
227226

JSP

A servlet is a module of Java code that adds functionality
to a Web server. Servlets use text to communicate with
a Web server and have no graphical user interface.

INTRODUCTION TO SERVLETS

DEMYSTIFYING SERVLETS 11

SERVLETS AND CGI PROGRAMMING

Servlets provide an alternative to more traditional
Common Gateway Interface (CGI) programming. While
both servlets and CGI programs add functionality to a
Web server, servlets give a Web server more control over
the processing of information.

With CGI programming, a Web server does not have
control over the way a CGI program processes
information. When information is passed to the Web
server, the server simply passes the information on to the
CGI program and then waits for the program to finish
processing the information. When the CGI program
completes its tasks, the program passes the information
back to the Web server, typically in the form of HTML
code that is then sent to the client.

Servlets are more tightly integrated with a Web server
than CGI programs, allowing more communication
between the Web server and a servlet. This gives a Web
server more control over the processing of information
and allows for more advanced processing features, such
as maintaining session information across multiple
servlets.

SERVLETS AND JSP PAGES

Since JavaServer Pages technology is built on
servlet technology, JSP pages and servlets are
closely related. When a JSP page is processed,
the page is converted into a servlet by the JSP
engine on the Web server. The Web server can
use the servlet generated from the JSP page as
it would use any servlet. A Web server must
support servlets before it can process JSP
pages.

The translation of a JSP page into a servlet is
transparent to the developer. Although it is an
asset, developers do not need to understand
servlet programming in order to work with
JSP pages.

The relationship between JSP pages and servlets:

The Java Servlet API

The construction of servlets is governed by a rigid
specification. This specification is known as the Java
Servlet Application Programming Interface, or more
simply, the Java Servlet API. Detailed information
about the Java Servlet API can be found at the
java.sun.com Web site.

The Java Class Library

Servlets have access to all the class files that make
up the Java class library, which is also called the Java
API. This enables servlets to perform a wide variety of
complex tasks, such as working with databases, reading
and writing to files on local and remote computers and
manipulating data passed by forms.

Object-Oriented Programming

Servlets make use of the object-oriented approach to
programming. Object-oriented programming provides
increased flexibility when maintaining and modifying
code. While beginners may not benefit greatly from the
object-oriented approach, this style of programming
is vital to developers of large, complex Web sites.

Portable

Since servlets have to conform to the rigid Java Servlet
API, a Web server that supports this specification will
be able to run any servlet, regardless of the platform
the servlet was developed on. This allows the same
servlet to run on a Web server that uses the Windows
operating system and a Web server that uses the UNIX
operating system.

Efficient

When a servlet is used for the first time, the servlet
is compiled into bytecode. Bytecode is a set of
instructions that a Web server can use to perform
the tasks specified in the servlet. Once a servlet is
compiled into bytecode, the bytecode is retained
in the Web server's memory. When the servlet is
requested again, the Web server can use the bytecode
stored in memory, without having to recompile the
servlet. This dramatically speeds up the processing
of servlets. A servlet will only need to be recompiled
if it is modified.

Dynamic Content

Servlets can be used to enable a Web server to
generate dynamic content. Dynamic content is
Web page content that is generated depending
on a set of changing parameters. For example,
a servlet can generate a Web page that displays
weather information obtained from a database.
Each time the Web page is requested by a client,
the servlet instructs the Web server to retrieve the
latest weather information from the database and
place the information in the Web page.

Multitasking

Servlets are able to handle multiple processes at
once. As a result, servlets are useful for creating
complex multi-user applications, such as chat room
programs and file swapping programs. Besides
handling multiple instructions at once, servlets
can, when necessary, locate and use other servlets
to share the workload. HTML

page

JSP
engine

JSP
page

Servlet

WEB SERVER

Servlet

229

Servlets are platform independent. This means that
a servlet you create can be stored and processed by
any Web server that supports servlets, regardless of
the platform on which you developed the servlet.
Most Web servers that are capable of running Java
programs are also able to run servlets.

The first time you attempt to display the results of
using a servlet you created, the results may take a
few moments to appear in the Web browser. This
delay will occur only the first time the servlet is
accessed. When a client requests a servlet for the
first time, the Web server processes the servlet and
then stores the servlet in memory. Subsequent
requests for the servlet will be much faster, since
the servlet will not need to be processed each time.

JavaServer Pages technology is built on
servlet technology. JSP pages you create
are converted into servlet code by the JSP
engine on a Web browser when the pages
are processed. A familiarity with servlet
programming can help improve your ability
to develop JSP pages, since you will have
an increased understanding of how JSP
pages are processed by a Web server.

° To create a PrintWriter
object you can use to generate
text that will be output to the
client, type PrintWriter followed
by a name for the object. Then
type =.

· Type the name of the
HttpServletResponse
object followed by a dot.
Then type getWriter().

‚ Type the code that
uses the PrintWriter
object to generate text
output.

228

JSP

CREATE A SERVLET

⁄ Type the code that imports
the javax.servlet and
javax.servlet.http
packages.

¤ Type the code that imports
any additional packages
needed by the servlet.

‹ To declare the class
for the servlet, type
public class followed by
a name for the class.

› To make the class
a sub-class of the
HttpServlet class,
type extends HttpServlet.

ˇ To create a doGet method,
type public void doGet().

Á Between the parentheses,
type HttpServletRequest
followed by a name for the
HttpServletRequest object.
Then type HttpServletResponse
followed by a name for the
HttpServletResponse object.

‡ To specify the
exception errors that
may be thrown by the
method, type throws
ServletException,
IOException.

Y ou can create a simple servlet that uses Java to
generate text that will be displayed in a Web
browser.

To create a servlet, you must first import the
javax.servlet and javax.servlet.http servlet
packages. Before the servlet packages can be imported,
they must be installed on your computer and accessible
to your Web server software. The packages are located
in the Java Servlet API class files, which are available at
the java.sun.com/products/servlet Web site. For more
information about obtaining and installing the Java Servlet
API class files, see the top of page 199.

You will also need to import any additional packages
needed by the servlet you want to create. For example,
a servlet that will output text requires the java.io
package.

You can make a servlet you create a sub-class of the
HttpServlet class, which contains the code a Web
server needs to run servlets. This saves you from

having to type all the code needed by a Web server in
each servlet. The HttpServlet class is part of the
javax.servlet package.

The doGet method is the main method of a servlet.
This method is processed each time a client uses a
Web browser to connect to a servlet. The doGet
method takes two arguments. The first argument is
an HttpServletRequest object, which will contain
information passed from the client. The second argument
is an HttpServletResponse object, which will contain
information to be sent to the client. The doGet method
may also throw two errors––ServletException and
IOException.

To generate text that will be sent to the client, you must
create a PrintWriter object using the getWriter
method of the HttpServletResponse object. The
methods of the PrintWriter object can then be used
to generate output.

CREATE A SERVLET

DEMYSTIFYING SERVLETS 11

— Save the servlet with
the .java extension.

� You can now compile
and execute the servlet.

231

� The Web browser
displays the results of
executing the servlet.

C:\WINDOWS>cd c:\tomcat\webapps\examples

C:\Tomcat\webapps\examples>javac SimpleServlet.java

C:\Tomcat\webapps\examples>copy SimpleServlet.class c:\tomcat\webapps\examples\web-inf\classes

C:\WINDOWS>cd c:\tomcat\webapps\examples

C:\Tomcat\webapps\examples>javac SimpleServlet.java

C:\WINDOWS>cd c:\tomcat\webapps\examples

If you use the Tomcat Web server version 3.1, the URL you enter
to execute a servlet will be determined by the settings in the
web.xml file. You must edit the web.xml configuration file to
specify information about a servlet you want to execute. If you
use the examples directory for development, the web.xml file
you must edit is located in the examples/WEB-INF directory.

To edit the web.xml file, you enter tags that specify information
about the servlet between the <web-app> and </web-app>
tags. The <servlet> tag allows you to specify the class name of
the servlet, while the <servlet-mapping> tag lets you specify
the URL that will be used to execute the servlet. For example, to
edit the web.xml file for a servlet named SimpleServlet that you
want to access by typing /SimpleServlet in the URL, enter the
following code after the <web-app> tag in the web.xml file.

Example:
<servlet>

<servlet-name>SimpleServlet</servlet-name>
<servlet-class>SimpleServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>SimpleServlet</servlet-name>
<url-pattern>/SimpleServlet</url-pattern>

</servlet-mapping>

� If the Java code was
successfully compiled,
the command prompt
re-appears.

Á Type the code that
copies the servlet class
file to the appropriate
directory on your Web
server.

‡ In a Web browser
window, enter the URL
of the servlet you want
to execute.

230

JSP

COMPILE AND EXECUTE A SERVLET

⁄ Open the window that
allows you to work at the
command prompt.

¤ Move to the directory
that stores the servlet you
want to compile.

‹ To compile the servlet
using the javac compiler,
type javac.

› Type the name of
the servlet you want to
compile, including the
.java extension.

ˇ Press Enter to
compile the Java code.

O nce you have created a servlet, you can compile
the Java code for the servlet. A servlet must be
compiled before it can be executed.

A Java compiler is required to compile a servlet. The
Java SDK includes a Java compiler called javac. The javac
compiler can only be executed from the command prompt.
If you are using a Windows operating system, you will need
to open an MS-DOS Prompt or Command Prompt window
to use javac. For more information about using javac, see
page 20.

Before a servlet is compiled, the Java compiler checks
the servlet code for errors. If an error is found, an error
message will be generated. If no errors are found, the code
will be successfully compiled and stored in a class file.
The class file will have the same name as the source file,
but will use the .class extension.

Once a servlet has been compiled, the resulting class file
must be copied to the appropriate directory on the Web
server. Consult the documentation for your Web server to
determine where to save servlets. Most Web servers require
executable files to be stored in a specific directory. For
example, if you are using the Tomcat Web server version 3.1
and you use the examples directory for development, you
should store your servlets in the examples/WEB-INF/classes
directory.

Depending on the configuration of your Web server and
the operating system you use, you may need to modify the
permissions for a servlet class file. Refer to your Web server
and operating system documentation for information about
setting servlet permissions.

To execute a servlet, enter the URL of the servlet in a Web
browser window.

COMPILE AND EXECUTE A SERVLET

DEMYSTIFYING SERVLETS 11

233

You can split long strings of data over multiple
lines by using the concatenation operator (+)
to break up the strings into multiple parts.

Example:
out.print("<!doctype html public" +

" \"-//w3c//dtd html 4.0 " +
"transitional//en\">" +
"<html><head>" +
"<title>Servlet Generated Web Page</title>" +
"</head><body>" +
"<h1>Servlet Generated Web Page</h1>" +
"</body></html>");

° To generate HTML
code, type out.print("").

· Between the quotation
marks, type the HTML
code you want to use for
the Web page.

‚ Repeat steps 8 and 9
to generate the HTML
code needed to render
the Web page.

� You can use variables,
methods and objects to
generate dynamic HTML
code.

— Save the file with the
.java extension and then
compile the source code
for the file.

± Copy the compiled
class file to the appropriate
directory on your Web
server.

232

JSP

GENERATE A WEB PAGE USING A SERVLET

⁄ Type the code that imports
the javax.servlet and the
javax.servlet.http
packages.

¤ Type the code that imports
any additional packages
needed by the servlet.

ˇ Type the code that creates
a PrintWriter object from
the getWriter method of
the response object.

Á To send a document type
declaration to the client
application, type out.print("").

‡ Between the quotation
marks, type the appropriate
document type declaration
for the version of the HTML
specification the Web
browser should use to
render the Web page.

A servlet can be used to generate HTML code that is
rendered as a Web page when viewed in a Web
browser. Generating HTML code from a servlet allows

you to use features of the Java programming language, such
as variables, methods and objects to create Web pages.
Information for the Web pages can be retrieved from files,
databases or other Web pages. To generate Web pages from
a servlet, you simply send strings of data containing valid
HTML code to the client using the print method of the
out object.

Before sending HTML data to a client, the response
object can be instructed to send an HTTP header. HTTP
headers provide instructions and information to the client
application, usually a Web browser. For example, the
setContentType method of the response object can
be used to specify the content type of information to be
sent to the client. The "text/html" argument can be
passed to the setContentType method to inform the
client to expect HTML information.

HTML pages typically start with a document type
declaration. The document type declaration allows the
Web browser to determine what type of document is
being viewed by specifying which version of the HTML
specification the Web browser should use to render the
Web page. While most browsers will display Web pages
that do not have a document type declaration, some
applications, such as search engines, rely on the document
type declaration to better classify Web pages. You can find
information about the document type declaration for the
version of HTML you use at the www.w3.org Web site.

When generating a Web page using a servlet, the
setContentType method and the document type
declaration should be sent before any other HTML
code is sent to the client.

GENERATE A WEB PAGE USING A SERVLET

DEMYSTIFYING SERVLETS 11

You can use the setContentType method
to indicate that a page contains other types of
content besides HTML information. This chart
displays the most common content types.

CONTENT TYPE: DESCRIPTION:

text/html Page contains HTML code.
text/plain Page contains only plain text.
audio/basic Page contains an audio file.
video/mpeg Page contains a video file.
image/gif Page contains a GIF image.
image/jpeg Page contains a JPEG image.
application/pdf Page contains a PDF file.
application/msword Page contains a Word

document.

‹ Type the code that
creates the servlet class
and the doGet method.

› To specify that the
document will contain
HTML information, type
response.setContentType
("text/html").

¡ Display the servlet
in a Web browser.

� The Web browser
displays the Web page
generated by the servlet.

235

CGI Variables - Microsoft Internet Explorer

‡ To access information
about the Web server, type
getServletContext().getServerInfo().

° Type the code that
uses the information
from the CGI variable.

· Save the file with the .java
extension and then compile
the source code for the file.

‚ Copy the compiled class
file to the appropriate directory
on your Web server.

234

JSP

CREATE A SERVLET THAT ACCESSES CGI VARIABLES

⁄ Type the code that imports
the javax.servlet and
javax.servlet.http
packages.

¤ Type the code that imports
any additional packages
needed by the servlet.

ˇ To access the address
of the client that made
a request, type
request.getRemoteAddr().

Á Type the code that
uses the information
from the CGI variable.

T he Common Gateway Interface (CGI) is a standard
used to create interactive Web sites. Servlets are often
used to replace CGI applications on a Web server.

Like the CGI applications they replace, servlets often need
to determine information about the environment in which
the servlet is running. For example, a servlet may need to
determine the type of Web server on which it is running
before performing an action such as writing to a database.
Information about the environment is typically stored in
CGI, or environment, variables, which store information
about the computer, Web server and operating system
that is running the servlet.

When you create servlets to replace CGI applications,
the servlets will need to access the CGI variables. Because
servlets are created using the Java programming language,
which was not developed specifically for use on Web

servers, servlets do not contain a built-in method for
accessing CGI variables. Servlets can access CGI variables
only by using objects, such as the HttpServletRequest
object, to retrieve information.

Methods of the HttpServletRequest object, which
handles the request information passed between a client
and a servlet, are the most common methods used to
access CGI variable information. For example, to access
the address of the client that made a request, you use
the getRemoteAddr() method of the
HttpServletRequest object.

Methods of the ServletContext object, such as the
getServerInfo() method, can be used to obtain
information about the Web server on which the servlet is
running, such as the name and version of the Web server
software and the operating system running on the server.

CREATE A SERVLET THAT
ACCESSES CGI VARIABLES

DEMYSTIFYING SERVLETS 11

The following is a list of some commonly used CGI variables
and the methods used to access the variables in a servlet.

CGI VARIABLE: METHOD REQUIRED:

AUTH_TYPE request.getAuthType()

CONTENT_TYPE request.getContentType()

DOCUMENT_ROOT getServletContext().getRealPath("/")

PATH_INFO request.getPathInfo()

QUERY_STRING request.getQueryString()

REMOTE_ADDR request.getRemoteAddr()

REMOTE_HOST request.getRemoteHost()

REMOTE_USER request.getRemoteUser()

SCRIPT_NAME request.getServletPath()

SERVER_NAME request.getServerName()

SERVER_PORT request.getServerPort()

SERVER_SOFTWARE getServletContext().getServerInfo()

‹ Type the code that
creates the servlet class
and the doGet method.

› Type the code that sends
HTML data to the client. For
information about generating
a Web page, see page 232.

— Display the servlet in
a Web browser.

� The Web browser displays
the result of accessing CGI
variable information using
the servlet.

237

There are two methods a form can use to pass
information to a servlet––get and post. The
get method is faster than the post method
and is suitable for small forms. The post
method is suitable for large forms that will send
more than 2000 characters to the servlet. When

the post method is used by a form, a doPost
method must be created in the servlet. You can
then pass the information from the doPost
method to the doGet method. This creates
a servlet that can handle information passed
using either the post or get method.

Example:
public void doGet(HttpServletRequest request,

HttpServletResponse response) throws ServletException, IOException
{

response.setContentType("text/html");
PrintWriter out = response.getWriter();

out.print("<!doctype html public \"-//w3c//dtd html 4.0 ");
out.print("transitional//en\">");
out.print("<html>");
out.print("<head><title>Process Form Data</title></head>");
out.print("<body>");
out.print("Welcome to my Web page");
out.print(request.getParameter("userName"));
out.print("</body></html>");

}
public void doPost(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException
{

doGet(request, response);
}

PROCESS FORM DATA

⁄ In a Web browser,
display the Web page
containing the form
you want to process.

¤ Enter data into the form.

‹ Click the submit button
to pass the data in the form
to the servlet.

� The Web browser displays
the result of processing form
data using a servlet.

236

JSP

PROCESS FORM DATA USING A SERVLET

⁄ Type the code that imports
the javax.servlet and
javax.servlet.http
packages.

¤ Type the code that imports
any additional packages
needed by the servlet.

› Type the code that sends
HTML data to the client. For
information about generating
a Web page, see page 232.

ˇ Type the code that accesses
data passed by a form.

Á Save the file with the
.java extension and then
compile the source code
for the file.

‡ Copy the compiled
class file to the appropriate
directory on your Web
server.

U sing a servlet is a very effective method of processing
data passed by a form. Servlets process data faster
and are more efficient than CGI applications.

In addition to data passed by a form, a servlet can also be
used to process data submitted by a query string. A query
string is one or more name and value pairs appended to
a URL. To submit a query string to a servlet, you enter the
URL of the servlet in a Web browser, followed by a question
mark. You then enter a name followed by an equal sign and
a value for the name. To enter multiple name and value
pairs, separate each pair with an ampersand (&), such as
?userName=Martine&id=123. A query string should not
contain spaces.

In order for a servlet to process data passed by a form using
the get method or a query string, a doGet method must be
created in the servlet. The getParameter method of the
HttpServletRequest object can be used in the doGet

method to access form or query string data. The argument
for the getParameter method is the name of the form
element you want to access or a name specified in the
query string.

Once the servlet has retrieved the data from a form or a
query string, the data can be displayed in a Web browser
or stored in a variable for later use. A servlet may also
perform a more complex task, such as placing the data
in a database or writing the data to file.

Before the servlet file can be used to process form data,
the file must be saved with the .java extension and then
compiled. After saving the servlet, you should review the
code for the form to verify that the action attribute of
the <form> tag displays the correct filename and location
of the servlet.

PROCESS FORM DATA USING A SERVLET

DEMYSTIFYING SERVLETS 11

‹ Type the code that
creates the servlet
class and the doGet
method.

