
The Regular
Expression and
RegExp Objects

Web programmers who have worked in Perl (and other
Web application programming languages) know the

power of regular expressions for processing incoming data
and formatting data for readability in an HTML page or for
accurate storage in a server database. Any task that requires
extensive search and replacement of text can greatly benefit
from the flexibility and conciseness of regular expressions.
Navigator 4 and Internet Explorer 4 (more fully fleshed out in
IE5.5) bring that power to JavaScript.

Most of the benefit of JavaScript regular expressions accrues
to those who script their CGI programs on servers that sup-
port a JavaScript version that contains regular expressions.
But that’s not to exclude the client-side from application of
this “language within a language.” If your scripts perform
client-side data validations or any other extensive text entry
parsing, then consider using regular expressions, rather than
cobbling together comparatively complex JavaScript func-
tions to perform the same tasks.

Regular Expressions and Patterns
In several chapters earlier in this book, I describe expressions
as any sequence of identifiers, keywords, and/or operators
that evaluate to some value. A regular expression follows that
description, but has much more power behind it. In essence, a
regular expression uses a sequence of characters and sym-
bols to define a pattern of text. Such a pattern is used to
locate a chunk of text in a string by matching up the pattern
against the characters in the string.

An experienced JavaScript writer may point out the availabil-
ity of the string.indexOf() and string.lastIndexOf()

3838C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What regular
expressions are

How to use regular
expressions for text
search-and-replace

How to apply regular
expressions to string
object methods

✦ ✦ ✦ ✦

CD-282 Part IV ✦ JavaScript Core Language Reference

methods that can instantly reveal whether a string contains a substring and even
where in the string that substring begins. These methods work perfectly well when
the match is exact, character for character. But if you want to do more sophisti-
cated matching (for example, does the string contain a five-digit ZIP code?), you’d
have to cast aside those handy string methods and write some parsing functions.
That’s the beauty of a regular expression: It lets you define a matching substring
that has some intelligence about it and can follow guidelines you set as to what
should or should not match.

The simplest kind of regular expression pattern is the same kind you use in the
string.indexOf() method. Such a pattern is nothing more than the text that you
want to match. In JavaScript, one way to create a regular expression is to surround
the expression by forward slashes. For example, consider the string

Oh, hello, do you want to play Othello in the school play?

This string and others may be examined by a script whose job it is to turn formal
terms into informal ones. Therefore, one of its tasks is to replace the word “hello”
with “hi.” A typical brute force search-and-replace function starts with a simple pat-
tern of the search string. In JavaScript, you define a pattern (a regular expression)
by surrounding it with forward slashes. For convenience and readability, I usually
assign the regular expression to a variable, as in the following example:

var myRegExpression = /hello/

In concert with some regular expression or string object methods, this pattern
matches the string “hello” wherever that series of letters appears. The problem is
that this simple pattern causes problems during the loop that searches and
replaces the strings in the example string: It finds not only the standalone word
“hello,” but also the “hello” in “Othello.”

Trying to write another brute force routine for this search-and-replace operation
that looks only for standalone words would be a nightmare. You can’t merely
extend the simple pattern to include spaces on either or both sides of “hello,”
because there could be punctuation — a comma, a dash, a colon, or whatever —
before or after the letters. Fortunately, regular expressions provide a shortcut way
to specify general characteristics, including a feature known as a word boundary.
The symbol for a word boundary is \b (backslash, lowercase b). If you redefine the
pattern to include these specifications on both ends of the text to match, the regu-
lar expression creation statement looks like

var myRegExpression = /\bhello\b/

When JavaScript uses this regular expression as a parameter in a special string
object method that performs search-and-replace operations, it changes only the
standalone word “hello” to “hi,” and passes over “Othello” entirely.

If you are still learning JavaScript and don’t have experience with regular expres-
sions in other languages, you have a price to pay for this power: Learning the

CD-283Chapter 38 ✦ The Regular Expression and RegExp Objects

regular expression lingo filled with so many symbols means that expressions some-
times look like cartoon substitutions for swear words. The goal of this chapter is to
introduce you to regular expression syntax as implemented in JavaScript rather
than engage in lengthy tutorials for this language. Of more importance in the long
run is understanding how JavaScript treats regular expressions as objects and dis-
tinctions between instances of regular expression objects and the RegExp static
object. I hope the examples in the following sections begin to reveal the powers of
regular expressions. An in-depth treatment of the possibilities and idiosyncrasies of
regular expressions can be found in Mastering Regular Expressions by Jeffrey E.F.
Friedl (1997, O’Reilly & Associates, Inc.).

Language Basics
To cover the depth of the regular expression syntax, I divide the subject into three
sections. The first covers simple expressions (some of which you’ve already seen).
Then I get into the wide range of special characters used to define specifications for
search strings. Last comes an introduction to the usage of parentheses in the lan-
guage, and how they not only help in grouping expressions for influencing calcula-
tion precedence (as they do for regular math expressions), but also how they
temporarily store intermediate results of more complex expressions for use in
reconstructing strings after their dissection by the regular expression.

Simple patterns
A simple regular expression uses no special characters for defining the string to be
used in a search. Therefore, if you wanted to replace every space in a string with an
underscore character, the simple pattern to match the space character is

var re = / /

A space appears between the regular expression start-end forward slashes. The
problem with this expression, however, is that it knows only how to find a single
instance of a space in a long string. Regular expressions can be instructed to apply
the matching string on a global basis by appending the g modifier:

var re = / /g

When this re value is supplied as a parameter to the replace() method that uses
regular expressions (described later in this chapter), the replacement is performed
throughout the entire string, rather than just once on the first match found. Notice
that the modifier appears after the final forward slash of the regular expression cre-
ation statement.

Regular expression matching — like a lot of other aspects of JavaScript — is case-
sensitive. But you can override this behavior by using one other modifier that lets
you specify a case-insensitive match. Therefore, the following expression

CD-284 Part IV ✦ JavaScript Core Language Reference

var re = /web/i

finds a match for “web,” “Web,” or any combination of uppercase and lowercase let-
ters in the word. You can combine the two modifiers together at the end of a regular
expression. For example, the following expression is both case-insensitive and
global in scope:

var re = /web/gi

In compliance with the ECMA-262 Edition 3 standard, IE5.5 and NN6 also allow a flag
to force the regular expression to operate across multiple lines (meaning a carriage-
return-delimited string) of a larger string. That modifier is the letter m.

Special characters
The regular expression in JavaScript borrows most of its vocabulary from the Perl
regular expression. In a few instances, JavaScript offers alternatives to simplify the
syntax, but also accepts the Perl version for those with experience in that arena.

Significant programming power comes from the way regular expressions allow you
to include terse specifications about such facets as types of characters to accept in
a match, how the characters are surrounded within a string, and how often a type of
character can appear in the matching string. A series of escaped one-character com-
mands (that is, letters preceded by the backslash) handle most of the character
issues; punctuation and grouping symbols help define issues of frequency and range.

You saw an example earlier how \b specified a word boundary on one side of a
search string. Table 38-1 lists the escaped character specifiers in JavaScript regular
expressions. The vocabulary forms part of what are known as metacharacters —
characters in expressions that are not matchable characters themselves, but act
more as commands or guidelines of the regular expression language.

Table 38-1 JavaScript Regular Expression Matching
Metacharacters

Character Matches Example

\b Word boundary /\bor/ matches “origami” and “or” but not “normal”

/or\b/ matches “traitor” and “or” but not “perform”

/\bor\b/ matches full word “or” and nothing else

\B Word non-boundary /\Bor/ matches “normal” but not “origami”

/or\B/ matches “normal” and “origami” but not
“traitor”

/\Bor\B/ matches “normal” but not “origami” or
“traitor”

CD-285Chapter 38 ✦ The Regular Expression and RegExp Objects

Character Matches Example

\d Numeral 0 through 9 /\d\d\d/ matches “212” and “415” but not “B17”

\D Non-numeral /\D\D\D/ matches “ABC” but not “212” or “B17”

\s Single white space /over\sbite/ matches “over bite” but not “overbite”
or “over bite”

\S Single non-white /over\Sbite/ matches “over-bite” but not
space “overbite” or “over bite”

\w Letter, numeral, or /A\w/ matches “A1” and “AA” but not “A+”
underscore

\W Not letter, numeral, /A\W/ matches “A+” but not “A1” and “AA”
or underscore

. Any character /.../ matches “ABC”, “1+3”, “A 3”, or any three
except newline characters

[...] Character set /[AN]BC/ matches “ABC” and “NBC” but not “BBC”

[^...] Negated character set /[^AN]BC/ matches “BBC” and “CBC” but not “ABC”
or “NBC”

Not to be confused with the metacharacters listed in Table 38-1 are the escaped
string characters for tab (\t), newline (\n), carriage return (\r), formfeed (\f), and
vertical tab (\v).

Let me further clarify about the [...] and [^...] metacharacters. You can specify
either individual characters between the brackets (as shown in Table 38-1) or a con-
tiguous range of characters or both. For example, the \d metacharacter can also be
defined by [0-9], meaning any numeral from zero through nine. If you only want to
accept a value of 2 and a range from 6 through 8, the specification would be
[26-8]. Similarly, the accommodating \w metacharacter is defined as [A-Za-
z0-9_], reminding you of the case-sensitivity of regular expression matches not
otherwise modified.

All but the bracketed character set items listed in Table 38-1 apply to a single char-
acter in the regular expression. In most cases, however, you cannot predict how
incoming data will be formatted — the length of a word or the number of digits in a
number. A batch of extra metacharacters lets you set the frequency of the occur-
rence of either a specific character or a type of character (specified like the ones in
Table 38-1). If you have experience in command-line operating systems, you can see
some of the same ideas that apply to wildcards also apply to regular expressions.
Table 38-2 lists the counting metacharacters in JavaScript regular expressions.

CD-286 Part IV ✦ JavaScript Core Language Reference

Table 38-2 JavaScript Regular Expression Counting
Metacharacters

Character Matches Last Character Example

* Zero or more times /Ja*vaScript/ matches “JvaScript”,
“JavaScript”, and “JaaavaScript” but not
“JovaScript”

? Zero or one time /Ja?vaScript/ matches “JvaScript” or
“JavaScript” but not “JaaavaScript”

+ One or more times /Ja+vaScript/ matches “JavaScript” or
“JaavaScript” but not “JvaScript”

{n} Exactly n times /Ja{2}vaScript/ matches “JaavaScript” but
not “JvaScript” or “JavaScript”

{n,} n or more times /Ja{2,}vaScript/ matches “JaavaScript” or
“JaaavaScript” but not “JavaScript”

{n,m} At least n, at most m times /Ja{2,3}vaScript/ matches “JaavaScript” or
“JaaavaScript” but not “JavaScript”

Every metacharacter in Table 38-2 applies to the character immediately preceding it
in the regular expression. Preceding characters may also be matching metacharac-
ters from Table 38-1. For example, a match occurs for the following expression if the
string contains two digits separated by one or more vowels:

/\d[aeiouy]+\d/

The last major contribution of metacharacters is helping the regular expression
search a particular position in a string. By position, I don’t mean something such as
an offset — the matching functionality of regular expressions can tell me that. But,
rather, whether the string to look for should be at the beginning or end of a line (if
that is important) or whatever string is offered as the main string to search. Table
38-3 shows the positional metacharacters for JavaScript’s regular expressions.

Table 38-3 JavaScript Regular Expression Positional
Metacharacters

Character Matches Located Example

^ At beginning of a string or line /^Fred/ matches “Fred is OK” but not
“I’m with Fred” or “Is Fred here?”

$ At end of a string or line /Fred$/ matches “I’m with Fred” but
not “Fred is OK” or “Is Fred here?”

CD-287Chapter 38 ✦ The Regular Expression and RegExp Objects

For example, you may want to make sure that a match for a roman numeral is found
only when it is at the start of a line, rather than when it is used inline somewhere
else. If the document contains roman numerals in an outline, you can match all the
top-level items that are flush left with the document with a regular expression, such
as the following:

/^[IVXMDCL]+\./

This expression matches any combination of roman numeral characters followed
by a period (the period is a special character in regular expressions, as shown in
Table 38-1, so that you have to escape the period to offer it as a character), pro-
vided the roman numeral is at the beginning of a line and has no tabs or spaces
before it. There would also not be a match in a line that contains, for example, the
phrase “see Part IV” because the roman numeral is not at the beginning of a line.

Speaking of lines, a line of text is a contiguous string of characters delimited by a
newline and/or carriage return (depending on the operating system platform). Word
wrapping in TEXTAREA elements does not affect the starts and ends of true lines of
text.

Grouping and backreferencing
Regular expressions obey most of the JavaScript operator precedence laws with
regard to grouping by parentheses and the logical Or operator. One difference is
that the regular expression Or operator is a single pipe character (|) rather than
JavaScript’s double pipe.

Parentheses have additional powers that go beyond influencing the precedence of
calculation. Any set of parentheses (that is, a matched pair of left and right) stores
the results of a found match of the expression within those parentheses. Parentheses
can be nested inside one another. Storage is accomplished automatically, with the
data stored in an indexed array accessible to your scripts and to your regular
expressions (although through different syntax). Access to these storage bins is
known as backreferencing, because a regular expression can point backward to the
result of an expression component earlier in the overall expression. These stored
subcomponents come in handy for replace operations, as demonstrated later in
this chapter.

Object Relationships
JavaScript has a lot going on behind the scenes when you create a regular expres-
sion and perform the simplest operation with it. As important as the regular expres-
sion language described earlier in this chapter is to applying regular expressions in
your scripts, the JavaScript object interrelationships are perhaps even more impor-
tant if you want to exploit regular expressions to the fullest.

CD-288 Part IV ✦ JavaScript Core Language Reference

The first concept to master is that two entities are involved: a regular expression
instance object and the RegExp static object. Both objects are core objects of
JavaScript and are not part of the document object model. Both objects work
together, but have entirely different sets of properties that may be useful to your
application.

When you create a regular expression (even via the /.../ syntax), JavaScript
invokes the new RegExp() constructor, much the way a new Date() constructor
creates a date object around one specific date. The regular expression instance
object returned by the constructor is endowed with several properties containing
details of its data. At the same time, the single, static RegExp object maintains its own
properties that monitor regular expression activity in the current window (or frame).

To help you see the typically unseen operations, I step you through the creation
and application of a regular expression. In the process, I show you what happens to
all of the related object properties when you use one of the regular expression
methods to search for a match.

Several properties of both the regular expression instance object and the static
RegExp object shown in the following “walk-through” are not available in IE until
version 5.5. All are available in NN4+. See the individual property listings later in
this chapter for compatibility ratings.

The starting text that I use to search through is the beginning of Hamlet’s soliloquy
(assigned to an arbitrary variable named mainString):

var mainString = “To be, or not to be: That is the question:”

If my ultimate goal is to locate each instance of the word “be,” I must first create a
regular expression that matches the word “be.” I set the regular expression up to
perform a global search when eventually called upon to replace itself (assigning the
expression to an arbitrary variable named re):

var re = /\bbe\b/g

To guarantee that only complete words “be” are matched, I surround the letters
with the word boundary metacharacters. The final “g” is the global modifier. The
variable to which the expression is assigned, re, represents a regular expression
object whose properties and values are as follows:

Object.PropertyName Value

re.source “\bbe\bg”

re.global true

re.ignoreCase false

re.lastIndex 0

Note

CD-289Chapter 38 ✦ The Regular Expression and RegExp Objects

A regular expression’s source property is the string consisting of the regular
expression syntax (less the literal forward slashes). Each of the two possible modi-
fiers, g and i, have their own properties, global and ignoreCase, whose values
are Booleans indicating whether the modifiers are part of the source expression.
The final property, lastIndex, indicates the index value within the main string at
which the next search for a match should start. The default value for this property
in a newly hatched regular expression is zero so that the search starts with the first
character of the string. This property is read/write, so your scripts may want to
adjust the value if they must have special control over the search process. As you
see in a moment, JavaScript modifies this value over time if a global search is indi-
cated for the object.

The RegExp constructor does more than just create regular expression objects.
Like the Math object, the RegExp object is always “around” — one RegExp per win-
dow or frame — and tracks regular expression activity in a script. Its properties
reveal what, if any, regular expression pattern matching has just taken place in the
window. At this stage of the regular expression creation process, the RegExp object
has only one of its properties set:

Object.PropertyName Value

RegExp.input

RegExp.multiline false

RegExp.lastMatch

RegExp.lastParen

RegExp.leftContext

RegExp.rightContext

RegExp.$1

...

RegExp.$9

The last group of properties ($1 through $9) is for storage of backreferences. But
because the regular expression I define above doesn’t have any parentheses in it,
these properties are empty for the duration of this examination and omitted from
future listings in this “walk-through” section.

With the regular expression object ready to go, I invoke the exec() regular expres-
sion method, which looks through a string for a match defined by the regular
expression. If the method is successful in finding a match, it returns a third object
whose properties reveal a great deal about the item it found (I arbitrarily assign the
variable foundArray to this returned object):

var foundArray = re.exec(mainString)

CD-290 Part IV ✦ JavaScript Core Language Reference

JavaScript includes a shortcut for the exec() method if you turn the regular
expression object into a method:

var foundArray = re(mainString)

Normally, a script would check whether foundArray is null (meaning that there
was no match) before proceeding to inspect the rest of the related objects. Because
this is a controlled experiment, I know at least one match exists, so I first look into
some other results. Running this simple method has not only generated the
foundArray data, but also altered several properties of the RegExp and regular
expression objects. The following shows you the current stage of the regular
expression object:

Object.PropertyName Value

re.source “\bbe\bg”

re.global true

re.ignoreCase false

re.lastIndex 5

The only change is an important one: The lastIndex value has bumped up to 5. In
other words, this one invocation of the exec() method must have found a match
whose offset plus length of matching string shifts the starting point of any succes-
sive searches with this regular expression to character index 5. That’s exactly
where the comma after the first “be” word is in the main string. If the global (g)
modifier had not been appended to the regular expression, the lastIndex value
would have remained at zero, because no subsequent search would be anticipated.

As the result of the exec() method, the RegExp object has had a number of its
properties filled with results of the search:

Object.PropertyName Value

RegExp.input

RegExp.multiline false

RegExp.lastMatch “be”

RegExp.lastParen

RegExp.leftContext “To “

RegExp.rightContext “, or not to be: That is the question:”

CD-291Chapter 38 ✦ The Regular Expression and RegExp Objects

From this object you can extract the string segment that was found to match the
regular expression definition. The main string segments before and after the match-
ing text are also available individually (in this example, the leftContext property
has a space after “To”). Finally, looking into the array returned from the exec()
method, some additional data is readily accessible:

Object.PropertyName Value

foundArray[0] “be”

foundArray.index 3

foundArray.input “To be, or not to be: That is the question:”

The first element in the array, indexed as the zeroth element, is the string segment
found to match the regular expression, which is the same as the RegExp.lastMatch
value. The complete main string value is available as the input property. A potentially
valuable piece of information to a script is the index for the start of the matched
string found in the main string. From this last bit of data, you can extract from the
found data array the same values as RegExp.leftContext (with foundArray.
input.substring(0, foundArray.index)) and RegExp. rightContext (with
foundArray.input.substring(foundArray.index, foundArray[0].length)).

Because the regular expression suggested a multiple execution sequence to fulfill
the global flag, I can run the exec() method again without any change. While the
JavaScript statement may not be any different, the search starts from the new
re.lastIndex value. The effects of this second time through ripple through the
resulting values of all three objects associated with this method:

var foundArray = re.exec(mainString)

Results of this execution are as follows (changes are in boldface).

Object.PropertyName Value

re.source “\bbe\bg”

re.global true

re.ignoreCase false

re.lastIndex 19

RegExp.input

RegExp.multiline false

Continued

CD-292 Part IV ✦ JavaScript Core Language Reference

Object.PropertyName Value

RegExp.lastMatch “be”

RegExp.lastParen

RegExp.leftContext “, or not to “

RegExp.rightContext “: That is the question:”

foundArray[0] “be”

foundArray.index 17

foundArray.input “To be, or not to be: That is the
question:”

Because there was a second match, foundArray comes back again with data. Its
index property now points to the location of the second instance of the string
matching the regular expression definition. The regular expression object’s
lastIndex value points to where the next search would begin (after the second
“be”). And the RegExp properties that store the left and right contexts have
adjusted accordingly.

If the regular expression were looking for something less stringent than a hard-
coded word, some other properties may also be different. For example, if the regu-
lar expression defined a format for a ZIP code, the RegExp.lastMatch and
foundArray[0] values would contain the actual found ZIP codes, which would
likely be different from one match to the next.

Running the same exec() method once more does not find a third match in my
original mainString value, but the impact of that lack of a match is worth noting.
First of all, the foundArray value is null— a signal to our script that no more
matches are available. The regular expression object’s lastIndex property reverts
to zero, ready to start its search from the beginning of another string. Most impor-
tantly, however, the RegExp object’s properties maintain the same values from the
last successful match. Therefore, if you put the exec() method invocations in a
repeat loop that exits after no more matches are found, the RegExp object still has
the data from the last successful match, ready for further processing by your
scripts.

Using Regular Expressions
Despite the seemingly complex hidden workings of regular expressions, JavaScript
provides a series of methods that make common tasks involving regular expres-
sions quite simple to use (assuming you figure out the regular expression syntax to
create good specifications). In this section, I present examples of syntax for specific
kinds of tasks for which regular expressions can be beneficial in your pages.

CD-293Chapter 38 ✦ The Regular Expression and RegExp Objects

Is there a match?
I said earlier that you can use string.indexOf() or string.lastIndexOf() to
look for the presence of simple substrings within larger strings. But if you need the
matching power of regular expression, you have two other methods to choose from:

regexObject.test(string)
string.search(regexObject)

The first is a regular expression object method, the second a string object method.
Both perform the same task and influence the same related objects, but they return
different values: a Boolean value for test() and a character offset value for
search() (or -1 if no match is found). Which method you choose depends on
whether you need only a true/false verdict on a match or the location within the
main string of the start of the substring.

Listing 38-1 demonstrates the search() method on a page that lets you get the
Boolean and offset values for a match. Some default text and regular expression is
provided (it looks for a five-digit number). You can experiment with other strings
and regular expressions. Because this script creates a regular expression object
with the new RegExp() constructor method, you do not include the literal forward
slashes around the regular expression.

Listing 38-1: Looking for a Match

<HTML>
<HEAD>
<TITLE>Got a Match?</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
function findIt(form) {

var re = new RegExp(form.regexp.value)
var input = form.main.value
if (input.search(re) != -1) {

form.output[0].checked = true
} else {

form.output[1].checked = true
}

}
function locateIt(form) {

var re = new RegExp(form.regexp.value)
var input = form.main.value
form.offset.value = input.search(re)

}
</SCRIPT>
</HEAD>
<BODY>
Use a regular expression to test for the existence of a string:
<HR>

Continued

CD-294 Part IV ✦ JavaScript Core Language Reference

Listing 38-1 (continued)

<FORM>
Enter some text to be searched:

<TEXTAREA NAME=”main” COLS=40 ROWS=4 WRAP=”virtual”>
The most famous ZIP code on Earth may be 90210.
</TEXTAREA>

Enter a regular expression to search:

<INPUT TYPE=”text” NAME=”regexp” SIZE=30 VALUE=”\b\d\d\d\d\d\b”><P>
<INPUT TYPE=”button” VALUE=”Is There a Match?” onClick=”findIt(this.form)”>
<INPUT TYPE=”radio” NAME=”output”>Yes
<INPUT TYPE=”radio” NAME=”output”>No <P>
<INPUT TYPE=”button” VALUE=”Where is it?” onClick=”locateIt(this.form)”>
<INPUT TYPE=”text” NAME=”offset” SIZE=4><P>
<INPUT TYPE=”reset”>
</FORM>
</BODY>
</HTML>

Getting information about a match
For the next application example, the task is not only to verify that a one-field date
entry is in the desired format, but also to extract match components of the entry
and use those values to perform further calculations in determining the day of the
week. The regular expression in the example that follows is a fairly complex one,
because it performs some rudimentary range checking to make sure the user doesn’t
enter a month over 12 or a date over 31. What it does not take into account is the
variety of lengths of each month. But the regular expression and method invoked
with it extract each date object component in such a way that you can perform
additional validation on the range to make sure the user doesn’t try to give
September 31 days. Also be aware that this is not the only way to perform date
validations in forms. Chapter 43 offers additional thoughts on the matter that
work without regular expressions for backward compatibility.

Listing 38-2 contains a page that has a field for date entry, a button to process the
date, and an output field for display of a long version of the date, including the day
of the week. At the start of the function that does all the work, I create two arrays
(using the JavaScript 1.2 literal array creation syntax) to hold the plain language
names of the months and days. These arrays are used only if the user enters a valid
date.

Next comes the regular expression to be matched against the user entry. If you can
decipher all the symbols, you see that three components are separated by potential
hyphen or forward slash entries ([\-\/]). These symbols must be escaped in the
regular expression. Importantly, each of the three component definitions is sur-
rounded by parentheses, which are essential for the various objects created with
the regular expression to remember their values for extraction later.

CD-295Chapter 38 ✦ The Regular Expression and RegExp Objects

Here is a brief rundown of what the regular expression is looking for:

✦ A string beginning after a word break

✦ A string value for the month that contains a 1 plus a 0 through 2; or an
optional 0 plus a 1 through 9

✦ A hyphen or forward slash

✦ A string value for the date that starts with a 0 plus a 1 through 9; or starts
with a 1 or 2 and ends with a 0 through 9; or starts with a 3 and ends with
0 or 1

✦ Another hyphen or forward slash

✦ A string value for the year that begins with 19 or 20, followed by two digits

An extra pair of parentheses must surround the 19|20 segment to make sure that
either one of the matching values is attached to the two succeeding digits. Without
the parentheses, the logic of the expression attaches the digits only to 20.

For invoking the regular expression action, I select the exec() method, assigning
the returned object to the variable matchArray. I can also use the string.match()
method here. Only if the match is successful (that is, all conditions of the regular
expression specification are met) does the major processing continue in the script.

The parentheses around the segments of the regular expression instruct JavaScript
to assign each found value to a slot in the matchArray object. The month segment
is assigned to matchArray[1], the date to matchArray[2], and the year to
matchArray[3] (matchArray[0] contains the entire matched string). Therefore,
the script can extract each component to build a plain-language date string with the
help of the arrays defined at the start of the function. I even use the values to create
a new date object that calculates the day of the week for me. After I have all pieces,
I concatenate them and assign the result to the value of the output field. If the regu-
lar expression exec() method doesn’t match the typed entry with the expression,
the script provides an error message in the field.

Listing 38-2: Extracting Data from a Match

<HTML>
<HEAD>
<TITLE>Got a Match?</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
function extractIt(form) {

var months = [“January”,”February”,”March”,”April”,”May”,”June”,”July”,
”August”,“September”,”October”,”November”,”December”]

Continued

CD-296 Part IV ✦ JavaScript Core Language Reference

Listing 38-2 (continued)

var days = [“Sunday”,”Monday”,”Tuesday”,”Wednesday”,”Thursday”,”Friday”,
”Saturday”]

var re = /\b(1[0-2]|0?[1-9])[\-\/](0?[1-9]|[12][0-9]|3[01])[\-
\/]((19|20)\d{2})/

var input = form.entry.value
var matchArray = re.exec(input)
if (matchArray) {

var theMonth = months[matchArray[1] - 1] + “ “
var theDate = matchArray[2] + “, “
var theYear = matchArray[3]
var dateObj = new Date(matchArray[3],matchArray[1]-1,matchArray[2])
var theDay = days[dateObj.getDay()] + “ “
form.output.value = theDay + theMonth + theDate + theYear

} else {
form.output.value = “An invalid date.”

}
}
</SCRIPT>
</HEAD>
<BODY>
Use a regular expression to extract data from a string:
<HR>
<FORM>
Enter a date in the format mm/dd/yyyy or mm-dd-yyyy:

<INPUT TYPE=”text” NAME=”entry” SIZE=12><P>
<INPUT TYPE=”button” VALUE=”Extract Date Components”
onClick=”extractIt(this.form)”><P>
The date you entered was:

<INPUT TYPE=”text” NAME=”output” SIZE=40><P>
<INPUT TYPE=”reset”>
</FORM>
</BODY>
</HTML>

String replacement
To demonstrate using regular expressions for performing search-and-replace opera-
tions, I choose an application that may be of value to many page authors who have
to display and format large numbers. Databases typically store large integers with-
out commas. After five or six digits, however, such numbers are difficult for users to
read. Conversely, if the user needs to enter a large number, commas help ensure
accuracy.

Helping the procedure in JavaScript regular expressions is the string.replace()
method (see Chapter 34). The method requires two parameters, a regular expression

CD-297Chapter 38 ✦ The Regular Expression and RegExp Objects

to search the string and a string to replace any match found in the string. The
replacement string can be properties of the RegExp object as it stands after the most
recent exec() method.

Listing 38-3 demonstrates how only a handful of script lines can do a lot of work
when regular expressions handle the dirty work. The page contains three fields.
Enter any number you want in the first one. A click of the Insert Commas button
invokes the commafy() function in the page. The result is displayed in the second
field. You can also enter a comma-filled number in the second field and click the
Remove Commas button to see the inverse operation executed through the
decommafy() function.

Specifications for the regular expression accept any positive or negative string of
numbers. The keys to the action of this script are the parentheses around two seg-
ments of the regular expression. One set encompasses all characters not included
in the second group: a required set of three digits. In other words, the regular
expression is essentially working from the rear of the string, chomping off three-
character segments and inserting a comma each time a set is found.

A while repeat loop cycles through the string and modifies the string (in truth, the
string object is not being modified, but, rather, a new string is generated and
assigned to the old variable name). I use the test() method because I don’t need
the returned value of the exec() method. The test() method impacts the regular
expression and RegExp object properties the same way as the exec() method, but
more efficiently. The first time the test() method runs, the part of the string that
meets the first segment is assigned to the RegExp.$1 property; the second seg-
ment, if any, is assigned to the RegExp.$2 property. Notice that I’m not assigning
the results of the exec() method to any variable, because for this application I
don’t need the array object generated by that method.

Next comes the tricky part. I invoke the string.replace() method, using the cur-
rent value of the string (num) as the starting string. The pattern to search for is the
regular expression defined at the head of the function. But the replacement string
may look strange to you. The replacement string is replacing whatever the regular
expression matches with the value of RegExp.$1, a comma, and the value of
RegExp.$2. The RegExp object should not be part of the references used in the
replace() method parameter. Because the regular expression matches the entire
num string, the replace() method is essentially rebuilding the string from its com-
ponents, plus adding a comma before the second component (the last free-standing
three-digit section). Each replace() method invocation sets the value of num for
the next time through the while loop and the test() method.

Looping continues until no matches occur — meaning that no more freestanding
sets of three digits appear in the string. Then the results are written to the second
field on the page.

CD-298 Part IV ✦ JavaScript Core Language Reference

Listing 38-3: Replacing Strings via Regular Expressions

<HTML>
<HEAD>
<TITLE>Got a Match?</TITLE>
<SCRIPT LANGUAGE=”JavaScript1.2”>
function commafy(form) {

var re = /(-?\d+)(\d{3})/
var num = form.entry.value
while (re.test(num)) {

num = num.replace(re, “$1,$2”)
}
form.commaOutput.value = num

}
function decommafy(form) {

var re = /,/g
form.plainOutput.value = form.commaOutput.value.replace(re,””)

}
</SCRIPT>
</HEAD>
<BODY>
Use a regular expression to add/delete commas from numbers:
<HR>
<FORM>
Enter a large number without any commas:

<INPUT TYPE=”text” NAME=”entry” SIZE=15><P>
<INPUT TYPE=”button” VALUE=”Insert commas” onClick=”commafy(this.form)”><P>
The comma version is:

<INPUT TYPE=”text” NAME=”commaOutput” SIZE=20><P>
<INPUT TYPE=”button” VALUE=”Remove commas” onClick=”decommafy(this.form)”><P>
The un-comma version is:

<INPUT TYPE=”text” NAME=”plainOutput” SIZE=15><P>
<INPUT TYPE=”reset”>
</FORM>
</BODY>
</HTML>

Removing the commas is an even easier process. The regular expression is a
comma with the global flag set. The replace() method reacts to the global flag by
repeating the process until all matches are replaced. In this case, the replacement
string is an empty string. For further examples of using regular expressions with
string objects, see the discussions of the string.match(), string.replace(),
and string.split() methods in Chapter 34.

CD-299Chapter 38 ✦ The Regular Expression and RegExp Objects

Regular Expression Object

Properties Methods

constructor compile()

global exec()

ignoreCase test()

lastIndex

multilane

source

Syntax
Accessing regular expression properties or methods:

regularExpressionObject.property | method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓ ✓ ✓ ✓ ✓

About this object
The regular expression object is created on the fly by your scripts. Each regular
expression object contains its own pattern and other properties. Deciding which
object creation style to use depends on the way the regular expression will be used
in your scripts.

When you create a regular expression with the literal notation (that is, with the two
forward slashes), the expression is automatically compiled for efficient processing
as the assignment statement executes. The same is true when you use the new
RegExp() constructor and specify a pattern (and optional modifier flags) as a
parameter. Whenever the regular expression is fixed in the script, use the literal
notation; when some or all of the regular expression is derived from an external
source (for example, user input from a text field), assemble the expression as a
parameter to the new RegExp() constructor. A compiled regular expression should
be used at whatever stage the expression is ready to be applied and reused within

regularExpressionObject

CD-300 Part IV ✦ JavaScript Core Language Reference

the script. Compiled regular expressions are not saved to disk or given any more
permanence beyond the life of a document’s script (that is, it dies when the page
unloads).

However, there may be times in which the specification for the regular expression
changes with each iteration through a loop construction. For example, if statements
in a while loop modify the content of a regular expression, compile the expression
inside the while loop, as shown in the following skeletal script fragment:

var srchText = form.search.value
var re = new RegExp() // empty constructor
while (someCondition) {

re.compile(“\\s+” + srchText + “\\s+”, “gi”)
statements that change srchText

}

Each time through the loop, the regular expression object is both given a new
expression (concatenated with metacharacters for one or more white spaces on
both sides of some search text whose content changes constantly) and compiled
into an efficient object for use with any associated methods.

Properties
constructor

See string.constructor (Chapter 34).

global
ignoreCase

Value: Booleans Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓ ✓ ✓

These two properties reflect the regular expression g and i modifier flags, if any,
associated with a regular expression. Settings are read-only and are determined as
the object is created. Each property is independent of the other.

Related Items: None.

regularExpressionObject.global

CD-301Chapter 38 ✦ The Regular Expression and RegExp Objects

lastIndex
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓ ✓ ✓

The lastIndex property indicates the index counter of the main string to be searched
against the current regular expression object. When a regular expression object is cre-
ated, this value is zero, meaning that there have been no searches with this object,
and the default behavior of the first search is to start at the beginning of the string.

If the regular expression has the global modifier specified, the lastIndex property
value advances to some higher value after the object is used in a method to match
within a main string. The value is the position in the main string immediately after
the previous matched string (and not including any character of the matched
string). After locating the final match in a string, the method resets the lastIndex
property to zero for the next time. You can also influence the behavior of matches
by setting this value on the fly. For example, if you want the expression to begin its
search at the fourth character of a target string, you change the setting immediately
after creating the object, as follows:

var re = /somePattern/
re.lastIndex = 3 // fourth character in zero-based index system

Related Items: Match result object index property.

multiline
Value: Boolean Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓ ✓

The multiline property reveals whether searches extend across multiple lines of a
target string, as directed by the optional m modifier flag for a regular expression.
NN4+ also includes the same-named property for the RegExp object (see the follow-
ing section).

Related Items: RegExp.multiline property.

regularExpressionObject.multiline

CD-302 Part IV ✦ JavaScript Core Language Reference

source
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓ ✓ ✓ ✓ ✓

The source property is simply the string representation of the regular expression
used to define the object. This property is read-only.

Related Items: None.

Methods
compile(“pattern”, [“g” | “i” | “m”])

Returns: Regular expression object.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓ ✓ ✓ ✓ ✓

Use the compile() method to compile on the fly a regular expression whose con-
tent changes continually during the execution of a script. See the discussion earlier
about this object for an example. Other regular expression creation statements (the
literal notation and the new RegExp() constructor that passes a regular expres-
sion) automatically compile their expressions. The m pattern modifier is available in
IE5.5+ and NN6+.

Related Items: None.

exec(“string”)
Returns: Match array object or null.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓ ✓ ✓ ✓ ✓

regularExpressionObject.exec()

CD-303Chapter 38 ✦ The Regular Expression and RegExp Objects

The exec() method examines the string passed as its parameter for at least one
match of the specification defined for the regular expression object. The behavior
of this method is similar to that of the string.match() method (although the
match() method is more powerful in completing global matches). Typically, a call
to the exec() method is made immediately after the creation of a regular expres-
sion object, as in the following example.

var re = /somePattern/
var matchArray = re.exec(“someString”)

Much happens as a result of the exec() method. Properties of both the regular
expression object and window’s RegExp object are updated based on the success of
the match. The method also returns an object that conveys additional data about
the operation. Table 38-4 shows the properties of this returned object.

Table 38-4 Match Found Array Object Properties

Property Description

index Zero-based index counter of the start of the match inside the string

input Entire text of original string

[0] String of most recent matched characters

[1],...[n] Parenthesized component matches

Some of the properties in this returned object echo properties in the RegExp
object. The value of having them in the regular expression object is that their con-
tents are safely stowed in the object while the RegExp object and its properties may
be modified soon by another call to a regular expression method. Items the two
objects have in common are the [0] property (mapped to the RegExp.lastMatch
property) and the [1],. . .[n] properties (the first nine of which map to
RegExp.$1. . .RegExp.$9). While the RegExp object stores only nine parenthe-
sized subcomponents, the returned array object stores as many as are needed to
accommodate parenthesis pairs in the regular expression.

If no match turns up between the regular expression specification and the string,
the returned value is null. See Listing 38-2 for an example of how this method can
be applied. An alternate shortcut syntax may be used for the exec() method. Turn
the regular expression into a function, as in

var re = /somePattern/
var matchArray = re(“someString”)

Related Items: string.match() method.

regularExpressionObject.exec()

CD-304 Part IV ✦ JavaScript Core Language Reference

test(“string”)
Returns: Boolean.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓ ✓ ✓ ✓ ✓

The most efficient way to find out if a regular expression has a match in a string is
to use the test() method. Returned values are true if a match exists and false if
not. In case you need more information, a companion method, string.search(),
returns the starting index value of the matching string. See Listing 38-1 for an exam-
ple of this method in action.

Related Items: string.search() method.

RegExp Object

Properties Methods

input

lastMatch

lastParen

leftContext

multilane

prototype

rightContext

$1, ... $9

Syntax
Accessing RegExp properties:

RegExp.property

RegExp

CD-305Chapter 38 ✦ The Regular Expression and RegExp Objects

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓ ✓ ✓ ✓ ✓

About this object
Beginning with Navigator 4 and Internet Explorer 4, the browser maintains a single
instance of a RegExp object for each window or frame. The object oversees the
action of all methods that involve regular expressions (including the few related
string object methods). Properties of this object are exposed not only to JavaScript
in the traditional manner, but also to a parameter of the method
string.replace() for some shortcut access (see Listing 38-3).

With one RegExp object serving all regular expression-related methods in your doc-
ument’s scripts, you must exercise care in accessing or modifying this object’s
properties. You must make sure that the RegExp object has not been affected by
another method. Most properties are subject to change as the result of any method
involving a regular expression. This may be reason enough to use the properties of
the array object returned by most regular expression methods instead of the
RegExp properties. The former stick with a specific regular expression object even
after other regular expression objects are used in the same script. The RegExp
properties reflect the most recent activity, irrespective of the regular expression
object involved.

In the following listings, I supply the long, JavaScript-like property names. But each
property also has an abbreviated, Perl-like manner to refer to the same properties.
You can use these shortcut property names in the string.replace() method if
you need the values.

Properties
input

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓ ✓ ✓

RegExp.input

CD-306 Part IV ✦ JavaScript Core Language Reference

The RegExp.input property is the main string against which a regular expression
is compared in search of a match. In all of the example listings earlier in this chap-
ter, the property was null. Such is the case when the main string is supplied as a
parameter to the regular expression-related method.

But many text-related document objects have an unseen relationship with the
RegExp object. If a text, TEXTAREA, SELECT, or link object contains an event han-
dler that invokes a function containing a regular expression, the RegExp.input
property is set to the relevant textual data from the object. You don’t have to spec-
ify any parameters for the event handler call or in the function called by the event
handler. For text and TEXTAREA objects, the input property value becomes the
content of the object; for the SELECT object, it is the text (not the value) of the
selected option; and for a link, it is the text highlighted in the browser associated
with the link (and reflected in the link’s text property).

Having JavaScript set the RegExp.input property for you may simplify your script.
You can invoke either of the regular expression methods without having to specify
the main string parameter. When that parameter is empty, JavaScript applies the
RegExp.input property to the task. You can also set this property on the fly if you
want. The short version of this property is $_ (dollar sign underscore).

Related Items: Matching array object input property.

multiline
Value: Boolean Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓ ✓

The RegExp.multiline property determines whether searches extend across mul-
tiple lines of a target string. This property is automatically set to true as an event
handler of a TEXTAREA triggers a function containing a regular expression. You can
also set this property on the fly if you want. The short version of this property is
$*. This version of the property (as distinct from the multiline property of an
instance of a regular expression) is not defined in the ECMA-262 specification and is
supported only in NN4+.

Related Items: Regular expression instance object multiline property.

RegExp.multiline

CD-307Chapter 38 ✦ The Regular Expression and RegExp Objects

lastMatch
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓ ✓ ✓

After execution of a regular expression-related method, any text in the main string
that matches the regular expression specification is automatically assigned to the
RegExp.lastMatch property. This value is also assigned to the [0] property of the
object array returned after the exec() and string.match() methods find a match.
The short version of this property is $&.

Related Items: Matching array object [0] property.

lastParen
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓ ✓ ✓

When a regular expression contains many parenthesized subcomponents, the
RegExp object maintains a list of the resulting strings in the $1,...$9 properties.
You can also extract the value of the last matching parenthesized subcomponent
with the RegExp.lastParen property, which is a read-only property. The short ver-
sion of this property is $+.

Related Items: RegExp.$1,...$9 properties.

RegExp.lastParen

CD-308 Part IV ✦ JavaScript Core Language Reference

leftContext
rightContext

Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓ ✓ ✓

After a match is found in the course of one of the regular expression methods, the
RegExp object is informed of some key contextual information about the match.
The leftContext property contains the part of the main string to the left of (up to
but not including) the matched string. Be aware that the leftContext starts its
string from the point at which the most recent search began. Therefore, for second
or subsequent times through the same string with the same regular expression, the
leftContext substring varies widely from the first time through.

The rightContext consists of a string starting immediately after the current
match and extending to the end of the main string. As subsequent method calls
work on the same string and regular expression, this value obviously shrinks in
length until no more matches are found. At this point, both properties revert to
null. The short versions of these properties are $` and $’ for leftContext and
rightContext, respectively.

Related Items: None.

prototype
See String.prototype (Chapter 34).

$1...$9
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓ ✓ ✓ ✓ ✓

As a regular expression method executes, any parenthesized result is stored in
RegExp’s nine properties reserved for just that purpose (called backreferences).

RegExp.$1

CD-309Chapter 38 ✦ The Regular Expression and RegExp Objects

The same values (and any beyond the nine that RegExp has space for) are stored in
the array object returned with the exec() and string.match() methods. Values
are stored in the order in which the left parenthesis of a pair appears in the regular
expression, regardless of nesting of other components.

You can use these backreferences directly in the second parameter of the string.
replace() method, without using the RegExp part of their address. The ideal situa-
tion is to encapsulate components that need to be rearranged or recombined with
replacement characters. For example, the following script function turns a name
that is last name first into first name last:

function swapEm() {
var re = /(\w+),\s*(\w+)/
var input = “Lincoln, Abraham”
return input.replace(re,”$2 $1”)

}

In the replace() method, the second parenthesized component (just the first
name) is placed first, followed by a space and the first component. The original
comma is discarded. You are free to combine these shortcut references as you like,
including multiple times per replacement, if it makes sense to your application.

Related Items: Matching array object [1]. . .[n] properties.

✦ ✦ ✦

RegExp.$1

	The Regular Expression and RegExp Objects
	Regular Expressions and Patterns
	Language Basics
	Object Relationships
	Using Regular Expressions
	Regular Expression Object
	RegExp Object

