
TS-641, Enterprise Application Development Using UML, Java, and XML1

Enterprise Application
Development Using UML,
Java™ Technology and XML

Will Howery
CTO
Passage Software LLC

TS-641, Enterprise Application Development Using UML, Java, and XML2

Introduction

• Effective management and modeling of
enterprise applications

• Web and business-to-business applications
• Messaging environments

– Loosely coupled
– Asynchronous
– Fault tolerant

• Java technology provides the descriptive language
• XML provides the data representation
• UML provides the notational language
• Manage complexity for deploying n-tier

enterprise applications

TS-641, Enterprise Application Development Using UML, Java, and XML3

Overview

• A process and examples for building UML
applications with XML messages through
multiple distributed server containers

• Illustrate a complete UML design for n-tier
application web development

• Implement a web based logon and user
profile application

• Utilizing
– UML
– Java technology
– XML DTD/schema definitions

TS-641, Enterprise Application Development Using UML, Java, and XML4

Tools

• Examples presented in UML using Rational
Rose with UML Factory

• The examples will be implemented with
JAR components that can be deployed
into multiple configurations

• UML Factory will generate, deploy, and
animate the examples through the UML
diagrams

TS-641, Enterprise Application Development Using UML, Java, and XML5

Technologies

• UML:
– Unified Modeling Language will describe the

static and dynamic behavior for applications
• XML:

– Extensible Markup Language describes
document information for building pages and
carrying messages through the application tiers

• JSP™ components:
– JavaServer Pages™ technology-based

components are used to define dynamic
HTML interface pages

TS-641, Enterprise Application Development Using UML, Java, and XML6

Technologies

• XSL:
– Extensible Style Sheet language is used to

transform the XML documents into dynamic
HTML interface pages

• EJB™ specification
– Enterprise JavaBeans™ specification is used

for data access and manipulation
• JMS:

– Java™ Message Service API provides an
asynchronous fault tolerant messaging
capability between application tiers

TS-641, Enterprise Application Development Using UML, Java, and XML7

Sample JSP™ Client to
J2EE™ Application Container

XML to JSP
conversions

Web
Server

JSP
Client

ejb
Container

HTTP
XML over RMI or IIOP

Session Bean
State Machine

Data
Base

JDBC

TS-641, Enterprise Application Development Using UML, Java, and XML8

UML Model Overview

• Use Case Diagram
• Collaboration Diagram
• Class Diagrams
• State Diagrams
• Activity Diagrams
• Deployment Diagram

TS-641, Enterprise Application Development Using UML, Java, and XML9

Modeling the Application

• Use Case
– Use Case Diagrams define the high-level

interactions between external actors and system
processes. The Use Case diagram must have
an actor, an interaction, and a process

MainProcess

LogonProcess
GPublic

SetProfile

Register

Logon

TS-641, Enterprise Application Development Using UML, Java, and XML10

Alternate Implementations

• Realize
– The “realize” stereotype on a Use Case

interaction defines alternate mechanisms
for implementing the same process

GPublic SetProfile

JSP Logon

(from JSP Implementation)

XSL Logon

(from XSL Implementation)

LogonProcess

Logon

<<realize>>

<<realize>>

TS-641, Enterprise Application Development Using UML, Java, and XML11

User Artifacts

• Each interaction on a Use Case process
contains artifacts, these artifacts are tangible
attributes provided to the Actor or input
artifacts from the Actor to the process.
For a Logon:
– UserName
– UserPassword

LogonProcess

Logon

GPublic

TS-641, Enterprise Application Development Using UML, Java, and XML12

Collaboration Diagram

• Collaboration Diagrams define the
implementation for each Use Case
interaction

LogonPage :
(Logical

UserValidation :
(Logical

TryAgain Page :
(Logical

FailPage :
(Logical

MainMenuPage :
(Logical

1: Submit

4: Retry

5: Submit 3: Fail

2: Good

TS-641, Enterprise Application Development Using UML, Java, and XML13

Storyboard Interface Objects

• Storyboard interface objects identify user
input and output artifacts. These objects will
identify the types of artifacts used within the
system for the Use Case interaction

LogonPage :
LogonPageSB

UserValidation :
(Logical

1: Submit

5: Submit 3: Fail

2: Good

TryAgain Page :
TryAgainSB

FailPage :
FailLogonSB

MainMenuPage :
MainMenuSB

4: Retry

LogonPageSB
UserNameLabel : Label = User Name:
UserName : Edit = UserName
PasswordLabel : Label = Password:
Password : Password = UserPassword
Hidden1 : Hidden = SomeField
rule : rule = LogonValidation event=logo
Submit : link = Submit

<<StoryBoard>>

TS-641, Enterprise Application Development Using UML, Java, and XML14

Decision Control Process
Flow Objects
• Through the Collaboration diagram choices

or decisions are made directing the diagram
flow. Control process flow objects define the
domain logic class specifications that will
govern these decisions

LogonPage :
LogonPageSB

UserValidation :
(Logical

1: Submit

5: Submit 3: Fail

2: Good

TryAgain Page :
TryAgainSB

FailPage :
FailLogonSB

MainMenuPage :
MainMenuSB

4: Retry

Decision Object

TS-641, Enterprise Application Development Using UML, Java, and XML15

LogonPageSB
UserNameLabel : Label = User Name:
UserName : Edit = UserName
PasswordLabel : Label = Password:
Password : Password = UserPassword
Hidden1 : Hidden = SomeField
rule : rule = LogonValidation event=logo
Submit : link = Submit

<<StoryBoard>>

Events

• Collaboration Diagram events show the
linking between various collaboration
diagram objects

LogonPage :
LogonPageSB

UserValidation :
(Logical

1: Submit

5: Submit 3: Fail

2: Good

TryAgain Page :
TryAgainSB

FailPage :
FailLogonSB

MainMenuPage :
MainMenuSB

4: Retry

TS-641, Enterprise Application Development Using UML, Java, and XML16

LogonPageSB
UserNameLabel : Label = User Name:
UserName : Edit = UserName
PasswordLabel : Label = Password:
Password : Password = UserPassword
Hidden1 : Hidden = SomeField
rule : rule = LogonValidation event=logo
Submit : link = Submit

<<StoryBoard>>

Storyboard Class
Specifications
• The storyboard class specification identifies

the ordered set of artifacts and events that
this storyboard object element will contain

Artifacts

TS-641, Enterprise Application Development Using UML, Java, and XML17

HTML Pages

• Each storyboard class specification is linked
to an HTML page that will be processed to
create the XSL or JSP interface definition

TS-641, Enterprise Application Development Using UML, Java, and XML18

HTML Pages

• The HTML pages will contain tokens
identifying the XML abstract semantic
names representing the use case
artifacts coming and going from the
control process flow

TS-641, Enterprise Application Development Using UML, Java, and XML19

XML DTD/Schema Modeling

• Modeling the XML
schema information
within UML provides a
visual representation of
the XML documents
structure. The modeled
XML document also
provides runtime
information and model
time checking for
collating the use case
artifacts with the XML
elements

– Sample Company
Person XML relating
to the LogonPage

logonFormToPersonCtl
UserName = PersonCtlUserName
Password = PersonCtlPassword

<<XMLTransform>>

LogonPageDTD

<<AttributeAccess>> getXML_PersonCt lPersonId()
<<AttributeAccess>> getXML_PersonCt lFirstName()
<<AttributeAccess>> getXML_PersonCt lMiddleName()
<<AttributeAccess>> getXML_PersonCt lLastName()
<<AttributeAccess>> getXML_PersonCt lUserName()
<<AttributeAccess>> getXML_PersonCt lPassword()
<<AttributeAccess>> getXML_UserName()
<<AttributeAccess>> getXML_Password()
<<AttributeAccess>> getXMLMapPersonCtl()
<<AttributeAccess>> getXMLMapLogonPageSB()

<<ControlPF>>

PersonCtl

PersonId : Integer
FirstName : String
MiddleName : String
LastName : String
UserName : String
Password : String

(from DataAccess)

<<ControlDA>>

<<XMLMap>>

LogonPageSB

UserNameLabel : Label = User Name:
UserName : Edit = UserName
PasswordLabel : Label = Password:
Password : Password = UserPassword
Hidden1 : Hidden = SomeField
rule : rule = LogonValidation event=logo
Submit : link = Submit

(from StoryBoardObjects)

<<StoryBoard>>

<<XMLMap>>

TS-641, Enterprise Application Development Using UML, Java, and XML20

XML Mappings

• UML Factory provides an abstract mapping
between XML elements and semantic names.
These Mappings allow isolation between the
arbitrary physical representation of a data element,
and a logical name or handle to access and
manipulate that element
– Semantic Names

• Semantic Names identify abstract textual identifiers for
elements, or attributes, within the XML document

– XML Element Mappings
• XML element mappings identify the arbitrary physical XML

element definition. The XML mappings identify XML text,
cardinality, attributes, and schema information

TS-641, Enterprise Application Development Using UML, Java, and XML21

XML Mapping Example

• Generated semantic mappings to sample
Company Person XML

mXMLMaptestDTD = new XMLMap();
mXMLMaptestDTD.addMapping("TestXML", "xml");
mXMLMaptestDTD.addMapping("XmlName", "xml/name");
mXMLMaptestDTD.addMapping("Company", "xml /company");
mXMLMaptestDTD.addMapping("CompanyName", "xml/company#name");
mXMLMaptestDTD.addMapping("CompanyCity", "xml/company#city");
mXMLMaptestDTD.addMapping("Person", "xml/company* /person");
mXMLMaptestDTD.addMapping("FirstName", "xml/company/person#fname");
mXMLMaptestDTD.addMapping("LastName", "xml/company/person#lname");

TS-641, Enterprise Application Development Using UML, Java, and XML22

XML Mappings to
“JSP™ tags”
• The token semantic names within the HTML

page associate with storyboard class
specifications are substituted with methods
to extract semantic data from the XML
document representing the Storyboard
interface object

TS-641, Enterprise Application Development Using UML, Java, and XML23

XML Mappings to XSL tags

• In like manner, the token semantic names
within the HTML page associated with
storyboard class specifications are replaced
with XSL syntax to transform the XML
document representing the Storyboard
interface object

TS-641, Enterprise Application Development Using UML, Java, and XML24

Storyboard Events

• The storyboard class specification objects
contain events that will fire into the
application, transitioning through the
designed collaboration diagrams
– If the target object of a collaboration diagram

event is another interface element then that
storyboard interface element will be displayed

– If the target object is a decision point then the
class specification defined for that decision logic
would be sent the event through the UML state
machine implementation

TS-641, Enterprise Application Development Using UML, Java, and XML25

LogonPageSB
UserNameLabel : Label = User Name:
UserName : Edit = UserName
PasswordLabel : Label = Password:
Password : Password = UserPassword
Hidden1 : Hidden = SomeField
rule : rule = LogonValidation event=logo
Submit : link = Submit

<<StoryBoard>>

Storyboard Events

• The Logon Page Submit link event

LogonPage :
LogonPageSB

UserValidation :
(Logical

1: Submit

5: Submit 3: Fail

2: Good

TryAgain Page :
TryAgainSB

FailPage :
FailLogonSB

MainMenuPage :
MainMenuSB

4: Retry

TS-641, Enterprise Application Development Using UML, Java, and XML26

Collaboration Decisions

• Decisions are implemented by UML logical classes
LogonValidation

MaxTries : int = 3
CurrentTries : int
Validated : boolean

<<StateMachineMethod>> SubmitValidate(theWidl : Widl) : v oid
<<AttributeAccess>> LogonValidation() : v oid
<<AttributeAccess>> setMaxTries(aMaxTries : int) : v oid
<<AttributeAccess>> getMaxTries() : int
<<AttributeAccess>> setCurrentTries(aCurrentTries : int) : v oid
<<AttributeAccess>> getCurrentTries() : int
<<AttributeAccess>> setValidated(aValidated : boolean) : v oid
<<AttributeAccess>> getValidated() : boolean
<<AttributeAccess>> inWidl(theWidl : Widl) : boolean
isValid() : boolean
isMaxAttempts() : boolean
<<StateMachineMethod>> GoodGood(theWidl : Widl) : v oid
<<StateMachineMethod>> FailFail(theWidl : Widl) : v oid
<<StateMachineMethod>> Retry Retry (theWidl : Widl) : v oid
<<StateMachineMethod>> DoneEnd(theWidl : Widl) : v oid
<<AttributeAccess>> setPersonCtl(aPersonCtl : PersonCtl) : v oid
<<AttributeAccess>> getPersonCtl() : PersonCtl

<<ControlPF>>

LogonPage :
LogonPageSB

UserValidation :
(Logical

1: Submit

5: Submit 3: Fail

2: Good

TryAgain Page :
TryAgainSB

FailPage :
FailLogonSB

MainMenuPage :
MainMenuSB

4: Retry

TS-641, Enterprise Application Development Using UML, Java, and XML27

Control Process
Flow Class Specification
• The control process flow class specification

provides the logical implementation making
decisions through the use case collaboration
process. The UML control process flow stereotyped
class specification is generated into Java™ source
code with all the static and dynamic behavior
required for:
– Receiving input events
– Managing persistent data
– Manipulating Interface XML documents
– Returning information to the process
– Maintaining state information of the application

TS-641, Enterprise Application Development Using UML, Java, and XML28

Receiving Events

• When a user activates an event from an
interface object, that event is sent into the
state machine. All information coming into
the state machine is contained within an XML
document

TS-641, Enterprise Application Development Using UML, Java, and XML29

Control Process
Class State Machines

Start

End

Validate

Retry

Fail

Goo d

Done[Continue]

Done[Continue]

Done[Continue]
Se ts Widl Return
results="Retry"

Sets Widl Return
results="Good"

Sets Widl Retu rn
resul ts=" Fai l"

Goo d[isVa lid()]

Fail [isMaxAttempts() && !i sValid()]Retry[!isMaxAttempts() && !isValid()]

SubmitLogonValidation
MaxTries : int = 3
CurrentTries : int
Validated : boolean

<<StateMachineMethod>> SubmitValidate(theWidl : Widl) : v oid
<<AttributeAccess>> LogonValidation() : v oid
<<AttributeAccess>> setMaxTries(aMaxTries : int) : v oid
<<AttributeAccess>> getMaxTries() : int
<<AttributeAccess>> setCurrentTries(aCurrentTries : int) : v oid
<<AttributeAccess>> getCurrentTries() : int
<<AttributeAccess>> setValidated(aValidated : boolean) : v oid
<<AttributeAccess>> getValidated() : boolean
<<AttributeAccess>> inWidl(theWidl : Widl) : boolean
isValid() : boolean
isMaxAttempts() : boolean
<<StateMachineMethod>> GoodGood(theWidl : Widl) : v oid
<<StateMachineMethod>> FailFail(theWidl : Widl) : v oid
<<StateMachineMethod>> Retry Retry (theWidl : Widl) : v oid
<<StateMachineMethod>> DoneEnd(theWidl : Widl) : v oid
<<AttributeAccess>> setPersonCtl(aPersonCtl : PersonCtl) : v oid
<<AttributeAccess>> getPersonCtl() : PersonCtl

<<ControlPF>>

TS-641, Enterprise Application Development Using UML, Java, and XML30

WIDL

• WIDL is a Web Interface Definition Language specification
– The WIDL contains an event, process, and structured records

defining behavior and data together within a single XML
document package

– Event or Method
• The method described within the WIDL is the event name coming

into the state machine
– Process

• The WIDL process attribute identifies the executable Java class
that will receive the WIDL and respond to the method event. The
process name can be a fully qualified Java class or an abstract
object name. Containers receiving the WIDL input from either
session beans, JMS messaging Queue implementations etc., must
have a mechanism to late bind the WIDL event to the correct
process

TS-641, Enterprise Application Development Using UML, Java, and XML31

WIDL Records

The WIDL contains three records for input information, output
information and return information. These records can be populated
with attributes or complete XML documents
• Input Record

– Our example for the Web application will use the input record to contain
information coming from the Web interface into the
process logic

• Output Record
– The example WIDL use the output record of the WIDL to contain

Return Page or XML document information back to the Web interface
• Return Record

– The WIDL return record contains results information for evaluating
decisions to the collaboration process flow. The result Attribute within
the WIDL Return record contains the return events from the control
process flow class specification

TS-641, Enterprise Application Development Using UML, Java, and XML32

State Machines

• State machines define the possible events coming
into a dynamic class and the state transitions for
those events. The state machine diagram provides
a readable definition of the dynamic behavior for a
given class specification

LogonPage :
LogonPageSB

UserValidation :
(Logical

1: Submit

5: Submit 3: Fail

2: Good

TryAgain Page :
TryAgainSB

FailPage :
FailLogonSB

MainMenuPage :
MainMenuSB

4: Retry

Start

Validate

Retry

Fail

Goo d

Done[Continue]

Done[Cont

Done[Continue]
Se ts Widl Return
results="Retry"

Sets Widl Return
results="Good"

Goo d[isVa l id()]

Fail [isMaxAttempts() && !i sValid()]Retry[!isMaxAttempts() && !isVal id()]

Submit

TS-641, Enterprise Application Development Using UML, Java, and XML33

States and Transitions

• States
– States define the process stops through the

state machine
• Event Transitions

– Transitions define the event causing a transition
from one state to another state

• Event State Methods
– Event state methods are the implied action

behaviors when an event transition occurs.
These event state methods are implemented
through UML activity diagrams

TS-641, Enterprise Application Development Using UML, Java, and XML34

State Diagram Elements

Start

Validate

Retry

Fail

Goo d

Done[Continue]

Done[Continue]

D [C ti]
Se ts Widl Return

Sets Widl Return
results="Good"

Goo d[isVa lid()]

Fail [isMaxAttempts() && !i sValid()]Retry[!isMaxAttempts() && !isValid()]

Submit

Event Transition
Event State Method

State

TS-641, Enterprise Application Development Using UML, Java, and XML35

State Timing

• Guard Conditions
– Guard conditions imply a synchronous transition exiting a

given state. The guard conditions contain boolean logic to
determine which exit transition will be traversed

• Asynchronous
– Asynchronous events have no guard conditions and are

triggered from some external source. That source is
typically a user interface link artifacts

• Synchronous
– Synchronous events transition automatically and internal

to the state machine. Synchronous events
are identified as exit events from a state containing guard
conditions

TS-641, Enterprise Application Development Using UML, Java, and XML36

Transition Timing Example

Start

Validate

Retry

Fail

Goo d

Done[Continue]

Done[Continue]

D [C ti]
Se ts Widl Return

Sets Widl Return
results="Good"

Goo d[isVa lid()]

Fail [isMaxAttempts() && !i sValid()]Retry[!isMaxAttempts() && !isValid()]

Submit

Asynchronous Transition
Synchronous Guarded Transition

TS-641, Enterprise Application Development Using UML, Java, and XML37

Setting Animation Points

• Within the state machine any transition can be
identified within the UML diagram as an animation
point. When the application is executed the UML
document will be displayed selecting the animation
location

Start

Validate

Retry

Fail

Goo d

Sets Widl Return
results="Good"

Goo d[isVa lid()]

Fail [isMaxAttempts() && !i sValid()]Retry[!isMaxAttempts() && !isValid()]

Submit

Animation Point

TS-641, Enterprise Application Development Using UML, Java, and XML38

Activity Diagrams

• Activity Diagrams implement the behavior of
algorithms for UML class specification
methods

S ta rt

V a l i d a te

R e try

F a il

Go o d

D o n e [C o n t i n u e]

D o n e [C o n t i n u e]

D o n e [C o n t i n u e]
S e ts W i d l R e tu rn
re s ul ts =" R e try "

S e ts W i d l R e tu rn
re su l ts= " G o o d "

Go o d [is Va l i d ()]

F a i l [i sM a x A t te m p ts () & & ! i sV al i d ()]R e t ry [! i sM a xA tte m p ts() & & ! i sV a l i d ()]

S u b m i t

Event State Method

TS-641, Enterprise Application Development Using UML, Java, and XML39

UML Object
Navigation Notation
• Activity Diagrams are represented in UML Object

Navigation Notation. This notation manipulates the
objects with their public attributes and methods.
Using the object notation and Activity Editor within
UML Factory you can define the complete behavior
for a method implementation

sUserName = theWidl.getInputParameter("UserName")
sPassWord = theWidl.getInputParameter("Password")
this.setValidated(false)

TS-641, Enterprise Application Development Using UML, Java, and XML40

Designing an Activity

TS-641, Enterprise Application Development Using UML, Java, and XML41

Accessing a Data Base

• Through the activity diagram
implementations we can manipulate our
database objects, defining the operations for
all our database elements as required

aPerson.PersonCtl()
aPerson.setFirstName(sUserName)
aPerson.setPassword(sPassWord)
this.setValidated(aPerson.load())

TS-641, Enterprise Application Development Using UML, Java, and XML42

Manipulating XML

• Within the activity diagrams we also define
the XML manipulation for retrieving and
building the XML documents going between
the process flow logic and user interface
elements
sValue= new String("PassageSoftware");

aXMLMap.insert(this.getXML_CompanyName(), sValue);
sValue= new String("Richmond, VA");
aXMLMap.insert(this.getXML_CompanyCity(), sValue);

aXMLMap.insert(this.getXML_Person_NODE(), null);
sName= new String("Dick");

sLName= new String("Douglas");
aXMLMap.insert(this.getXML_FirstName(), sName);
aXMLMap.insert(this.getXML_LastName(), sLName);

TS-641, Enterprise Application Development Using UML, Java, and XML43

Intelligent Advisor Code view

• The UML Factory Intelligent Adviser allows
us to view the code generation results while
designing the UML activity diagrams

TS-641, Enterprise Application Development Using UML, Java, and XML44

Setting Animation Points

• Any activity within the activity diagrams can
also have animation points defined. When
the application is executing the activity
diagram will display and select the activities
with animation settings

Animation Points

TS-641, Enterprise Application Development Using UML, Java, and XML45

Generating the Application

• After the static and dynamic elements of our
application are defined we can organize
these elements into UML Component
Diagrams to define deployment definitions.
From the components definitions we can
then generate the complete Java class code,
compile the code and package it into the
appropriate application JAR

TS-641, Enterprise Application Development Using UML, Java, and XML46

Collaboration Diagram
XML Generation
• The collaboration diagram information for

our use case definitions is also generated
into an XML description document identifying
the interface elements, XML mappings, and
control process flow information. This XML
document then becomes the basis for
execution through the application
– The XML document defines the process flow

through the application
– The engine that iterates the collaboration

diagram XML document was also designed
and generated from a UML model

TS-641, Enterprise Application Development Using UML, Java, and XML47

Control Process
Flow Generation
• Dynamic behavior represented within an

application is designed within a control
process flow class specification. The
following sections will briefly illustrate the
generation processing capabilities for
dynamic behavior within a UML environment.
The following code examples were
completely generated from the UML model

TS-641, Enterprise Application Development Using UML, Java, and XML48

Generating the UML
Class Specification
• Looking at the State Machine implementation

– Current State
– Incoming Event
– Synchronous Transitions
– Asynchronous Transitions
– Start and End States

• Packages, imports, declarations
– Java package specifications can be explicitly or implicitly

defined by the class locations within the UML model
• Association and Attribute implementations

– Association implementations generate both the container
and access methods for the stereotyped association.
The type of container and resulting access methods
are defined by the stereotype applied to the
association between class specifications

TS-641, Enterprise Application Development Using UML, Java, and XML49

Method Implementation

• Activity Diagram Method Implementations
– Activity diagrams are generated following the UML Object

Notation. The activity generation can be viewed with either
as a fully generated class or using the Intelligent Advisor code
window

• Round Trip engineering
– Roundtrip engineering allows developers to hand edit code

generated from the UML Diagram. By Identifying elements
which have been hand edited, the UML Factory generator will
leave the method implementation as edited without forward
generating from the model. The developer controls the
granularly of roundtrip engineering

• UML Model Animation code
– Animation points placed within the code can be turned

off for individual points, the entire model being generated,
and also ignored, from run time configuration properties

TS-641, Enterprise Application Development Using UML, Java, and XML50

Executing the Architectures

• The following demonstrations will walk
through executing the various architectures
from the complete components on different
types of application servers

TS-641, Enterprise Application Development Using UML, Java, and XML51

Sample JSP™ Client to
J2EE™ Application Container

XML to JSP
convers ions

Web
Server

JSP
Client

ejb
Container

HTTP
XML over RMI or IIOP

Session Bean
State Machine

Data
Base

JDBC

TS-641, Enterprise Application Development Using UML, Java, and XML52

Using the Java™ Message Service
API (JMS) for Communications

HTML
Client

Web
Server

XML/XSL to HTML
Conversion

JMS Message
Que

EJB
Container

Session Bean
State Machine

Data
Base

HTTP

Publish/Subscribe XML Object
Publish/Subscribe XML Object

EJB/JDBC

TS-641, Enterprise Application Development Using UML, Java, and XML53

Summary

• This concludes the presentations and
demonstrations for building n-tier enterprise
applications with UML and XML data
representations

• The demonstrations have illustrated the ability
to completely model both static and dynamic
application behavior within a UML model

• The UML model also defined components and
deployment into multiple configurations

• The modeled demonstration illustrated the ability to
use the same components within different J2EE™
platform-enabled implementations on multiple
architectural environments

TS-641, Enterprise Application Development Using UML, Java, and XML54

Enterprise Development
Benefits
• Enterprise computing can improve the software

development process by combining the
descriptive power of the UML notation, and
the flexible data representation and distribution
capabilities of XML with the object oriented,
network, and portable capabilities of Java
technology

• Combining these technologies enables
organizations to manage components increasing
reuse, visibility, and implementation
understanding; effectively reducing the
complexity and total cost of ownership for
deploying n-tier enterprise applications

TS-641, Enterprise Application Development Using UML, Java, and XML55

