Chapter 56: Application: Cross-Browser DHTML
Map Puzzle

In This Chapter

ApplyingaDHTML API

Scripting, dragging, and layering of multiple elements
Event handling for three DOMs at once

Dynamic HTML allows scripts to position, overlap, and hide or show elements under the
control of style sheets and scripting. To demonstrate modern cross-browser DHTML
devel opment techniques, this chapter describes the details of ajigsaw puzzle game using
pieces of amap of the “lower 48” United States (I think everyone would guess where
Alaska and Hawaii go on alarger map of North America). | chose this application
because it alows me to demonstrate several typical tasks you might want to script in
DHTML: hiding and showing elements; handling events for multiple elements; tracking
the position of an element with the mouse cursor; absolute positioning of elements;
changing the z-order of elements; changing element colors; and animating movement of
elements.

Aswith virtually any programming task, the example code here is not laid out as the
quintessential way to accomplish a particular task. Each author brings his or her own
scripting style, experience, and implementation ideas to adesign. Very often, you have
available several ways to accomplish the same end. If you find other strategies or tactics
for the operations performed in these examples, it means you are gaining a good grasp of
both JavaScript and Dynamic HTML.

The Puzzle Design

Figure 56-1 shows the finished map puzzle with the game in progress. To keep the code
to areasonable length, the example provides positionable state maps for only seven
western states. Also, the overall design isintentionally spartan so as to place more
emphasis on the positionable elements and their scripting, rather than on fancy design.

Map Game - Microsoft Internet Explorer
File Edit Wiew Fawvorites Tools Help

: : faf = (&) x| ey = o fER
Back i il Stop Aefresh Home Search Favortes Hizlory Mail Print. Edat

"Lower 48" U.S. Map Puzzle @

400k

2] Done 24 Local intranet

Figure 56-1
The puzzle map game DHTML example (Images courtesy Map Resources —
Wwww.mapresources.com)

When the pageinitialy loads, all the state maps are presented across the top of the puzzle
area. The state labels all have ared background, and the silhouette of the continental
United States has no featuresin it. To the right of thetitle is a question mark icon. A click
of thisicon causes a panel of instructions to glide to the center of the screen from the
right edge of the browser window. That panel has a button that hides the panel.

To play the game (no scoring or time keeping isin this ssimplified version), a user clicks
and drags a state with the goal of moving it into its rightful position on the silhouette.
While the user drags the state, its label background to the right of the main map turns
yellow to highlight the name of the state being worked on. To release the state initstria
position, the user releases the mouse button. If the state is within afour-pixel square
region around its true location, the state snaps into its correct position and the
corresponding label background color turns green. If the state is not dropped close enough
to its destination, the label background reverts to red, meaning that the state still needs to
be placed.

After the last state map is dropped into its proper place, all the label backgrounds will be
green, and a congratulatory message is displayed where the state map pieces originaly
lay. Should a user then pick up a state and drop it out of position, the congratul atory

message disappears.

| had hoped that all versions of the application would look the same on all platforms.
They do, with one small exception. Because the labels are generated as positioned DIV
elementsfor all browsers, NN4 (especially on the Windows version) doesn’t do as good a

rendering job as other browsers. If | were to use genuine LAY ER elements for the labels
just for NN4, they’ d look better. And, while the code could use scripts to generate
LAYERsfor NN4 and DIVsfor others, the choice here was to stay with DIV elements
aone. If you try this game on NN4 and other DHTML browsers, you will see minor
differences in the way the labels are colored (red, yellow, and green) during game play.
All other rendering and behavior isidentical (although arendering bug in NN6 is
discussed later).

Implementation Details

Due to the number of different scripted properties being changed in this application, |
decided to implement alot of the cross-platform scripting as a custom APl |oaded from
an externa . j s filelibrary. The library, whose code is dissected and explained in
Chapter 47, contains functions for most of the scriptable items you can accessin
DHTML. Having these functions available smplified what would have been more
complex functions in the main part of the application.

Although | frown on using global variables except where absolutely necessary, | needed
to assign afew globals for this application. All of them store information about the state
map currently picked up by the user and the associated label. This information needs to
survive the invocations of many functions between the time the state is picked up until it
is dropped and checked against the “ database” of state data.

That database is another global object — aglobal that | don’t mind using at all.
Constructed as a multidimensional array, each “record” in the database stores several
fields about the state, including its destination coordinates inside the outline map and a
Boolean field to store whether the state has been correctly placed in position.

Out of necessity for NN4, the state map images are encased in individual DIV elements.
This makes their positionable characteristics more stable, as well as making it possible to
capture mouse events that NN4' s image objects do not recognize. If the application were
being done only for IE4+ and W3C DOMs, the images, themselves, could be
positionable, and the DHTML API could be used without modification.

The custom API

To begin the analysis of the code, you should be familiar with the API that islinked in
froman external . j s library file. Listing 47-2 contains that code and its description.

The main program

Code for the main program is shown in Listing 56-1. The listing is along document, so |
interlace commentary throughout the listing. Before diving into the code, however, allow
me to present a preview of the structure of the document. With two exceptions (the map
silhouette and the help panel), all positionable elements have their styles set via style

sheets in the HEAD of the document. Notice the way class and id selectors are used to
minimize the repetitive nature of the styles across so many similar items. After the style
sheets come the scripts for the page. All of this material isinside the <HEAD> tag section.
| leave the <BODY> section to contain the visible content of the page. This approach isan
organization style that works well for me, but you can adopt any style you like, provided
various elements that support others on the page are |loaded before the dependent items
(for example, define a style before assigning its name to the corresponding content tag’s
ID attributes).

Listing 56-1

The Main Program (mapgame.htm)
<HTM.>
<HEAD><TI TLE>Map Ganme</ Tl TLE>
Most of the positionable elements have their CSS properties established in the <STYLE>
tag at the top of the document. Positionable elements whose styles are defined here
include atext label for each state, a map for each state, and a congratulatory message.
Notice that the names of the label and state map objects begin with a two-letter
abbreviation of the state. This labeling comesin handy in the scripts when synchronizing
the selected map and its label.

The label objects are nested inside the background map object. Therefore, the coordinates
for the labels are relative to the coordinate system of the background map, not the page.
That’swhy thefirst label hasat op property of zero.

While both the background map and help panel are also positionable elements, scripts
need to read the positions of these elements without first setting the values. Recall that in
the IE4+ and W3C DOMs, the st y| e property of an object does not reveal property
values that are set in remote style sheet rules. While IE5S offersacurrent St yl e
property to obtain the effective property attributes, neither |E4 nor the W3C DOM afford
that luxury. Therefore, the style sheet rules for the background map and help panel are
specified as STYLE attributes in those two elements' tagslater in the listing.

<STYLE TYPE="t ext/css">

.l abel s {position:absol ute;
background-col or:red; Iayer-background-col or:red;
wi dt h: 100; hei ght: 28; border: none; text-align:center}

#azl abel {left:310; top:0}

#cal abel {left:310; top: 29}

#or| abel {left:310; top:58}

#utl abel {left:310; top: 87}

#wal abel {left:310; top:116}

#nvl abel {left:310; top: 145}

#i dl abel {left:310; top:174}

#camap {position:absolute; l|eft:20; top:100; wi dth:
#ormap {position:absolute; left:60; top:100; wi dth:
#wamap {position:absolute; left:100; top:100; wi dt
#i dmap {position:absolute; left:140; top:100; wi dt
#nvmap {position: absolute; left:180; top:100; wi dt
#azmap {position: absolute; left:220; top:100; wi dt
#utmap {position: absolute; left:260; top:100; wi dt

#congrats {position:absolute; visibility:hidden; left:20; top:100; wdth:1;

col or: red}

</ STYLE>

The next statement loads the external . j s library file that contains the API described in
Chapter 47. | tend to load external library files before listing any other JavaScript codein
the page, just in case the main page code relies on global variables or functionsin its
initializations.

<SCRI PT LANGUAGE="JavaScri pt" SRC="DHTM.api .] s"></ SCRI PT>

Now comes the main script, which contains al the document-specific functions and
global variables. Global variables here are ready to hold information about the selected
state object (and associated details), as well as the offset between the position of aclick
inside a map object and the top-left corner of that map object. Y ou will see that this offset
isimportant to allow the map to track the cursor at the same offset position within the
map. And because the tracking is done by repeated callsto a function (triggered by
numerous mouse events), these offset values must have global scope.

/1 gl obal declarations

var offsetX = 0

var offsetY = 0

var sel ect edObj

var states = new Array()

var stateslndexList = new Array()

var sel ect edSt at eLabel

Asyou will seelater in the code, an onLoad event handler for the document invokes an
initialization function, whose main job isto build the array of objects containing
information about each state. The fields for each st at e object record are for the two-
letter state abbreviation, the full name (not used in this application, but included for usein
afuture version), the x and y coordinates (within the coordinate system of the background
map) for the exact position of the state, and aBoolean flagto be settot r ue whenever a
user correctly places a state. | come back to the last two statements of the constructor

function in a moment.

Getting the data for the x and y coordinates required some legwork during devel opment.
Assoon as | had the pieces of art for each state and the code for dragging them around the
screen, | disengaged the part of the script that tested for accuracy. Instead, | added a
statement to the code that revealed the x and y position of the dragged item in the
statusbar (rather than being bothered by alerts). When | carefully positioned astatein its
destination, | copied the coordinates from the statusbar into the statement that created that
state record. Sure, it was tedious, but after | had that info in the database, | could adjust
the location of the background map and not have to worry about the destination
coordinates, because they were based on the coordinate system inside the background
map.

/1 object constructor for each state; preserves destination
/1 position; invokes assignEvents()
function state(abbrev, fullNane, x, y) {

this. abbrev = abbrev

this.full Name = full Nanme

this.x = x

this.y =y

this.done = fal se

assi gnEvent s(this)

st at esl ndexLi st [st at esl ndexLi st. | ength] = abbrev

/1 initialize array of state objects
function initArray() {

states["ca"] = new state("ca", "California", 7, 54)
states["or"] = new state("or", "Oregon", 7, 24)
states["wa"] = new state("wa", "Wshington", 23, 8)
states["id"] = new state("id", "ldaho", 48, 17)
states["az"] = new state("az", "Arizona", 45, 105)
states["nv"] = new state("nv", "Nevada", 27, 61)
states["ut"] = new state("ut", "UWah", 55, 69)

}

The act of creating each st at e object causes all statementsin the constructor function to
execute. Moreover, they were executing within the context of the object being created.
That opened up channels for two important processes in this application. One wasto
maintain alist of abbreviations asits own array. This becomes necessary later on when
the script needsto loop through all objectsin the st at es array to check their done
properties. Because the array is set up like a hash table (with string index values), af or
loop using numeric index values is out of the question. So, this extra

st at esl ndexLi st array provides a numerically-indexed array that can beused in a
f or loop; values of that array can then be used as index values of the st at es array.
Yes, it'sabit of indirection, but other parts of the application benefit greatly by having
the state information stored in a hash-table-like array.

One more act of creating each state object is the invocation of theassi gnEvent s()
function. Because each call to the constructor function bears a part of the name of a
positionable map object (composed of the state’ s |lowercase abbreviation and “map”), that
value can be passed to theassi gnEvent s() function, whosejob isto assign event
handlers to each of the map layers. While the actual assignment statements are the same
for al supported browsers, assembling the references to the objects in each of the three
DOM categories required object detection and associated syntax, very similar to the

get Obj ect () function of the API. In fact, if it weren’t for the NN4-specific
mechanism for turning on event capture, this function could have used get Cbj ect ()
from the library.

Here you can see the three primary user events that control state map dragging: Engage
the map on nousedown; drag it on nousenove; release it on nouseup. These
functions are described in a moment.

/1 assign event handlers to each map | ayer
function assi gnEvents(layer) {

var obj
if (docunent.layers) {
obj = docunent.layers[layer.abbrev + "nap"]

obj . capt ur eEvent s(Event . MOUSEDOMWN | Event. MOUSEMOVE | Event. MOUSEUP)
} else if (docunent.all) {

obj = docunent.all (layer.abbrev + "nap")
} else if (docunent.getEl enentByld) {

obj = docunent. get El enent Byl d(| ayer. abbrev + "nap")
}
if (obj) {

obj . onnbusedown = engage

obj . onnbusenove = draglt

obj . onnbuseup = rel ease

}
}
Theengage() function invokesthe following function, set Sel ect edMvap() . It
receives as its sole parameter an event object that is of the proper type for the browser
currently running (that’s done in theengage() function, described next). Thisfunction
has three jobs to do, two of which set global variables. Thefirst global variable,
sel ect edObj , maintains areference to the layer being dragged by the user. At the
sametime, thesel ect edSt at eLabel variable holds onto areference to the layer that
holds the label (recall that its color changes during dragging and release). All of this
requires DOM-specific references that are generated through the aid of object detecting
branches of the function. The last job of thisfunction is to set the stacking order of the
selected map to a value higher than the others so that while the user drags the map, itisin
front of everything else on the page.

To assist in establishing references to the map and label layers, naming conventions of the
HTML objects (shown later in the code) play an important role. Despite the event
handlers being assigned to the DIV s that hold the images, the mouse events are actually
targeted at the image objects. The code must associate some piece of information about
the event target with the DIV that holds it (* parent” types of references don’'t work across
all browsers, so we have to make the association the hard way). To prevent conflicts with
so many objects on this page hamed with the lowercase abbreviations of the states, the
image objects are assigned uppercase abbreviations of the state names. As

set Sel ect edMap() beginsto execute, it uses object detection to extract areference
to the element object regarded as the target of the event (t ar get in NN4 and NN6,

sr cEl enent inlE). To make sure that the event being processed comes from an image,
the next statement makes sure that the target has both nane and sr ¢ properties, in which
case alowercase version of the nameis assigned to the abbr ev local variable (if only
|E4+ and W3C DOMs were in play here, a better verification is checking that the

t agName property of the event target is| MG). That abbr ev variable then becomes the
basis for element names used in references to objects assigned to sel ect edCbj and
sel ect edSt at eLabel . Notice how the NN4 version requires a double-layer nesting
to the reference for the label because labels are nested inside the bgmap layer.

The presence of avalue assigned to sel ect edQbj becomes an important case for all
three drag-related functions later. That'swhy theset Sel ect edMap() function nulls
out the value if the event comes from some other source.

/***

BEG N | NTERACTI ON FUNCTI ONS

**/

/1 set global reference to map bei ng engaged and dragged
function setSel ectedMap(evt) {
var target = (evt.target) ? evt.target : evt.srcEl enent
var abbrev = (target.name && target.src) ?
target. nane.toLower Case() : ""
if (abbrev) {
if (document.!|ayers) {
sel ectedObj = docunent. | ayers[abbrev + "map"]
sel ect edSt at eLabel = docunent. | ayers["bgmap"]. document.

| ayers[abbrev + "l abel "]
} else if (docunent.all) {
sel ectedObj = docunent. all (abbrev + "nmap")

sel ect edSt at eLabel = docunent. all (abbrev + "l abel")
} else if (docunent.getEl enentByld) {
sel ect edObj = docunent. get El enent Byl d(abbrev + "nap")
sel ect edSt at eLabel = docunent. get El enent Byl d(abbrev + "I abel ")
}
set ZI ndex(sel ect edCbj, 100)
return
sel ectedObj = nul
sel ect edSt at eLabel = nul
return

}

Next comesthe engage() function definition. Thisfunction isinvoked by
nousedown eventsinside any of the state map layers. NN4 and NN6 pass an event
object as the sole parameter to the function (picked up by the evt parameter variable). If
that parameter contains avalue, then it stands as the event object for the rest of the
processing; but for 1E, thewi ndow. event object isassigned to theevt variable. After
setting the necessary object globals through set Sel ect edMap() , the next major task
for engage() isto calculate and preserve in global variables the number of pixels
within the state map layer at which the nbusedown event occurred. By preserving these
values, thedr agl t () function makes sure that the motion of the state map layer keeps
in sync with the mouse cursor at the very same point within the state map. If it weren't for
taking the offset into account, the layer would jump unexpectedly to bring the top-left
corner of the layer underneath the cursor. That’s not how users expect to drag items on
the screen.

The calculations for the offsets require a variety of DOM-specific properties. For
example, both NN4 and NN6 offer pageX and pageY properties of theevent object,
but the coordinates of the layer itself requires| ef t /t op properties for NN4 and

of f set Left /of f set Top properties for NN6. A nested object detection takes placein
each assignment statement. The |E branch has some additional branching within each of
the assignment statements. These extra branches cover a disparity in the way |E/Windows
and |E/Mac report the offset properties of an event. IE/Windows ignores window
scrolling, while IE/Mac takes scrolling into account. Later calculations for positioning
must take window scrolling into account, so that scrolling is factored into the preserved
offset global valuesif there are indications that the window has scrolled and the values
are being affected by the scroll (in which case the offset values go very negative). The
logic is confusing, and it won’t make much sense until you see later how the positioning
isinvoked. Conceptually, al of these offset value calculations may seem like a can of
worms, but they are essential, and are performed amazingly compactly.

After the offsets are established, the state’ slabel layer’ s background color is set to
yellow. The function endswithr et ur n f al se to make sure that the nbusedown
event doesn’t propagate through the page (causing a contextual menu to appear on the
Macintosh, for instance).

/'l set relevant globals onnbusedown; set sel ected nmap
/1 object global; preserve offset of click within

[/l the map coordi nates; set |abel color to yellow
functi on engage(evt) {
evt = (evt) ? evt : event
set Sel ect edMap(evt)
if (selectedhj) {
if (evt.pageX) {
of fset X = evt.pageX - ((sel ectedOj.of fsetLeft) ?
sel ectedObj . of fsetLeft : selectedOhj.left)
of fsetY = evt.pageY - ((sel ectedj.of fsetTop) ?
sel ect edObj . of fset Top : sel ectedoj.top)
} else if (evt.offsetX || evt.offsetY) {
of fsetX = evt.offsetX - ((evt.offsetX < -2) ?
0 : docunent. body. scrol | Left)
offsetY = evt.offsetY - ((evt.offsetY < -2) ?
0 : docunent. body. scrol | Top)

}
set BGCol or (sel ect edSt at eLabel , "yel | ow")
return fal se

}
}
Thedr agl t () function, compact asit is, provides the main action in the application by
keeping a selected state object under the cursor as the user moves the mouse. This
function is called repeatedly by the mrousenove events, although the actual event
handling methodol ogy varies with platform (precisely the same way aswith engage() ,
as shown previously). Regardless of the event property detected, event coordinates (minus
the previously preserved offsets) are passed theshi ft To() functioninthe API.

Before the dragging action branch of the function ends, the event object’s

cancel Bubbl e property issettot r ue. Intruth, only the IE4+ and W3C DOM event
objects have such a property, but assigning a value to a nonexistent object property for
NN4 does no harm. It’simportant that this function operate as quickly as possible,
because it must execute with each nousenove event. Cancelling event bubbling helps
in away, but more important, the cancellation allows the rousenove event to be used
for other purposes, as described in a moment.

/1 move DIV on nousenove
function draglt(evt) {
evt = (evt) ? evt : event
if (selectedObj) {
if (evt.pageX) {
shift To(sel ectedObj, (evt.pageX - offsetX), (evt.pageY - offsetY))
} else if (evt.clientX || evt.clientY) {
shift To(sel ectedObj, (evt.clientX - offsetX), (evt.clientY -
of fsetY))
}
evt. cancel Bubbl e = true
return fal se
}
}

When a user drops the currently selected map object, ther el ease() function invokes
theonTar get () function to find out if the current location of the map is within range
of the desired destination. If it isin range, the background color of the state label object is
set to green, and the done property of the selected state’ s database entry issettot r ue.
One additional test (thei sDone() function call) looksto seeif all the done properties
aret r ue in the database. If so, thecongr at s object is shown. But if the object isnot in
the right place, the label revertsto its original red color. In case the user moves a state that

was previously okay, its database entry is also adjusted. No matter what the outcome,
however, the user has dropped the map, so key global variables are set to nul | and the
layer order for theitem is set to zero (bottom of the heap) so that it doesn’t interfere with
the next selected map.

One more condition ispossibleinther el ease() function. Asshown later in the
initialization function, the docunent object’sonnmousenove event handler is assigned
tother el ease() function (comparethe onnmousenove eventsfor the state maps go
todragl t ()). Thereasoning behind this document-level event assignment is that no
matter how streamlined the dragging function may be, it is possible for the user to move
the mouse so fast that the map can’'t keep up. At that point, nousenove eventsare firing
at thedocunent (or other object, eventually bubbling up to the docunent), and not
the state map. If that happens while a state map is registered as the selected object, but the
image is no longer the target of the event, the code performs the same act asiif the user
had released the map. The label revertsto red, and al relevant globals are set to nul |,
preventing any further interaction with the map until the user mouses down again on the

map.

/1 onnmpbuseup, see if dragged nmap is near its destination
/1 coordinates; if so, mark it as 'done' and color |abel green
function rel ease(evt) {
evt = (evt) ? evt : event
var target = (evt.target) ? evt.target : evt.srcEl enent
var abbrev = (target.name && target.src) ?
target.nane.tolLowerCase() : ""
if (abbrev && selectedj) {
if (onTarget(evt)) {
set BGCol or (sel ect edSt at eLabel , "green")
st at es[abbrev]. done = true
if (isDone()) {
show "congrats")

} else {
set BGCol or (sel ect edSt at eLabel , "red")
st at es[abbrev] . done = fal se
hi de("congrats")

}

set ZI ndex(sel ectedhj, 0)
} else if (selectedStatelLabel) {
set BGCol or (sel ect edSt at eLabel , "red")

sel ectedObj = nul
sel ect edSt at eLabel = nul

}

To find out if adropped map isin (or near) its correct position, theonTar get ()
function first calculates the target spot on the page by adding the location of the bgnap
object to the coordinate positions stored in the st at es database. Because the bgnap
object doesn’t come into play in other parts of this script, it is convenient to pass merely
the object name to the two API functions that get the object’ s left and top coordinate
points.

Next, the script uses platform-specific properties to get the recently dropped state map
object’s current location. A largei f condition checks whether the state map object’s

coordinate point iswithin afour-pixel square region around the target point. If you want
to make the game easier, you can increase the cushion values from 2 to 3 or 4.

If the map iswithin the range, the script calstheshi ft To() API function to snap the
map into the exact destination position and reports back to ther el ease() function the
appropriate Boolean value.

/1 conpare position of dragged el enent agai nst the destination
/1 coordinates stored in corresponding state object; after shifting
/1 element to actual destination, return true if itemis within
/Il 2 pixels.
function onTarget(evt) {
evt = (evt) ? evt : event
var target = (evt.target) ? evt.target : evt.srcEl enent
var abbrev = (target.name && target.src) ?
target.nane.tolLowerCase() : ""
if (abbrev && selectedj) {
var X = states[abbrev].x + get QbjectLeft("bgnap")
var y = states[abbrev].y + get Qoject Top("bgnmap")
var obj X, objY
if (selectedbj.pageX) {
obj X = sel ect edbj . pageX
obj Y = sel ect edbj . pageY
} else if (selectedOhj.style) {
obj X = parselnt(sel ectedObj.style.left)
obj Y = parselnt(sel ectedObj.style.top)

}

if ((obj X >= x-2 && obj X <= x+2) &&
(obj Y >= y-2 && objY <= y+2)) {
shi ft To(sel ectedObj, x, y)
return true

return fal se

} return fal se

A f or loop cyclesthrough the st at es database (with the help of the hash table values
stored indirectly inthe st at esl ndexLi st array) to seeif al of the done properties are
settot r ue. When they are, ther el ease() function (which callsthei sDone()
function) displays the congratul atory object. Do note that NN6.0 may exhibit rendering
difficulties when hiding and showing the congr at s object. This problem should be
fixed in a subsequent release of the browser.

/1 test whether all state objects are marked ' done'
function isDone() {
for (var i = 0; i < stateslndexList.length; i++) {
if (!states[stateslndexList[i]].done) {
return fal se
}

} return true

The help panel is created differently than the map and label objects (details coming up in
amoment). When the user clicks the Help button at the top of the page, the instructions
panel fliesin from the right edge of the window (see Figure 56-2). The showHel p()
function begins the process by setting its location to the current right window edge,
bringing its layer to the very front of the heap, showing the object. To assist

noveHel p() incalculating the center position on the screen, the showHel p()

function retrieves (just once per showing) the DOM-specific property for the width of the
help panel. That value is passed as a parameter to noveHel p() asitisrepeatedly
invoked through theset | nt er val () mechanism.

A Map Game - Microsoft Internet Explorer
File Edit Wiew Fawvorites Tools Help

S F| o A 7] x| v e (ERE
Back i il Stop Aefresh Home Search Favortes Hizlory Mail Print. Edat

"Lower 48" U.S. Map Puzzle @‘J
Click on a state map bo pack it up, The label

A&

2 Dragthe map inlo posiion, and selease the
mouge to drop the sale map.

3. Ifyens are clogs io the sctusl localion, the

state snaps into place and the labal salor

liams green

Close i
R
=i
2] 24 Local intranet
Figure 56-2

Instruction panel “flies” in from left to center screen.
/***

BEG N HELP ELEMENT FUNCTI ONS
**/
/1 initiate show action
function showHel p() {
var obj Name = "hel p"
var helpWdth = 0
shi ft To(obj Name, i nsi deW ndoww dt h, 80)
set ZI ndex(obj Nane, 1000)
show(obj Nane)
if (docurment.!|ayers) {
hel pW dt h = docunent . | ayer s[obj Nane] . docunment . wi dt h
} else if (docunment.all) {
hel pW dt h = docunent. al | (obj Nane) . of f set Wdt h
} else if (docunent.getEl enentByld) {
if (document. get El ement Byl d(obj Nane) . of fsetWdth >= 0) {
hel pW dt h = docunent . get El emrent Byl d(obj Nane) . of f set Wdt h
}

interval ID = setlnterval ("moveHel p(" + helpWdth + ")", 1)

}

InthemoveHel p() function, the help object is shifted in five-pixel increments to the
left. The ultimate destination is the spot where the object isin the middle of the browser
window. That midpoint must be calculated each time the page loads, because the window
may have been resized. The width of the hel p object, received as a parameter to the
function, gets a workout in the mid-point calculation

Thisfunction is called repeatedly under the control of aset | nt er val () method in
showHel p() . But when the object reaches the middle of the browser window, the
interval ID is canceled, which stops the animation.

The help object processes a mouse event to hide the object. An extra

cl ear | nterval () methodiscaled herein case the user clicks the object’s Close
button before the object has reached mid-window (where nroveHel p() cancelsthe
interval). The script aso shifts the position to the right edge of the window, but it isn’t
absolutely necessary, because the showHel p() method positions the window there.

/] iterative nmove help DIV to center of w ndow
function nmoveHel p(w) {
shi ft By("hel p", -5, 0)
var objectLeft = get bjectLeft("hel p")
if (objectLeft <= (insideWndowNdth/2) - w2) {
clearlnterval (i nterval |l D)
}

}
/1 hide the help DV
function hideMe() {
clearlnterval (i nterval |l D)
hi de("hel p")
shi ft To("hel p", insideWndowW dth, 80)
}

The document’s onLoad event handler invokesthei ni t () function, which, in turn,
callstwo functions and assigns the docunent object’sonnousenove event handler.
Thefirstisi ni t Array(),whichbuildsthest at es[] database and assigns event
handlers to the state map layers. Because the layers are defined so late in the document,
initializing their events after the page has loaded is safest.

For convenience in moving the help window to the center of the browser window, the
set WnW dt h() function setsaglobal variable (i nsi deW ndowWw dt h) to hold the
width of the browser window. This function is also invoked by the onResi ze event
handler for the window to keep the value up to date.

/1 calculate center of window for help DV
function setWnWdth() {
if (wndow innerwWdth) {
i nsi deW ndowwW dt h = wi ndow. i nner Wdt h
} else if (docunent.body.scroll Wdth) {
i nsi deW ndowW dt h = docunent . body. scrol | Wdth
} else if (docunent.w dth) {
i nsi deW ndowW dt h = docunent . wi dt h
}

}

/***

I NI TI ALI ZE THE APPLI CATI ON
**/
/1 initialize application
function init() {

initArray()
set WnW dt h()
docunent . onnousenove = rel ease

}
</ SCRI PT>
</ HEAD>

Now comes the part of the document that generates the visible content. The <BODY> tag
contains the two event handlers just discussed. An image rollover for the help icon simply
displays a message in the statusbar.

<BODY onLoad="init()" onResize="setWnWdth()">

<H1>"Lower 48" U.S. Map Puzzl e <A HREF="j avascri pt:void showHel p()"
onMbuseOver =" st at us=' Show hel p panel..."';return true"

onMbuseQut ="status=""';return true"><lI M5 SRC="info.gif" HE GHT=22 W DTH=22
BORDER=0></ A></ H1>

<HR>

Next cometagsfor al of the DIV elements. The STYLE attribute for the bgnap DIV lets
scripts read the positioned values to assist in calculating positionsin theonTar get ()
function, as shown previously. The bgmap layer also contains all labels so that if the
design calls for moving the map to another part of the page, the labels follow
automatically. Notice how the lowercase state abbreviations are part of the names of both
the label and map layers. Asyou saw in afew functions shown previously, a systematic
approach to object naming can offer powerful shortcuts in determining references to
elements.

<Dl V | D=bgnmap STYLE="position: absolute; left:100; top:180; wi dth:406"><I MG
SRC="us11.gi f" WDTH=306 HEI GHT=202 BORDER=1> </ | M>>

<Dl V CLASS="1| abel s" | D=azl abel >Ari zona</ DI V>

<Dl V CLASS="1|abel s" | D=cal abel >Cal i f or ni a</ DI V>

<Dl V CLASS="| abel s" | D=orl abel >Or egon</ Dl V>

<Dl V CLASS="1|abel s" |D=utl abel >Ut ah</ DI V>

<Dl V CLASS="I| abel s" | D=wal abel >Washi ngt on</ DI V>

<Dl V CLASS="1|abel s" | D=nvl abel >Nevada</ DI V>

<Dl V CLASS="1|abel s" | D=i dl abel >l daho</ DI V>

</ DI V>

<Dl V | D=camap><| MG NAME="CA" SRC="ca. gif" WDTH=47 HElI GHT=82 BORDER=0></ DI V>
<Dl V | D=or map><I MG NAME="OR"' SRC="or.gif" WDTH=57 HEl GHT=45 BORDER=0></ DI V>
<Dl V | D=wamap><l MG NAME="WA" SRC="wa. gi f" W DTH=38 HEI GHT=29 BORDER=0></ DI V>
<Dl V | D=i dmap><I MG NAME="| D' SRC="id. gi f" WDTH=34 HElI GHT=55 BORDER=0></ DI V>

<Dl V | D=azmap><| MG NAMVE="
<Dl V | D=nvmap><| MG NAMVE="
<Dl V | D=ut map><| MG NAMVE="

SRC="az.gif" WDTH=38 HElI GHT=45 BORDER=0></ Dl V>
"nv.gi f" WDTH=35 HEl GHT=56 BORDER=0></Dl V>
SRC="ut.gi f" WDTH=33 HEl GHT=41 BORDER=0></ Dl V>

3R
i

<Dl V | D=congr at s><H1>Congr at ul ati ons! </ H1></ DI V>

In developing this application, | encountered an unfriendly NN4 bug. When defining the
help panel as apositioned DIV element in NN4, the browser exhibited unwanted behavior
after the instruction panel was shown and flown into place under script control. Even
after hiding the help layer, the page no longer received mouse events, making it
impossible to pick up a state map after the instructions appeared. The problem did not
surface, however, if the help object was defined in the document with a<LAYER> tag.

Therefore, | did what | don't like to do unless absolutely necessary: | created branchesin
the content that used docunent . wri t e() to create the same content with different
HTML syntax depending on the browser. For non-LAY ER browsers, the page creates the
same kind of block (with the <DI V> tag pair) used elsewhere in the document.
Positioning properties are assigned to this block viaa STY LE attribute in the <DI V> tag.
Y ou cannot assign a style in the <STYLE> tag that is visible to the entire document,
because that specification and alike-named <LAYER> tag get confused.

For NN4, the page uses the <LAYER> tag and |oads the content of the object from a
separate HTML file (i nst r ux. ht m). One advantage | had with the <LAYER> tag was
that | could assign aninitial horizontal position of the help object with a JavaScript entity.
The entity reachesinto thewi ndow. i nner W dt h property to set the LEFT attribute of
the layer.

<SCRI PT LANGUAGE="JavaScri pt">
var output =""
if (document.|ayers) {
out put = "<LAYER | D=' hel p' TOP=80 LEFT=&{ wi ndow. i nner Wdt h}; W DTH=300
VI SI Bl LI TY="H DDEN SRC='i nstrux. ht m ></ LAYER>"
} else {
output = "<DIV I D="hel p' ondick="hideMe()' STYLE=' position:absol ute;
visibility: hidden; top:80; w dth:300; border:none; background-
col or: #98FB98; ' >\ n"
out put += "<P STYLE=' mar gi n-
t op: 5' ><CENTER>| nst r uct i ons</ B></ CENTER></ P>\ n"
out put += "<HR COLOR=' seagreen' >\ n<OL STYLE=' mar gi n-ri ght:20' >"
output += "Click on a state map to pick it up. The |abel color turns
yel | ow. \ n"
output += "Drag the map into position, and rel ease the nouse to drop the
state map.\n"
output += "If you are close to the actual location, the state snaps into
pl ace and the | abel color turns green.\n"
out put += "</ OL>\ n<FORM>\ n<CENTER><| NPUT TYPE=' but t on’
VALUE=' d ose' >\ n</ FORM></ DI V>"
}
docunent . wi t e(out put)
</ SCRI PT>
</ BCDY>
</ HTM.>

This page has alot of code to digest in one reading. Run the application, study the
structure of the source code listing file, and re-read the previous explanations. It may take
several readings for a mental picture of the application to form.

Lessons Learned

As soon as the external cross-platform APl wasin place, it helped frame alot of the other
code in the main program. The APIs provided great comfort in that they encouraged me
to reference a complex object fully in the main code as a platform-shared value (for
example, thesel ect edObj andsel ect edSt at eLabel global variables). At the
sametime, | could reference top-level elements (that is, non-nested objects) simply by
their names when passing them to API functions.

In many respects, the harder task was defining the style sheet attributes and syntax that
both browsers would treat similarly. In the case of the label objects, | couldn’t reach
complete parity in across-platform environment (the labels ook different in NN4), and in
the case of the hel p object, | had to code the HTML separately for each platform.
Therefore, when approaching this kind of project, work first with the HTML and CSS
syntax to build the look that works best for all platforms. Then start connecting the
scripted wires. You may have to adjust the CSS code if you find odd behavior in one
platform or the other with your scripting, but starting with a good layout is still easier.

But without a doubt the biggest lesson you learn from working on a project like thisis
how important it isto test an application on as many browsers and operating systems as
possible. Designing a cross-platform application on one browser and having it run
flawlessly on the other the first timeis nearly impossible. Be prepared to go back and
forth among multiple browsers, breaking and repairing existing working code along the
way until you eventually reach a version that works on every browser that you can test.

	Chapter 56: Application: Cross-Browser DHTML Map Puzzle
	The Puzzle Design
	Implementation Details
	Lessons Learned

