
XML Objects

XML (eXtensible Markup Language) is an undeniably hot
topic in the Internet world. Not only has the W3C organi-

zation formed multiple working groups and recommendations
for XML and its offshoots, but the W3C DOM recommendation
also has XML in mind when it comes to defining how ele-
ments, attributes, and data of any kind — not just the HTML
vocabulary — are exposed to browsers as an object model.
Most of the arcana of the W3C DOM Core specification —
especially the structure based on the node — are in direct
response to the XML possibilities of documents that are
beginning to travel the Internet.

While XML documents can stand alone as containers of struc-
tured data in both IE5+ and NN6, the Windows version of IE5+
permits XML data to be embedded as “islands” in an HTML
document. Such islands are encased in an XML element — an
IE-specific extension of HTML.

It’s important to distinguish between “the” XML element — the
element generated in a document by the IE-specific <XML> tag
set — and a generic XML element that is a part of the XML
data island. Generic XML elements have tag names that are
meaningful to a data application, and they are usually defined
by a separate Document Type Declaration (DTD) that con-
tains a formal specification of the element names, their
attributes (if any) and the nature of the data they can contain.
Out of necessity, this book assumes that you are already famil-
iar with XML such that your server-based applications serve
up XML data exclusively, embed XML islands into HTML docu-
ments, or convert database data into XML. The focus of this
chapter, and an extended application example of Chapter 57,
is how to access custom elements that reside inside an IE
XML element.

3333C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Treating XML
elements as objects

Creating IE XML data
islands

Accessing XML
element attributes

✦ ✦ ✦ ✦

CD-276 Part III ✦ Document Objects Reference

Elements and Nodes
Once you leave the specialized DOM vocabulary of HTML elements, the world can
appear rather primitive — a highly granular world of node hierarchies, elements,
element attributes, and node data. This granularity is a necessity in an environment
in which the elements are far from generic and the structure of data in a document
does not have to follow a format handed down from above. One Web application
can describe an individual’s contact information with one set of elements, while
another application uses a completely different approach to element names, ele-
ment nesting, and their sequence.

Fortunately, most, if not all, scripting you do on XML data is on data served up by
your own applications. Therefore, you know what the structure of the data is — or
you know enough of it to let your scripts access the data.

The discussion of the W3C DOM in Chapter 14 should serve as a good introduction
to the way you need to think about elements and their content. All relevant proper-
ties and methods are listed among the items shared by all elements in Chapter 15.

Microsoft has created a separate document object model exclusively for XML doc-
uments. To distinguish between the DOMs for XML and HTML documents,
Microsoft calls the former the XML DOM and the latter the DHTML DOM.
Specifications for the two DOMs overlap in some terminology, but the two models
are not interchangeable. Read more about the Microsoft XML DOM at
http://msdn.microsoft.com.

An XML data island is a hierarchy of nodes. Typically, the outermost nodes are ele-
ments. Some elements have attributes, each of which is a typical name/value pair.
Some elements have data that goes between the start and end tags of the element
(such data is a text node nested inside the element node). And some elements can
have both attributes and data. When an XML island contains the equivalent of mul-
tiple database records, an element container whose tag name is the same as each of
the other records surrounds each record. Thus, the getElementsByTagName()
method frequently accesses a collection of like-named elements.

Once you have a reference to an element node, you can reference that element’s
attributes as properties; however, a more formal access route is via the
getAttribute() method of the element. If the element has data between its start
and end tags, you can access that data from the element’s reference by calling the
firstChild.data property (although you may want to verify that the element has
a child node of the text type before committing to retrieving the data).

Of course, your specific approach to XML elements and their data varies with what
you intend to script with the data. For example, you may wish to do nothing more
with scripting than enable a different style sheet for the data based on a user
choice. The evolving XSL (eXtensible Stylesheet Language) standard is a kind of

Note

CD-277Chapter 33 ✦ XML Objects

(non-JavaScript) scripting language for transforming raw XML data into a variety of
presentations. But you can still use JavaScript to connect user-interface elements
that control which of several style sheets renders the data. Or, as demonstrated in
Chapters 52 and 57, you may wish to use JavaScript for more explicit control over
the data and its rendering, taking advantage of JavaScript sorting and data manipu-
lation facilities along the way.

Table 33-1 is a summary of W3C DOM Core objects, properties, and methods that
you are most likely to use in extracting data from XML elements. You can find
details of all of these items in Chapter 15.

Table 33-1 Properties and Methods for XML Element Reading

Property or Method Description

Node.nodeValue Data of a text node

Node.nodeType Which node type

Node.parentNode Reference to parent node

Node.childNodes Array of child nodes

Node.firstChild First of all child nodes

Node.lastChild Last of all child nodes

Node.previousSibling Previous node at same level

Node.nextSibling Next node at same level

Element.parentNode Reference to parent node

Element.childNodes Array of child nodes

Element.firstChild First of all child nodes

Element.lastChild Last of all child nodes

Element.previousSibling Previous node at same level

Element.nextSibling Next node at same level

Element.tagName Tag name

Element.getAttribute(name) Retrieves attribute (Attr) object

Element.getElementsByTagName(name) Array of nested, named elements

Attr.name Name part of attribute object’s
name/value pair

Attr.value Value part of attribute object’s
name/value pair

CD-278 Part III ✦ Document Objects Reference

XML Element Object
For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

src

XMLDocument

Syntax
Accessing XML element object properties or methods:

(IE5+) [window.]document.all.elementID.property | method([parameters])

About this object
The XML element object is the primary container of an XML data island within an
HTML page. If your scripts intend to traverse the node hierarchy within the ele-
ment, or simply access properties of nested elements, then you should assign an
identifier to the ID attribute of the XML element. For example, if the XML data con-
tains results from a database query for music recordings that match some user-
entered criteria, each returned record might be denoted as a RECORDING element
as follows:

<XML ID=”results”>
<SEARCHRESULTS>

<RECORDING>
...elements with details...

</RECORDING>
<RECORDING>

...elements with details...
</RECORDING>
<RECORDING>

...elements with details...
</RECORDING>

</SEARCHRESULTS>
</XML>

Your script can now obtain an array of references to RECORDING elements as follows:

var recs = document.getElementById(“results”).getElementsByTagName(“RECORDING”)

XML

CD-279Chapter 33 ✦ XML Objects

While it is also true that there is no known HTML element with the tag name
RECORDING (which enables you to use document.getElementsByTagName
(“RECORDING”)), the unpredictability of XML data element names is reason enough
to limit the scope of the getElementsByTagName() method to the XML data island.

Interestingly, the W3C DOM Level 2 does not define an XML element object within
the HTML section. You cannot simply embed an XML document inside an HTML
document: The standards clearly indicate that a document can be one or the other,
but not both. While the NN6 DOM can recognize custom elements, the browser
understandably gets confused when custom elements have tag names that already
belong to the HTML DTD. Therefore, I do not recommend attempting to embed cus-
tom elements into an HTML document for NN6 unless it some day implements a
mechanism similar to IE’s XML data islands.

IE5/Macintosh does not support XML data islands.

Properties
src

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓ ✓

The src property represents the SRC attribute of the XML element. The attribute
points to the URL of an external XML document whose data is embedded within the
current HTML document.

XMLDocument
Value: Object Reference Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓ ✓

Note

XML.XMLDocument

CD-280 Part III ✦ Document Objects Reference

The XMLDocument property returns a reference to Microsoft’s proprietary XML
document object and the object model associated with it (the so-called XML DOM).
A lot of this object model is patterned after the W3C DOM model, but access to
these properties is via a rather roundabout way. For more details, visit

http://msdn.microsoft.com/xml/reference/xmldom/start.asp

✦ ✦ ✦

XML.XMLDocument

	Chapter 33: XML Objects
	Elements and Nodes
	XML Element Object

