
Developing XML Solutions with JavaServer Pages
TM

 Technology

XML (Extensible Markup Language) is a set of syntax rules and guidelines for defining

text-based markup languages. XML languages have a number of uses including:

 Exchanging information

 Defining document types

 Specifying messages

Information that is expressed in a structured, text-based format can easily be transmitted

between, transformed, and interpreted by entities that understand the structure. In this

way XML brings the same cross-platform benefits to information exchange as the JavaTM

programming language has for processing.

JavaServer PagesTM (JSPTM) technology provides specification and serving of documents

that combine static markup language elements and elements created dynamically by Java

programming language objects.

JSP technology provides a number of capabilities that are ideally suited for working with

XML. JSP pages can contain any type of text-based data, so it is straightforward to

generate documents that contain XML markup. Also, JSP pages can use the full power of

the Java platform to access programming language objects to parse and transform XML

messages and documents. In particular, as part of the Java software environment, JSP

pages can use objects that leverage the new Java APIs for processing XML data. Finally

JSP technology provides an abstraction mechanism to encapsulate functionality for ease

of use within a JSP page.

Generating Multiple Markup Languages

There are several approaches to generating multiple markup languages from a web

application:

 Single pipeline

 Multiple pipeline

 Combination pipeline

Single Pipeline

In the single pipeline approach, the web application's JSP pages generate client-specific

markup by applying transformations to incoming XML data. Each type of client requires

a different stylesheet and the bulk of the development costs are associated with creating

and maintaining these stylesheets.

Figure 3 Single Pipeline Generating Multiple Markup Languages

This approach defers generation of both the static and dynamic portions of a response to

runtime. The runtime costs are associated with:

 Parsing the XML data

 Parsing the stylesheet

 Applying the transformation

If you are using XSLT transformations, you can improve the performance of

transformations by creating a binary representation (using an XSLT compiler, for

example, XSLTC) of a stylesheet. However, this also makes the maintenance process

more complex: each time the presentation is changed, the stylesheet must be recompiled.

Sometimes the differences between clients are minor and may not merit a full-fledged

transformation. For example, there are a number of slightly different browser-based

desktop clients. In some cases, one may want to take full advantage of the differences

instead of generating content for the minimum common denominator. Often the

differences between these clients can be encapsulated into a custom tag that generates

different content depending on the properties of the client.

Generating the presentation for clients with different interaction models and flow of

control (for example, PC-based browsers versus WAP phones) will require very different

transformations. For example, a mobile phone cannot display a table containing book

inventory data. Instead the data would have to be displayed as a set of nested lists.

Supporting such transformations increases both the development and runtime costs.

Multiple Pipeline

The multiple pipeline approach uses a set of client-specific JSP pages to generate output.

Figure 4 Multiple Pipelines Generating Multiple Markup Languages

As compared with using XSLT transformations, this approach keeps the work of creating

the static content in the development phase with the dynamic content generation

occurring at runtime.

Aside from creating the client-specific JSP pages, development costs are incurred in

creating and maintaining server-side objects that represent the application's data

abstractions. This step is not required in the single pipeline approach. Nevertheless the

multiple pipeline approach can be more cost effective than the single pipeline for the

following reasons:

 Data abstractions can be reused by different kinds of JSP pages.

 Data abstractions typically change at a much lower rate than presentation.

 Executing a JSP page to generate markup is much more efficient than performing

an XSLT transformation to generate the same markup.

The following table summarizes the costs of each approach:

Pipeline Development Runtime

Single
Client-specific

stylesheets

Parse XML data

Parse stylesheet

Apply transformation

Multiple
Data abstractions

Client-specific JSP pages

Parse XML data

Instantiate and initialize data abstraction

components

Execute JSP page

Combination

You can combine the single and multiple pipeline approaches. If your clients speak

different languages you probably should use one pipeline for each language. To generate

dialects of a language, you can apply XSLT transformations to that language's pipeline.

Figure 5 Combination Pipeline Generating Multiple Markup Languages

XSL Formatting Objects

XSL Formatting Objects (XSL-FO) are the second half of the Extensible Stylesheet

Language (XSL). XSL-FO is an XML application that describes how pages will look

when presented to a reader. A style sheet uses the XSL transformation language to

transform an XML document in a semantic vocabulary into a new XML document that

uses the XSL-FO presentational vocabulary. While one can hope that Web browsers will

one day know how to directly display data marked up with XSL formatting objects, for

now an additional step is necessary in which the output document is further transformed

into some other format, such as Adobe’s PDF.

Formatting Objects and Their Properties

XSL-FO provides a more sophisticated visual layout model than HTML+CSS.

Formatting supported by XSL-FO, but not supported by HTML+CSS, includes right-to-

left and top-to-bottom text, footnotes, margin notes, page numbers in cross-references,

and more. In particular, while CSS (Cascading Style Sheets) is primarily intended for use

on the Web, XSL-FO is designed for broader use. You should, for instance, be able to

write an XSL style sheet that uses formatting objects to lay out an entire printed book. A

different style sheet should be able to transform the same XML document into a Web

site.

Using FOP

At the time of this writing, no browser can directly display XML documents transformed

into XSL formatting objects. However, there are several applications that can convert an

XSL-FO document into a viewable format such as PDF or TeX. The one used here is the

XML Apache project's open source FOP. FOP is a command-line Java program that

converts FO (formatting object) documents to Adobe Acrobat PDF files.

