
123

The JavaBeans you create for your JSP pages
are platform independent. This means that
a JavaBean created on a computer with a
UNIX-based operating system, such as Linux,
can be used on a computer running a different
operating system, such as Windows.

There are many JavaBeans available on the
Internet that you can use with your JSP pages.
If you need a JavaBean to perform a specific
task but do not want to create the JavaBean
yourself, you may be able to purchase a
ready-made JavaBean or have a programmer
create a custom JavaBean according to your
specifications.

JavaBeans were originally developed as
a way for Java programmers to easily
create and share re-usable portions of
code for Java programs. If you want to create
JavaBeans for use with your own stand-alone
Java applications, you should obtain the
Beans Development Kit (BDK). The BDK is
available for download free of charge at the
java.sun.com/products/javabeans Web site.

Integrated Development Environments (IDEs)
are specialized programs used to create Java
applications. Most Java IDEs can also be used
to create JSP pages and JavaBeans. If you
intend to create many JavaBeans for use
with your JSP pages, you should consider
purchasing an IDE.

‡ Type the opening and
closing braces that will
contain the body of the
method.

° Type the code for
the task you want the
method to perform.

· Repeat steps 4 to 8 for each
method you want the JavaBean
to contain.

‚ Save the file with the .java
extension and then compile the
source code for the file. For
information about compiling
Java code, see page 20.122

JSP

CREATE A JAVABEAN

⁄ If you want to store
the JavaBean in a package,
type package followed by
the name of the package
directory you created on
the Web server.

¤ To declare a class in the
JavaBean, type public class
followed by a name for the
class.

‹ Type the opening and
closing braces that will
contain the body of the
class.

› To declare a method,
type public followed by the
return type of the method.

ˇ Type the name of the
method followed by ().

Á Between the
parentheses, type any
arguments the method
requires.

A JavaBean is a class file that stores Java code for a JSP
page. Although you can use a scriptlet to place Java
code directly into a JSP page, it is considered better

programming practice to store the code in a JavaBean.

JavaBeans offer several advantages. Using a JavaBean
allows you to keep the Java code for a JSP page separate
from the HTML code for the page, which can help keep
the code from becoming long and difficult to work with.
In addition, one JavaBean can be used with multiple JSP
pages, which saves you from having to retype the same
Java code in several pages.

JavaBeans also enable specialization when developing
a Web site. For example, experts in Web page design
can work with the HTML content of a JSP page, while
programmers develop the Java code that will make the
page dynamic. This allows both types of professionals
to concentrate on their own areas of expertise.

You create a JavaBean as you would create any class file.
JavaBeans can contain one or more methods. After creating

the Java source code for a JavaBean, you must compile
the code.

Once the JavaBean code has been compiled, you must
copy the JavaBean to the appropriate directory on your
Web server. On the Tomcat Web server, JavaBeans are
usually stored in a directory named classes. Consult the
documentation for your Web server to determine which
directory you should use to store your JavaBeans.

You can organize your JavaBeans by storing them in
packages. A package is a set of related class files stored
together in a directory. To create a package for your
JavaBeans, create a subdirectory within the directory
that stores JavaBeans on your Web server and then store
your JavaBeans in that subdirectory. Packages you create
for JavaBeans are similar to packages that store class files
in the Java SDK. For information about creating packages
in the Java SDK, see page 50.

CREATE A JAVABEAN

HARNESSING JAVABEANS 6

— Copy the compiled
class file to the appropriate
directory on your Web
server.

� You can now set up a JSP
page to use the JavaBean.

125

� You can now use
the JSP page to access
a JavaBean.

When the JSP engine encounters the <jsp:useBean> tag, it uses
the information specified in the tag to locate or create an instance
of the JavaBean. If an instance already exists, the <jsp:useBean>
tag is not processed. To ensure that code is processed only if a new
instance of a JavaBean is created, you can place the code between
an opening <jsp:useBean> tag and a closing </jsp:useBean>
tag. For example, using the <jsp:setProperty> tag between the
<jsp:useBean> tags allows you to initialize properties only when
a new instance of the JavaBean is created.

Example:
<jsp:useBean class="mybeans.lineBean" id="lineBeanId" scope="session">

<jsp:setProperty name="lineBeanId" property="counter" value="0" />
</jsp:useBean>

When creating an instance of a JavaBean, the <jsp:useBean> tag may
insert an additional method into the JavaBean instance that does not exist
in the original JavaBean. This method, called a constructor, is a special
method that has the same name as the class and is processed when the
JavaBean instance is first created. Constructors are often used to initialize
values. It is good programming practice to include a constructor in
your JavaBean code, even if you do not plan to use the constructor.
If a JavaBean does not include a constructor, the <jsp:useBean>
tag will automatically create an empty constructor for you.

Example:
public void lineBean
{
}

Á Type scope=. ‡ Type the scope for
the JavaBean instance,
enclosed in quotation
marks.

° Type /> to close the tag.

· Save the page with the
.jsp extension.

124

JSP

SET UP A JSP PAGE TO USE A JAVABEAN

⁄ To locate or create an
instance of the JavaBean,
type <jsp:useBean.

¤ Type class=.

‹ Type the full class
name of the JavaBean,
enclosed in quotation
marks.

› Type id=. ˇ Type a name that
will identify the JavaBean
instance, enclosed in
quotation marks.

O nce you have created a JavaBean, you can use the
<jsp:useBean> tag to set up a JSP page to access
the JavaBean.

The <jsp:useBean> tag associates the JSP page with a
specific JavaBean. This tag has several attributes that you
must use in order to ensure that the correct JavaBean is used
and that the JSP page can access the JavaBean. The class
attribute allows you to specify the full class name of the
JavaBean you want the JSP page to use. If the JavaBean is
stored in a package, the full name will consist of the name
of the package and the name of the class, separated by
a dot.

The id attribute allows you to specify a case-sensitive
name that identifies the JavaBean instance. If an instance
of the JavaBean already exists, the id attribute identifies
the instance. If the JavaBean does not already exist, a new
instance is created.

The scope attribute allows you to specify when the JavaBean
instance will be available. If you want the JavaBean instance
to be available to a client only on the page in which the
instance is created, you can specify the page value. This
is the default value of the scope attribute. The request
value allows you to make the JavaBean instance accessible
to a client during a single request.

The session and application values of the scope
attribute allow you to make a JavaBean available within any
JSP page in the application. The session attribute makes
the JavaBean available to a single client for the duration of
the session, while the application attribute makes the
JavaBean available to multiple clients for the duration of
the application.

SET UP A JSP PAGE TO USE A JAVABEAN

HARNESSING JAVABEANS 6

127

� The Web browser displays
the results of accessing a
JavaBean method.

One of the features of JavaBeans is its ability to access
methods that share the same name but accept different data
types as arguments, referred to as method overloading. For
example, you can create two methods with the same name,
but one method may use an int data type as an argument
and the other method may use a String data type.

To create a JavaBean, type:
public String stars(int x)
{

String text = "
";
for (int i = 0; i < x; i++)

text = text + "*";
return text + "
";

}
public String stars(String x)
{

return "
* * " + x + " * *
";
}

To use the methods declared in the JavaBean, type:
<%= lineBeanId.stars(30) %>
<%= lineBeanId.stars("Welcome") %>

Result:

* * Welcome * *

› If necessary, specify
any arguments required
by the method within the
parentheses.

ˇ Type the code that
processes the method
call in the JSP page.

Á Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

126

JSP

ACCESS A JAVABEAN METHOD

⁄ Type the code that
sets up the JSP page to
use a JavaBean.

¤ To access a method in the
JavaBean, type the name of the
JavaBean followed by a dot.

� The name of the JavaBean
must be the same as the value
assigned to the id attribute of the
<jsp:useBean> tag in step 1.

‹ Type the name of
the method you want
to access, followed by
a set of parentheses.

Once you have created a JavaBean, you can add the
code that will access the methods in the JavaBean
to your JSP page.

Before accessing a JavaBean method, you must add the
<jsp:useBean> tag to the JSP page. This tag and its
attributes ensure that the correct JavaBean will be used
and that the JSP page has access to the JavaBean. For
more information about setting up a JSP page to use a
JavaBean, see page 124.

To access a method in a JavaBean, you create a scriptlet that
includes the name of the JavaBean, followed by the name of
the method you want to call. The name of the JavaBean is
specified in the id attribute of the <jsp:useBean> tag.
The name is case-sensitive and must be typed in the code
that calls the method exactly as it was typed in the tag.

You can also include any arguments that the method may
require in the scriptlet. If a method returns a result that
can be displayed on a JSP page, you can use an expression
to display the returned value.

Prior to accessing a method in a JavaBean, you should
make sure that the JavaBean source code you created
has been compiled and that the Web server has access
to the JavaBean class files. JavaBeans are usually stored
in a directory called classes on the server. For example,
when using a Tomcat Web server, you must save the
class files in the classes subdirectory of the main Tomcat
directory. If the classes subdirectory does not exist,
you should create the subdirectory. To determine which
directory you should use to store your JavaBeans, consult
the documentation for your Web server.

ACCESS A JAVABEAN METHOD

HARNESSING JAVABEANS 6

129

A getter method can be used to return various types
of data, including a boolean value of true or false.
When declaring a getter method that returns a boolean
value, the method name can be prefixed by is instead
of get. This can help make your code easier to read
and understand. If you choose to use is when
returning a boolean value, you should do so
consistently throughout your code.

For example:
public boolean getJobStatus()

{
return jobStatus;

}

Can be typed as:
public boolean isJobStatus()

{
return jobStatus;

}

You should declare the method that assigns a property
an initial value in the body of the class. If you declare
the method elsewhere, such as in another method, the
getter method may not be able to access the value.

‡ To declare a getter
method that will return
the value of the property,
type public followed by
the data type of the value.

° To name the method,
type get immediately
followed by the name of
the property, beginning
with a capital letter. Then
type ().

· Type return followed by
the name of the property.
Enclose the code in braces.

‚ Save the file with the
.java extension and then
compile the source code
for the file. 128

JSP

CREATE A JAVABEAN PROPERTY

⁄ Type the code that
creates a JavaBean. For
information about creating
a JavaBean, see page 122.

¤ To create a property for
the JavaBean, type private
followed by the data type
of the value the property
will store.

‹ Type a name for the
property.

› Declare a method to
assign the property an
initial value.

ˇ In the body of the
method, type the name of
the property followed by =.

Á Type an initial value
for the property.

Y ou can create a property to store information about
a JavaBean. Properties are fields that define the
behavior of a JavaBean.

After creating the code for a JavaBean, you can specify a
property you want the JavaBean to contain. To do so, you
specify the data type of the value the property will store
and a name for the property. You can then create a method
that assigns the property an initial value.

JavaBean properties are private or protected fields, which
means they cannot be directly accessed by a JSP page. In
order to access the value of a property, you must create a
special method, called a getter method. A getter method,
also referred to as an accessor method, returns the value
of a property.

There are specific rules that must be followed when
declaring a getter method. The access modifier of the
method must be set to public and the data type of the
value to be returned must be specified. The name of the

method is the same as the name of the property, but
begins with a capital letter and is prefixed by the word
get. For example, if you want to return the value of the
loginTime property, you would create a getter method
called getLoginTime. The name of a getter method is
followed by parentheses.

The body of a getter method includes a return statement
that specifies the name of the property whose value you
want to return.

When you finish creating the JavaBean source code, you
must compile the code and store the resulting class file in
the appropriate directory on your Web server. If you are
using the Tomcat Web server, the class file should be saved
in the classes directory located in the main Tomcat directory.
If the JavaBean is part of a package, the class file would be
stored in the appropriate package directory within the
classes directory.

CREATE A JAVABEAN PROPERTY

HARNESSING JAVABEANS 6

— Copy the compiled
class file to the appropriate
directory on your Web server.

� You can now access the
JavaBean property in a JSP
page.

131

� The Web browser
displays the result of
accessing a JavaBean
property.

› Type property= followed
by the name of the property
you want to access, enclosed
in quotation marks.

ˇ Type /> to close
the tag.

Á Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

130

JSP

ACCESS A JAVABEAN PROPERTY

⁄ Type the code that sets
up the JSP page to use a
JavaBean. For information
about setting up a JSP
page, see page 124.

¤ To access a property
in the JavaBean, type
<jsp:getProperty.

‹ Type name= followed by
the name of the JavaBean
that contains the property
you want to access, enclosed
in quotation marks.

� The value you assign
to the name attribute
must be the same as
the value you assigned
to the id attribute of
the <jsp:useBean> tag
in step 1.

T he <jsp:getProperty> tag can be used in a
JSP page to access a property of a JavaBean. When
the <jsp:getProperty> tag retrieves the value

of a property, the tag converts the value to a string and
then inserts the value into the JSP page output.

Before accessing a JavaBean property, you must add the
<jsp:useBean> tag to the JSP page. This tag and its
attributes ensure that the correct JavaBean is used and
that the JSP page has access to the JavaBean.

The <jsp:getProperty> tag must be embedded
in the HTML code of a JSP page. You cannot place the
<jsp:getProperty> tag in Java code that generates
HTML code. The tag must also be placed in an area of
a page that can be displayed in a Web browser, such
as within the <body> tag.

The <jsp:getProperty> tag has two required
attributes. The name attribute allows you to specify the
name of the JavaBean that contains the property you want
to access. The value you assign to the name attribute must
be the same as the value you assigned to the id attribute
of the <jsp:useBean> tag.

You use the property attribute to specify the name of
the property you want to access. You should be careful
to use the correct uppercase and lowercase letters when
typing the name of the property you want to access.
If you do not enter the name of the property correctly,
the <jsp:getProperty> tag will not be able to locate
the property in the JavaBean and will return an error
message.

ACCESS A JAVABEAN PROPERTY

HARNESSING JAVABEANS 6

JavaServer Pages code is processed by the Web server and
then sent to the Web browser as HTML code. People can
view the HTML source code for a JSP page, but they will not
be able to view the JavaServer Pages code. This means that
users viewing the source code for a JSP page that contains
the <jsp:getProperty> tag will not see the actual tag.
Instead, they will see the value returned by the tag.

The source code viewed in a Web browser: The actual code of the JSP page:

133

� The Web browser
displays the result of
setting a JavaBean
property.

USE A JSP PAGE TO SET A
JAVABEAN PROPERTY

⁄ Type the code that sets up
the JSP page to use a JavaBean.

¤ Type <jsp:setProperty name=
followed by the name of the
JavaBean that contains the
property you want to set,
enclosed in quotation marks.

‹ Type property= followed
by the name of the property
you want to set, enclosed in
quotation marks.

› Type value= followed
by a value for the property,
enclosed in quotation
marks.

ˇ Type /> to close the tag.

Á Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

132

JSP

SET A JAVABEAN PROPERTY

DECLARE A SETTER
METHOD

⁄ Type the code that
creates a JavaBean and
include any properties
you want the JavaBean
to contain.

¤ To declare a setter method
that will change the value of
a property, type public void.

‹ To name the method, type
set immediately followed by
the name of the property you
want to change, beginning with
a capital letter. Then type ().

› Between the parentheses,
type the data type of the
property followed by a
variable.

ˇ Type the name of the
property followed by = and
the variable. Enclose the
code in braces.

Á Save the file with the
.java extension and then
compile the source code
for the file.

‡ Copy the compiled
class file to the appropriate
directory on your Web
server.

A JSP page can be used to change the initial value of
a JavaBean property. Changing the value of a property
will affect how the JavaBean works.

To change the value of a JavaBean property, you must
declare a setter method in the code for the JavaBean.
Setter methods are often referred to as accessor methods.
A setter method can work with a getter method. When
used together, they allow a JSP page to write and read
the value of a JavaBean property. For more information
about getter methods, see page 128.

The access modifier of a setter method must be set to
public and the return type set to void, since the method
does not return a value. The name of the method is the
same as the name of the property to be changed, but begins
with a capital letter and is prefixed by the word set. The

parentheses at the end of the setter method name enclose
the data type of the property and a variable to store the
value passed by a JSP page.

The <jsp:useBean> tag must be included in the JSP
page you want to use to access a JavaBean. For information
about this tag, see page 124. The <jsp:setProperty>
tag and its attributes can then be used to change the value
of a JavaBean property.

The name attribute allows you to specify the name of
the JavaBean that contains the property you want to set.
The value you assign to the name attribute must be the
same as the value you assigned to the id attribute of the
<jsp:useBean> tag. The property attribute specifies
the name of the property whose value you want to set.
The value attribute specifies the value for the property.

SET A JAVABEAN PROPERTY

HARNESSING JAVABEANS 6

Before you can change or retrieve a JavaBean
property, the JSP engine must examine the
JavaBean to determine if the property exists.
A JSP engine is Web server software that
processes JSP pages. When a JSP page
attempts to access a JavaBean property, the JSP
engine uses a process called introspection to
examine the JavaBean. If the JSP engine finds
a getter method, setter method or both for
the property, then the property exits and can
be accessed. A property without an accessor
method does not exist. This is why the naming
conventions for accessor methods are so rigid.

When the <jsp:getProperty> tag retrieves the value
of a property, the value is converted to a string and then
inserted into the JSP page output. If the value retrieved is
a string, then no data conversion is required. Otherwise,
the JSP engine will automatically convert the data using
the appropriate class of the java.lang package.

boolean java.lang.Boolean.valueOf(string)

byte java.lang.Byte.valueOf(string)

char java.lang.Character.valueOf(string)

double java.lang.Double.valueOf(string)

int java.lang.Integer.valueOf(string)

float java.lang.Float.valueOf(string)

long java.lang.Long.valueOf(string)

VALUE DATA TYPE: DATA CONVERSION CLASS:

135

In a JavaBean, you may want to declare a
getter method that allows the JSP page to
retrieve the value of a single element of
an indexed property. You can use this
getter method to display the value of a
single element from an indexed property
instead of having to display all the values
of an indexed property at one time. You
can have more than one getter method
with the same name in a JavaBean.

Example:
public String getSections(int x)
{

return sections[x];
}

You can declare a setter method that
allows the JSP page to change all the
values stored in an indexed property
in a JavaBean. Changing all the values
stored in an indexed property at once is
more efficient that using a setter method
to change the value of each element of
an indexed property individually.

Example:
public void setSections(String[] i)
{

for (int x = 0; x < i.length; x++)
sections[x] = i[x];

}

DECLARE A SETTER
METHOD

Á Type public void.

‡ Type set immediately
followed by the name of
the indexed property,
beginning with a capital
letter. Then type ().

° Between the parentheses,
type int x, followed by the
data type of the indexed
property and a variable name.

· Type the name of the
indexed property followed
by [x] =. Then type the
variable and enclose the
code in braces.

134

JSP

WORK WITH AN INDEXED JAVABEAN PROPERTY

CREATE AN INDEXED
JAVABEAN PROPERTY

⁄ Type the code that
creates a JavaBean. For
information about creating
a JavaBean, see page 122.

¤ Type the code that creates
an array to be used as an
index property and specifies
the values you want to store
in the array. For information
about creating an array, see
page 48.

DECLARE A GETTER METHOD

‹ Type public followed by
the data type of the return
value of the method.

› Type get immediately
followed by the name of the
method, beginning with a
capital letter. Then type ().

ˇ Type the code that will
access and return the values
from the indexed property.

Y ou can create an indexed property to store a collection
of related information about a JavaBean. To create an
indexed property, you first specify an array of values

the indexed property will store. For information about
creating arrays, see page 48.

In order to allow a JSP page to access the values of an
indexed property, you must declare a getter method in the
JavaBean. The access modifier of the getter method must be
set to public and the data type of the return value must be
specified. The name of the method is the same as the name
of the indexed property, but begins with a capital letter and
is prefixed by the word get. The body of a getter method
includes a return statement that returns the values stored
in the indexed property.

To allow a JSP page to change the values stored in an indexed
property, you must declare a setter method in the JavaBean.

The access modifier of a setter method must be set to
public and the return value set to void. The name of the
method is the same as the name of the indexed property but
begins with a capital letter and is prefixed by the word set.
The parentheses at the end of the setter method name must
contain two arguments. The first argument represents the
index of the element that is to be changed in an indexed
property, while the second argument represents the new
value to be placed in the element.

When you finish creating the JavaBean source code, you
must compile the code and store the resulting class file in
the appropriate directory on your Web server. If the JavaBean
is part of a package, the class file must be stored in the
appropriate package directory within the class file directory.

CREATE AN INDEXED JAVABEAN PROPERTY

HARNESSING JAVABEANS 6

‚ Save the file with the .java
extension and compile the
source code. Then copy the
compiled class file to the
appropriate directory on your
Web server.

� You can now access the
indexed JavaBean property
in a JSP page.

137

� The Web browser
displays the results
of using the getter
and setter methods
to access an indexed
property in a JavaBean.

If you declared a getter method in your
JavaBean that allows you to retrieve the value
of a single element of an indexed property, you
can call the method in your JSP page. When
retrieving all the values of an indexed property,
you usually do not need to pass any arguments
to the getter method, however, if you want to
retrieve the value of a single element, you must
pass the index number of the element. Keep
in mind that the first element of an indexed
property has an index number of 0. This means
that if you want to retrieve the third element of
an indexed property, you must pass an index
number of 2.

Example:
<%= myBeanId.getSections(2) %>

If you declared a setter method in your JavaBean
that allows you to change all the values stored in
an indexed property, you can call the method in
your JSP page. When changing all the values of an
indexed property, you pass an array containing all
the new values to be stored in the indexed property
as an argument.

Example:
<%
String[] t = {"Accounting", "Operations", "Transport"};
myBeanId.setSections(t);
%>

CALL A SETTER METHOD

ˇ Type the name of the
JavaBean that contains the
indexed property you want
to access followed by a dot.

Á Type the name of the
setter method followed by
a set of parentheses.

‡ Between the parentheses,
type the index number of the
element you want to change
followed by a comma. Then
type the new value you want
to assign to the element.

° Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

136

JSP

ACCESS AN INDEXED JAVABEAN PROPERTY

⁄ Type the code that sets
up the JSP page to use a
JavaBean. For information
about setting up a JSP
page to use a JavaBean,
see page 124.

CALL A GETTER METHOD

¤ Type the name of the
JavaBean that contains the
indexed property you want
to access followed by a dot.

� The name of the JavaBean
must be the same as the value
assigned to the id attribute of
the <jsp:useBean> tag in
step 1.

‹ Type the name of the
getter method followed
by a set of parentheses.

› Type the code that
uses the method call.

A fter creating a JavaBean that has an indexed property,
you can access the values stored in the indexed
property from your JSP page.

First, you must set up the JSP page to use a JavaBean.
To set up a JSP page, you must add the <jsp:useBean>
tag to the page. This tag and its attributes ensure that the
correct JavaBean is used and that the JSP page has access
to the JavaBean. See page 124 for more information about
setting up a JSP page to use a JavaBean.

You should make sure that the name of the JavaBean you
specify in the <jsp:useBean> tag is the JavaBean that
contains the indexed property you want to access. A
JavaBean must also contain the accessor methods that
allow the JSP page to retrieve and alter the values of the
indexed property.

To display the values of an indexed property, you add code
that calls a getter method to your JSP page. Since a getter
method usually returns a value, you can use an expression
to display the returned value.

You can change the value of an element of an indexed
property by calling a setter method declared in the
JavaBean. A setter method is called from within a scriplet
in your JSP page and usually does not return any value.
To change the value of an element using the setter method,
you must pass the index number of the element and the
new value to the method as arguments.

After changing the value of an element of an indexed
property, you may want to once again call the getter
method to display the values. This is an easy way to
confirm that the setter method is working properly.

ACCESS AN INDEXED JAVABEAN PROPERTY

HARNESSING JAVABEANS 6

139

Data can also be passed to a JSP page by a query string. A query
string is one or more name and value pairs appended to the URL of
a page. To create a query string, you enter the URL of the JSP page in
a Web browser, followed by a question mark. You then enter a name
followed by an equal sign and a value for the name. To enter multiple
name and value pairs, separate each pair with an ampersand (&).
A query string should not exceed 2000 characters and should not
contain spaces.

Example:
http://www.abccorp.com/processform.jsp?userName=Ernest&location=USA

You can create a JavaBean that will store data submitted by a query
string just as you would create a JavaBean to store data from a form.
The JavaBean should contain a property for each name and value
pair that will be submitted. The property names should match the
names submitted by the query string. For example, if the name and
value pair userName=Ernest will be submitted by a query string,
the JavaBean should contain a property called userName.

· Type the code that
declares a getter method.
The getter method will
return the value of the
specified property.

‚ In the body of the
getter method, type
return followed by the
name of the property.

— Repeat steps 9 and 10
for each getter method
you want to declare.

± Save the file with the
.java extension and then
compile the source code
for the file.

138

JSP

CREATE A JAVABEAN TO STORE FORM DATA

⁄ Type the code that creates
a JavaBean.

¤ To create a property that
will store a value from a form
element, type private followed
by the data type of the value
the property will store.

‹ Type a name for the
property. The name should
match the name of the
corresponding form element.

› Repeat steps 2 and 3 for
each property you want to
create.

ˇ Type the code that declares
a setter method. The setter
method will assign a form
value to the specified property.

Á Between the parentheses
at the end of the setter method
name, type the data type of the
property followed by a variable.

‡ In the body of the
setter method, type the
name of the property
followed by = and the
variable.

° Repeat steps 5 to 7
for each setter method
you want to declare.

J avaBeans can be used to help a JSP page process data
submitted by a form. For example, a JavaBean can store
the values submitted by a form and allow the JSP page

to retrieve and manipulate the values. Using a JavaBean to
manage the data submitted by a form can make the data
easier to work with.

While simple forms can be processed entirely by scriptlets
within a JSP page, complex forms that contain many
elements are best handled using JavaBeans. Using
JavaBeans helps make the code that processes a form
easier to manage, maintain and modify.

A JavaBean that will manage data submitted by a form
should contain a property for each element in the form.
The properties will store the values from the form elements.
The names of the JavaBean properties should match the
names of the form elements. For example, a property that
will store the value of a text box named username should
be called username.

You must declare a setter method for each property you
create. If you want the JSP page to be able to retrieve the
values stored in the properties, you must also declare a
getter method for each property. These methods are often
referred to as accessor methods. A setter method allows
you to assign a value from a form to a JavaBean property.
A getter method returns the value of a property. The
conventions you must use when declaring setter and
getter methods are very strict. For information about
declaring a setter method, see page 135. For information
about declaring a getter method, see page 134.

Once you have created the JavaBean source code, you
must compile the code and store the resulting class file
in the appropriate directory on your Web server.

PROCESS FORM DATA USING A JAVABEAN

HARNESSING JAVABEANS 6

CONTINUED

¡ Copy the compiled
class file to the appropriate
directory on your Web server.

� You can now set up a JSP
page to use the JavaBean
when processing
form data.

141

If the names of the properties in the JavaBean
do not match the names of the elements in
the form, you must set the value of each
property individually. To set the value of a
property, use the property attribute to
specify the name of the property and the
param attribute to specify the name of its
corresponding form element. For example,
the following line of code assigns the value
of a form element named clientName to a
property called userName.

Example:
<jsp:setProperty name="processFormBean"
property="userName" param="clientName"/>

A form does not have to be submitted
directly to the JSP page that will process
the form data. The form can be submitted
to a JSP page and then forwarded to
another JSP page. For example, form
data can be submitted to a JSP page that
verifies data before being forwarded to
the JSP page that will process the data.
The <jsp:forward> tag can be used
to pass form data from one JSP page to
another.

Example:
<jsp:forward page="process.jsp"/>

⁄ In a Web browser, display
the Web page containing the
form you want to process.

¤ Enter data into the form.

‹ Click the submit
button to pass the data in
the form to the JSP page.

� The Web browser displays
the result of using a JavaBean
to process data from the form.

140

JSP

SET UP A JSP PAGE TO PROCESS FORM DATA PROCESS FORM INFORMATION

⁄ Type the code that
sets up the JSP page
to use a JavaBean.

¤ To set the JavaBean
properties with values
from a form, type
<jsp:setProperty.

‹ Type name= followed by
the name of the JavaBean that
contains the properties you want
to set, enclosed in quotation
marks.

� The value you assign to the
name attribute must be the
same as the value you assigned
to the id attribute of the
<jsp:useBean> tag in step 1.

› Type property="*" />.

ˇ Type the code that
will access the JavaBean
properties.

Á Save the page with
the .jsp extension.

T he JSP page you want to process form data using
a JavaBean must be set up to use the JavaBean.
The JSP page can simply pass form data to the

JavaBean and then retrieve and display the data. A JSP
page and JavaBean can also be used to perform a more
complicated task, such as storing the data in a database.

The <jsp:useBean> tag allows you to associate
the JSP page with the JavaBean you created to manage
form data. This tag must appear in the JSP page before
the <jsp:setProperty> tag, which is used to set
JavaBean properties. The property attribute of the
<jsp:setProperty> tag allows you to specify the
properties you want to set. If the names of the properties
match the names of the elements in the form, you can
quickly set all the properties in the JavaBean using
the * wildcard character.

When a form is submitted to the JSP page, the
<jsp:setProperty> tag will pass the form values

from the JSP page to the JavaBean, assigning the values
to the appropriate properties. The values are assigned
during the process of introspection, in which the
JavaBean is examined and its properties detected.

The <jsp:getProperty> tag allows the JSP page
to access a property of the JavaBean. This tag retrieves
the value of a property and automatically inserts the
value into the output of the JSP page. You must use a
<jsp:getProperty> tag for each property you want
to access.

In the code for the form the JSP page will process,
the action attribute of the <form> tag must specify
the correct filename and location of the JSP page. The
method attribute can specify either get or post.
The JSP page will be able to process the form regardless
of the method used to pass information to the page.

PROCESS FORM DATA USING A JAVABEAN

HARNESSING JAVABEANS 6

