
7978

JSP

I mplicit objects are created automatically when a
Web server processes a JSP page. The available
implicit objects include application, config,

exception, out, page, pageContext, request,
response and session. Each object is used to
perform a specific task, such as handling errors,

sending text generated by a JSP page to a Web browser
or interpreting information submitted by a form on a
Web page.

Implicit objects are available for use in every JSP page
you create. You do not have to write code that imports
or instantiates an implicit object.

INTRODUCTION TO IMPLICIT OBJECTS

WORK WITH JSP IMPLICIT OBJECTS 4

Object Scope

The scope of an object determines where the
object can be accessed in an application. For
example, the session object has session
scope, which means that the object can be
accessed by any JSP page processed during
a session. Most implicit objects have page
scope. When an object has page scope, the
object can be accessed only in the JSP page in
which the object was created. You can access
implicit objects only from within scriptlets or
expressions on a JSP page. Implicit objects are
not available for use in directives, such as the
page directive.

Class Files

Since JSP pages use the
underlying servlet technology
of the Web server, implicit
objects are usually derived
from class files that are part of
the servlet packages. For more
information about implicit
objects and the servlet
packages, you can consult the
Java SDK documentation.

OBJECT: SCOPE:

application application

config page

exception page

out page

page page

pageContext page

request request

response page

session session

OBJECT: CLASS:

application javax.servlet.ServletContext

config javax.servlet.ServletConfig

exception java.lang.Throwable

out javax.servlet.jsp.JspWriter

page java.lang.Object

pageContext javax.servlet.jsp.PageContext

request javax.servlet.ServletRequest

response javax.servlet.ServletResponse

session javax.servlet.http.HttpSession

IMPLICIT OBJECTS

application

The application object is used to store
information about an application. An application
is a collection of JSP pages stored in a specific
directory and its subdirectories on a Web server.

config

The config object is used to store information
about the configuration of the environment in
which a JSP page is processed on a Web server.

exception

The exception object is used to handle errors
that may occur when a JSP page is processed.
The exception object also stores error
information.

out

The out object is used to send output generated
by a JSP page to a client's Web browser.

page

The page object is used to store information
about a JSP page while the page is being
processed. The page object is not typically
accessed from within a JSP page.

pageContext

The pageContext object is used to access
the characteristics of a JSP page that are
specific to the Web server processing the
page.

request

The request object is used to store
information supplied by a client, such as
data submitted in a form or the IP number
and name of the client computer.

response

The response object is used to store
information generated by a Web server
before the information is sent to a client.

session

The session object is used to store
information associated with a session. A
sessions starts when a client requests a JSP
page from a Web site and ends when the
client does not request another page for a
specific period of time or the session is
abandoned.

8180

JSP

form.jsp - Notepad

CREATE A FORM

form.jsp - Notepad

⁄ Type <form action=""
where you want to add
a form to a Web page.

¤ Between the quotation
marks, type the location
and name of the JSP page
that will process the data
entered into the form.

‹ Type method="">.

› Between the quotation
marks, type the method
the form will use to pass
data to the JSP page.

ˇ Type </form> where
you want to end the form.

� You can now add
elements to the form.

A dding a form to a Web page allows you to gather
data from users who visit the page. A form can
be placed anywhere between the <body> and

</body> tags in an HTML document. The body of your
Web page can include as many forms as you need.

You use the <form> tag to create a form and the action
attribute to specify the location and name of the JSP page
that will process the data entered into the form. If the
JSP page is stored in the same directory as the Web page
containing the form, you only have to specify the name
of the JSP page. If the JSP page is not stored on the same
Web server as the Web page containing the form, you
must specify the full URL of the JSP page.

You must also specify which method the form will use
to pass data to the JSP page. There are two methods the

form can use–get and post. The method you should
use depends on the amount of data that will be passed.
The get method sends data to the JSP page by appending
the data to the URL of the page. The post method sends
the data and the URL separately. The get method is faster
than the post method and is suitable for small forms. The
post method is suitable for large forms that will send more
than 2000 characters to the JSP page.

Unlike other technologies used to process form information,
JavaServer Pages can automatically determine whether a
form is submitting data using the get or post method
and then retrieve the information.

For information about creating a JSP page that processes
data from a form, see page 84.

CREATE A FORM

ADD ELEMENTS TO A FORM

⁄ To add a text box to a
form, type <input type="text"
name=""> between the
<form> and </form> tags.

¤ Between the quotation
marks, type a word that
describes the text box.

‹ To add a submit button
to the form, type <input
type="submit" name="">.

› Between the quotation
marks, type a word that
describes the button.

ˇ Display the Web page
in a Web browser.

� The Web browser
displays the text box
and submit button.

E lements are areas in a form where users can enter
data and select options. The most commonly used
element is a text box, which allows users to enter

a single line of data into a form. Text boxes are often used
for entering names, addresses and other short responses.

Elements you add to a form must be placed between the
<form> and </form> tags. A form can contain as many
elements as you need.

There are many different types of elements you can add
to a form, such as text areas and check boxes. Text areas
allow users to enter several lines or paragraphs of text,
while check boxes let users select options on a form. For
information about commonly used elements, see page 82.

Each form element has attributes, such as name, type
and size, which offer options for the element. The name

attribute allows you to provide a name for an element.
The name you specify is used by the JSP page that
processes the form to identify the element and access
the information in the element. A name can contain
letters and numbers, but should not contain spaces or
punctuation. If you want to include spaces in a name,
use an underscore character (_) instead.

You must add a submit button to every form you create.
The submit button allows users to send the data they
entered into the form to the Web server. When the Web
server receives data from a form, the server transfers the
data to the JSP page that will process the data. The JSP
page can then perform an action with the data, such as
storing the data in a database or displaying the information
in a Web browser.

ADD ELEMENTS TO A FORM

WORK WITH JSP IMPLICIT OBJECTS 4

COMMONLY USED ELEMENTS

8382

JSP

A n element is an area in a form where users can
enter data or select options. There are several
different types of elements you can add to a form.

Most elements require you to specify attributes that
determine how the element will appear on a Web page.

You can find more information about form elements
and attributes at the
www.w3.org/TR/1999/REC-html401-19991224/interact/forms
Web site.

FORM ELEMENTS

WORK WITH JSP IMPLICIT OBJECTS 4

COMMONLY USED ELEMENTS

COMMONLY USED ATTRIBUTES

Type

The type attribute allows
you to specify the kind of
element you want to use.

Password Box

A password box allows users to enter private data. When
a user types data into a password box, an asterisk (*)
appears for each character, which prevents others from
viewing the data on the screen. A password box does not
protect the data from being accessed as it is transferred
over the Internet. You must set the type attribute to
password and use the name attribute to create a
password box. You may also want to use the value,
maxlength and size attributes.

Password Please <input type="password"
name="secretWord" value="password" maxlength="20">

Drop-Down List

The select element displays a drop-down list that
allows users to select an option from a list of several
options. For example, a drop-down list can be used to
allow users to select one of three shipping methods.
You must use the name attribute to create a drop-down
list. You use the <option> tag with the value attribute
to add options to the list.

How would you like your products shipped?
<select name="shipMethod">
<option value="air">Air</option>
<option value="land">Land</option>
<option value="sea">Sea</option>
</select>

Name

The name attribute allows you to specify
a name for an element. The JSP page that will
process data from the element uses the name
attribute to identify the data. Element names
can contain more than one word, but should
not contain spaces or special characters.

Value

The value attribute allows you
to specify a value for an element.
If an element displays a button,
you can use the value attribute
to specify the text that will
appear on the button.

Maxlength

The maxlength attribute
allows you to restrict the
number of characters a user
can enter into an element.

Size

The size attribute allows you to
specify the width of an element.

Checked

The checked attribute allows
an element to display a selected
option by default.

Text Box

A text box allows users to enter a single line of text, such
as a name or telephone number. You must set the type
attribute to text and use the name attribute to create a
text box. You may also want to use the maxlength and
size attributes.

First Name <input type="text" name="firstName" maxlength="20">

Text Area

The textarea element displays a large text area that
allows users to enter several lines or paragraphs of text.
A large text area is ideal for gathering comments or
questions from users. You must use the name attribute
to create a text area.

Questions? <textarea name="userQuestions"></textarea>

Submit Button

A submit button allows users to send data in the form to
the JSP page that will process the data. You must add a
submit button to each form you create. You must set the
type attribute to submit to create a submit button. You
may also want to use the name and value attributes.

<input type="submit" name="submit" value="Submit Now">

Reset Button

A reset button allows users to clear the data they
entered into a form. A user cannot redisplay data that
has been cleared. Reset buttons are commonly used
in forms that have many text boxes. You must set
the type attribute to reset to create a reset button.
You may also want to use the value attribute.

<input type="reset" value="Click to Reset">

Check Box

Check boxes allow users to select one or more options. For
example, check boxes can be used to allow users to specify
which states they have visited. You must set the type attribute
to checkbox and use the name and value attributes to create
a check box. You may also want to use the checked attribute.

Which states have you visited in the past year?

New York <input type="checkbox" name="states" value="New York" checked>
California <input type="checkbox" name="states" value="California">
Texas <input type="checkbox" name="states" value="Texas">

Radio Button

Radio buttons allow users to select only one of several options.
For example, radio buttons can be used to allow users to specify
if they are male or female. You must set the type attribute to
radio and use the name and value attributes to create a radio
button. You may also want to use the checked attribute.

What is your gender?

Female <input type="radio" name="gender" value="female" checked>
Male <input type="radio" name="gender" value="male">

Password Please ********

Air

Sea
Land

AirHow would you like your products shipped?

First Name

Submit Now

Questions?

Click to Reset

Which states have you visited in the past year?
New York California Texas

What is your gender?
Female Male

85

PROCESS FORM INFORMATION

⁄ In a Web browser, display
the Web page containing the
form you want to process.

¤ Enter data into the form.

‹ Click the submit button
to pass the data in the form
to the JSP page.

� The Web browser
displays the result of
using the getParameter
method to process data
from the form.

84

JSP

USING THE GETPARAMETER METHOD

⁄ In the JSP page you want
to process data from a form,
type request.getParameter("").

¤ Between the quotation
marks, type the name of
the form element you
want to access.

‹ Type the code that
uses the data from the
form element.

› Repeat steps 1 to 3
for each form element
you want to process.

ˇ Save the page with
the .jsp extension.

A fter creating a form on a Web page, you can create a
JSP page that will process data submitted in the form.
The getParameter method of the request object

allows a JSP page to access form data.

You must specify the name of the form element you want
to access using the getParameter method. The name
you specify must be exactly the same as the name that
was assigned to the element when it was created. If the
element name you specify does not exist in the form,
the getParameter method will return a null value.

Once a JSP page has accessed data from a form element,
the page can perform a task, such as storing the data in
a file or a database. While JSP pages that process data
from forms do not need to generate any output, these
pages typically produce an acknowledgement message
or redirect a client to another page.

Some Web servers require JSP pages that process data
from a form to be saved in a specific directory. You should

check the latest documentation for your Web server to
determine where you should save a JSP page that processes
form information. If your Web server does not require the
JSP page to be saved in a specific directory, you may want
to save the page in the same directory as the form it
processes.

After saving the JSP page, you should review the code
for the Web page that contains the form to verify that
the action attribute displays the correct filename and
location for the JSP page.

Although the getParameter method is still commonly
used, the method is deprecated. This means that the
getParameter method is no longer recommended
and will eventually become obsolete. The
getParameterValues method is now the preferred
method for accessing information in a form element.
For more information about the getParameterValues
method, see page 86.

PROCESS DATA FROM A FORM
Using the getParameter Method

WORK WITH JSP IMPLICIT OBJECTS 4

When you use the getParameter method of the
request object to access data from a form, the data
is retrieved as a string value that can be assigned to
a variable and then used in your code.

<%
String id = request.getParameter("userName");
String locale = request.getParameter("region");
String message = "Login Name:" + id + "
";
message = message + "Location:" + locale;
%>
<html>
<head><title>Thank You</title></head>
<body>
Your information has been processed.<hr>
<%= message %>
</body>
</html>

Your information has been processed.
--
Login Name:Barry
Location:Texas

TYPE THIS:

RESULT:

87

Sales

PROCESS FORM INFORMATION

⁄ In a Web browser, display
the Web page containing the
form you want to process.

¤ Enter data into the
form.

‹ Click the submit
button to pass the data in
the form to the JSP page.

� The Web browser
displays the result of using
the getParameterValues
method to process data
from the form.

86

JSP

USING THE GETPARAMETERVALUES METHOD

⁄ In the JSP page you want to
process data from a form, type
request.getParameterValues("").

¤ Between the quotation
marks, type the name of
the form element you
want to access.

‹ Type the code that
assigns the data from the
form element to an array
variable.

› Type the code that
uses the data from the
form element.

ˇ Save the page with
the .jsp extension.

WORK WITH JSP IMPLICIT OBJECTS 4

T he getParameterValues method of the request
object can be used to access the data passed by a
form. The getParameterValues method is the

preferred method for accessing form data, although the
getParameter method can also be used. For information
about the getParameter method, see page 84.

The getParameterValues method is particularly useful
for accessing a form element that can contain multiple
values. For example, some drop-down lists allow users to
select more than one option. The getParameterValues
method returns the data in a form element as an array of
string values.

You must specify the name of the form element you want
to access using the getParameterValues method. The
name you specify must be exactly the same as the name
that was assigned to the element when it was created. If the
element name you specify does not exist in the form, the
getParameterValues method will return a null value.

You can assign the data returned by the
getParameterValues method to an array variable.
This allows you to work with the data in the form element.
For example, you can use a for loop to display each value
stored in the element.

When saving a JSP page that processes data from a form,
you should check the latest documentation for your Web
server to determine where you should save the page. Some
Web servers require you to save JSP pages that process
form data in a specific directory. If your Web server does
not specify the directory you should use, you may want
to save the JSP page in the same directory as the form it
processes.

After saving the JSP page, you should review the code
for the Web page that contains the form to verify that the
action attribute displays the correct filename and location
for the JSP page.

PROCESS DATA FROM A FORM
Using the getParameterValues Method

When processing data from a form, you should include
code in your JSP page that checks the validity of data a user
submits in the form. For example, if you want users to select
at least two options from a drop-down list, you can add
error-checking code that ensures two selections were made.

Please select at least 2 items.

FORM:

<%
String[] names = request.getParameterValues("info");
if (names.length > 1)
{

for (int x = 0; x < names.length; x++)
out.print(names[x] + "
");

}
else
{

out.print("Please select at least 2 items");
}
%>

IN THE JSP PAGE, TYPE: RESULT:

Please select at least two catergories you would like more information about:
Products

Contact Information
Order Information

Shipping Information
Employment

SubmitSubmitSubmit

89

° In a Web browser,
display the form whose
elements you want to
determine.

· Click the submit
button to pass the form
information to the JSP
page.

‚ The Web browser
displays the name of each
element in the form.

88

JSP

DETERMINE THE ELEMENTS IN A FORM

⁄ In the first line of code in
the JSP page, type <%@ page
import="java.util.Iterator" %>
to import the Iterator
interface from the
java.util package.

¤ To create a loop that will
process each element name
in a form, type for ().

‹ To create the initialization
expression for the for
statement, type Iterator
followed by a name for the
element names in a form.

› Type = followed by (Iterator)
request.getParameterNames(); to
cast the element names retrieved
by the getParameterNames
method as a collection.

ˇ To create a condition for the
for statement, type the name
of the collection followed by
.hasNext();.

Á Type the code that
will process each element
in the collection. Enclose
the code in braces.

‡ Save the page with
the .jsp extension.

T he getParameterNames method of the request
object can be used to retrieve the name of each
element a form contains. You may want to determine

the names of elements in a form to verify that the form
contains the correct elements. Being able to determine the
names of form elements also allows you to create a single
JSP page that can process data from several different forms.

Form elements do not have to contain data in order to be
included in the list retrieved by the getParameterNames
method. If you gave the submit button on your form a
name, the name will be included in the list of element
names.

An efficient way to work with the element names retrieved
by the getParameterNames method is to cast the
names as a collection, or iteration, that can be used by
the Iterator interface. An interface is a set of method
declarations that offers the same functionality as a class.

You must use the page directive with the import attribute
to import the Iterator interface from the java.util
package. For more information about the page directive,
see page 74. For more information about the Iterator
interface and the java.util package, you can refer to
the Java SDK documentation.

A for statement can be used to create a loop that will
process each element name in the collection. The next
method of the Iterator interface controls the loop,
so a re-initialization expression is not required in the
for statement.

When you create the code for the form whose elements
you want to determine, the action attribute of the
<form> tag must specify the name and location of
the JSP page you set up to process form information.

DETERMINE THE ELEMENTS IN A FORM

WORK WITH JSP IMPLICIT OBJECTS 4

The Iterator interface includes three methods that
can be used to work with a collection of elements.

NAME: DESCRIPTION:

hasNext This method is used to determine if there are any elements left to
process in the collection. The hasNext method returns a boolean
value of true if the collection has another element that can be
accessed. If there are no more elements in the collection, a value
of false is returned.

next This method returns the next element in the collection. If there
are no more elements in the collection, an error is generated.

remove This method discards the last element returned by the next method.
If the next method is not used before the remove method, an error
is generated.

91

� The Web browser
displays the results of
accessing client information.

ˇ To access the port
number for a client request,
type request.getServerPort().

Á Type the code that
uses the port number.

‡ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

90

JSP

ACCESS CLIENT INFORMATION

⁄ To access the IP address
of a client computer, type
request.getRemoteAddr().

¤ Type the code that
uses the IP address.

‹ To access the name
of a client computer, type
request.getRemoteHost().

› Type the code that
uses the name.

A JSP page can access information about a client
computer, such as the IP address and name of the
computer. Accessing information about a client

computer is useful if you want to verify the identity of a
client or perform an administrative task, such as creating
a log that documents Web site usage.

Every computer connected to a network using the TCP/IP
protocol has a unique IP address. The getRemoteAddr
method of the request object is used to access a client
computer's IP address and return the IP address as a string
value.

The getRemoteHost method of the request object
allows a JSP page to access the name of a client computer.
This method returns a string value containing the full
domain name of the client, such as computer2.abccorp.com.
The getRemoteHost method retrieves the name of
a client from your Web server, which uses a

Domain Name System (DNS) server to determine the
name based on the client computer's IP address. This means
that your Web server must be able to communicate with
a DNS server before the getRemoteHost method can
access the name of a client. If the method cannot access
the name of a client, it will return the client's IP address.

A JSP page can use the getServerPort method of
the request object to access the port number a client is
using for a request. This method returns an integer that
indicates which server port received the request. Using
the getServerPort method is useful when your server
uses different ports for different types of programs. For
example, if administrative programs use a specific port on
your server, accessing the port number lets you determine
whether a client is an administrator or a regular user.
This allows you to customize the content of a JSP page
depending on the type of client accessing the page.

ACCESS CLIENT INFORMATION

WORK WITH JSP IMPLICIT OBJECTS 4
Once you have accessed the IP address of a client computer,
you can use this information to grant or deny the client
access to your JSP page. You can use the indexOf method
to compare an IP address you specify to a client computer's
IP address. In the following example, a welcome message
appears when a client with an IP address beginning with
127.0.0 accesses the JSP page.

<%
String ipNumber = request.getRemoteAddr();
int postion = ipNumber.indexOf("127.0.0");

if (postion == 0)
{

out.print("Welcome to my Web site");
}
else
{

out.print("You are not authorized to continue");
}

%>

Welcome to my Web site

TYPE THIS:

RESULT:

93

� The Web browser displays
the information from the JSP
page. Any information that
was added to the buffer after
the last flush method does
not appear.

⁄ Type the code you
want to execute to
display information in
a user's Web browser.

¤ Type out.clearBuffer()
where you want to delete
the contents of the buffer.

‹ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

92

JSP

SEND CONTENTS OF BUFFER TO WEB BROWSER DELETE BUFFER CONTENTS

⁄ Type the code you
want to execute to
display information in
a user's Web browser.

¤ Type out.flush() directly
below the information you want
to send to a user's Web browser.

‹ Repeat step 2 for each
section of code you want to
send to a user's Web browser
at a time.

› Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

� The result of sending
the contents of the buffer
to the Web browser is
displayed.

T he buffer is a section of the Web server's memory
where a JSP page can be stored temporarily. When
a JSP page is being processed, the data for the page

is stored in the buffer instead of being sent directly to a
user's Web browser. When the buffer is full or the entire
JSP page has been generated, the Web server automatically
sends the contents of the buffer to the Web browser.

The flush method of the out object forces the Web server
to send the contents of the buffer to the Web browser.
This allows you to control when a user will see information
from your JSP page. For example, if your JSP page displays
a banner image followed by a large amount of data from a
database, you can use the flush method to force the JSP
page to display the banner first.

When you use the flush method, all the information in
the buffer is immediately sent to the user's browser and

the buffer is emptied. The next time the flush method
is called, the contents of the buffer will include only the
information processed since the flush method was
last used.

You can use the clearBuffer method of the out object
to clear information from the buffer before the information
is sent to a user's Web browser. The Web server deletes
any information that was processed and added to the buffer
since the clearBuffer method was last called or since
the beginning of the JSP page.

Deleting the contents of the buffer is useful when an error
occurs in a JSP page. For example, if there is information in
the buffer and the JSP page detects an error, you can clear
the information in the buffer and display an error message
in the user's Web browser.

WORK WITH THE BUFFER

WORK WITH JSP IMPLICIT OBJECTS 4

The size allocated for the buffer on the Web
server depends on a number of parameters,
such as the type of Web server you are using.
On Windows platforms, the default size of the
Tomcat Web server's buffer is 8 KB, or 8192
bytes. You can verify the size of the buffer on
your Web server using the getBufferSize
method of the response object.

The current size of the buffer, in bytes, is:
<%= response.getBufferSize() %>

The current size of the buffer, in bytes, is: 8192

TYPE THIS:

You can turn off buffering for specific JSP pages
using the page directive. This is useful for JSP
pages that require a small amount of processing.
When the buffer is turned off, the Web server
will send information to a user's Web browser as
the information is generated from the JSP code.
The page directive should be placed before any
HTML code in a JSP page. You may not be able
to turn off buffering for some Web servers, such
as the Tomcat Web server.

<%@ page buffer = "none" %>

TYPE THIS:

RESULT:

95

� The location or address
box displays the URL of
the JSP page, with the
appended session ID.

Employee Phone Numbers - Microsoft Internet Explorer

Cookies can be disabled in most browsers by modifying
the Web browser security or file settings. Many Web sites
offer reduced features and functionality if cookies are not
supported by the client Web browser.

The sendRedirect method of the response object is used
to redirect users to another Web page automatically. If you need
to keep track of a client session when redirecting the user to
another Web page, you should use the sendRedirect method
in conjunction with the encodeRedirectURL method of the
response object. The encodeRedirectURL method appends
the session ID to the redirect URL when necessary, ensuring that
session information is maintained even for users with browsers
that do not support cookie technology.

Example:

response.sendRedirect(response.encodeRedirectURL("errorPage.jsp"));

ˇ Save the page with
the .jsp extension and
then display the JSP page
in a Web browser that
does not support cookie
technology.

� The Web browser
displays the page with
the encoded URLs.

Á Click a link to display
another JSP page in the
Web site.

� The linked JSP page
is displayed.

94

JSP

ENCODE A URL

⁄ To encode a URL, type
response.encodeURL("").

¤ Between the quotation
marks, type the URL you
want to be rewritten when
cookie technology is not
supported.

‹ Type the code that
uses the encoded URL.

› Repeat steps 1 to 3
for each URL you want
to encode in the HTML
code.

A session is started for each user who requests a JSP
page from your Web site. When a session is created,
a session ID is assigned to identify each user. By

default, the session ID is stored on the user's computer
using a cookie. Unfortunately, many users disable the Web
browser's cookie features or use Web browsers that do
not support cookie technology. Filtering software can also
prevent the exchange of cookie information between clients
and servers.

URL encoding, or rewriting, is the process of adding the
session ID to a URL in a JSP page. This process allows the
Web server to keep track of a client session when cookie
technology is not supported. You use the encodeURL
method of the response object to modify a URL in
a page.

The encodeURL method first determines if the client
supports the use of cookies. If the client does not support

the use of cookies, the encodeURL method adds the
session ID to the end of the URL that is passed to the
method as an argument. If the encodeURL method
determines that the client supports the use of cookies,
the URL that is passed to the method is inserted into
the HTML code without any modifications.

You should use the encodeURL method to generate any
URL in the HTML code. If a client that does not support
cookies accesses a URL that has not been rewritten, a
new session will be created and the information from
the previous session will be lost.

You can easily verify that URL encoding is being performed
by viewing the URL of the Web page, which is typically
displayed in the location or address box of the Web browser.

ENCODE A URL

WORK WITH JSP IMPLICIT OBJECTS 4

9796

JSP

ACCESS THE SESSION ID

⁄ Type session.getId()
where you want to
access a session ID.

¤ Type the code that will
display the session ID in
a Web browser.

‹ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

� The Web browser
displays the result of
accessing the session ID.

A session is started for each user who requests a
JSP page from your Web site. Sessions enable a
Web server to collect and use information entered

by a user while the user accesses different resources on
the Web server. For example, if a user specifies a user
name on the main page of a Web site, this user name
can be used by the Web server to personalize any other
Web pages the user requests during that session. The
Web server keeps track of each session by assigning
a session ID that identifies each current user.

To access the session ID number, you can use the getId
method of the session object. You cannot change a
session ID you access. The format of the session ID will
be different depending on the Web server you are using.

When a user requests a JSP page from your Web site, the
Web server stores a session ID as a cookie on the user's
computer. When the user requests another page from the
site, the user's Web browser sends the session ID to the

Web server to identify the user. If the user's Web browser
or computer does not support cookies, you can use URL
encoding to append the session ID to the URLs accessed
by the user. For information about encoding URLs, see
page 94.

A session ends when the user does not request another JSP
page for a specific amount of time or when the session is
abandoned. Any information that the Web server collected
from the user during a session will be discarded when the
session ends.

You should not use the session ID as the primary key in
a database, as the session ID may not always be unique.
For example, if the Web server is restarted, the server may
assign a user a session ID that was previously assigned to
a different user.

ACCESS THE SESSION ID

ABANDON A SESSION

⁄ Type session.invalidate()
where you want to abandon
a session.

¤ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

� The Web server
abandons the session.

D uring a session, information is saved on the Web
server and the client computer. As a result, each
session requires the use of Web server resources,

such as computer memory. If information for a session is
no longer required, the session can be abandoned to free
up resources on the Web server. This can improve the
efficiency of a busy Web server.

The invalidate method of the session object
allows you to immediately end a session for one user
and erase the information associated with the session. The
information for the session will be permanently removed
from the Web server. If you want to be able to later access
the session information, you should write the information
to a file or store the information in a database before
abandoning the session.

Abandoning a session is useful when an error occurs or
when a user performs an action that indicates they no
longer need the session information, such as logging out

of the Web site. If the session was not abandoned, the Web
server would keep the session information in memory until
the session timed out. Abandoning a session also allows
users to perform tasks such as clearing their Web site
preferences or logging into your Web site using a different
user name.

Abandoning a session does not stop the Web server from
processing the JSP page, but does make session
information generated before the session was abandoned
unavailable to the page. An attempt to access session
information after the session has been abandoned may
generate an error.

Abandoning a session does not usually remove the cookie
that stores session information on the client computer.
The cookie will usually remain on the client until it is
deleted by the Web browser, which typically occurs after
the cookie expires or when a new session is started
between the client and the Web server.

ABANDON A SESSION

WORK WITH JSP IMPLICIT OBJECTS 4

99

� You can now read
the information stored
in the session values.
See page 100 to read
session values.

You can turn off the use of session information for a JSP page
by using the page directive. Turning off the use of session
information does not produce any noticeable improvement in
speed on the Web server, but it may offer increased security to
JSP pages that do not use session information. If you try to use
session values when session handling is turned off, an error will
occur when the JSP page is viewed.

The page directive should be placed before any HTML code in
a JSP page. To once again allow the use of session information
in the JSP page, simply remove the page directive from the code.

Example:
<%@ page session = "false" %>
<html>
<head>
<title>Home Page</title>
</head>
<body>
<%
session.setAttribute("userName", "Tim");
session.setAttribute("preferredColor", "blue");
%>
</body>
</html>

‹ Type the information you
want to store in the session
value.

� If you are storing a string,
enclose the information in
quotation marks.

› Repeat steps 1 to 3
for each session value
you want to create.

ˇ Save the page with
the .jsp extension and
then display the JSP page
in a Web browser.

98

JSP

CREATE SESSION VALUES

⁄ Type session.setAttribute()
where you want to create a
session value.

¤ Between the parentheses,
type a name for the session
value followed by a comma.

� The name of the session
value must be enclosed in
quotation marks.

A s a user moves through the pages in your Web site,
the user may be asked to enter information such as
a user name, password or preferences to display

each page. Creating session values allows you to store this
information and make the information available to all the
pages viewed by the user in your Web site. This saves the
user from having to repeatedly enter the same information
to display each page during a session.

You use the setAttribute method of the session
object to create a session value. When creating a session
value, you need to specify the name of the value and the
information to be stored. A null value will be assigned
if you do not specify any information for the session
value. The information stored in a session value cannot
be a primitive data type, such as boolean or int.
For information on primitive data types, see page 30.

The information stored in a session value can come from
sources such as forms, databases and cookies. The use of
session values is an effective way of collecting and accessing
information across multiple pages on a Web site and is more
secure and easier to maintain than hidden fields or cookies.

All session values and the information stored in them will
be discarded when the session ends or is terminated. If
necessary, you can use cookies or a database to save the
information stored in a session value.

After creating session values, the information stored in the
session values can be accessed using the getAttribute
method. For information about the getAttribute
method, see page 100.

CREATE SESSION VALUES

WORK WITH JSP IMPLICIT OBJECTS 4

101

� If the session values
have been created, the Web
browser displays the result
of reading the session values.

ˇ Repeat steps 1 to 4
for each session value
you want to read and
assign to a variable.

Á Type the code that uses
the variables you created
to store the information in
the session values.

‡ Save the page with
the .jsp extension and
then display the JSP page
in a Web browser.

100

JSP

READ SESSION VALUES

⁄ Type the code that
declares a variable
you want to store the
information in a session
value.

¤ To cast the information
in the session value as a
specific data type, enter the
data type you want to use,
enclosed in parentheses.

‹ To read a session variable,
type session.getAttribute().

› Between the parentheses,
type the name of the session
value you want to read,
enclosed in quotation marks.

I f a JSP page in your Web site creates session values for
a user, other JSP pages viewed by the user in the Web
site can read and process the information stored in the

session values until the session times out or is terminated.
For information about creating session values, see page 98.

A Web server can personalize each JSP page in a Web site
according to the user information saved in session values.
For example, if a user prefers not to view images on Web
pages, each page that the user visits in the Web site will read
the session information for the user and display only text.

A JSP page reads the information stored in a session value
using the getAttribute method of the session object.
The JSP page that reads the information stored in a session
value does not usually modify the information.

In most cases, the information stored in a session value
is assigned to a variable. You can then use the variable to
display the session information on the screen or to perform
a more complex action, such as locating information in a
database. You may have to cast the information stored in
a session value as a data type that is compatible with the
variable to which it is assigned. For information about
casting, see page 30.

It is also important to note that variables can be accessed
only by the JSP page on which they are created. If you want
to use the same variable on another JSP page, you will have
to recreate the variable and re-assign the information stored
in the session value to the variable.

READ SESSION VALUES

WORK WITH JSP IMPLICIT OBJECTS 4

In most cases, you know which session value you want to retrieve
information from, but there may be times when you are required
to find out which session values are available. You can use the
getAttributeNames method of the session object to generate
a list of the names of all the session values that are available during
a session. You must cast the names as a collection that can be used
by the Iterator interface. To use the Iterator interface, you
must first import the interface from the java.util package.

<body>
<%@ page import="java.util.Iterator" %>
Session values for this session:

<%
Iterator sessionValues = (Iterator) session.getAttributeNames();

while (sessionValues.hasNext())
out.print("" + sessionValues.next() + "");

%>

</body>

Session values for this session:

• login
• memberLevel
• region

TYPE THIS: RESULT:

103

� If you do not request
a new page in the Web
site or refresh the page
within the new timeout
period, the Web server
will erase your session
information.

‹ Between the parentheses,
type the number of seconds
you want the Web server to
wait for activity before closing
the session.

› Save the page with the .jsp
extension and then display the
JSP page in a Web browser.

� The Web browser displays
the JSP page in which the
session timeout is adjusted.

102

JSP

ADJUST THE SESSION TIMEOUT

⁄ Type the code you
want to execute to display
information in a Web
browser.

¤ Type session.setMaxInactiveInterval()
where you want to adjust the session
timeout period for the JSP page.

T he setMaxInactiveInterval method of the
session object allows you to set the session
timeout for a JSP page, in seconds. The session

timeout determines how long a user's session information
is stored on the Web server after the user last refreshes
a page or requests a page in the Web site.

A session allows the Web server to identify a client
computer as the user moves from page to page within
a Web site. This is useful for applications such as shopping
carts, when you need to be able to track the items a
user has selected throughout your Web site. For more
information about session information, see pages 96
to 101.

Typically, a user's session information is stored on the
Web server for 30 minutes and is available to the JSP
pages that the user views in your Web site. The session

information created for a user will be available to the
JSP pages in the Web site even if the user visits another
Web site and then returns to your site within the timeout
period. If the user returns to your Web site after the timeout
period, the session information for the client will no longer
be available.

The session timeout that you set for a JSP page applies
to every client that accesses the JSP page.

Adjusting the session timeout period can help make your
Web site more secure. For example, if you have a Web site
that requires a user to log in, a short timeout period will
help to prevent other users from accessing your site if the
user leaves the computer while logged in. Keep in mind,
however, that setting the session timeout too short may
lead to the inadvertent loss of session information.

ADJUST THE SESSION TIMEOUT

WORK WITH JSP IMPLICIT OBJECTS 4

The session object has many methods that can be used to alter or
obtain information about the current session. Some methods and values
of the session object can be accessed only during the session in which
they were created. When the session ends, the items no longer exist.
When another session starts, the items are recreated for that session.

Popular Session Object Methods

METHOD: DESCRIPTION:
getCreationTime Returns the time the session started, measured in

milliseconds since January 1, 1970.
getId Returns the session ID.
getLastAccessedTime Returns the last time the client sent a request during the

session, measured in milliseconds since January 1, 1970.
setMaxInactiveInterval(interval) Sets the session timeout, in seconds.
getMaxInactiveInterval Returns the session timeout, in seconds.
invalidate Closes the session.
isNew Returns true if the Web server has created a session,

but the client computer has not yet accepted a session ID.
getAttribute(name) Returns the information stored in a session value.
getAttributeNames Returns a list of all session values.
setAttribute(name, value) Creates a session value.
removeAttribute(name) Removes a session value.

105

� The Web browser
displays the result of
accessing the application
value.

⁄ Type
application.getAttribute()
where you want to
access an application
value.

¤ Between the parentheses,
type the name of the application
value you want to access,
enclosed in quotation marks.

‹ Type the code that uses the
application value.

› Save the page with the .jsp
extension and then display the
JSP page in a Web browser.

Note: You must save the page in the
same directory that stores the JSP
page in which the application value
was created.104

JSP

CREATE AN APPLICATION VALUE ACCESS AN APPLICATION VALUE

⁄ Type
application.setAttribute()
where you want to
create an application
value.

¤ Between the parentheses,
type a name for the application
value, enclosed in quotation
marks.

‹ Type a comma followed by
the information you want the
application value to use.

› Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

� The Web server
activates the application
value. You can now access
the information stored in
the application value.

J avaServer Pages allows you to define a Web site or
part of a Web site as an application. An application
is a collection of JSP pages stored in a specific directory

and its subdirectories on the Web server. For example,
if you have 10 JSP pages stored in the same directory,
those pages would make up an application.

All the JSP pages in an application typically must be stored
in the same virtual directory on the Web server. The type
of Web server you use will determine how the virtual
directory and applications are created. For more information
about creating virtual directories, refer to your Web server
documentation.

You use the setAttribute method of the application
object to create an application value. When using the
setAttribute method, you must specify the name of the
application value and the information the value will contain.
The information stored in an application value cannot be a

primitive data type, such as boolean or int. For
information about primitive data types, see page 30.

All the JSP pages in an application can access the information
stored in an application value. For example, if you create an
application value that stores a counter, the number of people
who have used your application could be displayed at the
bottom of each page in the application.

You access an application value in your JSP pages using the
getAttribute method of the application object. If a
JSP page tries to access an application value that does not
exist, the getAttribute method will return a value of null.

An application starts when the first user requests a JSP page
from the application and ends when the Web server shuts
down or restarts. Application values are discarded when the
application ends.

USING APPLICATION VALUES

WORK WITH JSP IMPLICIT OBJECTS 4

You can delete an existing application value using
the removeAttribute method. You should delete
any application values that you no longer need. If a
JSP page tries to access an application value that has
been removed, a null value will be generated.

Welcome to the
<%= application.getAttribute("siteName") %>
 Web site.

<% application.removeAttribute("siteName"); %>
Application value deleted.

Welcome to the
<%= application.getAttribute("siteName") %>
 Web site.

Welcome to the Testing and Development Web site.
Application value deleted.
Welcome to the null Web site.

TYPE THIS:

RESULT:

You can change the information stored in an
application value. If the application value has not
yet been created, changing the information stored
in the value will create the value.

Old Web site name:
<%= application.getAttribute("siteName") %>

<% application.setAttribute("siteName",
"ABC Corporation"); %>
New Web site name:
<%= application.getAttribute("siteName") %>

Old Web site name: Testing and Development
New Web site name: ABC Corporation

TYPE THIS:

RESULT:

107

� The Web browser
displays the result of
determining the path
of a file.

‹ Type the code that
will display the path
information in a Web
browser.

› Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

106

JSP

DETERMINE THE PATH OF A FILE

⁄ Type application.getRealPath()
where you want to find the path
of a file.

¤ Between the parentheses,
type a slash (/) followed by
the name of the file whose
path you want to determine,
enclosed in quotation marks.

T he getRealPath method of the application
object allows you to identify where a file, such as a
Web page or JSP page, is stored on the Web server.

A Web server can store files in many different directories. The
directory that stores a page is not always apparent in the URL
of the page. For example, a JSP page named login.jsp stored
in the directory C:\Tomcat\webapps\public\sign_in could have
the URL http://www.abccorp.com/sign_in/login.jsp. When
a JSP page needs to access a page on the Web server, such
as when using the include directive to access information
from a Web page, the JSP page may need to know the exact
location of the page, not the URL of the page.

To identify the path of a page, you must know the filename
of the page. The getRealPath method uses the filename
of the page, enclosed in quotation marks, as its argument.

Regardless of the operating system you use, you should use
slashes (/) within the path of the page you want to locate.
When the path to the page starts with a slash (/), the path
will be determined starting at the document root directory
of the current Web application. The document root directory
is the parent directory that contains all the documents and
applications on a Web server. The location of the document
root directory depends on the configuration of the Web
server. On Web servers that host multiple Web sites, the
document root directory will be different for each Web site.

The result returned by the getRealPath method is a
string value. You can assign this value to a variable and
then use the variable in your code.

The getRealPath method shows where a page is located
on the Web server but does not verify that the page or the
directories actually exist.

DETERMINE THE PATH OF A FILE

WORK WITH JSP IMPLICIT OBJECTS 4
You can determine the path of the current JSP page by
using a single slash enclosed in quotation marks as the
argument for the getRealPath method. Identifying
the path of the current page is useful when you are
creating a JSP page for different Web applications and
you need to make sure the directory structure is the
same for each application.

<html>
<head>
<title>My Web Site</title>
</head>
<body>
This JSP page is stored in
<%
String docPath = application.getRealPath("/");
out.print(docPath);
%>

</body>
</html>

This JSP page is stored in C:\Tomcat\webapps\examples\

TYPE THIS:

RESULT:

109

� The source code displays
the result of generating
newline characters.

ˇ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

� Generating newline
characters does not affect
the way a JSP page appears
in a Web browser.

Á Display the source
code for the JSP page.

108

JSP

GENERATE A NEWLINE CHARACTER

⁄ Type <% where you
want the scriptlet that
will generate a newline
character to begin.

¤ Type %> where you
want the scriptlet to end.

‹ Type the code that will
generate HTML source
code for the JSP page.

› Type out.newLine()
where you want to generate
a newline character.

A newline character instructs a processing program to
stop placing output on the current line and begin a
new line. The newLine method of the out object

can be used in a JSP page to generate a newline character.
Newline characters are sometimes called line separators.

To generate a newline character, you create a scriptlet
that contains the out.newLine statement. Scriptlets
are processed by the Web server and a newline character
generated by a scriptlet is inserted into the source code
for a JSP page before the page is displayed.

Since Web browsers ignore extra spaces and new lines
in source code, the line break you add using a newline
character will not appear on a JSP page when the page
is displayed in a Web browser. To view the results of
generating a newline character, you must display the

source code for your JSP page. Most Web browsers allow
users to easily view the source code for a page. A new line
will begin in the source code where you added the newline
character. To have a new line appear on your JSP page when
it is displayed in a Web browser, use the HTML tag
.

Using newline characters is particularly useful when a
JSP page generates HTML source code. HTML code that
does not contain any new lines can be difficult to read and
troubleshoot. By inserting new lines into the code, you can
separate the various elements on the page, making the page
easier to understand. For example, a page containing images
and text can have newline characters after each paragraph
and image. Newline characters are typically inserted after
closing HTML tags, such as the </p> and tags.

GENERATE A NEWLINE CHARACTER

WORK WITH JSP IMPLICIT OBJECTS 4

The actual character or characters a computer uses for
a new line depends on the operating system installed on
the computer. For example, a new line may be created
by a carriage return, a newline character or both. Because
these characters are not displayable, you cannot view
them. You can, however, use the Java getBytes method
to view the ASCII code for the characters.

The ASCII codes for the characters used to create new lines on this computer are:

<%
String lineSeparator = System.getProperties().getProperty("line.separator");
byte[] array = lineSeparator.getBytes();

for (int x = 0; x < array.length; x++)
out.print(array[x] + "
");

%>

The ASCII codes for the characters used to create new lines on this computer are:
13
10

TYPE THIS:

RESULT:

111

� The Web browser displays
the result of determining the
operating system running on
the computer.

ˇ Between the parentheses,
type the name of the
operating system you want
to check for, enclosed in
quotation marks.

Á Type the code that
uses the information
retrieved by the
getProperties and
getProperty methods.

‡ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

110

JSP

DETERMINE THE OPERATING SYSTEM

⁄ Type the code that
declares a variable you
want to store the name
of the operating system.

¤ Type System.getProperties().
getProperty("os.name") to
determine the name of the
operating system.

‹ To match the content of
the variable that stores the
name of the operating system
with the name of a specific
operating system, type the
name of the variable followed
by a dot.

› Type indexOf() == 0.

Y ou can use the getProperties and getProperty
methods of the System object to determine the
operating system being used on the computer running

your JSP pages.

JSP code should not have problems running on different
operating systems, but the way JSP interacts with the
computer may differ depending on the operating system.
For example, you may develop JSP pages on a computer
using a Windows operating system and then transfer the
JSP pages to an Internet Web server that uses the Linux
operating system. When JSP pages run on a computer using
a Windows operating system, the JSP pages will attempt to
find files, such as include files, in a specific directory. When
the JSP pages run on a computer using the Linux operating
system, errors may occur because the required files may be
located in a different directory. Instead of creating two sets
of JSP pages, you could simply set the JSP page to determine
which operating system is running on the computer and
then automatically alter the path required to access the files.

The getProperties method returns all of the system
properties that are specific to the computer running the
JSP pages. The system properties that are available depend
on the operating system running on the computer.

You use the getProperty method to specify the name
of a specific property you wish to access. The property
name used to identify the current operating system is
os.name.

The value returned by the getProperties and
getProperty methods is a String data type and
can be assigned to a variable, which can then be used
in your code. You can use the indexOf method to match
the content of the variable with the name of a specific
operating system. Refer to the Java SDK documentation
for more information about using the indexOf method.

DETERMINE THE OPERATING SYSTEM

WORK WITH JSP IMPLICIT OBJECTS 4

The following is a list of some of the other system properties
you may determine using the getProperty method:

PROPERTY NAME: RETURNS:

java.home The directory where Java is installed

java.class.path The path where the classes are loaded from

java.version The version of the Java API implementation

java.vendor The vendor of the Java API implementation

java.class.version The version of the Java class file format

os.arch The architecture of the operating system

os.version The version of the operating system

user.name The account name of the current user

user.home The home directory of the current user

user.dir The current working directory

113

� The Web browser
displays the results of
forwarding control to
another JSP page.

The <jsp:param> tag can be used to pass additional information
to the request object before transferring control to the other
JSP page. For example, you can use the <jsp:param> tag to
create a parameter that stores the name of the page that forwarded
the request object. This allows the page that will receive
control to use the getParameter method of the request
object to determine where the request object originated. The
<jsp:param> tag is placed between the <jsp:forward> and
the </jsp:forward> tags.

Type this in the original JSP page:
<jsp:forward page="logout.jsp">
<jsp:param name="callingPage" value="index.jsp"/>
</jsp:forward>

Type this in the page control is being transferred to:
You are now logged out.

You have been forwarded to this page from the JSP page:

<%= request.getParameter("callingPage") %>

Result:
You are now logged out.
You have been forwarded to this page from the JSP page:
index.jsp

› Type <jsp:forward page=
where you want to transfer
control to another page.

ˇ Type the expression that
generates the name of the
page you want to transfer
control to, enclosed in
quotation marks.

Note: You can also type the
path of the page or a string
literal.

Á Type /> to complete
the tag.

‡ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

112

JSP

FORWARD TO ANOTHER JSP PAGE

CREATE A JSP PAGE YOU
WANT TO FORWARD TO

⁄ In a text editor, create
the JSP page you want to
transfer control to.

¤ Save the page on the
Web server with the .jsp
extension.

FORWARD TO
ANOTHER JSP PAGE

⁄ Display the page
in which you want
to transfer control
to another JSP page.

¤ To create a variable that
will store the parameter for the
JSP page you want to transfer
control to, type String, followed
by a name for the variable.

‹ Type = followed by a value
for the variable, enclosed in
quotation marks.

T he <jsp:forward> tag is used to instruct a Web
server to stop processing the current JSP page and
start processing another page. For example, when

an error occurs during the processing of a JSP page, you can
use the <jsp:forward> tag to transfer control to another
JSP page that handles errors and displays help information
for the user. The <jsp:forward> tag is also useful for
transferring control to a different JSP page depending on the
value of a variable, such as a user name or the time of day.

When using the <jsp:forward> tag, you assign a value
to the page attribute. The value can be a string literal, a
value generated by an expression or the relative path of
the JSP page that control will be transferred to.

When the Web server processes a JSP page that contains
a <jsp:forward> tag, the server stops processing the
page and executes the code in the JSP page specified in the
tag. The Web server does not return to the original page.

You should use the <jsp:forward> tag early in your
code. No information should be sent to the client before
the <jsp:forward> tag is executed or an error will be
generated. Any data currently in the buffer when the
<jsp:forward> tag is encountered will be deleted.

Any information available to the original JSP page will also
be available to the JSP page that control is transferred to.
Information available to the controlling JSP page includes
application values, session values and any data stored in
a request object, such as values submitted to a form.
The JSP page control is transferred to can access this
information even if the page is not part of the same
application as the original JSP page.

FORWARD TO ANOTHER JSP PAGE

WORK WITH JSP IMPLICIT OBJECTS 4

