBlockColumnToTable.aspx
http://www.cpearson.com/excel/FormatMessage.htm
http://www.cpearson.com/excel/PhoneNum.htm
http://www.cpearson.com/excel/Events.aspx
http://www.cpearson.com/excel/Events.aspx
http://www.cpearson.com/excel/WorkingWithTempFilesAndFolders.htm
http://www.cpearson.com/excel/AppEvent.aspx
http://www.cpearson.com/excel/imptext.aspx
http://www.cpearson.com/excel/imptext.aspx
http://www.cpearson.com/excel/SuppressChangeInForms.htm
http://www.cpearson.com/excel/ImportBigFiles.htm
http://www.cpearson.com/excel/ImportBigFiles.htm
http://www.cpearson.com/excel/EveryNth.aspx
http://www.cpearson.com/excel/values.htm

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 81
Copyright © 2008 by J.L.Latham, All Rights Reserved.

HUExporting Data To Text Files HUText File, Importing And Exporting

HUExporting VBA Code To Text Files HUTextBox, Resricting to numeric-
only input

HUExtension, File extensions and the Hide Extensions
setting

HUThanksgiving, Calculation Of Date

 HU"This" reference is "Me" in
VB/VBA

F
HUTimeBombing A Workbook

 HUTimed Closing Of A Workbook

HUFAQ (Frequently Asked Questions), Formal HUTimers, Scheduling Procedures

HUFeet And Inches HUTimes, Adding And Subtracting

HUFeet And Inches, Arithmetic With HUTimes, Daylight Savings And
Standard

HUFile Attachments In Newsgroups, Why Not HUTimes And Working Hours,
Between Two Dates

HUFile, Testing If A File Is Open HUTimes, Quick Entry

HUFile extensions and the Hide Extensions setting HUTimes, Rounding

HUFile Times, Retrieving and Setting HUTimesheets, Working With
Regular And Overtime Hours

HUFile Name, Returning HUTime Zones

HUFile Name, Returning Most Or Leaset Recently
Modified In A Folder

HUTime Zones And Daylight Savings
Time

HUFile Names, shortening with PathCompactPathEx HUTimers In Excel

HUFiles, Waiting For Open Files To Be Closed HUTools For Excel (Free Add-ins)

HUFileSystemObject, Creating A Directory Tree HUTreeView Control, Using To
Display Folders And Files

HUFilling A Series Of Data And Inserting Cells HUTrimToChar Function

HUFinding Cells In VBA, Including WildCard Matching HUTrimToNull Function

HUFindAll Function to search a range HUTransposing A Range With
Formulas

HUFindAll XLA Add-In

HUFinding Values On Multiple Worksheets

U
HUFindWindowEx, Captions, and the Hide Extensions
setting

HUFirst And Last Names, Extracting From A String HUUnique Entries, Counting

HUFixed Length Strings HUUnique Identifiers (GUIDs)

HUFixed Length Strings, Testing For HUUnique Ranks

HUFlexible Lookups, An Alternative To VLOOKUP HUUnique Random Numbers

HUFlickering, Screen Flickering When Code To The
VBE

HUUnique Values In A Range, VBA
Function To Return Disinct Items

HUFlipping Or Reversing A Range With VBA HUUnSelecting A Cell Or Area

HUFloating Point Numbers HUUpper Case, Converting Text To
Upper Case

HUFolder, Browse For HUUsage And Distribution Of Code
And Formulas

HUFolder, Deleting Contents HUUser Defined Functions (UDFs) In
VBA

HUFolder, Creating An Exact Copy HUUser Defined Functions,
Determine Whence It Was Called

http://www.cpearson.com/excel/ImpText.aspx
http://www.cpearson.com/excel/ImpText.aspx
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/TextBox.htm
http://www.cpearson.com/excel/TextBox.htm
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/holidays.htm#Thanksgiving
http://www.cpearson.com/excel/Classes.aspx
http://www.cpearson.com/excel/Classes.aspx
http://www.cpearson.com/excel/workbooktimebomb.aspx
http://www.cpearson.com/excel/TimedClose.htm
http://www.cpearson.com/excel/links.htm#FAQ
http://www.cpearson.com/excel/ontime.htm
http://www.cpearson.com/excel/FeetInches.htm
http://www.cpearson.com/excel/datetime.htm#AddingTimes
http://www.cpearson.com/excel/FractionalArithmetic.aspx
http://www.cpearson.com/excel/DaylightSavings.htm
http://www.cpearson.com/excel/DaylightSavings.htm
http://www.cpearson.com/excel/Attachments.htm
http://www.cpearson.com/excel/datetime.htm#WorkHours
http://www.cpearson.com/excel/datetime.htm#WorkHours
http://www.cpearson.com/excel/ISFILEOPEN.ASPX
http://www.cpearson.com/excel/DateTimeEntry.htm
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/datetime.htm#RoundingTimes
http://www.cpearson.com/excel/FileTimes.htm
http://www.cpearson.com/excel/overtime.htm
http://www.cpearson.com/excel/overtime.htm
http://www.cpearson.com/excel/excelF.htm#FileName
http://www.cpearson.com/excel/timezone.htm
http://www.cpearson.com/excel/GetFileName.aspx
http://www.cpearson.com/excel/GetFileName.aspx
http://www.cpearson.com/excel/TimeZoneAndDaylightTime.aspx
http://www.cpearson.com/excel/TimeZoneAndDaylightTime.aspx
http://www.cpearson.com/excel/SizeString.htm#PathCompactPathEx
http://www.cpearson.com/excel/ontime.htm
http://www.cpearson.com/excel/WaitForFileClose.htm
http://www.cpearson.com/excel/xltools.htm
http://www.cpearson.com/excel/FolderTree.htm
http://www.cpearson.com/excel/foldertreeview.aspx
http://www.cpearson.com/excel/foldertreeview.aspx
http://www.cpearson.com/excel/InsertAndFill.htm
http://www.cpearson.com/excel/SizeString.htm#TrimToChar
http://www.cpearson.com/excel/RangeFind.htm
http://www.cpearson.com/excel/SizeString.htm#TrimToNull
http://www.cpearson.com/excel/FindAll.aspx
http://www.cpearson.com/excel/lists.htm#Transpose
http://www.cpearson.com/excel/lists.htm#Transpose
http://www.cpearson.com/excel/FindAllXLA.aspx
http://www.cpearson.com/excel/findall.aspx
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/FirstLast.htm
http://www.cpearson.com/excel/Duplicates.aspx
http://www.cpearson.com/excel/SizeString.htm
http://www.cpearson.com/excel/CreateGUID.aspx
http://www.cpearson.com/excel/SizeString.htm#IsStringFixed
http://www.cpearson.com/excel/rank.htm
http://www.cpearson.com/excel/FlexLookup.aspx
http://www.cpearson.com/excel/RandomNumbers.aspx
http://www.cpearson.com/excel/vbe.aspx#ScreenFlicker
http://www.cpearson.com/excel/vbe.aspx#ScreenFlicker
http://www.cpearson.com/excel/DistinctValues.aspx
http://www.cpearson.com/excel/DistinctValues.aspx
http://www.cpearson.com/excel/excelM.htm#FlipRange
http://www.cpearson.com/excel/unselect.aspx
http://www.cpearson.com/excel/rounding.htm
http://www.cpearson.com/excel/ChangingCase.aspx
http://www.cpearson.com/excel/ChangingCase.aspx
http://www.cpearson.com/excel/BrowseFolder.aspx
http://www.cpearson.com/excel/UsageAndDistribution.aspx
http://www.cpearson.com/excel/UsageAndDistribution.aspx
http://www.cpearson.com/excel/EmptyFolder.htm
http://www.cpearson.com/excel/WritingFunctionsInVBA.aspx
http://www.cpearson.com/excel/WritingFunctionsInVBA.aspx
http://www.cpearson.com/excel/CloneFolder.htm
http://www.cpearson.com/excel/writingfunctionsinvba.aspx
http://www.cpearson.com/excel/writingfunctionsinvba.aspx

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 82
Copyright © 2008 by J.L.Latham, All Rights Reserved.

HUFolders, Creating Subfolders HUUser Defined Functions, Returning
Arrays

HUFolders, Creating A Tree List Of Subfolders And
Files

HUUsed Cells In A Range

HUFolders And Files In A TreeView Control HUUser-Specific Folders

HUFolders, Returning User Specific Folders HUUserForm Events, Suppressing

HUFooters And Headers HUUserForms, Modifying With
Windows API Functions

HUFooters And Headers (VBA code to customize) HUUserForms, Parent And Child
Windows

HUFormatMessage, Getting API Error Messages HUUserForms, Positioning To Cells

HUForms, Positioning To Cells HUUserForms, Showing A UserFrom
Determined At Run-time

HUForms, Moving With Windows HUUTC And Local Times, And
Windows Time Formats

HUForms, Showing A UserForm Determined At Run-
time

HUUtilities and Add-Ins, Third Party

HUFormula Bar, Shortcut To

HUFractional Arithmetic

V
HUFractional Months, Calculating

HUFunctions, User Defined, Determine Whence It Was
Called

HUVariables In VBA, Declaring

HUFunction Libraries As Automation Add Ins HUVariables, Scope And Visibility

HUFunction Libraries Written In NET HUVariables, Truly Global Variables
In VBA

HUFunctions, As Opposed To Macros HUVBA Editor, Automating The VBA
Editor and its objects

HUFunctions, Writing Your Own Function In VBA HUVBA Editor, Creating Menus For
The VBA Editor

HUFunctions, Using Worksheet Functions In VBA HUVBA Project, Missing References
In A VBA Project

 HUVectors And Matrices

G
HUVersions Of Excel

 HUVisible And Hidden Cells,
Functions For

HUGames For Excel HUVisual Basic For Applications
(VBA), Optimizing

HUGetInfo UDF HUVLOOKUP - A Better Way

HUGetting Help From Newsgrops HUVBA Code, Adding/Deleting
Modules

HUGetLastError Windows API Function

HUGetSystemErrorMessageText Function

W
HUGlobal Variables, Application-wide Global Variables

HUGlobally Unique Identifiers (GUIDs) HUWait For File To Be Closed

HUGMT And Local Times, And Windows Time Formats HUWAV files, playing from VBA

HUGrades HUWeek, First Monday Of

HUGreat Circle Distances HUWeek Numbers, Excel and ISO

http://www.cpearson.com/excel/MakeDirMulti.htm
http://www.cpearson.com/excel/ReturningArraysFromVBA.aspx
http://www.cpearson.com/excel/ReturningArraysFromVBA.aspx
http://www.cpearson.com/excel/FolderTree.aspx
http://www.cpearson.com/excel/FolderTree.aspx
http://www.cpearson.com/excel/excelF.htm#FindingUsed
http://www.cpearson.com/excel/FOLDERTREEVIEW.ASPX
http://www.cpearson.com/excel/SpecialFolders.aspx
http://www.cpearson.com/excel/SpecialFolders.aspx
http://www.cpearson.com/excel/SuppressChangeInForms.htm
http://www.cpearson.com/excel/excelM.htm#HeadersAndFooters
http://www.cpearson.com/excel/formcontrol.aspx
http://www.cpearson.com/excel/formcontrol.aspx
http://www.cpearson.com/excel/headfoot.htm
http://www.cpearson.com/excel/SetParent.aspx
http://www.cpearson.com/excel/SetParent.aspx
http://www.cpearson.com/excel/FormatMessage.htm
http://www.cpearson.com/excel/FormPosition.htm
http://www.cpearson.com/excel/FormPosition.htm
http://www.cpearson.com/excel/ShowAnyForm.htm
http://www.cpearson.com/excel/ShowAnyForm.htm
http://www.cpearson.com/excel/SetParent.htm
http://www.cpearson.com/excel/LocalAndGMTTimes.htm
http://www.cpearson.com/excel/LocalAndGMTTimes.htm
http://www.cpearson.com/excel/ShowAnyForm.htm
http://www.cpearson.com/excel/ShowAnyForm.htm
http://www.cpearson.com/excel/xltools.htm
http://www.cpearson.com/excel/FormulaBarShortcut.htm
http://www.cpearson.com/excel/FractionalArithmetic.aspx
http://www.cpearson.com/excel/FractionalMonths.aspx
http://www.cpearson.com/excel/writingfunctionsinvba.aspx
http://www.cpearson.com/excel/writingfunctionsinvba.aspx
http://www.cpearson.com/excel/DeclaringVariables.aspx
http://www.cpearson.com/excel/AutomationAddIns.aspx
http://www.cpearson.com/excel/Scope.aspx
http://www.cpearson.com/excel/CreatingNETFunctionLib.aspx
http://www.cpearson.com/excel/TrulyGlobalVariables.htm
http://www.cpearson.com/excel/TrulyGlobalVariables.htm
http://www.cpearson.com/excel/differen.htm
http://www.cpearson.com/excel/VBE.aspx
http://www.cpearson.com/excel/VBE.aspx
http://www.cpearson.com/excel/WritingFunctionsInVBA.aspx
http://www.cpearson.com/excel/VbeMenus.aspx
http://www.cpearson.com/excel/VbeMenus.aspx
http://www.cpearson.com/excel/CallingWorksheetFunctionsInVBA.aspx
http://www.cpearson.com/excel/MissingReferences.aspx
http://www.cpearson.com/excel/MissingReferences.aspx
http://www.cpearson.com/excel/MatrixToVector.aspx
http://www.cpearson.com/excel/versions.htm
http://www.cpearson.com/excel/IsVisible.aspx
http://www.cpearson.com/excel/IsVisible.aspx
http://www.cpearson.com/excel/games.htm
http://www.cpearson.com/excel/optimize.htm
http://www.cpearson.com/excel/optimize.htm
http://www.cpearson.com/excel/GetInfo.htm
http://www.cpearson.com/excel/FlexLookup.aspx
http://www.cpearson.com/excel/HintsAndTipsForNewsgroupUsers.aspx
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/FormatMessage.htm
http://www.cpearson.com/excel/FormatMessage.htm
http://www.cpearson.com/excel/TrulyGlobalVariables.htm
http://www.cpearson.com/excel/CreateGUID.aspx
http://www.cpearson.com/excel/WaitForFileClose.htm
http://www.cpearson.com/excel/LocalAndGMTTimes.htm
http://www.cpearson.com/excel/PlaySound.aspx
http://www.cpearson.com/excel/excelF.htm#Grades
http://www.cpearson.com/excel/datetime.htm#WeekStart
http://www.cpearson.com/excel/latlong.aspx
http://www.cpearson.com/excel/weeknum.htm

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 83
Copyright © 2008 by J.L.Latham, All Rights Reserved.

 HUWeekday, Counting Between
Dates

H
HUWeekday, First And Last Of Month

 HUWeekday, Nth Day Of Month

HUHeaders And Footers HUWeekdays, Creating Series Of

HUHeaders And Footers (VBA code to customize) HUWeeks, Difference Between Dates

HUHidden And Visible Cells, Functions For HUWildcard Matching With Find

HUHidden Name Space HUWindow captions and the Hide
Extensions setting

HUHide Extensions setting and VBA in Excel HUWindows API Functions, Getting
Error Information

HUHigh And Low Values, Persistent HUWindow Class Names Of Office
Applications

HUHighlighting ActiveCell HUWords, Counting In A Cell Or On
A Worksheet

HUHLOOKUP - A Better Way HUWords, Extracting From A String

HUHolidays, Calculation Of Dates HUWorkbooks, Closing All

 HUWorkbooks, Saving All

I
HUWorksheet Functions, Using In
VBA

 HUWorksheets, Referencing From
Formulas

HUIF Functions, Nested HUWorksheets, Sorting

HUImporting Text Files

HUImporting Text Files With More Than 64K Records

X
HUInches And Feet, Arithmetic With

HUINDIRECT Worksheet Function HUXLA Add-Ins, Creating

HUInserting Cells And Filling A Series Of Data HUXLA Add-Ins, Installing And
Loading

HUInternet, Downloading a file from. HUXML, Optional And Arbitrary XML
defined in an XSD Schema

HUIntervals, Dates HUX-Ray (Excel Game download)

HUIsFileOpen, Testing If A File Is Open

HUISO Week Numbers and Excel

Y

J
HUYear, First Monday Of

 HUYears, Entering Two Digit Years

HUJulian Dates

Z

K

 HUZero Values, Ignoring In Functions

HUKeyboard Shortcuts HUZip File, Saving A Workbook As A
Zip File

http://www.cpearson.com/excel/datetime.htm#NumDOWPeriod
http://www.cpearson.com/excel/datetime.htm#NumDOWPeriod
http://www.cpearson.com/excel/DateTimeWS.htm#LastWeekday
http://www.cpearson.com/excel/datetime.htm#NDow
http://www.cpearson.com/excel/excelM.htm#HeadersAndFooters
http://www.cpearson.com/excel/datetime.htm#WeekdaySeries
http://www.cpearson.com/excel/headfoot.htm
http://www.cpearson.com/excel/datetime.htm#WeekDifferences
http://www.cpearson.com/excel/IsVisible.aspx
http://www.cpearson.com/excel/RangeFind.htm
http://www.cpearson.com/excel/hidden.htm
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/FormatMessage.htm
http://www.cpearson.com/excel/FormatMessage.htm
http://www.cpearson.com/excel/excelF.htm#HighLow
http://www.cpearson.com/excel/OfficeAppsWindowClasses.aspx
http://www.cpearson.com/excel/OfficeAppsWindowClasses.aspx
http://www.cpearson.com/excel/excelM.htm#HighlightActiveCell
http://www.cpearson.com/excel/WordCount.htm
http://www.cpearson.com/excel/WordCount.htm
http://www.cpearson.com/excel/FlexLookup.aspx
http://www.cpearson.com/excel/excelF.htm#Words
http://www.cpearson.com/excel/holidays.htm
http://www.cpearson.com/excel/excelM.htm#CloseAllWorkbooks
http://www.cpearson.com/excel/excelM.htm#SaveAll
http://www.cpearson.com/excel/CallingWorksheetFunctionsInVBA.aspx
http://www.cpearson.com/excel/CallingWorksheetFunctionsInVBA.aspx
http://www.cpearson.com/excel/sheetref.htm
http://www.cpearson.com/excel/sheetref.htm
http://www.cpearson.com/excel/nested.htm
http://www.cpearson.com/excel/sortws.aspx
http://www.cpearson.com/excel/ImpText.aspx
http://www.cpearson.com/excel/ImportBigFiles.htm
http://www.cpearson.com/excel/fractional.htm
http://www.cpearson.com/excel/indirect.htm
http://www.cpearson.com/excel/CreateAddIn.aspx
http://www.cpearson.com/excel/InsertAndFill.htm
http://www.cpearson.com/excel/InstallingAnXLA.aspx
http://www.cpearson.com/excel/InstallingAnXLA.aspx
http://www.cpearson.com/excel/DownloadFile.aspx
http://www.cpearson.com/XML/AnyXML.aspx
http://www.cpearson.com/XML/AnyXML.aspx
http://www.cpearson.com/excel/DateIntervals.htm
http://www.cpearson.com/excel/download.htm
http://www.cpearson.com/excel/ISFILEOPEN.ASPX
http://www.cpearson.com/excel/weeknum.htm
http://www.cpearson.com/excel/datetime.htm#YearStart
http://www.cpearson.com/excel/datetime.htm#TwoDigitYears
http://www.cpearson.com/excel/jdates.htm
http://www.cpearson.com/excel/lists.htm#Functions
http://www.cpearson.com/excel/ShortCuts.aspx
http://www.cpearson.com/excel/SaveCopyAndZip.htm
http://www.cpearson.com/excel/SaveCopyAndZip.htm

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 84
Copyright © 2008 by J.L.Latham, All Rights Reserved.

HUKey State, Testing For SHIFT, CTRL, and ALT HUZip File, Save As, COM Add-In

 HUZooming On A Range Of Cells

L

HULast And First Names, Extracting From A String
HULast Modified File, Finding In A Folder
HULast Update Time Of Cell Or Range
HULatitude And Longitude
HULeap Year, Determining
HULeast Or Most Common Entry In A List
HULegal Information About This Site And Its Contents
HUListBox, Support Procedures For A ListBox control
HULists, Counting Distinct Entries
HULists, Extracting Unique Entries
HULists, Entries Common To Two Lists
HULists, Entries On One List And Not On Another
HULists, Highlighting Duplicate Entries
HULists, Merging Without Duplicates
HULists, Testing For Duplicate Entries
HULists, Reversing and Transposing
HULists, Minimum And Maximum Values
HULookups, Left Lookup (alternative to VLOOKUP)
HULookups, Formula To Look Up Data In A Table
HULookups, Flexible. Alternative To VLOOKUP
HULower Case, Converting Text To Lower Case

http://www.cpearson.com/excel/KeyTest.aspx
http://www.cpearson.com/excel/SaveCopyAndZip.htm#COMAddIn
http://www.cpearson.com/excel/zoom.htm#zoom
http://www.cpearson.com/excel/FirstLast.htm
http://www.cpearson.com/excel/GetFileName.aspx
http://www.cpearson.com/excel/lasttime.htm
http://www.cpearson.com/excel/latlong.aspx
http://www.cpearson.com/excel/DateTimeVBA.htm#LeapYear
http://www.cpearson.com/excel/lists.htm#MostCommon
http://www.cpearson.com/excel/LegaleseAndDisclaimers.aspx
http://www.cpearson.com/excel/ListBoxUtils.htm
http://www.cpearson.com/excel/Duplicates.aspx
http://www.cpearson.com/excel/Lists.htm
http://www.cpearson.com/excel/listfunctions.aspx
http://www.cpearson.com/excel/ListFunctions.aspx
http://www.cpearson.com/excel/Duplicates.aspx
http://www.cpearson.com/excel/MergeListsToDistinct.aspx
http://www.cpearson.com/excel/Duplicates.aspx
http://www.cpearson.com/excel/lists.htm#ReverseOrder
http://www.cpearson.com/excel/lists.htm#Functions
http://www.cpearson.com/excel/TablesAndLookups.aspx
http://www.cpearson.com/excel/TablesAndLookups.aspx
http://www.cpearson.com/excel/FlexLookup.aspx
http://www.cpearson.com/excel/ChangingCase.aspx

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 85
Copyright © 2008 by J.L.Latham, All Rights Reserved.

80BOZGRIDS FORMULAS W/DOWNLOADS:

HTUhttp://www.ozgrid.com/forum/index.phps=26c4d4689355798111b17e605a0d4eb6& UT

Look for the two links to downloadable Formulas and the one for downloadable Code.

81BJON PELTIER’S CHART TUTORIALS

Jon Peltier has premium quality knowledge of Excel Charting and Graphing and you would be

hard pressed to get better starting help on Charting with Excel from someplace other than

HTUhttp://peltiertech.com/Excel/Charts/index.html UT

82BCHARLES WILLIAMS DECISIONMODELS.COM SITE

Long overlooked and underappreciated, Charles Williams was finally awarded Microsoft Excel

MVP status. Long overdue. His site has some really informative information, good help and

great ‘inside’ information about the way that Excel works. For the really serious, his Fast Excel

analysis tool is definitely one to have around.

This page has many links at the top regarding how Excel’s (re)Calculation engine works, and

how to make it work for you:

HTUhttp://www.decisionmodels.com/calcsecrets.htm UT

This page has lots of tips and information on how to speed up the performance of your

workbooks:

HTUhttp://www.decisionmodels.com/optspeedh.htm UT

Need to find out more detail about the memory requirements or usage in your version of Excel?

Then check out this page:

HTUhttp://www.decisionmodels.com/memlimits.htm UT

83BTOOLS AND DOWNLOADS BY JAN KAREL PIETERSE

Here you will find some really useful, and FREE tools for working with Excel.

HTUhttp://jkp-ads.com/Download.asp UT

http://www.ozgrid.com/forum/index.phps=26c4d4689355798111b17e605a0d4eb6&
http://peltiertech.com/Excel/Charts/index.html
http://www.decisionmodels.com/calcsecrets.htm
http://www.decisionmodels.com/optspeedh.htm
http://www.decisionmodels.com/memlimits.htm
http://jkp-ads.com/Download.asp

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 86
Copyright © 2008 by J.L.Latham, All Rights Reserved.

84BJOHN WALKENBACH FREE EXCEL TIPS

You may have seen books in the Computers section at your local Barnes & Noble, Borders,

Waldenbooks or your very local Ma & Pa Smith’s Books and Antiques shop. I own several of

his books myself, and his UExcel 2007 Bible U (ISBN: 0470044039) is highly respected. But you can

get excellent information from his site without leaving your keyboard or spending any extra $.

HTUhttp://spreadsheetpage.com/ UTH John Walkenbach site’s main page.

Here is the Table of Contents for his Excel Tips at the site, with some having companion files

that can be downloaded.

General

 HTUGetting A List Of Files Names - Another Method UTH

 HTUClearing The Text To Columns Parameters UTH

 HTUMaking An Exact Copy Of A Range Of Formulas, Take 2 UTH

 HTUCreate A Drop-Down List Of Possible Input Values UTH

 HTUExcel 2007 Upgrade FAQ: Charts And Graphics UTH

 HTUExcel 2007 Upgrade FAQ: Formatting And Printing UTH

 HTUExcel 2007 Upgrade FAQ: General UTH

 HTUExcel 2007 Upgrade FAQ: User Interface UTH

 HTUUsing Custom Number Formats UTH

 HTUNavigating Excel’s Sheets UTH

 HTUOverride Excel’s Text Import Wizard UTH

 HTUSharing Autocorrect Shortcuts UTH

 HTUMaking A Worksheet Very Hidden UTH

 HTUImporting A Text File Into A Worksheet UTH

 HTUUsing A Workspace File UTH

 HTUProtecting Cells, Sheets, Workbooks, And Files UTH

 HTUResize Excel’s Sheet Tabs UTH

 HTUChanging The Number Of Sheets In A New Workbook UTH

 HTUClose All Workbooks QuicklyUTH

 HTURestrict Cursor Movement To Unprotected Cells UTH

 HTUChange The Color Of Worksheet Tabs UTH

 HTUMaking An Exact Copy Of A Range Of Formulas UTH

 HTUCreating A Database Table From A Summary Table UTH

 HTUSolving Common Setup Problems UTH

 HTUGetting A List Of File Names UTH

 HTUCommandBar Calculator UTH

 HTUSpreadsheet Protection FAQ UTH

 HTUExtended Date Functions UTH

Formatting

http://spreadsheetpage.com/
http://spreadsheetpage.com/index.php/tip/getting_a_list_of_files_names_another_method/
http://spreadsheetpage.com/index.php/tip/clearing_the_text_to_columns_parameters/
http://spreadsheetpage.com/index.php/tip/making_an_exact_copy_of_a_range_of_formulas_take_2/
http://spreadsheetpage.com/index.php/tip/create_a_drop_down_list_of_possible_input_values/
http://spreadsheetpage.com/index.php/tip/excel_2007_upgrade_faq_charts_and_graphics/
http://spreadsheetpage.com/index.php/tip/excel_2007_upgrade_faq_formatting_and_printing/
http://spreadsheetpage.com/index.php/tip/excel_2007_upgrade_faq_general/
http://spreadsheetpage.com/index.php/tip/excel_2007_upgrade_faq_user_interface/
http://spreadsheetpage.com/index.php/tip/using_custom_number_formats/
http://spreadsheetpage.com/index.php/tip/navigating_excels_sheets/
http://spreadsheetpage.com/index.php/tip/override_excels_text_import_wizard/
http://spreadsheetpage.com/index.php/tip/sharing_autocorrect_shortcuts/
http://spreadsheetpage.com/index.php/tip/making_a_worksheet_very_hidden/
http://spreadsheetpage.com/index.php/tip/importing_a_text_file_into_a_worksheet/
http://spreadsheetpage.com/index.php/tip/using_a_workspace_file/
http://spreadsheetpage.com/index.php/tip/protecting_cells_sheets_workbooks_and_files/
http://spreadsheetpage.com/index.php/tip/resize_excels_sheet_tabs/
http://spreadsheetpage.com/index.php/tip/changing_the_number_of_sheets_in_a_new_workbook/
http://spreadsheetpage.com/index.php/tip/close_all_workbooks_quickly/
http://spreadsheetpage.com/index.php/tip/restrict_cursor_movement_to_unprotected_cells/
http://spreadsheetpage.com/index.php/tip/change_the_color_of_worksheet_tabs/
http://spreadsheetpage.com/index.php/tip/making_an_exact_copy_of_a_range_of_formulas/
http://spreadsheetpage.com/index.php/tip/creating_a_database_table_from_a_summary_table/
http://spreadsheetpage.com/index.php/tip/solving_common_setup_problems/
http://spreadsheetpage.com/index.php/tip/getting_a_list_of_file_names/
http://spreadsheetpage.com/index.php/tip/commandbar_calculator/
http://spreadsheetpage.com/index.php/tip/spreadsheet_protection_faq1/
http://spreadsheetpage.com/index.php/tip/extended_date_functions/

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 87
Copyright © 2008 by J.L.Latham, All Rights Reserved.

 HTUQuantifying Color Choices UTH

 HTUExcel 2007 Upgrade FAQ: Formatting And Printing UTH

 HTUComparing Two Lists With Conditional FormattingUTH

 HTUAlternate Row Shading Using Conditional Formatting UTH

 HTUDuplicate Repeated Entries In A List UTH

 HTURemoving Or Avoiding Automatic Hyperlinks UTH

 HTUWorking With Fractions UTH

 HTUUsing Conditional FormattingUTH

 HTUFix Incorrect Decimal Places During Data EntryUTH

 HTUDisplay Text In Multiple Lines UTH

 HTUChanging The Default Cell Comment Formatting UTH

 HTUChange The Formatting Of Your Subtotal Rows UTH

Formulas

 HTUIs A Particular Word Contained In A Text String? UTH

 HTUFormulas To Perform Day Of Month Calculations UTH

 HTUMaking An Exact Copy Of A Range Of Formulas, Take 2 UTH

 HTUCalculating EasterUTH

 HTUConverting Unix Timestamps UTH

 HTUNaming Techniques UTH

 HTUCreating A List Of Formulas UTH

 HTUCell Counting Techniques UTH

 HTUSumming And Counting Using Multiple Criteria UTH

 HTUChart Trendline Formulas UTH

 HTUMaking An Exact Copy Of A Range Of Formulas UTH

 HTUComparing Two Lists With Conditional Formatting UTH

 HTULocate Phantom Links In A Workbook UTH

 HTUDealing With Negative Time Values UTH

 HTUConverting Non-numbers To Actual Values UTH

 HTUCompare Ranges By Using An Array Formula UTH

 HTUCalculate The Number Of Days In A Month UTH

 HTUIdentify Formulas By Using Conditional Formatting UTH

 HTUDisplaying Autofilter Criteria UTH

 HTUCalculating A Conditional Average UTH

 HTUDisplay Text And A Value In One Cell UTH

 HTUAutomatic List NumberingUTH

 HTUCalculate The Day Of The Year And Days Remaining UTH

 HTURounding To “n” Significant Digits UTH

 HTUWorking With Pre-1900 DatesUTH

 HTUUsing Data Validation To Check For Repeated Values UTH

 HTUSum The Largest Values In A Range UTH

http://spreadsheetpage.com/index.php/tip/quantifying_color_choices/
http://spreadsheetpage.com/index.php/tip/excel_2007_upgrade_faq_formatting_and_printing/
http://spreadsheetpage.com/index.php/tip/comparing_two_lists_with_conditional_formatting/
http://spreadsheetpage.com/index.php/tip/alternate_row_shading_using_conditional_formatting/
http://spreadsheetpage.com/index.php/tip/duplicate_repeated_entries_in_a_list/
http://spreadsheetpage.com/index.php/tip/removing_or_avoiding_automatic_hyperlinks/
http://spreadsheetpage.com/index.php/tip/working_with_fractions/
http://spreadsheetpage.com/index.php/tip/using_conditional_formatting/
http://spreadsheetpage.com/index.php/tip/fix_incorrect_decimal_places_during_data_entry/
http://spreadsheetpage.com/index.php/tip/display_text_in_multiple_lines/
http://spreadsheetpage.com/index.php/tip/changing_the_default_cell_comment_formatting/
http://spreadsheetpage.com/index.php/tip/change_the_formatting_of_your_subtotal_rows/
http://spreadsheetpage.com/index.php/tip/is_a_particular_word_contained_in_a_text_sring/
http://spreadsheetpage.com/index.php/tip/formulas_to_perform_day_of_month_calculations/
http://spreadsheetpage.com/index.php/tip/making_an_exact_copy_of_a_range_of_formulas_take_2/
http://spreadsheetpage.com/index.php/tip/calculating_easter/
http://spreadsheetpage.com/index.php/tip/converting_unix_timestamps/
http://spreadsheetpage.com/index.php/tip/naming_techniques/
http://spreadsheetpage.com/index.php/tip/creating_a_list_of_formulas/
http://spreadsheetpage.com/index.php/tip/cell_counting_techniques/
http://spreadsheetpage.com/index.php/tip/summing_and_counting_using_multiple_criteria/
http://spreadsheetpage.com/index.php/tip/chart_trendline_formulas/
http://spreadsheetpage.com/index.php/tip/making_an_exact_copy_of_a_range_of_formulas/
http://spreadsheetpage.com/index.php/tip/comparing_two_lists_with_conditional_formatting/
http://spreadsheetpage.com/index.php/tip/locate_phantom_links_in_a_workbook/
http://spreadsheetpage.com/index.php/tip/dealing_with_negative_time_values/
http://spreadsheetpage.com/index.php/tip/converting_non_numbers_to_actual_values/
http://spreadsheetpage.com/index.php/tip/compare_ranges_by_using_an_array_formula/
http://spreadsheetpage.com/index.php/tip/calculate_the_number_of_days_in_a_month/
http://spreadsheetpage.com/index.php/tip/identify_formulas_by_using_conditional_formatting/
http://spreadsheetpage.com/index.php/tip/displaying_autofilter_criteria/
http://spreadsheetpage.com/index.php/tip/calculating_a_conditional_average/
http://spreadsheetpage.com/index.php/tip/display_text_and_a_value_in_one_cell/
http://spreadsheetpage.com/index.php/tip/automatic_list_numbering/
http://spreadsheetpage.com/index.php/tip/calculate_the_day_of_the_year_and_days_remaining/
http://spreadsheetpage.com/index.php/tip/rounding_to_n_significant_digits/
http://spreadsheetpage.com/index.php/tip/working_with_pre_1900_dates/
http://spreadsheetpage.com/index.php/tip/using_data_validation_to_check_for_repeated_values/
http://spreadsheetpage.com/index.php/tip/sum_the_largest_values_in_a_range/

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 88
Copyright © 2008 by J.L.Latham, All Rights Reserved.

 HTUCount Autofiltered Rows UTH

 HTUPerform Two-Way Table Lookups UTH

 HTUReferencing A Sheet IndirectlyUTH

 HTUDelete All Input Cells, But Keep The Formulas UTH

 HTURound Values To The Nearest Fraction UTH

 HTUAvoid Error Displays In Formulas UTH

 HTUChange Cell Values Using Paste Special UTH

 HTUHiding Your Formulas UTH

 HTUCounting Distinct Entries In A Range UTH

 HTUForce A Global Recalculation UTH

 HTUSumming Times That Exceed 24 Hours UTH

 HTUTransforming Data With Formulas UTH

 HTUCreating A “Megaformula” UTH

 HTUAlternatives To Nested IF Functions UTH

 HTUA Formula To Calculate A Ratio UTH

Charts & Graphics

 HTUSaving A Range As A Graphic File UTH

 HTUA Quick And Dirty Slideshow Macro UTH

 HTUExcel 2007 Upgrade FAQ: Charts And Graphics UTH

 HTUPasting An Image To A UserForm Control UTH

 HTUInteractive Chart With No Macros UTH

 HTUCreating A Splash Screen For An Excel Workbook UTH

 HTUCreating A Clickable Image Map UTH

 HTUA Class Module To Manipulate A Chart Series UTH

 HTUChart Trendline Formulas UTH

 HTURemoving Lines From A Surface Chart UTH

 HTUUpdate Charts Automatically When You Enter New Data UTH

 HTUCreating A Non-Graphic Chart Directly In A Range UTH

 HTUCreating A Linked Picture Of A Range UTH

 HTUCreating A Thermometer Style Chart UTH

 HTUDisplaying A value in an AutoShape UTH

 HTUHandle Missing Data In A Line Chart UTH

 HTUFormat Cells To Display In Thousands UTH

 HTUUnlink A Chart Series From Its Data Range UTH

 HTUDisplay Multiple Charts On A Single Chart Sheet UTH

 HTULayouts For Column Charts UTH

 HTUSaving A Chart As A GIF FIle UTH

 HTURotating Text With An AutoShape UTH

 HTUCreating A Transparent Chart Series UTH

 HTUCreating Combination Charts UTH

http://spreadsheetpage.com/index.php/tip/count_autofiltered_rows/
http://spreadsheetpage.com/index.php/tip/perform_two_way_table_lookups/
http://spreadsheetpage.com/index.php/tip/referencing_a_sheet_indirectly/
http://spreadsheetpage.com/index.php/tip/delete_all_input_cells_but_keep_the_formulas/
http://spreadsheetpage.com/index.php/tip/round_values_to_the_nearest_fraction/
http://spreadsheetpage.com/index.php/tip/avoid_error_displays_in_formulas/
http://spreadsheetpage.com/index.php/tip/change_cell_values_using_paste_special/
http://spreadsheetpage.com/index.php/tip/hiding_your_formulas/
http://spreadsheetpage.com/index.php/tip/counting_distinct_entries_in_a_range/
http://spreadsheetpage.com/index.php/tip/force_a_global_recalculation/
http://spreadsheetpage.com/index.php/tip/summing_times_that_exceed_24_hours/
http://spreadsheetpage.com/index.php/tip/transforming_data_with_formulas/
http://spreadsheetpage.com/index.php/tip/creating_a_megaformula/
http://spreadsheetpage.com/index.php/tip/alternatives_to_nested_if_functions/
http://spreadsheetpage.com/index.php/tip/a_formula_to_calculate_a_ratio/
http://spreadsheetpage.com/index.php/tip/saving_a_range_as_a_graphic_file/
http://spreadsheetpage.com/index.php/tip/a_quick_and_dirty_slideshow_macro/
http://spreadsheetpage.com/index.php/tip/excel_2007_upgrade_faq_charts_and_graphics/
http://spreadsheetpage.com/index.php/tip/pasting_an_image_to_a_userform_control/
http://spreadsheetpage.com/index.php/tip/interactive_chart_with_no_macros/
http://spreadsheetpage.com/index.php/tip/creating_a_splash_screen_for_an_excel_workbook1/
http://spreadsheetpage.com/index.php/tip/creating_a_clickable_image_map/
http://spreadsheetpage.com/index.php/tip/a_class_module_to_manipulate_a_chart_series/
http://spreadsheetpage.com/index.php/tip/chart_trendline_formulas/
http://spreadsheetpage.com/index.php/tip/removing_lines_from_a_surface_chart/
http://spreadsheetpage.com/index.php/tip/update_charts_automatically_when_you_enter_new_data/
http://spreadsheetpage.com/index.php/tip/creating_a_non_graphic_chart_directly_in_a_range/
http://spreadsheetpage.com/index.php/tip/creating_a_linked_picture_of_a_range/
http://spreadsheetpage.com/index.php/tip/creating_a_thermometer_style_chart/
http://spreadsheetpage.com/index.php/tip/displaying_a_value_in_an_autoshape/
http://spreadsheetpage.com/index.php/tip/handle_missing_data_in_a_line_chart/
http://spreadsheetpage.com/index.php/tip/format_cells_to_display_in_thousands/
http://spreadsheetpage.com/index.php/tip/unlink_a_chart_series_from_its_data_range/
http://spreadsheetpage.com/index.php/tip/display_multiple_charts_on_a_single_chart_sheet/
http://spreadsheetpage.com/index.php/tip/layouts_for_column_charts/
http://spreadsheetpage.com/index.php/tip/saving_a_chart_as_a_gif_file/
http://spreadsheetpage.com/index.php/tip/rotating_text_with_an_autoshape/
http://spreadsheetpage.com/index.php/tip/creating_a_transparent_chart_series/
http://spreadsheetpage.com/index.php/tip/creating_combination_charts/

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 89
Copyright © 2008 by J.L.Latham, All Rights Reserved.

 HTUAnimated Hypocycloid Charts UTH

Printing

 HTUExcel 2007 Upgrade FAQ: Formatting And Printing UTH

 HTUDetermining The Number Of Printed Pages UTH

 HTUMail Merge - Without Word UTH

 HTUDisplaying A Menu Of Worksheets To Print UTH

 HTUCopy Page Setup Settings To Other Sheets UTH

 HTUPrinting Just A Portion Of Your Worksheet UTH

 HTUAvoid Printing Specific Rows UTH

Developer Tips by Category

General VBA

 HTUIs A Particular Word Contained In A Text String? UTH

 HTUThe Value, Formula, and Text Properties UTH

 HTUClearing The Text To Columns Parameters UTH

 HTUA Macro To Count Word Frequencies UTH

 HTUSaving A Range As A Graphic File UTH

 HTUA Quick And Dirty Slideshow Macro UTH

 HTUMaximize Excel Across All Monitors UTH

 HTUUnderstanding The IsDate Function UTH

 HTUExcel 2007 Upgrade FAQ: Macros UTH

 HTUControlling User ScrollingUTH

CommandBars & Menus

 HTUAdd The Speech Controls To The Ribbon UTH

 HTUIdentifying CommandBar Images UTH

 HTUCreating Custom Menus UTH

 HTUDeveloper FAQ - CommandBars UTH

 HTUCommandBar Calculator UTH

UserForms

 HTUPasting An Image To A UserForm ControlUTH

 HTUDisplaying Help UTH

 HTUGeneral Userform Tips UTH

 HTUSelecting A DirectoryUTH

 HTUDisplaying A Progress Indicator UTH

 HTUImporting And Exporting Userforms UTH

http://spreadsheetpage.com/index.php/tip/animated_hypocycloid_charts/
http://spreadsheetpage.com/index.php/tip/excel_2007_upgrade_faq_formatting_and_printing/
http://spreadsheetpage.com/index.php/tip/determining_the_number_of_printed_pages/
http://spreadsheetpage.com/index.php/tip/mail_merge_without_word/
http://spreadsheetpage.com/index.php/tip/displaying_a_menu_of_worksheets_to_print/
http://spreadsheetpage.com/index.php/tip/copy_page_setup_settings_to_other_sheets/
http://spreadsheetpage.com/index.php/tip/printing_just_a_portion_of_your_worksheet/
http://spreadsheetpage.com/index.php/tip/avoid_printing_specific_rows/
http://spreadsheetpage.com/index.php/site/tip/is_a_particular_word_contained_in_a_text_sring/
http://spreadsheetpage.com/index.php/site/tip/the_value_formula_and_text_properties/
http://spreadsheetpage.com/index.php/site/tip/clearing_the_text_to_columns_parameters/
http://spreadsheetpage.com/index.php/site/tip/a_macro_to_count_word_frequencies/
http://spreadsheetpage.com/index.php/site/tip/saving_a_range_as_a_graphic_file/
http://spreadsheetpage.com/index.php/site/tip/a_quick_and_dirty_slideshow_macro/
http://spreadsheetpage.com/index.php/site/tip/maximize_excel_across_all_monitors/
http://spreadsheetpage.com/index.php/site/tip/understanding_the_isdate_function/
http://spreadsheetpage.com/index.php/site/tip/excel_2007_upgrade_faq_macros/
http://spreadsheetpage.com/index.php/site/tip/controlling_user_scrolling/
http://spreadsheetpage.com/index.php/site/tip/add_the_speech_controls_to_the_ribbon/
http://spreadsheetpage.com/index.php/site/tip/identifying_commandbar_images/
http://spreadsheetpage.com/index.php/site/tip/creating_custom_menus/
http://spreadsheetpage.com/index.php/site/tip/developer_faq_commandbars/
http://spreadsheetpage.com/index.php/site/tip/commandbar_calculator/
http://spreadsheetpage.com/index.php/site/tip/pasting_an_image_to_a_userform_control/
http://spreadsheetpage.com/index.php/site/tip/displaying_help/
http://spreadsheetpage.com/index.php/site/tip/general_userform_tips/
http://spreadsheetpage.com/index.php/site/tip/selecting_a_directory/
http://spreadsheetpage.com/index.php/site/tip/displaying_a_progress_indicator/
http://spreadsheetpage.com/index.php/site/tip/importing_and_exporting_userforms/

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??

Additional Excel VBA Resources Page 90
Copyright © 2008 by J.L.Latham, All Rights Reserved.

 HTUHandle Multiple Userform Buttons With One Subroutine UTH

 HTUFilling A Listbox With Unique Items UTH

 HTUDisplaying A Menu Of Worksheets To Print UTH

 HTUCreating A Color Picker Dialog Box UTH

VBA Functions

 HTUExtracting An Email Address From Text UTH

 HTUQuantifying Color Choices UTH

 HTUDetermining The User’s Video Resolution UTH

 HTUIdentifying Unique Values In An Array Or Range UTH

 HTUGetting A List Of File Names Using VBA UTH

 HTULooping Through Ranges Efficiently In Custom Worksheet Functions UTH

 HTUUndoing A VBA Subroutine UTH

 HTUDetermining The Last Non-empty Cell In A Column Or Row UTH

 HTUMultifunctional Functions UTH

 HTUSome Useful VBA Functions UTH

o File Exists

o FileNameOnly

o RangeNameExists

o SheetExists

o WorkbookIsOpen

http://spreadsheetpage.com/index.php/site/tip/handle_multiple_userform_buttons_with_one_subroutine/
http://spreadsheetpage.com/index.php/site/tip/filling_a_listbox_with_unique_items/
http://spreadsheetpage.com/index.php/site/tip/displaying_a_menu_of_worksheets_to_print/
http://spreadsheetpage.com/index.php/site/tip/creating_a_color_picker_dialog_box/
http://spreadsheetpage.com/index.php/site/tip/extracting_an_email_address_from_text/
http://spreadsheetpage.com/index.php/site/tip/quantifying_color_choices/
http://spreadsheetpage.com/index.php/site/tip/determining_the_users_video_resolution/
http://spreadsheetpage.com/index.php/site/tip/identifying_unique_values_in_an_array_or_range/
http://spreadsheetpage.com/index.php/site/tip/getting_a_list_of_file_names_using_vba/
http://spreadsheetpage.com/index.php/site/tip/looping_through_ranges_efficiently_in_custom_worksheet_functions/
http://spreadsheetpage.com/index.php/site/tip/undoing_a_vba_subroutine/
http://spreadsheetpage.com/index.php/site/tip/determining_the_last_non_empty_cell_in_a_column_or_row/
http://spreadsheetpage.com/index.php/site/tip/multifunctional_functions/
http://spreadsheetpage.com/index.php/site/tip/some_useful_vba_functions/

