Chapter 44: Scripting Java Applets and Plug-ins

In This Chapter
Communicating with Java applets from scripts
Accessing scripts and objects from Java applets

Controlling scriptable plug-ins

Netscape was the first to implement the facility enabling JavaScript scripts, Java applets,
and plug-ins to communicate with each other under one technology umbrella, called
LiveConnect (first implemented in NN3). Microsoft met the challenge and implemented a
large part of that technology for IE4/Windows, but of course without using the Netscape-
trademarked name for the technology. The name is a convenient way to refer to the
capability, so you find it used throughout this chapter applying to both NN and |E
browsers that support such facilities. This chapter focuses on the scripting side of
LiveConnect: approaching applets and plug-ins from scripts and accessing scripts from
Java applets.

Except for the part about talking to scripts from inside a Java applet, | don’t assume you
have any knowledge of Java programming. The primary goa hereisto help you
understand how to control applets and plug-ins (including ActiveX controlsin
|E/Windows) from your scripts. If you're in a position to develop specifications for
applets, you also learn what to ask of your Java programmers. But if you are aso a Java
applet programmer, you learn the necessary skills to get your applets in touch with HTML
pages and scripts.

LiveConnect Overview

Before you delve too deeply into the subject, you should be aware that LiveConnect
features are not available in al modern browsers, much to the chagrin of many. The
following browsers do not support this technology:

* |E/Macintosh (at least through Version 5)
* NNA4.6 (due to an oversight when the version was rel eased)
* NNG6.0 (work is afoot to include it in later versions)

Such a broad swath of browsers not supporting the feature (especially the I1E for
Macintosh, which has been factory-installed as the default browser on millions of Macs),
makes it difficult to design a public Web application that relies on LiveConnect features.
Design your pages accordingly.

The internal mechanisms that allow scripts to communicate with applets and plug-ins are
quite different for NN and IE. NN3 and NN4 relied exclusively on the Java virtual
machine (JVM) that shipped with most OS platform versions of the browsers. In NN4+,
the VM doesn’'t load until it is needed, sometimes causing a brief delay ininitial
execution. For the most part, though, the underlying Java engine isinvisible to the scripter
(you) and certainly to the visitors of your sites. At mogt, visitors see statusbar messages
about applets loading and running.

|E/Windows, on the other hand, has its own internal architecture for communicating
between processes. To Windows, most processes are treated as components that have
properties and methods accessible to other components.

Whether you use the technology to communicate with a Java applet or an ActiveX

control, the advantage to you as an author is that LiveConnect extends the document
object modd to include objects and data types that are not a part of the HTML world.
HTML, for instance, does not have a form element that displays real-time stock ticker
data; nor does HTML have the capability to treat a sound file like anything more than a
URL to be handed off to a helper application. With LiveConnect, however, your scripts
can treat the applet that displays the stock ticker as an object whose properties and
methods can be modified after the applet loads; scripts can also tell the sound when to play
or pause by controlling the plug-in that manages the incoming sound file.

Why Control Java Applets?

A question | often hear from experienced Java programmers is, “Why bother controlling
an applet via a script when you can build al the interactivity you want into the applet
itself?’ This question isvalid if you come from the Javaworld, but it takes a viewpoint
from the HTML and scripting world to fully answer it.

Java applets exist in their own private rectangles, remaining largely oblivious to the
HTML surroundings on the page. Applet designers who don’t have extensive Web page
experience tend to regard their applets as the center of the universe rather than as
components of HTML pages.

As a scripter, on the other hand, you may want to use those applets as powerful
components to spiff up the overall presentation. Using applets as prewritten objects
enables you to make simple changes to the HTML pages — including the geographic
layout of elements and images — at the last minute, without having to rewrite and
recompile Java program code. If you want to update the look with an entirely new
graphical navigation or control bar, you can do it directly viaHTML and scripting.

When it comes to designing or selecting applets for inclusion into my scripted page, |
prefer using applet interfaces that confine themselves to data display, putting any control
of the data into the hands of the script, rather than using onscreen buttons in the appl et
rectangle. | believe this setup enables much greater last-minute flexibility in the page

design — not to mention consistency with HTML form element interfaces — than putting
everything inside the applet rectangle.

A Little Java

If you plan to look at a Java applet’s scripted capabilities, you can’t escape having to
know alittle about Java applets and some terminology. The discussion goes more deeply
into object orientation than you have seen with JavaScript, but I'll try to be gentle.

Java building blocks classes

One part of Javathat closely resembles JavaScript is that Java programming deals with
objects, much the way JavaScript deals with a page’ s objects. Java objects, however, are
not the familiar HTML objects but rather more basic building blocks, such as tools that
draw to the screen and data streams. But both languages also have some non-HTML kinds
of objects in common: strings, arrays, numbers, and so on.

Every Java object is known as a class — aterm from the object-orientation world. When
you use a Java compiler to generate an applet, that applet is also a class, which happens to
incorporate many Java classes, such as strings, image areas, font objects, and the like. The
applet file you seeon the disk is called a classfile, and itsfile extensionis. cl ass. This
file isthe one you specify for the CODE attribute of an <APPLET> tag.

Java methods

Most JavaScript objects have methods attached to them that define what actions the
objects are capable of performing. A string object, for instance, has the

t oUpper Case() method that converts the string to all uppercase letters. Java classes
also have methods. Many methods are predefined in the base Java classes embedded inside
the virtual machine. But inside a Java applet, the author can write methods that either
override the base method or deal exclusively with anew class created in the program.
These methods are, in away, like the functions you write in JavaScript for a page.

Not al methods, however, are created the same. Java lets authors determine how visible a
method is to outsiders. The types of methods that you, as a scripter, are interested in are
the ones declared as public methods. Y ou can access such methods from JavaScript viaa
syntax that falls very much in line with what you aready know. For example, a common
public method in applets stops an applet’s main process. Such a Java method may ook
such asthis:

public void stop() {
if(thread !'= null) {
t hread. st op();
thread = nul | ;
}
}

Thevoi d keyword simply means that this method does not return any values (compilers
need to know this stuff). Assuming that you have one applet loaded in your page, the
JavaScript cal to this applet method is

docunent . appl et s[0] . st op()

Listing 44-1 shows how all this works with the <APPLET> tag for a scriptable digital
clock applet example. The script includes calls to two of the applet’ s methods: to stop and
to start the clock.

Listing 44-1
Stopping and Starting an Applet

<HTM.>
<HEAD>
<TI TLE>A Script That Could Stop a C ock</TI TLE>
<SCRI PT LANGUAGE="JavaScri pt">
function paused ock() {
docunent . cl ockl. st op()
}

function restartd ock() {
docunent . cl ockl. start ()

}

</ SCRI PT>

<BODY>

<H1>Si npl e control over an appl et </ Hl>

<HR>

<APPLET CODE="Scri pt abl ed ock. cl ass" NAME="cl ockl" W DTH=500 HElI GHT=45>
<PARAM NAME=bgCol or VALUE="G een" >

<PARAM NANME=f gCol or VALUE="BI ue" >

</ APPLET>

<p>

<FORM NAME="w dget sl1">

<I NPUT TYPE="button" VALUE="Pause Cl ock" onCick="pauseC ock()">

<I NPUT TYPE="button" VALUE="Restart C ock" onCick="restartC ock()">
</ FORW>

</ BODY>

</ HTML>

The syntax for accessing the method (in the two functions) is just like JavaScript in that
the references to the applet’ s methods include the applet object (cl ockl in the example),
which is contained by the docunment object.

Java applet “properties”

The Java equivalents of JavaScript object properties are called public instance variables.
These variables are akin to JavaScript global variables. If you have access to some Java
source code, you can recognize a public instance variable by its public keyword:

public String fontNane

Java authors must specify avariable' s data type when declaring any variable. That's why
the St r i ng data type appears in the preceding example.

Y our scripts can access these variables with the same kind of syntax that you use to access
JavaScript object properties. If the f ont Nane variablein Scri pt abl e ock. cl ass

had been defined as a public variable (it is not), you could access or set its value directly,
as shown in the following example.

var theFont = docunent. appl ets[0].font Nane
docunent . appl et s[0] . font Name = “Courier”

Accessing Java fields

In abit of confusing lingo, public variables and methods are often referred to as fields.
These elements are not the kind of text entry fields that you see on the screen; rather,
they’re like slots (another term used in Java) where you can dlip in your requests and data.
Remember these terms, because they may appear from time to time in error messages as
you begin scripting applets.

Scripting Applets in Real Life

Because the purpose of scripting an applet isto gain access to the inner sanctum of a
compiled program, the program should be designed to handle such rummaging around by
scripters. If you can’'t acquire a copy of the source code or don’t have any other
documentation about the scriptable parts of the applet, you may have a difficult time
knowing what to script and how to do it.

Although the applet’ s methods are reflected as properties in an applet object, writing a
for...inlooptoexaminethese methods tells you perhaps too much. Figure 44-1
shows a partia listing of such an examination of the ScriptableClock applet. This applet
has only public methods (no variables), but the full listing shows the dozens of fields
accessible in the applet. What you probably won't recognize, unless you have programmed
in Java, isthat within the listing are dozens of fields belonging to the Java classes that
automatically become a part of the applet during compilation. From this listing, you have
no way to distinguish the fields defined or overridden in the applet code from the base
Javafields.

fieldMame (el Value

[Javallethod SeriptableClock]
g.etllméo -[.T avalethod .Scr;ptéblefjlo ck getIr.lfo]
setColot Javaldethod BetiptableClock et alor]
setFont |[Javaldethod SeriptableClock setF ont]
setTimeZone [J avalethod Scn'ptlableClo ck.setTimeZ one]
paint [avaMethiod SeriptahleClock paint] '
. [Javahd ethod-S.cr.iptabl.eCIDCk.nu.l]
stop [Javaldethad SeriptableClock stap)
statt [Javallethod SeriptableClock statt]
init -[.T avalethod ScﬁptébleClo Ck.]:.t.lit-]
destroy Javaldethod BeriptableClock destroy]
play |[Javaldethod ZeriptableClock play]
g.et.Pa.rameter.Info [J avalethiod Scn'ptlableClo ck.getP a..ramet.erllnfol]
getAppletinfo [Javallethod ScriﬁtableClo ck getAppletlnfa] .
getAud.io(ﬁ].ip [Javvald ethod-S.cr.iptabl.eCID ck. geLAudioC].i.p]

Figure 44-1
Partial listing of fields from ScriptableClock

Getting to scriptable methods

If you write your own applets or are fortunate enough to have the source code for an
existing applet, the safest way to modify the applet variable settings or the running
processes is through applet methods. Although setting a public variable value may enable
you to make a desired change, you don’t know how that change may impact other parts of
the applet. An applet designed for scriptability should have a number of methods defined
that enable you to make scripted changes to variable values.

To view asample of an applet designed for scriptability, open the Java source code file for
Listing 44-2 from the CD-ROM. A portion of that program listing is shown in the
following example.

Listing 44-2

Partial Listing for ScriptableClock.java
/*

Begi n public nmethods for getting

and setting data via LiveConnect

*
/
public void setTineZone(String zone) {
stop();
ti meZone = (zone.startsWth("GWI")) ? true : false;
start();
}
public void setFont(String newFont, String newStyle, String newSize) {
stop();
if (newFont !'= null && newFont !="")
f ont Nane = newFont ;
if (newStyle !'= null && newStyle !'="")
set Font Styl e(newStyl e) ;
if (newSize !'= null &% newSize !="")
set Font Si ze(newSi ze) ;
di spl ayFont = new Font (font Name, fontStyle, fontSize);
start();
}
public void setColor(String newbgCol or, String newfgColor) {
stop();
bgCol or = par seCol or (newbgCol or) ;
fgCol or = par seCol or (newf gCol or);
start();
}
public String getinfo() {
String result = "Info about Scriptabl ed ock.class\r\n";

result += "Version/Date: 1.0d1/2 May 1996\r\n";
result += "Author: Danny Goodman (dannyg@annyg.com\r\n";
result += "Public Variables:\r\n";

result +=" (None)\r\n\r\n";

result += "Public Methods:\r\n";

result +=" set Ti meZone(\"GVIN\" | \"Locale\")\r\n";

result +=" setFont (\"fontNane\" , \"Plain\" |\"Bold\" | \"Italic\",

\"fontSize\")\r\n";
result +=" set Col or (\ "bgCol or Nane\ ", \"fgCol or Nane\")\r\n";

result +=" colors: Black, Wite, Red, Geen, Blue, Yellowr\n";
return result;

/*
End public nethods for scripted access.
*/

The methods shown in Listing 44-2 are defined specifically for scripted access. In this
case, they safely stop the applet thread before changing any values. The last method is one
| recommend to applet authors. The method returns a small bit of documentation
containing information about the kind of methods that the applet likes to have scripted and
what you can have as the passed parameter values.

Now that you see the amount of scriptable information in this applet, look at Listing 44-3,
which takes advantage of that scriptability by providing several HTML form elements as
user controls for the clock. The results are shown in Figure 44-2.

Listing 44-3
A More Fully Scripted Clock

<HTM.>

<HEAD>

<TI TLE>Cl ock with Lots o' Wdgets</TITLE>
<SCRI PT LANGUAGE="JavaScriptl.1">

function setTi meZone(popup) {
var choi ce = popup. opti ons[popup. sel ect edl ndex] . val ue
docunent . cl ock2. set Ti neZone(choi ce)

}

function setColor(form ({
var bg =

f or m backgr oundCol or . opti ons[f or m backgr oundCol or . sel ect edl ndex] . val ue
var fg =

form f oregroundCol or. opti ons[form foregroundCol or. sel ect edl ndex] . val ue
docunent . cl ock2. set Col or (bg, fg)

}

function setFont(form {
var fontName = formtheFont. options[formtheFont. sel ectedl ndex]. val ue
var fontStyle = formtheStyl e.options[formtheStyle. sel ectedl ndex]. val ue
var fontSize = formtheSi ze. opti ons[formtheSi ze. sel ect edl ndex] . val ue
docunent . cl ock2. set Font (f ont Name, fontStyle, fontSize)

}

function getAppletinfo(forn) {
formdetails.value = docunent. cl ock2. getlnfo()

}

function showSource() {
var newW ndow = wi ndow. open(" Scri pt abl ed ock. java","",
"W DTH=450, HEl GHT=300, RESI ZABLE, SCROLLBARS")

}

</ SCRI PT>

</ HEAD>

<BODY>

<APPLET CODE="Scri pt abl ed ock. cl ass" NAME="cl ock2" W DTH=500 HElI GHT=45>
<PARAM NAME=bgCol or VALUE="BI ack" >

<PARAM NAME=f gCol or VALUE="Red" >

</ APPLET>

<pP>

<FORM NAME="w dget s2" >
Sel ect Tine Zone:
<SELECT NAME="zone" onChange="set Ti neZone(this)">
<OPTI ON SELECTED VALUE="Local e">Local Tinme
<OPTI ON VALUE="GMI" >G eenwi ch Mean Ti ne
</ SELECT><P>
Sel ect Background Col or:
<SELECT NAME="backgroundCol or" onChange="set Col or(this.forn)">
<OPTI ON VALUE="Wite">Wite
<OPTI ON SELECTED VALUE="BI ack" >Bl ack
<OPTI ON VALUE="Red" >Red
<OPTI ON VALUE="Gr een">G een
<OPTI ON VALUE="BI ue" >Bl ue
<OPTI ON VALUE="Yel | ow'>Yel | ow
</ SELECT>
Sel ect Col or Text Col or:
<SELECT NAME="f or egr oundCol or" onChange="set Col or(this.forn)">
<OPTI ON VALUE="Whi te">Wite
<OPTI ON VALUE="BI ack" >Bl ack
<OPTI ON SELECTED VALUE="Red" >Red
<OPTI ON VALUE="Gr een">G een
<OPTI ON VALUE="BI ue" >Bl ue
<OPTI ON VALUE="Yel | ow'>Yel | ow
</ SELECT><P>
Sel ect Font:
<SELECT NAME="t heFont" onChange="set Font (this.form">
<OPTI ON SELECTED VALUE="Ti mesRoman" >Ti mes Roman
<OPTI ON VALUE="Hel veti ca">Hel veti ca
<OPTI ON VALUE="Couri er">Couri er
<OPTI ON VALUE="Ari al ">Ari al
</ SELECT>

Sel ect Font Style:
<SELECT NAME="t heStyl " onChange="setFont(this.forn)">
<OPTI ON SELECTED VALUE="PIl ai n">Pl ai n
<OPTI ON VALUE="Bol d" >Bol d
<OPTI ON VALUE="Italic">ltalic
</ SELECT>

Sel ect Font Size:
<SELECT NAME="t heSi ze" onChange="set Font (this.form">
<OPTI ON VALUE="12">12
<OPTI ON VALUE="18">18
<OPTI ON SELECTED VALUE="24">24
<OPTI ON VALUE="30">30
</ SELECT><P>
<HR>
<I NPUT TYPE="button" NAME="get|nfo" VALUE="Applet Info..
ond i ck="get Appl etInfo(this.form">
<p>
<TEXTAREA NAME="details" RON5=11 COLS=70></ TEXTAREA>
</ FORW>
<HR>
</ BODY>
</ HTML>

Very little of the code here controls the applet — only the handful of functions near the
top. The rest of the code makes up the HTML user interface for the form element
controls. After you open this document from the CD-ROM, be sure to click the Applet

Info button to see the methods that you can script and the way that the parameter values
from the JavaScript side match up with the parameters on the Java method side.

¥ Clock with Lots o' Widgets - Netscape
File Edit “iew Go Communicator Help

i s 3 A . £ I3 & ﬁ

| Back Fowed Bekad Home: Seach: Gude Pt Secisip

13 Oct 1997 07:51:42 GMT

Select Tune Zone:] Greenwich Mean Time j

Select Background Color: |Black x| Select Color Text Color: | Yellow 'l

Select Font | Times Roman =

Select Font Style: | Plain =

Select Font Size: |30 >

A I | » ’4|
-Ha i ek i s e
Figure 44-2

Scripting more of the ScriptableClock applet

Applet limitations

Because of concerns about security breaches via LiveConnect, Netscape clamps down on
some powers that would be nice to have via a scripted applet. The most noticeable barrier
isthe one that prevents applets from accessing the network under scripted control.
Therefore, even though a Java applet has no difficulty reading or writing text files from the
server, such capabilities— even if built into an applet of your own design — won't be
carried out if triggered by a JavaScript call to the applet.

Some clever hacks used to be posted on the Web, but they were rather cumbersome to
implement and may no longer work on more modern browsers. Y ou can also program the
Java applet to fetch atext file after it starts up and then script the access of that value from
JavaScript (as described in the following section). Signed scripts (Chapter 46) and applets
can break through these security barriers after the user has given explicit permission to do
SO.

Faceless applets

Until LiveConnect came aong, Java applets were generally written to show off data and
graphics — to play a big role in the presentation on the page. But if you prefer to let an
applet do the heavy agorithmic lifting for your pages while the HTML form elements and
images (or Dynamic HTML facilities of newer browsers) do the user interface, you
essentially need what | call afaceless applet.

The method for embedding a facel ess applet into your page is the same as embedding any
applet: Use the <APPLET> tag. But specify only 1 pixel for both the HEI GHT and

W DTH attributes (O has strange side effects). This setting creates a dot on the screen,
which, depending on your page' s background color, may be completely invisible to page
visitors. Place it at the bottom of the page, if you like.

To show how nicely this method can work, Listing 44-4 provides the Java source code for
asimple applet that retrieves a specific text file and stores the results in a Java variable
available for fetching by the JavaScript shown in Listing 44-5. The HTML even automates
the loading process by triggering the retrieval of the Java applet’s data from an onLoad
event handler.

Listing 44-4
Java Applet Source Code

i mport java.net.*;
i mport java.io.*;

public class Fil eReader extends java.appl et. Appl et inplenments Runnable {

Thread t hread;

URL url;

String output;

String fileNane = "Bill of rights.txt";

public void getFile(String fil eNanme) throws | OException {
String result, line;
I nput St ream connecti on;
Dat al nput Stream dat aStream
StringBuffer buffer = new StringBuffer();

try {
url = new URL(get Docunent Base(), fil eNane);

}
catch (Mal f ormedURLException e) {
output = "AppletError " + e;

try {
connection = url.openStream();

dat aStream = new Dat al nput St rean(new
Buf f er edl nput Strean{ connection));

while ((line = dataStreamreadLine()) '= null) {
buf fer. append(line + "\n");

result = buffer.toString();

}
catch (1 Cexception e) {
result = "AppletError: " + e;

output = result;

}

public String fetchText() {
return output;
}

public void init() {
}

public void start() {
if (thread == null) {
thread = new Thread(this);
thread. start();

}

}
public void stop() {
if (thread '= null) {
t hread. st op();
thread = nul | ;
}

}

public void run(){

try {
getFil e(fil eName);

}
catch (1 OCexception e) {

output = "AppletError: " + eg;
}

}
}
All the work of actualy retrieving the fileis performed inthe get Fi | e() method (which
runs immediately after the applet loads). Notice that the name of the file to be retrieved,
Bill of Ri ghts.txt,isstoredasavariable near thetop of the code, making it easy
to change for arecompilation, if necessary. Y ou can also modify the applet to accept the
file name as an applet parameter, specified in the HTML code. Meanwhile, the only hook
that JavaScript needs is the one public method called f et chText () , which merely
returns the value of the output variable, which in turn holds the file' s contents.

This Java source code must be compiled into a Java class file (already compiled and
included on the CD-ROM as Fi | eReader . cl ass) and placed in the same directory as
the HTML file that loads this applet. Also, no explicit pathname for the text file is supplied
in the source code, so the text file is assumed to be in the same directory as the applet.

Listing 44-5
HTML Asking Applet to Read Text File

<HTM.>

<HEAD>

<TI TLE>Letting an Applet Do The Work</ Tl TLE>

<SCRI PT LANGUAGE="JavaScriptl.1">

function getFile(form {
var output = docunent.reader Appl et. fetchText ()
formfileQutput.val ue = out put

function autoFetch() {
var out put = docunent.reader Appl et. fetchText ()

if (output '= null) {
docunent. forns[0].fil eQut put.val ue = out put
return

}
var t = setTi meout ("autoFetch()", 1000)

}

</ SCRI PT>

</ HEAD>

<BODY onLoad="aut oFetch()">

<H1>Text froma text file...</Hl>
<FORM NAME="r eader " >

<I NPUT TYPE="button" VALUE="Get File" onCick="getFile(this.form">

<pP>

<TEXTAREA NAME="fi | eQut put” ROWS=10 COLS=60 WRAP="har d" ></ TEXTAREA>

<pP>

<I NPUT TYPE="Reset" VALUE="C ear">

</ FORW>

<APPLET CODE="Fil eReader. cl ass" NAME="reader Appl et" W DTH=1 HEI GHT=1>

</ APPLET>

</ BODY>

</ HTM_>

Because an applet is usually the last detail to finish loading in a document, you can’t use
an applet to generate the page immediately. At best, an HTML document can display a
pleasant welcome screen while the applet finishes loading itself and running whatever it
does to prepare data for the page’ s form elements. In |E4+, the page can then be
dynamically constructed out of the retrieved data; for NN4, you can create a new layer
object, and usedocunent . wi t e() toinstal content into that layer. Notice in Listing
44-5 that the onLoad event handler calls afunction that checks whether the applet has
supplied the requested data. If not, then the same function is called repeatedly in atimer
loop until the datais ready and the textarea can be set. The <APPLET> tag is located at
the bottom of the Body, set to 1 pixel square — invisible to the user. No user interface
exists for this applet, so you have no need to clutter up the page with any placeholder or

bumper sticker.

Figure 44-3 shows the page generated by the HTML and applet working together. The
Get File button is merely a manua demonstration of calling the same applet method that
the onLoad event handler calls.

¥ Letting an Applet Do The Work - Netscape

File Edit View Go Communicatar Help

< 2 A D o £ = & B m
Back fFowed Aeload Home Seach Gude Pint Secunty Sio;
32 3 e i

Text from a text file...
Get File |

ARTICLE I =
Congress shall make no law respecting an establishment of
religion, or prohibiting the free exercise thereof; or
abridging the freedom of speech, or of the press: or the
right of the people peacesbly to assewble, and to peticion
the government for a redress of grievances,

ARTICLE II b=
L well regulated militia, being necessary to the security of
a free state, the right of the people to keep and bear ar:rns,_i

& FeSig ELoE S e

=

Figure 44-3
The page with text retrieved from a server file.

A faceless applet may be one way for Web authors to hide what may otherwise be
JavaScript code that is open to any visitor’s view. For example, if you want to deliver a
small data collection lookup with a document, but don’t want the array of datato be
visible in the JavaScript code, you can create the array and lookup functionality inside a
faceless applet. Then use form controls and JavaScript to act as query entry and output
display devices (or dynamically generate a table in IE4+). Because the parameter values
passed between JavaScript and Java applets must be string, numeric, or Boolean values,
you won't be able to pass arrays without performing some amount of conversion either
within the applet or the JavaScript code (JavaScript'sstri ng. split() and
array. joi n() methods help agreat deal here).

Data type conversions

The example in this chapter does not pass any parameters to the applet’ s methods, but you
are free to do so. Y ou need to pay attention to the way in which values are converted to
Java data types. JavaScript strings and Boolean values are converted to Java String and
Boolean objects. All JavaScript numbers, regardless of their subtype (that is, integer or
floating-point number), are converted to Float objects. Therefore, if a method must accept
anumeric parameter from a script, the parameter variable in the Java method must be
defined as a Float type.

The distinction between JavaScript string values and string objects can impact data being
passed to an applet. If an applet method requires a string object as a parameter, you may
have to explicitly convert a JavaScript string value (for example, a string from atext field)
to astring object viathenew St ri ng() constructor (Chapter 34).

Y ou can also pass references to objects, such as form control elements. Such objects get
wrapped with aJ SChj ect type (see discussion about this class later in the chapter).
Therefore, parameter variables must be established as type JSObj ect (and the

net scape. j avascri pt. JSObj ect class must be imported into the applet).

Applet-to-Script Communication

The flip side of scripted applet control is having an applet control script and HTML
content in the page. Before you undertake this avenue in page design, you must bear in
mind that any calls made from the applet to the page are hard-wired for the specific scripts
and HTML elementsin the page. If thislevel of tight integration and dependence suits the
application, the link up will be successful.

Note

The discussion of applet-to-script communication assumes you have
experience writing Java applets. | use Java jargon quite freely in this
discussion.

What your applet needs

NN3 and NN4 come with a zipped set of special classfilestalored for usein
LiveConnect. In NN3, thefileisnamed j ava_30 orj ava_301, the latter one being the
latest version; in NN4, thefileisnamed j ava40. j ar . For NNG6, the class filesare
located in an archive called] aws. j ar (Windows) or MRIPI| ugi n. j ar (Mac).Usethe
file search facility of the OSto locate the relevant file on your system.Microsoft versions
of these classfiles are also included in |E4+, buried in one of the large . zi p filesin the
Windows\Java\Packages directory (the files you need are in one of the multi-megabyte

. Zi p files, whose gibberish names change from version to version — open each with an
unzip utility and look for the two packages mentioned next). The browser must see these
classfiles (and have both Java and JavaScript enabled in the preferences screens) for
LiveConnect to work.

These zipped class library files contain two vital classesin anet scape package (yes,
evenin lE):

net scape. j avascri pt. JSObj ect

net scape. j avascri pt. JSExcepti on

Both classes must be imported to your applet viathe Javai nport compiler directive:

i mport netscape.javascript.*;

When the applet runs, the LiveConnect-aware browser knows how to find the two classes,
so that the user doesn’t have to do anything special aslong as the supporting filesarein
their default locations.

Perhaps the biggest problem applet authors have with LiveConnect is importing these
class libraries for applet compilation. Y our Java compiler must be able to see these class
libraries for compilation to be successful. The prescribed method is to include the path to
the zipped classfile (either the Netscape . j ar archive or Microsoft . zi p file) in the
class path for the compiler.

Problems frequently occur when the Java compiler you use (perhaps inside an integrated
development environment, such as Cafe) doesn’t recognize either of the Netscape files as
alegitimate zipped classfile. Y ou can make your compilation life smpler if you extract the
net scape packagefromthe. j ar or. zi p file, and placeit in the same directory in
which your compiler looks for the basic Java classes. For example, although the precise
details may change in newer versions, Cafe stores the default Java class files insde zipped
collections whose class paths (in Windows) are

C:\ CAFE\ BI N\ . . \ JAVAI\ LI B\ CLASSES. ZI P

C:\ CAFE\ BI N\ . . \ JAVA\ LI B\ SYMCLASS. ZI P

These two class paths are inserted into new projects by default. Extract the two

net scape. j avascri pt classfilesand store them in the same LIB directory as
CLASSES.ZIP and SYMCLASS.ZIP. In other words, in the LIB directory is a directory
named net scape; inddethe net scape directory is another directory named

j avascri pt ;insdethej avascri pt directory arethe JSQbj ect . cl ass and

JSExcepti on. cl ass files. Then | add the following class path to the project’s class
path setting:
C:\ CAFE\ BI N\ . . JAVAI LI B\

This path instructs Cafe to start looking for the net scape package (which contains the
j avascri pt package, which, in turn, contains the classfiles) in that directory.

Depending on the unzipping utility and operating system you use, you may have to force
the utility to recognize . j ar filesasaszip archivefiles. If necessary, instruct the utility’s
file open dialog box to locate al file types in the directory. Both files will open as zipped
archives. Sort the long list of files by name. Then select and extract only the two classfiles
into the same directory as your compiler’s Java class files. The utility should take care of
creating the package directories for you.

What your HTML needs

As a security precaution, an <APPLET> tag requires one extra attribute to give the applet
permission to access the HTML and scripting inside the document. That attribute is the
single word MAYSCRI PT, and it can go anywhere inside the <APPLET> tag, as follows:

<APPLET CODE="nyAppl et.cl ass" HElI GHT="200" W DTH="300" MAYSCRI PT>

Permission is not required for JavaScript to access an applet’ s methods or properties, but
if the applet initiates contact with the page, this attribute is required.

About JSObject.class

The portal between the applet and the HTML page that containsit is the

net scape. j avascri pt. JSObj ect class. Thisobject’s methods let the applet
contact document objects and invoke JavaScript statements. Table 44-1 shows the
object’ s methods and one static method.

Table 44-1
JSObject Class Methods

Method Description

ca! I (String functionNane, Invokes JavaScript function, argument(s)

(bj ect args[]) passed as an array

eval (String expression) Invokes a JavaScript statement

get Menber (String el enent Name) | Retrieves anamed object belonging to a
container

get Sl ot (I nt i ndex) Retrieves indexed object belonging to a
container

get W ndow(Appl et appl et) Static method retrieves applet’s containing

window
renoveMenber (String Removes a named object belonging to a
el ement Nane) container
set Menber (String Sets value of a named object belonging to a
el ement Nane, Qbj ect val ue) container
setSlot(int index, Qbject Sets value of an indexed object belonging to
val ue) a container
toString() Returns string version of JSCObj ect

Just asthe w ndow object is the top of the document object hierarchy for JavaScript
references, the w ndow object is the gateway between the applet code and the scripts and
document objects. To open that gateway, use the JSObj ect . get W ndow() method
to retrieve areference to the document window. Assign that object to a variable that you
can use throughout your applet code. The following code fragment shows the start of an
applet that assigns the window reference to a variable named nmai nwi n:

i nport netscape.javascript.*;

public class nyC ass extends java. appl et. Appl et {
private JSObj ect nai nwi n;

public void init() {
mai nwi n = JSObj ect . get Wndow(t hi s);
}

}

If your applet will be making frequent trips to a particular object, you may want to create
avariable holding a reference to that object. To accomplish this, the applet needs to make
progressively deeper calls into the document object hierarchy with the get Menber ()
method. For example, the following sequence assumes mai nwi n isareference to the
applet’ s document window. Eventually the statements set aform’s field object to a
variable for use elsewhere in the applet:

JSObj ect doc = (JSOhj ect) mai nwi n. get Menber ("docunent ") ;

JSObj ect form = (JSObj ect) doc. get Menber ("entryForn');

JSObj ect phonefld = (JSObj ect) form get Menber (" phone");

Another option isto usethe Javaeval () method to execute an expression from the
point of view of any object. For example, the following statement gets the same field
object from the preceding fragment:

JSObj ect phonefld = mai nwi n. eval ("docunent . entryForm phone");

As soon as you have areference to an object, you can access its properties viathe
get Menber () method, as shown in the following example, which readsthe val ue
property of the text box, and casts the value into aJava St r i ng object:

String phoneNum = (String) phonefld. get Menber ("val ue");

Two JSCObj ect class methods let your applet execute arbitrary JavaScript expressions
and invoke object methods: theeval () andcal | () methods. Use these methods with
any JSQbj ect . If avalueisto be returned from the executed statement, you must cast

the result into the desired object type. The parameter for the eval () method isastring
of the expression to be evaluated by JavaScript. Scope of the expression depends on the
object attached to the eval () method. If you use the wi ndow object, the expression
would exist asif it were a statement in the document script (not defined inside a function).

Usingthecal | () method is convenient for invoking JavaScript functionsin the
document, although it requires alittle more preparation. The first parameter is a string of
the function name. The second parameter is an array of arguments for the function.
Parameters can be of mixed data types, in which case the array would be of type Cbj ect .
If you don’'t need to pass a parameter to the function call, you can define an array of a
single empty string value (for example, String arg[] = {""}) and passthat array
as the second parameter.

Data type conversions

The strongly typed Java language is a mismatch for loosely typed JavaScript. As aresult,
with the exception of Boolean and string objects (which are converted to their respective
JavaScript objects), you should be aware of the way LiveConnect adapts data types to
JavaScript.

Any Java object that contains numeric data is converted to a JavaScript number value.
Because JavaScript numbers are |EEE doubles, they can accommodate just about
everything Java can throw its way.

If the applet extracts an object from the document and then passes that JSCbj ect type
back to JavaScript, that passed object is converted to its origina JavaScript object type.
But objects of other classes are passed as their native objects wrapped in JavaScript
“clothing.” JavaScript can access the applet object’s methods and properties asif the
object were a JavaScript object. Finally, Java arrays are converted to the same kind of
JavaScript array created viathe new Array() constructor. Elements can be accessed
by integer index values (not named index values). All other JavaScript array properties and
methods apply to this object as well.

Example applet-to-script application

To demonstrate several techniques for communicating from an applet to both JavaScript
scripts and document objects, | present an applet that displays two simple buttons (see
Figure 44-4). One button generates a new window, spawned from the main window,
filling the window with dynamically generated content from the applet. The second button
communicates from the applet to that second window by invoking a JavaScript function in
the document. One last part of the demonstration shows the applet changing the value of a
text box when the applet starts up.

ﬂ{dava-io«lavaﬁcript Demo - Netscape
File Edit ‘“iew Go Communicater Help

- : = : - - : — _
2 Y A DN s £ S & LN
% Back owed Beload Home Seaich Guide Prnt Secunly Of =]

Here's the applet:

Mew Browser Window

Toggle Subwindow Color |

Is the applet running 3=et'?|'='35

=l Applet demoépplet running E T s e

Figure 44-4
The applet displays two buttons seamlessly on the page.

Listing 44-6 shows the source code for the Java applet. For backward compatibility, it
uses the JDK 1.02 event handling mode!.

Because the applet generates two buttons, the code begins by importing the AWT interface
builder classes. | also import the net scape. j avascri pt packageto get the

JSQbj ect class. The name of this sample classis Jt 0JSDenv. | declare four global
variables: two for the windows, two for the applet button objects.

Listing 44-6
Java Applet Source Code

i mport java.awt.*;
i mport netscape.javascript.*;

public class JtoJSDenp extends java. appl et. Applet {
private JSObj ect mai nwin, subw n;
private Button newW nButton, toggleButton;

The applet’si ni t () method establishes the user interface elements for this simple
applet. A white background is matched in the HTML with a white document background
color, making the applet appear to blend in with the page. | use this opportunity to set the
mai Nnwi n variable to the browser window that contains the applet.

public void init() {
set Backgr ound(Col or. white);
newW nButton = new Button("New Browser W ndow');
t oggl eButton = new Button("Toggl e SubW ndow Col or");
t hi s. add(newW nBut t on) ;
t hi s. add(t oggl eButton);
mai nwi n = JSObj ect . get Wndow(t hi s);

As soon as the applet starts, it changes the val ue property of atext box inthe HTML
form. Because thisis a one-time access to the field, | elected to usethe eval () method
from the point of view of the main window, rather than build successive object references
through the object hierarchy with the get Menber () method.

public void start() {
mai nwi n. eval ("docunent . indi cator.running.value = 'Yes'");
}

Event handling is quite smple in this application. A click of the first button invokes
doNewW ndow() ; aclick of the second invokest oggl eCol or () . Both methods are
defined later in the applet.

public bool ean action(Event evt, bject arg) {
if (evt.target instanceof Button) {

if (evt.target == newW nButton) {
doNewW ndow() ;
} else if (evt.target == toggl eButton) {

t oggl eCol or () ;

} return true;
One of the applet’s buttons calls the doNewW ndow() method defined here. | use the
eval () method to invoke the JavaScript v ndow. open() method. The string
parameter of the eval () method is exactly like the statement that appearsin the page's
JavaScript to open anew window. Thewi ndow. open() method returns a reference to
that subwindow, so that the statement here captures the returned value, casting it asa
JSObj ect typefor the subwi n variable. That subwi n variable can then be used asa
reference for another eval () method that writes to that second window. Notice that the
object to the left of the eval () method governs the recipient of the eval () method's
expression. The same is true for closing the writing stream to the subwindow.

Note

Unfortunately, the IE4+ implementation of JSObj ect does not provide a
suitable reference to the external window after it is created. Therefore, the
window does not receive its content or respond to color changes in this
example. Due to other anomalies with subwindows, | advise against using
LiveConnect powers with multiple windows in IE4+.

Listing 44-6
(continued)
Java Applet Source Code

voi d doNewwW ndow() {
subwi n = (JSObj ect)
mai nwi n. eval ("wi ndow. open('"',"' fromAppl et', ' HEl GHT=200, W DTH=200") ") ;
subwi n. eval ("docunent.write(' <HTML.><BODY BGCOLOR=whi t e>Howdy fromthe
appl et ! </ BODY></ HTML>') ") ;
subwi n. eval ("document. cl ose()");
}

The second button in the applet callsthet oggl eCol or () method. Inthe HTML
document, a JavaScript function named t oggl eSubW ndowCol or () takesaw ndow
object reference as an argument. Therefore, | first assemble a one-element array of type
JSObj ect consisting of the subwi n object. That array is the second parameter of the
cal | () method, following a string version of the JavaScript function name being called.

voi d toggl eCol or () {
if (subwin !'= null) {
JSObj ect arg[] = {subw n};
mai nwi n. cal | ("t oggl eSubW ndowCol or", arg);
}
}
}

Now onto the HTML that loads the above applet class and is the recipient of its calls. The
document is shown in Listing 44-7. One function is called by the applet. A text box in the
formisinitially set to “No,” but gets changed to “Yes’ by the applet after it has finished its
initialization. The only other item of note is that the <APPLET> tag includes a

MAYSCRI PT attribute to alow the applet to communicate with the page.

Listing 44-7
HTML Document Called by Applet

<HTM.>
<HEAD><TI TLE>Java-t o- JavaScri pt Deno</ Tl TLE>
<SCRI PT LANGUAGE="JavaScri pt">
function toggl eSubW ndowCol or (wi nd) {
if (wnd.closed) {
alert("The subwi ndow is closed. Can't change it's color.")
} else {
wi nd. document . bgCol or = (wi nd. docunent. bgCol or == "#ffffff") ? "red"
"white"
}

}
</ SCRI PT>
</ HEAD>

<BODY BGCOLOR="#FFFFFF" >

Here's the appl et: </ B>

<APPLET CODE="Jt 0JSDenv. cl ass" NAME="denpAppl et" HElI GHT=150 W DTH=200
MAYSCRI PT>

</ APPLET>

<FORM NAME="i ndi cat or ">

Is the applet running yet?<I NPUT TYPE="text" NAME="runni ng" SIZE="4"
VALUE=" No" >

</ FORW>

</ BODY>

</ HTML>

Scripting Plug-ins

Controlling a plug-in (or Windows ActiveX control in |E) from JavaScript is much like
controlling a Java applet. But you have more browser-specific concerns to worry about,
even a the HTML level. Not al plug-ins are scriptable, of course, nor do all browsers
permit such scripting, as described at the start of this chapter. Y et even when you have
found the right combination of browser version(s) and plug-in(s), you must aso learn

what the properties and/or methods of the plug-in are so that your scripts can control
them. For common plug-in duties, such as playing audio, the likelihood that all users will
have the same audio playback plug-in installed in a particular browser brand and operating
system is perhaps too small to entrust your programming to a single plug-in. If, on the
other hand, you are using a plug-in that works only with a special data type, then your
page need check only that the plug-inisinstalled (and that it is the desired minimum
version).

In this section of the chapter, you'll begin to understand the HTML issues and then
examine two separate audio playback examples. One example lets users change tunes
being played back; the other arrives with five sounds, each of which is controlled by a
different onscreen interface element. Both of these audio playback examples employ a
library that has been designed to provide basic audio playback interfaces to the three most
popular scriptable audio playback plug-ins:

* Windows Media Player 6.4
* Apple QuickTime 4.1 or later
* Netscape LiveAudio (for NN3 and NN4)

The main goal of the library isto act as an API (Application Programming Interface)
between your scripts and the three plug-ins. Y our scripts issue one command, and the
library figures out which plug-in isinstalled and how that particular command must be
communicated to the installed plug-in. Additional verification takes place in the
initialization routine to verify that avalid plug-inisinstalled in the user’s browser.

The HTML side

Depending on the browser and operating system that you' re using, one of two tags can be
used to put the plug-in’s powers into the page. With the plug-in embedded within the page
(even if you don’'t see it), the plug-in becomes part of the document’ s object model, which
means that your scripts can addressiit.

Using EMBED

The preferred way to embed such content into a page for NN (all OSes) and IE/Macisto
use the <EMBED> tag. Even though the W3C HTML standard does not recognize the
EMBED element, it has been a part of browser implementations since the first embeddable
media. The element is also a bit of a chameleon, because beyond a common set of
recognized attributes, such as the SRC attribute that points to the content file to be loaded
into the plug-in, its attributes are extensible to include items that apply only to agiven
plug-in. Uncovering the precise lists of attributes and values for a plug-inis not aways
easy, and frequently requires digging deeply into the developer documentation of the plug-
in’s producer. It is not unusual for a page author to anticipate that multiple plug-ins could
play a particular kind of data (asis the case in the audio examples later in this chapter).

Therefore, asingle EMBED element may include attributes that apply to more than one
plug-in. Y ou have to hope that the plug-ins' developers chose unique names for their
attributes or that like-named attributes mean the same thing in multiple plug-ins. Any
attributes that a plug-in doesn’t recognize are ignored.

Typica behavior for aplug-inisto display some kind of controller or other panel ina
rectangle associated with the media. Y ou definitely need to specify the HEI GHT and

W DTH attribute values of such an EMBED element if it isto display visual media (some
video plug-inslet you hide the controls, while still showing the viewing area). For audio,
however, you can specify a one-pixel value for both dimensions, and leave the controls to
your HTML content. Browsers that recognize style sheets can also set EMBED elements
to beinvighle.

As an example of what an EMBED element may ook like, the following is adapted from
Listing 44-9. The example includes attributes that apply to QuickTime and LiveAudio and
is formatted here for ease of readability.

<EMBED NAME="] ukebox"
HElI GHT=1
W DTH=1
SRC="Beet hoven. ai f"
HI DDEN=TRUE
AUTOSTART=FALSE
AUTOPLAYT=FALSE
ENABLEJAVASCRI PT=TRUE
MASTERSOUND>

</ EMBED>

After the page loads and encounters this tag, the browser reaches out to the server and
loads the sound file into the plug-in, where it sits quietly until the plug-in is instructed to

play it.

IE/Windows OBJECT

In the |E/Windows camp, the preferred way to get external media into the document is to
load the plug-in (ActiveX control) as an object viathe <OBJECT> tag. The OBJECT
element is endorsed by the W3C HTML standard. In many ways the <OBJECT> tag
works like the <APPLET> tag in that aside from specifying attributes that |oad the plug-
in, additional nested PARAM elements | et you make numerous settings to the plug-in
while it loads, including the name of the file to pre-load. As with a plug-in’s attributes, an
object’ s parameters are unique to the object and are documented (somewhere) for every
object intended to be put into an HTML page.

|E/Windows has a specia (that is, far from intuitive) way it refers to the plug-in program:

through its class ID (aso known as a GUID). Y ou must know this long string of numbers
and lettersin order to embed the object into your page. If you are having difficulty getting
thisinformation from a vendor, see Chapter 32 for tips on how to hunt for the information
yourself. There, you also discover how to find out what parameters apply to an object.

The following example is an OBJECT element that |oads the Windows Media Player 6.x
plug-in (ActiveX control) into a page. The example is adapted from Listing 44-9.

<OBJECT | D="j ukebox" W DTH="1" HEI GHT="1"

CLASSI| D="CLSI D: 22d6f 312- b0Of 6- 11d0- 94ab- 0080c74c7e95"
CCDEBASE=" #Ver si on=6, 0, 0, 0" >

<PARAM NAME="Fi | eNane" VALUE="Beet hoven. aif">
<PARAM NAME="Aut oSt art" VALUE="fal se">

</ OBJECT>

When you compare the EMBED and OBJECT approaches, you can see many similar

properties and values, which are just expressed differently (for example, attributes versus
PARAM elements).

Using EMBED and OBJECT together

Because a public Web page must usually appeal to a broad range of browsers, you should
design such a page to work with as many browsers as possible. For the convenience of
your scripting (and especialy if you use the audio playback API described later in this
chapter), referring to a plug-in object by the same identifier is helpful, whether it is loaded
viaan EMBED or OBJECT element.

To the rescue comes a handy behavior of the OBJECT element. It isdesigned in such a
way that you can nest the associated EMBED element inside the OBJECT element’s tag
set. If the browser doesn’t know about the OBJECT element, that element isignored, but
the EMBED element is picked up. Similarly, if the browser that knows about the OBJECT
element failsto load the plug-in identified in its attributes, the nested EMBED elements
also get picked up. Therefore, you can combine the OBJECT and EMBED elements as
shown in the following example, which combines the two previous examples:

<OBJECT | D="j ukebox" W DTH="1" HEI GHT="1"
CLASSI| D="CLSI D: 22d6f 312- b0Of 6- 11d0- 94ab- 0080c74c7e95"
CCODEBASE=" #Ver si on=6, 0, 0, 0" >
<PARAM NANME="Fi | eNane" VALUE="Beet hoven. aif">
<PARAM NAME="Aut oStart" VALUE="fal se">
<EMBED NAME="] ukebox"
HElI GHT=1
W DTH=1
SRC="Beet hoven. ai f"
HI DDEN=TRUE
AUTOSTART=FALSE
AUTOPLAYT=FALSE
ENABLEJAVASCRI PT=TRUE
MASTERSOUND>
</ EMBED>
</ OBJECT>

Notice that the identifier assigned to the | D of the OBJECT element and to the NAME of
the EMBED element are the same. Because only one of these two elements will be valid in
the document, you have no conflict of like-named elements.

Validating the plug-in

As described at length in Chapter 32, you may need to validate the installation of a
particular plug-in before the external mediawill play. This vaidation is even more vita if

you want to control the plug-in from scripts, because you must have the right controlling
vocabulary for each scriptable plug-in.

The coordination of plug-in and data type is not a big issue in |E/Windows, because your
OBJECT dement explicitly loads a known plug-in, even if the computer is equipped to
play the same data type through a half-dozen different ActiveX controls. But in NN (and
|E/Mac, athough plug-ins are not scriptable there at least through Version 5), the
association of aplug-in with a particular MIME type (data type of the incoming media) is
perhaps a bit too automatic. It is not uncommon for plug-in installation programs to
gobble up the associations of numerous MIME types. Knowledgeable users, who can
fathom the nether worlds of browser preferences, can manually change these associations,
but your scripts cannot direct a browser to use a specific plug-in to play your media unless
the plug-in is already enabled for your media s MIME type. The more common and open
your media’'s MIME type is (particularly audio and video), the more of a potential
problem this presents to you. Caveat scriptor.

With these warnings in mind, review the approaches to checking the presence of a plug-in
and its enabled status by way of the mi neTypes and pl ugl ns objects described in
Chapter 32. Y ou see some of the routines from that chapter put to use in a moment.

The API approach

In this section, you see one version of an API that can be used to accomplish ssmple audio
playback activitiesin a page through three different plug-in technologies (Windows Media
Player 6, Apple QuickTime, and Netscape LiveAudio). Your scripts issue one command
(for example, pl ay(1)), and the API sends the precise command to the plug-in being
used in the user’s browser. At the same time, the API hasits own initialization routine,
which it uses not only to validate the plug-in being used, but aerts users of ill-equipped
browsers with a relevant message about why their browser can’t get the most out of the

page.

This API isfar from the be-all, end-al library, athough you will see that it does quite a bit
as-is. The codeis offered as a starting point for your further development. Such
development may take the shape of adding more operations to the API or adding
capabilities for additional scriptable plug-ins. For example, while the API as shown
supports Windows Media Player 6, Microsoft continues to upgrade the Player to new
versions (with new GUIDs for your OBJECT tags) that have new command vocabularies.
There is no reason that the APl cannot be extended for new generations of Windows
Media Player, while maintaining backward compatibility for the Version 6 generation.

Y ou can find the complete API code on the CD-ROM within the folder of example listings
for this chapter. The API fileis named DGAudi 0API . j s. Check out the following high
points of this library.

Loading the library

Adding the library to your page is no different from any external . j s library file. Include
the following tag in the HEAD of your page:
<SCRI PT LANGUAGE="JavaScri pt" SRC="DGAudi 0API .| s"></ SCRI PT>

Except for two global variable initializations, no immediate code runs from the library. All
of its activity isinvoked from event handlers or other script statements in the main page.

Initializing the library

Thefirst job for the library is to vaidate that your sounds have one of the three known
plug-in technologies available. Before the library can do this, al loading of the OBJECT
or EMBED elements must be concluded so that the objects exist for the initialization
routine to examine. Therefore, use the onLoad event handler in the BODY to invoke the
i ni t Audi oAPI () function. Parameters to be passed to this function are vital pieces of
information.

Parameter values consist of one or more two-element arrays. The first valueis a string of
the identifier, which is assigned to the OBJECT and EMBED elements (recall that they are
the same identifiers); the second value is a string of the MIME type. Getting the desired
value may take sometria and error if you aren’'t familiar with MIME type terminology.
Use the Edit/Preferences/Applications dialog box window listingsin NN asaguidein
finding the name of a MIME type based on the file name extension of the mediafile.

The following is an excerpt from Listing 44-9, which shows how the j ukebox player
object isinitialized for theaudi o/ x- ai ff MIME type (all sound filesfor examplesin
this chapter have the . ai f file name extension):

onLoad="i ni t Audi oAPI ([']j ukebox', 'audio/x-aiff'])"

Notice how the square bracket literal array syntax is used both to create the array of two
values while passing them as parameters to the function. NN uses the MIME type to make
sure that the plug-in that fired up as aresult of the EMBED element is enabled for the
MIME type.

Asyou seein Listing 44-10, the i ni t Audi 0API () function letsyou initialize multiple
player objects, each one with its own MIME type, if necessary. Each object and MIME
type pair are passed as their own array. For example, the following initializes the library
for two different embedded plug-in objects, although both have the same MIME type:

onLoad="ini t Audi oAPI ([' cNatural','audio/x-aiff'],['cSharp'," audio/x-aiff'])"

When the function receives multiple arrays, it loops through them, performing the
initializations in sequence. Thei ni t Audi oAPI () function follows:

function initAudi 0API () {

var args = initAudi oAPI . argunents
var id, mne
for (var i = 0; i < args.length; i++) {

/! don't init any nore if browser |acks scriptable sound
if (OKToTest) {
id=args[i][0]

mme = args[i][1]
pl ayers[id] = new API(id, m ne)
pl ayers[id].type = set Type(id, m ne)

}
}

Notice that parameter variables are not explicitly declared for the function, but are,
instead, retrieved viathe ar gunent s property of the function. The global OKToTest
flag, initialized to true when the library loads, is set to false if the validation of a plug-in
fails. The conditional construction here prevents multiple alerts from appearing when
multiple plug-in and MIME type parameters are passed to the initialization function.

Sound player API objects

One of the jobs of the initialization routine is to create a player object for each plug-in
identifier. The object’s constructor is as follows:

/1 Audi oAPI obj ect constructor
function API(id, mnme) {
this.id = id
this.type = "" [/ values can be "isLA","isM",K "isQrI"
this. m nmeType = m ne
this.play = APl _pl ay
this.stop = APl _stop
t hi s. pause = API _pause
this.rewind = APl _rew nd
this.load = APl _| oad
t hi s. get Vol une APl _get Vol une
t hi s. set Vol une APl _set Vol une

}

The object becomes a convenient place to preserve properties for each sound controller,
including which type of plug-in it uses (described in a moment). But the bulk of the object
is reserved for assigning methods — the methods that your main page' s scripts invoke to
play and stop the player, adjust its volume, and so on. The method names to the | eft of the
assignment statements in the object constructor are the names your scripts use; the
functionsin the library (for example, APl _pl ay()) are the ones that send the right
command to the right plug-in.

Each of these objects (even if there is only one for the page) is maintained in a hash table-
like array (named pl ayer s[]) inthelibrary. The plug-in object’ s identifier is the string
index for the array entry. This provides the gateway to your page’s scripts. For example, if
you initidize the library with asingle identifier, j ukebox, you access the methods of the
library’ s jukebox-related player object through the array and the identifier:

pl ayers["j ukebox"]. rew nd()

Plug-in checking

One more part of the initidization routine inside the library isacall tothe set Type()
function, which ultimately assignsavauetothepl ayer s[] objectt ype property. For
avalid plug-in, the value of thet ype property can bei sLA (LiveAudio), i sMP
(Windows Media Player), i sQT (QuickTime), or an empty string. Listing 44-8 shows
code for the set Type() function and some supporting functions.

Listing 44-8
setType() and Supporting Functions from DGAudioAPLjs

function setType(id, mne) {

var type = ""
var errMsg = "This browser is not equipped for scripted sound.\n\n"
var OS = get 0OS()
var brand = getBrand()
var ver = getVersion(brand)
if (brand == "IE") {

if (ver > 4)

if (document.all (id) && docunent.all (id).HasError) {
errMsg = docunent.all (id).ErrorDescription

} else {
if (OS == "Wn") {
if (document.all(id) && docunment.all(id).CreationDate !=
) A
return "i sMP"
} else {
errMsg += "Expecting Wndows Media Player Version 6.4."
} else {
errMsg += "Only Internet Explorer for Wndows is
supported.”
}
} else {
errMsg += "Only Internet Explorer 4 or later for Wndows is
supported.”
} else if (brand == "NN") {
if ((ver >= 3 && ver < 4.6) || (ver >= 4.7 && ver < 6)) {
i f (m meAndPl ugi nReady(m ne, "LiveAudio")) {
return "isLA"
}
i f (m meAndPl ugi nReady(m ne, "QuickTinme"))
gt Ver = parseFl oat (docunent . embeds|[i d] . Get Pl ugi nVersi on(), 10)
if (gtver >= 4.1) {
return "isQr"
} else {
errMsg += "QuickTime Plugin 4.1 or later is required.”
} else {
errMsg += "Sound control requires QuickTime Plugin 4.1 "
errMsg += "(or later) or LiveAudio "
errMsg += "enabled for MME type: \'" + mnme + "\'
} else {
errMsg += "Requires Navigator 3.x, 4.0-4.5, or 4.7-4.9."
} else {
errMsg += "This page is certified only for versions of Internet
Expl orer
errMsg == "and Net scape Navigator."

alert(errMsg)
OKToTest = fal se
return type

}

function get OS() {
var ua = navi gat or. user Agent
if (ua.indexOF("Wn") 1= -1) {
return "Wn"

i}f (ua.indexCOf ("Mac") !'= -1) {

return " Mac"

return "C her"

}

function getBrand() {
var name = navi gat or. appName

if (name == "Netscape") {
return " NN
}
if (nane.indexCF("Internet Explorer™) != -1) {

return "I E"

}

return "C her"

}

function getVersion(brand) {
var ver = navigator.appVersion
var ua = navi gat or. user Agent
if (brand == "NN') {
if (parselnt(ver, 10) < 5) {
return parseFl oat(ver, 10)
} else {
/1 get full version for NN6+
return parseFl oat (ua. substring(ua.lastlndexOr("/")+1))

}

}
if (brand == "IE") {
var | EOffset = ua.indexOF("MSIE ")
return parseFl oat (ua. substring(lEOffset + 5, ua.indexOr(";",
IEC fset)))

return O
}
Theset Type() function isan extensive decision tree that uses clues from the
navi gat or. user Agent andnavi gat or. appVer si on properties to determine
what environment is currently running. For each environment, plug-in detection takes
place to verify that either the desired Windows ActiveX object isinstalled in |E or that one
of the acceptable plug-insis running in NN. All of the detection code is taken from
Chapter 32. One of the advantages of such a detailed decision treeisthat if adecision
branch fails, it is for areasonably specific reason — enough detail to advise the user
intelligently about why the current browser can’'t do what the page author wants it to do.

Invoking methods

Establishing the pl ayer s[] object typeisacritica operation of thislibrary, because al
subsequent operation depends on the type being set. For example, to perform the action of
rewinding the sound to the beginning, your script invokes the following statement:

pl ayers["j ukebox"]. rew nd()

This, in turn invokes the library’s APl _r ewi nd() function:

function APl _rew nd() {
switch (this.type) {

case "isLA" :
docunent . enbeds[this.id].stop()
docunent . enbeds[this.id].start_at_begi nni ng()
br eak

case "isQr" :
docunent . enbeds[this.id].Stop()

docunent . enbeds[this.id].Rew nd()
br eak
case "isMP" :
i f (docunent.enbeds[this.id]) {
docunent . enbeds[this.id].Stop()
docunent . enbeds[this.id].CurrentPosition = 0
} else {
docunent. all (this.id).Stop()
docunent.all (this.id).CurrentPosition = 0

}
br eak

def aul t:

}
}

Each of the three plug-ins covered in this API has an entirely different way to perform (or
simulate) arewinding of the current sound to the beginning. The t ype property of the

pl ayer s[] object invoked by your script determines which branch of theswi t ch
statement to follow. For each plug-in type, the appropriate document object model
reference and the plug-in-specific property or method is accessed. The identifier passed as
a parameter to the initialization routine continues to play arole, providing the identifier to
the actual DOM object that is the plug-in controller (for example, an index to the
docunent . enbeds[] array).

The library contains a function just as the one you just saw for each of the seven methods
assigned to pl ayer s[] objects. They remain invisible to the user and to you as well,
because you work only with the smpler pl ayer s[] object method calls, regardless of

plug-in.

Note

If the Windows Media Player detects a problem with the audio hardware,
it doesn’t always reflect the error in the object until after all onLoad event
handler functions finish executing. This weirdness prevents the error
checking from being performed where it should be, in the set Type()
function. Therefore, error checking for this possibility is performed in the
API branch that commands the Media Player to play the currently loaded
sound.

Extending the library

Adding more plug-in types to the library requires modification in two areas. Thefirst isto
theset Type() function’sdecision tree. Y ou have to determine where in the tree the
plug-in is best detected. For another Windows Media Player, for instance, it would be
along the same branch that looks for the Version 6 player.

Y ou then need to locate the properties and methods of the new plug-in for basic
operations covered in the library (play, stop, and so on). For each of the action functions,
you add another case for your newly defined type. Y our main Web page scripts should not
require any modification (although your OBJECT and/or EMBED tag attributes may
change to accommodate the new plug-in).

Building a jukebox

The first example that utilizes the DGAudi 0API . j s library isajukebox that provides an
interface (admittedly not pretty — that’s for you to whip up) for selecting and controlling
multiple sound files with a single plug-in tag set. The assumption for this application is
that only one sound at a time need be handy for immediate playing.

Listing 44-9 shows the code for the jukebox. All sound files specified in the example are in
the same folder as the listing on the companion CD-ROM (the AlFF-format files sound
better in some plug-ins than others, so don’t worry about the audio quality of these demo
sounds).

Listing 44-9
A Scripted Jukebox

<HTM.>
<HEAD>
<TI TLE>A di es but Goody' s</ Tl TLE>
<SCRI PT LANGUAGE="JavaScri pt" SRC="DGAudi 0API .| s"></ SCRI PT>
<SCRI PT>
/1l make sure currently selected tune is prel oaded
function loadFirst(id) {
var choi ce = docunent. forns[0]. nusi cChoi ce
var sndFil e = choice. options[choi ce. sel ect edl ndex] . val ue
pl ayers[id] .| oad(sndFile)

/'l swap tunes
function changeTune(id, choice) {
pl ayers[id].l oad(choice. opti ons[choi ce. sel ect edl ndex] . val ue)

/'l control and display volunme setting

function raiseVol (id) {
var currlLevel = players[id].getVolune()
currLevel += Math.ceil (Math.abs(currlLevel)/ 10)
pl ayers[id].set Vol ume(currlLevel)
di spl ayVol (i d)

function lowerVol (id) {
var currlLevel = players[id].getVolune()
currlLevel -= Math.floor(Math.abs(currlLevel)/10)
pl ayers[id].set Vol ume(currlLevel)
di spl ayVol (i d)

}
function displayVol (id) {
docunent . forns[0] . vol unme. val ue = pl ayers[id]. get Vol une()

}
</ SCRI PT>
</ HEAD>

<BODY onLoad="i ni t Audi oAPI (['jukebox', 'audio/x-aiff']); |oadFirst('jukebox")
di spl ayVol (' j ukebox')">
<FORM>
<TABLE BORDER=2 ALI G\N="center">
<CAPTI ON ALI GN=t op>Cl assi cal Pi ano Jukebox</ FONT></ CAPTI ON\>
<TR><TD COLSPAN=2 ALI| G\=cent er >
<SELECT NAME="nusi cChoi ce"” onChange="changeTune('j ukebox', this)">
<OPTI ON VALUE="Beet hoven. ai f" SELECTED>Beet hoven's Fifth Synphony (Openi ng)
<OPTI ON VALUE=" Chopi n. ai f">Chopi n Bal | ade #1 (Openi ng)
<OPTI ON VALUE="Scri abi n. ai f">Scri abin Etude in D-sharp m nor (Finale)
</ SELECT></ TD></ TR>
<TR><TH ROWSPAN=4>Act i on: </ TH>

<TD>

<I NPUT TYPE="button" VALUE="PI ay"

ond i ck="pl ayers['jukebox'].play(parselnt(this.formfrequency|
this.formfrequency. sel ect edl ndex] . val ue))">

<SELECT NAME="frequency" >
<OPTI ON VALUE=1 SELECTED>Once
<OPTI ON VALUE=2>Tw ce
<OPTI ON VALUE=3>Three tines
<OPTI ON VALUE=TRUE>Conti nual | y
</ SELECT></ TD></ TR>
<TR><TD>

<I NPUT TYPE="
</ TD></ TR>
<TR><TD>

<I NPUT TYPE="
</ TD></ TR
<TR><TD>

<I NPUT TYPE="
</ TD></ TR>
<TR><TH ROWSPAN=3>Vol une: </ TH>
<TD>Current Setting:<INPUT TYPE="text"
onFocus="thi s. bl ur () "></ TD></ TR>
<TR><TD>

<I NPUT TYPE="
</ TD></ TR>
<TR><TD>

<I NPUT TYPE="
</ TD></ TR>
</ TABLE>
</ FORW>

button" VALUE="St op"

button" VALUE="Pause"

button" VALUE="

butt on”

button" VALUE="Lower"

<OBJECT | D="j ukebox" W DTH="1"

CLASSI D="CLSI D: 22d6f 312- bOf 6- 11d0- 94ab-

CCODEBASE=" #Ver si on=6, 0, 0, 0" >

<PARAM NAME="Aut oStart" VALUE="fal se">
<EMBED NAME="] ukebox"

Rewi nd"

VALUE="Hi gher"

HElI GHT="1

ond i ck="pl ayers['jukebox'].stop()">

ond i ck="pl ayers['jukebox'].pause()">
ond i ck="pl ayers['jukebox'].rew nd()">
S| ZE=10 NAME="vol une"

ond i ck="rai seVol ('jukebox')">

ond i ck="1 ower Vol ('j ukebox')">

0080c74c7e95"

HElI GHT=2 W DTH=2 SRC="Beet hoven. ai f"

Hl DDEN=TRUE AUTOSTART=FALSE AUTOPLAY=FALSE
ENABLEJAVASCRI PT=TRUE MASTERSOUND>

</ EMBED>
</ OBJECT>

</ BODY>
</ HTM_>

Y ou can see the user interface in Figure 44-5. One SELECT element contains alist of
three possible choices. Most of the interface, however, consists of buttons that ultimately

invoke methods of the current plug-in.

A Oldies but Goody's - Microsoft Imernat Explarer
File Edit Wiew Fawvorites Tools Help

ot a2 (&] G |

Back st Stop Hefresh Home Search Favorites Hislory Mail Print Edst

u

-

Classical Piano
Jukebox

Aetion:

|
Rewand I
Current .:“c?hr.;lﬁ
Volume: | Higher
Lower |

] Done 24 Local intranet

Figure 44-5
The jukebox page

Two functions are invoked by the onLoad event handler besides the initialization routine
of thelibrary. Thel oadFi r st () function finds out which of the itemsin the SELECT
element is chosen when the page loads, and it makes sure that the file is pre-loaded into
the plug-in. This functionality is provided in case the user makes a choice and should use
the Back button or history to return to the page. In some browsers, the SELECT element
will be set to its most recent setting, so the | oadFi r st () function simply gets

everything ready.

The second onLoad function call istodi spl ayVol () . Thisfunction works its way
through the library to read the volume setting of the plug-in and displays the resulting
value in atext box in the form. Not all plug-ins use the same scale or numbering system
for their volume controls. Windows Media Player 6, for instance, uses very large negative
numbers, while QuickTime and LiveAudio are on different, positive scales. The other
volume-related functions ssmply increase or decrease the current setting by 10 percent in
response to clicking the associated buttons in the interface.

All functions defined for this page are designed to be as generalizable as possible. Thus,
the identifier of the plug-in is passed as a parameter to each. If another plug-in were added
to this page, the same functions could be used without modification, provided calls to the
functions passed the identifier of the other plug-in.

All of the button controls are pretty straightforward except the Play button’sonCl i ck
event handler. It invokesthe pl ayer s[i d] . pl ay() method, but that method requires
a parameter of how many times the sound should be played. In this user interface, a
SELECT element controls that information. Getting the value of the selected item creates

alengthy reference, but that’s what is taking up so much space in the parameter ot of the
pl ay() method call.

Embedding multiple sounds

The final example of embedded media serves as a base on which you can build a page that
needs to play multiple sounds without the user explicitly loading them. For example, you
may have buttons generate different sounds after users click them (I’ m not recommending
thisinterface, but that won't necessarily stop you). Figure 44-6 shows you the simple five-
key piano keyboard. The page loads five different sounds into the page, one for each note
(actual piano sounds in this case). Each sound was recorded for about four seconds, so
that you can get the action of attack and delay, just like areal piano. If you mouse down
on akey, the sound plays for up to four seconds (getting softer al the time) or until you
mouse up on the key (the attack time on the sample sounds on the CD-ROM is hot
instantaneous, so you may have to hold akey down for afraction of a second to start the
sound). The colors of the keys aso change dightly to provide further user feedback to the
action.

B Tickling the lvories - Netscapa
File Edit View Go Communicator Help

¢ = 3 B = = J &£ B3 i

Reload H.omu Seach Hetscaps Prirk Secuniy Shop

Playing Multiple Sounds

| =il file: CUDocumeants'Chapdd st A0 htm# G W Y [E) N

Figure 44-6
Controller for five sounds

Thanks to the DGAudi 0API . | s library, very little code in this page is associated with
the sounds. Far more is involved with the image swaps and the loading of the five plug-ins.
Listing 44-10 shows the code for the page.

Listing 44-10
Scripting Multiple Sounds
<HTM.>

<HEAD>

<TI TLE>Ti ckling the Ivories</TlITLE>
<STYLE TYPE="text/css">

OBJECT {visibility: hidden}

</ STYLE>

<SCRI PT LANGUAGE="JavaScri pt" SRC="DGAudi 0API .| s"></ SCRI PT>
<SCRI PT>

/'l pre-cache 10 i mages

var onl mages = new Array()

onl mages["c"] = new | nage(35, 140)
onl mages["c"].src = "whiteDown.gif"

y
onl mages["d"] = new | nage(35, 140)
onl mages["d"].src = "whiteDown.gif"
onl mages["e"] = new I mage(35, 140)
onl mages["e"].src = "whiteDown. gif"

onl mages["cHal f"] new I mage(26, 90)
onl mages["cHal f"].src = "bl ackDown. gi f"
onl mages["dHal f"] new | mage(26, 90)
onl mages["dHal f"].src = "bl ackDown. gi f"

var offl mages = new Array()

of fImages["c"] = new I mage(35, 140)
of flmages["c"].src = "whiteUp.gif"
of fImages["d"] = new I mage(35, 140)
of flmages["d"].src = "whiteUp.gif"
of fImages["e"] = new I mage(35, 140)
of flmages["e"].src = "whiteUp.gif"

of fImages["cHal f"] = new I mage(26, 90)
of flmages["cHal f"].src = "blackUp. gif"
of f I mages["dHal f"] new | mage(26, 90)
of fImages["dHal f"].src = "blackUp. gif"

/'l swap images (on)
function imgOn(img) {
i f (document.inmages) {
/1 handle NN4 | ayers that hold images
i f (document.layers) {
if (img.length == 1) {
docunent . i vori es. docunent.images[ing].src = onlmages[ing].src
} else {
docunent . i vori es. docunent. |l ayers["ivory" +
i mg] . docunent . i mages[ing].src
= onl mages[ing].src

} else {
docunent . i mages[ing].src = onlmages[ing].src
}

}
} .
/1 swap images (off)
function imgOFf(img) {
i f (document.inmages) {
/1 handle NN4 | ayers that hold images
i f (document.layers) {
if (img.length == 1) {
docunent . i vori es. docunent.images[ing].src =
of f I mages[ing].src
} else {
docunent . i vori es. docunent. |l ayers["ivory" +
i mg] . docunent . i mages[ing].src
= of fImages[ing].src

} else {
docunent . i mages[ing].src = of flnmages[ing].src
}

/1 play a note (musedown)
function playNote(id) {
pl ayers[id].rew nd()
pl ayers[id].play(1)

/'l stop playing (nmouseup)
function stopNote(id) {
pl ayers[id].stop()
pl ayers[id].rew nd()

}
</ SCRI PT>
</ HEAD>

<BODY onLoad="i ni t Audi oAPI (['cNatural','audio/x-aiff'],['cSharp', "' audi o/ x-

aiff'],['dNatural','audio/x-aiff'],['dSharp', ' audi o/ x-

aiff'],['eNatural','audio/x-aiff'])">

<H1>Pl ayi ng Mul ti pl e Sounds</ H1>

<HR>

<TABLE ALI GN="center">

<TR><TD>

<DIV ID="ivories" STYLE="position:relative">

<A HREF="#" onMuseDown="pl ayNote(' cNatural');ingOn('c');return false"
onMbuseUp="i ngOF f (' ¢'); stopNote(' cNatural')"><I M5
NAME="c" SRC="whi teUp.gif"
HEl GHT="140" W DTH="35" BORDER=0></ A><A HREF="#"
onMbuseDown="pl ayNot e(' dNatural ');ingOn('d"');return fal se"
onMbuseUp="i ngOF f (' d'); stopNote(' dNatural ') " ><I MG
NAME="d" SRC="whiteUp.gif"
HEl GHT="140" W DTH="35" BORDER=0></ A><A HREF="#"
onMbuseDown="pl ayNot e(' eNatural ');ingOn('e');return fal se"
onMbuseUp="i ngOF f (' e'); stopNote(' eNatural ') "><I MG
NAME="e" SRC="whiteUp.gif"
HEI GHT=" 140" W DTH="35" BORDER=0></ A>

<A HREF="#" onMuseDown="pl ayNote(' cSharp');inmgOn('cHalf');return fal se"
onMbuseUp="i ngOF f (' cHal f'); st opNot e(' cSharp') " ><I MG
NAME="cHal f" SRC="bl ackUp. gi f"
HElI GHT="90" W DTH="26" BORDER=0></ A></ SPAN>

<A HREF="#" onMuseDown="pl ayNot e(' dSharp');imgOn('dHal f');return fal se"
onMbuseUp="i ngOF f (' dHal f') ; st opNot e(' dSharp') " ><I MG
NAMVE="dHal f" SRC="bl ackUp. gi f"
HEI GHT="90" W DTH="26" BORDER=0></ A></ SPAN>

</ Dl V>

</ TD>

</ TR>

</ TABLE>

<OBJECT | D="cNatural" WDTH="1" HElI GHT="1"

CLASSI D="CLSI D: 22d6f 312- bOf 6- 11d0- 94ab- 0080c74c7e95"

CCDEBASE=" #Ver si on=6, 0, 0, 0" >

<PARAM NAME="Fi | eNane" VALUE="c.aif">

<PARAM NAME="Aut oStart" VALUE="fal se">

<PARAM NANME="Buf f eri ngTi ne" VALUE="30">

<EMBED NAME="cNatural " HEl GHT=2 W DTH=2 SRC="c.aif"
Hl DDEN=TRUE AUTOSTART=FALSE AUTOPLAY=FALSE
ENABLEJAVASCRI PT=TRUE MASTERSOUND>
</ EMBED>
</ OBJECT>

<OBJECT | D="cSharp" WDTH="1" HEI GHT="1"
CLASSI D="CLSI D: 22d6f 312- b0f 6- 11d0- 94ab- 0080c74c7e95"
CCODEBASE=" #Ver si on=6, 0, 0, 0" >
<PARAM NAME="Fi | eNane" VALUE="cSharp.aif">
<PARAM NAME="Aut oStart" VALUE="fal se">
<PARAM NAME="Buf f eri ngTi ne" VALUE="30">
<EMBED NAME="cShar p" HElI GHT=2 W DTH=2 SRC="cShar p. ai f"

H DDEN=TRUE AUTOSTART=FALSE AUTOPLAY=FALSE
ENABLEJAVASCRI PT=TRUE MASTERSOUND>
</ EMBED>
</ OBJECT>

<OBJECT | D="dNatural" WDTH="1" HEI GHT="1"
CLASSI| D="CLSI D: 22d6f 312- b0Of 6- 11d0- 94ab- 0080c74c7e95"
CCODEBASE=" #Ver si on=6, 0, 0, 0" >
<PARAM NAME="Fi | eNane" VALUE="d.aif">
<PARAM NAME="Aut oStart" VALUE="fal se">
<PARAM NANME="Buf f eri ngTi ne" VALUE="30">
<EMBED NAME="dNat ural " HEI GHT=2 W DTH=2 SRC="d. ai f"
H DDEN=TRUE AUTOSTART=FALSE AUTOPLAY=FALSE
ENABLEJAVASCRI PT=TRUE MASTERSOUND>
</ EMBED>
</ OBJECT>

<OBJECT | D="dSharp" WDTH="1" HEI GHT="1"
CLASSI| D="CLSI D: 22d6f 312- b0Of 6- 11d0- 94ab- 0080c74c7e95"
CODEBASE=" #Ver si on=6, 0, 0, 0" >
<PARAM NAME="Fi | eNane" VALUE="dSharp.aif">
<PARAM NAME="Aut oSt art" VALUE="fal se">
<PARAM NANME="Buf f eri ngTi ne" VALUE="30">
<EMBED NAME="dShar p" HElI GHT=2 W DTH=2 SRC="dShar p. ai f"
H DDEN=TRUE AUTOSTART=FALSE AUTOPLAY=FALSE
ENABLEJAVASCRI PT=TRUE MASTERSOUND>
</ EMBED>
</ OBJECT>

<OBJECT | D="eNatural" WDTH="1" HEI GHT="1"
CLASSI| D="CLSI D: 22d6f 312- b0Of 6- 11d0- 94ab- 0080c74c7e95"
CCODEBASE=" #Ver si on=6, 0, 0, 0" >
<PARAM NAME="Fi | eNane" VALUE="e.aif">
<PARAM NAME="Aut oStart" VALUE="fal se">
<PARAM NAME="Buf f eri ngTi ne" VALUE="30">
<EMBED NAME="eNat ural " HEI GHT=2 W DTH=2 SRC="e. ai f"
H DDEN=TRUE AUTOSTART=FALSE AUTOPLAY=FALSE
ENABLEJAVASCRI PT=TRUE MASTERSOUND>
</ EMBED>
</ OBJECT>
</ BODY>
</ HTML>

Perhaps the trickiest part of this entire demonstration lies in the way the keyboard art and
user interface are created. Because the white keys are not rectangular, the black key art is
dropped atop the white keys by way of positioned elements (which become layer objects
in NN4). The visual reward is worth the extra pain of managing references to the images
within NN4 layers.

When you use the page, you may notice a dight delay in getting the sound to be heard
after pressing down on a key. On older, Slower machines, this delay is even more
noticeable. Take this behavior into account when designing interactive sound.

Scripting Java Classes Directly

LiveConnect, as implemented in NN3 and NN4, allows scripts to access Java classes as if
they were part of the JavaScript environment. Because you need to know your way
around Java before programming Java classes directly from JavaScript, | won't get into
too much detail in this book. Fortunately, the designers of JavaScript have done a good

job of creating JavaScript equivalents for the most common Java language functionality,
so there is not a strong need to access Java classes on adaily basis.

To script Java classes, it helps to have a good reference guide to the classes built into
Java. Though intended for experienced Java programmers, Java in a Nutshell (O’ Rellly &
Associates, Inc.) offers a condensed view of the classes, their constructors, and their
methods.

Java' s built-in classes are divided into major groups (called packages) to help
programmers find the right class and method for any need. Each package focuses on one
particular aspect of programming, such as classes for user interface design in application
and applet windows, network access, and basic language constructs, such as strings,
arrays, and numbers. References to each class (object) defined in Java are “ dot”
references, just as in JavaScript. Each item following a dot helps zero-in on the desired
item. As an example, consider one class that is part of the base language class. The base
language class is referred to as

java.l ang

One of the objectsdefined inj ava. | ang isthe St r i ng object, whose full referenceis

java.lang. String

To access one of its methods, you use an invocation syntax with which you are already
familiar:
j ava. |l ang. St ri ng. methodName([parameters])

To demonstrate accessing Java from JavaScript, | call upon one of Java’'s St r i ng object
methods, j ava. | ang. Stri ng. equal sl gnor eCase(), to compare two strings.
Equivalent ways are available for accomplishing the same task in JavaScript (for example,
comparing both stringsin their t oUpper Case() ort oLower Case() versions), so
don’'t look to this Java demonstration for some great new powers aong these lines.

Before you can work with data in Java, you have to construct a new object. Of the many
ways to construct anew St r i ng object in Java, you use the one that accepts the actual
string as the parameter to the constructor:

var mainString = new java.lang. String(“TV Guide")

At this point, your JavaScript variable, mai nSt r i ng, contains a reference to the Java
object. From here, you can call this object’s Java methods directly:

var result = mainString. equal sl gnoreCase(“tv Gui de")

Even from JavaScript, you can use Java classes to create objects that are Java arrays and
access them via the same kind of array references (with square brackets) as JavaScript
arrays. In afew cases, you can use Java classes to obtain additional information about the
user environment, such as the user’s | P address (but not e-mail address). The process
involves a couple of Java class cals, as follows:

var | ocal Host = java. net. | net Address. get Local Host ()
var | P = | ocal host. get Host Addr ess()

The more you work with these two languages, the more you see how much Java and
JavaScript have in common.

	Chapter 44: Scripting Java Applets and Plug-ins
	LiveConnect Overview
	Why Control Java Applets?
	A Little Java
	Java building blocks classes
	Java methods
	Stopping and Starting an Applet

	Java applet “properties”
	Accessing Java fields

	Scripting Applets in Real Life
	Getting to scriptable methods
	Partial Listing for ScriptableClock.java
	A More Fully Scripted Clock

	Applet limitations
	Faceless applets
	Java Applet Source Code
	HTML Asking Applet to Read Text File

	Data type conversions

	Applet-to-Script Communication
	What your HTML needs

	About JSObject.class
	JSObject Class Methods
	Data type conversions
	Example applet-to-script application
	Java Applet Source Code
	HTML Document Called by Applet

	Scripting Plug-ins
	The HTML side
	Using EMBED
	IE/Windows OBJECT
	Using EMBED and OBJECT together
	Validating the plug-in

	The API approach
	Loading the library
	Initializing the library
	Sound player API objects
	Plug-in checking
	setType() and Supporting Functions from DGAudioAPI.js

	Invoking methods
	Extending the library

	Building a jukebox
	A Scripted Jukebox

	Embedding multiple sounds
	Scripting Multiple Sounds

	Scripting Java Classes Directly

