Chapter 55: Application: Decision Helper

In This Chapter

Multiple frames
Multiple-document applications
Multiple windows

Persistent storage (cookies)
Scripted image maps

Scripted charts

Thelist of key concepts for this chapter’s application looks like the grand finaleto a
fireworks show. As JavaScript implementations go, the application is, in some respects,
over the top, yet not out of the question for presenting a practical interactive application
on aWeb site without any server programming.

The Application

| wanted to implement a classic application often called a decision support system. My
experience with the math involved here goes back to the first days of Microsoft Excel.
Rather than design a program that had limited appeal (covering only one possible
decision tree), | set out to make a completely user-customizable decision helper. All the
user hasto do is enter values into fields on a series of screens; the program performs the
calculationsto let the user know how the various choices rank against each other.

Although | won't be delving too deeply into the math inside this application, you will find
it helpful to understand how a user approaches this program and what the results |ook
like. The basic scenario is a user who istrying to evaluate how well a selection of choices
measure up to hisor her expectations of performance. User input includes:

* The name of the decision

* The names of up to five alternatives (people, products, ideas, and so on)
* Thefactors or features of concern to the user

* The importance of each of the factors to the user

* A user ranking of the performance of every alternative in each factor

What makes this kind of application useful isthat it forces the user to rate and weigh a
number of often-conflicting factors. By assigning hard numbers to these elements, the
user leaves the difficult process of figuring out the weights of various factors to the
computer.

Results come in the form of floating-point numbers between 0 and 100. As an extra
touch, I’ ve added a graphical charting component to the results display.

The Design

With so much user input necessary for this application, conveying the illusion of
simplicity was important. Rather than lump al text objects on a single scrolling page, |
decided to break them into five pages, each consisting of its own HTML document. Asan
added benefit, | could embed information from early screensinto the HTML of later
screens, rather than having to create all changeable items out of text objects so that the
application would work with older browsers. This“good idea’ presented one opportunity
and one rather large challenge.

The opportunity was to turn the interface for this application into something resembling a
multimedia application using multiple frames. The largest frame would contain the forms
the user fills out as well as the results page. Another frame would contain a navigation
panel with arrows for moving forward and backward through the sequence of screens,
plus buttons for going back to a home page and getting information about the program. |
also thought a good ideawould be to add a frame that provides instructions or
suggestions for the users at each step. And so, the three-frame window was born, as
shown in the first entry screen in Figure 55-1.

AW Decision Helper - Microsoft Internet Explorer
File Edit Wiew Fawvorites Tools Help

= S (SR TR TR o [7 T e o S (S

Back v Stop Hefresh Home Search Favorites Hizlory Mail Print Edst

The Decision Helper

«:3 Step 1 of 5: Type the name of the decision you're making, Then click the "Next™ arrow,
“ Decision Name: [Bwing a FA< machine

Wi

Fiug in sample data jor me

Step 1: Assigning a Name

Erler a phraze that charactenzes the decision you are tnong to make. Examples includs
® BuyingaCar
® Hinng a Salesperson

& Which Coflage Should | Go To?

Chck on the Righi Arrow in the nnagation bar 10 continue..

2] javascriptgolaxt) 24 Local iniranst

Figure 55-1
The Decision Helper window consists of three frames.

Using a navigation bar also enables me to demonstrate how to script a client-side image
map — not an obvious task with JavaScript.

On the challenge side of this design, finding away to maintain data globally as the user
navigates from screen to screen was necessary. Every time one of the entry pages unloads,
none of itstext fieldsis available to a script. My first attack at this problem was to store
the data as global variable data (mostly arrays) in the parent document that creates the
frames. Because JavaScript enables you to reference any parent document’ s object,
function, or variable (by preceding the reference with par ent), | thought this task would
be a snap. A nasty bug in Navigator 2 (the prominent browser when this application was
first developed) got in the way at the time: If adocument in any child window unloaded,
the variables in the parent window got jumbled. The other hazard here is that areload of
the frameset could erase the current state of those variables.

My next hope was to usethedocunent . cooki e asthe storage bin for the data. A
major problem | faced was that this program needsto store atotal of 41 individual data
points, yet no more than 20 uniquely named cookies can be allotted to a given domain.
But the cookie proved to be the primary solution for this application (although see the
“Further Thoughts” section at the end of the chapter about a non-cookie version on your
CD-ROM). For some of the data points (which are related in an array-like manner), |
fashioned my own data structures so that one named cookie could contain up to five
related data points. That reduced my cookie demandsto 17.

The Files

Before | get into the code, let me explain the file structure of this application. Table 55-1
gives arundown of the files used in the Decision Helper.

Table 55-1
Files Comprising the Decision Helper Application
File Description
i ndex. htm Framesetting parent document
dhNav. ht m Navigation bar document which contains
some scripting
dhNav. gi f Image displayed in dhNav. ht m
dhl. htm First Decision Helper entry page
dh2. ht m Second Decision Helper entry page
dh3. ht m Third Decision Helper entry page

dh4. ht m Fourth Decision Helper entry page

dh5. ht m Results page

chart.gif Tiny image file used to create bar chartsin
dh5. ht m

dhHel p. ht m Sample data and instructions document for

lower-right frame

dhAbout.htm Document that loads into a second window

A great deal of interdependence exists among these files. Asyou see later, assigning the
names to some of these files was strategic for the implementation of the image map.

The Code

With so many JavaScript-enhanced HTML documentsin this application, you can expect
agreat deal of code. To best grasp what’s going on here, first try to understand the
structure and interplay of the documents, especially the way the entry pages rely on
functions defined in the parent document. My goal in describing this structure is not to
teach you how to implement this application, but rather how to apply the lessons | learned
while building this application to the more complex ideas that may be aching to get out of
your head and into JavaScript.

index.htm

Taking atop-down journey through the JavaScript and HTML of the Decision Helper,
start at the document that loads the frames. Unlike atypical framesetting document,
however, this one contains JavaScript code in its Head section — code that many other
documents rely on.

<HTM_>

<HEAD>

<TI TLE>Deci si on Hel per</ Tl TLE>

An important consideration to remember is that in a multiple-frame environment, the title
of the parent window’ s document is the name that appears in the window’ s title bar, no
matter how many other documents are open inside its subframes.

The first items of the script control aglobal variable, curr Ti t | e, whichisset by a
number of the subsidiary files as the user navigates through the application. This variable
ultimately helps the navigation bar buttons do their jobs correctly. Because this
application relies on thedocunent . cooki e so heavily, the cookie management
functions (slightly modified versions of Bill Dortch’s Cookie Functions — Chapter 18)
are located in the parent document so they load only once. | simplified the cookie writing
function because this application uses default settings for pathname and expiration. With
no expiration date, the cookies don't survive the current browser session, which is perfect
for this application.

<SCRI PT LANGUAGE="JavaScri pt">

<l-- start

/1 global variable settings of current dh docunent nunber
var currTitle = ""

function setTitleVar(titleval) {

currTitle ="" + titleVal
}
function get Cooki eval (offset) {

var endstr = mycookie.indextX (";", offset)

if (("" + endstr) =="" || endstr == -1)

endstr = nycookie.length

return unescape(nycooki e. substring(offset, endstr))

}

functi on get Cooki e (name) {
var arg = name + "=";

var alen = arg. | ength;
var clen = nycookie. |l ength;
var i = 0;
while (i < clen) {
var j =i + alen;

if (mycookie.substring(i, j) == arg) {
return get Cookieval (j);

}
i = mycookie.indexCf (" ", i) + 1;
if (i == 0) break;

return null;

}

var nycooki e = docunent. cooki e
function set Cooki e (nane, val ue) {
nycooki e = docunent.cookie = nane + "=" + escape (value) + ";"

When this application loads (or a user elects to start a new decision), it's important to
grab the cookies you need and initialize them to basic values that the entry screens will
use to fill entry fields when the user first visits them. All statementsinside the
initializeCookies() functioncal theset Cooki e() function, defined in the
preceding listing. The parameters are the name of each cookie and the initial value —
mostly empty strings. Before going on, study the cookie labeling structure carefully. |
refer to it often in discussions of other documents in this application.

function initializeCookies() {
set Cooki e(" decNanme","")
set Cooki e("alto",""
set Cooki e("alt1",""
set Cooki e("alt2",""
set Cooki e("alt3",""
set Cooki e("alt4",""
set Cooki e("factor0",""
set Cooki e("factor1",""
set Cooki e("factor2",""
set Cooki e("factor3",""
set Cooki e("factor4",""
set Cooki e("inport","
set Cooki e("perfoO",""
set Cooki e("perf1",""
set Cooki e("perf2",""

)
)
)
)
)

set Cooki e("perf3",""
set Cooki e("perf4",""

The following functions should look familiar to you. They were borrowed either
wholesale or with minor modification from the data-entry validation section of the Socia
Security number database lookup in Chapter 50. I’'m glad | wrote these as generic
functions, making them easy to incorporate into this script. Because many of the entry
fields on two screens must be integers between 1 and 100, | brought the data validation
functions to the parent document rather than duplicating them in each of the
subdocuments.

/1 JavaScript sees nunbers with | eading zeros as octal val ues, so
/1 strip zeros
function stripZeros(inputStr) {
return (parseFloat (inputStr, 10)).toString()
}

/1 general purpose function to see if a suspected nuneric input
/1 is a positive integer
function i sNunber (inputStr) {

for (var i = 0; i < inputStr.length; i++) {
var oneChar = charAt (i)
if (oneChar < "0" || oneChar > "9") {

return fal se

}

return true

}

/1 function to determne if value is in acceptable range for this
/1 application
function i nRange(inputStr) {
num = parselnt (i nputStr)
if (hum< 1 || num> 100) {
return fal se
}

return true

}

To control the individual data-entry validation functions in the master controller, | again
was able to borrow heavily from the application in Chapter 50.

/1 Master value validator routine
function isValid(inputStr) {
if (inputStr !'="") {
inputStr = stripZeros(inputStr)
if ('isNunber(inputStr)) {
alert("Please make sure entries are nunbers only.")
return fal se
} else {
if ('inRange(inputStr)) {
alert("Entries nmust be nunbers between 1 and 100. Try anot her
val ue.")
return fal se

}

return true
}
Each of the documents containing entry forms retrieves and stores information in the
cookie. Because all cookie functions are located in the parent document, it ssimplifies
coding in the subordinate documents to have functions in the parent document acting as
interfaces to the primary cookie functions. For each category of data stored as cookies, the
parent document has a pair of functions for getting and setting data. The calling

statements pass only the data to be stored when saving information; the interface
functions handle the rest, such as storing or retrieving the cookie with the correct name.

In the following pair of functions, the decision name (from the first entry document) is
passed back and forth between the cookie and the calling statements. Not only must the
script store the data, but if the user returnsto that screen later for any reason, the entry
field must retrieve the previously entered data.

function setDeci si onNane(str) {
set Cooki e(" decNane", str)

functi on get Deci si onNane() {
return get Cooki e("decNane")
}

The balance of the storage and retrieval pairs does the same thing for their specific
cookies. Some cookies are named according to index values (f act or 1, f act or 2, and
S0 on), so their cookie-accessing functions require parameters for determining which of
the cookies to access, based on the request from the calling statement. Many of the cookie
retrieval functions are called to fill in datain tables of later screens during the user’strip
down the decision path.

/1 values for alternatives
function setAlternative(i,str) {
set Cookie("alt" + i,str)

}

function getAlternative(i) {
return get Cookie("alt" + i)
}

/1 values for decision factors
function setFactor(i,str) {

set Cooki e("factor" + i,str)
}

function getFactor(i) {
return get Cookie("factor" + i)
}

/1 values for inportance (decision factor weights)
function setlnmportance(str) {
set Cooki e("inport", str)

function getlnmportance(i) {
return get Cookie("inmport")
}

/'l values for performance ratings
function setPerformance(i,str) {
set Cooki e("perf" + i,str)

}

function getPerformance(i) {
return get Cookie("perf" + i)
}

One sequence of code that runs when the parent document loads is the one that looks to
seeif acookie structureis set up. If no such structure is set up (the retrieval of a
designated cookie returnsanul | value), the script initializes all cookies viathe function
described earlier.

if (getDecisionName() == null) {
initializeCookies()

/1 end -->

</ SCRI PT>

</ HEAD>

The balance of the parent document source code defines the frameset for the browser
window. It establishes some hard-wired pixel sizesfor the navigation panel. This assures
that theentire. gi f fileisvisible whenever the frameset loads, without aton of
unwanted white space if the browser window is large.

<FRAMESET ROWS="250, *" >
<FRAMESET COLS="104, *" >
<FRAME NAME="navBar" SRC="dhNav. ht i SCROLLI NG=no
MARG NHEI GHT=2 MARG NW DTH=1>
<FRAME NAME="entryFormnms" SRC="dhl. ht n'>
</ FRAMESET>
<FRAMESET ROAS="1009% >
<FRAME NAME="instructions" SRC="dhHel p. ht ni'>
</ FRAMESET>
</ FRAMESET>
</ HTM.>
| learned an important lesson about scripting framesets along the way. Older browsers,
especially NN through Version 4, do not respond to changes in framesetting size
attributes through a simple reload of the page. | found it necessary to reopen the frameset
filefrom timeto time. | al'so found it necessary to sometimes quit early Navigators
altogether and relaunch it to make some changes visible. Therefore, if you seem to be
making changes, but rel oading the frameset doesn’t make the changes appear, try

reopening or — as a last resort — quitting the browser.

dhNav.htm

Because of its crucial role in controlling the activity around this program, ook into the
navigation bar’ s document next. To accomplish the look and feel of a multimedia
program, this document was designed as a client-side image map that has four regions
scripted corresponding to the locations of the four buttons (see Figure 55-1). One function
is connected to each button.

The first function is linked to the graphical Home button. For the listing here, | just
present an alert dialog box replicating the action of navigating back to areal Web site's
home page.

<HTM.>
<HEAD>
<TI TLE>Navi gati on Bar</ Tl TLE>
<SCRI PT LANGUAGE="JavaScri pt">
<l-- start
functi on goHore() {
al ert (" Navi gate back to hone page on a real site.")
}

Each of the arrow navigation buttons brings the user to the next or previous entry screen
in the sequence. To facilitate this without building tables of document titles and names,
you call uponthecurr Ti t | e global variable in the parent document. This value
contains an integer in the range between 1 and 5, corresponding to the main content
documents, dh1. ht m dh2. ht m and so on. Aslong as the offset number is no higher

than the next-to-last document in the sequence, the goNext () function increments the
index value by one and concatenates a new location for the frame. At the same time, the
script advances the help document (in the bottom frame) to the anchor corresponding to
the chosen entry screen by setting thel ocat i on. hash property of that frame. Similar
action navigates to the previous screen of the sequence through the goPr ev () function.
Thistime, the index value is decremented by one, and an alert warns the user if the
current page is aready thefirst in the sequence.

function goNext () {
var currOfset = parselnt(parent.currTitle)
if (currOfset <= 4) {
++curr O f set

parent.entryFormns. | ocation. href = "dh" + currOfset + ".htnt
parent.instructions.location.hash = "hel p" + currOfset
} else {

alert("This is the last form")

}

function goPrev() {
var currOfset = parselnt(parent.currTitle)
if (currOffset > 1) {
--currOfset

parent.entryFormns. | ocation. href = "dh" + currOifset + ".htnt
parent.instructions.location.hash = "hel p" + currOfset
} else {

alert("This is the first form?")

}
}
Clicking the Info button displays a smaller window containing typical About-box data for
the program (see Figure 55-2).
function golnfo() {

var newwW ndow =
wi ndow. open(" dhAbout . ht nf', """, " HEl GHT=250, W DTH=300")

/'l end -->

</ SCRI PT>

</ HEAD>

The Body of the navigation document contains the part that enables you to script a client-
side image map. Mousecl i ck eventsweren't available to AREA elements until Version
4 browsers, so to let these image maps work with older versions, mouse action is
converted to script action by assigning aj avascri pt: pseudo-URL to the HREF
attribute for each AREA element. Instead of pointing to an entirely new URL (as AREA
elements usually work), the attributes point to the JavaScript functions defined in the
Head portion of this document. After auser clicks the rectangle specified by an <AREA>
tag, the browser invokes the function instead.

Figure 55-2
The About Decision Helper screen appears in a separate window.

<BODY>

<MAP NAME="navi gati on">
<AREA SHAPE=" RECT"
<AREA SHAPE=" RECT"
<AREA SHAPE=" RECT"
<AREA SHAPE=" RECT"
</ MAP>

<I MG SRC="dhNav. gi f" BORDER HElI GHT=240 W DTH=96 ALl G\N="|eft"
USEMAP="#navi gati on" >

</ BODY>

</ HTML>

é

"23,22,70,67" HREF="javascri pt: goHonme()">

" 25, 80, 66, 116" HREF="j avascri pt: goNext()">
"24, 125, 67, 161" HREF="j avascri pt: goPrev(
"35,171, 61, 211" HREF="j avascri pt: gol nf o(

i

)" >
)" >

é

Although not shown here, you can assign onMouseOver event handlers to each AREA
element for NN3+ and |E4+ to display afriendly message about the action of each button.

dhl.htm

Of the five documents that display in the main frame, dh1. ht misthe simplest (refer to
Figure 55-1). It contains asingle entry field in which the user isinvited to enter the name
for the decision.

Only one function adorns the Head. This function summons one of the cookie interface
functionsin the parent window. A test is located here in case thereis a problem with
initializing the cookies. Rather than show nul | inthe field, the conditional expression
substitutes an empty string.

<HTM.>

<HEAD>

<TI TLE>DH1</ Tl TLE>

<SCRI PT LANGUAGE="JavaScri pt">

<l-- start

function | oadDeci si onName() {
var result = parent. getDeci si onNane()
result = (result == null) ?2 "" : result
docunent . forns[0] . decNane. val ue = resul t

/!l end -->
</ SCRI PT>
</ HEAD>

After the document loads, it performs three tasks (in the onLoad event handler). The
first task isto set the global variable in the parent to let it know which number of the five
main documents is currently loaded. Next, the script must fill the field with the decision
name stored in the cookie. This task isimportant because users will want to come back to
this screen to review what they entered previoudly. A third statement in the onLoad
event handler sets the focus of the entire browser window to the one text object. This task
is especially important in a multi-frame environment, such as this design. After a user
clicks on the navigation panel, that frame has the focus. To begin typing into the field, the
user hasto tab (repeatedly) or click the text box to give the text box focus for typing. By
setting the focus in the script when the document loads, you save the user time and
aggravation.

<BODY onLoad="parent.setTitleVar(1);| oadDeci si onName();

docunent . forms[0] . decNane. f ocus() ">

<H2>The Deci si on Hel per </ H2>

<HR>

<H4>Step 1 of 5: Type the nanme of the decision you' re naking. Then click the
"Next" arrow. </ H4>

In the text field itself, an onChange event handler saves the value of thefield in the
parent’ s cookie for the decision name. No special Save button or other instruction is
necessary here because any navigation that the user does via the navigation bar
automatically causes the text field to lose focus and triggers the onChange event

handler.

<CENTER>

<FORW>

Deci si on Nare:

<I NPUT TYPE="text" NAME="decNane" Sl ZE="40"
onChange="parent. set Deci si onNane(t hi s. val ue) ">
</ FORW>

</ CENTER>

</ BODY>

</ HTML>

The copy of thisfile on the CD-ROM also has code that allows for plugging in sample

data (as seen on my Web site) and a (commented out) textarea object that you can use for
debugging cookie data.

dh2.htm

For the second data-entry screen (shown in Figure 55-3), five fields invite the user to
enter descriptions of the aternatives under consideration. As with the decision name
screen, the scripting for this page must both retrieve and save data displayed or entered in
the fields.

A Dacision Helper - Microsoft Internet Explorer
File Edit Wiew Fawvorites Tools Help

T ; | at = (& 3 T = Ll o
Back Foiwd i Stop Hefresh Hoane Search Favontes Hizbory Mail Prnt Eda
- The Decision Helper
I ﬁ
iy
[] =
i % Stap 2 of 5 Typ# up to five alternatives you are considering.
FE Alternative 1 [Fax-0-tatic 1000
: Q Alternative 2 [in/Fax 00
L = Alternative 3. [LesyFax 4
I. 1 Alternative 4 [Loose Cannon M200
L Alternative 5: |]

Step 2: Listing Alternatives

These are the cholces amang which you are deciding, You can anter a5 few 35 twn or all Bhe way up 10 fve. The mare specific yau are atout
naming the fems, the easisr {will be to rate thern later on. Some examples:

® Autarmabile mogals
® Mamesafcandedates for & posilion
& Codlege names

Comfirnee clicking te Fight Ao (o adance..

2] javascriptigoNext) 24 Local intranet

Figure 55-3
The second data-entry screen

In one function, the script retrieves the alternative cookies (five total) and stuffs them into
their respective text fields (as long as their values are not nul |). This function script
usesaf or loop to cycle through al five items — a common process throughout this
application. Whenever a cookieis one of a set of five, the parent function has been
written (in the following example) to store or extract a single cookie, based on the index
value. Text objects holding like data (defined in the following listing) are al assigned the
same name, so that JavaScript |ets you treat them as array objects — greatly simplifying
the placement of valuesinto thosefieldsinside af or loop.

<HTM.>

<HEAD>

<TI TLE>DH2</ TI TLE>

<SCRI PT LANGUAGE="JavaScri pt">
<l-- start

function | oadAlternatives() {

for (var i = 0; i < 5; i++) {
var result = parent.getAlternative(i)
result = (result == null) ? "" : result
docunent.fornms[0].alternative[i].value = result
}
/1 end -->
</ SCRI PT>
</ HEAD>

After the document loads, the document number is sent to the parent’s global variable, its
fields arefilled by the function defined in the Head, and the first field is handed the focus
to assist the user in entering data the first time.

<BODY onLoad="parent.setTitleVar(2);|oadA ternatives();
docunent. forns[0].alternative[0].focus()">
<H2>The Deci si on Hel per </ H2>

<HR>
<H4>Step 2 of 5: Type up to five alternatives you are considering. </ H4>

Any change that a user makes to afield is stored in the corresponding cookie. Each
onChange event handler passes itsindexed value (relative to all like-named fields) plus
the value entered by the user as parameters to the parent’ s cookie-saving function.

<CENTER>

<FORW>

Al ternative 1:

<INPUT TYPE="text" NAME="alternative" SIZE="25"
onChange="parent.set Al ternative(O,this.val ue)">

Al ternative 2:

<INPUT TYPE="text" NAME="alternative" SIZE="25"
onChange="parent.set Al ternative(1,this.val ue)">

Al ternative 3:

<INPUT TYPE="text" NAME="alternative" SIZE="25"
onChange="parent.set Al ternative(2,this.val ue)">

Al ternative 4:

<INPUT TYPE="text" NAME="alternative" SIZE="25"
onChange="parent.set Al ternative(3,this.val ue)">

Al ternative 5:

<INPUT TYPE="text" NAME="alternative" SIZE="25"
onChange="parent.set Al ternative(4,this.val ue)">

</ BODY>

</ HTM.>

dh3.htm

With the third screen, the complexity increases a bit. Two factors contribute to this
increase in difficulty. Oneisthat the limitation on the number of cookies available for a
single domain forces you to join into one cookie the data that might normally be
distributed among five cookies. Second, with the number of text objects on the page (see
Figure 55-4), it becomes more efficient (from the standpoint of tedious HTML writing) to
let JavaScript deploy the fields. The fact that two sets of five related fields exist facilitates
using f or loopsto lay out and populate them.

Oneinitial function here is reminiscent of Head functionsin previous entry screens. This
function retrieves a single factor cookie from the set of five cookies.

<HTM.>
<HEAD>
<TI TLE>DH3</ Tl TLE>
<SCRI PT LANGUAGE="JavaScri pt">
<l-- start
function getdh3Factor (i) {
var result = parent.getFactor(i)
if (result == null) {
return ""
}

return result

A Dacision Helper - Microsoft Internet Explorer
File Edit Wiew Fawvorites Tools Help

: : faf = (&) x| ey = o fER
Back i il Stop Aefresh Home Search Favortes Hizlory Mail Print. Edat

The Decision Helper =

100) to signify the importance of @ach factor in your decision.

g ™
¥ Q Factor 1-->[C0st 80 covmght 1
i

Factor 2--=[a1 |-1“ =-Weight 2

Step 3: Assigning Factors and Weights

! Step 3 of 5: List the factors that will influence your decisien, and assign a weight ifrom 1 to

Factes 3--:-|:'=p?l Handling |E-l.'l < Weight 3

Factor 4-[Waranty [707 comeight «

Fattos 5 :| <-Mght 5

Factors are the kands of dems you might find in a product festure checkiist But they can afsa be subjectve dams, such a5 e prastige you

might aftach to the nelghbormosds inwhich houses youre considerating are lacated. Whatewvar you anter here, the flems shauld bs faclors
thatyou can measure either by soms hard measuse (2.0, the size of 3 compuler modals hand disk) or by subjective measure (8.0, what

the buez ks around campus aboul a pobential college tourse's prospedts are for meeting members of the opposile sex) J

Walghts are a measune of hivw important & paticular Taclor 1S 1o yol For instance, whan buying a car, interior space may ba vary imparant
o you {raling, say, a 90), bul fuel econonty is further down Bie list of considerations (raling peraps a 30). Each value you enter here is
independent af the alers: consider sach faclor indhidually, and assign a welghl value between 1 and 100

Comtinue clicking the Right Anrow o sbeancn..

2] javascriptigoNext) 24 Local intranet

Figure 55-4
Screen for entering decision factors and their weights

Values for the five possible weight entries are stored together in a single cookie. To make
thiswork, | had to determine a data structure for the five “fields’ of a single cookie
“record.” Because all entries areintegers, | can choose any nonnumeric character. |
arbitrarily selected the period.

function setdh3lnmportance () {
var oneRecord = ""
for (var i =0; i < 5; i++) {
var dataPoi nt = docunent.forms[O0].inmportance[i].val ue
if (!parent.isValid(dataPoint)) {
docurent . forms[0] . i mportance[i].focus()
docurnent . forms[0] . i mportance[i]. sel ect()
return

oneRecord += dataPoint + "

}

parent. set | nmportance(oneRecor d)
return

}

The purpose of theset dh3I nport ance() functionisto assemble all five values
from the five Weight entry fields (named “importance”) into a period-delimited record
that is ultimately sent to the cookie for safekeeping. Another of the many f or loopsin
this application cycles through each of the fields, checking for validity and then
appending the value with itstrailing period to the variable (oneRecor d) that holds the
accumulated data. As soon as the loop finishes, the entire record is sent to the parent
function for storage.

Although the function showstwo r et ur n statements, the calling statement does not
truly expect any values to be returned. Instead, | usether et ur n statement inside the

f or loop asaway to break out of thef or loop without any further execution whenever
an invalid entry isfound. Just prior to that, the script sets the focus and select to the field
containing the invalid entry. JavaScript, however, is sensitive to the fact that afunction
with ar et ur n statement in one possible outcome doesn’t have ar et ur n statement for
other outcomes (an error message to this effect appears in some browsersif you try the
function without balanced returns). By putting ar et ur n statement at the end of the
function, all other possihilities are covered to the browser’ s satisfaction.

The inverse of storing the weight entriesis retrieving them. Because the
par ent. get | nportance() function returns the entire period-delimited record, this
function must break apart the pieces and distribute them into their corresponding Weight
fields. A combination of string methods determines the offset of the period and how far
the data extraction should go into the complete record. Before the f or loop repeats each
time, it is shortened by one “field’s’ data. In other words, asthe f or loop executes, the
copy of the cookie data returned to this function is pared down one entry at atime as each
entry is stuffed into its text object for display.
function getdh3lnportance () {
var oneRecord = parent.getlnportance()
if (oneRecord !'= null) {
for (var i =0; i < 5; i++) {
var recLen = oneRecord. | ength
var offset = oneRecord.indexCOF(".")
var dataPoint = (offset >>0) ?
oneRecord. substring(0,of fset) : ""

docunent. forns[0].inportance[i].val ue = dataPoi nt
oneRecord = oneRecord. substring(of fset+1, recLen)

}

/!l end -->
</ SCRI PT>
</ HEAD>

Upon loading the document, the only tasks that the onLoad event handler need to do are
to update the parent global variable about the document number and to set the focus to the
first entry field of the form.

<BODY onLoad=" parent.setTitleVar(3); docunent.forns[0].factor[0].focus()">
<H2>The Deci si on Hel per </ H2>

<HR>

<H4>Step 3 of 5: List the factors that will influence your decision,

and assign a weight (from1 to 100) to signify the inportance of each factor in
your deci sion. </ H4>

Assembling the HTML for the form and its ten data-entry fields needs only afew lines of
JavaScript code. Performed inside af or loop, the script assembles each line of the form,
which consists of alabel for the Factor (and its number), the factor input field, the
importance input field, and the label for the Weight (and its number). A

docunent . wite() method writes each line to the document.

<SCRI PT LANGUAGE="JavaScri pt">
<l-- start
var output = "<CENTER><FORM>"
for (i =0; i <5; i++) {
output += "Factor " + (i+1) +

"--><| NPUT TYPE='text' NAME='factor' SIZE=' 25" "
var eHandl er = " onChange=\'parent.setFactor(" + i + ",this.value)\"'"
out put += eHandl er + "VALUE=" + getdh3Factor (i) + ">"

out put += "<INPUT TYPE='text' NAME='inportance' SIZE='3' "
var eHandl er = " onChange=\ setdh3l nportance ()\'"

out put += eHandl er + "VALUE="'>"

output += "<--Weight " + (i+1l) + "
"
docunent . wite(out put)

output =""

}
docunent . wite(" </ FORM></ CENTER>")

get dh3l mportance ()

/1 end -->

</ SCRI PT>

</ BODY>

</ HTML>

Each of the scripted text objects has an event handler. Notice that each event handler is
first defined as a variable on a statement line just above itsinsertion into the string being
assembled for the INPUT object definition. One reason for thisfact is that the nested
guote situation gets quite complex when you are doing these tasks all in one massive
assignment statement. Rather than mess with matching severa pairs of deeply nested
guotes, | found it easier to break out one portion (the event handler definition) asa
variable value and then insert that preformatted expression into the concatenated string
for the INPUT definition.

Notice, too, how the different ways of storing the data in the cookies influence the ways
the existing cookie dataisfilled into the fields as the page draws itself. For the factors,
which have one cookie per factor, the VALUE attribute of the field is set with a specific
indexed call to the parent factor cookie retriever, one at atime. But for the importance
values, which are stored together in the period-delimited chunk, a separate function call
(get dh3I npor t ance()) executes after the fields are already drawn (with initial
values of empty strings) and fills all the fields in a batch operation.

dh4.htm

Step 4 of the decision process (shown in Figure 55-5) is the most complex step because of
the sheer number of entry fields: 25 in all. Notice that this screen retrieves data from two
of the previous screens (or rather from the cookies preserving the entries) and embeds the
values into the fixed parts of the table. All these tasks are possible when you create those
tables with JavaScript.

A Dacision Helper - Microsoft Internet Explorer
File Edit Wiew Fawvorites Tools Help

; | at) (& 2 -5 = Ll o
Back o Stop FAefresh Home Search Favorites History Mail Print Eda

I::' ﬁ Stép 4 of 5; On A scale of 110 100, Fank each altérnative's perfarmanca in each factar,
:_.. e Cost Size Paper Handling Warranty

ng Fax.OMatict000 [i0 [0 [0 o [

" inkyFax300 [0 i [0 Bo | [

; ” LaayFaxLX [50 [55 [i5 o

|’..__ i Loose Cannon BM.200 ’F ’T E- ﬁﬂ_ l_

- e =l

Step 4: Rating Performance

In this table, you rate howwel| gach potential cholos measures up boyour expactations in each of the factors. Again, consider each enfry cell
indrvidually &0, how well the SWMW 3251 parforms with respact o intarior comfort; how well with rezpact to fuel econamy). Mo rows or
codurnns need to s0d up o 100

Coniree clicking the Fight Arrow o advance...

Step 5: Viewing Resuits

Bacuiie sra rziriisbad hased an iha watane woinkic smd rankinne ua anbared in nravinn s srrasne Tha snerdie nmbare b J

2] javascriptgoNosxt] 24 Local intranet

Figure 55-5
A massive table includes label data from earlier screen entries.

Functions for getting and setting performance data are complex because of the way | was
forced to combine datainto five “field” records. In other words, one parent cookie exists
for each row of data cellsin the table. To extract cell datafor storage in the cookie, | use
nested f or loop constructions. The outer loop counts the rows of the table, whereas the
inner loop (with thej counter variable) works its way across the columns for each row.

Because al cells are named identically, they are indexed with values from 0 to 24.
Calculating therow (i * 5) plusthe column number establishes the cell index value.
After you check for validity, each cell’s value is added to the row’ s accumul ated data.
Each row isthen saved to its corresponding cookie. Asin the code for dh3. ht m the
r et ur n statement is used as away to break out of the function if an entry is deemed
invalid.

Retrieving the data and populating the cells for the entire table requires an examination of
each of the five performance cookies, and for each labeled cookie' s data, a parsing for
each period-delimited entry. After a given data point isin hand (one entry for acell), it
must go into the cell with the proper index.

<HTM.>
<HEAD>
<TI TLE>DH4</ TI TLE>
<SCRI PT LANGUAGE="JavaScri pt">
<l-- start
functi on getdh4Performance () {
var oneRecord = ""
for (var i = 0; i <5; i++) {
oneRecord = parent. getPerfornance(i)
if (oneRecord == null) {
conti nue

}
for (var j =0; j <5 j++) {
var reclLen oneRecord. | ength
var of fset oneRecord. i ndexCfF (". ")
var dataPoi nt = oneRecord. substring(0, of fset)
var celINum=j + (i * 5)
docunent. forns[0] . ranki ng[cel | Nunj . val ue = dat aPoi nt
oneRecord = oneRecord. substring(offset+1, recLen)

}

/1 end -->
</ SCRI PT>
</ HEAD>
functi on setdh4Performance () {
for (var i = 0; i <5; i++) {
var oneRecord = ""
for (var j =0; j <5/ j++) {
var celINum=j + (i * 5)
var dataPoi nt = docunent.forns[0].ranking[cellNuni.val ue
if (!parent.isValid(dataPoint)) {
docunent. fornms[0] . ranki ng[cel | Nunj . focus()
docunent. forns[0] . ranki ng[cel | Nunj . sel ect ()
return

oneRecord += dataPoint + "."

}

parent . set Perf ormance(i, oneRecor d)

}

return

}

After the document is loaded, the onLoad event handler sends the document number to
the parent global variable and brings focus to the first field of the table.

<BODY

onLoad=" parent.setTitleVar(4);docunent.fornms[0].ranking[O0].focus()">
<H2>The Deci si on Hel per </ H2>

<HR>

<H4>Step 4. On a scale of 1 to 100, rank each alternative's
performance in each factor. </ H4>

<P><P>

To lessen the repetitive HTML for all tables, JavaScript again assembles and writes the
HTML that defines the tables. In the first batch, the script uses yet another f or loop to
retrieve the factor entries from the parent cookie so that the words can be embedded into
<TH> tags of the first row of the table. If every factor field isnot filled in, the table cell is
set to empty.

<SCRI PT LANGUAGE="JavaScri pt">

<l-- start

var output = "<CENTER><FORM NAME=' per f Ranki ngs' ><TABLE BORDER>"
out put += "<TR><TD></ TD><TD>"

for (var i =0; i < 5; i++) {
var oneFactor = parent.getFactor (i)
oneFactor = (oneFactor == null) ? "" : oneFactor

out put += "<TH>" + oneFactor + "</ TH>"

E)Ut put += "</ TD>"

Next comes the assembly of subsequent rows of the table. The first column displays the
name of each aternative (within <TH> tags). The remaining columns are text boxes, all
with the same name and event handler. As each row of table definition is completed, it is
written to the document. After the table and form closing tags are also written, the

get dh4Per f or mance() function retrieves al cookie data for the fields and
distributes it accordingly.

for (var i =0; i < 5; i++) {
var oneAl't = parent.getAlternative(i)
oneAlt = (oneAlt == null) ? "" : oneAlt

out put += "<TR><TD><TH>" + oneAl't + "</ TH>"

for (var j = 0; j < 5; j++) {
out put += "<TD ALI GN=CENTER><I| NPUT TYPE='text' SIZE=3 " +
"NAME=' r anki ng' VALUE='' onChange=' set Performance()"' ></ TD>"

}

out put += "</ TR>"
docurent . wri t e(out put)
output = ""

}
docunent .. wi te(" </ TABLE></ FORM></ CENTER>")

get dh4Per f or mance ()
/1 end -->

</ SCRI PT>

</ BODY>

</ HTM.>

dh5.htm

From a math standpoint, dn5.htm’ s JavaScript gets pretty complicated. But because the
complexity is attributed to the decision support calculations that turn the user’ s entries
into results, | treat the calculation script shown here as ablack box. You're free to
examine the details, if you' re so inclined.

Results appear in the form of atable (see Figure 55-6) with columns showing the numeric
results and an optional graphical chart.

AW Decision Helper - Microsoft Internet Explorer
File Edit Wiew Fawvorites Tools Help

il e o ; : at a (&} 3 T = L e
Back Foawird Stop Hefresh Home Search Favontes Hizbory Ml Frnt Eda
ﬁ Buying a FAX machine
Results Ranking
ﬁ. Faw-OMatic1000 [72
¢ : InkyFax 300 [F5e
! Q’ LagyFax X 72 —
i Loose Cannan M200 [72 4 —
i o

Step 5: Viewing Results

Regulls are caloulated based on the vatious weights and rankings you entered in previous soeens. The specific numbers are not
oetand: thair refalivee posSions, however, e whal you'e [ooking for, The highest number represents the afematee raling the
v our input Values ano shown b four decimal placos in cas l050 racns

Bnig rdGulls sorden cannol be pired of Saed, 1Fv0u want 1o on nfgrmalion ke 3 SEogin Shotusing yue

T S caphare wlility (g, Windows 95 Prass PriSc, MacDS: Press Cmg-Shis3)
g This DideciGion || Start & Wi DEcisian % !
i ! =
2] Erase current data and start over... 24 Local intranet
Figure 55-6

The results screen for a decision

For the purposes of this example, you only need to know a couple of things about the
cal cul at e() function. First, this function calls all the numeric data stored in parent
cookiesto fulfill valuesin its formulas. Second, results are tabulated and placed into a
five-entry indexed array called i t enmilot al [i] . Thisarray is defined as a global
variable, so that its contents are available to scripts coming up in the Body portion of the
document.

<HTM.>
<HEAD>
<TI TLE>DH5</ TI TLE>
<SCRI PT LANGUAGE="JavaScriptl.1">
<l-- start
var itenmTotal = new Array()
function calculate() {
var scratchpad = ""
var inportanceSum = 0
var oneRecord = parent.getlnportance()
var wei ght = new Array()
for (var i = 0; i <5; i++) {
var recLen = oneRecord. | ength
var offset = oneRecord.indexCOF(".")
scrat chpad = oneRecord. substring(O0, of fset)
i mportanceSum += (scratchpad == "" || scratchpad == "NaN') ?
0 : parselnt(scratchpad)
oneRecord = oneRecord. substring(offset+1, recLen)

}

oneRecord = parent. getlnportance()

for (var i = 0; i <5; i++) {
recLen = oneRecord. |l ength
of fset = oneRecord.indexOr(".")

scrat chpad = oneRecord. substring(O0, of fset)

wei ght[i] = (scratchpad == "" && scratchpad == "NaN') ?
0 : parselnt(scratchpad)/inportanceSum* 100

oneRecord = oneRecord. substring(of fset+1, recLen)

}
for (var i = 0; i <5; i++) {
oneRecord = parent. get Perfornmance(i)
if (oneRecord == null) {
conti nue
scratchpad = 0
for (var j =0; j <55 j++) {
var recLen = oneRecord. | ength
var offset = oneRecord.indexCOF(".")
var dataPoi nt = oneRecord. substring(O0, of fset)
scratchpad += (dataPoint !="" || dataPoint == "NaN') ?
parselnt(dataPoint) * weight[j] / 100 : O
oneRecord = oneRecord. substring(offset+1, recLen)
itenfotal[i] = scratchpad
}
cal cul ate()
/1 end -->
</ SCRI PT>
</ HEAD>

Constructing this function served up many reminders about keeping data types straight.
Because the data stored in cookies was in the form of strings, when it comes time to do
some real math with those values, careful placement of the par sel nt () functionis
essential for getting the math operators to work.

AnonLoad event handler sends the document number to the global variable, as usual.
The results display in this document relies heavily on stored and calculated values, so the
table is constructed entirely out of JavaScript. That also meansit can redisplay the
decision name as part of the page.

<BODY onLoad="parent.setTitleVar(5)">

<H2>The Deci si on Hel per </ H2>

<HR>

<SCRI PT LANGUAGE="JavaScri pt">

<l-- start

docurent . wite("<H4>" + parent.getDecisionName() + "</ HA><P><P>")

var output = "<CENTER><FORM NAME=' Resul t s' ><TABLE BORDER>"

out put += "<TR><TD></ TD><TD><TH>Resul t s</ TH><TH>Ranki ng</ TH>"

out put += "</ TD>"

| need to break up the discussion of thef or loop that produces the results because there
are two distinct parts of thisHTML assembly. The first, shown in the following script
segment, assembles the first two cells of each row of the table. The first cell contains an
embedded listing of the alternative name (in <TH> tags). To highlight the calculated
values — and enable the SI ZE attribute to do the artificial job of truncating the floating-
point number — the results are shown in text boxes. For each row, the corresponding
resultini t enilot al [1] isinserted asthe VALUE attribute of the text box. The SI ZE
attribute is set to 7, which allows the typical double-digit results, a decimal point, and
four digitsto the right of the decimal (an extra pixel shows on the Macintosh version,

however).

for (var i =0; i < 5; i++) {
var oneAl't = parent.getAlternative(i)
oneAlt = (oneAlt == null) ? "" : oneAlt
itenifotal [i] = (oneAlt == "") ? 0 : itenfotal [i]

out put += "<TR><TD><TH>" + oneAl't + "</ TH>"
out put += "<TD ALI GN=CENTER><I| NPUT TYPE='text' SIZE=7 " +
"NAME=' r anki ng' VALUE=" + itenmTotal[i] + "></TD>"

For extrapizzazz, athird column “draws’ a bar chart within a 100-pixel wide cell. The
bars are actually scalings of aone-pixel-wide. gi f file (an orange line, 12 pixelstall). A
single-color . gi f image scalesto fill whatever width is assigned in the W DTH attribute.
This method is faster and far better than a more tedious method (tedious from the Web
page author’ s point of view) of creating 100 different . gi f files, one for each possible
width of the bar. | also could have used a one-pixel square. gi f file with equal ease.

out put += "<TD W DTH=100>"
chartWdth = Math. round(itenTotal [i])
if (chartWdth > 0) {
output += "<IMs SRC='chart.gif' HEl GAT=12 WDTH=" +
chartWdth + ">"

}
out put += "</ TD></ TR>"
docurent . wri t e(out put)
output = ""
}
docunent .. wit e(" </ TABLE></ FORM></ CENTER>")
/!l end -->
</ SCRI PT>
</ BODY>
</ HTM.>

dhHelp.htm

The only other code worth noting in this application isin the dhHel p. ht mdocument,
which appears in the lower-right frame of the window. At the end of this document are
two links that call separate JavaScript functionsin this document’s Head section. The
Head functions are as follows:

<HEAD>

<TI TLE>Deci si on Hel per Hel p</ TI TLE>

<SCRI PT LANGUAGE="JavaScri pt">

<l--

function goFirst() {
parent.entryForns. | ocation = "dhl. ht nt
sel f.location. hash = "hel p1"

function restart() {
if (confirn("Erase current decision and start a new one?")) {
parent.initializeCookies()

parent.entryForns. | ocation = "dhl. ht nt
sel f.location. hash = "hel p1"
}
}
[l -->
</ SCRI PT>
</ HEAD>

One function merely returns the user to the beginning of the sequences for both the entry
screens and the help screen. The second function is arare instance in which a confirm
dialog box makes sense: It isabout to erase all entered data. If the user saysit’'s okay to
go ahead, the parent window’ s function for initializing all cookiesis called, and the
navigation for both the entry and help screens goes back to the beginning.

The links at the bottom of the document (see Figure 55-6) are coded to trigger JavaScript
functions (rather than navigate to URLS) and include onMouseOver event handlersto
provide more information about the link in the statusbar:

<A HREF="j avascript:goFirst()" onMuseOver="w ndow. st at us=' Go back

to beginning to review data...';return true"">Review This Deci sion

</ A>| | <A HREF="j avascript:restart()"

onMouseOver ="w ndow. st at us=' Erase current data and start over...';return true">
Start a New Decision...

Further Thoughts

If you' ve managed to follow through with this application’ s discussions, you will agree
that it’'s quite a JavaScript workout. But this application proves that, without a ton of
code, JavaScript provides enough functionality to add a great deal of interactivity and
pseudo-intelligence to an otherwise flat HTML document.

As an aternative to using cookies for data storage, | have also implemented a version of
the application that uses text boxes defined in aframe defined with arow height of O.
This technique further challenges the synchronization of frames during reloading when a
user resizes the browser window or navigates with the Back or Forward browser buttons.

This alternate version islocated on the CD-ROM for your own investigation and
comparison.

Dynamic HTML also offers some possibilities for this application. The entire program
can be presented in a no-frame window, with the navigation, interactive content, and
instructions frames incorporated into individual positionable objects. The interactive
content area can be treated amost like a slide show, with successive pages flying in from
one edge.

Not only isthis application instructive for many JavaScript techniques, but it is also fun
to play with as a user. Some financial Web sites have adapted it to assist visitors with
investment decisions. Y ou can use it to dream about where to go on a dream vacation, or
help you decide the most ethical of afew paths confronting you in a personal dilemma.
There’ s something about putting in data, turning a crank, and watching results (with a bar
chart to boot!) magically appear on the screen.

	Chapter 55: Application: Decision Helper
	The Application
	The Design
	The Files
	The Code
	Further Thoughts

