
32

JSP

J avaServer Pages (JSP) is technology developed by
Sun Microsystems that is used to create powerful
and dynamic Web sites.

INTRODUCTION TO JAVASERVER PAGES

JAVA BASICS 1

FEATURES OF JAVASERVER PAGES

Create Dynamic Web Sites

Dynamic Web sites contain Web pages that
display constantly changing content. Using
JavaServer Pages, you can determine the content
a Web page displays, depending on many
different factors. For example, you can have a
page automatically present different content to
users depending on the current date or the user's
location. Dynamic Web pages are more useful
to each individual user than static Web pages.

Create Interactive Web Sites

Interactive Web sites contain Web pages that
exchange information between the Web site
and the user. JavaServer Pages allows Web
developers to easily create Web pages that
process information from a user and then
generate content depending on the information
submitted by the user. Interactive Web sites
allow Web developers to tailor the content
of Web pages to better appeal to the user.

Increased Security

Because JavaServer Pages code is processed on
the Web server, the user cannot access the code
used to create a JSP page. This makes it safer to
work with sensitive data, such as login names
and passwords. If a user views the source code
of a JSP page within a Web browser, all the user
will see is the HTML code that was generated
by the Web server to create the page, not the
JavaServer Pages code itself.

Work With Databases

An important feature of JavaServer Pages is the
ability to connect to a database. JSP pages can
be used to make information stored in a database
available to the users who visit a Web site. Using
databases to store information and JSP pages to
access the information is an efficient method of
displaying up-to-date information in a Web site.

JavaServer Pages can also allow users to manipulate
the data in a database. For example, a JSP page can
be used to add, delete or edit records in a database.

Using JavaBeans

JavaBeans are re-usable components that allow
Web developers to keep the Java code for a JSP
page separate from the HTML code for the page.
This helps prevent the code on a JSP page from
becoming long and difficult to work with and
allows Web developers to share and re-use Java
code. JavaBeans also enable specialization when
developing a Web site by allowing experts in Web
page design to work with the HTML content for
a page while programmers develop the Java code
for the page.

Using Custom Tags

JavaServer Pages technology allows Web developers
to create their own custom tags that perform
specific tasks. Like JavaBeans, tag libraries are
re-usable components that help keep the Java
code for a JSP page separate from the HTML code
for the page. Once a tag library containing the
code for a custom tag has been created, the
custom tag can be used in JSP pages.

Web Servers

You do not require a dedicated Web server to
publish the JSP pages you create. You can simply
install Web server software on your own computer.
A popular example of Web server software that
includes support for JavaServer Pages is Tomcat.
The Tomcat Web server is commonly used by Web
developers who create JSP pages.

You do not require any special development tools
to create and view JSP pages. All you need is a text
editor and a Web browser.

Versions

JavaServer Pages 1.1 is the current version of
JavaServer Pages, although the specification for a
newer version 1.2 has been proposed. On average,
a new version of JavaServer Pages is produced each
year. Each new version offers more features than
previous versions of the technology. The Web
server you are running will determine the version
of JavaServer Pages you can use and the tasks you
can perform.

Programming Languages

The Java programming language forms the basis
of JavaServer Pages technology. The version of
Java you use depends on the Web server you
are running and the version of JavaServer Pages
technology you are using.

Servlet Technology

JavaServer Pages is based on servlet technology,
which allows Web developers to use Java code
to create dynamic Web pages. JavaServer Pages
simplifies the process of creating dynamic pages
using Java.

Server-side Processing

JavaServer Pages uses a JSP engine that is part of
the Web server, so the processing of JSP code takes
place on the server. When a user requests a JSP
page, the JSP engine processes the page and then
sends the result as HTML code to the user's Web
browser. This allows JSP pages to be viewed by
every Web browser.

JSP Implicit Objects

JSP includes implicit objects that can be used to
perform specific tasks. For example, the session
object can be used to store session information
about a client computer as the client navigates
a Web site. Other commonly used implicit
objects include the response object, which sends
information to a client, and the request object,
which retrieves and controls information sent
from a client to the Web server.

54

JSP

J ava is a programming language used to create
applications for the World Wide Web. Java was
originally developed by Sun Microsystems in

1991 for use in consumer electronics such as handheld
computers and television sets, but the language was
later modified for use on the Web. Java is now a
full-featured programming language that is easy to
use and understand.

Java is the main programming language used in
JavaServer Pages. While in-depth knowledge of Java is
not required, in order to effectively use JavaServer Pages
you need to understand the basics of the language. A
thorough understanding of Java will enable you to create
more sophisticated, versatile and efficient JSP pages.

You can also utilize your knowledge of Java to work
with other Java-based technologies, such as JavaBeans.

The popularity of JavaServer Pages is partly due to the
fact that people who are already familiar with the Java
programming language do not need to learn a new
programming language in order to use JavaServer Pages.
Since JavaServer Pages uses Java code to create Web
pages, programmers can use their existing knowledge
of Java to create JSP pages. JavaServer Pages also uses
programming code that is unique to JavaServer Pages
and is not strictly Java code.

INTRODUCTION TO JAVA

JAVA BASICS 1

Features

Java includes a number of features that make the
language ideal for use on the Web. Java programs
transfer quickly over the Web since the language
was created to be portable and file sizes are small.
In addition, Java is platform independent. This means
that a Java program can be run on any computer that
has a Java virtual machine, regardless of the operating
system the computer uses. This feature is invaluable
for use on the Web, where computers using various
languages and environments must interact.

Object-Oriented

Java is an object-oriented programming language,
so if you understand the fundamentals of how
Java works, you will understand the fundamental
concepts of object-oriented programming.
Object-oriented programming is a type of
programming that treats separate pieces of code
as distinct modules, or objects. It is often easier
to learn object-oriented programming if you do
not have vast experience with programming
languages that are non-object-oriented. Despite
its apparent initial complexity, object-oriented
programming is easy to learn.

Security

Java provides a number of advanced security
features, such as access controls, which are not
offered by many other programming languages.
Java programs may contain viruses or code that
can cause computer problems. Java’s access
controls allow programmers to use untrusted
Java code in their programs without putting
their systems at risk.

Bytecode

When a Java program is compiled, the program is not
immediately translated into machine code, which are
instructions specific to a particular operating system.
Instead, it is compiled into an intermediate language,
called bytecode, that can be interpreted by a Java
virtual machine. When the Java program is run on a
computer that has the Java virtual machine, the Java
interpreter translates the bytecode into code that the
computer running the program can understand.

PROGRAMS FOR CREATING JAVA CODE

The first step in creating Java programs is to select the
method you want to use to create the Java programming
code, or source code.

Text Editors

Since all Java source code is plain text, you can
use a simple text editor to create the source code.

Notepad

Microsoft Notepad is a simple text editor available
on all computers running the Windows operating
system. Most operating systems contain a text
editor similar to Notepad. While very basic,
Notepad is more than adequate for creating
source code and is widely used by programmers.

UltraEdit

UltraEdit is a sophisticated text editor popular
with many programmers. UltraEdit’s advanced
features include syntax highlighting, which
highlights the Java code to make the code easier
to read, and the ability to save Web pages directly
to a Web server. UltraEdit is a shareware program
available at www.ultraedit.com.

For Non-Windows Operating Systems

There are many text editors that can be used to create
Java source code on UNIX computers. Most UNIX
computers have multiple text editors installed by default.
Text-based editors such as vi and Emacs are very popular
and can be configured to suit your needs. If your UNIX
system has a graphical interface, like GNOME, then
you should already have access to graphical text editors,
such as gnotepad+.

On the Macintosh operating system, you can use the
SimpleText text editor included with the system.

HTML Editors

HTML editors are programs specifically designed to
help you create Web pages. Compared to text editors,
HTML editors usually offer more advanced features
to help you work with HTML and Java code.

HomeSite

Allaire's HomeSite is a comprehensive HTML
editor designed for creating Web pages on the
Windows operating system. HomeSite is suitable
for beginners creating a small number of Web
pages and for experienced Web masters producing
complicated Web pages and Web sites. HomeSite
includes syntax coloring for JavaServer Pages code
and allows you to view the results generated by
the code within HomeSite. HomeSite is available
at www.allaire.com.

BBEdit

BBEdit is a sophisticated HTML editor for the
Macintosh operating system. BBEdit makes it
easy to create JavaServer pages and is available
at www.barebones.com.

Integrated Development Environments

Instead of a text editor, you can use a Java Integrated
Development Environment (IDE). An IDE is a program
that allows you to create, execute, test and organize your
source code. IDEs often contain additional features such
as sample code, reusable components and troubleshooting
capabilities. IDEs are commonly used to create larger
applications and to enable multiple programmers to work
on a single project at the same time.

JBuilder

Borland’s JBuilder is one of the more popular
Java IDEs. JBuilder is a sophisticated, full-featured
IDE that can be used to create JSP pages and
complex Java applications. JBuilder is also available
for various UNIX operating systems. JBuilder is
available at www.borland.com/jbuilder.

76

JSP

J ava shares many concepts with other object-oriented
programming languages, such as C++ and Perl. While
object-oriented programming languages use the same

concepts, the terminology and coding systems sometimes
differ. For example, in Perl, a single value in an object is
referred to as a property. In Java, this is referred to as a field.

The amount of object-oriented programming a Web site
requires depends on the size and scope of the Web site.
It also depends on where you store the Java code. Storing
the Java code in the JSP pages themselves requires much
less object-oriented programming than storing the Java
code in external modules, referred to as JavaBeans.

OBJECT-ORIENTED PROGRAMMING CONCEPTS

JAVA BASICS 1

JAVA CONCEPTS

Classes

A class is the Java code that serves as a template or
plan for creating objects, which are the core features
of object-oriented programming. A single class can
be used to create many objects. For example, a class
containing code for generating messages can be
used to create an object that displays a welcome
message at the top of each Web page. The same
class can be used to create another object that
displays copyright information at the bottom of a
page. Classes can be used and shared by more than
one Java program and therefore help programmers
avoid having to constantly rewrite the same type of
code.

Fields

Fields, also known as data fields, are the properties or
attributes associated with an object. In comparison to
other programming languages, fields can be thought
of as variables of the class. Fields can store different
types of data, such as strings of text, integers and
references to other objects.

Changing the value of an object's fields usually affects
the behavior of the object. For example, in an object
used to display a changing message on a Web page,
a field may be used to specify how often the message

changes. With a field value of 1, the message will be
updated once every minute. When the field value is
changed to 60, the message will be updated once an
hour.

When multiple objects are created using the same
class, it is typical for the objects to be the same except
for the values held in the objects' fields.

Objects

An object is a package of code that is
composed of data and procedures that make
use of the data. Objects have two primary
functions–to store information and to perform
tasks. Objects contain fields, which are used
to store information, and methods, which are
used to perform tasks. Objects can be created
to perform a single task or a range of related
tasks. Multiple objects can be created using the
same class. When an object is created, it is said
to be an instance of the class used to create the
object.

Methods

Methods are code that objects use to perform
a specific task. A class used to create objects
can contain multiple methods. The methods
in a class usually perform related tasks.
For example, in a class used to format text
information on Web pages, one method may
be used to generate the code needed to format
the headers of paragraphs. Another method
may be used to format information in a table.
The behavior of methods may be influenced
by the values stored in the fields of the object.

Object Relationships

The following diagram shows how a single class can be
used to create multiple objects, each with its own distinct
fields and methods.

Data Hiding

Data hiding makes classes easier to use
by hiding the fields and methods of the
classes from other parts of the program.
The program then has to know only
how to access the class, not the internal
workings of the class. Data hiding is
often used in programs to protect classes
from tampering and to ensure that the
methods of the classes are used as
originally intended. A programmer can
modify and maintain the code within the
class without affecting the programs that
use the class. This also helps ensure that
objects developed by multiple people are
compatible.

Arguments

One or more values, called arguments, may be passed
to a method to provide the method with input data or
additional information about how to perform a task.
For example, when using a method that creates tables
on a Web page, you may need to pass the number of
rows and columns for a table to the method. Some
methods do not require any arguments.

Return Values

A method may return a value after performing a
specific task. The return value may indicate the result
of a calculation or it could indicate whether or not
the task was performed successfully. For example,
a method that writes information may return a
true or false value, which the program can use to
determine the next code that should be executed.

CLASS

OBJECTS

FIELDS FIELDS

METHODS METHODS

Car

myCar

Create Instance Create Instance

yourCar

Color: Blue
Speed: 60 mph

Color: Red
Speed: 80 mph

Start Engine
Accelerate

Start Engine
Accelerate

98

JSP

T he Java class library is a collection of predefined
classes that you can use in your programs. The Java
class library is also known as the standard class library

or the Java Applications Programming Interface (Java API).

THE JAVA CLASS LIBRARY

JAVA BASICS 1

Classes

Some predefined classes are used often in Java
programs, such as those used to display output,
while other classes are used infrequently, such
as the classes used to create Graphical User
Interfaces (GUIs). The classes included in the Java
class library are available to every Java program
you create. Using the predefined classes in the
Java class library saves you time and effort when
creating programs.

Packages

The classes that make up the Java class library
are organized into packages. A package is a set
of related classes stored in a separate directory.
For example, classes that are used to generate
output are stored in a different package than
classes used to process data from a database.
Generally, classes stored in the same package
can easily access each other.

Package names are based on the directory
structure that stores the classes in the package.
For example, the classes in the java.util
package are stored in the util subdirectory
of the java directory.

Import Packages

You can import a package from the Java class library
into a Java program. This allows you to efficiently
use all the classes in the package. The java.lang
package is automatically imported into every Java
program you create. For more information about
importing a package, see page 52.

Create Packages

In addition to using predefined classes from Java class
library packages, you can author your own classes and
store them in packages you create. For example, if you
create three classes to work with a Web site, you could
store these classes in a package named website. You
could then use the classes from the package when
creating other Java applications. For more information
about creating packages, see page 50.

Java Class Library Installation

The Java class library is installed automatically
when the Java Software Development Kit is
installed on a computer. The Java class library is
stored in a Java archive file named rt.jar in the lib
subdirectory of the jre directory. The jre directory
is located in the main Java SDK directory. You do
not need to adjust any settings on your computer
to specify the location of the Java class library
before using a class from the library in your code.

Commonly Used Java Class Library Packages

The Java class library contains more than 70 packages.
The following is a list of some of the most commonly
used packages in the library.

java.io

Contains classes that allow Java programs
to perform data input and output tasks.

java.lang

Contains the fundamental classes of the Java
programming language and is automatically
loaded by the Java compiler.

java.math

Contains classes that allow Java programs
to perform arbitrary-precision arithmetic.

java.lang.ref

Contains classes that allow Java programs
to interact with the garbage collector, which
performs memory management tasks.

java.lang.reflect

Contains classes that allow Java programs
to obtain information about the variables
and methods of loaded classes.

java.security

Contains classes that allow Java programs
to carry out security procedures, such as
controlling access and encrypting data.

java.sql

Contains classes that allow Java programs
to access and process data from a database.

java.text

Contains classes that allow a Java program
to manipulate strings, dates, numbers and
characters.

java.util

Contains utility classes that allow Java programs
to perform various tasks such as date and time
operations and random number generation.

java.util.jar

Contains utility classes that allow Java programs
to read and write Java ARchive (JAR) files.

java.util.zip

Contains utility classes that allow Java programs
to read and write ZIP files.

javax.swing

Contains classes for creating Swing Graphical
User Interface (GUI) components. Swing GUI
components can be used on all platforms.

1110

JSP

T o use the Java programming language effectively, there
are several conventions you should know. For more
information about the conventions used in Java, you

can consult the Java SDK documentation.

JAVA CONVENTIONS

JAVA BASICS 1

White Space

White space is the term used to describe
characters that are not displayed or printed,
such as spaces, tabs and newlines. Using white
space in your Java code can greatly improve
the readability of your code. For example,
x + 1 / age is easier to read than x+1/age.
The Java compiler ignores white space. This
means that using white space will not affect
the speed at which your Java code is compiled.

Comments

You can include comments in your Java code
to explain important or difficult sections of
code. Adding comments to your code is a good
programming practice and can help make the code
easier to understand. Comments are particularly
useful if you or someone else will need to modify
or troubleshoot the code in the future. For more
information about adding comments to your Java
code, see page 15. Using descriptive names for
items such as classes, methods and variables can
also make your code easier to understand.

Keywords

The Java programming language includes many
keywords. A keyword is a word reserved for use
only by Java. You cannot use keywords as variable
names or values in your code. If you use a Java

keyword inappropriately, the Java compiler will
usually detect the error and stop compiling the
code. The following table displays a listing of
Java keywords:

abstract

boolean

break

byte

case

catch

char

class

const

continue

default

do

double

else

extends

false

final

finally

float

for

goto

if

implements

import

instanceof

int

interface

long

native

new

null

package

private

protected

public

return

short

static

strictfp

super

switch

synchronized

this

throw

throws

transient

true

try

void

volatile

while

Semicolons

Most Java statements end with a semicolon (;). Java
statements that include a block of code, known as the
body of the statement, are the exception. Examples of
these types of statements include methods, conditional
statements and statements that create a loop. The Java
compiler will stop compiling code and report an error if
a required semicolon is missing or a semicolon is used

where one is not needed. When an error occurs due to
the omission or misplacement of a semicolon, the Java
compiler may indicate that the error is in the statement
following the actual location of the error. To avoid these
types or errors, you should always review your Java
code carefully before compiling the code.

Indenting

When working with a Java statement that includes a
body, you should always indent the code in the body.
Indenting makes your code easier to read. Tabs or
spaces can be used to indent code. To keep your
Java programs consistent, you should use the same
indenting style in all your code.

Code without indents:
public static void main(String[] args)
{
int counter = 1;
while (counter <= 5)
{
System.out.println(counter);
counter++;
}
}

Code with indents:
public static void main(String[] args)
{

int counter = 1;
while (counter <= 5)
{

System.out.println(counter);
counter++;

}
}

Braces

Java statements that include a body use braces {} to
indicate the beginning and the end of the body. A body
often contains several statements. If a statement block
contains only one statement, braces are typically not
required. There are two accepted formats that you can
use when including braces in your Java code. You should
choose one format and then use that format consistently
throughout your code.

The most widely used format places the opening brace
on the same line as the Java statement. The closing brace
is placed on its own line and in the same column as the
first character of the Java statement that uses the braces.

Example:
public static void main(String[] args) {

System.out.println("Hello.");
System.out.println("My name is Bob.");

}

The second format places each brace on its own line.
The braces are in the same column as the first character
of the Java statement that uses the braces. This format
is easier to read, but adds more lines to your Java code.

Example:
public static void main(String[] args)
{

System.out.println("Hello.");
System.out.println("My name is Mary.");

}

� A dialog box appears
when the installation is
complete. Click Finish
to close the dialog box
and then restart your
computer.

Program Files 27514 K

The Java SDK installation program is over
20 megabytes (MB) in size. If you are
using a modem to connect to the Internet,
the program can take a few hours to
download. For convenience, you may want
to start the download and let it continue
through the night.

If you already have a previous release of
the Java SDK installed on your computer,
it is recommended that you uninstall the
previous release before upgrading to the
latest release of the Java SDK.

The Java SDK documentation can be
downloaded separately from the Java Web site.
It is recommended that you install and review
the Java SDK documentation, particularly if you
will be creating your own Java applications.

After installing the Java Software Development Kit,
you may want to add the location of the Java SDK
programs to the path variable of your computer's
operating system. Setting the path variable will
allow you to run your Java programs from any
folder on the computer without having to type the
full path to the Java compiler and interpreter. Refer
to the documentation that came with the Java SDK
and your operating system documentation for
information about changing the path variable.

� This area displays the
folder where the Java SDK
will be installed.

� You can click Browse
to install the Java SDK in
a different folder.

› Click Next to
continue.

� Each component in this area
that displays a check mark ()
will be installed. You can click the
box beside a component you do not
want to install (changes to).

ˇ Click Next to install the Java SDK
components on your computer.

INSTALL THE JAVA SOFTWARE DEVELOPMENT KIT

⁄ Double-click the icon for the
Java SDK installation program
to start installing the kit.

� A setup window appears
on the screen and a welcome
dialog box is displayed.

� This area displays
information about the
Java SDK installation
program.

¤ Click Next to
continue.

� This area displays the
license agreement you
must read and accept
before continuing.

‹ Click Yes to accept the
agreement and continue.

T he Java Software Development Kit (SDK) is a
collection of programs used to compile and execute
Java programs. You need to install the Java SDK in

order to install the Tomcat Web server, which allows you
to create and test JavaServer Pages.

The Java Software Development Kit is constantly being
updated. A recent release of the Java SDK for Windows is
included on the CD-ROM disc that accompanies this book,
but you should make sure you use the latest release of the
kit. More information about the latest release of the Java
SDK is available on the Java Web site at java.sun.com.
The Java SDK is also currently available for the Sun Solaris
and Red Hat Linux platforms. Downloading and installation
instructions are available at the Java Web site.

On the Windows platform, the Java SDK is installed using
a standard Windows installation program. The Java SDK

installation program selects a folder where the kit will
be installed for you. It is recommended that you accept
this folder. During the installation, you can select which
components of the Java SDK you want to install, such as
demos. It is recommended that you install all the available
components.

The installation program allows you to choose to view a
README file that contains information about the release
of the Java Software Development Kit you installed and
any last minute changes to the documentation. If you
choose to display the file, it will open when the installation
is complete. You should carefully review the README file
for any new release of the Java SDK you install.

Once the Java SDK has been installed, you should restart
your computer, particularly if you are upgrading from an
older release of the Java SDK.

INSTALL THE JAVA SOFTWARE
DEVELOPMENT KIT

1312

JSP JAVA BASICS 1

15

Note: To declare methods for
the class you created, see
page 16.

› Type an opening brace
to mark the beginning of
the body of the class.

ˇ Press Enter to create
blank lines where you
will type the body of the
class.

Á Type a closing brace
to mark the end of the
body of the class.

14

JSP

DECLARE A CLASS

⁄ Start the text editor
you will use to create a
Java program.

¤ Type class. ‹ Type the name of the
class you want to create.

A fter installing the Java Software Development Kit,
you can begin creating Java programs. When creating
Java programs, the first step is to declare a class. A

class is the smallest unit of Java code that can be run and
is the fundamental structure that Java applications use to
group together related code. For example, a class called
CheckText may contain all the code required to analyze and
validate a string of text. The CheckText class can be used
on its own in a program or used in conjunction with other
classes. All Java applications must include at least one class.

Java classes are declared using the keyword class
followed by the class name. The class name should be easy
to understand and should indicate the purpose of the class.
The class name is followed by a pair of braces {}. All
methods and Java code in the class must be placed
between the braces. The code between the braces is
referred to as the body of the class and is made up of

methods, which are structures that contain the Java code
for specific actions. For more information about declaring
a method, see page 16.

The class name you choose must be the same as the
filename with which the program is saved. For example,
if the class in your Java program is called DisplayText, the
program must be saved with the filename DisplayText.java.
It is also important to note that Java is a case-sensitive
language. If the program is saved with the filename
displaytext.java, an error may occur when you attempt
to compile the program.

DECLARE A CLASS

JAVA BASICS 1

Class names can begin with any letter, an
underscore (_) or the symbol $, £ or Y. Class
names cannot begin with a number or contain
any punctuation, such as a period or a comma.
Class names also cannot be the same as any of
the Java reserved words, such as do, while or
public. These naming rules also apply to the
naming of methods, fields and parameters in
Java code.

You should always include comments to
make your Java code easier to understand.
Comments are helpful if you or other people
need to modify or troubleshoot the code.
Any code you write should include comments
that indicate the author's name and the main
purpose of the program. Comments are
preceded by // and can be included at the
end of a line of code or on a separate line.

Example:
// Author: Martine Edwards
class DisplayWelcome // A welcome message
{

// The body of the class
}

You may want to add comments that span
multiple lines to your Java code. To do so,
type /* before the first line of the comment
and */ after the last line of the comment.

Example:
/*
This Java application
displays a welcome message when
the program is executed
*/

__

17

� To create the body
of the method, see
page 18.

The name of the method should indicate the
purpose of the method. A method name can
consist of multiple words. To make the name
easier to read, you can capitalize the first
letter of each word, such as DisplayMyName.

You can use different access modifiers when
declaring a method, depending on how the
method will be accessed. The public access
modifier indicates that the method can be
accessed by any class and subclass within any
package. The protected access modifier
indicates the method can be accessed by any
class within the same package and any subclass
of the class that contains the method within a
different package. The private access modifier
indicates the method can be accessed only by
the class that contains the method.

A method can generate a result which is
returned to the code. The return type for
a method that returns a value can be any
valid data type in Java, such as String,
byte or boolean. The body of a method
that returns a value must also include a
return statement. An error may occur if
the data type of the value that is returned
does not match the return type specified
in the method declaration.

Every main method must include the
public, static and void method
modifiers. If one or more of the method
modifiers are entered in a different order,
the code may generate an error message.

› Between the parentheses,
type any arguments the
method requires.

Note: The arguments of a
main method must be
String[] args.

ˇ Type the opening and
closing braces that will
contain the body of the
method.

16

JSP

DECLARE A METHOD

⁄ In the body of a class,
type the method modifiers
for the method you want
to declare.

Note: A main method must
include the public and
static method modifiers.

¤ Type the return type
of the method.

Note: A method that does not
return a value must include the
void return type.

‹ Type the name of the
method followed by ().

O nce a class has been declared, methods can be
declared for the class. Methods are similar to
subroutines and functions that are found in other,

non-object-oriented programming languages. Methods
contain lines of code that perform a specific task, such
as displaying an invoice or calculating the final total of
an invoice.

Using methods makes it easy to re-use sections of code
and allows you to group lines of code into smaller, more
manageable sections. This makes it easier for people to
understand and troubleshoot the code.

You can use method modifiers, such as public and
static, to tell Java how a method is to be used. The
public method modifier is an access modifier that
indicates that this method can be used by other classes
that you create. A static method modifier indicates that
the method can be used by any program without having
to create an object of the class that declares the method.

A method declaration should also include a return type.
A return type specifies the type of value the method returns.
If a method does not return a value to the code, the return
type should be void. For more information about return
values in methods, see page 38.

The name of a method is followed by parentheses, such as
DisplayInvoice().

Every Java application must have a method called main,
in which all the other methods required to run the program
are called. The argument String[] args must be placed
within the parentheses at the end of the method name for
a main method. This argument indicates that the method
can accept strings passed from the command line when
the Java program is executed.

The method declaration ends with a pair of braces. The
code that makes up the body of the method is placed
inside the braces.

DECLARE A METHOD

JAVA BASICS 1

19

� You may need to place
quotation marks around
the name of the file.

� You are now ready to
compile the Java code.
See page 20 to compile
Java code.

My Documents

Desktop

History

My Computer

My Network Pl...

‹ Type any arguments
the code requires.

� String arguments must
be enclosed in quotation
marks.

SAVE JAVA CODE

⁄ Save the Java code as a text file.

� The name of the file must be
exactly the same as the name of
the first class in the code. The
filename must also have the .java
extension. 18

JSP

CREATE THE METHOD BODY

⁄ Enter the code that
declares the class and the
method you want to use.

¤ In the body of the method,
type the code for the task you
want to perform.

� In this example,
System.out.print
is used to display
output.

T he body of a method contains the Java code that is
used to perform a task and must be created within
the method's braces {}.

The code in the body of a method is often used to call, or
access, another method. The called method can be declared
in the same class or in a different class. Re-using methods
saves you time and effort when writing Java programs. For
example, if you create a method that displays your name
and e-mail address, the same method can be used in any
Java application you create.

The Java Software Development Kit includes many classes
and methods that can be used to perform a wide variety
of common tasks. For example, the Java SDK includes a
class called math. The math class contains several methods
that perform mathematical calculations. For example, to
determine the square root of a number, you can simply
call the sqrt method from the math class.

Methods can be used to display information on a user's
screen. To display information, System.out.print
can be used. The System object is included in the Java
SDK and is created automatically when a Java program
is executed. The out field is used to send information
to the standard output device, typically the screen.
The print member takes an argument that must be
enclosed in parentheses. System.out.print can
be used to display any type of data used in Java. When
using System.out.print to display a string of text,
the string must be enclosed in quotation marks.

Once you have finished creating the code for your Java
program, save the code as a text file with the .java
extension. The name of the file must be exactly the
same as the name of the first class defined in the code.

CREATE THE METHOD BODY

JAVA BASICS 1

System.out.println can also be used
to start a new line.

Example:
System.out.println("The Java program has been executed.");
System.out.println("Have a good day.");

The classes and methods included with the Java
Software Development Kit are collectively known
as the Java class library, also called the Java
Application Programming Interface or Java API.
The Java SDK documentation describes all the
classes and methods available in the Java class
library. If you have not already installed the
Java SDK documentation, you can obtain the
documentation on the Web at java.sun.com.

To start a new line at the end of a line of text, you can
use the escape sequence \n. Using the escape sequence
\n allows you to display text over multiple lines.

class MyIntroduction
{

public static void main(String[] args)
{

System.out.print("My name is Martine Edwards." + "\n");
System.out.print("This is my first Java Program." + "\n");

}
}

My name is Martine Edwards.
This is my first Java Program.

TYPE THIS: RESULT:

21

C:\WINDOWS>cd\java

C:\java>javac Displaywelcome.java

C:\WINDOWS>cd\java

C:\java>javac Displaywelcome.java

C:\java>

Note: If an error message
appears, the Java code was
not successfully compiled.

When compiling Java source code, there are
two main types of errors that can occur.

Java SDK Errors

If your operating system cannot locate the Java
compiler, a problem may have occurred when
the Java SDK was installed. Java SDK errors
usually result in an error message such as "bad
command or file name." To correct this type of
error, first determine the correct path to the
compiler. If you cannot locate the Java compiler,
try re-installing the Java SDK. If you were able
to confirm the path to the compiler, ensure that
you have not made any typing mistakes in the
path.

Source Code Errors

A wide variety of errors can occur in Java source
code. When the Java compiler finds an error in source
code, the compiler displays an error message that
usually specifies the error type and where the error
was detected. For example, the error "Program.java:5:
invalid method declaration" indicates that an error
involving a method declaration was generated at line
5 in the Program.java file. It is important to note that
the line number indicates the line that the compiler
was processing when the error was detected, which
is not necessarily the line that contains the error.

› Type the name of the file
that stores the Java code you
want to compile, including
the .java extension.

ˇ Press Enter to compile
the Java code.

� If the Java code was
successfully compiled, the
command prompt re-appears.

� The Java program is now
ready to be executed. See
page 22 to execute a Java
program.20

JSP

C:\WINDOWS>cd\java

C:\java>javac

COMPILE JAVA CODE

C:\WINDOWS>cd\java

⁄ Open the window that
allows you to work at the
command prompt.

¤ Move to the directory
that stores the Java code
you want to compile.

‹ To compile the Java
code using the javac
compiler, type javac.

� If you have not added
the location of the javac
compiler to your operating
system's path variable, you
will need to type the full
path to the javac program.

C ompiling Java code converts the source code into
bytecode. Bytecode contains instructions that the
Java interpreter executes.

A Java compiler is required to compile Java code. The Java
Software Development Kit includes a Java compiler called
javac. The javac compiler can only be executed from the
command prompt. If you are using a Windows operating
system, you will need to open an MS-DOS Prompt or
Command Prompt window to use javac.

To compile Java source code, you enter the name of the
Java compiler, such as javac, at the command prompt,
followed by the name of the file that stores the code
you want to compile. The filename must have the .java
extension. Depending on whether you have added the
location of the Java SDK programs to your operating
system's path variable, you may need to specify the
full path to the Java compiler, which is typically

c:\jdk1.3\bin\javac. For information about setting the path
variable, refer to the Java SDK installation instructions or
your operating system's documentation.

Before compiling Java code, the Java compiler checks the
code for errors. If an error is found, the code will not be
compiled and an error message will be displayed.

If the Java code is successfully compiled, the resulting
bytecode will be saved in a new file with the .class
extension. The name of the new file is taken from the
name of the file that stores the Java source code. For
example, when the code in a file named Program.java
is compiled, the bytecode is saved in a file called
Program.class. The filenames of Java programs are
case sensitive on most platforms.

Once Java source code has been compiled, the Java
program is ready to be executed.

COMPILE JAVA CODE

JAVA BASICS 1

23

C:\WINDOWS>cd\java

C:\java>java DisplayWelcome

C:\WINDOWS>cd\java

C:\java>java DisplayWelcome
The Java program has been executed. Have a good day.
C:\java>

How Java Code Is Processed

› Type the name of the file
that stores the bytecode for
the Java program you want
to execute.

ˇ Press Enter to
execute the program.

� The results of the
program are displayed
on the screen.

22

JSP

C:\WINDOWS>cd\java

C:\java>java

EXECUTE A JAVA PROGRAM

C:\WINDOWS>cd\java

⁄ Open the window that
allows you to work at the
command prompt.

¤ Move to the directory
that stores the bytecode
for the Java program you
want to execute.

‹ To execute the instructions
in the bytecode using the Java
interpreter, type java.

� If you have not added
the location of the Java
interpreter to your
operating system's path
variable, you will need
to type the full path to
the Java interpreter.

O nce the Java compiler has converted the
source code for a Java program into bytecode,
the program can be executed.

Bytecode must be processed by the Java interpreter
before the code can be executed. When you execute a
Java program, the Java interpreter first checks the bytecode
to ensure the code is safe to execute and then it interprets
and executes the instructions contained within the bytecode.

The instructions in the bytecode are executed by the Java
interpreter in what is called the Java Virtual Machine, or
JVM. The Java virtual machine enables Java programs to
be executed in a controlled environment. This environment
may also protect your computer from harmful code that
may be included in Java programs.

The Java interpreter that comes with the Java SDK is called
java and is typically stored in the c:\jdk1.3\bin directory.

Like the Java compiler, the Java interpreter must be run at
the command prompt. The Java interpreter is a stand-alone
program, but the interpreter can also be integrated into
other programs, such as Web browsers. This allows you
to execute your Java programs on different platforms.

To evoke the Java interpreter, type the name of the
interpreter followed by the name of the bytecode file.
You should not type the .class extension. For example,
to execute the instructions in the Program.class file,
type java Program.

If the Java program executes successfully, the results
of the program will be displayed. If the Java interpreter
encounters any errors, it will stop executing the program.
Most errors encountered at this stage are usually related
to the use of incorrect filenames or paths.

EXECUTE A JAVA PROGRAM

JAVA BASICS 1

Notepad 011011110000101
100110001111010
010110011011101
011101101001110
111011010011001

Java Virtual Machine

0

1 2 3

4 5 6 +

7 8 9 -

C

285.24

= / *

. =

Application

Source Code Java Compiler Bytecode

25

� The results of using
the object are displayed.

C:\WINDOWS>cd\java

C:\java>javac go.java

C:\java>java go
me@myhost.com
C:\java>

The directory you should use to store files
you create for Java programs depends on the
setup of your computer. In most cases, you
should have a specific folder dedicated to
Java program development. Regardless of the
location you choose, you should always store
the class file that defines an object and the
file that instantiates the object in the same
directory.

It is very rare that an object will be made up
of only a single method. In most cases, objects
are more complex, containing a wide range
of related methods and fields that dictate the
behavior of the object.

The fields and methods of an object are
also referred to as members. Fields and
methods that are available when an object
is instantiated and are unique to that object
are called instance members.

The ability to create objects is an important
feature of JavaServer Pages. JavaServer Pages
technology makes use of JavaBeans, which
are a form of class file used to create objects.
While it is possible to create JSP pages
without knowing how to create objects,
the flexibility and efficiency of your pages
will be limited.

° Type new.

· Type the name of the
class you created in step 1,
followed by ().

‚ To access the method of
the object, type the name
of the object followed by a
period. Then type the name
of the method you created
in step 1, followed by ().

— Type the code that uses
the object.

± Compile the Java
code and then execute
the program.

24

JSP

CREATE AN OBJECT

DEFINE THE OBJECT

⁄ To create a class that
will serve as a template for
an object, enter the code
that defines the class and
method you want to use.

Note: This class does not need
to use the main method.

¤ In the body of the
method, type the code that
defines the object you want
to use.

‹ Save the class as a text
file with the .java extension.

› Compile the Java code.

INSTANTIATE THE OBJECT

ˇ To create a stand-alone
program that will instantiate
the object, enter the code
that defines the class and
method you want to use.

Á In the body of the
method, type the name
of the class you created
in step 1.

‡ Type a name for the
object, followed by =.

O bjects are created using classes. An object usually
contains at least one method that specifies the
behavior of the object. Objects may also contain

fields. For information about fields, see page 26.

The first step in creating an object is to create a class that
will serve as a template for the object. In its simplest form,
this type of class contains a class declaration, a method
declaration and a method body. The method body contains
code defining specifications for the object, such as the
tasks the object will perform. This type of class is not
executed as a stand-alone program and therefore does
not need to use the main method. Before the class can
be used to create an object, you must compile the code
for the class.

Once you have created and compiled the class that serves
as a template for an object, you can use a stand-alone

program to create, or instantiate, the object. To instantiate
an object, you must assign the object a name, which is
used to access the object. You then use the new operator
and the name of the class that defines the object to create
the object. You can create multiple instances of an object
within a program.

After creating an object, you can access a method of the
object. This allows the object to take on the characteristics
defined in the class. To access a method, you enter the
name of the object and the name of the method, separated
by a dot. For example, if you create an object named
'employee' that contains a method called DisplayName,
you would access the method by entering
employee.DisplayName.

CREATE AN OBJECT

JAVA BASICS 1

27

� The results of using the
object field are displayed.

C:\WINDOWS>cd\java

C:\java>javac DisplayName.java

C:\java>java DisplayName
<h3>sandman@myhost.com</h3>

C:\java>

You can set a default value for an object field by using
a constructor. A constructor is a special type of method
that is always executed each time the class is accessed
and an object is created. This makes constructors useful
for performing initialization tasks for new objects, such
as setting up a connection to a database. A constructor
method must have the same name as the class for which
it is the constructor.

Example:
class AuthorInformation
{

public int headerLevel;

public AuthorInformation()
{

headerLevel = 3;
}

public String EmailAddress()
{

String message = "<h" + headerLevel +
">sandman@myhost.com</h" + headerLevel + ">";
return message;

}
}

‡ To assign a value to an
object field, type the name
of the object followed by
a dot. Then type the name
of the field.

° Type = followed by
the value you want to
assign to the object field.

· Type the code that
uses the object field.

‚ Compile the Java
code and then execute
the program.

26

JSP

WORK WITH OBJECT FIELDS

CREATE A FIELD

⁄ Create a class that will serve
as a template for an object.

¤ In the body of the class,
type the access modifier and
data type for the object field
you want to create.

‹ Type the name of
the object field.

› Save the class as a
text file with the .java
extension and then
compile the Java code.

USE AN OBJECT FIELD

ˇ To create a stand-alone
Java program, enter the
code that declares the
class and main method.

Á In the body of the
main method, type
the code to create an
object using the class
you created in step 1.

Y ou can create an object field, also referred to as
data field, to hold information about an object.
The information contained in an object's fields

determines the properties and attributes of the object.

When objects of the same class are created, the objects
have the same methods, but some or all of the object
fields may hold different information. For example, each
object created from the Employee class may have an object
field called empNumber that stores the unique employee
number for each object.

Object fields must be declared in the class body, outside
of any methods. This allows the field to be used as soon
as the object is created. You must specify an access
modifier for an object field you create, as well as the
data type that the field will store. For information about
access modifiers, see page 16. For information about
data types, see page 30.

Most object fields are created with an initial value. You
can later change the value of an object field as you would
change the value of a variable. Changing the value of an
object field may change the way some of the methods
of the object behave. Object fields may also hold constant
data which cannot be changed.

You can use the dot operator (.) to access an object field
in a program. When specifying the object field, the field
name is separated from the object name by a dot, such
as object.field. The object name is the name that was
given to the object when it was created.

Unlike methods, object field names are not followed
by parentheses. It is possible to have object fields and
methods that share the same name in a program.

WORK WITH OBJECT FIELDS

JAVA BASICS 1

