
5958

JSP

Y ou must have access to a JSP-compatible Web server
before beginning to develop JavaServer Pages code.
There are several JSP-compatible Web servers to choose

from and most of the server software is available in both
Windows and UNIX versions. Some of the available Web
servers are written in the Java programming language and
can be installed on any computer that has a Java Runtime
Environment installed.

A computer running a Windows operating system with the
Tomcat Web server installed was used to process the JSP
pages created in this book.

JSP-COMPATIBLE WEB SERVERS

GETTING STARTED WITH JAVASERVER PAGES 3

CHOOSING A WEB SERVER

Cost

Web server software is often available free of charge
for development purposes, but you may have to pay
for the software if it will be used in a commercial
application. Some Web servers can be used free of
charge for a specific period of time, after which a fee
must be paid to continue using the Web server.

Terms and Conditions

Each Web server has its own specific terms and
conditions of use. Prior to using any Web server
software, you should carefully review the terms and
conditions to ensure that the way you intend to use
the software complies with the conditions of use.

Feature List

Some Web servers support a wider range of features
than other Web servers. For example, some Web servers
support detailed logging and error reporting, while
others do not. You should examine the feature list for a
Web server to determine whether the server meets your
current and future needs.

When choosing a Web server, you should evaluate the
strengths and weaknesses of several Web servers to
determine which server best suits your needs and
meets your level of expertise. For example, while a
Web server may be capable of processing thousands
of JSP pages per hour, the server may be very
complicated to set up.

POPULAR JSP-COMPATIBLE WEB SERVERS

Jigsaw

Jigsaw is a Java-based Web server developed by the
World Wide Web Consortium (W3C), which is the
body responsible for many Web standards. The Jigsaw
Web server is better suited to development than
deployment. For more information about the Jigsaw
Web server, visit the www.w3c.org/Jigsaw Web site.

LiteWebServer

LiteWebServer is a small, robust Web server developed
by Gefion Software. This Web server is suitable for
developing JSP pages and for making pages available on
an intranet. For more information about LiteWebServer,
visit the www.gefionsoftware.com Web site.

The following are examples of JSP-compatible Web servers.

JSP-COMPATIBLE WEB SERVERS (Continued)

Nexus

Nexus is written entirely in Java and can be used either
as a stand-alone Web server or as part of a larger
application. To download the Nexus Web server, visit
the www-uk.hpl.hp.com/people/ak/java/nexus Web site.

Orion Application Server

Orion Application Server is a popular JSP-compatible
Web server that is suitable for most commercial needs.
Orion Application Server supports clustering, which
allows a large Web site to be stored on multiple Web
servers. To learn more about Orion Application Server,
visit the www.orionserver.com Web site.

Servertec Internet Server

Servertec Internet Server is an easy-to-use Web server
that can be used as a stand-alone Web server or can
be integrated with the Apache Web server. Apache
is the most popular Web server on the Internet.
Servertec Internet Server is written entirely in the Java
programming language. For more information about
Servertec Internet Server, visit the www.servertec.com
Web site.

Tomcat

The Tomcat Web server can be used as a stand-alone
Web server or can be integrated with the Apache Web
server. The Tomcat Web server is available at the
jakarta.apache.org Web site. For information about
installing the Tomcat Web server, see page 60.

WebSphere Application Server

WebSphere Application Server is a Java-based Web
server developed by IBM that can be used to develop
JSP pages and deploy large-scale e-business applications.
For more information about WebSphere Application
Server, visit the www-4.ibm.com/software/webservers
Web site.

WEB HOSTING SERVICES

If you do not want to install your own Web server
software to develop JSP pages, you can use a Web
hosting service that offers JSP-compatible Web servers.
A Web hosting service is a company that allows
individuals to store Web sites they create on the
hosting service's Web servers. A Web hosting service
may also offer access to other technologies related to
JSP, such as JDBC, the Java technology used to enable
JSP pages to retrieve information from a database.

Web hosting fees are typically inexpensive, making a
Web hosting service an affordable alternative to
installing a Web server on your own computer. A Web
hosting service usually charges a monthly fee for their
services. The fees vary depending on the amount of
space, bandwidth and other resources required by the
Web site.

When developing JSP pages using a Web hosting service,
you will need a text editor to write the code and an ftp
program to transfer your pages to the Web hosting
service's Web servers.

Examples of Web hosting services that offer JSP-compatible
Web servers include:

SpinWeb
www.spinweb.net

iMagine Internet Services
www.imagineis.com

MyServletHosting.com
www.myservlethosting.com

Reinvent Technologies, Inc.
www.reinventinc.com

Colossus, Inc.
www.colossus.net

61

� If the Tomcat Web server
is not working properly, the
Web browser will display an
error message.

TEST TOMCAT

‹ Start the Web browser
you want to use to test the
Tomcat Web server.

› Click this area to highlight
the current Web page
address and then type http://.

ˇ Type the name or IP
number of your computer
followed by a colon.

Á Type the Tomcat port
number and then press
Enter.

� The Web browser
displays a Web page
generated by the Tomcat
Web server.

60

JSP

INSTALL THE TOMCAT WEB SERVER

INSTALL TOMCAT

⁄ Copy the Tomcat
Web server files to
your computer.

� In this example, we copy
the Tomcat Web server files
to the C: drive. The files are
stored in a directory called
Tomcat.

START TOMCAT

⁄ Display the contents of the
bin directory, which is located
in the Tomcat directory.

¤ Double-click the
appropriate startup file to start
the Tomcat Web server.

Note: The startup.bat file
is used to start Tomcat on
Windows platforms. The
startup.sh file is used to start
Tomcat on non-Windows
platforms.

� A command prompt
window appears.

B efore you can create interactive and dynamic JSP
pages, you must install a Web server that can
interpret and process JavaServer Pages code.

Tomcat is a fully-functional Web server that you can
install on your computer to create and test JSP pages.

You need to install the Java Software Development Kit
before installing the Tomcat Web server. You may need
to change certain Tomcat settings to specify the location
of the Java SDK. Consult the documentation included with
Tomcat for information about changing these settings.

Tomcat is constantly being updated. A recent release of
the Tomcat Web server is included on the CD-ROM disc
that accompanies this book, but you should make sure you
install the latest version of the server. The latest version of
Tomcat is available at the jakarta.apache.org/tomcat Web site.

The version of Tomcat you install may be an unfinished,
or beta, version. Although Tomcat is a very stable
application, some difficulties, such as system crashes,
should be expected when using any beta software.

To install Tomcat, you simply copy the Tomcat Web server
files to your computer. Once Tomcat is installed, it can be
started using a program called startup, which is located in
the bin directory. The bin directory also stores the shutdown
program, which you can execute to stop Tomcat when you
have finished displaying Web and JSP pages.

To confirm that Tomcat has been installed and started
properly, you can have the server display a page in a
Web browser. After starting the Web browser you want
to use, you enter the name or IP number of your computer,
as well as the port number used by Tomcat. The default
port number used by Tomcat is 8080. If you do not know
the IP number of your computer, you can use 127.0.0.1,
which is the IP number that computers running TCP/IP
use to refer to themselves.

A Web hosting service may also allow you to access their
Web server to test your JSP pages. For a list of Web hosting
services, see page 59.

INSTALL THE TOMCAT WEB SERVER

GETTING STARTED WITH JAVASERVER PAGES 3

When the Tomcat Web server is installed, several
directories are automatically created. These
directories can be found in the main Tomcat directory.

DIRECTORY NAME: DESCRIPTION:

bin Stores programs for starting and shutting down the Tomcat Web server.
conf Stores configuration files for the Tomcat Web server.
doc Stores miscellaneous documents.
lib Stores JAR (Java ARchive) files. The JAR file format is used to compress

all the components of a Java program into a single file.
logs Stores log files.
src Stores the servlet Application Program Interface (API) source files used

by the Tomcat Web server.
webapps Stores sample Web applications.
work Stores intermediate files, such as compiled JSP files. This directory

may not have been created when you installed the Tomcat Web server.

63

My Documents

Desktop

History

My Computer

My Network Pl...

The configuration settings for the Tomcat
Web server are stored in the server.xml
file located in the conf subdirectory of the
main Tomcat directory. You can adjust the
settings for Tomcat by changing or adding
information to the server.xml file. To edit
the file, you can open the file in a text
editor. You should consult the user
documentation included with Tomcat
before changing any settings in the
server.xml file.

By default, the port number used by Tomcat is 8080. You must
specify this number in the addresses you type when accessing pages
generated by Tomcat. To change the port number used by Tomcat,
open the server.xml file and look for the following section of code:
<Connector className="org.apache.tomcat.service.SimpleTcpConnector">
<Parameter name="handler"
value="org.apache.tomcat.service.http.HttpConnectionHandler"/>
<Parameter name="port" value="8080"/>

</Connector>

In the line that specifies the port number, replace the existing port
number with the port number you want to use. After you change the
port number, you must specify the new number in Web page addresses.

You can create your own directory within the webapps
directory and then store pages you want to display in that
directory. Creating your own directories is useful when
you want to use Tomcat to make your pages available to
others. Before you can display pages saved in a directory
you created, you must change settings in the server.xml
file. For example, if you created a directory named pages,
you would add the following code to the server.xml file
between the <ContextManager> tags:
<Context path="/pages" docBase="/pages" debug="0"
reloadable="true" >
</Context>

ˇ If the Web page is
stored in a subdirectory of
the root directory, type /
followed by the name of
the subdirectory that
stores the page.

Á Type / followed by the
filename of the Web page
and then press Enter.

� The Web page appears
in the Web browser.

62

JSP

DISPLAY A WEB PAGE USING TOMCAT

CREATE A WEB PAGE

⁄ In a text editor, create
a Web page.

¤ Save the Web page in
the Tomcat root directory
or one of its subdirectories.

Note: In this example, we
save the Web page in the
C:\Tomcat\webapps\examples
directory.

� The filename must have
the .html extension and
may need to be enclosed
in quotation marks.

VIEW A WEB PAGE

⁄ Start the Web browser you
want to use to display a Web
page.

¤ Click this area to highlight
the current Web page address
and then type http://.

‹ Type the name or IP
number of your computer
followed by a colon.

› Type the Tomcat port
number.

A fter installing the Tomcat Web server, you can create
a Web page and store the page on the server. You
can then use a Web browser to display the Web

page. Displaying a Web page allows you to confirm that
Tomcat is installed properly and that you are storing pages
in the correct directory.

Make sure you add the .html extension to the name of
a Web page you save. Some text editors do not recognize
the .html extension, so you may have to enclose the Web
page name in quotation marks, such as "index.html".

When installed on a Windows platform, Tomcat uses the
webapps directory as the root directory. All of the Web and
JSP pages you want to display must be stored in the root
directory or its subdirectories. When a Web server receives
a request for a Web page, the server looks for the page in
the root directory if no other directory is specified in the
request. If another directory is specified, the Web server
expects it to be a subdirectory of the root directory. For

example, when a Web server with a root directory named
docs receives the request www.server.com/work/sale.html,
the server displays the document sale.html stored in the
C:\docs\work directory.

If Tomcat is installed on a computer running a non-Windows
operating system, such as Linux, the root directory may be
different. The root directory could also change with newer
versions of Tomcat. Always check the documentation
included with Tomcat to verify the name and location
of the root directory.

The webapps directory contains a number of directories
that can be used to store your Web pages. If you are only
using the Tomcat Web server to test Web and JSP pages,
you may want to store the pages in the examples directory.

Before displaying Web pages, you must ensure that the
Tomcat Web server is running. To start the Tomcat Web
server, see page 60.

DISPLAY A WEB PAGE USING TOMCAT

GETTING STARTED WITH JAVASERVER PAGES 3

65

� The HTML comment
is included in the HTML
source code, but the
hidden comment does
not appear.

My JSP Page - Microsoft Internet ExplorerMy JSP Page - Microsoft Internet Explorer

‡ Save the page with
the .jsp extension and
then display the page
in a Web browser.

� The comments do not
affect the display of the
JSP page.

° Display the source
code of the JSP page.

64

JSP

ADD A COMMENT TO A JSP PAGE

⁄ To add an HTML
comment, type <!--.

¤ Type the comment.

› To add a hidden
comment, type <%--.

ˇ Type the comment.

Á Type --%> to complete
the hidden comment.

A dding comments to your HTML or JSP code is
good programming practice and can help clarify
the code. For example, you may use a variable

named totalCost in your code. You could use a comment
to explain whether the variable stores the total cost of all
the products in a database or only some of the products.
Comments can also contain information such as the
author's name or the date the code was created. You
can also use comments for debugging a program or
as reminders to remove or update sections of code.

You can include HTML comments within the HTML code
of a JSP page by enclosing the comments between the
<!-- and --> delimiters. Any text enclosed in these
delimiters will be sent to the Web browser, but will
not be displayed on the page. The information may be
displayed by users who view the HTML source code
however.

You can also add comments within the HTML code of a
JSP page using the hidden comment tags, <%-- and --%>.

Any code or information within the hidden comment tags
will be discarded before any processing of the JSP page
takes place on the Web server and will not be sent to the
Web browser.

You can add comments to JSP code the same way you add
comments to a Java application. The // notation can be
used to create single-line comments and the /* and */
delimiters can be used to create multi-line comments.
For information about adding comments to Java code,
see page 15.

You should be very careful about where you place
comments in a JSP page, especially when the comments
are placed within the JSP code. The Web server expects
to find only valid Java code within your JSP expressions,
scriptlets and declarations. Any HTML comments or
hidden comments in the JSP code will cause an error
to occur.

ADD A COMMENT TO A JSP PAGE

GETTING STARTED WITH JAVASERVER PAGES 3

You may include JSP code within an HTML comment. This
allows you to include dynamically generated comments in
your JSP page. Embedding JSP code within HTML comments
can help you to determine the state of various aspects of
your JSP code without affecting the display of the Web page
and can be a useful troubleshooting technique.

<%! String siteName = "My Web Site"; %>
<html>
<head>
<!-- The variable siteName has a value of
"<%= siteName %>" -->
<title>My JSP Page</title>
</head>
<body>
<% siteName = "* " + siteName + " *"; %>
<!-- The variable siteName has a value of
"<%= siteName %>" -->
Welcome to <%= siteName %>

</body>
</html>

<html>
<head>
<!-- The variable siteName has a value of
"My Web Site" -->
<title>My JSP Page</title>
</head>
<body>

<!-- The variable siteName has a value of
"* My Web Site *" -->
Welcome to * My Web Site *

</body>
</html>

TYPE THIS: HTML SOURCE CODE:

‹ Type --> to complete
the HTML comment.

67

� The Web browser
displays the results of
processing the expressions.

› Repeat steps 1 to 3
for each expression you
want to create.

ˇ Save the page with the
.jsp extension and display
the JSP page in a Web
browser.

66

JSP

CREATE AN EXPRESSION

⁄ Type <%= where you
want to insert an expression
in the JSP page.

¤ Type %> where you
want the expression to end.

‹ Between the opening and
closing delimiters (<%= and %>),
type the code to be evaluated
and included in the HTML code.

A n expression is a scripting element that allows
you to generate output on a JSP page. You can
use expressions to insert information into a Web

page rather than using scriptlets with out.print()
or out.println() statements. This reduces the
amount of code you have to type and can make your
scripts easier to read.

The Web server processes the code within the expression
and converts the results to a string. The results of the
expression are then inserted into the HTML code in
the same manner as the result of out.print() and
out.println() statements in scriptlets.

A simple expression can be used to display a string
enclosed in quotation marks or the value of a variable.
The Web server simply inserts the string or value into
the HTML code. Variables must be declared and initialized
in scriptlets or declarations in the same JSP page.

You can also use calculations and method calls in your
expressions. The expression processes the calculation

or method and inserts the result into the HTML code.
Methods used in expressions must be declared in the
same JSP page and return a printable value. If a method
does not return a value, the Web server displays an
error message.

You can use string concatenation to join
different types of information in a single expression.
For example, you can create an expression such as
<%= "Date of Birth: " + getDOB() %>, which generates
a string followed by the value returned by a method.

An expression cannot end with a semicolon, as is
customary with most Java statements. If a semicolon
is included in an expression, an error will occur.

Users viewing the source code of the Web page from
within a Web browser will not be able to view the
contents of the expression. They will see only the
information generated by the expression.

CREATE AN EXPRESSION

GETTING STARTED WITH JAVASERVER PAGES 3

If you need to include the " or \ character in a string, you
will have to place a backslash (\) before the character. The
" and \ characters have special meanings in Java and can be
misinterpreted by the Web server, causing errors to occur.

<%
String fontFace = "comic";
%>

<%= "My Web Page" %>
<%= "
c:\\Tomcat" %>

My Web Page

c:\Tomcat

TYPE THIS:

HTML SOURCE CODE:

69

� The Web browser
displays the result of
using the variable or
method you defined
in the declaration.

› Type the code that
uses the variable or
method.

ˇ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

68

JSP

CREATE A DECLARATION

⁄ Type <%! where you
want to add a declaration
to a JSP page.

¤ Type %> where you
want the declaration to end.

‹ Between the opening
and closing delimiters
(<%! and %>), type the
code that defines a
variable or method.

A declaration is a scripting element that allows you
to define variables and methods that will be used
throughout a JSP page. You must define variables

and methods in a JSP page before you can use the variables
and methods in the page. Although variables can also
be defined within a scriptlet, using a declaration is the
preferred method for defining variables.

To create a declaration, you place the code for the
declaration between the <%! opening delimiter and the
%> closing delimiter. Although a JSP page can include
multiple declarations, this is not typically required. There
is no limit to the amount of code you can include in a
declaration, so you can define multiple variables and
methods within the same declaration. Each line of code
in a declaration must end with a semicolon, if a semicolon
is required according to Java programming syntax.

Since declarations do not generate any output, they can
be placed anywhere on a JSP page without interfering with
the HTML code. Declarations are typically placed at the
top of a page.

When defining a method in a declaration, you can use
the public, private or protected access modifier
to specify how the method will be accessed. For more
information about access modifiers, see page 17. The
access modifier you use becomes important when you
import class files and other JSP pages into your code.
For more information about including external files in
a JSP page, see page 76.

If a declaration you want to add to a JSP page will contain
many variables and methods, you may want to use another
method of including the code, such as JavaBeans. JavaBeans
allow you to store code in an external file so the source
code of your JSP page is easier to understand and manage.
For information on JavaBeans, see page 122.

CREATE A DECLARATION

GETTING STARTED WITH JAVASERVER PAGES 3

Using a declaration to define a method within a JSP
page is similar to defining a method within a Java
class. Once you define a method, you can access
the contents of the method from anywhere in the
JSP page. For example, you can use a scriptlet in
the body of the page to pass a value to the method.

<%!
String siteName = "My Web Server";
public String stars(int x)
{

String message = "*";
for (int i = 0; i < x; i++)

message = message + "*";
return message;

}
%>

<html>
<body>
Welcome to <%= siteName %>

<%= stars(22) %>
</body>
</html>

Welcome to My Web Server

TYPE THIS: RESULT:

71

Untitled - Notepad

� The Web browser
displays the result of
generating text using
a scriptlet.

› Between the parentheses,
type the text you want to
output, enclosed in quotation
marks.

ˇ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

70

JSP

Untitled - Notepad

GENERATE TEXT USING SCRIPTLETS

Untitled - Notepad

⁄ Type <% where you
want to add a scriptlet
to a JSP page.

¤ Type %> where you
want the scriptlet to end.

‹ Between the opening and
closing delimiters (<% and %>),
type out.print() or out.println()
to generate text on the page.

Y ou can use scriptlets to generate text on a JSP page.
A scriptlet is a block of code embedded within
a page. The code for a scriptlet is almost always

written in the Java programming language, though some
Web servers support scriptlets written in other languages.
A page containing a scriptlet is often referred to as a
template.

To add a scriptlet to a page, you place the code you
want to embed in the page between the <% opening
delimiter and the %> closing delimiter. A scriptlet can
be used to generate text ranging from a simple message
to the entire content of a JSP page.

Within a scriptlet, you can use the out object with the
print or println member to generate text for a JSP
page. The out object sends output to a Web browser,
while the print and println members generate the
text that is to be inserted into the page.

The placement of a scriptlet within a JSP page is important.
If a scriptlet is used to generate output, it must be placed
in the body of the page rather than in an area that does
not display content, such as between the <head> and
</head> tags.

Before a JSP page containing scriptlets is generated, a Web
server processes the code in the scriptlets. The information
generated by the code is inserted into the page before the
page is displayed. Users who visit the JSP page will not
be able to see the code for a scriptlet, even if they display
the source code for the page, since the source code
will contain only the output generated by the scriptlet.
Although scriptlets are relatively secure, you should
avoid including sensitive information, such as passwords,
in the code.

GENERATE TEXT USING SCRIPTLETS

GETTING STARTED WITH JAVASERVER PAGES 3

When you use the print member with the out object, the text
you output does not include any line breaks. If you use the print
member several times in a row, all the text you enter will appear
on one long line in the source code. If you want to split text into
separate lines, you can use the println member. The println
member inserts a line break at the end of each line of text.

<%
out.print("<h1>");
out.print("Welcome to my Web Page");
out.print("</h1>");
out.print("<hr>");
%>

<h1>Welcome to my Web Page</h1><hr>

TYPE THIS:

SOURCE CODE:

<%
out.println("<h1>");
out.println("Welcome to my Web Page");
out.println("</h1>");
out.println("<hr>");
%>

<h1>
Welcome to my Web Page
</h1>
<hr>

TYPE THIS:

SOURCE CODE:

73

� The Web browser
displays the results of
processing the scriptlets.

› Repeat steps 1 to 3 for
each scriptlet you want to
add to your Web page.

ˇ Save the page with
the .jsp extension and
then display the page
in a Web browser.

72

JSP

WORK WITH MULTIPLE SCRIPTLETS

⁄ Type <% where you
want to add a scriptlet
to a JSP page.

¤ Type %> where you
want the scriptlet to end.

‹ Between the opening
and closing delimiters
(<% and %>), type the
code for the scriptlet.

� In this example, code
that assigns a value to a
variable is inserted.

Y ou can use multiple scriptlets within a single JSP
page. This enables you to place dynamically created
information in multiple locations throughout your

Web page.

Any code used in one scriptlet can be accessed by other
scriptlets in the same JSP page. For example, you can
declare a variable in one scriptlet and then access the
variable in another scriptlet that is in the same JSP page.
Scriptlets will be processed in the order they appear
on the JSP page, so you should consider the order of
processing when creating scriptlets that use information
from other scriptlets. For example, a scriptlet at the top
of a JSP page will not be able to access variables declared
in a scriptlet further down the page.

You must ensure that only valid Java code is included
between the <% and %> delimiters. When using multiple
scriptlets within HTML code, it is a common mistake to

leave some HTML code between the scriptlet delimiters.
HTML code included between the scriptlet delimiters must
be included in valid Java statements so the Web server can
dynamically generate the HTML code. If the Web server
finds any raw HTML code in a scriptlet, an error will occur.

Using many large scriptlets in a JSP page can cause your
code to be difficult to read and troubleshoot, should an
error occur. Scriptlets are suitable for small amounts of
code and for development and learning purposes. For
other purposes, you should convert your scriptlets into
a more manageable format, such as JavaBeans. For
information about creating JavaBeans, see page 122.

WORK WITH MULTIPLE SCRIPTLETS

GETTING STARTED WITH JAVASERVER PAGES 3

As well as displayable content for Web pages, scriptlets can also be
used to generate non-displayable elements, such as attributes for
HTML tags. This is useful if you also want to dynamically format
your page. Before the HTML code is sent to the Web browser, the
Web server replaces any scriptlets with the information generated
by the scriptlets. As long as the combination of scriptlet output
and HTML code in the page is valid, no errors will be generated.

<%
int fontSize = 5;
String fontColor = "blue";
String fontFace = "Courier";
%>

<font face="<%
out.print(fontFace);

%>" size="<%
out.print(fontSize);

%>" color="<%
out.print(fontColor);

%>">My Web Page

<font face="Courier" size="5"
color="blue">My Web Page

TYPE THIS: HTML SOURCE CODE:

My Web Page
WEB BROWSER:

75

Note: Some Web browsers
may automatically display
a plain-text JSP page as a
Web page.

If you do not use any directives in a JSP
page, the Web server's JSP engine will use
its own default settings when processing
the page. For example, if you do not use
the page directive with the contentType
attribute to specify how you want the
information in a JSP page to be generated,
a JSP engine will automatically display the
information as a Web page.

Some JSP engines do not support all of
the attributes and values offered by the
page directive. Before using the page
directive, you should view the latest
documentation for your Web server to
determine whether the JSP engine will
support the attributes and values you
want to use.

Although you can add more than one page
directive to a JSP page and each directive
can contain more than one attribute, you
usually cannot use the same attribute more
than once on a page. For example, you
cannot use the contentType attribute
several times on a JSP page, since the
information in the JSP page can only be
generated one way at a time.

DISPLAY A JSP PAGE
AS PLAIN TEXT

⁄ In the first line of
code in the JSP page, type
<%@ page contentType="" %>.

¤ To specify that you
want to display the JSP
page as plain text, type
text/plain between the
quotation marks.

‹ Save the page with the .jsp
extension and then display the
JSP page in a Web browser.

� The Web browser displays
the result of using the page
directive to display the JSP
page as plain text.

74

JSP

USING THE PAGE DIRECTIVE

DISPLAY A JSP PAGE
AS A WEB PAGE

⁄ In the first line of
code in the JSP page, type
<%@ page contentType="" %>.

¤ To specify that you
want to display the JSP
page as a Web page,
type text/html between
the quotation marks.

‹ Save the page with
the .jsp extension and
then display the JSP
page in a Web browser.

� The Web browser
displays the result of
using the page directive
to display the JSP page
as a Web page.

D irectives provide information about a JSP page to
the software that processes the page. This software
is often referred to as a JSP engine and is part of

a Web server. Directives are sometimes called JSP engine
directives. Directives do not produce visible output, but
rather provide instructions and settings that determine
how a JSP page is processed.

There are three JSP directives available–page, include
and taglib. Each directive has attributes that can be
assigned specific values. For example, the page directive
offers the autoFlush attribute, which can be assigned a
value of true or false. For a complete list of attributes
that can be used with each directive, see page 241.

To add a directive to a JSP page, you place the directive
statement between the <%@ opening delimiter and the
%> closing delimiter. The directive statement includes
the name of the directive, followed by the attribute and

value pairs you want to use. An attribute and its
corresponding value are separated by an equal sign.
A directive will only affect the JSP page containing the
directive.

The page directive is the most commonly used directive.
The page directive allows you to specify information
about the configuration of a JSP page, such as the type
of content you want the page to display. For example,
you can use the contentType attribute with the
text/plain value to specify that you want the
information generated by a JSP page to be displayed
as plain text.

A JSP page can contain multiple page directives. It is
good programming practice to place page directives
at the beginning of a JSP page, before any HTML or
JavaServer Pages code on the page.

USING THE PAGE DIRECTIVE

GETTING STARTED WITH JAVASERVER PAGES 3

77

� The Web browser
displays the result of
using the include
directive.

My Documents

Desktop

History

My Computer

My Network Pl...

The include directive allows you to include a file that is
stored in the same directory as the JSP page that includes
the file or in a subdirectory of that directory. In this example,
the JSP page is stored in a directory called test and the
footer.html file is stored in a subdirectory called test/pages.

Example:
<%@ include file="pages/footer.html" %>

You can also include a file that is located in the parent
directory of the directory that stores the JSP page. To do so,
you use the double dot notation to represent the name of the
parent directory. In this example, the JSP page is instructed
to look for the welcome.html file in the parent directory.

Example:
<%@ include file="../welcome.html" %>

Using the include directive allows you to break code into
manageable sections and then include the code in JSP pages
as needed. Each include file should contain code specific to
only one task. If you create a file that contains code for many
tasks, the JSP pages may not use all the code and the Web
server's resources will be wasted.

‹ Between the quotation
marks, type the name of the
file you want to include.

› Save the page with
the .jsp extension and
then display the JSP page
in a Web browser.

76

JSP

USING THE INCLUDE DIRECTIVE

CREATE A FILE TO INCLUDE

⁄ In a text editor, create
the file you want to include
in several JSP pages.

¤ Save the file.

Note: If the file contains plain
text, save the file with the .txt
extension. If the file contains
HTML code, save the file with
the .html extension.

INCLUDE A FILE

⁄ Display the code for
the JSP page in which you
want to include a file.

¤ Between the <body>
and </body> tags, type
<%@ include file="" %>.

T he include directive allows you to use one file in
several different JSP pages. This can save you time
when you need to include the same information in

multiple pages. For example, if you have a copyright notice
you want to display on all your JSP pages, you can create
a file that contains the copyright notice and then use the
include directive to include the information on all your
pages. The file must be stored on the Web server and be
accessible from all the JSP pages that you want to include
the file.

You must first create the file you want to include. The
file can contain plain text or HTML code, such as a table,
header or footer. If the file contains plain text, you can
save the file with the .txt extension. If the file contains
HTML code, you can save it with the .html extension.
The include file should not contain any JavaServer Pages
code. The Web server will ignore any JavaServer Pages
code included in the file.

To include a file in a JSP page, you add an include
statement to the page. The include statement must be
enclosed between the <%@ opening delimiter and the %>
closing delimiter. The filename specified in the include
statement must be enclosed in quotation marks. The
filename must be a fixed value, such as "footer.html".
You cannot use a variable that represents the name
of a file in an include statement.

If you change the code in the file, all of the JSP pages
that include the file will be updated. You may have to
clear the Web server's buffer before your JSP pages will
display the changes made to the file. For information
about clearing the Web server's buffer, see page 92.

USING THE INCLUDE DIRECTIVE

GETTING STARTED WITH JAVASERVER PAGES 3

