Chapter 48: Internet Explorer Behaviors

In This Chapter

Introducing | E behaviors

Understanding the structure of behavior XML files
Exploring behavior samples

Internet Explorer 5 for Windows was the first browser to deploy what Microsoft calls
behaviors. Microsoft and others have proposed the behaviors concept to the W3C, and it
could some day become one of the W3C standard recommendations. Such a standard
might not be implemented exactly the way Microsoft currently implements behaviors, but
most of the concepts are the same, and the syntax being discussed so far issimilar. While
there is no guarantee that the W3C will adopt behaviors as a standard, you will see that
the concept seems to be a natural extension to the work that has aready been adopted for
both CSS and XML. Even though behaviors run only on Windows versions of 1E5+ (as of
thiswriting anyway), that browser family and operating system are pervasive enough to
warrant an extended description of how behaviors work.

The W3C effort is called Behavioral Extensionsto CSS. For the latest document
describing the work of the participants of the standards discussions, visit
http://ww. w3. or g/ TR/ becss.

Style Sheets for Scripts

Y ou can best visualize what a behavior isin terms of the way you use style sheets.
Consider a style sheet rule whose selector isatag or a class name. The idea behind the
style sheet is that one rule, which can define dozens of rendering characteristics of a
chunk of HTML content, can be applied to perhaps dozens, if not hundreds, of elements
within the document. A corporation may design a series of rules for the way its Web
documents will look throughout the Web site. If the designer decidesto alter the font
family or color for, say, H1 elements, then that change is made in one place (the externa
style sheet file), and the impact is felt immediately across the entire site. Any page that
includes an H1 element renders the header with the newly modified style.

Imagine now that instead of visual styles associated with an element, you want to define a
behavioral style for a particular group of elements. A behavioral styleistheway an
element responds to predominantly user interaction with the element. For example, if the
design specifications for a Web site indicate that all links should have their text colored a
certain way when at rest, but on mouse rollovers, the text color changes to amore
contrasting color, the font weight increases to bold, and the text becomes underlined.

Those modifications require scripts to change the style properties of the element in
response to the mouse action of the user. The scripts that fire in response to specific user
actions (events) are written in an external file known as a behavior, and a behavior is
associated with an element, class, or tag through the same CSS syntax that you use for
other style attributes.

A behavior, of course, assumes that its scripts can work with whatever HTML element is
associated with the behavior. Just as it would beillogical to associatethet abl eLayout
style attribute with an element that wasn't a TABLE, so, too, would it beillogical to
associate a behavior, whose scripts employed TABLE object properties and methods, to a
P element. Even so, awell-designed behavior can obtain details about the element being
manipulated through the element object’ s properties. The better you are at writing
generalizable JavaScript functions, the more successful you will be in implementing
behaviors.

Embedding Behavior Components

| E treats each behavior as a component, or add-on building block for the browser. IE5
comes equipped with a handful of behaviors built into the browser (the so-called default
behaviors, which happen to rely on specific XML elements embedded in a document).
Behaviors that you create most likely exist as separate files on the server, just like
external . css and. | s filesdo. Thefile extension for abehavior fileis. ht ¢ (standing
for HTML Component).

Linking in a behavior component

To associate a behavior with any single element, class of elements, or tag as the page
loads, use CSS rule syntax and the | E-specific behavi or attribute. The basic syntax is
asfollows:

sel ector {behavi or:url (conmponent Ref erence)}

Aswith any style sheet rule, you can combine multiple rule attributes, delimiting them
with semicolons. The format of the conponent Ref er ence depends on whether you
are using one of the | E default behaviors or a behavior you' ve written to an external file.
For default behaviors, the reference isin the format:

#def aul t #conponent Name

For example, if you want to associate the downl oad behavior with any element of class
downl oads:

. downl oads {behavi or: url (#def aul t #downl oad) }

Relative or absolute URIs to external . ht ¢ files can also be specified. For example, if
your site contains adirectory named behavi or s and afilenamed hi | i t e. ht c, the
style sheet rule from the root directory is:

.hiliters {behavior:url (behaviors/hilite.htc)}

Aswith all CSS style sheet rules, behaviors can be specified in a STY LE element of the
page, in the STYLE attribute of an individual element, or in arule defined inside an
imported . css file.

Enabling and disabling behaviors

In Chapter 15, you can find details of |E5/Windows methods for al HTML elements that
let scripts manage the association of a behavior with an element after the page has loaded.
Invoking the addBehavi or () method on an element assigns an externa . ht c fileto
that element. When you no longer need that behavior associated with the element, invoke
ther enoveBehavi or () method.

Component Structure

An. ht c behavior fileisatext file consisting of script statementsinside a<SCRI PT>
tag set and some special XML tags that |ES/Windows knows how to parse. Y ou create
. ht ¢ filesin the same kind of plain text editor that you use for external . j s or . css
files.

Script statements

Unlike external . j s files, an. ht ¢ behavior file includes <SCRI PT> tags, which
surround any JavaScript (or VBScript, if you like) statements that control the behavior.
Because a behavior most typically iswritten to control one or more aspects of the HTML
element to which it is connected, statements tend to operate only on the associated object
element. A special reference— el enent — isused to refer to the element object itself
(much like the way thet hi s keyword in a custom object’s method self-refersto the
object associated with the method).

If your behavior will be modifying either the content or style of the element, use the

el enent reference as afoundation to the reference to one of that element object’s
properties or methods. For example, if a statement in a behavior needsto set the

styl e.visibility property sothat the element hidesitself, the statement in the
behavior scriptis:

el ement.style.visibility = "hi dden"

Any valid reference from the point of view of the element object isfair game, including

references to the element’s par ent El enment , even though the parent element is not
explicitly associated with the behavior.

Variable scope

Except for the special el enent reference, script content of a behavior is completely
self-contained. Y ou can define global variablesin the behavior that are accessible to any
script statement in the behavior. But aglobal variable in a behavior does not become a

global variable for the main document’ s scripts to use. Y ou can expose variables so that
scripts outside of the behavior can get to them (as described below), but this exposureis
not automatic.

Most of the script content of a behavior consists of functions that usually interact in some
fashion with the associated element (via the element’ s properties and/or methods). L ocal
variables in functions have the same scope and operate just like they do in regular script
functions. Global variables you define in abehavior, if any, are usually there for the
purpose of preserving values between separate invocations of the functions.

Assigning event handlers

Functions in a behavior are triggered from outside the behavior through two means: event
handlers and direct invocation of functions declared as public (described in the next
section). Event handler binding is performed in away that is not used elsewherein the
|[E4+ DOM. Each event type (for example, onMouseOver , onKeyPr ess) requiresits
own special XML tag at the top of the behavior file. The format for the event handler tag
isasfollows:

<PUBLI C: ATTACH EVENT="event Nane" ONEVENT="behavi or Functi onNane()" />

Asthe behavior loads, the PUBLI C. ATTACH tag instructs the browser to expose to the
“public” (that is, the world outside of the behavior) an event type (whose name always
begins with the “on” prefix in the IE4+ event model); whenever an event of that type
reaches the behavior’ s element, then the function (defined within the behavior file) is
invoked. In XML terminology, the PUBLI C. part of the tag is known as a namespace,
and |E includes a built-in parser for the PUBLI C namespace. Notice, too, the XML
syntax at the end of the tag that allows a single set of angle brackets to act as a start and
end tag set (there is no content for this tag, just the attributes and their values).

To demonstrate, imagine that a behavior has a function named under | i nel t (), which
setstheel enent . st yl e. t ext Decor at i on property to underline. To get the
element to display the underline decoration as the user rolls the mouse atop the element,
bind this function to the element’sonMouseOver event handler asfollows:

<PUBLI C: ATTACH EVENT="onnpuseover" ONEVENT="underlinelt()" />

If you compare the wording of the opening part of the tag, you may recognize a
connection to the IE4+ event model’sat t achEvent () method of all HTML elements
(Chapter 15). Y ou can have as many event binding tags as your element needs. To invoke
multiple functions in response to a single event type, simply add the subsequent function
invocation statements to the ONEVENT attribute, separating the calls by semicolons (the
same as with regular JavaScript statement delimiters).

Exposing properties and methods

XML tags with the PUBLI C. namespace are also used (with different attributes) to
expose a behavior’s global variables as properties of the element and abehavior’'s

functions as methods of the element. The syntax for both types of “public”
announcementsis as follows:

<PUBLI C: PROPERTY NAME=" gl obal Var Nane" />
<PUBLI C: METHOD NAME="functi onName" />

Valuesfor both items are string versions of references to the variable and function (no
parentheses). Again, you can define as many properties and methods for a behavior as you
need.

As soon as a property and/or method is made public in a behavior, scripts from outside
the behavior can access those items as if they were properties or methods of the element
associated with the behavior:

docunent. al | . el enent | D. behavi or Property

docunent. al | . el enent | D. behavi or Met hod()

If you associate a behavior with a style sheet class selector, and several document
elements share that class name, each one of those elements gains the public properties and
methods of that behavior, accessible through references to the individual elements. That’'s
because a behavior’ s scripts are written to read or modify properties of whatever element
receives a bound event or is referenced along the way to the public property or method.

Behavior Examples

The two following examples are intentionally simple to help you grasp the concepts of
behaviorsif they are new to you. The first example interacts with multiple elements
strictly through event binding; the second example exposes a property and method that
the main page’ s scripts access to good effect.

Example 1: Element dragging behavior

This book contains several examples of how to script apage to let a user drag an element
around the browser window (Chapters 31 and 56 in particular). In all those examples, the
dragging code and event handling was embedded in some fashion into the page’ s scripts.
The first example of abehavior, however, drives home the notion of separating an
element’ s behavior from its content (just as a CSS2 style sheet separates an el ement’s
appearance from its content).

Imagine that it’s your job to design a page that employs three draggable elements. Two of
the elements are images, while the third is a panel layer that also includes aform. If you
haven't scripted DHTML before, this may sound like a daunting task at first, one rife with
the possibility of including multiple versions of the same scripts to accommodate
different kinds of draggable elements.

Now imagine that to the rescue comes a scripter who has built a behavior that takes care
of all of the dragging scripting for you. All you do is assign that behavior by way of one

attribute of each draggable element’ s style sheet rule. Absolutely no other scripting is
required on the main page to achieve the element dragging.

Listing 48-1 shows the behavior file (dr ag. ht c) that controls basic dragging of a
positionable element on the page. Y ou may recognize some of the code as an |E4+
version of the cross-browser dragging code used elsewhere in this book (for a blow-by-
blow account of these functions, see the description of the map puzzle game in Chapter
56). The names of the three operative functions and the basic way they do their jobs are
identical to the other dragging scripts. Event binding, however, follows the behavior
format through the XML tags. All interaction with the outside world occurs through the
“public” event handlers.

Listing 48-1
An Element Dragging Behavior

<PUBLI C: ATTACH EVENT="onnpusedown" ONEVENT="engage()" />

<PUBLI C: ATTACH EVENT="onnpusenove" ONEVENT="draglt()" />

<PUBLI C: ATTACH EVENT="onnouseup" ONEVENT="r el ease()" />

<PUBLI C: ATTACH EVENT="onnpuseover" ONEVENT="set Cursor()" />

<PUBLI C. ATTACH EVENT="onnpuseout"” ONEVENT="rel ease();restoreCursor()" />

<SCRI PT LANGUAGE="JScri pt">
/1 global declarations

var offsetX = 0

var offsetY = 0

var sel ect edObj

var ol dZ, ol dCursor

/1 initialize drag action on nousedown
function engage() {
sel ectedObj = (element == event.srcEl ement) ? element : null
if (selectedObj) {
of fset X = event.offset X - el ement. docunent. body. scrol | Left
of fsetY = event.offsetY - el ement. docunent. body. scrol |l Top
ol dZ = el enent.runtineStyl e. zl ndex
el ement . styl e. zI ndex = 10000
event.returnVal ue = fal se

}

/1 nove el enent on nousenove
function draglt() {
if (selectedObj) {
sel ectedObj . styl e. pi xel Left = event.clientX - offsetX
sel ect edObj . styl e. pi xel Top = event.clientY - offsetY
event . cancel Bubbl e = true
event.returnVal ue = fal se

}

/1 restore state on nouseup
function rel ease() {
if (selectedObj) {
sel ect edObj . styl e. zI ndex = ol dz

sel ected®j = null

}

/1 make cursor | ook draggabl e on nmouseover
function setCursor() {
ol dCursor = elenent.runtimeStyle. cursor

el enent. style.cursor = "hand"

}

/'l restore cursor on nouseout
function restoreCursor() {
el ement . styl e. cursor = ol dCursor

}
</ SCRI PT>

Notice asubtlety in Listing 48-1 that is implied by the element-specific scope of a
behavior. Two statementsin theengage() function need to reference scroll-related
properties of thedocunent . body object. Because the only connection between the
behavior and the document isviathe el enent reference, that referenceis used along
with thedocunent property (a property of every HTML element object in IE4+, as
shown in Chapter 15). From there, the body object and the required properties can be
accessed.

Listing 48-2 isasimple page that contains three elements that are associated with the
dr ag. ht ¢ behavior through a style sheet rule definition (for the dr aggabl e class).
The document isincredibly uncomplicated. Even thedr ag. ht c fileisn't very big. But
together they produce afar more interesting page for the user than a couple of static
images and aform.

Listing 48-2
Three Draggable Elements Using the Behavior

<HTM>

<HEAD>

<STYLE TYPE="t ext/css">

.draggabl e {position:absolute; behavior:url(drag.htc)}

#i mgl {l eft: 150px; top: 150px}

#img2 {left:170px; top: 170px}

#txt1l {left:190px; top:190px; background-col or:aqua; w dth: 150px; hei ght: 50px;
text-align:center}

</ STYLE>

</ HEAD>

<BCDY>
<H1>| E5+ Behavi or Deno (Draggi ng) </ H1>
<HR>
<I M5 CLASS="dr aggabl e" I D="i mgl" SRC="cpul.gif">
<I MG CLASS="dr aggabl e" I D="ing2" SRC="desk3.gif">
<Dl V CLASS="draggabl e" ID="txt1">A forminside a DV el enent.
<FORW>
<I NPUT TYPE="button" VALUE="Does Not hi ng">
</ FORM>
</ Dl V>
</ BCDY>
</ HTM.>

Obvioudly, the dragging example here is very rudimentary. It isn't clear from the sample
code what the user gets from the page, other than the joy of moving things around. If you
were designing an application that genuinely benefits from draggable objects (for
example, the map puzzle in Chapter 56), you can easily enhance the behavior to perform
actions, such as snapping a dragged element into place when it is within afew pixels of
its proper destination. For such an implementation, the behavior can be given some extra
global variables, akin to the values assigned to the state objects in Chapter 56, including

the pixel coordinates of the ideal destination for a dragged element. An onLoad event
handler for the page can fireapublici ni t () functionin each element’s behavior to
assign those coordinate values. Any event that can bubble (such as mouse events) does so
from the behavior to the target. Therefore, you can extend the event action of the behavior
by adding a handler for the same event to the element outside of the behavior.

Example 2: Text rollover behavior

In the second example, you see how a behavior exposes a global variable and function as
apublic property and method, respectively. The demonstration reinforces the notion that
even if asingle behavior file is associated with multiple elements (for example, the
elements share the same class, and the behavior is assigned to the class), each behavior
maintains its own variable values, independent of the other elements and their behaviors.

The nature of this behavior isto set the col or style property of the associated element to
either adefault color (red) or to another color that has been passed into the behavior via
one of its public methods. The color setting is preserved in one of the behavior’s global
variables, and that variable is exposed as a public property.

Listing 48-3 showsthe . ht ¢ behavior file's content. Only two events are bound to this
behavior: onnbuseover and onnmouseout — thetypical rollover events. The
onMbuseOQver event invokesthe makeHot () function, whilethe onMouseCQut event
invokesthe makeNor mal () function. Before the makeHot () function makes any
changestothecol or andf ont Wi ght style properties of the element, existing
settings are preserved in (non-public) global variables in the behavior. This allows the
makeNor mal () function to restore the original settings, regardless of what document
styles may be applied to the element in avariety of pages. That's something to keep in
mind when you design behaviors: they can be deployed in pages controlled by any
number of style sheets. Don’t assume any basic style setting; instead, use the

current St yl e property to read and preserve the effective property values before
touching them with your behavior’ s modification scripts.

Neither of the event handler functions are exposed as public methods. Thiswas a
conscious decision for a couple of reasons. The most important reason is that both
functions rely on being triggered by a known event occurring on the element. If either
function were invoked externally, the event object would contain none of the desired
information. Another reason behind thisis from a common programming style for
components that protects inner workings, while exposing only those methods and
properties that are “safe” for othersto invoke. For this code, the public method does little
more than set a property. It's an important property, to be sure, and one of the protected
functionsrelies on it. But by allowing the public method little room to do any damage to
other execution of the behavior, the design makes the behavior component that more
robust.

Assigning a color value to the public property and passing one as a parameter to the
public method accomplishes the same result in this code. As you will see, the property

gets used in the demonstration page to retrieve the current value of the global variable. In
a production behavior component, the programmer would probably choose to expose this
value strictly as aread/write property or expose two methods, one for getting and one for
setting the value. The choice would be at the whim of the programmer’s style and would
likely not be both. Using a method, however, especialy for setting avalue, creates a
framework in which the programmer can also perform validation of the incoming value
before assigning it to the global variable (something the example here does not do).

Listing 48-3
Rollover Behavior (makeHot.htc)

<PUBLI C. ATTACH EVENT="onnouseover" ONEVENT="nmakeHot ()" />
<PUBLI C: ATTACH EVENT="onnpuseout " ONEVENT="nmakeNormal ()" />
<PUBLI C: PROPERTY NAME="hot Col or" />

<PUBLI C: METHOD NAME="set Hot Col or" />

<SCRI PT LANGUAGE="JScri pt">

var ol dCol or, ol dWei ght

var hotCol or = "red"

function setHot Col or(color) {
hot Col or = col or
}

function makeHot () {
if (event.srcElenent == el enent) {
ol dCol or = el enment. current Styl e. col or
ol dWei ght = el enment.current Styl e. font Wi ght
el ement . styl e. col or = hot Col or
el ement . styl e. font Wei ght = "bol d"

}

function makeNormal () {
if (event.srcElenent == el enent) {
el ement . styl e. col or = ol dCol or
el ement . styl e. font Wi ght = ol dWei ght

}
}
</ SCRI PT>

To put the public information and the behavior, itself, to work, a demonstration page
includes three spans within a paragraph that are associated with the behavior. Listing 48-4
shows the code for the demo page.

In addition to the text with rollover spans, the page contains two SELECT controls, which
let you assign a separate color to each of the three elements associated with the behavior.
Thefirst SELECT element lets you choose one of the three elements. Making that choice
invokesther eadCol or () function in the same page. Thisis the function that reads the
hot Col or public property of the chosen span. That color valueis used to select the
color name for display in the second SELECT element. If you make a choice in thelist of
colors, theappl yVal s() function invokes the public set Hot Col or () method of
the element currently selected from the list of elements. Rolling the mouse over that
element now highlights in the newly selected color, while the other elements maintain
their current settings.

Listing 48-4

Applying the Rollover Behavior

<HTM.>

<HEAD>

<STYLE TYPE="text/css">

.hot Stuff {font-weight:bold; behavior:url(mkeHot.htc)}

</ STYLE>

<SCRI PT LANGUAGE="JavaScri pt">

function readCol or(choice) {
var currCol or = docunent. al |l (choi ce. val ue). hot Col or
var col orList = choice.formcol or

for (var i = 0; i < colorList.options.length; i++) {
if (colorList.options[i].value == currColor) {
col orList.sel ectedl ndex =i
br eak
}
}

}
function applyVval s(fornm {
var elem = form el em val ue
docunent. al | (el em) . set Hot Col or (f orm col or. val ue)

}
</ SCRI PT>
</ HEAD>

<BODY>
<H1>| E5+ Behavi or Denp (Styl es)</Hl>
<HR>
<FORW>
Choose Hilited El enent:
<SELECT NAME="el enf onChange="readCol or (this)">
<OPTI ON VALUE="el eml" >Fi r st
<OPTI ON VALUE="el enm2" >Second
<OPTI ON VALUE="el enB8" >Thi rd
</ SELECT>
Choose Hilite Col or:
<SELECT NAME="col or" onChange="appl yVal s(this.form">
<OPTI ON VALUE="r ed" SELECTED>Red
<OPTI ON VALUE=" bl ue" >Bl ue
<OPTI ON VALUE="gr een">G een
</ SELECT>
</ FORW>
<P>Lorem i psumdol or sit anmet, <SPAN |ID="el enl"
CLASS="hot St uf f " >consect et aur </ SPAN> adi pisicing elit, sed do eiusnod tenpor
i ncididunt ut | abore et dol ore nagna
al i qua</ SPAN>. Ut eni m admi ni m veniam quis nostrud exercitation ullanco |aboris
nisi ut aliquip ex ea combdo
consequat </ SPAN>. </ P>
</ DI V>
</ BODY>
</ HTML>

Behaviors are not the solution for every scripting requirement. As demonstrated here,
they work very well for generic style manipulation, but you are certainly not limited to
that sphere. By having areference back to the element associated with the behavior, and
then to the document that contains the element, a behavior’ s scripts can have free run
over the page — provided the actions are either generic among any page or generic
among a design template that is used to build an entire Web site or application.

Even if you don’t elect to use behaviors now (perhaps because you must support browsers
other than |E/Windows), they may be in your future. Behaviors are fun to think about and
also instill good programming practice in the art of creating reusable, generalizable code.

For More Information

In addition to the address of W3C activity on behaviors, Microsoft devotes many pages of
its developer site to behaviors. Here are some useful pointers.

Overview:

http://nsdn. m crosoft. com wor kshop/ aut hor/ behavi or s/ over vi ew. asp

Using DHTML Behaviors.

http://nsdn. m crosoft. com wor kshop/ aut hor/ behavi or s/ howt o/ usi ng. asp

Default Behaviors Reference:

http://nsdn. m crosoft. com wor kshop/ aut hor/ behavi ors/ reference/ ref erence. asp
|E5.5 Element Behaviors (an extension to the original behaviors):

http://nsdn. m crosoft. com wor kshop/ aut hor/ behavi or s/ overvi ew el enent b_ovw. asp

Each of these locations ends with yet more links to related pages at the Microsoft
Developer Network (MSDN) Web site.

	Chapter 48: Internet Explorer Behaviors
	Style Sheets for Scripts
	Embedding Behavior Components
	Component Structure
	Behavior Examples
	For More Information

