
175

Although exception errors can arise from a wide
variety of situations, the situations can be grouped
into three general categories.

Logical Errors
Logical errors are the most common type of errors
and usually result when a programmer has not
validated parameters or values before performing
an action. An example of a common logical error
is dividing a number by zero.

Standard Errors
Most of the methods that make up the Java class
library contain code that will generate errors when
certain situations arise. For example, an error will
result if you use a number where a string is expected
or assign a value to an array element that does not
exist.

Program Errors
Problems with the Java Virtual Machine or a Web
server that processes Java code can cause errors to
occur. Applications that are not yet stable, such as
beta releases, are more likely to generate errors.

174

JSP

RUNTIMEEXCEPTION ERRORS

� A RuntimeException
error is typically generated
by an error in the code for
a JSP page.

� In this example, the JSP
page contains code that
divides a number by zero.

� When the JSP page is
displayed in a Web browser,
a message appears displaying
information about the
RuntimeException error.

ERROR EXCEPTION ERRORS

� An Error exception
error is typically
generated by a problem
with the environment
that processes a JSP page.

� In this example, the
JSP page contains code
that attempts to access
a JavaBean that does
not exist.

� When the JSP page
is displayed in a Web
browser, a message
appears displaying
information about the
Error exception error.

A n exception error occurs when a problem is
encountered during the processing of a JSP page.
When an exception error occurs, an object that

stores information about the error is created. Error
handling is achieved by accessing the properties of
this object.

The two main types of exception errors are
RuntimeException errors and Error exception errors.
RuntimeException and Error are the names of the
classes that create objects when one of these types of
errors is encountered.

RuntimeException errors are the most common type of
exception error. These errors can arise from a variety
of problems ranging from simple mathematical errors,
such as dividing a number by zero, to more complex
programming errors, such as specifying an incorrect
type when attempting to cast an object.

Error exception errors occur when a problem related
to the processing environment arises. For example,

a problem with the Java Virtual Machine or a problem with
a supporting file that is required by a JSP page will generate
an Error exception.

Encountering an exception error does not necessarily mean
that the processing of a JSP page must stop. Some errors
can be handled within the code for the page. For example,
you can create a try block and a catch block to handle
exception errors that could potentially arise when a section
of code is processed. This allows your code to recover from
an exception error. For information about creating a try
block and catch block, see page 176.

Some exception errors cannot be recovered from. For
example, an Error exception error generated by a problem
with the Java Virtual Machine cannot be fixed within the
code for a JSP page. In such cases, the object can be
accessed to determine valuable information about the
error and how it may have been caused.

INTRODUCTION TO EXCEPTION ERRORS

HANDLING ERRORS 8

177

� The Web browser
displays the result of
creating a try block
and catch block.

As with any Java code, there are strict rules governing the
scope of variables used in try and catch blocks. Variables
declared in a try block are not available for use in the
catch block. In the following example, the locationMessage
variable is not available in the catch block.

Example:
try
{

String locationMessage = "determining item cost";
int itemCost = itemGrossCost / itemQuantity;
out.print("Each item costs " + itemCost);

}
catch(ArithmeticException e)
{

out.print("Error has occurred at " + locationMessage);
}

The above code can easily be rewritten to change the scope
of the locationMessage variable so that it is available to both
the try and catch blocks.
String locationMessage = "";
try
{

locationMessage = "determining item cost";
int itemCost = itemGrossCost / itemQuantity;
out.print("Each item costs " + itemCost);

}
catch(ArithmeticException e)
{

out.print("Error has occurred at " + locationMessage);
}

‡ Type the code you
want to execute when the
catch block is processed.
Enclose the code in braces.

° Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

176

JSP

CREATE A TRY BLOCK AND CATCH BLOCK

⁄ Type the code
that will generate
an exception error.

¤ To create a try block,
enclose the code that will
generate an exception error
in braces.

‹ On the line directly above
the opening brace, type try.

› To create a catch block, type
catch() on the line immediately
following the try block.

ˇ Between the parentheses, type
the class of the exception error that
will be thrown by the try block.

Á Type a name for
the object that will
be created when an
exception error is
thrown.

I f a section of code in a JSP page may generate an
exception error, you can create a try block and
a catch block to handle the error.

A try block detects if an exception error has occurred
in a section of code. To create a try block, use the
keyword try and surround the code that may cause
an exception error in braces.

A catch block contains the code that is executed when
the try block detects an error. The catch block must
immediately follow the try block. To create a catch
block, use the keyword catch and enclose the code you
want to execute in braces. The catch keyword is followed
by a parameter enclosed in parentheses. The parameter
specifies the class of the exception error and a name for
the object that is created when the error occurs.

A catch block can only catch the type of exception error
specified by the parameter. If the try block generates a

different type of exception error, the code in the catch
block will not be executed.

When an exception error occurs in a line of code, the line
of code is said to throw an error. When a line of code in
a try block throws an error, the processing of code in the
try block stops immediately and any remaining statements
in the try block are not executed. The catch block
catches the error thrown by the try block and processing
continues on the first line of code in the catch block.

The code in a catch block can display a customized error
message to notify a user that an error has occurred. The
customized error message should be specific to the error
and easy to understand. When a try block and catch
block are not used to handle errors, Java generates cryptic
error messages that can be difficult to comprehend.

CREATE A TRY BLOCK AND CATCH BLOCK

HANDLING ERRORS 8

179

� The Web browser
displays the result
of catching multiple
exception errors.

When using multiple catch blocks, you may want to add
a finally block to your code. A finally block executes
a section of code regardless of which catch block is processed.
The finally block must immediately follow the last catch block.

Example:

for(int x = 0; x < itemQuanity.length; x++)
{

try
{

itemCost[x] = itemGrossCost[x] / itemQuanity[x];
out.print("
Item " + x + " costs " + itemCost[x]);

}
catch(ArithmeticException e)
{

out.print("
An ArithmeticException error has occurred.");
}
catch(ArrayIndexOutOfBoundsException e)
{

out.print("
An ArrayIndexOutOfBoundsException error");
out.print(" has occurred.");

}
finally
{

out.print("<hr>");
}

}

› Type the code that creates
a catch block to handle
exception errors of the
ArrayIndexOutOfBounds
Exception class.

ˇ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

178

JSP

CATCH MULTIPLE EXCEPTION ERRORS

⁄ Type the code that
will generate multiple
exception errors.

¤ Type the code that
creates a try block.

‹ Type the code that creates
a catch block to handle
exception errors of the
ArithmeticException
class.

A lthough a try block may be capable of throwing
different types of exception errors, a catch block
can catch only one specific type of exception error.

You can create multiple catch blocks to catch different
types of exception errors.

When a catch block is created, the exception error class
the block can handle is specified. If the try block throws
an exception error of a different class, the code in the
catch block will not be executed. A try block that
contains a complex section of code may throw different
types of exception errors. Creating multiple catch blocks
allows a section of code to be executed for each type of
exception error the try block throws.

The first catch block must immediately follow the try
block and each subsequent catch block must be placed
one right after the other. There cannot be any lines of code

between the try block and the first catch block. You also
cannot place lines of code between any of the subsequent
catch blocks.

When using multiple catch blocks, the order of the catch
blocks is important. For example, since the Exception
class is a superclass of the RuntimeException class, a
catch block that uses the Exception class will catch most
of the exception errors thrown by a try block. If you place
a catch block that uses the Exception class before other
catch blocks in your code, the code in the other catch
blocks may never be executed. As a rule, you should place
catch blocks that handle exception error subclasses before
catch blocks that have a broader scope.

CATCH MULTIPLE EXCEPTION ERRORS

HANDLING ERRORS 8

181

� The Web browser
displays the result of
using a finally block.

ˇ Type the code you
want to execute when
the finally block is
processed. Enclose the
code in braces.

Á Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

180

JSP

CREATE A FINALLY BLOCK

⁄ Type the code that will
generate an exception error.

¤ Type the code that
creates a try block.

‹ Type the code that
creates a catch block.

› To create a finally
block, type finally on the
line immediately following
the catch block.

W hen a try block throws an exception error,
the processing of code in the try block stops
and any remaining statements in the try

block are not executed. This can cause problems if
the try block contains code that is important to the
execution of your JSP page. To ensure important code
is executed regardless of whether an exception error is
thrown, you can place the code in a finally block.

To create a finally block, use the keyword finally
and enclose the code you want to execute in braces.
A finally block is useful for performing tasks that
'tidy up' a JSP page. For example, it is common for a
finally block to contain code that closes a connection
to a database or finishes writing data to a file.

There are strict rules governing the scope of variables
used in try, catch and finally blocks. Variables
declared in a try or catch block are not available
for use in a finally block.

When a try block uses a finally block, a catch
block is not required. If a catch block is used, the
finally block must immediately follow the catch
block. If a catch block is not used, the finally block
must immediately follow the try block. There can be
no lines of code between a finally block and a catch
or try block.

When a JSP page containing a finally block is processed,
the code in the try block is executed first. If an error is
thrown, the code in the appropriate catch block is then
executed. The code in the finally block is executed
last. The finally block is executed whether or not an
exception error occurs and regardless of the type of
exception error thrown.

CREATE A FINALLY BLOCK

HANDLING ERRORS 8
Although the main purpose of a try block is to identify code
that may generate an exception error, a try block can also
be used with a finally block to save you time when typing
code. For example, if a series of if statements will all have
the same result, you can place the if statements in a try
block and the result in a finally block. This saves you
from having to type the same result for each if statement.

try
{

if (winningScore > 10)
return 10;

if (winningScore > 20)
return 20;

if (winningScore > 30)
return 30;

}
finally
{

out.print("The winning number has been determined.");
}

The winning number has been determined.

TYPE THIS:

RESULT:

183

� The Web browser
displays the result of
redirecting to an error
page.

On most Web servers, the default value for the
autoFlush attribute of the page directive is
true, which means that the buffer is set to
automatically flush when it is full. When the buffer
is flushed, information in the buffer is sent to a
client's Web browser. If the buffer is flushed before
a JSP page is redirected to the error page, an
additional error will be generated. To avoid this,
you can set the value of the autoFlush attribute
to false when using the errorPage attribute.

Example:
<@ page autoFlush="false" errorPage="error.jsp" %>

Information available to the JSP page,
such as application values, session values
and data stored in a request object, will
not be available to the error page. For
example, if the JSP page processes data
from a form, the error page will not be
able to access the form information.

When an exception error occurs in a JSP
page that uses an error page, the Web
server stops processing the JSP page,
executes the page directive and processes
the code in the error page. The Web server
does not return to the JSP page.

‹ Type the code that
will generate an error.

› Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

182

JSP

REDIRECT TO AN ERROR PAGE

CREATE AN ERROR PAGE

⁄ In a text editor, create
the page you want to
display when an error
occurs.

¤ Save the page on
the Web server.

REDIRECT A JSP PAGE
TO AN ERROR PAGE

⁄ On the first line of code
in a JSP page you want to
redirect to an error page, type
<%@ page errorPage="" %>.

¤ Between the quotation
marks, type the URL of
the error page.

T here are many types of exception errors that can be
generated by the JSP pages in a Web site. Instead
of trying to catch each specific type of exception

error that could occur, you can configure the JSP pages to
redirect to another page when an error occurs. The error
page can be a JSP page or other type of Web document,
such as an HTML document.

When an exception error occurs in a JSP page, the Web
server stops processing the page and sends an error
message to the Web browser to notify the client about the
error. The type of exception error that occurs determines
the information displayed in the error message. While the
error information generated by the server may be useful
to someone troubleshooting the JSP page, the information
is usually not helpful to clients. Creating an error page
allows you to determine the information that a client sees

when an exception error occurs. For example, you may
want to display a user-friendly page that provides clients
with helpful instructions.

To redirect a JSP page to another page in the event of an
exception error, you use the errorPage attribute of the
page directive. For more information about the page
directive, see page 74. The errorPage attribute takes
the URL of the error page, enclosed in quotation marks,
as its value. The URL of the error page must be a relative
URL. This means that the JSP page and error page must
be stored on the same Web server.

Multiple JSP pages can use the same error page. You
must include the redirection instructions on each JSP
page you want to use the error page.

REDIRECT TO AN ERROR PAGE

HANDLING ERRORS 8

185

� The Web browser
displays the result of
redirecting to a detailed
error page.

The exception object is only available to the detailed error
page. However, there are techniques you can use to make
the information in the exception object available to other
JSP pages. For example, in the detailed error page, you can
use the setAttribute method of the session object to
store the error message as a session value.

Example:

<%
session.setAttribute("errorMessage", exception.getMessage());
%>

The toString method of the
exception object can be used to
display the class name of an exception
error. The result of the toString
method may also contain the information
returned by the getMessage method.

Example:

<%= exception.toString() %>

Returns:
java.lang.ArithmeticException: / by zero

You may be able to use the getLocalizedMessage
method of the exception object to access even more
detailed information about an exception error. However,
in most cases, the getLocalizedMessage method
returns the same information as the getMessage method.

Example:

<%= exception.getLocalizedMessage() %>

REDIRECT A JSP PAGE TO
A DETAILED ERROR PAGE

⁄ On the first line of code
in a JSP page, type the code
that redirects the page to
the detailed error page.

¤ Type the code that
will generate an error.

‹ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

184

JSP

CREATE A DETAILED ERROR PAGE

⁄ On the first line of
code in the error page, type
<%@ page isErrorPage="true" %>
to access the exception object.

¤ Type exception.getMessage()
where you want to access an
error message.

‹ Type the code that
displays the error message
on the detailed error page.

› Save the page on the
Web server with the .jsp
extension.

Y ou can create an error page that accesses detailed
information about an exception error that has occurred
in a JSP page. Accessing detailed information can help

you troubleshoot the page. You can choose to simply display
the detailed information about an exception error or you can
log the information in a file or database.

When a JSP page generates an exception error of the
Exception class, an exception object is created. The
object holds information about the exception error. You
can access the exception object in an error page to
find detailed information about the error that occurred.

To make the exception object available to an error page,
you use the isErrorPage attribute of the page directive.
For more information about the page directive, see page 74.
The isErrorPage attribute can have a value of either true
or false. A value of true will make the exception object
available to an error page. False is the default value of the
isErrorPage attribute.

The getMessage method of the exception object can be
called to access an error message that describes the type of
error that has occurred. You can use an expression to display
the information returned by the getMessage method. Some
exception errors do not have an error message associated
with them. In this case, the getMessage method will return
a null value. For more information about the methods of the
exception object, refer to the Java SDK documentation.

To redirect a JSP page to a detailed error page in the event
of an error, you use the errorPage attribute of the page
directive. The errorPage attribute takes the URL of the
detailed error page, enclosed in quotation marks, as its value.
The URL of the detailed error page must be a relative URL.

CREATE A DETAILED ERROR PAGE

HANDLING ERRORS 8

