
143142

JSP

O ne of the most important features of JavaServer
Pages technology is the ability to connect to a
database. Databases store and efficiently manage

large collections of information. JSP pages can be used
to make this information available to the users who visit
your Web site or to store information submitted by users.

Instead of storing information in text files or static Web
pages, a JSP page can be set up to retrieve, format and

display data from a database. When a user accesses the JSP
page, the information displayed by the page will be created
from the current information in the database. A JSP page
can also allow users to manipulate the data in a database.

Using databases to store information and using JSP pages to
access the information is an efficient method of displaying
up-to-date information in a Web site.

INTRODUCTION TO DATABASES

WORK WITH DATABASES 7

DATABASE PROGRAMS

There are several different programs available that
you can use to create a database. The two most
popular database programs used when working
with Windows-based systems are Microsoft Access
and Microsoft SQL Server. Microsoft Access is
useful for creating relatively small databases, while
Microsoft SQL Server is useful for creating large
databases, such as a database used to provide
information to a busy e-commerce Web site.

For information about Microsoft Access and Microsoft SQL
Server, you can visit the www.microsoft.com/office/access
and www.microsoft.com/sql Web sites.

Two popular database programs used when working
with UNIX-based systems are MySQL and PostgreSQL.
Information about these database programs is available
at the www.mysql.com and www.postgresql.org Web sites.

DATABASE STRUCTURE

A database is made up of one or more tables. A table
contains records that store the information entered
into the table. For example, a record could store the
information for one customer. Each record is divided
into fields. A field is a specific piece of information
in a record, such as the first name of a customer.

Great care should be taken when initially planning and
designing the structure of a database. A well-planned
database ensures that tasks, such as adding or deleting
records, can be performed efficiently and accurately.
Poor database design may cause problems if the
database needs to be changed in the future.

CONNECT TO A DATABASE

Before a JSP page can access a database, you must
create a connection to the database. On Windows-based
systems, you can first create a Data Source Name (DSN)
for the database to tell your JSP pages what kind of
database you want to connect to and where the database
is located. You can then use the DSN with the java.sql

package in a JSP page to connect the page to the
database.

Once connected, you can easily access the database
to add, modify and delete records, as well as administer
the database.

SQL STATEMENTS

STRUCTURED QUERY LANGUAGE

Although SQL is made up of many statements and
clauses, you will need to be familiar with only a
few to perform the examples in this chapter.

In order for a JSP page to work with the records in a
database, the page must be able to communicate with the
database. You use the Structured Query Language (SQL)
in a JSP page you want to communicate with a database.

SELECT

The SELECT statement specifies
the data you want to retrieve from
a database. The SELECT statement
uses the FROM clause to specify
the name of the table that stores
the data you want to retrieve. The
WHERE clause specifies exactly
which data you want to retrieve.

Example:

SELECT Total
FROM invoiceNumbers
WHERE Total > '$100'

SQL FEATURES

Standardized

SQL is the industry standard language for
managing and manipulating data in a database.
SQL can be used to work with many types of
databases, which makes it easy to upgrade
from one database program to another. For
example, a small Web site might start out using
a Microsoft Access database, but then grow
large enough to require a database created
using Microsoft SQL Server. You need to learn
only one language to have your JSP pages
communicate with both types of databases.

Easy to Use

SQL is a very simple language to work with and uses
many easy-to-understand commands. For example,
SQL uses the INSERT statement to add information
to a database. These plain-language commands make
it easy for you to read code created using SQL and
determine the purpose of the code.

Powerful

Although SQL is easy to use, it is a very powerful
language. As well as being suitable for retrieving data
from a database and performing simple tasks such
as adding and deleting records, SQL can be used to
perform complicated procedures, such as compiling
different types of data from multiple data sources.

INSERT

The INSERT statement allows you to
add data to a database. The INSERT
statement uses the INTO clause to
specify the name of the table to which
you want to add data and the names
of the fields that store the data in the
table. The VALUES clause specifies the
values that you are adding.

Example:

INSERT INTO invoiceNumbers (INVOICE, TOTAL)
VALUES (12843, '$34.56')

DELETE

The DELETE statement is used to
remove data from a database. The
DELETE statement uses the FROM
clause to specify the name of the
table that stores the data you want
to delete. The WHERE clause
contains information that uniquely
identifies the data you want to
delete.

Example:

DELETE FROM invoiceNumbers
WHERE year < 1996

145

My DocumentsMy Documents

Employees.mdb

Employees.mdb

WEBSERVER

directory
\\LOCALHOST

\\W...\directory\

My Documents

Microsoft Access Driver (*.mdb)

My Documents

TYPES OF DATA SOURCE NAMES

There are three main types of data source names
available on computers running a Windows operating
system. The types of data source names differ in where
the information about a database is stored and who
can use the DSN. The administrator of the Web server
usually specifies the type of DSN that must be used.

System DSN

The information in a
system DSN is stored
in the registry of the
Web server. Any user
that has access to the
server will be able to
use a system DSN to
access the database.

User DSN

The information in a user DSN
is stored in the registry of the
Web server, but only a specific
user account can use the DSN.
User data source names are
often used when developing
intranet Web applications that
require secure access to a
database.

File DSN

The information in a file DSN is
stored in a text file on the Web
server. File data source names
make it easy to transfer databases
and data source names between
different Web servers. Any user
who has access to the Web
server will be able to use a file
DSN to access the database.

‡ Type the data source
name you want to use for
the database.

° Click Select to display the
Select Database dialog box.

· Select the database
you want to create a data
source name for.

‚ Click OK in the Select
Database dialog box.

— Click OK in the ODBC
Microsoft Access Setup
dialog box.

� The new data source
name appears in this area.

144

JSP

CREATE A DATA SOURCE NAME

⁄ In the Control Panel,
double-click Administrative
Tools to display the
Administrative Tools window.

¤ Double-click Data Sources.

� The ODBC Data Source
Administrator dialog box
appears.

� The Create New Data
Source dialog box appears.

ˇ Click Microsoft Access
Driver.

Á Click Finish.

� The ODBC Microsoft
Access Setup dialog box
appears.

I f a Web server running a Windows operating system
will be used to access a database you created, you must
assign a Data Source Name (DSN) to the database.

A DSN stores information that tells Web applications how
to access a specific database. You include the data source
name in the JSP pages you want to connect to the database.

You only have to create a DSN once for a database. You
do not have to create a new data source name when you
change or update the structure of the database.

The data source name must be created on the Web server
that will access both the database and the JSP pages that
use the database. If a Web hosting service is storing your
database and JSP pages, the Web hosting service will
usually create the DSN for you.

To create a data source name, you specify the driver for the
program you used to create the database, such as Microsoft
Access or SQL Server. You then specify the DSN you want to
use and the location of the database. The data source name
does not have to be the same as the name of the database.
You should use a short, descriptive DSN.

The steps below create a system DSN for a Microsoft Access
database that will be accessed by a Web Server running the
Windows 2000 operating system. Windows 2000 computers
use a program labeled Data Sources to control DSN
configuration. The name and location of the program used to
create a DSN on your computer may be different, depending
on the operating system you are using. For more information
about how to create a DSN on your computer, refer to the
computer's operating system documentation.

CREATE A DATA SOURCE NAME

WORK WITH DATABASES 7

‹ Click the System
DSN tab.

› Click Add to create
a data source name.

± Click OK to close
the ODBC Data Source
Administrator dialog box.

147

You must load a driver to connect a JSP page to
a database even if the database uses the JDBC
specification and does not require the use of
the JDBC-ODBC bridge driver. Many database
programs come with their own JDBC drivers.
You may be able to load a database program's
driver simply by specifying the name of the
driver in the Class.forName statement.
You should consult the documentation for the
database program to determine which drivers
are offered and how to load and use the drivers.

There is more than one version of the JDBC
specification available. Version 2.0 is the latest
version and includes features that are not found
in older versions. You must ensure that your
database is compatible with the JDBC version
you intend to use. The Java SDK includes JDBC
version 2.0.

Specifying a login name and password in a JSP
page for a database connection can present a
security risk, since anyone who has access to
the JSP code will be able to determine this
sensitive information. You may be able to use
security features provided by your database
program to minimize the security risk. For
example, if the information in a database will
only be retrieved, you may want to set up
read-only access to the database. Consult the
documentation for your database program for
information on the available security features.

ˇ To specify the location
of the database you want the
JSP page to connect to, type
DriverManager.getConnection().

Á Between the parentheses,
type "jdbc:odbc: immediately
followed by the DSN of the
database. Then type ".

‡ If the connection
requires a login name and
password, type a comma
followed by the login name
enclosed in quotation
marks. Then type a comma
followed by the password
enclosed in quotation
marks.

° To close the conection to
the database, type the name
of the Connection object
followed by a dot. Then type
close().

146

JSP

CONNECT TO A DATABASE

⁄ To import the java.sql
package, type <%@ page
import="java.sql.*" %>.

� The java.sql package
contains the Connection
interface.

‹ To create a Connection
object that allows the JSP page
to connect to a Windows
database, type Connection.

› Type a name for the
Connection object
followed by =.

O nce a Data Source Name (DSN) has been created
for a database, you can set up a connection to the
database in a JSP page. You can then use the JSP

page to access the database. For example, the JSP page
can be used to retrieve information from the database.

In order to set up a connection to a database, a driver
that enables the JSP page to communicate with the
database must be loaded. JavaServer Pages technology
uses the Java DataBase Connectivity (JDBC) specification
to access databases, while most databases created on
computers using the Windows platform use the Open
DataBase Connectivity (ODBC) specification. The Java
SDK includes a JDBC-ODBC bridge driver that allows JSP
pages to communicate with these Windows databases.

To load a driver in a JSP page, you use the
Class.forName statement to specify the name
of the driver. The name of the JDBC-ODBC bridge
driver is sun.jdbc.odbc.JdbcOdbcDriver.

Once the driver has been loaded, a Connection
object can be created that will allow the JSP page

to connect to the database. Before a Connection object
can be created, you must use the page directive to import
the java.sql package. The java.sql package contains
the Connection interface and is part of the Java class
library. For more information about the page directive,
see page 74.

The DriverManager.getConnection statement is
used to specify the location of the database you want the
JSP page to connect to. For connections created using the
JDBC-ODBC bridge driver, the location will begin with
jdbc:odbc: and be immediately followed by the DSN
of the database. The DriverManager.getConnection
statement also allows you to specify a login name and
password if this information is required to establish a
connection to the database.

The close method of the Connection object should
be used to close a database connection when the
connection is no longer needed.

CONNECT TO A DATABASE

WORK WITH DATABASES 7

· Save the page with the
.jsp extension.

� You can now use the JSP
page to access a Windows
database.

¤ To load the bridge driver
that allows the JSP page to
communicate with a Windows
database, type Class.forName
("sun.jdbc.odbc.JdbcOdbcDriver").

149

You can use any name you want for your
database objects. However, there are some
names that are usually used for certain common
objects. For example, the Connection object
is often named con and the name stmt is
often used for the Statement object. The
ResultSet object is usually named rs.

Depending on the size, speed and location of the
database, it may take a long time for a JSP page
to pass a SELECT statement to the database,
process the statement and then retrieve the
results generated from the database. You should
take this time into account when designing your
JSP pages. For example, if your JSP page displays
a banner image followed by a large amount of
data from a database, you can use the flush
method of the out object to force the JSP page
to display the banner first, while the database
information is being retrieved.

In order to minimize delays when
communicating with a database, you
should design your SQL statements to be
efficient. For example, if you require data
only from a particular field in a database,
the SELECT statement should retrieve
only the relevant information. It is much
more efficient to retrieve only the data
you need from the database than to
retrieve unnecessary information and
then filter the results.

ˇ To create a ResultSet
object to store the results
returned from the database,
type ResultSet followed by
a name for the ResultSet
object.

Á Type = and the name
for the Statement object
followed by dot.

‡ Type executeQuery("").

° Between the quotation
marks, type SELECT * FROM
followed by the name of the
table in the database from
which you want to retrieve
information.

148

JSP

CREATE A RESULT SET

⁄ Type the code that
creates a connection to the
database from which you
want to retrieve information.

¤ To create the Statement
object that will retrieve
information from the database,
type Statement followed by a
name for the Statement
object.

‹ Type = and the name
for the Connection
object followed by a dot.

› Type createStatement().

A fter setting up a connection to a database in
a JSP page, you can create a result set to store
information you retrieve from the database.

Before a JSP page can retrieve data from a database,
the page must have permission to access the database.
Permission to access a database from a JSP page is usually
controlled by your operating system or database program.
For information about access permissions, you should
consult the documentation included with your software.

Before creating a result set, you must first create a
Statement object that will retrieve information from
a database. To create a Statement object, you use
the createStatement method of the Connection
object created when the database connection was
set up. The Statement interface that is used to create
the Statement object is part of the java.sql package.

Once the Statement object has been created, the
results retrieved by the object must then be assigned
to a ResultSet object. This object will be used to
store the results returned from the database in a result
set. To use the ResultSet object, you must create an
instance of the object and assign it a name.

When the ResultSet object has been created, you
can specify the information you want to place in the
result set. To do this, you use the executeQuery
method of the Statement object to issue a SELECT
statement to the database. The SELECT statement allows
you to specify the data you want to retrieve from a table
in the database. You can specify the data you want to
retrieve by name or use an asterisk (*) to retrieve all the
data in the table. The SELECT statement uses the FROM
clause to specify the name of the table that stores the
information you want to retrieve.

CREATE A RESULT SET

WORK WITH DATABASES 7

· Save the page with
the .jsp extension.

� To retrieve the data
from the result set, see
page 150.

151

In addition to string data, a result set can
also contain other types of data such as
objects and primitive data types. Different
methods of the ResultSet object are
used to access different data types.

Example:

int numberOfItems = rs.getInt("quantity");
double itemPrice = rs.getDouble("price");

If multiple columns in the same result set
have the same name, the method used to
retrieve the data from the result set will
retrieve the data from the first column that
has the common name. Although it is not
recommended, it is possible to have multiple
columns with the same name in a database.

You can also use a column number instead
of a field name to retrieve information from
a row of data. In a result set, the first
column of information has a column
number of 1, not 0 as some programmers
might expect.

Example:

while (rs.next())
{

String employeeId = rs.getString(1);
String employeeName = rs.getString(2);
String employeeExt = rs.getString(3);

}

ˇ In the body of the
while loop, type String
followed by the name of
a variable you want to
assign the string data to.

Á Type = and the name
of the ResultSet object
followed by a dot.

‡ To retrieve string
information from the row,
type getString("").

° Between the quotation
marks, type the name of
the field that holds the
information you want to
retrieve.

· Repeat steps 5 to 8 to
retrieve the information you
want from the result set.

150

JSP

RETRIEVE DATA FROM A RESULT SET

⁄ Type the code that
creates a connection to
the database from which
you want to retrieve
information.

¤ Type the code to create
a Statement object that
retrieves information from
a database and to create a
result set that stores the
results returned from the
database.

‹ To create a while
loop to cycle through the
rows of data in the result
set, type while ().

› Between the
parentheses, type the
name of the ResultSet
object followed by .next().

O nce information has been retrieved from a database
and placed in a result set, you can retrieve the data
from the result set. A result set consists of rows

which store information generated by the database when
an SQL statement is processed.

Information may be accessed in the result set one row at
a time. An imaginary indicator, called a cursor, is used to
identify which row can currently be accessed. When the
rows of data are initially placed in a result set, the cursor
is placed just above the first row of data. To access the
first row of data in a result set, you must call the next
method of the ResultSet object to move the cursor
to the first row.

If a result set contains multiple rows, a loop is typically
used to retrieve information from each row. The next
method of the ResultSet object is usually used in
conjunction with a while loop to move the cursor

through the rows of data in the result set, one at a time.
The next method returns a boolean value which indicates
if another row to which the cursor can be moved to exists.
If the next method returns a true value, the loop continues
and the next row of data is processed.

When the cursor is positioned in a particular row of data,
a method of the ResultSet object can be used to retrieve
information from that row. For example, the getString
method can be used to retrieve string information from a
row of data. When using the getString method, you
must specify the name of the field from which you want
to retrieve data. You can assign the value returned by the
getString method to a variable, which allows you to
use the value in a process or to display the value in a Web
browser.

RETRIEVE DATA FROM A RESULT SET

WORK WITH DATABASES 7

‚ Save the page with the
.jsp extension.

� To format the retrieved
data for display in a Web
browser, see page 152.

153

� The Web browser
displays the formatted
information retrieved
from a database.

Á Between the parentheses, type
the name of the variable that stores
the information you want to display.

‡ To generate a cell in the table,
type the required HTML tags,
enclosed in quotation marks.
Separate each tag and variable
with the concatenation operator.

° Repeat steps 5
to 7 for each item
of information you
want to display.

· Save the page with
the .jsp extension and
then display the page
in a Web browser.

152

JSP

FORMAT DATA FOR DISPLAY

⁄ Type the code that
creates a connection to
a database and retrieves
information from the
database.

¤ To display the information
you retrieve from the result
set in a table, type the HTML
code that sets up the table.

‹ Type the code that creates
a loop that will process one
row of the result set at a time.

› Type the code that retrieves
the data you want to display
from the result set.

ˇ To display an item
of information, type
out.print().

O nce information has been retrieved from a
database and accessed from the result set,
the information can be formatted for display

on a JSP page. When displaying information retrieved
from a database, you can use HTML tags to format the
information. For example, HTML tags can be used to
place the information in a list or table.

If a result set contains multiple rows, a loop is typically
used to retrieve information from each row, one at a time.
The next method of the ResultSet object is usually
used in conjunction with a while loop to move the
cursor through the rows of data.

When the cursor is positioned in a particular row of
data, a method of the ResultSet object can be used
to retrieve information from that row. For example,
the getString method can be used to retrieve string
information from a field you specify in the current row.

Assigning the value of the getString method to a
variable can make it easier to work with the data. You
can use the print method of the out object to display
the contents of the variable on a JSP page. When using
the print method, different types of data, such as
variables and string literals, can be joined together
using the concatenation operator, +.

You can incorporate any HMTL code you want to use
into the loop that accesses each row of data so that with
each iteration of the loop, a row of data and the HTML
code used to format the data will be sent to the client.

FORMAT DATA FOR DISPLAY

WORK WITH DATABASES 7

Many Web pages on the Internet are not
static pages, but rather are made up of
information retrieved from databases. This
information is assembled on a page each
time a client views the page. For example,
the home page of a news organization
may contain information retrieved from a
news database, a weather database and an
advertising database. The information from
each database is formatted with HTML tags
and the separate sections are all joined
together to create a single, seamless page.

If the information you want to display from
a database is relatively simple, you can use
an expression to display the information
directly from the result set, without first
assigning the information to variables.

Example:

<table>
<tr>
<td><%= rs.getString("employee_id") %></td>
<td><%= rs.getString("name") %></td>
<td><%= rs.getString("extension") %></td>
</tr>
</table>

When formatting information retrieved from
a database for display on a JSP page, you
should first sketch out the desired layout
of the page to ensure proper placement of
information. If the amount of information
retrieved from the database will vary with
each query, you must take this into account
when laying out the page.

155

� The Web browser displays
the result of positioning the
cursor in a result set. The
first, last and third rows in
the result set are displayed.

Á To create a method
that moves the cursor
to a specific row in the
result set, type the name
of the ResultSet object
followed by a dot. Then
type absolute().

‡ Between the parentheses,
type the number of the row you
want to move the cursor to.

° Type the code that retrieves
and displays information from
each row you specified in the
result set.

· Save the page with
the .jsp extension and
then display the JSP page
in a Web browser.

154

JSP

POSITION THE CURSOR IN A RESULT SET

⁄ Type the code that
creates a connection
to a database and
retrieves information
from the database.

¤ Between the parentheses for
the createStatement method
of the Connection object, type
ResultSet.TYPE_SCROLL_SENSITIVE
followed by a comma to specify
the result set type.

‹ Type ResultSet.CONCUR_UPDATABLE
to specify the concurrency type.

› To create a method that
moves the cursor to the first
row in the result set, type
the name of the ResultSet
object followed by a dot.
Then type first().

ˇ To create a method
that moves the cursor to
the last row in the result
set, type the name of
the ResultSet object
followed by a dot. Then
type last().

T he ResultSet object provides several methods
that can be used to move the cursor to a particular
row in a result set.

Initially, the cursor is positioned above the first row in
a result set, so there is no current row. You must call a
method of the ResultSet object to move the cursor
to the row you want to make current. The values in the
current row are affected by any methods that are called.

If the next method of the ResultSet object is used to
move the cursor forward through each row in a result set,
a new result set would have to be created to revisit a row
or iterate through the entire result set a second time.
Most new JDBC drivers allow you to create a scrollable
result set. You can move the cursor forward, backward
and to a specific row in a scrollable result set.

To make a result set scrollable, you must specify the
result set type as TYPE_SCROLL_INSENSITIVE or

TYPE_SCROLL_SENSITIVE. If you want to be able to
change information in the result set, you must also specify
the concurrency type as CONCUR_UPDATABLE. The result
set type and concurrency type are specified as arguments
of the createStatement method. The values available
for both of these types are constants determined by the
ResultSet interface.

After setting the result set type and concurrency type,
you can call a ResultSet method to position the cursor
at the row you want to make the current row. Calling the
first method moves the cursor to the first row in the
result set. Calling the last method moves the cursor to
the last row. To position the cursor at a specific row, you
use the absolute method to specify the number of the
row you want to make current.

POSITION THE CURSOR IN A RESULT SET

WORK WITH DATABASES 7
You can display the result set type and
concurrency type of a result set in a
JSP page. To do so, use the getType
and getConcurrency methods of
the ResultSet object in the JSP page,
such as <%= rs.getType() %>

and <%= rs.getConcurrency() %>.
When the JSP page is displayed in a Web
browser, a numerical value appears,
representing the result set type and
concurrency type.

Result Set Types

VALUE: DESCRIPTION:

1003 TYPE_FORWARD_ONLY The result set is not scrollable. The cursor can move
forward from top to bottom only.

1004 TYPE_SCROLL_INSENSITIVE The result set is scrollable. Any changes made to the
database while the result set is open are not reflected
in the result set.

1005 TYPE_SCROLL_SENSITIVE The result set is scrollable. Any changes made to the
database are immediately reflected in the result set.

Concurrency Types

VALUE: DESCRIPTION:

1007 CONCUR_READ_ONLY The information in the result set cannot be modified.

1008 CONCUR_UPDATABLE The information in the result set can be updated.

157

� The Web browser
displays the results of
adding a record to a
table in a database.

Insert Records - Microsoft Internet Explorer

http://127.0.0.1:8080/examples/addrecord.jsp

789

888

444

437

Sandra

Barry

Johanne

Peter

121

777

222

456

ID Number Name Extension

In order to add a record to a table in a database, the database
driver must support the insertRow method. If errors occur
when calling the insertRow method, you should check
whether a version of the database driver that supports the
method is available for your database program.

If you do not want to use the update methods of the ResultSet
object to add a record, you can use the SQL INSERT command
instead. You issue the INSERT command to a database using the
executeUpdate method of the Statement object.

Example:

stmt.executeUpdate("INSERT INTO employees VALUES(4347, 'Peter', 456)");

You can access other rows in a result set to which you are
adding a new row. When you finish inserting a row, you can
move the cursor to any row in the result set. For example, you
can use the moveToCurrentRow method of the ResultSet
object to reposition the cursor at the last row accessed before
you inserted the new record. To avoid losing the information
you added to the insert row, you should move the cursor only
after calling the insertRow method.

Example:

updRs.insertRow();
updRs.moveToCurrentRow();

Á Repeat steps 4 and 5
for each value you want
to insert for the record.

‡ To insert the record
into the result set and the
database, type the name
of the ResultSet object
followed by .insertRow().

° Type the code that
displays the information
from the database.

· Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

156

JSP

ADD A RECORD

⁄ Type the code that
creates a connection to
a database to which you
want to add a record.

¤ Type the code that retrieves
information from the table
where you want to add a record
and allows you to update the
database.

‹ To position the cursor at the
insert row, type the name of the
ResultSet object followed by
.moveToInsertRow().

› To specify a value for a
column in the new record, type
the name of the ResultSet
object followed by a dot. Then
type the update method you
want to use followed by ().

ˇ Between the parentheses,
type the name or number
of the column to which you
want to add data followed
by a comma. Then type the
value you want the column
to contain.

� String arguments must be
enclosed in quotation marks.

T he ResultSet object provides methods you
can use to insert records into a table in a
database.

You insert a record into a table by inserting a new row
into the result set that contains information retrieved
from the database. The result set must contain all the
columns in the table that are to be given values for a
record. A column that is not included in the result set
will be given a null value when the record is inserted
into the table. If the column does not accept null
values, an error will occur.

Before you can add a record, you must first use the
moveToInsertRow method of the ResultSet object
to position the cursor at the insert row. The insert row
allows you to create a new row in a result set.

Once the cursor is positioned at the insert row, you
can specify the values you want to add to each
column in the row using special update methods

of the ResultSet object. The method name you use
depends on the type of data to be used for the value.
For example, if you want to specify a string value for
a column, you use the updateString method. To
specify an integer value, you use the updateInt
method.

Each update method requires two arguments. The first
argument specifies the name or number of the column
you want to contain the data. The number of the first
column in the table is 1. The second argument specifies
the value that will be inserted into the column. The data
type of the value must match the update method you
specified.

Once the values have been specified for each column
in the table, you can call the insertRow method of
the ResultSet object to add the new record to the
result set and to the table in the database.

ADD A RECORD

WORK WITH DATABASES 7

159

· Type the name of
the Statement object
followed by a dot. Then
type executeUpdate().

‚ Between the parentheses,
type the variable name that
stores the SQL INSERT
statement.

— Save the page with
the .jsp extension.

± In a Web browser, display
the form you created to add
records to the database.

¡ Enter data into the form.

158

JSP

ADD FORM DATA TO A DATABASE

⁄ Type the code that
accesses information passed
to the JSP page by a form.

¤ Type the code that creates
a connection to the database
you want to add records to
and creates a result set.

‹ Type the code that
creates a variable to store
the SQL INSERT statement
followed by ="".

› Between the quotation
marks, type INSERT INTO.

ˇ Type the name of the
table in the database that
you want to add records
to followed by ().

Á Between the parentheses,
type the name of each field
in the table, separated by a
comma.

‡ Type VALUES().

° Between the parentheses,
type the code that uses the
information passed by the
form.

A JSP page that contains a connection to a database
can be used to add records to the database. Records
are commonly added using data submitted by forms.

Forms provide an easy-to-use interface for working with a
database.

The getParameter method of the request object can
be used in a JSP page to access data passed by a form.
For more information about the getParameter method,
see page 84.

When creating a result set to add a record to a database,
you must set the result set type and concurrency type.
For information about setting the result set type and
concurrency type, see page 154.

The SQL INSERT statement allows you to add a record to
a database. The INSERT statement uses the INTO clause
to specify the name of the database table you want to add a

record to and the names of the fields that store information
in the table. The VALUES clause specifies the field values
that make up the record you are adding to the database.
You may have to enclose the field values in single or double
quotation marks, depending on your database program.

It is common programming practice to store an SQL
INSERT statement in a variable. Using variables can
help make your code easier to read and update.

The SQL INSERT statement is executed by the
executeUpdate method of the Statement object
to add data to the database.

When creating the code for a form that will be used to
add records to a database, you must specify the name
of the JSP page that connects to the database in the
action attribute of the <form> tag.

ADD FORM DATA TO A DATABASE

WORK WITH DATABASES 7

Using an if statement allows you to confirm
that information has been submitted by a form
before the JSP page connects to the database
that stores the form data. For example, you can

ensure that a user name entered into a form
contains at least one character before the JSP
page sends any information to the database.

if (userName.length()>0)
{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
Connection con = DriverManager.getConnection("jdbc:odbc:mydatabase");
Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,ResultSet.CONCUR_UPDATABLE);

String sqlStatement = "INSERT INTO Employees(employee_id,name,extension) VALUES
("+employeeID+",'"+userName+"',"+phoneExtension+")";
stmt.executeUpdate(sqlStatement);
}
else
{
out.print("Please enter a user name.");
}

Please enter a user name.

TYPE THIS:

RESULT:

™ Click the submit button
to pass the data in the form
to the JSP page.

� The JSP page that adds
the record will appear and
the record will be added
to the database.

161

� The Web browser
displays the result of
updating a row in a
database.

If you do not want to use the update
methods of the ResultSet object to
update a record, you can use the SQL
UPDATE statement instead. You issue the
UPDATE command to a database using
the executeUpdate method of the
Statement object.

Example:

stmt.executeUpdate("UPDATE Employees SET
name = 'Pete' WHERE (name = 'Peter')");

You can also use column numbers instead
of column names to specify the columns
you want to update in a record. In SQL,
column numbers start at column 1, not 0
like many other indexing systems used in
programming.

Example:

updRs.next();
updRs.updateString(2, "Pete");
updRs.updateInt(3, 456);
updRs.updateRow();

You can cancel updates to a database by
using the cancelRowUpdates method.
The cancelRowUpdates method can
be called after any update methods are
used, but before the updateRow method
is called. Canceling updates is useful if
the JSP code detects invalid data or a
database access error.

Example:

updRs.updateString("name", "Pete");
updRs.cancelRowUpdates();

Á Repeat steps 4 and 5 for
each column you want to
update.

‡ To change the information
in the database, type the name
of the ResultSet object
followed by .updateRow().

° Type the code that
displays the information
in the database.

· Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

160

JSP

UPDATE A RECORD

⁄ Type the code that
creates a connection to
a database in which you
want to update records.

¤ Type the code that
retrieves a record from the
table you want to update
and allows you to update
the database.

‹ Type the code that
moves the cursor to the
row you want to update.

› To specify a new value for
a column in the record you
want to update, type the name
of the ResultSet object
followed by a dot. Then type
the update method you want
to use followed by ().

ˇ Between the parentheses,
type the name of the column
you want to update followed
by a comma. Then type the
new value you want the
column to contain.

� String arguments must be
enclosed in quotation marks.

O nce you establish a connection with a database,
you can edit the information contained in the
database. Editing the information in a database

allows you to keep the information up-to-date.

If you want to update a single record, you can use the
WHERE clause with the SQL SELECT command to create
a result set that stores only the row of data you want to
update.

When a result set is created, the cursor is positioned above
the first row of data. Before information in the result set
can be modified, you must use the next method of the
ResultSet object to move the cursor to the row that
is to be updated, even if the result set contains only a
single row.

You can specify the values you want to change for
the current row using special update methods of the

ResultSet object. The method name you use depends
on the type of data to be used for the value. For example,
if you want to specify a string value, you use the
updateString method. To specify an integer value,
you use the updateInt method.

Each update method requires two arguments. The first
argument specifies the name of the column you want to
contain the data. The second argument specifies the value
that will be inserted into the column. The data type of the
value must match the update method you specified.

Once the update methods have been used to specify the
data you want to change in the current record, you can
call the updateRow method of the ResultSet object
to update the information in the database.

UPDATE A RECORD

WORK WITH DATABASES 7

163

� The Web browser
displays the result of
making a batch update.

You should make sure that the database
driver used to communicate with the
database program is able to perform batch
operations before using the executeBatch
method. If the database driver does not
support batch operations, you should check
if a newer version of the driver is available.

After using the commit method of the
Connection object to make your changes
to a database permanent, you may need
to re-enable the auto-commit mode of the
Connection object. To do so, you must
set the parameter of the setAutoCommit
method of the Connection object to
true.

Example:

updStmt.executeBatch();
con.commit();
con.setAutoCommit(true);

‡ To send the batch update to
the database program, type the
name of the Statement object
followed by .executeBatch().

° To make any changes to
the database permanent, type
the name of the Connection
object followed by .commit().

· To re-enable the
auto-commit mode of the
Connection object, type
con.setAutoCommit(true).

‚ Type the code that
retrieves information from
the updated database and
displays the information
on the JSP page.

— Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

162

JSP

MAKE A BATCH UPDATE

⁄ Type the code that
creates a connection to
the database to which
you want to make a
batch update.

¤ To disable the
auto-commit mode of the
Connection object, type
con.setAutoCommit(false).

‹ Type the code that
creates a Statement
object for the batch.

› To add an SQL statement
to the batch, type the name
of the Statement object
followed by .addBatch("").

ˇ Between the quotation
marks, type a valid SQL
statement.

Á Repeat steps 4 and 5
for each SQL statement
you want to add to the
batch.

S QL statements are usually sent to a database program
one at a time and the program processes each SQL
statement as it is received. In most cases, this is an

acceptable way of processing SQL statements. However,
for some larger databases, it may be more efficient to
combine individual SQL statements together in a batch
that is sent at one time. This is especially useful when
sending multiple update statements to a database program.

When a connection to a database is established, the
connection is usually configured to send each SQL
statement to the database program as it is created. To
make batch updates, you must set up the Connection
object so the connection will wait for a specific instruction
before sending the SQL statements to the database
program. To do this, you must set the parameter of
the setAutoCommit method of the Connection
object to false.

An SQL statement is added to a batch using the addBatch
method of the Statement object. The argument of
the addBatch method must be a valid SQL statement,
although the statement cannot return a result set. Once
all the SQL statements you want to send to the database
program have been added to the batch, the batch can be
sent to the database program using the executeBatch
method of the Connection object.

After the executeBatch method is called, you must
also call the commit method of the Connection object
to make any changes to the database permanent. If the
commit method is not called, the changes made by the
batch update will still be reflected in the result set, but the
changes will not be permanently written to the database.

MAKE A BATCH UPDATE

WORK WITH DATABASES 7

The executeBatch method returns an array of integers
that indicates the number of records affected by each SQL
statement in a batch. The value of the first element in the
array corresponds to the first SQL statement in the batch,
and so forth.

updStmt.addBatch("DELETE FROM Employees WHERE name='Martine'");
updStmt.addBatch("DELETE FROM Employees WHERE name='Tom'");
int[] returnValues = updStmt.executeBatch();
for (int x = 0; x < returnValues.length; x++)
{

out.print("SQL statement #" + (x+1) + " deleted ");
out.print(returnValues[x] + " record(s)");

}

SQL statement #1 deleted 1 record(s)
SQL statement #2 deleted 1 record(s)

TYPE THIS:

RESULT:

165

� The Web browser
displays the results
of using a prepared
statement to send SQL
statements to a database.

When using the executeQuery method, a result set is
generated to store the results of the query. The execute method
of the PreparedStatement object can be used instead of the
executeQuery method to execute a prepared statement that does
not return a result. For example, you may use the execute method
for an SQL statement that removes a table from a database.

Example:
PreparedStatement pstmt = con.prepareStatement("DROP TABLE Employee");
pstmt.execute();

Like the Statement object, the PreparedStatement object can
use the execute, executeQuery and executeUpdate methods to
execute SQL statements. These methods do not require any arguments
when used with a PreparedStatement object because the SQL
statement is specified when the PreparedStatement object is
created. When the same methods are used with a Statement object
however, an SQL statement is usually passed to the methods as an
argument. For more information about the methods supported by
the Statement and PreparedStatement objects, refer to the
java.sql package documentation.

Á To create a
ResultSet object
to store the results
returned from the
database, type ResultSet
followed by a name for
the ResultSet object.

‡ Type = and the name of the
PreparedStatement object
followed by .executeQuery().

° Type the code that retrieves
the data from each row of the
result set and formats the data
for display.

· Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

164

JSP

CREATE A PREPARED STATEMENT

⁄ Type the code
that creates a
connection to the
database to which
you want to send a
prepared statement.

¤ To create a PreparedStatement
object, type PreparedStatement
followed by a name for the
PreparedStatement object.

‹ Type = and the name of the
Connection object followed by
.prepareStatement("").

› Between the quotation
marks, type the SQL
statement to be precompiled.

ˇ If necessary, type the
code that specifies the result
set type and concurrency
type for the ResultSet
object that will store the
results returned from the
database.

B efore a database program can execute an SQL
statement sent from a JSP page, the SQL statement
is compiled into a form that is understood by the

inner workings of the database program. Compiling an SQL
statement can be a relatively lengthy process, but you can
create a prepared statement to save time in accessing the
database after the initial query is processed.

A prepared statement is an SQL statement that is
precompiled by a database program. A prepared statement
needs to be compiled only once, so it is very useful in cases
where the same SQL statement will be sent to the database
program numerous times.

You use a PreparedStatement object to send an SQL
statement that you want to precompile to a database
program. A PreparedStatement object is created using
the prepareStatement method of the Connection
object. The prepareStatement method takes the SQL
statement you want to precompile as an argument.

You use the executeQuery method of the
PreparedStatement object to instruct the database
program to process the SQL statement that has been
precompiled. The result generated when a prepared
statement is processed is usually assigned to a ResultSet
object.

Depending on the SQL statement you are precompiling,
you may need to specify the result set type and concurrency
type of the result set in the prepareStatement method.
For information about specifying result set and concurrency
types, see page 154.

If the SQL statement you want to precompile requires
parameters, you must set up the prepared statement
to accept parameters. For information about using
parameters in a prepared statement, see page 166.

CREATE A PREPARED STATEMENT

WORK WITH DATABASES 7

167

� The Web browser displays
the results of using parameters
in a prepared statement. The
information in the database is
also updated.

‡ Repeat steps 5 and 6 for
each parameter you want to
specify.

° To execute the prepared
statement, type the name for
the PreparedStatement
object followed by .execute().

· Type the code that
retrieves the data from
the database and formats
the data for display.

‚ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

166

JSP

USING PARAMETERS IN A PREPARED STATEMENT

⁄ Type the code that
connects the JSP page to the
database to which you want
to send a prepared statement.

¤ Type the code that creates
the PreparedStatement
object and allows you to
update the database.

‹ Between the parentheses
of the prepareStatement
method, type the names of
the fields in the table to which
you want to add information.
Separate each name with a
comma.

› Type VALUES(?, ?, ?).

ˇ To create a method
that will store a value for a
question mark, type the name
for the PreparedStatement
object followed by a dot. Then
type the set method you want
to use followed by ().

Á Between the parentheses,
type the number that
indicates the position of the
question mark in the SQL
statement, followed by a
comma and the value for
the question mark.

� String values must be
enclosed in quotation marks.

P repared statements are ideal for repeatedly sending
the same SQL statements to a database. Typically,
prepared statements are used with SQL statements

that have parameters. For example, an SQL statement can
be used to add records to a database. The structure of the
SQL statement remains the same for each record that is
added, but the values of the parameters change each time
the statement is executed.

The PreparedStatement object is used to issue an
SQL statement that contains one or more parameters to
a database. When creating a prepared statement that uses
parameters, you use question marks to indicate where
you want to place parameter values in the SQL statement.
There is no limit to the number of question marks you can
use in an SQL statement.

Before the SQL statement can be executed, the values for
the question marks must be specified using special set

methods of the PreparedStatement object. The method
name you use depends on the type of data to be used for
the value. For example, if you want to specify a string value
for a question mark, you use the setString method.
To specify an integer value, you use the setInt method.

Each set method requires two arguments. The first argument
specifies the position of the question mark in the SQL
statement. The position of the first question mark in an
SQL statement is 1. The second argument specifies the
value that will replace the question mark in the SQL
statement. The data type of the value must match the
set method you specified.

Once the values have been specified for the SQL
statement, you can use the execute method of the
PreparedStatement object to process the SQL
statement using the parameters you set.

USING PARAMETERS IN
A PREPARED STATEMENT

WORK WITH DATABASES 7

The following table displays the set methods commonly used to
specify parameter values for specific data types. For a complete
list of set methods and data types that can be used with prepared
statements, refer to the java.sql package documentation.

METHOD: DATA TYPE:

setArray Array

setBigDecimal Large decimal number

setBlob Database blob type

setBoolean Boolean value

setByte Byte value

setBytes Array of bytes

setDate Date

setDouble Double value

METHOD: DATA TYPE:

setFloat Float value

setInt Integer value

setLong Long value

setNull Null value

setObject Object

setShort Short value

setString String value

setTime Time

169

� The Web browser
displays the results of
calling a stored procedure.

Call Stored Procedure - Microsoft Internet Explorer

http://127.0.0.1:8080/examples/stored.jsp

789

888

444

Sandra

Barry

Johanne

1212

7777

2222

You can create a stored procedure by using a JSP
page to issue SQL commands to the database
server. You use the execute method of the
Statement object to issue the SQL statements
to the database server. When naming a stored
procedure, you can use a lowercase first letter
and then capitalize the first letter of each of the
following words to make the name easy to read.
For example, a stored procedure used to retrieve
records in an employee database with extension
numbers of more than three digits may be called
getLargeExt.

Example:

Statement stmt = con.createStatement();
stmt.execute("CREATE PROCEDURE getLargeExt AS
SELECT * FROM Employees WHERE extension > 999")

You can create a stored procedure directly on your
database server. The SQL statements and methods you
use to create a stored procedure on a database server
depend on the database program you are using. You
should consult your database program's documentation
for information.

Example:

CREATE PROCEDURE getLargeExt AS SELECT * FROM Employees
WHERE extension > 999

Á To create a ResultSet
object to store the results
returned from the database,
type ResultSet followed by a
name for the ResultSet object.

‡ Type = and the name of the
CallableStatement object
followed by dot.

° Type executeQuery().

· Type the code that
uses the results of the
stored procedure.

‚ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

168

JSP

CALL A STORED PROCEDURE

⁄ Type the code that
creates the connection to
the database that contains
the stored procedure.

¤ To create the
CallableStatement object
that will allow you to call a stored
procedure, type CallableStatement
followed by a name for the
CallableStatement object.

‹ Type = and the name
of the Connection
object followed by a dot.

› Type prepareCall("{}").

ˇ Between the braces, type
call followed by the name
of the stored procedure you
want to use.

A stored procedure is a set of instructions that are
stored on a database server. A stored procedure can
be as simple as an SQL statement that returns all

the information in a table, but stored procedures are most
often used to increase the efficiency of performing complex
queries on a database. For example, stored procedures are
ideal for tasks such as retrieving information based on a
number of parameters. Using stored procedures tends
to be more efficient than repeatedly using complex SQL
statements because the stored procedures are compiled
and executed within the database engine itself.

In order to use a stored procedure, the database program
must support stored procedures and the stored procedure
must be saved on the database server. Stored procedures
are usually supported by large database programs such
as Microsoft SQL Server and Oracle. Smaller database
programs such as Microsoft Access often do not support
stored procedures. You should consult the documentation
included with your software to determine whether your
database program supports stored procedures.

Before calling a stored procedure, you must first create a
CallableStatement object that will retrieve the stored
procedure from the database server. CallableStatement
objects are commonly named cstmt. To create a
CallableStatement object, you use the prepareCall
method of the Connection object created when the
database connection was set up. When using the
prepareCall method, you use the call keyword
followed by the name of the stored procedure you want
to call. The name must match the name of a stored
procedure already saved on the database server.

Once the CallableStatement object is created,
the executeQuery method is used to generate a
ResultSet object that will contain the results generated
by the database using the stored procedure.

CALL A STORED PROCEDURE

WORK WITH DATABASES 7

171

• getALL;1
• getBig;1
• getExt;1
• getLarge;1
• getNow;1

170

JSP

GET DATABASE INFORMATION

⁄ To retrieve information
about the database to which a
connection has been created,
type DatabaseMetaData
followed by a name for the
DatabaseMetaData object.

¤ Type = and the name of
the Connection object
followed by .getMetaData().

‹ To create a result
set, type ResultSet
followed by a name for
the ResultSet object.

› Type = and the name
of the DatabaseMetaData
object followed by
.getProcedures(). Between
the parentheses, type the
arguments for the method.

ˇ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

� The Web browser
displays the result of
retrieving information
about a database.

T he DatabaseMetaData object allows you to
determine information about a database. Information
you can determine using the DatabaseMetaData

object includes a database program's configuration, the
features the database supports and information about
data stored in the database.

To determine information about a database, you
first create a DatabaseMetaData object using the
getMetaData method of the Connection object
created when the connection was set up.

Once you create a DatabaseMetaData object, there
are several methods of the object that you can use to
determine specific information about the database to
which you are connected.

One common use of the DatabaseMetaData object
is to determine if a specific stored procedure exists on a
database server. Stored procedures allow you to perform
efficient queries on a database by storing and executing
the instructions for the queries on the database server

itself. You use the getProcedures method of the
DatabaseMetaData object to retrieve the names of
stored procedures available to the JSP page connected
to the database. Using three null values as the arguments
of the getProcedures method will retrieve a list of all
the available stored procedures.

The information returned from the database using the
DatabaseMetaData object is usually stored in a result set.
Once information has been retrieved from a database and
placed in a result set, you can retrieve the data from the
result set. For information about retrieving information
from a result set, see page 150.

Not all databases or database drivers will support all of
the methods available to the DatabaseMetaData object.
Typically, if a database or a database driver does not support
a method implemented by the DatabaseMetaData object,
an exception error will be generated. For information about
error handling, see page 174.

GET DATABASE INFORMATION

WORK WITH DATABASES 7

COMMONLY USED METHODS OF THE DatabaseMetaData OBJECT

METHOD: DATA TYPE:

boolean allProceduresAreCallable() Determines whether a user can call all the procedures returned
by the getProcedures method.

ResultSet getCatalogs() Returns the catalog names that the database contains.

Connection getConnection() Returns the ID of the connection that produced the
DatabaseMetaData object.

String getDatabaseProductName() Returns the name of the database program.

String getDatabaseProductVersion() Returns the version number of the database program.

String getDriverVersion() Returns the version number of the JDBC driver.

int getMaxColumnNameLength() Returns the maximum length allowed for column headings.

int getMaxConnections() Returns the maximum number of active connections the
database can support at one time.

int getMaxRowSize() Returns the maximum length allowed for a row.

int getMaxStatementLength() Returns the maximum length allowed for an SQL statement.

ResultSet getProcedures(String Returns the stored procedures available in the database.
catalog, String schemaPattern,
String procedureNamePattern)

String getSQLKeywords() Returns a comma-separated list of all the SQL keywords from
the database.

ResultSet getTableTypes() Returns the table types available in the database.

String getUserName() Returns the user name used to access the database.

boolean isReadOnly() Indicates whether the database is in read-only mode.

boolean supportsBatchUpdates() Indicates whether the driver supports batch updates.

boolean supportsMultipleResultSets() Indicates whether you can create multiple result sets at once.

boolean supportsNonNullableColumns() Indicates whether you can specify that columns must
contain data.

boolean supportsOuterJoins() Indicates whether outer joins are supported.

boolean supportsStoredProcedures() Indicates whether you can use stored procedures with
the database.

boolean usesLocalFiles() Indicates whether the database stores tables in a local file.

There are several methods of the DatabaseMetaData
object that you can use to determine information
about a database. For a complete list of the methods
supported by the DatabaseMetaData object, consult
the java.sql package documentation. Before using

any of the following methods in your JSP code, you
should check your database program's documentation
to verify whether the program supports the method
you want to use.

173

° Create a try block
and a catch block that
will handle any exceptions
that may be thrown when
retrieving information
from the database.

· Type the code that
creates the getter method
that will retrieve information
from the record set and
return the value of a
property specified in step 2.

‚ Create a try block and a
catch block that will handle
any exceptions that may be
thrown while accessing the
database.

— Save the file with the .java
extension and then compile
the source code for the file.

172

JSP

USING A JAVABEAN TO ACCESS A DATABASE

⁄ Type the code that imports
the java.sql package and
creates a JavaBean class.

¤ Type the code that declares a
ResultSet object and declares
a property for each column in
the database you want to be
able to access from a JSP page.

ˇ Create a try block and a
catch block that will handle any
exceptions that may be thrown
when loading the bridge driver.

Á Type the code that creates
a Connection object that
specifies the location of the
database you want to connect to.

‡ Type the code that
retrieves information
from the database and
stores it in a result set.

A ccessing a database from a JSP page requires large
amounts of Java code. You can use a JavaBean to
separate the code that performs this task from the

HTML code in the JSP page.

The code required to create a JavaBean that accesses a
database is similar to that used to access a database directly
from a JSP page. To retrieve information from a database, you
must set up a connection to the database and then create a
result set to store the retrieved information.

You can create a constructor method to perform initialization
tasks in the JavaBean. A constructor method has the same
name as the class and is executed when the JavaBean is
instantiated. The constructor method for a JavaBean that
accesses a database may load the appropriate drivers and
connect to the database. You use the Class.forName
statement to specify the name of the driver you want to load.
A Connection object in the constructor method allows the

JavaBean to connect to the database. The constructor method
should also include the code to retrieve information from the
database and store the information in a result set.

Retrieving information from a result set must be done using
JavaBean properties. You can create a property and getter
method for each column in the database you want to be
made available through the JavaBean. For more information
about getter methods, see page 128. You should declare the
ResultSet object and properties in the body of the class.
If you declare the object and properties elsewhere, such as
within a method of the class, the getter methods may not
be able to access the result set or the properties.

When using a JavaBean to access a database, errors may
occur. You should ensure that the JavaBean includes try
blocks and catch blocks to handle any errors.

USING A JAVABEAN TO ACCESS A DATABASE

WORK WITH DATABASES 7
To use a JavaBean you created to access a database, you use
the property attribute of the <jsp:getProperty> tag to
specify which column in the database you want to access. The
JavaBean will then make the connection to the database and
use the appropriate getter method of the JavaBean required to
retrieve the information.

<html>
<head>
<jsp:useBean id="DbBean" scope="session" class="GetDbInfo" />
<jsp:setProperty name="DbBean" property="*" />
</head>
<body>
The first three names in the database are:

<%
for (int x = 0; x < 3; x++)
{
%>

<jsp:getProperty name="DbBean" property="name" />
<%
}
%>

</body>
</html>

The first three names in the database are:

� James
� Steven
� Marcia

TYPE THIS: RESULT:

‹ Type the code that
creates the constructor
method for the JavaBean.

› Type the code that
loads the bridge driver.

± Copy the compiled
class file to the appropriate
directory on your Web
server.

� You can now use the
JavaBean to access a
database in your JSP pages.

