Regular
Expression and
RegExp Objects

Web programmers who have worked in Perl (and
other Web application programming languages)
know the power of regular expressions for processing
incoming data and formatting data for readability in an HTML
page or for accurate storage in a server database. Any task
that requires extensive search and replacement of text can
greatly benefit from the flexibility and conciseness of regular
expressions. Navigator 4 and Internet Explorer 4 bring that
power to JavaScript.

Most of the benefit of JavaScript regular expressions
accrues to those who script their CGI programs with LiveWire
on Enterprise Server 3 or later. The JavaScript version in the
LiveWire implementation includes the complete set of regular
expression facilities described in this chapter. But that’s not
to exclude the client-side from application of this “language
within a language.” If your scripts perform client-side data
validations or any other extensive text entry parsing, then
consider using regular expressions, rather than cobbling
together comparatively complex JavaScript functions to
perform the same tasks.

Regular Expressions and Patterns

In several chapters earlier in this book, | describe
expressions as any sequence of identifiers, keywords, and/or
operators that evaluate to some value. A regular expression
follows that description, but has much more power behind it.
In essence, a regular expression uses a sequence of
characters and symbols to define a pattern of text. Such a
pattern is used to locate a chunk of text in a string by
matching up the pattern against the characters in the string.

An experienced JavaScript writer might point out the
availability of the string.index0f() and string.
lastIndex0f () methods that can instantly reveal whether a
string contains a substring and even where in the string that

C H@A P |T E R

O O O O
In This Chapter

What regular
expressions are

How to use regular
expressions for text
search and replace

How to apply regular
expressions to string
object methods

g g g g

620 Part Il O JavaScript Object and Language Reference

substring begins. These methods work perfectly well when the match is exact,
character for character. But if you want to do more sophisticated matching (for
example, does the string contain a five-digit ZIP code?), you’d have to cast aside
those handy string methods and write some parsing functions. That’s the beauty of
a regular expression: It lets you define a matching substring that has some
intelligence about it and can follow guidelines you set as to what should or should
not match.

The simplest kind of regular expression pattern is the same kind you would use
inthe string.index0f () method. Such a pattern is nothing more than the text
you want to match. In JavaScript, one way to create a regular expression is to
surround the expression by forward slashes. For example, consider the string

Oh, hello, do you want to play Othello in the school play?

This string and others may be examined by a script whose job it is to turn formal
terms into informal ones. Therefore, one of its tasks is to replace the word “hello”
with “hi.” A typical brute force search-and-replace function would start with a simple
pattern of the search string. In JavaScript, you define a pattern (a regular expression)
by surrounding it with forward slashes. For convenience and readability, | usually
assign the regular expression to a variable, as in the following example:

var myRegExpression = /hello/

In concert with some regular expression or string object methods, this pattern
matches the string “hello” wherever that series of letters appears. The problem is
that this simple pattern causes problems during the loop that searches and
replaces the strings in the example string: It finds not only the standalone word
“hello,” but also the “hello” in “Othello.”

Trying to write another brute force routine for this search-and-replace operation
that looks only for standalone words would be a nightmare. You can’t merely
extend the simple pattern to include spaces on either or both sides of “hello,”
because there could be punctuation — a comma, a dash, a colon, or whatever —
before or after the letters. Fortunately, regular expressions provide a shortcut way
to specify general characteristics, including something known as a word boundary.
The symbol for a word boundary is \b (backslash, lowercase b). If you redefine
the pattern to include these specifications on both ends of the text to match, the
regular expression creation statement looks like

var myRegExpression = /\bhello\b/

When JavaScript uses this regular expression as a parameter in a special string
object method that performs search-and-replace operations, it changes only the
standalone word “hello” to “hi,” and passes over “Othello” entirely.

If you are still learning JavaScript and don’t have experience with regular
expressions in other languages, you have a price to pay for this power: Learning
the regular expression lingo filled with so many symbols means that expressions
sometimes look like cartoon substitutions for swear words. The goal of this
chapter is to introduce you to regular expression syntax as implemented in
JavaScript rather than engage in lengthy tutorials for this language. Of more
importance in the long run is understanding how JavaScript treats regular
expressions as objects and distinctions between regular expression objects and
the RegExp constructor. | hope the examples in the following sections begin to

Chapter 30 O Regular Expression and RegExp Objects 621

reveal the powers of regular expressions. An in-depth treatment of the possibilities
and idiosyncracies of regular expressions can be found in Mastering Regular
Expressions by Jeffrey E.F. Friedl. (1997, O'Reilly & Associates, Inc.)

Language Basics

To cover the depth of the regular expression syntax, | divide the subject into
three sections. The first covers simple expressions (some of which you’'ve already
seen). Then | get into the wide range of special characters used to define
specifications for search strings. Last comes an introduction to the usage of
parentheses in the language, and how they not only help in grouping expressions
for influencing calculation precedence (as they do for regular math expressions),
but also how they temporarily store intermediate results of more complex
expressions for use in reconstructing strings after their dissection by the regular
expression.

Simple patterns

A simple regular expression uses no special characters for defining the string to
be used in a search. Therefore, if you wanted to replace every space in a string
with an underscore character, the simple pattern to match the space character is

var re =/ /

A space appears between the regular expression start-end forward slashes. The
problem with this expression, however, is that it knows only how to find a single
instance of a space in a long string. Regular expressions can be instructed to apply
the matching string on a global basis by appending the g modifier:

var re =/ /g

When this re value is supplied as a parameter to the replace() method that
uses regular expressions (described later in this chapter), the replacement is
performed throughout the entire string, rather than just once on the first match
found. Notice that the modifier appears after the final forward slash of the regular
expression creation statement.

Regular expression matching — like a lot of other aspects of JavaScript — is
case-sensitive. But you can override this behavior by using one other modifier that
lets you specify a case-insensitive match. Therefore, the following expression

var re = /web/i

finds a match for “web,” “Web,” or any combination of uppercase and lowercase
letters in the word. You can combine the two modifiers together at the end of a
regular expression. For example, the following expression is both case-insensitive
and global in scope:

var re = /web/gi

©22 Partlll O JavaScript Object and Language Reference

Special characters

The regular expression in JavaScript borrows most of its vocabulary from the Perl
regular expression. In a few instances, JavaScript offers alternatives to simplify the
syntax, but also accepts the Perl version for those with experience in that arena.

Significant programming power comes from the way regular expressions allow
you to include terse specifications about such things as types of characters to
accept in a match, how the characters are surrounded within a string, and how
often a type of character can appear in the matching string. A series of escaped
one-character commands (that is, letters preceded by the backslash) handle most
of the character issues; punctuation and grouping symbols help define issues of
frequency and range.

You saw an example earlier how \b specified a word boundary on one side of a
search string. Table 30-1 lists the escaped character specifiers in JavaScript regular
expressions. The vocabulary forms part of what are known as metacharacters —
characters in expressions that are not matchable characters themselves, but act
more like commands or guidelines of the regular expression language.

Table 30-1
JavaScript Regular Expression Matching Metacharacters
Character Matches Example
\b Word boundary /\bor/ matches “origami” and “or” but not
“normal”

/or\b/ matches “traitor” and “or” but not
“perform”

/\bor\b/ matches full word “or” and nothing else
\B Word nonboundary /\Bor/ matches “normal” but not “origami”

/or\B/ matches “normal” and “origami” but not
“traitor”

/\Bor\B/ matches “normal” but not “origami” or

“traitor”
\d Numeral O through 9 /\d\d\d/ matches “212” and “415” but not “B17”
\D Nonnumeral /\D\D\D/ matches “ABC” but not “212” or “B17”
\s Single white space /over\sbite/ matches “over bite” but not

“overbite” or “over bite”

\S Single nonwhite space /over\Sbite/ matches “over-bite” but not
“overbite” or “over bite”

\w Letter, numeral, /A\w/ matches “A1” and “AA” but not “A+”
or underscore

(continued)

Chapter 30 O Regular Expression and RegExp Objects 23

Character Matches Example
\W Not letter, numeral, /A\W/ matches “A+” but not “A1” and “AA”
or underscore
Any character /. ../ matches “ABC”, “1+3”, “A 3", or any three
except newline characters
[...] Character set /[ANIBC/ matches “ABC” and “NBC” but not “BBC”
IR Negated character set /[*AN]BC/ matches “BBC” and “CBC” but not
“ABC” or “NBC”

Not to be confused with the metacharacters listed in Table 30-1 are the escaped
string characters for tab (\t), newline (\n), carriage return (\r), formfeed (\f),
and vertical tab (\v).

Let me add additional clarification aboutthe [...Jand [~...]
metacharacters. You can specify either individual characters between the brackets
(as shown in Table 30-1) or a contiguous range of characters or both. For example,
the \d metacharacter can also be defined by [0-9], meaning any numeral from
zero through nine. If you only want to accept a value of 2 and a range from 6
through 8, the specification would be [26-8]. Similarly, the accommodating \w
metacharacter is defined as [A-Za-z0-9_1, reminding you of the case-sensitivity
of regular expression matches not otherwise modified.

All but the bracketed character set items listed in Table 30-1 apply to a single
character in the regular expression. In most cases, however, you cannot predict
how incoming data will be formatted — the length of a word or the number of
digits in a number. A batch of extra metacharacters lets you set the frequency of
the occurrence of either a specific character or a type of character (specified like
the ones in Table 30-1). If you have experience in command-line operating systems,
you can see some of the same ideas that apply to wildcards apply to regular
expressions. Table 30-2 lists the counting metacharacters in JavaScript regular
expressions.

Table 30-2
JavaScript Regular Expression Counting Metacharacters
Character Matches Last Character Example
2 Zero or more times /Ja*vaScript/ matches “vaScript”,

“JavaScript”, and “JaaavaScript” but not ‘JovaScript”

? Zero or one time /Jda?vaScript/ matches “vaScript” or
“JavaScript” but not “JaaavaScript”

+ One or more times /Jda+vaScript/ matches “JavaScript” or
“JaavaScript” but not “JvaScript”

(continued)

624 Part 11l O JavaScript Object and Language Reference

Character Matches Last Character Example

{n} Exactly n times /Jda{2}vaScript/ matches “JaavaScript” but
not “JvaScript” or “JavaScript”

{n,} n or more times /Jdaf{2,}vaScript/ matches “JaavaScript” or
“JaaavaScript” but not “JavaScript”

{n,m} At least n, at most m times /Ja{2,3}vaScript/ matches ‘“JaavaScript”
or “JaaavaScript” but not “JavaScript”

Every metacharacter in Table 30-2 applies to the character immediately
preceding it in the regular expression. Preceding characters might also be matching
metacharacters from Table 30-1. For example, a match occurs for the following
expression if the string contains two digits separated by one or more vowels:

/\d[aeiouy]+\d/

The last major contribution of metacharacters is helping the regular expression
search a particular position in a string. By position, | don’t mean something like an
offset — the matching functionality of regular expressions can tell me that. But,
rather, whether the string to look for should be at the beginning or end of a line (if
that is important) or whatever string is offered as the main string to search. Table
30-3 shows the positional metacharacters for JavaScript’s regular expressions.

Table 30-3
JavaScript Regular Expression Positional Metacharacters
Character Matches Located Example
A At beginning of a string or line /~Fred/ matches “Fred is OK” but not “I'm

with Fred” or “Is Fred here?”

$ At end of a string or line /Fred$/ matches “I'm with Fred” but not
“Fred is OK” or “Is Fred here?”

For example, you might want to make sure that a match for a roman numeral is
found only when it is at the start of a line, rather than when it is used inline
somewhere else. If the document contains roman numerals in an outline, you can
match all the top-level items that are flush left with the document with a regular
expression like the following:

/ALIVXMDCLI+\./

This expression matches any combination of roman numeral characters
followed by a period (the period is a special character in regular expressions, as
shown in Table 30-1, so you have to escape the period to offer it as a character),
provided the roman numeral is at the beginning of a line and has no tabs or spaces
before it. There would also not be a match in a line that contains, say, the phrase
“see Part IV” because the roman numeral is not at the beginning of a line.

Chapter 30 O Regular Expression and RegExp Objects 25

Speaking of lines, a line of text is a contiguous string of characters delimited by a
newline and/or carriage return (depending on the operating system platform). Word
wrapping in text areas does not affect the starts and ends of true lines of text.

Grouping and backreferencing

Regular expressions obey most of the JavaScript operator precedence laws with
regard to grouping by parentheses and the logical Or operator. One difference is
that the regular expression Or operator is a single pipe character (|) rather than
JavaScript’s double pipe.

Parentheses have additional powers that go beyond influencing the precedence
of calculation. Any set of parentheses (that is, a matched pair of left and right)
stores the results of a found match of the expression within those parentheses.
Parentheses can be nested inside one another. Storage is accomplished
automatically, with the data stored in an indexed array accessible to your scripts
and to your regular expressions (although through different syntax). Access to
these storage bins is known as backreferencing, because a regular expression can
point backward to the result of an expression component earlier in the overall
expression. These stored subcomponents come in handy for replace operations, as
demonstrated later in this chapter.

Object Relationships

JavaScript has a lot going on behind the scenes when you create a regular
expression and perform the simplest operation with it. As important as the
regular expression language described earlier in this chapter is to applying regular
expressions in your scripts, the JavaScript object interrelationships are perhaps
even more important if you want to exploit regular expressions to the fullest.

The first concept to master is that two entities are involved: the regular
expression object and the RegExp constructor. Both objects are core objects of
JavaScript and are not part of the document object model. Both objects work
together, but have entirely different sets of properties that may be useful to your
application.

When you create a regular expression (even via the /. ../ syntax), JavaScript
invokes the new RegExp() constructor, much the way a new Date() constructor
creates a date object around one specific date. The regular expression object
returned by the constructor is endowed with several properties containing details
of its data. At the same time, the RegExp object maintains its own properties that
monitor regular expression activity in the current window (or frame).

To help you see the typically unseen operations, | step you through the creation
and application of a regular expression. In the process, | show you what happens
to all of the related object properties when you use one of the regular expression
methods to search for a match. The starting text I'll use to search through is the
beginning of Hamlet’s soliloquy (assigned to an arbitrary variable named
mainString):

var mainString = "To be, or not to be: That is the question:"

If my ultimate goal is to locate each instance of the word “be,” | must first create
a regular expression that matches the word “be.” | set it up to perform a global

626 Part il O JavaScript Object and Language Reference

search when eventually called upon to replace itself (assigning the expression to
an arbitrary variable named re):

var re = /\bbe\b/g

To guarantee that only complete words “be” are matched, | surround the letters
with the word boundary metacharacters. The final “g” is the global modifier. The
variable to which the expression is assigned, re, represents a regular expression
object whose properties and values are as follows:

Object.PropertyName Value
re.source "\bbe\bg"
re.global true
re.ignoreCase false
re.lastIndex 0

A regular expression’s source property is the string consisting of the regular
expression syntax (less the literal forward slashes). Each of the two possible
modifiers, g and i, have their own properties, global and ignoreCase, whose
values are Booleans indicating whether the modifiers are part of the source
expression. The final property, TastIndex, indicates the index value within the
main string at which the next search for a match should start. The default value for
this property in a newly hatched regular expression is zero so that the search
starts with the first character of the string. This property is read/write, so your
scripts may want to adjust the value if they must have special control over the
search process. As you will see in a moment, JavaScript modifies this value over
time if a global search is indicated for the object.

The RegExp constructor does more than just create regular expression objects.
Like the Math object, the RegExp object is always “around” — one RegExp per
window or frame — and tracks regular expression activity in a script. Its properties
reveal what, if any, regular expression pattern matching has just taken place in the
window. At this stage of the regular expression creation process, the RegExp object
has only one of its properties set:

Object.PropertyName Value

RexExp.input
RexExp.multiline false
RexExp.lastMatch
RexExp.lastParen
RexExp.leftContext

Chapter 30 O Regular Expression and RegExp Objects B2 7

Object.PropertyName Value

RexExp.rightContext
RexExp.$1

RexExp.$9

The last group of properties ($1 through $9) are for storage of backreferences.
But since the regular expression | defined doesn’t have any parentheses in it, these
properties are empty for the duration of this examination and omitted from future
listings in this section.

With the regular expression object ready to go, | invoke the exec () regular
expression method, which looks through a string for a match defined by the
regular expression. If the method is successful in finding a match, it returns a third
object whose properties reveal a great deal about the item it found (I arbitrarily
assigned the variable foundArray to this returned object):

var foundArray = re.exec(mainString)

JavaScript includes a shortcut for the exec () method if you turn the regular
expression object into a method:

var foundArray = re(mainString)

Normally, a script would check whether foundArray is null (meaning that there
was no match) before proceeding to inspect the rest of the related objects. Since
this is a controlled experiment, | know at least one match exists, so | first look into
some other results. Running this simple method has not only generated the
foundArray data, but also altered several properties of the RegExp and regular
expression objects. The following shows you the current stage of the regular
expression object:

Object.PropertyName Value
re.source "\bbe\bg"
re.global true
re.ignoreCase false
re.lastIndex 5

The only change is an important one: The TastIndex value has bumped up to
5. In other words, this one invocation of the exec () method must have found a
match whose offset plus length of matching string shifts the starting point of any
successive searches with this regular expression to character index 5. That’s
exactly where the comma after the first “be” word is in the main string. If the
global (g) modifier had not been appended to the regular expression, the
lTastIndex value would have remained at zero, because no subsequent search
would be anticipated.

628 Part il O JavaScript Object and Language Reference

As the result of the exec () method, the RegExp object has had a number of its
properties filled with results of the search:

Object.PropertyName Value

RexExp.input

RexExp.multiline false

RexExp.lastMatch "be"

RexExp.lastParen

RexExp.leftContext "To "

RexExp.rightContext ", or not to be: That is the question:"

From this object you can extract the string segment that was found to match the
regular expression definition. The main string segments before and after the
matching text are also available individually (in this example, the TeftContext
property has a space after “To”). Finally, looking into the array returned from the
exec() method, some additional data is readily accessible:

Object.PropertyName Value

foundArray[0] "be"

foundArray.index 3

foundArray.input "To be, or not to be: That is the question:"

The first element in the array, indexed as the zeroth element, is the string
segment found to match the regular expression, which is the same as the
RegExp.lastMatch value. The complete main string value is available as the input
property. A potentially valuable piece of information to a script is the index for the
start of the matched string found in the main string. From this last bit of data, you
can extract from the found data array the same values as RegExp.leftContext
(with foundArray.input.substring(0, foundArray.index))and RegExp.
rightContext (with foundArray.input.substring(foundArray.index,
foundArray[0].Tength)).

Since the regular expression suggested a multiple execution sequence to fulfill
the global flag, | can run the exec() method again without any change. While the
JavaScript statement may not be any different, the search starts from the new
re.lastIndex value. The effects of this second time through ripple through the
resulting values of all three objects associated with this method:

var foundArray = re.exec(mainString)

Results of this execution are as follows (changes are in boldface):

Chapter 30 O Regular Expression and RegExp Objects 6§29

Object.PropertyName Value
re.source “\bbe\bg”
re.global true
re.ignoreCase false
re.lastIndex 19

RexExp.input

RexExp.multiline false
RexExp.lastMatch “be”
RexExp.lastParen
RexExp.leftContext “ or not to “

RexExp.rightContext *: Thatis the question:”

foundArray[0] “be”
foundArray.index 17
foundArray.input “To be, or not to be: That is the question:”

Because there was a second match, foundArray comes back again with data. Its
index property now points to the location of the second instance of the string
matching the regular expression definition. The regular expression object’s
lastIndex value points to where the next search would begin (after the second
“be™). And the RegExp properties that store the left and right contexts have
adjusted accordingly.

If the regular expression were looking for something less stringent than a hard-
coded word, some other properties might also be different. For example, if the
regular expression defined a format for a ZIP code, the RegExp.TastMatch and
foundArray[0] values would contain the actual found ZIP codes, which would
likely be different from one match to the next.

Running the same exec () method once more would not find a third match in
my original mainString value, but the impact of that lack of a match is worth
noting. First of all, the foundArray value would be null — a signal to our script
that no more matches were available. The regular expression object’s TastIndex
property reverts to zero, ready to start its search from the beginning of another
string. Most importantly, however, the RegExp object’s properties maintain the
same values from the last successful match. Therefore, if you put the exec()
method invocations in a repeat loop that exits when no more matches are found,
the RegExp object still has the data from the last successful match, ready for
further processing by your scripts.

Part 11l O JavaScript Object and Language Reference

Using Regular Expressions

Despite the seemingly complex hidden workings of regular expressions,
JavaScript provides a series of methods that make common tasks involving regular
expressions quite simple to use (assuming you figure out the regular expression
syntax to create good specifications). In this section, I'll present examples of
syntax for specific kinds of tasks for which regular expressions can be beneficial in
your pages.

Is there a match?

| said earlier that you can use string.index0f() or string.lastIndex0f()
to look for the presence of simple substrings within larger strings. But if you need
the matching power of regular expression, you have two methods to choose from:

regexObject.test(string)
string.search(regexObject)

The first is a regular expression object method, the second a string object
method. Both perform the same task and influence the same related objects, but
they return different values: a Boolean value for test () and a character offset
value for search() (or -1 if no match is found). Which method you choose
depends on whether you need only a true/false verdict on a match or the location
within the main string of the start of the substring.

Listing 30-1 demonstrates both methods on a page that lets you get the Boolean
and offset values for a match. Some default text and regular expression is provided
(it looks for a five-digit number). You can experiment with other strings and regular
expressions. Because this script creates a regular expression object with the new
RegExp () constructor method, you do not include the literal forward slashes
around the regular expression.

Listing 30-1: Looking for a Match

<HTML>
<HEAD>
<TITLE>Got a Match?</TITLE>
<SCRIPT LANGUAGE="JavaScriptl.2">
function findIt(form) {
var re = new RegExp(form.regexp.value)
var input = form.main.value
if (input.search(re) != -1) {
form.output[0].checked = true
} else {
form.output[1l].checked = true
}
}
function locatelt(form) ({
var re = new RegExp(form.regexp.value)
var input = form.main.value
form.offset.value = input.search(re)

Chapter 30 O Regular Expression and RegExp Objects ©§3 7]

</SCRIPT>

</HEAD>

<BODY>

Use a regular expression to test for the existence of a string:
<HR>

<FORM>

Enter some text to be searched:

<TEXTAREA NAME="main" COLS=40 ROWS=4 WRAP="virtual">
The most famous ZIP code on Earth may be 90210.
</TEXTAREA>

Enter a regular expression to search:

<INPUT TYPE="text" NAME="regexp" SIZE=30 VALUE="\b\d\d\d\d\d\b"><P>
<INPUT TYPE="button" VALUE="Is There a Match?"
onClick="findIt(this.form)">

<INPUT TYPE="radio" NAME="output">Yes

<INPUT TYPE="radio" NAME="output">No <P>

<INPUT TYPE="button" VALUE="Where is it?"
onClick="Tlocatelt(this.form)">

<INPUT TYPE="text" NAME="offset" SIZE=4><P>

<INPUT TYPE="reset">

</FORM>

</B0ODY>

</HTML>

Getting information about a match

For the next application example, the task is to not only verify that a one-field
date entry is in the desired format, but also extract match components of the entry
and use those values to perform further calculations in determining the day of the
week. The regular expression in the example that follows is a fairly complex one,
because it performs some rudimentary range checking to make sure the user
doesn’t enter a month over 12 or a date over 31. What it does not take into
account is the variety of lengths of each month. But the regular expression and
method invoked with it extracts each date object component in such a way that
you can perform additional validation on the range to make sure the user doesn’t
try to give September 31 days. Also be aware that this is not the only way to
perform date validations in forms. Chapter 37 offers additional thoughts on the
matter that work without regular expressions for backward compatibility.

Listing 30-2 contains a page that has a field for date entry, a button to process
the date, and an output field for display of a long version of the date, including the
day of the week. At the start of the function that does all the work, | create two
arrays (using the JavaScript 1.2 literal array creation syntax) to hold the plain
language names of the months and days. These are used only if the user enters a
valid date.

Next comes the regular expression to be matched against the user entry. If you
can decipher all the symbols, you see that three components are separated by
potential hyphen or forward slash entries ([\-\/1). These symbols must be
escaped in the regular expression. Importantly, each of the three component
definitions is surrounded by parentheses, which are essential for the various

632 Part il O JavaScript Object and Language Reference

objects created with the regular expression to remember their values for
extraction later.
Here is a brief rundown of what the regular expression is looking for:

O A string beginning after a word break

O A string value for the month that contains a 1 plus a 0 through 2; or an
optional 0 plus a 1 through 9

O A hyphen or forward slash

O A string value for the date that starts with a 0 plus a 1 through 9; or starts with
a 1 or 2 and ends with a 0 through 9; or starts with a 3 and ends with 0 or 1

O Another hyphen or forward slash
O A string value for the year that begins with 19 or 20, followed by two digits

An extra pair of parentheses must surround the 19|20 segment to make sure
that either one of the matching values is attached to the two succeeding digits.
Without the parentheses, the logic of the expression attaches the digits only to 20.

For invoking the regular expression action, | selected the exec () method,
assigning the returned object to the variable matchArray. | could have also used
the string.match() method here. Only if the match is successful (that is, all
conditions of the regular expression specification have been met) does the major
processing continue in the script.

The parentheses around the segments of the regular expression instruct
JavaScript to assign each found value to a slot in the matchArray object. The
month segment is assigned to matchArray[1], the date to matchArray[2], and
the year to matchArray[3] (matchArray[0] contains the entire matched string).
Therefore, the script can extract each component to build a plain-language date
string with the help of the arrays defined at the start of the function. | even use the
values to create a new Date object that calculates the day of the week for me. Once
I have all pieces, | concatenate them and assign the result to the value of the
output field. If the regular expression exec () method doesn’t match the typed
entry with the expression, the script provides an error message in the field.

Listing 30-2: Extracting Data from a Match

<HTML>
<HEAD>
<TITLE>Got a Match?</TITLE>
<SCRIPT LANGUAGE="JavaScriptl.2">
function extractIt(form) {

var months =
["January","February","March","April","May","June","July","August","Sep
tember","0October","November", "December"]

var days =
["Sunday","Monday","Tuesday", "Wednesday","Thursday","Friday","Saturday"
]

var re = /\b(1[0-21|0?[1-91)[\-\/1(0?01-91|[12100-971|3[011)[\-
\/1((19]20)\d{2})/

Chapter 30 O Regular Expression and RegExp Objects 33

var input = form.entry.value
var matchArray = re.exec(input)
if (matchArray) {
var theMonth = months[matchArray[1] - 1] + " "
var theDate = matchArray[2] + ", "
var theYear matchArray[3]
var dateObj = new Date(matchArray[3],matchArray[1]-
1,matchArrayl[2])
var theDay = days[dateObj.getDay()] + " "
form.output.value = theDay + theMonth + theDate + theYear

} else {
form.output.value = "An invalid date."

}
}
</SCRIPT>
</HEAD>
<BODY>
Use a regular expression to extract data from a string:
<HR>
<FORM>

Enter a date in the format mm/dd/yyyy or mm-dd-yyyy:

<INPUT TYPE="text" NAME="entry" SIZE=12><P>

<INPUT TYPE="button" VALUE="Extract Date Components"
onClick="extractIt(this.form)"><P>

The date you entered was:

<INPUT TYPE="text" NAME="output" SIZE=40><P>

<INPUT TYPE="reset">

</FORM>

</BODY>

</HTML>

String replacement

To demonstrate using regular expressions for performing search-and-replace
operations, | chose an application that may be of value to many page authors who
have to display and format large numbers. Databases typically store large integers
without commas. After five or six digits, however, such numbers are difficult for
users to read. Conversely, if the user needs to enter a large number, commas help
ensure accuracy.

Helping the procedure in JavaScript regular expressions is the
string.replace() method that has been added to the language with JavaScript
1.2 (see Chapter 26). The method requires two parameters, a regular expression to
search the string and a string to replace any match found in the string. The
replacement string can be properties of the RegExp object as it stands after the
most recent exec () method.

Listing 30-3 demonstrates how only a handful of script lines can do a lot of work
when regular expressions handle the dirty work. The page contains three fields.
Enter any number you like in the first one. A click of the Insert Commas button
invokes the commafy () function in the page. The result is displayed in the second
field. You can also enter a comma-filled number in the second field and click the

Part 11l O JavaScript Object and Language Reference

Remove Commas button to see the inverse operation executed through the
decommafy () function.

Specifications for the regular expression accept any positive or negative string
of numbers. The keys to the action of this script are the parentheses around two
segments of the regular expression. One set encompasses all characters not
included in the second group: a required set of three digits. In other words, the
regular expression is essentially working from the rear of the string, chomping off
three-character segments and inserting a comma each time a set is found.

A while repeat loop cycles through the string and modifies the string (in truth,
the string object is not being modified, but, rather, a new string is generated and
assigned to the old variable name). | use the test () method because | don’t need
the returned value of the exec () method. The test () method impacts the regular
expression and RegExp object properties the same way as the exec () method, but
more efficiently. The first time the test () method runs, the part of the string that
meets the first segment is assigned to the RegExp. $1 property; the second
segment, if any, is assigned to the RegExp. $2 property. Notice that I’'m not
assigning the results of the exec () method to any variable, because for this
application | don’t need the array object generated by that method.

Next comes the tricky part. | invoke the string.replace() method, using the
current value of the string (num) as the starting string. The pattern to search for is
the regular expression defined at the head of the function. But the replacement
string might look strange to you. It is replacing whatever the regular expression
matches with the value of RegExp. $1, a comma, and the value of RegExp.$2. The
RegExp object should not be part of the references used in the replace() method
parameter. Since the regular expression matches the entire num string, the
replace() method is essentially rebuilding the string from its components, plus
adding a comma before the second component (the last free-standing three-digit
section). Each replace() method invocation sets the value of num for the next
time through the while loop and the test () method.

Looping continues until no matches occur — meaning that no more free-
standing sets of three digits appear in the string. Then the results are written to
the second field on the page.

Listing 30-3: Replacing Strings via Regular Expressions

<HTML>
<HEAD>
<TITLE>Got a Match?</TITLE>
<SCRIPT LANGUAGE="JavaScriptl.2">
function commafy(form) {
var re = /(-?2\d+)(\d{3})/
var num = form.entry.value
while (re.test(num)) {
num = num.replace(re, "$1,$2")
1
form.commaOutput.value = num
1
function decommafy(form) {
var re = /,/g

Chapter 30 O Regular Expression and RegExp Objects

form.plainOQutput.value = form.commaQutput.value.replace(re,"")
}
</SCRIPT>
</HEAD>
<BODY>
Use a regular expression to add/delete commas from numbers:
<HR>
<FORM>
Enter a Targe number without any commas:

CINPUT TYPE="text" NAME="entry" SIZE=15><P>
<INPUT TYPE="button" VALUE="Insert commas"
onClick="commafy(this.form)"><P>
The comma version is:

CINPUT TYPE="text" NAME="commaOQutput" SIZE=20><P>
<INPUT TYPE="button" VALUE="Remove commas"
onClick="decommafy(this.form)"><P>
The un-comma version is:

CINPUT TYPE="text" NAME="plainOutput" SIZE=15><P>
<INPUT TYPE="reset">
</FORM>
</BODY>
</HTML>

Removing the commas is an even easier process. The regular expression is a

635

comma with the global flag set. The replace() method reacts to the global flag by
repeating the process until all matches are replaced. In this case, the replacement
string is an empty string. For further examples of using regular expressions with
string objects, see the discussions of the string.match(), string.replace(),
and string.split() methods in Chapter 26.

Regular Expression Object

Properties Methods Event Handlers

global compile() (None)
ignoreCase exec()
lastIndex test()

source

Syntax

Creating a regular expression:

regularExpressionObject = /pattern/ [g | 1 | gil
regularExpressionObject = new RegExp(["pattern", ["g" | "i" | "gi"11)

Accessing regular expression properties or methods:

636 Part Il O JavaScript Object and Language Reference
regularExpressionObject.property | method([parametersl)

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility O 0

About this object

The regular expression object is created on the fly by your scripts. Each regular
expression object contains its own pattern and other properties. Deciding which
object creation style to use depends on the way the regular expression will be
used in your scripts.

When you create a regular expression with the literal notation (that is, with the
two forward slashes), the expression is automatically compiled for efficient
processing as the assignment statement executes. The same is true when you use
the new RegExp () constructor and specify a pattern (and optional modifier flags)
as a parameter. Whenever the regular expression is fixed in the script, use the
literal notation; when some or all of the regular expression is derived from an
external source (for example, user input from a text field), assemble the expression
as a parameter to the new RegExp() constructor. A compiled regular expression
should be used at whatever stage the expression is ready to be applied and reused
within the script. Compiled regular expressions are not saved to disk or given any
more permanence beyond the life of a document’s script (that is, it dies when the
page unloads).

However, there may be times in which the specification for the regular
expression changes with each iteration through a loop construction. For example,
if statements in a while loop modify the content of a regular expression, you
should compile the expression inside the while loop, as shown in the following
skeletal script fragment:

var srchText = form.search.value

var re = new RegExp() // empty constructor

while (someCondition) {
re.compile("\\s+" + srchText + "\\s+", "gi")
statements that change srchText

}

Each time through the loop, the regular expression object is both given a new
expression (concatenated with metacharacters for one or more white spaces on
both sides of some search text whose content changes constantly) and compiled
into an efficient object for use with any associated methods.

Chapter 30 O Regular Expression and RegExp Objects ©§37

Properties
global

ignoreCase

Value: Booleans Gettable: Yes Settable: No

Nav2 Nav3 Nav4 1E3/J1 1E3/]2 1E4/]3

Compatibility O 0

These two properties reflect the regular expression g and i modifier flags, if any,
associated with a regular expression. Settings are read-only and are determined
when the object is created. Each property is independent of the other.

Related Items: None.

lastIndex

Value: Integer Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 1E3/J1 1E3/J2 1E4/)3

Compatibility [L]

The TastIndex property indicates the index counter of the main string to be
searched against the current regular expression object. When a regular expression
object is created, this value is zero, meaning that there have been no searches with
this object, and the default behavior of the first search is to start at the beginning
of the string.

If the regular expression has the global modifier specified, the TastIndex
property value advances to some higher value after the object is used in a method
to match within a main string. The value is the position in the main string
immediately after the previous matched string (and not including any character of
the matched string). After locating the final match in a string, the method resets
the TastIndex property to zero for the next time. You can also influence the
behavior of matches by setting this value on the fly. For example, if you want the
expression to begin its search at the fourth character of a target string, you would
change the setting immediately after creating the object, as follows:

var re = /somePattern/
re.lastIndex = 3 // fourth character in zero-based index system

Related Items: Match result object index property.

638 Part Il O JavaScript Object and Language Reference

source

Value: String Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 1E3/J2 1E4/)3

Compatibility O 0

The source property is simply the string representation of the regular
expression used to define the object. This property is read-only.

Related Items: None.

Methods
Comp'ﬂe("pattef‘n", ["g" | ll.ill | llg.ill])

Returns: Regular expression object.

Nav2 Nav3 Nav4 1E3/J1 1E3/J2 1E4/)3

Compatibility O O

Use the compile() method to compile on the fly a regular expression whose
content changes continually during the execution of a script. See the discussion
earlier about this object for an example. Other regular expression creation
statements (the literal notation and the new RegExp() constructor that passes a
regular expression) automatically compile their expressions.

Related Items: None.

exec("string")

Returns: Match array object or null.

Nav2 Nav3 Nav4 1E3/J1 1E3/J2 1E4/)3

Compatibility O O

The exec() method examines the string passed as its parameter for at least one
match of the specification defined for the regular expression object. The behavior
of this method is similar to that of the string.match() method (although the
match () method is more powerful in completing global matches). Typically, a call
to the exec () method is made immediately after the creation of a regular
expression object, as in the following:

Chapter 30 O Regular Expression and RegExp Objects 539

var re = /somePattern/
var matchArray = re.exec("someString")

Much happens as a result of the exec () method. Properties of both the regular
expression object and window’s RegExp object are updated based on the success
of the match. The method also returns an object that conveys additional data
about the operation. Table 30-4 shows the properties of this returned object.

Table 30-4
Match Found Array Object Properties
Property Description
index Zero-based index counter of the start of the match inside the string
input Entire text of original string
[0] String of most recent matched characters
[11,...[n] Parenthesized component matches

Some of the properties in this returned object mirror properties in the RegExp
object. The value of having them in the regular expression object is that their
contents are safely stowed in the object while the RegExp object and its
properties may be modified soon by another call to a regular expression method.
Items the two objects have in common are the [0] property (mapped to the
RegExp.TastMatch property) and the [11,...[n] properties (the first nine of
which map to RegExp.$1...RegExp.$9). While the RegExp object stores only
nine parenthesized subcomponents, the returned array object stores as many as
are needed to accommodate parenthesis pairs in the regular expression.

If no match turns up between the regular expression specification and the
string, the returned value is null. See Listing 30-2 for an example of how this
method can be applied. An alternate shortcut syntax may be used for the exec()
method. Turn the regular expression into a function, as in

var re = /somePattern/
var matchArray = re("someString")

Related Items: string.match() method.

test("string")

Returns: Boolean.

640 Part 11l O JavaScript Object and Language Reference

Nav2 Nav3 Nav4 1E3/]1 1E3/]2 1E4/]3

Compatibility O 0

The most efficient way to find out if a regular expression has a match in a string
is to use the test () method. Returned values are true if a match exists and
false if not. In case you need more information, a companion method,
string.search(), returns the starting index value of the matching string. See
Listing 30-1 for an example of this method in action.

Related Items: string.search() method.

RegExp Object

Properties Methods Event Handlers

input (None) (None)
lastMatch

lastParen

leftContext

multiline

rightContext

$1, ... $9

Syntax
Accessing RegExp properties:

RegExp. property

Nav2 Nav3 Nav4 IE3/J1 1E3/J2 1E4/J3

Compatibility O 0

About this object

Beginning with Navigator 4 and Internet Explorer 4, the browser maintains a
single instance of a RegExp object for each window or frame. The object oversees
the action of all methods that involve regular expressions (including the few

Chapter 30 O Regular Expression and RegExp Objects 6§41

related string object methods). Properties of this object are exposed not only to
JavaScript in the traditional manner, but also to a parameter of the
string.replace() method for some shortcut access (see Listing 30-3).

With one RegExp object serving all regular expression-related methods in your
document’s scripts, you must exercise care in accessing or modifying this object’s
properties. You must make sure that the RegExp object has not been affected by
another method. Most properties are subject to change as the result of any
method involving a regular expression. This may be reason enough to use the
properties of the array object returned by most regular expression methods
instead of the RegExp properties. The former stick with a specific regular
expression object even after other regular expression objects are used in the same
script. The RegExp properties reflect the most recent activity, irrespective of the
regular expression object involved.

In the following listings, | supply the long, JavaScript-like property names. But
each property also has an abbreviated, Perl-like manner to refer to the same
properties. You can use these shortcut property names in the string.replace()
method if you need the values.

Properties
input

Value: String Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility O 0

The RegExp.input property is the main string against which a regular
expression is compared in search of a match. In all of the example listings earlier in
this chapter, the property was null. Such is the case when the main string is
supplied as a parameter to the regular expression-related method.

But many text-related document objects have an unseen relationship with the
RegExp object. If a text, textarea, select, or link object contains an event handler
that invokes a function containing a regular expression, the RegExp.input
property is set to the relevant textual data from the object. You don’t have to
specify any parameters for the event handler call or in the function called by the
event handler. For text and textarea objects, the input property value becomes
the content of the object; for the select object, it is the text (not the value) of the
selected option; and for a link, it is the text highlighted in the browser associated
with the link (and reflected in the link’s text property).

Having JavaScript set the RegExp. input property for you may simplify your
script. You can invoke either of the regular expression methods without having to
specify the main string parameter. When that parameter is empty, JavaScript
applies the RegExp.input property to the task. You can also set this property on
the fly if you like. The short version of this property is $_ (dollar sign underscore).

Related Items: Matching array object input property.

642 Part 11l O JavaScript Object and Language Reference

multiline

Value: Boolean Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 1E3/J2 1E4/)3

Compatibility O 0

The RegExp.multiline property determines whether searches extend across
multiple lines of a target string. This property is automatically set to true when an
event handler of a textarea triggers a function containing a regular expression. You
can also set this property on the fly if you like. The short version of this property
is $*.

Related Items: None.
lastMatch
Value: String Gettable: Yes Settable: No
___|
Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility O O

After execution of a regular expression-related method, any text in the main
string that matches the regular expression specification is automatically assigned
to the RegExp.lastMatch property. This value is also assigned to the [0]
property of the object array returned when a match is found by the exec() and
string.match() methods. The short version of this property is $&.

Related Items: Matching array object [0] property.

lastParen

Value: String Gettable: Yes Settable: No

Nav2 Nav3 Nav4 1E3/J1 1E3/J2 1E4/)3

Compatibility O O

When a regular expression contains many parenthesized subcomponents, the
RegExp object maintains a list of the resulting strings in the $1, .. .$9 properties.
You can also extract the value of the last matching parenthesized subcomponent

Chapter 30 O Regular Expression and RegExp Objects 43

with the RegExp.lastParen property, which is a read-only property. The short
version of this property is $+.

Related Items: RegExp.$1,...$9 properties.

leftContext
rightContext

Value: String Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/)3

Compatibility O 0

After a match is found in the course of one of the regular expression methods,
the RegExp object is informed of some key contextual information about the
match. The TeftContext property contains the part of the main string to the left
of (up to but not including) the matched string. Be aware that the TeftContext
starts its string from the point at which the most recent search began. Therefore,
for second or subsequent times through the same string with the same regular
expression, the TeftContext substring varies widely from the first time through.

The rightContext consists of a string starting immediately after the current
match and extending to the end of the main string. As subsequent method calls
work on the same string and regular expression, this value obviously shrinks in
length until no more matches are found. At this point, both properties revert to
null. The short versions of these properties are $~ and $' for TeftContext and
rightContext, respectively.

Related Items: None.

$1...%9

Value: String Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 1IE4/)3

Compatibility O O

As a regular expression method executes, any parenthesized result is stored in
RegExp’s nine properties reserved for just that purpose (called backreferences).
The same values (and any beyond the nine that RegExp has space for) are stored
in the array object returned with the exec() and string.match() methods.
Values are stored in the order in which the left parenthesis of a pair appears in the
regular expression, regardless of nesting of other components.

644 Part 11l O JavaScript Object and Language Reference

You can use these backreferences directly in the second parameter of the
string.replace() method, without using the RegExp part of their address. The
ideal situation is to encapsulate components that need to be rearranged or
recombined with replacement characters. For example, the following script
function turns a name that is last name first into first name last:

function swapEm() {
var re = /(\w+) ,\s*(\w+)/
var input = "Lincoln, Abraham"
return input.replace(re,"$2 $1")
}

In the replace() method, the second parenthesized component (just the first
name) is placed first, followed by a space and the first component. The original
comma is discarded. You are free to combine these shortcut references as you like,
including multiple times per replacement, if it makes sense to your application.

Related Items: Matching array object [1]. . .[n] properties.

O a a

