
Positioned
Objects

This is an oddball chapter within the scheme of Part III.
Thus far, I have devoted each chapter to a distinct set of

object model objects. This chapter breaks away from that
mold for just a moment. The main reason that this chapter
even exists has to do more with the history of Dynamic
HTML — the capability to alter content on the fly in response
to user interaction — particularly with respect to Netscape
Navigator 4. The impetus for this separate discussion is the
NN4 LAYER element and its associated object. What makes
this discussion awkward is that the LAYER element and object
became dead-end entities that never made it into the W3C
standards process. NN6 instead has adopted the W3C stan-
dards for dynamic content, which more closely mimic the way
Microsoft implemented its DHTML features starting with IE4.
NN6 explicitly does not provide backward compatibility with
scripted LAYER element objects, which also means that you
must rewrite legacy applications to work in NN6.

That leaves an ungainly task in this chapter to create a bridge
between the LAYER element and the more modern way of
working with elements that can be positioned on the page,
flown across the page, stacked in front of other elements, or
hidden from view. The IE4+ and NN6 way to accomplish all of
this is through CSS style sheets and the scripting thereof. In
years to come, the NN4 LAYER element will be only a distant
memory. Until then, we must acknowledge it and understand
how to work the same magic with style sheets. To that end,
this chapter provides details on both the NN4 layer object
and the comparable syntax for using IE4+ and NN6 style
sheets to get and set properties or invoke methods. Chapter
48 applies these techniques in some DHTML applications.

3131C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Layer concepts

How to move, hide,
and show content

The end of the LAYER
element

✦ ✦ ✦ ✦

CD-206 Part III ✦ Document Objects Reference

What Is a Layer?
Terminology in the area of positioned elements has become a bit confusing over
time. Because NN4 was the earliest browser to be released with positioned ele-
ments (the LAYER element), the term layer became synonymous with any posi-
tioned element. When IE4 came on the scene, it was convenient to call a style
sheet-positioned element (in other words, an element governed by a style sheet
rule with the position attribute) a layer as a generic term for any positioned ele-
ment. In fact, NN4 even treated an element that was positioned through style sheets
as if it were a genuine layer object (although with some minor differences).

In the end, the layer term made good sense because no matter how it was achieved,
a positioned element acted like a layer in front of the body content of a page.
Perhaps you have seen how animated cartoons were created before computer ani-
mation changed the art. Layers of clear acetate sheets were assembled atop a static
background. Each sheet contained one character or portion of a character. When all
the sheets were carefully positioned atop each other, the view (as captured by a
still camera) formed a composite frame of the cartoon. To create the next frame of
the cartoon, the artist moved one of the layers a fraction of an inch along its
intended path and then took another picture.

If you can visualize how that operation works, you have a good starting point for
understanding how layers work. Each layer contains some kind of HTML content
that exists in its own plane above the main document that loads in a window. You
can change or replace the content of an individual layer on the fly without affecting
the other layers; you can also reposition, resize, or hide the entire layer under
script control.

One aspect of layers that goes beyond the cartoon analogy is that a layer can con-
tain other layers. When that happens, any change that affects the primary layer —
such as moving the layer 10 pixels downward — also affects the layers nested
inside. It’s as if the nested layers are passengers of the outer layer. When the outer
layer goes somewhere, the passengers do, too. And yet, within the “vehicle,” the
passengers may change seats by moving around without regard for what’s going on
outside.

With this analogy in mind, many commercial DHTML development tools and con-
tent authors refer to positioned elements as layers, which you can move, resize,
stack, and hide independently of the body background. Therefore, references
throughout this book to layers may mean anything from the NN4 layer object to an
element positioned by way of style sheets.

CD-207Chapter 31 ✦ Positioned Objects

NN4 Layer Object

Properties Methods Event Handlers

above captureEvents() onBlur

background handleEvent() onFocus

below load() onLoad

bgcolor moveAbove() onMouseOut

clip.bottom moveBelow() onMouseOver

clip.left moveBy()

clip.right moveTo()

clip.top moveToAbsolute()

document releaseEvents()

left resizeBy()

name resizeTo()

pageX routeEvent()

pageY

parentLayer

siblingAbove

siblingBelow

src

top

visibility

zIndex

Syntax
Accessing layer object properties or methods:

[window.]document.layerName.[document.layerName. ...] property |
method([parameters])
[window.]document.layers[index].[document.layerName. ...]property |
method([parameters])

document.layerObject

CD-208 Part III ✦ Document Objects Reference

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

About this object
You can create a layer object in NN4 in one of three ways. The first two ways use
NN4-only syntax: the <LAYER> tag in HTML and the new Layer() constructor in
JavaScript. The tag offers numerous attributes that establish the location, stacking
order, and visibility. These attributes, in turn, become scriptable properties. If you
create the layer through the constructor, you then use JavaScript to assign values
to the object’s properties.

The third way to create an NN4 layer object is to assign an absolute-positioned
style sheet rule to a block-level element — most typically a DIV element. This is the
way that IE4+ and NN6 do it, too. In practice, however, a positioned DIV element is
not as robust (from rendering and scriptability standpoints) in NN4 as a genuine
LAYER element. Therefore, it is sometimes necessary to branch a page’s code to
use document.write() for a <LAYER> tag in NN4 and a <DIV> tag in IE4+ and NN6.

Layer references
The task of assembling JavaScript references to NN4 layers and the objects they
contain resembles the same process for framesets (in fact, conceptually, a layer is
like a dynamically movable and resizable free-floating frame). Therefore, before you
start writing the reference, you must know the relationship between the document
containing the script and the target of the reference.

To demonstrate how this works, I start with a script in the base document loaded
into a window that needs to change the background color (bgColor property) of a
layer defined in the document. The skeletal HTML is as follows:

<HTML>
<HEAD>
</HEAD>
<BODY>
<LAYER NAME=”Flintstones” SRC=”flintstonesFamily.html”>
</LAYER>
</BODY>
</HTML>

From a script in the Head section, the statement that changes the layer’s bgColor
property is this:

document.Flintstones.bgColor = “yellow”

document.layerObject

CD-209Chapter 31 ✦ Positioned Objects

This syntax looks like the way you address any object in a document, such as a link
or image. However, things get tricky in that each layer automatically contains a
document object of its own. That document object is what holds the content of the
layer. Therefore, if you want to inspect the lastModified property of the HTML
document loaded into the layer, use this statement:

var modDate = document.Flintstones.document.lastModified

The situation gets more complex if the layer has another layer nested inside it (one
of those “passengers” that goes along for the ride). If the structure changes to

<HTML>
<HEAD>
</HEAD>
<BODY>
<LAYER NAME=”Flintstones” SRC=”flintstonesFamily.html”>

<LAYER NAME=”Fred” SRC=”fredFlintstone.html”></LAYER>
<LAYER NAME=”Wilma” SRC=”wilmaFlintstone.html”></LAYER>

</LAYER>
</BODY>
</HTML>

references to items in the second level of layers get even longer. For example, to get
the lastModified property of the fredFlintstone.html file loaded into the
nested Fred layer, use this reference from the Head script:

document.Flintstones.document.Fred.document.lastModified

The reason for this is that NN4 does not have a shortcut access to every layer
defined in a top-level document. As stated in the description of the document.
layers property in Chapter 18, the property reflects only the first level of layers
defined in a document. You must know the way to San Jose if you want to get its
lastModified property.

Layers and forms
Because each layer has its own document, you cannot spread a form across multi-
ple layers. Each layer’s document must define its own <FORM> tags. If you need to
submit one form from content located in multiple layers, one of the forms should
have an onSubmit event handler to harvest all the related form values and place
them in hidden input fields in the document containing the submitted form. In this
case, you need to know how to devise references from a nested layer outward.

As a demonstration of reverse-direction references, I start with the following skele-
tal structure that contains multiple nested layers:

<HTML>
<HEAD>
</HEAD>

document.layerObject

CD-210 Part III ✦ Document Objects Reference

<BODY>
<FORM NAME=”personal”>

<INPUT TYPE=”text” NAME=”emailAddr”>
</FORM>
<LAYER NAME=”product” SRC=”ultraGizmoLine.html”>

<LAYER NAME=”color” SRC=”colorChoice.html”></LAYER>
<LAYER NAME=”size” SRC=”sizeChoice.html”></LAYER>
<LAYER NAME=”sendIt” SRC=”submission.html”></LAYER>

</LAYER>
</BODY>
</HTML>

Each of the HTML files loaded into the layers also has a <FORM> tag defining some
fields or select lists for relevant user choices, such as which specific model of the
UltraGizmo line is selected, what color, and in what size. (These last two are
defined as separate layers because their positions are animated when they are dis-
played.) The assumption here is that the Submit button is in the sendIt layer. That
layer’s document also includes hidden input fields for data to be pulled from the
main document’s form and three other layer forms. Two of those layers are at the
same nested level as sendIt, one is above it, and the main document’s form is at the
highest level.

To reach the value property of a field named theColor in the color layer, a script
in the sendIt layer uses this reference:

parentLayer.document.color.document.forms[0].theColor.value

Analogous to working with frames, the reference starts with a reference to the next
higher level (parentLayer) and then starts working its way down through the par-
ent layer’s document, the color layer, the color layer’s document, and finally the
form therein.

To reach the value property of a field named modelNum in the product layer, the
reference starts the same way; but because the form is at the parent layer level, the
reference goes immediately to that layer’s document and form:

parentLayer.document.forms[0].modelNum.value

It may seem odd that a reference to an object at a different layer level is shorter
than one at the same level (for example, the color layer), but the route to the par-
ent layer is shorter than going via the parent layer to a sibling. Finally, to reach the
value of the emailAddr field in the base document, the reference must ratchet out
one more layer as follows:

parentLayer.parentLayer.document.forms[0].emailAddr.value

The two parentLayer entries step the reference out two levels, at which point the
scope is in the base layer containing the main document and its form.

document.layerObject

CD-211Chapter 31 ✦ Positioned Objects

Layers and tables
The document-centered nature of NN4 layers also makes it difficult — if not impossi-
ble at times — to incorporate them inside tables. Even defining a layer that is con-
tained by a TD table cell can cause countless problems.

If you need to have absolute-positioned elements that look as though they are part
of a table, I suggest you define the layers as freestanding elements outside of the
table. After that, you can position the layers to make them look like they live in the
table. You may also need to create empty placeholders in your table to make room
for the overlaid layer. You can do this by way of a relative-positioned element inside
the table cell whose visibility is hidden. This allows the element to flow as the page
loads to accommodate the current browser window dimensions. Scripts can then
read the location of the relative-positioned element and use those coordinates to
move the absolute-positioned elements that are to overlay the hidden elements.

Properties
above
below
siblingAbove
siblingBelow

Value: Layer object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

Each layer object is its own physical layer. Given that the variables x and y tradi-
tionally represent width and height, the third dimension — the position of a layer
relative to the stack of layers — is called the z-order. Layer orders are assigned auto-
matically according to the loading order, with the highest number being the top-
most layer. That topmost layer is the one closest to you as you view the page on the
monitor.

If two layers are on a page, one layer must always be in front of the other even if
they both appear to be transparent and visually overlap each other. Knowing which
layer is above the other is important for scripting purposes, especially if your
script needs to reorder the layering in response to user action. Layer objects have
four properties to help you determine the layers adjacent to a particular layer.

document.layerObject.above

CD-212 Part III ✦ Document Objects Reference

The first pair of properties, layerObject.above and layerObject.below, takes a
global look at all layers defined on the page regardless of the fact that one layer
may contain any number of nested layers separate from other batches on the
screen. If a layer lies above the one in question, the property contains a reference
to that other layer; if no layer exists in that direction, then the value is null.
Attempts to retrieve properties of a nonexistent layer result in runtime scripting
errors indicating that the object does not have properties (of course not — an
object must exist before it can have properties).

To understand these two properties better, consider a document that contains three
layers (in any nesting arrangement you like). The first layer to be defined is on the
bottom of the stack. It has a layer above it, but none below it. The second layer in
the middle has a layer both above and below it. And the topmost layer has a layer
only below it, with no more layers above it (that is, coming toward your eye).

Another pair of properties, layerObject.siblingAbove and layerObject.
siblingBelow, confines itself to the group of layers inside a parent layer con-
tainer. Just as in real family life, siblings are descended from (teens might say
“contained by”) the same parent. An only child layer has no siblings, so both the
layerObject.siblingAbove and layerObject.siblingBelow values are null.
For two layers from the same parent, the first one to be defined has a sibling layer
above it; the other has a sibling layer below it.

It is important to understand the difference between absolute layering and sibling
layering to use these properties correctly. A nested layer might be the fifth layer
from the bottom among all layers on the page but at the same time be the first layer
among siblings within its family group. As you can see, these two sets of properties
enable your script to be very specific about the relationships under examination.

Positioned objects in IE4+ and NN6 have no comparable properties to the four
described in this section.

Example (with Listing 31-1) on the CD-ROM

Related Items: layer.parentLayer property; layer.moveAbove(),
layer.moveBelow() methods.

background
Value: Image object Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

On the
CD-ROM

document.layerObject.background

CD-213Chapter 31 ✦ Positioned Objects

You can assign a background image to a layer. The BACKGROUND attribute of the
<LAYER> tag usually sets the initial image, but you can assign a new image when-
ever you like via the layerObject.background property.

Layer background images are typically like those used for entire Web pages. They
tend to be subtle — or at least of such a design and color scheme as not to distract
from the primary content of the layer. On the other hand, the background image
may in fact be the content. If so, then have a blast with whatever images suit you.

The value of the layerObject.background property is an image object (see
Chapter 22). To change the image in that property on the fly, you must set the
layerObject.background.src property to the URL of the desired image (just like
changing document.imageName.src on the fly). You can remove the background
image by setting the layerObject.background.src property to null. Background
images smaller than the rectangle of the layer repeat themselves, just like document
background pictures; images larger than the rectangle clip themselves to the rect-
angle of the layer rather than scaling to fit.

The IE4+ and NN6+ way of handling background images is through the
style.backgroundImage property.

Example (with Listing 31-2) on the CD-ROM

Related Items: layer.bgColor property; image object.

bgColor
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

A layer’s background color fills the entire rectangle with the color set in the
<LAYER> tag or from a script at a later time. Color values are the same as for docu-
ment-related values; they may be in the hexadecimal triplet format or in one of the
plain-language color names. You can turn a layer transparent by setting its bgColor
property to null.

You control the corresponding behavior in IE4+ and NN6+ via the style.
backgroundColor property.

On the
CD-ROM

document.layerObject.bgColor

CD-214 Part III ✦ Document Objects Reference

Example (with Listing 31-3) on the CD-ROM

Related Items: layer.background property; layer.onMouseOver event handler.

clip
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

The layerObject.clip property is an object (the only one in NN4’s document
object model that exposes itself as a rectangle object) with six geographical prop-
erties defining the position and size of a rectangular area of a layer visible to the
user. Those six properties are

✦ clip.top

✦ clip.left

✦ clip.bottom

✦ clip.right

✦ clip.width

✦ clip.height

The unit of measure is pixels, and the values are relative to the top-left corner of the
layer object.

A clip region can be the same size as or smaller than the layer object. If the CLIP
attribute is not defined in the <LAYER> tag, the clipping region is the same size as the
layer. In this case, the clip.left and clip.top values are automatically zero
because the clip region starts at the very top-left corner of the layer’s rectangle (mea-
surement is relative to the layer object whose clip property you’re dealing with).
The height and width of the layer object are not available properties in NN4.
Therefore, you may have to use other means to get that information into your scripts
if you need it. (I do it in Listing 31-4.) Also be aware that even if you set the HEIGHT
and WIDTH attributes of a layer tag, the content rules the initial size of the visible
layer unless the tag also includes specific clipping instructions. Images, for example,
expand a layer to fit the HEIGHT and WIDTH attributes of the tag; text (either
from an external HTML file or inline in the current file) adheres to the <LAYER> tag’s
WIDTH attribute but flows down as far as necessary to display every character.

On the
CD-ROM

document.layerObject.clip

CD-215Chapter 31 ✦ Positioned Objects

Setting a clip property does not move the layer or the content of the layer — only
the visible area of the layer. Each adjustment has a unique impact on the apparent
motion of the visible region. For example, if you increase the clip.left value from
its original position of 0 to 20, the entire left edge of the rectangle shifts to the right
by 20 pixels. No other edge moves. Changes to the clip.width property affect only
the right edge; changes to the clip.height property affect only the bottom edge.
Unfortunately, no shortcuts exist to adjust multiple edges at once. JavaScript is fast
enough on most client machines to give the impression that multiple sides are mov-
ing if you issue assignment statements to different edges in sequence.

IE4+ and NN6+ have the style.clip property to assist in adjusting the clipping
rectangle of a layer. But the W3C DOM’s style.clip object does not offer addi-
tional subproperties to access individual edges or dimensions of the clipping rect-
angle. IE5’s read-only currentStyle object does provide properties for the four
edge dimensions. Listing 31-15 demonstrates how to adjust clipping in IE5+ and
NN6+ syntax.

Example (with Listing 31-4) on the CD-ROM

Related Items: layer.pageX, layer.pageY properties; layer.resizeTo()
method.

document
Value: document object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

Your scripts practically never have to retrieve the document property of a layer.
But it is important to remember that it is always there as the actual container of
content in the layer. As described at length in the opening section about the layer
object, the document object reference plays a large role in assembling addresses to
content items and properties in other layers. A document inside a layer has the
same powers, properties, and methods of the main document in the browser win-
dow or in a frame.

Related Items: document object.

On the
CD-ROM

document.layerObject.document

CD-216 Part III ✦ Document Objects Reference

left
top

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

The layerObject.left and layerObject.top properties correspond to the LEFT
and TOP attributes of the <LAYER> tag. These integer values determine the horizon-
tal and vertical pixel coordinate point of the top-left corner of the layer relative to
the browser window, frame, or parent layer in which it lives. The coordinate system
of the layer’s most immediate container is the one that these properties reflect.

Adjustments to these properties reposition the layer without adjusting its size.
Clipping area values are untouched by changes in these properties. Thus, if you cre-
ate a draggable layer object that needs to follow a dragged mouse pointer in a
straight line along the x or y axis, it is more convenient to adjust one of these prop-
erties than to use the layerObject.moveTo() method.

IE4+ and NN6+ provide various properties to determine the coordinate location of a
positioned element — all through the style object.

Example (with Listing 31-5) on the CD-ROM

Related Items: layer.clip, layer.parentLayer properties.

name
Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

The layerObject.name property reflects the NAME attribute of the <LAYER> tag or
name you assign to a positioned DIV or SPAN element. This property is read-only. If

On the
CD-ROM

document.layerObject.name

CD-217Chapter 31 ✦ Positioned Objects

you don’t assign a name to a layer when you create it, Navigator generates a name
for the layer in this format:

js_layer_nn

Here, nn is a serial number. That serial number is not the same every time the page
loads, so you cannot rely on the automatically generated name to help you script
an absolute reference to the layer.

Related Items: None.

pageX
pageY

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

In Netscape’s coordinate terminology, the page is the content area of a document.
The top-left corner of the page space is point 0,0, and you can position any layer
(including a nested layer) on the page relative to this corner. In the <LAYER> tag,
the attributes that enable authors to set the position are PAGEX and PAGEY. These
values are retrievable and modifiable as the layerObject.pageX and layerObject.
pageY properties, respectively. Note the capitalization of the final letters of these
property names.

The layerObject.pageX and layerObject.pageY values are identical to
layerObject.left and layerObject.top only when the layer in question is at
the main document level. That’s because the layerObject.left and layerObject.
top values are measured by the next higher container’s coordinate system —
which, in this case, is the same as the page.

The situation gets more interesting when you’re dealing with nested layers. For a
nested layer, the layerObject.pageX and layerObject.pageY values are still
measured relative to the page, while layerObject.left and layerObject.top
are measured relative to the next higher layer. If trying to conceive of these differ-
ences makes your head hurt, the example in Listing 31-6 should help clear things up
for you.

Adjusting the layerObject.pageX and layerObject.pageY values of any layer
has the same effect as using the layerObject.moveToAbsolute() method, which

document.layerObject.pageX

CD-218 Part III ✦ Document Objects Reference

measures its coordinate system based on the page. If you create flying layers on
your page, you can’t go wrong by setting the layerObject.pageX and layerObject.
pageY properties (or using the moveToAbsolute() method) in your script. That
way, should you add another layer in the hierarchy between the base document
and the flying layer, the animation is in the same coordinate system as before the
new layer was added.

IE4+ does not provide a pair of properties to determine the location of a positioned
element relative to the page, but the offsetLeft and offsetTop properties pro-
vide coordinates within the element’s next outermost positioning context. Thus,
you may have to “walk” the offsetParent trail to accumulate complete coordinate
values. In NN6, the offsetLeft and offsetTop properties use the page as the
positioning context.

Example (with Listing 31-6) on the CD-ROM

Related Items: layer.left, layer.top, window.innerHeight,
window.innerWidth properties; layer.moveToAbsolute() method.

parentLayer
Value: Object Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

Every layer has a parent that contains that layer. In the case of a layer defined at
the main document level, its parent layer is the window or frame containing that
document (the “page”). For this kind of layer, the layerObject.parentLayer
property object is a window object. But for any nested layer contained by a layer,
the parentLayer property is a layer object.

Be aware of the important distinction between layerObject.parentLayer and
layerObject.below. As a parent layer can contain multiple layers in the next con-
tainment level, each of those layers’ parentLayer properties evaluate to that same
parent layer. But because each layer object is its own physical layer among the
stack of layers on a page, the layer.below property in each layer points to a differ-
ent object — the layer next lower in z-order.

Keeping the direction of things straight can get confusing. On the one hand, you
have a layer’s parent, which, by connotation, is higher up the hierarchical chain of

On the
CD-ROM

document.layerObject.parentLayer

CD-219Chapter 31 ✦ Positioned Objects

layers. On the other hand, the order of physical layers is such that a parent more
than likely has a lower z-order than its children because it is defined earlier in the
document.

Use the layerObject.parentLayer property to assemble references to other
nested layers. See the discussion about layer references at the beginning of this
chapter for several syntax examples.

IE4+ offers an offsetParent property, which comes close to the functionality of
the layerObject.parentLayer property.

Related Items: layer.above, layer.below properties.

siblingAbove
siblingBelow

See layer.above and layer.below properties earlier in this chapter.

src
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

Content for a layer may come from within the document that defines the layer or
from an external source, such as an HTML or image file. If defined by a <LAYER> tag,
an external file is specified by the SRC attribute. This attribute is reflected by the
layerObject.src property.

The value of this property is a string of the URL of the external file. If you do not
specify an SRC attribute in the <LAYER> tag, the value returns null. Do not set this
property to an empty string in an effort to clear the layer of content:
document.write() or load an empty page instead. Otherwise, the empty string is
treated like a URL, and it loads the current client directory.

You can, however, change the content of a layer by loading a new source file into
the layer. Simply assign a new URL to the layerObject.src property. Again, if a
layer has nested layers inside it, those nested layers are blown away by the content
that loads into the layer whose src property you change. The new file, of course,
can be an HTML file that defines its own nested layers, which then become part of
the page’s object model.

document.layerObject.src

CD-220 Part III ✦ Document Objects Reference

Netscape also provides the layerObject.load() method to insert new content
into a layer. One advantage of this method is that an optional second parameter
enables you to redefine the width of the layer at the same time you specify a new
document. But if you are simply replacing the content in the same width layer, you
can use either way of loading new content.

Be aware that the height and width of a replacement layer are governed as much by
their hard-coded content size as by the initial loading of any layer. For example, if
your layer is initially sized at a width of 200 pixels and your replacement layer docu-
ment includes an image whose width is set to 500 pixels, the layer expands its width
to accommodate the larger content — unless you also restrict the view of the layer
via the layerObject.clip properties. Similarly, longer text content flows beyond
the bottom of the previously sized layer unless restricted by clipping properties.

Positioned elements in IE4+ and NN6+ do provide a way to load external content
into them. That’s what the W3C sees as the purpose of the IFRAME element. Even
so, as Listing 31-18 shows, you can script your way around this limitation if it’s
absolutely necessary.

Example (with Listing 31-7) on the CD-ROM

Related Items: layer.load(), layer.resizeTo() methods.

visibility
Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

A layer’s visibility property can use one of three settings: show, hide, or
inherit— the same values you can assign to the VISIBILITY attribute of the
<LAYER> tag. But NN4 also enables you to set the property to hidden and visible,
which are the values for the style.visibility property used in IE4+ and NN6+.

Unlike many other layer properties, you can set the visibility property such that
a layer can either follow the behavior of its parent or strike out on its own. By
default, a layer’s visibility property is set to inherit, which means the layer’s
visibility is governed solely by that of its parent (and of its parent, if the nesting
includes many layers). When the governing parent’s property is, say, hide, the
child’s property remains inherit. Thus, you cannot tell whether an inheriting layer

On the
CD-ROM

document.layerObject.visibility

CD-221Chapter 31 ✦ Positioned Objects

is presently visible or not without checking up the hierarchy (with the help of the
layerObject.parentLayer property). However, you can override the parent’s
behavior by setting the current layer’s property explicitly to show or hide. This
action does not alter in any way other parent-child relationships between layers.

Example (with Listing 31-8) on the CD-ROM

Related Items: None.

zIndex
Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

Close relationships exist among the layerObject.above, layerObject.below,
and layerObject.zIndex properties. When you define a layer in a document with
the <LAYER> tag, you can supply only one of the three attributes (ABOVE, BELOW,
and Z-INDEX). After the layer is generated with any one of those attributes, the
document object model automatically assigns values to at least two of those prop-
erties (layerObject.above and layerObject.below) unless you specify the Z-
INDEX attribute; in this case, all three properties are assigned to the layer. If you
don’t specify any of these properties, the physical stacking order of the layers is
the same as in the HTML document. The layerObject.above and layerObject.
below properties are set as described in their discussion earlier in this chapter. But
the layerObject.zIndex properties for all layers are zero.

The CSS attribute is spelled with a hyphen after the “z.” Because a JavaScript prop-
erty name cannot contain a hyphen, the character was removed for the property
name. The capital “I” is important because JavaScript properties are case-sensitive.

Changes to layerObject.zIndex values affect the stacking order only of sibling
layers. You can assign the same value to two layers, but the last layer to have its
layerObject.zIndex property set lies physically above the other one. Therefore,
if you want to ensure a stacking order, set the zIndex values for all layers within a
container. Each value should be a unique number.

Stacking order is determined simply by the value of the integer assigned to the prop-
erty. If you want to stack three sibling layers, the order is the same if you assign

Note

On the
CD-ROM

document.layerObject.zIndex

CD-222 Part III ✦ Document Objects Reference

them the values of 1, 2, 3 or 10, 13, 50. As you modify a layerObject.zIndex value,
the layerObject.above and layerObject.below properties for all affected layers
change as a result.

Avoid setting zIndex property values to negative numbers in NN4. Negative values
are treated as their absolute (positive) values for ordering.

For IE4+ and NN6+, the style.zIndex property controls z-order.

Example (with Listing 31-9) on the CD-ROM

Related Items: layer.above, layer.below properties; layer.moveAbove(),
layer.moveBelow() methods.

Methods
load(“URL”, newLayerWidth)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

One way to change the content of an NN4 layer after it loads is to use the
layerObject.load() method. This method has an advantage over setting the
layerObject.src property because the second parameter is a new layer width
for the content if one is desired. If you don’t specify the second parameter, a small
default value is substituted for you (unless the new document hard-wires widths to
its elements that must expand the current width). If you are concerned about a new
document being too long for the existing height of the layer, use the layerObject.
resizeTo() method or set the individual layerObject.clip properties before
loading the new document. This keeps the viewable area of the layer at a fixed size.

IE4+ and NN6 object models don’t have a method like this, but you can work around
the situation (as shown in Listing 31-18) and then adjust the style.width property
of the positioned element.

Example (with Listing 31-10) on the CD-ROM

Related Item: layer.src property.

On the
CD-ROM

On the
CD-ROM

document.layerObject.load()

CD-223Chapter 31 ✦ Positioned Objects

moveAbove(layerObject)
moveBelow(layerObject)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

With the exception of the layerObject.zIndex property, the layer object does not
let you adjust properties that affect the global stacking order of layers. The
layerObject.moveAbove() and layerObject.moveBelow() methods enable you
to adjust a layer in relation to another layer object. Both layers in the transaction
must be siblings — they must be in the same container, whether it be the base docu-
ment window or some other layer. You cannot move existing layers from one con-
tainer to another; you must delete the layer from the source and create a new layer
in the destination. Neither of these methods affects the viewable size or coordinate
system location of the layer.

The syntax for these methods is a little strange at first because the statement that
makes these work has two layer object references in it. Named first in the statement
(to the left of the method name, separated by a period) is the layer object you want
to move. The sole parameter for each method is a reference to the layer object that
is the physical reference point for the trip. For example, in this statement,

document.fred.moveAbove(document.ginger)

the instruction moves the fred layer above the ginger layer. The fred layer can be in
any stacking relation to ginger; but, again, both layers must be in the same container.

Obviously, after one of these moves, the layerObject.above and layerObject.
below properties of some or all layers in the container feel the ripple effects of the
shift in order. If you have several layers that are out of order because of user inter-
action with your scripts, you can reorder them using these methods — or, more
practically, by setting their layerObject.zIndex properties. In the latter case, it is
easier to visualize through your code how the ordering is handled with increasing
zIndex values for each layer.

There is no comparable method for IE4+ or NN6.

Example on the CD-ROM

Related Items: layer.above, layer.below, layer.zIndex properties.

On the
CD-ROM

document.layerObject.moveAbove()

CD-224 Part III ✦ Document Objects Reference

moveBy(deltaX,deltaY)
moveTo(x,y)
moveToAbsolute(x,y)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

Much of what CSS-Positioning is all about is being able to precisely plant an element
on a Web page. The unit of measure is the pixel, with the coordinate space starting
at an upper-left corner at location 0,0. That coordinate space for a layer is typically
the container (parent layer) for that layer. The layerObject.moveTo() and
layerObject.moveBy() methods let scripts adjust the location of a layer inside
that coordinate space — very much the way window.moveTo() and
window.moveBy() work for window objects.

Moving a layer entails moving it (and its nested layers) without adjusting its size or
stacking order. You can accomplish animation of a layer by issuing a series of
layerObject.moveTo() methods if you know the precise points along the path. Or
you can nudge the layer by increments in one or both axes with the layerObject.
moveBy() method.

In case you need to position a layer with respect to the page’s coordinate system
(for example, you are moving items from multiple containers to a common point),
the layerObject.moveToAbsolute() method bypasses the layer’s immediate con-
tainer. The 0,0 point for this method is the top-left corner of the document. Be
aware, however, that you can move a layer to a position such that some or all of it
lies out of range of the container’s clip rectangle.

Moving positioned layers in IE4+ and NN6 requires adjusting the style.left and
style.top properties (or the style.pixelLeft, style.pixelTop, style.
posLeft, and style.posTop properties in IE4+).

Example (with Listing 31-11) on the CD-ROM

Related Items: layer.resizeBy(), layer.resizeTo(), window.moveBy(),
window.moveTo() methods.

On the
CD-ROM

document.layerObject.moveBy()

CD-225Chapter 31 ✦ Positioned Objects

resizeBy(deltaX,deltaY)
resizeTo(width,height)

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

The basic functionality and parameter requirements of the layerObject.
resizeBy() and layerObject.resizeTo() methods are similar to the identically
named methods of the window object. You should, however, be cognizant of some
considerations unique to layers.

Unlike resizing a window, which causes all content to reflow to fit the new size, the
layer sizing methods don’t adjust the size of the layer. Instead, these methods con-
trol the size of the clipping region of the layer. Therefore, the content of the layer
does not reflow automatically when you use these methods any more than it does
when you change individual layerObject.clip values.

Another impact of this clipping region relationship deals with content that extends
beyond the bounds of the layer. For example, if you provide HEIGHT and WIDTH
attributes to a <LAYER> tag, content that requires more space to display itself than
those attribute settings afford automatically expands the viewable area of the layer.
To rein in such runaway content, you can set the CLIP attribute. But because the
layer resize methods adjust the clipping rectangle, outsized content doesn’t over-
flow the <LAYER> tag’s height and width settings. This may be beneficial for you or
not, depending on your design intentions. Adjusting the size of a layer with either
method affects only the position of the right and bottom edges of the layer. The top-
left location of the layer does not move.

Neither IE4+ nor NN6 provides a similar method, but you can accomplish the same
effects by adjusting the style properties of a positioned element.

Example (with Listings 31-12a and 31-12b) on the CD-ROM

Related Items: layer.moveBy(), layer.moveTo(), window.resizeBy(),
window.resizeTo() methods.

On the
CD-ROM

document.layerObject.resizeBy()

CD-226 Part III ✦ Document Objects Reference

Event handlers
onBlur
onFocus

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

A user gets no visual cue when a layer receives focus. But a click on the clipping
region of a layer triggers a focus event that can be handled with an onFocus event
handler. Clicking anywhere on the page outside of that layer area fires a blur event.
Changing the stacking order of sibling layers does not fire either event unless
mouse activity occurs in one of the layers.

If your layer contains elements that have their own focus and blur events (such as
text fields), those objects’ event handlers still fire even if you also have the same
event handlers defined for the layer. The layer’s events fire after the text field’s
events.

Unlike comparable event handlers in windows, layer events for blur and focus do
not have companion methods to bring a layer into focus or to blur it. However, if
you use the focus() and/or blur() methods on applicable form elements in a
layer, the layer’s corresponding event handlers are triggered as a result.

Related Items: textbox.blur(), textbox.focus() methods.

onLoad

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

Scripting layers can sometimes lead to instances of unfortunate sequences of load-
ing. For example, if you want to set some layer object properties via a script (that
is, not in the <LAYER> tag), you can do so only after the layer object exists in the
document object model. One way to make sure the object exists is to place the
scripting in <SCRIPT> tags at the end of the document. Another way is to specify an
onLoad event handler in the tag, as shown in Listing 31-12a.

document.layerObject.onLoad

CD-227Chapter 31 ✦ Positioned Objects

Each time you load a document into the layer — either via the SRC attribute in the
<LAYER> tag or by invoking the layerObject.load() method — the onLoad event
handler runs. But also be aware that an interaction occurs between a layer’s
onLoad event handler and an onLoad event handler in the <BODY> tag of a docu-
ment loaded into a layer. If the document body has an onLoad event handler, then
the layer’s onLoad event handler does not fire. You get one or the other, but not
both.

Related Item: window.onLoad event handler.

onMouseOut
onMouseOver

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility ✓

A layer knows when the cursor rolls into and out of its clipping region. Like several
other objects in the document object model, the layer object has onMouseOver and
onMouseOut event handlers that enable you to perform any number of actions in
response to those user activities. Typically, a layer’s onMouseOver event handler
changes colors, hides, or shows pseudo-borders devised of colored layers behind
the primary layer; sometimes, it even changes the text or image content. The sta-
tusbar is also available to plant plain-language legends about the purpose of the
layer or offer other relevant help.

Both events occur only once per entrance to, and egress from, a layer’s region by
the cursor. If you want to script actions dependent upon the location of the cursor
in the layer, you can use layerObject.captureEvents() to grab mouseMove and
all types of mouse button events. This kind of event capture generates an event
object (see Chapter 29) that includes information about the coordinate position of
the cursor at the time of the event.

Related Items: link.onMouseOut, link.onMouseOver, area.onMouseOut,

area.onMouseOver event handlers.

Positioned Elements in the Modern DOM
With the dwindling NN4 installed base, you can focus on applying “layer” tech-
niques in browsers whose object models expose every element of an object and
whose rendering engines automatically reflow content in response to changes. This

document.layerObject.onMouseOut

CD-228 Part III ✦ Document Objects Reference

section follows the sequence of examples in the discussion about NN4’s layer
object but shows you how to accomplish the same operations and learn the behav-
ior of positioned elements in IE4+ and NN6+.

An important facet that these newer browsers have in common is the style prop-
erty of every renderable element object. Most adjustments to the location, layering,
size, and visibility of positioned elements use the style object associated with
each element. Cross-browser complications ensue, however, with some aspects of
nested layers. Plus, there is the ever-present difference between the IE- and NN-
class browsers with respect to the event objects — how to reference the event
object and the names of its properties. Some of the examples that follow have more
code in them than their corresponding NN4 layer version shown earlier in this
chapter. Most of the additional code concerns itself with accommodating the differ-
ent event object models.

One more point about the following examples: The syntax adopted for references to
element objects uses the W3C DOM document.getElementById() method, which
is supported in IE5+ and NN6. If you intend to apply any of the techniques in these
examples to applications that run exclusively in an IE environment (and must be
compatible with IE4), you can substitute the document.all referencing syntax.
Conversely, you can employ the document.all equalization routine shown in
Chapter 14 to let IE4+ and NN6 use document.all references.

Changing element backgrounds
Listing 31-13 demonstrates the syntax and behavior of setting background images
via the style.backgroundImage property. Note the CSS-style syntax for the URL
value assigned to the style.backgroundImage property. It’s a good lesson to learn
that most style properties are strings, and their values are in the same format as
the values normally assigned in a style sheet definition.

Removing a background image requires setting the URL to null. Also, a background
image overlays whatever color (if any) you assign to the element. If the background
image has transparent regions, the background color shows through.

Listing 31-13: Setting Layer Backgrounds (W3C)

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function setBg(URL) {

document.getElementById(“bgExpo”).style.backgroundImage = “url(“ + URL + “)”
}
</SCRIPT>
</HEAD>
<BODY>

CD-229Chapter 31 ✦ Positioned Objects

<H1>Layer Backgrounds (W3C)</H1>
<HR>
<DIV ID=”buttons” STYLE=”position:absolute; top:100”>
<FORM>
<INPUT TYPE=”button” VALUE=”The Usual” onClick=”setBg(‘cr_kraft.gif’)”>

<INPUT TYPE=”button” VALUE=”A Big One” onClick=”setBg(‘arch.gif’)”>

<INPUT TYPE=”button” VALUE=”Not So Usual” onClick=”setBg(‘wh86.gif’)”>

<INPUT TYPE=”button” VALUE=”Decidedly Unusual” onClick=”setBg(‘sb23.gif’)”>

<INPUT TYPE=”button” VALUE=”Quick as...” onClick=”setBg(‘lightnin.gif’)”><P>
<INPUT TYPE=”button” VALUE=”Remove Image” onClick=”setBg(null)”>

</FORM>
</DIV>
<DIV ID=”bgExpo” STYLE=”position:absolute; top:100; left:250; width:300;
height:260; background-color:gray” >
Some text, which may or may not read
well with the various backgrounds.
</DIV>
</BODY>
</HTML>

Listing 31-14 focuses on background color. A color palette is laid out as a series of
rectangles. As the user rolls atop a color in the palette, the color is assigned to the
background of the layer. Because of the regularity of the DIV elements generated for
the palette, this example uses scripts to dynamically write them to the page as the
page loads. This lets the for loop handle all the positioning math based on initial
values set as global variables.

Perhaps of more interest here than the background color setting is the event han-
dling. First of all, because the target browsers all employ event bubbling, the page
lets a single event handler at the document level wait for mouseover events to bub-
ble up to the document level. But because the mouseover event of every element
on the page bubbles there, the event handler must filter the events and process
only those on the palette elements.

The setColor() method begins by equalizing the IE4+ and NN6 event object mod-
els. If an object is assigned to the evt parameter variable, then that means the NN6
browser is processing the event; otherwise, it’s IE4+ — meaning that the window.
event object contains the event information. Whichever browser performs the
processing, the event object is assigned to the evt variable. After verifying that a
valid event triggered the function, the next step is to equalize the different, event-
model-specific property names for the event’s target element. For NN6, the prop-
erty is target, while IE4+ uses srcElement. The final validation is to check the
className property of the event’s target element. Because all elements acting as
palette colors share the same CLASS attribute, the className property is exam-
ined. If the value is palette, then the mouseover event has occurred on one of the
colors. Now it’s time to extract the target element’s style.backgroundColor
property and assign that color to the same property of the main positioned element.

CD-230 Part III ✦ Document Objects Reference

Listing 31-14: Layer Background Colors (W3C)

<HTML>
<HEAD>
<SCRIPT LANGUAGE=”JavaScript”>
function setColor(evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”
if (evt) {

var elem = (evt.target) ? evt.target : evt.srcElement
if (elem.className == “palette”) {

document.getElementById(“display”).style.backgroundColor =
elem.style.backgroundColor

}
}

}
document.onmouseover = setColor
</SCRIPT>
</HEAD>
<BODY>
<H1>Layer Background Colors (W3C)</H1>
<HR>
<SCRIPT LANGUAGE=”JavaScript”>
var oneLayer
var colorTop = 100
var colorLeft = 20
var colorWidth = 40
var colorHeight = 40
var colorPalette = new Array(“aquamarine”,”coral”,”forestgreen”,

”goldenrod”,”red”,“magenta”,”navy”,”teal”)
for (var i = 0; i < colorPalette.length; i++) {

oneLayer = “<DIV ID=’swatch” + i + “‘ CLASS=’palette’”
oneLayer += “STYLE=’position:absolute; top:” + colorTop + “;”
oneLayer += “left:” + ((colorWidth * i) + colorLeft) + “;”
oneLayer += “width:” + colorWidth + “; height:” + colorHeight + “;”
oneLayer += “background-color:” + colorPalette[i] + “‘></DIV>\n”
document.write(oneLayer)

}
</SCRIPT>
<DIV ID=”display” STYLE=”position:absolute; top:150; left:80; width:200;
height:200; background-color:gray”>

Some reversed text to test against background colors.
</DIV>
</BODY>
</HTML>

CD-231Chapter 31 ✦ Positioned Objects

Layer clipping
Working with clipping rectangles is a bit cumbersome using CSS syntax because the
object model standard does not provide separate readouts or controls over individ-
ual edges of a clipping rectangle. IE5+ enables you to read individual edge dimen-
sions via the currentStyle object (for example, currentStyle.clipTop), but
these properties are read-only. NN6 has not connected all the pieces of W3C DOM
Level 2 that expose individual edges of a clipping rectangle yet.

Based on these limitations, Listing 31-15 is implemented in a way that, for the sake
of convenience, preserves the current clipping rectangle edge values as global vari-
ables. Any adjustments to individual edge values are first recorded in those vari-
ables (in the setClip() function), and then the style.clip property is assigned
the long string of values in the required format (in the adjustClip() function).
The showValues() function reads the variable values and displays updated values
after making the necessary calculations for the width and height of the clipping
rectangle.

As a demonstration of a “reveal” visual effect (which you can carry out more simply
in IE4+/Windows via a transition filter), the revealClip() function establishes
beginning clip values at the midpoints of the width and height of the layer. Then the
setInterval() method loops through stepClip() until the clipping rectangle
dimensions match those of the layer.

Listing 31-15: Adjusting Layer clip Properties (W3C)

<HTML>
<HEAD>
<TITLE>Layer Clip</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var origLayerWidth = 0
var origLayerHeight = 0
var currTop, currRight, currBottom, currLeft
function init() {

origLayerWidth = parseInt(document.getElementById(“display”).style.width)
origLayerHeight = parseInt(document.getElementById(“display”).style.height)
currTop = 0
currRight = origLayerWidth
currBottom = origLayerHeight
currLeft = 0
showValues()

}

function setClip(field) {
var val = parseInt(field.value)
switch (field.name) {

case “top” :
currTop = val

Continued

CD-232 Part III ✦ Document Objects Reference

Listing 31-15 (continued)

break
case “right” :

currRight = val
break

case “bottom” :
currBottom = val
break

case “left” :
currLeft = val
break

case “width” :
currRight = currLeft + val
break

case “height” :
currBottom = currTop + val
break

}
adjustClip()
showValues()

}

function adjustClip() {
document.getElementById(“display”).style.clip = “rect(“ + currTop + “px “ +
currRight + “px “ + currBottom + “px “ + currLeft + “px)”

}

function showValues() {
var form = document.forms[0]
form.top.value = currTop
form.right.value = currRight
form.bottom.value = currBottom
form.left.value = currLeft
form.width.value = currRight - currLeft
form.height.value = currBottom - currTop

}
var intervalID
function revealClip() {

var midWidth = Math.round(origLayerWidth /2)
var midHeight = Math.round(origLayerHeight /2)
currTop = midHeight
currBottom = midHeight
currRight = midWidth
currLeft = midWidth
intervalID = setInterval(“stepClip()”,1)

}
function stepClip() {

var widthDone = false
var heightDone = false
if (currLeft > 0) {

currLeft += -2
currRight += 2

CD-233Chapter 31 ✦ Positioned Objects

} else {
widthDone = true

}
if (currTop > 0) {

currTop += -1
currBottom += 1

} else {
heightDone = true

}
adjustClip()
showValues()
if (widthDone && heightDone) {

clearInterval(intervalID)
}

}
</SCRIPT>
</HEAD>
<BODY onLoad=”init()”>
<H1>Layer Clipping Properties (W3C)</H1>
<HR>
Enter new clipping values to adjust the visible area of the layer.<P>
<DIV STYLE=”position:absolute; top:130”>
<FORM>
<TABLE>
<TR>

<TD ALIGN=”right”>layer.style.clip (left):</TD>
<TD><INPUT TYPE=”text” NAME=”left” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.style.clip (top):</TD>
<TD><INPUT TYPE=”text” NAME=”top” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.style.clip (right):</TD>
<TD><INPUT TYPE=”text” NAME=”right” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.style.clip (bottom):</TD>
<TD><INPUT TYPE=”text” NAME=”bottom” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.style.clip (width):</TD>
<TD><INPUT TYPE=”text” NAME=”width” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.style.clip (height):</TD>
<TD><INPUT TYPE=”text” NAME=”height” SIZE=3 onChange=”setClip(this)”></TD>

</TR>
</TABLE>
<INPUT TYPE=”button” VALUE=”Reveal Original Layer” onClick=”revealClip()”>
</FORM>
</DIV>

Continued

CD-234 Part III ✦ Document Objects Reference

Listing 31-15 (continued)

<DIV ID=”display” STYLE=”position:absolute; top:130; left:220; width:360;
height:180; clip:rect(0px 360px 180px 0px); background-color:coral”>
<H2>ARTICLE I</H2>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
</DIV>
</BODY>
</HTML>

Listing 31-16 enables you to compare the results of adjusting a clipping rectangle
versus the size of a positioned element. This example goes a bit further than the
corresponding NN4 layer version (Listing 31-5) in that it enables you to adjust the
dimensions of the entire layer (via the style.left and style.right properties)
as well as the right and bottom edges of the clipping rectangle associated with the
layer. As a bonus, the code includes a function that converts the style.clip string
into an object representing the rectangle of the clipping rectangle (in other words,
with four properties, one for each edge). Values from that rectangle object popu-
late two of the fields on the page, providing dynamic readouts of the clipping rect-
angle’s right and bottom edges.

Global variables still temporarily store the clipping rectangle values so that the
adjustClip() function can operate just as it does in Listing 31-15. Note that the
clipping rectangle is explicitly defined in the style sheet rule for the positioned ele-
ment. This is necessary for the element’s style.clip property to have some val-
ues with which to start.

Listing 31-16: Comparison of Layer and Clip
Location Properties (W3C)

<HTML>
<HEAD>
<TITLE>Layer vs. Clip</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var currClipTop = 0
var currClipLeft = 0
var currClipRight = 360
var currClipBottom = 180
function setClip(field) {

var val = parseInt(field.value)

CD-235Chapter 31 ✦ Positioned Objects

switch (field.name) {
case “clipBottom” :

currClipBottom = val
break

case “clipRight” :
currClipRight = val
break

}
adjustClip()
showValues()

}
function adjustClip() {

document.getElementById(“display”).style.clip = “rect(“ + currClipTop +
“px “ + currClipRight + “px “ + currClipBottom + “px “ + currClipLeft +
“px)”

}

function setLayer(field) {
var val = parseInt(field.value)
switch (field.name) {

case “width” :
document.getElementById(“display”).style.width = val + “px”
break

case “height” :
document.getElementById(“display”).style.height = val + “px”
break

}
showValues()

}
function showValues() {

var form = document.forms[0]
var elem = document.getElementById(“display”)
var clipRect = getClipRect(elem)
form.width.value = parseInt(elem.style.width)
form.height.value = parseInt(elem.style.height)
form.clipRight.value = clipRect.right
form.clipBottom.value = clipRect.bottom

}
// convert clip property string to an object
function getClipRect(elem) {

var clipString = elem.style.clip
// assumes “rect(npx, npx, npx, npx)” form
// get rid of “rect(“
clipString = clipString.replace(/rect\(/,””)
// get rid of “px)”
clipString = clipString.replace(/px\)/,””)
// get rid of remaining “px” strings
clipString = clipString.replace(/px/g,”,”)
// turn remaining string into an array
clipArray = clipString.split(“,”)
// make object out of array values

Continued

CD-236 Part III ✦ Document Objects Reference

Listing 31-16 (continued)

var clipRect = {top:parseInt(clipArray[0]), right:parseInt(clipArray[1]),
bottom:parseInt(clipArray[2]), left:parseInt(clipArray[3])}
return clipRect

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showValues()”>
<H1>Layer vs. Clip Dimension Properties (W3C)</H1>
<HR>
Enter new layer and clipping values to adjust the layer.<P>
<DIV STYLE=”position:absolute; top:130”>
<FORM>
<TABLE>
<TR>

<TD ALIGN=”right”>layer.style.width:</TD>
<TD><INPUT TYPE=”text” NAME=”width” SIZE=3 onChange=”setLayer(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.style.height:</TD>
<TD><INPUT TYPE=”text” NAME=”height” SIZE=3 onChange=”setLayer(this)”></TD>

</TR>
<TR>

<TD ALIGN=”right”>layer.style.clip (right):</TD>
<TD><INPUT TYPE=”text” NAME=”clipRight” SIZE=3

onChange=”setClip(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right”>layer.style.clip (bottom):</TD>
<TD><INPUT TYPE=”text” NAME=”clipBottom” SIZE=3

onChange=”setClip(this)”></TD>
</TR>
</TABLE>
</FORM>
</DIV>
<DIV ID=”display” STYLE=”position:absolute; top:130; left:250; width:360;
height:180; clip:rect(0px, 360px, 180px, 0px); background-color:coral”>
<H2>ARTICLE I</H2>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
</DIV>
</BODY>
</HTML>

CD-237Chapter 31 ✦ Positioned Objects

Scripting nested layers
Working with nested layer locations, especially in a cross-browser manner, presents
numerous browser-specific syntax problems that need equalization to behave the
same to all users. Some discrepancies even appear between Windows and
Macintosh versions of IE.

The scenario for Listing 31-17 consists of one positioned layer (greenish) nested
inside another (reddish). The inner layer is initially sized and positioned so that the
outer layer extends five pixels in each direction. Text boxes enable you to adjust
the coordinates for either layer relative to the entire page as well as the layer’s posi-
tioning context. If you make a change to any one value, all the others are recalcu-
lated and displayed to show you the effect the change has on other coordinate
values.

As you see when you load the page, the outer element’s positioning context is the
page, so the “page” and “container” coordinates are the same (although the calcula-
tions to achieve this equality are not so simple across all browsers). The inner
layer’s initial page coordinates are to the right and down five pixels in each direc-
tion, and the coordinates within the container show those five pixels.

Because of browser idiosyncrasies, calculating the coordinates within the page
takes the most work. The getGrossOffsetLeft() and getGrossOffsetTop()
functions perform those calculations in the page. Passed a reference to the posi-
tioned element to be measured, the first number to grab is whatever the browser
returns as the offsetLeft or offsetTop value of the element (see Chapter 15).
These values are independent of the style property, and they can report different
values for different browsers. IE, for example, measures the offset with respect to
whatever it determines as the next outermost positioning context. NN6, on the
other hand, treats the page as the positioning context regardless of nesting. So, as
long as there is an offsetParent element, a while loop starts accumulating the
offsetLeft measures of each succeeding offset parent element going outward
from the element. But even before that happens, a correction for IE/Macintosh must
be accounted for. If there is a difference between the style.left and offsetLeft
property values of an element, that difference is added to the offset. In IE5/Mac, for
example, failure to correct this results in the “page” and “container” values of the
outer layer being 10 pixels different in each direction. Values returned from these
two gross measures are inserted in the readouts for the “page” measures of both
inner and outer elements.

Reading the coordinates relative to each element’s “container” is easy: The
style.left and style.top properties have the correct values for all browsers.
Moving a layer with respect to its positioning context (the “container” values) is
equally easy: assign the entered values to the same style.left and style.top
properties.

Moving the layers with respect to the page coordinate planes (via the setOuterPage()
and setInnerPage() functions) involves going the long way to assign values that

CD-238 Part III ✦ Document Objects Reference

take each browser’s positioning idiosyncrasies into account. The way you move a
positioned element (cross-browser, anyway) is to assign a value to the style.left
and style.top properties. These values are relative to their positioning context,
but NN6 doesn’t offer any shortcuts to reveal what element is the positioning con-
text for a nested element. Calls to the getNetOffsetLeft() and getNetOffsetTop()
functions do the inverse of the getGrossOffsetLeft() and getGrossOffsetTop()
functions. Because the values received from the text box are relative to the entire
page, the values must have any intervening positioning contexts subtracted from
that value in order to achieve the net positioning values that can be applied to
the style.left and style.top properties. To get there, however, a call to the
getParentLayer() function cuts through the browser-specific implementations of
container references to locate the positioning context so that its coordinate values
can be subtracted properly. The same kind of correction for IE/Mac is required here
as in the gross offset calculations; but here, the correction is subtracted from the
value that eventually is returned as the value for either the style.left or style.
top of the layer.

Let me add one quick word about the condition statements of the while construc-
tions in the getNetOffsetLeft() and getNetOffsetTop() functions. You see
here a construction not used frequently in this book, but one that is perfectly legal.
When the conditional expression evaluates, the getParentLayer() method is
invoked, and its returned value is assigned to the elem variable. That expression
evaluates to the value returned by the function. As you can see from the
getParentLayer() function definition, a value is returned as either an element ref-
erence or null. The while condition treats a value of null as false; any reference
to an object is treated as true. Thus, the conditional expression does not use a
comparison operator but rather executes some code and branches based on the
value returned by that code. NN6 reports JavaScript warnings (not errors) for this
construction because it tries to alert you to a common scripting bug that occurs
when you use the = operator when you really mean the == operator. But an NN6
warning is not the same as a script error, so don’t be concerned when you see these
messages in the JavaScript Console window during your debugging.

Listing 31-17: Testing Nested Layer Coordinate
Systems (W3C)

<HTML>
<HEAD>
<TITLE>Nested Layer Coordinates (W3C)</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
// offsets within page
function getGrossOffsetLeft(elem) {

var offset = 0
while (elem.offsetParent) {

// correct for IE/Mac discrepancy between offset and style coordinates,
// but not if the parent is HTML element (NN6)
offset += (elem.offsetParent.tagName != “HTML”) ?

parseInt(elem.style.left) - parseInt(elem.offsetLeft) : 0

CD-239Chapter 31 ✦ Positioned Objects

elem = elem.offsetParent
offset += elem.offsetLeft

}
return offset

}
function getGrossOffsetTop(elem) {

var offset = 0
while (elem.offsetParent) {

// correct for IE/Mac discrepancy between offset and style coordinates,
// but not if the parent is HTML element (NN6)
offset += (elem.offsetParent.tagName != “HTML”) ?

parseInt(elem.style.top) - parseInt(elem.offsetTop) : 0
elem = elem.offsetParent
offset += elem.offsetTop

}
return offset

}

// offsets within element’s positioning context
function getNetOffsetLeft(offset, elem) {

while (elem = getParentLayer(elem)) {
// correct for IE/Mac discrepancy between offset and style coordinates,
// but not if the parent is HTML element (NN6)
offset -= (elem.offsetParent.tagName != “HTML”) ?

parseInt(elem.style.left) - parseInt(elem.offsetLeft) : 0
offset -= elem.offsetLeft

}
return offset

}
function getNetOffsetTop(offset, elem) {

while (elem = getParentLayer(elem)) {
// correct for IE/Mac discrepancy between offset and style coordinates,
// but not if the parent is HTML element (NN6)
offset -= (elem.offsetParent.tagName != “HTML”) ?

parseInt(elem.style.top) - parseInt(elem.offsetTop) : 0
offset -= elem.offsetTop

}
return offset

}
// find positioning context parent element
function getParentLayer(elem) {

if (elem.parentNode) {
while (elem.parentNode != document.body) {

elem = elem.parentNode
while (elem.nodeType != 1) {

elem = elem.parentNode
}
if (elem.style.position == “absolute” || elem.style.position ==

“relative”) {
return elem

}

Continued

CD-240 Part III ✦ Document Objects Reference

Listing 31-17 (continued)

elem = elem.parentNode
}
return null

} else if (elem.offsetParent && elem.offsetParent.tagName != “HTML”) {
return elem.offsetParent

} else {
return null

}
}

// functions that respond to changes in text boxes
function setOuterPage(field) {

var val = parseInt(field.value)
var elem = document.getElementById(“outerDisplay”)
switch (field.name) {

case “pageX” :
elem.style.left = ((elem.offsetParent) ? getNetOffsetLeft(val, elem) :

val) + “px”
break

case “pageY” :
elem.style.top = ((elem.offsetParent) ? getNetOffsetTop(val, elem) :

val) + “px”
break

}
showValues()

}
function setOuterLayer(field) {

var val = parseInt(field.value)
switch (field.name) {

case “left” :
document.getElementById(“outerDisplay”).style.left = val + “px”
break

case “top” :
document.getElementById(“outerDisplay”).style.top = val + “px”
break

}
showValues()

}
function setInnerPage(field) {

var val = parseInt(field.value)
var elem = document.getElementById(“innerDisplay”)
switch (field.name) {

case “pageX” :
elem.style.left = ((elem.offsetParent) ? getNetOffsetLeft(val, elem) :

val) + “px”
break

case “pageY” :
elem.style.top = ((elem.offsetParent) ? getNetOffsetTop(val, elem) :

val) + “px”
break

}

CD-241Chapter 31 ✦ Positioned Objects

showValues()
}
function setInnerLayer(field) {

var val = parseInt(field.value)
switch (field.name) {

case “left” :
document.getElementById(“innerDisplay”).style.left = val + “px”
break

case “top” :
document.getElementById(“innerDisplay”).style.top = val + “px”
break

}
showValues()

}
function showValues() {

var form = document.forms[0]
var outer = document.getElementById(“outerDisplay”)
var inner = document.getElementById(“innerDisplay”)
form.elements[0].value = outer.offsetLeft +
((outer.offsetParent) ? getGrossOffsetLeft(outer) : 0)
form.elements[1].value = outer.offsetTop +
((outer.offsetParent) ? getGrossOffsetTop(outer) : 0)
form.elements[2].value = parseInt(outer.style.left)
form.elements[3].value = parseInt(outer.style.top)
form.elements[4].value = inner.offsetLeft +
((inner.offsetParent) ? getGrossOffsetLeft(inner) : 0)
form.elements[5].value = inner.offsetTop +
((inner.offsetParent) ? getGrossOffsetTop(inner) : 0)
form.elements[6].value = parseInt(inner.style.left)
form.elements[7].value = parseInt(inner.style.top)

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showValues()”>
<H1>Nested Layer Coordinates (W3C)</H1>
<HR>
Enter new page and layer coordinates for the outer
layer and inner layer objects.<P>
<DIV STYLE=”position:absolute; top:130”>
<FORM>
<TABLE>
<TR>

<TD ALIGN=”right” BGCOLOR=”coral”>Page X:</TD>
<TD BGCOLOR=”coral”><INPUT TYPE=”text” NAME=”pageX” SIZE=3

onChange=”setOuterPage(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”coral”>Page Y:</TD>
<TD BGCOLOR=”coral”><INPUT TYPE=”text” NAME=”pageY” SIZE=3

onChange=”setOuterPage(this)”></TD>
</TR>

Continued

CD-242 Part III ✦ Document Objects Reference

Listing 31-17 (continued)

<TR>
<TD ALIGN=”right” BGCOLOR=”coral”>Container X:</TD>
<TD BGCOLOR=”coral”><INPUT TYPE=”text” NAME=”left” SIZE=3

onChange=”setOuterLayer(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”coral”>Container Y:</TD>
<TD BGCOLOR=”coral”><INPUT TYPE=”text” NAME=”top” SIZE=3

onChange=”setOuterLayer(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”aquamarine”>Page X:</TD>
<TD BGCOLOR=”aquamarine”><INPUT TYPE=”text” NAME=”pageX” SIZE=3

onChange=”setInnerPage(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”aquamarine”>Page Y:</TD>
<TD BGCOLOR=”aquamarine”><INPUT TYPE=”text” NAME=”pageY” SIZE=3

onChange=”setInnerPage(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”aquamarine”>Container X:</TD>
<TD BGCOLOR=”aquamarine”><INPUT TYPE=”text” NAME=”left” SIZE=3

onChange=”setInnerLayer(this)”></TD>
</TR>
<TR>

<TD ALIGN=”right” BGCOLOR=”aquamarine”>Container Y:</TD>
<TD BGCOLOR=”aquamarine”><INPUT TYPE=”text” NAME=”top” SIZE=3

onChange=”setInnerLayer(this)”></TD>
</TR>
</TABLE>
</FORM>
</DIV>
<DIV ID=”outerDisplay” STYLE=”position:absolute; top:130; left:200; width:370;
height:190; background-color:coral”>
<DIV ID=”innerDisplay” STYLE=”position:absolute; top:5; left:5; width:360;
height:180; background-color:aquamarine” >
<H2>ARTICLE I</H2>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of speech, or of
the press; or the right of the people peaceably to assemble, and to petition the
government for a redress of grievances.
</P>
</DIV>
</DIV>
</BODY>
</HTML>

CD-243Chapter 31 ✦ Positioned Objects

Try entering a variety of values in all text boxes to see what happens. Here is one
possible sequence of tests and explanations:

1. Increase the red Page X value to 250. This moves the outer layer to the right
by 50 pixels. Because the green layer is nested inside, it moves along with it.
The green’s Page X value also increases by 50, but its Container X value
remains the same because the inner layer maintains the same relationship
with the outer layer as before.

2. Increase the green Page X value to 300. This action shifts the position of the
green inner layer by 45 pixels, making it a total of 50 pixels inset within its
positioning context. Because the outer layer does not have its clipping rectan-
gle set, the inner layer’s content bleeds beyond the width of the red layer.

3. Set the Container Y value to -50. This action moves the green inner layer
upward so that its top is 50 pixels above the top of its red container. As a
result, the Page Y value of the inner layer is 80, while the Page Y value of the
red outer layer remains at 130 (thus, the 50-pixel difference).

As you experiment with moving the layers around, you may encounter some screen
refresh problems where traces of the inner layer remain when moved beyond the
outer layer’s rectangle. Take these bugs into account when you design the actions
of your script-controlled positioning.

Loading external HTML into a layer
The NN4 layer object had an unfair advantage when it came to loading external con-
tent into it: the element was designed to do just that, acting in some ways like the
W3C-endorsed IFRAME element.

Because the IE4+ and NN6 object models embrace the IFRAME element, using that
element may be the easy way for you to designate a space within a page for exter-
nal content. In fact, you can even assign a style sheet rule that absolute-positions
the IFRAME precisely on the page where you want it. Be sure to set the FRAMEBORDER
attribute to 0 unless you want the border to be visible to the user (and then watch
out for content that may overrun the rectangle and cause scrollbars to appear). In
this case, you must then leave all the formatting and style sheet control of that
content to the HTML loaded into the IFRAME, just as if it were in a separate window
or frame. To load different content into the element, assign a different URL to the
src property of the IFRAME element object.

As one more example that more closely simulates the loading of external content
into a layer, Listing 31-18 demonstrates a somewhat ugly workaround that lets a
layer’s background color or image show through some kinds of HTML content. The
technique works only in IE5.5+ and NN6 because these browser generations are the
first to offer scripted access to the HTML you need to load into an intermediate
(and hidden) IFRAME before stuffing the content into the layer.

CD-244 Part III ✦ Document Objects Reference

A hidden IFRAME element is the initial recipient of the external HTML file, as loaded
by the loadOuter() method. When that file loads, the transferHTML() method is
invoked to copy the innerHTML of just the BODY element of the content window of
the IFRAME (note the different syntax for NN6 — the contentDocument property —
and IE5.5 — the contentWindow property). By eliminating the BODY element and
any tags in the HEAD, you prevent the tags in the layer from conflicting with the
tags for the main document. As a result, however, notice how the background color
set for the layer shows through the HTML plugged into the layer.

HTML element objects (other than IFRAME) were not designed to get their content
from external files. But, as Listing 31-18 shows, where there is a will there is a
way — even if the workaround isn’t pretty.

Listing 31-18: Setting Layer Source Content (W3C)

<HTML>
<HEAD>
<TITLE>Loading External Content into a Layer (W3C)</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function loadOuter(doc) {

document.getElementById(“hiddenContent”).src = doc
// workaround for missing onLoad event in IFRAME for NN6
if (!document.getElementById(“hiddenContent”).onload) {

setTimeout(“transferHTML()”, 1000)
}

}
function transferHTML() {

var srcFrame = document.getElementById(“hiddenContent”)
var srcContent = (srcFrame.contentDocument) ?
srcFrame.contentDocument.getElementsByTagName(“BODY”)[0].innerHTML :
(srcFrame.contentWindow) ?
srcFrame.contentWindow.document.body.innerHTML : “”
document.getElementById(“outerDisplay”).innerHTML = srcContent

}
</SCRIPT>
</HEAD>
<BODY>
<H1>Loading External Content into a Layer (W3C)</H1>
<HR>
<P>Click the buttons to see what happens when you load new source documents into
the layer object.</P>
<DIV STYLE=”position:absolute; top:150; width:200; background-color:coral”>
<FORM>
Load into outer layer:

<INPUT TYPE=”button” VALUE=”Article I” onClick=”loadOuter(‘article1.htm’)”>

<INPUT TYPE=”button” VALUE=”Entire Bill of Rights”
onClick=”loadOuter(‘bofright.htm’)”>

</FORM>
</DIV>

CD-245Chapter 31 ✦ Positioned Objects

<DIV ID=”outerDisplay” STYLE=”position:absolute; top:150; left:250; width:370;
height:190; background-color:coral”>

<P>Placeholder text for layer.</P>
</DIV>
<IFRAME ID=”hiddenContent” STYLE=”visibility:hidden”
onLoad=”transferHTML()”></IFRAME>
</BODY>
</HTML>

Positioned element visibility behavior
There is very little code in Listing 31-19 because it simply adjusts the style.
visibility property of an outer layer and a nested, inner layer. You can see that
when the page loads, the green inner layer’s visibility is automatically set to
inherit the visibility of its containing outer layer. When you click the outer
layer buttons, the inner layer blindly follows the settings.

Things change, however, once you start adjusting the properties of the inner layer
independently of the outer layer. With the outer layer hidden, you can show the
inner layer. Only by setting the visibility property of the inner layer to inherit
can you make it rejoin the outer layer in its behavior.

Listing 31-19: Nested Layer Visibility Relationships (W3C)

<HTML>
<HEAD>
<TITLE>layer.style.visibility (W3C)</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setOuterVis(type) {

document.getElementById(“outerDisplay”).style.visibility = type
}
function setInnerVis(type) {

document.getElementById(“innerDisplay”).style.visibility = type
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Setting the <TT>layer.style.visibility</TT> Property of Nested Layers
(W3C)</H1>
<HR>
Click the buttons to see what happens when you change the visibility of the
outer layer and inner
layer objects.<P>
<DIV STYLE=”position:absolute; top:150; width:180; background-color:coral”>
<FORM>
Control outer layer property:

Continued

CD-246 Part III ✦ Document Objects Reference

Listing 31-19 (continued)

<INPUT TYPE=”button” VALUE=”Hide Outer Layer”
onClick=”setOuterVis(‘hidden’)”>

<INPUT TYPE=”button” VALUE=”Show Outer Layer”
onClick=”setOuterVis(‘visible’)”>

</FORM>
</DIV>
<DIV STYLE=”position:absolute; top:270; width:180; background-color:aquamarine”>
<FORM>
Control inner layer property:

<INPUT TYPE=”button” VALUE=”Hide Inner Layer”
onClick=”setInnerVis(‘hidden’)”>

<INPUT TYPE=”button” VALUE=”Show Inner Layer”
onClick=”setInnerVis(‘visible’)”>

<INPUT TYPE=”button” VALUE=”Inherit Outer Layer”
onClick=”setInnerVis(‘inherit’)”>

</FORM>
</DIV>
<DIV ID=”outerDisplay” STYLE=”position:absolute; top:150; left:200; width:370;
height:190; background-color:coral”>

<DIV ID=”innerDisplay” STYLE=”position:absolute; top:5; left:5; width:360;
height:180; background-color:aquamarine”>

<P>Placeholder text for raw inner layer.</P>
</DIV>

</DIV>
</BODY>
</HTML>

Scripting layer stacking order
Listing 31-20 is simpler than its NN4 layer-specific version (Listing 31-9) because
the W3C DOM, as implemented in IE4+ and NN6, does not have properties that
reveal the equivalent of the layerObject.above or layerObject.below proper-
ties. Therefore, Listing 31-20 confines itself to enabling you to adjust the
style.zIndex property values of three overlapping layers. All three layers (none
of which are nested inside another) initially set their zIndex values to 0, meaning
that the source code order rules the stacking order.

If you try this example on both IE4+ and NN6, however, you will experience a signifi-
cant difference in the behavior of overlapping layers in the two browser categories.
For example, if you reload the page to let source code order lay out the layers ini-
tially, and then set the green middle layer to, say, 5, the middle layer plants itself in
front of the other two in both browser categories. But if you restore the middle
layer’s zIndex value to 0, IE puts it back in source code order. NN6, on the other
hand, leaves it in front of the other two. The rule of thumb (which also applies to
NN4) is that if scripts modify the zIndex property of multiple layers to all the same
value, the most recently set layer stays in front of the others.

CD-247Chapter 31 ✦ Positioned Objects

There is some method to this seeming madness, which you can experience in
Chapter 56’s map puzzle game. If you drag one of several draggable elements
around the page, you probably will set its zIndex to a value higher than that of all
the others so that the currently active element stays in front of the rest. But when
you complete the dragging, you will want to restore the zIndex to its original value,
which may be the same as that of all the other draggable items. By keeping the
most recently adjusted layer on top, you keep the layer you just dropped in front of
the others in case you want to pick it up again.

Listing 31-20: Relationships Among zIndex Values (W3C)

<HTML>
<HEAD>
<TITLE>layer.style.zIndex</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
function setZ(field) {

switch (field.name) {
case “top” :

document.getElementById(“topLayer”).style.zIndex =
parseInt(field.value)

break
case “mid” :

document.getElementById(“middleLayer”).style.zIndex =
parseInt(field.value)

break
case “bot” :

document.getElementById(“bottomLayer”).style.zIndex =
parseInt(field.value)

}
showValues()

}
function showValues() {

var botLayer = document.getElementById(“bottomLayer”)
var midLayer = document.getElementById(“middleLayer”)
var topLayer = document.getElementById(“topLayer”)

document.forms[0].bot.value = botLayer.style.zIndex
document.forms[1].mid.value = midLayer.style.zIndex
document.forms[2].top.value = topLayer.style.zIndex

}
</SCRIPT>
</HEAD>
<BODY onLoad=”showValues()”>
<H1><TT>layer.style.zIndex</TT> Property of Sibling Layers</H1>
<HR>
Enter new zIndex values to see the effect on three layers.<P>
<DIV STYLE=”position:absolute; top:140; width:240; background-color:coral”>
<FORM>
Control Original Bottom Layer:

Continued

CD-248 Part III ✦ Document Objects Reference

Listing 31-20 (continued)

<TABLE>
<TR><TD ALIGN=”right”>Layer zIndex:</TD><TD><INPUT TYPE=”text” NAME=”bot” SIZE=3
onChange=”setZ(this)”></TD></TR>
</TABLE>
</FORM>
</DIV>
<DIV STYLE=”position:absolute; top:220; width:240; background-color:aquamarine”>
<FORM>
Control Original Middle Layer:

<TABLE>
<TR><TD ALIGN=”right”>Layer zIndex:</TD><TD><INPUT TYPE=”text” NAME=”mid” SIZE=3
onChange=”setZ(this)”></TD></TR>
</TABLE></FORM>
</DIV>
<DIV STYLE=”position:absolute; top:300; width:240; background-color:yellow”>
<FORM>
Control Original Top Layer:

<TABLE>
<TR><TD ALIGN=”right”>Layer zIndex:</TD><TD><INPUT TYPE=”text” NAME=”top” SIZE=3
onChange=”setZ(this)”></TD></TR>
</TABLE>
</FORM>
</DIV>
<DIV ID=”bottomLayer” STYLE=”position:absolute; top:140; left:260; width:300;
height:190; z-Index:0; background-color:coral”>

Original Bottom Layer
</DIV>
<DIV ID=”middleLayer” STYLE=”position:absolute; top:160; left:280; width:300;
height:190; z-Index:0; background-color:aquamarine”>

Original Middle DIV
</DIV>
<DIV ID=”topLayer” STYLE=”position:absolute; top:180; left:300; width:300;
height:190; z-Index:0; background-color:yellow”>

Original Top Layer
</DIV>
</BODY>
</HTML>

Dragging and resizing a layer
Listing 31-21 is an IE4+- and NN6-compatible version of the layer dragging example
shown earlier in Listing 31-11. The basic structure is the same, with event handler
functions for engaging the drag mode, handling the mouse movement while in drag
mode, and releasing the element at the end of the journey.

There is a lot more code in this version for several reasons. The main reason is to
accommodate the two event object models in the IE and NN browsers. First of all,

CD-249Chapter 31 ✦ Positioned Objects

event bubbling is used so that all mouse events are handled at the document level.
Thus, all of the event handlers need to equalize the event object and event target
element, as well as filter events so that the action occurs only when a draggable ele-
ment (as identified by its className property) is the target of the event action.

The toughest job involves the engage() function because it must use the two dif-
ferent event and element object models to establish the offset of the mousedown
event within the draggable element. For IE/Windows, this also means taking the
scrolling of the body into account. To get the element to reposition itself with
mouse motion, the dragIt() function applies browser-specific coordinate values
to the style.left and style.top properties of the draggable element. This func-
tion is invoked very frequently in response to the mousemove event.

One extra event handler in this version, onmouseout, disengages the drag action.
This event occurs only if the user moves the cursor faster than the browser can
update the position.

Nothing in this example, however, treats the zIndex stacking order, which must be
addressed if the page contains multiple, draggable items. See the map puzzle game
in Chapter 56 for an example of processing multiple, draggable items.

Listing 31-21: Dragging a Layer (W3C)

<HTML>
<HEAD>
<TITLE>Layer Dragging</TITLE>
<STYLE TYPE=”text/css”>
.draggable {cursor:hand}
</STYLE>
<SCRIPT LANGUAGE=”JavaScript”>
var engaged = false
var offsetX = 0
var offsetY = 0
function dragIt(evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”
var targElem = (evt.target) ? evt.target : evt.srcElement
if (engaged) {

if (targElem.className == “draggable”) {
while (targElem.id != “myLayer” && targElem.parentNode) {

targElem = targElem.parentNode
}
if (evt.pageX) {

targElem.style.left = evt.pageX - offsetX + “px”
targElem.style.top = evt.pageY - offsetY + “px”

} else {
targElem.style.left = evt.clientX - offsetX + “px”
targElem.style.top = evt.clientY - offsetY + “px”

}

Continued

CD-250 Part III ✦ Document Objects Reference

Listing 31-21 (continued)

return false
}

}
}
function engage(evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”
var targElem = (evt.target) ? evt.target : evt.srcElement
if (targElem.className == “draggable”) {

while (targElem.id != “myLayer” && targElem.parentNode) {
targElem = targElem.parentNode

}
if (targElem.id == “myLayer”) {

engaged = true
if (evt.pageX) {

offsetX = evt.pageX - targElem.offsetLeft
offsetY = evt.pageY - targElem.offsetTop

} else {
offsetX = evt.offsetX - document.body.scrollLeft
offsetY = evt.offsetY - document.body.scrollTop
if (navigator.userAgent.indexOf(“Win”) == -1) {

offsetX += document.body.scrollLeft
offsetY += document.body.scrollTop
}

}
return false

}
}

}
function release(evt) {

evt = (evt) ? evt : (window.event) ? window.event : “”
var targElem = (evt.target) ? evt.target : evt.srcElement
if (targElem.className == “draggable”) {

while (targElem.id != “myLayer” && targElem.parentNode) {
targElem = targElem.parentNode

}
if (engaged && targElem.id == “myLayer”) {

engaged = false
}

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Dragging a Layer</H1>
<HR>
<DIV ID=”myLayer” CLASS=”draggable” STYLE=”position:absolute; top:90; left:100;
width:300; height:190; background-color:lightgreen”>

Drag me around the window.
</LAYER>

CD-251Chapter 31 ✦ Positioned Objects

<SCRIPT LANGUAGE=”JavaScript”>
document.onmousedown = engage
document.onmouseup = release
document.onmousemove = dragIt
document.onmouseout = release
</SCRIPT>
</BODY>
</HTML>

The final listing in this section applies many example components used thus far to
let scripts control the resizing of a positionable element by dragging the lower-
right, 20-pixel region. A lot of the hairy code in the engage() function is for deter-
mining if the onmousedown event occurs in the invisible 20-pixel square.

The resizeIt() function of Listing 31-22 resembles the dragIt() function of
Listing 31-21, but the adjustments are made to the width and height of the position-
able element. A fair amount of math determines the width of the element in
response to the cursor’s instantaneous location and sets the style.width and
style.height properties accordingly.

A user’s success with resizing an element this way depends a lot on the browser he
or she uses. IE, particularly for Windows, may not redraw the resized element very
quickly. In this case, the cursor can easily slip out of the hot spot to end the drag. In
other browsers, however, response is very fast, and it’s very difficult to have the
onmouseout event fire the release() function.

Listing 31-22: Resizing a Layer (W3C)

<HTML>
<HEAD>
<TITLE>Layer Resizing</TITLE>
<SCRIPT LANGUAGE=”JavaScript”>
var engaged = false
var offsetX = 0
var offsetY = 0

function resizeIt(evt) {
evt = (evt) ? evt : (window.event) ? window.event : “”
var targElem = (evt.target) ? evt.target : evt.srcElement
if (targElem.className == “draggable”) {

if (engaged) {
if (evt.pageX) {

targElem.style.width = (evt.pageX - targElem.offsetLeft -
offsetX) + “px”

targElem.style.height = (evt.pageY - targElem.offsetTop -
offsetY) + “px”

Continued

CD-252 Part III ✦ Document Objects Reference

Listing 31-22 (continued)

} else {
var elemWidth = evt.clientX - targElem.offsetLeft - offsetX –

(parseInt(targElem.style.left) -
parseInt(targElem.offsetLeft))

var elemHeight = evt.clientY - targElem.offsetTop - offsetY –
(parseInt(targElem.style.top) -

parseInt(targElem.offsetTop))
targElem.style.width = elemWidth + “px”
targElem.style.height = elemHeight + “px”

}
}

}
}

function engage(evt) {
evt = (evt) ? evt : (window.event) ? window.event : “”
var targElem = (evt.target) ? evt.target : evt.srcElement
if (targElem.className == “draggable”) {

while (targElem.id != “myLayer” && targElem.parentNode) {
targElem = targElem.parentNode

}
if (targElem.id == “myLayer”) {

if (evt.pageX && (evt.pageX > ((parseInt(targElem.style.width) - 20) +
targElem.offsetLeft)) && (evt.pageY >
((parseInt(targElem.style.height) - 20) + targElem.offsetTop)))

{
offsetX = evt.pageX - parseInt(targElem.style.width) -

targElem.offsetLeft
offsetY = evt.pageY - parseInt(targElem.style.height) -

targElem.offsetTop
engaged = true

} else if ((evt.offsetX > parseInt(targElem.style.width) - 20) &&
(evt.offsetY >

parseInt(targElem.style.height) - 20)) {
offsetX = evt.offsetX - parseInt(targElem.style.width) -

document.body.scrollLeft
offsetY = evt.offsetY - parseInt(targElem.style.height) -

document.body.scrollTop
engaged = true
if (navigator.userAgent.indexOf(“Win”) == -1) {

offsetX += document.body.scrollLeft
offsetY += document.body.scrollTop
}

}
return false

}
}

}

CD-253Chapter 31 ✦ Positioned Objects

function release(evt) {
evt = (evt) ? evt : (window.event) ? window.event : “”
var targElem = (evt.target) ? evt.target : evt.srcElement
if (targElem.className == “draggable”) {

while (targElem.id != “myLayer” && targElem.parentNode) {
targElem = targElem.parentNode

}
if (engaged && targElem.id == “myLayer”) {

engaged = false
}

}
}
</SCRIPT>
</HEAD>
<BODY>
<H1>Resizing a Layer (W3C)</H1>
<HR>
<DIV ID=”myLayer” CLASS=”draggable” STYLE=”position:absolute; top:170; left:100;
width:300; height:190; background-color:lightblue”>
Here is some content inside the layer. See what happens to it as you
resize the layer via the bottom-right 20-pixel handle.
</DIV>
<SCRIPT LANGUAGE=”JavaScript”>
document.onmousedown = engage
document.onmouseup = release
document.onmousemove = resizeIt
document.onmouseout = release
</SCRIPT>
</BODY>
</HTML>

This chapter only scratches the surface in the kinds of positioned element actions
you can control via scripts. You may have seen examples of positioned element
scripting at sites around the Web. For example, some pages have subject headers
fly into place — even “bounce” around until they settle into position. Or elements
can go in circles or spirals to get your attention (or distract you, as the case may
be). The authors of those tricks apply formulas from other disciplines (such as
games programming) to the style object properties of a positioned element.

Sometimes the effects are there just for the sake of looking (at first anyway) cool or
because the page author knows how to script those effects. Your chief guide in imple-
menting such features, however, should be whether the scripting genuinely adds
value to the content offering. If you don’t improve the content by adding a flying doo-
dad or pulsating images, then leave them out. A greater challenge is finding meaning-
ful ways to apply positioning techniques. Done the right way and for the right reason,
they can significantly enhance the visitor’s enjoyment of your application.

✦ ✦ ✦

	Positioned Objects
	What Is a Layer?
	NN4 Layer Object
	Positioned Elements in the Modern DOM

