
Book Title Page 1 Chapter #: Chapter Title

Chapter 52: Application: Outline-Style Table of
Contents

In This Chapter

Multiple frames

Clickable images

Custom objects

Image caching

Persistent data

Dynamic HTML positioning

In your Web surfings, you may have encountered sites that implement an expandable,
outline type of table of contents. I’ve long thought that these elements were great ideas,
especially for sites with lots of information. An outline, such as the Windows Explorer or
text-style Macintosh Finder windows, enables the author to present a large table of
contents in a way that doesn’t necessarily take up a ton of page space or bandwidth.
From listings of top-level entries, a user can drill down to reveal only those items of
interest.

No matter how much I like the idea, however, I dislike visiting these sites. A CGI program
on the server responds to each click, chews on my selection, and then sends back a
completely new screen, showing my choice expanded or collapsed. After working with
outlines in the operating system and outliner programs on personal computers, the delays
in this processing seem interminable. It occurred to me that implementing the outline
interface as a client-side JavaScript can significantly reduce the delay problem and make
outlines a more viable interface to a site’s table of contents. This chapter documents the
process that went into an early version of the outliner, which works with most older
browsers. Some newer versions are also presented.

Design Challenges
The more I looked into implementing an outline in the early scripting days, the more
challenges I found ahead of me.

The first problem was making the little icons (widgets) clickable so that they respond to
user mouse actions. Even though images are objects in NN3 and IE4+, NN images don’t

Book Title Page 2 Chapter #: Chapter Title

have mouse-oriented event handlers until you reach NN6 (although you can make some
mouse events work in some versions of NN4/Windows). Therefore, it was necessary to
surround each image with a link object whose HREF attribute called a javascript:
URL and function to do the job. This technique also helped solve the next problem.

After a user clicks an outline widget, the script must update the window or frame
containing the outline to expand or collapse a portion of the outline. The original design
predated dynamically updated pages of IE4 and NN6, so the entire page had to be
rewritten. But to make that work, the script needed a way to represent and temporarily
preserve the current state of the outline — a line-by-line rundown on whether a line was
currently expanded or collapsed. If the script could save that state somewhere, the
widget’s link HREF attribute could summon a JavaScript function whose job is to
perform a soft reload of the current page without reopening it — with the
history.go() method. Therefore, as a user clicked a widget, the state of the outline
created by that click would be generated in the script, saved, and then used to specify the
expanded or collapsed state of each line as the page reloaded.

Just when I was congratulating myself on how clever I was, I realized that any attempt to
save the state of the new outline in a variable was doomed: Even a soft reload restores
variables to their original state. I’d have to find another way to maintain the data.

The first method I used was to store the outline state (a string of 0s and 1s, in which a 1
indicated that the item was expanded) in a text box. Text and TEXTAREA objects
maintain their contents even through a document reload (but not a reopen). Although this
method was convenient, it was ugly because it meant that the field would have to be in
the frame. One tactic was to make the frame a non-scrolling frame and stuff the field out
of sight by pushing it to the far right with padding spaces inside a <PRE>…</PRE> tag.

Next, it was time to try Netscape’s mechanism for storing persistent data on the client
computer: the document.cookie property. Cookies are not unique to JavaScript. Any
CGI can also store data, such as a user’s login name and password for a site, in a cookie.
The cookie did the trick. Information about the outline lasts in the cookie of any user’s
computer only as long as the browser stays running.

Another detail that I wanted to overcome was the initial delay experienced the first time a
user clicked one of the collapsed widgets in the outline. At that point, only one of three
icon image files had been loaded and cached in the browser. In the very first version of
this application for NN2, I arranged to display all three widgets as decoration on the page
to get them loaded up front. But with NN3+ and IE4+, I can precache all the widget art
files and deploy them instantly when needed.

Book Title Page 3 Chapter #: Chapter Title

The Implementation Plan
I admit to approaching the outline technique the first time without a specific data-display
goal in mind — not always the best way to go about it. In search of some logical and
public domain data that I could use as an example, I came upon the tables of information
about food composition (grams of protein, fat, calories, and so on) published by the U.S.
government. For this demonstration, I created one HTML document containing data for
two hierarchical categories of foods: peas and pickles. At the beginning of each food
category, I assigned an anchor to which the text entries of the outline point.

My design for this implementation calls for two frames set up as columns (see Figure 52-
1). The narrower left column houses the outline interface. After the frameset loads, the
wider right frame initially shows an introductory HTML document. Clicking any of the
links in the outline changes the view of the right-hand frame from the introductory
document to the food data document. A link at the bottom of the food data document
enables the user to view the introductory document again in the same frame, if desired.

Figure 52-1
The outline in the left frame is dynamic and local

In addition to image caching, NN3 and IE4 gave me reason to make some other
improvements to the outliner over a version originally created for NN2. They include

* Adjustable indentation spacing

* Easier specification of widget art files

* Easier way to specify a target frame for the results

Book Title Page 4 Chapter #: Chapter Title

* Additional array field for statusbar display text

All adapter-adjustable elements appear near the top of the script to make it easy for
scripters without a lot of experience to modify the application for their own sites.

For this fourth edition of the book, a couple of minor improvements make the outliner
easier to modify and deploy. First, the tedious sequential numbering of items is gone.
Second, performance in NN4 is greatly enhanced with the help of streamlined cookie
handling.

The Code
All files for this implementation of the outline are on the CD-ROM accompanying this
book, so I display here only the code for the framesetting document (index.htm) and
the outline (toc5.htm). Earlier numbered filenames were used for previous editions of
this book.

Setting the frames
To establish the frames, the script creates a two-column format, assigning 35 percent of
the page as a column to contain the outline:
<HTML>
<HEAD>
<TITLE>Outline Table of Contents</TITLE>
</HEAD>

<FRAMESET COLS="35%,65%">

<NOFRAMES>
<H1>It's really cool...</H1>
<H2>...but only if you a frames-capable browser</H2>
<HR>
Back
</NOFRAMES>

 <FRAME NAME="Frame1" SRC="toc4.htm">
 <FRAME NAME="Frame2" SRC="intro.htm">
</FRAMESET>
</HTML>

Because pages designed for multiple frames and JavaScript don’t fare well in browsers
incapable of displaying frames, a good approach is to surround HTML with a
<NOFRAMES> tag for display to users of old browsers. You can substitute any link you
like for the one shown here, which goes back to the main JavaScript page at my Web site.

The names that I assign to the two frames aren’t very original or clever, but they help me
remember which frame is which. Because the nature of the contents of the second frame
changes (either the introductory document or the data document), I couldn’t think of a
good name to reflect its purpose.

Book Title Page 5 Chapter #: Chapter Title

Outline code
Now we come to some lengthy code for the outline (in file toc5.htm). Much of the
code deals with managing the binary representation of the current state of the outline. For
each line of the completely exploded outline, the code designates a 0 for a line that has no
nested items showing and a 1 for a line that has a nested item showing. This sequence of
0s and 1s (as one string) is the road map that the script follows when redrawing the
outline. Cues from the 0 and 1 settings let the script know whether it should display a
nested item (if one exists) or leave that item collapsed.

To help me visualize the inner workings of these scripts, I developed a convention that
calls any item with nested items beneath it a mother. Any nested item is that mother’s
daughter. A daughter can also be a mother if it has an item nested beneath it. You see
how this plays out in the code shortly.

The food outline document starts out simply enough, with the standard opening of a
JavaScript script. The first specification set apart for easy modification is the size of the
indentation level in pixels.
<HTML>
<HEAD>
<TITLE>Food Selection Outline</TITLE>
<SCRIPT LANGUAGE="JavaScript">
<!-- begin hiding
// ** BEGIN OUTLINE AUTHOR-ADJUSTABLE SPECIFICATIONS **//

// size of horizontal indent per level
var indentPixels = 20

Outline level indentations are controlled by the width of a transparent image file.
Indentation size is uniform throughout the outline, and the value is controlled via the
indentPixels global variable. The image file is actually only a single pixel large, but
by setting the width as needed (see the following example), it occupies a known amount
of space, without affecting the font characteristics of the outline text.

Two more groups of adjustable items come next. The first group takes care of the widget
images. This group is where you specify the filenames for the three widgets and provide
the script with their height and width measurements:
// art files and sizes for three widget styles
// (all three widgets must have same height/width)
var collapsedWidget = "plus.gif"
var expandedWidget = "minus.gif"
var endpointWidget = "end.gif"
var widgetWidth = 12
var widgetHeight = 12

// Target for documents loaded when user clicks on a link.
// Specify your target frame name here.
var displayTarget = "Frame2"

When you design your widget art (if you don’t like mine), be sure to design all three to be
the same size. This practice prevents scaling of the images later.

Book Title Page 6 Chapter #: Chapter Title

If you deploy the outliner for your site, be sure to change the name of the frame assigned
to the displayTarget global variable. This value eventually becomes part of the text
links in the outline. If you want a click of a link to completely replace the current frameset
with a different page, then specify _top as the display target.

Assembling outline content
The last of the easily modifiable areas defines the content of the outline. After defining the
primary array (db), a second dimension is added to create an array of custom objects.
The dbRecord array (defined in the following listing) helps populate the db array with
specifics provided in the comma-delimited statements here:
// Create array object containing outline content and attributes.
// To adapt outline for your use, modify this table.
// Start the array with [1], and continue without gaps to your last item.
// The order of the five parameters:
// 1. Boolean (true or false) whether _next_ item is indented.
// 2. String to display in outline entry (including tags).
// 3. URL of link for outline entry; Use empty string ("") for no link
// 4. Integer of indentation level (0 is leftmost margin level)
// 5. String for status line onMouseOver (apostrophes require \\')
var db = new Array()
db[db.length] = new dbRecord(true,"Peas","",0,"")
db[db.length] = new dbRecord(false,"Boiled","foods.htm#boiled",
 1,"Mmm, boiled peas...")
db[db.length] = new dbRecord(true,"Canned","foods.htm#canned",
 1,"Check out canned peas...")
db[db.length] = new dbRecord(false,"Alaska","foods.htm#alaska",
 2,"Alaska\\'s finest...")
db[db.length] = new dbRecord(false,"Low-Sodium","foods.htm#losodium",
 2,"A healthy treat...")
db[db.length] = new dbRecord(true,"<FONT COLOR=red
SIZE=+2>Pickles","",0,"")
db[db.length] = new dbRecord(true,"Cucumber","foods.htm#cucumber",
 1,"What\\'s new in cukes...")
db[db.length] = new dbRecord(false,"Dill","foods.htm#dill",
 2,"Pucker up...")
db[db.length] = new dbRecord(false,"Fresh","foods.htm#fresh",
 2,"You\\'d prefer stale?")
db[db.length] = new dbRecord(false,"Sour","foods.htm#sour",
 2,"For sweeties...")
// add more records to complete your outline
// ** END AUTHOR-ADJUSTABLE SPECIFICATIONS **//

Each record consists of five items. The first item is a Boolean value, which denotes
whether the item is a mother item (that is, the next item in the list is nested one level
deeper). The HTML that displays in the outline comes next. This text can be multiple-
word strings, or any HTML that you like (some users have assigned tags to show
pictures instead of text). For the third item, you can insert any valid URL, whether it be to
a separate site, an anchor in another document (as shown here), or even a
javascript: URL to execute another function. If you don’t want an entry in the
outline to be a link — just plain, flat text — leave this third item as an empty string, as I
do here for the topmost items in both categories. The fourth item is a number representing
how many nested levels the item has. And finally, the last item is a string containing the
text that appears in the statusbar when the user rolls the mouse over the item in the

Book Title Page 7 Chapter #: Chapter Title

outline. Because of a quirk in the way the statusbar responds to quoted characters, any
string literal character (normally preceded with a backslash) requires two backslashes (one
to alert the browser of the other).

Be sure to keep the items for the db array in the same top-to-bottom order as you’d
expect to see in a fully expanded outline. Notice that the index values of the array are
automatically inserted for you: The length property of an array is always one more than
the highest index. By inserting references to the db.length property in the brackets,
you instruct JavaScript to “walk the ladder” upward from zero. If you move things
around the outline, however, don’t forget to adjust the indentation levels if they are
affected by the content changes.

The bottom of the array creation section marks the end of the code that you need to
modify after you deploy the outliner. The rest of the JavaScript code works silently for
you, but if you intend to perform further customizations to the outliner, understanding
how it all works will help.

On to the constructor function for the dbRecord entries: This function is the classic
JavaScript way to build a custom object (see Chapter 41):
// object constructor for each outline entry
// (see object-building calls, below)
function dbRecord(mother,display,URL,indent,statusMsg){
 this.mother = mother // is this item a parent?
 this.display = display // text to display
 this.URL = URL // link tied to text; no link for empty string
 this.indent = indent // how deeply nested?
 this.statusMsg = statusMsg // descriptive text for status bar
 return this
}

To preload all the images into the browser’s image cache, you create new Image objects
for each and assign the filenames to their src properties. Notice that these statements are
not in functions, but rather execute as the page loads:
// pre-load all images into cache
var fillerImg = new Image(1,1)
fillerImg.src = "filler.gif"
var collapsedImg = new Image(widgetWidth,widgetHeight)
collapsedImg.src = collapsedWidget
var expandedImg = new Image(widgetWidth,widgetHeight)
expandedImg.src = expandedWidget
var endpointImg = new Image(widgetWidth,widgetHeight)
endpointImg.src = endpointWidget

Cookie storage
To preserve the binary digit string between redraws of the outline, this script must save
the string to a place that won’t be overwritten or emptied during the document reload.
The document.cookie fills that requirement nicely. Excerpting and adapting parts of
Bill Dortch’s cookie functions (see Chapter 18), this script simplifies the writing of a
cookie that disappears when the user quits the browser:

Book Title Page 8 Chapter #: Chapter Title

// ** functions that get and set persistent cookie data **
// set cookie data
var mycookie = document.cookie
function setCurrState(setting) {
 mycookie = document.cookie = "currState=" + escape(setting)
}
// retrieve cookie data
function getCurrState() {
 var label = "currState="
 var labelLen = label.length
 var cLen = mycookie.length
 var i = 0
 while (i < cLen) {
 var j = i + labelLen
 if (mycookie.substring(i,j) == label) {
 var cEnd = mycookie.indexOf(";",j)
 if (cEnd == -1) {
 cEnd = mycookie.length
 }
 return unescape(mycookie.substring(j,cEnd))
 }
 i++
 }
 return ""
}

A global variable is used to act as a speedy intermediary between the actual browser
cookie and the functions here that need to access cookie data. The setCurrState()
function contains a construction that you don’t see much in this book, but is quite valid.
Notice the three-piece assignment statement. Evaluation of this statement works from
right to left. The rightmost expression concatenates a cookie label and the value passed in
as a parameter to the function. Note, too, that the value is passed through the escape()
function to properly URL-encode the data for the sake of data integrity (so that spaces
and odd punctuation don’t mess up the mechanism). The concatenated value is assigned
to the document.cookie property. With the value safely dropped into the cookie (it
may be just one of several name/value pairs for this domain), the value of the
document.cookie property (which includes all name/value pairs for the domain) is
assigned to the mycookie global variable.

Retrieving information from the cookie still requires a bit of parsing to be on the safe side.
If other cookie writing were to come from the current server path, more than one cookie
would be available to the current document. Parsing the entire cookie for just the portion
that corresponds to the currState labeled cookie ensures that the script gets only the
data previously saved to that label. In an earlier version of this code, the frequent access to
the document.cookie property inside the while loop of getCurrState()
wasn’t a problem until the sluggish cookie reading performance of NN4 got in the way.
Adapting the code to use the global variable for the repetitive parsing of the cookie value
rescued the day.

Book Title Page 9 Chapter #: Chapter Title

The focal point
The toggle() function, which is pivotal in this outline scheme, receives as a parameter
the index number of the db array element whose content the user just clicked. The
purpose of this function is to grab a copy of the current outline state from the cookie, alter
the binary representation of the clicked item, and feed the revised binary number back to
the cookie (where it governs the display of the outline after the document reloads):
// **function that updates persistent storage of state**
// toggles an outline mother entry, storing new value in the cookie
function toggle(n) {
 var newString = ""
 var currState = getCurrState()
 var expanded = currState.charAt(n) // of clicked item
 newString += currState.substring(0,n)
 newString += expanded ^ 1 // Bitwise XOR clicked item
 newString += currState.substring(n+1,currState.length)
 setCurrState(newString) // write new state back to cookie
 }

To make this happen, you must extract two pieces of information before any processing:
the current state from the cookie and the current setting of the clicked item. The latter is
saved in a local variable named expanded because its 0 or 1 value represents the
expanded state of that particular entry in the outline.

With those information morsels in hand, the script starts building the new binary string
that gets written back to the cookie. The new string consists of three pieces: the front part
of the existing string up to (but not including) the digit representing the clicked item, the
changed entry, and the rest of the original string.

Changing the setting of the clicked item from a 0 to a 1, or vice versa, is necessary.
Although I can implement this task a few different ways (for example, using a conditional
expression or an if…else construction), I thought I’d exercise an operator that
otherwise gets little use: the bitwise XOR operator (^). Because the values involved here
are 0 and 1, performing an XOR operation with the value of 1 inverts the original value:
0 ^ 1 = 1
1 ^ 1 = 0

Okay, perhaps using an XOR operator is showing off. But the experience forced me to
understand a JavaScript power that may come in handy for the future.

Selecting a widget image for an entry
At this point, the script starts defining functions to help the script statements in the Body
write the HTML for the new version of the outline. The getGIF() function determines
which of the three widget image files needs to be specified for a particular entry in the
outline. The function receives the index value to the db array of entries created earlier in
the script. As the Body script assembles the HTML for the outline, it calls this function
once for each item in the outline. In return, the function provides a reference to one of
three Image objects created earlier:

Book Title Page 10 Chapter #: Chapter Title

// **functions used in assembling updated outline**
// returns the proper GIF file name for each entry’s control
function getGIF(n, currState) {
 var mom = db[n].mother // is entry a parent?
 var expanded = currState.charAt(n) // of clicked item
 if (!mom) {
 return endpointWidget
 } else {
 if (expanded == 1) {
 return expandedWidget
 }
 }
 return collapsedWidget
}

The decision process for this function first tries to eliminate any item that ends a mother–
daughter chain. Any item that is as deeply nested as it can be (which means the item is
not a mother) automatically gets the endpointWidget image.

Now you’re left with trying to figure out whether the item in the display should get an
expanded or collapsed icon. The holder of this information is the cookie. Thus, the script
extracts the binary setting for the entry under scrutiny. If the cookie shows that entry to
be a 1, it means that the item has nested items showing and that it should get the
expandedWidget image; otherwise, it should get the collapsedWidget image.
Notice that you’re returning references to the Image objects, not the names of the image
files.

A similar excursion through each item determines what status message is assigned to the
onMouseOver event handler for each of the widget images. The decision tree is identical
to that of the getGIF() function:
// returns the proper status line text based on the icon style
function getGIFStatus(n, currState) {
 var mom = db[n].mother // is entry a parent
 var expanded = currState.charAt(n) // of rolled item
 if (!mom) {
 return "No further items"
 } else {
 if (expanded == 1) {
 return "Click to collapse nested items"
 }
 }
 return "Click to expand nested items"
}

Initialize the cookie
The final task of the script running in the head is to initialize the cookie if it’s empty.
Using the length of the db array as a counter, you build a string of 0s, with one 0 for each
item in the outline:
// initialize 'current state' storage field
if (getCurrState() == "" || getCurrState().length != (db.length)) {
 initState = ""
 for (i = 0; i < db.length; i++) {
 initState += "0"
 }

Book Title Page 11 Chapter #: Chapter Title

 setCurrState(initState)
}

// end -->
</SCRIPT>
</HEAD>

Each of those 0s in the parameter to the setCurrState() function corresponds to a
collapsed setting for an entry in the outline. In other words, the first time the outline
appears, all items are in the collapsed mode. If you modify the outline for your own use
by creating your own db array of data, the initial state of the cookie will be set for you
automatically based on the length of the db array.

Writing the outline
At last we reach the document Body, where the outline is assembled and written to the
page. Script statements here are immediate, meaning that they execute while the page
loads. I have you begin by initializing some variables that you will need in a moment. The
most important variable is newOutline, which will be used to accumulate the contents
of the outline for eventual writing to the page:
<BODY>
<SCRIPT LANGUAGE="JavaScript">
<!-- start
// build new outline based on the values of the cookie
// and data points in the outline data array.
// This fires each time the user clicks on a control,
// because the HREF for each one reloads the current document.
var newOutline = ""
var prevIndentDisplayed = 0
var showMyDaughter = 0
var currState = getCurrState() // get whole state string
document.write("<CENTER><H3>Composition of Selected Foods</H3>")

The following section is the real beef of this script: the part that assembles the HTML for
the outline that displays as the document loads. In other words, this part must read the
current state data from the cookie and assemble widget images and text links according to
the map of expanded and collapsed items in the cookie data. These activities take place
within a for loop that cycles through every item in the database. Each value of the i
index refers to one listing in the db array. Trace the logic of one entry:
// cycle through each entry in the outline array
for (var i = 0; i < db.length; i++) {
 var theGIF = getGIF(i, currState) // get the image
 var theGIFStatus = getGIFStatus(i, currState) // get the status message
 var currIndent = db[i].indent // get the indent level
 var expanded = currState.charAt(i) // current state

 // display entry only if it meets one of three criteria
 if (currIndent == 0 || currIndent <= prevIndentDisplayed ||
 (showMyDaughter == 1 &&
 (currIndent - prevIndentDisplayed == 1))) {
 newOutline += "<IMG SRC=\"filler.gif\" HEIGHT = 1 WIDTH =" +
 (indentPixels * currIndent) + ">"
 newOutline += "<A HREF=\"javascript:history.go(0)\" " +
 "onMouseOver=\"window.status=\'" + theGIFStatus +
 "\';return true;\" onClick=\"toggle(" + i + ");return " +

Book Title Page 12 Chapter #: Chapter Title

 (theGIF != endpointWidget) + "\">"
 newOutline += "<IMG SRC=\"" + theGIF + "\" HEIGHT=" +
 widgetHeight + " WIDTH=" + widgetWidth + " BORDER=0>"
 if (db[i].URL == "" || db[i].URL == null) {
 newOutline += " " + db[i].display + "
" // no link
 } else {
 newOutline += " <A HREF=\"" + db[i].URL + "\" TARGET=\"" +
 displayTarget + "\" onMouseOver=\"window.status=\'" +
 db[i].statusMsg + "\';return true;\">" + db[i].display +
 "
"
 }
 prevIndentDisplayed = currIndent
 showMyDaughter = expanded
 if (db.length > 25) {
 document.write(newOutline)
 newOutline = ""
 }
 }
}

First, you call upon two previously defined functions to grab the widget image object and
corresponding onMouseOver message for the statusbar. Two more variables contain the
indent property for the item (that is, how many steps indented the item will appear in the
outline structure) and the current expanded state, based on the cookie’s entry for that
item.

Not every entry in the outline database is displayed. For instance, a nested item whose
mother is collapsed won’t need to be displayed. To find out if an entry should be
displayed, the script performs a number of tests on some of its values. An item can be
displayed if any of the following conditions are met:

* The item is a topmost item, with an indentation factor of 0.

* The item is at the same or smaller indentation level as the previous item displayed.

* The previous item was tagged as being expanded, and the current item is indented
from the previous item by one level.

Over the next few statements, the script pieces together the HTML for the outline entry,
starting with the width necessary for the transparent filler image (based on the number of
pixels specified for indentations near the top of the script). Next comes the link definition
that wraps around the widget image. The following concepts apply to each link:

* The HREF attribute is the javascript: URL to invoke the history.go()
method.

* The onMouseOver event handler is set to adjust the status message to the
previously retrieved message (notice the return true statement to make the
setting take effect).

Book Title Page 13 Chapter #: Chapter Title

* The onClick event handler is set to call the toggle() function, passing the
number of the item within the outline database. An onClick event handler is
carried out before the browser responds to the click of the link by navigating to the
URL. Therefore, the toggle() function changes the setting of the cookie a
fraction of a second before the browser refreshes the document (which relies on
that new cookie setting). But click events on widgets that have no children do not
need to hit the toggle() function. Therefore, the content of the return
statement is influenced by whether or not the widget image is an endpoint image.

In the next statement, the newOutline string accumulation continues with the
tag specifications for the widget art. Specifying the HEIGHT and WIDTH attributes for the
image is important, partly to help the browser lay out the page more quickly, partly to
avoid pesky performance inconsistencies.

Next comes a decision about whether to display the item text as a link or as plain text.
The script inspects the db[i].URL property to see if it is empty. If so, that means no
URL is specified for a link, and the item should be built as plain text.

If a URL is specified for the item, the script instead constructs a link around the text. In
this HTML assembly process, numerous calls to properties of the db array fetch
properties of the entry for the URL, the statusbar message, and the text to display. Notice,
too, that the link sets the target of the link to the frame name assigned to
displayTarget near the top of the script.

As you near the end of the loop, two variable values, prevIndentDisplayed and
showMyDaughter, are updated with settings from the current traversal through the
loop. These values influence the display of nested items for the next entry’s journey
through the loop.

But before looping around again, the script inspects whether the outline is longer than 25
entries. If so, the script writes the outline entries that have accumulated so far, resetting
the newOutline variable to empty for the next time through the loop. The reasoning
behind this last routine is to help long outlines start to display their goods faster. I have
seen Web site authors use this outline for literally hundreds of entries. At that quantity,
the usually fast JavaScript begins to bog down a bit. By writing lines from a big outline to
the page early, the user gets visual feedback that something is happening.

Once outside the loop, the script writes whatever last items may have accumulated in the
newOutline variable. For outlines with less than 25 items, the whole outline is written
in one push; for longer outlines, the value is empty at this point, because the intermediate
writings have completed the job.

All that’s left is to close up standard tags to finish the document definition:
document.write(newOutline)

Book Title Page 14 Chapter #: Chapter Title

// end -->
</SCRIPT>
</BODY>
</HTML>

Notice that the document.write() statement here is not followed by
document.close(). Because this content is being written as the page loads, the
output stream is closed at the end of the page's HTML.

Customization possibilities
Although this DHTML-free outliner is not the fanciest to be found on the Web, it is,
nevertheless, quite popular probably due to its ease of customizability and backward
compatibility to all but the earliest browsers (you can find the very original version at my
Web site). Other page authors have pushed and pulled on this code to tailor it to a variety
of special needs.

Alternative displays

At the root of almost all significant customization jobs lie modifications to the
dbRecord object constructor near the beginning of the page and the HTML assembly
portion in the Body. They work hand in hand. For example, one user wants different links
in the outline to load pages into different targets. Most links are to load content into
another frame of the same frameset, while others are to replace the frameset entirely. In
the version provided previously, one target is assumed, and it is set as a global variable.
But if you need to provide different targets for each item, you can add a new property
(perhaps named target) to the dbRecord constructor, and assign the string name of
the target (for example, "Frame2", "_top") to the property for each item. Then, in the
HTML accumulation portion, assign the value of db[i].target to that TARGET
attribute (watching out for the necessary pairings of quote symbols, as shown in other
attribute assignments).

Another request asked that the text associated with the plus/minus images be clickable
not to navigate to another page, but to expand and collapse the nested content. All the
pieces for this variation are already in place. By performing minor reconstructive surgery
on the HTML accumulator script, you can add a branch that looks for the
db[i].mother property. If it’s true, then don’t write the closing tag after the
widget. Instead, branch to write the db[i].display text without its own URL link,
and write the widget’s tag after the text. Now the widget and text share the same
link as the widget originally had.

Cookie-free zones

Not everyone likes to develop with cookies. That’s not a problem for this outliner, even
though the previous example uses them liberally. The data that preserves the state of the
outline is nothing but a string of 1s and 0s. If you are using a frameset, that string can be
preserved as a global variable in the framesetting document.

Book Title Page 15 Chapter #: Chapter Title

To minimize the changes needed to the existing code, you can continue to use the same
functions — setCurrState() and getCurrState() — as the interfaces to the
reading and writing of the state. Begin by defining a global variable in the Head portion of
the framesetting document, initializing it as an empty string:
<SCRIPT LANGUAGE="JavaScript">
outlineState = ""
</SCRIPT>

Now you can modify the two functions in the outliner page as follows:
// ** functions that get and set state data **
// set cookie data
var mycookie = document.cookie
function setCurrState(setting) {
 mycookie = parent.outlineState = setting
}
// retrieve cookie data
function getCurrState() {
 return parent.outlineState
}

Notice that there is no need for the label that has to be assigned to a cookie. The variable
name keeps this data separate from the rest of the script space.

The only downside to not using a cookie is that the outline state is not preserved if the
frameset goes away. If the user revisits the frameset in the same session, the outline state
will be reinitialized at its beginning state.

Expanding/collapsing all at once

If you have an extensive outline, you may want to provide a shortcut to the user to
expand everything at once or close up the entire outline. Because the string of 1s and 0s
maintains the state of the outline, you can use the db array to help you create a new state
string, and then apply it to the page. Here are two functions that do the job:
function expandAll() {
 expState = ""
 for (i = 1; i < db.length; i++) {
 expState += (db[i].mother) ? "1" : "0"
 }
 setCurrState(expState)
 history.go(0)
}

function collapseAll() {
 collState = ""
 for (i = 1; i < db.length; i++) {
 collState += "0"
 }
 setCurrState(collState)
 history.go(0)
}

All you need are a couple of buttons to invoke these functions, and you’re in business.

Book Title Page 16 Chapter #: Chapter Title

Reducing server access

Through the lifetime of this outliner application, it has seen wildly different behaviors of
the various browsers with regard to how much the browser reaches out to the server for
each redisplay of the outline. While the history.go(0) type of reloading is supposed
to be the least onerous, some browsers seem to read the entire file from scratch. This
approach is still faster than having a CGI script completely reconfigure a page, but for an
extensive outline and a slow Internet connection, the results can be objectionable.

One possible solution is to avoid reloading the page at all. Instead, place all of the code for
the outliner management and creation in the framesetting document. Code that currently
writes the outline as the page loads can be encapsulated in a function that writes to the
frame designated as the outline frame (don’t forget the document.close() for this
writing!). Function calls from the outliner (to toggle(), for instance) have to be
modified so that the reference is to the function in the parent frame
(parent.toggle(n)).

Distributing the code around frames may not be as convenient as keeping it all together,
but user experience should weigh more heavily than programmer expedience. This
practice also opens the possibility for putting all of the outliner code, except for the calls
to the constructor functions, in an external .js library. You can then put multiple outline
contents into multiple .js libraries, and load the pairs that you need into a frameset.

Using document.write() to another frame may still not avoid server access entirely.
It is not uncommon for the application of any image file — including those that have been
precached — to check the cached version against the modification date of the file on the
server. This activity is much faster than downloading the image again, but if you see
network activity even after shifting the outliner’s scripts to the frameset, at least you
understand what’s happening. A version of the application directed from the parent
window is contained on the CD-ROM.

Multiple outlines

The example in this chapter assumes that a site will be using only one outline-style table
of contents. You can, of course, have multiple outlines for different sections of a Web site
or application. But if the outlines all share the same cookie data, then the state of the most
recent outline will be applied to the next one that loads. Items will be magically opened.
And if the number of items between the two outlines is different, the cookie data can get a
bit messy.

To solve this problem, assign a different cookie label for each outline. That prevents one
outline’s state from stepping on another.

Book Title Page 17 Chapter #: Chapter Title

Cascading Style Sheet Version
The advent of Cascading Style Sheets (CSS) brought a number of intriguing possibilities
for an application, such as the outliner. Not only can style sheets be used to control the
look of the items in the outline, but additional properties make it possible to hide and
show elements, including inserting or removing elements from the rendered content. Alas,
not all of these features work in NN4, so that the version under discussion in this section
resorts to redrawing the outline for NN4. But for IE4+ and W3C DOMs, the response is
very fast, and no page reloading is necessary. One of the goals, too, in this application was
to reuse as much of the code from earlier versions as possible. Note that this version does
not work (or work correctly) with browsers prior to NN4 or IE4.

CSS implementation plan
Many of the compromises in this version resulted from quirky behavior of NN4 with
some types of elements and style sheets. I chose to render the outline content as a series
of nested DIV elements. If this were being implemented strictly in more well behaved
browsers, style sheet control over UL and LI elements would be even more convenient
because those elements already have an indentation scheme built into them. With so
much HTML code needed to generate the DIV elements and their contents, I decide to
trade the cleverness of multidimensional array storage of outline content for the better
performance of straight HTML. Each row of content in the outline is set in its own
<DIV> block tag set. Any row that had children nested inside contains those items as a
nested block.

Style sheets afforded the design a handy behavior. Hiding and showing blocks via the
CSS-Positioning visibility property (see Chapter 30) is not an apt solution here,
because hiding an item does not remove it from the page rendering. Therefore, unless the
page included a ton of positioning code to overlap hidden items with visible items (which
would have worked in NN4, but at the price of substantial increases in code and
inflexibility), the outline would not cinch up if a branch is collapsed. To the rescue comes
the display property of a style. One value of this property (none) not only hides the
block, but it temporarily removes it from the rendering order of the page. Any items
rendered below it that are visible (that is, whose display property is set to block)
scoot up to render after the previous visible item.

Setting the display property has slightly different results in NN4 and more modern
DOMs. In NN4, you can set the property after the block has been rendered on the page,
but its appearance does not change; in both the IE4+ and W3C DOMs, the change is
immediate, with the rest of the page reflowing to adjust to the change in the block’s
visibility and presence. Therefore, for NN4, the page still needs to reload itself and
remember the state of the outline between reloads (via the same cookie mechanism used
for the earlier version) so that the page can set the property value as the page loads. And
except for only a couple of places in the code, both the IE4+ and W3C DOMs share
positioning code.

Book Title Page 18 Chapter #: Chapter Title

The CSS version uses the same cookie value (a sequence of 1 and 0 values) to represent
the visible or hidden state of each item as in the old version. To convey the change of
state, however, the function called by the click of an icon widget must pass the index
values of the child items affected by the expansion or collapse of a node. This means that
more of the HTML — in this case, the parameters of the functions — has to be hard-
wired to the structure of the outline, as you see shortly. Less of this would be necessary if
NN4’s implementation of CSS offered the same level of scriptable introspection into
HTML elements as IE4’s implementation: We’d be able to employ the style property
inheritance behavior to simplify the way blocks are shown and hidden. Because the two
classes of browsers supported in this example are so different in this regard, the scripting
reflects the lowest common denominator for controlling the toggle of expanded and
collapsed states.

The CSS code
By putting so much of the content directly into HTML, the scripting component of the
CSS outliner version is significantly smaller than the older version. Where possible, I
stayed with the same function and variable naming schemes of the previous version.

At the top of the document, I define three styles for the amount of indentation required
by the three indentation levels of my sample outline. If the outline were to go to more
levels, I would add styles accordingly.
<HTML>
<HEAD>
<STYLE TYPE="text/css">
 DIV.indent0 {margin-left:0}
 DIV.indent1 {margin-left:10}
 DIV.indent2 {margin-left:20}
</STYLE>

Scripting begins by setting some global variables. Browser-specific branching comes into
play later, but in an effort to stamp out explicit version detection, the code here relies on
object detection to set the requisite flags. Only browsers capable of the CSS style
scripting needed here have a document.styleSheets property, so flags are set for
the two supported browser classes. These flags are set here primarily as a convenience for
writing branching code later. Rather than constantly retesting for the presence of the
property, the global flags are shorter and marginally faster. Two more variables hold their
respective browser class state values, with the NN4 version maintaining a copy of the
cookie as a variable for performance reasons.
<SCRIPT LANGUAGE="JavaScript">
// global variables
var isNN4, isCSS, CSScurrState, NN4Cookie = document.cookie
if (document.styleSheets) {
 isCSS = true
 isNN4 = false
} else {
 isCSS = false
 isNN4 = true
}

Book Title Page 19 Chapter #: Chapter Title

To each of the cookie storage functions from the original version, I add a branch to handle
the storage and retrieval of state data for CSS browsers, simply setting and getting the
global variable. This may seem to be more indirect than is necessary, but it is essential to
allow the reuse of many functions in other parts of the code so that those areas don't have
to worry about browser platform. Notice that the label for this outline’s cookie is slightly
different from that of the earlier version. This difference allows you to open both outliners
with NN4 in the same session and not worry about one cookie value overlapping with the
other.
// ** functions that get and set persistent data **
// set persistent data
function setCurrState(setting) {
 if (isNN4) {
 NN4Cookie = document.cookie = "currState2=" + escape(setting)
 } else {
 // for CSS, data is saved as a global variable instead of cookie
 CSScurrState = setting
 }
}

// retrieve persistent data
function getCurrState() {
 if (isCSS) {
 // for CSS, data is in global var instead of cookie
 return CSScurrState
 }
 var label = "currState2="
 var labelLen = label.length
 var cLen = NN4Cookie.length
 var i = 0
 while (i < cLen) {
 var j = i + labelLen
 if (NN4Cookie.substring(i,j) == label) {
 var cEnd = NN4Cookie.indexOf(";",j)
 if (cEnd == -1) {
 cEnd = NN4Cookie.length
 }
 return unescape(NN4Cookie.substring(j,cEnd))
 }
 i++
 }
 return ""
}

The toggle() function is called by the onClick event handler of the links
surrounding the widget icon art in the outline. A variable number of parameters are
passed to this function, so that the parameters are extracted and analyzed via the
arguments property of the function. Both browsers with only a few small browser-
specific branches use a great deal of the code. Inside the large for loop, a CSS branch
dynamically changes the setting of the style.display property. For NN4, the page is
reloaded after all changes to the cookie version of the state are saved. After the NN4
version goes off to reload the page, the CSS version swaps the image of the toggled
widget. As a final touch, the window is given focus so that IE/Windows browsers lose the
dotted rectangle around the clicked image.
// **function that updates persistent storage of state**
// toggles an outline mother entry, storing new value

Book Title Page 20 Chapter #: Chapter Title

function toggle() {
 var newString = ""
 var expanded, n
 // get all <DIV> tag objects in IE4/W3C DOMs
 if (document.all) {
 var allDivs = document.all.tags("DIV")
 } else if (document.getElementsByTagName) {
 var allDivs = document.getElementsByTagName("DIV")
 }
 var currState = getCurrState() // of whole outline
 // assemble new state string based on passed parameters
 for (var i = 0; i < arguments.length; i++) {
 n = arguments[i]
 expanded = currState.charAt(n) // of clicked item
 newString += currState.substring(0,n)
 newString += expanded ^ 1 // Bitwise XOR clicked item
 newString += currState.substring(n+1,currState.length)
 currState = newString
 newString = ""
 if (isCSS) {
 // dynamically change display style without reloading
 if (expanded == "0") {
 allDivs[n].style.display = "block"
 } else {
 allDivs[n].style.display = "none"
 }
 }
 }
 setCurrState(currState) // write new state back to cookie
 if (isNN4) {
 location.reload()
 }
 // swap images in CSS versions
 var img = document.images["widget" + (arguments[0]-1)]
 img.src = (img.src.indexOf("plus.gif") != -1) ?
 "minus.gif" : "plus.gif"
 window.focus()
}

A prerequisite for loading the page to begin with is setting the initial value of the state.
This is the only part of the script that must be hard-wired based on the structure of the
outline — string assigned to initState will be different with each outline. The goal
here is to set each block assigned to the indent0 style class to 1 while all others are set
to 0. These settings allow the first display of the outline to show all the root nodes, with
all other items collapsed.
// initialize 'current state' storage field
if (!getCurrState()) {
 // must be hard-wired to outline structure with "1" for
 // each indent0 class item, "0" for all others
 initState = "1000010000"
 setCurrState(initState)
}

With the initial outline state saved in the above code, the following statements execute at
load time to write a <STYLE> tag set for NN4. This tag sets the display property of all
collapsed blocks to none. As you see in the HTML coming up, blocks are assigned ID
attributes with the letter "a" followed by a sequence number starting with zero.

// for Navigator 4, set display style for flagged IDs to 'none'
// each time the page (re)loads

Book Title Page 21 Chapter #: Chapter Title

if (isNN4) {
 document.write("<STYLE TYPE='text/css'>")
 var visState = getCurrState()
 for (var i = 0; i < visState.length; i++) {
 if (visState.charAt(i) == "0") {
 document.write("#a" + i + " {display:none}\n")
 }
 }
 document.write("</STYLE>")
}

Initial settings of the display property for IE4+ can be done programmatically only
after the document loads (the tags must exist before their properties can be adjusted). The
following init() function is called from the onLoad event handler. Each browser class
has a different set of initialization tasks. Both branches rely on the current state setting, so
that value is retrieved just once. In the CSS branch, the style.display properties for
hidden blocks are set to none. For NN4, on the other hand, the style.display
properties are set as the page reloads, but this loop swaps the widget image for expanded
blocks to the minus.gif version.
// for CSS, initialize flagged tags to style display = "none"
// for NN4, set affected images to minus.gif
function init() {
 var visState = getCurrState()
 if (isCSS) {
 for (var i = 0; i < visState.length; i++) {
 if (visState.charAt(i) == "0") {
 // branch for browser object capability
 if (document.all) {
 document.all("a" + i).style.display = "none"
 } else if (document.getElementsByTagName) {
 document.getElementById("a" + i).style.display = "none"
 }
 }
 }
 } else if (isNN4) {
 for (i = 0; i < visState.length; i++) {
 if (visState.charAt(i) == "1") {
 if (i+1 < visState.length && visState.charAt(i+1) == "1") {
 if (document.images["widget" + i]) {
 document.images["widget" + i].src = "minus.gif"
 }
 }
 }
 }
 }
}
</SCRIPT>
</HEAD>

<BODY onLoad="init()">
<CENTER><H3>Composition of Selected Foods</H3><HR></CENTER>

Now begins the HTML that defines the content of the outline. For readability, I have
formatted the <DIV> tag sets to follow the indentation of the outline data (this listing
looks much better if you open the file from the CD-ROM in your text editor with word
wrap turned off). Each tag includes a CLASS attribute pointing to a class defined in the
first <STYLE> tag of the page. Each tag also includes an ID attribute whose name begins

Book Title Page 22 Chapter #: Chapter Title

with the letter "a" and a sequential serial number, starting with zero. Navigator uses the
ID attributes to help it assign display property settings during each reload.

Like the older version of the outliner, each entry includes an image (surrounded by a
clickable link) and a text entry (which may or may not be a link to a document). The link
around the image includes a javascript: URL for the HREF attribute. When a link is
for a widget that is a mother item, the parameters to the toggle() function are the serial
numbers of the immediate children IDs whose display properties are to be adjusted in the
toggle() function. These passed items only need to be in the immediate children,
because any of their children inherit the display property of their parents. For example,
the first widget toggles items 1 and 2 (ids a1 and a2). Item 2 happens to be a parent to
items 3 and 4. But when the display property of item 2 is set to none, then none of its
children (items 3 and 4) are displayed, no matter how their display properties are set.

IMG elements associated with each toggled DIV are named along similar lines, with the
name starting with “widget” and the same serial number as the containing DIV. If you
look at the end of the toggle() function again, you’ll see that the name for the IMG
element is derived from the first parameter received by the toggle() function. That first
parameter will always be one number higher than the serial number for the widget image
to swap. To help you visualize the numbering scheme used within the example, the
numbered identifiers and methods that relay associated numbers are shown in boldface.
<DIV CLASS=indent0 ID="a0">
 <A HREF="javascript:toggle(1,2)" onMouseOver=
 "status='Click to expand/collapse nested items';return true"
 onMouseOut="status='';return true">
 <IMG NAME="widget0" SRC="plus.gif" HEIGHT=12 WIDTH=12
BORDER=0> Peas

 <DIV CLASS=indent1 ID="a1">
 <A HREF="javascript:void(0)" onMouseOver=
 "status='No further items';return true"
 onMouseOut="status='';return true">
 <IMG SRC="end.gif" HEIGHT=12 WIDTH=12
BORDER=0> <A HREF="foods.htm#boiled"
 TARGET=Frame2>Boiled

 </DIV>
 <DIV CLASS=indent1 ID="a2">
 <A HREF="javascript:toggle(3,4)" onMouseOver=
 "status='Click to expand/collapse nested items';return true"
 onMouseOut="status='';return true">
 <IMG NAME="widget2" SRC="plus.gif" HEIGHT=12 WIDTH=12
 BORDER=0> <A HREF="foods.htm#canned"
 TARGET=Frame2>Canned

 <DIV CLASS=indent2 ID="a3">
 <A HREF="javascript:void(0)"
 onMouseOver="status='No further items';return true"
 onMouseOut="status='';return true">
 <IMG SRC="end.gif" HEIGHT=12 WIDTH=12
 BORDER=0> <A HREF="foods.htm#alaska"
 TARGET=Frame2>Alaska

 </DIV>
 <DIV CLASS=indent2 ID="a4">
 <A HREF="javascript:void(0)"
 onMouseOver="status='No further items';return true"
 onMouseOut="status='';return true">

Book Title Page 23 Chapter #: Chapter Title

 <IMG SRC="end.gif" HEIGHT=12 WIDTH=12
 BORDER=0> <A HREF="foods.htm#losodium"
 TARGET=Frame2>Low-Sodium

 </DIV>
 </DIV>
</DIV>

<DIV CLASS=indent0 ID="a5">
 <A HREF="javascript:toggle(6)" onMouseOver=
 "status='Click to expand/collapse nested items';return true"
 onMouseOut="status='';return true">
 <IMG NAME="widget5" SRC="plus.gif" HEIGHT=12 WIDTH=12
 BORDER=0> Pickles

 <DIV CLASS=indent1 ID="a6">
 <A HREF="javascript:toggle(7,8,9)" onMouseOver=
 "status='Click to expand/collapse nested items';return true"
 onMouseOut="status='';return true">
 <IMG NAME="widget6" SRC="plus.gif" HEIGHT=12 WIDTH=12
 BORDER=0> <A HREF="foods.htm#cucumber"
 TARGET=Frame2>Cucumber

 <DIV CLASS=indent2 ID="a7">
 <A HREF="javascript:void(0)" onMouseOver=
 "status='Click to expand nested items';return true"
 onMouseOut="status='';return true">
 <IMG SRC="end.gif" HEIGHT=12 WIDTH=12
 BORDER=0> <A HREF="foods.htm#dill"
 TARGET=Frame2>Dill

 </DIV>
 <DIV CLASS=indent2 ID="a8">
 <A HREF="javascript:void(0)"
 onMouseOver="status='No further items';return true"
 onMouseOut="status='';return true">
 <IMG SRC="end.gif" HEIGHT=12 WIDTH=12
 BORDER=0> <A HREF="foods.htm#fresh"
 TARGET=Frame2>Fresh

 </DIV>
 <DIV CLASS=indent2 ID="a9">
 <A HREF="javascript:void(0)"
 onMouseOver="status='No further items';return true"
 onMouseOut="status='';return true">
 <IMG SRC="end.gif" HEIGHT=12 WIDTH=12
 BORDER=0> <A HREF="foods.htm#sour"
 TARGET=Frame2>Sour

 </DIV>
 </DIV>
</DIV>
</BODY>
</HTML>

The CSS version (for the identical outline content) is a slightly smaller file size than the
older, compatible one, but not so big a difference as to influence your choice. Browser
compatibility should be your number one criterion. Ease of modification for changing
content and improved user experience for browsers following the CSS branch are tied in
second.

Book Title Page 24 Chapter #: Chapter Title

A Futuristic (XML) Outline
As XML and its associated technologies head toward a solid standardized footing, the
latest browsers available as this edition is being written provide mixed support for some
of the key features of an ideal environment. As those issues are sorting themselves out,
getting to know portions of XML through the IE5+/Windows XML data island features is
possible. While it’s not normally okay to embed XML in an HTML document (that is, the
two designations specify unique document types), IE5+/Windows provides an <XML>
tag, in which you can insert XML tags. Scripts can access the elements inside the XML
data island, referencing those elements as child nodes of the XML element. See Chapter
33 for the reference material on the IE XML element.

Birth of an XML specification
Collapsible outlines provide convenient ways to organize hierarchical information all
around us. You’d be hard-pressed to find a more active proponent of the outline than
Dave Winer, CEO of UserLand Software, Inc. (http://www.userland.com). Dave
is a veteran software developer, as well as author and outspoken Web publisher. His
www.scripting.com Web site is a popular destination if you want to find out the
latest Internet and computing technology “buzz.”

As an outgrowth of development for his company’s Web tools, Dave looked to the XML
structure to assist in representing outline content in a shareable, easily parseable format.
The result is a specification called Outline Processor Markup Language, or OPML for
short. You can read all about the formal specification at
http://www.opml.org/spec. Like virtually all XML, OPML is intended to be
written by software, not humans (although humans input the data via a user-friendly
front-end provided by the software). Even so, the format of an OPML outline is
extremely readable by humans, and, with little more trouble than writing basic HTML
tags manually, you can represent an outline in this format yourself.

A plain OPML file, saved as an .xml file, can be viewed through the native XML parsers
of IE5+ and NN6. These parsers automatically render XML tags in the same hierarchical
fashion as OPML encourages outlines to be structured. But such rendering is under strict
control of the browser, unless you also get involved with XML style sheets (the XSL and
XSLT standards), at which point, browser implementation incompatibilities can make the
going tough.

I liked the OPML data format when I first saw it, and I think it’s a convenient way to
convey an outline’s data to the client, at which point JavaScript and the browser’s DOM
can take over to provide interesting visuals for the content and interaction with the
content. Thus was born the last example of this chapter, in which the outliner’s data is
delivered not in the form of scripted arrays or hard-wired HTML DIV elements. Instead,
the data arrives in its native XML (OPML) format inside an IE5+/Windows XML data
island. Rendering of the native XML is suppressed, and scripts take over to do the rest.

Book Title Page 25 Chapter #: Chapter Title

OPML outliner prep
The appearance of widgets and text for the new outliner has changed to more closely
emulate the kinds of outline presentations that you see in some Windows programs (see
Figure 52-2). For demonstration purposes, the same frameset structure and outline
content from earlier examples are used for the OPML version so that you can more easily
see the differences in implementations and grasp new concepts presented here. For
example, the comparison of how the outline data is delivered in the form of JavaScript
objects (the first example) and OPML is enlightening.

Figure 52-2
OPML-based outliner style

As you recall, a custom object constructor function generated one JavaScript object for
each outline entry. The properties of the object are completely under your control, so that
you can add properties (such as the target of an entry’s link), whose values influence the
way the entry is rendered and the way it behaves. OPML has a similar extensibility
feature. Each outline entry is nothing more than a tag. An entry that does not have any
nested child nodes can use the XML shortcut of combining a start and end tag inside one
set of angle brackets:
<tagName attribute="value" ... />

And any entry that has nested nodes contains the nested nodes between its start and end
tags, as shown here with the actual tag names used in OPML (indentation is optional, but
increases readability):
<outline text="text">
 <outline text="text"/>
 <outline text="text"/>
</outline

Book Title Page 26 Chapter #: Chapter Title

If you want to associate more information about an entry, simply add an attribute. For
example, if an entry is to behave as a link, you can convey that information with an
attribute whose name you determine. When it comes time for your scripts to render the
content in HTML, the scripts access the attribute values and generate the associated
HTML for the attributes (you see an example of this in the code).

The true beauty of the OPML structure (and XML in general) is that the parent–child
relationships are automatically implied by the element containment. Unlike the JavaScript
custom object in the first example, the author does not have to specify how many levels
deep an entry is, or whether it has any child nodes: The XML containment hierarchy
describes all of that information. Suddenly, all of the W3C DOM gobbledygook about
nodes, child nodes, and attributes become your friend, as your scripts convert the element
hierarchy into a renderable hierarchy of your design.

The XML and HTML code
Because our focus is so tight on the outliner content, you can start the exploration of the
outliner code from the HTML BODY element downward, where the outline data is
embedded in an IE5+/Windows XML element.
<BODY onLoad="init('outlineXML')">
<XML ID="outlineXML">
<opml version="1.0">
 <head>
 <title>A Modern Outline</title>
 <dateCreated>Thu, 16 Nov 2000 02:40:00 GMT</dateCreated>
 <dateModified>Fri, 22 Dec 2000 19:35:00 GMT</dateModified>
 <ownerName>Danny Goodman</ownerName>
 <ownerEmail>dannyg@dannyg.com</ownerEmail>
 <expansionState></expansionState>
 <vertScrollState>1</vertScrollState>
 <windowTop></windowTop>
 <windowLeft></windowLeft>
 <windowBottom></windowBottom>
 <windowRight></windowRight>
 </head>
 <body>
 <outline text="Peas">
 <outline text="Boiled" uri="foods.htm#boiled"/>
 <outline text="Canned" uri="foods.htm#canned">
 <outline text="Alaska" uri="foods.htm#alaska"/>
 <outline text="Low-Sodium" uri="foods.htm#losodium"/>
 </outline>
 </outline>
 <outline text="Pickles">
 <outline text="Cucumber" uri="foods.htm#cucumber">
 <outline text="Dill" uri="foods.htm#dill"/>
 <outline text="Fresh" uri="foods.htm#fresh"/>
 <outline text="Sour" uri="foods.htm#sour"/>
 </outline>
 </outline>
 </body>
</opml>
</XML>

<DIV ID="content"></DIV>

Book Title Page 27 Chapter #: Chapter Title

</BODY>
</HTML>

Everything inside the XML element is textbook OPML version 1.0 form. Notice that the
OPML syntax re-uses element names that are found in all HTML files (for example,
head, title, body). The XML island behavior isolates these tags from the browser’s
HTML rendering engine, so the browser won’t confuse the two “documents.” The only
other HTML delivered in the document is an empty DIV element, which is used as the
container for the outline HTML that the scripts generate as a result of the onLoad event
handler’s invocation of the init() function.

Also, go back to the top of the document to see the style sheets, which have an important
place in delivering an XML island:
<HTML>
<HEAD>
<STYLE TYPE="text/css">
 XML {display:none}
 .row {vertical-align:middle; font-size:12px; font-family:Arial,sans-serif}
 .OLBlock {display:none}
 IMG {vertical-align:text-top}
</STYLE>

To prevent the XML block from rendering on the page, the display style property is set
to none for the XML tag selector. This keeps the page clear for insertion of script-
generated HTML. The other style sheet rules apply to content created by the scripts.

Setting the scripted stage
All scripts for this page are in the HEAD (although they could also be linked in from an
external .js file). First on the docket is establishing several global variables that get used
a lot within the rest of the code, and make it easy to customize important visible
properties, especially widget art. Due to the art choices made for this version, there are
separate versions for items that appear as first, middle, and end items for different nesting
states.
<SCRIPT LANGUAGE="JavaScript">
// global variables
// art files and sizes for widget styles and spacers
// (all images must have same height/width)
var collapsedWidget = "oplus.gif"
var collapsedWidgetStart = "oplusStart.gif"
var collapsedWidgetEnd = "oplusEnd.gif"
var expandedWidget = "ominus.gif"
var expandedWidgetStart = "ominusStart.gif"
var expandedWidgetEnd = "ominusEnd.gif"
var nodeWidget = "onode.gif"
var nodeWidgetEnd = "onodeEnd.gif"
var emptySpace = "oempty.gif"
var chainSpace = "ochain.gif"
var widgetWidth = "20"
var widgetHeight = "16"
var currState = ""
var displayTarget = "Frame2"

Book Title Page 28 Chapter #: Chapter Title

The init() function, invoked by the onLoad event handler, starts the content creation
in motion. The basic sequence is to first make sure that the browser is capable of
recognizing an XML data island. If the validation is okay, then a reference to the BODY
portion of the outline data is retrieved so that many other functions are able to dive into
the outliner hierarchy. Notice that elements of the XML data island are disguised from
view of the document object’s normal scope. Access must be made by way of the XML
object, which then exposes its elements. The reference to the OPML BODY element is
passed to the makeHTML() function, which returns the entire outline HTML to be
assigned to the innerHTML property of the empty DIV element delivered with the
document.
// initialize first time
function init(outlineID) {
 if (supportVerified(outlineID)) {
 // demo how to get outline head elements
 var hdr =
document.getElementById(outlineID).getElementsByTagName("head")[0]
 // get outline body elements for iterative conversion to HTML
 var ol =
document.getElementById(outlineID).getElementsByTagName("body")[0]
 // wrap whole outline HTML in a span
 var olHTML = "" +
 makeHTML(outlineID, ol) + ""
 // throw HTML into 'content' DIV for display
 document.getElementById("content").innerHTML = olHTML
 initExpand(outlineID)
 }
}

Validation of browser support is handled by the supportVerified() function. This
function is in search of the XMLDocument property of the XML element object. The
property’s presence indicates that the browser has what it takes to treat embedded XML
as a data island. Incremental tests are needed so that earlier browsers don’t choke on the
reference to the property.
// verify that browser supports XML islands
function supportVerified(testID) {
 if (document.getElementById &&
 document.getElementById(testID) &&
 document.getElementById(testID).XMLDocument) {
 return true
 } else {
 var reply = confirm("This example requires a browser with XML data island
support, such as IE5+/Windows. Go back to previous page?")
 if (reply) {
 history.back()
 } else {
 return false
 }
 }
 return false
}

Book Title Page 29 Chapter #: Chapter Title

Accumulating the HTML
From the init() function, a call to the makeHTML() function starts the most complex
actions of the scripts on this page. This function walks the node hierarchy of the outline’s
BODY elements, deciphering which ones are containers and which ones are end points.

Two global variables are used to keep track of how far the node walk progresses because
this function calls itself from time to time to handle nested branches of the node tree.
Because a reflexive call to a function starts out with new values for local variables, the
globals operate as pointers to let statements in the function know which node is being
accessed. The numbers get applied to an ID attribute assigned to the DIV elements
holding the content.

One of the fine points of the design of this outline is the way space to the left of each
entry is assembled. Unlike the earlier outlines in this chapter, this one displays vertical
dotted lines connecting nodes at the same level. There isn’t a vertical line for every
clickable node appearing above the item, because a clickable node may have no additional
siblings, meaning that the space is blank. To see what I mean, open the OPML example,
and expand the Peas and Canned nodes (or see Figure 52-2). The Canned node is the end
of the second “column,” so the space beneath the icon is blank. That’s what some of the
code in makeHTML() named “prefix” is dealing with: Accumulating just the right
combination of dotted line (chain.gif) and blank (empty.gif) images in sequence
before the outline entry.

Another frequent construction throughout this function is a three-level conditional
expression. This construction is used to determine whether the image just to the left of the
item’s text should be a start, middle, or end version of the image. The differences among
them are subtle (having to do with how the vertical dotted line extends above or below the
widgets). All of these decisions are made from information revealed by the inherent
structure of the OPML element nesting. The listing in the book looks longer than it truly is
because so many long or deeply nested lines must be wrapped to the next line. Viewing
the actual file in your text editor should calm your fears a bit.
// counters for reflexive calls to makeHTML()
var currID = 0
var blockID = 0
// generate HTML for outline
function makeHTML(outlineID, ol, prefix) {
 var output = ""
 var nestCount, link, nestPrefix
 prefix = (prefix) ? prefix : ""
 for (var i = 0; i < ol.childNodes.length ; i++) {
 nestCount = ol.childNodes[i].childNodes.length
 output += "<DIV CLASS='row' ID='line" + currID++ + "'>\n"
 if (nestCount > 0) {
 // for entries that are also parents
 output += prefix
 output += "<IMG ID='widget" + (currID-1) +
 "' SRC='" + ((i== ol.childNodes.length-1) ?
 collapsedWidgetEnd : (blockID==0) ?
 collapsedWidgetStart : collapsedWidget)

Book Title Page 30 Chapter #: Chapter Title

 output += "' HEIGHT=" + widgetHeight + " WIDTH=" +
 widgetWidth
 output += " TITLE='Click to expand/collapse nested items.'
 onClick='toggle(this," + blockID + ")'>"
 // if a uri is specified, wrap the text inside a link
 link = (ol.childNodes[i].getAttribute("uri")) ?
 ol.childNodes[i].getAttribute("uri") : ""
 if (link) {
 output += " <A HREF='" + link +
 "' CLASS='itemTitle' TITLE='" + link +
 "' TARGET='" + displayTarget + "'>"
 } else {
 output += " <A CLASS='itemTitle' TITLE='" +
 link + "'>"
 }
 // finally! the actual text of the entry
 output += " " + ol.childNodes[i].getAttribute("text") +
 ""
 currState += calcBlockState(outlineID, currID-1)
 output += "<SPAN CLASS='OLBlock' BLOCKNUM='" + blockID +
 "' ID='OLBlock" + blockID++ + "'>"
 // accumulate prefix art for next indented level
 nestPrefix = prefix
 nestPrefix += (i == ol.childNodes.length - 1) ?
 "" :
 ""
 // reflexive call to makeHTML() for nested elements
 output += makeHTML(outlineID, ol.childNodes[i], nestPrefix)
 output += "</DIV>\n"
 } else {
 // for endpoint nodes
 output += prefix
 output += "<IMG ID='widget" + (currID-1) + "' SRC='" +
 ((i == ol.childNodes.length - 1) ?
 nodeWidgetEnd : nodeWidget)
 output += "' HEIGHT=" + widgetHeight + " WIDTH=" +
 widgetWidth + ">"
 // check for links for these entries
 link = (ol.childNodes[i].getAttribute("uri")) ?
 ol.childNodes[i].getAttribute("uri") : ""
 if (link) {
 output += " <A HREF='" + link +
 "' CLASS='itemTitle' TITLE='" +
 link + "' TARGET='" + displayTarget + "'>"
 } else {
 output += " <A CLASS='itemTitle' TITLE='" +
 link + "'>"
 }
 // grab the text for these entries
 output += ol.childNodes[i].getAttribute("text") + ""
 output += "</DIV>\n"
 }
 }
 return output
}

As with the HTML assembly code of the first outliner, if you were to add attributes to
OUTLINE elements in an OPML outline (for example, a URL for an icon to display in
front of the text), it is in makeHTML() that the values would be read and applied to the
HTML being created.

Book Title Page 31 Chapter #: Chapter Title

The only other function invoked by the makeHTML() function is
calcBlockState(). This function looks into one of the OPML outline’s HEAD
elements, called EXPANSIONSTATE. This element’s values can be set to a comma-
delimited list of numbers corresponding to nodes that are to be shown expanded when
the outline is first displayed. The calcBlockState() function is invoked for each
parent element. The element’s location is compared against values in the
EXPANSIONSTATE element, if there are any, and returns the appropriate 1 or 0 value
for the state string being assembled for the rendered outline.
// apply default expansion state from outline's header
// info to the expanded state for one element to help
// initialize currState variable
function calcBlockState(outlineID, n) {
 var ol = document.getElementById(outlineID).getElementsByTagName("body")[0]
 var outlineLen = ol.getElementsByTagName("outline").length
 // get OPML expansionState data
 var expandElem =
document.getElementById(outlineID).getElementsByTagName("expansionState")[0]
 var expandedData = (expandElem.childNodes.length) ?
 expandElem.firstChild.nodeValue.split(",") : null
 if (expandedData) {
 for (var j = 0; j < expandedData.length; j++) {
 if (n == expandedData[j] - 1) {
 return "1"
 }
 }
 }
 return "0"
}

The final act of the initialization process is a call to the initExpand() function. This
function loops through the currState global variable (whose value was written in
makeHTML() with the help of calcBlockState()) and sets the display property
to block for any element designed to be expanded at the outset. HTML element
construction in makeHTML() is performed in such a way that each parent DIV has a
SPAN nested directly inside of it; and inside that SPAN are all the child nodes. The
display property of the SPAN determines whether all of those children are seen or not.
// expand items set in expansionState XML tag, if any
function initExpand(outlineID) {
 for (var i = 0; i < currState.length; i++) {
 if (currState.charAt(i) == 1) {
 document.getElementById("OLBlock" + i).style.display = "block"
 }
 }
}

By the time the initExpand() function has run — a lot of setup code that executes
pretty quickly — the rendered outline is in a steady state. Users can now expand or
collapse portions by clicking the widget icons.

Toggling node expansion
All of the widget images in the outline have onClick event handlers assigned to them.
The handlers invoke the toggle() function, passing parameters consisting of a

Book Title Page 32 Chapter #: Chapter Title

reference to the IMG element object receiving the event and the serial number of the
SPAN block nested just inside the DIV that holds the image. With these two pieces of
information, the toggle() function sets in motion the act of inverting the
expanded/collapsed state of the element and the plus or minus version of the icon image.
The blockNum parameter corresponds to the position within the currState string of
1s and 0s holding the flag for the expanded state of the block. With the current value
retrieved from currState, the value is inverted through swapState(). Then, based
on the new setting, the display property of the block is set accordingly, and widget art
is changed through two special-purpose functions.
// toggle an outline mother entry, storing new state value;
// invoked by onClick event handlers of widget image elements
function toggle(img, blockNum) {
 var newString = ""
 var expanded, n
 // modify state string based on parameters passed IMG
 expanded = currState.charAt(blockNum)
 currState = swapState(currState, expanded, blockNum)
 // dynamically change display style
 if (expanded == "0") {
 document.getElementById("OLBlock" + blockNum).style.display =
 "block"
 img.src = getExpandedWidgetState(img.src)
 } else {
 document.getElementById("OLBlock" + blockNum).style.display =
 "none"
 img.src = getCollapsedWidgetState(img.src)
 }
}

Swapping the state of the currState variable utilizes the same XOR operator
employed by the first outliner in this chapter. The entire currState string is passed as a
parameter. The indicated digit is segregated and inverted, and the string is reassembled
before being returned to the calling statement in toggle().
// invert state
function swapState(currState, currVal, n) {
 var newState = currState.substring(0,n)
 newState += currVal ^ 1 // Bitwise XOR item n
 newState += currState.substring(n+1,currState.length)
 return newState
}

As mentioned earlier, each of the clickable widget icons (plus and minus) can be one of
three states, depending on whether the widget is at the start, middle, or end of a vertical-
dotted chain. The two image swapping functions find out (by inspecting the URLs of the
images currently occupying the IMG element) which version is currently in place so that,
for instance, a starting plus (collapsed) widget is replaced with a starting minus
(expanded) widget. This is a case of going the extra mile for the sake of an improved user
interface.
// retrieve matching version of 'minus' images
function getExpandedWidgetState(imgURL) {
 if (imgURL.indexOf("Start") != -1) {
 return expandedWidgetStart
 }
 if (imgURL.indexOf("End") != -1) {

Book Title Page 33 Chapter #: Chapter Title

 return expandedWidgetEnd
 }
 return expandedWidget
}

// retrieve matching version of 'plus' images
function getCollapsedWidgetState(imgURL) {
 if (imgURL.indexOf("Start") != -1) {
 return collapsedWidgetStart
 }
 if (imgURL.indexOf("End") != -1) {
 return collapsedWidgetEnd
 }
 return collapsedWidget
}

Wrap up
There’s no question that the amount and complexity of the code involved for the OPML
version of the outliner are significant. The “pain” associated with developing an
application such as this is all up front. After that, the outline content is easily modifiable in
the OPML format (or perhaps by some future editor that produces OPML output).

Even if you don’t plan to implement an OPML outline, the explanation of how this
example works should drive home the importance of designing data structures that assist
not only the visual design, but also the scripting that you use to manipulate the visual
design.

Further Thoughts
The advent of CSS and element positioning has prompted numerous JavaScripters to
develop another kind of hierarchical system of pop-up or drop-down menus. You can
find examples of this interface at many of the JavaScript source Web sites listed in
Appendix D. Making these kinds of menus work well in NN4, IE4+, and W3C DOMs is a
lot of hard work, and if you can adopt code already ironed out by others, then all the
better.

Most of the code you find, however, will require a fair amount of tweaking to blend the
functionality into the visual design that you have or are planning for your Web site.
Finding two implementations on the Web that look or behave the same way is rare. As
long as you’re aware of what you’ll be getting yourself into, you are encouraged to check
out these interface elements. By hiding menu choices except when needed, valuable
screen real estate is preserved for more important, static content.

	Chapter 52: Application: Outline-Style Table of Contents
	Design Challenges
	The Implementation Plan
	The Code
	Cascading Style Sheet Version
	A Futuristic (XML) Outline
	Further Thoughts

