
29

� The result of using the
variables is displayed.

C:\WINDOWS>cd\java

C:\java>javac DisplayVariables.java

C:\java>java DisplayVariables
50
10
20

C:\java>

If you have not yet determined the value for 
a variable, you can create a variable without
assigning a value. Java will assign a default
value to the variable, but you can later assign
a value in a separate statement.

Example:
int firstValue;
System.out.println("Welcome to my program.");
firstValue = 10;

When selecting a variable name, choose a
name that describes the value of the variable.
For example, employeeNumber is more
descriptive than variable1. Also keep in
mind that variable names are case sensitive.
This means the variable AGE will be different
than the variable age or Age. 

Any method you use to determine variable names 
is acceptable if it makes sense to you and is easy for
other people to interpret. You should consistently
use the style you choose to make your script easier
to understand.

Typing mistakes are a common source of errors in
Java code. If the Java compiler displays error messages
that refer to undeclared or missing variables, you
should first check to make sure you typed each
variable name the same way throughout your code.

If the name of a variable is not self-explanatory, 
you may want to add a comment to the variable
declaration to explain the purpose of the variable.

Example:
int minutes;   //Minutes to display welcome message

Á Type the code that
uses the variables.

‡ Compile the Java
code and then execute
the program.

28

JSP

DECLARE A VARIABLE

⁄ To declare a variable,
type the keyword for the
data type you want to use.

¤ Type a name for the
variable you want to create.

‹ Type = followed by
the value you want to
assign to the variable.

DECLARE MULTIPLE VARIABLES

› To declare multiple
variables, type the keyword
for the data type of the
variables.

ˇ Type the name and
value of each variable
you want to create,
separated by a comma.

A variable is a name that represents a value. For
example, you could have the variable myAge represent
the value 29. Variables can be used to perform many

types of calculations. Before a variable can be used in a Java
program, you must declare the variable. Declaring a variable
tells the computer to set aside an area of memory to store
information. 

A variable can hold only a specific type of data, such as a
text character or a number. When you declare a variable,
you specify the type of data the variable can store. For
example, to specify that a variable will hold only a whole
number that is not a fraction, you would use an integer 
data type. To declare a variable that will hold an integer,
place the keyword int before the variable name. For 
more information about variable data types, see page 30.

A variable name can consist of multiple words. You can use 
a lowercase first letter and then capitalize the first letter of
each of the following words to make the name easy to read.
The underscore character (_) can also be used to separate
the words in the name, such as my_age.

When you declare a variable, you can assign an initial value
to the variable. To assign a value to a variable, you use the
assignment operator (=). For information about operators,
see page 34. 

If you have multiple variables of the same type, you can
declare all the variables on the same line by separating 
each variable name with a comma. 

Once a variable has been declared, it can be used within 
the method in which it was created. If the variable was
created outside of a method, it can be used by any code
within the class. Variables declared outside of a method
should be declared at the top of the class body. For
information about declaring variables in the class body, 
see page 56.

DECLARE A VARIABLE

PROGRAMMING WITH JAVA 2



31

� The results of using the
variables are displayed. 

C:\WINDOWS>cd\java

C:\java>javac DisplayVariables.java

C:\java>java DisplayVariables
The double value is 1.1
The integer value is 1

C:\java>

‡ Type the code that
uses the values of the
variables you created.

� In this example, we
display the values of the
firstValue and
secondValue variables.

° Compile the Java
code and then execute
the program.

30

JSP

SPECIFY THE DATA TYPE FOR A VARIABLE

⁄ To specify a data type
for a variable you want to
create, type the name of
the data type in the body
of the method.

¤ Type the code that
names the variable and
assigns it a value.

Note: If you do not assign a
value, the variable will use the
default value for its data type.

CONVERT A VALUE TO A
DIFFERENT DATA TYPE

‹ Type the code that declares
a variable that will store the
converted value. 

› Type the name of the
variable you created in step 3,
followed by =.

ˇ Type the data type
you want to convert the
value to, enclosed in
parentheses.

Á Type the name of
the variable that stores
the value you want to
convert.

J ava is a 'strongly typed language', which means that
you must specify a data type for each variable you use
in a Java program. This distinguishes Java from many

other programming languages, such as Perl, which do not
require variables to have assigned data types.

There are eight basic data types, called primitive types,
that variables can use. The data type you specify for a
variable determines the range of values that the variable
can store and the amount of memory, measured in bits,
that the variable requires. For example, a variable with 
the byte data type can store a number between -128 
and 127 and requires 8 bits of memory. 

Each primitive data type has a default value. If you declare
a variable without assigning a value, the default value for
the variable's data type will be assigned to the variable.

The specifications for data types in Java, such as memory
requirements and default values, are not affected by the

operating system or compiler that is used. This ensures
that a data type will have the same meaning when a
program is executed on different computers.

Specifying the data type for a variable requires that you
know in advance the types of values that will be stored in
the variable throughout your program. Once you declare a
variable, you cannot change the data type for the variable.
If you want to convert the value stored in a variable to a
different data type, you must assign the value to a new
variable that uses the desired data type. This process is
called casting. When converting a value to a new data
type, make sure that the conversion will not result in 
an unintended loss of data. For example, converting the
number 13.56 to an integer value will result in a new
value of 13. 

SPECIFY THE DATA TYPE FOR A VARIABLE

PROGRAMMING WITH JAVA 2

Primitive Data Types

TYPE: SIZE IN BITS: DEFAULT VALUE: POSSIBLE VALUES:

boolean 8 false 'true' or 'false'
char 16 \u0000 Unicode character, '\u0000' to 'uFFFF'
byte 8 0 -128 to 127
short 16 0 -32,768 to 32,767
int 32 0 -2,147,483,648 to 2,147,483,647
long 64 0 -9,223,372,036,854,775,808 to 

9,223,372,036,854,775,807
float 32 0.0 ±1.4E-45 to ±3.4028235E+38
double 64 0.0 ±4.9E-324 to ±1.7976931348623157E+308



33

� The result of using
strings is displayed.

C:\WINDOWS>cd\java

C:\java>javac DisplayTemperature.java

C:\java>java Display Temperature
Current Temperature
The temperature is 34 degrees.

C:\java>

CONCATENATE VARIABLES

ˇ To join the string with
other variables or values, type
the concatenation operator (+)
between each variable or
value you want to join.

Á Type the code that
uses the concatenated
variables.

‡ Compile the Java
code and then execute
the program.

32

JSP

WORK WITH STRINGS

⁄ To declare a string
variable, type String
followed by a name
for the variable.

¤ Type = followed by "". ‹ Between the quotation
marks, type the text you
want the string to contain.

› Type the code that
uses the string variable.

A string is a collection of characters, which can 
contain any combination of letters, numbers 
and special characters, such as $, & or #.

Before a string variable can be used in a Java program, you
must declare the string variable. The process of declaring 
a string variable is similar to that of declaring other types 
of variables. To declare a string variable, use the keyword
String followed by the variable name. The capital S at
the beginning of the keyword String indicates that a
string variable is an object of the String class. The
String class is part of the java.lang package that is
available to all Java programs as part of the standard class
library. For information about the Java standard class
library, see page 8.

After a string variable has been declared, a value can 
be assigned to the variable. To assign a value to a string
variable, you use the assignment operator (=). A string

value must be enclosed in double quotation marks (" "),
which identify the beginning and end of the string and
allow Java to work with the string as one piece of
information.

You can use the concatenation operator (+) to join
multiple strings together. The concatenation operator can
also be used to join other types of variables and values
together.

If you installed the documentation package available for 
the Java Software Development Kit, you can find more
information about the String class under the main JDK
directory at \docs\api\java\lang\String.html. You can also 
find documentation for the Java SDK at the java.sun.com
Web site.

WORK WITH STRINGS

PROGRAMMING WITH JAVA 2
You can determine the number of characters a
string contains by using the length method of
the String class.

String message = "The temperature is ";
System.out.print("The length of the string is ");
System.out.print(message.length());

The length of the string is 19

You can insert instructions you want Java to
interpret into a string. These instructions begin
with the backslash symbol (\) and are called
escape sequences. Escape sequences allow
you to include special characters, such as tabs,
newlines and backspaces in a string. Escape
sequences are often used to format text that
will be displayed on a screen or stored in a file.

TYPE THIS:

RESULT:

You can use the equals method of the String
class to compare two strings and determine if the
strings are the same.

String message = "weather";
System.out.print(message.equals("temperature"));

false

TYPE THIS:

RESULT:

\b Insert a backspace

\t Insert a tab

\n Start a new line

\f Insert a form feed

\r Insert a carriage return

\" Insert a double quotation mark

\' Insert a single quotation mark

\\ Insert a backslash



3534

JSP

J ava provides numerous operators that can be used to
assign values to variables, perform calculations and create
complex expressions. There are several general categories

of operators, including assignment, relational, arithmetic,
logical, conditional and shift.

WORKING WITH OPERATORS

PROGRAMMING WITH JAVA 2

Operator Type Category Associativity

() parentheses miscellaneous left
[] array subscript miscellaneous left
. member selection miscellaneous left
++ unary postfix arithmetic right
-- unary postfix arithmetic right
++ unary prefix arithmetic right
-- unary prefix arithmetic right
+ unary plus arithmetic right
- unary minus arithmetic right
! unary negation conditional right
~ bitwise complement logical right
new creation miscellaneous right
( type ) unary cast miscellaneous right
* multiplication arithmetic left
/ division arithmetic left
% modulus arithmetic left
+ addition arithmetic left
- subtraction arithmetic left
<< bitwise left shift left
>> bitwise right with sign extension shift left
>>> bitwise right with zero extension shift left
< less than relational left
<= less than or equal to relational left
> greater than relational left
>= greater than or equal to relational left
instanceof type comparison miscellaneous left
== is equal to relational left
!= is not equal to relational left
& bitwise AND logical left
^ bitwise XOR logical left
| bitwise OR logical left
&& logical AND conditional left
|| logical OR conditional left
?: ternary conditional miscellaneous right
= assignment assignment right
+= addition assignment right
-= subtraction assignment right
*= multiplication assignment right
/= division assignment right
%= modulus assignment right
&= bitwise AND assignment right
^= bitwise XOR assignment right
|= bitwise OR assignment right
<<= bitwise left shift assignment right
>>= bitwise right shift with sign extension  assignment right
>>>= bitwise right shift with zero extension       assignment right

TYPES OF OPERATORS

A Java operator can be classified by the number of operands
it accepts. An operand is an argument used by an operator.
An expression is a sequence of operands separated by one
or more operators that produces a result.

The following table shows the order of precedence from the highest
to the lowest, type, category and associativity of operators.

Unary

A unary operator accepts a single operand. All unary
operators support prefix notation, which means the
operator appears before the operand. A commonly
used unary operator is !, which indicates 'not.' For
example, !0 would be used to indicate a value that
is not zero.

The increment (++) and decrement (--) operators
also support the postfix notation, which means 
the operator can be placed after the operand. For
example, both ++hitCounter and hitCounter++
increment the operand by one.

Binary

The most common type of operator is the binary
operator. A binary operator performs calculations based
on two operands, with the operator placed between the
operands. For example, the expression 2 + 3 contains
the operands 2 and 3, separated by the operator, +.

Ternary

The ternary operator ?: accepts three operands. The ?:
operator tests the first operand and then returns the value
of the second or third operand, depending on the result. 
If the result of the first operand is true, the expression
returns the value of the second operand. If the result of
the first operand is false, the expression returns the value
of the third operand.

PRECEDENCE AND ASSOCIATIVITY

Order of Precedence

When an expression contains several operators, such
as 4 - 5 + 2 * 2, Java processes the operators in a
specific order, known as the order of precedence. The
order of precedence ranks operators from highest to
lowest precedence. Operators with higher precedence
are evaluated before operators with lower precedence. 

Associativity

When an expression contains multiple operators that
have the same precedence, the associativity of the
operators determines which part of the expression will
be evaluated first. Operators can have left associativity
or right associativity.

If operators have left associativity, then the leftmost
operator is processed first. For example, the result 
of the expression 5 - 3 + 2 is 4 rather than 0. The
opposite holds true for operators that have right
associativity. 

Parentheses

Regardless of the precedence and associativity of operators,
you can use parentheses to dictate the order in which Java
should process operators. In an expression, Java processes
operators and operands enclosed in parentheses first.



37

� The result of executing
the code in the method is
displayed.

C:\WINDOWS>cd\java

C:\java>javac PersonalInformation.java

C:\java>java PersonalInformation
My Personal Details
Mary Corder

C:\java>

If a method you want to call is declared in a different
class, you must specify the class that contains the
method you want to call. You use the dot operator (.)
to link the class name and the method name. Any
methods called from another class should be created
with the public access modifier.

Example:
public class PersonalInformation
{

public static void DisplayMyName()
{

System.out.println("David Gregory");
}

}

public class CallingClassMethods
{

public static void main(String[] args)
{

System.out.println("My Personal Details");

PersonalInformation.DisplayMyName();
}

}

› In the body of the
main method, type the
name of the method you
want to call, followed by
a set of parentheses.

ˇ Compile the Java
code and then execute
the program.

36

JSP

CALL A METHOD

⁄ Create a class file
with a main method.

¤ Declare the method
you want to call.

‹ Create the body of
the method you want
to call.

O nce you have created a method, you need to 
call the method to tell Java to access and execute
the code in the method. The code included in a

method will not be executed until the method is called.

To call a method in the same class it was declared in, 
you type the name of the method followed by a set of
parentheses where you want to execute the code specified
in the method. You must be sure to type the method 
name exactly as it was typed in the code that declares the
method. Some methods require you to include arguments
within the parentheses that follow the method name. For
information about passing arguments to methods, see
page 38.

When a method is called, the code included in the method
is executed as if the code was typed in the location where
you called the method. Once Java has finished processing
the code in the method, Java continues execution from the
line following the method call.

In some programs, you may need to call a method that 
is declared in a different class. The access modifiers used
in method declaration determine the locations from which
you can call the method. For more information about
access modifiers, see page 16.

Classes that contain methods can also be grouped into 
a package. You may need to specify the package that
contains the method you want to call. For more
information about packages, see page 50.

In addition to calling methods you have created, you can
also call methods provided in the Java class library. For
example, System.out.println() calls a Java class
library method which is used to display data. For more
information about the Java class library, see page 8.

CALL A METHOD

PROGRAMMING WITH JAVA 2



39

PersonalInformation.java - Notepad

� The result of passing
arguments to a method
and using a return value
is displayed.

C:\WINDOWS>cd\java

C:\java>javac PersonalInformation.java

C:\java>java PersonalInformation
My Personal Information
My name is:  Sandy Rodrigues

C:\java>

CALL A METHOD USING
ARGUMENTS

Á In the body of the
main method, type
the code that calls
the method you want
to use.

‡ Between the parentheses
following the method name, 
type the arguments you want 
to pass to the method.

� String arguments must be
enclosed in quotation marks.

Note: When passing multiple arguments, the
arguments must be separated by a comma.

° Compile the Java
code and then execute
the program.

38

JSP

PersonalInformation.java - Notepad

USING RETURN VALUES AND ARGUMENTS IN METHODS

PersonalInformation.java - Notepad

CREATE A RETURN STATEMENT

⁄ Type the code that declares
the method you want to use.

� The data type of the value
the method will return must
be specified in this code.

¤ Type the code for
the body of the method.

‹ In the body of the
method, type return
followed by the
information you want
the method to return.

PREPARE A METHOD TO
ACCEPT ARGUMENTS

› Between the parentheses
following the method name
in the method declaration,
specify the data type of the
argument that the method
will accept. 

ˇ Type the name of the
variable that will store the
value of the argument.

Note: When preparing a method
to accept multiple arguments,
each data type and variable pair
must be separated by a comma.

Y ou can have a method return a value to the code. 
A return value may be the result of a calculation or
procedure or may indicate whether a process was

successfully completed.

The data type of a return value for a method must be
specified when the method is declared. Return values 
can be any valid data type in Java, such as String, byte
or boolean. An error may occur if the data type of the 
value that is returned does not match the return type
specified in the method declaration.

Information is returned from a method using the keyword
return. Once the return statement is executed in 
a method, the processing of the method ends and the 
value specified in the return statement is passed back 
to the calling statement.

A method with a return value can be used as if it were 
a variable. For example, you could display the value 

returned by a method using the System.out.print
command. You could also assign the value returned by 
a method to a variable.

You can also pass one or more values, called arguments, 
to a method you have created. Passing arguments to a
method allows you to use one method throughout a 
program to process different data.

To pass an argument to a method, you include a data type
and variable name in the parentheses at the end of the
method name in a method declaration. When you call 
the method, you include the data you want to pass in 
the parentheses following the method name.

You can pass any type of data to a method, but the type 
of data must match the data type specified in the method
declaration. For example, if a method expects an integer
value to be passed for calculation, passing a string value 
to the method would cause an error to occur.

USING RETURN VALUES AND
ARGUMENTS IN METHODS

PROGRAMMING WITH JAVA 2

A method can have more than one return statement.
This is commonly found in methods that use conditional
statements. Although a method can have more than one
return statement, only one return statement will be
executed. When a return statement is encountered,
the execution of the method is terminated.

class MakeList
{

public static void main(String[] args)
{

System.out.println(CheckAge(29));
}
static String CheckAge(int age)
{

if (age > 21)
{

return "You may take the survey";
}
else
{

return "You are too young to take the survey";
}

}
}

TYPE THIS:

You may take the survey

RESULT:



41

� The result of testing
the condition is displayed
on the screen.

C:\WINDOWS>cd\java

C:\java>javac WeatherProgram.java

C:\java>java WeatherProgram
88 degrees.  It's hot.

C:\java>

ˇ To use the else
statement, type else.

Á Type the code you want
to execute if the condition
you specified is false.
Enclose the code in braces.

‡ Compile the Java
code and then execute
the program.

40

JSP

USING THE IF STATEMENT

⁄ Type the code that
declares the variables
and assigns their values.

¤ Type if. 

‹ Type the condition you
want to test. Enclose the
condition in parentheses.

› Type the code you want
to execute if the condition
you specified is true. Enclose
the code in braces.

U sing an if statement allows you to test a condition
to determine whether the condition is true or false.
The condition can be as complex as necessary, but 

it must always produce a value that evaluates to either true
or false. When the condition is true, the section of code
directly following the if statement is executed. For example,
you can create a program that displays a Good Morning
message when a user runs the program between 5:00 AM
and 11:59 AM. If the condition is false, no code from the 
if statement will be executed. 

A section of code you want to be executed must be 
enclosed in braces {} and is referred to as a statement 
block. The condition for an if statement must be enclosed
in parentheses ().

If you want an if statement to execute a block when a
condition is false, you must include an else statement.
Using an if statement with an else statement allows you 
to execute one of two sections of code, depending on the

outcome of testing the condition. If the condition is true, 
the statement block directly following the if statement 
is executed. If the condition is false, the statement block
directly following the else statement is executed. Using 
an else statement ensures that a section of code is executed
regardless of the outcome of testing the condition. For
example, you can have a program display a Good Morning
message or a Good Evening message, depending on the 
time set on the computer that executes the program.

To make your code easier to read and understand, you
should always indent the statement block that contains the
code to be executed. Many programmers also use spaces
within statements to make the statements easier to read.
White-space characters, such as tabs and blank lines, are
ignored by the Java compiler, so using these characters will
not affect the function or performance of your Java program.

USING THE IF STATEMENT

PROGRAMMING WITH JAVA 2

If you are going to execute only one line of code based
on a condition being true, you can place the code to be
executed on the same line as the if statement. 

if (currentTemp > hot)
{

System.out.println("It’s hot.");
}

if (currentTemp > hot) System.out.println("It’s hot.");

FOR EXAMPLE: CAN BE TYPED AS:

Nested if statements allow you to specify
multiple conditions for an if statement at the
same time. Each if statement will be evaluated
only if the previous if statement is true. If all

the if statements are true, a section of code 
is executed. If any of the if statements are
false, no code from the if statements will be
executed.

int hot = 80, veryHot = 85, currentTemp = 88;
if (currentTemp > hot)
{

System.out.print(currentTemp + " degrees. It's ");
if (currentTemp > veryHot)
{

System.out.print("very, very ");
}
System.out.println("hot.");

}

88 degrees. It’s very, very hot.

TYPE THIS: RESULT:



43

� The result of using
the for statement is
displayed.

C:\WINDOWS>cd\java

C:\java>javac MyJavaProgram.java

C:\java>java MyJavaProgram
0
1
2
3
4

C:\java>

A loop can still be executed even if one 
or more expressions are omitted from the
for statement. However, any expressions
you omit from the for statement must 
be specified elsewhere in the code. For
example, if you specify the starting value 
of the iterator in another part of your code,
you do not need to include an initialization
expression in the for statement. Keep 
in mind that you must still include all the
necessary semicolons in the for statement.

Example:
int loopCounter = 3;
for (; loopCounter < 5; loopCounter++)
{

System.out.println(loopCounter);
}

If a for statement does not include a condition 
and no condition is specified in the body of the loop,
Java assumes that the condition is always true and an
infinite loop is created. You should be careful not to
accidentally create an infinite loop.

Example:
int loopCounter;
for (loopCounter = 1; ; loopCounter++)
{

System.out.println(loopCounter);
}

If the body of a for loop is composed of a single line
of code, you do not have to enclose the line in braces.
Although the braces are optional in this situation, most
programmers use the braces to keep their code
consistent.

Example:
for (loopCounter = 0; loopCounter < 10; loopCounter++)

System.out.println(loopCounter);

ˇ Type the re-initialization
expression that will modify
the value of the iterator each
time the loop is executed.

Á Type the code you
want to execute as long
as the specified condition
is true. Enclose the code
in braces.

‡ Compile the Java code
and execute the program.

42

JSP

USING THE FOR STATEMENT

⁄ In the body of the
method, declare a variable
that will be used as the
iterator.

¤ Type for ( ). ‹ Type the initialization
expression that specifies the
starting value of the iterator
followed by a semicolon.

› Type the condition
that evaluates the value
of the iterator followed
by a semicolon.

P rogrammers often need to execute the same
statement or block of statements several times. 
The for statement allows you to create a loop that

repeats the execution of code a specific number of times.
For example, you may want to create five line breaks on 
a Web page. Instead of typing the code that creates a line
break five times, you can create a loop that executes the
code to create a line break and then repeats the loop until
the value of a counter reaches 5.

When creating a for statement, you usually use a
variable, called an iterator, that acts as a counter for 
the loop. You use an initialization expression to specify 
a starting value for the iterator. 

You must also specify a condition that evaluates the 
value of the iterator. If the condition is true, the loop is
executed and a block of code you specify is processed. 
If the condition is false, the block of code is not executed
and the loop is ended.

The re-initialization expression is used to modify the value
of the iterator. For example, if you use the increment
operator (++) in the re-initialization expression, the value
of the iterator will be incremented by one each time the
loop is executed. The expression i++ functions the same
as i = i + 1.

The block of code you want to execute is placed between
braces {} and is known as the body of the loop. You
should indent the code in the body of a loop to make the
code easier to read and understand. The code in the body
of a for loop can include any valid Java statements, such
as calls to other methods. You may also place another
loop within the body of a for loop. This is referred to as
nesting. You should avoid having too many nested loops
because it makes the program difficult to read and
troubleshoot.

USING THE FOR STATEMENT

PROGRAMMING WITH JAVA 2



45

� The result of using
the while statement
is displayed.

C:\WINDOWS>cd\java

C:\java>javac MyJavaProgram.java

C:\java>java MyJavaProgram
This is line number 1
This is line number 2
This is line number 3
This is line number 4
This is line number 5
C:\java>

› Type the code you
want to execute as long
as the specified condition
is true. Enclose the code
in braces.

ˇ In the body of the
loop, type the code that
will alter the value of the
iterator each time the
loop is executed.

Á Compile the Java
code and then execute
the program.

44

JSP

USING THE WHILE STATEMENT

⁄ In the body of the
method, type the code
that creates an iterator
and assigns it a value.

¤ Type while ( ). ‹ Type the condition
you want to evaluate.

T he while statement allows you to create a
conditional loop that will execute a section 
of code as long as a specified condition is true.

Conditions often test the value of an iterator. For
example, you may want to process a pay statement 
for each of the 100 employees in a company. Instead 
of typing the code that processes a pay statement 
100 times, you could create a loop to process the pay
statement for each employee. The condition would
check how many pay statements have been processed.
After the 100th pay statement has been processed, 
the condition would be evaluated as false and the 
loop would end.

The body of a while loop is enclosed in braces {}
and contains the section of code to be executed. If the
condition tests the value of an iterator, the loop body
will also contain code to alter the value of the iterator.
The value of an iterator can be increased or decreased.

When the condition is true, the section of code in the
body of the loop is executed. When Java reaches the 
end of the loop body, the condition is re-evaluated. 
If the condition is still true, the section of code is
executed again. If the condition is false, the section 
of code in the loop body is not executed and the 
loop ends.

When creating a loop using the while statement, 
you must ensure that the condition being tested will 
be evaluated as false at some time. If the condition is
always true, the code in the loop body will be executed
indefinitely. This kind of never-ending loop is known as
an infinite loop. If an infinite loop is created, you will
have to forcibly stop the execution of the Java program.

USING THE WHILE STATEMENT

PROGRAMMING WITH JAVA 2

A do-while statement can be used to test 
a condition after the code in the loop body 
has been executed. This is useful if you have 
a section of code that you want to execute at 
least once, regardless of how the condition 
is evaluated.

int loopCounter = 0;
do
{

System.out.println("This is line number " 
+ loopCounter);

loopCounter++;
} while (loopCounter < 0);

This is line number 0

TYPE THIS:

RESULT:

You can place another loop within the body of
a do-while loop to create a nested loop.

int loopCounter = 0, dotCounter;
do
{

System.out.print("This is line number");
for (dotCounter = 0; dotCounter < 8; dotCounter++)
{

System.out.print(".");
}
System.out.println(loopCounter);
loopCounter++;

} while (loopCounter < 3);

This is line number........0
This is line number........1
This is line number........2

TYPE THIS:

RESULT:



47

� The result of using
the switch statement
is displayed.

C:\WINDOWS>cd\java

C:\java>javac MyJavaProgram.java

C:\java>java MyJavaProgram
Very Important

C:\java>

You can execute one section of code 
for multiple case statements. Each case
statement you want to match must be
followed by a colon.

Example:
switch (gender)
{

case M: case m:
System.out.println("Male");
break;

case F: case f:
System.out.println("Female");
break;

}

You can include a default statement in a
switch statement if you want to execute specific
code when none of the other case values match
the specified expression. The default statement
is usually placed last in the switch statement
structure. 

Example:
switch (priority)
{

case 1:
System.out.println("Urgent");
break;

case 2:
System.out.println("Not Important");
break;

default:
System.out.println("Ignore");

}

° Type break to prevent
the switch statement from
testing the remaining case
values after a section of
code is executed.

· Repeat steps 5 to 8
for each value the
expression may contain.

‚ Compile the Java
code and then execute
the program.

46

JSP

USING THE SWITCH STATEMENT

⁄ Create the expression
you want to use in the
switch statement.

¤ Type switch.

‹ Type the name of the
expression, enclosed in
parentheses.

› Type a pair of braces to
hold the case statements.

ˇ Type case followed by a
value the expression may
contain.

Á Type : to complete the
case statement.

‡ Type the statements
you want to execute if the
case value matches the
expression you specified
in step 1.

T he switch statement allows you to execute a
section of code, depending on the value of an
expression you specify. When a switch statement 

is executed, the value of the expression is compared to 
a number of possible choices, called case values. If the
value of the expression matches a case value, the section
of code following the case value is executed. For example,
you can create a switch statement that displays a specific
message, depending on information entered by a user.

To use the switch statement, you must first specify the
expression you want to use. The value of the expression
must have a char, byte, short or int data type. After
specifying the expression, you must create the case
values that the expression will be compared to. The
expression must match the case value exactly. You 
cannot use an indefinite expression, such as x > 10,
for a case value.

The switch statement compares the value of the
expression to each case value in order, from top to
bottom. The case statements can be in any order, 
but to make your program more efficient, you should 
place the most commonly used case values first.

To prevent the switch statement from testing the
remaining case values after a match has been made, you
should use the break statement to skip the remaining
case statements and continue processing the code after
the closing brace of the switch statement. The break
statement should be used as the last statement for each
case statement. Although the last case statement does
not require a break statement, some programmers 
include it to be consistent. This can help prevent you 
from forgetting to include the break statement if you 
later add another case statement to the switch
statement.

USING THE SWITCH STATEMENT

PROGRAMMING WITH JAVA 2



49

� The results of creating
an array and accessing
elements are displayed. 

C:\WINDOWS>cd\java

C:\java>javac MyJavaProgram.java

C:\java>java MyjavaProgram
Items on hand = 953

C:\java>

Á To create an element
in the array, type the
name of the array,
followed by the index
number of the element
enclosed in brackets.

‡ Type = followed by
the value for the element.

� If the value for the element
is a string, you must enclose
the string in quotation marks.

° Repeat steps 6 and 7 for
each element in the array.

· Type the code that
accesses elements in the array.

‚ Compile the Java code
and then execute the
program.

48

JSP

CREATE AN ARRAY

⁄ To declare an array
variable, type the data
type of the values that
will be stored in the
array, followed by [ ].

¤ Type a name for the
array variable.

‹ To define the array, type
the name of the array variable,
followed by =.

› Type new to create the
new array, followed by the
data type for the array.

ˇ Type the number of
elements the array will
contain, enclosed in
brackets.

A n array stores a set of related values, called
elements, that are of the same data type. For
example, an array could store the name of each 

day of the week. Using an array allows you to work 
with multiple values at the same time.

The first step in creating an array is to declare an array
variable. To declare an array variable, you specify the data
type of the values that the array will store, followed by
brackets []. For more information about data types, see
page 30. You must also give the array a name. Array names
use the same naming conventions as other variables. 

Once you have declared the array variable, you can define
the array. The new operator is used to define an array and
indicates that you want to set aside space in memory for
the new array. When defining an array, you must also
specify the number of elements the array will store. 

Each element in an array is uniquely identified by an index
number. Index numbers in an array start at 0, not 1. For
example, an array defined as items = new int[6] would
contain six elements indexed from 0 to 5. 

You can specify the values you want each element to store.
String values must be enclosed in quotation marks. 

To access an individual element in an array, you use the
name of the array followed by the index number for the
element enclosed in brackets. When brackets are used 
in this context, they are referred to as the array access
operator. You can use an array element in a Java program
as you would use a variable. Changing the value of an
element will not affect the other elements in the array.

CREATE AN ARRAY

PROGRAMMING WITH JAVA 2
Unlike most other programming languages, Java
treats arrays as objects. The length member of the
array object allows you to determine the number
of elements in an array.

class ArrayLength
{

public static void main(String[] args)
{ 

int[] items;
items = new int[3];

items[0] = 331;
items[1] = 324;
items[2] = 298;

int total = items.length;
System.out.print("Number of items = " + total);

}
}

Number of items = 3

TYPE THIS:

RESULT:

You can use code that creates a loop, such
as a for statement, to work with all the
elements in an array at once. 

class MyArray
{
public static void main(String[] args)
{

int[] items;
items = new int[3];

items[0] = 331;
items[1] = 324;
items[2] = 298;
int total = items.length;

for (int i = 0; i < total; i++)
System.out.println(items[i]);

}
}

331
324
298

TYPE THIS:

RESULT:



51

� The result of using
a class stored in a
package is displayed.

C:\WINDOWS>cd\jdk1.3\lib

C:\jdk1.3\lib>javac TestPackage.java

C:\jdk1.3\lib>java TestPackage
My email address is tom@abc.com

C:\jdk1.3\lib>

A class always belongs to a package, even
when no package is specified. If a package is
not specified for a class, the class will belong
to the default package, which is the empty
string "".

If you are using a Java development tool,
such as an Integrated Development
Environment (IDE), package directories 
may already be set up for you within a 
main class directory. You can usually change
the configuration of the program to specify
another directory as the main class directory.

The method you use to create directories
will depend on the type of operating system
installed on your computer. If you are using
a UNIX-based operating system, such as
Linux, you might use the mkdir command
to create directories in a terminal window. 
If you are using an operating system with 
a Graphical User Interface (GUI), such as
Macintosh or Windows, you would use 
the graphical tools provided to create
directories. 

When you use a class stored in a package,
you must specify the name of the package
in addition to the class name. To avoid
having to specify the package name each
time you want to use the class, you can
import the package into your program.

USE A CLASS STORED 
IN A PACKAGE

⁄ To use a class
stored in a package you
created, type the name
of the package followed
by a dot.

¤ Type the name of
the class you want to
use from the package,
followed by a dot.

‹ Type the name of
the method you want
to access.

› Compile the Java code
and then execute the
program.

50

JSP

CREATE A PACKAGE

⁄ Create a directory on
your computer that will 
store classes for the package.

� In this example, a
directory named myapps is
created in the lib directory.
The lib directory is located in
the main Java SDK directory.

¤ On the first line of code
in a class file, type package
followed by the name of the
package you want to create.

Note: The package name must 
be the same as the name of the
directory you created in step 1.

‹ Enter the code that
declares a class and a
method that you want to
use in other Java programs.

› In the body of the
method, type the code 
for the task you want to
perform.

ˇ Save the code with 
the .java extension in the
directory you created in
step 1.

I f your Java program contains a large number of class 
files, you can organize the files by grouping them into
packages. A package stores a collection of related classes.

For example, all the shipping-related classes in a program
could be grouped into a package called shipping. 

Packages allow you to use classes with identical names in 
the same Java program. Using classes with the same name 
in one program is normally not permitted in Java. However,
when you place classes with the same name in different
packages, the classes can be used in a single application
without conflict.

When creating a package, you must create a directory to 
store all the classes for the package. Package directories 
must always be created in the default class directory that 
was specified when the Java Software Development Kit 
was installed on your computer. The lib directory, which 
is located in the main Java SDK directory, is usually the 
default class directory. 

The name of the directory you create should describe the
classes the package will store. All the classes belonging 
to a package must be saved in the same directory.

You add a package statement to a class file to specify the
name of the package you want the class to belong to. The
package statement must be the first line of code in the 
class file. If the package name consists of multiple words, 
the words are separated by dots. Each word in the name 
must represent an actual directory on your computer. 
For example, classes that are placed in a package called
myapps.internet would be stored in a directory called 
internet, located within the myapps directory. 

To use a class stored in a package in an application, 
you specify the package name and the class name.

CREATE A PACKAGE

PROGRAMMING WITH JAVA 2



53

� The result of using a
class from an imported
package is displayed.

C:\WINDOWS>cd\jdk1.3\lib

C:\jdk1.3\lib>javac TestPackage.java

C:\jdk1.3\lib>java TestPackage
My email address is tom@abc.com

C:\jdk1.3\lib>

You can use the wildcard character * to have
Java import all the classes a package contains.
This is useful if you want to access several
classes in a package. In the following example,
the package is named myapps.webutils. 

Example:

import myapps.webutils.*

When using the wildcard character *, it is
important to note that only the classes in
the named package will be imported. For
example, the import myapps.webutils.*
statement will only import the classes
found in the myapps.webutils package and
will not import any classes found in the
myapps.webutils.text package. To import
classes from the myapps.webutils.text
package, you must use the import
myapps.webutils.text.* statement.

Java may not import every class a package
contains when you use the wildcard
character *.  When you compile your code,
Java searches the code and imports only
the classes that are used. This prevents
your bytecode from becoming too large.

Java can automatically import certain
packages when you compile code. The
java.lang package, which is part of the
Java class library, is automatically imported
whenever you compile code. If your code
contains classes that do not belong to a
package, Java imports the default package " "
and assigns the classes to that package. 
If your Java code contains a package
statement, the named package is also
automatically imported.

ˇ In the body of the
method, type the code for
the task you want to perform.

Á To use the imported class,
type the name of the class
followed by a dot.

‡ Type the name of
the method you want
to access.

° Compile the Java
code and then execute
the program.

52

JSP

IMPORT A PACKAGE

⁄ To import a package,
type import in the first line
of code.

‹ Type the name of the
class you want to import.

› Enter the code that
declares the class and
the method you want
to use.

Y ou can import a class from a package you have created
into a Java program. This is useful if you plan to use the
class several times in the program. Once a package and

a class have been imported, you do not need to specify the
name of the package each time you want to access the class.

The import statement is used to import a package and 
is usually placed at the beginning of your Java program. 
If your program contains a package statement, the import
statement must be placed after the package statement. 
You can import several packages and classes into one Java
program. Each package you want to import must have its
own import statement. You should not import two classes
with the same name into one program.

You must first create the package you want to import. For
more information about creating a package, see page 50.

To help ensure an error is not generated when you compile
the code for your program, you must ensure that the package
directory and the class you want to import are available. 
In most situations this is not a concern, but it becomes
important if you are developing programs on different
computers or different platforms.

When importing a class from a package, you must specify 
the name of the class you want to import. You should only
import class files you intend to use. Imported class files
increase the size of the bytecode created when you compile
Java code. 

In addition to packages and classes that you create, you 
can import packages and classes that are part of the Java
class library. You can refer to page 8 for more information
about the packages included in the Java class library.

IMPORT A PACKAGE

PROGRAMMING WITH JAVA 2

¤ Type the name of 
the package you want to
import followed by a dot.



55

� The results of instantiating
the object of a sub-class and
accessing methods of the
sub-class and super-class 
are displayed.

C:\WINDOWS>cd\java

C:\java>javac DisplayMessage.java

C:\java>java DisplayMessage
<b>Copyright</b><i>1999, 2000, 2001.</i>

C:\java>

As with methods, fields within a super-class will
also be available to a sub-class, depending on the
access modifier a field uses. A field that uses the
private access modifier will not be accessible
to any sub-classes, while a field that uses the
public access modifier will be available to all
sub-classes. 

When creating a sub-class, you can override a
method in the super-class that you do not want to be
available when the sub-class is accessed. To override
a method in the super-class, create a method in the
sub-class that has the same name as the method you
want to override. The access modifier of the method
in the sub-class must be the same or less restrictive
than the access modifier of the method in the super-
class. When an object is created using the sub-class,
the method in the sub-class will be available instead
of the method in the super-class. 

A class you created as a sub-class can be
used as the super-class of another class. This
allows you to create a chain of sub-classes
and super-classes. A class that extends
directly from a super-class is called a direct
sub-class of the super-class. A class that is 
an extension of another sub-class is called a
non-direct sub-class of the super-class. There
is no limit to the number of sub-classes that
can be created from other sub-classes.

USING AN EXTENDED CLASS

⁄ To create a class that
will instantiate an object of
the sub-class you created,
type the code that defines
the class and method you
want to use.

¤ In the body of the
method, type the code
that creates the object.

‹ Type the code that
accesses methods from
the sub-class and the
super-class.

› Compile the Java code
and then execute the
program.

54

JSP

EXTEND A CLASS

CREATE THE SUPER-CLASS

⁄ Type the code that
defines a class you want
to be able to extend to
another class.

¤ Compile the Java code
for the class.

CREATE THE SUB-CLASS

⁄ Type the code that
defines a class you want
to use as an extension
of another class.

¤ In the method
declaration, type extends
followed by the name 
of the class you want to
use as the super-class.

‹ Compile the Java
code for the class. 

I f a class you are creating is related to a class you have
previously created, you can make the new class an
extension of the original class. For example, you can

make a new class that performs tasks using a database an
extension of the class that connects to the database. This
allows you to re-use Java code in the original class without
having to retype the code in the new class.

When you extend a class, the original class is usually
referred to as the super-class, while the new class is 
called the sub-class.

When declaring a class you want to use as a sub-class, 
you must use the extends keyword to specify the name 
of the class that will act as the super-class. The class you
specify using the extends keyword must be a valid class
that will be accessible to the sub-class when the sub-class
is compiled. 

Whether or not a method within a super-class will be
accessible to a sub-class depends on the access modifier

the method uses. A method that uses the public
access modifier will be accessible to any sub-class, 
while a method that uses the private access modifier 
will not be accessible to sub-classes. A method that 
does not have an access modifier specified will be
accessible only to sub-classes that are stored in the 
same package as the super-class.

Once you have created a sub-class as an extension of a
super-class, you can create a new class that accesses the
sub-class. For example, a new class can create an object
using the sub-class. The class information from both the
sub-class and the super-class will be combined to form a
single object, with methods from both the sub-class and 
the super-class available to the object.

Many of the classes included with the Java SDK extend to
other classes. For information about the Java SDK classes,
refer to the Java SDK documentation.

EXTEND A CLASS

PROGRAMMING WITH JAVA 2



57

� The value of the
member variable and
the value of the local
variable are displayed.

C:\WINDOWS>cd\java

C:\java>javac ShowScope.java

C:\java>java ShowScope
This is the value of the local variable x: 55
This is the value of the member variable x: 10

C:\java>

The scope of a variable is restricted to the block
of code that contains the variable declaration. If
you declare a variable in a block of code created
by an if statement or a statement that produces
a loop, the variable will be a local variable.

Example:

boolean go = true;

if (go)
{

int x = 3;
}

System.out.print(x);

Produces this error message when compiled:

Scope.java:12: cannot resolve symbol
symbol  : variable x
location: class Scope

System.out.print(x);
^

1 error

‡ Type the code that
declares another method.

° In the body of the
method, type the code
that displays the value 
of the member variable.

· In the body of the
main method, type the
code that calls each
method. 

‚ Compile the Java
code and then execute
the program.

56

JSP

UNDERSTANDING VARIABLE SCOPE

⁄ To create a member
variable, type static in
the body of the class. 

¤ Type the code that
declares the member
variable. 

‹ Type the code that
declares a main method.

› Type the code that
declares a method.

ˇ To create a local
variable, type the code
that declares a variable in
the body of the method. 

� Give the local variable
the same name as the
member variable, but 
a different value. 

Á Type the code that
displays the value of 
the local variable.

T he scope of a variable determines the part of a
program that can access the variable and use its 
value. In Java, there are strict guidelines governing

variable scope. These guidelines are referred to as 
scoping rules.

The scope of a variable is determined by the position of 
the variable declaration within a block of code. An opening
brace and a closing brace denote a block of code. The 
scope of a variable is from the line of code containing 
the variable declaration to the closing brace of the block. 

If you declare a variable in the body of a class, outside 
of any method, the variable will be accessible to all the
methods in the class. A variable declared in a class body 
is referred to as a member variable.  

When using the Java interpreter to execute a class file,
methods and variables created in the body of the class 
file must be declared using the static access modifier. 

A variable declared within a method is referred to as 
a local variable. A local variable is accessible only within 
the method in which it was declared. Other blocks of code
created within the method can access the local variable.

You can use the same name to declare a member 
variable and a local variable in one class. When you 
use the same name to declare two variables of different
scope, Java treats the variables as distinct. Although 
variables with different scopes can have the same name,
using unique variable names will make your code easier 
to understand. For example, instead of using a variable
named counter for all your counting functions, you should
use variations of the name, such as loopCounter for 
counting loop iterations or processCounter for counting 
the number of times a particular process is executed.

UNDERSTANDING VARIABLE SCOPE

PROGRAMMING WITH JAVA 2


