
199

Before creating tag handlers, you need to
install the Java Servlet API class files, which
contain the packages that must be imported
when you compile the Java code used to create
tag handlers. The Java Servlet API class files are
available at the java.sun.com/products/servlet
Web site. Make sure you store the Java Servlet
API class files in the appropriate directory on
your computer. For example, on the Windows
platform, the Java Servlet API class files are
stored in the c:\jdk1.3\jre\lib\ext directory. You
should check the Java Servlet API specification
documentation for installation instructions
specific to your operating system.

Custom tags can enable specialization when
developing a Web site. For example, Web page
designers can work with the HTML content of
a JSP page, while programmers develop the Java
code that will make the Web page dynamic. This
allows both types of professionals to concentrate
on their own areas of expertise.

In addition to the value SKIP_BODY, the
doStartTag method may return two other
values. The value EVAL_BODY_INCLUDE is
returned when the body of the custom tag needs
to be processed. If the body of the custom tag
must be processed using a BodyContent object,
the value EVAL_BODY_TAG is returned.

› To extend the TagSupport
class, type extends
javax.servlet.jsp.tagext.TagSupport.

ˇ To create the
doStartTag method,
type public int doStartTag().

198

JSP

CREATE THE TAG HANDLER

⁄ To import the
javax.servlet.jsp
package, type import
javax.servlet.jsp.*.

‹ To create a class for the
custom tag, type public class
followed by a name for the
class.

S imilar to JavaBeans, custom tags provide a way for
you to easily work with complex Java code in your
JSP pages. You can create your own custom tags to

suit your needs.

Using custom tags can help make the code in a JSP page
easier to work with by allowing you to separate the Java
code from the HTML code. Since custom tags can be used
in multiple JSP pages, using custom tags also saves you
from having to retype the same Java code over and over.

The first step in creating a custom tag is to create a tag
handler class file, which stores the methods that perform
specific actions when the custom tags are processed. A
tag handler must import the javax.servlet.jsp and
javax.servlet.jsp.tagext packages in order to
access the classes found in these packages. You can refer
to the Java SDK documentation for more information about
these packages. A tag handler may need to extend the
classes found in these packages, such as the TagSupport

class of the javax.servlet.jsp.tagext package.
For information about extending a class, see page 54.

A simple tag handler must have a doStartTag method
that contains the code to be executed when the start tag
of the custom tag is processed. The access modifier of
the doStartTag method must be specified as public
in order for the method to be accessed as part of a tag
handler.

The doStartTag method must return a value to indicate
whether the custom tag will include information that must
be processed between the start and end tags, called a body.
A body is not required for a simple tag handler, so the
doStartTag method returns the value SKIP_BODY.
SKIP_BODY is a constant and is defined in the imported
javax packages. SKIP_BODY contains an integer value
so the return type of the doStartTag method must be
specified as int.

CREATE THE TAG HANDLER

CREATE CUSTOM TAGS 10

CONTINUED

¤ To import the
javax.servlet.jsp.tagext
package, type import
javax.servlet.jsp.tagext.*.

Á In the body of the
doStartTag method,
type return SKIP_BODY.

201

The tag handler class file you create must be stored in a
specific directory on your Web server. For example, if you
are using the c:\tomcat\webapps\examples directory to
store your JSP pages on a Windows platform using the
Tomcat Web server, you would store your tag handler class
files in the c:\tomcat\webapps\examples\WEB-INF\classes
directory. You can refer to your Web server documentation
to determine the proper directory to store your tag handler
class files.

The doStartTag method is called when the start
tag of a custom tag is processed. The start tag is
the opening tag. For example, in the HTML code
<title>My Web Page</title>, the start tag is <title>
and the end tag is </title>. The phrase "My Web Page"
is the body of the tag.

When a tag does not require a
body, the start and end tags can be
combined into one tag in a JSP page.

Example:
<mytag></mytag>

Can be written as:
<mytag />

‚ Between the second
set of parentheses, type
the message you want the
tag to display, enclosed in
quotation marks.

— On the line immediately
following the try block, type
the code that creates a catch
block.

± In the body of the catch
block, type throw new
JspTagException(e.getMessage()).

¡ Save the file with the .java
extension and then compile the
source code for the file.200

JSP

CREATE THE TAG HANDLER (CONTINUED)

‡ To specify that the
doStartTag method may
throw a JSP related exception
error, type throws JspException
on the same line as the
method declaration.

° Type the code that
creates a try block in the
body of the doStartTag
method.

· In the body of the try block,
type pageContext.getOut().print().

A simple tag handler can be created to generate
a message, such as copyright information or a
greeting, which you want to display on several JSP

pages in your Web site. You can then simply insert a
custom tag into each JSP page where you want to display
the message. Using a custom tag can make it easier to
update the message in each JSP page where it is used.

After you create the tag handler class and declare the
doStartTag method, you can use methods of the
PageContext object to generate output for the tag.
The PageContext object is used by an object to
determine the kind of environment in which the
object is contained. Once the object's environment is
determined, the tag handler will use the PageContext
object to help perform the requested actions.

The getOut method of the PageContext object
determines the method being used to send information
to a client. For a tag handler that displays a message,
you can use the print method of the PageContext
object to generate a text message that the JSP page
will send to a Web browser when the custom tag is
processed. To display the information for the tag, you
use the print method and the getOut method of
the PageContext object together.

Using the print method of the PageContext object
may throw an IOException error. To handle any errors
that occur, you should enclose the code that generates
a message in a try block and create a catch block to
catch any exception errors. For more information about
error handling, see pages 174 to 185.

CREATE THE TAG HANDLER

CREATE CUSTOM TAGS 10

™ Copy the compiled
class file to the appropriate
directory on your Web
server.

� You can now add the
tag handler class to a tag
library descriptor file.

203

Á Type <shortname> followed
by a name that will reference
the tag library descriptor file
from a JSP page. Then type
</shortname>.

‡ Type <info> followed by a
description of the tag library
descriptor file. Then type
</info>.

° Type <tag> to begin
specifying information
about a custom tag you
are creating.

· Type <name> followed
by the name of the custom
tag. Then type </name>.

‚ Type <tagclass>
followed by the name of
the tag handler class file.
Then type </tagclass>.

— Type </tag> to
complete the information
about the custom tag.

202

JSP

CREATE THE TAG LIBRARY DESCRIPTOR FILE

⁄ To create the XML
header for the tag library
descriptor file, type
<?xml version="1.0"
encoding="ISO-8859-1" ?>.

¤ Type <!DOCTYPE taglib
PUBLIC "-//Sun Microsystems,
Inc.//DTD JSP Tag Library 1.1//EN"
"http://java.sun.com/j2ee/dtds/
web-jsptaglibrary_1_1.dtd">.

‹ To create the main body
of the tag library descriptor
file, type <taglib>.

› Type <tlibversion>
followed by the version
number of the tag library
descriptor file. Then type
</tlibversion>.

ˇ Type <jspversion>
followed by the version
number of JavaServer
Pages required to use the
tag library descriptor file.
Then type </jspversion>.

O nce you have created a tag handler for a custom
tag, you must create a Tag Library Descriptor (TLD)
file that will tell the Web server where to locate

the tag handler when the custom tag is used in a JSP page.
Tag library descriptor files are XML documents that can be
created and edited using a simple text editor.

When creating a tag library descriptor file, you must begin
the file with an XML header that specifies information about
the file. The XML header consists of the <?xml?> tag and
the <!DOCTYPE> tag. The information in the XML header
is a standard requirement of XML documents and will be the
same for every tag library descriptor file you create. For more
information about XML documents, visit the www.xml.org
Web site.

The <taglib> and </taglib> tags are used to enclose the
main body of a tag library descriptor file. There are several
tags you must use in the main body of the file. For example,

you must use the <jspversion> tag to specify the version
of JavaServer Pages that the tag library descriptor file uses.

A tag library descriptor file can contain information about
multiple custom tags. To provide information about a custom
tag you are creating, use the <tag> and </tag> tags to
enclose the information. To specify the name of a custom tag,
use the <name> tag. The name you specify must be the same
as the name you will use for the tag in a JSP page. To specify
the name of the tag handler class file for a custom tag, use
the <tagclass> tag. You do not need to include the .class
extension when specifying the name.

Tag library descriptor files should be saved with the .tld
extension. When using version 3.1 of the Tomcat Web server,
the name and location of the tag library descriptor file must
be specified in the web.xml configuration file. To configure
the web.xml configuration file, see page 204.

CREATE THE TAG LIBRARY DESCRIPTOR FILE

CREATE CUSTOM TAGS 10
The following tags must also be included in the main
body of all the tag library descriptor files you create.

If you are not using version 3.1 of the Tomcat
Web server, you should use the <uri> tag in
the main body of the tag library descriptor file
to provide a unique identifier for the file, such
as <uri>www.maran.com/taglib</uri>
or <uri>MyTagLibrary</uri>. A JSP page
that uses the tag library will contain the same
identifier, linking the JSP page to the tag library
descriptor file. In this situation, you do not
need to configure the web.xml file.

The tag handler class file for a custom tag may be stored in a
package. Grouping tags into packages is a common practice that
allows you to easily organize and work with a large number of
tags. When using the <tagclass> tag to specify the name of
a tag handler class file that is stored in a package, prefix the
name of the class file with the name of the package, separating
the names with a dot. For example, a tag handler class file
called SimpleTag.class that is part of the mytags.web.text
package can be indicated in the tag descriptor file using the code
<tagclass>mytags.web.text.SimpleTag</tagclass>.

TAG: DESCRIPTION:

<tlibversion> The version of the tag library
descriptor file.

<shortname> A name that will be used
to reference the tag library
descriptor file from a JSP page.

<info> A description of the tag library
descriptor file.

± Type </taglib> to complete
the main body of the tag library
descriptor file.

¡ Save the file with the .tld
extension.

� You can now configure the
web.xml file to work with your
tag library descriptor file.

205

� You can now use the
custom tag in your JSP
pages.

You must configure the appropriate web.xml
file in order to use custom tags with version
3.1 of the Tomcat Web server. Other Web
servers, as well as other versions of the
Tomcat Web server, may not require any
alteration of the configuration file. Carefully
consult your Web server documentation to
determine what, if any, changes need to be
made to the server's configuration files prior
to using custom tags.

The web.xml file conforms to the XML
specification for document structure and,
therefore, should be very easy to read and
edit. Text information, such as the label and
location of the tag descriptor file, does not
have to be enclosed in quotation marks.

In addition to the specific web.xml files for
each application on your Web server, there
is also a default web.xml file located in the
\conf directory within the main Tomcat
directory. This default web.xml file stores
information such as the server's basic
configuration. If you want all your JSP
pages in any Web application to have
access to a custom tag, you can add the
<taglib> tag for the custom tag to the
default web.xml file. Both the default
web.xml file and the application-specific
web.xml file will be accessed by a JSP page
that uses a custom tag.

Á To specify the location
of the tag library descriptor
file, type <taglib-location>.

‡ Type the location of the
tag library descriptor file.

° Type </taglib-location>
to close the
<taglib-location> tag.

· Type </taglib> to close
the <taglib> tag.

‚ Save the web.xml file.

204

JSP

CONFIGURE THE WEB.XML FILE

⁄ Open the web.xml file
you want to configure in
a text editor.

¤ To enable the Web
application to use custom
tags, type <taglib>.

� If the web.xml file already
contains <taglib> tags,
place the new <taglib>
tag on the line immediately
following the existing
<taglib> tags.

‹ To create a label for
the tag library descriptor
file, type <taglib-uri>.

› Type the label for the
tag library descriptor file.

ˇ Type </taglib-uri> to close
the <taglib-uri> tag.

I f you are using version 3.1 of the Tomcat Web server,
you must configure a Web application's web.xml file
before using custom tags in the application. This task

can be completed once you have created the tag handler
class and the tag library descriptor file.

Each Web application on your Web server may have its
own web.xml file. The web.xml files may be automatically
created by the Web server. If you are storing your JSP
pages in the \webapps\examples directory under the
main Tomcat directory, then the web.xml file you should
configure is located in the \webapps\examples\WEB-INF
directory under the main Tomcat directory.

The web.xml file defines the setup of certain features of
your Web application, such as session tracking and the file
name of the default home page. To enable JSP pages in
your Web application to use custom tags, you must use

the <taglib> tag to configure the web.xml file. If the
web.xml file already contains <taglib> tags, you can add
a new <taglib> tag immediately following the existing
<taglib> tags. If there are currently no <taglib> tags
in the web.xml file, the new <taglib> tag can be inserted
anywhere between the <web-app> and </web-app>
tags. You can consult the Web server documentation for
more information about the web.xml file.

Within the <taglib> and </taglib> tags, you must
include the <taglib-uri> and <taglib-location>
tags. The <taglib-uri> tag specifies a label, which
will be used in your JSP pages to refer to the tag library
descriptor file. The label can be an address, such as
www.xyzcorp.com, or a word, such as mytags. The
<taglib-location> tag specifies the location of
the tag library descriptor file on the Web server.

CONFIGURE THE WEB.XML FILE

CREATE CUSTOM TAGS 10

207

� The Web browser
displays the result of
using a custom tag.

The custom tag examples in this chapter were
created using Tomcat Web server version 3.1.
This version of Tomcat uses a label, known as
the URI, to map to the tag library descriptor file.
Other Web servers, as well as other versions of
the Tomcat Web server, may require a different
format when using the taglib directive. You
should consult your Web server documentation
for information about using the taglib
directive.

Custom tags that display information can be
enclosed within HTML tags or other custom
tags that will format or organize the information
the tag will display.

Example:
<myTags:SimpleTag />

Result:
Welcome to my Web site.

If any information in the required
supporting files for the custom tag,
such as the web.xml file, is incorrect,
an error may be generated when the
taglib directive or the custom tag
is processed by the Web server. To
prevent problems with the JSP page,
you should ensure that the tag handler
class file includes error handling
processes, such as a try block and
a catch block.

ˇ To use the custom tag, type <>.

Á Between the angle brackets,
type the prefix you specified in
the taglib directive, followed
by a colon. Then type the name
you specified for the custom tag
in the tag library descriptor file.

‡ To close the custom
tag, type </ >. Then
repeat step 6.

° Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

206

JSP

USING A CUSTOM TAG

⁄ To specify the location of
the tag library descriptor file
for the custom tag you want
to use in the JSP page, type
<%@ taglib uri="" %>.

¤ Between the quotation
marks, type the identifier of
the tag library descriptor file.

‹ To specify the prefix
you want to use for the
tag library, type prefix="".

› Between the quotation
marks, type the prefix you
want to use.

O nce you have compiled the tag handler class file,
created the tag library descriptor file and configured
the web.xml file for a custom tag, you can use the

custom tag in a JSP page.

You must first include the taglib directive in the JSP page
to identify the tag library descriptor file that contains the tag
you want to use. To add the taglib directive to a JSP page,
you place the directive statement between the <%@ opening
delimiter and the %> closing delimiter.

The taglib directive uses the uri attribute to specify an
identifier for the tag library descriptor file. The identifier must
be the same identifier specified for the tag library descriptor
file in the web.xml file.

Within the taglib directive, you must also specify a prefix
you want to use to reference the tag library that contains the
custom tag information. Each tag library requires a different

prefix, so you can use different prefixes to work with custom
tags that have the same name but are stored in different tag
libraries.

To use a custom tag in a JSP page, you type the prefix and
the name you assigned to the tag in the tag library descriptor
file, separated by a colon. Like HTML tags, the start tag is
enclosed in angle brackets. The end tag is also enclosed in
angle brackets and begins with a forward slash. For simple
tags that do not contain a body, or information between the
start and end tags, the start and end tags can be combined
into one tag, such as <myTags:SimpleTag />.

USING A CUSTOM TAG

CREATE CUSTOM TAGS 10

209

You can create multiple attributes for each tag. You must
create a variable and a setter method for each attribute.

Example:
private String message = "No message specified.";
private String boldText = "b";
public int doStartTag() throws JspException
{

try
{

String output="<" + boldText + ">" + message + "</" +
boldText + ">";
pageContext.getOut().print(output);

}
catch(Exception e)
{

throw new JspTagException(e.getMessage());
}
return SKIP_BODY;

}
public void setMessage(String text)
{

message = text;
}
public void setBoldText(String text)
{

boldText = text;
}

Á To declare a setter method
that will convert the value of
the attribute to the variable you
created in step 4, type public void.

‡ To name the method, type
set immediately followed by the
name of the variable, beginning
with a capital letter. Then type ().

° Between the
parentheses, type the
data type of the variable
followed by a name for
the variable that will
pass the value to the
setter method.

· Type the name of the
variable that represents the
attribute followed by = and
the variable you specified in
step 8. Enclose the code in
braces.

‚ Save the file with the .java
extension and then compile
the source code for the file. 208

JSP

CREATE THE TAG HANDLER FOR A TAG WITH AN ATTRIBUTE

⁄ Type the code that imports the
javax.servlet.jsp and the
javax.servlet.jsp.tagext
packages.

› To create a variable to
represent an attribute that
will be specified in a JSP
page, type private String
followed by a name for the
variable. Then type = "".

ˇ Between the quotation
marks, type a default value
for the variable.

A custom tag can be set up to support attributes that are
specified when the tag is used in a JSP page. This adds
flexibility to the tag and allows you to customize the

tag's behavior. For example, you can have a tag that displays
a heading accept an attribute that specifies the color of the
heading.

An attribute for a custom tag is represented by a variable in
a tag handler class file. When you create the variable that will
represent an attribute, you can assign a default value to the
variable. The tag handler will use this value for the attribute
if a value is not specified when the custom tag is used.

When the custom tag is used with an attribute in the JSP
page, the value specified for the attribute is passed to the tag
handler as a variable. In order to convert a value specified for
an attribute in a JSP page to a variable, you must use a setter
method. The access modifier of a setter method must be set

to public and the return type set to void, since the
method does not return a value. The name of the method
is the same as the name of the variable that stores the value
for the attribute, but begins with a capital letter and is
prefixed by the word set. The parentheses at the end of
the setter method name enclose the data type of the variable
and the variable used to pass the value to the method. The
argument is then assigned to the variable used to store the
attribute value.

The variable that represents the attribute value is typically
declared in the class body of the tag handler. This allows
the variable to be accessed by any method in the tag
handler class file.

CREATE THE TAG HANDLER
FOR A TAG WITH AN ATTRIBUTE

CREATE CUSTOM TAGS 10

¤ Type the code that
creates a class for a
custom tag.

‹ Type the code that
creates a doStartTag
method.

— Copy the compiled
class file to the appropriate
directory on your Web
server.

� You can now add the
tag handler class to a tag
library descriptor file.

211

� You can now use
the custom tag with
an attribute.

You can specify as many attributes as
required by your custom tag. To add an
additional attribute, you can simply use
another set of <attribute> tags.

Example:
<tag>

<name>AttributeTag</name>
<tagclass>AttributeTag</tagclass>
<attribute>

<name>message</name>
<required>false</required>

</attribute>
<attribute>

<name>length</name>
<required>true</required>

</attribute>
</tag>

When using a custom tag with an attribute,
you can have the value of the attribute be
determined at runtime by a section of JSP
code, such as an expression, by adding an
<rtexprvalue> tag and assigning it a
value of true.

Example:
<tag>

<name>AttributeTag</name>
<tagclass>AttributeTag</tagclass>
<attribute>

<name>message</name>
<required>false</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
</tag>

› To specify if the attribute
is required when the custom
tag is used, type <required>
followed by true or false.
Then type </required>.

ˇ Type </attribute> to end
the attribute specification.

Á Save the tag library
descriptor file with a .tld
extension.

210

JSP

CREATE THE TAG LIBRARY DESCRIPTOR FILE FOR A TAG WITH AN ATTRIBUTE

⁄ Type code that creates
a tag library descriptor file.
See page 202 for information
about creating a tag library
descriptor file.

¤ To specify an attribute
for a custom tag, type
<attribute> following the
<tagclass> tag.

‹ To specify the name of
the attribute, type <name>
followed by the name of
the attribute. Then type
</name>.

Y ou need to add an <attribute> tag to a tag library
descriptor file for each attribute of a custom tag. An
<attribute> tag allows you to specify details about

an attribute of a custom tag and is placed following the
<tagclass> tag in a tag library descriptor file.

The name of the attribute is specified using the <name> tag,
which is placed following the <attribute> tag. The name
specified with the <name> tag must match the name that
will be used when the custom tag is used on a JSP page. The
name of the attribute specified with the <name> tag is case
sensitive. Most attribute names use only lower case letters.

After the name of the attribute is specified, a <required>
tag is used to specify if the attribute is required when the
custom tag is used on a JSP page. If a value of false is
specified for a <required> tag, the use of the attribute

is optional when the custom tag is used. If a value of true
is specified, the attribute must be included each time the
custom tag is used.

When you specify that an attribute is not required, you
should ensure that the tag handler class file for the custom
tag contains the code that specifies a default value for the
attribute in the event that the attribute is left out when the
custom tag is used. This code can be part of the method in
the tag handler that is used to set the value of the attribute
when the attribute is included when the custom tag is used.
For more information about creating a tag handler for a tag
with an attribute, see page 208.

CREATE THE TAG LIBRARY DESCRIPTOR
FILE FOR A TAG WITH AN ATTRIBUTE

CREATE CUSTOM TAGS 10

213

� The Web browser
displays the result of
using a custom tag
with an attribute.

Attribute values can be enclosed within single or double
quotation marks.

Example:
<mt:AttributeTag message="This is a tag with an attribute" / >

Can be typed as:
<mt:AttributeTag message='This is a tag with an attribute' / >

If the <rtexprvalue> tag is set to true in the tag library descriptor
file, you can use a JSP expression in the JSP page to determine the
value of an attribute. This allows you to include dynamically generated
attribute values in your custom tags. If the <rtexprvalue> tag is not
specified or is set to false, then the attribute value must be a string.

Example:
<mt:AttributeTag message="<%= Session.getAttribute.("userName") %>" />

You can use more than one attribute in a tag if the tag handler class
file and the tag library descriptor file support multiple attributes.

Example:
<mt:AttributeTag message="Welcome to my Web page" encloseText="h1" />

ˇ To add an attribute to the
custom tag, type the name of
the attribute followed by ="".

Á Between the quotation
marks, type the value to be
assigned to the attribute.

‡ To close the
custom tag, type </ >.
Then repeat step 4.

° Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

212

JSP

USING A CUSTOM TAG WITH AN ATTRIBUTE

⁄ Create the taglib
directive that specifies the
location of the tag library
descriptor file for the custom
tag you want to use in the
JSP page.

‹ To use the custom
tag, type <>.

› Between the angle brackets,
type the prefix you specified in
the taglib directive, followed
by a colon. Then type the name
of the custom tag.

T o use a custom tag with an attribute, you must
include a taglib directive in the JSP page to
identify the tag library descriptor file that contains

the tag you want to use.

As with any other custom tag that you wish to use in
a JSP page, you must specify the prefix and the name
you assigned to the tag in the tag library descriptor file,
separated by a colon. To add an attribute to the custom
tag, you type the name of the attribute and a value to be
assigned to the attribute, separated by an equal sign. The
value of the attribute must be enclosed in quotation marks.

When using custom tags with an attribute, you can use the
common notation, which uses both an start and a end tag,
or the shortened notation, which combines the start and
end tags into one tag. When using the common notation,

the attribute must be specified in the start tag of the custom
tag. When using the shortened notation, the attribute
should be specified within the tag, such as <mt:AttributeTag
message="Welcome to my Web page." />.

The tag library descriptor file indicates whether an attribute
is required or not. For information about specifying required
attributes in the tag library descriptor file, see page 210.
If an attribute is optional, you should ensure that the tag
handler class file can process the custom tag when an
attribute is not specified. This may be done by assigning a
default value to be used in case the attribute is not specified
in the custom tag. For information about assigning default
attribute values in the tag handler class file, see page 208.

USING A CUSTOM TAG WITH AN ATTRIBUTE

CREATE CUSTOM TAGS 10

¤ In the taglib
directive, type the code
that specifies the prefix
you want to use for the
tag library.

215

You can create versatile custom tags that can use attributes and
the information in the tag body at the same time. For example,
you can modify a custom tag to apply a header level specified by
an attribute of the tag to the information in the body of the tag.

Example:
private String level = "2";
public int doStartTag() throws JspException
{

try
{

pageContext.getOut().print("<h" + level + "> * * ");
}
catch (Exception e)
{

throw new JspTagException(e.getMessage());
}
return EVAL_BODY_INCLUDE;

}
public int doEndTag() throws JspException
{

try
{

pageContext.getOut().print(" * * </h" + level + ">");
}
catch (Exception e)
{

throw new JspTagException(e.getMessage());
}
return EVAL_PAGE;

}
public void setLevel(String text)
{

level = text;
}

° On the line immediately
following the try block,
type the code that creates
a catch block that throws
a JspTagException
exception.

· In the body of the
doEndTag method, type
return followed by the return
value that specifies if the Web
server should process the
remainder of the JSP page.

‚ Save the file with the .java
extension and then compile
the source code for the file.214

JSP

CREATE THE TAG HANDLER FOR A TAG WITH A BODY

⁄ Type the code that imports
the javax.servlet.jsp and
the javax.servlet.jsp.tagext
packages.

¤ Type the code that creates
a class for a custom tag.

‹ Type the code that
creates a doStartTag
method.

› In the body of the
doStartTag method, type
return EVAL_BODY_INCLUDE
to allow the tag to process
the information in the tag
body.

ˇ To create the doEndTag
method and specify that it may
throw a JSP related exception
error, type public int doEndTag()
throws JspException.

Á Type the code that creates
a try block in the body of the
doEndTag method.

‡ In the body of the
try block, type the
code that performs an
action after the tag
body is processed.

T he body of a tag is the information enclosed within
the start and end tags. The tag body can consist
of plain text or any JSP code, including scriptlets,

expressions and directives. You can create a tag handler
class file to use the information contained in the body
of a custom tag. The tag handler class file required for
a custom tag with a body is similar to that of a simple
custom tag.

As with a tag handler class for a simple tag, a
doStartTag method must be included. The
doStartTag method is processed when the start tag
of a custom tag is encountered in a JSP page. The
doStartTag method of a tag handler for a tag with
a body must return the value EVAL_BODY_INCLUDE,
which instructs the Web server to process the information
contained in the tag body. When the doStartTag
method has finished processing and the

EVAL_BODY_INCLUDE value has been returned,
the Web server includes the information in the tag
body in the results that are sent to the client.

The tag handler class file for a custom tag with a body
should also include a method called doEndTag. The
doEndTag method contains the code to be executed
after the body is processed. This method is executed when
the end tag of the custom tag is encountered in the JSP
page. The doEndTag method must also return a value.
The return value determines whether or not the remainder
of the JSP page must be processed. In most cases, you
will use the EVAL_PAGE return value, which indicates
to the Web server that the rest of the JSP page should be
processed. If you want the Web server to stop processing
the JSP page and ignore the remainder of the code in
the JSP page, use the SKIP_PAGE return value.

CREATE THE TAG HANDLER
FOR A TAG WITH A BODY

CREATE CUSTOM TAGS 10

— Copy the compiled
class file to the appropriate
directory on your Web
server.

� You can now add the
tag handler class to a tag
library descriptor file.

217

� You can now use the
custom tag with a body.

To be consistent in your code, you should
include a <bodycontent> tag in the tag
library descriptor file even for custom tags
you create or update that do not include a
body. You can specify that a tag does not
use a body by indicating the value empty
as the content type of the tag.

Example:
<bodycontent>empty</bodycontent>

When you specify JSP as the content type
of the <bodycontent> tag, you are not
restricted to using only JSP code in the body
of the tag. You can also use HTML tags,
plain text, other custom tags and any other
valid Web page content in the body of your
custom tag.

If you want to use non-JSP information, such
as an SQL statement, as the body of your custom
tag, you should specify the value tagdependent
as the content type of the tag. When using the
tagdependent content type, you must ensure
that the code in the tag handler class file is capable
of properly interpreting the body content specified
in the custom tag.

Example:
<bodycontent>tagdependent</bodycontent>

› Type </bodycontent>
to end the body content
specification.

ˇ Save the tag library
descriptor file with the
.tld extension.

216

JSP

CREATE THE TAG LIBRARY DESCRIPTOR FILE FOR A TAG WITH A BODY

⁄ Type the code that creates
a tag library descriptor file.
See page 202 for information
about creating a tag library
descriptor file.

‹ To specify the content
type of the tag body,
enter the content type
the tag will use.

A fter you create a tag handler class file for a custom
tag, you should include an entry in the tag library
descriptor file that indicates whether the tag will

include a body. The body of a custom tag is the information
that is enclosed by the start and end tags of the custom tag.

You use the <bodycontent> tag in the tag library
descriptor file to indicate that a custom tag will contain
a body. Using the <bodycontent> tag does not usually
affect how a custom tag operates, since the processing
of the tag is performed mainly by the tag handler. The
<bodycontent> tag is used primarily for providing
information about the custom tag itself. You should always
include a <bodycontent> tag, especially if you are
creating tag libraries that you intend to share with other
people.

In the tag library descriptor file, the <bodycontent>
tag must be located between the <tag> and </tag> tags
that contain detailed information about the custom tag.
Only one body content entry can exist for each custom tag.

You specify the content type of the custom tag by
inserting a value between the <bodycontent> and
</bodycontent> tags. If no content type is specified,
the custom tag will assume the default value of JSP, which
allows the custom tag to use JSP code as the body of the
tag. It is good programming practice to specify JSP as the
content type for any custom tag that will use a body.

If you are using version 3.1 of the Tomcat Web server,
you must specify the name and location of the tag library
descriptor file for a custom tag with a body in the web.xml
configuration file. For more information, see page 204.

CREATE THE TAG LIBRARY DESCRIPTOR
FILE FOR A TAG WITH A BODY

CREATE CUSTOM TAGS 10

¤ To specify that
the custom tag will
include a body,
type <bodycontent>
following the
<tagclass> tag.

219

� The Web browser
displays the result of using
a custom tag with a body.

The information that is placed
in the body of a custom tag
does not have to be on one
line. If the tag handler is simply
returning the body of the
custom tag to the JSP page, the
information in the source code
of the JSP page will have the
same format as the information
in the body of the tag.

Example:
<pre>
<myTag:SimpleBodyTag>
Welcome

To
My

Web Page
</myTag:SimpleBodyTag>
</pre>

ˇ Type the information
you want to use as the
body of the custom tag.

Á To close the custom
tag, type </ >. Then
repeat step 4.

‡ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

218

JSP

USING A CUSTOM TAG WITH A BODY

⁄ Create the taglib
directive that specifies the
location of the tag library
descriptor file for the
custom tag you want
to use in the JSP page.

‹ To use the custom
tag, type <>.

› Between the angle brackets,
type the prefix you specified in
the taglib directive, followed
by a colon. Then type the name
of the custom tag.

A fter a tag handler that uses information contained in
the body of a tag has been created, the tag library
descriptor file has been configured to indicate that

the custom tag will process the body and the web.xml file
has been configured for the Tomcat Web server if necessary,
the custom tag that makes use of a body can be employed
on a JSP page.

As with all custom tags, the taglib directive must be
placed in the JSP page before the custom tag can be used.
The uri attribute and a prefix you want to use to reference
the custom tag that uses a body must be specified in the
taglib directive.

Using a custom tag with a body makes it easy to generate
data that will surround the information found in the body.
For example, a custom tag can create specific HTML tags

to enclose the body of the tag specified in the JSP page.
You can use a custom tag to apply simple formatting options,
such as bolding or changing the font of text, to text supplied
in the body of the tag. A custom tag can also be used to
place the information in the body within more complex
HTML structures, such as tables or lists.

You should not use the short form of writing a tag for a tag
that processes a body, since the tag must use start and end
tags to denote the start and end of the body content. If the
short form of writing a tag is used for a custom tag that uses
a body, an empty body will be passed to the tag handler.

USING A CUSTOM TAG WITH A BODY

CREATE CUSTOM TAGS 10

Since the body is returned directly to the JSP page by the tag handler,
the body of a custom tag can also include valid HTML code.

<myTag:SimpleBodyTag><i>Welcome To My Web Page</i></myTag:SimpleBodyTag>

* * Welcome to My Web Page * *

TYPE THIS:

RESULT:

JSP expressions and scriptlets can also be placed in the body of a
custom tag. The JSP code will be evaluated and the information
generated by the JSP code will be passed to the tag handler.

<myTag:SimpleBodyTag><%= new java.util.Date() %></myTag:SimpleBodyTag>

* * Wed Apr 18 12:00:00 EST 2001 * *

TYPE THIS:

RESULT:

¤ In the taglib directive,
type the code that specifies
the prefix you want to use
for the tag library.

221

‚ Between the second set
of parentheses, type the
code that manipulates the
body.

— On the line immediately
following the try block,
type the code that creates
a catch block.

± In the body of the
catch block, type
System.out.println("").

¡ Between the quotation
marks, type the information
you want to display if an
error occurs.

™ On the line immediately
following the catch block,
type return SKIP_BODY.

£ Save the file with the .java
extension and then compile
the source code for the file.

220

JSP

CREATE THE TAG HANDLER FOR A TAG THAT MANIPULATES A BODY

⁄ Type the code that imports
the javax.servlet.jsp and the
javax.servlet.jsp.tagext
packages.

¤ Type the code that creates a
class for a custom tag, followed
by extends BodyTagSupport.

Á Type the code that
creates a try block
in the body of the
doAfterBody method.

‡ Type the code that
creates a string variable
that will store the content
of the body.

° Type = followed by the
name of the BodyContent
object. Then type .getString().

· To display the result
of manipulating the body,
type the name of the
BodyContent object followed
by .getEnclosingWriter().print().

A tag handler that receives a body passed from a custom
tag may simply return the body back to a JSP page
without making any changes. You can, however, create

a tag handler for a custom tag that can manipulate a body
and then return the manipulated body back to a JSP page. For
example, a tag handler may change the formatting of the text
within the body or use the information in a body to perform
other tasks, such as retrieving information from a database.

A tag handler used to manipulate the body of a custom tag
must extend the BodyTagSupport class, which in turn
extends the TagSupport class and contains special methods
used for processing the body of a custom tag.

A doAfterBody method must be used to process the
body of a custom tag. Within the doAfterBody method,
the getBodyContent method is used to create a

BodyContent object. This object stores information about
the body of the custom tag passed to the tag handler.

The getString method of the BodyContent object is
used to retrieve the body and returns a string that can be
assigned to a variable. The string variable can then be
manipulated. For example, you can use the toUpperCase
method of the String object to convert all the text in the
string to uppercase. When generating output to be passed
back to a JSP page, the getEnclosingWriter method
of the BodyContent object is used.

You should include a try block and catch block in the
doAfterBody method to catch any exception errors that
may occur. After the doAfterBody method has finished
manipulating the body of a custom tag, the method should
return the value SKIP_BODY.

CREATE THE TAG HANDLER FOR A
TAG THAT MANIPULATES A BODY

CREATE CUSTOM TAGS 10
In addition to the doAfterBody method, other methods, such as
the doStartTag and doEndtag methods, can be used to perform
certain actions, such as producing HTML code that is processed
before and after the body is manipulated. Since the body of the
custom tag is processed using a BodyContent object, the return
value of the doStartTag method should be EVAL_BODY_TAG.

Example:
public int doStartTag() throws JspException
{

try
{

pageContext.getOut().print("The following text" +
" will be in uppercase.
");

}
catch (Exception e)
{

throw new JspTagException(e.getMessage());
}
return EVAL_BODY_TAG;

}
public int doEndTag() throws JspException
{

try
{

pageContext.getOut().print("<hr>Thank You");
}
catch (Exception e)
{

throw new JspTagException(e.getMessage());
}
return EVAL_PAGE;

}

‹ To create the
doAfterBody method,
type public int doAfterBody().

› To create a
BodyContent object that
will store information about
the body, type BodyContent
followed by a name for the
BodyContent object.

ˇ Type = getBodyContent().

¢ Copy the compiled
class file to the appropriate
directory on your Web
server.

� You can now add the tag
handler class to a tag library
descriptor file. For more
information see page 216.

223

� The Web browser
displays the result of
using a custom tag that
manipulates a body.

Uppercase Text - Microsoft Internet Explorer

ˇ Type the information
you want to use as the
body of the custom tag.

Á To close the custom
tag, type </ >. Then repeat
step 4.

‡ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

222

JSP

USING A CUSTOM TAG THAT MANIPULATES A BODY

⁄ Create the taglib
directive that specifies the
location of the tag library
descriptor file for the custom
tag you want to use in the
JSP page.

‹ To use the custom
tag, type < >.

› Between the angle
brackets, type the prefix
you specified in the
taglib directive, followed
by a colon. Then type the
name of the custom tag.

U sing a custom tag that manipulates the content of
a body is similar to using any other custom tag that
contains information between the start and end

tags. The difference is that the tag handler can modify the
body before it is returned to the JSP page. The information
returned to a JSP page depends on the process contained in
the tag handler class itself. A tag handler may simply change
the formatting of the text within the body or may take the
information in a body and use it to perform other tasks,
such as retrieving information from a database or sending
an e-mail message.

It may take some time for a tag handler that manipulates
the body of a custom tag to process the information, such
as when using a tag handler to retrieve information from a
database. If you are using a custom tag that may take some
time to process, it is important to thoroughly test the tag

to evaluate how the tag will perform when used on a Web
site under real-world conditions. While a custom tag may
perform well under developmental conditions, it may easily
malfunction when multiple users of a Web site use the
custom tag, as is common when different users are trying
to access the same database. If an error occurs within a tag
handler while it processes the body content, a server error
may be generated and the remainder of the JSP page may
not be processed.

The body of a custom tag can be either plain text or be
generated by other methods, such as Java code contained
within a scriptlet or an expression.

As with other custom tags and tag handlers, changes to
the tag library descriptor file and the web.xml file may
need to be made before the custom tag can be used.

USING A CUSTOM TAG
THAT MANIPULATES A BODY

CREATE CUSTOM TAGS 10

Although a custom tag is usually inserted into the HTML
portion of a JSP page, it is possible to re-use a custom tag
using JSP code by integrating scriptlets with the custom tag.

<%
String[] days = {"mon", "tue", "wed", "thr", "fri", "sat", "sun"};
for (int x = 0; x <= 6; x++)
{
%>
<myTag:MakeUpperCase><%= days[x] %></myTag:MakeUpperCase>

<%
}
%>

MON
TUE
WED
THR
FRI
SAT
SUN

TYPE THIS: RESULT:

¤ In the taglib
directive, type the
code that specifies the
prefix you want to use
for the tag library.

225

· Type the code that
creates a connection to
the database.

‚ Type the code that
retrieves information
from the database and
stores it in a result set.

— Type the code that retrieves
the information from the result
set and then type the code that
uses the retrieved information.

± Type the name of the
BodyContent object followed
by .getEnclosingWriter().print().
Between the second set of
parentheses, type any arguments
the method requires.

¡ Create try and catch
blocks that will handle any
exceptions thrown while
accessing the information
from the database.

™ Save the file with the
.java extension and then
compile the source code
for the file.

224

JSP

USING A CUSTOM TAG TO ACCESS A DATABASE

⁄ Type the code that
imports the packages
required by the custom tag.

¤ Type the code that creates
the tag handler class and the
doAfterBody method.

‹ In the body of the method,
type return SKIP_BODY.

› Type the code that creates
a variable that will store the
value you want to retrieve
from the database.

ˇ To create a BodyContent
object, type BodyContent
followed by a name for
the object. Then type
= getBodyContent().

Á Type the code that creates
a string variable that will store
the content of the body.

‡ To retrieve the
content of the body,
type = followed by
the name of the
BodyContent object.
Then type .getString().

° Type the code that
loads the bridge driver.

W hile custom tags are often used for relatively
simple tasks, such as formatting text, they are
also ideally suited for performing more complex

tasks, such as retrieving information from a database.

You must first create a tag handler for the custom tag. The
tag handler for a tag that accesses a database is very similar
to the tag handler for a custom tag that manipulates a body.
For more information, see page 220. To use the body of a
custom tag to locate information in a database, you include
the same Java code used to work with databases from within
a JSP page in the tag handler class file. For information about
working with databases, see pages 142 to 153.

You must load the driver for the database, create a
connection to the database and create a result set that stores
the information you will access in the database. When you
use the custom tag in a JSP page, the tag handler retrieves

the information from the database and then uses the
getEnclosingWriter method of the BodyContent
object to send the retrieved information back to the
JSP page.

When using a tag handler to work with a database, you can
place most of your code in the body of the doAfterBody
method that processes the body of the custom tag. If you
are using other methods in the custom tag, you can place
parts of the code in the body of the other methods. For
example, you can place the code that opens a connection
to the database in the body of the doStartTag method.

To prevent problems when the JSP page is processed,
you need to include try and catch blocks to handle
any errors that may occur.

USING A CUSTOM TAG TO ACCESS A DATABASE

CREATE CUSTOM TAGS 10

You can use a custom tag that accesses a database as you would
use a custom tag that manipulates a body. In your JSP page, you
must include the taglib directive to specify the uri attribute
and the prefix you want to use to reference the custom tag. In
the body of the tag, you should include the information that
specifies the data you want to retrieve from the database.

<%@ taglib uri="http://www.maran.com/taglib" prefix="myTag" %>
<html>
<head>
<title>Phone Numbers</title>
</head>
<body bgcolor="#FFFFFF">
Phone Numbers

<myTag:Phone>Hannah</myTag:Phone>

<myTag:Phone>Paul</myTag:Phone>
</body>
</htmL>

Phone Numbers
Hannah is at extension 678
Paul is at extension 456

TYPE THIS: RESULT:

£ Copy the compiled
class file to the appropriate
directory on your Web
server.

� You can now add the
tag handler class to a tag
library descriptor file as
you would for any custom
tag with a body.

