JavaOne

Sun's 2000 Worldwide Ja veloper Confer

Enterprise Application
Development Using UML,
Java™ Technology and XML

Will Howery
CTO

Passage Software LLC

Introduction

« Effective management and modeling of
enterprise applications

 Web and business-to-business applications

* Messaging environments

— Loosely coupled
— Asynchronous
— Fault tolerant

e Java technology provides the descriptive language
« XML provides the data representation
 UML provides the notational language

 Manage complexity for deploying n-tier
enterprise applications JavaOne

[y —————

Overview

* A process and examples for building UML
applications with XML messages through
multiple distributed server containers

* |llustrate a complete UML design for n-tier
application web development

* Implement a web based logon and user
profile application

. Utilizing
— UML

— Java technology E
— XML DTD/schema definitions JavaOne

Tools

 Examples presented in UML using Rational
Rose with UML Factory

 The examples will be implemented with
JAR components that can be deployed
Into multiple configurations

 UML Factory will generate, deploy, and
animate the examples through the UML
diagrams

JavaOne

Technologies

e UML:

— Unified Modeling Language will describe the
static and dynamic behavior for applications

 XML:

— Extensible Markup Language describes
document information for building pages and
carrying messages through the application tiers

« JSP™ components:

— JavaServer Pages™ technology-based
components are used to define dynamic
HTML interface pages

JavaOne

[y —————

Technologies

e XSL:

— Extensible Style Sheet language is used to
transform the XML documents into dynamic
HTML interface pages

 EJB™ specification

— Enterprise JavaBeans™ specification is used
for data access and manipulation

e JMS:

— Java™ Message Service API provides an
asynchronous fault tolerant messaging

capability between application tiers
JavaOne

[y —————

Sample JSP™ Client to
J2EE™ Application Container

A L
Server XML over-RMIl ar 1IOP o ejb
Contai

JavaOne

UML Model Overview

« Use Case Diagram

e Collaboration Diagram
« Class Diagrams

« State Diagrams
 Activity Diagrams

* Deployment Diagram

JavaOne

Modeling the Application

e Use Case

— Use Case Diagrams define the high-level
Interactions between external actors and system
processes. The Use Case diagram must have
an actor, an interaction, and a process

Logon

R (D

SetProfile LogonProcess

Register S
B

MainProcess JavaOl'lE"

Alternate Implementations

e Realize

— The “realize” stereotype on a Use Case
Interaction defines alternate mechanisms
for implementing the same process

-)
<<realize>> \,,,

Logon JSP Logon

% ///\C > (from JSP Implementation)

<<realize>>
GPublic LogonProces s\
XSL Logon E .
JavaOne

[—— e S —

(from XSL Implementation)

User Artifacts

e Each interaction on a Use Case process
contains artifacts, these artifacts are tangible
attributes provided to the Actor or input
artifacts from the Actor to the process.

For a Logon:
— UserName
— UserPassword

Logon

O [I
) T
S

GPublic LogonProcess E

JavaOne

Collaboration Diagram

« Collaboration Diagrams define the
Implementation for each Use Case
Interaction

E|[:| #5L Implementation Lﬂme—:
----- _—r_}} Azzociations (Logical.
...... £ fowsL

El-:::::- #5L Logon

----- ;;_:‘} theLogonProcess %b mit

...... =3 Logon MainMenuPage :
2: Good (Logical
7]
UserValidation :

(Logical

S Stm/mjt @:\Fau
A/:/Retry

TryAgain Page : FailPage :
(Logical (Logical

Storyboard Interface Objects

« Storyboard interface objects identify user
Input and output artifacts. These objects will
identify the types of artifacts used within the
system for the Use Case interaction

<<StoryBoard>> LogonPage :
LogonPageSB
LogonPageSB

&JUserNameLabel : Label = User Name: . Submit
E8UserName : Edit = UserName 1\ : _
&2PasswordLabel : Label = Password: - Good We—'
& Password : Password = UserPassword — —
&3Hiddenl : Hidden = SomeField User:\L/:"idcaat]'O": —
&8rule : rule = LogonValidation event=logo

E&Submit : link = Submit

5 SW \z:\Fail
Aetry

TryAqgain Page : FailPage :
TryAgainSB FailLogonSB

Decision Control Process
Flow Objects

* Through the Collaboration diagram choices
or decisions are made directing the diagram
flow. Control process flow objects define the
domain logic class specifications that will
govern these decisions

e Decision Object
LogonPageSB
1§ubmit
MainMenuPa e:
2: Good MainMenuSB
I o
serValidation: | —
(Logical
5: SWK gail
A«:/Retry
TryAgain Page : FailPage :
TryAgainSB FailLogonSB

JavaOne

Events

e Collaboration Diagram events show the
linking between various collaboration
diagram objects

<<StoryBoard>> Tp———
LogonPageSB LogonPageSB
EHUserNameLabel : Label = User Name:

E8UserName : Edit = UserName

E3PasswordLabel : Label = Password: \ MainMenuPage -
ge :

&3Password : Password = UserPassword / 2: Go%, MainMenuSB

E%Hidden1 : Hidden = SomeField Uservalidation: | ——
E5rule : alidation event=logo (logical |
Submit : link = Submit

5 SW \3:\Fail
Aetry
TryAgain Page : FailPage :
TryAgainSB FailLogonSB

JavaOne

T PR Wt S Bere DA

Storyboard Class
Specifications

* The storyboard class specification identifies
the ordered set of artifacts and events that
this storyboard object element will contain

Artifacts

<<StoryBoard>>
LogonPageSB
EHUserNameLabel : Label = User Name:
\Q;UserName . Edit = UserName

¥&/PasswordLabel : Label = Password:

EHPassword : Password = UserPassword
E¥Hiddenl : Hidden = SomeField

&8rule : rule = LogonValidation event=logo
EESubmit : link = Submit

HTML Pages

« Each storyboard class specification is linked
to an HTML page that will be processed to

create the XSL or JS

<< StoryBoard==
LogonPage=B

& lserMamelabel ; Label = User Name:
& lserMame - Edit = UsarName

&P asswordLabel ; Label = Password:
&Paseword - Password = UserPassword
& Hidden1 : Hidden = SomeField

&rule : rule = Logon'alidation event=logo
& Submit : link = Submit

Elass Specification for LogonPageSB

General I Dretail I Dperations | Attributes I Fielations I
Compaonents I Mested File:s | kS Proj I Ik LF acton I

P Interface definition

Filename Fath |
] g_n:ngn:nnF'ageSE.isp C:AkmphtutanialhmuprojectshjzpPages

JavaOne

[y —————

HTML Pages

« The HTML pages will contain tokens
identifying the XML abstract semantic
names representing the use case
artifacts coming and going from the
control process flow

JavaOne

XML DTD/Schema Modeling

* Modeling the XML
schema information
within UML provides a
visual representation of
the XML documents
structure. The modeled
XML document also
provides runtime
information and model
time checking for
collating the use case
artifacts with the XML
elements

— Sample Company
Person XML relating
to the LogonPage

<<ControlPF>>
LogonPageDTD

#<<Attribute Access>> getXML_PersonCtIPersonld()
#<<Attribute Access>> getXML_PersonCtIFirstName()
B<<Attribute Access>> getXML_PersonCtIMiddieName()
#<<Attribute Access>> getXML_PersonCtlLastName()
< <Attribute Access>> getXML_PersonCtIUs erName()
#<<Attribute Access>> getXML_PersonCtIPassword()
#W<<Attribute Access>> getXML_UsemMame()
#<<Attribute Access>> getXML_Password ()
#<<Attribute Access>> getXMLMapPersonCtl()
#<<Attribute Access>> getXMLMapLogonPageSB ()

<<XMLMap>>

/% wiLastName : String

-

_—

<<XMLMap>>

<<ControlDA>>
PersonCtl
(from DataAccess)
«iPersonld : Integer
wFirstName : String
2MiddleName : String

wUserName : String
«iPassword : String

U

<<XMLTransform>>
logonFormToPersonCitl

EBuserName = PersonCtlUserName
EEPassword = PersonCtlPassword

<<StoryBoard>>
LogonPageSB
(from StoryBoardObjects)

EfuserNamelLabel : Label = User Name:
EHUserName : Edit = UserName
E8PasswordLabel : Label = Password:
E8Password : Password = UserPassword
E8Hidden1 : Hidden = SomeField

E&rule : rule = LogonValidation event=logo
EESubmit : link = Submit

JavaOne

[y —————

XML Mappings

 UML Factory provides an abstract mapping
between XML elements and semantic names.
These Mappings allow isolation between the
arbitrary physical representation of a data element,
and a logical name or handle to access and
manipulate that element

— Semantic Names

e Semantic Names identify abstract textual identifiers for
elements, or attributes, within the XML document

— XML Element Mappings

e XML element mappings identify the arbitrary physical XML
element definition. The XML mappings identify XML text,
cardinality, attributes, and schema information

XML Mapping Example

« Generated semantic mappings to sample
Company Person XML

MXMLMapt est DTD = new XM_Map() ;

MXMLMapt est DTD. addMappi ng(" Test XM.", "xm ") ;

MXM_Mapt est DTD. addMappi ng(" Xm Nane", "xmnl/nane");

MXMLMapt est DTD. addMappi ng(" Conpany"”, "xm /conpany");

MXMLMapt est DTD. addMappi ng(" ConpanyNane", "xml /conpany#nane") ;
mMXM_Mapt est DTD. addMappi ng(" ConpanyCi ty", "xmnl/conpany#city");
mMXM_Mapt est DTD. addMappi ng(" Person", "xm /conpany* /person");
MXMLMapt est DTD. addMappi ng(" Fi rst Nane", "xml /conpany/ per son#f nane") ;
mMXM_Mapt est DTD. addMappi ng(" Last Nane", "xm /conpany/ person#l nane") ;

JavaOne

T PR Wt S Bere DA

XML Mappings to
“JSP™ tags”

* The token semantic names within the HTML
page associate with storyboard class
specifications are substituted with methods
to extract semantic data from the XML
document representing the Storyboard
Interface object

JavaOne

XML Mappings to XSL tags

 In like manner, the token semantic names
within the HTML page associated with
storyboard class specifications are replaced
with XSL syntax to transform the XML

document representing the Storyboard
Interface object

JavaOne

Storyboard Events

* The storyboard class specification objects
contain events that will fire into the
application, transitioning through the
designed collaboration diagrams

— If the target object of a collaboration diagram
event is another interface element then that
storyboard interface element will be displayed

— If the target object is a decision point then the
class specification defined for that decision logic
would be sent the event through the UML state
machine implementation

JavaOne

[y —————

Storyboard Events

 The Logon Page Submit link event

<<StoryBoard>>
LogonPageSB

LogonPage :
LogonPageSB

EHUserNameLabel : Label = User Name:
EHUserName : Edit = UserName
EHPasswordLabel : Label = Password:
EHPassword : Password = UserPass

E5Hiddenl : Hidden = SomeEi
: =Llo idation event=logo
Submit : link =>Submit

/

5: SLWK

TryAdgain Page :
TryAgainSB

1'\Submit
\
2: Good

|

MainMenuPage :
MainMenuSB

UserValidation :

(Logical

gajl

FailPage :
FailLogonSB

Aetry

JavaOne

T PR Wt S Bere DA

Collaboration Decisions

e Decisions are implemented by UML logical classes

LogonValidation

LogonPage :

LogonPageSB
rrentTries : int

E8Validated : boolean

Ii‘«StateMachineMethod» SubmitValidate(theWidl : Widl) : void
MainMenuPage : |[#i<<AttributeAccess>> LogonValidation() : v oid

MainMenuSB Hi<<AttributeAccess>> setMaxTries(aMaxTries : int) : v oid
MW<<AttributeAccess>> getMaxTries() : int
W<<AttributeAccess>> setCurrentTries(aCurrentTries : int) : v oid
Ss<<AttributeAccess>> getCurrentTries() : int
W<<AttributeAccess>> setValidated(aValidated : boolean) : v oid
W<<AttributeAccess>> getValidated() : boolean
B<<AttributeAccess>> inWidl(thewidl : Widl) : boolean
5: Submj HWisValid() : boolean

/"7‘ HWisMaxAttempts() : boolean

'-i‘«StateMachineMethod» GoodGood(thewidl : Widl) : void
[¥<<StateMachineMethod>> FailFail(thewidl : Widl) : v oid

1§ubmit

UserValidation :

(Logical

TrvAgain Page FailPage Ii‘«StateMachineMethod» Retry Retry (theWidl : Widl) : void
ryAg ge : ge: . Nl
TrvAgainSB FailLogonSB '-i‘«StateMachmeMethod» DoneEnd(thewidl : Widl) : void
I'YAQ railltogonsb : . S vai
W<<AttributeAccess>> setPersonCtl(aPersonCtl : PersonCtl) : void

MW<<AttributeAccess>> getPersonCtl() : PersonCtl

JavaOne

[y —————

Control Process
Flow Class Specification

* The control process flow class specification
orovides the logical implementation making
decisions through the use case collaboration
process. The UML control process flow stereotyped
class specification is generated into Java™ source
code with all the static and dynamic behavior
required for:

— Receiving input events

— Managing persistent data

— Manipulating Interface XML documents

— Returning information to the process

— Maintaining state information of the application

JavaOne

[y —————

Recelving Events

 When a user activates an event from an
Interface object, that event Iis sent into the
state machine. All information coming into

the state machine is contained within an XML
document

JavaOne

Control Process
Class State

<<Contrd PF>>
LogonValidation

EEMaxTries : int = 3
EECurrentTries : int
EBValidated : boolean

ﬂ«StateMachineMethod» SubmitValidate(theWidl : Widl) : v oid
[B<<AttributeAccess>> LogonValidation() : v oid
[Bi<<AttributeAccess>> setMaxTries(aMaxTries : int) : v oid
.<<AttributeAccess>> getMaxTries() : int
I<<AttributeAccess>> setCurrentTries(aCurrentTries : int) : void

<<AttributeAccess>> getCurrentTries() : int
[®<<AttributeAccess>> setValidated(aValidated : boolean) : v oid
.<<AttributeAccess>> getValidated() : boolean
.<<AttributeAccess>> inWidl(theWidl : Widl) : boolean
[Bisvalid() : boolean

[BWisMaxAttempts() : boolean

ﬂ«StateMachineMethod» GoodGood(theWidl : Widl) : void /
[¥<<StateMachineMethod>> FailFail(thewidl : Widl) : void
ﬂ«StateMachineMethod» Retry Retry (theWidl : Widl) : void
ﬂ«StateMachineMethod» DoneEnd(theWidl : Widl) : void

Sets Widl Return
results="Retry"

Retry[lisMaxAttempts() && lisvalid()]

[B<<AttributeAccess>> setPersonCtl(aPersonCtl : PersonCitl) : v oid
[B<<AttributeAccess>> getPersonCtl() : PersonCtl

Sets Widl Retum
resul ts="Fai "

achines

Sets Widl Return
results="Good"

- Good[isValid()]

sMaxAttempts() && lisvalid()]

Done[Continue]

Donef Continue]

e[Continue]

JavaOne

T PR Wt S Bere DA

WIDL

 WIDL is a Web Interface Definition Language specification

— The WIDL contains an event, process, and structured records

defining behavior and data together within a single XML
document package

— Event or Method

* The method described within the WIDL is the event name coming
into the state machine

— Process

 The WIDL process attribute identifies the executable Java class
that will receive the WIDL and respond to the method event. The
process name can be a fully qualified Java class or an abstract
object name. Containers receiving the WIDL input from either
session beans, JMS messaging Queue implementations etc., must
have a mechanism to late bind the WIDL event to the correct

process E

JavaOne

[y —————

WIDL Records

The WIDL contains three records for input information, output
Information and return information. These records can be populated
with attributes or complete XML documents

 |Input Record

— Our example for the Web application will use the input record to contain
information coming from the Web interface into the
process logic

e Output Record

— The example WIDL use the output record of the WIDL to contain
Return Page or XML document information back to the Web interface

e Return Record

— The WIDL return record contains results information for evaluating
decisions to the collaboration process flow. The result Attribute within
the WIDL Return record contains the return events from the control

process flow class specification E

JavaOne

[y —————

State Machines

e State machines define the possible events coming
Into a dynamic class and the state transitions for
those events. The state machine diagram provides
a readable definition of the dynamic behavior for a
given class specification

LogonPage :
LogonPageSB

bmit
MainMenuPage :

2: Good MainMenuSB

UserValidation: | —

(Logical

5 SW \3:\Fail
Aetry

TryAdgain Page : FailPage :
TryAgainSB FailLogonSB

States and Transitions

e States

— States define the process stops through the

state machine
e Event Transitions

— Transitions define the event causing a transition

from one state to another state
 Event State Methods

— Event state methods are the implied action

behaviors when an event transition
These event state methods are imp
through UML activity diagrams

OCCUrs.

ement

JavaOne

[y —————

State Diagram Elements

Event Transition
vent State Method

State

Sets Widl Return
results="Good"

- Good[isValid()]

State Timing

 Guard Conditions

— Guard conditions imply a synchronous transition exiting a
given state. The guard conditions contain boolean logic to
determine which exit transition will be traversed

* Asynchronous

— Asynchronous events have no guard conditions and are
triggered from some external source. That source is
typically a user interface link artifacts

e Synchronous

— Synchronous events transition automatically and internal
to the state machine. Synchronous events
are identified as exit events from a state containing d
conditions E

JavaOne

[y —————

Transition Timing Example

Asynchronous Transition
Synchronous Guarded Transition

Sets Widl Return
results="Good"

- Good[isValid()]

Setting Animation Points

« Within the state machine any transition can be
identified within the UML diagram as an animation
point. When the application is executed the UML

document will be displayed selecting the animation
location

Animation Point

. Start ,
Sets Widl Return
ubmit results="Good"

- Good[isValid()]

Activity Diagrams

 Activity Diagrams implement the behavior of
algorithms for UML class specification
methods

Event State Method

i
#3:'.”“
FoEya ol
7 GalgrE il = & LE
= ':'::i::..."-',:i
1 =k y
: i 4 L
¥ -
cFEE s - %
Ef & i
i pE % !
g E
1
lojol—|1|=d|el-JolOf |0l
File . em
. |
|
-] - L
< - [

UML Object
Navigation Notation

» Activity Diagrams are represented in UML Object
Navigation Notation. This notation manipulates the
objects with their public attributes and methods.
Using the object notation and Activity Editor within

UML Factory you can define the complete behavior
for a method implementation

sUser Nane = theWdl . getl| nput Paraneter("User Nane")

sPassWwrd = theWdl . getl nput Paraneter("Password")
this.setValidated(fal se)

Designing an Activity

(] n
try Get Input
Widl Values
(] n
Fatch & UML Factory - Activity Editor [Get Input Widl ¥alues)
Hew Swimlane | Delete Swimlane |
Errm i.n — Exit Keps Select K.en Buffer
Yalidation [[
[Urnstoctured Edit Reture bype:
gllzer ame = thetwfidl getlnputParameter “"UzerM ame" | ;I
sPazsword = theww/idl getlnputParameter "Passward'

thiz. zety alidated] falze |

aPerzan : PersonCH -
b alid : boolean

falze : boolean

i ink

rll : Object

gPaszgwiord : Sting

<>gf~” ls_LllserName: String ll Llj

teszages:

— Comments

86 Staternent Camment:

JavaOne

T PR Wt S Bere DA

Accessing a Data Base

* Through the activity diagram
Implementations we can manipulate our
database objects, defining the operations for
all our database elements as required

aPer son. PersonCtl ()

aPer son. set Fi rst Nane(sUser Nane)
aPer son. set Passwor d(sPassWrd)
this.setValidated(aPerson.load())

Manipulating XML

* Within the activity diagrams we also define
the XML manipulation for retrieving and
building the XML documents going between

the process flow logic and user interface
elements

sVal ue= new String("PassageSoftware");

aXM_Map.insert(this.getXM._ConpanyName(), sValue);

sVal ue= new String("R chnond, VA");

aXM_.Map.insert(this.get XM._ConpanyCity(), sValue);
aXM_Map.insert(this.getXM._Person NODE(), null);
sNane= new String("D ck");

sLName= new String("Douglas");

aXM_.Map.insert(this.getXM._FirstNane(), sNane);

aXM_Map.insert(this.getXM._LastNane(), sLNane);

Intelligent Advisor Code view

 The UML Factory Intelligent Adviser allows
us to view the code generation results while
designing the UML activity diagrams

4 - Fiaticred Nees - Paosga§seosd - Borsiy iegees 5ol albdadn @ Subedvaldea]

CEn e
wid
:J '''''''''
e el Al o 5 -||J.|.|J-\.
o
et i [0
el Cgonct
Wi painpaal® - }
M1#
uuuuuuuuuuuuu al
T
- -
¥
T

* :‘_-_--."-E-:'E

W Frre i adid s B J_
: .,I.;:::_" PR el T T .|--'\-.|rn|--.--..q,r:.._.:h-..;' JavaOne

T PR W e Bere L

Setting Animation Points

« Any activity within the activity diagrams can
also have animation points defined. When
the application Is executing the activity

diagram will display and select the activities
with animation settings

Animation Points

eeeeeeeee

Generating the Application

 After the static and dynamic elements of our
application are defined we can organize
these elements into UML Component
Diagrams to define deployment definitions.
From the components definitions we can
then generate the complete Java class code,
compile the code and package it into the
appropriate application JAR

JavaOne

Collaboration Diagram
XML Generation

* The collaboration diagram information for
our use case definitions is also generated
Into an XML description document identifying
the interface elements, XML mappings, and
control process flow information. This XML
document then becomes the basis for
execution through the application

— The XML document defines the process flow
through the application

— The engine that iterates the collaboration
diagram XML document was also designed
and generated from a UML model

JavaOne

Control Process
Flow Generation

« Dynamic behavior represented within an
application is designed within a control
process flow class specification. The
following sections will briefly illustrate the
generation processing capabillities for
dynamic behavior within a UML environment.
The following code examples were
completely generated from the UML model

JavaOne

Generating the UML
Class Specification

« Looking at the State Machine implementation
— Current State
— Incoming Event
— Synchronous Transitions
— Asynchronous Transitions
— Start and End States

« Packages, imports, declarations

— Java package specifications can be explicitly or implicitly
defined by the class locations within the UML model

e Association and Attribute implementations

— Association implementations generate both the container
and access methods for the stereotyped association.
The type of container and resulting access methods
are defined by the stereotype applied to the E
association between class specifications JavaOne:

[y —————

Method Implementation

 Activity Diagram Method Implementations

— Activity diagrams are generated following the UML Object
Notation. The activity generation can be viewed with either
as a fully generated class or using the Intelligent Advisor code
window

 Round Trip engineering

— Roundtrip engineering allows developers to hand edit code
generated from the UML Diagram. By ldentifying elements
which have been hand edited, the UML Factory generator will
leave the method implementation as edited without forward
generating from the model. The developer controls the
granularly of roundtrip engineering

« UML Model Animation code

— Animation points placed within the code can be turned
off for individual points, the entire model being generated,
and also ignored, from run time configuration properties

Executing the Architectures

e The following demonstrations will walk
through executing the various architectures
from the complete components on different
types of application servers

JavaOne

Sample JSP™ Client to
J2EE™ Application Container

JSP Web
Client — —HTTP — >% Sener -
XML owerRMlor lIOP ejb
% Container

l

|

|

I

|

V

L to JSP
Ve

|
XM
TQ Data
conwersions i i
Session Bean
State Machine

JavaOne

Using the Java™ Message Service
APl (JMS) for Communications

JMS Message
Que

/ N
/ N
- Publish/S b\rib XML Obj
Publish/Subscribe XML Object =~ 0o V=oUoSCrnE ject
/ N
/ N
% <\
S/ EJB
Web Container
HTML HTTP & Senver
Client /| N
\ / EJB)JQBC
\ : N
v / Data
XML/XSL to HTML // Base
Conwersion %

Session Bean
State Mac hine

JavaOne

T PR Wt S Bere DA

Summary

e This concludes the presentations and
demonstrations for building n-tier enterprise
applications with UML and XML data
representations

 The demonstrations have illustrated the ability
to completely model both static and dynamic
application behavior within a UML model

 The UML model also defined components and
deployment into multiple configurations

 The modeled demonstration illustrated the ability to
use the same components within different J2EE™
platform-enabled implementations on multiple
architectural environments

Enterprise Development
Benefits

* Enterprise computing can improve the software

0
0

evelopment process by combining the

t

escriptive power of the UML notation, anc

network, and portable capabilities of Java
technology

e Combining these technologies enables
organizations to manage components increasing
reuse, visibility, and implementation
understanding; effectively reducing the
complexity and total cost of ownership for
deploying n-tier enterprise applications

ne flexible data representation and distribution
capabillities of XML with the object oriented

JavaOne

[y —————

Sun's 2000 Worldwid r Conferenc

