Programming
1n
Microsoft Excel VBA
An

Introduction

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

The most current version of the book may be downloaded, free of charge, from:
http://www.jlathamsite.com/LearningPage.htm

Look for the link to the .pdf document just below the heading "' Introduction to VBA Programming™. |
recommend right-clicking the link and choosing "Save Target As" to get a copy of it onto your system.

In October 2012, a new publication was placed on the website. While not designed specifically
to be a companion to this introduction, | believe that many of you that are serious about
programming in Excel VBA will find it useful. It is also available through the above link,
through this direct link to it:

Bullet-Proofing Your Excel VBA Code

It also has a companion workbook demonstrating the effects of scope in Excel VBA.
SlicesOfPi.xls

And keep your eyes out for an introduction to Debugging that is now a work in progress.

Table of Contents

OVERVIEW cuuueuueeeeiieccsssssssssssssssecsssnsssssns \Y
WY coviiiiiinnnnnicninnnnnissssnsenccssssssnssssssssssssssssnsssessssssssssssssssssssssssssssssnasns v
WAL .. ciiiiiiiiiiniiieeneeneeeneeeneeeeeeeseeenesssesesssesssssesessass A%
W0 ceiiiiiiereercceeiiinnnnnnensseeceteesansssssssecsssnssssssssssssssansssssssssssssns A%
HOW cociiiiiiiiiiinieeeneeeeeeeneneeeeeseneeenesesesssssesssesssesesss A%
Anticipated User SKill ReqUITremMeNts.......ccceeeiveiessricisnnicssnecssnnecsssncssnnesssssesssseesssssesssssessssecs v
Copyright Acknowledgments . Vi
Creating this GUIAE.....ueeieineiniiensennienieninenneennessesssesssessssesssesssssssssssssssssassssssssssssassssasssas vi

WHAT IS VBA?...uuueeiicrnenricscnnnnccnnns 1
VBA: An Event Driven Language 1
VBA: An Object-Based Language 1

THE EXCEL VBA IDEuuuuiiiiiiiiiiinnnneeiiiicccinssssnsssssiecsssnssssass 2
Getting to the VBA IDEiiniiniinninniinnneeniennniennensiensesssssssssssssssesssssssssssssssssesssssssasss 3
T0 Be EXPLICIt OF NOT..uuuuiiiiriiiivriniserisssnncsssencsssenssssncssssssssssssssssssssassssssssssssssssssssssssssssssssssasssses 4

TYPES OF CODE MODULES ...ciccceeisessnsssseeccsssnsasssss 6
General Purpose Code Modules 6
WOrkbook Code MOAUIEScccconrnnrnneneiieccsssscsssnssssecccssssssssssssssesssens 7

WOTKDOOK EVENTS......oeiiiiieitie ettt ettt e et e e st e e st e e st e e e s abe e e sabe e e sabeeesnteeenneens 7
Worksheet Code MOAUIESccccoinnrreeneiieccsisscsssnnssrecccsssssssssssssecsssssssssnssssssssssssssssssssssssssssssssens 9
WWOTKSNEEE EVENES ... vveiieeiee ettt ettt e et e e st e e st a e e st e e e s abe e e sabe e e sabeeesnaeeeareeas 9
The ‘Target’ and ‘Cancel” ODJECEScoiviiiiiiiiiiiiiii e 9
Class and UserForm Modules 10
ClaSS MOTUIES ...ttt e e eat e e e sab e e e eaaeeeneeas 10
UserForms and their MOAUIES.............ooouiiiiie et 10

PROCEDURES: FUNCTION AND SUB 11
Functions......cceeeeeeeeeeeeeeneeeeenene 11
SUDS ecerrrrrenneeeeeeeccesssssanaeeeeececssssossasssessesssssssssssassassesssssssssssssssssssssssssansasssssssssssssssnssssssssssssssnnnansss 12
Procedures: Public or Private 12

Table of Contents Page i

http://www.jlathamsite.com/LearningPage.htm
http://www.jlathamsite.com/Teach/VBA/WritingBulletProofCode.pdf
http://www.jlathamsite.com/Teach/VBA/SlicesOfPi.xls

Programming In Excel VBA

An Introduction

by]J.Latham
Microsoft Excel MVP 2006-27?

CONSTANTS, VARIABLES AND TYPING 13
Data Types...cccceeeuerrecccnnreccsnnns 13
OUT FirsSt ProCEAUIEuuueieneriiivniinrvnrinssnrissssnesssncssssicsssnsssssnsess 15
Reserved Wordsceeeececcnerccscnnnnes 16
Comments and REMATKScccoivveiiiiiirreniicisnnnicnsssnnicssssansecsssnssessssssssssssssnsssssssassssssssssssssssnasss 16
Error Handling: A Beginning 17
Constant and Variable Declarations Revisited . 19

ProCeAUIe LEVEI SCOPEeoviiiiiiiiiieiee e bbbt 19
MOTUIE LEVEI SCOPE ...ttt sttt e be et e ane e s reeeeeneesneeee s 19
PUBIIC SCOPE....cc bbb 20
When to Use Constants and/or Variables ... 20

GOOD PROGRAMMING PRACTICES 21
WHAL IS GOOA COUE cuuuueriiiiunnriisisnriecsssnriesssssnreesssssssasssasss 21
Good Programming Practice #2 21
More Good Programming Practices 21

LOOPING STRUCTURES ..cuueeesuecsnissaesssncsssecssssssansssasssssssssssssssssasssssssssssssssssasssssssssssssssssasssssssssssssass 22
GPP #3: ueviireinnecinnnns w22
FOT oo NEXt LOOPS .cccivuiiirrerirsrerissseicssnicssnncsssisssssssssssssssasssssassssssssssssssssssssssssssssssssssnsssssnsssssnss 22
For Each LoopSccocvuereciscnnrcccsnns 23
Do... LOOPS ceeerecvcnnrrccscnnreccsnnns 26
Do Loops Control Summary .29

DECISION MAKERS....ccccceeesueeersanecsanecns 30
If.. Then......oercvcercrceecsnnnes .. 30
If...Then...Else€......ccccevvvereccscrnneeccens 31
If... Then...EISEIf...ElS€.....ccccovverirrrrressricsssencssnicssannsssanssssasssssssssssssssssssssssssssssssssssssssnsssssnsssssnss 31
Select Caseuueeeeeccnneccscsnnnecsens 32

DATA SOURCES....cccverruecsuecsnecsanes 33
Data from Worksheets: Intro 33
Data from External Sources .. 33
USer Provided Data.......eiceeicncreicninicssnicssnicsssnssssssssssassnss 33
Input USing INPUtBOXS() ceeeeeernenniiiinnniniininitinienienninneseesnessnssnessesssessssssssssessssssssssessassssssns 34
Using MsgBoxS$ as User Input 37
UserForm as a Data Source ..38
Data from Worksheets: A Study 42

Project 1: Copy Between WOrkDOOKS............coviiiiiiieiie e 42
Data from Text Files: A Study 43
Project 2: Importing Data from a TeXt filecccoveiiiieiiece e 43

PROGRAMMING WITH EXCEL OBJECTS 45
Advantages of Using Object Referencesoueeevveecisricisnrccssnrcsssnncssnncssnncsssnncssssncssssncsanes 45
Performance Improvements Using Object Referencesccocceerccsccnnrcsssnnnecsssnsnccssnnnes 46
The Excel Object Model as a Referenceueueeeneeiseecsuenssnenseenssnecsnenssnesssecssnecssesssscsssnsanne 50

PROGRAMMING WITH NAMED RANGES 52
Defining @ NAIME....ccoveiiiiiiinriiniisniicssssnniesssssress 52

Naming Directly 0n @ WOTKSNEELcooiiiiiiiie e e 52
Naming With the Name Managerccoiiiiiiiiiiiieerie et 53
Using @ Named Range fOr @ LiSt.........cciiiiiiiiiiie st 55

CODE SNIPPETS AND EXAMPLES ...cccutiiseiisuensnicssecsssecssessssnsssesssssssssssssssssesssssssssssssssssssssassssssssasses 56

Sorting A Range........ccocceeercueecrcnnecnnns 56

Table of Contents

Page ii

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-?
Find the Last Used Cell in @ COIUMIucciieinirinuenseiisnecssnensanissensssecssnncssnsssassssecsssesssessssenns 58
Identify the Last USEd ROWccuciiiiiiicie ettt 58
Identify the Next Available ROW ... 58
Find the First Empty Cell in @ COIUMNuueiiiiiiveniiciisnnicssssnnricsssssnsecsssnssossssssssssssssssssssssssss 59
Get the Address Instead of the Row 59
Find the Last Used Cell in a Row 60
Consolidating Data in a Workbook 60
Using a TextBox to Access a Macro 61
Doing the IMPOSSIDIEuuuiriiiirrnniiinisnniiiissnricssssnnicssssssiess 61
HIQING ROWS ..ottt ettt e e s et e et e sneesbe et e nneenbeanee s 61
UNNIAING ROWS ...ttt et e e st e s te et e aneesteenenneenreaneeas 62

AN INTRODUCTION TO DEBUGGING 63
The Problem EXAMPIE c...uuuuiiiininnniiiiisnnniinisssnnicnsssnnicsssssssecsssasss 63
Other Debugging TiPS:...coeciiinensinisnnssennsnensnnsssecssensssecssnsssseessesssssssssssssssssasssssssassssassssasssse 66
ADDITIONAL EXCEL VBA RESOURCES 68
EXCEL MVP WEBSITES «.ccocueestessucssnssansssessesssessassssssassssssssssssssassssssasssssssassssssassssssasssssssassssssassssssss 68
Ron deBruin’s EXCel tiPs:..iiccccneiicssssniccssssnreesssssnsecssssssssssssssesssssssssssssssssssssssssssssssssssssssnssss 68
Debra Dalgleish’s Excel Tips .71
WWW.CONEEXTUIES.COMuuuiiiiierinsrrressrnesssnncssnncsssnncsssnscssssessssesssssesssssesssssessssnsssssssssssssssssssssses 71
http://www.contextures.com/tiptech.htmlccceevvuriinuriiisiiissninssnninssnrcssencssnnncssnenesnnnes 71

F (cont'd)..uueeeccrrsneecccscnnneccscnnns .71
Chip Pearson’s EXCel tIPS: c..ccciiiiniiiiniininnininencninicisnncssnecsssnesssssesssssesssssessssssssssssssssssssssses 75
Ozgrids Formulas w/downloads: 85
Jon Peltier’s Chart Tutorials .85
Charles Williams DecisionModels.COmM Sitecccceerveicrrnicssanisssanisssnncsssnncsssssssssssssssssssnsecs 85
Tools and Downloads by Jan Karel Pietersecoiievveicssnnicssnnccsnecssnncssnecssnencssssccssnnes 85
John Walkenbach Free Excel Tips 86
GBINETAL ...ttt ar e 86
FOIMATEING .t bbbttt bbb 86
FOPMUIBS ...ttt 87
Charts & GraphiCs.........ooci i 88

o 1) (Vo TSROSO 89
Developer TipS DY Cat@gory ... 89
GENEIAL VBA ... bbbttt bbbt ab e 89
CommMANABAIS & IMENUS........cciiiiiiieieiee et 89
USBIFOIIMIS ... 89

VWBA FUNCHIONS ..ottt ettt bbb nne s 90

Table of Contents

Page iii

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??
List of Figures
Figure 1 Excel VBA IDE - No Code Module Displayed...........cccooveveiienieeieiieie e 2
Figure 2 Open the VBE from the EXcel TOOIS MENUccccoiiiiiiiiiicieeee e 3
Figure 3 EXCel VBA IDE MajJOr ATBaS........ccccviiieiieiieeieieesie e seesteeteseesteeseesnaesseasaesseesseansesnaesnas 3
Figure 4 The VBE [View] Menu Item EXpanded...........cocooiiiiiiiiiiiieeeee e 4
Figure 5 Option EXPlICIt iN EFFECTccvviie e 4
Figure 6 Setting Option EXplicit DIrective: StEP L ..o 5
Figure 7 Setting Option EXpliCit DIreCtiVe: SIEP 2.....vcviiiciice e 5
Figure 8 Insert a New General Purpose Code MOAUIEcveieiiiiiininiceeee e 6
Figure 9 VBAProject Showing the Modules ColleCtion.............cccovveviiiesecie s 6
Figure 10 Working in the Workbook Code Module.............ccooiiieiiiiiiiiceeec e 7
Figure 11 Viewing the Worksheet EVENt LiSt..........cccvoeiiiiiiic e 9
Figure 12 The VBE DebUg IMENUcoiiiiiiiiiee e 16
Figure 13 MYFirstProcedure RESUILSc.oiieiuiiieiee it 16
Figure 14 BOOM! Unhandled Errors Are a Painc.ccooiiiiiiiiienc e 17
Figure 15 For...Next Loop Counting RESUILS.........c.coveiiiiiiicece e 25
Figure 16 INPULtBOX$S() EXAMPIEccveviieiiiieieeie et 35
Figure 17 InputBox$() Validation Failed IMESSAgEccccerveiiieieeierieiseseseee e 35
Figure 18 Plain Vanilla MsgBoX$() DiSplayedccoceriiiiiiiiiineiesese s 37
Figure 19 MsgBox Used to Obtain USer INPUL............coviiiiieiicc e 37
Figure 20 MUulti-Control USEIFOIMooiiiiieieie e 38
Figure 21 UserForm With Text ENtry BOXES........ccvviiiiiiii e 39
Figure 22 - Define Name Dialog: EXCel 2003cccooiiiiiiieiiieiese e 53
Figure 23 Name Manager: EXCel 2010c.coveiiiiiiiciece e 54

Table of Contents Page iv

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

Overview

WHY

Why does this book exist? | wrote this book to hopefully provide a basic introduction to learning to
program using Visual Basic for Applications (VBA) as implemented in Microsoft™ Excel©. I have
attempted to provide a balance of basic programming concepts and good programming practices. Along
the way concepts are presented that often fall into the “advanced” category in other books. I don’t believe
these concepts are “advanced” in that it takes more basic teaching to understand and use them, rather if
they are taught as part of that basic teaching they are no more difficult to learn than anything else in the
language.

The goal is not to make you all-knowing of all things VBA in Excel, but rather to try to give you a basis
for understanding what VBA for Excel is capable of, helping you put code samples you obtain from a
variety of sources to work for you, to learn how to modify and adapt recorded macros to make them more
generic and useful to you, and to encourage you to learn more about the language so that you can take full
advantage of the worlds #1 spreadsheet application.

WHAT

What is taught in this book? The basic elements of VBA coding are covered and hopefully taught in it.
The First Edition will pretty much just cover what | decide to cover. If anyone has specific things that
they feel would be beneficial to the budding VBA programmer, | will certainly entertain the idea of
including them in later revisions to it. You can send such suggestions via email to:
HelpFrom@JL athamsite.com

The difficulty in presenting this type of material is that teaching VBA coding requires knowledge of many
things that have inter-dependence on one another. This inter-dependence can be an actual physical
dependence, but more often it is a dependence based on the knowledge of many different elements of the
programming environment: the syntax or command structure for instructions; a knowledge of the
“objects” in the application and their attributes (properties) and the things you can do to or with them
(methods), along with many other things. By necessity some things must be taught before others in order
to build from a basic understanding to more complex understanding as the studies continue. In discussing
some of the basics, more advanced concepts may be used in the process and the reader must accept those
as-yet-unexplained concepts and pieces simply on faith or with an “it is what it is” attitude for a while.
Since this is an Introduction to VBA for Excel, many details of many subjects and areas are left to be
discovered by the student on their own through experience, further study and examples from other sources
in the future.

WHO

This book is for anyone desiring to learn how to extend the functionality and usefulness of Excel through
added capabilities often only available through VBA.

How

You will learn to begin programming in Excel VBA by reading through this book and you will use your
copy of Excel to ‘follow along’ and create procedures and observe them at work.

ANTICIPATED USER SKILL REQUIREMENTS

This book is designed to be used by those with the Excel® knowledge typical of the ‘average’ office user.
This means that the user is expected to be familiar with general Excel® features and functions such as the
use of menu and icon toolbars, selecting worksheets and cells, creating simple formulas in cells,
‘navigating’ within Excel®, and opening, saving and closing the Excel® application and Excel® created
workbooks (.xIs files).

Overview and Copyrights Page v
Copyright © 2008 by J.L.Latham, All Rights Reserved.

mailto:HelpFrom@jlathamsite.com?subject=Suggested%20Improvement%20to%20Programming%20VBA%20Book

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
COPYRIGHT ACKNOWLEDGMENTS

Microsoft™ is a Registered Trademark of the Microsoft Corporation.

Excel© and Microsoft™ Excel are Copyright, the Microsoft Corporation.

Word© and Microsoft™ Word are Copyright, the Microsoft Corporation.

Microsoft™ Office is Copyright, the Microsoft Corporation.

Windows and Vista are Registered Trademarks of the Microsoft Corporation.
Snaglt is Copyright, the TechSmith Corporation.

CREATING THIS GUIDE
This document was created using Microsoft Word and Excel 2003, along with the Microsoft Office 2007 provided

‘publish as .pdf” feature to generate the final document.

Graphic screen capturing was performed using Snaglt from TechSmith.

COPYRIGHT NOTICE: This document in all forms is Copyright © by Jerry L. Latham, 2008, 2009,
2011. All rights are reserved. Readers are granted permission to make copies for their personal or
educational use and even corporate/commercial use, but in no instance may the document or portion or
portions thereof be used as part of or as the totality of any package that is distributed or provided for
profit or other gain. This book is FREE and if someone charged you money for it, or charged you
money for a package that it is any part of, they stole from you and they stole from me. Those people are
thieves.

The most current version of the book may be downloaded, free of charge, from:
http://www.jlathamsite.com/LearningPage.htm

Look for the link to the .pdf document just below the heading **Introduction to VBA Programming™. |
recommend right-clicking the link and choosing "Save Target As" to get a copy of it onto your system.

In October 2012, a new publication was placed on the website. While not designed specifically
to be a companion to this introduction, | believe that many of you that are serious about
programming in Excel VBA will find it useful. It is also available through the above link,
through this direct link to it:

Bullet-Proofing Your Excel VBA Code
It also has a companion workbook demonstrating the effects of scope in Excel VBA.
SlicesOfPi.xls

Overview and Copyrights Page vi
Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://www.jlathamsite.com/LearningPage.htm
http://www.jlathamsite.com/Teach/VBA/WritingBulletProofCode.pdf
http://www.jlathamsite.com/Teach/VBA/SlicesOfPi.xls

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

What is VBA?

Visual Basic for Applications (VBA) is an extensible programming language that is made up of a
core set of commands and extended on a per-application basis to be able to work directly with
objects in that application. This means that VBA for Excel knows about things like workbooks,
worksheets, cells and charts and more; while VBA for Access knows about tables, queries,
reports and data entry forms, among other things. The core can even be licensed for use by 3"
party companies to permit it to be used with their application(s). This was the case with Visio
before Microsoft bought the product for use under their banner.

VBA can probably be best described as an object-based (but not a true object oriented) language
that is event driven. Let’s look at the event driven side of it first.

VBA: AN EVENT DRIVEN LANGUAGE

Event driven means that nothing happens until something happens. Rather Zen-like isn’t it? Ok,
once again, but with a better grasp of reality. In VBA, no code executes except in response to
some event taking place (or at the command of the code once it is started by some event). An
event can be any one of many things. Opening an Excel workbook creates, or triggers, the Open
event, closing it triggers the BeforeClose event. Selecting a worksheet in the workbook will
cause a Deactivate event to occur on the page that had been selected and an Activate event to
happen to the new sheet you select. Many events occur that don’t have code associated with
them, and that’s to be expected; something doesn’t have to happen every time something else
happens. A shape (square, button, text box) actually triggers a Click event when it is clicked on
— you may or may not have code associated with one of those shapes to respond when it is
clicked on.

Event driven also means that you never know exactly when code for an event will be called upon
to run. For example, you may have a process that runs when a particular sheet is selected that
takes a long time to complete — perhaps checking for and hiding unused rows, or refreshing the
data on the sheet from another data source. While that is going on, you may click a button on the
sheet to try to do something else, such as sort the data on the sheet. Excel will, for the most part,
deal with the timing of when these processes are performed. You do need to be aware that it is
possible to request an operation to begin before another has completed. Most of the time this
does not cause any problem at all, but sometimes it can.

VBA: AN OBJECT-BASED LANGUAGE

Object based means that when referring to the components of the application, things like
workbooks, worksheets, cells, charts, etc. are ‘objects’. An object has certain attributes. Just a a
person has attributes like height, weight, eye and hair color, the objects in Excel have attributes
(Properties) such as value, height, width, color and more. Additionally, objects can do things or
have things done to them — these actions are known as Methods. For example, a workbook can
be opened or closed; a cell can have its shading altered, a worksheet can be deleted.

While you may use constants and variables in your code that seemingly don’t have any direct
relationship to an object, in the end the results of processing or calculations will probably be
used to alter some property of an object in the workbook: the value in a cell, the range of
information used as a data series on a chart, whether or not a particular sheet is visible or not at
any given moment. With all of this under our belt, we can now look at how to access this power.

The VBA IDE Page 1
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

The Excel VBA IDE

The Excel VBA IDE (Integrated Development Environment) has not changed in quite some
time. This is a good thing — the interface in Excel 2007 is the same as it was in Excel 2003, 2002
(XP), and even back to Excel 97 , and that means that no time is wasted for programmers in
learning a new interface just to be able to continue to use a language they are already familiar
with. There are 5 major areas of the IDE and I like to work with all of them visible.

=1olx]
° Fle Edit Yiew Insert Format Debug Run Tools Add-Ins Window Help Type a question for help »
‘EE-d % R@A9 > 0 a IR @ .

=l={|=]

#-&% atpvbaen.xls (ATPYBAEN.XLA)
&% funcres (FUNCRES.XLA)
=-&% vBAProject (Book1)
=155 Microsoft Excel Objects
.. B8] Sheet1 (Shest1)
| Sheetz (Sheet2)
] Sheet3 (Sheet3)
----- @ Thisworkbook

Properties - Sheet1 X|
{Sheet1 Workshest |

Alphabetic I Categorized l

Sheet1
DisplayPageBreaks False
DisplayRightToLeft False
EnableAutoFiter False
EnableCalculation True
EnableQutlining False
EnablePivotTable False
EnableSelection 0 - xINoRestrictions

Immediate

Name |Sheet1
Scrollarea [
Standardwidth 843
Visible -1 - xISheetvisible

Figure 1 Excel VBA IDE - No Code Module Displayed

The VBA IDE Page 2
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
GETTING TO THE VBA IDE

Your first question may be “How the heck did you get there!?” The quickest way to open the
VBA IDE (which I’ll simply call the VBE for Visual Basic Editor for the rest of this document),
is to press [Alt]+[F11] while in the main/normal Excel window. You can also get there from the
normal Excel menu via Tools | Macro | Visual Basic Editor:

Tools | Data Window Help
Protection k . . ?{J ¥ ,::H il @ a1

| Macro 2 | b Macros,., Alt+Fa
Cptions. .. @ Becord Mew Macra...
¥ Security...
| #| visual Bagic Editor Alb+F11
[+] Micrnsnf&cript Editar Alt+shift+F11

Figure 2 Open the VBE from the Excel Tools Menu

There are also other fast ways to open the VBE to specific areas without first opening the entire
project as these two methods do. We will discuss those when we talk about code that deals with
Workbook and Worksheet related event processing.

Not all 5 major areas of the VBE may be visible when you first open it. The [View] VBE menu
option allows you to choose which of them are visible.

g Microsoft ¥Yisual Basic - Book1 - [Sheet1 {Code}] - |E||1|
21 Fle Edt View Insert Format Debug Run Tools Add-Ins Window Help -8 X The VBE menu and
2-d 4 B E e » 0w NP @ normal icon toolbar.
(General) <] [(Dectarations) =
2=] L = Ei
Option Explicit -
-2 atpvbaen.xls (ATPYBAEN.XLA) = : -
& funcres (FUNCRES.XLA) The Project Window. If
£ & vBAProject (Book1) - ..
-5 Microsoft Excel Objects —_— not VISIbIe' ;) p_ress
St (Sheetl) [Ctrl]+[R] to bring it into
Sheetz (Sheetz) H
Sheetd (Sheets) view.
@ Thisworkbook
& The Code window — may be
empty, or may be shared for
use to display other things
such as the Object Browser.
Isheett Workshest =l The Properties window —
Alphabeti i . .
e [t displays and allows editing
DisplayPageEresks Fakse /,/ of the properties of the
CiplayRighttoleft False currently active object.
EnableCalculation | True =
EnableCutlining False EIEELI_' Lr
EnablePivotTable False N The Immediate window —
EnableSelection |0 - xINoRestrickions pmviredelic E .
rame Shestl B you can type in commands,
g:m'rrm — set values, examine values
anaar 1 . .
Wisible -1 - wishestyisible | | and Debug.Print results
. f show up in this window.
Figure 3 Excel VBA IDE Major Areas
The VBA IDE Page 3

Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??
Wiew | Imsert Format Debug R
]l Code F7
= oOhject Shift+F7
Diefinition Shift+F2
s o This is the VBE [View] menu option expanded. As you can see,
7 Ubject Browser Fz it permits you to display any of the 5 major areas of the IDE and
1 Immediate Window Ctrl+G even more that are useful in special circumstances such as the
=l Locals Window Object Browser and the Locals and Watch windows.
by Watch Window Note: To close any of these windows once you’ve opened them,
simply click the classic “close window” [X] in the upper right
corner of the window.
<3 Project Explorer Chrl+R,
S Propetties Window Fd
Toolbars 3
Microsoft Excel Alt+F11

Figure 4 The VBE [View] Menu Item Expanded

Rather than trying to make you remember what each and every window contains, what it’s used
for and how to make them work for you, we will cover using them during our discussions on
actually writing code and accessing objects during code development.

To BE EXPLICIT OR NOT

Well, let’s be frank about this: we are all adults (all programmers are performing an adult task
and so, regardless of their physical age, we will give them adult status — and that does mean that
they should act as responsible adults, i.e. no intentional malicious coding allowed). Since we are
now all adults, we can be Explicit.

I{General} j I{[le-:larations]n j

| Option Explicit

vl

Figure 5 Option Explicit in Effect

Your initial view of a code module may not contain the Option Explicit statement at the
beginning of it. It should — quite simply this is your first step to responsible coding through
the use of accepted Best Practices.

Option Explicit is a directive to the compiler that says that all user defined constants and
variables must be declared before actually using them in the code. The up side of using Option
Explicit is that errors in your code due to typographic errors or reuse of a variable as the wrong
type are greatly reduced and when it does happen, the problems are more easily identified. The
down-side? Just that you have to take the time to go back and declare constants or variables that
you find you need during code development.

The VBA IDE Page 4
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

To make sure that you don’t forget to always use Option Explicit, you can tell Excel’s VBE to
always start new code modules with that statement. This is a ‘permanent’ setting and affects all
projects you create in any workbook after making the setting.

Start by selecting [Tools] | Options from the VBE menu toolbar:

Tools | Add-Ins Window Help
ﬁ:, References. ..

{Dec

Macros...

| thin:nnsh.\. |
'-.fE.ﬁ.Pru:u]nJ/agt Properties...

Digital Signature, ..

Figure 6 Setting Option Explicit Directive: Step 1

N x|

E ditar |Editol Folmatl Eenerall Duckingl

~Code Settings This is the dialog that appears once
v auto Svntax Check W Auto Indent you use [TOO'S] | Options from the
¥ Requirg Yariable Declaration VBE menu toolbar
Tab Width: |2 '
¥ &uko L& Members =8
v auto Quick Info
¥ futa Data Tips Check the “Require Variable

Declaration” box to set up the VBE
to always place the Option Explicit
statement at the beginning of all new
code modules in the future.

—Window Setkings

W Drag-and-Drop Text Editing
V¥ Default to Full Madule View
|7 Procedure Separatar

0Ok I Cancel Help |

Figure 7 Setting Option Explicit Directive: Step 2

The VBA IDE Page 5
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

Types of Code Modules

I’1l bet you thought that all code modules were created equal. Not true — code modules don’t
have any Constitutional Rights, although they do have to follow the rules of design requirements
imposed by Microsoft and the compiler.

GENERAL PURPOSE CODE MODULES

These are code modules you’ll bring into existence and can contain code to do almost anything
of a ‘general purpose’ nature. Examples of code that might appear in them would be code that
responds to shapes or command buttons you might put on a worksheet; code to respond to
custom menus you might develop, user defined functions (UDF) that you develop to perform
actions and calculations by way of using the name of the UDF in a worksheet formula just like a
built-in Excel worksheet function.

Oh, By the Way Macros you record are placed into general purpose modules. Recording
macros during different sessions with the workbook results in numerous modules that may
contain as few as a single procedure (macro) in it. This results in being quite wasteful of
resources. All macros recorded during a single session are typically placed into a single module.

Insert | Format Debuc

G UserForm | To create a new general purpose module you can use the [Insert] | Module

|2 Modulg, | option from the VBE menu toolbar:
(#l Class hquule I

Figure 8 Insert a New General Purpose Code Module
Project - ¥BAProject Ed

=N £ After inserting the first new general purpose

-8 atpvbaen.xls (ATPYBAEN.XLA) module, you’ll have a new entry in the

-8 funcres (FUNCRES.XLA) . .
£ &% vBAProject (Book1) VBAProject window.

-3 Microsoft Excel Objects Now you have a new collection called Modules
Sheet! (Sheetl) and the new module you just created will be listed
SheetZ (SheetZ) £ th b £ th llecti A
Sheet (Sheets) as one of the members of the collection. ~Any
more modules you add will be listed as new
members of the collection. You can double-click
% on any of them and view its contents in the Code
Window.

The one property that a module has is its Name.
You can give more meaningful names than just
“Modulel” or “Module2” by changing the name in

Properties - Module1 x| the properties window while the module is the
[Module1 Module -] current ebject-of-affection active object.

#Alphabetic |Categu:urizeu:| I

MM“"—"El | Figure 9 VBAProject Showing the Modules Collection
Types of Code Modules Page 6

Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
There’s no rule for naming modules except that they must start with an alpha character and can't
contain certain special characters, I like to give mine names that start with “bas” (for BASIC)
followed by some description of the use of the code within them. Examples might be names
like:

basUtilities
basDeclarations
basSheetl_ Operations

While there is no practical (or published) limit to the number of modules, I’'m sure it’s at least
one of those “limited by available memory” things. The maximum size of any individual module
is 64K (to the best of my recollection). Trust me, you can put a LOT of code into a single
module.

WORKBOOK CODE MODULES

There is one and only one code module per workbook that is associated with Workbook Event
handling. At the technical level, this module, along with the worksheet event handling modules
are Class Modules. That need not concern you. Just be aware that if you want to do any
coding that deals with events that occur at the workbook level, you do it in this module.

Workbook Events

Just what are the workbook events? You can get a complete list of them from the code window
while the Workbook Code module content is displayed: You can display that content by double-
clicking the ThisWorkbook object in the VBAProject window. You’ll get a display similar to
this

£ Microsoft Yisual Basic - Book1 - [ThisWorkbook (Code)]

P File Edt Wiew Insert Format Debug Run Tools Add-Ins Window Help

R 3-H/ 4 2@ HA b @ B Y 0@ sl E
— <] [octarstons
== H [liGeneral)

#-&3 atpvbaen.xls (ATPYBAEN.XLA) b

&% funcres (FUNCRES.XLA)

=-&# ¥BAProject (Book1)
-3 Microsoft Excel Objacts
. L-fH] sheetl (Sheet1)

Sheet (Sheet2)

B Sheets (Sheet3)

: @ Thistorkbook

-7 Mndiles

Figure 10 Working in the Workbook Code Module

If you use the left pulldown of the workbook’s code module you’ll see that there is a specific
Workbook entry. If you choose that item, the VBE will automatically insert a stub (just the
beginning declaration and end statement for the procedure) for the Workbook _Open() event.
You can delete that entry if you don’t need code to deal with something you want to happen
when the workbook is opened.

With your cursor placed inside of any Workbook related procedure, even just a stub, you can
then use the pulldown on the right to find a list of all the available event handlers for the
workbook. And it is quite a list.

Types of Code Modules Page 7
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
NOTE: If the cursor is not in a workbook event handling procedure, the list on the right will
show you a list of non-workbook event procedure names in the module.

If you write code inside any of the event procedure, then when that event is triggered the code
associated with that event will run; i.e., the code will execute. Some typical Workbook
associated events that are often provided with code are:

Workbook_Open()
Workbook_Close()
Workbook_BeforeClose()
Workbook_BeforePrint()
Workbook BeforeSave()
Workbook_Activate()
Workbook_Deactivate

Things you might do with some of these? Well, in the Open() event you might make certain that
a particular worksheet is the one selected so that the user sees it first. Or with BeforeSave() or
BeforeClose() you might examine certain cells to make sure that all required information had
been entered into the workbook and even that it falls within acceptable limits. Activate and/or
Deactivate? These are great for determining when to create/destroy custom menus to be used in
the workbook but that you don’t want available in other workbooks.

Types of Code Modules Page 8
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-27?
WORKSHEET CODE MODULES

There is one and only one code module per worksheet that is associated with Worksheet Event
handling. However, each sheet has its very own code module that is separate and distinct from
all of the others even though they may all have event handlers for a given event for those
worksheets. At the technical level, this module, just like the event handling module for the
workbook are Class Modules. Remember that if you want to do any coding that deals with
events that occur at the worksheet level, you do it in these modules.

Worksheet Events

Just what are the worksheet events? You can get a complete list of them from the code window
while any Worksheet Code module content is displayed: You can display that content by
double-clicking any worksheet object in the VBAProject window. The code module for that
sheet will be displayed. You’ll get a display similar to this

{General) j I{[leclarations]n

(General)

Figure 11 Viewing the Worksheet Event List

For worksheets, when you choose the Worksheet item in the left pulldown list, the default event
is the Worksheet_SelectionChange(ByVal Target As Range) event. This even triggers any time
you make a new selection on the sheet — such as simply moving to another cell. The new cell
becomes the selection, and thus you’ve had a selection change.

As with the Workbook events, you can now get a complete list of Worksheet Events available to
be programmed against by using the right-side pulldown (indicated by “(Declarations)” in the
graphic). This list is much shorter than the Workbook’s list, but even these 9 (from Excel 2003)
provide considerable versatility in dealing with worksheets. Out of the list, the Change() event is
probably the one that most often has code associated with it. A Change() occurs when a user
alters the contents (value) of one or more cells on the sheet. Worksheet formula recalculations
don’t trigger this event, but they do trigger the Calculate() event.

The ‘Target’ and ‘Cancel’ Objects

Often in worksheet event stubs provided by the VBE you will see reference to two special
objects (sometimes more or others also): Cancel and/or Target.

Target represents the Range [which is an object that represents a single cell, a group of cells, one
or more rows and/or one or more columns] that is active at the time the event took place. Think
of Target as the actual object itself. Anything you do to Target is done to the actual Range that
it represents. Changes made to Target will appear on the sheet itself.

The Cancel object is a Boolean type object. A Boolean object can only have one of two
conditions assigned to it: TRUE or FALSE. By default a Boolean object is FALSE (and has a
numeric value of zero). If your code sets Cancel = TRUE then the underlying event action is
cancelled: the DoubleClick never takes place or the RightClick never gets completed. These are
handy events to use to take very special actions with — you can have someone double-click in a
cell (and set Cancel = True) to begin a series of events unique to that cell. A real world example
of this type of thing in one application | developed is that in a data area matrix that has dates in

Types of Code Modules Page 9
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
the top row, a double-click on a date causes all rows with an empty cell in that column to become
hidden: a kind of auto filter based on empty cells for that one column.

CLASS AND USERFORM MODULES
Class Modules
Quite frankly we’re not going to cover Class Modules. That is an “advanced” topic in my

considered opinion, and 99.9% of all coding needs can be met without using them. Creating a
class takes much more preparation and thought than we have the time or space for in this book.

UserForms and their Modules

We will cover both UserForms and their underlying code modules separately later. Think of
them much as worksheets and worksheet modules. Each UserForm has its own code module that
contains the code associated with all objects on the UserForm.

Types of Code Modules Page 10
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

Procedures: Function and Sub

Code modules contain code, and that code is placed into procedures, and procedures fall into two
categories: Sub (or subroutines) and Function(s).

FUNCTIONS

The difference between a Sub and a Function is simply that a function can return a value to the
procedure that called it. That procedure can be another Function, a Sub or even to a worksheet
cell. When it is done using a worksheet formula, the Function is known as a User Defined
Function, or UDF. Potentially all Functions are UDFs.

One other distinction between Functions and Subs is that (generally) Functions can only affect a
single cell in a workbook, while Subs can do their work and affect almost any aspect of a
workbook or worksheet. When it is used as a UDF, it can only affect the cell that it is called
from; it cannot alter the contents of other cells.

A Function starts with its declaration:

Function functionName (argumentl As Type, argument2 As Type) As fType

Where Function is a reserved word declaring the start of the definition of the function.
functionName is the name you assign to the function.

Within the parenthesis you define the list of arguments and their types that are to be passed to the
function for it to use to get its job done. You do not have to pass any arguments, but you do have
to use the parenthesis, as:

Function noArgumentFunction() As Boolean

Finally, you declare the type of value that the function will return (fType). The type can be any
valid type such as String, Boolean, Integer, Float, Double, Long, Variant, etc.

A Function ends with the End Function statement. Everything in between the function’s
declaration and the End Function statement is part of the function itself.

Here is an example of a function that calculates and returns the square of a value passed to it:

Function SquareOfNumber(anyInteger as Integer) As Long
SquareOfNumber = anylnteger * 2
End Function

Here is how it might be called from another procedure:

Dim aNumber as Integer

Dim numberSquared as Long

aNumber =15

numberSquared = SquareOfNumber(aNumber)

After all of that numberSquared will contain 225 (15 * 15, or 15°2)
The function could also be called from a worksheet in a cell like this:

=SquareOfNumber(15)
And 225 would appear in the cell. Actually, Excel would display the formula as:

Procedures: Sub and Function Page 11
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
=squareofnumber(15)

Excel makes UDF names all lowercase to distinguish them from built-in worksheet functions.

SUBS

Sub procedures are just like Functions, except that they do not return a value in the same way
that a Function does. They can accept arguments, or not, just like a Function does.

A Sub starts with its declaration:

Sub subName (argumentl As Type, argument2 As Type)

Where Sub is a reserved word declaring the start of the definition of the procedure.
subName is the name you assign to the procedure.

Within the parenthesis you define the list of arguments and their types that are to be passed to the
Sub for it to use to get its job done. You do not have to pass any arguments, but you do have to
use the parenthesis, as:

Sub noArgumentProcess|()
There is no declaration of the type of value that the sub will return because if there were, then it
would be a Function and not a Sub.

A Sub ends with the End Sub statement. Everything in between the sub’s declaration and the
End Sub statement is part of the sub itself.

PROCEDURES: PUBLIC OR PRIVATE

By default all procedures are “Public”. That is to say that they can pretty much be used from
anywhere in the project. For Sub procedures, it also means that they show up in the Tools |
Macro | Macros list as available to be run through that interface and for Functions, public
functions can be used as UDFs. You can explicitly declare a procedure to be Public by
preceding its declaration with the word “Public” like:

Public Sub aPublicSub()

or

Public Function aPublicFunction(arg1 As Variant) As Variant

But sometimes we don’t want the user to have access to a procedure, or don’t want other
modules to be able to use a procedure in another module. For those times, you can make a
procedure only accessible from within the code module that it exists in by preceding its
declaration with the word Private. You’ll notice that all of the Workbook and Worksheet built-in
event procedures are declared as Private. Subs that are declared as Private do not show up in the
Tools | Macro | Macros list, and private functions are not available for use as UDFs. Examples
of private declarations are:

Private Sub aPrivateSub()

or

Private Function aPrivateFunction(arg1 As Variant) As Variant

Private procedures are normally only usable by other procedures in the same module with them.
There is an exception to the rule; you can get around it by using Run “privateProcedureName”.
You can also use the Call command in a similar fashion. See the Excel VBA Help topic on
CALL for limitations in using it. When you use Run or Call the procedure is executed and
control returns to the line of code following the Run or Call statement.

Procedures: Sub and Function Page 12
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

Constants, Variables and Typing

Ready for your first programming lesson? Yeah, I know, it’s about time!

In the process of writing code you are going to find the need to be able to remember things,
compare things and change things. These things are values. You will also find times that you
want to make sure that a value you use in several places in your code does not change. VBA,
and all high level programming languages provide ways to deal with these needs. You may
declare a constant or a variable several different ways and you can decide just exactly what kind
of information that constant or variable may hold.

DATA TYPES

Before we jump into creating our constants and variables, let’s discuss Typing. VBA has several
data, well, types that it can deal with. Being specific with the type of data that a constant or
variable is to hold can improve performance and reduce unexpected errors of a very strange and
unexpected nature. For a complete list of data types, search the VBE Help for the topic “Data
Types”. For once, Help actually makes sense and offers real help to you by listing the numerous
types that it recognizes. These include (refer to the VBE Help topic “data type summary” for a
complete and current list for the version of Excel you are using).

Byte — whole, unsigned numbers from 0 to 255 (1 byte of memory).
Boolean — logical TRUE or False only (2 bytes of memory).

Integer — whole numbers from -32768 to 32,767 (2 bytes)

Long — whole numbers from -2,147,483,648 to 2,147,483,647 (4 bytes)

Single - floating-point numbers, ranging in value from -3.402823E38 to -1.401298E-45 for
negative values and from 1.401298E-45 to 3.402823E38 for positive values (4 bytes)

Double - floating-point numbers ranging in value from -1.79769313486231E308 to -
4.94065645841247E-324 for negative values and from 4.94065645841247E-324 to
1.79769313486232E308 for positive values (8 bytes)

Currency - numbers in an integer format, scaled by 10,000 to give a fixed-point number with 15
digits to the left of the decimal point and 4 digits to the right. This representation provides a
range of -922,337,203,685,477.5808 to 922,337,203,685,477.5807.

Decimal — this is a special type that almost doesn’t exist. The quote from Excel Help tells this
tale: “...signed integers scaled by a variable power of 10. The power of 10 scaling factor
specifies the number of digits to the right of the decimal point, and ranges from 0 to 28. With a
scale of 0 (no decimal places), the largest possible value is +/-
79,228,162,514,264,337,593,543,950,335. With a 28 decimal places, the largest value is +/-
7.9228162514264337593543950335 and the smallest, non-zero value is +/-
0.0000000000000000000000000001.

Note At this time the Decimal data type can only be used within a Variant, that is, you cannot
declare a variable to be of type Decimal. You can, however, create a Variant whose subtype is
Decimal using the CDec function.”

Date — January 1, 100 to December 31, 9999 (8 bytes)

Procedures: Sub and Function Page 13
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
String — Strings are Text. Strings come in two lengths:

String: Variable Length — zero (empty string) to approximately 2 billion characters. (10 bytes
of memory plus the length of the string)

String: Fixed Length — length of the string when declared, 1 to approximately 65,400. (1 byte
per character)

And you thought | was kidding about strings coming in two lengths. To continue and now we
get to some that probably won’t make quite as much sense to you as the list has so far.

Object — a reference to an object that you declare. When a variable is declared as an object it
can take on the attributes of any legitimate object when you use the Set command to assign it to
a specific type of object. An object is much like the Variant type that you are about to see. (4

bytes)

Variant — any variable that is not defined as a specific type is by default of type variant. A
variant can take on the attributes of any other type depending on how values are assigned to it.
Generally you should refrain from declaring variables as type Variant, however sometimes it is
actually required that a Variant be used in some circumstances. Somewhat like strings, Variants
come in two variations (yeah, now | am playing word games)

Variant — with numbers a variant can take on any value up to that of type Double. (16 bytes)

Variant — with text characters a variant has the same limits as a variable length String type, but
it takes 22 bytes plus the length of the text in memory.

Finally, we get to the truly catch-all-nothing-else-will-do type, the user defined type! Yes, you
can define your own type. These are special cases where you use a combination of other types to
define your own. We will use at least one user defined type in our learning in time. For now
picture this: you create a user type that you call EmployeeRecord and it consists of a type that
can hold some text, some numbers, a date or two and even a currency value, any of which can be
referenced as a property of a variable that you declare as type EmployeeRecord.

Oh crap! I’ve forgotten an entire application worth of types!! For each application that VBA is
implemented in, any object in that application can be used as a type. So in VBA for Excel you
can declare variables as specific objects such as the Application itself, a Workbook, a
Worksheet, a Range, a chart, a style, and just about anything else that exists in the Excel world.
We will definitely deal with this kind of assignment of type later on — Excel VBA is just a
cripple if we don’t make use of this incredible ability.

Alright, let’s declare some variables and constants and discuss what we might do with them. But
we are going to do it all for real and write some code to use the constants and variables that we
define. We will start on the next page.

Procedures: Sub and Function Page 14
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-27?
OUR FIRST PROCEDURE

Start by opening Excel with a new workbook. Press [Alt]+[F11] to enter the VBE. In the VBE
use the menu toolbar Insert | Module options to create a module that we can put some code into.

Procedure names should be at least somewhat meaningful and hopefully will give some insight
about their purpose or what they’re going to do. So naturally we will call this procedure
MyFirstProcedure. Go ahead and get it started — click anywhere in the code window below the
Option Explicit statement. If you don’t have an Option Explicit statement at the top of the code
module then start reading back at page 1, please.

This procedure will show you one way of getting an entry from the user, do something with that
data and both show the result on a worksheet and in a message to the user.

Sub MyFirstProcedure()

'this procedure accepts a numeric input from the user

'calculates that value raised to a specific power

‘and places the result on a worksheet and also

'displays it in a message box to the user.

***declare a constant to hold the name of the sheet

'that will receive the results of our calculation

'this lets you call this procedure from anywhere at

‘any time and always have the resultgo to a

'specific sheet. If the sheet's name changes

'you can change it here and the code will

‘continue to function in the same way.
Const dataSheetName = "Sheet1" ' name of sheet
Const raiseToPower = 2 ' square the number
Dim theNumber As Integer ' from user
Dim theResult As Integer ' calculated value
'get the number from the user.
'InputBox accepts any input, even numbers and dates,
‘but it accepts it as text which we may have to massage.
'so we will have to make sure that they
‘entered a number or something that looks like one
'we will display a prompt, a title and create a default
'value of zero
'because theNumber has been declared as an integer, if the
'user enters something non-numeric, a run-time error will
'take place. If you experiment with that and get a
'runtime error 13 (type mismatch), just click the [END]
'button to bring things to a safe stop.
theNumber = InputBox("Enter a whole number", "Integer Input", 0)
'the * symbol means "raise to power"
theResult = theNumber * raiseToPower
'put theResult on a worksheet in cell A1
Worksheets(dataSheetName).Range("A1") = theResult
'display an explanation to the user in a message box
MsgBox theNumber & " raised to the power of " & raiseToPower & " = " & theResult

End Sub

Procedures: Sub and Function Page 15
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

Debug | Bun Toaols Add-Ins \indow

| Comple VBAProject Running your first pr(_)cedL_Jre. There are a couplc_e of_ways
-3 s . to test your code at this point. But before just trying it out,
g c'epInto i it’s a good idea to make a couple of “desk checks”. Read
3 ' through the code again to see if you notice any obvious
= '~ errors, such as perhaps typing * (multiply) instead of »
o i ames | (raise to power): The VBE can also help you with a desk
. check step, and it’s very critical of your code and can help
Add Watch... find problems very early on. From the VBE menu choose
' [Debug] | Compile VBAPTroject.
&< Quick Watch,.. shift+F2 | If it doesn’t find anything wrong, it will simply blink and
Il Toogie Breakpoint rs | donothing else — it doesn’t give “all clear” message. If it
T SN T does find a problem, it will highlight the first offensive
=ear A Rrearpaits | AN line that it finds and tell you what the problem is.
- Fix the problems and repeat the process until it doesn’t
' report any more errors to you.

Figure 12 The VBE Debug Menu
A B] C] D]

You can run the code directly from within the
VBE itself. Click anywhere within a procedure
and press [F5]. This is much the same as using
[Tools] | Macro | Macros from the Excel menu
toolbar. Here is a shot of the results for your first
procedure when things go right:

- |

25 raised to the power of 2 = 625

o = QR —

Figure 13 MyFirstProcedure Results

One thing you may notice both in the code above and in the VBE itself is that some words and
phrases are in one color while others are in a different color. This is by design and is to help you
read and interpret the code. VBA ‘reserved’ words are shown as blue text, while comments are
shown as green text, while pretty much everything else is in black. Your editor may be set up to
show these things in different colors, but there will be differences in colors for the different
meanings of the code pieces. There is one more color that you may see from time to time — red
text indicates a line of code that VBA has determined to contain one or more errors.

RESERVED WORDS

You cannot use words unique to the VBA language as the names for your own constants and
variables. The list is pretty long, you’ll learn what you can use and what you cannot during your
coding efforts. Words like For, Next, Do, Loop, Until, Dim, Const, InStr are reserved for the
language and you can’t use them except as the instructions that they are. It is even considered
bad form to use a reserved word as part of a constant or variable name because it can confuse
anyone reading the code later, so while intNext is a valid name, it is an unwise one to use; but a
name like intNextNamelnList would probably be a good one to use.

COMMENTS AND REMARKS

It is always a good idea to add comments to your code. How many to add is a judgment call on
your part. But a comment should add understanding and not just repeat what the code is doing:

X=X+1"add one to X

Procedures: Sub and Function Page 16
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
That comment doesn’t add any value to the code at all. It would be better to explain why one is
being added to the value of X:

X=X+ 1"increment the pointer into the array holding employee names

That would be a much more informative comment to add (assuming it’s true, of course). It tells
why the value of X is being increased, and informs the reader where to expect to see it used
somewhere else in the code (as an index or pointer into an array [list] of names).

Comments typically begin with the single quote mark as I’ve used in the examples. Everything
following the single quote mark is ignored by the VBA engine. Comments only add to the
understanding of the code and to the size of the source code file — they do not add to the time it
takes to execute the code.

I said “typically” above because you may also start a comment, or remark, with REM, as
REM increment the pointer into the array holding employee names

This is a holdover from earlier times and has its roots in the original interpreted BASIC
language. However, there are restrictions in using it that makes it inconvenient. REM must be
used as the first word in a line in the procedure, otherwise it will generate an error:

X=X+ 1REM increment the pointer into the array holding employee names

Since the single quote mark has become THE accepted VB notation for the beginning of a
comment, using the word REM can actually add some difficulty in reading the code. Using the
single quote in some places and REM in others would add even more confusion. Be consistent,
and simply use the single quote mark as the start of comments in your code.

ERROR HANDLING: A BEGINNING

There isn’t too much that will make your users think of you often and most unfavorably than for
them to have entered a lot of important information and suddenly have the program blow up in
their face with an unhandled error (also called an exception in some languages).

If you try running MyFirstProcess

and supply a word or other non-
Rur-time error ‘13" numeric entry to be processed you
will get a Type mismatch error
because we defined variable
theResult as an Integer type, and
words are not integers. Clicking
[End] will stop the process; clicking
[Debug] will take you to the line in

Help | the code where the error took place.

Type mismatch

Cantinue End

Figure 14 BOOM! Unhandled Errors Are a Pain

So what can we do about such situations? VBA provides the On Error statement to help deal
with both anticipated errors and those not so anticipated. Using one form of it, we can change
our code just a little and keep it from failing as dramatically and allow the user to recover from
the error.

Procedures: Sub and Function Page 17
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
Here is our code revisited, with some comments removed and others added, along with some
error handing added in.

Sub MyFirstProcedure()
Const dataSheetName = "Sheet1" ' name of sheet
Const raiseToPower = 2 ' square the number
Dim theNumber As Integer ' from user
Dim theResult As Integer ' calculated value

"add a test for a possible error
“this form of On Error says “if an error occurs, just ignore it for the moment”
“but do remember that it did happen.
On Error Resume Next
theNumber = InputBox("Enter a whole number", "Integer Input", 0)
'now test if special system object ERR indicates something bad happened
If Err<>0 Then
'something bad did happen, we don’t much care what although we can
'presume it was the anticipated Error 13 — Type Mismatch
MsgBox “Your Input was not numeric. Please Enter an Integer Value”, voOKOnly, "Error”
‘clear the error condition and exit the procedure
Err.Clear
‘also reset error handling to let the system once again deal with problems
On Error Goto 0
Exit Sub
End If
'no error detected, continue on, but first remove
“our “error trap”
On Error Goto 0 * allows errors to be handled by the system again
theResult = theNumber * raiseToPower
'put theResult on a worksheet in cell A1
Worksheets(dataSheetName).Range("A1") = theResult
'display an explanation to the user in a message box
MsgBox theNumber & " raised to the power of " & raiseToPower & " =" & theResult
End Sub

Now if you run the procedure again and enter a word or something other than a number, you are
gently requested to correct the error of your ways and allowed to try again without the entire
application crashing to the ground.

Now we will continue our interrupted discussion of declaring variables and constants.

Procedures: Sub and Function Page 18
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-¢?
CONSTANT AND VARIABLE DECLARATIONS REVISITED

We’ve written a small procedure that involved declaring and using some variables. Now we can
talk about them in a little more depth. One thing we need to discuss is SCOPE. Scope refers to
what parts of a program can see a particular variable or not. There are three levels of variable
scope in VBA:

Procedure Level Scope

A variable declared inside of a procedure has procedure level scope. The variables and constants
we declared in MyFirstProcedure had procedure level scope.

Procedure level variables are created when the procedure begins to execute, they are only
available to be used within the procedure and they cease to exist when the procedure ends at the
procedure’s Exit Sub or Exit Function statement.

As with any good rule, this one has an exception. If you declare the variable using the Static
declaration instead of Const or Dim statements, then the variable will retain the last value
assigned to it when the procedure ended as its initial value the next time the procedure executes.
A trivial example: try placing this code in a module and just press [F5] several times to watch the
value of myStaticCounter go up each time.

Sub StaticsAtWork()
Static myStaticCounter As Integer
‘each time this procedure is called, myStaticCounter value will increase by one
myStaticCounter = myStaticCounter + 1
MsgBox myStaticCounter
End Sub

Even though myStaticCounter retains its last value, it still cannot be accessed to determine its
value outside of the procedure — it retains its procedure level scope.

You cannot use the Public or the Private declarations within a procedure. For all practical
purposes all declarations within a procedure are private to that procedure.

Module Level Scope

The next step up the scope food chain is module level scope. These are constants and variables
that can be used/evaluated/modified (for variables) by any procedure in the module. Module
scope variables and constants are declared in the General Declarations Section of a module.

The General Declarations Section of a module is the area ahead of any declaration of a
procedure. The Option Explicit statement that we’ve already seen is in this section of the
modules. Declare your module scope variables and constants after the Option Explicit statement
and before any procedure declaration.

You can use the Dim and Const statements to make declarations in this area but it is clearer to
the reader if you use the Private declaration statement so that readers will know later that these
variables and constants are private/local to the module:

Private anyModuleLevelScopeVariable As Variant
Private Const anyModuleLevelScopeConstant = “The whole module can see me!”

Procedures: Sub and Function Page 19
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
Why specify Private? As you are about to see, Public (or entire VBAProject scope) objects are
also declared in this section of a module, any standard module.

Public Scope

Public is a term that was previously Global. A variable or constant declared as Public in the
General Declarations section of any standard module has visibility/accessibility in any procedure
in any module in the entire project.

Why not just declare everything Public and be done with it? Because in more than the simplest
application you will invariably change the value of a public variable at the wrong time/place
causing yourself mega-headaches in debugging it all. Overall it is best to keep the scope of your
declared values at the lowest level possible. You will have fewer problems and easier debugging
all around by doing that.

| personally like to put all of my Public constants and variables into a single module with
comments provided to explain where they are used and what they are used for. This provides a
single central point of management for the Public values.

What are candidates for Public values? Look for things that you find yourself using repeatedly
for the same purpose in several areas of your project — perhaps using the same worksheet name
to perform operations with the sheet; definitions of the layout of those worksheets, constants that
your logic depends on heavily and are used in multiple areas.

When to Use Constants and/or Variables

One question that comes up from time to time is “why use constants at all — why not just use
their value(s)?”. I’ll answer your question with a question: which is more informative to you
here?

If ActiveCell.Row < 4 Then
Or
If ActiveCell.Row < firstRowWithData Then

Not only is the second form more understandable, it keeps you from having to track down every
place you’ve used 4 as a value and trying to figure out if you mean the first row with data on a
sheet, or are comparing ages of pre-school children, or seeing if the word Mississippi has the
correct number of 'i'sin it.

Finally, using named variables/constants helps prevent typographic errors. [Debug] | Compile
VBAProject will find errors in variable/constant name spellings rapidly, but it cannot do
anything at all to determine that you typed a 4 when you really meant to type a 5 and just had
your finger on the wrong key when you typed it. A common error, known as FFS (fat finger
syndrome).

Procedures: Sub and Function Page 20
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

Good Programming Practices

We’ve already discussed one good programming practice that is beneficial: having the VBE
automatically require declaration of constants and variables before their use.

Most good programming practices fall into the category of either good common sense or of
following a generally accepted standard, as with the use of the single-quote/apostrophe as the
beginning of a comment.

Good programming practices will improve your chances of actually writing Good Code.

WHAT IS GOOD CODE

There are probably as many definitions of “good” code as there are programmers. My definition:
Good Code is code that performs the task required and does so reliably. Good Code is also
maintainable.

Some examples of Good Code at work in this day? WinZip. IrfanView. Microsoft’s Calculator
and Notepad. They do what they’re designed to do, they do it simply, and they do it reliably.
I’'m sure you can think of many more examples, just as you can think of programs written with
“bad code” — that are far less than you expected when you acquired them.

Good Code also takes the user into consideration — making things easier for them, performing the
application’s tasks with a minimum of fuss, bother and annoyance. This is the human-machine
interface side of code design and development. Working closely with your client or studying
your intended audience can help you design an effective, usable interface for your application.

GOOD PROGRAMMING PRACTICE #2

Be consistent. If you don’t follow any published standards for conventions such as commenting,
constant/variable naming, source code listing formats or others, then at least be consistent within
your own code in the way you do these things. This will make your code more readable and
understandable to you, and will tend to making extending the code to include new features,
modify old ones and simply fix bugs than if you do things one way today and some other way
the next. That is not intended to keep you from changing the way you do things as you discover
better ways to do them.

MORE GOOD PROGRAMMING PRACTICES

As we encounter situations in our coding examples where a Good Programming Practice can be
demonstrated, they will be pointed out and labeled as GPP #n That may be more effective in
showing them to you ‘in context’ than just describing them in a list here.

Good Programming Practices Page 21
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

Looping Structures

One thing that computer code is good at doing is something dull and tedious for us human types:
repetitive actions. A macro in itself is a way of doing something repetitive, with varying levels
of complexity, over and over with ease and without boring ourselves to death doing it. Each
time we run a Macro or cause a procedure to be called, we are performing some repeated
process.

Within procedures we may also need to perform a particular task many times. The use of
looping structures such as:

For ... Next
For Each ... Next

Do ... Loop

Do ... Until

and

Do ... While

All give us slightly different ways to perform actions, calculations and other processing many
times in a relatively small section of code.

GPP #3:

Keep the amount of work inside of a loop to a minimum. If there is something that can be done
outside of the loop before starting it, do it outside of the loop.

For example let us assume you want to take a list of numbers you have in a range and increase
those values by some percentage that you have stored. You could code it like this:

For Each anyValue In listOfValues
anyValue = anyValue * (1 + percentincrement)
Next

The problem with this is that each time through the loop, the value of 1 + percentincrement must
be recalculated. You can increase the efficiency of that loop by calculating that value before
entering the loop, as:

tempValue = 1 + percentincrement
For Each anyValue In listOfValues

anyValue = anyValue * tempValue
Next

FOR ... NEXT LOOPS
The simplest and oldest loop structure in Basic is the For...Next loop. The general form, or
syntax, of the command is

For counter = startCount To endCount Step stepValue
Executable statements and comments to be performed
Next

For is a reserved word that marks the beginning of the loop.

Looping Structures Page 22
Copyright © 2008, 2014 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
counter is a variable that is used to control how many times the code within the loop is
performed.

startCount is a variable, constant, or calculated value that determines the initial value of counter.
To is a required reserved word that separates the starting value from the ending value

endCount is a variable, constant, or calculated value that determines the maximum value that
counter may be assigned before the loop terminates.

Step (and stepValue) are optional arguments that allow you to change the way counter values
between startCount and endCount are calculated. stepValue may be a variable, constant, or
calculated value. The default, when Step stepValue are omitted from the command, is 1 (one).

Next is a reserved word that is used to mark the end of the For loop.

FOR EACH Looprs

This is a special loop that works very much like the For...Next loop, but it loops with ‘objects’
within larger group of the same type of objects. The Excel engine is smart enough to figure out
that part of it. That is, if your larger group is Worksheets, it knows to work with each individual
worksheet in the group; or if your range is a group of cells, it knows to work with each individual
cell within the group.

Typical setups for using For Each might be similar to these:

Dim groupOfCells As Range ‘ remember, a range can refer to 1 or more cells

Dim anySingleCell As Range ‘ remember, a range can refer to 1 or more cells

Set groupOfCells = ThisWorkbook.Worksheets(“SomeSheetName”).Range(“A1:A500")
For Each anySingleCell In groupOfCells

... do some work within the loop

Next

Here is an example that would protect all sheets in the active workbook without a password.

Dim anySingleSheet As Worksheet

For Each anySingleSheet In ActiveWorkbook.Worksheets
anySingleSheet.Protect

Next

Looping Structures Page 23
Copyright © 2008, 2014 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
A For...Next loop will always execute at least one time. Don't believe me? Try this code:

Sub test()
Dim x As Integer

Forx=0To0
MsgBox "inside of the loop"
Next
End Sub

You will see the message once, proving that the code inside of the loop did run.
An exception to this rule would be if you improperly sequenced the from and to values as:

Sub test()
Dim x As Integer

Forx=5To4
MsgBox "inside of the loop"
Next
End Sub

To count backwards you must use the Step portion of the command and specify a negative value.

Sub test()
Dim x As Integer

Forx=5To 4 Step -1
MsgBox "inside of the loop"
Next
End Sub

In these cases, the value of the counter after it exits the loop will be one step-value less than the
lower limit. Note that inaccuracies can creep in that generally don’t affect the actual number of
loops, but the highly critical will notice them. These are caused by the inability of a binary
system (the computer) to accurately represent all analog numbers. Try this loop to see this in
action:

Sub test()
Dim x As Single

Forx=1To 0 Step-0.1
MsgBox x
Next
MsgBox x
End Sub

Many of those numbers don’t look much like .9, .8, .7, .6, .5, .4, .3, .2 and .1 do they?

If a For...Next loop runs to completion, the value of the counter value will be one more than the
endCount. (but remember that In these cases, the value of the counter after it exits the loop will
be one step-value less than the lower limit.) Example:

Looping Structures Page 24
Copyright © 2008, 2014 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
Sub test()

Dim x As Integer

Dimy As Integer

Forx=1To10
y=y+1
Next
MsgBox "Counter x is: " & x & vbCrLf & "Value y is: " &y
End Sub

The message displayed should be:

i 5
Microsoft Excel Iﬁ

Counterxis: 11
Value y is: 10

Figure 15 For...Next Loop Counting Results

What does this tell us? Simply that the test for the counter value is made at the For statement,
not at the Next statement. Generally this isn't information of great interest, but it can be handy to
know at times.

Note: in the MsgBox statement, vbCrLf is a built-in VBA constant that provides a newline; that
is, it provides a Carriage Return and a Line Feed, thus they called it vbCrLf.

Looping Structures Page 25
Copyright © 2008, 2014 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?
Do... Loors

There are several varieties of the Do loop and this variety makes them a bit more versatile than
the sturdy, but rather plain vanilla For...Next loop.

In exchange for this versatility, you have to do a little more work in the form of helping to
control when the loop terminates. Consider this simple loop.

Sub LoopForever()
Do
MsgBox "Pete and Repeat were in a boat. Pete fell out. Who was left?"
Loop
End Sub

Use [Ctrl]+[End] to break into that code if you actually try running it.

There is nothing in that code to stop the loop from processing, so it pretty much runs forever.
While there are times when you may actually choose to implement such a loop, you usually want
a way to halt one either manually or automatically. We will rewrite the code a little to get it to
halt automatically after having annoyed you just a little.

Sub LoopForever()
Dim loopCount As Integer
Dimy As Integer
Do Until loopCount = 3
MsgBox "Looped " & y & " times."
loopCount = loopCount + 1
y=y+1
Loop
End Sub

the value of loopCount is used to exit the loop once it reaches a value of 3. How many times will
the message appear? No, not a trick question - the message will appear 3 times.

But what happens if we change it just a little bit?

Sub LoopForever()
Dim loopCount As Integer
Dimy As Integer
Do While loopCount < 4
MsgBox "Looped " & y & " times."
loopCount = loopCount + 1
y=y+1
Loop
End Sub

So I'll ask the question again: How many times will the message appear? In this case it becomes
a trick question. You'll see the message 4 times. And yet logic tells us that 3 is less than 4, but
the test must be done at the Do While statement and that means that we get an extra, sometimes
unexpected pass through the loop. The technical reason is that the loop started at ZERO!

Looping Structures Page 26
Copyright © 2008, 2014 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
Sub LoopForever()
Dim loopCount As Integer
Dimy As Integer
Do
MsgBox "Looped " & y & " times."
loopCount = loopCount + 1
y=y+1
Loop While loopCount < 4
End Sub

Again the message will be displayed 4 times because even though we've moved the test to the
bottom of the loop, we still have to get some value into loopCount that equals or exceeds 4 in
order to exit the loop. So be sure you know how many times your loop will execute if you are
depending on it to exit after a specific number of iterations. If we rewrite the last section like
this:

Sub LoopForever()
Dim loopCount As Integer
Dimy As Integer
Do
MsgBox "Looped " & y & " times."
loopCount = loopCount + 1
y=y+1
Loop While loopCount < 3
End Sub

Then the message will be displayed 3 times, presumably as you expected it to. You could also
change that last statement to:

Loop Until loopCount = 3
and get the message displayed 3 times.

Looping Structures Page 27
Copyright © 2008, 2014 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
What about a loop that needs to execute some undetermined number of times? Let's say that you
need to pull the characters off of the front of a string of characters until you encounter a numeric
character, but you don't know where in the string the number will be found. You can use a 'flag'
to indicate when you have met the requirement. Here is an example:
Sub StripToFirstDigit()

Dim strippedText As String

Dim positionInString As Integer

Dim allFinished As Boolean ' default value when declared is FALSE

Const testPhrase = "abcdef123xyz"

Do Until allFinished ' loop until flag allFinished becomes TRUE
positionInString = positionInString + 1
If Mid(testPhrase, positioninString, 1) >="a" Then
strippedText = strippedText & Mid(testPhrase, positionInString, 1)
Else
'found something that's not a letter, assume a number
allFinished = True ' set flag to exit the loop
End If
Loop
MsgBox "Stripped Text is: " & strippedText & ™"
End Sub

We had to do a little more work but we got a lot of added functionality. Try changing the value
of constant testPhrase and see how it works. Just make sure you have at least one non-alphabetic
character in the phrase since we haven't tested to see if positionInString ends up becoming
greater than the number of characters in testPhrase.

Looping Structures Page 28
Copyright © 2008, 2014 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-27?
Do LoorPS CONTROL SUMMARY

For those that may have gotten confused along the way, here is a short description of how the
different versions of Do loops work:

Do
'your code within the loop will run (execute) until you take some action within the code to force it
'to exit the loop using an Exit Do statement.
'without such a control, it becomes an "infinite loop".

Loop

Do Until testCondition
'your code within the loop will execute only while the testCondition is FALSE.
Loop

Do
'the code executes at least one time and will continue to execute within the loop as long as the
'testCondition is FALSE

Loop Until testCondition

Do While testCondition
'your code within the loop will run (execute) only while the testCondition is TRUE.
Loop

Do
'the code executes at least one time and will continue to execute within the loop as long as the
'testCondition is TRUE

Loop While testCondition

Generally there's no accepted standard for which of the Do Loop types (While or Until) to use
other than your own personal preference. Typically you can write either type to accomplish the
same task and get the same result.

Looping Structures Page 29
Copyright © 2008, 2014 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

Decision Makers

There are two primary decision making tools in VBA: If.. Then and Select Case. We can look
at the loop structures as decision makers also, but they are kind of indirect decision makers. The
If...Then, and its brothers If... Then...Else and If...Then...Elself...Else along with Select Case
are very definitely there to assist you in changing the path of the program or the logic of a
process; i.e., they help you make decisions about what to do next based on the result of
calculations or actions at a specific point in your process.

IF...THEN

This is the most basic of the decision makers. Using it assumes there is pretty much only one
test to perform and only one action to take if the result of the test is true. It can be written as a
one-line statement such as:

IfX=2ThenY =5

Very straight forward statement: if at this point in the process X equals 2, then set Y to 5. If X
does not equal 2 at this point, Y will retain whatever value it has at the moment.

A personal preference of mine is to make even this simple statement a "block™ because 1 think it
makes the code more readable and understandable. This is exactly the same statement, but in
"block” form:

If X=2 Then
Y=5
End If

This form also allows us to easily and clearly perform more than a single action based on the
result of the decision, like this:

If X=2 Then

Y=5

Z=9

aStringVariable = "X was 2"
End If

So in this example, we perform three actions when we find that X has a value of 2. The End If
statement also gives us a clear view of what will be done when X = 2 by defining the end of the
If Then code block.

But what if we need to do one thing when X = 2 and do something else when it doesn't? Enter
the If...Then...Else statement.

Decision Makers Page 30
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-27?
IF...THEN...ELSE

Taking If...Then to the next step, this decision maker lets us exercise a couple of options based
on the value of something. This next snippet of code shows us how it can be used:

If X=2 Then

Y=5

Z=9

aStringVariable = "X was 2"
Else

Y=1

Z=3

aStringVariable = "X was not 2"
End If

So here we are saying that when X = 2, we set Y, Z and aStringVariable to particular values, but
if X is some value other than 2 then we set those same variables to a different set of values.

We can extend this decision making even farther using Elself along with what we've already
seen.

IF...THEN...ELSEIF...ELSE

Using this combination we can test for different values of a particular item. For this example, we
need to set Y, Z and aStringVariable to specific values when X is either 2 or 3, and another set of
values when it is not 2 or 3.

If X =2 Then

Y=5

Z=9

aStringVariable = "X was 2"
Elself X =3 Then

Y=0

Z=99

aStringVariable = "X was 3"
Else

Y=1

Z=3

aStringVariable = "X was neither 2 nor 3"
End If

You may actually have many Elself ... Then statements before the final Else statement, making
this a multi-conditional decision maker. But for the times when you have many decisions to
make based on the value of one (or more) variable value(s), the Select Case statement is more
efficient.

Decision Makers Page 31
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-27?
SELECT CASE

Select Case is used much like If...Then and its variants. It's just more compact, provides
improved readability and is more efficient than stringing a long series of Elself ... Then
statements into the code.

To show how it can work, we will use the same situation that we had for the last example in the
If...Then variants section.

Select Case X ' base our decision on the value of X
Case Is=2 Then
Y=5
Z=9
aStringVariable = "X was 2"
Case Is=3 Then
Y=0
Z=99
aStringVariable = "X was 3"
Case Else
Y=1
Z=3
aStringVariable = "X was neither 2 nor 3"
End Select

You can have any number of Case Is type statements, allowing you to make decisions based on a
large number of possible values for a variable.

You do not HAVE to have a Case Else statement, but it is wise to have one. It doesn't even have
to do anything, but having a "do nothing" section tells others reading the code later that no action
is taken if a value doesn't meet one of the stated values. Here's a "do nothing" setup:

Select Case X' base our decision on the value of X
Case Is=2 Then
Y=5
Z=9
aStringVariable = "X was 2"
Case Is=3 Then

Y=0
Z=99
aStringVariable = "X was 3"
Case Else
"no action required or desired when X is not 2 or 3
End Select

The Select Case block always ends with the End Select statement.

Decision Makers Page 32
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

Data Sources
There are lots of sources for data to work with inside of Excel:

e Cells on worksheets

e Files external to the Excel workbook (and I include things like queries to obtain data
from a variety of sources such as database files or from a networked location or internet
site)

e The user!

There are a couple of things you need to keep in mind when getting data from any source:

e You have to know where to find it, and what actions to take to get it into your VBA code
to work with, and

e Remember that what you expect to get is not always what you actually do get. We'll
cover this aspect some more in a short discussion of data validation later on.

DATA FROM WORKSHEETS: INTRO

Within VBA you can get data from any cell or group of cells on any worksheet in any open
workbook. Later on I'll show you how to do this without ever leaving the cell that is currently
active on your screen.

You will need to know where to look for the information or how to find it, and unless you are
working in a fairly structured situation, you may need to perform some data validation on it
before trying to use it in your code.

DATA FROM EXTERNAL SOURCES

The possible external sources and their types is so varied that we can't really cover them all here.
You'll need to know how to either open any external data file such as a .txt, .dat or .csv file and
read from it and you'll need to know the format of the data in the file. Usually you have an idea
about these things before you begin writing the code to access the external files, so don't worry
about it at this time. Sometimes finding out what's in a file and how it's all laid out requires
some 'legwork’; that is, you may have to open the file and bring in the data without using Excel
and simply examine it to see what's what within it.

When querying databases you will probably have some guidance from those who created the
database and maintain it as to what tables and fields within those tables you are going to need to
reference to get what you want from it. This takes us into the realm of SQL (Structured Query
Language) and that's definitely beyond the scope of this book!

USER PROVIDED DATA

Working with data provided "on the fly" or in "real time" from the end user is almost an art. You
cannot EVER be certain that they'll provide the information you've requested in the form that
you need it or that it will even be the same kind/type that you asked for! User input data is
almost always in dire and desperate need of data validation before using it.

Data Sources Page 33
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
I can quickly think of four typical ways of getting data from a user in Excel:

e They type it into cells on worksheets and you read it from there - which goes back to the
earlier section on DATA FROM WORKSHEETS

e Data entered by the user in response to the use of the InputBox$() function in VBA. This
is useful for getting single quick input from the user when you need it.

e Evaluating the user's response to a MsgBox$() function that uses several buttons, as
[Yes], [No] and/or [Cancel] on it to allow the user to indicate their response to the prompt
you have provided as part of the message displayed. Very little data validation is needed
with this one.

e Inputs provided on a UserForm. A UserForm allows you to get many inputs at once from
the user. This is a good way to gather lots of information at once, but you're going to
need to do data validation on a lot of it of some type before actually making use of it.

We'll take some quick looks at the last 3 of these in this section, nothing in great detail, but
hopefully enough to give you an idea of the abilities of each of those 3 methods of obtaining
information from the user.

INpPUT USING INPUTBOXS$()

In VBA code the InputBox$() function is coded as shown below. For this example we are going
to ask the user to enter what we plan on using as a starting balance for a worksheet that is set up
to act as a checking account program of some type. So we are expecting a numeric input that we
will want to use as money (Currency).

Sub GetACurrencyEntry()
Dim dataAccepted As Boolean ' a flag to tell us when we think the input is good
Dim userlnput As Variant ' use variant to accept any type of entry the user may provide
Dim acceptedinput As Currency ' we will store the validated/accepted amount in this variable

dataAccepted = False ' initialize to remain in the loop until a good entry is made
Do Until dataAccepted ' implied test of dataAccepted = True
userlnput = InputBox$("Enter the Starting Balance for the account:", "Starting Balance", 0)
If IsNumeric(userlnput) Then
'looks ok, at least it starts with numbers
dataAccepted = True ' so that we will exit this loop
Else
‘oops, not looking very good
MsgBox "Please enter a dollar amount to continue..."
End If
Loop
acceptedInput = Val(userinput) ' get the numeric value of the validated/accepted entry
... continue on to use acceptedinput in your code
End Sub

As you can see, we've set up a loop to keep asking the user for some numeric entry until we get
one from them. We use the Boolean flag, dataAccepted, to tell us when we think it is alright to
use what they entered later on in our processing.

Data Sources Page 34
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
Let's quickly look at the line of code that gets the input from the user:

userlnput = InputBox$("Enter the Starting Balance for the account:", "Starting Balance", 0)

InputBox$() can also be written as InputBox() but | use the $ with it as a reminder that if
something is entered, it is going to be a string/text even if it looks like something else such as a
number, currency amount, time or date.

InputBox$() takes 3 basic parameters:

e A prompt to be shown to the user,
e some text to use as a title in the dialog and
e adefault value to use if the user just clicks the [OK] button.

Here's what this looks like at runtime:

M 3
Starting Balance A Iﬁ

Enter the Starting Balance for the account:

Cancel

[
LE‘

Figure 16 InputBox$() Example

You can see where the three pieces of information were used when the line of code was
executed. If the user just presses [Enter] or clicks the [OK] button at this point, we get zero (the
default value we provided) as the starting balance.

But if they don't enter something that looks like numbers, they will get a reminder message and
the dialog will be shown to them again:

Ir 3
Microsoft Excel ﬁ

Please enter a dollar amount to continue...

OK
Eﬂ

Figure 17 InputBox$() Validation Failed Message

But there are 2 situations that can come up here that we haven't taken into consideration in our
data validation: The user clicks the [Cancel] button or the user clicks on the close dialog X.

In both of those cases we get a zero length string back into variable userlnput, not a zero or
anything else. We have to expect this to happen, look for it, and decide what to do if it happens.
That's more of the data validation process. Here is the code segment with a test for this situation
added to it:

Data Sources Page 35
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
Sub GetACurrencyEntry()

Dim dataAccepted As Boolean ' a flag to tell us when we think the input is good

Dim userlnput As Variant ' use variant to accept any type of entry the user may provide

Dim acceptedInput As Currency ' we will store the validated/accepted amount in this variable

dataAccepted = False " initialize to remain in the loop until a good entry is made
Do Until dataAccepted ' implied test of dataAccepted = True
userlnput = InputBox$("Enter the Starting Balance for the account:", "Starting Balance", 0)

If userlnput ="" Then
‘user either clicked [Cancel] or closed the dialog window
‘'we have to decide what to do in this case and code it
'into this section

End If

If IsNumeric(userlnput) Then
'looks ok, at least it starts with numbers
dataAccepted = True ' so that we will exit this loop
Else
'oops, not looking very good
MsgBox "Please enter a dollar amount to continue..."
End If
Loop
acceptedInput = Val(userinput) ' get the numeric value of the validated/accepted entry
... continue on to use acceptedinput in your code
End Sub

You're probably going to ask "Well, teach, what do we do if userlnput = ""?" My answer is "that
depends”. It depends on how you want to handle it. You could toss up a prompt asking if they
wish to continue and put up the dialog again or you could put the default value of 0 into variable
userlnput just as if they'd clicked [OK] or you might even ask them if they want to quit futzing
around with their checkbook for now and if so, shut down so they can restart everything later on.

Data Sources Page 36
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-27?
USING MSGBOXS$ AS USER INPUT

You can use the MsgBox$() [which can also be coded as MsgBox()] as a fast, reasonably
accurate method of getting a short Yes/No answer from your user during your processing.

Normally MsgBox() just puts up a message with an [OK] prompt and continues to process after
the user hits the [Enter] key or clicks the [OK] button. Code for such a thing might look like
this:

MsgBox "We are on page 34 of the tutorial. Press [Enter] or click [OK] to continue",
vbOkOnly,"Checkpoint"

fi b
G I ==

We are on page 34 of the tutorial. Press [Enter] or click [OK] to continue

Figure 18 Plain Vanilla MsgBox$() Displayed

But what if we want the user to make a choice right now? We could change it a little bit and ask
if they want to continue reading or take a break. You can 'capture' and evaluate the user's
response to a MsgBox() by forming it as a function and using it as a test, like this:

Sub Checkpoint()
If MsgBox("We are on page 34 of the tutorial. Would you like to continue”, vbYesNo, "Checkpoint") = vbNo Then
Application.Quit ' close Excel!!
End If
'just continue on here...

End Sub
[_-_ o |

We are on page 34 of the tutorial. Would you like to continue

Figure 19 MsgBox Used to Obtain User Input

By enclosing the prompt, button choices and title within () we have turned it into a function that
returns a code associated with the button they click. It would look like this on screen:

vbOkOnly, vbYesNo and vbNo are constants automatically available within VBA - you don't
have to predefine them anywhere in your own code. There are others that can be used with
MsgBox also, such as vbExclamation, vbCritical, vbYesNoCancel and some that let you
determine which button on a multi-button message is the default (is used if they just hit the
[Enter] key).

Data Sources Page 37
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
USERFORM AS A DATA SOURCE

I'm going to show you a big form from an actual project I'm working on when I'm not trying to
finish up this book. We won't discuss all of it, but we will take one or two of the controls on it
and discuss them to show things like how to validate the data and how to get it from the form out
into a cell on a worksheet.

r)

Madel ID: | ﬂ Current Configuration Total Cost (JSD)

| £0.00

* Tangential " High Entry

2]]

lsCharge [ransimon

[

* To Airlodk (" To Flare Trough Auger

* None (" Magnehelic " Photohelic
Hopper Choice

(* &0-Degree (" 70-Degree
[Support Structure

[Ladder and Cage

[Galvanize Ladder and Cage

I S 8 S S

[Secondary Service Platform

Add to Quote Sheet and Clear Clear and Close Without Action

Figure 20 Multi-Control UserForm

I chose this one because it uses many of the possible controls you can use on a user form. It
starts off using a ComboBox control to present a list of possible models of a piece of equipment
that the user can select from to begin to build up a cost for the item. The astute observer will
notice that everything except that ComboBox is disabled right now. That means that the user can
only choose a Model ID at this point. That is part of my own data validation here: they can't
choose pieces of an equipment item without first telling what equipment item they are going to
be working with. Once they choose from the list, everything else gets set up to hold and accept
legitimate values from the user. All of the other controls on this form really need no further data
validation because the form itself and the way option buttons and check boxes within groups
work does it for me automatically. What | want you to see here is the variety of controls you can

Data Sources Page 38
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
put on a user form. One control that is definitely missing from this one is a plain text entry area
such as you might use to get someone's name, address or other information. Here is another
form from the same project that has lots of those.

M |
Client Company Mame:

Address Line 1 |

Address Line 2 |

City | state | PA 7| 7ipe

Corporate Web Site: |

Phone FaX

Point of Contact
Mame:

|
|

Phane | Mabile | FaX |
|

Quotation Prepared By
Mame: |

Save and Continue Cancel: Close Form Without Saving the Data

Figure 21 UserForm With Text Entry Boxes

Each of the text entry boxes on this form has a unique name, just as each of the controls on the
other form do. That allows us to work with them in the VBA code. Actually on this form there's
not much done in the way of serious data validation because most of the entries are things that
we pretty much don't have an idea of what they should look like. But we can check to make sure
that something was entered into any areas that we consider mandatory information, and we might
check that the zip code looks like a zip code or that phone numbers look like what we expect a
phone number to look like ... or not. But even that can get almost out of hand. Unless we tell the
user how to enter a phone number somewhere, it might come to us several ways, like:

(800) 555-1212 or 800.555.1212 or 800 555-1212

or others. So I'm just taking it on faith that the user has enough common sense to enter phone
numbers in some fashion that is acceptable and understandable to others that may look at the
information later on.

On this form nothing much happens until you click one of the two buttons at the bottom of the
form. If you click the [Cancel: ...] button, well, I just close the form and that's that. But if the
user clicks the [Save and Continue] button, then there is work to be done: we have to take the
information from this user form and put it someplace more permanent. In this case it is
going to be moved to a sheet in the workbook.

Data Sources Page 39
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
There is a sheet in the workbook named SysSheet that is used to store information like this until
the user finally tells the program to build a quote for a customer out of all the information that's
been entered. We start putting the client's information from this form onto that sheet at cells A2
and B2, with column A being a description of what's in column B. Hopefully the names | gave
the text boxes on the userform are as informative as | hoped they would be when | created it and
you'll be able to see which ones are being moved onto the worksheet in the code. I've not shown
all of the code here because there are a lot of text boxes...

Private Sub cmd_SaveData_Click()

ThisWorkbook.Worksheets("SysSheet™).Range("A2") = "Client:"
ThisWorkbook.Worksheets("SysSheet™).Range("B2") = Meltxt_ClientCompany

ThisWorkbook.Worksheets("SysSheet™).Range("A3") = "Address 1:"
ThisWorkbook.Worksheets("SysSheet™).Range("B3") = Meltxt_Address1
‘and it goes on and on through all of the text boxes until it gets finished and then
'it tells the user that things seem to have worked out well and after that
'it removes itself from memory with the Unload Me statement below

MsgBox "The information has been saved."
Unload Me

End Sub

Although 1 did not have to be as specific as | have been in this code, it definitely tells exactly
what to do with what:

ThisWorkbook. is optional usually. However since the person may be working on several
quotations in several workbooks, I use Thisworkbook to tell VBA that | mean the worksheet
named SysSheet that exists in the same workbook that this code is being executed in.

Similarly, the Me! associated with the names of the two text boxes used in the example tells
VBA not to be confused by any other forms that may be open or any text boxes that it may see
laying around that have those same names.

Some of you may ask to please explain a little about how controls like the ComboBox,
checkboxes and option buttons in the first userform are referenced or tested in code. So I'll hit
them each quickly and then we'll move on.

Checkboxes and Option Buttons usually have one of two possible conditions: TRUE (has an x or
check in it or the button has a dot in the middle) or FALSE (checkbox is empty and same for the
circle of the option button). So you can write code like this:

If checkboxIncludeLadder = True Then

or

If optionButtonChoose1HPENgine = True Then

and take appropriate action based on the results of those kinds of tests.

As for the ComboBox, it has a couple of properties that can be used. You can use its .Text
property to get whatever selection was made in it verbatim. Or you can use its .ListIndex

Data Sources Page 40
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
property to find out which item in the list was selected. The ListIndex values start at zero, so if
Listindex = 0 it means that they chose the first item in the list. If they did not choose an item in
the list, the ListIndex value is a negative 1 (-1).

So How Do I Display or Remove a UserForm from the Screen?

To present a userform on the screen, you .Show it. Somewhere in your code you'll need a line
that uses the name of the form that you give it during design along with the .Show method, as:

UserForm1.Show

or

GetCustomerInformationForm.Show

You can simply write a macro to do it if you need to:

Sub ShowCustomerinfoForm()
GetCustomerlnformationForm.Show
End Sub

There are two ways to remove a form from display. The code | presented earlier uses
Unload Me

which completely removes the form from memory. This has the side effect of also removing all
information that was entered into it at that time. | could write that line as Unload Me because it
was executed from within the form's code module. If | had needed to do that from some other
section of code | could have written it as:

Unload GetCustomerInformationForm

But you can simply hide the form from view which keeps it in memory and retains the
information that was last placed on it. Two ways of doing that:

First, from within the form's own code segment:

Me.Hide
Second, in some other code segment

GetCustomerinformationForm.Hide

And that's how you deal with UserForms. That is not to say that it is all that can be done with
forms and controls on them. Remember that this is an Introduction to things, not a definitive
bible covering every aspect of every possible command, object, function and feature in VBA or
Excel. 1 actually used different code in my project to move the data from the form onto the
worksheet, but what | wrote above will work and hopefully was easy for you to understand at
this point in the tutorial.

Data Sources Page 41
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
DATA FROM WORKSHEETS: A STUDY

Within VBA you can get data from any cell or group of cells on any worksheet in any open
workbook. The studies here show how to access that kind of data using user defined objects that
represent the other workbooks, worksheets and ranges of cells on them. This method has some
distinct advantages:

e It’s FAST! You’re working with in-memory representations of those objects and there
simply isn’t anything faster going on in your computer than memory accessing.

e [tis neat. Because you are working in memory, there’s no need to actually jump around
in within Excel selecting various workbooks, worksheets and cells. Because you can get
to these directly in memory, there’s no distracting (and slow) flickering of the screen as
you manipulate the data.

Project 1: Copy Between Workbooks

Ok, this one is more my project than yours — there’s no work for you to do except examine the
code and observe the results. The project consists of two workbooks:

Project01_WBO01.xls and Project01_WB02.xls

They are available by clicking the appropriate link (right-click and choose Save Target As) on
this page:

http://www.jlathamsite.com/LearningPage.htm

The code is all in Project01_WBO01.xls (WBO01) while the other workbook, WBO02, contains data
that we want to move into WBO01. There are three text boxes on the first sheet of WBO1 that are

associated with VBA code. The first one activates a macro that was recorded while individually
copying each of the data items from WBO02 into the 3" worksheet in WBOL1.

To observe the difference in performance between the recorded macro and the custom code in
WBOI, first try clicking the “Step 2” button. The object at this time is to simply see how long it
takes to copy a total of 167 entries from the WBO02 into WB01. Obviously, both workbooks
must be open for this to take place.

The Step 2a and Step 2b ‘buttons’ each run a version of custom written VBA code to achieve the
same results. The only difference between the two procedures is that one of them has a slight,
but probably not humanly noticeable speed advantage over the other. But they definitely have a
visible speed advantage over the recorded macro.

Other things to notice when examining the code in WBOL1 is that the recorded macro is absolutely
not robust or versatile: add another item of information in WB02 and it won’t get copied over
into WBO1; delete an item that’s already in WB02 and you end up with a ‘hole’ in the
information transferred over into WBO01.

So now we see that not only is the custom code faster and more compact than the recorded
macro, but it is also more robust. It needs no further attention or maintenance no matter what
changes you make to the information in WBO02.

The custom written VBA code demonstrates how to use objects in VBA to reference information
in an entirely separate workbook, and can easily be adapted to work for you with the same
workbook or across more than just two workbooks.

Data Sources Page 42
Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://www.jlathamsite.com/LearningPage.htm

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
DATA FROM TEXT FILES: A STUDY

Project 2: Importing Data from a Text file

Often you don’t have the luxury of working with another Excel file. But many applications have
the ability to either be saved as, or to export their information to what is known as an ASCII text
file. You’re probably used to seeing them as .TXT files and they can be opened and read easily
with a program such as Microsoft’s Notepad. Sometimes they are rather specially formatted
ASCII files that you see as .CSV files. CSV stands for Comma Separated Values. Actually
several different characters may be used besides a comma to separate groups of values, but the
name from the original use of the comma has stuck with them. Excel has built-in features to
import data from .CSV files, but other text files may not conform to those standards and you may
want to import those into Excel and nothing but custom code will do the trick for you.

Ok, this one is more my project than yours — there’s no work for you to do except examine the
code and observe the results. The project consists of one Excel workbook and a text file with
sample data in it:

Project02.xls and ProjectO2DataFile.txt

They are available by clicking the appropriate link (right-click and choose Save Target As) on
this page:

http://www.jlathamsite.com/LearningPage.htm

There are some useful snippets of code to take note of and possibly save for reuse. The module
named GetFilenameCode contains a routine that opens up the file browser window and will
return the full path and name of a file you select to the calling routine. This is definitely handy,
reusable code. | blatantly plagiarized that code from

http://www.cpearson.com/excel/GetFileName.aspx

No sense in reinventing the wheel unless you figure a way to make it turn faster and easier.
Chip's website, and others, provide fantastic resources like this at no cost to the user. But I do
believe that credit is always due to the benefactor, so Chip gets the plug from me along with my
gratitude for providing the code.

Within the ReadTextFileCode module, in the ReadATextFile process, there is definitely one line
that deserves some detailed discussion:

ActiveSheet.Range("A" & Rows.Count).End(xIUp).Offset(1, 0) = oneTextLine

The ActiveSheet is the one sheet that is currently selected in Excel. There can only be one
ActiveSheet at any given time.

The .Range(“A” & Rows.Count).End(x1Up) portion of the command says look in column A
beginning at the last possible row and go up the column until you find the end of cells that match
the general character of that cell. The ‘general character’ being either empty or not empty. The
assumption here is that the last cell in the column is empty, so the command is going to find the
last cell in the column that is not empty. If the entire column is empty, it will return 1 for “the
first row is the end of this section”.

The .Offset(1, 0) portion says that once you’ve found the end of the list, move down 1 row in the
same column. So this points at the next empty cell in the column, or if the column is entirely
empty, it points to row 2 of the column.

Data Sources Page 43
Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://www.jlathamsite.com/LearningPage.htm

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
This is a very handy function that is used often to find the next available cell in a column or even
the next available row on a worksheet. It’s fast and it’s effective.

The ReadATextFile() process gives you the basic tools for identifying, opening and reading a
text file. You can add more code within the loop that tests for EOF to further process the lines of
data read from the file and process it as needed.

Data Sources Page 44
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

Programming With Excel Objects

Somehow I've got to give you a good understanding of what's going on when you program using
references to objects rather than with the objects themselves. This method of working with the
objects in Excel such as Worksheets and cells, or even with multiple workbooks, is much faster
than working with them directly, and offers a lot more flexibility for you.

Let's try a couple of examples and hope | get the idea across.

Example 1: Telephone numbers. You're going to run errands today and you know that along the
way you need to make several phone calls. You have some choices on how to 'remember" the
phone numbers you need:

You can open the phone book, look up each number and enter the information into your cell
phone contacts. You've just created a 'reference’ to the numbers in the phone book.

Not wanting to take the time to punch in names and phone numbers into your cell phone contacts
list just so you can delete them later, you grab the same phone book, a sheet of paper and a pen
and write the information down on the sheet of paper. Again, you've created a reference to the
numbers you'll need.

You can drag the entire phone book with you and go through the process of looking up each
number as you need it later on. A bit cumbersome and someone back at the house might want
the phone book for some other reason anyhow.

Hopefully it's obvious that either one of the reference lists you've created will provide you easier
and faster access to the information you need than going to the phone book and looking each one
up later.

Example 2: Credit Card Info. You're on your way to apply for a loan and know that they're
going to ask for current account information such as account numbers, monthly payments and
balance. Again you have some choices:

You can gather up a big stack of most recent statements and scurry off to fill out the application
with them, or you could grab the trusty not-very-high-tech sheet of paper and pencil again and
just write down the simple facts you know you will need. Voila!, a reference to the actual data.

In Excel, your sheet of paper is the computer's memory and your pen or pencil is the Set
command.

ADVANTAGES OF USING OBJECT REFERENCES

I've already mentioned a big one: speed. Performance improves dramatically when you
reference these 'in-memory' objects than if you use more direct methods of coding to work with
them.

By working with the objects in memory, you often prevent having to select different sheets and
cells on them and display the updated data - this alone is a big time saver because updating the
displayed workbook/worksheets/cells is a big time user.

You don't have to actually physically "select” an object to work with it! You may even make
reference to worksheets that are hidden and to the data on them without having to unhide it and
select it and then start selecting cells one by one or in groups on that sheet. Consider the
following code:

Programming With Excel Objects Page 45
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-¢?
PERFORMANCE IMPROVEMENTS USING OBJECT REFERENCES

The following is actually an example of the way | once worked through columns of data on
worksheets in my earlier days of programming Excel. Before | learned of the wonders of using
Objects. This code simply looks in column A of a sheet until it finds an "X" (or "x") in that
column, or until it encounters an empty cell. It presumes that there are no empty cells in column
A until the end of the list.

Sub Find_X_InColumnA_OnSheet1()
Const SeekValue = "X"
Dim startTime As Date
Dim endTime As Date

ThisWorkbook.Worksheets("Sheet1").Select ' wasted time, screen flickers, and
' you won't return to where your user was

Range("A1").Select ' a little more wasted time
startTime = Now() ' for timing the test
'now we really annoy the user by 'scrolling down the worksheet in column A
Do Until IsEmpty(ActiveCell)

If Trim(UCase(ActiveCell)) = SeekValue Then

Exit Do ' we found first "X" or "x"

End If

ActiveCell.Offset(1, 0).Activate ' move to next row
Loop
endTime = Now()
MsgBox "It took " & Format(endTime - startTime, "ss") & " seconds to find X"

End Sub

It's difficult to see the difference in performance of that method than with others without data to
test with. So you can use the Project03_ObjectReferenceBenefits.xls file to get some test data
into a workbook and run the above code (already in that workbook), along with the variations of
it I'm about to present to you to actually see the differences in performance. But if you want to
tough it out on your own, I'll provide all of the code here and you can copy and paste into your
own workbook, just make sure that there's a "Sheet1" in it.

As usual, the file is available by clicking the appropriate link (right-click and choose Save Target
As) on this page:

http://www.jlathamsite.com/LearningPage.htm

Programming With Excel Objects Page 46
Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://www.jlathamsite.com/LearningPage.htm

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

Here is some code to fill Sheetl with lots of entries to test with:

Sub FillSheet1()
Dim LC As Integer
Dim IL As Integer
Dim myTestSheet As Worksheet
Dim baseCell As Range
Dim rowOffset As Long

Application.ScreenUpdating = False
Set myTestSheet = ThisWorkbook.Worksheets("Sheet1")
myTestSheet.Cells.Clear ' delete any info on the sheet
Set baseCell = myTestSheet.Range("A1")
For LC =65 To 90 ' values for A to Z
ForIL =1 To 1000 ' 1000 rows worth of each letter
baseCell.Offset(rowOffset, 0) = Chr§(LC)
rowOffset = rowOffset + 1
Next
Next
Set baseCell = Nothing
Set myTestSheet = Nothing
End Sub

GPP #2: Use Application.ScreenUpdating = False to improve performance. This command tells
Excel to hold off on actually sending updated data/changes to the screen. I've seen the use of this
command improve performance as much as 10 times without any other changes to the code at
all. Think about it: work done in 1 second instead of 10, or even 1 minute instead of 10 minutes.

Application.ScreenUpdating = False is almost a 'set it and forget it' command: When the end of
your Sub is encountered, Excel will automatically turn screen updating back on without any
action or code from you at all. Within a Sub it will remain in effect until you either exit the Sub
or you give a Application.ScreenUpdating = True command.

There's one catch to that automatic reset of screen updating - if your Sub calls other Subs, then it
will be turned back on when one of the other Subs exits unless you remember to set it back to
False after making the call(s).

Programming With Excel Objects Page 47
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
Now let me prove to you that this really works. Here's our first search for X done just the same
way, but without updating the screen as Excel works through all of the cells on the sheet.

Sub FindWithoutScreenUpdating()

'probably 4 to 10 times faster than Find_X_InColumnA_OnSheet1() was
Const SeekValue = "X"
Dim startTime As Date
Dim endTime As Date

ThisWorkbook.Worksheets("Sheet1").Select ' wasted time, screen flickers, and
"you won't return to where your user was
Range("A1").Select ' a little more wasted time

Application.ScreenUpdating = False ' THE time saver here!
startTime = Now() ' for timing the test
'now no more annoying the user by
'scrolling down the worksheet in column A
Do Until IsEmpty(ActiveCell)
If Trim(UCase(ActiveCell)) = SeekValue Then
Exit Do ' we found first "X" or "x"
End If
ActiveCell.Offset(1, 0).Activate ' move to next row
Loop
endTime = Now()
'because we didn't update the screen, the current active
'cell is not 'visible', so we need to pull it up into view
Application.Goto Range(ActiveCell. Address), True
MsgBox "It took " & Format(endTime - startTime, "ss") & " seconds to find X"
End Sub

The time displayed in the message box should be MUCH! less than in our first attempt, even
though the only real changes we made were to turn off screen updating, which in turn 'forced' us
to use the Application.Goto command to bring the cell we found up into view. But think about it
-- we have added instructions to the code and yet we still got a rather impressive performance
improvement.

It just doesn't get much better than that. However, "much" is not "any", and we can improve the
performance more by using Object references rather than directly moving from cell to cell. We'll
see the code for that on the next page.

Programming With Excel Objects Page 48
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
Here's the almost magical code that manages to improve performance even more than we've seen
with Application.Screenupdating = False alone. We have to add some variables and do some
setup that we haven't yet done, but just as with FindWithoutScreenUpdating(), even though
we've added code, we've still improved performance.

Sub FindUsingObjects()

"Just slightly faster than FindWithoutScreenUpdating(), but because

'the timer only has 1 second resolution, you may not 'see' the difference

'but when doing complex operations, this method definitely pays off.
Const SeekValue = "X"
Dim myTestSheet As Worksheet will represent 'Sheet1' but in memory.
Dim seekinRange As Range ' will be used are of column A
Dim anyCellinSeekInRange As Range " individual cells in the range
Dim foundAtCell As String ' to remember where we found the match at.
Dim startTime As Date
Dim endTime As Date

'this Set creates an in-memory reference to sheet 'Sheet1".
'We actually don't even have to choose/select/activate 'Sheet1'
'for this code to work -- except at the very end where we use
‘Application.Goto - that requires that we be on Sheet1 if we
'want things to work right for that part of the test.

Set myTestSheet = ThisWorkbook.Worksheets("Sheet1")

Application.ScreenUpdating = False

startTime = Now() ' for timing the test

'this Set will assign the range from A1 down to the last row in column A
'that has any entry in it. We don't have to worry about empty cells in
'the middle of the list any more!
Set seekInRange = myTestSheet.Range("A1:" & _
myTestSheet.Range("A" & Rows.Count).End(xIUp).Address)
'now we work through the individual cells in memory
For Each anyCelllnSeekInRange In seekinRange
If Trim(UCase(anyCelllnSeekinRange)) = SeekValue Then
'remember the address of the cell with the X in it
foundAtCell = anyCelllnSeekinRange.Address
Exit For ' we found first "X" or "x"
End If
Next
endTime = Now()
'because we didn't update the screen, the current active
'cell is not 'visible', so we need to pull it up into view
Application.Goto Range(foundAtCell), True
MsgBox "It took " & Format(endTime - startTime, "ss") & " seconds to find X at " & foundAtCell
End Sub

| hope that all of this convinces you of the advantages of working with Object references to
objects in Excel. If it doesn't, then you probably might as well stop reading right here, because
you are going to see a lot more of them as we continue onward.

Programming With Excel Objects Page 49
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
Keep in mind that any object that you can work with directly in VBA can be referenced by one
of these "in memory object references”. This includes things like various shapes, controls,
queries, charts, chart elements, etc. But the end result of it all is that modifications you make to
those in-memory object representations are applied to the actual "see it on the screen” object they
represent, or to the unseen object (as hyperlinks or queries) in the workbook.

THE EXCEL OBJECT MODEL AS A REFERENCE

So how do you learn to reference these objects or what their ‘family' (technically a 'Collection’ in
Excel) is? There are a couple or three of ways to do that. One of the more direct methods is to
use the Excel Object Model as a reference. So, where the heck is it at?

. ==

excel ohject model - - F X
Once again, Excel Help actually comes to the rescue. If
—_| . you open the VBE and use it's Help feature and type in
SIS T % Excel Object Model as the search criteria, it will
- (should?) provide you with a link to the Object Model for
e 6 results your version of Excel.
@ Microsoft Excel Object Model Remember that you must be in the VB Editor and use its

Help/search feature. You won't find this with the regular

(@ New Properties (by Object) Excel help/search tool

i) Mew Properties (Alphabetical List) L .
Below is just a small example of what the Excel Object

i) Microsoft Excel Constants model looks like.

i) SmartTag Object Madel

i) Shapes Collection Object Model

But even the Object Model is not always intuitive to
— use. If you look at the one from Excel 2003 (as
Hrdatns | | ange tcontime | depicted here), it's not intuitive that a Worksheet is a
[— member of Worksheets. So sometimes a little stabbing

I tRows around in the dark has to be done. Or asking for help

. | in one of the Microsoft discussion forums!
| j;;‘lf’—: Another way to get a quick 'skeleton’ for the code you
Lewememe—— Ne€€d to piece together is to simply record a macro
= I L | while doing what you plan on getting done in your
] =i code. You can then adapt the code to be more versatile
iames | riotTable | and robust (and more efficient) than the macro you
— recorded. It is also a good way to find out which
Range PvotFormilas Methods (actions) and Properties (attributes) of the
@E objects you are going to work with that you will need
H | to use in your own code.
r{validation]
[Worksheet]
P

Programming With Excel Objects Page 50
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
GPP #3: Don't be too proud to ask for help. If you find yourself in deep waters and can't seem
to figure out what it is you need to work with or what to do with what you have found, then by
all means ask for help.

Help sources can range from Excel's own "Help" tool, either in Excel or in the VBE to asking for
assistance in any number of very good on-line discussion communities, or just searching for
examples of code on the internet. | often find myself recording a macro to perform an operation
that may have lots of parameters that | refuse to commit to memory just to refresh my memory
on how the command should look. Sort is one of those.

Recently (as of this writing) | was faced with the problem of needing to build some user forms
that could reference an indeterminate number of selections by the user. And each new group of
controls needed to take certain action based on the user's choices on the form. | was kind of lost
- in my experience you set up a user form with controls that had a pretty definite or finite count
and you built the code for each of them as part of the user form itself. | finally threw my hands
up in the air, shouted "I Surrender™ and asked if anyone had any ideas of how to get the job done.
One of my fellow Excel MVPs came to my rescue almost immediately and showed me how to
use Class Module coding to overcome the problem. Nobody knows everything, but given a large
enough group then almost everything is known by someone. All you need to do is be able to get
in touch with that someone!

Programming With Excel Objects Page 51
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

Programming with Named Ranges
DEFINING A NAME

Naming Directly on a Worksheet

Excel gives you the ability to assign a 'meaningful name' to a cell or group of cells (each of
which is known as a range in VBA). Assigning a name is easy to do:

Step 1: choose the cell or group of cells to be named,
Step 2: enter the name for the range in the 'Name Box' and press [Enter]

B2 - hi
A | B | Herewe have chosen cell B2 on a worksheet. It's address, B2 is

shown in the Name Box.
2 —1

—

3
: & Snaglt [

= = (s | - = |£‘ Next simply click inside of the Name Box to get ready to assign a

] name to cell B2.

2 1
TaxRate M ! Finally, type in the name ‘TaxRate' and press the [Enter] key.

A [B | NOTE: you must terminate the name entry with the [Enter] key. If
i,
& 1 .
you don't, then the name is not accepted by Excel as a name.
2
5 I —

After this is done, you can now refer to the contents of cell B2 on this sheet using its TaxRate
name. For example, you could refer to it in a formula in the workbook like this:

=1.99 * TaxRate

and the cell would show the result. Assuming there is a value of 0.875 in B2/TaxRate, then the
formula would return $0.17 (also assuming the cell with the formula in it formatted to display
currency).

You can also assign a name to a range of cells to make referencing the group easier and
'maintenance free' in your formulas and other worksheet functions.

Programming With Excel Objects Page 52
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-??
Naming With the Name Manager

You may define names using the Name Manager.
In Excel 2003 and earlier, you get to the name manager through Insert --> Name --> Define

Insertl Format Tools Data Window Help

LIE FEE = § ¢
Columns - | _ _ | E)
Waorksheet

| Name » [Definer,

. Hyperlink... Ctrl+K Paste... “

This brings up the Define Name dialog in Excel 2003:

P]
Define Name - S Iﬁ
Mames in workbook:
| N oK
TaxRate s ®
Refers to:
=SingleMamedRange! SA515 | 1

L — & TS—————— =

Figure 22 - Define Name Dialog: Excel 2003

o

You can manage existing names or create new ones using this dialog.
Excel 2010 gives us a more versatile tool, the Name Manager to perform these functions.

Programming With Excel Objects Page 53
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

In Excel 2010, you access the Name Manager from the Defined Names group on the [Formulas]
tab:

| __E 0K ™ Microsoft Excel W
Home Insert Page Layout Formulas Data Review View Developer Ad

ﬁ % AutoSum - i Logical = ﬁ Lookup & Reference = E? 23 Define Name - E:'
ﬂr Recently Used - Eﬁ Text = ﬂ Math & Trig = - = Use in Formula =
Insert Mame r

Function ﬁ Financial = ﬁ Date & Time - ﬁ Maore Functions = MaDSger BS Create from Selection | 7

Function Library | Defined Mames |
e
Al - | F | Mame Manager (Ctrl+F3)
A B | [| (B] | E | F Create, edit, delete, and find all the
1 names used in the workbook.
| |
2 Mames can be used in formulas as
3 substitutes for cell references.
4 For example:=5UM([MySales)
5 instead of =SUM[C20:30).
[0 Press F1 for more help.
Mame Value Refers To Scope Comment
Refers to:
| =
Figure 23 Name Manager: Excel 2010
Programming With Excel Objects Page 54

Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
With the Define Name or Name Manager, you can remove old name definitions, add new ones
and even change the address of the cell(s) that a name refers to.

Using a Named Range for a List

Normally when you use a list of entries in a group of cells as the source for Data Validation
controlled cell entry, the list must be on the same worksheet with the cell using it as its list. But
if you have given a name to a list of cells, that list can be on another sheet in the workbook. This
gives you the ability to put several lists on a worksheet that you can even keep hidden.

Programming With Excel Objects Page 55
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

Code Snippets and Examples

In this section I'll try to present some useful routines that can be used and reused in your own
coding efforts. The sources for these range from web sites, help forums and my own
experiences. Sorry, but they’re really not organized in any specific way, just as | have come
across them in trying to gather up content for this.

SORTING A RANGE
See the VB Help topic for SORT for all the details.

In setting up for a sort you need to keep in mind that you will be sorting a range of cells, and that
the various sort keys must also be ranges or references to ranges.

The setup — the variables we will need (or just want) get declared first:

Setup for single field (column) sort, which will sort an area that includes Al to F1000 on Sheetl.
Row 1 contains labels (headers) and we will sort in ascending order based on column C.

Dim myWorksheet As Worksheet

Dim theSortRange As Range

Dim theSortKey as Range

Set myWorksheet = ThisWorkbook.Worksheets(“Sheet1”)
Set theSortRange = myWorksheet.Range(‘A1:F1000”)
Set theSortKey = myWorksheet.Range(“C1”)

theSortRange.Sort Key1:=theSortKey, Order1:=xIAscending, Header:=xIYes, _

OrderCustom:=1, MatchCase:=False, Orientation:=xITopToBottom, _

DataOption1:=xISortNormal
Note: the ‘DataOption#” parameter is only valid in Excel 2003 and later versions. Leave it
off of the command if the sort will be used in an earlier version [it will still work in 2003
and later without it]

Setup for three field (column) sort, which will sort an area that includes Al to F1000 on Sheetl
where row 1 contains labels (headers) and we will sort in ascending order based first on column
C, then on column A and finally in descending order of column F.

Dim myWorksheet As Worksheet

Dim theSortRange As Range

Dim theSortKey1 as Range

Dim theSortKey?2 as Range

Dim theSortKey3 as Range

Set myWorksheet = ThisWorkbook.Worksheets(“Sheet1”)
Set theSortRange = myWorksheet.Range(“A1:F1000”)
Set theSortKey1 = myWorksheet.Range(‘C1”)

Set theSortKey2 = myWorksheet.Range(“A1”)

Set theSortKey3 = myWorksheet.Range(‘F17)

theSortRange.Sort Key1:=theSortKey, Order1:=x|IAscending, Order2:=xIAscending, _
Order3:=xIDescending, Header:=xlYes, OrderCustom:=1, OrderCustom2:=1, _
OrderCustom3:=1, MatchCase:=False, Orientation:=xITopToBottom, _
DataOption1:=xISortNormal, DataOption2:=xISortNormal, DataOption3:=xISortNormal

Code Snippets and Examples Page 56
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
Note: the ‘DataOption#” parameter is only valid in Excel 2003 and later versions. Leave it
off of the command if the sort will be used in an earlier version [it will still work in 2003
and later without it]

Code Snippets and Examples Page 57
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
FIND THE LAST USED CELL IN A COLUMN

This is an operation you’ll probably use over and over in your coding to find the end of a range
of data. It assumes that your data starts at the top of the sheet (row 1) or another designated row
and continues down the sheet but may include empty cells in the rows.

It’s useful when you have data on a sheet that is dynamic and that may have a different number
of rows in it at any given time.

First thing to do is to identify a column that will have some information in it in the last possible
row of data. For this example, we will assume that column A fills that need.

Identify the Last Used Row

Dim lastRow As Long
lastRow = ThisWorkbook.Worksheets(‘SheetName”).Range(‘A” & Rows.Count).End(xIUp).Row

Now, that wasn’t all that difficult, was it?

You’ve probably noticed that I keep specifying “ThisWorkbook™” — you don’t have to do that if
you know what workbook will be active when your code runs — the currently active workbook
will be the one used to determine where everything else is. But if there is any doubt, then
specify the workbook either by name or by using ThisWorkbook. ‘ThisWorkbook’ means the
workbook that the code is contained in.

So that line of code says “look in the same workbook that this code is located in, on a sheet
named SheetName, and in column A --- and here’s the trick: start looking at the cell that is on the
last possible row on the sheet (Rows.Count returns a number that is the maximum number of
rows permitted on a sheet for the version of Excel that is being used). Assumption is also made
that there is not a value in that last cell —that it is empty. The End(xIUp) part of says to look from
the referenced cell (“A” and the last possible row) upward until a cell is found that marks the end
of the section that’s like that referenced cell. So if A65536 (Excel 2003) is empty, it will look up
until it finds a cell with something in it — even just a formula that returns *** (empty string).

So that command puts the row number of the “last used cell” in the specified column into
variable lastRow.

Identify the Next Available Row

There are a couple of ways to modify what we just did to find the first empty cell in the column
of data.

Method #1: Take the value of lastRow and add 1 to it. That would be the row number of the next
available empty cell in the column.

Method #2: make the addition part of the statement itself.
lastRow = ThisWorkbook.Worksheets(*SheetName”).Range(‘A” & Rows.Count).End(xIUp).Row + 1

You can even modify the statement with the .Offset() option to do it:
lastRow = ThisWorkbook.Worksheets(“SheetName”).Range(“A” & Rows.Count).End(xIUp).Offset(1, 0).Row

Code Snippets and Examples Page 58
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-¢?
FIND THE FIRST EMPTY CELL IN A COLUMN

In this case you may have a column of data that has empty cells in it and you want to find the
first row with an empty cell in it. Hopefully it is obvious that if there are no empty cells in the
data list that the first empty cell would be the one just below the last entry in the list. The
command looks much like our previous command except that it looks down from row 1 in the
column:

Dim firstEmptyCell As Long
firstEmptyCell = Worksheets(“SheetName”).Range(“A1”).End(xIDown).Row

GET THE ADDRESS INSTEAD OF THE ROw

You don’t have to settle for just the row, you can actually return the address of the cell you find.
Simply change the type of the variable that will receive the information from Long to String and
change .Row to .Address:

Dim cellAddress As String 'the address is returned as text
cellAddress = Worksheets(“SheetName”).Range(“A1”).End(xIDown).Address

Enough about finding those particular unique entries in a column. Now we’ll look at doing
much the same thing for rows.

Code Snippets and Examples Page 59
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-27?
FIND THE LAST USED CELL IN A ROw

This is an operation that you probably won’t use as often as the ones for columns, but there are
still times you may need to find the last (right-most) used cell on a row.

This is complicated a bit due to the fact that it’s a little difficult to find the reference to the
column that is the last column in the version of Excel you are using. But we can work around it
using the Columns.Count property of the sheet.

Sub LastColumnInOneRow ()
'Find the last used column in a Row: row 1 in this example
Dim LastCol As Integer
With ActiveSheet
LastCol = .Cells(l, .Columns.Count).End(x1ToLeft) .Column
End With
MsgBox LastCol

End Sub

That comes directly from Ron De Bruin’s site at: http://www.rondebruin.nl/last.htm which leads
me to pretty much stop providing code examples, scratching my head trying to think up code that
you might find useful. Instead, the remainder of this document consists of links to various
absolutely excellent examples of VBA for Excel coding. In some cases, such as Chip Pearson’s
site, I’ve copied the table of contents with links to various Excel solutions on the sites. You can
follow those links to those code solutions.

CONSOLIDATING DATA IN A WORKBOOK

One of the best sources of code that may be used to combine data from several worksheets and
even workbooks can be found at Ron De Bruin’s site:

http://www.rondebruin.nl/copy2.htm

Code Snippets and Examples Page 60
Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://www.rondebruin.nl/last.htm
http://www.rondebruin.nl/copy2.htm

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-27?
USING A TEXTBOX TO ACCESS A MACRO

Before going on to the next section, | think would be a good thing for you to know of at least one
easy way of getting rapid access to macros you create for the user to accomplish tasks with.

Using a TextBox or other shape from the Drawing Toolbar offers a good deal of flexibility. You
can set the font size and format and add color to the 'button’. Plus the code can reside in any
module in the workbook.

You don't even have to have the macro written in order to create the button in anticipation of
associating a macro with it later.

Select a shape from the Drawing toolbar (Excel 2003 and earlier) or from the Insert tab (Excel
2007 and later) and place it on the sheet and size it, add text to it, and format its colors. 1 also
recommend setting its properties to NOT move or resize with cells.

At any point after creating the 'button’ you can assign a macro to run when you click it. Simply
right click near the edge of the shape and choose [Assign Macro] and then pick the macro to run
from the list presented to you. And that's all there is to it.

DOING THE IMPOSSIBLE

There are some things that simply cannot be done using Excel worksheet formulas. Hiding
either rows or columns and unhiding them again comes to mind right away. Some other things
that you can do from the keyboard such as auto-filtering and removing such a filter can't be
controlled through formulas, but they can be done using VBA code.

Providing the user with a 'button’ to access these features is a nice touch because it reduces the
need to use the keyboard and the 4-click sequence of

Tools --> Macro --> Macros, select a macro and click [Run] to make it all work.

The user will definitely appreciate being able to run the macro with one click, and of being sure
to use the right macro instead of clicking the wrong one in what may be a long list of macros to
choose from.

Hiding Rows

While you can use Data Auto-Filter to remove rows from view, sometimes it's easier to just hide
the rows with code. You need to know what condition you want to use to choose rows to be
hidden and what column values meeting the condition can be found.

Let us say that you want to hide all rows that do not have a value entered into column R.
Perhaps a row's data represents values for quantities of a product produced on certain dates and
you want to see all products that were produced on the date contained at the start of column R.
Hiding rows with no entry in column R would clean up the list for you.

Here is the code that would do the trick for you.

Start by UNHIDING all rows! This will make sure that only the rows you mean to hide will be
hidden at the end of the process, with no left over hidden rows from other similar actions taken
on other columns:

ActiveSheet.Columns ("R:R") .EntireRow.Hidden = False
Actually you can pick any column! 1 just chose to use R since R is the column we are about to
examine for empty cells to determine whether to hide a row or not.

Code Snippets and Examples Page 61
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
Now you need code to work through all possible rows. You need a column that has an entry for
every possible row used on the sheet. That is not going to be column R. For argument’s sake,
assume that column A has product identifiers in it, one for all possible products. So we could
examine column A to determine what rows in column R are unused. Here is the code to set a
reference to the cells in column R that may have entries in them based on the total number of
rows used in column A.

Set testRange = ActiveSheet.Range ("R1:R" &
ActiveSheet.Range ("A" & Rows.Count) .End(x1Up) .Row)
For Each anyCell in testRange
If IsEmpty(anyCell) Then
anyCell.EntireRow.Hidden = True ' Hide this row!!
End If
Next ' end of anyCell loop

The complete procedure might look like this:

Sub HideColumnRRows ()
Dim testRange As Range
Dim anyCell As Range
ActiveSheet.Columns ("R:R") .EntireRow.Hidden = False
Set testRange = ActiveSheet.Range ("R1:R" &
ActiveSheet.Range ("A" & Rows.Count) .End(x1Up) .Row)
For Each anyCell in testRange

If IsEmpty(anyCell) Then

anyCell.EntireRow.Hidden = True ' Hide this row!!
End If
Next ' end of anyCell loop
Set testRange = Nothing ' release resource back to the system
End Sub

Unhiding Rows

I've already given away this secret because we started off our Hide Rows routine by unhiding all
rows. But we will put it in a sub by itself anyhow. Just remember that this will NOT unhide
rows that are hidden because of data filtering - they are hidden in a different manner and will not
be unhidden with this code.

You can pick any column on the sheet, since any column includes all rows. For convenience
sake, it's probably easiest to simply use column A.
Sub UnhideAllRows ()

ActiveSheet.Columns ("A:A") .EntireRow.Hidden = False
End Sub

Code Snippets and Examples Page 62
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

An Introduction to Debugging

Debugging a project can be a simple "mechanical” process, sometimes it is almost an art. In this
section | can only present a few suggestions and at least introduce you to some of the tools
available to you to help examine code, determine values during execution and hunt down and
squash bugs. We take a simple routine that is giving us problems and see how some of the tools
can help us determine what the problem is. How to fix this particular one is left as a thought
exercise for the reader: validate information before trying to use it? put in code to ignore the
error? repremand the user for entering the wrong kind of information in the first place?

THE PROBLEM EXAMPLE

We have a simple looking routine but it isn't working for us. Unfortunately the programmer
wasn't very generous with comments, and now we need to try to figure out just why it isn't
working for us.

Option Explicit
Public Const intRaiseToPower = 2 ' squared

Sub SquareANumber()
Const getRow = 2
Const getCol = 1
Const putRow = 2
Const putCol = 2

Dim intMyNumber As Integer

intMyNumber = ActiveSheet.Cells(getRow, getCol)
ActiveSheet.Cells(putRow, putCol) = intMyNumber # intRaise ToPower
End Sub

When we try to use the Sub we get this error:

1 Microsoft Visual Basic

4
1| Run-time error '13"

Type mismatch

1 End Debug Help b

This tells us that we are trying to perform some operation that requires some specific Type' of
constant or variable, but what we are trying to use is not one of them and Excel could not trick

Code Snippets and Examples Page 63
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
the constant/variable into being the proper type. But it doesn't tell us what the problem value is,
or even where it is in the code. So what do we do?

i -

Microsoft Visual Basic

Fun-time error ‘13"

Type mismatch

L= -

What you want to do at this point is to click the [Debug] button. Excel will then automatically
open the VB Editor (VBE) and even show you the line of code that it thinks is causing the
problem. NOTE: For some problems, Excel can get confused and point to the wrong line of
code. But that's something to cover on another day.

When we click the [Debug] button, we get this display:

Suk SquareiMNumber ()
Const getRow 2
Con=st getCol
Con=st putRow
Con=t putCol

Fd B R

Dim intMyHNumber A= Integer

oy | intMyNumber = ActiveSheet.Cells (getRow, getCol)
AetiveSheet.Cells (putRow, putfol) = intMyNumber * intRaiseToPower
End Sub

Excel has pointed out the line of code that it feels there is a problem with, now it is up to us to
figure out the details.

We probably need to answer 2 or 3 questions on the way to determining the exact problem:

#1 - what sheet is the "ActiveSheet". For experienced users, this is an easy question to answer,
but if it was some object set to represent a sheet that might be hidden from view or not currently
selected, we need to know which sheet we should be examining.

An important tool you'll need to help pin the problem down and come up with a fix is the
Immediate window of the VBE.

Code Snippets and Examples Page 64
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
If you do not see a window in the VBE with the title "Immediate”, then you can bring it into
view from the View menu option, or just press [Ctrl]+[G] to make it visible:

View | Insert Format [Debug Bu
]| Code F7

Definition Shift+F2
Last Position Ctrl+5hift+F2

| = Object Browser F2

1|j'_=| Immediate Window Ctrl+G
=] Lu:ucal;l'i:'g'indu:uw

Normally it appears right underneath the main window in the VBE:
Dim intMyNumber As Integer

(=3 intMyHumber = ActiveSheet.Cells (getBRow, ge
AotiveSheet . Cells (putRow, putCol) = intHMyN
End Sub

You can do a lot in the Immediate window: examine values, determine addresses, set values and
even issue some commands to Excel itself. For now we want to find out what sheet we are
getting a value from, so we type the following into the Immediate window and press the [Enter]
key at the end of it:

? ActiveSheet.Name

The ? is a shortcut entry for "Print" or "Show me..." and is a holdover from the very early days of
the original BASIC interpreters.

The name of the ActiveSheet is revealed to us as: Sheetl. So at least now we know what sheet
to look at, but where on that sheet do we need to be looking? We know that we should be
looking at Cells(getRow, getCol). But where the heck is that? Once again, it is the Immediate
window to the rescue. We can get it to show us the address of that cell by typing:

? Cells(getRow, getCol).Address
and pressing the [Enter] key.

By the way, you can copy from the code window into the Immediate window, which can help
prevent typos from interfering with your debugging efforts.

Code Snippets and Examples Page 65
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
The Immediate window now tells us that we are trying to get some value from cell A2 on Sheetl:

Immediate

] 7 activesheet.name
Sheetl
? cells(getrow, getcol).address

sns2

So we can go look there and see what is in that cell.

A | B |

abc

[Cd (a2

M 4 » M| Sheetl She

And there we see a problem: Cell A2 holds some text, and since we declared intMyNumber to be
type Integer, and so a text value cannot be assigned to a numerically typed variable - and there
lies the answer to why we got "Error 13: Type Mismatch™ when trying to use the Sub.

Now it is up to you to determine why someone typed text into a cell you were expecting to find a
number into (or realize that you should not type text into a cell that is going to be used for some
math processing). The Debugger has done about all it can for you, what you do to prevent the
problem in the future is a decision you have to make yourself.

OTHER DEBUGGING TIPS:

Tip #1: You can quickly determine certain values right in the code window by simply moving
the mouse pointer/cursor over a constant or variable name and its value will be displayed as a

popup tip:
intMyNumber = ActiveSheet.Cells (ggtRow, getCol)
ABotiveSheet . .Cells (putRow, puttngaﬂmﬁzz vHunber

End Sub

Tip #2: You can end the process by either:

Clicking the Reset button up in the menu area of the VBE:
lebug Run T

bl i |
(Gener Res.et_

n.n‘--:nn_

Or you can simply hit the [F5] key which will bring up the error message again and you
can click the [End] button on it.

Code Snippets and Examples Page 66
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-??
Tip #3: If you run into a rather complicated situation where some values are being calculated or
retrieved in the code and you are getting an error on down the line because one of them is
incorrect, you can examine the entire process step by step.

You can force code execution to stop by setting one or more "breakpoint”s in the code:

A e s A A Y T RAMRARS e b A s T e e e

intMyumber = ActiveSheet.Cells {getRow, getlCol)
AotiveSheet . .Cells (putRow, putCol) = intMyNumber
End Sub

You do that by clicking in the area to the left of the beginning of a line of code. The dark red dot
and highlighting will indicate that a breakpoint has been set. You can remove it later by clicking
the dark red dot again, or use the [Debug] option in the menu to clear them all:

Debug | Bun Tools Add-Ins Window
Compile VBAProject

A —

Add Watch...

Clear All Eﬁakpnints Ctrl+Shift+F9
Iy

Another way to achieve much the same thing is to insert the Stop statement into the code where
you want it to break into debug mode. Simply type the word Stop on a line by itself in the code -
just don't forget to delete it after your debugging is completed.

Once you have halted the code where you want to, you can press the [F8] button to then single
step through your code and examine values and processes along the way to the problem line of
code. When you are ready to let the code run normally again during your debug session, press
the [F5] key - or you can terminate the execution using the [Reset] button and start all over
again.

You'll notice in the last screen shot that there are several ways of controlling what pieces of code
are executed associated with the [F8] and [F9] keys. They can all help in your effort to
determine the source of a problem, or just to go through code to see how it works.

Code Snippets and Examples Page 67
Copyright © 2008 by J.L.Latham, All Rights Reserved.

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

Additional Excel VBA Resources

This section provides a list of other sites that are simply filled with useful Excel and Excel VBA
help. I’ve copied their table of contents pages where they are available, however, the contents of
any site may change at any time — it is the Internet, after all.

Excel MVP Websites

You can find a more complete list of many Excel MVP websites here:
http://www.mvps.org/links.html#Excel

And if you go to the top of that page, you can look through the list for websites belonging to
MVPs in many areas:

http://www.mvps.org/links.html

Within these sites is a veritable library of knowledge of Excel; its operation,

RON DEBRUIN’S EXCEL TIPS:
http://www.rondebruin.nl/tips.htm

Excel Add-ins and code for Mailing from Excel
Excel Add-ins page
Example Code for sending mail from Excel

Excel 2007

Where can | find the menu commands in Excel 2007

Create and mail PDF files with Excel 2007

Use VBA SaveAs in Excel 2007

Copy sheet security dialog in Excel 2007

Sheet Direction in Excel 2007

Reverse compatibility problem of the old ATP functions

Macros are disabled when you open password protected workbooks
Shapes and VBA code in Excel 2007

Filtering by the Active Cell's Value, Font Color or Fill Color in Excel 2007
Help: Different Excel file formats and Excel versions

Disable Excel 2003 Menu Accelerators keys in Excel 2007

Table Tools in Excel 2007

VBA code examples for Tables in Excel 2007 or a List in Excel 2003

Excel 2007 Ribbon and QAT pages

Menu for favorite macros in Excel 2007 (for all workbooks)

Menu for favorite macros in Excel 2007 (for one workbook)
Change the ribbon in Excel 2007

Change built-in groups in the Ribbon

Add missing built-in commands to the QAT or Ribbon

Add buttons to the QAT and customize the images of the buttons
Menu in the ribbon with different languages

Dealing with Ribbons and Menus - Avoiding Two Versions
Images on custom Ribbon controls

Galleries in the Ribbon

Hide or Display Custom Ribbon Tab/Group/Control with getVisible

Additional Excel VBA Resources Page 68
Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://www.mvps.org/links.html#Excel
http://www.mvps.org/links.html
http://www.rondebruin.nl/tips.htm
http://www.rondebruin.nl/addins.htm
http://www.rondebruin.nl/sendmail.htm
http://www.rondebruin.nl/0307commands.htm
http://www.rondebruin.nl/pdf.htm
http://www.rondebruin.nl/saveas.htm
http://www.rondebruin.nl/security.htm
http://www.rondebruin.nl/sheetdirection.htm
http://www.rondebruin.nl/atp.htm
http://www.rondebruin.nl/password2007.htm
http://www.rondebruin.nl/shape.htm
http://www.rondebruin.nl/colorfilter2007.htm
http://www.rondebruin.nl/2007filesin2003.htm
http://www.rondebruin.nl/acceleratorskeys.htm
http://www.rondebruin.nl/table.htm
http://www.rondebruin.nl/tablecode.htm
http://www.rondebruin.nl/qat.htm
http://www.rondebruin.nl/qat2.htm
http://www.rondebruin.nl/ribbon.htm
http://www.rondebruin.nl/xmlribbongroups.htm
http://www.rondebruin.nl/notinribbon.htm
http://www.rondebruin.nl/imageqat.htm
http://www.rondebruin.nl/dynamic.htm
http://www.rondebruin.nl/compatiblemenu.htm
http://www.rondebruin.nl/getimage.htm
http://www.rondebruin.nl/galleries.htm
http://www.rondebruin.nl/hidevisible.htm

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

Copy/Paste/Merge examples

Copy to a database sheet on the next empty row

Merge cells from all or some worksheets into one Master worksheet
Create a summary worksheet from all worksheets (formulas with VBA)
Create a link to or Sum a cell in all worksheets (worksheet functions)
Merge data from all workbooks in a folder (1)

Merge data from all workbooks in a folder (2)

Merge data from all workbooks in a folder: Add-in

Create a summary worksheet from different workbooks (formulas with VBA)
Merge data from all workbooks in a folder to a txt file

Copy every TXT or CSV file in a new worksheet of a newly created workbook
Merge all CSV or TXT files in a folder

Copy a range from closed workbooks (ADQO)

Copy a range from closed workbook (Local, Network and on the internet)
Copy data from an Access database into Excel with ADO

Change cells or range in all workbooks in a folder

Copy records with the same value in a column to a new sheet or workbook
VBA code examples for Tables in Excel 2007 or a List in Excel 2003
Create a workbook from every worksheet in your workbook

Create separate sheet for each horizontal PageBreak

Copy, Move and Delete files and folders

How do | create/use a sheet template

Delete/Hide/Disable examples

Delete row if a specific value exist

Delete or Hide Objects/Controls on a worksheet

Disable command bars and controls

SpecialCells limit problem

Disable key or key combination or run a macro if you use it

Zip (compress) ActiveWorkbook, Folder, File or Files with VBA code
7-zip : Zip Activeworkbook, Folder, File or Files(VBA)

7-zip : Unzip a zip file (VBA)

Zip file or files with the default Windows zip program (VBA)

Unzip zip file or files with the default Windows zip program(VBA)

WinZip : Zip Activeworkbook, Folder, File or Files (VBA)

WinZip : Unzip a zip file(VBA)

Weeknumber/Dates

Use the Calendar control to fill in dates

Week numbers

ISO Date Representatation and Week Numbering

Help information

Help Context IDs for Excel 2000, 2002, 2003 and 2007
Where do | paste the code that | want to use in my workbook
How do | create a PERSONAL.XLS(B) or Add-in

Other pages

Print tips for Excel

Test if Folder, File or Sheet exists or File is open
Find last row, column or last cell

Change formulas to values

Find value in Range, Sheet or Sheets with VBA

Additional Excel VBA Resources Page 69
Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://www.rondebruin.nl/copy1.htm
http://www.rondebruin.nl/copy2.htm
http://www.rondebruin.nl/summary.htm
http://www.rondebruin.nl/linksum.htm
http://www.rondebruin.nl/copy3.htm
http://www.rondebruin.nl/fso.htm
http://www.rondebruin.nl/merge.htm
http://www.rondebruin.nl/summary2.htm
http://www.rondebruin.nl/mergetotxt.htm
http://www.rondebruin.nl/txtcsv.htm
http://www.rondebruin.nl/csv.htm
http://www.rondebruin.nl/ado.htm
http://www.rondebruin.nl/copy7.htm
http://www.rondebruin.nl/accessexcel.htm
http://www.rondebruin.nl/copy4.htm
http://www.rondebruin.nl/copy5.htm
http://www.rondebruin.nl/tablecode.htm
http://www.rondebruin.nl/copy6.htm
http://www.rondebruin.nl/hpagebreaks.htm
http://www.rondebruin.nl/folder.htm
http://www.rondebruin.nl/sheettemplate.htm
http://www.rondebruin.nl/delete.htm
http://www.rondebruin.nl/controlsobjectsworksheet.htm
http://www.rondebruin.nl/menuid.htm
http://www.rondebruin.nl/specialcells.htm
http://www.rondebruin.nl/key.htm
http://www.rondebruin.nl/7zipwithexcel.htm
http://www.rondebruin.nl/7zipwithexcelunzip.htm
http://www.rondebruin.nl/windowsxpzip.htm
http://www.rondebruin.nl/windowsxpunzip.htm
http://www.rondebruin.nl/zip.htm
http://www.rondebruin.nl/unzip.htm
http://www.rondebruin.nl/calendar.htm
http://www.rondebruin.nl/weeknumber.htm
http://www.rondebruin.nl/isodate.htm
http://www.rondebruin.nl/id.htm
http://www.rondebruin.nl/code.htm
http://www.rondebruin.nl/personal.htm
http://www.rondebruin.nl/print.htm
http://www.rondebruin.nl/exist.htm
http://www.rondebruin.nl/last.htm
http://www.rondebruin.nl/values.htm
http://www.rondebruin.nl/find.htm

Programming In Excel VBA
An Introduction
Cleaning "Dirty" Data

Lotus Transition Formula Evaluation Errors
Analysis ToolPak Translator 7.0

by]J.Latham
Microsoft Excel MVP 2006-27?

Additional Excel VBA Resources

Page 70
Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://www.rondebruin.nl/clean.htm
http://www.rondebruin.nl/transition.htm
http://www.rondebruin.nl/atptranslator.htm

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

DEBRA DALGLEISH’S EXCEL TIPS F (CONT'D)
WWW.CONTEXTURES.COM
HTTP://WWW.CONTEXTURES.COM/TIPTECH.H

Form, Create a UserForm
Form, Print Selected ltems 23-Sep-06

IML Form, Survey 29-Oct-05 updated 11-Oct-06
A Form, Worksheet Data Entry 22-Sep-06

Formatting Tips - Move Toolbar Palettes 29-Apr-08
Advanced Filter - Basics http://www.contextures.gqm/xlfaunn.html -
Advanced Filter - Criteria FormulaShowFormulas visible on Worksheet 16-

Advanced Filter - Different Sheet video Jun-07
Advanced Filter - Unique ltems video

Functions

Functions -- Count cells
Functions -- IFERROR 31-Dec-08
Functions -- INDEX 23-Nov-05
Functions -- INDIRECT 11-Nov-06
Functions -- MATCH Video
Functions -- SUBTOTAL
Functions -- Sum cells
Functions -- VLOOKUP video

AutoFilter - Basics

AutoFilter - Filter Text in Long String
AutoFilter - Limits to Dropdown Lists
AutoFilter - Programming

AutoFilter - Protected Sheet
AutoFilter - Status Bar Record Count
AutoFilter - Sum a Filtered List

B G-M

Bar over character 31-Oct-06

GetPivotData 23-Jan-09

Beyond the Keyboard

Gift Ideas for Excel Users updated 27-May-09

Blank Cells, Fill video

Govier, Roger - Sample Workbooks 18-May-09

Blog, Contextures

Grades, Convert Percentages to Letter 30-may-
09 Video

Book List, Excel 10-Jun-07
Books -- on my bookshelf INDEX Eunction
Books -- e-books, Microsoft Office 10-Feb-06

INDIRECT Function 11-Nov-06

C
Keyboard Shortcuts

Charting - Jon Peltier's Site Index

Charting Links Macros, Copy to a workbook video
Macros Prompt, Enable or Disable (FAQ) video
Christmas Planner 21-Nov-08 Macro Toolbar 24-Dec-05
Code, Copy to a workbook video MATCH Function Video
Coderre, Ron - Sample Workbooks 17-Jul-07 N-O

Column headers show numbers (FAQ)

Names -- Naming Ranges video
Names -- Naming Dynamic Ranges with a macro

Combining Data 22-Feb-09

Names -- Use Names in Formulas 17-Jun-05
Comments - Add a Picture video Navigation Command for Sheets 2007 17-Jul-08
Comments - Basics Navigation Toolbar for Sheets 2003 21-Dec-05

Comments - Change Indicator Colour

Additional Excel VBA Resources Page 71
Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://www.contextures.com/
http://www.contextures.com/tiptech.html
http://www.contextures.com/tiptech.html
http://www.contextures.com/xladvfilter01.html
http://www.contextures.com/xladvfilter02.html
http://www.contextures.com/xladvfilter01.html#ExtractWs
http://www.contextures.com/xlVideos04.html#AdvFiltSheet
http://www.contextures.com/xladvfilter01.html#FilterUR
http://www.contextures.com/xlVideos04.html#AdvFilt2003
http://www.contextures.com/xlautofilter01.html
http://www.contextures.com/xlautofilter02.html#String
http://www.contextures.com/xlautofilter02.html#Limits
http://www.contextures.com/xlautofilter03.html
http://www.contextures.com/xlautofilter03.html#Protect
http://www.contextures.com/xlautofilter02.html#Count
http://www.contextures.com/xlFunctions01.html#Filter
http://www.contextures.com/xlfaqFun.html#bar
http://www.contextures.com/beyondthekeyboard.html
http://www.contextures.com/xlDataEntry02.html
http://www.contextures.com/xlVideos01.html#FillBlanks
http://blog.contextures.com/
http://www.contextures.com/xlbooks.html
http://www.contextures.com/xlbookshelf.html
http://www.contextures.com/xlebooks.html
http://www.contextures.com/JPChartIndex.htm
http://www.contextures.com/charts.html
http://www.contextures.com/Excel-Christmas-Planner.html
http://www.contextures.com/xlvba01.html
http://www.contextures.com/xlVideos04.html#CopyCode
http://www.contextures.com/excelfilesRon.html
http://www.contextures.com/xlfaqApp.html#HeaderNumber
http://www.contextures.com/xlCombine01.html
http://www.contextures.com/xlcomments02.html#Picture
http://www.contextures.com/xlVideos01.html#CommentPicture
http://www.contextures.com/xlcomments01.html
http://www.contextures.com/xlcomments02.html#Colour
http://www.contextures.com/xlUserForm01.html
http://www.contextures.com/xlForm03.html
http://www.contextures.com/xlForm01.html
http://www.contextures.com/xlForm02.html
http://www.contextures.com/xlFormat01.html
http://www.contextures.com/xlfaqFun.html#FormulaShow
http://www.contextures.com/xlfaqFun.html#FormulaShow
http://www.contextures.com/xlfaqFun.html#FormulaShow
http://www.contextures.com/functions.html
http://www.contextures.com/xlFunctions04.html
http://www.contextures.com/xlFunctions02.html#IFERROR
http://www.contextures.com/xlFunctions03.html
http://www.contextures.com/xlFunctions05.html
http://www.contextures.com/xlFunctions03.html
http://www.contextures.com/xlVideos08.html#Match01
http://www.contextures.com/xlFunctions01.html#Filter
http://www.contextures.com/xlFunctions01.html
http://www.contextures.com/xlFunctions02.html
http://www.contextures.com/xlVideos08.html#VLookup01
http://www.contextures.com/xlPivot06.html
http://www.contextures.com/xlGifts.html
http://www.contextures.com/excelfilesRoger.html
http://www.contextures.com/xlFunctions02.html#Range
http://www.contextures.com/xlVideos08.html#Percentages
http://www.contextures.com/xlFunctions03.html
http://www.contextures.com/xlFunctions05.html
http://www.contextures.com/excel.htm
http://www.contextures.com/xlvba01.html
http://www.contextures.com/xlVideos04.html#CopyCode
http://www.contextures.com/xlfaqMac.html#NoMacros
http://www.contextures.com/xlVideos02.html#MacroWarn
http://www.contextures.com/xlToolbar02.html
http://www.contextures.com/xlFunctions03.html
http://www.contextures.com/xlVideos08.html#Match01
http://www.contextures.com/xlNames01.html
http://www.contextures.com/xlVideos02.html#NamedRange
http://www.contextures.com/xlNames03.html
http://www.contextures.com/xlNames02.html
http://www.contextures.com/xlToolbar01b.html
http://www.contextures.com/xlToolbar01.html

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-7?
Comments - Change Shape Newsgroup Posting Statistics -- Annual 01-Jan-09
Comments - Copy Text to Adjacent Cell 22-sep-05

Comments - Extract Text to Word Numbers, Convert Text to video

Comments - Format All 09-Mar-06 Numbers, Increase by Set Amount

Comments - Format Text 29-Sep-08 vigeohttp://www.contextures.com/xIDataEntry0

http://www.contextures.com/xlcomments03.ht
ml - PictureComments - Insert Selected Picture

4.html 18-may-08

28-Jan-06

Comments - Number and List 22-Jan-06 Order Form = 30-Ju-05
Comments - Printing

Comments - Programming P

Comments - Resize
Comments - Show in Centre 22-Jul-06

Paste Values Mouse Shortcut video 04-Feb-09
PeltierTech - Charting Site Index

Conditional Formatting - Basics

Conditional Formatting - Documentation 07-Mar-05
Conditional Formatting - Hide Cells to Print
Conditional Formatting - Hide Duplicates
Conditional Formatting - Hide Errors

Conditional Formatting - Lottery Numbers
Conditional Formatting - Row video) . .
Conditional Formatting - Shade Alt Rows 14-Feb-o7 [Pivot Tables - Add-in -- Pivot Power ~ 29-Apr-05
Conditional Formatting - Shade Bands 14-Feb-07 [Pivot Tables - Add-in - Pivot Play PLUS 15-Mar-08
Conditional Formatting - Filtered Bands 23-Feb-07 Pivot Tables - Clear Old Items video updated 27-Jun-08
Conditional Formatting - Coloured Shapes 22-Jun-07 Pivot Tables - Create in Excel 2007 video 19-Feb-09
http://www.contextures.com/xIPivot06.html

http://www.contextures.com/Pubn03.htmlPivot
Tables, Beqginning (Excel 2007)

Pivot Tables, Recipe Book (Excel 2003)

Pivot Tables, Recipe Book (Excel 2007)

Contextures Blog http://www.contextures.com/xIPivot10.htmlPiv
ot Tables - Custom Calculations 07-Mar-05
Count Cells Pivot Tables - Data Field Layout video

Pivot Tables - Dynamic Data Source
Pivot Tables - Field Settings

D Pivot Tables - FAQS 09-Oct-06

Pivot Tables - Filter Source Data 19-Jan-09
Data Entry - Tips Pivot Tables - GetPivotData
Data Entry - Fill Blank Cells video Pivot Tables - Grand Total at Top 15-May-08
Data Entry - Convert Text to Numbers video Pivot Tables - Grouping Data
Data Entry - Increase Numbers by Set Amount Pivot Tables - Layout, Excel 2007 video 04-Jul-08
video_ Pivot Tables - Multiple Consolidation Ranges
Data Entry - Excel Videos Pivot Tables - Pivot Cache 22-Mar-05

Pivot Tables - Printing
Data Validation - Basics video Pivot Tables - Protection 23-Apr-05
Data Validation - Combo box 15-Jan-07 Pivot Tables - Running Totals video 13-Sep-08
Data Validation - Combo box Named Range 15- |Pivot Tables - Select Sections video 31-Aug-08
Jan-07 Pivot Tables - Show and Hide ltems
Data Validation - Combo box - Click 18-Oct-08 Pivot Tables - Unique ltems
Data Validation - Custom Criteria Pivot Tables and Pivot Chart Intro
Data Validation - Dependent Dropdown- Sorted
List 15-Jul-05
Data Validation - Dependent Lists Q-R-S
Data Validation - Dependent Lists INDEX 17-May-
09 MEW Queries - Add-in - Pivot Play PLUS 15-Mar-08
Data Validation - Documentation
Data Validation - Font Size, List Length Ranges, Naming
Data Validation - Hide Used ltems Ribbon -- Navigation Command for Sheets 2007
Data Validation - Input Message in Text Box 05Jun- [17-Jul-08
05 Running Totals, Pivot Tables video 13-Sep-08
Data Validation - Invalid Entries Allowed updated 11-
Additional Excel VBA Resources Page 72

Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://www.contextures.com/xlcomments02.html#Shape
http://www.contextures.com/xlcomments03.html#CopyAdjacent
http://www.contextures.com/xlcomments03.html#CopyToWord
http://www.contextures.com/xlcomments03.html#Format
http://www.contextures.com/xlcomments03.html#FormatColour
http://www.contextures.com/xlcomments03.html#Picture
http://www.contextures.com/xlcomments03.html#Picture
http://www.contextures.com/xlcomments03.html#Picture
http://www.contextures.com/xlcomments03.html#Number
http://www.contextures.com/xlcomments01.html#Printing
http://www.contextures.com/xlcomments03.html
http://www.contextures.com/xlcomments03.html#Resize
http://www.contextures.com/xlcomments03.html#Centre
http://www.contextures.com/xlCondFormat01.html
http://www.contextures.com/xlCondFormat04.html
http://www.contextures.com/xlCondFormat03.html#Print
http://www.contextures.com/xlCondFormat03.html#Duplicate
http://www.contextures.com/xlCondFormat03.html#Errors
http://www.contextures.com/xlCondFormat03.html#Lottery
http://www.contextures.com/xlCondFormat02.html
http://www.contextures.com/xlVideos06.html#CondFormatRow
http://www.contextures.com/xlCondFormat03.html#Shade
http://www.contextures.com/xlCondFormat03.html#Bands
http://www.contextures.com/xlCondFormat03.html#Bands
http://www.contextures.com/xlCondFormat03.html#Shape
http://blog.contextures.com/
http://www.contextures.com/xlFunctions04.html
http://www.contextures.com/xlDataEntry01.html
http://www.contextures.com/xlDataEntry02.html
http://www.contextures.com/xlVideos01.html#FillBlanks
http://www.contextures.com/xlDataEntry03.html
http://www.contextures.com/xlVideos02.html#NumText
http://www.contextures.com/xlDataEntry04.html
http://www.contextures.com/xlVideos03.html#Paste2003
http://www.contextures.com/xlDataEntry04.html
http://www.contextures.com/Excel-Videos-Data-Entry.html
http://www.contextures.com/xlDataVal01.html
http://www.contextures.com/xlVideos07.html#DataVal01
http://www.contextures.com/xlDataVal10.html
http://www.contextures.com/xlDataVal11.html
http://www.contextures.com/xlDataVal14.html
http://www.contextures.com/xlDataVal07.html
http://www.contextures.com/xlDataVal13.html
http://www.contextures.com/xlDataVal13.html
http://www.contextures.com/xlDataVal02.html
http://www.contextures.com/xlDataVal15.html
http://www.contextures.com/xlDataVal09.html
http://www.contextures.com/xlDataVal08.html#Font
http://www.contextures.com/xlDataVal03.html
http://www.contextures.com/xlDataVal12.html
http://www.contextures.com/xlDataVal08.html#Invalid
http://www.contextures.com/xlngstatsAnnual.html
http://www.contextures.com/xlDataEntry03.html
http://www.contextures.com/xlVideos02.html#NumText
http://www.contextures.com/xlDataEntry04.html
http://www.contextures.com/xlVideos03.html#Paste2003
http://www.contextures.com/xlDataEntry04.html
http://www.contextures.com/xlDataEntry04.html
http://www.contextures.com/xlOrderForm01.html
http://www.contextures.com/xlVideos09.html#PasteValMouse
http://www.contextures.com/xlVideos09.html#PasteValMouse
http://www.contextures.com/JPChartIndex.htm
http://www.contextures.com/Pubn03.html
http://www.contextures.com/Pubn03.html
http://www.contextures.com/Pubn03.html
http://www.contextures.com/Pubn01.html
http://www.contextures.com/Pubn02.html
http://www.contextures.com/xlPivotAddIn.html
http://www.contextures.com/xlPivotPlayPLUS01.html
http://www.contextures.com/xlPivot04.html
http://www.contextures.com/xlVideos07.html#ClearOld
http://www.contextures.com/CreatePivotTable.html
http://www.contextures.com/xlVideos10.html#Create2007
http://www.contextures.com/xlPivot06.html
http://www.contextures.com/xlPivot10.html
http://www.contextures.com/xlPivot10.html
http://www.contextures.com/xlPivot10.html
http://www.contextures.com/xlPivot02.html
http://www.contextures.com/xlVideo001.html
http://www.contextures.com/xlPivot01.html
http://www.contextures.com/xlPivot05.html
http://www.contextures.com/xlfaqPivot.html
http://www.contextures.com/xlPivot-Filter-Source-Data.html
http://www.contextures.com/xlPivot06.html
http://www.contextures.com/xlPivot06.html
http://www.contextures.com/xlPivot13.html
http://www.contextures.com/xlPivot07.html
http://www.contextures.com/xlVideos07.html#Layout
http://www.contextures.com/xlPivot08.html
http://www.contextures.com/xlPivot11.html
http://www.contextures.com/xlPivot09.html
http://www.contextures.com/xlPivot12.html
http://www.contextures.com/xlPivot14.html
http://www.contextures.com/xlVideos07.html#RunTotal
http://www.contextures.com/xlVideos07.html#Select
http://www.contextures.com/xlPivot03.html
http://www.contextures.com/xlPivot07.html#Unique
http://peltiertech.com/Excel/Pivots/pivotstart.htm
http://www.contextures.com/xlPivotPlayPLUS01.html
http://www.contextures.com/xlNames01.html
http://www.contextures.com/xlNames01.html
http://www.contextures.com/xlToolbar01b.html
http://www.contextures.com/xlPivot14.html
http://www.contextures.com/xlVideos07.html#RunTotal

Programming In Excel VBA by J.Latham

An Introduction Microsoft Excel MVP 2006-7?
Oct-06) Sample Data

Data Validation - List from Other Workbook Sample Workbooks updated 10-Mar-08

Data Validation Dropdowns are Too Wide Sample Workbooks (Ron Coderre) updated 20-Sep-07
Data Validation - Make List Appear Larger Sample Workbooks (Roger Govier) updated 18-May-09
Data Validation - Make List Wider

Data Validation - Messages Scenarios -- Automatically Show 10-Apr-05

Data Validation - Missing Arrows updated 11-Oct-06 [Scenarios -- Create and Show 03-Apr-05

Dynamic Ranges, Naming Shortcuts, Keyboard
Dynamic Ranges, Naming with a Macro

Sorting a List
E Sorting Data -- Programming 06-Aug-06
Store, The Excel

Excel 2007 -- Articles List updated 16-Nov-07

Excel 2010 -- Articles List 01-Jun-09 HEW Subtotal

Excel Events updated 28-Mar-09 UPDATED Sum cells

Excel Links Sum a Filtered List

Excel Sites

Excel Store Survey Form 29-Oct-05 updated 11-Oct-06

Excel Table 21-Aug-08
Excel Conference, Advanced

T-Z
F

Table, Excel 21-Aug-08

FAQs, Excel - Application and Files
FAQs, Excel - Dates and Times

http://www.contextures.com/xIToolbar02.html

FAOs. Excel - Index Toolbar -- Macros 24-Dec-05

FAOs. Excel - Macros, VBA Toolbar -- Navigate Workbook Sheets updated 30-Oct-
: . : : 07

FAQs, Excel - Pivot Tables and Pivot Charts 09-Oct-

06 - ““Inttp://www.contextures.com/xI Toolbar01.html

http://www.contextures.com/xlfagFun.htmIFA
QOs, Excel - Worksheet Functions and Formats Topics Index

File with that name is already open (FAQ) Trailing Minus Signs
File size, large (FAQ)
Fill colour doesn't work (FAQ) Used Range, Reset (FAQ)

Fill pattern doesn't print (FAQ)

UserForm, Create a Video

Filter, Advanced UserForm with ComboBoxes 23-Jan-06
Filter, AutoFilter

VBA Code, Copy to a workbook

Video Index

Video Instruction Clips 01 10-May-08
Video Instruction Clips 02 10-May-08
Video Instruction Clips 03 13-May-08
Video Instruction Clips 04 23-May-08
Video Instruction Clips 05 01-Jun-08

Video Instruction Clips 06 updated 25-Jul-08
Video Instruction Clips 07 updated 31-Aug-08
Video Instruction Clips 08 updated 30-May-09 UPDATED
Video Instruction Clips 09 05-Feb-09

Video Instruction Clips 10 19-Feb-09

Additional Excel VBA Resources Page 73
Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://www.contextures.com/xlDataVal05.html
http://www.contextures.com/xlDataValWidth.html
http://www.contextures.com/xlDataVal08.html#Larger
http://www.contextures.com/xlDataVal08.html#Larger
http://www.contextures.com/xlDataVal08.html#Wider
http://www.contextures.com/xlDataVal04.html
http://www.contextures.com/xlDataVal08.html#ArrowsNotVisible
http://www.contextures.com/xlOrderForm01.html
http://www.contextures.com/xlDataVal08.html
http://www.contextures.com/xlNames01.html#Dynamic
http://www.contextures.com/xlNames03.html
http://www.contextures.com/xlExcel12Info01.html
http://www.contextures.com/Excel-2010-Info.html
http://www.contextures.com/ExcelEvents.html
http://www.contextures.com/xlLinks.html
http://www.contextures.com/linksxl.html
http://www.contextures.com/excel_store.html
http://www.contextures.com/xlExcelTable01.html
http://peltiertech.com/Training/2009-06-ACNJ/AdvExcelConf200906ACNJ.html
http://www.contextures.com/xlfaqApp.html
http://www.contextures.com/xlfaqDat.html
http://www.contextures.com/xlfaqIndex.html
http://www.contextures.com/xlfaqMac.html
http://www.contextures.com/xlfaqPivot.html
http://www.contextures.com/xlfaqFun.html
http://www.contextures.com/xlfaqFun.html
http://www.contextures.com/xlfaqFun.html
http://www.contextures.com/xlfaqApp.html#AlreadyOpen
http://www.contextures.com/xlfaqApp.html
http://www.contextures.com/xlfaqApp.html#Unused
http://www.contextures.com/xlfaqApp.html#Fill
http://www.contextures.com/xlfaqApp.html#Pattern
http://www.contextures.com/xladvfilter01.html
http://www.contextures.com/xlautofilter01.html
http://www.contextures.com/xlSampleData01.html
http://www.contextures.com/excelfiles.html
http://www.contextures.com/excelfilesRon.html
http://www.contextures.com/excelfilesRoger.html
http://www.contextures.com/xlScenario03.html
http://www.contextures.com/xlScenario01.html
http://www.contextures.com/xlScenario04.html
http://www.contextures.com/xlScenario02.html
http://www.contextures.com/excel.htm
http://www.contextures.com/xlSort01.html
http://www.contextures.com/xlSort02.html
http://www.contextures.com/excel_store.html
http://www.contextures.com/excel_store.html
http://www.contextures.com/xlFunctions01.html#Filter
http://www.contextures.com/xlFunctions01.html
http://www.contextures.com/xlFunctions01.html#Filter
http://www.contextures.com/xlForm01.html
http://www.contextures.com/xlExcelTable01.html
http://www.contextures.com/xlToolbar02.html
http://www.contextures.com/xlToolbar02.html
http://www.contextures.com/xlToolbar02.html
http://www.contextures.com/xlToolbar02.html
http://www.contextures.com/xlToolbar01.html
http://www.contextures.com/xlToolbar01.html
http://www.contextures.com/xlTopics.html
http://www.contextures.com/xlDataEntry03.html
http://www.contextures.com/xlfaqApp.html#Unused
http://www.contextures.com/xlUserForm01.html
http://www.contextures.com/xlVideos05.html#UserForm01
http://www.contextures.com/xlUserForm02.html
http://www.contextures.com/xlvba01.html
http://www.contextures.com/ExcelVideoTutorials.html
http://www.contextures.com/xlVideos01.html
http://www.contextures.com/xlVideos01.html
http://www.contextures.com/xlVideos02.html
http://www.contextures.com/xlVideos03.html
http://www.contextures.com/xlVideos04.html
http://www.contextures.com/xlVideos05.html
http://www.contextures.com/xlVideos06.html
http://www.contextures.com/xlVideos07.html
http://www.contextures.com/xlVideos08.html
http://www.contextures.com/xlVideos09.html
http://www.contextures.com/xlVideos10.html

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

http://www.contextures.com/xIFunctions02.ht
MIVLOOKUP function Video

Additional Excel VBA Resources Page 74
Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://www.contextures.com/xlFunctions02.html
http://www.contextures.com/xlFunctions02.html
http://www.contextures.com/xlFunctions02.html
http://www.contextures.com/xlVideos08.html#VLookup01

Programming In Excel VBA
An Introduction

CHIP PEARSON’S EXCEL TIPS:
http://www.cpearson.com/excel/MainPage.aspx

by]J.Latham

Microsoft Excel MVP 2006-¢?

http://www.cpearson.com/excel/topic.aspx This Tips Topics Index

A

Absolute And Relative Cell References
Activating Excel From Other Applications

ActiveCell, Highlighting

Add-Ins, Automation, Creating
Add-Ins, COM, Creating With VB6

Add-Ins, Creating

Add-Ins, Installing And Loading

Add-Ins And Utilities, Third Party
Age, Calculating
ALT, SHIFT, and CTRL Testing State Of Key

Analysis Tool Pack (ATP), Installing
Analysis Tool Pack, Calling Function From VBA

AnyXML, Allowing optional and arbitrary XML
content with an XSD Schema

API Functions, Getting Error Information
Application Events

Application Shutdown, Detecting And Taking Action

M

Macro-Sheet Function, Calling
From Worksheet Cell

Macros, Adding or Deleting With
VBA Code

Macros, As Opposed To Functions

Macros, Ensuring Macros Are
Enabled, Technigue 1 (Sheet
Visibility)

Macros, Ensuring Macros Are
Enabled, Technigue 2
(Calculations With Errors)

Macros, Running From Worksheet
Cell

Matrix To Vector Formulas
Maximum Values, Persistent

Me Reference, Self-referencing an
instance of a class

Menu Items, Creating Manually
Menu Items, Creating With VBA
Code

Menu Items, Creating For The
VBA Editor

Merging Lists Without Duplicates
Minimum And Maximum Values
Minimum And Maximum Values,

Application-Level Names

Arguments, Passing ByVal And ByRef

Array Formulas, Described

Array, Converting To Columns

Array, Testing If Allocated

Array, Testing If Sorted

Arrays, Determining Data Type Of
Arrays, Number Of Dimensions

Additional Excel VBA Resources

Persistent

Missing References In A VBA
Project

Modified File, Returning The Most
Or Least Recently Modified File In
A Folder

Modules, Adding And Deleting
With Code

Modules, Adding descriptions for
the Object Browser

Months, Calculating Fractional
Months

Most Or Least Common Entry In A
List

Moving A Form With The Window
Multiple Monitors

Copyright © 2008 by J.L.Latham, All Rights Reserved.

Page 75

http://www.cpearson.com/excel/MainPage.aspx
http://www.cpearson.com/excel/topic.aspx
http://www.cpearson.com/excel/relative.aspx
http://www.cpearson.com/excel/ActivateExcelMain.aspx
http://www.cpearson.com/excel/Call.htm
http://www.cpearson.com/excel/Call.htm
http://www.cpearson.com/excel/excelM.htm#HighlightActiveCell
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/AutomationAddins.htm
http://www.cpearson.com/excel/differen.htm
http://www.cpearson.com/excel/CreatingCOMAddIn.aspx
http://www.cpearson.com/excel/EnableMacros.aspx
http://www.cpearson.com/excel/EnableMacros.aspx
http://www.cpearson.com/excel/EnableMacros.aspx
http://www.cpearson.com/excel/CreateAddIn.aspx
http://www.cpearson.com/excel/EnableMacros2.aspx
http://www.cpearson.com/excel/EnableMacros2.aspx
http://www.cpearson.com/excel/EnableMacros2.aspx
http://www.cpearson.com/excel/InstallingAnXLA.aspx
http://www.cpearson.com/excel/excelM.htm#RunFromCell
http://www.cpearson.com/excel/excelM.htm#RunFromCell
http://www.cpearson.com/excel/xltools.htm
http://www.cpearson.com/excel/matrixToVector.aspx
http://www.cpearson.com/excel/datedif.aspx
http://www.cpearson.com/excel/PersistentMinMax.aspx
http://www.cpearson.com/excel/KeyTest.aspx
http://www.cpearson.com/excel/Classes.aspx
http://www.cpearson.com/excel/Classes.aspx
http://www.cpearson.com/excel/ATP.aspx
http://www.cpearson.com/excel/menus.htm#manual
http://www.cpearson.com/excel/CallingWorksheetFunctionsInVBA.aspx
http://www.cpearson.com/excel/menus.htm#vba
http://www.cpearson.com/excel/menus.htm#vba
http://www.cpearson.com/XML/AnyXML.aspx
http://www.cpearson.com/XML/AnyXML.aspx
http://www.cpearson.com/excel/VbeMenus.aspx
http://www.cpearson.com/excel/VbeMenus.aspx
http://www.cpearson.com/excel/FormatMessage.htm
http://www.cpearson.com/excel/MergeListsToDistinct.aspx
http://www.cpearson.com/excel/AppEvent.aspx
http://www.cpearson.com/excel/lists.htm#Functions
http://www.cpearson.com/excel/ExcelShutdown.htm
http://www.cpearson.com/excel/PersistentMinMax.aspx
http://www.cpearson.com/excel/PersistentMinMax.aspx
http://www.cpearson.com/excel/hidden.htm
http://www.cpearson.com/excel/MissingReferences.aspx
http://www.cpearson.com/excel/MissingReferences.aspx
http://www.cpearson.com/excel/byrefbyval.aspx
http://www.cpearson.com/excel/GetFileName.aspx
http://www.cpearson.com/excel/GetFileName.aspx
http://www.cpearson.com/excel/GetFileName.aspx
http://www.cpearson.com/excel/ArrayFormulas.aspx
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/arr2col.htm
http://www.cpearson.com/excel/CodeAttributes.aspx
http://www.cpearson.com/excel/CodeAttributes.aspx
http://www.cpearson.com/excel/IsArrayAllocated.aspx
http://www.cpearson.com/excel/FractionalMonths.aspx
http://www.cpearson.com/excel/FractionalMonths.aspx
http://www.cpearson.com/excel/IsArraySorted.aspx
http://www.cpearson.com/excel/lists.htm#MostCommon
http://www.cpearson.com/excel/lists.htm#MostCommon
http://www.cpearson.com/excel/VBAArrays.htm#DataTypeOfArray
http://www.cpearson.com/excel/SetParent.htm
http://www.cpearson.com/excel/VBAArrays.htm#NumberOfDimensions
http://www.cpearson.com/excel/MultipleMonitors.aspx

Programming In Excel VBA
An Introduction
Arrays, Passing To Procedures And Returning From

by]J.Latham

Microsoft Excel MVP 2006-¢?

My Documents Folder, Finding For

Functions
Arrays, Randomizing (Shuffling) Order Of Elements
Arrays, Returning From User Defined Functions

Arrays, VBA Function Library (30 procedures)
Arrays, Reversing

Arrays, Sorting

Arrays Of Objects, Sorting

Arrays, Utility Procedures For

Attachments In Newsgroups, Why Not

Attributes, Descriptions To Display In Object
Browser

Automatically Closing A Workbook After Idle Time

The Current User

N

Named Ranges

Named Range Box, Increase The
Size Of

Named Range Box, Shortcut
Keystroke

Nested Function, Exceeding Limit
NET Function Libraries
NETWORKDAYS, A Better Way

Newsgroups, Connecting To

Automation Add-Ins And Function Libraries
Automation Add-In And Function Libraries With NET

Newsgroups, Excel Related
Newsgroups, Hints For New

Averaging Values In A Range
Averaging Highest Or Lowest Values

B

Banding, Color Banding With Conditional Formatting

Birthdays And Age
Blank Cells, Eliminating
Blank Rows, Deleting

Blinking Text

Bracket Pricing, Formulas For
Browse For Folder

Built-In Document Properties
Button Image, Custom Pictures

ByRef and ByVal Parameter Passing

C

CALL Worksheet Function
Caption of a Window and the Hide Extensions
setting

Case, Converting Text To Upper or Lower Case
Cell Contents, Displaying Hidden Characters

Additional Excel VBA Resources

Posters
Newsgroups, Problems Posting To

Next And Previous Worksheets
Non-duplicate Random Numbers

O

Objects, Declaring

Objects, Sorting Arrays Of Objects
Obijects, Connected And
Disconnected

OnTime Method In VBA
On Error handling
Optimizing VBA Code
Optional Parameters To A
Function

Optional And Arbitrary XML
defined in an XSD Schema
Option Explicit

Order, Reversing Cell
Ordinal Numbers In Excel

Overtime Hours In Timesheets

P

ParamArray parameters to a VB
Function

Copyright © 2008 by J.L.Latham, All Rights Reserved.

Page 76

http://www.cpearson.com/excel/PassingAndReturningArrays.htm
http://www.cpearson.com/excel/PassingAndReturningArrays.htm
http://www.cpearson.com/excel/SpecialFolders.aspx
http://www.cpearson.com/excel/SpecialFolders.aspx
http://www.cpearson.com/excel/ShuffleArray.aspx
http://www.cpearson.com/excel/ReturningArraysFromVBA.aspx
http://www.cpearson.com/excel/VBAArrays.htm
http://www.cpearson.com/excel/VBAArrays.htm#ReversingAnArray
http://www.cpearson.com/excel/DefinedNames.aspx
http://www.cpearson.com/excel/QSort.htm
http://www.cpearson.com/excel/NameBox.aspx
http://www.cpearson.com/excel/NameBox.aspx
http://www.cpearson.com/excel/SortingArraysOfObjects.htm
http://www.cpearson.com/excel/NameBoxShortcut.htm
http://www.cpearson.com/excel/NameBoxShortcut.htm
http://www.cpearson.com/excel/VBAArrays.htm
http://www.cpearson.com/excel/nested.htm
http://www.cpearson.com/excel/Attachments.htm
http://www.cpearson.com/excel/CreatingNETFunctionLib.aspx
http://www.cpearson.com/excel/CodeAttributes.aspx
http://www.cpearson.com/excel/CodeAttributes.aspx
http://www.cpearson.com/excel/betternetworkdays.aspx
http://www.cpearson.com/excel/TimedClose.htm
http://www.cpearson.com/excel/HintsAndTipsForNewsgroupUsers.aspx
http://www.cpearson.com/excel/AutomationAddIns.aspx
http://www.cpearson.com/excel/HintsAndTipsForNewsgroupUsers.aspx
http://www.cpearson.com/excel/CreatingNETFunctionLib.aspx
http://www.cpearson.com/excel/HintsAndTipsForNewsgroupUsers.aspx
http://www.cpearson.com/excel/HintsAndTipsForNewsgroupUsers.aspx
http://www.cpearson.com/excel/lists.htm#Functions
http://www.cpearson.com/excel/links.htm#Newsgroups
http://www.cpearson.com/excel/excelF.htm#AveragingValues
http://www.cpearson.com/excel/sheetref.htm
http://www.cpearson.com/excel/Random.htm
http://www.cpearson.com/excel/banding.aspx
http://www.cpearson.com/excel/datedif.aspx
http://www.cpearson.com/excel/noblanks.htm
http://www.cpearson.com/excel/variables.htm
http://www.cpearson.com/excel/excelM.htm#DeleteBlankRows
http://www.cpearson.com/excel/SortingArraysOfObjects.htm
http://www.cpearson.com/excel/pricing.htm
http://www.cpearson.com/excel/ConnectedObject.htm
http://www.cpearson.com/excel/ConnectedObject.htm
http://www.cpearson.com/excel/pricing.htm
http://www.cpearson.com/excel/OnTime.aspx
http://www.cpearson.com/excel/BrowseFolder.aspx
http://www.cpearson.com/excel/ErrorHandling.htm
http://www.cpearson.com/excel/docprop.aspx
http://www.cpearson.com/excel/optimize.htm
http://www.cpearson.com/excel/PicturesOnCommandBarItems.aspx
http://www.cpearson.com/excel/OptionalArgumentsToProcedures.aspx
http://www.cpearson.com/excel/OptionalArgumentsToProcedures.aspx
http://www.cpearson.com/excel/byrefbyval.aspx
http://www.cpearson.com/XML/AnyXML.aspx
http://www.cpearson.com/XML/AnyXML.aspx
http://www.cpearson.com/excel/DeclaringVariables.aspx
http://www.cpearson.com/excel/excelM.htm#FlipRange
http://www.cpearson.com/excel/ordinal.htm
http://www.cpearson.com/excel/overtime.htm
http://www.cpearson.com/excel/Call.htm
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/ChangingCase.aspx
http://www.cpearson.com/excel/CellView.aspx
http://www.cpearson.com/excel/OptionalArgumentsToProcedures.aspx
http://www.cpearson.com/excel/OptionalArgumentsToProcedures.aspx

Programming In Excel VBA

An Introduction
Cell References, Absolute And Relative

Cell Values And Displayed Text

Cells, Referring To Cells In Another Range

CellView Add-In
Centering The Screen On A Range Of Cells

Characters, Counting In A String
Characters, Finding In A String
Characters, Special characters in Excel
Child Windows with UserForms

Circular References, Example
Class Modules
Class Instances, Self-referencing

Class Names, Window Class Name Of Office
Applications

Classes, Default Member Of

Clipboard, Windows

Cloning A Folder

Close, Detecting And Taking Action When Excel
Closes

Closing A Workbook Automatically After Idle Time

by]J.Latham

Microsoft Excel MVP 2006-27?
Parameters, Passing ByRef And
ByVal
Parameters, Optional Parameters
To A Function
Passing Parameters ByRef And
ByVal
Parent Windows, With Userforms
Passing And Returning Arrays
From Procedures
Passwords, Forgotten
PathCompactPathEx API Function
Phone Numbers, Parsing
Pictures On Command Bar ltems,
Custom
Pivot Tables, An Introduction
Positioning UserForms To Cells
PowerPoint, Naming Slides And
Shapes
Preventing Duplicate Entry

Previous And Next Worksheets
Printing Cell Comments To Word
Pricing, Progressive And Bracket
Prime Numbers And Prime Twins,
Testing A Number

Printing Cell Formulas To Word

Code Modules

Code And Formula Usage, Legal Conderations

CodeName property
Code Modules

Collections And Dictionaries, Procedures for,
Sorting

Colors, Counting And Summing

Cells Based On Font or Interior Color
Colors, RGB Values

Color Picker, Displaying A Color Picker To The User

Colors, Sorting By
Color Banding With Conditional Formatting
Column To Table Conversion

Column To Table Conversion, Variable Block Size

Procedure Attributes For The
Object Browser

Procedure Name, Automatically
Inserting Into Procedure with
CONST declarations
Procedures, Scope And Visibility
Progress Bar, Displaying while
running code

Proper Case, Converting Text To
Proper Case

Properties, Returning Workbook

Q

Quarter, Determining From Date
QSort, Sorting Arrays Of Variables
QSort, Sorting Arrays Of Objects
QSortObjectCompare Example

Column Or Row From Table Conversion
COM Add-Ins, Getting The DLL Name Of

COM Add-Ins, Creating With VB6

Additional Excel VBA Resources

Function

R

Page 77

Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://www.cpearson.com/excel/relative.aspx
http://www.cpearson.com/excel/byrefbyval.aspx
http://www.cpearson.com/excel/byrefbyval.aspx
http://www.cpearson.com/excel/values.htm
http://www.cpearson.com/excel/OptionalArgumentsToProcedures.aspx
http://www.cpearson.com/excel/OptionalArgumentsToProcedures.aspx
http://www.cpearson.com/excel/cells.htm
http://www.cpearson.com/excel/byrefbyval.aspx
http://www.cpearson.com/excel/byrefbyval.aspx
http://www.cpearson.com/excel/CellView.aspx
http://www.cpearson.com/excel/SetParent.aspx
http://www.cpearson.com/excel/zoom.htm#center
http://www.cpearson.com/excel/PassingAndReturningArrays.htm
http://www.cpearson.com/excel/PassingAndReturningArrays.htm
http://www.cpearson.com/excel/stringformulas.aspx
http://www.cpearson.com/excel/password.htm
http://www.cpearson.com/excel/stringformulas.aspx
http://www.cpearson.com/excel/SizeString.htm#PathCompactPathEx
http://www.cpearson.com/excel/chars.htm
http://www.cpearson.com/excel/PhoneNum.htm
http://www.cpearson.com/excel/SetParent.aspx
http://www.cpearson.com/excel/PicturesOnCommandBarItems.aspx
http://www.cpearson.com/excel/PicturesOnCommandBarItems.aspx
http://www.cpearson.com/excel/PersistentMinMax.aspx
http://www.cpearson.com/excel/pivots.htm
http://www.cpearson.com/excel/Classes.aspx
http://www.cpearson.com/excel/FormPosition.htm
http://www.cpearson.com/excel/Classes.aspx
http://www.cpearson.com/PowerPoint/SlideAndShapeRenamer.htm
http://www.cpearson.com/PowerPoint/SlideAndShapeRenamer.htm
http://www.cpearson.com/excel/OfficeAppsWindowClasses.aspx
http://www.cpearson.com/excel/OfficeAppsWindowClasses.aspx
http://www.cpearson.com/excel/NoDupEntry.aspx
http://www.cpearson.com/excel/DefaultMember.aspx
http://www.cpearson.com/excel/sheetref.htm
http://www.cpearson.com/excel/clipboard.aspx
http://www.cpearson.com/excel/excelM.htm#PrintComments
http://www.cpearson.com/excel/CloneFolder.htm
http://www.cpearson.com/excel/pricing.htm
http://www.cpearson.com/excel/ExcelShutdown.htm
http://www.cpearson.com/excel/ExcelShutdown.htm
http://www.cpearson.com/excel/PrimeNumbers.aspx
http://www.cpearson.com/excel/PrimeNumbers.aspx
http://www.cpearson.com/excel/TimedClose.htm
http://www.cpearson.com/excel/excelM.htm#PrintFormulas
http://www.cpearson.com/excel/codemods.htm
http://www.cpearson.com/excel/CodeAttributes.aspx
http://www.cpearson.com/excel/CodeAttributes.aspx
http://www.cpearson.com/excel/UsageAndDistribution.aspx
http://www.cpearson.com/excel/InsertProcedureNames.htm
http://www.cpearson.com/excel/InsertProcedureNames.htm
http://www.cpearson.com/excel/InsertProcedureNames.htm
http://www.cpearson.com/excel/codemods.htm
http://www.cpearson.com/excel/Scope.aspx
http://www.cpearson.com/excel/codemods.htm
http://www.cpearson.com/excel/Progress.htm
http://www.cpearson.com/excel/Progress.htm
http://www.cpearson.com/excel/CollectionsAndDictionaries.htm
http://www.cpearson.com/excel/CollectionsAndDictionaries.htm
http://www.cpearson.com/excel/ChangingCase.aspx
http://www.cpearson.com/excel/ChangingCase.aspx
http://www.cpearson.com/excel/colors.aspx
http://www.cpearson.com/excel/excelM.htm#Properties
http://www.cpearson.com/excel/colors.aspx
http://www.cpearson.com/excel/colors.aspx
http://www.cpearson.com/excel/colors.aspx
http://www.cpearson.com/excel/SortByColor.aspx
http://www.cpearson.com/excel/datetime.htm#Quarter
http://www.cpearson.com/excel/banding.aspx
http://www.cpearson.com/excel/QSort.htm
http://www.cpearson.com/excel/ColumnToTable.aspx
http://www.cpearson.com/excel/SortingArraysOfObjects.htm
http://www.cpearson.com/excel/VariableBlockColumnToTable.aspx
http://www.cpearson.com/excel/QSortObjectCompare.htm
http://www.cpearson.com/excel/QSortObjectCompare.htm
http://www.cpearson.com/excel/TableToColumn.aspx
http://www.cpearson.com/excel/DLLNameOfComAddin.htm
http://www.cpearson.com/excel/CreatingCOMAddIn.aspx

Programming In Excel VBA
An Introduction
COM Add-Ins, Adding Menu Item For Dialog

COM Add-Ins, Installer

COM Add-Ins And Automation Add-Ins, Installing

by]J.Latham
Microsoft Excel MVP 2006-27?

Random Numbers In Excel And
VBA

Randomize The Order Of
Elements In An Array

Ranges, Converting To Column

COM Add-Ins In Excel 2007

Concatenating Strings, a better method than
CONCATENATE

Conditional Formatting
Command Bar Images, Custom Pictures

Conditional Formatting,Using Cells On Other Sheets

Ranges, Referring To Cells In
Another Range

Ranking Data In List (and
associated topics)

Recursive Code, Example Of
Recursive Programming

Techniques
Recursive Code, lllustrated With

Conditional Formatting, Determining If Active
Connected And Disconnected Object Variables
Converting A Column To A Table

Converting A Table To A Column Or Row

CTRL, SHIFT and ALT, Testing State Of Key

Copyright And Trademark Usage of contents of this

The File System Object

Recycle Bin

Recycling A File Or Folder
Recycling The Contents Of A
Folder

References, Setting To VB
Projects

References, Missing References
In A VBA Project

Registry, Functions For Working

site
Counting Cells Based On Font Or Interior Color

Counting Cells With A Specific Content
Type Counting Values Between Two
Numbers

COUNTIF with multiple criteria

Counting Characters In A String

Counting Words In A Cell Or On A Worksheet

CSV Files, Importing Files With More Than 64K
Records

Custom Document Properties, Reading And Writing

With The Registry
RegistryWorx DLL Registry
Component

Returning Every Nth Value In A
Range

Relative And Absolute Cell
References

Returning Arrays From User-
Defined Functions
Reversing A Range Of Cells
Reversing An Array

Rounding Errors And Precision

In Open And Closed Files

D

Data Validation, Using Cells On Other Sheets
Date Intervals, Formulas For

Dates, Adding And Subtracting

Dates, Differences Between
Dates, Distributing Across Months Or Years

Dates, Excel Serial Format

Additional Excel VBA Resources

Rounding Times
RowLiner Cell Highlighting Add In

Rows, Deleting Blank

Rows, Deleting Duplicate
Row, Returning a table into a
single row

RSS Feed, Get What's New
Information via an RSS Feed

S

Page 78

Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://www.cpearson.com/excel/AddingCOMAddInsMenuItem.aspx
http://www.cpearson.com/excel/randomNumbers.aspx
http://www.cpearson.com/excel/randomNumbers.aspx
http://www.cpearson.com/Zips/ComAddInInstaller.zip
http://www.cpearson.com/excel/ShuffleArray.aspx
http://www.cpearson.com/excel/ShuffleArray.aspx
http://www.cpearson.com/excel/COMAddInsSecurity.aspx
http://www.cpearson.com/excel/arr2col.htm
http://www.cpearson.com/excel/COMAddIn2007.aspx
http://www.cpearson.com/excel/cells.htm
http://www.cpearson.com/excel/cells.htm
http://www.cpearson.com/excel/stringconcatenation.aspx
http://www.cpearson.com/excel/stringconcatenation.aspx
http://www.cpearson.com/excel/rank.aspx
http://www.cpearson.com/excel/rank.aspx
http://www.cpearson.com/excel/cformatting.htm
http://www.cpearson.com/excel/CloneFolder.htm
http://www.cpearson.com/excel/PicturesOnCommandBarItems.aspx
http://www.cpearson.com/excel/RECURSIVEPROGRAMMING.ASPX
http://www.cpearson.com/excel/RECURSIVEPROGRAMMING.ASPX
http://www.cpearson.com/excel/cformatting.htm#DefName
http://www.cpearson.com/excel/RecursionAndFSO.htm
http://www.cpearson.com/excel/RecursionAndFSO.htm
http://www.cpearson.com/excel/CFColors.htm
http://www.cpearson.com/excel/Recycle.aspx
http://www.cpearson.com/excel/ConnectedObject.htm
http://www.cpearson.com/excel/Recycle.aspx
http://www.cpearson.com/excel/ColumnToTable.aspx
http://www.cpearson.com/excel/EmptyFolder.htm
http://www.cpearson.com/excel/EmptyFolder.htm
http://www.cpearson.com/excel/TableToColumn.aspx
http://www.cpearson.com/excel/References.htm
http://www.cpearson.com/excel/References.htm
http://www.cpearson.com/excel/KeyTest.aspx
http://www.cpearson.com/excel/MissingReferences.aspx
http://www.cpearson.com/excel/MissingReferences.aspx
http://www.cpearson.com/excel/LegaleseAndDisclaimers.aspx
http://www.cpearson.com/excel/LegaleseAndDisclaimers.aspx
http://www.cpearson.com/excel/Registry.htm
http://www.cpearson.com/excel/Registry.htm
http://www.cpearson.com/excel/colors.htm
http://www.cpearson.com/excel/registryworx.aspx
http://www.cpearson.com/excel/registryworx.aspx
http://www.cpearson.com/excel/excelF.htm#ReturningEvery
http://www.cpearson.com/excel/excelF.htm#ReturningEvery
http://www.cpearson.com/excel/array.htm
http://www.cpearson.com/excel/relative.aspx
http://www.cpearson.com/excel/relative.aspx
http://www.cpearson.com/excel/excelF.htm#CountCharacters
http://www.cpearson.com/excel/ReturningArraysFromVBA.aspx
http://www.cpearson.com/excel/ReturningArraysFromVBA.aspx
http://www.cpearson.com/excel/WordCount.htm
http://www.cpearson.com/excel/lists.htm#ReverseOrder
http://www.cpearson.com/excel/ImportBigFiles.htm
http://www.cpearson.com/excel/ImportBigFiles.htm
http://www.cpearson.com/excel/VBAArrays.htm
http://www.cpearson.com/excel/docprop.aspx
http://www.cpearson.com/excel/docprop.aspx
http://www.cpearson.com/excel/rounding.htm
http://www.cpearson.com/excel/datetime.htm#RoundingTimes
http://www.cpearson.com/excel/RowLiner.htm
http://www.cpearson.com/excel/deleting.htm#DeleteBlankRows
http://www.cpearson.com/excel/named.htm#Cheat
http://www.cpearson.com/excel/deleting.htm#DeleteDuplicateRows
http://www.cpearson.com/excel/DateIntervals.htm
http://www.cpearson.com/excel/TableToColumn.aspx
http://www.cpearson.com/excel/TableToColumn.aspx
http://www.cpearson.com/excel/datetime.htm#AddingDates
http://www.cpearson.com/RSS.xml
http://www.cpearson.com/RSS.xml
http://www.cpearson.com/excel/datedif.aspx
http://www.cpearson.com/excel/distribdates.htm
http://www.cpearson.com/excel/datetime.htm#SerialDates

Programming In Excel VBA
An Introduction

Date, File Date And Times, Returning and Setting

by]J.Latham

Microsoft Excel MVP 2006-¢?

Save Copy And Zip - XLA Add-In

Dates, Finding With VBA .Find Method
Dates, Julian
Dates, Quick Entry

Dates, Two Digit Years

Day Of Week, Returning Nth, Day Of Week In A

Month (VBA)

Day Of Week, Returning

Daylight Savings Time

Daylight Savings TIme Full Version

Daylight Savings Time And Time Zones
Day Of Week In A Month

Days Between Dates, A Better NETWORKDAYS

Save Copy And Zip - COM Add-In
Scheduling Procedures With
OnTime

Scope Of Variables And
Procedures

Screen Flicker When
Programming To The VBA Editor
Scrolling To Center A Range
Scrolling, Detecting With VBA
Self-Referencing an instance of a
class using "Me"

Selecting Current Array
Selecting Current Named Range
Selection, Saving And Returning

Days In Month, First And Last Days In Month

DATEDIF Function

Debugging VBA Code

Declaring Variables In VBA

Declaring Using Option Explicit

Default Member Of A Class

Defined Names In Excel

Defined Name Shortcut Keystroke
Degrees, Minutes, And Seconds
Deleting Blank Rows

Deleting Duplicate Rows

Deleting Duplicate Rows With Advanced Filter

Deleting Contents Of A Folder
Deleting A File Or Folder
Deleting VBA Code

Desktop, Getting Folder Name Of

Dictionaries And Collections, Procedures for,

Sorting
Directories, User Specific

Directories, Creating A Tree List
Directories, Creating Subdirectories
DirTree Add-in

Distributation And Usage Of Code And Formulas

To Sequence

Selection, Removing Active Cell
Or Active Area

Series, Inserting Cells And Filling
A Series

Series, Finding A Series Of Cells
That Sums To A Number
Series, Testing Whether Values
Are In Correct Series Order
Series, Testing Missing And
Present Black Of Numbers
SetParent Function For
UserForms

Shading Cells

Sheet Name, Returning

Sheet Names, Returning (VBA)
Shell Command, ShellAndWait
SHIFT, CTRL, and ALT, Testing
State Of Key

Shortcut Keys
ShortenTextToChars Function

Shortcut Keys
Shuffling Order Of Elements In An

Array
Shutdown, Detecting And Acting
When Excel Shuts Down

SizeString Function

Sorted, Testing If An Array Is
Sorted

Sorting By Cell Color

Sorting Arrays
Sorting Arrays Of Objects

Sorting Collections And

Distinct Items In Lists
Download Files From The Internet

Additional Excel VBA Resources

Dictionaries
Sorting Worksheets
Sounds, Playing Sounds From

Copyright © 2008 by J.L.Latham, All Rights Reserved.

Page 79

http://www.cpearson.com/excel/FileTimes.htm
http://www.cpearson.com/excel/SaveCopyAndZip.htm
http://www.cpearson.com/excel/datetime.htm#finding
http://www.cpearson.com/excel/SaveCopyAndZip.htm#COMAddIn
http://www.cpearson.com/excel/jdates.htm
http://www.cpearson.com/excel/DateTimeEntry.htm
http://www.cpearson.com/excel/OnTime.aspx
http://www.cpearson.com/excel/OnTime.aspx
http://www.cpearson.com/excel/datetime.htm#TwoDigitYears
http://www.cpearson.com/excel/Scope.aspx
http://www.cpearson.com/excel/Scope.aspx
http://www.cpearson.com/excel/datetime.htm#NDow
http://www.cpearson.com/excel/datetime.htm#NDow
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/datetime.htm#NthDoWYear
http://www.cpearson.com/excel/zoom.htm#center
http://www.cpearson.com/excel/LocalAndGMTTimes.htm
http://www.cpearson.com/excel/DetectScroll.htm
http://www.cpearson.com/excel/DaylightSavings.htm
http://www.cpearson.com/excel/Classes.aspx
http://www.cpearson.com/excel/Classes.aspx
http://www.cpearson.com/excel/timezoneanddaylighttime.aspx
http://www.cpearson.com/excel/excelM.htm#SelectArray
http://www.cpearson.com/excel/datetime.htm#NthDoW
http://www.cpearson.com/excel/excelM.htm#SelectRange
http://www.cpearson.com/excel/betternetworkdays.aspx
http://www.cpearson.com/excel/excelM.htm#SaveLocation
http://www.cpearson.com/excel/excelM.htm#SaveLocation
http://www.cpearson.com/excel/datetime.htm#DaysInMonth
http://www.cpearson.com/excel/UnSelect.aspx
http://www.cpearson.com/excel/UnSelect.aspx
http://www.cpearson.com/excel/datedif.aspx
http://www.cpearson.com/excel/InsertAndFill.htm
http://www.cpearson.com/excel/InsertAndFill.htm
http://www.cpearson.com/excel/Debug.htm
http://www.cpearson.com/excel/InsertAndFill.htm#SumSeries
http://www.cpearson.com/excel/InsertAndFill.htm#SumSeries
http://www.cpearson.com/excel/DeclaringVariables.aspx
http://www.cpearson.com/excel/InsertAndFill.htm#SeriesInOrder
http://www.cpearson.com/excel/InsertAndFill.htm#SeriesInOrder
http://www.cpearson.com/excel/DeclaringVariables.aspx
http://www.cpearson.com/excel/SeriesTest.aspx
http://www.cpearson.com/excel/SeriesTest.aspx
http://www.cpearson.com/excel/DefaultMember.aspx
http://www.cpearson.com/excel/SetParent.aspx
http://www.cpearson.com/excel/SetParent.aspx
http://www.cpearson.com/excel/DefinedNames.aspx
http://www.cpearson.com/excel/banding.aspx
http://www.cpearson.com/excel/NameBoxShortcut.htm
http://www.cpearson.com/excel/excelF.htm#SheetName
http://www.cpearson.com/excel/latlong.aspx
http://www.cpearson.com/excel/excelM.htm#SheetNames
http://www.cpearson.com/excel/deleting.htm#DeleteBlankRows
http://www.cpearson.com/excel/ShellAndWait.aspx
http://www.cpearson.com/excel/deleting.htm#DeleteDuplicateRows
http://www.cpearson.com/excel/KeyTest.aspx
http://www.cpearson.com/excel/KeyTest.aspx
http://www.cpearson.com/excel/DeleteDupsWithFilter.aspx
http://www.cpearson.com/excel/ShortCuts.aspx
http://www.cpearson.com/excel/EmptyFolder.htm
http://www.cpearson.com/excel/SizeString.htm#ShortenTextToChars
http://www.cpearson.com/excel/Recycle.aspx
http://www.cpearson.com/excel/ShortCuts.aspx
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/ShuffleArray.aspx
http://www.cpearson.com/excel/ShuffleArray.aspx
http://www.cpearson.com/excel/SpecialFolders.aspx
http://www.cpearson.com/excel/ExcelShutdown.htm
http://www.cpearson.com/excel/ExcelShutdown.htm
http://www.cpearson.com/excel/CollectionsAndDictionaries.htm
http://www.cpearson.com/excel/CollectionsAndDictionaries.htm
http://www.cpearson.com/excel/SizeString.htm#SizeString
http://www.cpearson.com/excel/SpecialFolders.aspx
http://www.cpearson.com/excel/IsArraySorted.aspx
http://www.cpearson.com/excel/IsArraySorted.aspx
http://www.cpearson.com/excel/FolderTree.aspx
http://www.cpearson.com/excel/SortByColor.aspx
http://www.cpearson.com/excel/MakeDirMulti.htm
http://www.cpearson.com/excel/QSort.htm
http://www.cpearson.com/excel/FolderTree.aspx
http://www.cpearson.com/excel/SortingArraysOfObjects.htm
http://www.cpearson.com/excel/UsageAndDistribution.aspx
http://www.cpearson.com/excel/CollectionsAndDictionaries.htm
http://www.cpearson.com/excel/CollectionsAndDictionaries.htm
http://www.cpearson.com/excel/Duplicates.aspx
http://www.cpearson.com/excel/sortws.aspx
http://www.cpearson.com/excel/DownloadFile.aspx
http://www.cpearson.com/excel/PlaySound.aspx

Programming In Excel VBA
An Introduction

Duplicate Iltems In Lists

Distinct Items In Lists

by]J.Latham
Microsoft Excel MVP 2006-27?
VBA

Special Characters In Cells,
Displaying Hidden Characters

Special Folders, Returning Names

Oof
Distinct Values VBA Functions, Returns Array Of Standard Time And Daylight
Distinct Values Savings Time

DLL, Error Codes From Windows DLLs
DLL Name Of A COM AddIn
Downloads

Document Properties, Reading Modifying In Both

Startup Errors In Excel

Status Bar, Working With In VBA
Strings, Most Or Least Common In
A Range

Strings, Concatenating With

Open And Closed Files
Duplicating A Folder
Duplicate Entries, Highlighting

Duplicate Entries, Preventing
Duplicate Entries, Replacing
Dynamic Ranges

E

Easter, Date Of
Easter, Calculation Of Date

Element Common To Two Lists
Emptying A Folder

Enum Data Type

Ensuring Macros Are Enabled, Technique 1
Ensuring Macris Are Enabled, Technique 2

End User License Agreement (EULA)
Err.LastDIlIError property

Errors, Diagnosing Startup Errors

Error Handling

Error Text From Windows APl Functions
Events In VBA, Repsonding To And Creating
Events

Events, Application

Events, Suppressing In UserForms

Every Nth Row, Getting Data From A Column

Additional Excel VBA Resources

Ranges And Arrays

Strings, Counting Characters In
Strings, Finding Characters Or
Digits

Strings, Fixed Length

Strings, Testing For Fixed Length
Strings, Shortening With
PathCompactPathEx

Strings, General Formulas
SubClassing The ActiveWindow

Subfolders and Subdirectories,
Creating

SUMIF, Multiple Criteria
Summing Cells Based On Font Or
Interior Color

Summing Every Nth Value
Support, Getting Support For
Excel

Symbols, Using special symbols
with Excel

T

Tables, Lookup Functions For
Tables

Table, Converting To Row Or
Column

Table, Creating A Table From A
Column, Variable Block Size
Telephone Numbers, Parsing
Temporary Files And Folders

Text Files, Importing And

Exporting
Text Files, Importing Files With

More Than 64K Records
Text Vs Value, Formulas And VBA

Page 80

Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://www.cpearson.com/excel/PlaySound.aspx
http://www.cpearson.com/excel/Duplicates.aspx
http://www.cpearson.com/excel/CELLVIEW.ASPX
http://www.cpearson.com/excel/CELLVIEW.ASPX
http://www.cpearson.com/excel/ListFunctions.aspx
http://www.cpearson.com/excel/SpecialFolders.aspx
http://www.cpearson.com/excel/SpecialFolders.aspx
http://www.cpearson.com/excel/DistinctValues.aspx
http://www.cpearson.com/excel/DistinctValues.aspx
http://www.cpearson.com/excel/DaylightSavings.htm
http://www.cpearson.com/excel/DaylightSavings.htm
http://www.cpearson.com/excel/FormatMessage.htm
http://www.cpearson.com/excel/StartupErrors.htm
http://www.cpearson.com/excel/DLLNameOfComAddin.htm
http://www.cpearson.com/excel/StatusBar.htm
http://www.cpearson.com/excel/download.htm
http://www.cpearson.com/excel/lists.htm#MostCommon
http://www.cpearson.com/excel/lists.htm#MostCommon
http://www.cpearson.com/excel/DocProp.aspx
http://www.cpearson.com/excel/DocProp.aspx
http://www.cpearson.com/excel/stringconcatenation.aspx
http://www.cpearson.com/excel/stringconcatenation.aspx
http://www.cpearson.com/excel/CloneFolder.htm
http://www.cpearson.com/excel/stringformulas.aspx
http://www.cpearson.com/excel/Duplicates.aspx
http://www.cpearson.com/excel/stringformulas.aspx
http://www.cpearson.com/excel/stringformulas.aspx
http://www.cpearson.com/excel/NoDupEntry.aspx
http://www.cpearson.com/excel/SizeString.htm
http://www.cpearson.com/excel/Duplicates.aspx
http://www.cpearson.com/excel/SizeString.htm#IsStringFixed
http://www.cpearson.com/excel/excelF.htm#DynamicRanges
http://www.cpearson.com/excel/SizeString.htm#PathCompactPathEx
http://www.cpearson.com/excel/SizeString.htm#PathCompactPathEx
http://www.cpearson.com/excel/stringformulas.aspx
http://www.cpearson.com/excel/DetectScroll.htm
http://www.cpearson.com/excel/MakeDirMulti.htm
http://www.cpearson.com/excel/MakeDirMulti.htm
http://www.cpearson.com/excel/holidays.htm#Easter
http://www.cpearson.com/excel/array.htm
http://www.cpearson.com/excel/holidays.htm#Easter
http://www.cpearson.com/excel/colors.aspx
http://www.cpearson.com/excel/colors.aspx
http://www.cpearson.com/excel/ListFunctions.aspx
http://www.cpearson.com/excel/EveryNth.aspx
http://www.cpearson.com/excel/EmptyFolder.htm
http://www.cpearson.com/excel/support.htm
http://www.cpearson.com/excel/support.htm
http://www.cpearson.com/excel/Enums.htm
http://www.cpearson.com/excel/chars.htm
http://www.cpearson.com/excel/chars.htm
http://www.cpearson.com/excel/EnableMacros.aspx
http://www.cpearson.com/excel/EnableMacros2.aspx
http://www.cpearson.com/excel/EULAFAQ.htm
http://www.cpearson.com/excel/FormatMessage.htm
http://www.cpearson.com/excel/TablesAndLookups.aspx
http://www.cpearson.com/excel/TablesAndLookups.aspx
http://www.cpearson.com/excel/StartupErrors.htm
http://www.cpearson.com/excel/TableToColumn.aspx
http://www.cpearson.com/excel/TableToColumn.aspx
http://www.cpearson.com/excel/ErrorHandling.htm
http://www.cpearson.com/excel/VariableBlockColumnToTable.aspx
http://www.cpearson.com/excel/VariableBlockColumnToTable.aspx
http://www.cpearson.com/excel/FormatMessage.htm
http://www.cpearson.com/excel/PhoneNum.htm
http://www.cpearson.com/excel/Events.aspx
http://www.cpearson.com/excel/Events.aspx
http://www.cpearson.com/excel/WorkingWithTempFilesAndFolders.htm
http://www.cpearson.com/excel/AppEvent.aspx
http://www.cpearson.com/excel/imptext.aspx
http://www.cpearson.com/excel/imptext.aspx
http://www.cpearson.com/excel/SuppressChangeInForms.htm
http://www.cpearson.com/excel/ImportBigFiles.htm
http://www.cpearson.com/excel/ImportBigFiles.htm
http://www.cpearson.com/excel/EveryNth.aspx
http://www.cpearson.com/excel/values.htm

Programming In Excel VBA
An Introduction
Exporting Data To Text Files
Exporting VBA Code To Text Files

Extension, File extensions and the Hide Extensions

by]J.Latham
Microsoft Excel MVP 2006-27?
Text File, Importing And Exporting
TextBox, Resricting to numeric-
only input
Thanksgiving, Calculation Of Date

setting

-

FAQ (Frequently Asked Questions), Formal
Feet And Inches
Feet And Inches, Arithmetic With

File Attachments In Newsgroups, Why Not

File, Testing If A File Is Open
File extensions and the Hide Extensions setting
File Times, Retrieving and Setting

File Name, Returning

File Name, Returning Most Or Leaset Recently
Modified In A Folder

File Names, shortening with PathCompactPathEx

"This" reference is "Me" in
VB/VBA
TimeBombing A Workbook

Timed Closing Of A Workbook
Timers, Scheduling Procedures
Times, Adding And Subtracting
Times, Daylight Savings And
Standard

Times And Working Hours,
Between Two Dates

Times, Quick Entry

Times, Rounding

Timesheets, Working With
Regular And Overtime Hours
Time Zones

Time Zones And Daylight Savings
Time

Timers In Excel

Files, Waiting For Open Files To Be Closed
FileSystemObiject, Creating A Directory Tree

Filling A Series Of Data And Inserting Cells
Finding Cells In VBA, Including WildCard Matching

Tools For Excel (Free Add-ins)
TreeView Control, Using To
Display Folders And Files
TrimToChar Function
TrimToNull Function

FindAll Function to search a range

FindAll XLA Add-In
Finding Values On Multiple Worksheets

FindWindowEx, Captions, and the Hide Extensions
setting

First And Last Names, Extracting From A String
Fixed Length Strings

Fixed Length Strings, Testing For

Flexible Lookups, An Alternative To VLOOKUP
Flickering, Screen Flickering When Code To The

Transposing A Range With
Formulas

U

Unique Entries, Counting
Unique ldentifiers (GUIDs)
Unigue Ranks

Unique Random Numbers
Unique Values In A Range, VBA

VBE
Flipping Or Reversing A Range With VBA
Floating Point Numbers

Folder, Browse For

Folder, Deleting Contents

Folder, Creating An Exact Copy

Additional Excel VBA Resources

Function To Return Disinct ltems
UnSelecting A Cell Or Area
Upper Case, Converting Text To
Upper Case

Usage And Distribution Of Code
And Formulas

User Defined Functions (UDFs) In
VBA

User Defined Functions,
Determine Whence It Was Called

Page 81

Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://www.cpearson.com/excel/ImpText.aspx
http://www.cpearson.com/excel/ImpText.aspx
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/TextBox.htm
http://www.cpearson.com/excel/TextBox.htm
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/holidays.htm#Thanksgiving
http://www.cpearson.com/excel/Classes.aspx
http://www.cpearson.com/excel/Classes.aspx
http://www.cpearson.com/excel/workbooktimebomb.aspx
http://www.cpearson.com/excel/TimedClose.htm
http://www.cpearson.com/excel/links.htm#FAQ
http://www.cpearson.com/excel/ontime.htm
http://www.cpearson.com/excel/FeetInches.htm
http://www.cpearson.com/excel/datetime.htm#AddingTimes
http://www.cpearson.com/excel/FractionalArithmetic.aspx
http://www.cpearson.com/excel/DaylightSavings.htm
http://www.cpearson.com/excel/DaylightSavings.htm
http://www.cpearson.com/excel/Attachments.htm
http://www.cpearson.com/excel/datetime.htm#WorkHours
http://www.cpearson.com/excel/datetime.htm#WorkHours
http://www.cpearson.com/excel/ISFILEOPEN.ASPX
http://www.cpearson.com/excel/DateTimeEntry.htm
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/datetime.htm#RoundingTimes
http://www.cpearson.com/excel/FileTimes.htm
http://www.cpearson.com/excel/overtime.htm
http://www.cpearson.com/excel/overtime.htm
http://www.cpearson.com/excel/excelF.htm#FileName
http://www.cpearson.com/excel/timezone.htm
http://www.cpearson.com/excel/GetFileName.aspx
http://www.cpearson.com/excel/GetFileName.aspx
http://www.cpearson.com/excel/TimeZoneAndDaylightTime.aspx
http://www.cpearson.com/excel/TimeZoneAndDaylightTime.aspx
http://www.cpearson.com/excel/SizeString.htm#PathCompactPathEx
http://www.cpearson.com/excel/ontime.htm
http://www.cpearson.com/excel/WaitForFileClose.htm
http://www.cpearson.com/excel/xltools.htm
http://www.cpearson.com/excel/FolderTree.htm
http://www.cpearson.com/excel/foldertreeview.aspx
http://www.cpearson.com/excel/foldertreeview.aspx
http://www.cpearson.com/excel/InsertAndFill.htm
http://www.cpearson.com/excel/SizeString.htm#TrimToChar
http://www.cpearson.com/excel/RangeFind.htm
http://www.cpearson.com/excel/SizeString.htm#TrimToNull
http://www.cpearson.com/excel/FindAll.aspx
http://www.cpearson.com/excel/lists.htm#Transpose
http://www.cpearson.com/excel/lists.htm#Transpose
http://www.cpearson.com/excel/FindAllXLA.aspx
http://www.cpearson.com/excel/findall.aspx
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/FirstLast.htm
http://www.cpearson.com/excel/Duplicates.aspx
http://www.cpearson.com/excel/SizeString.htm
http://www.cpearson.com/excel/CreateGUID.aspx
http://www.cpearson.com/excel/SizeString.htm#IsStringFixed
http://www.cpearson.com/excel/rank.htm
http://www.cpearson.com/excel/FlexLookup.aspx
http://www.cpearson.com/excel/RandomNumbers.aspx
http://www.cpearson.com/excel/vbe.aspx#ScreenFlicker
http://www.cpearson.com/excel/vbe.aspx#ScreenFlicker
http://www.cpearson.com/excel/DistinctValues.aspx
http://www.cpearson.com/excel/DistinctValues.aspx
http://www.cpearson.com/excel/excelM.htm#FlipRange
http://www.cpearson.com/excel/unselect.aspx
http://www.cpearson.com/excel/rounding.htm
http://www.cpearson.com/excel/ChangingCase.aspx
http://www.cpearson.com/excel/ChangingCase.aspx
http://www.cpearson.com/excel/BrowseFolder.aspx
http://www.cpearson.com/excel/UsageAndDistribution.aspx
http://www.cpearson.com/excel/UsageAndDistribution.aspx
http://www.cpearson.com/excel/EmptyFolder.htm
http://www.cpearson.com/excel/WritingFunctionsInVBA.aspx
http://www.cpearson.com/excel/WritingFunctionsInVBA.aspx
http://www.cpearson.com/excel/CloneFolder.htm
http://www.cpearson.com/excel/writingfunctionsinvba.aspx
http://www.cpearson.com/excel/writingfunctionsinvba.aspx

Programming In Excel VBA
An Introduction
Folders, Creating Subfolders

Folders, Creating A Tree List Of Subfolders And
Files

Folders And Files In A TreeView Control
Folders, Returning User Specific Folders
Footers And Headers

Footers And Headers (VBA code to customize)

FormatMessage, Getting APl Error Messages
Forms, Positioning To Cells

Forms, Moving With Windows

Forms, Showing A UserForm Determined At Run-

by]J.Latham

Microsoft Excel MVP 2006-¢?

User Defined Functions, Returning

Arrays
Used Cells In A Range

User-Specific Folders

UserForm Events, Suppressing
UserForms, Modifying With
Windows APl Functions
UserForms, Parent And Child
Windows

UserForms, Positioning To Cells
UserForms, Showing A UserFrom
Determined At Run-time

UTC And Local Times, And
Windows Time Formats

Utilities and Add-Ins, Third Party

time
Formula Bar, Shortcut To
Fractional Arithmetic

Fractional Months, Calculating
Functions, User Defined, Determine Whence It Was

V

Variables In VBA, Declaring

Called
Function Libraries As Automation Add Ins
Function Libraries Written In NET

Functions, As Opposed To Macros

Functions, Writing Your Own Function In VBA

Functions, Using Worksheet Functions In VBA

G

Games For Excel

Getlnfo UDF
Getting Help From Newsqgrops

GetLastError Windows API Function
GetSystemErrorMessageText Function

Global Variables, Application-wide Global Variables
Globally Unique Identifiers (GUIDs)
GMT And Local Times, And Windows Time Formats

Variables, Scope And Visibility
Variables, Truly Global Variables
In VBA

VBA Editor, Automating The VBA
Editor and its objects

VBA Editor, Creating Menus For
The VBA Editor

VBA Project, Missing References
In A VBA Project

Vectors And Matrices

Versions Of Excel

Visible And Hidden Cells,
Functions For

Visual Basic For Applications
(VBA), Optimizing
VLOOKUP - A Better Way
VBA Code, Adding/Deleting
Modules

W

Wait For File To Be Closed
WAV files, playing from VBA

Grades
Great Circle Distances

Additional Excel VBA Resources

Week, First Monday Of
Week Numbers, Excel and 1ISO

Copyright © 2008 by J.L.Latham, All Rights Reserved.

Page 82

http://www.cpearson.com/excel/MakeDirMulti.htm
http://www.cpearson.com/excel/ReturningArraysFromVBA.aspx
http://www.cpearson.com/excel/ReturningArraysFromVBA.aspx
http://www.cpearson.com/excel/FolderTree.aspx
http://www.cpearson.com/excel/FolderTree.aspx
http://www.cpearson.com/excel/excelF.htm#FindingUsed
http://www.cpearson.com/excel/FOLDERTREEVIEW.ASPX
http://www.cpearson.com/excel/SpecialFolders.aspx
http://www.cpearson.com/excel/SpecialFolders.aspx
http://www.cpearson.com/excel/SuppressChangeInForms.htm
http://www.cpearson.com/excel/excelM.htm#HeadersAndFooters
http://www.cpearson.com/excel/formcontrol.aspx
http://www.cpearson.com/excel/formcontrol.aspx
http://www.cpearson.com/excel/headfoot.htm
http://www.cpearson.com/excel/SetParent.aspx
http://www.cpearson.com/excel/SetParent.aspx
http://www.cpearson.com/excel/FormatMessage.htm
http://www.cpearson.com/excel/FormPosition.htm
http://www.cpearson.com/excel/FormPosition.htm
http://www.cpearson.com/excel/ShowAnyForm.htm
http://www.cpearson.com/excel/ShowAnyForm.htm
http://www.cpearson.com/excel/SetParent.htm
http://www.cpearson.com/excel/LocalAndGMTTimes.htm
http://www.cpearson.com/excel/LocalAndGMTTimes.htm
http://www.cpearson.com/excel/ShowAnyForm.htm
http://www.cpearson.com/excel/ShowAnyForm.htm
http://www.cpearson.com/excel/xltools.htm
http://www.cpearson.com/excel/FormulaBarShortcut.htm
http://www.cpearson.com/excel/FractionalArithmetic.aspx
http://www.cpearson.com/excel/FractionalMonths.aspx
http://www.cpearson.com/excel/writingfunctionsinvba.aspx
http://www.cpearson.com/excel/writingfunctionsinvba.aspx
http://www.cpearson.com/excel/DeclaringVariables.aspx
http://www.cpearson.com/excel/AutomationAddIns.aspx
http://www.cpearson.com/excel/Scope.aspx
http://www.cpearson.com/excel/CreatingNETFunctionLib.aspx
http://www.cpearson.com/excel/TrulyGlobalVariables.htm
http://www.cpearson.com/excel/TrulyGlobalVariables.htm
http://www.cpearson.com/excel/differen.htm
http://www.cpearson.com/excel/VBE.aspx
http://www.cpearson.com/excel/VBE.aspx
http://www.cpearson.com/excel/WritingFunctionsInVBA.aspx
http://www.cpearson.com/excel/VbeMenus.aspx
http://www.cpearson.com/excel/VbeMenus.aspx
http://www.cpearson.com/excel/CallingWorksheetFunctionsInVBA.aspx
http://www.cpearson.com/excel/MissingReferences.aspx
http://www.cpearson.com/excel/MissingReferences.aspx
http://www.cpearson.com/excel/MatrixToVector.aspx
http://www.cpearson.com/excel/versions.htm
http://www.cpearson.com/excel/IsVisible.aspx
http://www.cpearson.com/excel/IsVisible.aspx
http://www.cpearson.com/excel/games.htm
http://www.cpearson.com/excel/optimize.htm
http://www.cpearson.com/excel/optimize.htm
http://www.cpearson.com/excel/GetInfo.htm
http://www.cpearson.com/excel/FlexLookup.aspx
http://www.cpearson.com/excel/HintsAndTipsForNewsgroupUsers.aspx
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/vbe.aspx
http://www.cpearson.com/excel/FormatMessage.htm
http://www.cpearson.com/excel/FormatMessage.htm
http://www.cpearson.com/excel/TrulyGlobalVariables.htm
http://www.cpearson.com/excel/CreateGUID.aspx
http://www.cpearson.com/excel/WaitForFileClose.htm
http://www.cpearson.com/excel/LocalAndGMTTimes.htm
http://www.cpearson.com/excel/PlaySound.aspx
http://www.cpearson.com/excel/excelF.htm#Grades
http://www.cpearson.com/excel/datetime.htm#WeekStart
http://www.cpearson.com/excel/latlong.aspx
http://www.cpearson.com/excel/weeknum.htm

Programming In Excel VBA
An Introduction

H

Headers And Footers
Headers And Footers (VBA code to customize)

Hidden And Visible Cells, Functions For
Hidden Name Space

Hide Extensions setting and VBA in Excel

High And Low Values, Persistent

Highlighting ActiveCell

HLOOKUP - A Better Way
Holidays, Calculation Of Dates

IF Functions, Nested
Importing Text Files

Importing Text Files With More Than 64K Records

Inches And Feet, Arithmetic With
INDIRECT Worksheet Function
Inserting Cells And Filling A Series Of Data

Internet, Downloading a file from.

Intervals, Dates
IsFileOpen, Testing If A File Is Open
1ISO Week Numbers and Excel

J

Julian Dates

K

Keyboard Shortcuts

Additional Excel VBA Resources

by]J.Latham
Microsoft Excel MVP 2006-¢?
Weekday, Counting Between

Dates
Weekday, First And Last Of Month

Weekday, Nth Day Of Month
Weekdays, Creating Series Of
Weeks, Difference Between Dates
Wildcard Matching With Find
Window captions and the Hide
Extensions setting

Windows API Functions, Getting
Error Information

Window Class Names Of Office
Applications

Words, Counting In A Cell Or On
A Worksheet

Words, Extracting From A String
Workbooks, Closing All
Workbooks, Saving All

Worksheet Functions, Using In
VBA

Worksheets, Referencing From
Formulas

Worksheets, Sorting

X

XLA Add-Ins, Creating
XLA Add-Ins, Installing And

Loading
XML, Optional And Arbitrary XML

defined in an XSD Schema
X-Ray (Excel Game download)

Y

Year, First Monday Of

Years, Entering Two Digit Years

Z

Zero Values, Ignoring In Functions
Zip File, Saving A Workbook As A
Zip File

Page 83

Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://www.cpearson.com/excel/datetime.htm#NumDOWPeriod
http://www.cpearson.com/excel/datetime.htm#NumDOWPeriod
http://www.cpearson.com/excel/DateTimeWS.htm#LastWeekday
http://www.cpearson.com/excel/datetime.htm#NDow
http://www.cpearson.com/excel/excelM.htm#HeadersAndFooters
http://www.cpearson.com/excel/datetime.htm#WeekdaySeries
http://www.cpearson.com/excel/headfoot.htm
http://www.cpearson.com/excel/datetime.htm#WeekDifferences
http://www.cpearson.com/excel/IsVisible.aspx
http://www.cpearson.com/excel/RangeFind.htm
http://www.cpearson.com/excel/hidden.htm
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/FileExtensions.aspx
http://www.cpearson.com/excel/FormatMessage.htm
http://www.cpearson.com/excel/FormatMessage.htm
http://www.cpearson.com/excel/excelF.htm#HighLow
http://www.cpearson.com/excel/OfficeAppsWindowClasses.aspx
http://www.cpearson.com/excel/OfficeAppsWindowClasses.aspx
http://www.cpearson.com/excel/excelM.htm#HighlightActiveCell
http://www.cpearson.com/excel/WordCount.htm
http://www.cpearson.com/excel/WordCount.htm
http://www.cpearson.com/excel/FlexLookup.aspx
http://www.cpearson.com/excel/excelF.htm#Words
http://www.cpearson.com/excel/holidays.htm
http://www.cpearson.com/excel/excelM.htm#CloseAllWorkbooks
http://www.cpearson.com/excel/excelM.htm#SaveAll
http://www.cpearson.com/excel/CallingWorksheetFunctionsInVBA.aspx
http://www.cpearson.com/excel/CallingWorksheetFunctionsInVBA.aspx
http://www.cpearson.com/excel/sheetref.htm
http://www.cpearson.com/excel/sheetref.htm
http://www.cpearson.com/excel/nested.htm
http://www.cpearson.com/excel/sortws.aspx
http://www.cpearson.com/excel/ImpText.aspx
http://www.cpearson.com/excel/ImportBigFiles.htm
http://www.cpearson.com/excel/fractional.htm
http://www.cpearson.com/excel/indirect.htm
http://www.cpearson.com/excel/CreateAddIn.aspx
http://www.cpearson.com/excel/InsertAndFill.htm
http://www.cpearson.com/excel/InstallingAnXLA.aspx
http://www.cpearson.com/excel/InstallingAnXLA.aspx
http://www.cpearson.com/excel/DownloadFile.aspx
http://www.cpearson.com/XML/AnyXML.aspx
http://www.cpearson.com/XML/AnyXML.aspx
http://www.cpearson.com/excel/DateIntervals.htm
http://www.cpearson.com/excel/download.htm
http://www.cpearson.com/excel/ISFILEOPEN.ASPX
http://www.cpearson.com/excel/weeknum.htm
http://www.cpearson.com/excel/datetime.htm#YearStart
http://www.cpearson.com/excel/datetime.htm#TwoDigitYears
http://www.cpearson.com/excel/jdates.htm
http://www.cpearson.com/excel/lists.htm#Functions
http://www.cpearson.com/excel/ShortCuts.aspx
http://www.cpearson.com/excel/SaveCopyAndZip.htm
http://www.cpearson.com/excel/SaveCopyAndZip.htm

Programming In Excel VBA
An Introduction
Key State, Testing For SHIFT, CTRL, and ALT

L

Last And First Names, Extracting From A String
Last Modified File, Finding In A Folder

Last Update Time Of Cell Or Range

Latitude And Longitude

Leap Year, Determining

Least Or Most Common Entry In A List

Legal Information About This Site And Its Contents

ListBox, Support Procedures For A ListBox control

Lists, Counting Distinct Entries

Lists, Extracting Unique Entries

Lists, Entries Common To Two Lists

Lists, Entries On One List And Not On Another
Lists, Highlighting Duplicate Entries

Lists, Merging Without Duplicates

Lists, Testing For Duplicate Entries

Lists, Reversing and Transposing

Lists, Minimum And Maximum Values

Lookups, Left Lookup (alternative to VLOOKUP)

Lookups, Formula To Look Up Data In A Table
Lookups, Flexible. Alternative To VLOOKUP
Lower Case, Converting Text To Lower Case

Additional Excel VBA Resources

by]J.Latham

Microsoft Excel MVP 2006-¢?

Zip File, Save As, COM Add-In

Zooming On A Range Of Cells

Copyright © 2008 by J.L.Latham, All Rights Reserved.

Page 84

http://www.cpearson.com/excel/KeyTest.aspx
http://www.cpearson.com/excel/SaveCopyAndZip.htm#COMAddIn
http://www.cpearson.com/excel/zoom.htm#zoom
http://www.cpearson.com/excel/FirstLast.htm
http://www.cpearson.com/excel/GetFileName.aspx
http://www.cpearson.com/excel/lasttime.htm
http://www.cpearson.com/excel/latlong.aspx
http://www.cpearson.com/excel/DateTimeVBA.htm#LeapYear
http://www.cpearson.com/excel/lists.htm#MostCommon
http://www.cpearson.com/excel/LegaleseAndDisclaimers.aspx
http://www.cpearson.com/excel/ListBoxUtils.htm
http://www.cpearson.com/excel/Duplicates.aspx
http://www.cpearson.com/excel/Lists.htm
http://www.cpearson.com/excel/listfunctions.aspx
http://www.cpearson.com/excel/ListFunctions.aspx
http://www.cpearson.com/excel/Duplicates.aspx
http://www.cpearson.com/excel/MergeListsToDistinct.aspx
http://www.cpearson.com/excel/Duplicates.aspx
http://www.cpearson.com/excel/lists.htm#ReverseOrder
http://www.cpearson.com/excel/lists.htm#Functions
http://www.cpearson.com/excel/TablesAndLookups.aspx
http://www.cpearson.com/excel/TablesAndLookups.aspx
http://www.cpearson.com/excel/FlexLookup.aspx
http://www.cpearson.com/excel/ChangingCase.aspx

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-27?
OZGRIDS FORMULAS W/DOWNLOADS:

http://www.ozgrid.com/forum/index.phps=26c4d4689355798111b17e605a0d4eb6 &
Look for the two links to downloadable Formulas and the one for downloadable Code.

JON PELTIER’S CHART TUTORIALS

Jon Peltier has premium quality knowledge of Excel Charting and Graphing and you would be
hard pressed to get better starting help on Charting with Excel from someplace other than

http://peltiertech.com/Excel/Charts/index.html

CHARLES WILLIAMS DECISIONMODELS.COM SITE

Long overlooked and underappreciated, Charles Williams was finally awarded Microsoft Excel
MVP status. Long overdue. His site has some really informative information, good help and
great ‘inside’ information about the way that Excel works. For the really serious, his Fast Excel
analysis tool is definitely one to have around.

This page has many links at the top regarding how Excel’s (re)Calculation engine works, and
how to make it work for you:

http://www.decisionmodels.com/calcsecrets.htm

This page has lots of tips and information on how to speed up the performance of your
workbooks:

http://www.decisionmodels.com/optspeedh.htm

Need to find out more detail about the memory requirements or usage in your version of Excel?
Then check out this page:

http://www.decisionmodels.com/memlimits.htm

TOOLS AND DOWNLOADS BY JAN KAREL PIETERSE
Here you will find some really useful, and FREE tools for working with Excel.

http://jkp-ads.com/Download.asp

Additional Excel VBA Resources Page 85
Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://www.ozgrid.com/forum/index.phps=26c4d4689355798111b17e605a0d4eb6&
http://peltiertech.com/Excel/Charts/index.html
http://www.decisionmodels.com/calcsecrets.htm
http://www.decisionmodels.com/optspeedh.htm
http://www.decisionmodels.com/memlimits.htm
http://jkp-ads.com/Download.asp

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

JOHN WALKENBACH FREE EXCEL TIPS

You may have seen books in the Computers section at your local Barnes & Noble, Borders,
Waldenbooks or your very local Ma & Pa Smith’s Books and Antiques shop. I own several of
his books myself, and his Excel 2007 Bible (ISBN: 0470044039) is highly respected. But you can
get excellent information from his site without leaving your keyboard or spending any extra $.

http://spreadsheetpage.com/ John Walkenbach site’s main page.

Here is the Table of Contents for his Excel Tips at the site, with some having companion files
that can be downloaded.

General

. Getting A List Of Files Names - Another Method

. Clearing The Text To Columns Parameters

. Making An Exact Copy Of A Range Of Formulas, Take 2
. Create A Drop-Down List Of Possible Input Values

. Excel 2007 Upgrade FAQ: Charts And Graphics

. Excel 2007 Upgrade FAQ: Formatting And Printing

. Excel 2007 Upgrade FAQ: General

. Excel 2007 Upgrade FAQ: User Interface

. Using Custom Number Formats %

. Navigating Excel’s Sheets

. Override Excel’s Text Import Wizard

. Sharing Autocorrect Shortcuts

. Making A Worksheet Very Hidden

. Importing A Text File Into A Worksheet

. Using A Workspace File

. Protecting Cells, Sheets, Workbooks, And Files

. Resize Excel’s Sheet Tabs

. Changing The Number Of Sheets In A New Workbook
. Close All Workbooks Quickly

. Restrict Cursor Movement To Unprotected Cells

. Change The Color Of Worksheet Tabs

. Making An Exact Copy Of A Range Of Formulas

. Creating A Database Table From A Summary Table
. Solving Common Setup Problems

. Getting A List Of File Names

. CommandBar Calculator £%

. Spreadsheet Protection FAQ

. Extended Date Functions £%

Formatting

Additional Excel VBA Resources Page 86
Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://spreadsheetpage.com/
http://spreadsheetpage.com/index.php/tip/getting_a_list_of_files_names_another_method/
http://spreadsheetpage.com/index.php/tip/clearing_the_text_to_columns_parameters/
http://spreadsheetpage.com/index.php/tip/making_an_exact_copy_of_a_range_of_formulas_take_2/
http://spreadsheetpage.com/index.php/tip/create_a_drop_down_list_of_possible_input_values/
http://spreadsheetpage.com/index.php/tip/excel_2007_upgrade_faq_charts_and_graphics/
http://spreadsheetpage.com/index.php/tip/excel_2007_upgrade_faq_formatting_and_printing/
http://spreadsheetpage.com/index.php/tip/excel_2007_upgrade_faq_general/
http://spreadsheetpage.com/index.php/tip/excel_2007_upgrade_faq_user_interface/
http://spreadsheetpage.com/index.php/tip/using_custom_number_formats/
http://spreadsheetpage.com/index.php/tip/navigating_excels_sheets/
http://spreadsheetpage.com/index.php/tip/override_excels_text_import_wizard/
http://spreadsheetpage.com/index.php/tip/sharing_autocorrect_shortcuts/
http://spreadsheetpage.com/index.php/tip/making_a_worksheet_very_hidden/
http://spreadsheetpage.com/index.php/tip/importing_a_text_file_into_a_worksheet/
http://spreadsheetpage.com/index.php/tip/using_a_workspace_file/
http://spreadsheetpage.com/index.php/tip/protecting_cells_sheets_workbooks_and_files/
http://spreadsheetpage.com/index.php/tip/resize_excels_sheet_tabs/
http://spreadsheetpage.com/index.php/tip/changing_the_number_of_sheets_in_a_new_workbook/
http://spreadsheetpage.com/index.php/tip/close_all_workbooks_quickly/
http://spreadsheetpage.com/index.php/tip/restrict_cursor_movement_to_unprotected_cells/
http://spreadsheetpage.com/index.php/tip/change_the_color_of_worksheet_tabs/
http://spreadsheetpage.com/index.php/tip/making_an_exact_copy_of_a_range_of_formulas/
http://spreadsheetpage.com/index.php/tip/creating_a_database_table_from_a_summary_table/
http://spreadsheetpage.com/index.php/tip/solving_common_setup_problems/
http://spreadsheetpage.com/index.php/tip/getting_a_list_of_file_names/
http://spreadsheetpage.com/index.php/tip/commandbar_calculator/
http://spreadsheetpage.com/index.php/tip/spreadsheet_protection_faq1/
http://spreadsheetpage.com/index.php/tip/extended_date_functions/

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-7?

. Quantifying Color Choices ¥

. Excel 2007 Upgrade FAQ: Formatting And Printing

. Comparing Two Lists With Conditional Formatting

. Alternate Row Shading Using Conditional Formatting

. Duplicate Repeated Entries In A List

. Removing Or Avoiding Automatic Hyperlinks

. Working With Fractions

. Using Conditional Formatting

. Fix Incorrect Decimal Places During Data Entry

. Display Text In Multiple Lines

. Changing The Default Cell Comment Formatting

. Change The Formatting Of Your Subtotal Rows

Formulas

. Is A Particular Word Contained In A Text String?

. Formulas To Perform Day Of Month Calculations ¥
. Making An Exact Copy Of A Range Of Formulas, Take 2
. Calculating Easter

. Converting Unix Timestamps

. Naming Techniques

. Creating A List Of Formulas

. Cell Counting Techniques

. Summing And Counting Using Multiple Criteria

. Chart Trendline Formulas

. Making An Exact Copy Of A Range Of Formulas

. Comparing Two Lists With Conditional Formatting
. Locate Phantom Links In A Workbook

. Dealing With Negative Time Values

. Converting Non-numbers To Actual Values

. Compare Ranges By Using An Array Formula

. Calculate The Number Of Days In A Month

. Identify Formulas By Using Conditional Formatting
. Displaying Autofilter Criteria

. Calculating A Conditional Average

. Display Text And A Value In One Cell

. Automatic List Numbering
. Calculate The Day Of The Year And Days Remaining
o Rounding To “n” Significant Digits

. Working With Pre-1900 Dates %
o Using Data Validation To Check For Repeated Values
. Sum The Largest Values In A Range

Additional Excel VBA Resources Page 87
Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://spreadsheetpage.com/index.php/tip/quantifying_color_choices/
http://spreadsheetpage.com/index.php/tip/excel_2007_upgrade_faq_formatting_and_printing/
http://spreadsheetpage.com/index.php/tip/comparing_two_lists_with_conditional_formatting/
http://spreadsheetpage.com/index.php/tip/alternate_row_shading_using_conditional_formatting/
http://spreadsheetpage.com/index.php/tip/duplicate_repeated_entries_in_a_list/
http://spreadsheetpage.com/index.php/tip/removing_or_avoiding_automatic_hyperlinks/
http://spreadsheetpage.com/index.php/tip/working_with_fractions/
http://spreadsheetpage.com/index.php/tip/using_conditional_formatting/
http://spreadsheetpage.com/index.php/tip/fix_incorrect_decimal_places_during_data_entry/
http://spreadsheetpage.com/index.php/tip/display_text_in_multiple_lines/
http://spreadsheetpage.com/index.php/tip/changing_the_default_cell_comment_formatting/
http://spreadsheetpage.com/index.php/tip/change_the_formatting_of_your_subtotal_rows/
http://spreadsheetpage.com/index.php/tip/is_a_particular_word_contained_in_a_text_sring/
http://spreadsheetpage.com/index.php/tip/formulas_to_perform_day_of_month_calculations/
http://spreadsheetpage.com/index.php/tip/making_an_exact_copy_of_a_range_of_formulas_take_2/
http://spreadsheetpage.com/index.php/tip/calculating_easter/
http://spreadsheetpage.com/index.php/tip/converting_unix_timestamps/
http://spreadsheetpage.com/index.php/tip/naming_techniques/
http://spreadsheetpage.com/index.php/tip/creating_a_list_of_formulas/
http://spreadsheetpage.com/index.php/tip/cell_counting_techniques/
http://spreadsheetpage.com/index.php/tip/summing_and_counting_using_multiple_criteria/
http://spreadsheetpage.com/index.php/tip/chart_trendline_formulas/
http://spreadsheetpage.com/index.php/tip/making_an_exact_copy_of_a_range_of_formulas/
http://spreadsheetpage.com/index.php/tip/comparing_two_lists_with_conditional_formatting/
http://spreadsheetpage.com/index.php/tip/locate_phantom_links_in_a_workbook/
http://spreadsheetpage.com/index.php/tip/dealing_with_negative_time_values/
http://spreadsheetpage.com/index.php/tip/converting_non_numbers_to_actual_values/
http://spreadsheetpage.com/index.php/tip/compare_ranges_by_using_an_array_formula/
http://spreadsheetpage.com/index.php/tip/calculate_the_number_of_days_in_a_month/
http://spreadsheetpage.com/index.php/tip/identify_formulas_by_using_conditional_formatting/
http://spreadsheetpage.com/index.php/tip/displaying_autofilter_criteria/
http://spreadsheetpage.com/index.php/tip/calculating_a_conditional_average/
http://spreadsheetpage.com/index.php/tip/display_text_and_a_value_in_one_cell/
http://spreadsheetpage.com/index.php/tip/automatic_list_numbering/
http://spreadsheetpage.com/index.php/tip/calculate_the_day_of_the_year_and_days_remaining/
http://spreadsheetpage.com/index.php/tip/rounding_to_n_significant_digits/
http://spreadsheetpage.com/index.php/tip/working_with_pre_1900_dates/
http://spreadsheetpage.com/index.php/tip/using_data_validation_to_check_for_repeated_values/
http://spreadsheetpage.com/index.php/tip/sum_the_largest_values_in_a_range/

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-27?
. Count Autofiltered Rows %

. Perform Two-Way Table Lookups
. Referencing A Sheet Indirectly
. Delete All Input Cells, But Keep The Formulas

. Round Values To The Nearest Fraction

. Avoid Error Displays In Formulas

. Change Cell Values Using Paste Special
. Hiding Your Formulas

. Counting Distinct Entries In A Range

. Force A Global Recalculation

. Summing Times That Exceed 24 Hours
. Transforming Data With Formulas

. Creating A “Megaformula”

. Alternatives To Nested IF Functions

o A Formula To Calculate A Ratio
Charts & Graphics

. Saving A Range As A Graphic File

. A Quick And Dirty Slideshow Macro %

. Excel 2007 Upgrade FAQ: Charts And Graphics

. Pasting An Image To A UserForm Control

. Interactive Chart With No Macros %

. Creating A Splash Screen For An Excel Workbook
. Creating A Clickable Image Map ¥

. A Class Module To Manipulate A Chart Series %
. Chart Trendline Formulas

. Removing Lines From A Surface Chart

. Update Charts Automatically When You Enter New Data
. Creating A Non-Graphic Chart Directly In A Range
. Creating A Linked Picture Of A Range

. Creating A Thermometer Style Chart

. Displaying A value in an AutoShape

. Handle Missing Data In A Line Chart

. Format Cells To Display In Thousands

. Unlink A Chart Series From Its Data Range

. Display Multiple Charts On A Single Chart Sheet
. Layouts For Column Charts

. Saving A Chart As A GIF Flle

. Rotating Text With An AutoShape

. Creating A Transparent Chart Series

. Creating Combination Charts

Additional Excel VBA Resources Page 88
Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://spreadsheetpage.com/index.php/tip/count_autofiltered_rows/
http://spreadsheetpage.com/index.php/tip/perform_two_way_table_lookups/
http://spreadsheetpage.com/index.php/tip/referencing_a_sheet_indirectly/
http://spreadsheetpage.com/index.php/tip/delete_all_input_cells_but_keep_the_formulas/
http://spreadsheetpage.com/index.php/tip/round_values_to_the_nearest_fraction/
http://spreadsheetpage.com/index.php/tip/avoid_error_displays_in_formulas/
http://spreadsheetpage.com/index.php/tip/change_cell_values_using_paste_special/
http://spreadsheetpage.com/index.php/tip/hiding_your_formulas/
http://spreadsheetpage.com/index.php/tip/counting_distinct_entries_in_a_range/
http://spreadsheetpage.com/index.php/tip/force_a_global_recalculation/
http://spreadsheetpage.com/index.php/tip/summing_times_that_exceed_24_hours/
http://spreadsheetpage.com/index.php/tip/transforming_data_with_formulas/
http://spreadsheetpage.com/index.php/tip/creating_a_megaformula/
http://spreadsheetpage.com/index.php/tip/alternatives_to_nested_if_functions/
http://spreadsheetpage.com/index.php/tip/a_formula_to_calculate_a_ratio/
http://spreadsheetpage.com/index.php/tip/saving_a_range_as_a_graphic_file/
http://spreadsheetpage.com/index.php/tip/a_quick_and_dirty_slideshow_macro/
http://spreadsheetpage.com/index.php/tip/excel_2007_upgrade_faq_charts_and_graphics/
http://spreadsheetpage.com/index.php/tip/pasting_an_image_to_a_userform_control/
http://spreadsheetpage.com/index.php/tip/interactive_chart_with_no_macros/
http://spreadsheetpage.com/index.php/tip/creating_a_splash_screen_for_an_excel_workbook1/
http://spreadsheetpage.com/index.php/tip/creating_a_clickable_image_map/
http://spreadsheetpage.com/index.php/tip/a_class_module_to_manipulate_a_chart_series/
http://spreadsheetpage.com/index.php/tip/chart_trendline_formulas/
http://spreadsheetpage.com/index.php/tip/removing_lines_from_a_surface_chart/
http://spreadsheetpage.com/index.php/tip/update_charts_automatically_when_you_enter_new_data/
http://spreadsheetpage.com/index.php/tip/creating_a_non_graphic_chart_directly_in_a_range/
http://spreadsheetpage.com/index.php/tip/creating_a_linked_picture_of_a_range/
http://spreadsheetpage.com/index.php/tip/creating_a_thermometer_style_chart/
http://spreadsheetpage.com/index.php/tip/displaying_a_value_in_an_autoshape/
http://spreadsheetpage.com/index.php/tip/handle_missing_data_in_a_line_chart/
http://spreadsheetpage.com/index.php/tip/format_cells_to_display_in_thousands/
http://spreadsheetpage.com/index.php/tip/unlink_a_chart_series_from_its_data_range/
http://spreadsheetpage.com/index.php/tip/display_multiple_charts_on_a_single_chart_sheet/
http://spreadsheetpage.com/index.php/tip/layouts_for_column_charts/
http://spreadsheetpage.com/index.php/tip/saving_a_chart_as_a_gif_file/
http://spreadsheetpage.com/index.php/tip/rotating_text_with_an_autoshape/
http://spreadsheetpage.com/index.php/tip/creating_a_transparent_chart_series/
http://spreadsheetpage.com/index.php/tip/creating_combination_charts/

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-27?
. Animated Hypocycloid Charts %

Printing

. Excel 2007 Upgrade FAQ: Formatting And Printing
. Determining The Number Of Printed Pages

. Mail Merge - Without Word %

. Displaying A Menu Of Worksheets To Print

. Copy Page Setup Settings To Other Sheets

. Printing Just A Portion Of Your Worksheet

. Avoid Printing Specific Rows

Developer Tips by Category

General VBA
o Is A Particular Word Contained In A Text String?
. The Value, Formula, and Text Properties
. Clearing The Text To Columns Parameters

. A Macro To Count Word Frequencies ¥
. Saving A Range As A Graphic File
. A Quick And Dirty Slideshow Macro ¥

. Maximize Excel Across All Monitors
. Understanding The IsDate Function

. Excel 2007 Upgrade FAQ: Macros

. Controlling User Scrolling

CommandBars & Menus

. Add The Speech Controls To The Ribbon %

. Identifying CommandBar Images
. Creating Custom Menus ¥
o Developer FAQ - CommandBars
. CommandBar Calculator €%
UserForms
o Pasting An Image To A UserForm Control

. Displaying Help %

. General Userform Tips

. Selecting A Directory

. Displaying A Progress Indicator %
. Importing And Exporting Userforms

Additional Excel VBA Resources Page 89
Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://spreadsheetpage.com/index.php/tip/animated_hypocycloid_charts/
http://spreadsheetpage.com/index.php/tip/excel_2007_upgrade_faq_formatting_and_printing/
http://spreadsheetpage.com/index.php/tip/determining_the_number_of_printed_pages/
http://spreadsheetpage.com/index.php/tip/mail_merge_without_word/
http://spreadsheetpage.com/index.php/tip/displaying_a_menu_of_worksheets_to_print/
http://spreadsheetpage.com/index.php/tip/copy_page_setup_settings_to_other_sheets/
http://spreadsheetpage.com/index.php/tip/printing_just_a_portion_of_your_worksheet/
http://spreadsheetpage.com/index.php/tip/avoid_printing_specific_rows/
http://spreadsheetpage.com/index.php/site/tip/is_a_particular_word_contained_in_a_text_sring/
http://spreadsheetpage.com/index.php/site/tip/the_value_formula_and_text_properties/
http://spreadsheetpage.com/index.php/site/tip/clearing_the_text_to_columns_parameters/
http://spreadsheetpage.com/index.php/site/tip/a_macro_to_count_word_frequencies/
http://spreadsheetpage.com/index.php/site/tip/saving_a_range_as_a_graphic_file/
http://spreadsheetpage.com/index.php/site/tip/a_quick_and_dirty_slideshow_macro/
http://spreadsheetpage.com/index.php/site/tip/maximize_excel_across_all_monitors/
http://spreadsheetpage.com/index.php/site/tip/understanding_the_isdate_function/
http://spreadsheetpage.com/index.php/site/tip/excel_2007_upgrade_faq_macros/
http://spreadsheetpage.com/index.php/site/tip/controlling_user_scrolling/
http://spreadsheetpage.com/index.php/site/tip/add_the_speech_controls_to_the_ribbon/
http://spreadsheetpage.com/index.php/site/tip/identifying_commandbar_images/
http://spreadsheetpage.com/index.php/site/tip/creating_custom_menus/
http://spreadsheetpage.com/index.php/site/tip/developer_faq_commandbars/
http://spreadsheetpage.com/index.php/site/tip/commandbar_calculator/
http://spreadsheetpage.com/index.php/site/tip/pasting_an_image_to_a_userform_control/
http://spreadsheetpage.com/index.php/site/tip/displaying_help/
http://spreadsheetpage.com/index.php/site/tip/general_userform_tips/
http://spreadsheetpage.com/index.php/site/tip/selecting_a_directory/
http://spreadsheetpage.com/index.php/site/tip/displaying_a_progress_indicator/
http://spreadsheetpage.com/index.php/site/tip/importing_and_exporting_userforms/

Programming In Excel VBA by J.Latham
An Introduction Microsoft Excel MVP 2006-27?
. Handle Multiple Userform Buttons With One Subroutine %

. Filling A Listbox With Unique Items %
. Displaying A Menu Of Worksheets To Print
. Creating A Color Picker Dialog Box %

VBA Functions

. Extracting An Email Address From Text

. Quantifying Color Choices %

. Determining The User’s Video Resolution

. Identifying Unique Values In An Array Or Range

. Getting A List Of File Names Using VBA

. Looping Through Ranges Efficiently In Custom Worksheet Functions
. Undoing A VBA Subroutine

. Determining The Last Non-empty Cell In A Column Or Row

o Multifunctional Functions
. Some Useful VBA Functions
o File Exists

o FileNameOnly

o RangeNameEXxists
o SheetExists

o WorkbooklIsOpen

Additional Excel VBA Resources Page 90
Copyright © 2008 by J.L.Latham, All Rights Reserved.

http://spreadsheetpage.com/index.php/site/tip/handle_multiple_userform_buttons_with_one_subroutine/
http://spreadsheetpage.com/index.php/site/tip/filling_a_listbox_with_unique_items/
http://spreadsheetpage.com/index.php/site/tip/displaying_a_menu_of_worksheets_to_print/
http://spreadsheetpage.com/index.php/site/tip/creating_a_color_picker_dialog_box/
http://spreadsheetpage.com/index.php/site/tip/extracting_an_email_address_from_text/
http://spreadsheetpage.com/index.php/site/tip/quantifying_color_choices/
http://spreadsheetpage.com/index.php/site/tip/determining_the_users_video_resolution/
http://spreadsheetpage.com/index.php/site/tip/identifying_unique_values_in_an_array_or_range/
http://spreadsheetpage.com/index.php/site/tip/getting_a_list_of_file_names_using_vba/
http://spreadsheetpage.com/index.php/site/tip/looping_through_ranges_efficiently_in_custom_worksheet_functions/
http://spreadsheetpage.com/index.php/site/tip/undoing_a_vba_subroutine/
http://spreadsheetpage.com/index.php/site/tip/determining_the_last_non_empty_cell_in_a_column_or_row/
http://spreadsheetpage.com/index.php/site/tip/multifunctional_functions/
http://spreadsheetpage.com/index.php/site/tip/some_useful_vba_functions/

