Chapter 52: Application: Outline-Style Table of
Contents

In This Chapter
Multiple frames

Clickable images

Custom objects

Image caching

Persistent data

Dynamic HTML positioning

In your Web surfings, you may have encountered sites that implement an expandable,
outline type of table of contents. I’ ve long thought that these elements were great ideas,
especialy for siteswith lots of information. An outline, such as the Windows Explorer or
text-style Macintosh Finder windows, enables the author to present alarge table of
contentsin away that doesn’t necessarily take up aton of page space or bandwidth.
From listings of top-level entries, a user can drill down to reveal only those items of
interest.

No matter how much | like the idea, however, | didlike visiting these sites. A CGI program
on the server responds to each click, chews on my selection, and then sends back a
completely new screen, showing my choice expanded or collapsed. After working with
outlines in the operating system and outliner programs on personal computers, the delays
in this processing seem interminable. It occurred to me that implementing the outline
interface as a client-side JavaScript can significantly reduce the delay problem and make
outlines amore viable interface to a site’ stable of contents. This chapter documents the
process that went into an early version of the outliner, which works with most older
browsers. Some newer versions are also presented.

Design Challenges

The more | looked into implementing an outline in the early scripting days, the more
chalenges| found ahead of me.

The first problem was making the little icons (widgets) clickable so that they respond to
user mouse actions. Even though images are objectsin NN3 and 1E4+, NN images don’t

have mouse-oriented event handlers until you reach NN6 (although you can make some
mouse events work in some versions of NN4/Windows). Therefore, it was necessary to
surround each image with alink object whose HREF attribute called aj avascri pt :
URL and function to do the job. This technique also hel ped solve the next problem.

After auser clicks an outline widget, the script must update the window or frame
containing the outline to expand or collapse a portion of the outline. The original design
predated dynamically updated pages of |E4 and NN6, so the entire page had to be
rewritten. But to make that work, the script needed away to represent and temporarily
preserve the current state of the outline— aline-by-line rundown on whether aline was
currently expanded or collapsed. If the script could save that state somewhere, the
widget’ s link HREF attribute could summon a JavaScript function whose job isto
perform a soft reload of the current page without reopening it — with the

hi st ory. go() method. Therefore, asauser clicked awidget, the state of the outline
created by that click would be generated in the script, saved, and then used to specify the
expanded or collapsed state of each line as the page rel oaded.

Just when | was congratul ating myself on how clever | was, | realized that any attempt to
save the state of the new outlinein a variable was doomed: Even a soft reload restores
variablesto their original state. I’d have to find another way to maintain the data.

The first method | used was to store the outline state (astring of Osand 1s, inwhichal
indicated that the item was expanded) in atext box. Text and TEXTAREA objects
maintain their contents even through a document reload (but not areopen). Although this
method was convenient, it was ugly because it meant that the field would have to bein
the frame. One tactic was to make the frame a non-scrolling frame and stuff the field out
of sight by pushing it to the far right with padding spacesinside a<PRE>..</ PRE> tag.

Next, it was timeto try Netscape’' s mechanism for storing persistent data on the client
computer: thedocumnent . cooki e property. Cookies are not unique to JavaScript. Any
CGil can also store data, such as a user’ slogin name and password for a site, in acookie.
The cookie did the trick. Information about the outline lasts in the cookie of any user’s
computer only aslong as the browser stays running.

Another detail that | wanted to overcome wasthe initial delay experienced thefirst time a
user clicked one of the collapsed widgetsin the outline. At that point, only one of three
icon image files had been loaded and cached in the browser. In the very first version of
this application for NN2, | arranged to display all three widgets as decoration on the page
to get them loaded up front. But with NN3+ and I|E4+, | can precache all the widget art
files and deploy them instantly when needed.

The Implementation Plan

| admit to approaching the outline technique the first time without a specific data-display
goal in mind — not always the best way to go about it. In search of some logical and
public domain datathat | could use as an example, | came upon the tables of information
about food composition (grams of protein, fat, calories, and so on) published by the U.S.
government. For this demonstration, | created one HTML document containing data for
two hierarchical categories of foods: peas and pickles. At the beginning of each food
category, | assigned an anchor to which the text entries of the outline point.

My design for thisimplementation calls for two frames set up as columns (see Figure 52-
1). The narrower left column houses the outline interface. After the frameset loads, the
wider right frame initially shows an introductory HTML document. Clicking any of the
links in the outline changes the view of the right-hand frame from the introductory
document to the food data document. A link at the bottom of the food data document
enables the user to view the introductory document again in the same frame, if desired.

uiline Tahle of Contents - Microsof Internat Explaorer

File [Edit Wiew Fawvorites Tools Help

- il af o 7] .| < ¥ o
Stop Refiesh Home Search Favodites Historp | Mail Pt Eda

Fickles-—-Cucamber

-

RH
Hack

Composition of Selected Foods
Fickles.. Cucumber. [l

Frotein (grams)
v

Fat i grams)

L]

Piekles-- Cuocumber-Fresh

Wates (prrcent)
"0

Frod energy {calones)
)

Frotein {grams)
09

Fal (grams)

3

0:2
Pickles--Cucumber--Somr |1

Waler (peroent)

£
Brnd arwrors fealoma ﬂ

@] What's new in cukes... : 2 Local infranat

Figure 52-1
The outline in the left frame is dynamic and local

In addition to image caching, NN3 and | E4 gave me reason to make some other
improvements to the outliner over aversion originally created for NN2. They include

* Adjustable indentation spacing
* Easer specification of widget art files

* Eader way to specify atarget frame for the results

* Additional array field for statusbar display text

All adapter-adjustabl e elements appear near the top of the script to make it easy for
scripters without alot of experience to modify the application for their own sites.

For this fourth edition of the book, a couple of minor improvements make the outliner
easier to modify and deploy. First, the tedious sequential numbering of itemsis gone.
Second, performance in NN4 is greatly enhanced with the help of streamlined cookie
handling.

The Code

All filesfor thisimplementation of the outline are on the CD-ROM accompanying this
book, so I display here only the code for the framesetting document (i ndex. ht m) and
the outline (t oc5. ht m). Earlier numbered filenames were used for previous editions of
this book.

Setting the frames

To establish the frames, the script creates a two-column format, assigning 35 percent of

the page as a column to contain the outline:
<HTM_>
<HEAD>

<TI TLE>Qut |l i ne Tabl e of Contents</ Tl TLE>
</ HEAD>

<FRAMESET COLS="35% 65% >

<NOFRAMES>

<Hl>It's really cool...</Hl>

<H2>...but only if you a frames-capabl e browser</ H2>
<HR>

Back </ A>

</ NOFRANVES>

<FRAME NAVE="Framel" SRC="toc4. htnt>
<FRAME NAMVE="Frame2" SRC="intro. htni>

</ FRAMESET>

</ HTM_>

Because pages designed for multiple frames and JavaScript don’t fare well in browsers

incapable of displaying frames, agood approach isto surround HTML with a

<NCFRAMES> tag for display to users of old browsers. Y ou can substitute any link you

like for the one shown here, which goes back to the main JavaScript page at my Web site.

The names that | assign to the two frames aren’t very origina or clever, but they help me
remember which frame is which. Because the nature of the contents of the second frame
changes (either the introductory document or the data document), | couldn’t think of a
good name to reflect its purpose.

Outline code

Now we come to some lengthy code for the outline (infilet oc5. ht m). Much of the
code deals with managing the binary representation of the current state of the outline. For
each line of the completely exploded outline, the code designates a0 for aline that has no
nested items showing and a1 for aline that has a nested item showing. This sequence of
Os and 1s (as one string) isthe road map that the script follows when redrawing the
outline. Cuesfrom the O and 1 settings let the script know whether it should display a
nested item (if one exists) or leave that item collapsed.

To help me visualize the inner workings of these scripts, | developed a convention that
calls any item with nested items beneath it a mother. Any nested item is that mother’s
daughter. A daughter can also be amother if it has an item nested beneath it. Y ou see
how this plays out in the code shortly.

The food outline document starts out simply enough, with the standard opening of a
JavaScript script. The first specification set apart for easy modification is the size of the
indentation level in pixels.

<HTM.>

<HEAD>

<TlI TLE>Food Sel ection Qutline</TlITLE>

<SCRI PT LANGUAGE="JavaScri pt">

<!-- begin hiding

/1 ** BEG N QUTLI NE AUTHOR- ADJUSTABLE SPECI FI CATI ONS **//

/] size of horizontal indent per |evel
var indentPixels = 20

Outline level indentations are controlled by the width of a transparent image file.
Indentation size is uniform throughout the outline, and the value is controlled viathe

i ndent Pi xel s global variable. The imagefileisactualy only asingle pixel large, but
by setting the width as needed (see the following example), it occupies a known amount
of space, without affecting the font characteristics of the outline text.

Two more groups of adjustable items come next. The first group takes care of the widget
images. This group iswhere you specify the filenames for the three widgets and provide
the script with their height and width measurements:

I/l art files and sizes for three w dget styles

/1 (all three wi dgets nust have sane hei ght/wi dth)
var col | apsedWdget = "plus.gif"

var expandedW dget "mnus.gif"

var endpoi nt W dget "end.gif"

var widgetWdth = 12

var wi dget Hei ght = 12

/] Target for docunents | oaded when user clicks on a link.

/1 Specify your target frane nane here.

var displayTarget = "Frane2"

When you design your widget art (if you don’'t like mine), be sure to design al three to be
the same size. This practice prevents scaling of the images later.

If you deploy the outliner for your site, be sure to change the name of the frame assigned
tothedi spl ayTar get globa variable. Thisvalue eventually becomes part of thetext
linksin the outline. If you want aclick of alink to completely replace the current frameset
with adifferent page, then specify _t op asthe display target.

Assembling outline content

The last of the easily modifiable areas defines the content of the outline. After defining the
primary array (db), asecond dimension is added to create an array of custom objects.
ThedbRecor d array (defined in the following listing) helps populate the db array with
specifics provided in the comma-delimited statements here:

/]l Create array object containing outline content and attri butes.

/'l To adapt outline for your use, nodify this table.

/l Start the array with [1], and continue w thout gaps to your last item
/'l The order of the five paraneters:

I 1. Boolean (true or false) whether _next_ itemis indented.

11 2. String to display in outline entry (including tags).

11 3. URL of link for outline entry; Use enpty string ("") for no link
11 4. Integer of indentation level (0 is leftnost margin | evel)

11 5. String for status |ine onMuseOver (apostrophes require \\')

var db = new Array()

db[db. | ength] = new dbRecord(true, "Peas","",0,"")

db[db. | engt h] = new dbRecord(fal se, "Boil ed", "foods. ht m#boi | ed",
1,"Mm boiled peas...")

db[db. | engt h] = new dbRecord(true, " Canned", "f oods. ht ifcanned",
1, "Check out canned peas...")

db[db. | engt h] = new dbRecord(fal se, " Al aska", "f oods. ht n#al aska",
2,"Alaska\\'s finest...")

db[db. I ength] = new dbRecord(faI se, "Low Sodi unt', "f oods. ht n#l osodi unt',
2,' Ahealthytreat ")

db[db. I ength] = new dbRecord(t rue, "<FONT COLOR=red

S| ZE=+2>Pi ckl es</ FONT>","",0,"")

db[db. I ength] = new dbRecord(t rue, "Cucunber", "f oods. ht m#fcucunber",
1,"What\\'s new in cukes...")

db[db.l ength] = new dbRecord(faI se,"DIl","foods. ht m#di | | "

2, " Pucker ")

db[db. I engt h] = new dbRecord(fal se, "Fresh", "foods. ht n#f resh",
2,"You\\'d prefer stal e?")

db[db. | engt h] = new dbRecord(fal se, " Sour", "foods. ht m¥sour",
2,"For sweeties...")

/] add nore records to conplete your outline

/] ** END AUTHOR- ADJUSTABLE SPEC FI CATI ONS **//

c
'O

Each record consists of fiveitems. The first item is a Boolean value, which denotes
whether the item isa mother item (that is, the next item in the list is nested one level
deeper). The HTML that displays in the outline comes next. This text can be multiple-
word strings, or any HTML that you like (some users have assigned <I MG> tags to show
picturesinstead of text). For the third item, you can insert any valid URL, whether it be to
a separate site, an anchor in another document (as shown here), or even a

j avascri pt: URL to execute another function. If you don’t want an entry in the
outlineto bealink — just plain, flat text — leave thisthird item as an empty string, as |
do here for the topmost items in both categories. The fourth item is a number representing
how many nested levelsthe item has. And finally, the last item is a string containing the
text that appears in the statusbar when the user rolls the mouse over theitemin the

outline. Because of aquirk in the way the statusbar responds to quoted characters, any
string literal character (normally preceded with a backslash) requires two backs ashes (one
to alert the browser of the other).

Be sureto keep theitemsfor the db array in the same top-to-bottom order as you’ d
expect to see in afully expanded outline. Notice that the index values of the array are
automatically inserted for you: Thel engt h property of an array is always one more than
the highest index. By inserting referencesto thedb. | engt h property in the brackets,
you instruct JavaScript to “walk the ladder” upward from zero. If you move things
around the outline, however, don’t forget to adjust the indentation levelsif they are
affected by the content changes.

The bottom of the array creation section marks the end of the code that you need to
modify after you deploy the outliner. The rest of the JavaScript code works silently for
you, but if you intend to perform further customizations to the outliner, understanding
how it all workswill help.

On to the constructor function for the dbRecor d entries: Thisfunction isthe classic
JavaScript way to build a custom object (see Chapter 41):

/] object constructor for each outline entry
/'l (see object-building calls, below
functi on dbRecord(not her, di spl ay, URL, i ndent, st at usMsg) {
this. mot her = not her /] is this itema parent?
this.display = display // text to display
this. URL = URL /1 link tied to text; no link for enpty string
this.indent = indent /'l how deeply nested?
this.statusMsg = statusMsg // descriptive text for status bar
return this

}

To preload all the images into the browser’ simage cache, you create new | mage objects
for each and assign the filenamesto their sr ¢ properties. Notice that these statements are
not in functions, but rather execute as the page loads:

/] pre-load all inages into cache

var fillerlng = new | nage(1, 1)

fillerlmg.src = "filler.gif"

var col | apsedl ng = new | nage(w dget W dt h, wi dget Hei ght)
col | apsedl ng. src = col | apsedW dget

var expandedl ng = new | nage(w dget W dt h, wi dget Hei ght)
expanded! ng. src = expandedW dget

var endpoi ntlng = new | nage(w dget W dt h, wi dget Hei ght)
endpoi nt1 ng. src = endpoi nt W dget

Cookie storage

To preserve the binary digit string between redraws of the outline, this script must save
the string to a place that won't be overwritten or emptied during the document reload.
Thedocunent . cooki e fillsthat requirement nicely. Excerpting and adapting parts of
Bill Dortch’s cookie functions (see Chapter 18), this script simplifies the writing of a
cookie that disappears when the user quits the browser:

/1 ** functions that get and set persistent cookie data **
/1l set cookie data
var nycooki e = docunent. cooki e
function setCQurrState(setting) {
nycooki e = docunent . cookie = "currState=" + escape(setting)

/] retrieve cookie data
function getCQurrState() {

var |abel = "currState="
var | abel Len = | abel .l ength
var cLen = nycookie. |l ength
var i =0
while (i < cLen) {
var | =i + |abellLen
i f (nycookie.substring(i,j) == label) {
var cEnd = nycookie.indexOF (";",])
if (cEnd == -1) {

cEnd = nycookie.l ength
}

return unescape(nycooki e. substring(j, cénd))

i ++
}

return ""

}

A global variableis used to act as a speedy intermediary between the actual browser
cookie and the functions here that need to access cookie data. Theset Curr St at e()
function contains a construction that you don’t see much in this book, but is quite valid.
Notice the three-piece assignment statement. Evaluation of this statement works from
right to left. The rightmost expression concatenates a cookie label and the value passed in
as a parameter to the function. Note, too, that the value is passed through the escape()
function to properly URL-encode the data for the sake of dataintegrity (so that spaces
and odd punctuation don’t mess up the mechanism). The concatenated value is assigned
tothedocunent . cooki e property. With the value safely dropped into the cookie (it
may be just one of several name/value pairs for this domain), the value of the
docunent . cooki e property (which includes al name/value pairs for the domain) is
assigned to the mycooki e globa variable.

Retrieving information from the cookie still requires abit of parsing to be on the safe side.
If other cookie writing were to come from the current server path, more than one cookie
would be available to the current document. Parsing the entire cookie for just the portion
that correspondsto the cur r St at e labeled cookie ensures that the script gets only the
data previously saved to that label. In an earlier version of this code, the frequent access to
thedocunent . cooki e property insidethewhi | e loop of get Curr St at e()

wasn't a problem until the sluggish cookie reading performance of NN4 got in the way.
Adapting the code to use the global variable for the repetitive parsing of the cookie value
rescued the day.

The focal point

Thet oggl e() function, which ispivota in this outline scheme, receives as a parameter
the index number of the db array element whose content the user just clicked. The
purpose of this function isto grab a copy of the current outline state from the cookie, alter
the binary representation of the clicked item, and feed the revised binary number back to
the cookie (where it governs the display of the outline after the document rel oads):

/1 **function that updates persistent storage of state**
/] toggles an outline nother entry, storing new value in the cookie
function toggle(n) {
var newString = ""
var currState = getCQurrState()
var expanded = currState.charAt(n) // of clicked item
newString += curr State. substring(0, n)
newString += expanded » 1 // Bitwi se XOR clicked item
newstring += currState. substring(n+1, currState. | ength)
setCurrState(newstring) // wite new state back to cookie

}
To make this happen, you must extract two pieces of information before any processing:
the current state from the cookie and the current setting of the clicked item. The latter is
saved in alocal variable named expanded becauseitsO or 1 value represents the
expanded state of that particular entry in the outline.

With those information morsels in hand, the script starts building the new binary string
that gets written back to the cookie. The new string consists of three pieces: the front part
of the existing string up to (but not including) the digit representing the clicked item, the
changed entry, and the rest of the original string.

Changing the setting of the clicked item froma0 toal, or vice versa, is necessary.
Although | can implement this task afew different ways (for example, using a conditional
expressionor ani f ..el se construction), | thought I’ d exercise an operator that
otherwise gets little use: the bitwise XOR operator (*). Because the values involved here
are0 and 1, performing an XOR operation with the value of 1 invertsthe origina value:

o~1 1
1~1=0

Okay, perhaps using an XOR operator is showing off. But the experience forced me to
understand a JavaScript power that may come in handy for the future.

Selecting a widget image for an entry

At this point, the script starts defining functions to help the script statements in the Body
writethe HTML for the new version of the outline. Theget G F() function determines
which of the three widget image files needs to be specified for a particular entry in the
outline. The function receives the index value to the db array of entries created earlier in
the script. Asthe Body script assemblesthe HTML for the outline, it calls this function
once for each item in the outline. In return, the function provides a reference to one of
three | mage objects created earlier:

/1 **functions used in assenbling updated outline**
/'l returns the proper AF file nane for each entry’s control
function getd F(n, currState) {

var nom= db[n].nother // is entry a parent?

var expanded = currState.charAt(n) // of clicked item

if (!mom {
return endpoi nt W dget
} else {
i f (expanded == 1) {
return expandedW dget
}

return col | apsedW dget
}

The decision process for this function first tries to eliminate any item that ends a mother—
daughter chain. Any item that is as deeply nested as it can be (which meanstheitemis
not a mother) automatically getstheendpoi nt W dget image.

Now you're left with trying to figure out whether the item in the display should get an
expanded or collapsed icon. The holder of thisinformation is the cookie. Thus, the script
extracts the binary setting for the entry under scrutiny. If the cookie shows that entry to
beal, it meansthat the item has nested items showing and that it should get the
expandedW dget image; otherwise, it should get thecol | apsedW dget image.
Notice that you' re returning referencesto the | mage objects, not the names of the image
files.

A similar excursion through each item determines what status message is assigned to the
onMbuseOver event handler for each of the widget images. The decision treeisidentical
to that of theget G F() function:

/] returns the proper status line text based on the icon style
function getd FStatus(n, currState) {
var nom= db[n].nother // is entry a parent
var expanded = currState.charAt(n) // of rolled item
if (!mom {
return "No further itens"”
} else {
i f (expanded == 1) {
return "dick to collapse nested itens"
}

return "dick to expand nested itens"

}

Initialize the cookie

Thefinal task of the script running in the head isto initialize the cookieif it's empty.
Using the length of the db array as a counter, you build a string of 0s, with one O for each
itemin the outline:

/l initialize 'current state' storage field
if (getQurrState() == "" || getQurrState().length '= (db.length)) {
initState = ""
for (i =0; i <db.length; i++) {
initState += "0O"
}

setCurrState(initState)
}

/l end -->
</ SCRI PT>
</ HEAD>

Each of those Osin the parameter to theset Cur r St at e() function correspondsto a
collapsed setting for an entry in the outline. In other words, the first time the outline
appears, al items are in the collapsed mode. If you modify the outline for your own use
by creating your own db array of data, the initial state of the cookie will be set for you
automatically based on the length of the db array.

Writing the outline

At last we reach the document Body, where the outline is assembled and written to the
page. Script statements here are immediate, meaning that they execute while the page
loads. | have you begin by initializing some variables that you will need in amoment. The
most important variableisnewQut | i ne, which will be used to accumul ate the contents
of the outline for eventua writing to the page:

<BODY>

<SCRI PT LANGUAGE="JavaScri pt">

<l-- start

/1 build new outline based on the val ues of the cookie

// and data points in the outline data array.

/1 This fires each tine the user clicks on a control,

/'l because the HREF for each one rel oads the current docunent.
var newQutline = ""

var prevlndentDi splayed = 0

var showMyDaughter = 0

var currState = getQurrState() // get whole state string
document . wri t e(" <CENTER><H3>Conposi ti on of Sel ected Foods</ H3>")

The following section isthe real beef of this script: the part that assemblesthe HTML for
the outline that displays as the document loads. In other words, this part must read the
current state data from the cookie and assemble widget images and text links according to
the map of expanded and collapsed itemsin the cookie data. These activities take place
withinaf or loop that cycles through every item in the database. Each value of thei
index refersto one listing in the db array. Trace the logic of one entry:

/1 cycle through each entry in the outline array
for (var i =0; i <db.length; i++) {
var theGF = getdF(i, currState) // get the inage
var thed FStatus = getd FStatus(i, currState) // get the status nessage
var currlndent = db[i].indent /1 get the indent |evel
var expanded = currState.charAt(i) // current state

/] display entry only if it neets one of three criteria
if (currindent == 0 || currlndent <= prevlndentD splayed ||
(showyDaughter == 1 &&
(currlndent - prevlndentD splayed == 1))) {
newQutline += "<IMs SRC=\"filler.gif\" HEIGHT = 1 WDTH =" +
(indentPi xels * currlndent) + ">"
newCQut | i ne += "<A HREF=\"j avascript: history.go(0)\" " +
"onMouseOver =\"wi ndow. status=\"" + thed FStatus +
"\";return true;\" ondick=\"toggle(" +i + ");return " +

(the@ F !'= endpoi nt Wdget) + "\">"
newQut line += "<IM5 SRC=\"" + the@F + "\" HEI GHT=" +
wi dget Hei ght + " WDTH=" + widgetWdth + " BORDER=0></ A>"

if (db[i].URL == "" || db[i].URL == null) {
newQutline += " " + db[i].display + "
" /1 no link
} else {

newQutline += " <A HREF=\"" + db[i].URL + "\" TARGET=\"" +
di spl ayTarget + "\" onMuseOver =\"wi ndow. status=\"" +
db[i].statusMsg + "\';return true;\">" + db[i].display +
"</ A>
"

prevl ndent Di spl ayed = currl ndent
showMyDaught er = expanded
if (db.length > 25) {
document . write(newQutl i ne)
newQutline = ""

}
}
First, you call upon two previously defined functions to grab the widget image object and
corresponding onMbuseOver message for the statusbar. Two more variables contain the
indent property for the item (that is, how many steps indented the item will appear in the
outline structure) and the current expanded state, based on the cookie' s entry for that
item.

Not every entry in the outline database is displayed. For instance, a nested item whose
mother is collapsed won’t need to be displayed. To find out if an entry should be
displayed, the script performs a number of tests on some of its values. An item can be
displayed if any of the following conditions are met:

* Theitem isatopmost item, with an indentation factor of O.
* Theitemisat the same or smaller indentation level as the previousitem displayed.

* The previous item was tagged as being expanded, and the current item isindented
from the previous item by one level.

Over the next few statements, the script pieces together the HTML for the outline entry,
starting with the width necessary for the transparent filler image (based on the number of
pixels specified for indentations near the top of the script). Next comes the link definition
that wraps around the widget image. The following concepts apply to each link:

* The HREF attributeisthej avascri pt : URL toinvokethehi st ory. go()
method.

* TheonMuseOver event handler is set to adjust the status message to the
previoudly retrieved message (noticether et ur n t r ue statement to make the
setting take effect).

* Theond i ck event handler isset to call thet oggl e() function, passing the
number of the item within the outline database. AnonCl i ck event handler is
carried out before the browser responds to the click of the link by navigating to the
URL. Therefore, thet oggl e() function changes the setting of the cookie a
fraction of a second before the browser refreshes the document (which relies on
that new cookie setting). But click events on widgets that have no children do not
need to hit thet oggl e() function. Therefore, the content of ther et ur n
statement is influenced by whether or not the widget image is an endpoint image.

In the next statement, the newQut | i ne string accumulation continues with the <l M>>
tag specifications for the widget art. Specifying the HEI GHT and W DTH attributes for the
image isimportant, partly to help the browser lay out the page more quickly, partly to
avoid pesky performance inconsistencies.

Next comes a decision about whether to display the item text asalink or as plain text.
The script inspectsthedb[i] . URL property to seeif it isempty. If so, that means no
URL is specified for alink, and the item should be built as plain text.

If aURL is specified for the item, the script instead constructs alink around the text. In
thisHTML assembly process, numerous callsto properties of the db array fetch
properties of the entry for the URL, the statusbar message, and the text to display. Notice,
too, that the link sets the target of the link to the frame name assigned to

di spl ayTar get near the top of the script.

Asyou near the end of the loop, two variable values, pr evl ndent Di spl ayed and
showMyDaught er , are updated with settings from the current traversal through the
loop. These values influence the display of nested items for the next entry’ s journey
through the loop.

But before looping around again, the script inspects whether the outline is longer than 25
entries. If so, the script writes the outline entries that have accumulated so far, resetting
thenewQut | i ne variable to empty for the next time through the loop. The reasoning
behind this last routine isto help long outlines start to display their goods faster. | have
seen Web site authors use this outline for literally hundreds of entries. At that quantity,
the usually fast JavaScript begins to bog down abit. By writing lines from a big outline to
the page early, the user gets visual feedback that something is happening.

Once outside the loop, the script writes whatever last items may have accumulated in the
newQut | i ne variable. For outlines with less than 25 items, the whole outline is written

in one push; for longer outlines, the value is empty at this point, because the intermediate
writings have completed the job.

All that’sleft isto close up standard tags to finish the document definition:

document . write(newQut i ne)

/'l end -->

</ SCRI PT>

</ BODY>

</ HTM.>

Notice that thedocunent . wi t e() statement hereis not followed by
docunent . cl ose() . Because this content is being written as the page loads, the

output stream is closed at the end of the page's HTML.

Customization possibilities

Although this DHTML-free outliner is not the fanciest to be found on the Web, it is,
nevertheless, quite popular probably due to its ease of customizability and backward
compatibility to all but the earliest browsers (you can find the very origina version at my
Web site). Other page authors have pushed and pulled on this code to tailor it to a variety
of special needs.

Alternative displays

At theroot of amost al significant customization jobs lie modifications to the
dbRecor d object constructor near the beginning of the page and the HTML assembly
portion in the Body. They work hand in hand. For example, one user wants different links
in the outline to load pages into different targets. Most links are to load content into
another frame of the same frameset, while others are to replace the frameset entirely. In
the version provided previously, one target is assumed, and it is set asa global variable.
But if you need to provide different targets for each item, you can add a new property
(perhaps namedt ar get) to the dbRecor d constructor, and assign the string name of
the target (for example, "Frame2", " top") to the property for each item. Then, in the
HTML accumulation portion, assign thevalueof db[i] . t ar get tothat TARGET
attribute (watching out for the necessary pairings of quote symbols, as shown in other
attribute assignments).

Another request asked that the text associated with the plus/minus images be clickable
not to navigate to another page, but to expand and collapse the nested content. All the
pieces for this variation are already in place. By performing minor reconstructive surgery
on the HTML accumulator script, you can add a branch that looks for the

db[i]. not her property. If it'st r ue, then don’t write the closing </ A> tag after the
widget. Instead, branch to writethedb[1] . di spl ay text without itsown URL link,
and write the widget’ s</ A> tag after the text. Now the widget and text share the same
link asthe widget originally had.

Cookie-free zones

Not everyone likes to develop with cookies. That’s not a problem for this outliner, even
though the previous example uses them liberally. The data that preserves the state of the
outlineis nothing but a string of 1s and 0s. If you are using a frameset, that string can be
preserved as aglobal variable in the framesetting document.

To minimize the changes needed to the existing code, you can continue to use the same
functions—set Curr St at e() andget Curr St at e() — astheinterfacesto the
reading and writing of the state. Begin by defining a global variablein the Head portion of
the framesetting document, initializing it as an empty string:

<SCRI PT LANGUAGE="JavaScri pt">

outlineState = ""
</ SCRI PT>

Now you can modify the two functions in the outliner page as follows:

/1 ** functions that get and set state data **
/1l set cookie data
var nycooki e = docunent. cooki e
function setCQurrState(setting) {
nycooki e = parent.outlineState = setting

/1l retrieve cookie data
function getCQurrState() {

return parent.outlineState
}

Notice that thereis no need for the label that hasto be assigned to a cookie. The variable
name keeps this data separate from the rest of the script space.

The only downside to not using a cookie isthat the outline state is not preserved if the
frameset goes away. If the user revisits the frameset in the same session, the outline state
will berenitialized at its beginning state.

Expanding/collapsing all at once

If you have an extensive outline, you may want to provide a shortcut to the user to
expand everything at once or close up the entire outline. Because the string of 1s and 0s
maintains the state of the outline, you can use the db array to help you create a new state
string, and then apply it to the page. Here are two functions that do the job:

function expandAl | () {

expState = ""
for (i =1, i <db.length; i++) {
expState += (db[i].nmother) 2 "1" : "OQ"

}
set Curr St at e(expSt at e)
hi st ory. go(0)

}

function collapseAl () {
coll State = ""
for (i =1; i <db.length; i++) {
coll State += "0"

}
setCurrState(coll State)
hi st ory. go(0)

}

All you need are a couple of buttons to invoke these functions, and you’ re in business.

Reducing server access

Through the lifetime of this outliner application, it has seen wildly different behaviors of
the various browsers with regard to how much the browser reaches out to the server for
each redisplay of the outline. Whilethe hi st ory. go(0) type of reloading is supposed
to be the least onerous, some browsers seem to read the entire file from scratch. This
approach is still faster than having a CGI script completely reconfigure a page, but for an
extensive outline and a slow Internet connection, the results can be objectionable.

One possible solution isto avoid reloading the page at al. Instead, place all of the code for
the outliner management and creation in the framesetting document. Code that currently
writes the outline as the page loads can be encapsulated in a function that writesto the
frame designated as the outline frame (don’t forget thedocunent . cl ose() for this
writing!). Function calls from the outliner (tot oggl e() , for instance) have to be
modified so that the reference is to the function in the parent frame

(parent . toggl e(n)).

Distributing the code around frames may not be as convenient as keeping it al together,
but user experience should weigh more heavily than programmer expedience. This
practice also opens the possibility for putting all of the outliner code, except for the calls
to the constructor functions, in an external . j s library. Y ou can then put multiple outline
contentsinto multiple. j s libraries, and load the pairs that you need into a frameset.

Usingdocunent . wri t e() toanother frame may still not avoid server access entirely.
It is not uncommon for the application of any image file— including those that have been
precached — to check the cached version against the modification date of the file on the
server. Thisactivity is much faster than downloading the image again, but if you see
network activity even after shifting the outliner’ s scripts to the frameset, at least you
understand what’ s happening. A version of the application directed from the parent
window is contained on the CD-ROM.

Multiple outlines

The examplein this chapter assumes that a site will be using only one outline-style table
of contents. Y ou can, of course, have multiple outlines for different sections of aWeb site
or application. But if the outlines all share the same cookie data, then the state of the most
recent outline will be applied to the next one that loads. Items will be magically opened.
And if the number of items between the two outlinesis different, the cookie data can get a

bit messy.

To solve this problem, assign a different cookie label for each outline. That prevents one
outline’ s state from stepping on another.

Cascading Style Sheet Version

The advent of Cascading Style Sheets (CSS) brought a number of intriguing possibilities
for an application, such asthe outliner. Not only can style sheets be used to control the
look of theitemsin the outline, but additiond properties make it possible to hide and
show elements, including inserting or removing elements from the rendered content. Alas,
not all of these features work in NN4, so that the version under discussion in this section
resorts to redrawing the outline for NN4. But for IE4+ and W3C DOMSs, the response is
very fast, and no page reloading is necessary. One of the goals, too, in this application was
to reuse as much of the code from earlier versions as possible. Note that this version does
not work (or work correctly) with browsers prior to NN4 or |E4.

CSS implementation plan

Many of the compromises in this version resulted from quirky behavior of NN4 with
some types of elements and style sheets. | chose to render the outline content as a series
of nested DIV elements. If this were being implemented strictly in more well behaved
browsers, style sheet control over UL and LI elements would be even more convenient
because those elements aready have an indentation scheme built into them. With so
much HTML code needed to generate the DIV elements and their contents, | decide to
trade the cleverness of multidimensional array storage of outline content for the better
performance of straight HTML. Each row of content in the outlineis set initsown

<Dl V> block tag set. Any row that had children nested inside contains those items as a
nested block.

Style sheets afforded the design a handy behavior. Hiding and showing blocks viathe
CSS-Positioning vi si bi | i ty property (see Chapter 30) is not an apt solution here,
because hiding an item does not remove it from the page rendering. Therefore, unless the
page included aton of positioning code to overlap hidden items with visible items (which
would have worked in NN4, but at the price of substantial increasesin code and
inflexibility), the outline would not cinch up if abranch is collapsed. To the rescue comes
thedi spl ay property of astyle. One value of this property (none) not only hidesthe
block, but it temporarily removes it from the rendering order of the page. Any items
rendered below it that are visible (that is, whose di spl ay property isset to bl ock)
scoot up to render after the previous visible item.

Setting the di spl ay property has dightly different resultsin NN4 and more modern
DOMs. In NN4, you can set the property after the block has been rendered on the page,
but its appearance does not change; in both the |E4+ and W3C DOMS, the changeis
immediate, with the rest of the page reflowing to adjust to the change in the block’s
visibility and presence. Therefore, for NN4, the page still needs to reload itself and
remember the state of the outline between reloads (via the same cookie mechanism used
for the earlier version) so that the page can set the property value as the page loads. And
except for only a couple of placesin the code, both the IE4+ and W3C DOMs share
positioning code.

The CSS version uses the same cookie value (a sequence of 1 and O values) to represent
the visible or hidden state of each item asin the old version. To convey the change of
state, however, the function called by the click of anicon widget must pass the index
values of the child items affected by the expansion or collapse of a node. This means that
more of the HTML — in this case, the parameters of the functions— hasto be hard-
wired to the structure of the outline, as you see shortly. Less of thiswould be necessary if
NN4' simplementation of CSS offered the same level of scriptable introspection into
HTML elements as |E4’ simplementation: We' d be able to employ the style property
inheritance behavior to simplify the way blocks are shown and hidden. Because the two
classes of browsers supported in this example are so different in thisregard, the scripting
reflects the lowest common denominator for controlling the toggle of expanded and
collapsed states.

The CSS code

By putting so much of the content directly into HTML, the scripting component of the
CSS outliner version is significantly smaller than the older version. Where possible, |
stayed with the same function and variable naming schemes of the previous version.

At the top of the document, | define three styles for the amount of indentation required
by the three indentation levels of my sample outline. If the outline were to go to more
levels, | would add styles accordingly.

<HTM.>

<HEAD>

<STYLE TYPE="text/css">
D V.indent0 {nargin-left:0}
D V.indent1l {nargin-left: 10}
D V.indent2 {nargin-left: 20}

</ STYLE>

Scripting begins by setting some global variables. Browser-specific branching comes into
play later, but in an effort to stamp out explicit version detection, the code here relies on
object detection to set the requisite flags. Only browsers capable of the CSS style
scripting needed here haveadocunent . st yl eSheet s property, so flags are set for
the two supported browser classes. These flags are set here primarily as a convenience for
writing branching code |ater. Rather than constantly retesting for the presence of the
property, the global flags are shorter and marginally faster. Two more variables hold their
respective browser class state values, with the NN4 version maintaining a copy of the
cookie as avariable for performance reasons.

<SCRI PT LANGUAGE="JavaScri pt">
/'l global variables
var i sNN4, isCSS, CSScurrState, NN4Cooki e = docunent. cookie
i f (docunent. styl eSheets) {
i SCSS = true

i SN\4 fal se
} else {
i sCSS = fal se

i SN\4 true

To each of the cookie storage functions from the original version, | add a branch to handle
the storage and retrieval of state datafor CSS browsers, smply setting and getting the
global variable. This may seem to be more indirect than is necessary, but it is essential to
allow the reuse of many functionsin other parts of the code so that those areas don't have
to worry about browser platform. Notice that the label for this outline' s cookie is sightly
different from that of the earlier version. This difference alows you to open both outliners
with NN4 in the same session and not worry about one cookie value overlapping with the
other.

/1 ** functions that get and set persistent data **
/] set persistent data
function setCQurrState(setting) {
if (isNWg) {
NN4Cooki e = docunent . cooki e = "curr St at e2=" + escape(setting)
} else {
/] for CSS, data is saved as a global variable instead of cookie
CSScurrState = setting

}

Il retrieve persistent data
function getCQurrState() {
if (isCss) {
/] for CSS, data is in global var instead of cookie
return CSScurrState

var |abel = "currState2="
var | abel Len = | abel .l ength
var cLen = NM4Cooki e. | ength
var i =0
while (i < cLen) {
var | =i + |abellLen
i f (NN4Cooki e. substring(i,j) == label) {
var cEnd = NN4Cooki e. i ndexOF (";",j)
if (cEnd == -1) {
cEnd = NN4Cooki e. |l ength
}

return unescape(NNdCooki e. substring(j, cénd))
}

i ++
}

return ""
}
Thet oggl e() functioniscaled by theonC i ck event handler of the links
surrounding the widget icon art in the outline. A variable number of parameters are
passed to this function, so that the parameters are extracted and analyzed viathe
ar gunent s property of the function. Both browsers with only afew small browser-
specific branches use agreat deal of the code. Inside the largef or loop, a CSS branch
dynamically changes the setting of thest yl e. di spl ay property. For NN4, the pageis
reloaded after all changes to the cookie version of the state are saved. After the NN4
version goes off to reload the page, the CSS version swaps the image of the toggled
widget. Asafinal touch, the window is given focus so that |E/Windows browsers lose the
dotted rectangle around the clicked image.

/1 **function that updates persistent storage of state**
/1 toggles an outline nother entry, storing new val ue

function toggle() {
var newString = ""
var expanded, n
/1 get all <D V> tag objects in | E4/ WBC DOVs
i f (docunent.all) {
var all D vs = docunent.all.tags("D V")
} else if (document. get El ement sByTagNane) {
var al |l Divs = docunent. get El enent sByTagNane(" D V")
}

var currState = getQurrState() // of whole outline
/] assenble new state string based on passed paraneters
for (var i = 0; i < argunments.length; i++) {
n = argunentsfi]
expanded = currState.charAt(n) // of clicked item
newString += curr State. substring(0, n)
newString += expanded » 1 // Bitwi se XOR clicked item
newstring += currState. substring(n+1, currState. | ength)

currState = newstring
newstring = ""
if (isCsS) ({
/1 dynam cal |y change display style w thout rel oading
i f (expanded == "0") {
all Divs[n].style.display = "bl ock"
} else {
all Divs[n].style.display = "none"
}
setCurrState(currState) // wite new state back to cookie
if (isNWg) {

| ocati on. rel oad()

}

/'l swap inmages in CSS versions

var ing = docunent.inmages["w dget" + (arguments[0]-1)]

ing.src = (ing.src.indexOf("plus.gif") !'=-1) ?
"mnus.gif" : "plus.gif"

wi ndow. f ocus()

}

A prerequisite for loading the page to begin with is setting the initial value of the state.
Thisisthe only part of the script that must be hard-wired based on the structure of the
outline— string assigned toi ni t St at e will be different with each outline. The goa
here isto set each block assigned to thei ndent O style classto 1 while all others are set
to 0. These settings alow the first display of the outline to show all the root nodes, with
al other items collapsed.

// initialize 'current state' storage field

if ("getQurrState()) {
/! must be hard-wired to outline structure with "1" for
/1l each indentO class item "O" for all others
initState = "1000010000"
setCurrState(initState)

}

With theinitial outline state saved in the above code, the following statements execute at
load time to write a<STYLE> tag set for NN4. Thistag setsthe di spl ay property of all
collapsed blockstonone. Asyou seeinthe HTML coming up, blocks are assigned | D
attributes with the letter "a" followed by a sequence number starting with zero.

/1 for Navigator 4, set display style for flagged IDs to ' none'
/'l each tine the page (re)l oads

if (isNNg) {

document . write("<STYLE TYPE='text/css'>")

var visState = getCQurrState()

for (var i = 0; i <visState.length; i++) {
if (visState.charAt(i) == "0") {

document.write("#a" + i + " {display:none}\n")

}

}

} document . write("</ STYLE>")
Initial settings of thedi spl ay property for |E4+ can be done programmatically only
after the document loads (the tags must exist before their properties can be adjusted). The
followingi ni t () functioniscaled fromtheonLoad event handler. Each browser class
has a different set of initialization tasks. Both branches rely on the current state setting, so
that valueisretrieved just once. In the CSS branch, thest yl e. di spl ay propertiesfor
hidden blocks are set to none. For NN4, on the other hand, thest yl e. di spl ay
properties are set as the page reloads, but this loop swaps the widget image for expanded
blockstothem nus. gi f version.

/1 for CSS, initialize flagged tags to style display = "none"
/] for N4, set affected inages to minus.gif
function init() {

var visState = getCQurrState()

if (isCsS) ({
for (var i = 0; i <visState.length; i++) {
if (visState.charAt(i) == "0") {

/1 branch for browser object capability
i f (docunent.all) {
docunent.all ("a" + i).style.display = "none"
} else if (document. get El ement sByTagNane) {
docurent . get El enent Byl d("a" + i).style.display = "none"
}

}

}
} elseif (isNM) {
for (i =0; i <visState.length; i++) {

if (visState.charAt(i) == "1") {
if (i+l < visState.length & visState.charAt(i+1) == "1") {
i f (docunent.inages["wi dget" + i]) {
docurent . i mages["wi dget" + i].src = "mnus.gif"
}
}
}
}
}
}
</ SCRI PT>
</ HEAD>

<BODY onLoad="init()">

<CENTER><H3>Conposi ti on of Sel ected Foods</H3><HR></ CENTER>

Now beginsthe HTML that definesthe content of the outline. For readability, | have
formatted the <Dl V> tag setsto follow the indentation of the outline data (this listing
looks much better if you open the file from the CD-ROM in your text editor with word
wrap turned off). Each tag includes a CLASS attribute pointing to a class defined in the
first <STYLE> tag of the page. Each tag also includes an | D attribute whose name begins

with the letter "a" and a sequential serial number, starting with zero. Navigator uses the
| Dattributesto help it assigndi spl ay property settings during each reload.

Like the older version of the outliner, each entry includes an image (surrounded by a
clickable link) and atext entry (which may or may not be alink to adocument). The link
around theimageincludesaj avascri pt : URL for the HREF attribute. When alink is
for awidget that is a mother item, the parametersto thet oggl e() function arethe seria
numbers of the immediate children IDs whose display properties are to be adjusted in the
t oggl e() function. These passed items only need to be in the immediate children,
because any of their children inherit thedi spl ay property of their parents. For example,
the first widget togglesitems 1 and 2 (idsal and a2). Item 2 happens to be a parent to
items 3 and 4. But when the di spl ay property of item 2 is set tonone, then none of its
children (items 3 and 4) are displayed, no matter how their display properties are set.

IMG elements associated with each toggled DIV are named along similar lines, with the
name starting with “widget” and the same serial number as the containing DIV. If you
look at the end of thet oggl e() function again, you'll see that the name for the IMG
element is derived from the first parameter received by thet oggl e() function. That first
parameter will always be one number higher than the serial number for the widget image
to swap. To help you visualize the numbering scheme used within the example, the
numbered identifiers and methods that relay associated numbers are shown in boldface.

<Dl V CLASS=i ndent 0 | D="a0">
<A HREF="j avascri pt:toggl e(1,2)" onMuseOver=
"status='"dick to expand/collapse nested itens';return true"
onMbuseQut ="status=""';return true">
<I M5 NAMVE="wi dget 0" SRC="pl us. gi f" HEl GHT=12 W DTH=12
BORDER=0></ A> Peas

<Dl V CLASS=i ndent1 | D="al">
<A HREF="j avascri pt:voi d(0)" onMuseOver =
"status='"No further itens' ;return true"
onMbuseQut ="status=""';return true">
<I M5 SRC="end. gi f" HEl GHT=12 W DTH=12
BORDER=0></ A> <A HREF="f oods. ht n#boi | ed"
TARGET=Fr anme2>Boi | ed</ A>

</ D V>
<Dl V CLASS=i ndent1 | D="a2">
<A HREF="j avascri pt:toggl e(3,4)" onMuseOver =
"status='"dick to expand/collapse nested itens';return true"
onMbuseQut ="status=""';return true">
<I M5 NAMVE="wi dget 2" SRC="pl us. gi f" HEl GHT=12 W DTH=12
BORDER=0></ A> <A HREF="f oods. ht n#canned"
TARGET=Fr ane2>Canned</ A>

<Dl V CLASS=i ndent2 | D="a3">
<A HREF="j avascri pt:void(0)"
onMbuseOver="status="No further itens' ;return true"
onMbuseQut ="status=""';return true">
<I M5 SRC="end. gi f" HEl GHT=12 W DTH=12
BORDER=0></ A> <A HREF="f oods. ht n#al aska"
TARGET=Fr ane2>Al aska</ A>

</ D V>
<Dl V CLASS=i ndent 2 | D="a4">
<A HREF="j avascri pt:void(0)"
onMbuseOver="status='"No further itens' ;return true"
onMbuseQut ="status=""';return true">

<I M5 SRC="end. gi f" HEl GHT=12 W DTH=12
BORDER=0></ A> <A HREF="f oods. ht n#l osodi unf
TARGET=Fr ane2>Low Sodi unx/ A>

</ Dl V>
</ Dl V>
</ Dl V>

<Dl V CLASS=i ndent0 | D="a5">
<A HREF="j avascri pt:toggl e(6)" onMuseOver =
"status='"dick to expand/collapse nested itens';return true"
onMbuseQut ="status=""';return true">
<I M5 NAMVE="wi dget 5" SRC="pl us. gi f" HEl GHT=12 W DTH=12
BORDER=0></ A> Pi ckl es

<Dl V CLASS=i ndent1 | D="a6">
<A HREF="j avascript:toggl e(7,8,9)" onMuseOver=
"status='"dick to expand/collapse nested itens';return true"
onMbuseQut ="status=""';return true">
<I M5 NAMVE="wi dget 6" SRC="pl us.gi f" HEl GHT=12 W DTH=12
BORDER=0></ A> <A HREF="f oods. ht n#cucunber "
TARGET=Fr ane2>Cucunber </ A>

<Dl V CLASS=i ndent2 | D="a7">
<A HREF="j avascri pt:voi d(0)" onMuseOver =
"status='dick to expand nested itens';return true"
onMbuseQut ="status=""';return true">
<I M5 SRC="end. gi f" HEl GHT=12 W DTH=12
BORDER=0></ A> <A HREF="f oods. ht n#di I | "
TARGET=Fr ane2>Di | | </ A>

</ D V>
<Dl V CLASS=i ndent2 | D="a8">
<A HREF="j avascri pt:void(0)"
onMbuseOver="status='"No further itens' ;return true"
onMbuseQut ="status=""';return true">
<I M5 SRC="end. gi f" HEl GHT=12 W DTH=12
BORDER=0></ A> <A HREF="f oods. ht n#f r esh"
TARGET=Fr ane2>Fr esh</ A>

</ D V>
<Dl V CLASS=i ndent 2 | D="a9">
<A HREF="j avascri pt:void(0)"
onMbuseOver="status='"No further itens' ;return true"
onMbuseQut ="status=""';return true">
<I M5 SRC="end. gi f" HEl GHT=12 W DTH=12
BORDER=0></ A> <A HREF="f oods. ht n#sour "
TARGET=Fr ane2>Sour </ A>

</ D V>
</ D V>
</ D V>
</ BODY>
</ HTM.>

The CSS version (for theidentical outline content) isadlightly smaller file size than the
older, compatible one, but not so big adifference asto influence your choice. Browser
compatibility should be your number one criterion. Ease of modification for changing
content and improved user experience for browsers following the CSS branch aretied in
second.

A Futuristic (XML) Outline

As XML and its associated technologies head toward a solid standardized footing, the
latest browsers available as this edition is being written provide mixed support for some
of the key features of an ideal environment. As those issues are sorting themselves out,
getting to know portions of XML through the IE5+/Windows XML dataisland featuresis
possible. Whileit’'s not normally okay to embed XML inan HTML document (that is, the
two designations specify unique document types), |E5+/Windows provides an <XM_>
tag, in which you can insert XML tags. Scripts can access the elementsinside the XML
dataisland, referencing those elements as child nodes of the XML element. See Chapter
33 for the reference material on the IE XML element.

Birth of an XML specification

Collapsible outlines provide convenient ways to organize hierarchical information all
around us. Y ou’d be hard-pressed to find a more active proponent of the outline than
Dave Winer, CEO of UserLand Software, Inc. (ht t p: / / ww. user | and. con). Dave
isaveteran software devel oper, as well as author and outspoken Web publisher. His
WWW. scri pti ng. comWeb siteisapopular destination if you want to find out the
latest Internet and computing technology “buzz.”

As an outgrowth of development for his company’s Web tools, Dave |ooked to the XML
structure to assist in representing outline content in a shareable, easily parseable format.
Theresult is a specification called Outline Processor Markup Language, or OPML for
short. You can read al about the formal specification at

http://ww. opml . or g/ spec. Likevirtualy al XML, OPML isintended to be
written by software, not humans (although humans input the data via a user-friendly
front-end provided by the software). Even so, the format of an OPML outlineis
extremely readable by humans, and, with little more trouble than writing basic HTML
tags manually, you can represent an outline in this format yourself.

A plain OPML file, saved asan. xnl file, can be viewed through the native XML parsers
of IE5+ and NN6. These parsers automatically render XML tags in the same hierarchical
fashion as OPML encourages outlines to be structured. But such rendering is under strict
control of the browser, unless you also get involved with XML style sheets (the XSL and
XSLT standards), at which point, browser implementation incompatibilities can make the
going tough.

| liked the OPML dataformat when | first saw it, and | think it’s a convenient way to
convey an outline’ s data to the client, at which point JavaScript and the browser’s DOM
can take over to provide interesting visuals for the content and interaction with the
content. Thus was born the last example of this chapter, in which the outliner’ s datais
delivered not in the form of scripted arrays or hard-wired HTML DIV elements. Instead,
the data arrivesin its native XML (OPML) format inside an |E5+/Windows XML data
island. Rendering of the native XML is suppressed, and scripts take over to do the rest.

OPML outliner prep

The appearance of widgets and text for the new outliner has changed to more closely
emulate the kinds of outline presentations that you see in some Windows programs (see
Figure 52-2). For demonstration purposes, the same frameset structure and outline
content from earlier examples are used for the OPML version so that you can more easily
see the differences in implementations and grasp new concepts presented here. For
example, the comparison of how the outline datais delivered in the form of JavaScript
objects (the first example) and OPML is enlightening.

2 XML-Based Outliner (OPML) - Microsoft Internet Explarer
File Ediit View Favorites Tools Help

o s | A ¥ | G 3 s e

otk | Foiwnll | Stop Ralieih. Homa | Semch Favorter Mittow | Mal Pas. Edt

Fickles—Cucumber =
Fickles-. Cucumber. Dill
Waler (percenty
933
Food enesgy (calonss)

11
Protein (grams)
07

Fal (igrams)

L
Fickles Cictmber- Freah
Waler (percent)
T8I
Food energy (calonas)
T
Protein (grams)
09

Ful (grams)
0n

Pickles-- Curusmber.. Sour !

Wales (percent)
B8
L‘”_J__, _.i.,.,.u.._,,_., ﬂ
2] fite:Lightning New Examples/Chapd2/0PMLAoods.im# cucumber 2 Local infranat

Figure 52-2
OPML-based outliner style

Asyou recall, acustom object constructor function generated one JavaScript object for
each outline entry. The properties of the object are completely under your control, so that
you can add properties (such as the target of an entry’ slink), whose values influence the
way the entry is rendered and the way it behaves. OPML has asimilar extensibility
feature. Each outline entry is nothing more than atag. An entry that does not have any
nested child nodes can use the XML shortcut of combining a start and end tag inside one
set of angle brackets:

<tagNanme attribute="value" ... />

And any entry that has nested nodes contains the nested nodes between its start and end
tags, as shown here with the actual tag names used in OPML (indentation is optional, but
increases readability):

<outline text="text">
<outline text="text"/>
<outline text="text"/>
</outline

If you want to associate more information about an entry, simply add an attribute. For
example, if an entry isto behave as alink, you can convey that information with an
attribute whose name you determine. When it comes time for your scriptsto render the
content in HTML, the scripts access the attribute values and generate the associated
HTML for the attributes (you see an example of thisin the code).

The true beauty of the OPML structure (and XML in general) is that the parent—child
relationships are automatically implied by the element containment. Unlike the JavaScript
custom object in the first example, the author does not have to specify how many levels
deep an entry is, or whether it has any child nodes: The XML containment hierarchy
describes al of that information. Suddenly, al of the W3C DOM gobbledygook about
nodes, child nodes, and attributes become your friend, as your scripts convert the element
hierarchy into arenderable hierarchy of your design.

The XML and HTML code

Because our focusis so tight on the outliner content, you can start the exploration of the
outliner code fromthe HTML BODY element downward, where the outline data is
embedded in an IE5+/Windows XML element.

<BODY onLoad="init (' outlinexm')">
<XM. | D="outlinexXM.">
<opm version="1.0">
<head>
<title>A Moddern Qutline</title>
<dat eCr eat ed>Thu, 16 Nov 2000 02: 40: 00 GMI</ dat eCr eat ed>
<dat eMbdi fi ed>Fri, 22 Dec 2000 19: 35: 00 GWIT</ dat eModi fi ed>
<owner Name>Danny Goodman</ owner Nanme>
<owner Emai | >dannyg@annyg. conx/ owner Emai | >
<expansi onSt at e></ expansi onSt at e>
<vertScrol | State>1</vert Scrol | St at e>
<wi ndowTop></ wi ndowTop>
<wi ndowLef t ></ wi ndowLeft >
<wi hdowBot t onr</ wi ndowBot t o
<wi ndowRi ght ></ wi ndowRi ght >
</ head>
<body>
<outline text="Peas">
<outline text="Boiled" uri="foods. htn#boil ed"/>
<out | i ne text="Canned" uri="foods. ht n#¥canned" >
<outline text="A aska" uri="foods. ht n#al aska"/ >
<out |l i ne text="Low Sodi um uri="foods. ht n#l osodi un'/ >
</outline>
</outline>
<outline text="Pickles">
<out | i ne text="Cucunber" uri="foods. ht ifcucunber" >
<outline text="Dill" uri="foods. htn#dill"/>
<outline text="Fresh" uri="foods. ht m#fresh"/>
<outline text="Sour" uri="foods. ht n#sour"/>
</outline>
</outline>
</ body>
</ opm >
</ XM_>

<DV | D="content"></ D V>

</ BODY>
</ HTM_>

Everything inside the XML element is textbook OPML version 1.0 form. Notice that the
OPML syntax re-uses element names that are found in all HTML files (for example,
head,titl e, body). The XML island behavior isolates these tags from the browser’s
HTML rendering engine, so the browser won't confuse the two “documents.” The only
other HTML delivered in the document is an empty DIV element, whichisused asthe
container for the outline HTML that the scripts generate as aresult of the onLoad event
handler’ sinvocation of thei ni t () function.

Also, go back to the top of the document to see the style sheets, which have an important
place in delivering an XML island:

<HTM.>
<HEAD>
<STYLE TYPE="text/css">
XML {di spl ay: none}
.row {vertical-align:mddle; font-size:12px; font-famly: Arial, sans-serif}
. OQLBl ock {di spl ay: none}
I MG {vertical-align:text-top}
</ STYLE>

To prevent the XML block from rendering on the page, thedi spl ay style property is set
to none for the XML tag selector. This keeps the page clear for insertion of script-
generated HTML. The other style sheet rules apply to content created by the scripts.

Setting the scripted stage

All scriptsfor this page are in the HEAD (although they could also be linked in from an
externa . | s file). First on the docket is establishing severa global variables that get used
alot within the rest of the code, and make it easy to customize important visible
properties, especialy widget art. Due to the art choices made for this version, there are
separate versions for items that appear asfirst, middle, and end items for different nesting
states.

<SCRI PT LANGUAGE="JavaScri pt">

/'l global variables

/Il art files and sizes for w dget styles and spacers
/1 (all inmages nust have sane hei ght/wi dth)
var col | apsedWdget = "oplus.gif"

var col | apsedWdget Start = "oplusStart.gif"
var col | apsedW dget End = "opl useénd. gi f"

var expandedW dget = "omi nus.gif"

var expandedWdget Start = "om nusStart.gif"
var expandedW dget End = "om nusEnd. gi f"

var nodeWdget = "onode.gif"

var nodeW dget End = "onodeEnd. gi f"

var enptySpace = "oenpty.gif"

var chai nSpace = "ochain.gif"

var w dgetWdth = "20"

var w dget Hei ght = "16"

var currState = ""

var displayTarget = "Frane2"

Thei ni t () function, invoked by theonLoad event handler, starts the content creation
in motion. The basic sequenceisto first make sure that the browser is capable of
recognizing an XML dataisland. If the validation is okay, then areference to the BODY
portion of the outline datais retrieved so that many other functions are able to dive into
the outliner hierarchy. Notice that elements of the XML dataisland are disguised from
view of thedocunent object’snormal scope. Access must be made by way of the XML
object, which then exposes its elements. The reference to the OPML BODY element is
passed to the makeHTM_(') function, which returns the entire outline HTML to be
assigned to thei nner HTIVL property of the empty DIV element delivered with the
document.

[/ initialize first time
function init(outlinelD {
i f (supportVerified(outlinelD)) {
/1 deno how to get outline head el enents
var hdr =
docunent . get El ement Byl d(out | i nel D) . get El ement sByTagNane("head") [0]
/'l get outline body elenents for iterative conversion to HTM
var ol =
docunent . get El ement Byl d(out | i nel D) . get El ement sByTagNane(" body") [0]
/1 wap whole outline HTM. in a span
var ol HTM. = "" +
makeHTM_(outlinel D, ol) + "</ SPAN>"
/'l throw HTML into 'content' DIV for display
docunent . get El ement Byl d("content").i nner HTM. = ol HTM.
i ni t Expand(out | i nel D)

}

Validation of browser support is handled by the suppor t Veri fi ed() function. This
function isin search of the XM_Docunent property of the XML element object. The
property’ s presence indicates that the browser has what it takes to treat embedded XML
asadataisland. Incremental tests are needed so that earlier browsers don’t choke on the
reference to the property.

/'l verify that browser supports XM i sl ands
function supportVerified(testlD {
i f (docunent. get El enent Byld &&
docunent . get El ement Byl d(test1 D) &&
docunent . get El ement Byl d(t est | D). XM_.Docunent) {
return true
} else {
var reply = confirn("This exanple requires a browser with XM. data i sl and
support, such as | E5+/ Wndows. Co back to previ ous page?")
if (reply) {
hi st ory. back()
} else {
return fal se
}

return fal se

Accumulating the HTML

Fromthei ni t () function, acall tothemakeHTM_() function starts the most complex
actions of the scripts on this page. This function walks the node hierarchy of the outline’s
BODY eements, deciphering which ones are containers and which ones are end points.

Two global variables are used to keep track of how far the node walk progresses because
thisfunction callsitself from time to time to handle nested branches of the node tree.
Because areflexive call to afunction starts out with new values for local variables, the
globals operate as pointersto let statementsin the function know which node is being
accessed. The numbers get applied to an | D attribute assigned to the DIV elements
holding the content.

One of the fine points of the design of this outline is the way space to the left of each
entry isassembled. Unlike the earlier outlinesin this chapter, this one displays vertical
dotted lines connecting nodes at the same level. Thereisn't avertical line for every
clickable node appearing above the item, because a clickable node may have no additional
siblings, meaning that the space is blank. To see what | mean, open the OPML example,
and expand the Peas and Canned nodes (or see Figure 52-2). The Canned node is the end
of the second “column,” so the space beneath the icon is blank. That’s what some of the
codeinmakeHTM_() named “prefix” isdealing with: Accumulating just the right
combination of dotted line (chai n. gi f) and blank (enpt y. gi f) imagesin sequence
before the outline entry.

Another frequent construction throughout this function is a three-level conditiona
expression. This construction is used to determine whether the image just to the | eft of the
item’ stext should be a start, middle, or end version of the image. The differences among
them are subtle (having to do with how the vertical dotted line extends above or below the
widgets). All of these decisions are made from information revealed by the inherent
structure of the OPML element nesting. The listing in the book looks longer than it truly is
because so many long or deeply nested lines must be wrapped to the next line. Viewing
the actual filein your text editor should calm your fears a bit.

/] counters for reflexive calls to makeHTM.()
var curriD =0

var blocklD =0

/'l generate HTML for outline

function makeHTM_(outlinel D, ol, prefix) {

var output =""

var nest Count, link, nestPrefix

prefix = (prefix) ? prefix : ""

for (var i = 0; i < ol.childNodes.length ; i++) {

nest Count = ol . chil dNodes[i].chil dNodes. | ength
output += "<DIV CLASS="row ID="line" + currlD++ + "' >\n"
if (nestCount > 0) {
/] for entries that are al so parents
out put += prefix
output += "<IM5 ID="wdget" + (currlD1) +
"' SRC='"" + ((i== ol.childNodes.|ength-1) ?
col | apsedW dget End : (bl ockl D==0) ?
col | apsedW dget Start : col | apsedW dget)

output += "' HEIGHT=" + wi dgetHeight + " WDTH=" +
wi dget Wdt h
output += " TITLE='dick to expand/col |l apse nested itens.'
ondick="toggle(this," + blocklD + ")"'>"
/Il if awuri is specified, wap the text inside a link
link = (ol.childNodes[i].getAttribute("uri")) ?
ol .childNodes[i].getAttribute("uri™) : ""
if (link) {
out put += " <A HREF='" + link +
"' CLASS='itenfitle TITLE="" + link +
TARCGET="" + displayTarget + "'>"
} else {
out put += " <A CLASS='itenTitle'" TITLE="" +
link + "' >"

/1 finally! the actual text of the entry

output += " " + ol.childNodes[i].getAttribute("text") +
"< A"

currState += cal cBlockState(outlinel D, currlD 1)

out put += "<SPAN CLASS=' OLBl ock’ BLOCKNUMF'" + bl ockl D +

I D=' ALBl ock" + bl ockl D++ + "' >"

/] accumul ate prefix art for next indented |evel

nestPrefix = prefix

nestPrefix += (i == ol.childNodes.length - 1) ?
"<IM5 SRC='"" + enptySpace + "' HEl GHT=16 W DTH=20>" :
"<I MG SRC='"" + chai nSpace + "' HEl GHT=16 W DTH=20>"

Il reflexive call to nmakeHTM.() for nested el enents

out put += makeHTM_(outlinel D, ol.chil dNodes[i], nestPrefix)

out put += "</ SPAN></ DI V>\ n"

} else {

/'l for endpoint nodes

out put += prefix

output += "<IM5 ID="widget" + (currlD1) + "' SRC="" +

((i == ol.childNodes.length - 1) ?
nodeW dget End : nodeW dget)
output += "' HEIGHT=" + wi dgetHeight + " WDTH=" +

w dgetWdth + ">"
/1 check for links for these entries
link = (ol.childNodes[i].getAttribute("uri")) ?
ol .chil dNodes[i].getAttribute("uri™) : ""
if (link) {
out put += " <A HREF='" + link +
"' CLASS='itenfitle TITLE='" +
link + "' TARGET='" + displayTarget + "'>"
} else {
out put += " <A CLASS='itenTitle'" TITLE="" +
link + "'>"

/1 grab the text for these entries
output += ol .childNodes[i].getAttribute("text") + "</ A>"
out put += "</ D V>\n"

}
}
return out put
}
Aswith the HTML assembly code of the first outliner, if you were to add attributes to
OUTLINE elementsin an OPML outline (for example, aURL for anicon to display in
front of thetext), itisinmakeHTM_() that the values would be read and applied to the
HTML being created.

The only other function invoked by the makeHTM_() functionis

cal cBl ockSt at e() . Thisfunction looks into one of the OPML outline€ sHEAD
elements, called EXPANSIONSTATE. This element’ s values can be set to acomma-
delimited list of numbers corresponding to nodes that are to be shown expanded when
theoutlineisfirst displayed. Thecal cBl ockSt at e() functionisinvoked for each
parent element. The element’ slocation is compared against valuesin the
EXPANSIONSTATE element, if there are any, and returns the appropriate 1 or O value
for the state string being assembled for the rendered outline.

/'l apply default expansion state fromoutline's header
/1 info to the expanded state for one elenent to help
// initialize currState variable
function cal cBl ockState(outlinelD, n) {
var ol = docunent. get El enent Byl d(out | i nel D). get El enent sByTagNane(" body") [0]
var outlineLen = ol.getEl enent sByTagNane("outline").length
/] get OPM. expansionState data
var expandEl em =
docunent . get El ement Byl d(out | i nel D) . get El ement sByTagNane(" expansi onSt at e") [0]
var expandedData = (expandEl em chi | dNodes. | ength) ?
expandEl em first Chil d. nodevVal ue.split(",") : null
i f (expandedData) {
for (var j = 0; j < expandedData.length; j++) {
if (n == expandedData[j] - 1) {
return "1"
}

}

}

return "0"
}
Thefinal act of theinitiaization processisacall tothei ni t Expand() function. This
function loops through the cur r St at e global variable (whose value was written in
makeHTM_() withthehelp of cal cBl ockSt at e()) and setsthedi spl ay property
to bl ock for any element designed to be expanded at the outset. HTML element
construction inmakeHTM_() isperformed in such away that each parent DIV hasa
SPAN nested directly inside of it; and inside that SPAN are al the child nodes. The
di spl ay property of the SPAN determines whether all of those children are seen or not.

/] expand itens set in expansionState XML tag, if any
function initExpand(outlinelD {
for (var i = 0; i <currState.length; i++) {
if (currState.charAt(i) == 1) {
docunent . get El ement Byl d(" OLBl ock” + i).style.display = "bl ock"
}

}
}

By thetimethei ni t Expand() function has run— alot of setup code that executes
pretty quickly — the rendered outlineisin a steady state. Users can now expand or
collapse portions by clicking the widget icons.

Toggling node expansion

All of the widget imagesin the outline have onCl i ck event handlers assigned to them.
The handlersinvokethet oggl e() function, passing parameters consisting of a

reference to the IMG element object receiving the event and the serial number of the
SPAN block nested just inside the DIV that holds the image. With these two pieces of
information, thet oggl e() function setsin motion the act of inverting the
expanded/collapsed state of the element and the plus or minus version of the icon image.
The bl ockNumparameter corresponds to the position withinthecur r St at e string of
1s and Os holding the flag for the expanded state of the block. With the current value
retrieved fromcur r St at e, the value isinverted through swapSt at e() . Then, based
on the new setting, the di spl ay property of the block is set accordingly, and widget art
is changed through two special-purpose functions.

/'l toggle an outline nother entry, storing new state val ue;
/'l invoked by ondick event handl ers of w dget inage el enents
function toggl e(ing, blockNum {
var newsString = ""
var expanded, n
/1 nodify state string based on paraneters passed | M5
expanded = curr St ate. char At (bl ockNum)
currState = swapState(currState, expanded, bl ockNum
/1 dynam cal |y change display style

i f (expanded == "0") {
document . get El ement Byl d(" OLBl ock” + bl ockNun). styl e. di splay =
" bl ock"
i ng. src = get ExpandedW dget St at e(i ng. src)
} else {
docunent . get El ement Byl d(" OLBl ock"” + bl ockNun). styl e. di splay =
"none"

i ng. src = get Col | apsedW dget St at e(i ng. src)
}
}
Swapping the state of the cur r St at e variable utilizes the same X OR operator
employed by the first outliner in this chapter. Theentirecur r St at e string is passed asa
parameter. The indicated digit is segregated and inverted, and the string is reassembled
before being returned to the calling statement int oggl e() .

/1l invert state
function swapState(currState, currval, n) {
var newState = currState. substring(0, n)
newState += currVal ~ 1 // Bitwise XORitemn
newst ate += currState. substring(n+1, currState. | ength)
return newstate

}

As mentioned earlier, each of the clickable widget icons (plus and minus) can be one of
three states, depending on whether the widget is at the start, middle, or end of avertical-
dotted chain. The two image swapping functions find out (by inspecting the URLs of the
images currently occupying the IMG element) which version is currently in place so that,
for instance, a starting plus (collapsed) widget is replaced with a starting minus
(expanded) widget. Thisis a case of going the extramile for the sake of an improved user
interface.

/'l retrieve nmatching version of 'mnus' inmages
functi on get ExpandedW dget St at e(i ngURL) {
if (ingURL.indexOF("Start") '= -1) {
return expandedW dget St art

}
if (ingURL.indexOF("End") '= -1) {

return expandedW dget End

}
return expandedW dget

}

/'l retrieve nmatching version of 'plus' inages
function get Col | apsedW dget St at e(i ngURL) {
if (ingURL.indexOF("Start") '= -1) {
return col | apsedW dget St art

}
if (imgURL.indexOF("End") != -1) {
return col | apsedW dget End

return col | apsedW dget
}

Wrap up

There’ s no question that the amount and complexity of the code involved for the OPML
version of the outliner are significant. The “pain” associated with developing an
application such asthisisal up front. After that, the outline content is easily modifiablein
the OPML format (or perhaps by some future editor that produces OPML output).

Even if you don’t plan to implement an OPML outline, the explanation of how this
example works should drive home the importance of designing data structures that assist
not only the visual design, but also the scripting that you use to manipulate the visual
design.

Further Thoughts

The advent of CSS and element positioning has prompted numerous JavaScripters to
develop another kind of hierarchical system of pop-up or drop-down menus. Y ou can
find examples of thisinterface at many of the JavaScript source Web siteslisted in
Appendix D. Making these kinds of menus work well in NN4, 1E4+, and W3C DOMsisa
lot of hard work, and if you can adopt code already ironed out by others, then all the
better.

Most of the code you find, however, will require afair amount of tweaking to blend the
functionality into the visual design that you have or are planning for your Web site.
Finding two implementations on the Web that look or behave the same way israre. As
long as you' re aware of what you'’ |l be getting yourself into, you are encouraged to check
out these interface elements. By hiding menu choices except when needed, valuable
screen real estate is preserved for more important, static content.

	Chapter 52: Application: Outline-Style Table of Contents
	Design Challenges
	The Implementation Plan
	The Code
	Cascading Style Sheet Version
	A Futuristic (XML) Outline
	Further Thoughts

