
Server-side
JavaScript

Most of this book is devoted to client-side JavaScript,
the scripts that execute when their documents are

loaded in a browser. But the JavaScript language originally
came into existence (under its old name, LiveScript) as a
server-side scripting language. Both client-side and server-
side JavaScript share a common core language encompassing
such items as how to use variables, control structures, data
types, and the rest. Where the two scripting environments
diverge is in their object models. Client-side JavaScript is
concerned with objects that appear in documents; server-
side JavaScript is concerned with objects that govern the
two-way connection between the user and server
applications.

The subject of server-side JavaScript is large enough to fill
an entire book. My goal in this chapter is to introduce the
concepts and objects of server-side JavaScript to those who
are familiar with the client side of things. If you move on to
create server-side applications with JavaScript, this chapter
should help you reorient yourself to the server way of
thinking about applications.

The flavor of server-side JavaScript covered in this chapter
is that found in Netscape’s SuiteSpot 3 server family. In
particular, the Enterprise Server 3 component is where most of
the server-side JavaScript action occurs. This is where you can
write scripts that act as go-betweens for the user and large
server databases.

Adding Server Processing to
Documents

A standard HTML page contains tags that instruct the
browser about how to render the content of the page. As a
page loads, the browser interprets the tags and lays out the
words, form elements, and images from the top of the
document to the bottom. If the page contains a form, you
may want to capture the information entered or selected by
the user.

3636C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Where server-side
JavaScript scripts
go in documents

The server-side
object model

Accessing databases
through server-side
JavaScript

✦ ✦ ✦ ✦

738 Part III ✦ JavaScript Object and Language Reference

With Navigator you can certainly submit that form and its contents as an e-mail
message without any further help from the server, but many applications want to
link the form entries with a database (either to save the data to the database or
retrieve some data based on a search entry). Before server-side JavaScript, that
interactivity with the server was handled exclusively by a Common Gateway
Interface (CGI) program on the server commonly written in the Perl language. The
ACTION attribute of the form invoked the CGI program by name (as part of the
URL). The CGI program would churn on the submitted data and output a full HTML
page that comes back in response.

Server-side JavaScript (SSJS) works a little differently. Rather than existing as a
separate program on the server, a SSJS script typically resides in an HTML
document stored on the server embedded in a compiled program file. A form’s
ACTION attribute is set to the URL of that HTML file containing the server-side
scripts. In response to the submission, the server loads the compiled program
while temporarily storing in memory information from the form being submitted.
Any HTML content of the associated HTML file is passed on to the client. Some
server-side scripts in the document also probably dynamically compose some or
all of the content being sent out to the client.

Embedded server scripts
An HTML file on the server contains not only the HTML content, but perhaps

some client-side scripts and server-side scripts. Tags distinguish the two types of
scripts. Client-side scripts are contained by <SCRIPT>...</SCRIPT> tags (and run
only when the document is in the client machine), while server-side script
statements are contained by <SERVER>...</SERVER> tag sets. As Enterprise Server
starts to respond to a submission from a browser, it runs whatever scripts appear
inside these tags. None of the server script statements in these tags or the tags
themselves appear in the source code of the document sent to the browser.

Scripts inside the <SERVER> tags work with the same core JavaScript language
as you script for the client. But the server doesn’t know about document objects.
Instead, it knows how to work with server-side objects, such as the object that
contains the contents of form elements that arrived with the last submission.

Because server-side scripts can also create content that goes in the HTML page
being downloaded to the client, the HTML page can contain basic template content
in plain HTML. Custom content created as a result of server processing can be
written interspersed in the middle of the page. It’s like when you have client-side
scripts use document.write() to create a portion of a document as it loads. In
the case of the server, it has a write() method that outputs content to the data
stream that heads for the client.

At the client end, the only source code it receives is the HTML that defines the
page (and perhaps client-side scripts, if that’s what the design calls for). Therefore,
it is possible to place browser detection on the server (it has access to userAgent
data), and let the server dish up the HTML and scripting appropriate for the
browser connecting at that instant.

To demonstrate this process, Listing 36-1 shows the server-side HTML file for a
simplistic application that does nothing more than display the server version in a
document. Then, in Listing 36-2, I show what the source view looks like on the
client. (Neither of these listings is on the CD-ROM.)

739Chapter 36 ✦ Server-side JavaScript

Listing 36-1: Server-side HTML File

<HTML>
<HEAD>
<TITLE>Simple Server App</TITLE>
</HEAD>
<BODY>
This application is running on the following Netscape Enterprise
Server version and platform:

<SERVER>

write(server.httpdjsVersion + ".")
</SERVER>
</BODY>
</HTML>

Listing 36-2: Client-side Source

<HTML>
<HEAD>
<TITLE>Simple Server App</TITLE>
</HEAD>
<BODY>
This application is running on the following Netscape Enterprise
Server version and platform:

3.0 Windows NT.
</BODY>
</HTML>

Server-side libraries
The process of creating an Enterprise Server application that uses server-side

JavaScript includes a compilation step. Enterprise Server 3 comes with a tool
called jsac.exe, which is a JavaScript application compiler. The output of the
compiler is a server file (with a .web extension) that is the application as far as the
server is concerned (some other application management tools are also provided
to install each application into the server). That .web file contains all the HTML
files to be used in the application.

In addition to HTML files, which encapsulate their server-side scripting within
each document’s <SERVER> tag sets, you can add library files of scripts that have
global scope among all the HTML files that are part of the application. Not
surprisingly (if you know about client-side library files), the server-side libraries
are script-only documents whose file names have the .js extension. All HTML and
.js files are compiled in the .web application file.

(If the HTML files that are downloaded to the client are to use client-side .js
libraries, those .js files are not compiled in the .web application. They simply

740 Part III ✦ JavaScript Object and Language Reference

reside in the same directory as the HTML files that get compiled in the .web
application. When Enterprise Server receives a request for one of these client-side
source files, it knows where to find the file and sends the library down to the
client.)

Essential Server-side Objects
Although the full complement of SSJS objects is beyond the scope of this book, I

want to introduce you to the key objects that the server knows how to work with.
If for no other reason, this exposure can give you an appreciation of how the core
JavaScript language can be applied to different object models (for example, server-
side objects versus client-side document objects).

The discussion here focuses on four server-side objects: server, project, client,
and request. This order goes from the most “global” in scope to the narrowest. For
the most part, all four objects are stored in the server memory (except for some
ways of specifying the client object) and don’t represent any physical entity. Not
every application addresses each object directly, but the objects are almost always
present when an application is running.

The server object
Whenever the Enterprise Server software starts up, it automatically generates a

server object in the server’s memory. The object goes away when the server is
stopped (the server software can be started and stopped independently of the
server hardware).

Information that the server object stores includes items such as the host,
hostname, port, protocol, and server version. All applications running on the
server share this information. An application can also create additional custom
properties appropriate to the server-level — any information that needs to be
shared among all applications running on the server. The syntax for reading or
adding a server object property is similar to other JavaScript object properties
reading and writing:

var hostName = server.hostname
server.adminEMail = “serverdude@giantco.com”

Server-side JavaScript offers provisions for maintaining the integrity of
changeable data, such as custom server properties. To prevent two applications
from simultaneously attempting to change the same property, the server object
can be momentarily locked and then unlocked with the server.lock() and
server.unlock() methods.

The project object
The scope of a project object is a single application running on the server. But

this also means that all clients that access the application (even simultaneously)
have access to project properties.

A project object is created when the application is started on the server. No
properties are assigned to the project object by default. It is, rather, a convenient
place for an application to store small chunks of data that all users of the

741Chapter 36 ✦ Server-side JavaScript

application (or the application, itself) can benefit from. Think of it as a global store
for all instances of the running application. Perhaps the most common use of the
project object is as a place to store the latest unique ID number for new user
accounts or database records. If a new record is being added to a database, it is
faster to access the project object property that holds the last assigned number,
grab a copy, and increment the value in the property for the next time.

For the sake of data integrity, the project object can be locked momentarily
while getting and incrementing that value. Other clients wanting access to that
property are held in a queue for the next available access (that is, when the
property object is unlocked). The simplest example of using the lock() method is
shown here:

project.lock()
var newCustomerID = project.nextID
project.nextID = project.nextID + 1
project.unlock()

This sequence locks the project object, copies the current custom property that
contains the next customer ID to be issued, increments the property, and unlocks
the project object.

The client object
Narrowing the object scope further, the client object is unique to a particular

client access of an application. A client object has no predefined properties, so
your application is at liberty to assign property names and values that are of
interest to a single connection to the application.

You can imagine that a highly trafficked application would drain a server of
processing time, memory, and disk space if it had to track the client objects of
perhaps hundreds or thousands of simultaneous connections. To counteract the
problem, you specify in your application control panel (on the server application
manager) whether client object data should be stored on the server or client and
how that should be accomplished. From the server’s point of view, the most
convenient place for such storage is a client cookie. One example of how this
works is a server-based shopping cart. When the user clicks to add a product to
the cart, the form is submitted to the application. The application extracts
pertinent information bits about the product and stores that information in one or
more client properties (Enterprise Server writes such a cookie with a special name
in the format NETSCAPE_LIVEWIRE.propertyName=value). With a client object
specified as a client cookie, the data is sent to the client and saved in the browser
cookie area (the same document.cookie described in Chapter 16). At check-out
time, the application can retrieve the cookie data from the client and assemble a
final order form.

Other client object techniques include client-side URL encoding, server cookies,
and server URL encoding. Each approach has its advantages and disadvantages, all
of which are detailed in Netscape’s documentation for building server-side
JavaScript applications.

742 Part III ✦ JavaScript Object and Language Reference

The request object
The narrowest in scope of all objects is the request object. It contains

information about a single submission from a client.
Even before you get to the form data being submitted, the request object has

several properties filled automatically. By and large, these preset properties mirror
the environment variables that traditional CGI programs extract from submissions.
Table 36-1 shows the standard properties for the request object.

Table 36-1
Standard request Object Properties

Property Description

agent Browser type and version (the same as client-side navigator.userAgent)

auth_type Authorization type (if any)

auth_user Remote user (if available)

ip IP address

method Form method setting

protocol Client protocol

query Query string passed with method=GET

imageX Area map click horizontal coordinate

imageY Area map click vertical coordinate

uri Partial URL of request (after protocol, hostname, and port)

For every named element in the form being submitted, a property is added to
the current request object, and the value of the element is assigned to that
property. Only one request object is available per client, so these values last only
until the next submission (which might be in another frame immediately after the
first frame’s form is submitted).

Accessing the request object is key to capturing information entered or selected
in a form by a user. For example, if you are updating a database with one field’s data,
you can use the request object’s property to fill that column in the database table:

database.execute(“UPDATE customer phone1 = ‘“ + request.phone1 + “‘
WHERE custID = “ + request.custID)

A form’s hidden objects are included among the request object’s properties. It is
not uncommon to use a hidden object to pass information from one server script
execution to the next by writing hidden objects to the page and letting the next
request object pick out the data for further processing.

743Chapter 36 ✦ Server-side JavaScript

Database Access with LiveWire
LiveWire is Netscape’s brand name for the technology that links a server-side

application to a database on the server. In the early days of this technology, it was
a separate component of the company’s server offerings. In SuiteSpot 3, LiveWire
is integrated into the offering.

The purpose of LiveWire extends beyond the basic ability to link up a Web
application and a database. The goal was to create an application programming
interface (API) that lets Web application authors write essentially the same
database-related code, regardless of whether the database is IBM’s DB2, Oracle,
Informix, Sybase, or any ODBC standard database. In these days of competing
formats and standards, that is a tall order. Even so, LiveWire comes a long way in
establishing a one-code-fits-all implementation, at least for the basic database
access tasks (a lot of credit also goes to the Structured Query Language — SQL —
standard adopted by many large database makers).

Database access process
Successful database access requires a specific sequence of statements at

various places within your code. LiveWire provides a database object, the
reference of which you use to open the connection and read or write data to the
database.

One page of your application (it might be the home page) contains <SERVER>
tag code that initiates the connection to the database on behalf of the client
accessing the application. The basic format of this statement is as follows:

database.connect(databaseType, serverName, username, password,
databaseName)

The precise content of the parameters to the connect() method vary a great
deal with the type of database you are accessing. In my experience, setting up an
ODBC database to accept the connection can take a bit of doing, especially in
getting the proper ODBC drivers installed.

Accessing records
Before you start writing code to insert or update records in a database, you should

be familiar with common SQL commands and syntax for these operations in your
database. Using LiveWire, you wrap the SQL expressions inside a database.exec()
method. The parameter of the method is the precise SQL statement that the database
needs for inserting or updating the table.

The real JavaScript fun comes when retrieving data from tables. You use the
database.cursor() method to send an SQL SELECT command to the database,
specifying the columns you want to extract and the search criteria to be applied to
the table. For example, to extract the name and phone number columns for all
records of a customer table whose state column is “FL,” the JavaScript code reads

var cursor = database.cursor(“SELECT name, phone from customer where
state = ‘FL’”)

744 Part III ✦ JavaScript Object and Language Reference

If any data matches the criteria of the SELECT statement, the database.
cursor() method returns the data in the form of a cursor object. The cursor
object is something like a JavaScript array, but not quite. You cannot, for instance,
obtain the number of records returned, because you cannot get the length of the
object. But you can cycle through each row of returned data with the help of the
cursor.next() method.

The instant the cursor object is created with the returned data, an internal row
pointer is positioned immediately above the first record. One invocation of
cursor.next() moves the pointer to the first row of data. At that point, you can
extract individual column data by using the column name as a property. You
continue looping through the cursor until there are no more records, at which
point the cursor.next() method returns a value of false. The following script
fragment extracts the same data as described above and then consolidates the
data into an HTML table that is eventually written to the client:

var cursor = database.cursor(“SELECT name, phone from customer where
state = ‘FL’”)
var output = “<TABLE><TR><TH>Name</TH><TH>Phone</TH></TR>”
while (cursor.next()) {

output += “<TR><TD>” + cursor.name + “</TD>”
output += “<TD>” + cursor.phone + “</TD></TR>”

}
output += “</TABLE>”
write(output)

For simple data extractions and table displays, such as the one just given,
LiveWire even provides a shortcut statement for creating the HTML table, ready
for writing to the client document. Many other cursor and database methods offer
sufficient flexibility to build very complex applications atop very complex
databases. This includes controlling transaction processes when they are
implemented for the database.

Server or Client JavaScript?
When you have the ability to implement an application with server-side and

client-side JavaScript, you may wonder how to use both — or if you should use
client-side JavaScript at all. A lot depends on the known base of browsers used by
application users and the amount of traffic on the site.

One supreme advantage an author has by implementing everything on the
server is independence from the JavaScript vagaries from one browser version or
brand to the next. Not that it solves the HTML compatibility issues, which you
must still face. But when the only concern is HTML compatibility, the testing
matrix of browser versions and brands is smaller.

Putting all the processing on the server end, however, may do a disservice to
the users of browsers that have the power to do some of that processing locally.
For every image change or other adjustment to the HTML page, the user must wait
for the transactions with the server, server processing, and another download of
data. If you have a high-traffic site, this can also place extra burdens on the server
that hinder access to all.

745Chapter 36 ✦ Server-side JavaScript

Most commonly, however, authors strike a balance between server-side and
client-side scripting to take care of the job. For example, data-entry validation on
the client is orders of magnitude more efficient for the user and your server. The
server still needs to do validation for non-scriptable browser users, but at least
those with scriptable browsers won’t be slowed down by server-generated error
messages and form redrawing.

As more capabilities are built into modern browsers, such as positionable
elements (Chapters 41 through 43), it makes more sense to imbue intelligence into
documents that utilize those facilities. The experience will be much crisper for
users, as if they’re using a local software package, rather than constantly waiting
for screen refreshing.

✦ ✦ ✦

