Chapter 46: Security and Netscape Signhed Scripts

In This Chapter

Exploring browser security policies

Applying JavaScript to Navigator security mechanisms
Using Netscape signed scripts

The paranoialevels about potential threats to security and privacy on the Internet are at an
al-time high. As more people rely on e-mail and Web site content for their daily lives and
transactions, the fears will only increase for the foreseeable future (an indeterminate
number of Web Weeks). As ajokester might say, though, “I may be paranoid, but how do
| know someone really isn't out to get me?’ The answer to that question is that you don’t
know, and such a person may be out there.

But Web software developers are doing their darnedest to put up roadblocks to those
persons out to get you — hence, the many levels of security that pervade browsers.
Unfortunately, these roadblocks also get in the way of scripters who have completely
honest intentions. Designing a Web site around these barriersis one of the greatest
challenges that many scripters face.

Battening Down the Hatches

When Navigator 2 first shipped to the world (way back in February 1996), it was the first
browser released to include support for Java applets and scripting — two entirely different
but often confused technologies. It didn’'t take long for clever programmersin the Internet
community to find the ways in which one or the other technology provided inadvertent
access to client computer information (such as reading file directories) and Web surfer
activities (such as histories of where you’ ve been on the Net and even the passwords you
may have entered to access secure Sites).

JavaScript, in particular, was the avenue that many of these programmers used to stedl
such information from Web site visitors' browsers. The sad part is that the same features
that provide the access to the information were intentionally made a part of the initial
language to aid scripters who would put those features to beneficia use in controlled
environments, such asintranets. But out in the Wild Wide Web, a scripter could capture a
visitor’s email address by having the site’'s home page surreptitiously send a message to
the site’ s author without the visitor even knowing it.

Word of security breaches of this magnitude not only circulated throughout the Internet,
but also reached both the trade and mainstream press. Asiif the security issues weren't bad

enough on their own, the public relations nightmare compounded the sense of urgency to
fix the problem. To that end, Netscape released two revised editions of Navigator 2. The
final release of that generation of browser, Navigator 2.02, took care of the scriptable
security issues by turning off some of the scripted capabilities that had been put into the
original 2.0 version. No more capturing visitors browser histories; no more local file
directory listings; no more silent email. Users could even turn off JavaScript support
entirely if they so desired.

The bottom line on security isthat scripts are prevented from performing automated
processes that invade the private property of a Web author’s page or a client’s browser.
Thus, any action that may be suspect, such as sending an e-mail message, requires an
explicit action on the part of the user — clicking a Submit button, in this case — to carry
it out. Security restrictions must also prevent a Web site from tracking your activity
beyond the boundaries of that Web site.

When Worlds Collide

If ascript triesto do something that is not allowed or is a potential personal security
breach, the browser reports the situation to the user. Figure 46-1, for instance, shows an
|E/Windows warning a user gets from clicking a Submit button located in aform whose
ACTI ONissettoamai | t o: URL.

Another security error message often confuses scripters who don’t understand the possible
privacy invasions that can accrue from one window or frame having access to the URL
information in another window or frame. In IES/Windows, for example, an ominous error
message — “Permission denied” — warns users of an attempt to access URL information
from another frame if that URL isfrom adifferent Web site.

Despite the fact that a scripted Web site may have even loaded the foreign URL into the
other frame, the security restrictions guard against unscrupulous usage of the ability to
snoop in other windows and frames.

Microsoft Internet Explorer []

‘3} This form is heing submitted using e-mail.

[s Submitting this form will reveal your e-mail address to the
recipient,
and will send the form data without enciypting it for privacy.

You may continue or cancel this submission.

Cancel

Figure 46-1
IE/Windows e-mail warning

The Java Sandbox

Much of the security model for JavaScript is similar to that originally defined for Java
applets. Applets had a potentially dangerous facility of executing Java code on the client
machine. That isafar cry from the original deployment of the World Wide Web as aread-
only publishing medium on the Internet. Here were mini-programs downloaded into a
client computer that, if unchecked, could have the same access to the system as alocal
software program.

Access of this type would clearly be unacceptable. Imagine the dismay caused by someone
clicking alink that said “Free Money,” only to have the linked page download an appl et
that read or damaged local disk files unbeknownst to the user. In anticipation of
pranksters, the designers of Java and the Java virtual machine built in a number of
safeguards to prevent applets from gaining access to local machines. This mechanismis
collectively referred to as the sandbox, a restricted area in which applets can operate.
Applets cannot extend their reach outside of the sandbox to access local file systems and
many sensitive system preferences. Any applet runs only while its containing page is till
loaded in the browser. When the page goes away, so does the applet, without being saved
to the local disk cache.

JavaScript adopted similar restrictions. The language provided no read or write access to
local files beyond the highly regulated cookie file. Moreover, because JavaScript works
more closely with the browser and its documents than applets typically do, the language
had to build in extra restrictions to prevent browser-specific privacy invasions. For
example, it was not possible for a script in one window to monitor the user’s activity in
another window, including the URL of the other window, if the page didn’t come from the
same server as the first window. Sometimes the restrictions on the JavaScript side are
even more severe than in Java. For example, while a Java applet is permitted to access the
network anytime after the applet is loaded, an applet is prevented from reaching out to the
Net if the trigger for that transaction comes from JavaScript via LiveConnect (see Chapter
44). Only partial workarounds are available.

Neither the Java nor JavaScript security blankets were fully bug-free at the outset. Some
holes were uncovered by the languages creators and others in the community. To their
credit, Sun and Netscape (and Microsoft for that matter) are quick to plug any holes that
are discovered. While the plugs don’t necessarily fix existing copies of insecure browsers
out there, it means that a Bad Guy can’t count on every browser to offer the same security
hole for exploitation. That generally makes the effort not worth the bother.

Security Policies

Netscape has defined security mechanism under the term policies. This usage of the word
mirrors that of ingtitutions and governments. A policy defines the way potentially insecure
or invasive requests are handled by the browser or scripting language. NN4+ includes two
different security policies. same origin and signed script policies. The same origin policy

dates back to Navigator 2, although some additional rules have been added to that policy
as Navigator has matured. The signed script policy started with NN4 and utilizes the state
of the art in cryptographic signatures of executable code inside a browser, whether that
codeisaplug-in, a Java applet, or a JavaScript script. Because of the signed script
facilities, NN4+ was designed to allow scripts to have wider range of control over the
browser’ s interior working parts, provided the user granted permission for such activity
(more about this later in the chapter). NN3 included a partially implemented prototype of
another policy known as data tainting. Signed scripts supersede data tainting, so if you
encounter any writings about data tainting, you can ignore them because the technology is
not being further developed.

By and large, the same origin policy isin force insde IE3 and after. Precise details may
not match up with NN one-for-one, but the most common features are identical. The
signed script policy isimplemented only in NN4+. While Microsoft offers digita
signatures for some items that may be embedded within an HTML page (such as ActiveX
controls and other components), scripts that are in an HTML page’'s source code or linked
inasa. j s library cannot be signed for IE. While everything you read in this chapter
about signed scripts applies only to NN4+, you should find the next couple of sections
informative even if you develop solely for IE.

The Same Origin Policy

The“origin” of the same origin policy means the protocol and domain of a source
document. If all of the source files currently loaded in the browser come from the same
server and domain, scriptsin any one part of the environment can poke around the other
documents. Restrictions come into play when the script doing the poking and the
document being poked come from different origins. The potentia security and privacy
breaches this kind of access can cause put this access out of bounds within the same origin

policy.

An origin is not the complete URL of a document. Consider the two popular URLSs for
Netscape' s Web sites:

http:// hone. net scape. com

http://devel oper. net scape. com

The protocol for both sitesisht t p: . Both sites also share the same domain name:

net scape. com But the sites run on two different servers. honme and devel oper (at
least thisis how the Sites appear to browsers accessing them; the physical server
arrangement may be quite different).

If aframeset contains documents from the same server at net scape. com and al
frames are using the same protocol, then they have the same origin. Completely open and
free access to information, such as| ocat i on object properties, is available to scriptsin
any frame's document. But if one of those frames contains a document from the other
server, their origins don’'t match. A script in a document from one server would display an

“access disallowed” or “permission denied” error messageif it tried to get thel ocat i on
property of that other document.

A similar problem occurs if you were creating a Web-based shopping service that displays
the product catalog in one window and displays the order form from a secure server in
another window. The order form, whose protocol might be ht t ps: , would not be
granted accessto the | ocat i on object propertiesin a catalog page whose protocol is
ht t p: , even though both share the same server and domain name.

Setting the document.domain

When both pages in an origin-protected transaction are from the same domain (but
different servers or protocols), you can instruct JavaScript to set the

docunent . domai n properties of both pages to the domain that they share. When this
property is set to that domain, the pages are treated as if from the same origin. Making
this adjustment is safe, because JavaScript doesn’t allow setting the docunent . domai n
property to any domain other than the origin of the document making the setting. See the
docunent . domai n property entry in Chapter 18 for further details.

Origin checks

Scattered throughout the language reference chapters are notes about items that undergo
what you now know to be origin checks. For the sake of convenience, | list them all here
to help you get a better feeling for the kind of information that is protected. The general
rule isthat any object property or method that exposes alocal filein auser’s system or
can trace Web surfing activity in another window or frame undergoes an origin check.
Failure to satisfy the same origin rule yields an “access disallowed” or “permission denied”
error message on the client’s machine.

Window object checks

The document object models of windows and frames that don’t share the same origin are
not available to each other. Each separate origin window or frameisits own little world
that has very little ability to communicate with another window or frame. |1E sometimes
takes this to the extreme, causing problems between a main window and a subwindow
whose content is entirely dynamically generated from the main window’ s scripts.

Location object checks

All'l ocat i on object properties are restricted to same origin access. Of all same origin
policy restrictions, this one seems to interfere with well-meaning page authors plans when
they want to provide aframe for users to navigate around the Web. Such access, however,
would alow spying on your users.

Document object checks

A docunent object’s properties are by necessity loaded with information about the
content of that document. Just about every property other than the ones that specify color
properties are off-limitsif the origin of the target document is different from the one
making the request:

anchor s[] | ast Modi fi ed
appl ets[] | ength

cooki e links[]

domai n referrer
enbeds title
forms[] URL

In addition, no normally modifiable docunent property can be modified if the origin
check fails. This, of course, does not prevent you from using docunent . wite() to
write an entirely new page of content to the frame to replace a document from a different
origin. But in IE4+ and W3C DOM browsers, scripts from one origin won't be able to
modify (or even copy) partial content from a frame whose content comes from another
origin.

NN4 layer object checks

While most of aNN4 layer’s content is protected by the restrictions that apply to the
docunent object inside, alayer object also has a potentially revealing sr ¢ property.
Thisisessentially smilar tothel ocat i on. hr ef property of aframe. Thusthe sr c
property requires an origin check before yielding its information.

Form object checks

Form datais generally protected by the restriction to adocument’sf or ns[] array. But
should a script in another window or frame also know the name of the form, that, too,
won'’t enable access unless both documents come from the same origin.

Applet object checks

The same goes for named Java applets. A script cannot retrieve information about the
class file name unless both documents are from the same origin (although the applet can be
from anywhere).

LiveConnect access from a Java applet to JavaScript is not an avenue to other windows
and frames from other origins. Any calls from the applet to the objects and protected
properties described here undergo origin checks when those objects are in other frames
and windows. The applet assumes the origin of the document that contains the applet, not
the applet codebase.

Image object checks

While image objects are accessible from other origins, their sr ¢ and | owsr ¢ properties
are not. These URL s could reveal some or al the URL info about the document
containing them.

Linked script library checks

To prevent a network-based script from hijacking alocal script library file, NN4+ prevents
apagefromloading afi | e: protocol library in the SRC attribute of a <SCRI PT> tag
unless the main document also comesfromafi | e: protocol source. If you are beginning
to think that security engineers are a suspicious and paranoid lot, you are starting to get
theidea. It's not easy to curb potential abuses of Bad Guys in a networked environment
initially established for openness and free exchange of information among trusted
individuals.

The Netscape Signed Script Policy

Just as there are excellent reasons to keep Web pages from poking around your computer
and browser, there are equally good reasons to allow such access to a Web site you trust
not to be aBad Guy. To permit trusted access to the client machine and browser, Sun
Microsystems and Netscape (in cooperation with other sources) have developed away for
Web application authors to identify themselves officially as authors of the pages and to
request permission of the user to access well-defined parts of the computer system and
browser.

The technology is called object signing. In broad terms, object signing means that an
author can eectronically lock down a chunk of computer code (whether it be a Java
applet, aplug-in, or a script) with the electronic equivalent of awax seal stamped by the
author’s signet ring. At the receiving end, a user isinformed that a sealed chunk of codeis
regquesting some normally protected access to the computer or browser. The user can
examine the “seal” to see who authored the code and the nature of access being requested.
If the user trusts the author not to be a Bad Guy, the user grants permission for that code
to execute; otherwise the code does not run at al. Additional checks take place before the
code actually runs. That electronic “seal” contains an encrypted, reduced representation of
the code as it was locked by the author. If the encrypted representation cannot be re-
created at the client end (it takes only afraction of a second to check), it means the code
has been modified in transit and will not run.

In truth, nothing prevents an author from being a Bad Guy, including someone you may
normally trust. The point of the object signing system, however, isthat atrail leads back
to the Bad Guy. An author cannot use this technology to sneak into your computer or
browser without your explicit knowledge and permission.

Signed objects and scripts

A specia version of the signed object technology is the one that lets scripts be locked
down by their author and electronically signed. Virtualy any kind of script in a document
can be signed: alinked . j s library, scriptsin the document, event handlers, and
JavaScript entities. As described later in this chapter, you must prepare your scripts for
being signed, and then run the entire page through a special tool that attaches your
electronic signature to the scripts within that page.

What you get with signed scripts

If you sign your scripts and the user grants your page permission to do itsjob, signed
scripts open up your application to along list of capabilities, some of which border on
acting like genuine local applications. Because the designers of NN4+ know that signed
scripts are available to authors, a huge number of properties and actions are exposed to
authors.

The most obvious power you get with signed scripts is freedom from the restrictions of
the same origin policy. All object properties and methods that perform origin checks for
access in other frames and windows become available to your scripts without any special
interaction with the user beyond the dialog box that requests the one-time permission for
the page.

Some operations that normally display warnings about impending actions — sending a
formtoamai | t o: URL or closing the main browser window under script control —
lose those warning dialog boxes if the user grants the appropriate permission to a signed
script. Object properties considered private information, such asindividual URLs stored in
the history object and browser preferences, are opened up, including the possibility of
altering browser preferences. Existing windows can have their chrome elements hidden.
New windows can be set to be always raised or lowered, sized to very small sizes, or
positioned offscreen. The dr agDr op event of awindow revealsits URL. All of these are
powerful points of access, provided the user grants permission.

Again, however, | emphasize that these capabilities are accessible via Netscape' s signed

script policy only. Internet Explorer, at least through Version 5.5, does not support
Netscape' s signed script policy.

The Digital Certificate

Before you can sign a script or other object, you must apply for adigital certificate. A
digital certificate (also called adigital ID) isasmall piece of software that gets
downloaded and bound to the developer’s Navigator browser on a particular computer.
Each downloaded digital certificate appearsin thelist of certificates under the “Mine”
category in Navigator 6's Security Manager window (accessible through the Tasks menu).
If you have not yet applied for a certificate, the list is empty. When you sign a page with

the certificate, information about the certificate is included in the file generated by the
signing tool.

Possession of a certificate makes you what is known as a principal. If auser loads a page
that has signed “stuff” in it, a security alert advises the user that a Web site is requesting
enhanced privileges.

Certificates are issued by organizations established as certificate authorities. A certificate
authority (known as a CA for short), or a certificate server authorized by a CA, registers
applicants and issues certificates to individuals and software developers. When you

register for a certificate, the CA queries you for identification information, which it verifies
as best it can. The certificate that isissued to you identifies you as the holder of the
certificate. Under the “Authorities’ category of the Security Manager window are the
certificate authorities loaded into the browser when you installed the browser. These are
organizations that issue certificates. The CA of the organization that issues your certificate
must be listed for you to sign scripts.

How to get a certificate

Y ou must visit a certificate vendor to obtain your certificate. The cost ranges from about
$20 to many hundreds of dollars depending on the vendor and the type of certificate you
want to obtain. One vendor that is aware of the needs of Netscape object signing is
Thawte Digital Certificate Services (www. t hawt e. con). This CA offers a certificate
expressy for developers performing Netscape object signing. Verisign

(www. veri si gn. con) isaso recommended.

Because one of the foundations of a certificate is the identity of the certificate owner,
registration requires submitting documentation that proves the identity of your
organization. Each CA has different requirements, so check the latest information at the
CA'’s enrollment Web site. After the CA processes your application, the company sends
you an e-mail message with a code number to pick up your certificate at the CA’s Web
site. The act of picking up the certificate is actualy downloading the certificate into your
browser. Therefore, be sure you are using the Navigator browser on the computer with
which you will use to sign your pages.

Activating the codebase principal

If you want to try out the capabilities available to signed scripts from a server without
purchasing a certificate (or without going through the signing process described later in
this chapter during script devel opment and debugging), you can set up your copy of
Navigator to accept what is called a codebase principal in place of a genuine certificate. A
codebase principal means that the browser accepts the source file as a legitimate principal,
although it contains no identification as to the owner or certificate.

Depending on which version of Navigator you are running, if you set up your browser for
codebase principals, you may not be able to verify a certificate that is presented to you

when accessing someone else’'s Web site — evenif it isavalid cryptographic certificate.
Therefore, even though secure requests won't dip past you silently, your Navigator won't
necessarily have the protective shield it normally does to identify certificate holders
beyond the URL of the code. Enable codebase principals only on a copy of Navigator that
doesn’t venture beyond your development environment. To activate codebase principals
for your copy of Navigator, follow these steps:

1. Quit Navigator.

2. Search your hard disk for a Navigator 4 support file named prefs. j s or
Navigator 6 support filenamedal | . | s.

3. Edit the version-specific filein atext editor as follows:

a. For NN4, add the following line to the end of the pr ef s. | s file:

user _pref (“signed. appl ets. codebase_princi pal _support”, true);

b. For NN6, change the codebase principa preferenceinal | . j s fromf al se
totrue:

pref (“si gned. appl et s. codebase_pri nci pal _support”, true);

4. Savethefile.

To deactivate codebase principals, quit Navigator and then changethe t r ue setting of the
affected lineto f al se. Because Navigator 4 rebuilds the preference file upon quitting,
the entry will be in aphabetical order rather than at the end of the file where you first
entered it. This preferences setting does not affect your ability to sign scripts with your
certificate as described in the rest of this article.

Signing Scripts

The process of signing scripts entails some new concepts for even experienced JavaScript
authors. Y ou must use a separate signing tool program. Y ou must also prepare the page
that bears scripts so that the tool and the object signing facilities of the browser can do
thelr jobs.

Signing tool

Download the latest version of Netscape's SignTool from links you find at
http://devel oper. net scape. com 80/ sof t war e/ si gnedobj /| ar pack.
ht m (you find different versions for a variety of Windows and Unix versions). This tool
includes a utility program called a JAR Packager. A JAR fileisa special kind of zipped file
collection that has been designed to work with the Navigator security infrastructure. The
letters of the name stand for Java ARchive, which isafile format standard devel oped
primarily by Sun Microsystems in cooperation with Netscape and others.

A JARfile sextensonis. j ar , and when it contains signed script information, it holds at
least one file, known as the manifest, or list of items zipped together in the file. Among the
items in the manifest is certificate information and data (a hash value code) about the
content of the signed items at the instant they were signed. In the case of a single page
containing signed scripts, the JAR file contains only the certificate and hash values of the
signed scripts within the document. If the document linksin an externa . j s script library
file, that library fileis also packaged in the JAR file. Thus, a page with signed scripts
occupies space on the server for the HTML file and its companion JAR file.

The SignTool program combines the JAR Packager with the script signing functions
(originally a separate program called zi gber t . exe). Follow links on the SignTool
download page to the latest instructions on packaging and signing your finished files from
the command line (there is no GUI for thistool). But before you reach that point, you
need to compose your pages in away that the security mechanism can protect your
scripts.

Preparing scripts for signing

Signifying which itemsin a page are script items that require signing is up to the page
author. It isimportant to remember that if you want to sign even one script element in a
document, every script in the document must be signed. By “document,” | mean an object
model document. Because the content of an NN4-only <LAYER> tag existsin its own
document, you don’t have to sign its scriptsif they don’t require it, nor communicate with
the signed scripts in the main document.

The first concept you have to master is recognizing what a script is. For signing purposes,
ascript is more than just the set of statements between a<SCRI PT> and </ SCRI PT>
tag boundary. An event handler — even one that calls afunction living in a<SCRI PT>
tag — isaso a script that needs signing. So, too, is a JavaScript entity used to supply a
value to an HTML tag attribute. Each one of these itemsis a script as far as script signing
is concerned.

Your job isto mark up the file with special tag attributes that do two things: 1) help
SignTool know what itemsto sign in afile; and 2) help the browser loading the signed
document know what items to run through the hash routine again to compare against the
values stored in the JAR file.

The ARCHIVE attribute

Thefirst attribute goes in the first <SCRI PT> tag of thefile, preferably near the very top
of the document in the <HEAD> portion. This attribute is the ARCHI VE attribute, and its
value is the name of the JAR file to be associated with the HTML file. For example

<SCRI PT LANGUAGE="JavaScri pt” ARCH VE="nyArchive.jar” I1D="1">
Y ou can add script statements to this tag or immediately end it with a</ SCRI PT> tag.

SignTool utility uses the ARCHP/E attribute to assign a name to its archive output file.
After the signed page loads into the visitor’s browser, the attribute points to the file
containing signed script information. Having more than one JAR archive file associated
with asigned page is possible. Typically, such a situation calls for a second JAR archive
overseeing a confined portion of the page. That second archive file may even be embedded
in the primary archive file, alowing a script segment signed by one principal to be
combined with scripts signed by a different principal.

The ID attribute

More perplexing to scripters coming to script signing for the first timeisthe ID attribute.
The ID attribute is merely alabel for each script. Each script must have alabel that is
unique among all labels specified for a JAR archivefile.

Aswith the ARCHI VE attribute, the | D plays adua role. When you run your page
through SignTool, the utility scans the page for these | D attributes. When SignTool
encounters one, it calculates a hash value (something like a checksum) on the content of
the script. For a<SCRI PT> tag set, it isfor the entire content of the tag set; for an event
handler, it isfor the event handler text. The hash value is associated with the ID attribute
label and stored inside the JAR file. After the document loads into the client’s browser, the
browser also scans for the ID attributes and performs the same hash calculations on the
script items. Then the browser can compare the | D/hash value pairs against the list in the
JAR file. If they match, then the file has arrived without being modified by a Bad Guy (or
adropped bit in the network).

Most examples show | D attribute values to be numbers, but the attributes are actually
strings. No sequence or relationship exists among | D attribute values: you can use the
names of your favorite cartoon show characters, aslong as no two | D attributes are given
the same name. The only time the same | D attribute value may appear in adocument isif
another JAR file is embedded within the main JAR file. Even so, | recommend avoiding
reusing names inside the same HTML file, no matter how many JAR files are embedded.

With one exception, each script item in a document must have its own B attribute. The
exception isa<SCRI PT> tag that specifies a SRC attribute for an external . j s file. That
fileis part of the JAR file, so the browser knowsit’s a signed script.

For other <SCRI PT> tags, include the 1B attribute anywhere within the opening tag, as
follows:

<SCRI PT LANGUAGE="JavaScript” ID="3">
statenents
</ SCRI PT>
For afunction handler, the B attribute comes after the event handler inside the object tag,
asfollows:

<I NPUT TYPE="button” VALUE="Cal cul ate” onCick="doCal c(this.form” ID="bart”>

And for a JavaScript entity, the B attribute must be specified in an empty <SCRI PT> tag
immediately before the tag that includes the entity for an attribute value, as follows:

<SCRI PT | D="20">

<INPUT TYPE="text” NAVE="date” VALUE=&{ get Today()}; >

Listing 46-1 shows a skeletal structure of a document that references asingle JAR file and
includes five signed scripts: One externd . | s file and four script items in the document
itself. Thef et chFi | e() function invokes afunction imported from access. j s.
Notice that the ARCHI VE attribute appearsin the very first <SCRI PT> tag in the
document. This aso happensto be atag that imports an externa . j s file, sothat nol D
attribute is required. If there were no external library file for this page, the ARCHI VE
attribute would be located in the main <SCRI PT> tag, which also hasthe ID attribute. |
arbitrarily assigned increasing numbers as the | D attribute values, but | could have used
any identifiers. Notice, too, that each script hasits own ID value. Just because an event
handler invokes afunction in a<SCRI PT> tag that has an ID value doesn’t mean a
relationship exists between the ID attribute values in the <SCRI PT> tag and in the event
handler that invokes a function there.

Listing 46-1
Basic Signed Script Structure

<HTM.>
<HEAD>
<TI TLE>Si gned Scripts Testing</TI TLE>
<SCRI PT LANGUAGE="JavaScri pt" ARCH VE="nyArchive.jar" SRC="access.js"></SCRI PT>
<SCRI PT LANGUAGE="JavaScript" ID="1">
function fetchFile(form {
form out put.value = getFile()
}

function newRai sedW ndow() {
/] statenments for this function

}

</ SCRI PT>

</ HEAD>

<BODY>

A Source Code Exanple Only

<FORM>

<TEXTAREA NAME="out put"” COLS=60 ROW5=10 WRAP="vi rt ual " ></ TEXTAREA>

<I NPUT TYPE="button" VALUE="Read File" onCick="this.formoutput.value ="'
fetchFile(this.form;" |ID="2">

<TEXTAREA NAME="input" COLS=60 RONS=10 WRAP="virtual "> </ TEXTAREA>

<I NPUT TYPE="button" VALUE="Save File"

onClick="setFile(this.forminput.value);" |D="3"><P>

<I NPUT TYPE="button" VALUE="New W ndow... onClick="newRai sedW ndow();" |D="4">
</ FORM>

</ BODY>

</ HTML>

Editing and moving signed scripts

The nature of the script signing process requires that even the slightest modification you
make to a signed script source code requires re-signing the page. For this reason, enabling
codebase principals while you create and debug your early code is a convenient
aternative.

Therigid link between the hash value of a script element at both the signing and visitor
loading times means that you must exercise care when shifting an HTML file that contains
signed script elements between servers of differing operating systems. Windows, UNIX,
and Macintosh have different ways of treating carriage returns. If you change the
representation of an HTML source file when you move the source from, say, a Windows
machine to a UNIX server, then the signature may no longer work. However, if you
perform a purely binary transfer of the HTML files, every byte is the same, and the
signature should work. This operating system-specific text representation affects only how
files are stored on servers, not how various client platforms interpret the source code.

Accessing Protected Properties and Methods

For the browser to allow access to protected properties or methods, it must have its
privileges enabled. Only the user can grant permission to enable privileges, but it isup to
your code to request those privileges of the user.

Gaining privileges

NN4+ comes with some Java classes that allow signed scripts and other signed objects to
display the privilege request alert windows, and then turn on the privilegesif the user
clicksthe“*OK” or “Grant” button. A lot of these classes show up in the

net scape. security package, but scripters only work directly with one class and
three of its methods:

net scape. security. Privil egeManager. enabl ePri vi | ege([“targetName”])
net scape. security. Privil egeManager.revertPrivil ege(["targetName’])

net scape. security. Privil egeManager. di sabl ePrivil ege([“target Nane"])
Theenabl ePri vi | ege() method isthe one that displays the security alert for the
user. In NN4, the specific target named as a parameter influenced the details of the
security alert message; for NN6, the security aert is generic (and far less intimidating).

If the user grants the privilege, script processing continues with the next statement. But if
the user denies access, then processing stops, and the PrivilegeManager class throws a
Java exception that gets displayed as a JavaScript error message. Later in this chapter |
show you how to gracefully handle the user’s denial of access.

Enabling a privilege in JavaScript is generally not as risky as enabling a Java applet. The
latter can be more easily hijacked by an alien class to piggyback on the trusted applet’s
privileges. Even though the likelihood of such activity taking place in JavaScript is very
low, turning privileges off after the statement that requires privileges is always a good
idea. Usether evert Pri vi | ege() method to temporarily turn off the privilege;
another statement that enables the same privilege target will go right ahead without asking
the user again. Disable privileges only when the script requiring privileged access won't be
run again until the page reloads.

Specifying a target

Rather than opening blanket accessto all protected capabilities in one blow, the Netscape
security model defines narrow capabilities that are opened up when privileges are granted.
Each set of capabilitiesis called atarget. Netscape defines dozens of different targets, but
not all of them are needed to access the kinds of methods and properties available to
JavaScript. You will likely confine your targets to the nine discussed here.

Because NN4's security alerts provided (at times excruciating) detail about the nature of
the privilege being requested by the Web site, targets had various risk levels and
categories. These concerns are less of an issue in NN6, but they are provided here for your
more complete understanding of the mechanisms beneath the Privilege Manager.

Each target has associated with it arisk level (low, medium, or high) and two plain-
language descriptions about the kinds of actions the target exposes to code. This
information appears in the NN4 security privilege dialog box that faces a user the first time
aparticular signature requests privileges. All of the targets related to scripted access are
medium or high risk, because they tend to open up local hard disk files and browser
settings.

Netscape has produced two categories of targets. primitive and macro. A primitive target
isthe most limited target type. It usually confinesitself to either reading or writing of a
particular kind of data, such asalocal file or browser preference. A macro target usually
combines two or more primitive targets into a single target to smplify the user experience
when your scripts require multiple kinds of access. For example, if your script must both
read and write alocal file, it could request privileges for each direction, but the user would
be presented with a quick succession of two similar-looking security dialog boxes. Instead,
you can use a macro target that combines both reading and writing into the privilege. The
user sees one security dialog box, which, in NN4, explains that the request is for both read
and write access to the local hard disk.

Likely targets for scripted access include a combination of primitive and macro targets.
Table 46-1 shows the most common script-related targets and the information that appears
in the security dialog box.

For each call to
net scape. security. Privil egeManager. enabl ePri vil ege(), you
specify asingle target name asastring, asin

net scape. security. Privil egeManager. enabl ePri vi |l ege(“ Uni ver sal Br owser Read”)

This specification alows you to enable, revert, and disable individual privileges as required
in your script.

Table 46-1

Scripting-related Privilege Targets

Target Name

Risk

Short Description

Long Description

Uni ver sal

Br owser Access

High

Reading or modifying
browser data

Reading or modifying
browser data that may be
considered private, such asa
list of Web sites visited or
the contents of Web forms
you may have filled in.
Modifications may aso
include creating windows
that look like they belong to
another program or
positioning windows
anywhere on the screen.

Uni ver sal

Br owser Read

Medium

Reading browser data

Access to browser data that
may be considered private,
such asaligt of Web sites
visited or the contents of
Web page forms you may
havefilled in.

Uni ver sal

Br owser Wi

te

High

Modifying the browser

Modifying the browser in a
potentially dangerous way,
such as creating windows
that may look like they
belong to another program
or positioning windows
anywhere on the screen.

Uni ver sal

Fi | eAccess

High

Reading, modifying, or
deleting any of your files

Thisform of accessis
typicaly required by a
program such as aword
processor or a debugger
that needs to create, read,
modify, or delete files on
hard disks or other storage
media connected to your

computer.
Uni versal FileRead
High Reading files stored in your | Reading any files stored on
computer hard disks or other storage
media connected to your
computer.
Universal FileWite
High Modifying files stored in Modifying any files stored
your computer on hard disks or other
storage media connected to
your computer.
Uni ver sal PreferencesRead
Medium Reading preferences settings | Access to read the current
settings of your preferences.
Uni versal PreferencesWite
High Modifying preferences Modifying the current
settings settings of your preferences.
Uni ver sal SendMai |
Medium Sending e-mail messages on
your behalf

Blending Privileges into Scripts

The implementation of signed scriptsin Navigator protects scripters from many of the

potential hazards that Java applet and plug-in devel opers must watch for. The chance that
aprivilege enabled in a script can be hijacked by code from a Bad Guy isvery small. Still,
exercising safe practices in case you someday work with other kinds of signed objectsis
good practice.

Keep the window small

Privilege safety is predicated on limiting exposure according to two techniques. The first
technigue isto enable only the level of privilege required for the protected access your
scripts need. For example, if your script only needs to read a normally protected
docunent object property, then enable the Uni ver sal Br owser Read target rather
than the wider Uni ver sal Br owser Access macro target.

The second technique is to keep privileges enabled only as long as the scripts need them
enabled. If a statement calls a function that invokes a protected property, enable the
privilege for that property in the called function, not at the level of the calling statement. If
aprivilege is enabled inside a function, the browser automatically reverts the privilege at

the end of the function. Even so, if the privilege isn't needed al the way to the end of the
function, you should explicitly revert it after you are through with the privilege.

Think of the users

One other deployment concern focuses more on the user’ s experience with your signed
page. Y ou should recognize that the call to the JavaPri vi | egeManager classisa
LiveConnect call from JavaScript in NN4. Because the Java virtual machine does not start
up automatically when Navigator 4 does, a brief delay occurs the first time a LiveConnect
call ismade in a session (the statusbar displays “ Starting Java...”). Such adelay may
interrupt the user flow through your page if, for example, a click of a button needs access
to a privileged property. Therefore, consider gaining permission for protected access as
the page loads. Execute an enabl ePri vi |l ege() andrevertPrivil ege()
method in the very beginning. If Javaisn't yet loaded into the browser, the delay is added
to the other loading delays for images and the rest of the page. Thereafter, when privileges
are enabled again for a specific action, neither the security dialog box nor the startup delay
get in the way for the user.

Also remember that users don’'t care for security dialog boxes to interrupt their navigation.
If your page utilizes a couple of related primitive targets, at the outset enable the macro
target that encompasses those primitive targets. The user gets one security dialog box
covering all potentia actionsin the page. Then let your script enable and revert each
primitive target as needed.

Example

To demonstrate signed scriptsin action, | show a page that accesses atypical target that
allows the script to open an always-raised new window. No error checking occurs for the
user’sdenia of privilegein this example. Therefore, if you experiment with this page
(either with codebase principals turned on or signing them yourself), you will see the
JavaScript error that displays the Java exception. Error detection is covered later in the
chapter.

Accessing a protected window property

Listing 46-2 is a small document that contains one button. The button calls a function that
opens a new window with the NN-proprietary al waysRai sed parameter turned on.
Setting protected wi ndow. open() parametersin NN4+ requires the

Uni ver sal Browser Wi t e privilege target. Inside the function, the privilegeis
enabled only for the creation of the new window. For this smple example, | do not enable
the privilege when the document loads.

Listing 46-2
Creating an AlwaysRaised Window

<HTM.>

<HEAD>

<TI TLE>Si npl e Signed Script</TI TLE>

<SCRI PT LANGUAGE="JavaScri pt" ARCH VE="nyJar.jar" |ID="1">

function newRai sedW ndow() {
net scape. security. Privil egeManager. enabl ePri vil ege(" Uni ver sal Browser Wite")
var newW ndow = wi ndow. open("","", "HEl GHT=100, W DTH=300, al waysRai sed")

net scape. security. Pr| VI | egeManager . di sabl ePri vil ege(" Uni ver sal BrowserWite")
var newContent = "<HTM.><BODY>It\'s good to be the King! </ B>"
newCont ent += "<FORM><CENTER><| NPUT TYPE=' button' VALUE=' K''
newCont ent += "onClick="sel f.close()"' ></ CENTER></ FORM></ BODY></ HTML>"
newW ndow. docunent . wri t e(newCont ent)
newW ndow. docunent . cl ose()

}

</ SCRI PT>

</ HEAD>

<BODY>

Thi s button generates an al ways-rai sed new wi ndow. </ B>
<FORM>

<I NPUT TYPE="button" VALUE="New ' Al ways Rai sed" W ndow"
ond i ck="newRai sedW ndow()" | D="2">

</ BODY>

</ HTML>

Listing 46-2 has two script items that need signing: the <SCRI PT> tag and the event
handler for the button. Also, the ARCHI VE attribute points to the JAR file that contains
the script signature. Note that this example file is not signed, and therefore does not
include a companion JAR archive on the companion CD-ROM.

Handling Privilege Manager Errors

The change between the ways NN4 and NNG6 allows scripts to intercept errors causes no
small problem if you need to serve both browser versions. The primary reason you want to
handle errors is that when a user denies access to advanced privileges, the

Privi | egeManager generates an error. While the error is not destructive in any way,
and it appears only in the JavaScript Console window (NN4.5+), accounting for such
factorsis good coding practice. Unfortunately, the mechanism that works for NN4 doesn’t
work in NN6; the mechanism that works in NN6 cannot even be placed in a page that
loads into NN4 without generating syntax errors. The bottom line is that you need to
serve up different pages for NN4 and NN6 until such time as the NN4 installed base drops

away.

For NN4, you can definean oner r or () function that looks for the specific error
message thrown by the Pr i vi | egeManager class through LiveConnect. That function
looks as the following:

function onerror(msg, URL, lineNum {
var errorMsg = nsg
if (nBg.indexX ("Forbi ddenTarget Exception") = -1) {
errorMsg = "You have elected not to grant privileges to this script.”

}
al ert(errorMsg)
return true

Of course, you don’t have to display any message, but it may be a good place to advise
users about what they’ re missing by not granting privilege.

For NN6, you can usethe nativet ry. . . cat ch exception handling, which means that
the callsto theenabl ePri vi | ege() method of the Pri vi | egeManager class
must be wrapped inside at r y block. The function from Listing 46-2 is modified as
follows:

function newRai sedW ndow() {
try {

net scape. security. Privil egeManager. enabl ePri vil ege(" Uni ver sal Browser Wite")

}

catch(err) {
alert("You have elected not to grant privileges to this script.")
return

}
var newW ndow = wi ndow. open("","", "HEl GHT=100, W DTH=300, al waysRai sed")

netscape.security.Pr|V|IegeNBnager dlsabIePr|V|Iege(Uni ver sal BrowserWite")
var newContent = "<HTM.><BODY>It\'s good to be the K|ngl
newCont ent += "<FORM><CENTER><| NPUT TYPE=' button' VALUE=' K''
newCont ent += "onClick="self.close()"' ></ CENTER></ FORM></ BODY></ HTM.>"
newW ndow. docunent . wri t e(newCont ent)
newW ndow. docunent . cl ose()
return

}
Signed Script Miscellany

In this last section of the chapter, | list some of the more esoteric issues surrounding
signed scripts Three in particular are: 1) how to allow unsigned scripts in other frames,
windows, or layers to access signed scripts; 2) how to make sure your signed scripts are
not stolen and reused; and 3) specia notes about international text characters.

Exporting and importing signed scripts

JavaScript provides an escape route that lets you intentionally expose functions from
signed scripts for access by unsigned pages. If such afunction contains atrusted privilege
without careful controls on how that privilege is used, a page that is not as well
intentioned as yours could hijack the trust.

The command for exposing this function is export. The following example exports a
functionnamed f i | eAccess():

export fil eAccess

A script in another window, frame, or layer can use the import command to bring that
function into its own set of scripts:

i mport fileAccess

Even though the function is now also a part of the second document, it executes within the

context of the original document, whose signed script governs the privilege. For example,
if you exported a function that did nothing but enable a file access privilege, a Bad Guy

who studies your source code could write a page that imports that function into a page
that now has unbridled file access.

If you wish to share functions from signed scripts in unsigned pages loaded into your own
frames or layers, avoid exporting functions that enable privileges. Other kinds of functions,
if hijacked, can’t do the same kind of damage as a privileged function can.

Locking down your signed pages

Speaking of hijacking scripts, it would normally be possible for someone to download
your HTML and JAR archive files and copy them to another site. When a visitor comes to
that other site and loads your copied page and JAR file, your signature is still attached to
the scripts. While this may sound good from a copyright point of view, you may not want
your signature to appear as coming from someone else’s Web server. Y ou can, however,
employ a quick trick to ensure that your signed scripts work only on your server. By
embedding the domain of the document in the code, you can branch execution so that
scripts work only if the file comes from your server.

The following script segment demonstrates one way to employ this technique:

<SCRI PT LANGUAGE="JavaScri ptl.2" ARCH VE="nyPage.jar” I1D="1">
i f (document. URL. match(/~http:\/\/ww. myDormai n.com//)) {
privil eges statements execute only frommny server

}
</ SCRI PT>

This technique works only if you specify JavaScript 1.2 as the script language. Even
though this branching code is visible in the HTML file, the hash value of your code is
saved and signed in the archive. If someone modifiesthe HTML, the hash value that is
recal culated when a visitor loads the page won't match the JAR file manifest and the script
signature fails.

International characters

While international characters are fine for HTML content, they should not be used in
signed scripts. The problem is that international characters are often converted to other
character sets for display. This conversion invalidates the signature, because the signed
and recalculated hash values don’t match. Therefore, do not put international charactersin
any signable script item. If you must include such a character, you can escapeit, or, in
NNA4, put such scripts in unsigned layers.

	Chapter 46: Security and Netscape Signed Scripts
	Battening Down the Hatches
	When Worlds Collide
	The Java Sandbox
	Security Policies
	The Same Origin Policy
	The Netscape Signed Script Policy
	The Digital Certificate
	Signing Scripts
	Accessing Protected Properties and Methods
	Blending Privileges into Scripts
	Example
	Handling Privilege Manager Errors
	Signed Script Miscellany

