
PRIMITIVE DATA TYPES

T he Java programming language includes many
keywords reserved for use only by Java. You cannot
use keywords as variable names or values in your

code. If you use a Java keyword inappropriately, the Java
compiler will usually detect the error and stop compiling
the code. The following is a list of Java reserved keywords.

JAVA ESSENTIALS

byte
Holds an integer value
ranging from -128 to 127.

char
Holds a single Unicode
character.

double
Holds a 64-bit floating-point value
ranging from ±4.9E-324 to
±1.7976931348623157E+308.

boolean
Holds the value true
or false.

int
Holds a 32-bit integer value
ranging from -2,147,483,648
to 2,147,483,647.

long
Holds a 64-bit integer value ranging
from -9,223,372,036,854,775,808
to 9,223,372,036,854,775,807.

short
Holds a 16-bit integer
value ranging from
-32,768 to 32,767.

float
Holds a 32-bit floating-point
value ranging from ±1.4E-45
to ±3.4028235E+38.

EXCEPTION HANDLING

finally
Defines a block of code that
is executed in a try-catch
structure whether an
exception is thrown or not.

throw
Exits a method and passes
control to the block of
code that handles the
thrown exception.

throws
Defines the
exceptions that
a method may
throw.

try
Defines a block
of code that
may throw an
exception.

catch
Defines a block of
code that handles
exceptions thrown by
a try block of code.

FLOW CONTROL

break
Exits the flow of a loop or switch
and continues execution from the
line following the loop or switch.

case
Defines an option within a switch
statement and the block of code that
should be executed for that option.

continue
Exits the flow of a loop and
re-evaluates the loop condition.

default
Defines a default option within a
switch statement and the block of
code that should be executed when
there is no matching case statement.

do
Defines a block of code that is
executed once and repeats as long
as a condition is true.

else
Defines a block of code that is
executed if a condition is false in
an if statement.

for
Defines a block of code that repeats
depending on the value of a counter.

if
Defines a block of code that is
executed if a condition is true.

switch
Defines a variable or field whose current value
may induce the execution of the block of code
defined by a matching case statement.

while
Defines a block of code that
repeats as long as a condition is
true.

return
Exits a method and returns control
to the calling method, possibly
returning a value.

MODIFIERS

abstract
Indicates that a method's functionality
should be implemented by a subclass
of the class that contains the method.
Also, indicates that a class has such
methods.

final

Indicates that a
class, method or
field cannot be
modified.

native

Declares a Java method
which is written in
another language.

private

Indicates that a method or
field can be accessed only
by the class that contains it.

protected

Indicates that a method or field can
be accessed only by the class that
contains it or by a subclass of the
class that contains it.

synchronized
Indicates that a method cannot be executed by
two threads at the same time and cannot be
interrupted during execution. Also, indicates
an object that can be accessed by only one
synchronized block of code at a time.

void
Indicates a method that
does not return a value.

volatile
Indicates that a field
may be changed by
multiple threads.

public

Indicates that a
method or field
can be accessed
by any class.

static

Indicates that a method
or field is a class
member and can be
instantiated only in the
class that contains it.

strictfp
Indicates that a method or
class stores intermediate
results using strict
floating-point guidelines set
by the IEEE 754 standard.

OBJECTS

class
Defines a block of code
that outlines the methods
and fields of a class.

extends
Specifies which class
a subclass inherits
methods and fields
from.

implements
Specifies interfaces from
which a class implements
methods and fields.

interface
Indicates a block of
code that defines an
interface.

PACKAGES

import
Specifies packages to be
used by the source file.

package
Specifies which package
the classes of a source file
belong to.

MISCELLANEOUS RESERVED WORDS

In addition to the keywords above, you
also may not use const, false, goto,
null, transient and true as names
in your JSP code.

REFERENCE TYPES

instanceof
Tests an object to determine
if the object is an instance
of a particular data type or
class.

new
Creates a new object
in memory and calls
the constructor
method.

super
Refers to the parent
class of an object.

this
Refers to the current
object.

239238

JSP REFERENCE 12

241240

JSP

JAVASERVER PAGES ESSENTIALS

REFERENCE 12

Legend: plain text = required bold = default
italics = user-defined | = or
[] = optional {} = required choice
... = list of items + = can repeat

COMMENTS

HTML Comment

An HTML comment is sent to the Web browser,
but is not displayed. The information may be viewed
by users who view the HTML source code.

Syntax:

<!-- comment [<%= expression %>] -->

Example:

<!-- Session ID: <%= session.getId() %> -->

Hidden Comment

A hidden comment is discarded before any processing
of the JSP page takes place and is not sent to the Web
browser.

Syntax:

<%-- comment --%>

Example:

<%-- Page created by: Jade Williams --%>

SCRIPTING ELEMENTS (CONTINUED)

Scriptlet

A scriptlet is a block of code embedded within a JSP
page, which performs tasks such as generating output.

Syntax:

<% code_fragment %>

Example:

<% out.println("ABC Corporation Web site") %>

DIRECTIVES

Include Directive

The include directive allows you to use one file in
several different JSP pages.

Syntax:

<%@ include file="relativeURL" %>

Example:

<%@ include file="pages/footer.html" %>

Taglib Directive

The taglib directive allows you to define a tag
library and a prefix that can be used to reference
the custom tags.

Syntax:

<%@ taglib uri="tagLibURI" prefix="tagPrefix" %>

Example:

<%@ taglib uri="http://www.mysite.com/chart"
prefix="barchart" %>

Page Directive

The page directive allows you to specify information
about the configuration of a JSP page.

Syntax:

<%@ page [language="java"] [extends="package.class"]
[import="{package.class|package.*}, ..."]
[isThreadSafe="true|false"]
[session="true|false"] [info="text"]
[buffer="none|8kb|sizekb"] [autoFlush="true|false"]
[errorPage="relativeURL"] [isErrorPage="true|false"]
[contentType="{mimeType[; charset=characterSet]

|text/html; charset=iso-8859-1}"] %>

Example:

<%@ page isErrorPage="true" contentType="text/plain" %>

SCRIPTING ELEMENTS

Declaration

A declaration allows you to define variables and
methods that will be used throughout a JSP page.

Syntax:

<%! declaration; [declaration;]+ ... %>

Example:

<%! String siteName = "ABC Corporation"; %>

Expression

An expression allows you to generate output on
a JSP page.

Syntax:

<%= expression %>

Example:

<%= request.getAttribute("firstName") %>

JAVASERVER PAGES ESSENTIALS

243242

JSP

CUSTOM TAGS

Custom Tag

A custom tag invokes custom actions included in a tag
library. Custom actions are re-usable modules that may
create and access objects and affect the output stream.

Syntax:

<tagPrefix:name attribute="value"+ ... />

or
<tagPrefix:name attribute="value"+ ... >
JSPContent
</tagPrefix:name>

Example:

<barchart:Vertical values="1, 4, 3" />

ACTIONS

<jsp:forward> Action

The <jsp:forward> action instructs a Web server
to stop processing the current JSP page and start
processing another.

Syntax:

<jsp:forward page="{relativeURL|<%= expression %>}" />

or
<jsp:forward page="{relativeURL|<%= expression %>}" >

<jsp:param name="parameterName"
value="{parameterValue|<%= expression %>}" />+

</jsp:forward>

Example:

<jsp:forward page="/search" />

<jsp:setProperty> Action

The <jsp:setProperty> action sets the value or
values of a property in a JavaBean.

Syntax:

<jsp:setProperty name="beanID"
{property="*"
|property="propertyName" [param="parameterName"]
|property="propertyName"
value="{string|<%= expression %>}"} />

Example:

<jsp:setProperty name="lineBean" property="color"
value="red" />

ACTIONS (CONTINUED)

<jsp:getProperty> Action

The <jsp:getProperty> action accesses a property
of a JavaBean and can display the property in a JSP page.

Syntax:

<jsp:getProperty name="beanID" property="propertyName" />

Example:

<jsp:getProperty name="movieBean" property="title" />

<jsp:plugin> Action

The <jsp:plugin> action generates HTML code to
display an applet or JavaBean using a Java plug-in in a
Web browser. The plug-in is downloaded from a
specified location if the Web browser is not capable of
displaying the applet or JavaBean.

Syntax:

<jsp:plugin type="bean|applet" code="fileName.class"
codebase="classURL"
[name="instanceName"] [archive="archiveURI, ..."]
[align="bottom|top|middle|left|right"]
[height="hPixels"] [width="wPixels"]
[hspace="horPixels"] [vspace="verPixels"]
[jreversion="JREVersionNumber|1.1"]
[nspluginurl="PluginURL"] [iepluginurl="PluginURL"] >
[<jsp:params>

[<jsp:param name="parameterName"
value="{parameterValue|<%= expression %>}" />]+

</jsp:params>]
[<jsp:fallback> alternateText </jsp:fallback>]

</jsp:plugin>

Example:

<jsp:plugin type="applet" code="fireworks.class"
codebase="/java" height=250 width=187>
<jsp:fallback> Unable to load applet </jsp:fallback>

</jsp:plugin>

<jsp:include> Action

The <jsp:include> action includes a file, such as
an HTML or JSP page, in the current JSP page.

Syntax:

<jsp:include page="{relativeURL|<%= expression %>}"
flush="true" />

or
<jsp:include page="{relativeURL|<%= expression %>}"

flush="true" >
<jsp:param name="parameterName"

value="{parameterValue|<%= expression %>}" />+
</jsp:include>

Example:

<jsp:include page="welcome.jsp" flush="true" />

<jsp:useBean> Action

The <jsp:useBean> action associates a JSP page
with a specific JavaBean.

Syntax:

<jsp:useBean id="beanID"
scope="page|request|session|application"
{class="package.class" [type="package.class"]
|[beanName="{package.class|<%= expression %>}"]
type="package.class"}/>

or
<jsp:useBean id="beanID"

scope="page|request|session|application"
{class="package.class" [type="package.class"]
|[beanName="{package.class|<%= expression %>}"]
type="package.class"} >

otherElements
</jsp:useBean>

Example:
<jsp:useBean id="lineBean" scope="session"

class="myBeans.lnBean" />

REFERENCE 12

245244

JSP

JSP IMPLICIT OBJECTS QUICK REFERENCE

REFERENCE 12

REQUEST OBJECT
The request object retrieves and controls information sent
from a client to the Web server. The request object is a
subclass of the javax.servlet.ServletRequest class.

RESPONSE OBJECT
The response object sends and controls information
from the Web server to a client. The response object is a
subclass of the javax.servlet.ServletResponse class.

METHODS

Object getAttribute(String name)

Returns the value of an attribute of the request object.

Enumeration getAttributeNames()

Returns a list of names of available attributes in the
request object.

String getCharacterEncoding()

Returns the name of the character set used by the
request object.

int getContentLength()

Returns the length of the content body for the request
object, in bytes.

String getContentType()

Returns the content type of the request object.

ServletInputStream getInputStream()

Uses a ServletInputStream object to retrieve
a request as binary data.

Locale getLocale()

Returns the preferred regional setting in which the
client computer accepts information.

Enumeration getLocales()

Returns a list of regional settings in which the client
computer accepts information, in decreasing order
of preference.

String getParameter(String name)

Returns the value of a parameter in the request object.

Enumeration getParameterNames()

Returns a list of names of parameters contained in the
request object.

String[] getParameterValues(String name)

Returns an array containing all the values of a parameter.

String getProtocol()

Returns the name and version of the protocol used by the
request object.

BufferedReader getReader()

Uses a BufferedReader object to retrieve a request as
character data.

String getRealPath(String virtualPath)

Returns the real path that corresponds to a virtual path.
Deprecated. Use String ServletContext.
getRealPath(String virtualPath) instead.

String getRemoteAddr()

Returns the Internet Protocol (IP) address of the client
computer that made the request.

String getRemoteHost()

Returns the name or IP address of the client computer
that made the request.

METHODS (Continued)

RequestDispatcher getRequestDispatcher(String path)

Returns a RequestDispatcher object to be used with
the resource located at the specified path.

String getScheme()

Returns the scheme used to make the request, such
as http, https or ftp.

String getServerName()

Returns the name of the server that received the
request.

int getServerPort()

Returns the number of the server port the request was
received on.

boolean isSecure()

Returns a boolean value indicating whether the request
was made through a secure channel.

void removeAttribute(String name)

Removes an attribute from the request object.

void setAttribute(String name, Object attribute)

Adds an attribute to the request object.

METHODS

void flushBuffer()

Sends information stored in the buffer to a client
immediately.

int getBufferSize()

Returns the buffer size of the response object, in bytes.

String getCharacterEncoding()

Returns the name of the character set used by the
response object.

Locale getLocale()

Returns the regional setting assigned to the response
object.

ServletOutputStream getOutputStream()

Returns a ServletOutputStream object that allows
the response object to write binary data to the client.

PrintWriter getWriter()

Returns a PrintWriter object that allows the
response object to write character data to the client.

boolean isCommitted()

Returns a boolean value indicating if the response
object has written the status code and headers.

void reset()

Clears information, status code and headers from
the buffer.

247246

JSP

JSP IMPLICIT OBJECTS QUICK REFERENCE

REFERENCE 12

METHODS (Continued)

void setBufferSize(int size)

Sets the buffer size for the response object, in bytes.

void setContentLength(int len)

Sets the length of the content body for the response
object, in bytes.

void setContentType(String type)

Sets the content type of the response object.

void setLocale(Locale loc)

Sets the regional setting for the response object.

RESPONSE OBJECT (CONTINUED)

FIELDS

String APPLICATION

Stores the application object in the name table
of the pageContext object.

int APPLICATION_SCOPE

Indicates that a reference has application scope.

String CONFIG

Stores the config object in the name table of the
pageContext object.

String EXCEPTION

Stores an uncaught exception in the attribute list
of the request object and in the name table of the
pageContext object.

String OUT

Stores the out object in the name table of the
pageContext object.

String PAGE

Stores the Servlet object in the name table of
the pageContext object.

PAGECONTEXT OBJECT
A pageContext object provides access to the
namespaces associated with a JSP page, page
attributes and implementation details. The
pageContext object is a subclass of the
javax.servlet.jsp.PageContext class.

FIELDS (Continued)

int PAGE_SCOPE

Indicates that a reference has page scope.

String PAGECONTEXT

Stores the pageContext object in its own name table.

String REQUEST

Stores the request object in the name table of the
pageContext object.

int REQUEST_SCOPE

Indicates that a reference has request scope.

String RESPONSE

Stores the response object in the name table of the
pageContext object.

String SESSION

Stores the session object in the name table of the
pageContext object.

int SESSION_SCOPE

Indicates that a reference has session scope.

METHODS

Object findAttribute(String name)

Searches for an attribute in all valid scopes and returns
the value.

void forward(String relativeUrlPath)

Forwards the current request and response objects
to another resource found at the specified path.

Object getAttribute(String name)

Returns the value of an attribute in the page scope.

Object getAttribute(String name, int scope)

Returns the value of an attribute in the specified scope.

Enumeration getAttributeNamesInScope(int scope)

Returns a list of names of the available attributes in the
specified scope.

int getAttributesScope(String name)

Returns the scope of an attribute.

Exception getException()

Returns any exception object that was passed to the
JSP page.

JspWriter getOut()

Returns the out object that is being used for client
response.

249248

JSP REFERENCE 12

JSP IMPLICIT OBJECTS QUICK REFERENCE

METHODS (Continued)

Object getPage()

Returns the Servlet associated with the
pageContext object.

ServletRequest getRequest()

Returns the request object associated with the
pageContext object.

ServletResponse getResponse()

Returns the response object associated with the
pageContext object.

ServletConfig getServletConfig()

Returns the config object associated with the
pageContext object.

ServletContext getServletContext()

Returns the application object associated with the
pageContext object.

HttpSession getSession()

Returns the session object associated with the
pageContext object.

void handlePageException(Exception exception)

Executes code when a specific error is encountered.

void include(String relativeUrlPath)

Processes the resource found at the specified path as
part of the request and response objects currently
being processed.

void initialize(Servlet servlet, ServletRequest
request, ServletResponse response, String
errorPageURL, boolean needsSession, int
bufferSize, boolean autoFlush)

Initializes a pageContext object.

JspWriter popBody()

Returns the previous out object saved by the previous
call of the pushBody method and updates the value of
the OUT attribute in the page scope of the
pageContext object.

BodyContent pushBody()

Returns a new BodyContent object, saves the current
out object and updates the value of the OUT attribute in
the page scope of the pageContext object.

void release()

Resets the pageContext object.

void removeAttribute(String name)

Removes an attribute.

void removeAttribute(String name, int scope)

Removes an attribute in the specified scope.

void setAttribute(String name, Object attribute)

Adds an attribute with page scope.

void setAttribute(String name, Object attribute,
int scope)

Adds an attribute with the specified scope.

PAGECONTEXT OBJECT (CONTINUED)

SESSION OBJECT
The session object stores session information
about a client computer as the client navigates a
Web site. The session object is a subclass of the
javax.servlet.http.HttpSession class.

METHODS

Object getAttribute(String name)

Returns the information stored in a session value
of the session object.

Enumeration getAttributeNames()

Returns a list of all session values available in the
session object.

long getCreationTime()

Returns the time the session started, measured
in milliseconds since January 1, 1970.

String getId()

Returns the session ID.

long getLastAccessedTime()

Returns the last time the client sent a request during the
session, measured in milliseconds since January 1, 1970.

int getMaxInactiveInterval()

Returns the session timeout, in seconds.

HttpSessionContext getSessionContext()

Deprecated. This method will be removed in a future
version of the Java Servlet API.

Object getValue(String name)

Returns the information stored in a session value
of the session object.
Deprecated. Use Object getAttribute(String name)
instead.

String[] getValueNames()

Returns a list of all session values available in the
session object.
Deprecated. Use Enumeration getAttributeNames()
instead.

void invalidate()

Terminates the current session.

boolean isNew()

Returns true if the client computer has not yet
joined the session.

void putValue(String name, Object value)

Creates a session value for the session object.
Deprecated. Use void setAttribute(String name,
Object attribute) instead.

void removeAttribute(String name)

Removes a session value from the session object.

void removeValue(String name)

Removes a session value from the session object.
Deprecated. Use void removeAttribute(String name)
instead.

void setAttribute(String name, Object attribute)

Creates a session value for the session object.

void setMaxInactiveInterval(int interval)

Sets the session timeout, in seconds.

251250

JSP

JSP IMPLICIT OBJECTS QUICK REFERENCE

REFERENCE 12

APPLICATION OBJECT
The application object stores and shares
information for use during an active application.
The application object is a subclass of the
javax.servlet.ServletContext class.

METHODS

Object getAttribute(String name)

Returns the value of an attribute of the application
object.

Enumeration getAttributeNames()

Returns a list of names of available attributes in the
application object.

ServletContext getContext(String path)

Returns a ServletContext object to be used with
the resource located at the specified path.

String getInitParameter(String name)

Returns the value of an initialization parameter of the
application object.

Enumeration getInitParameterNames()

Returns a list of names of available initialization
parameters in the application object.

int getMajorVersion()

Returns the major version of the Java Servlet API that
the server supports.

String getMimeType(String file)

Returns the MIME type of a file.

int getMinorVersion()

Returns the minor version of the Java Servlet API that
the server supports.

RequestDispatcher getNamedDispatcher(String name)

Returns a RequestDispatcher object to be used
by the named application object.

String getRealPath(String virtualPath)

Returns the real path that corresponds to the specified
virtual path.

RequestDispatcher getRequestDispatcher(String path)

Returns a RequestDispatcher object to be used
with the resource located at the specified path.

URL getResource(String path)

Returns a URL to the resource that is mapped to the
specified path.

InputStream getResourceAsStream(String path)

Returns the resource located at the specified path
as an InputStream object.

String getServerInfo()

Returns information about the server on which the servlet
is running.

METHODS (Continued)

Servlet getServlet(String name)

Deprecated. This method will be removed in a future
version of the Java Servlet API.

Enumeration getServletNames()

Deprecated. This method will be removed in a future
version of the Java Servlet API.

Enumeration getServlets()

Deprecated. This method will be removed in a future
version of the Java Servlet API.

void log(Exception exception, String msg)

Writes an explanatory error message to the servlet log file.
Deprecated. Use void log(String msg,
Throwable throwable) instead.

void log(String msg)

Writes a message to a servlet log file.

void log(String msg, Throwable throwable)

Writes an explanatory message and a stack trace to the
servlet log file for a given error.

void removeAttribute(String name)

Removes an attribute from the application object.

void setAttribute(String name, Object attribute)

Creates an attribute for the application object.

FIELDS

boolean autoFlush

Indicates whether the buffer flushes automatically.

int bufferSize

Stores the buffer size used by the out object, in bytes.

int DEFAULT_BUFFER

Indicates that the out object is buffered and is using
the default buffer size.

int NO_BUFFER

Indicates that the out object is not buffered.

int UNBOUNDED_BUFFER

Indicates that the out object is buffered and is using
an unlimited buffer size.

OUT OBJECT
The out object is a buffered output stream that sends
output to the client. The out object is a subclass of the
javax.servlet.jsp.JspWriter class.

253252

JSP REFERENCE 12

JSP IMPLICIT OBJECTS QUICK REFERENCE

METHODS

void clear()

Clears the buffer. If the buffer has been flushed, this
method causes an error to occur.

void clearBuffer()

Clears the buffer. This method does not cause an error
if the buffer has been flushed.

void close()

Flushes the buffer and closes the output stream.

void flush()

Flushes the buffer.

int getBufferSize()

Returns the buffer size used by the out object, in bytes.

int getRemaining()

Returns the size of the unused area in the buffer, in
bytes.

boolean isAutoFlush()

Returns true if the buffer flushes automatically.

void newLine()

Writes the line separator string to start a new line
in the output stream.

void print(boolean b)

Prints a boolean value.

void print(char c)

Prints a character.

void print(char[] s)

Prints an array of characters.

void print(double d)

Prints a double-precision floating-point number.

void print(float f)

Prints a floating-point number.

void print(int i)

Prints an integer.

METHODS (Continued)

void print(long l)

Prints a long integer.

void print(Object obj)

Prints an object.

void print(String s)

Prints a string.

void println()

Writes the line separator string to terminate the
current line.

void println(boolean b)

Prints a boolean value and then terminates the line.

void println(char c)

Prints a character and then terminates the line.

void println(char[] s)

Prints an array of characters and then terminates
the line.

void println(double d)

Prints a double-precision floating-point number and
then terminates the line.

void println(float f)

Prints a floating-point number and then terminates
the line.

void println(int i)

Prints an integer and then terminates the line.

void println(long l)

Prints a long integer and then terminates the line.

void println(Object obj)

Prints an object and then terminates the line.

void println(String s)

Prints a string and then terminates the line.

OUT OBJECT (CONTINUED)

JSP IMPLICIT OBJECTS QUICK REFERENCE

255254

JSP REFERENCE 12

CONFIG OBJECT
The config object contains information
about the servlet configuration. The
config object is a subclass of the
javax.servlet.ServletConfig class.

METHODS

String getInitParameter(String name)

Returns the value of the initialization parameter of the
servlet.

Enumeration getInitParameterNames()

Returns a list of names of the servlet's initialization
parameters.

ServletContext getServletContext()

Returns a reference to the application object
in which the servlet is executing.

String getServletName()

Returns the name of the current servlet. EXCEPTION OBJECT
The exception object contains information about
a runtime error and is available only in an error page.
An error page must contain the isErrorPage=true
attribute in the page directive. The exception object
is a subclass of the java.lang.Throwable class.

METHODS

Throwable fillInStackTrace()

Fills the exception object with current error
information.

String getLocalizedMessage()

Returns an error message according to regional settings.

String getMessage()

Returns the error message describing the exception.

void printStackTrace()

Prints information about the exception object to
the standard error stream.

void printStackTrace(PrintStream s)

Prints information about the exception object
to the specified print stream.

void printStackTrace(PrintWriter s)

Prints information about the exception object
to the specified print writer.

String toString()

Returns a short description of this exception
object.

PAGE OBJECT
The page object refers to the JSP page
itself. The page object is a subclass of
the java.lang.Object class.

METHODS

Object clone()

Creates and returns a copy of the page object.

boolean equals(Object obj)

Indicates whether another object is the same as
the page object.

void finalize()

Performs cleanup tasks when there are no more
references to the page object.

Class getClass()

Returns the runtime class of the page object.

int hashCode()

Returns a hash code value for the page object.

void notify()

Wakes up a single thread that is waiting on the
page object's monitor.

METHODS (Continued)

void notifyAll()

Wakes up all threads that are waiting on the page
object's monitor.

String toString()

Returns a string representation of the page object.

void wait()

Causes the current thread to wait until another
thread awakens the page object.

void wait(long timeout)

Causes the current thread to wait until another
thread awakens the page object or the specified
amount of time, measured in milliseconds, has
elapsed.

void wait(long timeout, int nanos)

Causes the current thread to wait until another
thread awakens the page object, another thread
interrupts the current thread or the specified amount
of time, measured in nanoseconds, has elapsed.

JAVA.SQL QUICK REFERENCE
The java.sql package provides interfaces
and classes that allow Java programs to access
and manipulate information in a database. The
java.sql package is also known as the Java
DataBase Connectivity 2.0 core Application
Program Interface, or JDBC 2.0 core API.

INTERFACES

Array

Provides methods for handling data in an SQL ARRAY
type.

Blob

Provides methods for handling data in an SQL BLOB
type.

CallableStatement

Provides methods for executing SQL stored procedures.

Clob

Provides methods for handling data in an SQL CLOB
type.

Connection

Provides methods for controlling a connection to a
database.

DatabaseMetaData

Provides comprehensive information about a database.

Driver

This interface must be implemented by every driver
class.

PreparedStatement

Provides methods for handling precompiled SQL
statements.

Ref

Provides a method for retrieving the SQL name of
a data structure type referenced by the Ref object and
SQL REF.

ResultSet

Provides methods for handling the information
generated by the execution of a statement that queries
a database.

ResultSetMetaData

Provides methods for obtaining information about the
columns in a ResultSet object.

SQLData

Provides methods for manipulating SQL user-defined
types.

INTERFACES (Continued)

SQLInput

Provides methods for manipulating data in an input
stream.

SQLOutput

Provides methods for writing data back to a database.

Statement

Provides methods for executing an SQL statement
and obtaining the results.

Struct

Provides methods for retrieving information about
an SQL structured type.

257256

JSP REFERENCE 12

CLASSES

Date

Provides methods for manipulating an SQL DATE,
which is measured in milliseconds since January 1,
1970.

DriverManager

Provides methods for managing a set of JDBC
drivers.

DriverPropertyInfo

Provides methods for discovering and supplying
properties for database connections.

SQLPermission

Holds the name of the permission that is checked by
the SecurityManager when there is a call to one
of the setLogWriter methods.

Time

Provides methods for manipulating an SQL TIME
value, which is the time of day, based on the
number of milliseconds since January 1, 1970.

Timestamp

Provides methods for manipulating an SQL
TIMESTAMP value, which is the time of day
and a nanosecond component. The time of day
is based on the number of milliseconds since
January 1, 1970.

Types

Defines the constants that represent generic SQL
types.

259258

JSP

A ctive Server Pages (ASP) is an alternative technology
for generating dynamic Web pages. ASP, developed
by Microsoft, and JSP have many similarities. Both

technologies allow programmers to insert dynamic Web
content into HTML pages using special tags, access
information in databases, store information about a client
computer throughout a session and use encapsulated
components, such as ActiveX in ASP and JavaBeans in JSP.

There are many differences between the two technologies
as well. ASP pages are processed almost exclusively by
Microsoft Web servers––Internet Information Server (IIS)
or Personal Web Server, while JSP pages can be processed
by any server that supports Java servlets.

ASP code is usually written using VBScript or JScript,
which are Microsoft proprietary scripting languages. JSP
code, however, is written using Java, which is platform
independent and can run on any computer that has a
Java virtual machine. Java has more flexibility and fewer
limitations than the scripting languages used in ASP.

There are also differences in the way JSP and ASP pages
are processed by Web servers. Every time an ASP page
is requested by a client, the code in the ASP page is
interpreted by the Web server and the results are then
sent to the Web browser. The first time a JSP page is
requested, the code in the JSP page is compiled into a
servlet by the Web server. The server then processes the
servlet to generate the HTML code which is sent to the
Web browser. The Web server keeps a copy of the servlet
for future requests. The next time the page is requested,
the precompiled servlet can simply be processed.
Processing precompiled servlets is faster than re-interpreting
the code in ASP pages each time a page is requested.

The following pages illustrate the differences between JSP
and ASP implicit objects and their most common functions,
as well as other JSP and ASP features, such as scripting
elements and comments.

JAVASERVER PAGES AND ACTIVE SERVER PAGES

REFERENCE 12

REQUEST OBJECT

Function JSP ASP

Object name request Request

Retrieve certification N/A ClientCertificate
information (String key[String field])

Retrieve cookies getCookies() Cookies(String name)
[(String key)]

Retrieve form data getParameter(String name), Form(String element)
getParameterNames() [(int index)]
and
getParameterValues(String name)

Retrieve query data getParameter(String name) QueryString(String element)
and [(int index)]
getQueryString()

Retrieve HTTP headers getHeaderNames(), ServerVariables(String serverVar)
getHeader(String name),
getIntHeader(String name)
and
getDateHeader(String name)

RESPONSE OBJECT

Function JSP ASP

Object name response Response

Enable or disable The JSP response object does not support Buffer = True|False
buffering this function, but this can be done using the

<%@ page buffer="sizekb|none" %>
directive.

Enable or disable setHeader("Cache-Control", CacheControl = Public|Private
proxy server caching "no-cache")

Create a cookie addCookie(Cookie name) Cookies(String name)[(String
key).attribute] = value

Add an HTTP header setHeader(String name, String AddHeader String Name, String
value) Value

Load a new page sendRedirect(String AbsURL) Redirect String url
This function needs an encoded URL from
encodeRedirectURL(String url)
if URL rewriting is being used to track a
session.

Send an error to client sendError(int code, String msg) N/A

Encode a URL encodeURL(String url) The ASP Response object does not
This function appends the session ID to support this function, but this can be done
the URL if URL rewriting is being used to using the Server.URLencode(String
track a session. url) method.

Set the MIME type setContentType(String mimeType) ContentType = String mimeType

PAGECONTEXT OBJECT

Function JSP ASP

Object name pageContext No similar object

JAVASERVER PAGES AND ACTIVE SERVER PAGES

261260

JSP REFERENCE 12

SESSION OBJECT

Function JSP ASP

Object name session Session

Terminate a session invalidate() Abandon

Create a session variable setAttribute(String name, Session(String name) =
Object attribute) "Variable Data"

Create a session object setAttribute(String name, Set Session(String name) =
Object attribute) Server.CreateObject(String name)

Retrieve a session getAttribute(String name) My_Variable = Session(String name)
variable

Retrieve a session object getAttribute(String name) Set My_Object = Session(String
name)

Remove a session removeAttribute(String name) Contents.Remove(String name)
variable or object

Retrieve session variable getAttributeNames() For Each Key in
or object names Session.Contents

Response.Write(Key & " : " &
Session(Key) & "
")

Next

Retrieve the session ID getId() SessionID

Set the session timeout setMaxInactiveInterval(int Timeout(int Minutes)
seconds)

Retrieve the session getMaxInactiveInterval() N/A
timeout

Retrieve the preferred The JSP session object does not support LCID
regional setting in which this function, but this can be done using
the client computer the request.getLocale() method.
accepts information

Disable the session This function can be done using the This function can be done using the
<%@ page session="false" %> <%@ EnableSessionState=False %>
directive. directive.

APPLICATION OBJECT

Function JSP ASP

Object name application Application

Create a variable setAttribute(String name, Application(String name) =
Object object) "Variable Data"

Create an object setAttribute(String name, Set Application(String name) =
Object object) Server.CreateObject(String name)

Retrieve a variable getAttribute(String name) My_Variable =
Application(String name)

Retrieve an object getAttribute(String name) Set My_Object =
Application(String name)

Remove a variable removeAttribute(String name) Contents.Remove(String name)
or object

Retrieve variable or getAttributeNames() For Each Key in
object names Application.Contents

Response.Write(Key & " : " &
Application(Key) & "
")

Next

Lock and unlock The JSP application object does Lock and Unlock
variables not support this function, but this

can be done using thread control.

Retrieve information getServerInfo() N/A
about the server

Determine the getMajorVersion() and N/A
servlet API version getMinorVersion()

Write to the servlet log(String msg) The ASP Application object
log file does not support this function,

but this can be done using the
Response.AppendToLog(String msg)
method.

Determine the MIME getMimeType(String file) N/A
type of a file

Find a virtual path's getRealPath(String virtualpath) The ASP Application object
corresponding real path does not support this function,

but this can be done using the
Server.MapPath(String path)
method.

Find the URL to a getResource(String path) N/A
resource

JAVASERVER PAGES AND ACTIVE SERVER PAGES
OUT OBJECT

Function JSP ASP

Object name out Response

Write to the print(data) Write(data)
output buffer

Write binary data The JSP out object does not support BinaryWrite(data)
this function, but this can be done
using the OutputStream.write
(Byte[] buffer) method.

Clear the buffer clearBuffer() Clear()

Flush the buffer flush() Flush()

Close the output close() End()
stream This method stops the processing of the

current page.

263262

JSP REFERENCE 12

ERROR OBJECT

Function JSP ASP

Object name exception ASPError

Retrieve an error getMessage() Description()
message

Retrieve a detailed toString() ASPDescription()
error description

Print information printStackTrace(PrintStream s) N/A
about an error or

printStackTrace(PrintWriter s)

Determine the N/A Line and Column
position of an error
in the source file

SERVER OBJECT

Function JSP ASP

Object name No similar object, but other JSP implicit Server
objects have methods that support most
functions of the ASP Server object.

Create an object To create an object, use standard Java CreateObject(Object id)
syntax.

Apply HTML encoding N/A HTMLEncode(String s)
to a string

Find a virtual path's This function can be done using the MapPath(String virtualPath)
corresponding real path application.getRealPath(String

virtualPath) method.

Encode a URL This function can be done using the URLEncode(String url)
response.encodeURL(String url)
method.

Forward control This function can be done using the Transfer(String path)
to a new page <jsp:forward page="String path" />

action.

Set the amount of N/A ScriptTimeout = int Seconds
time a script can run
on the server before
it is terminated

CONFIG OBJECT

Function JSP ASP

Object name config No similar object

Determine the name getServletName() N/A
of the current servlet

Return a reference to getServletContext() N/A
the application object

Retrieve the names of getInitParameterNames() N/A
the servlet's initialization
parameters

Retrieve the value of an getInitParameter(String name) N/A
initialization parameter

PAGE OBJECT

Function JSP ASP

Object name page No similar object

JAVASERVER PAGES AND ACTIVE SERVER PAGES

SCRIPTING ELEMENTS

Element JSP ASP

Declarations: define <%! <%
functions, methods and Method and variable Function and variable
variables that will be declarations declarations
used by the scriptlets %> %>
in a Web page.

Expressions: generate <%= <%=
output directly to a Variable name or call to Variable name or call to
Web page. a method a function

%> %>

Scriptlets: embed blocks <% <%
of code within a Web JSP code ASP code
page to perform tasks %> %>
such as generating
output.

265264

JSP REFERENCE 12

INCLUDE COMMANDS

Include Type JSP ASP

Static includes: <%@ include file="String url" %> <!--#include
include files before the or file="String relativePath"-->
processing of a page. <jsp:include file="String url" or

flush="true" > <!--#include
<jsp:param name="String name" virtual="String virtualPath"-->
value="String value" />

</jsp:include>

Dynamic includes: <%@ include page="String url" %> Server.Execute("String url")
include a file during or
the processing of <jsp:include page="String url"
a page. flush="true" >

<jsp:param name="String name"
value="String value" />

</jsp:include>

FILE REDIRECTION

Redirection Type JSP ASP

Server redirection: <jsp:forward page="String path" /> Server.Transfer(String path)
stops the execution of or
the current page and <jsp:forward page="String path" >
transfers control to a <jsp:param name="String name"
new page. value="String value" />

</jsp:forward>

SCRIPTING COMMENTS

Comment Type JSP ASP

Scriptlet comments: // a single-line comment ' a single-line comment
add information to or
the scriptlet code. /* a multiple-line comment */

Hidden comments: <%-- a hidden comment --%> N/A
add information to the
server-side file and are
not sent to the Web
browser.

