Chapter 43: Data-Entry Validation

In This Chapter

Validating dataasit is being entered

Validating dataimmediately prior to submission
Organizing complex data validation tasks

Give usersafield in which to enter data and you can be sure that some userswill enter the
wrong kind of data. Often the “mistake” isaccidental — adlip of the pinkie on the
keyboard; other times, users intentionally type the incorrect entry to test the robustness of
your application. Whether you solicit auser’s entry for client-side scripting purposes or
for input into a server-based CGlI or database, you should use JavaScript on the client to
handle validation of the user’s entry. Even for aform connected to a CGI script, it'sfar
more efficient (from the perspective of bandwidth, server load, and execution speed) to let
client-side JavaScript get the data straight before your server program deals with it.

Real-time versus Batch Validation

Y ou have two opportunities to perform data-entry validation in aform: asthe user enters
datainto aform and just before the form is submitted. | recommend you take advantage
of both of these opportunities.

Real-time validation triggers

The most convenient time to catch an error isimmediately after the user makesit —
especially for along form that requests awide variety of information. Y ou can make the
user’ s experience less frustrating if you catch an entry mistake just after the user enters
theinformation: hisor her attention is already focused on the nature of the content (or
some paper source material may already be in front of the user). It is much easier for the
user to address the same information entry right away.

A valid question for the page author is how to trigger the real-time validation. Backward-
compatible text boxes have two potentia event handlersfor this purpose: onChange
and onBl ur . | personaly avoid onBl ur event handlers, especially ones that can display
an aert dialog box (as adata-entry validation is likely to do). Because agood validation
routine brings focus to the errant text box, you can get some odd behavior with the
interaction of thef ocus() method and the onBI ur event handler. Users who wish to
continue past an invalid field are locked in a seemingly endless |oop.



The problem with using onChange asthe validation trigger isthat a user can defeat the
validation. A change event occurs only when the text of afield indeed changes when the
user tabs or clicks out of the field. If the user is aerted about some bad entry in afield and
doesn't fix the error, the change event doesn’t fire again. In some respects, thisis good
because a user may have alegitimate reason for passing by a particular form field initially
with the intention of returning to the entry later. Because a user can defeat the

onChange event handler trigger, | recommend you also perform batch validation prior to
submission.

In NN4+ and |E4+, you also have the luxury of letting keyboard events trigger
validations. Thisis most helpful when you want to prevent some character(s) from being
entered into afield. For example, if afield is supposed to contain only a positive integer
value, you can use the onKeyPr ess event handler of the text box to verify that the
character just typed isanumber. If the character is not a number, the event istrapped and
no character reaches the text box. Y ou should also alert the user in some way about
what’ s going on. Listing 43-1 demonstrates a simplified version of this kind of keyboard
trapping, compatible with NN4+ and | E4+ event models. The message to the user is
displayed in the statusbar. Displaying the message there has the advantage of being less
intrusive than an alert dialog box (and keeps the text insertion cursor in the text box), but
it also means that users might not see the message. TheonSubm t event handler in the
listing prevents a press of the Enter key in this one-field form from reloading this sample

page.

Listing 43-1
Allowing Only Numbers into a Text Box

<HTM.>
<HEAD>
<TI TLE>Letting Only Nunmbers Pass to a Form Fi el d</ TI TLE>
<SCRI PT LANGUAGE="JavaScri pt">
function checklt(evt) {
evt = (evt) ? evt : wi ndow event
var charCode = (evt.which) ? evt.which : evt.keyCode
if (charCode > 31 && (charCode < 48 || charCode > 57)) {
status = "This field accepts nunbers only."
return fal se
}
status = ""
return true

}
</ SCRI PT>
</ HEAD>

<BODY>

<Hl>Letting Only Nunmbers Pass to a Form Fi el d</ H1>

<HR>

<FORM onSubm t="return fal se">

Enter any positive integer: <INPUT TYPE="text" NAME="nuneric"
onKeyPress="return checklt(event)">

</ FORV»

</ BCDY>

</ HTM>



Keyboard event monitoring isn’t practical for most validation actions, however. For
example, if the user is supposed to enter an e-mail address, you need to validate the
complete entry for the presence of an @symbol (viathe onChange event handler). On
the other hand, you can be granular about your validations and use both the onChange
and onKeyPr ess event handlers; you employ the latter for blocking invalid characters
in e-mail addresses (such as spaces).

Batch mode validation

In all scriptable browsers, theonSubm t event handler cancels the submission if the
handler evaluatestor et urn f al se. Additional submission event cancelersinclude
setting the IE4+ event . r et ur nVal ue property tof al se and invoking the

evt . prevent Def aul t () method in NN6 (see Chapter 29 on event objects for
details). You can see an example of thebasicr et ur n f al se behavior in Listing 23-4
of Chapter 23. That example usesthe results of awi ndow. confi rm() dialog box to
determine the return value of the event handler. But you can also use areturn value from
aseriesof individua text box validation functions. If any one of the validations fails, the
user is aerted and the submission is cancel ed.

Before you worry about two versions of validation routines |loading down the scriptsin
your page, you' Il be happy to know that you can reuse the same validation routinesin
both the real-time and batch validations. Later in this chapter, | demonstrate what | call
“industrial-strength” data-entry validation adapted from areal intranet application. But
before you get there, you should learn about general validation techniques that you can
apply to both types of validations.

Designing Filters

The job of writing data validation routines essentially involves designing filters that weed
out characters or entries that don’t fit your programming scheme. Whenever your filter
detects an incorrect entry, it should alert the user about the nature of the problem and
enable the user to correct the entry.

Before you put atext or TEXTAREA object into your document that invites usersto
enter data, you must decide if any possible entry can disturb the execution of the rest of
your scripts. For example, if your script must have a number from that field to perform
calculations, you must filter out any entry that contains letters or punctuation — except
for periods if the program can accept floating-point numbers. Y our task is to anticipate
every possible entry users can make and allow only those entries your scripts can use.

Not every entry field needs a data validation filter. For example, you may prompt a user
for information that is eventually stored asadocunent . cooki e or in astring database
field on the server for future retrieval. If no further processing takes place on that
information, you may not have to worry about the specific contents of that field.



One other design consideration is whether atext field is even the proper user interface
element for the data required of the user. If the range of choicesfor auser entry issmall (a
dozen or fewer), amore sensible method isto avoid the data-entry problem altogether by
turning that field into a SELECT element. Y our HTML attributes for the object ensure
that you control the kind of entry made to that object. Aslong as your script knows how
to deal with each of the options defined for that object, you'rein the clear.

Building a Library of Filter Functions

A number of basic data-validation processes function repeatedly in form-intensive HTML
pages. Filtersfor integers only, numbers only, empty entries, alphabet letters only, and the
like are put to use every day. If you maintain alibrary of generalizable functions for each
of your data-validation tasks, you can drop these functionsinto your scriptsat a

moment’ s notice and be assured that they will work. For NN3+ and I|E4+, you can also
create the library of validation functions as aseparate . j s library file and link the scripts
into any HTML file that needs them.

Making validation functions generalizable requires careful choice of wording and logic so
that they return Boolean values that make syntactical sense when called from elsewherein
your scripts. Asyou see later in this chapter, when you build alarger framework around
smaller functions, each function isusually called as part of ani f . . . el se conditional
statement. Therefore, assign aname that fitslogically as part of ani f clausein plain
language. For example, you can name a function that checks whether an entry is empty

I SEnpt y() . The calling statement for this function is:

if (isEnpty(value)) { ... }

From a plain-language perspective, the expectation is that the function returnst r ue if the
passed value is empty. With this design, the statements nested inthei f construction
handle empty entry fields. | revisit this design later in this chapter when | start stacking
multiple-function calls together in alarger validation routine.

To get you started with your library of validation functions, this chapter provides some
building blocks that you can learn from and use as starting points for more specific filters
of your own design. Some of these functions are put to use in the JavaScript application
in Chapter 50.

ISEmpty()

Thisfirst function, shown in Listing 43-2, checks to seeif the incoming value is either
empty or nul | . Adding acheck for nul | means that you can use this function for
purposes other than just text-object validation. For example, if another function defines
three parameter variables, but the calling function passes only two, the third variable is set
tonul | . If the script then performs a data-validation check on all parameters, the

i SEnpt y() function respondsthat the nul | valueisdevoid of data.



Listing 43-2
Is an Entry Empty or Null?

/] general purpose function to see if an input val ue has been
/1l entered at all
function isEnmpty(inputStr) {
if (inputStr == null || inputStr == "") {
return true

return fal se
}
This function uses a Boolean OR operator (| | ) to test for the existence of anul | value
or an empty string in the value passed to the function. Because the name of the function
impliesat r ue responseif the entry is empty, that value is the one that returns to the
calling statement if either condition istrue. Because ar et ur n statement halts further
processing of afunction, ther et urn f al se statement liesoutside of thei f
construction. If processing reaches this statement, thei nput St r value hasfailed the
test.

If this seems like convoluted logic—r et ur n t r ue when the value is empty — you
can aso define afunction that returns the inverse values. Y ou can name it

i sNot Enpt y() . Asit turns out, however, typical processing of an empty entry is better
served when thetest returnsat r ue than when the value is empty — aiding thei f
construction that calls the function in the first place.

iIsPosInteger()

This next function examines each character of the value to make sure that only numbers
from O through 9 with no punctuation or other symbols exist. The goal of the functionin
Listing 43-3 isto weed out any value that isnot a positive integer.

Listing 43-3
Test for Positive Integers

/'l general purpose function to see if a suspected nuneric input
/] is a positive integer
function isPoslnteger(inputVal) {

input Str = inputVal.toString()

for (var i = 0; i <inputStr.length; i++) {
var oneChar = inputStr.charAt (i)
if (oneChar < "0" || oneChar > "9") {

return fal se
}
}
return true

}

Notice that this function makes no assumption about the data type of the value that is
passed as a parameter. If the value had come directly from atext object, it would aready
be a string and the line that forced data conversion to a string would be unnecessary. But
to generalize the function, the conversion isincluded to accommodate the possibility that
it may be called from another statement that has a numeric value to check.



The function requires you to convert the input value to a string because it performs a
character-by-character analysis of the data. A f or loop picks apart the value one
character at atime. Rather than force the script to invokethe st ri ng. char At ()
method twice for each time through the loop (insidethei f condition), one statement
assigns the results of the method to avariable, which isthen used twiceinthei f
condition. Placing the results of thechar At () method into avariable makesthei f
condition shorter and easier to read and also is microscopically more efficient.

Inthei f condition, the ASCII value of each character is compared against the range of O
through 9. This method is safer than comparing numeric values of the single characters
because one of the characters can be nonnumeric. (Y ou can encounter al kinds of other
problems trying to convert that character to a number for numeric comparison.) The
ASCII value, on the other hand, is neutral about the meaning of a character: If the ASCII
valueislessthan O or greater than 9, the character is not valid for a genuine positive
integer. The function bounces the call with afalse reply. On the other hand, if thef or
loop completesitstraversal of al charactersin the value without a hitch, the function
returnst r ue.

Y ou may wonder why this validation function doesn’t use the par sel nt () globa
function (Chapter 42). That function returnsNaN only if the first character of the input
string is not a number. But because par sel nt () and par seFl oat () ped off any
initial numeric values from a string, neither returns NaN if the input string is, for example,
35a.

isinteger()

The next possibility includes the entry of a negative integer value. Listing 43-4 shows that
you must add an extra check for aleading negation sign.

Listing 43-4
Checking for Leading Minus Sign

/'l general purpose function to see if a suspected nuneric input
/] is a positive or negative integer
function islnteger(inputVal) {

input Str = inputVal.toString()

for (var i = 0; i <inputStr.length; i++) {
var oneChar = inputStr.charAt (i)
if (i == 0 & oneChar == "-") {
conti nue
}
if (oneChar < "0" || oneChar > "9") {

return fal se
}
}
return true
}
When a script can accept a negative integer, the filter must enable the leading minus sign
to pass unscathed. Y ou cannot just add the minus signto thei f condition of Listing 43-3



because you can accept that symbol only when it appearsin the first position of the value
— anywhere else makes the value an invalid number. To handle the possibility of a
leading minus sign, you add another i f statement whose condition looks for a special
combination: the first character of the string (as indexed by the loop-counting variable)
and the minus character. If both of these conditions are met, execution immediately loops
back around to the update expression of the f or loop (because of thecont i nue
statement) rather than carrying out the secondi f statement, which would obvioudly fail.
By puttingthei == 0 comparison operation at the front of the condition, you ensure
the entire condition short circuitstof al se for all subsequent iterations through the loop.

iISNumber()

Thefinal numeric filter function in this series enables any integer or floating-point number
to pass while filtering out all others (Listing 43-5). All that distinguishes an integer from a
floating-point number for data-validation purposesisthe decimal point.

Listing 43-5
Testing for a Decimal Point

/'l general purpose function to see if a suspected nuneric input
/1 is a positive or negative nunber
function i sNunber (i nputVal) {

oneDeci mal = fal se
input Str = inputVal.toString()
for (var i = 0; i <inputStr.length; i++) {
var oneChar = inputStr.charAt (i)
if (i == 0 & oneChar == "-") {
conti nue
}
if (oneChar == "." && !'oneDecimal) {
oneDecimal = true
conti nue
}
if (oneChar < "0" || oneChar > "9") {

return fal se

} }

return true
}
Anticipating the worst, however, the function cannot ssmply treat a decimal point at any
position within the string as avalid character. Such an act assumes that no one would ever
enter more than one decimal point into a numeric text field. Only one decimal point is
allowed for thisfunction (as well as for JavaScript math). Therefore, you add a Boolean
flag variable (oneDeci nmal ) to the function and a separatei f condition that sets that
flag tot r ue when the function encounters the first decimal point. Should another
decimal point appear in the string, thefinal i f statement gets a crack at the character.
Because the character falls outside the ASCII range of O through 9, it failsthe entire
function.

If you want to accept only positive floating-point numbers, you can make a new version
of thisfunction by removing the statement that lets the leading minus sign through. Be



aware that this function works only for values that are not represented in exponential
notation.

Custom validation functions

The listings shown so far in this chapter should give you plenty of source materia to use
in writing customized validation functions for your applications. Listing 43-6 shows an
example of such an application-specific variation (extracted from the application in
Chapter 50).

Listing 43-6
A Custom Validation Function

// function to determine if value is in acceptabl e range
/1 for this application
function i nRange(inputStr) {
num = par sel nt (i nput Str)
if (num< 1 || num> 586 & num < 596 || num > 599 &% num < 700 || num > 728)

return fal se

}

return true
}
For this application, you need to seeif an entry falls within multiple ranges of acceptable
numbers. Thefirst statement of thei nRange() function converts theincoming valueto
anumber (viathepar sel nt () function) so that the value can be compared numerically
against maximum and minimum values of several ranges within the database. Following
the logic of the previous validation functions, thei f condition looks for values outside
the acceptable range, so it can alert the user and return af al se value.

Thei f conditionis quite along sequence of operators. Asyou noticed in the list of
operator precedence (Chapter 40), the Boolean AND operator (&&) has precedence over
the Boolean OR operator (| | ). Therefore, the AND expressions evaluate first, followed
by the OR expressions. Parentheses may help you better visualize what’ s going on in that
monster condition:

if (num< 1 || (num> 586 &% num < 596) || (num > 599 &% num < 700) || num > 728)

In other words, you exclude four possible ranges from consideration:
*  Vaueslessthan 1
*  Values between 586 and 596
* Values between 599 and 700

*  Vauesgreater than 728



Any value for which any one of thesetestsistrueyieldsaBooleanf al se from this
function. Combining all these tests into a single condition statement eliminates the need
to construct an otherwise complex series of nestedi f constructions.

Combining Validation Functions

When you design a page that requests a particular kind of text input from a user, you
often need to call more than one data-validation function to handle the entire job. For
example, if you merely want to test for a positive integer entry, your validation should test
for the presence of any entry aswell asthe validation as an integer.

After you know the kind of permissible data that your script will use after validation,
you'’ re ready to plot the sequence of data validation. Because each page’ s validation task
isdifferent, | supply some guidelinesto follow in this planning rather than prescribe a
fixed route for al to take.

My preferred sequence is to start with examinations that require less work and increase
the intensity of validation detective work with succeeding functions. | borrow thistactic
from redl life: When alamp failsto turn on, | look for apulled plug or a burned-out
lightbulb before tearing the lamp’ s wiring apart to look for a short.

Using the data-validation sequence from the data-entry field (which must be a three-digit
number within a specified range) in Chapter 50, | start with the test that requires the least
amount of work: Isthere an entry at all? After my script is ensured an entry of some kind
exists, it next checks whether that entry is“all numbers as requested of the user.” If so,
the script compares the number against the ranges of numbersin the database.

To make this sequence work together efficiently, | create amaster validation function
consisting of nestedi f . . . el se statements. Eachi f condition calls one of the
generalized data-validation functions. Listing 43-7 shows the master validation function.

Listing 43-7
Master Validation Function

/1 Master value validator routine
function isValid(inputStr) {
if (isEnpty(inputStr)) {
alert("Please enter a nunber into the field before clicking the button.")
return fal se
} else {
if ('isNunber(inputStr)) {
alert ("Please make sure entries are nunbers only.")
return fal se
} else {
if ('inRange(inputStr)) {
var nsg = "Sorry, the nunber you entered is not part of our
dat abase. "
nsg += "Try anot her three-digit nunber."”
al ert (nmsg)
return fal se



}
}

}

return true
}
Thisfunction, in turn, is called by the function that controls most of the work in this
application. All that the main function wants to know is whether the entered number is
valid. The details of validation are handed off to thei sVal i d() function and its special-
purpose validation testers.

| construct thelogicin Listing 43-7 so that if the input value failsto be valid, the
i sVal i d() function alertsthe user of the problem and returnsf al se. That means|
havetowatchmyt ruesandf al sesvery carefully.

In thefirst validation test, an empty valueis abad thing; thus, when thei sEnpt y()
function returnst r ue, thei sVal i d() function returnsf al se because an empty
string is not avalid entry. In the second test, a number value is good so the logic has to
flip 180 degrees. Thei sVal i d() function returnsf al se only if thei sNunber ()
function returnsf al se. But becausei sNunber () returnst r ue whenthevalueisa
number, | switch the condition to test for the opposite results of thei sNumnber ()
function by negating the function name (preceding the function with the Boolean NOT
(! ) operator). This operator works only with a value that evaluates to a Boolean
expression — whichthei sNunber () function aways does. The final test for being
within the desired range works on the same basisasi sNunber () , using the Boolean
NOT operator to turn the results of thei nRange() function into the method that works
best for this sequence.

Finaly, if al validation testsfail to find bad or missing data, the entirei sVal i d()
function returnst r ue. The statement that calls this function can now proceed with
processing, ensured that the value entered by the user will work.

There is one additional point worth reinforcing, especialy for newcomers. Although all
these functions seem to be passing around the same input string as a parameter, notice
that any changes made to the value (such as converting it to a string or number) are kept
private to each function. These subfunctions never touch the original value in the calling
function — they work only with copies of the original value . Therefore, even after the
data validation takes place, the original valueisinitsorigina form and ready to go.

Date and Time Validation

Y ou can scarcely open abigger can of cultural worms than when trying to program
around the various date and time formats in use around the world. If you have ever
looked through the possible settings in your computer’ s operating system, you can begin
to understand the difficulty of thisissue.



Trying to write JavaScript that accommodates all of the world’ s date and time formats for
validation is an enormous, if not wasteful, challenge. It’s one thing to validate that a text
box contains datain the form xx/ xx/ xxxx, but there are also valid value concerns that
can get very messy on an international basis. For example, while North Americatypically
usesthe nm dd/ yyyy format, alarge portion of the rest of the world uses

dd/ m1 yyyy (with different delimiter characters, aswell). Therefore, how should your
validation routine treat the entry 20/ 03/ 20027 Isit incorrect because there are not 20
monthsin ayear; or isit correct as March 20th? To query a user for thiskind of
information, | suggest you divide the components into individually validated fields
(separate text objects for hours and minutes) or make SELECT element entries whose
individual values can be assembled at submit time into a hidden date field for processing
by the database that needs the date information. (Alternately, you can let your server CGlI
handle the conversion.)

Despite my encouragement to “divide and conquer” date entries, there may be situations
inwhich you fed it’'s safe to provide a single text box for date entry (perhaps for aform
that is used on a corporate intranet strictly by usersin one country). Y ou see some more
sophisticated code later in this chapter, but a*“ quick-and-dirty” solution runs along these
lines:

1. Usetheentered data (for example, in nm dd/ yyyy format) as a value passed to
thenew Dat e() constructor function.

2. From the newly created date object, extract each of the three components (month,
day, and year) into separate numeric values (with the help of par sel nt () ).

3. Compare each of the extracted values against the corresponding date, month, and
year values returned by the date object’sget Dat e() , get Mont h( ) , and
get Ful | Year () methods (adjusting for zero-based values of get Mont h() ).

4. If al three pairs of values match, then the entry is apparently valid.

Listing 43-8 puts this action sequence to work. Theval i dDat e() function receivesa
reference to the field being checked. A copy of thefield’' s value is made into a date object,
and its components are read. If any part of the date conversion or component extraction
fails (because of improperly formatted data or unexpected characters), one or more of the
variable values becomes NaN. This code assumes that the user enters adate in the

mmi dd/ yyyy format, which is the sequence that the Dat e object constructor expectsits
data. If the user entersdd/ 1 yyyy, the validation fails for any day beyond the 12th.

Listing 43-8

Simple Date Validation
<HTM_>
<HEAD>

<TI TLE>Si npl e Date Validati on</ Tl TLE>
<SCRI PT LANGUAGE="JavaScri pt">



function validbDate(fld) {

var testM, testDay, testYr, inpM, inpDay, inpYr, nsg

var inp = fld.val ue

status = ""

/] attenpt to create date object frominput data

var testDate = new Date(inp)

/] extract pieces fromdate object

testMo = testDate.getMonth() + 1

testDay = testDate. getDate()

testYr = testDate.getFull Year()

/] extract conponents of input data

i npMb = parsel nt (i np. substring(0, inp.indexCr("/")), 10)

i npDay = parsel nt (i np. substring((inp.indexCr("/") + 1), inp.lastlndexCF("/")),
10)

i npYr = parselnt(inp.substring((inp.lastlndexOf("/") + 1), inp.length), 10)

/1 make sure parselnt() succeeded on input conponents

if (isNaN(inpM) || isNaN(inpDay) || isNaN(inpYr)) {
nsg = "There is some problemw th your date entry."
}
/1 make sure conversion to date object succeeded
if (isNaN(testM) || isNaN(testDay) || isNaN(testYr)) {
nsg = "Couldn't convert your entry to a valid date. Try again."
}
/1 make sure val ues natch
if (testMo !'=inpW || testDay !'= inpDay || testYr !'= inpYr) {
nsg = "Check the range of your date val ue."
}
if (nsg) { _ _
/] there's a nessage, so sonething failed
al ert (msg)

/1 work around IE timng problemw th alert by

/'l invoking a focus/sel ect function through setTineout();

/'l nust pass along reference of fld (as string)

set Ti meout (" doSel ecti on(docurnent . forns['" +

fld.formname + "'].elements['" + fld.name + "'])", 0)

return fal se

} else {

/'l everything's OK; if browser supports new date nethod,

/'l show just date string in status bar

status = (testDate.tolLocal eDateString) ? testDate.tolLocal eDateString()
"Date X

return true

}

/] separate function to accommodate | E tim ng problem
function doSel ection(fld) {

fld.focus()

fld. select()

}
</ SCRI PT>
</ HEAD>

<BODY>

<H1>Si npl e Date Val i dati on</ Hl>

<HR>

<FORM NAME="entryFornt' onSubm t="return fal se">

Enter any date (mmidd/yyyy): <INPUT TYPE="text" NAME="start Date"
onChange="val i dDat e(t hi s)">

</ FORV»

</ BODY>

</ HTM_>



Selecting Text Fields for Reentry

During both real-time and batch validations, it is especially helpful to the user if your code
— upon discovering an invalid entry — not only brings focus to the subject text field, but
also selects the content for the user. By preselecting the entire field, you make it easy for
the user to just retype the datainto the field for another attempt (or to begin using the left
and right arrow keys to move the insertion cursor for editing). The reverse type on the
field text also helps bring attention to the field. (Not all operating systems display a
special rectangle around a focused text field.)

Form fields have bothf ocus() andsel ect () methods, which you should invoke for
the subject field in that order. |E for Windows, however, exhibits undesirable behavior
when trying to focus and select afield immediately after you close an dert dialog box. In
most cases, the field does not keep its focus or selection. Thisisatiming problem, but one
that you can cure by processing the focus and select actionsthrough aset Ti meout ()
method. The bottom of the script code of Listing 43-9 demonstrates how to do this.

Method callsto the form field reside in a separate function (called doSel ecti on() in
this example). Obviously, the methods need a reference to the desired field, so the

doSel ecti on() function requires accessto that reference. Y ou can use a global
variable to accomplish this (set the value in the validation function; read it in the

doSel ection() function), but globals are not elegant solutions to passing transient
data. Even though the validation function receives areference to the field, that is an object
reference, and theset Ti meout () function’sfirst parameter cannot be anything but a
string value. Therefore, the reference to the text field provides access to names of both the
form and field. The namesfill in asindex valuesfor arrays so that the assembled string
(upon being invoked) evaluates to avalid object reference:

"d]o)SeI ection(docunent.forms['" + fld.formnanme + "'].elements['" + fld.name +
Notice the generous use of built-inf or ns and el enent s object arrays, which allow the
form and field names to assembl e the reference without resorting to the onerouseval ()
function.

For timing problems such as this one, no additional timeistruly needed to let | E recover
from whatever ailsit. Thus, the time parameter is set to O milliseconds. Using the

set Ti meout () porta is enough to make everything work. Thereis no penalty for using
this construction with NN or IE/Mac, even though they don’t need it.

An “Industrial-Strength” Validation Solution

| had the privilege of working on a substantial intranet project that included dozens of
forms, often with two or three different kinds of forms displayed simultaneously within a
frameset. Data-entry accuracy was essential to the validity of the entire application. My
task was to devise adata-entry validation strategy that not only ensured accurate entry of




datatypes for the underlying (SQL) database, but also intelligently prompted users who
made mistakes in their data entry.

Structure

From the start, the validation routines were to be in aclient-side library linked in from an
externd . j s file. That would alow all formsto share the validation functions. Because
there were multiple forms displayed in a frameset, it would prove too costly in download
time and memory requirementsto includetheval i dati ons. | s filein every frame's
document. Therefore, the library was moved to load in with the frameset. The <SCRI PT
SRC="val i dati ons. j s”></ SCRI PT> tag set went in the Head portion of the
framesetting document.

Thislogica placement presented a small challenge for the workings of the validations
because there had to be two-way conversations between a validation function (in the
frameset) and aform element (nested in aframe). The mechanism required that a
reference to the frame containing the form element be passed as part of the validation
routine so that the validation script could make corrections, automatic formatting, and
erroneous field selections from the frameset document’ s script. (In other words, the
frameset script needed a path back to the form element making the validation call.)

Dispatch mechanism

From the specification drawn up for the application, it is clear that there are more than
two dozen specific types of validations across all the forms. Moreover, multiple
programmers work on different forms. It is helpful to standardize the way validations are
called, regardless of the validation type (number, string, date, phone number, and so on).

My ideawasto create oneval i dat e() function that contained parameters for the
current frame, the current form element, and the type of validation to perform. Thiswould
make it clear to anyone reading the code later that an event handler calling val i dat e()
performed validation, and the details of the code wereintheval i dati ons. j s library
file.

Inval i dati ons. j s, | converted astring name of avalidation type into the name of
the function that performs the validation in order to make thisideawork. Asabridge
between the two, | created what | called a dispatch lookup table for al the primary
validation routines that would be called from the forms. Each entry of the lookup table
had alabel consisting of the name of the validation and a method that invoked the
function. Listing 43-9 shows an excerpt of the entire lookup table creation mechanism.

Listing 43-9
Creating the Dispatch Lookup Table

/*
Begi n val i dation di spatchi ng nechani sm



*/

function di spatcher(validati onFunc) {
this.doValidate = validationFunc

var di spat chLookup = new Array()

di spat chLookup]
di spat chLookup]
di spat chLookup]
di spat chLookup]
di spat chLookup]
di spat chLookup]
di spat chLookup]
di spat chLookup]
di spat chLookup]
di spat chLookup]
di spat chLookup]
di spat chLookup]
di spat chLookup]
di spat chLookup]

"i sNot Enpt y"]

"isPositivelnteger"]

n

"isDol | arsOnl y8"]
new di spat cher (i sUSSt at e)

"i sUSSt at e"]
"isZp"]

"i sExpandedZi p"]

"i sPhone"] =
"isConfirmed"]
"isNY'] =

" sNumi6"]

"i sMBO_M20Dat e"]

"i sM70_0ODat e"]
"i sM6_P10Dat "]
“i sDat eFor mat "]

ew di spat cher (i sNot Enpt y)
new di spat cher (i sPosi ti vel nt eger)
new di spat cher (i sDol | ar sOnl y8)

new di spat cher (i sZi p)

new di spat cher (i sExpandedZi p)

new di spat cher (i sPhone)

new di spat cher (i sConfi r ned)

new di spat cher (i sNY)
new di spat cher (i sNuni6)

new di spat cher (i sMB0O_M20Dat €)
new di spat cher (i sM70_0Dat €)

new di spat cher (i sMb_P10Dat €)
new di spat cher (i sDat eFor nat )

Each entry of the array isassigned adi spat cher object, whose custom object
constructor assigns a function reference to the object’sdoVal i dat e() method. For
these assignment statements to work, their corresponding functions must be defined
earlier in the document. Y ou can see some of these functions later in this section.

The link between the form elements and the dispatch lookup tableistheval i dat e()
function, shown in Listing 43-10. A call toval i dat e() requiresaminimum of three
parameters, as shown in the following example:

<INPUT TYPE="text" NAME="phone" S| ZE="10"
onChange="parent . val i dat e(wi ndow, this, 'isPhone')">

Thefirst isareference to the frame containing the document that is calling the function
(passed as areference to the current window). The second parameter is areference to the
form control element itself (using thet hi s operator). After that, you see one or more
individual validation function names as strings. This last design allows more than one type
of validation to take place with each call toval i dat e() (for example, in case afield
must check for a data type and check that the field is not empty).

Listing 43-10
Main Validation Function

/1 main validation function called by formevent handlers
function validate(frame, field, nmethod) {
gFrame = frane
gField = wi ndow. frames[frame. nane] . docunent. forns[ 0] . el enents[fi el d. nane]
var args = validate.argunents
for (i =2; i <args.length; i++) {
i f ('dispatchLookup[args[i]].doValidate()) {
return fal se
}
}

return true

}

Intheval i dat e() function, the frame referenceis assigned to aglobal variable that is
declared at thetop of theval i dat i ons. j s file. Validation functionsin thislibrary



need thisinformation to build areference back to a companion field required of some
validations (explained later in this section). A second global variable contains areference
to the calling form element. Because the form element reference by itself does not contain
information about the frame in which it lives, the script must build a reference out of the
information passed as parameters. The reference must work from the framesetting
document down to the frame, its form, and form element name. Therefore, | use the
frame andfi el d object referencesto get their respective names (within thef r anes
and el enent s arrays) to assemble the text field' s object reference; the resulting valueis
assigned to thegFi el d global variable. | choose to use global variablesin this case
because passing these two values to numerous nested validation functions could be
difficult to track reliably. Instead, the only parameter passed to specific validation
functionsisthe value under test.

Next, the script creates an array of al arguments passed to theval i dat e() function. A
f or loop startswith an index value of 2, the third parameter containing the first
validation function name. For each one, the named item’sdoVal i dat e() method is
called. If the validation fails, this function returnsf al se; but if al validations succeed,
then this function returnst r ue. Later you see that this function’s returned value is the
one that allows or disallows aform submission.

Sample validations

Above the dispatching mechanismintheval i dati ons. j s arethe validation
functions themselves. Many of the named validation functions have supporting utility
functions that other named validation functions often use. Because of the eventual large
size of thislibrary file (the production version was about 40 kilobytes), | organized the
functions into two groups: the named functionsfirst, and the utility functions below them
(but still before the dispatching mechanism at the bottom of the document).

To demonstrate how some of the more common data types are validated for this
application, | show several validation functions and, where necessary, their supporting
utility functions. Figure 43-1 shows a sample form that takes advantage of these
validations. (You have achanceto try it later in this chapter.) When you are dealing with
critical corporate data, you must go to extreme lengths to ensure valid data. And to help
users see their mistakes quickly, you need to build some intelligence into validations
where possible.



W GianiCo Contractor Database - Microsoft Internet Explorer
| Eile [Edit VWiew Favorites Tools Help
b L raa ¢ sﬁ: R s | S faimas m'gq ;uja; A
Contractor Information
Firgt Mame: [cHarLES
T ast Masme: |..-=-;_K=\.H
{Company, [FINGER TWISTERS. INC
Iddress 1: [40 AESOR sy
‘Addrese 2 [
iz | | Bhore i
S5 [ - i Lacensed(rmiam: [
Nea, of Employees: ’_- . : : :
Lishiity Covmr | (Coverage Evp. Date: [ o |
21 Done 24 Local intranet
Figure 43-1

Sample form for industrial-strength validations

U.S. state name

The design specification for formsthat require entry of aU.S. state callsfor entry of the
state’' s two-character abbreviation. A companion field to the right displays the entire state
name as user feedback verification. The onChange event handler not only callsthe
validation, but it also feeds the focus to the field following the expanded state field so

users areless likely to typeinto it.

Before the validation can even get to the expansion part, it must first validate that the
entry isavalid, two-letter abbreviation. Because | need both the abbreviation and the full
state name for this validation, | create an array of all the states using each state
abbreviation as the index label for each entry. Listing 43-11 shows that array creation.

Listing 43-11
Creating a U.S. States Array

/] States array
var USStates = new Array(51)
ABAVA'

USStates["AL"] ="

USSt at es[ "AK"] = " ALASKA"

USSt at es["AZ"] = "AR ZONA"
USSt at es[ "AR'] = " ARKANSAS"
USSt at es[ "CA"] = "CALI FORNI A"
USSt at es["CO'] = " COLORADC!
USSt at es[ " CT"] = " CONNECTI CUT"
USSt at es[ "DE"] = " DELAWARE"
USStates["DC'] = "DI STRICT OF COLUMBI A"
USSt at es["FL"] = "FLOR DA"
USSt at es[ "GA"] = "CGECRA A"



USStates["H "] = "HAWAI | "
USStates["ID'] = "1 DAHO'
USStates["IL"] = "ILLINOS"
USStat es["I N'] = "1 NDI ANA"
USStates["1 A"] = "1 OM"

USSt at es[ "KS'] = " KANSAS'

USSt at es["KY"] = " KENTUCKY"
USSt at es["LA"] = "LOU SI ANA"
USSt at es["ME"] = " MAI NE"

USSt at es["MD'] = " MARYLAND'
USSt at es[ "MA'] = " MASSACHUSETTS"
USStates["M"] = "M CH GAN'
USSt at es["MN'] = "M NNESOTA"
USSt ates["MB"] = "M SSI SSI PPI ™
USStates["MD'] = "M SSCQUR "

USSt at es["MI™] = " MONTANA"
USSt at es[ "NE'] = " NEBRASKA
USSt at es["NV'] = " NEVADA"

USSt at es[ "NH'] = " NEW HAMPSHI RE"
USSt at es[ "NJ"] = " NEW JERSEY"
USSt at es["NM'] = "NEW MEXI CO'
USSt at es["NY"] = "NEW YORK"
USSt at es[ "NC'] = "NORTH CARCLI NA"
USSt at es["ND'] = "NORTH DAKOTA"
USStates["CH'] = "CH O

USSt at es[ "OK"'] = " OKLAHOWA"
USSt at es["OR'] = " OREGON'

USSt at es[ "PA"] = "PENNSYLVAN A"
USStates["RI"] = "RHODE | SLAND'
USSt at es[ "SC'] = "SOUTH CARCLI NA'
USSt at es["SD'] = "SOUTH DAKOTA"
USSt at es[ "TN'] = " TENNESSEE"
USSt at es[ " TX"] = "TEXAS'

USSt at es["UT"] = " UTAH'

USSt at es["VT"] = " VERVONT"
USStates["VA'] = "VIRA NI A"

USSt at es[ "WA"] = "WASHI NGTON'
USSt at es["W"] = "WEST VIRA NI A"
USSt ates[ "W"] = "W SCONSI N'
USStates[“W"] =" WOM NG'

The existence of thisarray comesin handy in determining if the user entersavalid, two-
state abbreviation. Listing 43-12 showsthe actual i sUSSt at e() validation function that
puts this array to work.

The function’ sfirst task isto assign an uppercase version of the entered value to alocal
variable (i nput St r ), which isthe value being analyzed throughout the rest of the
function. If the user enters something in thefield (I engt h > 0) but no entry in the
USSt at es array existsfor that value, the entry is not avalid state abbreviation. Timeto
go to work to help out the user.

Listing 43-12
Validation Function for U.S. States

/'l input value is a U S. state abbreviation; set entered value to all uppercase
/1 also set conpanion field (NAVE="<xxx> _expand") to full state nane
function i sUSState() {
var inputStr = gField. val ue.t oUpper Case()
if (inputStr. Iength > 0 & USStates[inputStr] == null) {
var nmsg =



var firstChar = inputStr.charAt (0)
if (firstChar == "A") {
nsg += "\n(Al abama = AL; Alaska = AK; Arizona = AZ; Arkansas = AR"

}
if (firstChar == "D") {
nsg += "\n(Del awnare = DE; District of Colunbia = DC)"
}
if (firstChar == "1") {
nsg += "\n(ldaho = ID; Illinois = 1L; Indiana = IN, lowa = A"
}
if (firstChar == "M) {
meg += "\n(Maine = ME Maryland = MD; Massachusetts = M\, " +

"Mchigan = M; Mnnesota = M\, Mssissippi = M5, " +
"Mssouri = M) Montana = MN)"

}
if (firstChar == "N') {
nmeg += "\ n(Nebraska = NE; Nevada = NV)"

alert("Check the spelling of the state abbreviation." + nsg)
gFi el d. focus()

gFi el d. sel ect ()

return fal se

}
gField.value = inputStr
var expandField =
wi ndow. f r anes[ gFr ane. nane] . docunent . forns[ 0] . el enent s[ gFi el d. nane + "_expand"]
expandFi el d. val ue = USSt at es[i nput Str]
return true

}

The function assumes that the user tried to enter a valid state abbreviation but either had
incorrect source material or momentarily forgot a particular state’ s abbreviation.
Therefore, the function examinesthe first letter of the entry. If that first letter is any one of
the fiveidentified as causing the most difficulty, alegend for all states beginning with that
letter isassigned to the ns g variable (for running on newer browsersonly, aswi t ch
construction is preferred). An aert message displays the generic alert, plus any special
legend if oneisassigned to the ns g variable. When the user closes the alert, the field has
focus and itstext is selected. (This application runs solely on Navigator, so the |lE

set Ti meout () workaround isn't needed — but you can add it very easily, especialy
thanks to the global variable reference for the field.) The function returnsf al se at this
point.

If, on the other hand, the abbreviation entry isavalid one, the field is handed the
uppercase version of the entry. The script then uses the two global variables set in

val i dat e() to create areference to the expanded display field (whose name must be
the same asthe entry field plus“ _expand” ). That expanded display field is then
supplied the USSt at es array entry value corresponding to the abbreviation label. All is
well with thisvalidation, so it returnst r ue.

Y ou can see here that the so-called validation routine is doing far more than simply
checking validity of the data. By communicating with the field, converting its contents to
uppercase, and talking to another field in the form, asimple call to the validation function
yieldsalot of mileage.



Date validation

Many of the formsin this application have date fields. In fact, dates are an important part
of the data maintained in the database behind the forms. All users of this application are
familiar with standard date formats in use in the United States, so | don’'t have to worry
about the possibility of cultural variationsin date formats. Even so, | want the date entry
to accommodate the common date formats, such asnmddyyyy, mm dd/ yyyy, and
mm dd- yyyy (aswell as accommodate two-digit year entries spanning 1930 to 2029).

The plan aso callsfor going further in helping users enter dates within certain ranges. For
example, afield used for a birthdate (the listings are for medical professionals) should
recommend dates starting no more than 90 years, and no less than 20 years, from the
current date. And to keep this application running well into the future, the ranges should
be on a dliding scale from the current year, no matter when it might be. Whatever the
case, the date range validation is only a recommendation and not a transaction stopper.

Rather than create separate validation functions for each date field, | create a system of
reusable validation functions for each date range (several fields on different forms require
the same date ranges). Each one of these individual functions calls asingle, generic date-
validation function that handles the date-range checking. Listing 43-13 shows afew
examples of these individual range-checking functions.

Listing 43-13
Date Range Validations

// Date M nus 90/ M nus 20
function i sMBO_M2ODat e() {
if (gField.value.length == 0) return true
var thisYear = getTheYear ()
return isDate((thisYear - 90), (thisYear - 20))

}

// Date Mnus 70/Mnus 0O

function i sM70_ODate() {
if (gField.value.length == 0) return true
var thisYear = getTheYear ()
return isbDate((thisYear - 70), (thisYear))

}

// Date Mnus 5/Plus 10
function i sMb_Pl10Date() {
if (gField.value.length == 0) return true
var thisYear = getTheYear ()
return isDate((thisYear - 5),(thisYear + 10))

}

The naming convention | create for the functions includes the two range components
relative to the current date. A letter “M” means the range boundary is minus a number of
years from the current date; “P’ means the range is plus a number of years. If the
boundary should be the current year, a zero is used. Therefore, thei sivb_P10Dat e()
function performs range checking for boundaries between five years before and 10 years
after the current year.



Before performing any range checking, each function makes sure there is some value to
validate. If the field entry is empty, the function returnst r ue. Thisisfine here because
dates are not required when the data is unknown.

Next, the functions get the current four-digit year. The code here had to work originally
with browsers that did not have the get Ful | Year () method available yet. Therefore,
the Y 2K fix described in Chapter 36 was built into the application:
function get TheYear() {
var thisYear = (new Date()).getYear()

thisYear = (thisYear < 100)? thisYear + 1900: thisYear
return thisYear

}

Thefina call from the range validationsisto acommoni sDat e() function, which
handles not only the date range validation but also the validation for valid dates (for
example, making sure that September has only 30 days). Listing 43-14 shows this
monster-sized function. Because of the length of thisfunction, | interlace commentary
within the code listing.

Listing 43-14
Primary Date Validation Function

/] date field validation (called by other validation functions that specify
m nYear / naxYear)
function isDate(m nYear, maxYear, m nDays, maxDays) {

var inputStr = gField.val ue

To makeit easier to work with dates supplied with delimiters, | first convert hyphen
delimitersto dash delimiters. The pre-regular expressionr epl aceSt ri ng() function
is the same one described in Chapter 34; it islocated in the utility functions part of the
val i dations. | s file

/'l convert hyphen delimters to slashes
while (inputStr.indexO("-") I'=-1) {

input Str = replaceString(inputStr,"-","/")
}

For validating whether the gross format is OK, | check whether zero or two delimiters
appear. If the value contains only one delimiter, then the overall formatting is not
acceptable. The error alert shows models for acceptable date-entry formats.

var delinl = inputStr.indexC("/")
var delin2 = inputStr.|astlndexO("/")
if (deliml !'= -1 && deliml == delinR) {
/'l there is only one delinmter in the string
alert("The date entry is not in an acceptable format.\n\nYou can enter
dates in the follow ng formats: mmddyyyy, midd/yyyy, or mmdd-yyyy. (If the
nonth or date data is not available, enter \'"01\' in the appropriate |ocation.)")
gFi el d. focus()
gFi el d. sel ect ()
return fal se



If there are two delimiters, | tear apart the string into components for month, day, and
year. Because two-digit entries can begin with zeros, | make surethe par sel nt ()
functions specify base-10 conversions.

if (deliml !'=-1) {
/'l there are delinmters; extract conponent val ues
var nm = parsel nt (i nput Str. substring(0, delintl), 10)
var dd = parselnt(inputStr.substring(delinl + 1,delin®2), 10)
var yyyy = parselnt(inputStr.substring(delin2 + 1, inputStr.|ength), 10)

For no delimiters, | tear apart the string and assume two-digit entries for the month and
day and two or four digits for the year.

} else {
/!l there are no delinmters; extract conponent val ues
var nm = parsel nt (i nput Str. substring(0, 2), 10)
var dd = parselnt(inputStr.substring(2,4), 10)
var yyyy = parselnt(inputStr.substring(4,inputStr.|ength), 10)

}

Thepar sel nt () functionsreveal whether any entry is not a number by returning NaN,
so | check whether any of the three valuesis not a number. If so, then an dert signalsthe
formatting problem and supplies acceptable models.

if (isNaN(Cmm) || isNaN(dd) || isNaN(yyyy)) {
/'l there is a non-nuneric character in one of the conponent val ues
alert("The date entry is not in an acceptable format.\n\nYou can enter
dates in the follow ng formats: mmddyyyy, midd/yyyy, or mmdd-yyyy.")
gFi el d. focus()
gFi el d. sel ect ()
return fal se

}

Next, | perform some gross range validation on the month and date to make sure that
months are entered from 1 to 12 and dates from 1 to 31. | take care of aligning exact
month lengths later.

if (mfm< 1 || mm> 12) {
// month value is not 1 thru 12
alert("Mnths nmust be entered between the range of 01 (January) and 12
(Decenber).")
gFi el d. focus()
gFi el d. sel ect ()
return fal se

}
if (dd <1 || dd > 31) {
// date value is not 1 thru 31
alert("Days must be entered between the range of 01 and a maxi mum of 31
(dependi ng on the nonth and year).")
gFi el d. focus()
gFi el d. sel ect ()
return fal se

}

/'l validate year, allow ng for checks between year ranges
/| passed as paraneters fromother validation functions

Before getting too deep into the year validation, | convert any two-digit year within the
specified rangeto its four-digit equivalent.

if (yyyy < 100) { _ o _
/] entered value is two digits, which we allow for 1930-2029



if (yyyy >= 30) {
yyyy += 1900
} else {
yyyy += 2000

}

var today = new Date()

| designed this function to work with apair of year ranges or date ranges (so many days
before and/or after today). If the function is passed date ranges, then the first two
parameters must be passed asnul | . Thisfirst batch of code works with the date ranges
(becausethem nYear parameterisnul |).

if (!mnYear) {
/1 function called with specific day range paraneters
var dateStr = new String(nont hDayFornat(mm + "/" + nont hDayFor nat (dd) +
"I+ yyyy)
var testDate = new Date(dateStr)
if (testDate.getTime() < (today.getTine() + (minDays * 24 * 60 * 60 *
1000))) {
alert("The nost likely range for this entry begins " + mnDays +
" days fromtoday.")

}
if (testDate.getTinme() > today.getTine() + (naxDays * 24 * 60 * 60 *
1000)) {
alert("The nost likely range for this entry ends " + maxDays +
' days fromtoday.")

}

Y ou can also pass hard-wired, four-digit years as parameters. The following branch
compares the entered year against the range specified by those passed year values.
} else if (mnYear & maxYear) {
/] function called with specific year range paraneters
if (yyyy < minYear || yyyy > naxYear) {
/'l entered year is outside of range passed fromcalling function
alert("The nost likely range for this entry is between the years " +

mnYear + " and " + naxYear + ". |f your source data indicates a date outside
this range, then enter that date.")

} else {

For year parameters passed as positive or negative year differences, | begin processing by
getting the four-digit year for today’ s date. Then | compare the entered year against the
passed range values. If the entry is outside the desired range, an aert revealsthe preferred
year range within which the entry should fall. But the function does not return any value
here because an out-of-range value is not critical for this application.

/'l default year range (now set to (this year - 100) and (this year + 25))
var thisYear = today. get Year ()

if (thisYear < 100) {

thi sYear += 1900

if (yyyy < minYear || yyyy > naxYear) {
alert("It is unusual for a date entry to be before " + minYear + " or
after " + maxYear + ". Please verify this entry.")

}
}



One more important validation is to make sure that the entered date is valid for the month
and year. Therefore, the various date components are passed to functions to check against
month lengths, including the specia calculations for the varying length of February.
Listing 43-15 shows these functions. The alert messages they display are smart enough to
inform the user what the maximum date is for the entered month and year.

i f (!checkMont hLengt h(nm dd)) {
gFi el d. focus()
gFi el d. sel ect ()
return fal se

}
if (mm==2) {
i f (!checkLeapMont h(nm dd, yyyy)) {
gFi el d. focus()
gFi el d. sel ect ()
return fal se

}

Thefinal task is to reassemble the date components into a format that the database wants
for its date storage and stuff it into the form field. If the user enters an all-number or
hyphen-delimited date, it is automatically reformatted and displayed as a dash-delimited,
four-digit-year date.

/'l put the Informx-friendly format back into the field
gFi el d. val ue = nont hDayFormat (mm) + “/" + nont hDayFornmat (dd) + "/" + yyyy
return true

}

A utility function invoked multiple timesin the previous function converts a single-digit
month or day number to a string that might have aleading zero:

/1 convert nonth or day nunber to string,
/'l padding with | eading zero if needed
functi on nmont hDayFor mat (val ) {
if (isNaN(val) || val == 0) {
return "01"
} elseif (val < 10) {
return "0" + val

}

return "" + val
}

Listing 43-15

Functions to Check Month Lengths

/'l check the entered nonth for too high a val ue
functi on checkMont hLengt h(mm dd) {
var nonths = new
Array("","January", "February","March","April","My", "June", "Jul y",
"August ", " Sept enber ", " Cct ober ", " Novenber ", " Decenber ")
if ((m=4 ]| mMm=26 || mm==9 || nm== 11) && dd > 30) {
alert(months[mj + " has only 30 days.")
return fal se
} elseif (dd > 31) {
alert(months[mj + " has only 31 days.")
return fal se

}

return true



/'l check the entered February date for too high a val ue
functi on checkLeaphont h(mm dd, yyyy) {
if (yyyy %4 > 0 & dd > 28) {
alert("February of " + yyyy + " has only 28 days.")
return fal se
} elseif (dd > 29) {
alert("February of " + yyyy + " has only 29 days.")
return fal se

}

return true
}
Thisisarather extensive date-validation routine, but it demonstrates how thorough you
must be when a database relies on accurate entries. The more prompting and assistance
you can give to usersto ferret out problemswith invalid entries, the happier those users
will be.

Cross-confirmation fields

Thefinal validation type that | cover hereis probably not acommon request, but it
demonstrates how the dispatch mechanism created at the outset expands so easily to
accommodate this enhanced client request. The situation is that some fields (mostly dates
in this application) are deemed critical pieces of data because this data triggers other
processes from the database. As afurther check to ensure entry of accurate data, a
number of values are set up for entry twice in separate fields— and the fields have to
match exactly. In many ways, this mirrors the two passes you are often requested to
make when you set a password: enter two copies and let the computer compare them to
make sure you typed what you intended to type.

| established a system that places only one burden on the many programmers working on
the forms: while you can name the primary field anything you want (to help alignment
with database column names, for example), you must name the secondary field the same
plus® _xcf n? — which stands for cross-confirm. Then, passthei sConfi r med
validation nameto theval i dat e() function after the date range validation name, as
follows:

onChange="parent . val i date(wi ndow, this, 'isMs_Pl0Date','isConfirmed )"

In other words, after the entered valueisinitialy checked against arequired date range,
thei sConfi rmed() validation function compares the fully vetted, properly formatted
date in the current field against its parallel entry.

Listing 43-16 shows the one functioninval i dat i ons. j s that handlesthe
confirmation in both directions. After assigning a copy of the entry field value to the

I nput St r variable, the function next sets a Boolean flag (pr i mar y) that lets the rest of
the script know if the entry field is the primary or secondary field. If thestring“ _xcf ni
ismissing from the field name, then the entry field isthe primary field.

For the primary field branch, the script assembles the name of the secondary field and
compares the content of the secondary field’ svalue against thei nput St r value. If they



are not the same, the user is entering a new vaue into the primary field and the script
empties the secondary field to force reentry to verify that the user enters the proper data.

For the secondary field entry branch, the script assembles areference to the primary field
by stripping away the final five characters of the secondary field’s name. | can use the

| ast | ndexOF () string method instead of the longer way involving the string’ s length;
but after experiencing so many platform-specific problemswith | ast | ndexOf () in
Navigator, | decided to play it safe. Finally, the two values are compared, with an
appropriate alert displayed if they don’t match.

Listing 43-16
Cross-Confirmation Validation

/'l checks an entry against a parallel, duplicate entry to
/1 confirmthat correct data has been entered
/] Parallel field nane nust be the nmain field nane plus "_xcfnt
function isConfirmed() {
var inputStr = gField.val ue
/1 flag for whether field under test is prinmary (true) or confirnmation field
var prinmary = (gField. nane.indexOf (" _xcfnl') == -1)
if (primary) {
Il clear the confirmation field if prinmary field is changed
var xcfnField =
wi ndow. f r anes[ gFr ane. nane] . docunent . forns[ 0] . el enents[ gFi el d. nane + "_ xcfni]
var xcfnVal ue = xcf nFiel d. val ue
if (inputStr !'= xcfnValue) {
xcfnField. value = ""
return true

} else {
var xcfnField =
wi ndow. f r anes[ gFr ane. nane] . docunent . f or ns[ 0] . el enent s[ gFi el d. nane. substri ng(0, (gFi
el d. nane. | engt h-5))]
var xcfnVval ue = xcf nFi el d. val ue
if (inputStr !'= xcfnValue) {
alert("The main and confirmation entry field contents do not match.
Both fields nust have EXACTLY the sane content to be accepted by the database.")
gFi el d. focus()
gFi el d. sel ect ()
return fal se

}
}
return true

}

Last-minute check

Every validation event handler isdesigned to returnt r ue if the validation succeeds. This
comesin handy for the batch validation that performs one final check of the entries
triggered by the form’sonSubm t event handler. This event handler callsa

checkFor m() function and passes the form control object as a parameter. That
parameter helps create areference to the form element that is passed to each validation
function.



Because successful validationsreturnt r ue, you can nest consecutive validation tests so
that the most nested statement of the constructionisr et urn tr ue becauseall
validations have succeeded. The form’sonSubmni t event handler is asfollows:

onSubm t="return checkForn{this)"

And the following code fragment is an example of acheckFor n() function. A separate
i sDat eFor mat () validation function called here checks whether the field contains an
entry in the proper format — meaning that it has likely survived the range checking and

format shifting of the real-time validation check.
function checkForm(form {
i f (parent.validate(w ndow, formbirthdate, “isDateFormat”)) ({
i f (parent.validate(w ndow, form phone, “isPhone”)) {

i f (parent.validate(w ndow, formnane, “isNotEnpty”)) {
return true
}

}

return fal se

}

If any one validation fails, the field is given focus and its content is selected (controlled by
theindividual validation function). In addition, thecheckFor n() function returns
f al se. This, inturn, cancels the form submission.

Try it out

Listing 43-17 isadefinition for aframeset that not only loads the validation routines
described in this section, but aso loads a page with aform that exercises the validationsin
real-time and batch mode just prior to submission. The form appears earlier in this chapter
in Figure 43-1.

Listing 43-17
Frameset for Trying validation.js

<HTM.>
<HEAD>
<TI TLE>G ant Co Contractor Database</ Tl TLE>
<SCRI PT LANGUAGE="JavaScri pt" SRC="validation.s"></SCR PT>
<SCRI PT LANGUAGE="JavaScri pt">
function blank() {
return "<HTM.><BODY BGCOLOR='|i ght st eel bl ue' ></ BODY></ HTM_>"

}
</ SCRI PT>
</ HEAD>
<FRAMESET FRAMEBCORDER COLS="20% 80% >
<FRAME NAME="toc" SRC="j avascri pt: parent. bl ank()">
<FRAME NAME="entries" SRC="I|st43-18. htni>
</ FRAMESET>
</ FRAMESET>
</ HTM_>

The application scenario for the form isthe entry of datainto a company’s contractor
database. Some fields are required, and the date field must be cross-confirmed with a
second entry of the same data. If the form passesitsfina validation prior to submission,



the form reloads and you see areadout of the form data that would have been submitted
from the previous form had the ACTION been set to aserver CGI program URI.

Plan for Data Validation

| devoted this entire chapter to the subject of data validation because it represents the one
area of error checking that amost all JavaScript authors should be concerned with. If your
scripts (client-side or server-side) perform processing on user entries, you want to prevent
script errors at all costs.



	Chapter 43: Data-Entry Validation
	Real-time versus Batch Validation
	Designing Filters
	Building a Library of Filter Functions
	isPosInteger()
	isEmpty()
	isInteger()
	isNumber()
	Custom validation functions

	Combining Validation Functions
	Date and Time Validation
	Selecting Text Fields for Reentry
	An “Industrial-Strength” Validation Solution
	Structure
	Dispatch mechanism
	Sample validations
	Date validation
	Primary Date Validation Function
	Functions to Check Month Lengths

	Cross-confirmation fields
	Cross-Confirmation Validation

	Last-minute check
	Try it out
	Frameset for Trying validation.js


	Plan for Data Validation

