
Advanced Event
Handling

Once an HTML page loads, virtually nothing happens in
the page without events. System and user actions

make things happen, especially if those events trigger
JavaScript functions. Navigator 4 extends the event
mechanism that has been in scriptable browsers since the
beginning, providing not only more events, but also a more
sophisticated way of trapping and responding to events. This
chapter focuses on the details of this new mechanism to help
you understand how and when to use it in your pages.

A good deal of the imperative for implementing a deeper
event mechanism came from Dynamic HTML. The possibility
of hiding and showing any number of positionable elements
on the screen — each of which has its own complement of
event-driven document elements — is a great advantage to
managing event handling across the application on a more
global scale. The new event model is very good at helping
with this.

The “Other” Event Object
In Chapter 33, you saw the basics of the event object. That

was the event object with a lowercase “e,” which is generated
each time an event fires in response to some action. But an
Event object with a capital “E” also exists. This object
behaves like the Math object, which is always around and has
some handy properties and methods ready for our scripts to
use at any time. The Event object provides a series of
properties (and no methods) that event handling routines use
as constants.

The Event object’s properties are divided into two groups.
One group consists of four values representing modifier keys
on the keyboard (Alt, Ctrl, Shift, Meta). The Meta key is the
new Windows key on Windows computers; it’s the Command
(C) key on the Mac. You may recall seeing these constants
used to determine whether a mouse event was fired with one
or more of those keys pressed at the same time, as in the
following:

3939C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The difference
between the event
and Event objects

Capturing,
processing, and
redirecting events in
Navigator

Working with
Navigator and
Internet Explorer
event models

✦ ✦ ✦ ✦

802 Part IV ✦ Putting JavaScript to Work

function doEvent(evt) {
if (evt.modifiers & Event.ALT_MASK) {

statements for Alt key handling
}

}

Names for the properties are all uppercase and must be retrieved in a reference
with the Event object (Event.ALT_MASK, Event.CONTROL_MASK,
Event.SHIFT_MASK, and Event.META_MASK). The other group of properties
contains a large number of constants that represent event types. There exists one
property for each event type used by objects in the document object model (and
some events that have not yet been defined for objects, but likely will be in the
future). For example, the Event.CLICK property is the way a script refers to a
generic click event for some event-related methods.

Actual values for these properties are integer values. The integer values are of
little use to your scripts, but you are free to substitute the integer values for the
constant properties if you like. I won’t bother listing the values here, but you can
use a for...in loop construction with the Event object to obtain a list for
yourself.

Capturing Events
The common way of assigning an event handler to an object is to use an event

handler attribute in the HTML tag of the intended target of the event. But in
Navigator 4, the mouse or keyboard event you assign to be captured by that
attribute does not go directly to that object. Instead, the event passes through
objects higher up the document object hierarchy. For example, if you define an
onClick= event handler for a form button and the user clicks on that button, the
click event first passes through the window object and the document object before
reaching the button. If the button was in a form contained by a document inside a
layer, the event passes through the window, main window document, layer object,
and the layer’s document before finally reaching the button. All of this event
traveling occurs in less than a blink of an eye, so events don’t seem any slower to
react in Navigator 4 than they do in earlier scriptable browsers.

A quick check of the object listings for windows, documents, and layers in
Appendix B reveals that these objects don’t include event handlers for most of the
user interactivity events that come from the user working the mouse or keyboard.
But you can assign such an event handler to one of these “higher-up” objects,
provided you also specifically instruct one or more of these objects to intercept
events on their way to their targets. Moreover, you must instruct these objects to
intercept events of a particular type, rather than all events.

Enabling event capture
All three objects just mentioned — window, document, and layer — have a

captureEvents() method in their definitions. This is the method you use to
enable event capture at any of those object levels. The method requires one or
more parameters, which are the event types (as supplied by the Event object
constants) that the object should capture, while letting all others pass untouched.

803Chapter 39 ✦ Advanced Event Handling

For example, if you want the window object to capture all keyPress events, you
would include the following statement in a script that executes as the page loads:

window.captureEvents(Event.KEYPRESS)

If you want the window to capture multiple event types, string the event type
constants together, separated by the pipe character:

window.captureEvents(Event.KEYPRESS | Event.CLICK)

Now you must assign an action to the event at the window’s level for each event
type. More than likely, you will have defined functions to execute for the event.
Assign a function reference to the event handler by setting the handler property of
the window object:

window.onKeyPress = processKeyEvent
window.onClick = processClickEvent

Hereafter, if a user clicks on a button or types into a field inside that window,
the events will be processed by their respective window-level event handler
functions.

Turning off event capture
Once you have enabled event capture for a particular event type in a document,

that capture remains in effect until the page unloads or you specifically disable the
capture. You can turn off event capture for each event via the window, document,
or layer releaseEvents() method. This method takes the same kind of
parameters — Event object type constants — as the captureEvents() method.

The act of releasing an event type simply means that events go directly to their
intended targets without stopping elsewhere for processing, even if an event
handler for the higher-level object is still defined. And because you can release
individual event types based on parameters set for the releaseEvents() method,
other events being captured are not affected by the release of others.

To demonstrate not only the captureEvents() and releaseEvents()
methods, but other event model techniques, I present a series of several versions
of the same document. Each version will implement an added feature to help you
experience the numerous interactions among events and event handling methods.
The document merely contains a few buttons, plus some switches to enable and
disable various methods being demonstrated in the section. A layer object is also
thrown into the mixture because a lot of impetus for capturing and modifying
event handling comes from application of layers in a document.

Listing 39-1 is the first example, which shows the basic event capture and
release from the outermost document level. A checkbox lets you enable or disable
the document-level capture of click events (all checkboxes in these examples use
onMouseUp= event handlers to avoid getting in the way of tracing click events).
Because all click events are being captured by the outermost document, even
clicks to the layer’s buttons get trapped by the outermost document when
captureEvents() is set.

804 Part IV ✦ Putting JavaScript to Work

Listing 39-1: Event Capture and Release

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
function setDocCapture(enable) {

if (!enable) {
document.captureEvents(Event.CLICK)

} else {
document.releaseEvents(Event.CLICK)

}
}
function doMainClick(e) {

if (e.target.type == "button") {
alert("Captured in top document")

}
}
document.captureEvents(Event.CLICK)
document.onclick=doMainClick
</SCRIPT>
</HEAD>
<BODY>
Basic document-level capture of Event.CLICK
<HR>
<FORM>
<INPUT TYPE="checkbox" onMouseUp="setDocCapture(this.checked)"
CHECKED>Enable Document Capture
<HR>
<INPUT TYPE="button" VALUE="Button 'main1'" NAME="main1"

onClick="alert('Event finally reached Button:' + this.name)">
</FORM>

<LAYER ID="layer1" LEFT=200 TOP=150 BGCOLOR="coral">
<HEAD>
</HEAD>
<BODY>
<FORM>

<P><INPUT TYPE="button" VALUE="Button 'layerButton1'"

NAME="layerButton1"
onClick="alert('Event finally reached Button:' +

this.name)"></P>
<P><INPUT TYPE="button" VALUE="Button 'layerButton2'"

NAME="layerButton2"
onClick="alert('Event finally reached Button:' +

this.name)"></P>
</FORM>
</BODY>
</LAYER>

</BODY>
</HTML>

805Chapter 39 ✦ Advanced Event Handling

With document-level event capture turned on (the default), all click events are
trapped by the document’s onclick event handler property, a function that alerts
the user that the event was captured by the top document. Because all click events
for buttons are trapped there, even click events of the layer’s buttons are trapped
at the top.

In Listing 39-2, I add some code (shown in boldface) that lets the layer object
capture click events whenever the outer document event capture is turned off.
Inside the <LAYER> tag, a script sets the layer to capture click events. Therefore, if
you disable the outer document capture, the click event goes straight to the main1
button and to the layer event capture. Event capture in the layer object prevents
the events from ever reaching the buttons in the layer, unless you disable event
capture for both the document and the layer.

Listing 39-2: Document and Layer Event Capture and Release

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
function setDocCapture(enable) {

if (!enable) {
document.captureEvents(Event.CLICK)

} else {
document.releaseEvents(Event.CLICK)

}
}
function setLayerCapture(enable) {

if (!enable) {
document.layer1.captureEvents(Event.CLICK)

} else {
document.layer1.releaseEvents(Event.CLICK)

}
}
function doMainClick(e) {

if (e.target.type == "button") {
alert("Captured in main.html")

}
}
document.captureEvents(Event.CLICK)
document.onclick=doMainClick
</SCRIPT>
</HEAD>
<BODY>
Document-level and/or Layer-level capture of Event.CLICK
<HR>
<FORM>
<INPUT TYPE="checkbox" onMouseUp="setDocCapture(this.checked)"
CHECKED>Enable Document Capture
<INPUT TYPE="checkbox" onMouseUp="setLayerCapture(this.checked)"
CHECKED>Enable Layer Capture
<HR>
<INPUT TYPE="button" VALUE="Button 'main1'" NAME="main1"

(continued)

806 Part IV ✦ Putting JavaScript to Work

Listing 39-2 (continued)

onClick="alert('Event finally reached Button:' + this.name)">
</FORM>

<LAYER ID="layer1" LEFT=200 TOP=150 BGCOLOR="coral">
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
function doLayerClick(e) {

if (e.target.type == "button") {
alert("Captured in layer1")

}
}
layer1.captureEvents(Event.CLICK)
layer1.onclick=doLayerClick
</SCRIPT>
</HEAD>
<BODY>
<FORM>
 layer1
<P><INPUT TYPE="button" VALUE="Button 'layerButton1'"

NAME="layerButton1"
onClick="alert('Event finally reached Button:' +

this.name)"></P>
<P><INPUT TYPE="button" VALUE="Button 'layerButton2'"

NAME="layerButton2"
onClick="alert('Event finally reached Button:' +

this.name)"></P>
</FORM>
</BODY>
</LAYER>

</BODY>
</HTML>

Passing events toward their targets
If you capture a particular event type, your script may need to perform some

limited processing on that event before letting it reach its intended target. For
example, perhaps you want to do something special if a user clicks on an element
with the Shift metakey pressed. In that case, the function that handles the event at
the document level will inspect the event’s modifiers property to determine if the
Shift key was pressed at the time of the event. If the Shift key was not pressed, you
want the event to continue on its way to the element that the user clicked on.

To let an event pass through the object hierarchy to its target, you use the
routeEvent() method, passing as a parameter the event object being handled in
the current function. A routeEvent() method does not guarantee that the event
will reach its intended destination, because another object in between may have
event capturing for that event type turned on and will intercept the event. That
object, too, can let the event pass through with its own routeEvent() method.

807Chapter 39 ✦ Advanced Event Handling

Listing 39-3 demonstrates event routing by adding onto the document being
built in previous examples. While the clickable button objects are the same,
additional powers are added to the document and layer function handlers that
process events that come their way. For each of these event-capturing objects, you
have additional checkbox settings to allow or disallow events from passing
through once they’ve been processed by each level.

The default settings for the checkboxes are like the ones in Listing 39-2, where
event capture (for the click event) is set for both the document and layer objects.
A click on any button causes the document object’s event handler to process, and
none other. But if you then enable the checkbox that lets the event continue, you
find that click events on the layer buttons cause alerts to display from both the
document and layer object event handler functions. If you then also let events
continue from the layer object, a click on the button displays a third alert, showing
that the event has reached the buttons. Because the main1 button is not in the
layer, none of the layer object event handling settings affect its behavior.

Listing 39-3: Capture, Release, and Route Events

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
function setDocCapture(enable) {

if (!enable) {
document.captureEvents(Event.CLICK)

} else {
document.releaseEvents(Event.CLICK)
document.forms[0].setDocRte.checked = false
docRoute = false

}

}
function setLayerCapture(enable) {

if (!enable) {
document.layer1.captureEvents(Event.CLICK)

} else {
document.layer1.releaseEvents(Event.CLICK)
document.forms[0].setLyrRte.checked = false
layerRoute = false

}
}
var docRoute = false
var layerRoute = false
function setDocRoute(enable) {

docRoute = !enable
}
function setLayerRoute(enable) {

layerRoute = !enable
}
function doMainClick(e) {

if (e.target.type == "button") {
alert("Captured in main.html")

(continued)

808 Part IV ✦ Putting JavaScript to Work

Listing 39-3 (continued)

if (docRoute) {
routeEvent(e)

}
}

}
document.captureEvents(Event.CLICK)
document.onclick=doMainClick
</SCRIPT>
</HEAD>
<BODY>
Capture, Release, and Routing of Event.CLICK
<HR>
<FORM>
<INPUT TYPE="checkbox" NAME="setDocCap"
onMouseUp="setDocCapture(this.checked)" CHECKED>Enable Document
Capture
<INPUT TYPE="checkbox" NAME="setDocRte"
onMouseUp="setDocRoute(this.checked)">And let event continue<P>
<INPUT TYPE="checkbox" NAME="setLyrCap"
onMouseUp="setLayerCapture(this.checked)" CHECKED>Enable Layer
Capture
<INPUT TYPE="checkbox" NAME="setLyrRte"
onMouseUp="setLayerRoute(this.checked)">And let event continue
<HR>
<INPUT TYPE="button" VALUE="Button 'main1'" NAME="main1"

onClick="alert('Event finally reached Button:' + this.name)">
</FORM>

<LAYER ID="layer1" LEFT=200 TOP=150 BGCOLOR="coral">
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
function doLayerClick(e) {

if (e.target.type == "button") {
alert("Captured in layer1")
if (layerRoute) {

routeEvent(e)
}

}
}
layer1.captureEvents(Event.CLICK)
layer1.onclick=doLayerClick
</SCRIPT>
</HEAD>
<BODY>
<FORM>
 layer1
<P><INPUT TYPE="button" VALUE="Button 'layerButton1'"

NAME="layerButton1"
onClick="alert('Event finally reached Button:' +

this.name)"></P>
<P><INPUT TYPE="button" VALUE="Button 'layerButton2'"

809Chapter 39 ✦ Advanced Event Handling

NAME="layerButton2"
onClick="alert('Event finally reached Button:' +

this.name)"></P>
</FORM>
</BODY>
</LAYER>

</BODY>
</HTML>

In some cases, your scripts need to know if an event passed onward by
routeEvent() method activated a function that returns a value. This is especially
true if your event must return a true or false value to let an object know if it
should proceed with its default behavior (for example, whether a link should
activate its HREF attribute URL or cancel when the event handler evaluates to
return true or return false). When a function is invoked by the action of a
routeEvent() method, the return value of the destination function is passed back
to the routeEvent() method. That value, in turn, can be returned to the object
that originally captured the event.

Event traffic cop
The last scenario is one in which a higher-level object captures an event and

directs the event to a particular object elsewhere in the hierarchy. For example,
you could have a document-level event handler function direct every click event
whose modifiers property indicates that the Alt key was pressed to a Help button
object whose own onClick= event handler displays a help panel (perhaps shows
an otherwise hidden layer).

You can redirect an event to any object via the handleEvent() method. This
method works differently from the others described in this chapter, because the
object reference of this method is the reference of the object to handle the event
(with the event object being passed as a parameter like the other methods). As
long as the target object has an event handler defined for that event, it will process
the event as if it had received the event directly from the system (even though the
event object’s target property may be some other object entirely).

To demonstrate how this event redirection works, Listing 39-4 includes the final
additions to the document being built in this chapter. It includes mechanisms that
allow all click events to be sent directly to the second button in the layer
(layerButton2). The previous interaction with document and layer event capture
and routing is still intact, although you cannot have event routing and redirection
on at the same time.

The best way to see event redirection at work is to enable both document and
layer event capture (the default settings). When you click the main1 button, the
event reaches only as far as the document-level capture handler. But if you then
turn on the Send event to ‘layerButton2’ checkbox associated with the document
level, a click of the main1 button reaches both the document-level event handler
and layerButton2, even though the main1 button is not anywhere near the layer
button in the document object hierarchy. Click other checkboxes to work with the
interaction of event capturing, routing, and redirection.

810 Part IV ✦ Putting JavaScript to Work

Listing 39-4: Redirecting Events

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
function setDocCapture(enable) {

if (!enable) {
document.captureEvents(Event.CLICK)

} else {
document.releaseEvents(Event.CLICK)
document.forms[0].setDocRte.checked = false
docRoute = false

}

}
function setLayerCapture(enable) {

if (!enable) {
document.layer1.captureEvents(Event.CLICK)

} else {
document.layer1.releaseEvents(Event.CLICK)
document.forms[0].setLyrRte.checked = false
layerRoute = false

}
}
var docRoute = false
var layerRoute = false
function setDocRoute(enable) {

docRoute = !enable
document.forms[0].setDocShortCircuit.checked = false
docShortCircuit = false

}
function setLayerRoute(enable) {

layerRoute = !enable
document.forms[0].setLyrShortCircuit.checked = false
layerShortCircuit = false

}

var docShortCircuit = false
var layerShortCircuit = false
function setDocShortcut(enable) {

docShortCircuit = !enable
if (docShortCircuit) {

document.forms[0].setDocRte.checked = false
docRoute = false

}
}
function setLayerShortcut(enable) {

layerShortCircuit = !enable
if (layerShortCircuit) {

document.forms[0].setLyrRte.checked = false
layerRoute = false

}

811Chapter 39 ✦ Advanced Event Handling

}

function doMainClick(e) {
if (e.target.type == "button") {

alert("Captured in main.html")
if (docRoute) {

routeEvent(e)
} else if (docShortCircuit) {

document.layer1.document.forms[0].layerButton2.handleEvent(e)
}

}
}
document.captureEvents(Event.CLICK)
document.onclick=doMainClick
</SCRIPT>
</HEAD>
<BODY>
Redirecting Event.CLICK
<HR>
<FORM>
<INPUT TYPE="checkbox" NAME="setDocCap"
onMouseUp="setDocCapture(this.checked)" CHECKED>Enable Document
Capture
<INPUT TYPE="checkbox" NAME="setDocRte"
onMouseUp="setDocRoute(this.checked)">And let event continue
<INPUT TYPE="checkbox" NAME="setDocShortCircuit"
onMouseUp="setDocShortcut(this.checked)">Send event to
'layerButton2'<P>
<INPUT TYPE="checkbox" NAME="setLyrCap"
onMouseUp="setLayerCapture(this.checked)" CHECKED>Enable Layer
Capture
<INPUT TYPE="checkbox" NAME="setLyrRte"
onMouseUp="setLayerRoute(this.checked)">And let event continue
<INPUT TYPE="checkbox" NAME="setLyrShortCircuit"
onMouseUp="setLayerShortcut(this.checked)">Send event to
'layerButton2'<P>
<HR>
<INPUT TYPE="button" VALUE="Button 'main1'" NAME="main1"

onClick="alert('Event finally reached Button:' + this.name)">
</FORM>

<LAYER ID="layer1" LEFT=200 TOP=200 BGCOLOR="coral">
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
function doLayerClick(e) {

if (e.target.type == "button") {
alert("Captured in layer1")
if (layerRoute) {

routeEvent(e)
} else if (layerShortCircuit) {

document.forms[0].layerButton2.handleEvent(e)

(continued)

812 Part IV ✦ Putting JavaScript to Work

Listing 39-4 (continued)

}
}

}
layer1.captureEvents(Event.CLICK)
layer1.onclick=doLayerClick
</SCRIPT>
</HEAD>
<BODY>
<FORM>
 layer1
<P><INPUT TYPE="button" VALUE="Button 'layerButton1'"

NAME="layerButton1"
onClick="alert('Event finally reached Button:' +

this.name)"></P>
<P><INPUT TYPE="button" VALUE="Button 'layerButton2'"

NAME="layerButton2"
onClick="alert('Event finally reached Button:' +

this.name)"></P>
</FORM>
</BODY>
</LAYER>

</BODY>
</HTML>

Modifying events
A desirable capability in some scenarios would be to modify events while they

are on their way to their intended targets. For example, you could capture the
keyPress event for a text box, and make sure that all letters are converted to
uppercase before the characters appear in the box.

Unfortunately, Netscape’s event model in Navigator 4 does not support this
possibility. This feature may be available in the future, but it will also probably
require signed scripts. Changing an event’s data could be construed as a security
risk. Internet Explorer 4, however, does allow for modifying such items as a
keyboard event’s character without any added security.

Dueling Event Models
For their level 4 browsers, Netscape and Microsoft have gone their separate

ways in expanding an event model to support requirements of flexible Dynamic
HTML. While both support the standard event handler mechanism for virtually all
objects in the Netscape document object model (except the Netscape-specific layer
object), that is where their similarity ends.

Microsoft’s document object model turns practically anything that has HTML
tags around it into an object capable of supporting one or more events. In other
words, you can assign an onClick= event handler to an <H1>-tagged object.

813Chapter 39 ✦ Advanced Event Handling

Another significant discrepancy is in the way events can ripple through the
document object hierarchy. Navigator 4 has events trickling down from the window
object; Internet Explorer 4 has events bubbling up from the object to the window.
As a result of these differing event approaches, it is not an easy task to create a
single document that meets the event programming needs of both browsers. For
some applications, however, your scripts can perform a bit of browser-specific
branching to achieve the same goal. I show you two examples for working with
click and keyPress events.

Cross-platform modifier key check
Listing 39-5 is an enhanced version of a listing from Chapter 33’s discussion of

the event object’s modifiers property. User interaction is unchanged: You can click
a link, type into a text box, and click a button while holding down any combination
of modifier keys. A series of four checkboxes representing the four modifier keys is
at the bottom. As you click or type, the checkbox(es) of the pressed modifier
key(s) become checked.

Listing 39-5: Checking Events for Modifier Keys

<HTML>
<HEAD>
<TITLE>Modifiers Event Properties</TITLE>
<SCRIPT LANGUAGE="JavaScript">
var isNav4, isIE4
if (parseInt(navigator.appVersion.charAt(0)) >= 4) {

var isNav4 = (navigator.appName == "Netscape") ? true : false
var isIE4 = (navigator.appName.indexOf("Microsoft" != -1)) ?

true : false
}

function checkMods(evt) {
var form = document.forms[0]
if (isNav4) {

form.modifier[0].checked = evt.modifiers & Event.ALT_MASK
form.modifier[1].checked = evt.modifiers & Event.CONTROL_MASK
form.modifier[2].checked = evt.modifiers & Event.SHIFT_MASK
form.modifier[3].checked = evt.modifiers & Event.META_MASK

} else if (isIE4) {
form.modifier[0].checked = window.event.altKey
form.modifier[1].checked = window.event.ctrlKey
form.modifier[2].checked = window.event.shiftKey
form.modifier[3].checked = false

}
return false

}
</SCRIPT>
</HEAD>
<BODY>
Event Modifiers
<HR>

(continued)

814 Part IV ✦ Putting JavaScript to Work

Listing 39-5 (continued)

<P>Hold one or more modifier keys and click on

this link to see which keys you are holding.</P>
<FORM NAME="output">
Enter some text with uppercase and lowercase letters:
<INPUT TYPE="text" SIZE=40 onKeyPress="checkMods(event)"><P>
<INPUT TYPE="button" VALUE="Click Here" onClick="checkMods(event)"><P>
<INPUT TYPE="checkbox" NAME="modifier">Alt
<INPUT TYPE="checkbox" NAME="modifier">Control
<INPUT TYPE="checkbox" NAME="modifier">Shift
<INPUT TYPE="checkbox" NAME="modifier">Meta
</FORM>
</BODY>
</HTML>

The concern in this chapter’s listing is that Internet Explorer 4 handles the
modifier notification and event object differently from Navigator 4. To start the
script, I define two variables to act as flags for Navigator 4 and Internet Explorer 4.
If neither browser is running the script, both flags remain null.

Since all event handlers call the same checkMods() function, branching is
needed only in this function. For Navigator 4, the event object is passed as a
parameter (evt) whose modifiers property is Bitwise ANDed with an Event object
constant for each modifier key. For Internet Explorer 4, the script checks the
window.event object property for each of three modifiers (Internet Explorer 4
does not have a metakey property). The window.event object is automatically set
when the event occurs, so the script can simply query its properties as needed.

Cross-platform key capture
To demonstrate keyboard events in both browsers, Listing 39-6 captures the key

character being typed into a text box, as well as the mouse button used to click a
link or button. As with the modifiers property example in Listing 39-5, Navigator 4
and Internet Explorer 4 have quite different property references to reach these
values. In fact, whereas Netscape combines the features of key character code and
mouse button into one event object property (depending upon the event type),
Internet Explorer 4 has entirely separate properties for these values.

Listing 39-6: Checking Events for Key and Mouse Button
Pressed

<HTML>
<HEAD>
<TITLE>Event.which Properties</TITLE>
<SCRIPT LANGUAGE="JavaScript">
var isNav4, isIE4
if (parseInt(navigator.appVersion.charAt(0)) >= 4) {

815Chapter 39 ✦ Advanced Event Handling

var isNav4 = (navigator.appName == "Netscape") ? true : false
var isIE4 = (navigator.appName.indexOf("Microsoft" != -1)) ?

true : false
}
function checkWhich(evt) {

var theKey
if (isNav4) {

theKey = evt.which
} else if (isIE4) {

if (window.event.srcElement.type == "textarea") {
status = window.event.keyCode

} else if (window.event.srcElement.type == "button") {
theKey = window.event.button

}
}
status = theKey
return false

}
</SCRIPT>
</HEAD>
<BODY>
Event.which Properties (results in the status bar)
<HR>
<FORM NAME="output">
<P>Click on

this link or this
<INPUT TYPE="button" VALUE="Button" onClick="checkWhich(event)">
with either mouse button (if you have more than one).</P>
Enter some text with uppercase and lowercase letters:
<TEXTAREA COLS=40 ROWS=4 onKeyPress="checkWhich(event)"
WRAP="virtual"></TEXTAREA><P>
</FORM>
</BODY>
</HTML>

The listing starts as Listing 39-5 does by setting flags for the browser type. All
event processing is handled in the checkWhich() function. Navigator 4 extracts
the value of the which property. No special processing is needed for object or
event type, since all I’m interested in here is the value of the which property. But
for Internet Explorer 4, the window.event object has different properties for the
typed key and mouse button. Therefore, the script examines the type of element
that initiated the event (via the window.event.srcElement property). I fashioned
the demonstration to show how you can use both branches of the function to
dump the key code value into a single variable (theKey) and then treat the
variable independent of the browser that generated its value.

Notice one other point about the event handler processing in Listing 39-6. The
event handler function returns false. This lets the link use the returned value to
cancel action on the link. But because both the button and textarea event handlers
don’t utilize the returned value (that is, they don’t evaluate to return true or

Note

816 Part IV ✦ Putting JavaScript to Work

return false), the default behavior is to carry out the event after the event
handler function has done its processing.

Future events
It is conceivable that the Document Object Model standard or recommendation

will establish a common denominator that will enable a single script to handle
more complex event management in future versions of the two browsers. In the
meantime, it takes a fair amount of thought and planning to minimize the effect of
the two largely incompatible models.

✦ ✦ ✦

