Chapter 51: Application: A “Poor Man’s” Order
Form

In This Chapter
Live math on table rows and columns
Number formatting

Code reusability

| hesitate to call the application described in this chapter an “order form” becauseit is not
in any way intended for use as a client-side shopping cart or some of the more advanced
e-commerce applications you see on the Web. No, the goal here is to demonstrate how
JavaScript can be used to assist users with column-and-row arithmetic, very much like the
kinds of arithmetic needed to calculate the total for an order of goods.

While this order form is not linked to any particular online catalog, some or all of it can
be used as a piece for asmall e-commerce site. The form in the example here requires
that usersinput product descriptions and prices, but there is no reason that a client-side
JavaScript shopping cart can’t accumulate the shopper’ s choices from catal og pages, and
then present them in an order form with product descriptions and prices hard-wired into
the table. There still are entry boxes for quantity and selecting local sales tax rates. But all
the arithmetic products and sums are calculated quickly on the client with JavaScript.

Along the way, you should also discover how to design code — more specifically,
JavaScript data structures — in such away that they are easily editable by non-scripters
who are responsible for updating the embedded data. Therefore, even if you prefer to
leave professional e-commerce order processing to server CGls, you may still pick up a
scripting tip or two from this “poor man’s’ version of an order form.

Defining the Task

| doubt that any two order forms on the Web are executed precisely the same way. Much
of the difference has to do with the way a CGI program on the server wantsto receive the
dataon its way to an order-entry system or database. The rest has to do with how clever
the HTML programmer is. To come up with ageneralized demonstration, | had to select a
methodology and stay with it.

Because the intended goal of this demonstration is to focus on the rows and columns of
an order form, | omit the usual hame-and-address input elements. Instead, the code deals
exclusively with the tabular part of the form, including the footer “stuff” of aform for
subtotals, sales tax, shipping, and the grand total.

Another goal isto design the order form with an eye to as much reusability as possible. In
other words, | may design the form for one page, but | also want to adapt it to another
order form quickly without having to muck around too deeply in complicated HTML and
JavaScript code. One giant annoyance that this approach eliminatesis the normal HTML
repetition of row after row of tags for input fields and table cells. JavaScript can certainly
help you out there.

The order form code aso demonstrates how to perform math and display resultsin two
decimal places, usethe St ri ng. spl i t () method to make it easy to build arrays of
data from comma-delimited lists, and enable JavaScript arrays to handle tons of repetitive
work.

The Form Design

Figure 51-1 shows arather simplified version of an order form as provided in the listings.
Many elements of the form are readily adjustable by changing only afew characters near
the top of the JavaScript listing. At the end of the chapter, | provide several suggestions
for improving the user experience of aform, such asthis one.

& Scripted Order Form - Microsoft Internet Explarer
File Edit Wiew Favorites Tools Help
- = 4 : [x Fl at o | Laj x| _jv =¥ | -
Back o vl Stop Aefresh Home Search Favorites Hizlory Mail [Frint Edst
ORDER FORM
Qiy Siocks Description Price Tetal
3 | [s008 [Gitma. bue, medwem 11 ee 3564
I T [widget long [za7e [rave
I I I I
I I I I
I I I I
Suhiotal: |B040
IS =00 =]ag | Sabes Tax: 483
& Shipping: |0.00
EE QI Total: W
-
@] Done 24 Loeal intranit

Figure 51-1
The order form display

Form HTML and Scripting

Because this form is generated as the document loads, JavaScript writes most of the
document to reflect the variable choices made in the reusable parts of the script. In fact, in
this example, only the document heading is hard-wired in HTML.

The script uses afew JavaScript facilities that aren’t available in the earliest browsers, so
you have to guard against browsers of other levels reaching this page and receiving script
errorswhendocunent . wri t e() statementsfail to find functions defined inside
JavaScript 1.1 language script tags. As part of this defense, | defined a JavaScript 1.0
function, calledi ni ti al i ze() , ahead of any other script. Thisfunction is called later
in the Body. Because both types of browsers can invoke this function, the Head portion of
this document containsani ni ti al i ze() function in both JavaScript 1.0 and
JavaScript 1.1 script tags. For JavaScript 1.0 browsers, the function displays a message
alerting the user that this form requires a more recent browser. Y our message could be
more helpful and perhaps even provide alink to another version of the order form. In the
JavaScript 1.1 portion, thei ni ti al i ze() functionisempty, sitting ready to catch and
ignore the call made by the document:

<HTM.>
<HEAD>
<TI TLE>Scri pted Order Fornx/ Tl TLE>
<SCRI PT LANGUAGE="JavaScri pt">
<l--
/1 displays notice for non-JavaScript 1.1 browsers
function initialize() {
docunent.wite("This page a nore recent browser version.")
}

[l -->
</ SCRI PT>

Global adjustments

The next section is the start of the JavaScript 1.1-level statements and functions that do
most of the work for this document. The script begins by initializing three very important
global variables. Thislocation iswhere the author defining the details for the order form
also enters information about the column headings, column widths, and number of data
entry rows.

<SCRI PT LANGUAGE="JavaScriptl.1">

<l--

/1 ** BEG N GLOBAL ADJUSTMENTS ** [/

/1 Order form columms and rows specifications

/1 **Columm titles CANNOT CONTAI N PERI QDS

var columHeads = "QYy, St ock#, Description, Price, Total".split(",")
var col umW dt hs "3,7,20,7,8".split(",")

var nunber O Rows 5

The first two assignment statements perform double duty. Not only do they provide the
location for customized settings to be entered by the HTML author, but they use the
string.split() methodto literally create arrays out of their series of comma
delimited strings. At first, this may seem to be a roundabout way to generate an array,
because you can also create the array directly with:

var columHeads = new Array("Qy","Stock",...)

But the way shown here minimizes the possibility of goofing up the quotes and commas
when modifying the data, especially if modification might be attempted by a nonscripter.

So much of the repetitive work to come in this application is built around arrays that it
will prove to be extraordinarily convenient to have the column title names and column
widthsin parallel arrays. The number-of-rows value also plays arole in not only drawing
the form, but calculating it as well.

Notice the caveat about periods in column heading strings. Y ou will soon see that these
column names are assigned as text object names, which, in turn, are used to build object
references to text boxes. Object names cannot have periodsin them, so for these column
headings to perform their jobs, you have to leave periods out of their names.

As part of the global adjustment area, the ext endRow() method requires knowledge
about which columns are to be multiplied to reach atotal for any row:

/1 data entry row nmath

function extendRow(formrowNun) {
/1 **change 'Qy' and 'Price' to match your columm nanes
var rowSum = form Qy[rowNumnj .value * form Price[rowNun. val ue
/1 **change 'Total' to match your correspondi ng col utm nane
form Total [rowNunj . val ue = format Num(r owSum 2)

}

ThisexampleusestheQ y, Pri ce, and Tot al fieldsfor math calculations. Thosefield
names are inserted into the references within this function. To calculate the total for each
row, the function receives the form object reference and the row number as parameters.
As described later, the order form is generated as akind of array. Each field in a column
intentionally has the same name. This scheme enables scriptsto access agiven field in
that column by row number when using the row number as an index to the array of
objects bearing the same name. For example, for the first row (row 0), you calculate the
total by multiplying the quantity field of row O (f or m Q y[O] . val ue) timesthe price
fieldof row O (f orm Pri ce[0] . val ue). You then format that value to two places to
the right of the decimal and plug that number into the value of the total field for row O
(form Total [0] . val ue).

The final place where you have to worry about customized information isin the function
that adds up the total columns. The function must know the name that you assigned to the
total column:

function addTotal s(forn) {

var subTotal =0

for (var i = 0; i < nunberOf Rows; i++) {
/1 **change 'Total' in both spots to match your col um nane
subTotal += (form Total[i].value I="") ?

parseFl oat (form Total [i].value) : O

form subtotal.value = format Num(subTot al , 2)

formtax.value = format Nun{get Tax(form subTotal), 2)

formtotal.value = "$" + format Nunm((parseFl oat (form subtotal.value) +
par seFl oat (f orm t ax. val ue) + parseFl oat (f orm shi ppi ng. val ue)), 2)

}
/1 ** END GLOBAL ADJUSTMENTS ** [/

TheaddTot al s() function receives the form reference as a parameter, which it usesto
read and write data around the form. The first task is to add up the values of the total
fields from each of the data-entry rows. Here you need to be specific about the name you
assign to that column. To keep code lines to a minimum, you use a conditional expression
insidethef or loop to make additionsto thesubTot al amount only when avalue
appearsin arow’stotal field. Because all values from text fields are strings, you use

par seFl oat () to convert the values to floating-point numbers before adding them to
thesubTot al variable.

Three more assignment statements fill in the subtotal, tax, and total fields. The subtotal is
nothing more than a formatted version of the amount reached at the end of thef or loop.
Thetask of calculating the sales tax is passed off to another function (described in a
following section), but its value is also formatted before being plugged into the sales tax
field. For the grand total, you add floating-point-converted values of the subtotal, tax, and
shipping fields before slapping adollar sign in front of the result. Even though the three
fields contain values formatted to two decimal places, any subsequent math on such
floating-point values incurs the minuscule errors that send formatting out to sixteen
decimal places. Thus, you must reformat the results after the addition.

Do the math

Asyou can see from Figure 51-1, the user interface for entering the salestax isa pair of
SELECT elements. Thistype of interface minimizes the possibility of users entering the
value in all kinds of weird formats that, in some cases, would be impossible to parse. The
function that calculates the sales tax of the subtotal 100ks to these select objects for their
current settings.

function get Tax(form ant){
var chosenPercent = form percent[form percent. sel ect edl ndex] . val ue
var chosenFraction = formfraction[formfraction. sel ect edl ndex]. val ue
var rate = parseFl oat(chosenPercent + "." + chosenFraction) / 100
return ant * rate

}

After receiving the form object reference and subtotal amount as parameters, the function

reads the two values chosen in the SELECT elements. The string val ue properties of the
SELECT objects are temporarily stored in local variables. To arrive at the actual rate, you

concatenate the two portions of the string (joined by an artificial decimal point) and

par seFl oat () thestring to get a number that you can then divide by 100. The product
of the subtotal timestherate is returned to the calling statement (in the preceding

addTot al s() function).

All of the calculation that ripples through the order form is controlled by asingle
cal cul at e() function:

function cal cul ate(formrowNum {
ext endRow(f or m r owNum)
addTot al s(form

}

Thisfunction is called by any object that affects the total of any row. Such arequest
includes both the form object reference and the row number. This information lets the
single affected row, and then the totals column, be recalculated. Changes to some objects,
such asthe sales tax SELECT objects, affect only the totals column, so they will call
addTot al s() function directly rather than this function (the rows don’t need
recalculation).

Number formatting, as explained in Chapter 35, is a detail that scripters must handle
themselves (unless you are designing for 1E5.5+ and NN6+, which include the
nunber . t oFi xed() method for number formatting). We can borrow the formatting
code from Chapter 35, and use it here as-is:

function format Nun(expr, decpl aces) {
var str = (Math.round(parseFl oat (expr) *
Mat h. pow(10, decpl aces))).toString()
while (str.length <= decpl aces) {
str = “0" + str
}

var decpoint = str.length - decpl aces
return str.substring(0, decpoint) + "." +
str.substring(decpoint,str.|ength)

}

Being able to pick up this function from a different application should reinforce the
advantage to writing functions to be as generalizable as possible. Rather than building
page-specific references into the formatting function, it accepts parameters that could
come from anywhere. Page specifics are |eft to another function that deals with reading
and writing text box values.

Cooking up some HTML

Aswe near the end of the scripting part of the document’s Head section, we come to two
functions that are invoked later to assemble some table-oriented HTML based on the
global settings made at the top. One function assembles the row of the table that contains
the column headings:
function makeTitl eRow) {

var titleRow = "<TR>"

for (var i = 0; i < columHeads.length; i++) {
titl eRow += "<TH>" + col umHeads[i] + "</ TH>"

}
titl eRow += "</ TR>"
return titl eRow

}

The heart of the makeTi t | eRow() functionisthef or loop, which makes simple
<TH> tags out of the text entriesin the col uimmHeads array defined earlier. All this
function doesis assemblethe HTML. A docunent . wi t e() method in the Body puts
thisHTML into the document.

functi on makeOneRow(r owNum) {
var oneRow = "<TR>"
for (var i = 0; i < columHeads.length; i++) {
oneRow += "<TD ALI G\=ni ddl e><I NPUT TYPE=t ext SIZE=" +
columWdths[i] + " NAME=\'" + colummHeads[i] +
"\' onChange='cal culate(this.form" + rowNum + ")'></TD>"

}

oneRow += "</ TR>"
return oneRow

}

Creating arow of entry fieldsis abit more complex, but not much. Instead of assigning
just aword to each cell, you assemble an entire <I NPUT> object definition. Y ou use the
col utMmW dt hs array to define the size for each field (which therefore defines the
width of the table cell in the column). col uimHead values are assigned to the field's
NAME attribute. Each column’s fields have the same name, no matter how many rows
exist. Finaly, the onChange event handler invokesthe cal cul at e() method,
passing the form and, most importantly, the row number, which comesinto this function
as a parameter (see the following section).

Some JavaScript language cleanup

The final function in the Head script is an empty functionfori ni ti al i ze() . This
function is the one that JavaScript 1.1-level browsers activate after the document loads
into them:

/1 do nothing when JavaScript 1.1 browser calls here
function initialize() {}

/]-->

</ SCRI PT>

</ HEAD>

<BODY>

<CENTER>

<H1>ORDER FORM/ H1>

<FORW>

<TABLE BORDER=2>

<SCRI PT LANGUAGE="JavaScri pt">
<l--

initialize()

I -->

</ SCRI PT>

From there, you start the <BODY> definition, including a simple header. Y ou
immediately go into the form and table definitions. A JavaScript script that will be run by
all versions of JavaScript invokesthei ni ti al i ze() function. JavaScript 1.0-level
browsers executethei ni ti al i ze() function in the topmost version in the Head so
that they display the warning message in the document’ s body; JavaScript 1.1-level
browsers execute the empty function you see.

Tedium lost

Believe it or not, all of the rows of data-entry fields in the table are defined by the handful
of JavaScript statements that follow:

<SCRI PT LANGUAGE="JavaScriptl.1">

docunent. wite(makeTitl eRow())

/1 order formentry rows

for (var i = 0; i < nunberORows; i++) {
docunent. wite(makeOneRow(i))

}

Thefirst function to be called isthe makeTi t | eRow() function, which returns the
HTML for the table’ s column headings. Then avery simplef or loop writes as many
rows of the field cells as defined in the global value near the top of the document. Notice
how the index of the loop, which corresponds to the row number, is passed to the
makeOneRow() function, so that it can assign that row number to its relevant
statements. Therefore, these few statements generate as many entry rows as you need.

Tedium regained

What follows in the script writes the rest of the form to the screen. To make these fields
asintelligent as possible, the scripts must take the number of columns into consideration.
A number of empty-space cells must also be defined (again, calculated according to the
number of columns). Finally, the code-consuming SELECT element definitions must also
be in this segment of the code.

/1 order formfooter stuff (subtotal, sales tax, shipping, total)
var col Spacer = "<TR><TD COLSPAN=" +
(columWdths.length - 2) + "></TD>"
docunent. write(col Spacer)
docunent. wite("<TH>Subtotal : </ TH>")
docunent. wite("<TD><I NPUT TYPE=text SIZE=" +
col umW dt hs[col umWdths.length - 1] + " NAME=subt ot al ></ TR>")
docunent. wite("<TR><TD COLSPAN=" +
(col urdet hs.length - 3) + "></TD>")
var taxl = "<SELECT NAME=per cent
onChange=' addTot al s(this.forn' ><OPTI ON>0<OPTI ON>1<OPTI ON>2<OPTI ON>3"
taxl += "<OPTI ON VALUE=1>1<OPTI ON VALUE=2>2<CPTI ON VALUE=3>3"
taxl += "<OPTI ON VALUE=4>4<0PTI ON VALUE=5>5<CPTI ON VALUE=6>6"
taxl += "<OPTI ON VALUE=7>7<OPTI ON VALUE=8>8<CPTI ON VALUE=9>9"
taxl += "</ SELECT>"
var tax2 = "<SELECT NAME=fracti on onChange='addTotal s(this.form"'>"
tax2 += "<OPTI ON VALUE=0>00<OPTI ON VALUE=25>25"
tax2 += "<OPTlI ON VALUE=5>50<OPTI ON VALUE=75>75</ SELECT>"
docunent. wite("<TH ALI GN=RI GHT>" + tax1l + "." + tax2 + "\ %/ TH>")
docunent. wite("<TH ALI GN=RI GHT>Sal es Tax: </ TH>")
docunent. wite("<TD><I NPUT TYPE=text SIZE=" +
col umW dt hs[col umWdths.length - 1] + " NAME=t ax VALUE=0. 00></ TR>")
docunent. wite(col Spacer)
docunent . write(" <TH>Shi ppi ng: </ TH>")
docunent. wite("<TD><I NPUT TYPE=t ext SIZE=" +
col umW dt hs[col umWdths.length - 1] + " NAME=shi ppi ng VALUE=0. 00
onChange=' addTotal s(this.forn'></TR>")
docunent. write(col Spacer)
docunent. wite("<TH>Total : </ TH>")
docunent. wite("<TD><I NPUT TYPE=text SIZE=" +
col umW dt hs[col umWdths.length - 1] + " NAME=t ot al ></ TR>")
</ SCRI PT>

</ TABLE></ FORM>

</ BODY>

</ HTM.>

To gain abetter understanding of how the script assembles the HTML for this part of the
table, start by looking at the col Spacer variable. This variable contains atable cell
definition that must span all but the rightmost two columns. Thus, the COL SPAN attribute
is calculated based on the length of the col umW dt hs array (minustwo for the
columns we need for data). Therefore, to write the line for the subtotal field, you start by
writing one of these column spacers, followed by the <TH> type of cell with the label in

it. For the actual field, you must size it to match the fields for the rest of the column.
That’ s why you summon the value of the last col uimW dt hs value for the SI ZE
attribute. Y ou use similar machinations for the Shipping and Total lines of the form
footer material.

In between these locations, you define the Sales Tax SELECT objects (and a column
spacer that is one cell narrower than the other one you used). To reduce the risk of data-
entry error and to allow for awide variety of values without needing a 40-item pop-up
list, I divided the choices into two components and then display the decimal point and
percentage symbol in hard copy. Both SELECT objectstrigger theaddTot al s()
function to recal culate the rightmost column of the form.

Sometimes, it seems odd that you can script four lines of code to get 20 rows of atable,
yet it takes twenty lines of code to get only four more complex rows of atable. Such are
the incongruities of the JavaScripter’slife.

Further Thoughts

Depending on the catalog of products or services being sold through this order form, the
first improvement | would make is to automate the entry of stock number and description.
For example, if thelist of all product numbersisn’'t that large, you may want to consider
dropping a SELECT element into each cell of the Description column. Then, after a user
makes a selection, the onChange event handler performs alookup through a product
array and automatically plugsin the description and unit price. In any version of this
form, you also need to perform data validation for crucial calculation fields, such as
guantity.

In a CGl-based system that receives data from this form, individual fields do not have
unique names, as mentioned earlier. All Qt y fields, for instance, have that name. But
when the form is submitted, the name-value pairs appear in afixed order every time.

Y our CGI program can pull the data apart partly by field name, partly by position. The
same goes for a program you may build to extract form data that is e-mailed to you rather
than sent as a CGlI request.

Some of the other online order forms I’ ve seen include reset buttons for every row or a
column of checkmarks that |ets users select one or more rows for deletion or resetting.
Remember that people make mistakes and change their minds while ordering online.
Give them plenty of opportunity to recover easily. If getting out of jam istoo much
trouble, they will head for the History list or Back button, and that valued order will be,
well, history.

	Chapter 51: Application: A “Poor Man’s” Order Form
	Defining the Task
	The Form Design
	Form HTML and Scripting
	Further Thoughts

