Chapter 57: Application: Transforming XML Data
Islands

In This Chapter

Designing XML dataislands
Complex JavaScript data structures
Advanced array sorting

Dynamic tables

Chapter 52 ends with an example of an interactive outliner whose data arrivesin XML
format. The datais embedded in an HTML document inside an XML dataidand, whichis
thus far supported only on the Windows versions of |E5 and later. The application
described in this chapter picks up from there.

Asyou recall from the Chapter 52 outline, the node structure of the XML data was used
as a guide to the structure for a one-time rendering of HTML elements. There was a one-
to-one correlation between XML element nesting and the HTML element nesting.
Adjusting style sheet properties for displaying or hiding elements controlled all
interactivity. What you' re about to see hereis a case for converting XML into JavaScript
objects that can be used multiple times as a convenient data source for HTML that is
displayed in any number of formats. In particular, you see how JavaScript’s array sorting
prowess supplies XML -supplied data with extraordinary flexibility in presentation.

You will seealot of code in this chapter. The code is presented here as away to
demonstrate the potential for rich data handling. At the same time, the code may provide
ideas for server-side processing of XML data being output to the client. If a server
program can convert the XML data into the shortcut object and array notation of Version
4 browsers or later, suddenly a broader range of browsers is capable of dealing with data
stored as XML on the server.

Application Overview

Understanding the data is a good place to start in describing this application. The scenario
isasmall American company (despite its grandiose name: GiantCo) that has divided the
country into three sales regions. Two of the regions have two sales representatives, while
the third region has three reps. Thetimeis at the end of afiscal year, at which point the
management wants to review and present the performance of each salesperson. An XML
report delivers the sales forecast and actual sales per quarter for each salesrep. A single
HTML and JavaScript page (with the XML data embedded as adataisland inside an |E

<XM_> tag) is charged with not only displaying the raw tabular data, but also allowing for
avariety of views and sorting possibilities so that management can analyze performance by
sales rep and region, as well as by quarter.

A server-based searching and reporting program collects the requested data and outputs
each salesrep’srecord in an XML structure, such as the following one:

<SALESREP>
<EMPLOYEEI D>12345</ EMPLOYEEI D>
<CONTACTI NFO>
<FI RSTNAME>Br enda</ FI RSTNAMVE>
<LASTNAME>Sm t h</ LASTNAMVE>
<EMAI L>br endas @i ant co. conx/ EMAI L>
<PHONE>312- 555- 9923</ PHONE>
<FAX>312-555- 9901</ FAX>
</ CONTACTI NFO>
<MANAGER>
<EMPLOYEEI D>02934</ EMPLOYEEI D>
<FI RSTNAME>AI i st ai r </ FI RSTNAVE>
<LASTNAME>Renf i el d</ LASTNAME>
</ MANAGER>
<REG ON>Cent r al </ REG ON>
<SALESRECORD>
<PERI OD>
<I D>QL_2000</ | D>
<FORECAST>300000</ FORECAST>
<ACTUAL>316050</ ACTUAL>
</ PERI OD>
<PERI OD>
<I D>@_2000</ | D>
<FORECAST>280000</ FORECAST>
<ACTUAL>285922</ ACTUAL>
</ PERI OD>
<PERI OD>
<I D>@_2000</ |1 D>
<FORECAST>423000</ FORECAST>
<ACTUAL>432930</ ACTUAL>
</ PERI OD>
<PERI OD>
<I D>4_2000</ | D>
<FORECAST>390000</ FORECAST>
<ACTUAL>399200</ ACTUAL>
</ PERI OD>
</ SALESRECORD>
</ SALESREP>

Asyou can see, the data consists of several larger blocks, such as contact information, a
pointer to the rep’s manager, and then the details of each quarterly period’ s forecast and
actual sales. The goal isto present the datain table form with a structure similarly shown
in Figure 57-1. Not only is the raw data presented, but numerous calculations are also
made on the results, such as the percentage of quota attained for each reporting period,
plus totals along each axis of the spreadsheet-like table.

A GianCo Sales Analysis 2000 - Microsoft Infernet Explorer
Eile Edit Wiew Favorites Tooln Help
B 22 F| = sl € L ST o
Tk w il Stop. Mofiosh Homae Semch Favoriles Historg Mmil Frimt Edat
-
St Yy |=-9prf_>'t-nlqh.--' ;J Cndaged |'_':-r‘.r||'|lf.|'|j
Lt Hmgh
1 2000 Q3 009 34 2000 Tuial 2099
Sales ftep
Froocler | Quacy | Feoter Quotan Frocder | Quats | Footdnt Quots Foav'der | Quet
raso | 170000 00| s 75000 TR0 a
Lanm & leeerio L45000 L fees s ELLAY 2553 LR =4 TR TN L8
e T e || 2HOO) || A0 FP00 |0 o | ESE000
Jemathan A Segnag | PPN || Spppy | 10E || Sage | IEN Sodang | TDLSW Bl | 9B
. 000 | ap e || 20000 " G000 || o IFF000 || ngoees | REGS0O0: |
Stephen Bomen ::Eﬁfﬂ WEDS | Shagrn | TN DG M0AE | oy UMER e el
y Soan 195000, v | 2H003 | sveon || 000 x| B0 | o
Eamareldy Bemardes 0 L4l 590800 i3 3 et 11485 WA Mz AR 1051
= 245600 ol | A5E00 2550040 o | L1OLTCOD
Fugmeall Karn e B A 1% 300 184.0% 000 1330 |agn 1043%
wipce || 9000 || v (| 2AN000] i (| IO g | TR e (RO |
Frlachaed WleCariny 297600 103 W00 | JN A] J08% 29500 (i} ot \2roa (LI
»” 0000 [e o 000 s Ehe F0000 ey | 1383000 |
Enda Smuth o 05305 | o 4 {12 e L1 o 103 5 LA Lk
2 L0000 |yt | 1715000 | o | 200000 TN0000 ... (RN RSN
OpToAl ey (1O | jnaes | 1OLE% | oy 10 amssag | M ﬁ il =
S =
2] Done 2 Loeal intranei
Figure 57-1

One view of the XML data output

Just above the table are two SELECT elements. These controls' labels indicate that the
table’ s data can be sorted by a number of criteria and the results of each sort can be
ordered in different ways. Sorting in the example offers the following possibilities:

Representative's Name

Sal es Regi on

QL Forecast

QL Act ual

QL Perfornmance

[the last three also for @@, B,]

Tot al Forecast

Total Act ual

Tot al Performance

Ordering of the sorted resultsis a choice between “Low to High” or “High to Low.”
While ordering of most sort categories is obviousdly based on numeric value, the sorting of
the representatives’ names is based on the alphabetical order of the last names. One other
point about the user interface is that the design needs to signify viatable cell background
color the sales region of each representative. The colors aren’'t easily distinguishablein
Figure 57-1, but if you open the actual example listing in |E5+/Windows on your

computer, you will see the coloration.

Implementation Plan

Clearly al the data needed for numerous sorted and ordered views arrives in one batch in
the XML idand. Despite the element and node referencing properties and methods of the
W3C DOM, trying to use the XML elements as the sole data store for scripts to sort the

data each time would be impractical. For one thing, none of the elements have ID

attributes — there’ s no need for it in the XML stored on the server database. And even if
they did have IDs, how would scripts that you desire to write for generalizability make use
of them unless the IDs were generated in a well-known sequence? Moreover, after a sales
rep’s record is rendered in the table, how easy would it be to dive back into that record
and drill down for further information, such as the name of a representative’ s manager?

A solution that can empower the page author in this case is to use the node-walking
properties and methods of the W3C DOM to assemble a JavaScript-structured database
while the page loads. In other words, the conversion is performed just once during page
loading, and the JavaScript version is preserved in an array (of XML “records’ in this
case) as aglobal variable. Any transformations on the data can be done from the
JavaScript database with the help of additional powers of the language.

Given that route, the basic operation of the scripting of the page is schematically smple:
1. Convert the XML into an array of objects at load time.
2. Predefine al necessary sorting functions based on properties of those objects.
3. Provide afunction that rebuilds the HTML table each time data is sorted.

With this sequence in mind, now ook into the code that does the job.

The Code

Rather than work through the long document in source code order, the following
descriptions follow a more functional order. Y ou can open the actual source code file to
see where the various functions are positioned. To best understand this application, seeing
the “how” rather than the “where’ is more important. Also, many of the code lines (even
some single expressions) are too wide for the printed page and therefore break unnaturally
in the listings that follow. Trust the formatting of the source file on the CD-ROM.

Style sheets

For the example provided on the CD-ROM, one set of style sheet rulesis embedded in the
HTML document. Asyou can see from the rule selectors, many are tied to very specific
classes of table-related elements used to render the content. In a production version of this
application, | would expect that there would be more and quite different views of the data
available to the users, such as bar charts for each salesperson or region. Each view would
likely require its own unique set of style sheet rules. In such a scenario, the proper
implementation would be to use the LINK element to bring in adifferent external style
sheet file for each view type. All could be linked in at the outset, but only the current

styl eSheet object would be enabled.

<STYLE TYPE="text/css">

XML {di spl ay: none}
TD {text-align:right}

TD. rep, TD.grandTot al Label {text-align:center}

TR. East {backgr ound- col or: #FFFFCC}

TR. Central {background- col or: #CCFFFF}

TR West {backgr ound- col or: #FFCCCC}

TR. Qlot al {background- col or: #FFFF00}

TD. repTot al {background- col or: #FFFF00}

TD. gr andTot al { backgr ound- col or : #00FF00}

HL {font-fam ly:"Conmi c Sans MS", Hel veti ca, sans-serif}

</ STYLE>

One style sheet rule is essential: The one that suppresses the rendering of any XML

element. That data is hidden from the user’ s view.

Initialization sequence

AnonLoad event handler invokesthei ni t () function, which setsalot of machinery in
motion to get the document ready for user interaction. Its most important job is running a
f or loop that builds the JavaScript database from the XML elements. Next, it sorts the
database based on the current choice in the sorting SELECT element. The sorting function
ends by triggering the rendering of the table. These three actions correspond to the
fundamental operation of the entire application.

/1 initialize global variable that stores JavaScript data
var db = new Array()

/1 Initialization called by onLoad
function init() {
for (var i = 0;
i <
docunent . get El ement Byl d("reports"). get El enent sByTagNane(" SALESREP") . | engt h;
P ++) {
db[db. | engt h] = get OneSal esRep(i)

sel ect Sort (docunent . get El ement Byl d("sort Chooser"))

}

Converting the data

The controlling factor for creating the JavaScript database is the structure of the XML
dataidand. Asyou may recal, the eementsinside the XML data idand can be accessed
only through a reference to the XML container. The ID of that element in this application
isreports. Datafor each salesrep is contained by a SALESREP element. The number
of SALESREP elements determines how many records (JavaScript objects) are to be
added to the db array. A call to the get OneSal esRep() function creates an object for
each sales representative’ s data.

Despite the length of the get OneSal esRep() function, its operation is very
straightforward. Most of the statements do nothing more than retrieve the data inside the
various XML elements within a SALESREP container and assign that data to a like-
named property of the custom object. Following the structure of the XML example shown
earlier in this chapter, you can see where some properties of a JavaScript object
representing the data are, themselves, objects or arrays. For example, one of the properties
iscdled manager , corresponding to the MANAGER el ement. But that element has
nested items inside. Then, making those nested elements properties of amanager object

isonly natural. Similarly, the repetitive nature of the data within each of the four quarterly
periods calls for even greater nesting: The object property named sal es isan array, with
each item of the array corresponding to one of the periods. Each period also has three
properties (a period ID, forecast sales, and actual sales). Thus, the sal es property isan
array of objects.

function get OneSal esRep(i) {
/'l create new, enpty object
var oneRecord = new bj ect ()
/1 get a shortcut reference to one SALESREP el enent
var oneEl em =

docunent . get El ement Byl d("reports"). get El ement sByTagNane(" SALESREP") [i]
/] start assigning elenent data to oneRecord object properties
oneRecord.id =

oneEl em get El enent sByTagNanme("EMPLOYEEID')[0] . firstChild. data
var contact!|nfoEl em =

oneEl em get El enent sByTagNanme(" CONTACTI NFO') [0]
oneRecord. firstName =

cont act | nf oEl em get El ement sByTagName(" FI RSTNAME")[0] . first Chil d. data
oneRecord. | ast Name =

cont act | nf oEl em get El ement sByTagNanme("LASTNAME")[0] .firstChild. data
oneRecord. eMai |l =

cont act | nf oEl em get El ement sByTagName("EMAIL")[0].firstChild. data
oneRecor d. phone =

cont act | nf oEl em get El ement sByTagName("PHONE")[0] . firstChild. data
oneRecord. fax =

cont act | nf oEl em get El ement sByTagNanme("FAX")[0].firstChild.data
/1 make the manager property its own object
oneRecor d. manager = new Obj ect ()

/1 get a shortcut reference to the MANAGER el enent
var oneMgr El em = oneEl em get El enent sByTagNanme (" MANAGER") [0]
/'l start assigning elenent data to nmanager object properties
oneRecord. manager.id =
oneMyr El em get El enent sByTagName(" EMPLOYEEI D')[0] . first Chil d. data
oneRecor d. manager . firstNane =
oneMyr El em get El enent sByTagName(" FI RSTNAVE")[0] . first Chil d. data
oneRecor d. manager . | ast Nane =
oneMyr El em get El enent sByTagName(" LASTNAME") [0] . first Chil d. data
oneRecord. region =
oneEl em get El enent sByTagNane("REG ON')[0] . firstChild. data

/1 make the sales property a new array
oneRecord. sal es = new Array()
/'l get a shortcut reference to the collection of
/1 periods in the SALESRECORD el enent
var allPeriods =
oneEl em get El enent sByTagNanme(" SALESRECORD") [0] . chi | dNodes

var tenp

var accunfForecast = 0, accumActual =0

/'l 1 oop through periods

for (var i = 0; i < allPeriods.length; i++) {

if (allPeriods[i].nodeType == 1) {
/1 make new object for a period s data
tenp = new Obj ect ()
/] start assigning period data to the new obj ect
tenp. period =
al | Periods[i].getEl enentsByTagNane("1D")[0].firstChild.data
tenp. forecast =
parselnt(all Periods[i].getEl ement sByTagNanme(" FORECAST")[0].firstChild. data)
tenp. actual =
parselnt (all Periods[i].getEl ement sByTagNanme("ACTUAL")[0].firstChild. data)
/1 run analysis on two properties and preserve result
t enp. quot aPct = get Percent age(tenp. actual, tenp.forecast)
oneRecord. sal es[tenp. period] = tenp

// accunul ate totals for |ater
accunforecast += tenp.forecast
accumActual += tenp.actua

}

/'l preserve accumul ated totals as oneRecord properties
oneRecord. t ot al Forecast = accunforecast

oneRecord. total Actual = accumActua

/1 run analysis on accunul ated totals

oneRecor d. t ot al Quot aPct = get Percent age(accumAct ual, accunforecast)
/'l hand back the stuffed object to be put into the db array
return oneRecord

/'l cal cul ate percentage of actual/forecast
function getPercentage(actual, forecast) {
var pct = (actual/forecast * 100) + ""
pct = pct.match(/\d*\.\d/)
return parseFl oat (pct)

}

Assuming that the raw XML database stores only the sales forecast and actua dollar
figures, it is up to analysis programs to perform their own calculations, such as how the
actual sales compare against the forecasts. As you saw in the illustration of the rendered
table, this application not only displays the percentage differences between the pairs of
values, but it also provides sorting facilities on those percentages. To speed the sorting,
the percentages are calculated as the JavaScript database is being accumulated, and the
percentages are stored as properties of each object. Percentage calculation is called upon
in two different statements of the get OneSal esRep() function, so that the calculation
is broken out to its own function, get Per cent age() . In that function, the two passed
values are massaged to calculate the percentage value, and then the string result is
formatted to no more than one digit to the right of the decimal (by way of aregular
expression). The value returned for the property assignment is converted to a number data
type, because sorting on these values needs to be done according to numeric sorting,
rather than string sorting.

Y ou can aready get a glimpse at the contribution JavaScript is making to the scripted
representation of the data transmitted in XML form. By virtue of planning for subsequent
calculations, the JavaScript object contains considerably more information than was
originally delivered, yet all the properties are derived from “hard” data supplied by the
server database.

Sorting the JavaScript database

With so many sorting keys for the user to choose from, it’s no surprise that sorting code
occupies a good number of script linesin this application. All sorting code consists of two
major blocks: dispatching and sorting.

The dispatching portion is nothing more than one gigantic swi t ch construction that
sends execution to one of the seventeen (1) sorting functions that match whichever sort
key is chosen in the SELECT element on the page. This dispatcher function,

sel ect Sort (),isasoinvoked fromthei ni t () function at load time. Thus, if the
user makes a choice in the page, navigates to another page, and then returns with the page

still showing the previous selection, the onLoad event handler will reconstruct the table
precisely asit was. When sorting is completed, the table is drawn, as you see shortly.

/1 begin sorting routines
function sel ect Sort(chooser) {
switch (chooser.value) {
case "byRep" :
db. sort (sort DBByRep)
br eak
case "byRegi on"
db. sort (sort DBByRegi on)
br eak
case "byQlFcst" :
db. sort (sort DBByQLFcst)
br eak
case "byQlActual " :
db. sort (sort DBByQLAct ual)
br eak
case "byQlQuota" :
db. sort (sort DBByQLQuot a)
br eak
case "by@Fcst" :
db. sort (sort DBByQ@Fcst)
br eak
case "by@Actual " :
db. sort (sort DBByQAct ual)
br eak
case "byQQuota" :
db. sort (sort DBByQQuot a)
br eak
case "by@Fcst" :
db. sort (sort DBByBFcst)
br eak
case "by@BActual " :
db. sort (sort DBByBAct ual)
br eak
case "by@Quota" :
db. sort (sort DBByBQuot a)
br eak
case "byMFcst" :
db. sort (sort DBByQ4Fcst)
br eak
case "byMActual " :
db. sort (sort DBBy Q4Act ual)
br eak
case "byQQuota" :
db. sort (sort DBByQ4Quot a)
br eak
case "byTotal Fcst" :
db. sort (sort DBByTot al Fcst)
br eak
case "byTotal Actual " :
db. sort (sort DBByTot al Act ual)
br eak
case "byTotal Quota" :
db. sort (sort DBByTot al Quot a)
br eak

zjr awText Tabl e()
}
Each specific sorting routine is a function that automatically works repeatedly on pairs of
entries of an array (see Chapter 37). Array entries here (from the db array) are objects —
and rather complex objects at that. The benefit of using JavaScript array sorting is that the
sorting can be performed on any property of objects stored in the array. For example,

sorting onthe |l ast Name property of each db array object is based on a comparison of
the |l ast Nane property for each of the pairs of array entries passed to the

sort DBByRep() sort function. But looking down alittle further, you can see that the
mechanism alows sorting on even more deeply nested properties, such as the

sal es. QL_2000. f or ecast property of each array entry. If a property in an object
can be referenced, it can be used as a sorting property inside one of these functions.
function sortDBByRep(a, b) {

i f (document. get El ement Byl d(" or der Chooser").value == "inc") {
return (a.lastName < b.lastNane) ? -1 : 1
} else {
return (a.lastName > b.lastNane) ? -1 : 1
b .
function sort DBByRegi on(a, b)
i f (document. get El ement Byl d(" or der Chooser").value == "inc") {
return (a.region < b.region) ? -1 : 1
} else {

return (a.region > b.region) ? -1 : 1

}
function sortDBByQlFcst(a, b) {

i f (document. get El ement Byl d(" or der Chooser").value == "inc") {
return (a.sales.QL_2000.forecast - b.sales.Ql_2000.forecast)
} else {
return (b.sales. QL_2000.forecast - a.sales.Ql_2000. forecast)
}}
function sortDBByQlActual (a, b) {
i f (document. get El ement Byl d(" or der Chooser").value == "inc") {
return (a.sales.QL_2000.actual - b.sales.@l_2000. actual)
} else {
return (b.sal es.QL_2000. actual - a.sales.@l_2000. actual)
Y
function sortDBByQLQuota(a, b) {
i f (document. get El ement Byl d(" or der Chooser").val ue == "inc")
return (a.sales.QL_2000. quotaPct - b.sal es.Ql_2000. quot aPct)
} else {

return (b.sal es. QL_2000. quotaPct - a.sal es. Ql_2000. quot aPct)

}
function sortDBBy@Fcst(a, b) {

i f (docunent. get El ement Byl d(" or der Chooser").value == "inc") {
return (a.sal es. @_2000.forecast - b.sales.@_2000.forecast)
} else {
return (b.sal es. @_2000.forecast - a.sales.@@_2000.forecast)
}}
function sort DBBy@QActual (a, b) {
i f (document. get El ement Byl d(" or der Chooser").value == "inc") {
return (a.sal es.@_2000.actual - b.sales.@_2000. actual)
} else {
return (b.sal es.@_2000. actual - a.sales.@_2000. actual)
P
function sortDBBy@QQuota(a, b) {
i f (document. get El ement Byl d(" or der Chooser").val ue == "inc")
return (a.sales. @_2000. quotaPct - b.sales. @_2000. quot aPct)
} else {

return (b.sal es. @_2000. quotaPct - a.sal es. @_2000. quot aPct)

}
function sortDBBy@Fcst(a, b) {

i f (docunent. get El ement Byl d(" or der Chooser").value == "inc") {
return (a.sales. @_2000.forecast - b.sales.@_2000.forecast)
} else {
return (b.sal es. @_2000.forecast - a.sal es. @B_2000. forecast)

} }
function sort DBBy@Actual (a, b) {
i f (document. get El ement Byl d(" or der Chooser").value == "inc") {
return (a.sal es.@_2000. actual - b.sales.@_2000. actual)
} else {
return (b.sal es. @_2000. actual - a.sal es.@_2000. actual)
b
function sortDBBy@Quota(a, b) {
i f (document. get El ement Byl d(" or der Chooser").val ue == "inc")
return (a.sal es. @_2000. quotaPct - b.sal es. @3_2000. quot aPct)
} else {

return (b.sal es. @_2000. quotaPct - a.sal es. @3_2000. quot aPct)

}
function sortDBBy@Fcst(a, b) {

i f (docunent. get El ement Byl d(" or der Chooser").value == "inc") {
return (a.sal es.@_2000.forecast - b.sales._2000.forecast)
} else {
return (b.sal es. @4_2000.forecast - a.sales._2000.forecast)
}}
function sort DBByQActual (a, b) {
i f (document. get El ement Byl d(" or der Chooser").value == "inc") {
return (a.sales.@_2000. actual - b.sales.@_2000. actual)
} else {
return (b.sal es.@_2000. actual - a.sales.@_2000. actual)
P
function sortDBBy@Quota(a, b) {
i f (document. get El ement Byl d(" or der Chooser").val ue == "inc")
return (a.sales. @4_2000. quotaPct - b.sal es. _2000. quot aPct)
} else {

return (b.sal es. @4_2000. quotaPct - a.sal es. @4_2000. quot aPct)

}
function sortDBByTotal Fcst(a, b) {

i f (document. get El ement Byl d(" or der Chooser").value == "inc") {
return (a.total Forecast - b.total Forecast)
} else {
return (b.total Forecast - a.total Forecast)
} }
function sortDBByTotal Actual (a, b) {
i f (document. get El ement Byl d(" or der Chooser").value == "inc") {
return (a.total Actual - b.total Actual)
} else {
return (b.total Actual - a.total Actual)
P
function sortDBByTotal Quota(a, b) {
i f (document. get El ement Byl d(" or der Chooser").value == "inc") {
return (a.total QuotaPct - b.total QuotaPct)
} else {
return (b.total QuotaPct - a.total QuotaPct)
}

For this application, all sorting functions branch in their execution based on the choice
made in the “Ordered” SELECT element on the page. The relative position of the two
array elements under test in these smple subtraction comparison statements reverses when

the sort order is from low to high (increasing) and when it is from high to low
(decreasing). Thiskind of array sorting is extremely powerful in JavaScript and probably
escapes the attention of most scripters.

Constructing the table

As recommended back in Chapter 27's discussion of TABLE and related elements, it is
best to manipulate the structure of a TABLE element by way of the specialized methods
for tables, rather than mess with nodes and elements. The dr awText Tabl e() function
is devoted to employing those methods to create the rendered contents of the table below
the headers (which are hard-wired in the document’s HTML). Composing an eleven-
column table requires a bit of code, and the dr awText Tabl e() ’slength attests to that
fact. You can tell by just glancing at the code, however, that for big chunks of it, thereis a
comfortable regularity that is aided by the JavaScript object that holds the data.

Additional calculations take place while the table’ s elements are being added to the
TABLE element. Column totals are accumulated during the table assembly (row totals are
calculated as the object is generated and preserved as properties of the object). A large

f or loop cycles through each (sorted) row of the db array; each row of the db array
corresponds to arow of the table. Class names are assigned to various rows or cells so
that they will pick up the style sheet rules defined earlier in the document. Another
subtlety of thisversion isthat ther egi on property of asalesrep is assigned to the

titl e property of arow. If the user pauses the mouse pointer anywhere in that row, the
name of the region pops up briefly.

function drawText Tabl e() {
var newRow
var accumQlF = 0, accumQA = 0, accum@F = 0, accumPA
var accum@BF = 0, accum@BA = 0, accumXF = 0, accumMA
del et eRows(docunent . get El enent Byl d(" mai nTabl eBody"))
for (var i =0; i < db.length; i++) {
newRow = docunent . get El ement Byl d(" mai nTabl eBody") . i nsert Row(i)
newRow. cl assNane = db[i].region
newRow.title = db[i].region + " Regi on"
appendCel | (newRow, "rep”, db[i].firstName + " " + db[i] I ast Nams)
appendCel | (newRow, "QL", db[i].sal es. QL_2000. f or ecast "
"
db[i].sal es. QL_2000. act ual)
appendCel | (newRow, "QL", db[i].sal es.QL_2000. quotaPct + "%)
appendCel | (newRow, "@Q@", db[i].sal es. @_2000.forecast + "
" +
db[i].sal es. @_2000. act ual)
appendCel | (newRow, "@@", db[i].sal es.@_2000. quotaPct + "%)
appendCel | (newRow, "@3", db[i].sal es. @_2000.forecast + "
" +
@

db[i].sal es. @B_2000. act ual)
appendCel | (newRow, "@", db[i].sal es. @B_2000. quotaPct + "%)
appendCel | (newRow, "4", db[i _sal es. @ _2000. forecast + "
" +
db[i].sal es. ¥4_2000. act ual)
appendCel | (newRow, "Q4", db[i].sal es. @_2000. quotaPct + "9%)
accunQlF += db[i].sal es. QL_2000. f or ecast
accunQlA += db[i].sal es. QL _2000. act ual
accun@F += db[i].sal es. @_2000. f or ecast
accuntRA += db[i].sal es. @ _2000. act ual
accum®BF += db[i]. sal es. @_2000. f or ecast
I @
I o
i

accun®BA += db . sal es. 2000. act ual

accun4F += db . sal es. 2000. f or ecast

accun4A += db sal es. @_2000. act ual

appendCel | (neWRow "repTotal ", db[i].total Forecast + "
" +

db[i].total Actual)
appendCel | (newRow, "repTotal", db[i].total QuotaPct + "%)

newRow = docunent . get El ement Byl d(" mai nTabl eBody") . i nsert Row(i)

newRow. cl assNane = "Qlotal "

newRow. title = "Total s"

appendCel | (newRow, "grandTotal Label", "Grand Total ")

appendCel | (newRow, "QL", accunmQlF + "
" + accunmQLA)

appendCel | (newRow, "QL", getPercentage(accunQlA, accumQlF) + "%)
appendCel | (newRow, "@Q@", accunf®@F + "
" + accumRA)

appendCel | (newRow, "@", getPercentage(accum®PA, accum®PF) + "%)
appendCel | (newRow, "@", accunfBF + "
" + accum®BA)

appendCel | (newRow, "@3", get Percent age(accun@A, accum®BF) + "%)
appendCel | (newRow, "4", accunfdF + "
" + accumHA)

appendCel | (newRow, "Q4 , getPercentage(accum4A, accumiF) + "9%)

var grandTotal Fcst = accuanF + accum@F + accum@BF + accunti4F
var grandTotal Actual = accunmA + accum@A + accumBA + accumHA
appendCel | (newRow, "grandTotal", grandTotal Fcst + "
" +
grandTot al Act ual)
appendCel | (newRow, "grandTotal ",
get Percent age(grandTot al Actual , grandTotal Fcst) + "%)

/1 insert a cell and its content to a recently added row
function appendCel | (Trow, Cclass, txt)

var newCell = Trow.insertCell (Trow. cells.Iength)

newCel | . cl assNane = Ccl ass

newCel | . i nner HTML = txt
/'l clear previous table content if there is any
function del eteRows(tbl) {

while (tbl.rows.length > 0) {

t bl . del et eRow(0)
}

}

Many standal one statements at the end of the dr awText Tabl e() function are devoted
exclusively to generating the Grand Tota row, in which the accumulated column totals are
entered. At the same time, the get Per cent age() function, described earlier, is
invoked several times again to derive the quota percentage for the accumulated grand total
values in each quarter as well as the complete year.

SELECT controls

To round out the code listing for this application, the values assigned to the two SELECT
elements obvioudly have alot to do with the execution of numerous functionsin this
application. Nothing magic takes place here, but you can see the extent of the detail
required in assigning script-meaningful hidden values, and human-meaningful text for both
SELECT elements. For example, dividing lines help organize the long sort key list into
three logical blocks.

<P>Sort by: <SELECT |D="sort Chooser" onChange="sel ect Sort(this)">

<OPTI ON VALUE="byRep" >Represent ati ve
<OPTI ON VALUE="byRegi on">Sal es Regi on
<OPTION VALUE="">-------mommmmme oo - -
<OPTI ON VALUE="byQlFcst">Ql For ecast
<OPTI ON VALUE="byQlAct ual ">QL Act ual
<OPTI ON VALUE="byQlQuot a">Ql Perf or mance
<OPTI ON VALUE="by@Fcst">@ For ecast
<OPTI ON VALUE="by@QAct ual ">@ Act ual
<OPTI ON VALUE="byQQuot a">@ Perf or mance
<OPTI ON VALUE="by@Fcst ">@ For ecast

<OPTI ON VALUE="by@3Act ual ">@@3 Act ual
<OPTI ON VALUE="by@Quot a">@3 Perf or mance
<OPTI ON VALUE="byFcst "> For ecast
<OPTI ON VALUE="byAct ual "> Act ual
<OPTI ON VALUE="byQ4Quot a" >4 Per f or mance
<OPTION VALUE="">-------mommmmme oo - -
<OPTI ON VALUE="byTot al Fcst">Total Forecast
<OPTI ON VALUE="byTot al Act ual ">Total Act ual
<OPTI ON VALUE="byTot al Quot a">Tot al Performance
</ SELECT>

Ordered: <SELECT | D="order Chooser" onChange="sel ect Order()">
<OPTI ON VALUE="i nc">Low to Hi gh
<OPTI ON VALUE="dec">Hi gh to Low
</ SELECT>
</ P>

Dreams of Other Views

Confining the example to just one type of view — atable of numbers — should help you
grasp the important processes taking place. But with the XML data converted to
JavaScript objects, you can build many other views of the same data into the same page.
For example, a script could completely hide the numeric table, and generate a different one
that draws bar charts for each sales representative or each region (see Chapter 55 for a
scripted bar chart example). The horizontal axis would be the four quarters, and the
vertical axis would be dollars or quota percentages. Clicking a bar opens a small window
or layer to reveal more detail from the sales representative’ s record, such as the name of
the person’s manager. More SELECT elements can let the user select any combination of
subsets of the datain either bar chart or numeric table form to facilitate visual
comparisons. Y ou might be even more creative and devise ways of showing the data by
way of overlapping positioned elements.

The point is that despite the kinds of rendering opportunities afforded by the XSL
Transform mechanism (even if you can get comfortable in the syntax and mental mode it
presents to authors), JavaScript’s detailed access to the DOM offers far more potential.
Eventually plenty of content authors will mix the two technologies by embedding
JavaScript into XSL style sheets to supplement XSL features.

What About NN67?

Microsoft’s XML dataidlands are not (yet anyway) part of the W3C DOM. As NN6 was
being readied for release, there was little imperative to implement this feature in the
browser (very few convenience features of the |IE4+ DOM were adopted in NN6). And, as
mentioned elsewhere, without the XML dataislands, combining XML and HTML in the
same document is not strictly “legal.” Oddly enough, the example in this chapter worksin
NNG6, but it is an accident. For one thing, the tag namesin the XML data do not overlap
with any HTML tag names. But don’t take this to mean you can get away with these kinds
of constructions. Even if you can force fit your XML into an HTML document to get it to
work, you have no guarantee it will work in subsequent browser versions.

To combine the powers of JavaScript and the W3C DOM to operate on XML datain
NNG6, we have to keep our eyes on availability of the browser’s built-in capabilities for
standard XSL Transform facilities. Some of it works even in the earliest releases of the
new browser, but what worksin NN6 doesn’t work (or work well) in IE5+, and vice
versa. Veteran scripters, who bear scars from battles with DOM incompatibilities, may
choose to delay deployments of such content until there is more unanimity among the
latest browsers. Browser incompatibilities are responsible for a massive inflation of object
model vocabulary (not to mention the thickness of this book). Perhaps the day will come
when the code we write for even complex applications will run cleanly on a broad range of
installed browsers on a broad range of devices. Don't give up on the dream.

	Chapter 57: Application: Transforming XML Data Islands
	Application Overview
	Implementation Plan
	The Code
	Dreams of Other Views
	What About NN6?

