
187

� The Web browser
displays the results of
determining whether a
file and directory exist.

Permissions may have been set for a file, affecting
the types of tasks you can perform while working with
the file. For example, a file's permissions can regulate
whether you will be able to read or write to the file.
To determine whether you have permission to read
a file, use the canRead method of the File object.
To determine whether you have permission to write
to a file, use the canWrite method of the File
object. If you attempt to read or write to a file that
you do not have permission to work with, an error
will usually be generated.

Example:

if (fileObject.canRead())
out.print("You can read the file " + fileName);

if (fileObject.canWrite())
out.print("You can write to the file " + fileName);

When specifying the path to a file or
directory for the argument of a File
object, you can use a relative or absolute
path. A relative path specifies the location
of the file or directory relative to the
current directory. For example, the relative
path ../file.txt refers to a file named
file that is located in the parent directory
of the current directory. An absolute path
specifies the location of a file or directory
in relation to the root directory of the
storage system in which the file is stored,
such as c:/data/examples/file.txt.

‡ Type the code that
uses the File object.

° To verify if a directory
exists and is a directory,
repeat steps 2 to 7 for
the directory, except use
the .isDirectory()
method in step 6.

· Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

186

JSP

VERIFY THAT A FILE OR DIRECTORY EXISTS

⁄ To import the java.io package,
type <%@ page import = "java.io.*" %>.

¤ To store the path of a file you
want to check in a variable, type
the code that assigns the path
to the variable.

‹ To create a File
object for the file, type
File followed by a
name for the File
object. Then type
= new File().

› Between the parentheses,
type the name of the variable
that stores the path of the file
you want to check.

ˇ To determine whether the
file exists, type the name of
the File object, immediately
followed by .exists().

Á To determine whether
the file is a file, type the
name of the File object,
immediately followed by
.isFile().

W hen working with files and directories, it is often
necessary to verify that a file or directory exists
before performing an action. For example, you

should verify that a file exists before deleting the file. This
is particularly important when working with files and
directories located on a network, since events beyond
your control can make the files and directories unavailable.

To verify that a file or directory exists, you create a File
object that uses the path of the file or directory as its
argument. The class that is used to create a File object
is located in the java.io package. You must use the page
directive to import the java.io package before you can
create a File object.

You may want to store the path of the file or directory you
want to check in a variable and then use the variable as the
argument for the File object. A path can also be submitted
by a form or retrieved from a database. When specifying
the path of a file or directory, you should use slashes (/).

Once you have created a File object for a file or directory,
you can use methods of the object to determine information
about the file or directory. You use the exists method to
determine if the file or directory exists on the current system.
The exists method returns a value of true if the file or
directory exists and a value of false if the file or directory
does not exist.

The isFile method of the File object allows you to verify
whether a file or directory represented by a File object is a
file, while the isDirectory method lets you verify whether
the item is a directory. These methods return a value of
true or false, depending upon the type of the item.

VERIFY THAT A FILE OR DIRECTORY EXISTS

WORK WITH FILES 9

189

� The new file is created
in the specified directory.
You can open the file with
the appropriate program to
view its contents or use a
JSP page to read the file.

· To write information to
the file, type the name of the
DataOutputStream object
followed by a dot. Then type
the write method you want
to use followed by ().

‚ Between the parentheses,
type the information you
want to write to the file.

— Repeat steps 9 and 10
until you have specified all
the information you want
to write to the file.

± To close the output
stream, type the name of
the DataOutputStream
object followed by a dot.
Then type close().

¡ Save the page with
the .jsp extension and
then display the JSP page
in a Web browser.

188

JSP

CREATE AND WRITE TO A FILE

⁄ Type the code that
imports the java.io
package and creates a
File object.

¤ To create the new
file, type the name
of the File object
followed by a dot. Then
type createNewFile().

‹ To create an output
stream to write to the file,
type FileOutputStream
followed by a name for the
FileOutputStream object.

› Type = new FileOutputStream().

ˇ Between the parentheses, type
the name of the File object.

Á To write primitive
data types to the file,
type DataOutputStream
followed by a name for the
DataOutputStream object.

‡ To associate the
DataOutputStream object with
the FileOutputStream object,
type = new DataOutputStream().

° Between the parentheses,
type the name of the
FileOutputStream object.

A JSP page can be used to create a new file and then
write information to the file. A file could be created to
track how many times the JSP page has been accessed

or store data retrieved from a database. You can also use a
JSP page to create and write other JSP files.

You create a File object to specify a name and location for
the new file. You can then use the createNewFile method
of the File object to create the new file. You must use the
page directive to import the java.io package from the
Java class library before creating a new file.

Information is written to a file using an output stream. Stream
is the term typically used to describe one continuous line of
data. You use a FileOutputStream object to create an
output stream and specify the name of the File object that
represents the file you want to write to.

In order to write primitive data types to the output stream,
a DataOutputStream object must be created. You then

associate the DataOutputStream object with the
FileOutputStream object.

You use a write method of the DataOutputStream object
to write information to the file. The method you should use
depends on the type of data you want to write to the file.
For example, if you want to write an integer value, you would
use the writeInt method.

After all the information has been written to the file, you can
use the close method of the DataOutputStream object
to close the output stream.

When you display the JSP page in a Web browser, the file
will be created and the information you specified will be
written to the file. You can open the file with the appropriate
program or use a JSP page to read the file.

CREATE AND WRITE TO A FILE

WORK WITH FILES 9
The DataOutputStream object offers several
methods that can be used to write information
to a file. Each method writes a different primitive
data type or string value to the output stream.

WRITE METHOD: DESCRIPTION:

writeBoolean(boolean value) Writes a boolean value to the output stream.
writeByte(int value) Writes a byte value to the output stream.
writeBytes(String value) Writes a string of byte values to the output stream.
writeChar(int value) Writes a char value to the output stream.
writeChars(String value) Writes a string of char values to the output stream.
writeDouble(double value) Converts the double argument to a long value and

writes the long value to the output stream.
writeFloat(float value) Converts the float argument to an int value and

writes the int value to the output stream.
writeInt(int value) Writes an int value to the output stream.
writeLong(long value) Writes a long value to the output stream.
writeShort(int value) Writes a short value to the output stream.

191

� The Web browser
displays the result of
reading a file.

You can adjust the size of the input buffer used to process the
character stream that is read from a file. The default input buffer
size is determined by the Web server and may differ from one
system to another. For example, on a Windows platform using
the Tomcat Web server, the default input buffer size is typically
512 KB, which is adequate for most needs. However, depending
on the size and configuration of the files that are being read,
adjusting the size of the input buffer may improve efficiency.

Example:
File fileObject = new File("c:/db/data.txt");
FileReader fileRead = new FileReader(fileObject);
BufferedReader buffFileIn = new BufferedReader(fileRead, 1024);

If the FileReader object does not already exist, you can
pass the object creation code for the FileReader object
as an argument when creating the BufferedReader object.

Example:
File fileObject = new File("c:/db/data.txt");
FileReader fileRead = new FileReader(fileObject);
BufferedReader buffFileIn = new BufferedReader(fileRead);

Can be typed as:
File fileObject = new File("c:/db/data.txt");
BufferedReader buffFileIn = new BufferedReader(new FileReader(fileObject));

° To read a line from the
file, type the name of the
BufferedReader object
followed by .readLine().

· Type the code that will
use each line of data read
from the file.

‚ To close the file, type the
name of the FileReader
object followed by .close().

— Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

190

JSP

READ A FILE

⁄ Type the code that
imports the java.io
package and creates a
File object.

¤ To create a FileReader
object to make the information
in the file available to the JSP page,
type FileReader followed by a name
for the FileReader object.

‹ Type = new FileReader().

› Between the parentheses,
type the name of the File object.

ˇ To create a
BufferedReader object
to buffer the information
read from the file, type
BufferedReader followed
by a name for the
BufferedReader object.

Á Type = new BufferedReader().

‡ Between the parentheses,
type the name of the
FileReader object.

A JSP page can be used to read information from a
specific file. The first step in reading information from
a file is to create a File object that is used to specify

the path and the name of the file to be read. Once a File
object has been created, a FileReader object that works
with the File object must be created. The FileReader
object is used to convert the information in the file and make
it available to the JSP page.

When reading information from a file using a FileReader
object, the information should be buffered so that it can be
read more efficiently. A BufferedReader object is used to
buffer the information read from a file. For more information
about the BufferedReader and FileReader objects,
refer to the java.io package information in the Java API
specification.

The readLine method of the BufferedReader object is
used to read a single line from a file. The newline character
usually indicates the end of a line in a file. A loop is often
used to process each line in a file. With each iteration of
the loop, the information retrieved from the file using the
readLine method can be assigned to a variable and
displayed to the client using the print method of the
out object.

After reading information from a file, you should close the
file using the close method of the FileReader object.

As with other operations involving accessing a file, the proper
permissions must be in place that allows the file to be read.
Permissions are typically controlled by the operating system.
For information about permissions, you should consult your
operating system's documentation.

READ A FILE

WORK WITH FILES 9

193

� The Web browser
displays the result of
reading a file randomly.

Before you start accessing a file randomly, you may want to
determine the length of the file. You can determine the length of
a file by using the length method of the RandomAccessFile
object.

Example:
The length of the file is
<%
File fileObject = new File("c:/db/names.txt");
RandomAccessFile myFile = new RandomAccessFile(fileObject, "r");
out.print(myFile.length());
%>
 bytes.

The RandomAccessFile class is part
of the java.io package. You can refer
to the Java SDK documentation for
more information about the java.io
package and the methods of the
RandomAccessFile object.

You can also use the RandomAccessFile object to write data
to a file. To be able to read and write to a file, you must specify an
access mode of rw when creating the RandomAccessFile object.

Example:
<%
File fileObject = new File("c:/db/names.txt");
RandomAccessFile myFile = new RandomAccessFile(fileObject, "rw");
myFile.seek(40);
myFile.writeBytes("Barry...");
%>

‡ To read up to the next
newline character, type the name
of the RandomAccessFile
object followed by a dot. Then
type readLine().

° Type the code that will use
a line of data read from the file.

· Repeat steps 5 to 8
for each line of data you
want to read.

‚ To close the file,
type the name of the
RandomAccessFile
object followed by a dot.
Then type close().

— Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

192

JSP

READ A FILE RANDOMLY

⁄ Type the code that imports the
java.io package and creates a
File object.

¤ To create a RandomAccessFile
object to read the file randomly, type
RandomAccessFile followed by a name
for the RandomAccessFile object.
Then type = new RandomAccessFile().

‹ Between the
parentheses, type the
name of the File
object followed by
a comma.

› To specify the
access mode is read
only, type r enclosed
in quotation marks.

ˇ To position the
pointer where you want
to start reading the file,
type the name of the
RandomAccessFile
object followed by a dot.
Then type seek().

Á Between the parentheses,
type the number of bytes
from the beginning of the
file where you want to start
reading.

A JSP page typically reads and processes a file one
line at a time until the entire file is processed. This
method of reading a file is referred to as sequential

access and is an effective way of working with small text
files, but can be inefficient when working with larger files.

You can access a specific area of a file without having
to start at the beginning and read each line in the file.
Accessing a file at a specific location is referred to as
random access. Random access is useful for working
with large files that have a set structure, such as files
that have the same number of characters in every line.

Once a File object that specifies the path and the
name of the file to be accessed randomly has been
created, a RandomAccessFile object must be created.
A RandomAccessFile object is used to read a file
randomly and requires two arguments. The first argument
is the name of the File object. The second argument is
the access mode. Specifying a value of r for the access
mode indicates the file is read only.

Random access is achieved by positioning an imaginary
pointer in the file. The pointer location is measured by the
number of bytes the pointer is from the beginning of the
file. This distance is known as the offset. The seek method
of the RandomAccessFile object is used to position the
pointer. Using the seek method, the pointer can be moved
forward or backward through a file. When positioning the
pointer, you should keep in mind that the carriage return
character and the newline character each count as one byte.

When using random access to read data from a file,
information is read starting from the location of the pointer.
For example, if the seek method is set to 13, the data
starting at the 13th byte in the file will be read. You can use
the readLine method to read data up to the next newline
character.

READ A FILE RANDOMLY

WORK WITH FILES 9

195

� The Web browser
displays the results of
creating a directory.

Á To create the method
that will create the
directory, type the name of
the File object followed
by a dot. Then type mkdir().

‡ Type the code that
will verify whether the
directory was created.

° Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

194

JSP

CREATE A DIRECTORY

⁄ To import the java.io package,
type <%@ page import="java.io.*" %>.

¤ To store the name
or path of the directory
you want to create
in a variable, type the
code that assigns the
information to the
variable.

‹ To create a File object
for the directory you want to
create, type File followed by
a name for the File object.

› Type = new File().

ˇ Between the parentheses,
type the name of the variable
that stores the name of the
directory you want to create.

� You can also type the path
or name of the directory,
enclosed in quotation marks.

J avaServer Pages allows you to create a directory from
within a JSP page. You may want to create a directory
in a JSP page to help organize files or to store temporary

files that will be used by the JSP page.

To create a directory, you must create a File object that
specifies the name of the directory you want to create. In
this case, the File object represents a directory, not a file.
The name of the new directory is included as the argument
of the File object. You may want to store the name of
the directory in a variable and then use the variable as the
argument for the File object.

Once the File object has been created, you use the mkdir
method to create the directory. The mkdir method will
return a boolean value of true or false, depending on
whether or not the command to create the directory was
successful. You may not be able to use the mkdir command
to create directories if proper permissions are not in place.

You must have permission to access the parent directory
in which you want to create the new directory. You must
also have permission to create directories in the JSP page.
Permission to create directories is usually controlled by the
operating system. For information about access permissions,
you should consult your operating system's documentation.

After you create a directory, you can create files and store
them in the new directory. For information about creating
files, see page 188.

It is good programming practice to verify that a directory
was created successfully before using the directory. For
information about verifying that a directory exists, see
page 186.

CREATE A DIRECTORY

WORK WITH FILES 9

You can delete a directory you no longer need.
This is useful if you frequently create and use
temporary directories within your JSP pages.
You cannot delete a directory from within a
JSP page if the directory contains files. Before
deleting a directory, you should remove all
the files in the directory.

Using the mkdirs method instead of the
mkdir method allows you to create multiple
directories at the same time. When you use
the mkdirs method to create a directory, any
directories you specify in the path will also
be created if they do not currently exist. For
example, if the path specified for the directory
is /temp/data and the temp directory does not
exist, the Web server will create the temp
directory and then the data subdirectory.

The directory c:/databases has been deleted.

RESULT:

File dirObject= new File("/temp/data");
dirObject.mkdirs();

TYPE THIS:

<%!
String dirName = "c:/databases";
%>
<%
File dirObject = new File(dirName);
dirObject.delete();

if (!dirObject.exists())
out.print("The directory " + dirName
+ " has been deleted.");

%>

TYPE THIS:

197

� The Web browser
displays the results of
using the listFiles
method to display a
directory listing.

While working on a computer connected to a
network, you may want to access a directory
located on another computer on the network
and display the contents of the directory in
a directory listing. On a Microsoft Windows
network, the convention for indicating a
computer within a path is to prefix the computer
name with two backslashes (\\). Since you must
escape backslashes you use in the argument of
a File object, you must use four backslashes
when specifying the computer name. You must
also escape backslashes you use before directory
names on a Windows network.

Example:
File dataDir = new File("\\\\Server\\data");

You can delete a file you no longer need from
a directory. Deleting files allows you to free up
resources on a computer and is useful when you
want to delete a directory, since all the files in a
directory must be deleted before the directory
can be removed. To delete a file, create a File
object for the file and then use the delete
method of the File object to delete the file.

Example:
File fileObject = new File("c:/Data/file.txt);
fileObject.delete();

Á To retrieve the files
and subdirectories in the
directory, type the name of
the File object followed by
a dot. Then type listFiles().

‡ Type the code that
creates a for loop that
will process the elements
in the array.

° Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

196

JSP

DISPLAY A DIRECTORY LISTING

⁄ To import the java.io package,
type <%@ page import = "java.io.*" %>.

¤ To create a
File object for the
directory you want
to display a directory
listing for, type File
followed by a name
for the File object.

‹ Type = new File().

› Between the parentheses,
type the path of the directory
you want to display a directory
listing for, enclosed in
quotation marks.

ˇ To create an array
that will store the files
and subdirectories in the
directory as an array of
File objects, type File[]
followed by a name for
the array. Then type =.

A JSP page can be used to examine a directory and
retrieve the names of the files and subdirectories
stored in the directory. Displaying a directory listing

is useful when you want to verify that certain support files,
such as database files, exist before a JSP page continues
processing.

To retrieve the names of the files and subdirectories in a
directory, you first create a File object that represents
the directory. The directory must be accessible from the
computer you use to create the File object.

The directory you specify as the argument for the File
object must be a valid directory. If the directory does
not exist, an error may be generated when the JSP page
is displayed. You may want to use the exists method
of the File object to verify that a directory exists before
attempting to display the contents of the directory. For
more information about the exists method, see page 186.

To retrieve the names of the files and subdirectories stored
in the directory, you use the listFiles method of the
File object. The listFiles method returns an array of
File objects that represent the files and subdirectories in
the directory. You can then use a for loop to display the
contents of each File object on the JSP page. The path for
the files and subdirectories in the directory will be displayed.

The directory listing you display may not contain all the
files in the directory, since the listFiles method will
not return files that the JSP page does not have permission
to access. If permissions have been set that prevent the
JSP page from reading or listing a file, the file will not
appear in the directory listing.

DISPLAY A DIRECTORY LISTING

WORK WITH FILES 9

