
Data-Entry
Validation

Give users a field in which to enter data, and you can be
sure that some users will enter the wrong kind of data.

Often the “mistake” is accidental — a slip of the pinkie on the
keyboard; other times, the incorrect entry is made
intentionally to test the robustness of your application.
Whether you solicit a user’s entry for client-side scripting
purposes or for input into a server-based CGI or database,
you should use JavaScript on the client to handle validation
of the user’s entry. Even for a form connected to a CGI script,
it’s far more efficient from bandwidth, server load, and
execution speed perspectives to let client-side JavaScript get
the data straight before your server program deals with it.

Real-time versus Batch Validation
You have two opportunities to perform data-entry

validation in a form: as the user enters data into a field and
just before the form is submitted. I recommend you do both.

Real-time validation triggers
The most convenient time to catch an error is immediately

after the user has made it. Especially for a long form that
requests a wide variety of information, you can make the
user’s experience less frustrating if you catch an entry
mistake just after the user has entered the information: his or
her attention is already focused on the nature of the content
(or some paper source material may already be in front of the
user). It is much easier for the user to address the same
information entry right away.

A valid question for the page author is how to trigger the
real-time validation. Text boxes have two potential event
handlers for this purpose: onChange= and onBlur=. I
personally avoid onBlur= event handlers, especially ones
that could display an alert dialog box (as a data-entry
validation is likely to do). Because a good validation routine
brings focus to the errant text box, you can get some odd
behavior with the interaction of the focus() method and the

3737C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Validating data as it
is being entered

Validating data
immediately prior to
submission

Organizing complex
data validation tasks

✦ ✦ ✦ ✦

750 Part IV ✦ Putting JavaScript to Work

onBlur= event handler. Users who must move on past an invalid field will be
locked in a seemingly endless loop.

The problem with using onChange= as the validation trigger is that it can be
defeated by a user. A change event occurs only when the text of a field has, indeed,
changed when the user tabs or clicks out of the field. If the user is alerted about
some bad entry in a field and doesn’t fix the error, the change event won’t fire
again. In some respects, this is good, because a user may have a legitimate reason
for passing by a particular form field initially with the intention of coming back to
the entry later. Since the onChange= event handler trigger can be defeated, I
recommend you also perform batch validation prior to submission.

Batch mode validation
In all scriptable browsers, the onSubmit= event handler cancels the submission

if the handler evaluates to return false. You can see an example of this behavior
in Listing 21-4 in Chapter 21. That example uses the results of a window.confirm()
dialog box to determine the return value of the event handler. But you can use a
return value from a series of individual text box validation functions, as well. If any
one of the validations fails, the user is alerted, and the submission is canceled.

Before you worry about two versions of validation routines loading down the
scripts in your page, you’ll be happy to know that you can reuse the same
validation routines in both the real-time and batch validations. Later in this chapter,
I demonstrate what I call “industrial-strength” data-entry validation adapted from a
real intranet application. But before you get there, you should learn about general
validation techniques that can be applied to both types of validations.

Designing Filters
The job of writing data validation routines is essentially one of designing filters

that weed out characters or entries that don’t fit your programming scheme.
Whenever your filter detects an incorrect entry, it should alert the user about the
nature of the problem and enable the user to correct the entry.

Before you put a text or textarea object into your document that invites users to
enter data, you must decide if any kind of entry is possible that will disturb the
execution of the rest of your scripts. For example, if your script must have a
number from that field to perform calculations, you must filter out any entry that
contains letters or punctuation — except for periods if the program can accept
floating-point numbers. Your task is to anticipate every possible entry users could
make and let through only those your scripts can use.

Not every entry field needs a data validation filter. For example, you may
prompt a user for information that is eventually stored as a document.cookie or
in a string database field on the server for retrieval later. If no further processing
takes place on that information, you may not have to worry about the specific
contents of that field.

One other design consideration is whether a text field is even the proper user
interface element for the data required of the user. If the range of choices for user
entry is small (a dozen or fewer), a more sensible method may be to avoid the

751Chapter 37 ✦ Data-Entry Validation

data-entry problem altogether by turning that field into a select object. Your HTML
attributes for the object ensure that you control the kind of entry made to that
object. As long as your script knows how to deal with each of the options defined
for that object, you’re in the clear.

Building a Library of Filter Functions
A number of basic data validation processes are used repeatedly in form-

intensive HTML pages. Filters for integers only, numbers only, empty entries,
alphabet letters only, and the like are put to use every day. If you maintain a
library of generalizable functions for each of your data validation tasks, you can
drop them into your scripts at a moment’s notice and be assured that they will
work. For Navigator 3 or later and Internet Explorer 4 or later, you can also create
the library of validation functions as a separate .js library file and link the scripts
into any HTML file that needs them.

Making validation functions generalizable requires careful choice of wording and
logic so that they return Boolean values that make syntactical sense when called
from elsewhere in your scripts. As you see later in this chapter, when you build a
larger framework around smaller functions, each function is usually called as part
of an if...else conditional statement. Therefore, assign a name that fits logically
as part of an “if” clause in plain language. For example, a function that checks
whether an entry is empty might be named isEmpty(). The calling statement for
this function would be

if (isEmpty(value)) { ...

From a plain-language perspective, the expectation is that the function returns
true if the passed value is empty. With this design, the statements nested in the
if construction handle the case in which the entry field is empty. I come back to
this design later in this chapter when I start stacking multiple-function calls
together in a larger validation routine.

To get you started with your library of validation functions, I provide a few in
this chapter that you can both learn from and use as starting points for more
specific filters of your own design. Some of these functions are put to use in the
JavaScript application in Chapter 48.

isEmpty()
The first function, shown in Listing 37-1, checks to see if the incoming value is

either empty or a null value. Adding a check for a null means that you can use this
function for purposes other than just text object validation. For example, if another
function defines three parameter variables, but the calling function passes only
two, the third variable is set to null. If the script then performs a data validation
check on all parameters, the isEmpty() function responds that the null value is
devoid of data.

752 Part IV ✦ Putting JavaScript to Work

Listing 37-1: Is an Entry Empty or Null?

// general purpose function to see if an input value has been
// entered at all
function isEmpty(inputStr) {

if (inputStr == null || inputStr == "") {
return true

}
return false

}

This function uses a Boolean Or operator (||) to test for the existence of a null
value or an empty string in the value passed to the function. Because the name of
the function implies a true response if the entry is empty, that value is the one
that goes back to the calling statement if either condition is true. Because a
return statement halts further processing of a function, the return false
statement lies outside of the if construction. If processing reaches this statement,
it means that the inputStr value failed the test.

If this seems like convoluted logic — return true when the value is empty — you
can also define a function that returns the inverse values. You could name it
isNotEmpty(). As it turns out, however, typical processing of an empty entry is
better served when the test returns a true than when the value is empty — aiding
the if construction that called the function in the first place.

isPosInteger()
The next function examines each character of the value to make sure that only

the numbers from 0 through 9 with no punctuation or other symbols exist. The
goal of the function in Listing 37-2 is to weed out any value that is not a positive
integer.

Listing 37-2: Test for Positive Integers

// general purpose function to see if a suspected numeric input
// is a positive integer
function isPosInteger(inputVal) {

inputStr = inputVal.toString()
for (var i = 0; i < inputStr.length; i++) {

var oneChar = inputStr.charAt(i)
if (oneChar < "0" || oneChar > "9") {

return false
}

}
return true

}

753Chapter 37 ✦ Data-Entry Validation

Notice that this function makes no assumption about the data type of the value
passed as a parameter. If the value had come directly from a text object, it would
already be a string, and the line that forces data conversion to a string would be
unnecessary. But to generalize the function, the conversion is included to
accommodate the possibility that it may be called from another statement that has
a numeric value to check.

The function requires the input value to be converted to a string because it
performs a character-by-character analysis of the data. A for loop picks apart the
value one character at a time. Rather than force the script to invoke the
string.charAt() method twice for each time through the loop (inside the if
condition), one statement assigns the results of the method to a variable, which is
then used twice in the if condition. It makes the if condition shorter and easier
to read and also is microscopically more efficient.

In the if condition, the ASCII value of each character is compared against the
range of 0 through 9. This method is safer than comparing numeric values of the
single characters because one of the characters could be nonnumeric. You would
encounter all kinds of other problems trying to convert that character to a number
for numeric comparison. The ASCII value, on the other hand, is neutral about the
meaning of a character: If the ASCII value is less than 0 or greater than 9, the
character is not valid for a true positive integer. The function bounces the call with
a false reply. On the other hand, if the for loop completes its traversal of all
characters in the value without a hitch, the function returns true.

isInteger()
The next possibility includes the entry of a negative integer value. Listing 37-3

shows that you must add an extra check for a leading negation sign.

Listing 37-3: Checking for Leading Minus Sign

// general purpose function to see if a suspected numeric input
// is a positive or negative integer
function isInteger(inputVal) {

inputStr = inputVal.toString()
for (var i = 0; i < inputStr.length; i++) {

var oneChar = inputStr.charAt(i)
if (i == 0 && oneChar == "-") {

continue
}
if (oneChar < "0" || oneChar > "9") {

return false
}

}
return true

}

When a script can accept a negative integer, the filter must enable the leading
minus sign to pass unscathed. You cannot just add the minus sign to the if
condition of Listing 37-2 because you can accept that symbol only when it appears

754 Part IV ✦ Putting JavaScript to Work

in the first position of the value — anywhere else makes the value an invalid
number. To take care of the possibility, you add another if statement whose
condition looks for a special combination: the first character of the string (as
indexed by the loop counting variable) and the minus character. If both of these
conditions are met, execution immediately loops back around to the update
expression of the for loop (because of the continue statement) rather than
carrying out the second if statement, which would obviously fail. By putting the
i == 0 operation at the front of the condition, you ensure the entire condition will
short-circuit to false for all subsequent iterations through the loop.

isNumber()
The final numeric filter function in this series enables any integer or floating-

point number to pass while filtering out all others (Listing 37-4). All that
distinguishes an integer from a floating-point number for data validation purposes
is the decimal point.

Listing 37-4: Testing for a Decimal Point

// general purpose function to see if a suspected numeric input
// is a positive or negative number
function isNumber(inputVal) {

oneDecimal = false
inputStr = inputVal.toString()
for (var i = 0; i < inputStr.length; i++) {

var oneChar = inputStr.charAt(i)
if (i == 0 && oneChar == "-") {

continue
}
if (oneChar == "." && !oneDecimal) {

oneDecimal = true
continue

}
if (oneChar < "0" || oneChar > "9") {

return false
}

}
return true

}

Anticipating the worst, however, the function cannot just add a comparison for a
decimal (actually, for not a decimal) to the condition that compares ASCII values of
each character. Such an act assumes that no one would ever enter more than one
decimal point into a text field. Only one decimal point is allowed for this function
(as well as for JavaScript math). Therefore, you add a Boolean flag variable
(oneDecimal) to the function and a separate if condition that sets that flag to true
when the function encounters the first decimal point. Should another decimal point
appear in the string, the final if statement has a crack at the character. Because the
character falls outside the ASCII range of 0 through 9, it fails the entire function.

755Chapter 37 ✦ Data-Entry Validation

If you want to accept only positive floating-point numbers, you can make a new
version of this function, removing the statement that lets the leading minus sign
through. Be aware that this function works only for values that are not represented
in exponential notation.

For validations that don’t have to accommodate Navigator 2, you can use an
even quicker way to test for a valid number. If you pass the value (whether it be a
string or a number) through the parseFloat() global function (see Chapter 35),
the returned value is NaN if the conversion is not successful. You can then use the
isNaN() function to perform the test, as follows:

if (isNaN(parseFloat(inputValue))) {
alert(“The value you entered is not a number.”)
return false

}
return true

Custom validation functions
The listings shown so far in this chapter should give you plenty of source material

to use in writing customized validation functions for your applications. An example
of such an application-specific variation (extracted from the bonus application in
Chapter 48 on the CD-ROM) is shown in Listing 37-5.

Listing 37-5: A Custom Validation Function

// function to determine if value is in acceptable range
// for this application
function inRange(inputStr) {

num = parseInt(inputStr)
if (num < 1 || num > 586 && num < 596 || num > 599 && num <

700 || num > 728) {
return false

}
return true

}

For this application, you need to see if an entry falls within multiple ranges of
acceptable numbers. The value is converted to a number (via the parseInt()
function) so it can be numerically compared against maximum and minimum
values of several ranges within the database. Following the logic of the previous
validation functions, the if condition looks for values that were outside the
acceptable range, so it can alert the user and return a false value.

The if condition is quite a long sequence of operators. As you noticed in the
list of operator precedence (Chapter 32), the Boolean And operator (&&) has
precedence over the Boolean Or operator (||). Therefore, the And expressions
evaluate first, followed by the Or expressions. Parentheses may help you better
visualize what’s going on in that monster condition:

756 Part IV ✦ Putting JavaScript to Work

if (num < 1 || (num > 586 && num < 596) ||
(num > 599 && num < 700) || num > 728)

In other words, you exclude four possible ranges from consideration:

✦ Values less than 1

✦ Values between 586 and 596

✦ Values between 599 and 700

✦ Values greater than 728

Any value for which any one of these tests is true yields a Boolean false from
this function. Combining all these tests into a single condition statement eliminates
the need to construct an otherwise complex series of nested if constructions.

Combining Validation Functions
When you design a page that requests a particular kind of text input from a user,

you often need to call more than one data validation function to handle the entire
job. For example, if you merely want to test for a positive integer entry, your
validation should test for both the presence of any entry and the validation as an
integer.

After you know the kind of permissible data that your script will use after
validation, you’re ready to plot the sequence of data validation. Because each
page’s validation task is different, I supply some guidelines to follow in this
planning rather than prescribe a fixed route for all to take.

My preferred sequence is to start with examinations that require less work and
increase the intensity of validation detective work with succeeding functions. I
borrow this tactic from real life: When a lamp fails to turn on, I look for a pulled plug
or a burned-out lightbulb before tearing the lamp’s wiring apart to look for a short.

Using the data validation sequence from the data-entry field (which must be a
three-digit number within a specified range) in Chapter 48 on the CD-ROM, I start
with the test that requires the least amount of work: Is there an entry at all? After
my script is ensured an entry of some kind exists, it next checks whether that
entry is “all numbers as requested of the user.” If so, the script compares the
number against the ranges of numbers in the database.

To make this sequence work together efficiently, I created a master validation
function consisting of nested if...else statements. Each if condition calls one
of the generalized data validation functions. Listing 37-6 shows the master
validation function.

Listing 37-6: Master Validation Function

// Master value validator routine
function isValid(inputStr) {

if (isEmpty(inputStr)) {
alert("Please enter a number into the field before clicking

the button.")
return false

757Chapter 37 ✦ Data-Entry Validation

} else {
if (!isNumber(inputStr)) {

alert("Please make sure entries are numbers only.")
return false

} else {
if (!inRange(inputStr)) {

alert("Sorry, the number you entered is not part of
our database. Try another three-digit number.")

return false
}

}
}
return true

}

This function, in turn, is called by the function that controls most of the work in
this application. All it wants to know is whether the entered number is valid. The
details of validation are handed off to the isValid() function and its special-
purpose validation testers.

I constructed the logic in Listing 37-6 so that if the input value fails to be valid,
the isValid()function alerts the user of the problem and returns false. That
means I have to watch my trues and falses very carefully.

In the first validation test, being empty is a bad thing; thus, when the
isEmpty() function returns true, the isValid() function returns false because
an empty string is not a valid entry. In the second test, being a number is good; so
the logic has to flip 180 degrees. The isValid() function returns false only if the
isNumber() function returns false. But because isNumber() returns a true
when the value is a number, I switch the condition to test for the opposite results
of the isNumber() function by negating the function name (preceding the function
with the Boolean Not (!) operator). This operator works only with a value that
evaluates to a Boolean expression — which the isNumber()function always does.
The final test for being within the desired range works on the same basis as
isNumber(), using the Boolean Not operator to turn the results of the inRange()
function into the method that works best for this sequence.

Finally, if all validation tests fail to find bad or missing data, the entire
isValid() function returns true. The statement that called this function can now
proceed with processing, ensured that the value entered by the user will work.

One additional point worth reinforcing, especially for newcomers, is that
although all these functions seem to be passing around the same input string as a
parameter, notice that any changes made to the value (such as converting it to a
string or number) are kept private to each function. The original value in the
calling function is never touched by these subfunctions — only copies of the
original value. Therefore, even after the data validation takes place, the original
value is in its original form, ready to go.

758 Part IV ✦ Putting JavaScript to Work

Date and Time Validation
You can scarcely open a bigger can of cultural worms than you do when you try

to program around the various date and time formats in use around the world. If
you have ever looked through the possible settings in your computer’s operating
system, you can begin to understand the difficulty of the issue.

Trying to write JavaScript that accommodates all of the world’s date and time
formats for validation would be an enormous, if not wasteful, challenge. My
suggestion for querying a user for this kind of information is to either divide the
components into individually validated fields (separate text objects for hours and
minutes) or, for dates, to make entries select objects.

In the long run, I believe the answer will be a future Java applet or Dynamic
HTML component that your scripts will call. The applet will display a clock and
calendar on which the user clicks and drags control-panel-style widgets to select
dates and times. The values from those settings will then be passed back to your
scripts as a valid date object. In the meantime, divide and conquer.

An “Industrial-Strength” Validation Solution
I had the privilege of working on a substantial intranet project that included

dozens of forms, often with two or three different kinds of forms being displayed
simultaneously within a frameset. Data entry accuracy was essential to the validity
of the entire application. My task was to devise a data-entry validation strategy
that not only ensured accurate entry of data types for the underlying database, but
also intelligently prompted users who made mistakes in their data entry.

Structure
From the start, the validation routines were to be in a client-side library linked

in from an external .js file. That would allow the validation functions to be shared
by all forms. Because there were multiple forms displayed in a frameset, it would
prove too costly in download time and memory requirements to include the
validations.js file in every frame’s document. Therefore, the page was moved to
load in with the frameset. The <SCRIPT SRC=”validations.js”></SCRIPT> tag
set went in the Head portion of the framesetting document.

This logical placement presented a small challenge for the workings of the
validations, because there must be two-way conversations between a validation
function (in the frameset) and a form element (nested in a frame). As you will see
in a moment, the mechanism required that the frame containing the form element
had to be passed as part of the validation routine so that corrections, automatic
formatting, and erroneous field selections could be made from the frameset
document’s script (that is, the frameset script needed a path back to the form
element making the validation call).

Dispatch mechanism
From the specification drawn up for the application, it was clear that there

would be more than two dozen specific types of validations across all the forms.
Moreover, multiple programmers would be working on different forms. It would be

759Chapter 37 ✦ Data-Entry Validation

helpful to standardize the way validations are called, regardless of the validation
type (number, string, date, phone number, and so on).

My idea was to create one validate() function that would contain parameters
for the current frame, the current form element, and the type of validation to
perform. This would make it clear to anyone reading the code later that an event
handler calling validate() was performing validation, and the details of the code
would be in the validations.js library file.

To make this idea work meant that in validations.js I had to convert a string
name of a validation type into the name of the function that performs the
validation. As a bridge between the two, I created what I called a dispatch lookup
table for all the primary validation routines that would be called from the forms.
Each entry of the lookup table has a label consisting of the name of the validation
and a method that invokes the function. Listing 37-7 shows an excerpt of the entire
lookup table creation mechanism.

Listing 37-7: Creating the Dispatch Lookup Table

/*
Begin validation dispatching mechanism

*/
function dispatcher(validationFunc) {

this.doValidate = validationFunc
}
var dispatchLookup = new Array()
dispatchLookup["isNotEmpty"] = new dispatcher(isNotEmpty)
dispatchLookup["isPositiveInteger"] = new dispatcher(isPositiveInteger)
dispatchLookup["isDollarsOnly8"] = new dispatcher(isDollarsOnly8)
dispatchLookup["isUSState"] = new dispatcher(isUSState)
dispatchLookup["isZip"] = new dispatcher(isZip)
dispatchLookup["isExpandedZip"] = new dispatcher(isExpandedZip)
dispatchLookup["isPhone"] = new dispatcher(isPhone)
dispatchLookup["isConfirmed"] = new dispatcher(isConfirmed)
dispatchLookup["isNY"] = new dispatcher(isNY)
dispatchLookup["isNum16"] = new dispatcher(isNum16)
dispatchLookup["isM90_M20Date"] = new dispatcher(isM90_M20Date)
dispatchLookup["isM70_0Date"] = new dispatcher(isM70_0Date)
dispatchLookup["isM5_P10Date"] = new dispatcher(isM5_P10Date)
dispatchLookup[“isDateFormat”] = new dispatcher(isDateFormat)

Each entry of the array is assigned a dispatcher object, whose constructor
assigns a function reference to the object’s doValidate() method. For each of
these assignment statements to work, the function must be defined earlier in the
document. You will see some of these functions later in this section.

The link between the form elements and the dispatch lookup table is the
validate() function, shown in Listing 37-8. A call to validate() requires a
minimum of three parameters, as shown in the following example:

<INPUT TYPE=”text” NAME=”phone” SIZE=”10”
onChange=”parent.validate(window, this, ‘isPhone’)”>

760 Part IV ✦ Putting JavaScript to Work

The first is a reference to the frame containing the document that is calling the
function (passed as a reference to the current window); second is a reference to
the form element itself (using the this property); after that come one or more
individual validation function names as strings. This last design allows more than
one type of validation to take place with each call to validate() (for example, in
case a field must check both for a datatype and that the datatype is not empty).

Listing 37-8: Main Validation Function

// main validation function called by form event handlers
function validate(frame, field, method) {

gFrame = frame
gField = eval("window." + frame.name + ".document.forms[0]." +

field.name)
var args = validate.arguments
for (i = 2; i < args.length; i++) {

if (!dispatchLookup[args[i]].doValidate()) {
return false

}
}
return true

}

In the validate() function, the frame reference is assigned to a global variable
that is declared at the top of the validations.js file. Validation functions will need
this information to build a reference back to a companion field required of some
validations (explained later in this section). A second global variable contains a
reference to the calling form element. Because the form element reference by itself
does not contain information about the frame in which it lives, the script must
build a reference out of the information passed as parameters. The reference must
work from the framesetting document down to the frame, its form, and form
element name. Therefore, I use an eval() function to derive the object reference
and assign it to the gField global variable.

Next, the script creates an array of all arguments passed to the validate()
function. A for loop starts with index value 2, the third parameter containing the
first validation function name. For each one, the named item’s doValidate()
method is called. If the validation fails, this function returns false; but if all
validations succeed, then this function returns true. Later you will see that this
function’s returned value is the one that allows or disallows a form submission.

Sample validations
Above the dispatching mechanism in the validations.js are the validation

functions themselves. Many of the named validation functions have supporting
utility functions that often get reused by other named validation functions. Due to
the eventual large size of this library file (the production version was about 40
kilobytes), I organized the functions into two groups: the named functions first, the
utility functions below them (but still before the dispatching mechanism at the
bottom of the document).

761Chapter 37 ✦ Data-Entry Validation

To demonstrate how some of the more common data types were validated for
this application, I show several validation functions and, where necessary, their
supporting utility functions. As you will see, when you are dealing with critical
corporate data, you must go to extreme lengths to ensure valid data. And to help
users see their mistakes quickly, you need to build some intelligence into
validations where possible.

U.S. state name
The design specification for forms that required entry of a state of the U.S.

called for entry of the two-character abbreviation. A companion field to the right
would display the entire state name as user feedback verification. The onChange=
event handler not only called the validation, but it also fed the focus to the field
following the expanded state field so users would be less likely to type into it.

Before the validation can even get to the expansion part, it must first validate
that the entry is a valid two-letter abbreviation. Because I would need both the
abbreviation and the full expanded state for this validation, I created an array of all
the states, using the state abbreviation as the index label for each entry. Listing 37-9
shows that array creation. If the design were only for Navigator 4, I would have used
the literal format for creating such an object to save characters (see Chapter 34).

Listing 37-9: Creating a U.S. States Array

// States array
var USStates = new Array(51)
USStates["AL"] = "ALABAMA"
USStates["AK"] = "ALASKA"
USStates["AZ"] = "ARIZONA"
USStates["AR"] = "ARKANSAS"
USStates["CA"] = "CALIFORNIA"
USStates["CO"] = "COLORADO"
USStates["CT"] = "CONNECTICUT"
USStates["DE"] = "DELAWARE"
USStates["DC"] = "DISTRICT OF COLUMBIA"
USStates["FL"] = "FLORIDA"
USStates["GA"] = "GEORGIA"
USStates["HI"] = "HAWAII"
USStates["ID"] = "IDAHO"
USStates["IL"] = "ILLINOIS"
USStates["IN"] = "INDIANA"
USStates["IA"] = "IOWA"
USStates["KS"] = "KANSAS"
USStates["KY"] = "KENTUCKY"
USStates["LA"] = "LOUISIANA"
USStates["ME"] = "MAINE"
USStates["MD"] = "MARYLAND"
USStates["MA"] = "MASSACHUSETTS"
USStates["MI"] = "MICHIGAN"
USStates["MN"] = "MINNESOTA"
USStates["MS"] = "MISSISSIPPI"
USStates["MO"] = "MISSOURI"

(continued)

762 Part IV ✦ Putting JavaScript to Work

Listing 37-9 (continued)

USStates["MT"] = "MONTANA"
USStates["NE"] = "NEBRASKA"
USStates["NV"] = "NEVADA"
USStates["NH"] = "NEW HAMPSHIRE"
USStates["NJ"] = "NEW JERSEY"
USStates["NM"] = "NEW MEXICO"
USStates["NY"] = "NEW YORK"
USStates["NC"] = "NORTH CAROLINA"
USStates["ND"] = "NORTH DAKOTA"
USStates["OH"] = "OHIO"
USStates["OK"] = "OKLAHOMA"
USStates["OR"] = "OREGON"
USStates["PA"] = "PENNSYLVANIA"
USStates["RI"] = "RHODE ISLAND"
USStates["SC"] = "SOUTH CAROLINA"
USStates["SD"] = "SOUTH DAKOTA"
USStates["TN"] = "TENNESSEE"
USStates["TX"] = "TEXAS"
USStates["UT"] = "UTAH"
USStates["VT"] = "VERMONT"
USStates["VA"] = "VIRGINIA"
USStates["WA"] = "WASHINGTON"
USStates["WV"] = "WEST VIRGINIA"
USStates["WI"] = "WISCONSIN"
USStates[“WY”] = “WYOMING”

The existence of this array comes in handy to determine if the user entered a
valid two-state abbreviation. Listing 37-10 shows the actual isUSState()
validation function that puts this array to work.

Its first task is to assign an uppercase version of the entered value to a local
variable (inputStr), which will be the value being compared throughout the rest
of the function. If the user entered something in the field (length > 0) but no
entry in the USStates array exists for that value, it means the entry is not a valid
state abbreviation. Time to go to work to help out the user.

Listing 37-10: Validation Function for U.S. States

// input value is a U.S. state abbreviation; set entered value to all
uppercase
// also set companion field (NAME="<xxx>_expand") to full state name
function isUSState() {

var inputStr = gField.value.toUpperCase()
if (inputStr.length > 0 && USStates[inputStr] == null) {

var msg = ""
var firstChar = inputStr.charAt(0)
if (firstChar == "A") {

msg += "\n(Alabama = AL; Alaska = AK; Arizona = AZ;
Arkansas = AR)"

763Chapter 37 ✦ Data-Entry Validation

}
if (firstChar == "D") {

msg += "\n(Delaware = DE; District of Columbia = DC)"
}
if (firstChar == "I") {

msg += "\n(Idaho = ID; Illinois = IL; Indiana = IN; Iowa
= IA)"

}
if (firstChar == "M") {

msg += "\n(Maine = ME; Maryland = MD; Massachusetts =
MA; Michigan = MI; Minnesota = MN; Mississippi = MS; Missouri = MO;
Montana = MT)"

}
if (firstChar == "N") {

msg += "\n(Nebraska = NE; Nevada = NV)"
}
alert("Check the spelling of the state abbreviation." + msg)
gField.focus()
gField.select()
return false

}
gField.value = inputStr
var expandField = eval("window." + gFrame.name +

".document.forms[0]." + gField.name + "_expand")
expandField.value = USStates[inputStr]
return true

}

The function assumes that the user tried to enter a valid state abbreviation, but
either had incorrect source material or momentarily forgot a particular state’s
abbreviation. Therefore, the function examines the first letter of the entry. If that
first letter is any one of the five identified as causing the most difficulty, a legend
for all states beginning with that letter is assigned to the msg variable (this would
be a great place for a Navigator 4 switch construction). An alert message displays
the generic alert, plus any special legend if one has been assigned to the msg
variable. When the user closes the alert, the field will have focus (except for a
Navigator 3 bug in UNIX platforms) and its text selected. The function returns
false at this point.

If, on the other hand, the abbreviation entry is a valid one, the field is handed
the uppercase version of the entry. The script then uses the two global variables
set in validate() to create a reference to the expanded display field (whose name
must always be the same as the entry field, plus “_expand”). That expanded
display field is then supplied the USStates array entry value corresponding to the
abbreviation label. All is well with this validation, so it then returns true.

You can see here that the so-called validation routine is doing far more than
simply checking validity of the data. By communicating with the field, converting
its contents to uppercase, and talking to another field in the form, a simple call to
the validation function yields a lot of mileage.

764 Part IV ✦ Putting JavaScript to Work

Date validation
Many of the forms in this application have date fields. In fact dates are an

important part of the data being maintained in the database that is behind the
forms. Since all users of this application are familiar with standard date formats in
use in the United States, I didn’t have to worry about the possibility of cultural
variations in date formats. Even so, I wanted the date entry to be accommodating
to the common date formats, such as mmddyyyy, mm/dd/yyyy, and mm-dd-yyyy
(as well as accommodating two-digit year entries spanning 1930 to 2029).

The plan also called for going further in helping users enter dates within certain
ranges. For example, a field that is used for a birthdate (the listings were for
medical professionals) should recommend dates starting no more than 90 years
from the current date and no less than 20. And to keep this application running
well into the future, the ranges should be on a sliding scale from the current year,
no matter when it might be. Whatever the case, the date range validation would be
only a recommendation, and not a transaction stopper.

Rather than create separate validation functions for each date field, I created a
system of reusable validation functions for each date range (several fields on
different forms required the same date ranges). Each one of these individual
functions calls a single generic date validation function that handles the date range
checking. Listing 37-11 shows a few examples of these individual range-checking
functions.

Listing 37-11: Date Range Validations

// Date Minus 90/Minus 20
function isM90_M20Date() {

if (gField.value.length == 0) return true
var thisYear = getTheYear()
return isDate((thisYear - 90),(thisYear - 20))

}

// Date Minus 70/Minus 0
function isM70_0Date() {

if (gField.value.length == 0) return true
var thisYear = getTheYear()
return isDate((thisYear - 70),(thisYear))

}

// Date Minus 5/Plus 10
function isM5_P10Date() {

if (gField.value.length == 0) return true
var thisYear = getTheYear()
return isDate((thisYear - 5),(thisYear + 10))

}

The naming convention I created for the functions includes the two range
components relative to the current date. A letter “M” means the range boundary is
minus a number of years from the current date; “P” means the range is plus a

765Chapter 37 ✦ Data-Entry Validation

number of years. If the boundary should be the current year, a zero is used.
Therefore, the isM5_P10Date() function performs range checking for boundaries
between five years before and ten years after the current year.

Before performing any range checking, each function makes sure there is some
value to validate. If the field entry is empty, the function returns true. This is fine
here, because dates are not always required when the data is unknown.

Next, the functions get the current four-digit year. Given the different ways
Navigator 3 treats years before and after 2000, I call a separate utility function to
return the four-digit version, as shown here:

function getTheYear() {
var thisYear = (new Date()).getYear()
thisYear = (thisYear < 100)? thisYear + 1900: thisYear
return thisYear

}

The final call from the range validations is to a common isDate() function,
which handles not only the date range validation, but also validation for valid
dates (for example, making sure that September has only 30 days). Listing 37-12
shows this monster-sized function. Due to the length of this function, I will
interlace commentary within the code listing.

Listing 37-12: Primary Date Validation Function

// date field validation (called by other validation functions that
specify minYear/maxYear)
function isDate(minYear,maxYear,minDays,maxDays) {

var inputStr = gField.value

To make it easier to work with dates supplied with delimiters, I first convert
hyphen delimiters to slash delimiters. The replaceString() function is the
same one described in Chapter 26 and is located in the utility functions part of
the validations.js file.

// convert hyphen delimiters to slashes
while (inputStr.indexOf("-") != -1) {

inputStr = replaceString(inputStr,"-","/")
}

For validating whether the gross format is OK, I check whether zero or two
delimiters appear. If not, then the overall formatting is not acceptable. The error
alert shows models for acceptable date entry formats.

var delim1 = inputStr.indexOf("/")
var delim2 = inputStr.lastIndexOf("/")
if (delim1 != -1 && delim1 == delim2) {

// there is only one delimiter in the string
alert("The date entry is not in an acceptable format.\n\nYou

can enter dates in the following formats: mmddyyyy, mm/dd/yyyy, or mm-
dd-yyyy. (If the month or date data is not available, enter \'01\' in
the appropriate location.)")

gField.focus()

(continued)

766 Part IV ✦ Putting JavaScript to Work

Listing 37-12 (continued)

gField.select()
return false

}

If there are delimiters, I tear apart the string into components for month, day,
and year. Because two-digit entries might begin with zeros, I make sure the
parseInt() functions specify base 10 conversions.

if (delim1 != -1) {
// there are delimiters; extract component values
var mm = parseInt(inputStr.substring(0,delim1),10)
var dd = parseInt(inputStr.substring(delim1 + 1,delim2),10)
var yyyy = parseInt(inputStr.substring(delim2 + 1,

inputStr.length),10)

For no delimiters, I tear apart the string, assuming two-digit entries for month
and year, and either two or four digits for the year.

} else {
// there are no delimiters; extract component values
var mm = parseInt(inputStr.substring(0,2),10)
var dd = parseInt(inputStr.substring(2,4),10)
var yyyy =

parseInt(inputStr.substring(4,inputStr.length),10)
}

Since the parseInt() functions would reveal whether any entry is not a
number by returning NaN, I check whether any of the three values is not a
number. If so, then an alert signals the formatting problem, and supplies
acceptable models.

if (isNaN(mm) || isNaN(dd) || isNaN(yyyy)) {
// there is a non-numeric character in one of the component

values
alert("The date entry is not in an acceptable format.\n\nYou

can enter dates in the following formats: mmddyyyy, mm/dd/yyyy, or mm-
dd-yyyy.")

gField.focus()
gField.select()
return false

}

Next I perform some gross range validation on the month and date, making
sure months are entered from 1 to 12 and dates from 1 to 31. I’ll take care of
aligning exact month lengths later.

if (mm < 1 || mm > 12) {
// month value is not 1 thru 12
alert("Months must be entered between the range of 01

(January) and 12 (December).")
gField.focus()
gField.select()

767Chapter 37 ✦ Data-Entry Validation

return false
}
if (dd < 1 || dd > 31) {

// date value is not 1 thru 31
alert("Days must be entered between the range of 01 and a

maximum of 31 (depending on the month and year).")
gField.focus()
gField.select()
return false

}

// validate year, allowing for checks between year ranges
// passed as parameters from other validation functions

Before getting too deep into the year validation, I convert any two-digit year
within the specified range to its four-digit equivalent.

if (yyyy < 100) {
// entered value is two digits, which we allow for 1930-2029
if (yyyy >= 30) {

yyyy += 1900
} else {

yyyy += 2000
}

}

var today = new Date()

I designed this function to work with either a pair of year ranges or date
ranges (so many days before and/or after today). If the function is passed date
ranges, then the first two parameters must be passed as null. This first batch of
code works with the date ranges (because the minYear parameter would be
null).

if (!minYear) {
// function called with specific day range parameters
var dateStr = new String(monthDayFormat(mm) + "/" +

monthDayFormat(dd) + "/" + yyyy)
var testDate = new Date(dateStr)
if (testDate.getTime() < (today.getTime() + (minDays * 24 *

60 * 60 * 1000))) {
alert("The most likely range for this entry begins " +

minDays + " days from today.")
}
if (testDate.getTime() > today.getTime() + (maxDays * 24 *

60 * 60 * 1000)) {
alert("The most likely range for this entry ends " +

maxDays + " days from today.")
}

You can also pass hard-wired four-digit years as parameters. The following
branch compares the entered year against the range specified by those passed
year values.

(continued)

768 Part IV ✦ Putting JavaScript to Work

Listing 37-12 (continued)

} else if (minYear && maxYear) {
// function called with specific year range parameters
if (yyyy < minYear || yyyy > maxYear) {

// entered year is outside of range passed from calling
function

alert("The most likely range for this entry is between
the years " + minYear + " and " + maxYear + ". If your source data
indicates a date outside this range, then enter that date.")

}
} else {

For year parameters passed as positive or negative year differences, I begin
processing by getting the four-digit year for today’s date. Then I compare the
entered year against the passed range values. If the entry is outside the desired
range, an alert reveals the preferred year range within which the entry should
fall. But the function does not return any value here, since an out-of-range value
is not critical for this application.

// default year range (now set to (this year - 100) and
(this year + 25))

var thisYear = today.getYear()
if (thisYear < 100) {

thisYear += 1900
}
if (yyyy < minYear || yyyy > maxYear) {

alert("It is unusual for a date entry to be before " +
minYear + " or after " + maxYear + ". Please verify this entry.")

}
}

One more important validation is to make sure that the entered date is valid
for the month and year. Therefore, the various date components are passed to
functions to check against month lengths, including the special calculations for
the varying length of February. These functions are shown in Listing 37-13. The
alert messages they display are smart enough to inform the user what the
maximum date is for the entered month and year.

if (!checkMonthLength(mm,dd)) {
gField.focus()
gField.select()
return false

}
if (mm == 2) {

if (!checkLeapMonth(mm,dd,yyyy)) {
gField.focus()
gField.select()
return false

}
}

769Chapter 37 ✦ Data-Entry Validation

The final task is to reassemble the date components into a format that the
database wants for its date storage and stuff it into the form field. If the user had
entered an all-number or hyphen-delimited date, it is automatically reformatted
and displayed as a slash-delimited, four-digit-year date.

// put the Informix-friendly format back into the field
gField.value = monthDayFormat(mm) + "/" + monthDayFormat(dd) +

"/" + yyyy
return true

}

Listing 37-13: Functions to Check Month Lengths

// check the entered month for too high a value
function checkMonthLength(mm,dd) {

var months = new
Array("","January","February","March","April","May","June","July","Augu
st","September","October","November","December")

if ((mm == 4 || mm == 6 || mm == 9 || mm == 11) && dd > 30) {
alert(months[mm] + " has only 30 days.")
return false

} else if (dd > 31) {
alert(months[mm] + " has only 31 days.")
return false

}
return true

}

// check the entered February date for too high a value
function checkLeapMonth(mm,dd,yyyy) {

if (yyyy % 4 > 0 && dd > 28) {
alert("February of " + yyyy + " has only 28 days.")
return false

} else if (dd > 29) {
alert("February of " + yyyy + " has only 29 days.")
return false

}
return true

}

This is a rather extensive date validation routine, but it demonstrates how
thorough you must be when a database relies on accurate entries. The more
prompting and assistance you can give to a user to ferret out problems with an
invalid entry, the happier those users will be.

Cross-confirmation fields
The final validation type that I’ll be covering here is probably not a common

request, but it demonstrates how the dispatch mechanism created at the outset

770 Part IV ✦ Putting JavaScript to Work

expanded so easily to accommodate this enhanced client request. The situation
was that some fields (mostly dates in this application) were deemed critical pieces
of data because these data triggered other processes from the database. As a
further check to ensure entry of accurate data, a number of values were set up to
be entered twice in separate fields, and the fields had to match exactly. In many
ways this mirrors the two passes you are often requested to make when you set a
password: enter two copies and let the computer compare them to make sure you
typed what you intended to type.

I established a system that placed only one burden on the many programmers
working on the forms: while the primary field could be named anything you want
(to help alignment with database column names, for example), the secondary field
must be named the same plus “_xcfm”— which stands for “cross-confirm.” Then,
pass the isConfirmed validation name to the validate() function after the date
range validation name, as follows:

onChange=”parent.validate(window, this, ‘isM5_P10Date’, ‘isConfirmed’)”

In other words, the isConfirmed() validation function will compare the fully
vetted, properly formatted date in the current field against its parallel entry.

Listing 37-14 shows the one function in validations.js that handles the
confirmation in both directions. After assigning a copy of the entry field value to
the inputStr variable, the function next sets a Boolean flag (primary) that lets
the rest of the script know if the entry field was the primary or secondary field: If
the string “_xcfm” is missing from the field name, then it is the primary.

For the primary field branch, the script assembles the name of the secondary
field and compares the content of the secondary field’s value against the inputStr
value. If they are not the same, it means the user is entering a new value into the
primary field, so the script empties the secondary field to force reentry to verify
that the user is entering the proper data.

For the secondary field entry branch, the script assembles a reference to the
primary field by stripping away the final five characters of the secondary field’s
name. I could have used the lastIndexOf() string method instead of the longer
way involving the string’s length, but after experiencing so many platform-specific
problems with lastIndexOf() in Navigator, I decided to play it safe. Then the two
values are compared, with an appropriate alert displayed if they don’t match.

Listing 37-14: Cross-Confirmation Validation

// checks an entry against a parallel, duplicate entry to
// confirm that correct data has been entered
// Parallel field name must be the main field name plus "_xcfm"
function isConfirmed() {

var inputStr = gField.value
// flag for whether field under test is primary (true) or

confirmation field
var primary = (gField.name.indexOf("_xcfm") == -1)
if (primary) {

// clear the confirmation field if primary field is changed
var xcfmField = eval("window." + gFrame.name +

".document.forms[0]." + gField.name + "_xcfm")

771Chapter 37 ✦ Data-Entry Validation

var xcfmValue = xcfmField.value
if (inputStr != xcfmValue) {

xcfmField.value = ""
return true

}
} else {

var xcfmField = eval("window." + gFrame.name +
".document.forms[0]." + gField.name.substring(0,(gField.name.length-
5)))

var xcfmValue = xcfmField.value
if (inputStr != xcfmValue) {

alert("The main and confirmation entry field contents do
not match. Both fields must have EXACTLY the same content to be
accepted by the database.")

gField.focus()
gField.select()
return false

}
}
return true

}

Last-minute check
Every validation event handler is designed to return true if the validation is

successful. This comes in handy for the batch validation that performs one final
check of the entries triggered by the form’s onSubmit= event handler. The event
handler calls a function called checkForm() and passes the form object as a
parameter. That parameter helps create a reference to the form element that is
passed to each validation function.

Because successful validations return true, you can nest consecutive validation
tests so that the most nested statement of the construction is return true,
because all validations have succeeded. The form’s onSubmit= event handler is as
follows:

onSubmit=”return checkForm(this)”

And the following code fragment is an example of a checkForm() function. A
separate isDateFormat() validation function called here checks whether the field
contains an entry in the proper format, meaning that it has likely survived the
range checking and format shifting of the real-time validation check.

function checkForm(form) {
if (parent.validate(window, form.birthdate, “isDateFormat”)) {

if (parent.validate(window, form.phone, “isPhone”)) {
if (parent.validate(window, form.name, “isNotEmpty”)) {

return true
}

}
}
return false

}

772 Part IV ✦ Putting JavaScript to Work

If any one validation fails, the field is given focus and its content selected
(controlled by the individual validation function), and the checkForm() function
returns false. This, in turn, cancels the form submission.

Plan for Data Validation
I devoted an entire chapter to the subject of data validation because it

represents the one area of error checking that almost all JavaScript authors should
be concerned with. If your scripts (client-side or server-side) perform processing
on user entries, you want to prevent script errors at all costs. Data-entry validation
is your last line of defense against user-induced errors.

✦ ✦ ✦

