Table and List
Objects

Tables are incredibly popular HTML constructions. When
you consider that a lot of CGI programs search SQL
databases and display data gathered from SQL tables, it’s not
unusual to find the table concept carried over from data stor-
age to data display. Spreadsheet programs certainly put the
notion of tabular display into the minds of most computer
users.

One of the truly beneficial properties of tables in HTML is that
they pack a lot of page organization and alignment punch in
just a few tags and attributes. Even if you're not a graphics
designer or a dedicated HTML jockey, you can get rows and
columns of text and images to line up perfectly on the page.
This behavior also lures many page designers to sculpt elabo-
rately detailed pages out of what appear to be positioned ele-
ments. Earlier browsers didn’t offer positioning facilities, so
borderless tables were torqued into performing all kinds of
placement tricks with the help of precisely sized, transparent
images creating the illusion of white space between carefully
placed elements. If you use some of the WYSIWYG authoring
tools for HTML pages, you may not realize how much table-
related HTML code is generated for you as you use the tool to
drag an image to a particular location on the page.

Someone probably could write an entire book on the HTML
aspects of tables by themselves, especially when taking into
account the variability of rendering that can occur. But that’s
not the task at hand. The first part of this chapter focuses on
the scriptable aspects of TABLE element objects and the shop-
ping list of elements that support tables. All of these objects
became scriptable objects in browsers starting with [E4 and
NNG6. Later in the chapter, I discuss element objects that cre-
ate formatted lists in pages.

CHAPTER

o o O O
In This Chapter

Modifying table cell

content

Adding and deleting
table rows

TABLE, CAPTION,
TBODY, TFOOT,
THEAD, COlL,
COLGROUP, TH, TR,
and TD element
objects

OL, UL, LI, and DL list
element objects

o 0o 0O O

CD-96 Part Ill 0 Document Objects Reference

The Table Object Family Hierarchy

The repertoire of table-related elements expanded a bit with the HTML 4.0 specifi-
cation, and the W3C DOM built upon that foundation. While most of this discussion
is best left to HTML texts, the structure of a full-fledged table and the relationships
among the elements — particularly the parent-child relationships — may affect your
scripting and event handling.

You are probably well familiar with the most basic table structure that predates
HTML 4.0. Such a table (in a 2x2 layout) can have the following form:

<TABLE>
<TR>
<TD></TD>
<TD></TD>
TR
<TR>
<TD></TD>
<TD></TD>
</TR>
</TABLE>

If you want to place a row of cells at the top of each column such that the contents
of the cells act as headers for each column, then add such a row as follows:

<TABLE>
<TR>
<TH></TH>
<TH></TH>
</TR>
<TR>
<TD></TD>
<TD></TD>
</TR>
<TR>
<TD></TD>
<TD></TD>
<JTR>
</TABLE>

You can also include a caption associated with the table. Its tag goes immediately
after the TABLE element’s start tag:

<TABLE>
<CAPTION></CAPTION>
<TR>
<TH></TH>
STH>S/THY>
<JTR>
<TR>

Chapter 27 O Table and List Objects

<TD></TD>
<TD></TD>
<JTR>
<TR>
<TD></TD>
<TD></TD>
TR
</TABLE>

In line with its emphasis on providing contextual tags, HTML 4.0 includes three tags
that enable you to define groups of table rows according to whether they are the
header, body, or footer of the table (THEAD, TBODY, and TFOOT elements, respec-
tively). A table footer, for example, can display column totals. The only seemingly
illogical rule about these elements is that you should define the TFOOT element
and its row contents before the TBODY element(s) in the table. Even with this
source code placement, the TFOOT row appears at the bottom of the table.

Some browsers produce visual dividers between these sections (IE5+ for Windows
does a nice job of this). Moreover, you can have multiple TBODY sections within a
table. Some browsers render dividers between these TBODY sections (again, [E5+
for Windows does it well). Regardless of the built-in divider support, these contex-
tual groupings also enable you to assign style sheets to HTML tag selectors rather
than having to dream up a scheme of class and ID names tied to style sheet rules.
Building upon the skeletal table shown thus far, you add the THEAD and TBODY ele-
ments like this:

<TABLE>
<CAPTION></CAPTION>
<THEAD>
<TR>
KTH>/TH>
STH>S/TH>
<JTR>
</THEAD>
<TBODY>
<TR>
<TD></TD>
<TD></TD>
<JTR>
<TR>
<TD></TD>
<TD></TD>
<JTR>
</TBODY>
</TABLE>

That’s the extent of table-oriented HTML containers. The remaining two elements,
COLGROUP and COL, provide a different “slice” of the table for style sheets and
other visual groupings. One of the most obvious purposes of these two elements is
to assign a width or other style to all cells in a particular column or group of
columns. You can also use these elements to group adjacent columns so that

CD-97

CD-98 Part Ill 0 Document Objects Reference

dividers are drawn between groups of columns — if the browser (such as IE5+ for
Windows) supports dividers between column groups — without specifying global
table borders. You can see an example of the HTML for a complex table in the
HTML 4.0 specification (http://www.w3.0rg/TR/REC-htm140/struct/tables.
htm1#h-11.5). Elsewhere on that same page, you can find the formal specification
for all table-related tags and attributes as defined by the W3C.

Populating table cells

Source material for a table’s content can come from many different places. Most of
the tables you see on the Web are hard-coded in the HTML. That is to say, the con-
tent of the table is fixed inside a static HTML file on the server.

But tables may also convey content from live databases or content that changes
more frequently than the Web site’s author manually updates other content. The
source and your Web development infrastructure (not to mention your technical
skills) dictate other avenues for populating tables.

After hard-coded HTML files, the next most common way to generate tables is
through server-based CGI programs. These programs (written in Perl, C, and many
other languages, including server-side JavaScript on those few servers that support
it) generally compose a query for the database and then repackage the data
returned from the database into HTML-formatted pages.

A more client-side-oriented approach is to let JavaScript apply the document.
write() method to compose the table’s tags as the page loads. Data for the cells
can come from JavaScript arrays defined at the beginning of the document or
defined in external . js library files that are linked in as the page loads. In the
newest browsers, the data may come from blocks of XML-formatted data stuffed
into the document. These solutions can work in situations where you need to
update the table data periodically, but the table delivered to the client does not
reflect the instantaneous state of a database. For example, a daily batch program on
a server can capture the day’s sales totals and write out a . js text file to a known
place on the server. The file consists entirely of JavaScript array definitions. When
the HTML page loads, the current . js file is automatically loaded into the page, and
document.write() statements compose the table’s HTML from the data supplied
in the arrays. While the script that assembles the HTML for the tables might appear
formidable to a nonscripter, a nonscripter can also manually update the array data
by following a template format supplied by the programmer.

Finally, if your page visitors run [E4+ for Windows (only), you can take advantage of
a Windows-specific technology called data binding. Data binding invokes the powers
of one or more ActiveX controls that come with the IE browser. These objects (col-
lectively called Data Source Objects) let HTML pages access ODBC databases (as
well as some formatted text files). As the page loads, the table fills with data pulled
live from the database. You can see an example of data binding in Chapter 15 under
the description of the data binding property: dataF1d. The HTML file carries tags
for only one row of cells, but data binding fills in the rest of the rows and cells.

Chapter 27 O Table and List Objects

Modifying table cell content

You can modify the HTML content of a table cell directly in I[E4+ and NN6+. Some
tricks with positioned elements in NN4 can, under some circumstances, make it
appear to the user as if the table content is being modified.

By far, the most compatible way to modify a table cell’s content in IE4+ and NN6+ is
via the TD element’s innerHTML property (a Microsoft invention that is not sanc-
tioned by the W3C DOM Level 2 but is supported in NN6). Even if the content is sim-
ply text that is to inherit the style format of the surrounding TD element, you can
still use the innerHTML property. If the size of the new content affects the dimen-
sions of the cell’s column width or row height, the browser reflows the rest of the
table content around the new content.

If you prefer to follow the W3C DOM form of modifying an element’s content (for
IE5+ and NN6), then you can generate the new content via the document.
createElement () sequence and assign that new content to the cell by way of the
TD element’s replaceChild() method.

The situation for NN4 is quite gnarled because the content you replace must be
within its own layer (either a LAYER element or positioned container element, such
as a DIV or SPAN). No matter how you create the layer in your HTML, you must
overcome the problem that a layer floats in its own plane and must be positioned
precisely where the table cell is. Table cells are not objects in NN4, so you must cre-
ate a positioning context in the cell by first creating a relative-positioned layer that
can contain nothing more than an “invisible” nonbreaking space character
(). The layer displaying the content must be absolute-positioned with
respect to that relative-positioned layer. Nesting of layers in NN4 causes headaches,
especially when scripts reference the deeply nested content — content that is,
essentially, an HTML document inside the nested layer.

Listing 27-1 shows a synthesis of different techniques to effect cell content replace-
ment, including script code branches that emulate the appearance of replacement
in NN4. The table represents only one line of what might be an order form for sev-
eral products. As the user makes a selection of the quantity, the extended total is
displayed in the rightmost column.

You can find the key features of the NN4 implementation in the script that dynami-
cally writes the table cell content within the HTML as the page loads. The cell begins
with a relative-positioned SPAN element. This SPAN is positioned at the top left of the
table cell, as planned. That spot now is the positioning context for the absolute-
positioned SPAN nested inside it. This second span is the layer whose document con-
tains the displayed content. The content, itself, is yet another SPAN element because
it simplifies the application of a style sheet rule (to display the total in red) when you
replace the content. Because a newly written NN4 layer does not inherit the style
sheet of its next outermost layer, you must apply the style as part of the new content.

The initial SPAN content contains a series of nonbreaking space characters that
force NN4 to open space for eventual replacement content. Recall that an NN4 page

CD-99

CD-] OO Part Ill 0 Document Objects Reference

' Note

does not reflow the page to accommodate resized content. This means that what-
ever you intend to insert in the table cell can be no larger than the original space
allocated for it.

Although the page shown in Listing 27-1 consists of only one row of data, the
scripts and naming conventions are intended to be carried out among multiple
rows. The product name appears in several object names and IDs in each row, and
the scripts count on the convention being followed throughout. In fact, the regular-
ity of the namings can allow the content for a table’s row to form a script function
that is invoked for each table row. The product code name can be passed as the
parameter, and all object names and IDs can be assembled in that function. The reg-
ularity of table content often lends itself to script-generated construction.

For NN4, when the table gets complicated, you will have more success defining

-~ the absolute-positioned elements outside of the table entirely. They should be

defined on their own at the bottom of the BODY. You can still position them with
respect to the relative-positioned elements in the table, but all such layers are now
only one level deep within the main document.

Listing 27-1: Replacing Table Cell Content

<HTML>

<HEAD>

<TITLE>Modifying Table Cell Content</TITLE>
(STYLE TYPE="text/css">

.absoluteWrap {position:absolute}
.relativelWrap {position:relative}

.total {color:red}

</STYLE>

<SCRIPT LANGUAGE="JavaScript">

var Ver4 = parselnt(navigator.appVersion) == 4

var Ver4Up = parselnt(navigator.appVersion) >= 4

var Navd = ((navigator.appName == "Netscape") && Ver4)

var modifiable

// calculate and display a row's total
function showTotal(qtyList) {
var qty = qtylList.options[qtylList.selectedIndex].value
var prodID = gtylList.name
var total = "US$" +
(qty * parseFloat(qtyList.form.elements[prodID + "Price"].value))
var newCellHTML = "" + total + ""

if(Nav4) {
document.layers[prodID + "TotalWrapper"].document.layers[prodID +
"Total"].document.write(newCellHTML)
document.layers[prodID + "TotalWrapper"].document.layers[prodID +
"Total"].document.close()
} else if (modifiable) {

Chapter 27 O Table and List Objects CD-101

if (document.all) {

document.all(prodID + "Total").innerHTML = newCelTHTML
} else {

document.getElementById(prodID + "Total").innerHTML = newCelTHTML
}

}

// initialize global flag for browsers capable of modifiable content
function init() {

modifiable = (Ver4Up && document.body && document.body.innerHTML)
}

// display content for all products (e.g., in case of Back navigation)
function showAllTotals(form) {
for (var i = 0; i < form.elements.length; i++) {
if (form.elements[i].type == "select-one") {
showTotal(form.elements[i])
1
1
1
</SCRIPT>
</HEAD>

<BODY onlLoad="init(); showAllTotals(document.orderForm)">
<H1>Modifying Table Cell Content</H1>
<HR>
<FORM NAME="orderForm">
<TABLE BORDER=1>
<COLGROUP WIDTH=150>
<COLGROUP WIDTH=100>
<COLGROUP WIDTH=50>
<COLGROUP WIDTH=100
<TR>
{TH>Product Description</TH>
<TH>Price Each</TH>
<TH>Quantity</TH>
<TH>Total</TH>
/TR
<TR>
<TD>Wonder Widget 9000</TD>
<TD>US$125.00</TD>
{TD><SELECT NAME="ww9000" onChange="showTotal(this)">
<OPTION VALUE="0">0
<OPTION VALUE="1">1
<OPTION VALUE="2">2
<OPTION VALUE="3">3

</SELECT>

<INPUT TYPE="hidden" NAME="ww9000Price" VALUE="125.00"></TD>
<TD>
{SCRIPT LANGUAGE="JavaScript">
if (Nav4) {

Continued

CD-102 Partiil O Document Objects Reference

Listing 27-1 (continued)

var placeHolder = " "
placeHolder += " "
document.write("")
document.write("")
document.write("" + placeHolder + "")
b else |
document.write("" +
"<P> </P>")
}
</SCRIPT>
</TD>
</TR>
</TABLE>
</FORM>
</BODY>
</HTML>

Modifying table rows

In [E4+ and NN6+, all table-related elements are full-fledged objects within the
browser’s object model. This means that you are free to use your choice of DOM
element modification techniques on the row and column makeup of a table. But due
to the frequent complexity of tables and all of their nested elements, the code
required to manage a table can balloon in size. To the rescue come some methods
that enable you to add and remove rows and cells from a table. Despite minor dif-
ferences in the implementations of these methods across DOMs, the syntax exhibits
sufficient unanimity to allow one set of code to work on both browsers — especially
for adding elements to a table.

Table 27-1 provides a quick summary of the key methods used to add or remove
elements within a TABLE, a table section (THEAD, TBODY, or TFOOT), and a row
(TR). For simple tables (in other words, those that do not define THEAD or TFOOT
segments), you can work exclusively with the row modification methods of the
TABLE element object (and then the cell modification methods of the rows within
the TABLE element). The reason for the duplication of the row methods in the table
section objects is that instead of having to worry about row index numbers lining
up among the combined total of head, body, and foot rows, you can treat each seg-
ment as a distinct unit. For example, if you want to add a row just to the beginning
of the TFOOT section, you can use the insertRow() method for the TFOOT ele-
ment object and not have to count up the TR elements and perform arithmetic to
arrive at the desired row number. Instead, simply use the insertRow() method on
the TFOOT element object and supply the method with parameters that ensure the
row is inserted as the first row of the element.

"Note

Chapter 27 O Table and List Objects CD-103

IE5 for the Macintosh offers unpredictable results when inserting rows of a table
via these methods. The browser does behave when modifying the HTML elements
by accumulating the HTML for a row as a string and then adding the row to the
table via IE DOM methods such as insertAdjacentHTML (). If your pages must
modify the composition of tables after the page loads—and your audience
includes IE5/Mac users —then use the element and node insertion techniques
rather than the methods shown in Table 27-1 and techniques described next.

Table 27-1 1E4+ and NN6 Table Modification Methods

TABLE THEAD, TBODY, TFOOT TR

insertRow() insertRow() insertCell()
deleteRow() deleteRow() deleteCell()
createTHead()

deleteTHead()

createTFoot()

deleteTFoot()

createCaption()

deleteCaption()

The basic sequence for inserting a row into a table entails the following steps:

1. Invoke insertRow() and capture the returned reference to the new, unpopu-
lated row.

2. Use the reference to the row to invoke insertCel1() for each cell in the row,
capturing the returned reference to each new, unpopulated cell.

3. Assign values to properties of the cell, including its content.

The following code fragment appends a new row to a table (my TABLE) and supplies
information for the two cells in that row:

// parameter of -1 appends to table

// (you can use document.all.myTABLE.insertRow(-1) for IE4+ only)
var newRow = document.getElementById("myTABLE").insertRow(-1)

// parameter of 0 inserts at first cell position

var newCell = newRow.insertCell(0)

newCell.innerHTML = "Mighty Widget 2000"

// parameter of 1 inserts at second cell position

newCell = newRow.insertCell(1)

newCell.innerHTML = "Release Date TBA"

CD-104 Partii O Document Objects Reference

A key point to note about this sequence is that the insertRow() and insertCell()
methods do their jobs before any content is handed over to the table. In other
words, you first create the HTML space for the content and then add the content.

Listing 27-2 presents a living environment that adds and removes THEAD, TR, and
TFOOT elements to an empty table in the HTML. The only subelement inside the
TABLE element is a TBODY element, which directs the insertion of table rows so as
not to disturb any existing THEAD or TFOOT elements. You can also see how to add
or remove a caption from a table via caption-specific methods.

The first release version of NN6 does not behave well when scripts excessively
modify tables. After some scripted changes, the browser reflows the page while
ignoring TABLE element attributes, such as CELLSPACING.

—

Each table row consists of the hours, minutes, seconds, and milliseconds of a time
stamp generated when you add the row. The color of any freshly added row in the
TBODY is a darker color than the normal TBODY rows. This is so you can see what
happens when you specify an index value to the insertRow() method. Some of the
code here concerns itself with enabling and disabling form controls and updating
SELECT elements, so don’t be deterred by the length of Listing 27-2.

Listing 27-2: Inserting/Removing Row Elements

<HTML>

<HEAD>

<TITLE>Modifying Table Cell Content</TITLE>

{STYLE TYPE="text/css">

THEAD {background-color:Tightyellow; font-weight:bold}
TFOOT {background-color:lightgreen; font-weight:bold}
#imyTABLE {background-color:bisque}

</STYLE>

{SCRIPT LANGUAGE="JavaScript">

var theTable, theTableBody

function init() {
theTable = (document.all) ? document.all.myTABLE :

document.getElementById("myTABLE")

theTableBody = theTable.tBodies[0]

}

function appendRow(form) {
insertTableRow(form, -1)

}

function addRow(form) {
insertTableRow(form, form.insertIndex.value)

}

function insertTableRow(form, where) {
var now = new Date()
var nowData = [now.getHours(), now.getMinutes(), now.getSeconds(),

Chapter 27 O Table and List Objects CD-105

now.getMilliseconds()]

clearBGColors()

var newCell

var newRow = theTableBody.insertRow(where)

for (var i = 0; i < nowData.length; i++) {
newCell = newRow.insertCell(i)
newCell.innerHTML = nowDatali]
newCell.style.backgroundColor = "salmon"

}
updateRowCounters(form)
}

function removeRow(form) {
theTableBody.deleteRow(form.deletelndex.value)
updateRowCounters(form)

}

function insertTHEAD(form) {
var THEADData = ["Hours","Minutes","Seconds","Milliseconds"]
var newCell
var newTHEAD = theTable.createTHead()
newTHEAD.id = "myTHEAD"
var newRow = newTHEAD.insertRow(-1)
for (var i = 0; i < THEADData.length; i++) {
newCell = newRow.insertCell(i)
newCell.innerHTML = THEADDatal[i]
1
updateRowCounters(form)
form.addTHEAD.disabled = true
form.deleteTHEAD.disabled = false
}

function removeTHEAD(form) {
theTable.deleteTHead()
updateRowCounters(form)
form.addTHEAD.disabled = false
form.deleteTHEAD.disabled = true
}

function insertTFOOT(form) {
var TFOOTData = ["Hours","Minutes","Seconds","MiTliseconds"]
var newCell
var newTFOOT = theTable.createTFoot()
newTFOOT.id = "myTFOOT"
var newRow = newTFOOT.insertRow(-1)
for (var i 0; i < TFOOTData.length; i++) {
newCell = newRow.insertCell(i)
newCell.innerHTML = TFOOTDatali]

}

updateRowCounters(form)
form.addTFOOT.disabled = true
form.deleteTFOOT.disabled = false

Continued

CD-] (06 Partlll O Document Objects Reference

Listing 27-2 (continued)

function removeTFOOT(form) {
theTable.deleteTFoot()
updateRowCounters(form)
form.addTFOOT.disabled = false
form.deleteTFOOT.disabled = true
}

function insertCaption(form) {
var captionData = form.captionText.value
var newCaption = theTable.createCaption()
newCaption.innerHTML = captionData
form.addCaption.disabled = true
form.deleteCaption.disabled = false

}

function removeCaption(form) {
theTable.deleteCaption()
form.addCaption.disabled = false
form.deleteCaption.disabled = true
}

// housekeeping functions
function updateRowCounters(form) {
var sell = form.insertIndex
var sel?2 = form.deletelndex
sell.options.length = 0
sel2.options.length = 0
for (var i = 0; i < theTableBody.rows.length; i++) {
sell.options[i] = new Option(i, 1)
sel2.options[i] = new Option(i, i)
}
form.removeRowBtn.disabled = (i==0)
}

function clearBGColors() {
for (var i = 0; i < theTableBody.rows.length; i++) {
for (var j = 0; j < theTableBody.rows[i].cells.length; j++) {
theTableBody.rows[i].cells[j].style.backgroundColor = ""
}

}

</SCRIPT>
</HEAD>

<BODY onLoad="init()">
<H1>Modifying Tables</H1>

<HR>

<FORM NAME="controls">
<FIELDSET>

<LEGEND>Add/Remove Rows</LEGEND>

Chapter 27 O Table and List Objects CD-107

{TABLE WIDTH="100%" CELLSPACING=20><TR>
<TD><INPUT TYPE="button" VALUE="Append 1 Row"
onClick="appendRow(this.form)"></TD>
<TD>CINPUT TYPE="button" VALUE="Insert 1 Row" onClick="addRow(this.form)"> at
index:
(SELECT NAME="insertIndex">
<OPTION VALUE="0">0
</SELECT></TD>
<TD><INPUT TYPE="button" NAME="removeRowBtn" VALUE="Delete 1 Row" DISABLED
onClick="removeRow(this.form)"> at index:
{SELECT NAME="deleteIndex">
<OPTION VALUE="0">0
</SELECT></TD>
</TR>
</TABLE>
</FIELDSET>
<FIELDSET>
<LEGEND>Add/Remove THEAD and TFOOT</LEGEND>
{TABLE WIDTH="100%" CELLSPACING=20><TR>
<TD><INPUT TYPE="button" NAME="addTHEAD" VALUE="Insert THEAD"
onClick="insertTHEAD(this.form)">

<INPUT TYPE="button" NAME="deleteTHEAD" VALUE="Remove THEAD" DISABLED
onClick="removeTHEAD(this.form)">
</TD>
{TD><INPUT TYPE="button" NAME="addTFOOT" VALUE="Insert TFOOT"
onClick="insertTFOOT(this.form)">

<INPUT TYPE="button" NAME="deleteTFOOT" VALUE="Remove TFOOT" DISABLED
onClick="removeTFOOT(this.form)">
</TD>
</TR>
</TABLE>
</FIELDSET>
<FIELDSET>
<LEGEND>Add/Remove Caption</LEGEND>
<TABLE WIDTH="100%" CELLSPACING=20><TR>
<TD><INPUT TYPE="button" NAME="addCaption" VALUE="Add Caption"
onClick="insertCaption(this.form)"></TD>
<TD>Text: <INPUT TYPE="text" NAME="captionText" SIZE=40 VALUE="Sample Caption">
<TD><INPUT TYPE="button" NAME="deleteCaption" VALUE="Delete Caption" DISABLED
onClick="removeCaption(this.form)"></TD>
</TR>
</TABLE>
</FIELDSET>
</FORM>
<HR>
{TABLE ID="myTABLE" CELLPADDING=10 BORDER=1>
<TBODY>
</TABLE>
</B0ODY>
</HTML>

CD-] 08 Part Ill 0 Document Objects Reference

Modifying table columns

Unlike the table row-oriented elements, such as TBODY, the COL and COLGROUP
elements are not containers of cells. Instead, these elements serve as directives for
the rendering of columns within a table. But through scripting, you can add or
remove one or more columns from a table on the fly. There is no magic to it; you
simply insert or delete the same-indexed cell from every row of the table.

Listing 27-3 demonstrates adding and removing a left-hand column of a table. The
table presents the four longest rivers in Africa, and the new column provides the
numeric ranking. Thanks to the regularity of this table, the values for the rankings
can be calculated dynamically. Note, too, that the c1assName property of each new
table cell is set to a class that has a style sheet rule defined for it. Instead of inherit-
ing the style of the table, the cells obey the more specific background color and
font weight rules defined for the cells. (The early release of NN6 does not render
the enabling and disabling of the buttons in this example correctly, but the buttons
operate as intended.)

Listing 27-3: Modifying Table Columns

<HTML>

<HEAD>

<TITLE>Modifying Table Columns</TITLE>

{STYLE TYPE="text/css">

THEAD {background-color:1ightyellow; font-weight:bold}
.rankCells {background-color:lightgreen; font-weight:bold}
#myTABLE {background-color:bisque}

</STYLED

<SCRIPT LANGUAGE="JavaScript">
var theTable, theTableBody
function init() {
theTable = (document.all) ? document.all.myTABLE :
document.getETementById("myTABLE")
theTableBody = theTable.tBodies[0]
}

function insertColumn(form) {

var oneRow, newCell, rank

if (theTable.tHead) {
oneRow = theTable.tHead.rows[0]
newCell = oneRow.insertCel1(0)
newCell.innerHTML = "Ranking"

}

rank =1

for (var i = 0; i < theTableBody.rows.length; i++) {
oneRow = theTableBody.rows[i]
newCell = oneRow.insertCel1(0)
newCell.className = "rankCells"
newCell.innerHTML = rank++

Chapter 27 O Table and List Objects CD-109

}
form.addColumn.disabled = true
form.removeColumn.disabled = false

}

function deleteColumn(form) {
var oneRow
if (theTable.tHead) {
oneRow = theTable.tHead.rows[0]
oneRow.deleteCel1(0)
1
for (var i = 0; i < theTableBody.rows.length; i++) {
oneRow = theTableBody.rows[i]
oneRow.deleteCel1(0)
}
form.addColumn.disabled = false
form.removeColumn.disabled = true
1
</SCRIPT>
</HEAD>

<BODY onLoad="init()">

<H1>Modifying Table Columns</H1>

<HR>

<FORM NAME="controls">

<FIELDSET>

<LEGEND>Add/Remove Left Column</LEGEND>

{TABLE WIDTH="100%" CELLSPACING=20><TR>

<TD><INPUT TYPE="button" NAME="addColumn" VALUE="Insert Left Column"
onClick="insertColumn(this.form)"></TD>

<TD>CINPUT TYPE="button" NAME="removeColumn" VALUE="Remove Left Column"
DISABLED onClick="deleteColumn(this.form)"></TD>

</TRY

</TABLE>

</FIELDSET>

</TABLE>

</FIELDSET>

</FORM>

<HR>

{TABLE ID="myTABLE" CELLPADDING=5 BORDER=1>

<THEAD ID="myTHEAD">

<TR>
<TD>River<TD>0utflow<TD>MiTes<TD>Kilometers

</TR>

</THEAD>

<TBODY>

<TR>
<TD>Nile<TD>Mediterranean<TD>4160<TD>6700

</TR>

<TR>
<TD>Congo<TD>AtTantic 0cean<TD>2900<TD>4670

</TR>

<TR>

Continued

CD-] 1 O Part Ill 0 Document Objects Reference

Listing 27-3 (continued)

<TD>Niger<TD>Atlantic 0cean<TD>2600<TD>4180
</TR>
<TR>

<TD>Zambezi<TD>Indian 0cean<TD>1700<TD>2740
</TR>
</TABLE>
</BODY>
</HTML>

W3C DOM table object classes

If you ever read the W3C DOM Level 2 specification, notice that the objects defined
for tables do not align themselves fully with the actual elements defined in the
HTML 4.0 specification. That’s not to say the DOM scoffs at the HTML spec; rather,
the needs of a DOM with respect to tables differ a bit. For example, as far as the
W3C DOM is concerned, the THEAD, TBODY, and TFOOT are all regarded as table
sections and are thus known as HTMLTableSectionElement objects. In other
words, in the W3C DOM, there is no particular distinction among the types of table
section elements. They’re all lumped together, and they bear the same properties
and methods. With its strong adherence to the W3C DOM, the NN6 DOM sticks to
the W3C DOM object constructions.

When you work in both the IE and W3C DOMs at the same time, it’s helpful to know
the relationships between the object naming conventions used in each. Table 27-2
provides a quick cross-reference between the object types in both DOMs. None of
terminology in Table 27-2 affects the way scripts construct references to elements
or the way elements are nested within one another. The containment hierarchy is
driven by the HTML element containment — and that remains the same regardless
of DOM exposure.

Table 27-2 Table Object Classifications

W3C DOM (NN6) IE4+ and HTML
HTMLTableETement TABLE
HTMLTableCaptionElement CAPTION
HTMLTableCoTlETement COL, COLGROUP
HTMLTableSectionElement TBODY, TFOOT, THEAD
HTMLTableRowETement TR

HTMLTableCellETement TD, TH

Chapter 27 O Table and List Objects CD-11 1

While the following object-specific discussions list the objects according to their
HTML tag name, I group these objects according to the W3C DOM classifications
because element objects that share a classification also share the same properties,
methods, and event handlers.

TABLE Element Object

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers
align createCaption() onScroll
background createTFoot()
bgColor createTHead()
border deleteCaption()
borderColor deleteRow()
borderColorDark deleteTFoot()
borderColorlLight deleteTHead()
caption firstPage()
cellPadding insertRow()
cellSpacing lastPage()
cells moveRow ()

cols nextPage()
datePageSize previousPage()
frame refresh()
height

rows

rules

summary

tBodies

tFoot

tHead

width

CD-112 Partii O Document Objects Reference

Syntax

Accessing TABLE element object properties and methods:

(TE4+) [window.]document.all.elemID.property | method([parameters])
(TE5+/NN6) [window.]document.getElementById("elemID").property |
method([parameters])

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IE4 IE5 IE5.5

Compatibility 0 0 | 0

About this object

The TABLE element object is the outermost container of table-related information.
The HTML element has a large number of attributes, most of which are echoed by
their counterpart properties in the object model. You rarely will modify these prop-
erties if the values are set in the tag’s attributes. However, if you construct a new
TABLE element object for insertion into the page, use these properties to assign val-
ues to the equivalents of the element’s attributes.

A number of additional properties return collections of cell, row, and row section
objects; still more properties return references to other, singular objects within the
table (such as the CAPTION element object). For example, if your script needs to
iterate through all rows within just the TBODY elements (in other words, without
affecting the rows in the THEAD element), your script can perform a nested for
loop to access each row:

var oneTBody, oneRow
for (var i = 0; i < tableRef.tBodies.length; i++) {
oneTBody = tableRef.tBodies[i]
for (var j = 0; j < oneTBody.rows.length; j++) {
oneRow = oneTBody.rows[j]
// more stuff working on each row

}

For a simple table that does not define table row sections, you can iterate through
the rows collection property of a TABLE element object. You can even access cells
directly; but it may be easier to keep track of cells in a loop by going through them
row by row (via the cel1s property of each TR element object).

A large number of methods enable you to modify the structure of a table (as
described earlier in this chapter), but they primarily work with rows. Column modi-
fications require a different approach, as also demonstrated earlier.

Chapter 27 O Table and List Objects CD-113

Properties
align

Value: String (center, Teft, right) Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility O o O O

The align property controls the horizontal alignment of the table with respect to
the next outermost container that provides positioning context. Most typically, the
next outermost positioning container is the BODY element. Modifications to this
property on an existing table cause the surrounding content to reflow on the page.
Be sure you test the consequences of any modification with a variety of browser
window sizes.

On the 1 N

CD \ Example on the CD-ROM

5

W

Related Item: style.align property.

background

Value: URL String Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J)2 IE4 IE5 IE5.5

Compatibility o O g

Only IE4+ makes a provision for assigning a background image to a table, and the
background property controls that value. You can swap out an image by assigning
anew URL to the background property. The image appears in front of any back-
ground color assigned to the table. Thus, you can assign attributes for both charac-
teristics so that there is at least a background color (and an image for IE users).
gg e R E I he CD-ROM
-ROM xample on the CD-
Lo
A

Related Item: IMG. src property.

CD-114 Partii O Document Objects Reference

bgColor

Value: Color Value String Read/Write

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IE4A IE5 IE5.5

Compatibility 0 0 0 0

The bgColor attribute controls the background color of a table (the BGCOLOR
attribute). Colors assigned to the entire table are overridden if colors are assigned
to row, row groups, or cells within the table. If you set the bgColor property, the
backgroundColor style property is not affected. Assign values in any acceptable
color string format, such as hexadecimal triplets (for example, “#fFCFC00”) or the
generally recognized plain-language names (for example, “cornflowerblue”).

On the

CD\"- Example on the CD-ROM

Related Item: style.backgroundColor property.

border
Value: Integer Read/Write
NN2 NN3 NN4 NN6 IE3/11 IE3/)2 1IE4 IE5 IE5.5
Compatibility 0 0 0 0

The border property controls the thickness of the table’s borders. Values indicate
the number of pixels thick the border should be. A value of zero removes all visible
borders surrounding the table. Different browsers render table cell borders differ-
ently depending on background colors and other visual attributes of tables and
table elements. Be sure to verify the appearance on as many browsers and operat-
ing systems as possible.

On the |

CD\"- Example on the CD-ROM

Related Item: borderColor property.

Chapter 27 O Table and List Objects CD-115

borderColor
borderColorDark
borderColorLight

Value: Color Value String Read/Write

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility 0 O |

IE4+ provides attributes and corresponding properties to control the border colors
of a table. When table borders have enough thickness to display a three-dimensional
raised look, the appearance is created by generating two dark and two light edges
(simulating a light source coming from the upper-left or lower-right corner). If you
want to do a better job of specifying the color combinations for the light and dark
edges, you can control them individually via the borderColorLight and
borderColorDark properties, respectively. You can assign colors in any valid color
value (hexadecimal triplet or plain-language name); but when you read the prop-
erty, the value is returned as a hexadecimal triplet (for example, "#008000").

On the | N

CD \ Example on the CD-ROM

@

Related Item: TD.borderColor property.

caption
Value: CAPTION element object reference Read/Write (see text)
NN2 NN3 NN4 NN6 IE3/11 1E3/)2 IE4 IE5 IE5.5
Compatibility 0 0 O 0

The caption property returns a reference to the CAPTION element object that is
nested inside the current table. If there is no CAPTION element, the value is null.
You can use this property as a shortcut reference to the CAPTION element if you

CD-] 1 6 Part Ill 0 Document Objects Reference

need to read or modify that element’s properties. The property is read/write in
NNG6, provided you create a valid CAPTION element object and assign that new
object to the caption property.
On the | N
CD-RBM \ Example on the CD-ROM
ol '

Related Item: CAPTION element object.

cellPadding
cellSpacing

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IE4A IE5 IE5.5

Compatibility O 0 0 0

The cel1Padding property is a table-wide specification for the blank space
inserted between the edge of a table cell and the content of the cell. One value
affects the padding on all four sides. The effect of cell padding is especially appar-
ent when there are borders between cells; in this case, the padding provides wel-
come breathing space between the border and content. The cel1Spacing property
influences the thickness of borders between cells. If no visible borders are present
between cells in a table, you can usually set either CELLPADDING or CELLSPACING
to provide the desired blank space between cells.

gnthe- A
D-l |\ Example on the CD-ROM
%

. Related Item: border property.

cells

Value: Array Read-Only

NN2 NN3 NN4 NN6 IE3/J1 IE3/J)2 IE4 IE5 IE5.5

Compatibility]]

Chapter 27 O Table and List Objects CD-117

The cel1s property (not implemented in IE5/Mac) returns an array (collection) of
all TD and TH element objects within the entire table. From the perspective of the
TABLE element object, this “view” encompasses all cells—whether they are inside
a table row segment (for example, a THEAD) or in a freestanding row. In the W3C
DOM (and NN6), the cel1s collection is accessible only as a property of a TR
object. However, a rows collection is available from all table container elements,
thus enabling you to iterate through all cells of all rows.

gg \‘ E I he CD-ROM

.\ \ Example on the CD-

~a 7

Related Items: rows, TR.cells properties.

cols
Value: Integer Read/Write
NN2 NN3 NN4 NN6 IE3/11 1E3/)2 IE4 IE5 IE5.5
Compatibility 0 O |

The cols property represents the IE-specific COLS attribute for TABLE elements.
Specifying this attribute should speed table rendering. If you don’t specify the
attribute explicitly in your HTML, the property has a value of zero —the property
does not tell you dynamically the size of your table. Although this property is
read/write, you cannot use this property to add or remove columns from a table.
Instead, use the table modification methods discussed later in this section.

Related Item: rows property.

dataPageSize

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4A IE5 IE5.5

Compatibility 0 O 0

When using IE4+ data binding to obtain table data from a data source, there may be
more rows or data (records) than you wish to display in one table. If so, you can

CD-] 1 8 Part Ill 0 Document Objects Reference

define the number of rows (records) that constitutes a “page” of data within the
table. With this limit installed for the table, you can then use the firstPage(),
previousPage(), nextPage(), and TastPage() methods to access another page
relative to the currently viewed page. While you usually establish this value via the
DATAPAGESIZE attribute of the TABLE element, you can adjust it later via the
dataPageSize property to show more or fewer records per “page” in the table.

On the

\
CD-RBM "\ Example on the CD-ROM
A

Related Items: dataSrc, dataF1d properties; firstPage(), lastPage(),
nextPage(), previousPage() methods.

frame
Value: String Constant Read/Write
NN2 NN3 NN4 NN6 IE3/11 1E3/)2 IE4 IE5 IE5.5
Compatibility O 0 | O

The frame property enables you to control which side or sides of the table’s border
should be displayed. Values for this property can be any of a fixed set of string con-
stants. Table 27-3 lists the acceptable values. Hiding or showing table border edges
under script control can have an effect on the layout and placement of both the
table and surrounding elements.

Table 27-3 Table frame Property Values

Value Description

above Top edge only

below Bottom edge only

border All four sides (same as box)
box All four sides (same as border)

hsides Horizontal (top and bottom) edges only

Chapter 27 O Table and List Objects CD-119

Value Description

Ths Left-hand side edge only

rhs Right-hand side edge only

void No borders

vsides Vertical (left and right) edges only

On the }
_ CD\'- Example (with Listing 27-4) on the CD-ROM

Related Items: border, borderColor, rules properties.

height
width
Value: Integer or Length String Read/Write
NN2 NN3 NN4 NN6 IE3/11 1E3/)2 IE4 IE5 IE5.5
Compatibility O 0 O 0

The height (IE4+) and width (IE4+/NN6+) properties represent the HEIGHT and
WIDTH attributes assigned to the TABLE element. If no values are assigned to the
element in the tag, the properties do not reveal the rendered size of the table (use
the of fsetHeight and offsetWidth properties for that information). Values for
these properties can be integers representing pixel dimensions or strings contain-
ing percentage values, just like the attribute values. Scripts can shrink the dimen-
sions of a table no smaller than the minimum space required to render the cell
content. Notice that only the width property is W3C DOM-sanctioned (as well as
the corresponding property in the HTML 4.0 specification).

On the | N

_ CD \ Example on the CD-ROM

Related Items: of fsetHeight, offsetWidth properties.

CD-] 20 Part Ill 0 Document Objects Reference

rows
Value: Array of Row Objects Read-Only
NN2 NN3 NN4 NN6 IE3/11 1E3/)2 IE4 IE5 IE5.5
Compatibility 0 0 0 0

The rows property returns an array (collection) of TR element objects in the current
table. This array includes rows in the THEAD, TBODY, and TFOOT row sections if the
table is segmented. You can use the rows property to create a cross-browser script
that accesses each cell of a table. Such a nested for loop looks like the following:

var oneCell
for (var i = 0; i < tableRef.rows.length; i++) {
for (var j = 0; J < tableRef.rows[il.cells.length; j++) {
oneCell = tableRef.rows[i].cells[j]
// more statements working with the cell

}

If you want to limit the scope of the rows property to rows within a row segment
(for example, just in the TBODY), you can access this property for any of the three
types of row segment objects.

On the

CD\"- Example on the CD-ROM

Related Items: TBODY . rows, TFOOT.rows, THEAD. rows properties.

rules
Value: String Constant Read/Write
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4A IE5 IE5.5
Compatibility O o O O

In contrast to the frame property, the rules property governs the display of bor-
ders between cells. Values for this property can be any of a fixed set of string con-
stants. Table 27-4 lists the acceptable values. Hiding or showing table cell border

Chapter 27 O Table and List Objects CD-121

edges under script control can have an effect on the layout and placement of both
the table and surrounding elements. Early versions of NN6 may not render scripted
changes to the rules property, but reading or writing the property does not cause

errors.
Table 27-4 Table rules Property Values
Value Description
all Borders around every cell
cols Vertical borders between columns
groups Vertical borders between column groups; horizontal borders between row
groups
none No borders between cells
rows Horizontal borders between row groups

On the
_ CD\'- Example (with Listing 27-5) on the CD-ROM

Related Items: border, borderColor, frame properties.

summary
Value: String Read/Write
NN2 NN3 NN4 NNé6 IE3/1 IE3/)2 IE4A IE5 IE5.5
Compatibility 0

The summary property represents the HTML 4.0 SUMMARY attribute. The text
assigned to this attribute is intended for use by browsers that present a page’s con-
tent through nonvisual means. For example, a browser equipped to use speech syn-
thesis to read the page aloud can use the text of the summary to describe the table
for the user.

Related Item: caption property.

CD-122 Partiil O Document Objects Reference

tBodies
Value: Array of TBODY element objects Read-Only
NN2 NN3 NN4 NN6 IE3/11 1E3/)2 IE4 IE5 IE5.5
Compatibility 0 0 0 0

The tBodies property returns an array of all TBODY elements in the table. Even if
you don’t specify a TBODY element, every table contains an implied TBODY ele-
ment. Thus, to access a batch of rows of a simple table other than the THEAD and
TFOOT sections, you can use the tBodies[0] array notation. From there, you can
get the rows of the table body section via the rows property. This property is not
available in IE4/Mac.
8{}\ E | he CD-ROM
. xample on the CD-
~

Related Items: tFoot, tHead properties.

tFoot
tHead
Value: Row segment element object Read/Write (see text)
NN2 NN3 NN4 NN6 IE3/11 1E3/)2 IE4 IE5 IE5.5
Compatibility O 0 0 0

Each table can have (at most) one TFOOT and one THEAD element. If you specify
one of these for the table, the tFoot and tHead properties, respectively, return ref-
erences to those element objects. These properties are read-only in IE, but NN6
enables you to assign valid TFOOT and THEAD element objects to these properties
in order to insert or replace the elements in the current table. The process for
doing this is similar to the sequence described in the caption property. For either
of these two elements, however, you have to construct the desired number of table
cell objects (and row objects if you want multiple rows) for the newly created row

Chapter 27 O Table and List Objects CD-123

segment object. See the discussions of these two objects for details on accessing
rows and cells of the segments.

Related Items: TBODY, TFOOT, THEAD objects.

width

See height.

Methods

createCaption()
deleteCaption()

Returns: Reference to new CAPTION element object; Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility 0 0 | O

The createCaption() and deTeteCaption() convenience methods enable you to
add or remove a CAPTION element object from the current table. When you create
a new caption, the action simply inserts the equivalent of a blank CAPTION element
tag into the TABLE element (this may not, however, be reflected in the source view
of the page). You must populate the CAPTION element with text or HTML before it
appears on the page. Because the method returns a reference to the newly created
object, you can use that reference to assign content to its innerHTML property or
you can append a child text node.

Because a table can have only one CAPTION element nested within, the
deleteCaption() method belongs to the TABLE element object. The method
returns no value.

Example

See Listing 27-2 for an example of creating, inserting, and removing a CAPTION ele-
ment object from a table.

Related Item: CAPTION element object.

CD-124 Partii O Document Objects Reference

createTFoot()
createTHead()
deleteTFoot()
deleteTHead()

Returns: Element references (create methods); Nothing.

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IE4A IE5 IE5.5

Compatibility 0 (0) a 0

These four methods enable you to add or remove TFOOT and THEAD table row sec-
tion objects. When you create a THEAD or TFOOT element, the methods return ref-
erences to the newly inserted elements. But, as with createCaption(), these
methods do nothing to display content. Instead, use the returned references to pop-
ulate the row(s) of the header and footer with cells. Regardless of the number of
rows associated with a THEAD or TFOOT element, the deleteTFoot () and
deleteTHead () methods remove all associated rows and return no values.

While these methods are available in IE4, you may not have complete write access
to the properties of the objects returned by the creation methods. For example, you

may not be able to assign a value to the id property of the TFOOT or THEAD ele-
ment returned by their respective creation methods.

Example

See Listing 27-2 for an example of creating, inserting, and removing TFOOT and
THEAD elements object from a table.

Related Items: TFOOT, THEAD element objects.

deleteRow(rowlIndex)
insertRow(rowlIndex)

Returns: Nothing; Reference to newly created row.

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility O 0 0 0

Chapter 27 O Table and List Objects CD-125

The insertRow() and deleteRow() convenience methods assist in adding TR ele-
ments to, and removing them from, a TABLE element. Inserting a row does little
more than the equivalent of inserting a pair of empty TR element tags into the
HTML (although you may not see them in the source view of the page). It is up to
the rest of your scripts to assign properties to the row and populate it with new
cells (see the insertCel1() method of the TR element object).

Attributes for both methods are zero-based index numbers. In the case of
insertRow(), the number indicates the row before which the new row is to be
inserted. To append the row to the end of the table, use -1 as a shortcut parameter.
To delete a row, use the index value for that row. Be aware that if you intend to
employ deleteRow() to remove all rows from a table (presumably to repopulate
the table with a new set), the most efficient way is to use a whi 1e loop that contin-
ues to remove the first row until there are no more:

while (tableRef.rows.length > 0) {

tableRef.deleteRow(0)
}

Example
See Listing 27-2 for examples of inserting and deleting table rows.

Related Item: TD.insertCell() method.

firstPage()
lastPage()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IE4A IE5 IE5.5

Compatibility a 0

For tables that are bound to external data sources via [E4+ data binding, the
firstPage() and TastPage() methods zoom to the first and last pages of the
data, respectively. You must specify the table’s data page size for the Data Source
Object to know how many records to assign to a “page” of data. Note that while
related methods —nextPage() and previousPage () —are available in IE4, these
two methods were available in IE5 first.

Related Items: dataPageSize, dataSrc, dataF1d properties; nextPage(),
previousPage() methods.

CD-] 26 Part Ill 0 Document Objects Reference

moveRow(sourceRowIndex, destinationRowIndex)

Returns: Row element object.

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IE4A IE5 IE5.5

Compatibility a 0

The IE5+ moveRow () convenience method enables you to move a row from one
position to another within the same table. Both parameters are integer index val-
ues. The first parameter is the index of the row you want to move; the second is the
index of the row to where you want to move the row. Because no movement takes
place when the method is invoked, the removal of the source row does not impact
the index count of the destination row. But after the method executes, the row that
was in the destination row is now pushed down one row. This method returns a ref-
erence to the moved row.

You can accomplish this same functionality in W3C DOM compatible syntax (for
both IE5+ and NN6+) via the replaceChild() method of the TABLE element.

ggthe' X
-RBM "\ Example on the CD-ROM
Sl :

Related Item: replaceChild() method.

nextPage()
previousPage()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IE4A IE5 IE5.5

Compatibility 0 0 O

For tables that are bound to external data sources via [E4+ data binding, the
nextPage() and previousPage() methods jump ahead and back one page of the
data, respectively. You must specify the table’s data page size for the Data Source
Object to know how many records to assign to a “page” of data. Typically, naviga-
tional buttons associated with the table invoke these methods.

Chapter 27 O Table and List Objects CD-127

Related Items: dataPageSize, dataSrc, dataF1d properties; firstPage(),
lastPage() methods.

refresh()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4A IE5 IE5.5

Compatibility 0 0 O

For tables that are bound to external data sources via [E4+ data binding, the
refresh() method retrieves the current data source data for display in the table. A
script can use setTimeout () to invoke a function that calls this method at an inter-
val of your desire. If you frequently update the database associated with the table,
this method can help keep the table up to date without requiring the client to
download the entire page (and perhaps run into cache conflicts).

Related Items: dataPageSize, dataSrc, dataF1d properties.

TBODY, TFOOT, and THEAD Element Objects

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers
alignt deleteRow()t

bgColort insertRow()t

ch moveRow ()t

chOff

rowst

vATign

tSee TABLE element object.

CD-] 28 Part Ill 0 Document Objects Reference

Syntax
Accessing TBODY, TFOOT, and THEAD element object properties and methods:

(TE4+) [window.ldocument.all.elemID.property | method([parameters])
(IE5+/NN6) [window.ldocument.getElementById("elemID").property |
method([parameters])

Accessing TBODY element object properties and methods:

(TE4+) [window.ldocument.all.tablelID.tBodies[i].property |
method([parameters])

(IE5+/NN6) [window.]ldocument.getElementById("tableID").tBodies[i]l.property |
method([parameters])

Accessing TFOOT element object properties and methods:

(TE4+) [window.ldocument.all.tablelD.tFoot.property | method([parameters])
(IE5+/NN6) [window.ldocument.getElementById("tablelD").tFoot.property |
method([parameters])

Accessing THEAD element object properties and methods:

(TE4+) [window.ldocument.all.tablelD.tHead.property | method([parameters])
(IE5+/NN6) [window.ldocument.getElementById("tablelD").tHead.property |
method([parameters])

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4A IE5 IE5.5

Compatibility 0 (0) O 0

About these objects

Each of these element objects represents a row grouping within a TABLE element
(an HTMLTableSectionElement in the syntax of the W3C DOM specification). A

table can have only one THEAD and one TFOOT, but it can have as many TBODY

elements as your table organization requires.

These elements share many properties and methods with the TABLE element in
that they all contain rows. The benefit of defining table segments is apparent if you
use table rules (see the TABLE.rules property earlier in this chapter) and if you
wish to limit the scope of row activities only to rows within one segment. For
instance, if your table has a THEAD that is to remain static, your scripts can merrily
loop through the rows of only the TBODY section without coming anywhere near
the row(s) in the THEAD.

None of these elements are available in IE4 for the Macintosh.

Chapter 27 O Table and List Objects CD-129

Properties

ch
chOff

Value: One-Character String Read/Write

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IE4A IE5 IE5.5

Compatibility 0

The ch and chOff properties are defined for NN6, but they may be serving as place-
holders for future implementation. These properties represent the optional CHAR
and CHAROFF attributes of table row section elements in the HTML 4.0 specification.
If these are implemented in a future browser, they will help align cell content within
a column or column group similar to the way word processers allow for formatting
features such as decimal tabs. For details on these attributes, see http://www.
w3.0rg/TR/REC-htm140/struct/tables.htmlffadef-char.

Related Items: COL, COLGROUP objects.

VATign
Value: String Constant Read/Write
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4A IE5 IE5.5
Compatibility 0 0 0 0

Providing the cell-oriented vA11gn property for a table row section enables you to
specify a vertical alignment to apply to all cells within that section rather than specify
the VALIGN attribute for each TD element. By default, browsers render cell content
with a middle vertical alignment within the cell. If you want to modify the setting for
an existing table section (or assign it to a new one you create), the values must be
one of the following string constants: baseline, bottom, middle, or top.

8{} e ko E | he CD-ROM

-ROM xample on the CD-
'\\\\ y P

Related Item: TD.vAlign property.

CD-130 Partil O Document Objects Reference

CAPTION Element Object

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

alignt
vATigntt

tSee TABLE element object.
t1See TBODY element object.

Syntax

Accessing CAPTION element object properties and methods:

(TE4+) [window.ldocument.all.elemID.property | method([parameters])
(IE5+/NN6) [window.ldocument.getElementById("elemID").property |
method([parameters])

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IEA IE5 IE5.5

Compatibility 0 0 0 0

About this object

A CAPTION element is a simple HTML container whose only prerequisite is that it
must be nested inside a TABLE element. That nesting allows the TABLE element
object to control insertion and removal of a CAPTION element at will. You can mod-
ify the content of a CAPTION element just like you do any HTML element (in DOMs
that allow such modification). You can see an example of how the TABLE element
object uses some of its methods to create and remove a CAPTION element in
Listing 27-2.

The only properties that lift the CAPTION element object above a mere contextual
element (described in Chapter 15) are vAl1ign (IE4+) and the W3C DOM-sanctioned
align (IE4+ and NN6+). I describe these properties and their values for other
objects in this chapter.

Chapter 27 O Table and List Objects CD-13 1

COL and COLGROUP Element Objects

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

alignt
chtt
chOofftt
span
vATigntt
width

tSee TABLE element object.
ttSee TBODY element object.

Syntax
Accessing COL and COLGROUP element object properties and methods:
(TE4+) [window.ldocument.all.elemID.property | method([parameters])

(IE5+/NN6) [window.ldocument.getElementById("elemID").property |
method([parameters])

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IE4 IE5 IE5.5

Compatibility O 0 0 0

About these objects

The purpose of the COL and COLGROUP elements is to allow cells within one or
more columns to be treated as a single entity for purposes of style sheet and other
style-related control. In other words, if you want one column of a table to be all
boldface, you can assign that style sheet rule to the COL element that encompasses
that column. All cells within that column inherit the style sheet rule definition.

CD-132 Partiil O Document Objects Reference

Having two different element names allows for the nesting of column groups, which
can come in handy for complex tables. For instance, consider a table that reports
the forecasted and actual sales for a list of products across four quarters of a year.
The left column of the table stands alone with the product item numbers. To the
right is one large grouping of eight columns that encompasses the four pairs of fore-
casted/actual sales pairs. All eight columns of cells are to be formatted with a par-
ticular font style to help differentiate the pairs of columns for each quarter. You
also want to assign a different background color. Therefore, you designate each pair
of columns as its own subgroup within the eight-column master grouping. The COL-
GROUP and COL tags for this nine-column table are as follows:

<COL ID="productIDs">
<COLGROUP 1D="fiscalYear" SPAN="8" WIDTH="40">
<COL ID="Ql"™ SPAN="2">
<COL ID="Q2" SPAN="2">
<COL ID="Q3" SPAN="2">
<COL ID="Q4" SPAN="2">
</COLGROUP>

Up in the HEAD section of this document are style sheet rules similar to the following:

<STYLE TYPE="text/css">

ffproductIDs {font-weight:bold}

#fiscalYear {font-family: Courier, "Courier New", monospace}
#01 {background-color: Tightyellow}

#02 {background-color: pink}

#03 {background-color: 1ightblue}

#04 {background-color: Tightgreen}

</STYLE>

The HTML code for the column groups demonstrates the two key attributes: SPAN
and WIDTH. Both of these attributes are reflected as properties of the objects, and |
describe them in the following section. Notice, however, that COL and COLGROUP
elements act cumulatively and in source code order to define the column groups for
the table. In other words, if the style of the left-hand column is not important, the
table still requires the initial one-column COL element before the eight-column COL-
GROUP element. Otherwise, the browser makes the first eight columns the column
group. Therefore, it is a good idea to account for every column with COL and/or
COLGROUP elements if you intend to use any column grouping in your table.

From a scripter’s point of view, you are more likely to modify styles for a column or
column group than you are to alter properties such as span or width. But, if your
scripts generate new tables, you may create new COL or COLGROUP elements
whose properties you definitely should initialize with values.

Chapter 27 O Table and List Objects CD-133

Properties
span

Value: Integer Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility O o O O

The span property represents the number of columns that the column group
should encompass. Don’t confuse this property with the colSpan property of TD
and TH elements. A COL or COLGROUP span does not have any impact on the ren-
dering or combination of multiple cells into one. It simply draws an imaginary lasso
around as many columns as are specified, signifying that these columns can be
treated as a group for style purposes (and also for drawing of divider rules, if you
set the table’s rules property to groups).
83\ E | he CD-ROM
. xample on the CD-
X

Related Item: width property.

width
Value: Length String Read/Write
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IEA IE5 IE5.5
Compatibility 0 0 0 0

The only reason the width property is highlighted for these objects is that the
property (and corresponding attribute) impacts the width of table cells inside the
scope of the column grouping. For example, if you assign a width of 50 pixels to a
COLGROUP whose SPAN attribute is set to 3, all cells in all three columns inherit the
50-pixel width specification. For more details on the values acceptable to this prop-
erty, see the TABLE.width property description earlier in this chapter.

Related Item: TABLE.width property.

CD-134 Partii O Document Objects Reference

TR Element Object

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers
alignt deleteCell()
bgColort insertCell()

borderColort
borderColorDarkt
borderColorLightt
cells

chtt

chOfftt

height

rowIndex
sectionRowIndex
vATigntt

tSee TABLE element object.
ttSee TBODY element object.

Syntax

Accessing TR element object properties and methods:

(TE4+) [window.ldocument.all.elemID.property | method([parameters])
(TE4+) [window.ldocument.all.tablelID.rows[7].property | method([parameters])
(TE4+) [window.ldocument.all.tableRowSectionID.rows[il.property |

method(Lparameters])

(IE5+/NN6) [window.ldocument.getElementById("elemID"). property |
method([parameters])

(IE5+/NN6) [window.ldocument.getElementById("tablelD").rows[7i].property |
method([parameters])

(IE5+/NN6) [window.]ldocument.getElementById("tableRowSectionID")
.rows[il.property | method([parameters])

Chapter 27 O Table and List Objects CD-135

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility O 0 | 0

About this object

Table rows are important objects within the complex nesting of table-related ele-
ments and objects. When a table represents server database data, one row usually
equals one record. And, although you can employ scripting to add columns to a
table, the more common table modifications are to add or delete rows —hence the
presence of the TABLE element object’s insertRow() and deTeteRow() methods.

The primary job of the TR element is to act as a container for TD elements. All the
cells in a row inherit some attributes and properties that you apply to that row. An
array of cell objects is available for iteration via for loops. A TR element object,
therefore, also has methods that insert and remove individual cells in that row.

The number of columns in a row is determined by the number of TD elements or,
more specifically, by the number of columns that the cells intend to span. One row
can have four TD elements, while the next row can have only two TD elements —
each of which is defined to occupy two columns. The row of the table with the most
TD elements and column reservations determines the column width for the entire
table.

Of the properties just listed, the ones related to border color are available in IE4+
only. In [E4+, the border is drawn around each cell of the row rather than the entire
row. The HTML 4.0 specification (and the W3C DOM Level 2 specification by exten-
sion) does not recognize border colors for rows alone, nor are style sheet border

rules inherited by the cell children of a row. However, you can define borders for
individual cells or classes of cells.

Properties
cells

Value: Array of TD element objects Read-Only

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IE4A IE5 IE5.5

Compatibility O 0 O 0

CD-136 Partlil O Document Objects Reference

The cel1s property returns an array (collection) of TD element objects nested
inside the current TR object. The Tength property of this array indicates the num-
ber of actual TD elements in the row, which may not be the number of columns if
one or more cells occupy multiple columns.

Use the cel1s property in for loops to iterate through all cells within a row.
Assuming your script has a reference to a single row, the loop should look like the
following:

for (var i = 0; i < rowRef.cells.length; i++) {
oneCell = rowRef.cells[i]
// more statements working with the cell

}

On the |

CD\'- Example on the CD-ROM
-

Related Items: TABLE.rows, TD.cellIndex properties.

height
Value: Integer or Length String Read/Write
NN2 NN3 NN4 NN6 IE3/11 IE3/)2 1E4 IE5 IE5.5
Compatibility 0 O 0

IE4+ enables page authors to predefine a height for a table row; this attribute is
echoed by the height property. The value can be a number of pixels or a percent-
age length value. Note that this property does not reveal the rendered height of the
row unless you explicitly set the attribute in the HTML. To get the actual height (in
IE4+ and NN6+), use the offsetHeight property. You cannot adjust the height
property to be smaller than the table normally renders the row.

On the

CD\'- Example on the CD-ROM
-

Related Item: of fsetHeight property (Chapter 15).

Chapter 27 O Table and List Objects CD-137

rowIndex
sectionRowIndex

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IE4A IE5 IE5.5

Compatibility O o O O

Each row occupies a position within the collection of rows in the table as well as
within the collection of rows for a table section (THEAD, TBODY, or TFOOT). The
rowlIndex property returns the zero-based index value of the row inside the rows
collection for the entire table, regardless of table section composition. In contrast,
the sectionRowIndex property returns the zero-based index value of the row
inside its row section container. If the table has no row sections defined for it, a sin-
gle, all-encompassing TBODY element is assumed; in this case, the
sectionRowIndex and rowIndex values are equal.

These properties serve in functions that are passed a reference to a row. However,
the functions might also need to know the position of the row within the table or
section. While there is no TR object property that returns a reference to the next
outermost table row section or the table itself, the parent and parent’s parent ele-
ments, respectively, can reference these objects.

ggthe' X
-RBM "\ Example on the CD-ROM
Sl :

Related Items: TABLE.rows, TBODY.rows, TFOOT.rows, THEAD.rows properties.

Methods

deleteCell(cellIndex)
insertCell(cellIndex)

Returns: Nothing; Reference to New Cell.

NN2 NN3 NN4 NN6 IE3/J1 IE3/J)2 IE4 IE5 IE5.5

Compatibility 0 0 | O

CD-138 Partlil O Document Objects Reference

The act of inserting a row into a table is not complete until you also insert cells into
the row. The insertCell() method does just that, with a parameter indicating the
zero-based index of the cell’s position among other cells in the row. A value of -1
appends the cell to the end of existing cells in the row.

When you invoke the insertCel1() method, it returns a reference to the new cell.
This gives you the opportunity to adjust other properties of that cell before moving
onto the next cell. For example, if you want to insert a cell that has a column span
of 2, you adjust the colSpan property of the cell whose reference just returned, as
in the following:

var oneCell = tableRowRef.insertCell(-1)
oneCell.colSpan = 2

Scripts that add rows and cells must make sure that they add the identical number
of cells (or cell column spaces) from one row to the next. Otherwise, you have an
unbalanced table with ugly blank spaces where you probably don’t want them.

To remove a cell from a row, use the deleteCel1() method. The parameter is a
zero-based index value of the cell you want to remove. If all you want to do is
replace the content of a cell, apply the new content to the innerHTML property of
the TD element. This is smoother and safer than deleting and reinserting a cell
because any execution error that occurs in the process results in an unbalanced
table. Finally, to rid yourself of all cells in a row, use the deleteRow() method of
the TABLE and table row section element objects.

Example
See Listing 27-2 for an example of inserting cells during the row insertion process.

Related Item: TABLE.insertRow() method.

TD and TH Element Objects

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

abbr
alignt
axis

backgroundt

Chapter 27 O Table and List Objects C[D-139

Properties Methods Event Handlers

bgColort
borderColort
borderColorDarkt
borderColorLightt
cellIndex

chtt

chOfftt

colSpan

headers

height

noWrap

rowSpan

vATigntt

width

tSee TABLE element object.
ttSee TBODY element object.

Syntax

Accessing TD and TH element object properties and methods:

(TE4+) [window.ldocument.all.elemID.property | method([parameters])

(TE4+) [window.]document.all.tablelD.cel1s[i].property |
method([parameters])

(TE4+) [window.ldocument.all.tableRowSectionID.cel1s[il.property |
method([parameters])

(TE4+) [window.ldocument.all.tableRowID.cell1s[i].property |

method([parameters])

(IE5+/NN6) [window.ldocument.getElementById("elemID"). property |
method([parameters])

(IE5+/NN6) [window.ldocument.getElementById("tablelD").cells[i]l.property |
method([parameters])

(IE5+/NN6) [window.]ldocument.getElementById("tableRowSectionID")
.cellslil.property | method([parameters])

(IE5+/NN6) [window.Jdocument.getElementById("tableRowID") .rows[i].property |
method([parameters])

CD-140 Partil O Document Objects Reference

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility O 0 | 0

About these objects

TD (table data) and TH (table header) elements create cells within a table. By com-
mon convention, a TH element is rendered in today’s browsers with a distinctive
style—usually with a bold font and center alignment. A table cell is as deeply
nested as you can get with table-related elements.

Properties of cells that are delivered in the HTML of the page are rarely modified
(with the exception of the innerHTML property). But you still need full access to
properties of cells if your scripts add rows to a table dynamically. After creating
each blank table cell object, your scripts can adjust colSpan, rowSpan, noWrap,
and other properties that influence the characteristics of that cell within the table.

See the beginning of this chapter for discussions and examples of how to add rows
of cells and modify cell content under script control.

Properties

abbr
axis
headers

Value: See Text Read/Write

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IE4A IE5 IE5.5

Compatibility 0

These three properties are defined for table cell element objects in the W3C DOM
and NN6. They all represent attributes for these elements in the HTML 4.0 specifica-
tion. The purposes of these attributes and properties are geared toward browsers
that provide alternate means of rendering content, such as through speech synthe-
sis. While these properties are definitely valid for NN6, they have no practical
effect. Perhaps other versions of browsers built upon the same Mozilla engine as

Chapter 27 O Table and List Objects CD-14 1

NN6 will use these attributes to good effect. For general application, however, you
can ignore these properties — but also avoid using them as data storage spaces
while a page loads. Consider them reserved for future use.

cellIndex

Value: Integer Read-Only

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4A IE5 IE5.5

Compatibility O 0 0 0

The cel1Index property returns an integer indicating the zero-based count of the
current cell within its row. Thus, if a script is passed a reference to a cell, the
cellIndex property reveals its position within the row. Inserting or deleting cells in
the row at lower index values influences the cel1Index value after the alteration.

g['; t- ’ R E | the CD-ROM

-ROM xample on the CD-
: | Bamp
.

Related Item: TR.rowIndex property.

colSpan
rowSpan
Value: Integer Read/Write
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4A IE5 IE5.5
Compatibility O 0 0 0

The colSpan and rowSpan properties represent the COLSPAN and ROWSPAN
attributes of table cell elements. Assign values to these properties only when you
are creating new table rows and cells —and you are firm in your table cell design. If
you fail to assign the correct values to either of these properties, your table cell
alignment will get out of whack. Modifying these property values on an existing

CD-142 Partii O Document Objects Reference

table is extremely risky unless you are performing other cell manipulation to main-
tain the balance of rows and columns. Values for both properties are integers
greater than or equal to 1.

On the

\
CD-RBM \ Example on the CD-ROM
ol '

Related Item: COL.span property.

height

w

idth

Value: Integer and Length String Read/Write

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IE4A IE5 IE5.5

Compatibility O 0 0 0

Table cells may be specified to be larger than their default rendered size. This usu-
ally happens in the HEIGHT and WIDTH attributes of the cell. Settings of the WIDTH
attribute of a COL or COLGROUP element (IE4+ and NN6+) may also govern the
width of a cell. A cell’s height can be inherited from the HEIGHT attribute setting of
a table row or row section (IE4+). Both HEIGHT and WIDTH attributes are depre-
cated in HTML 4.0 in favor of the height and width style sheet attributes. That
said, the height and width properties of a table cell echo only the settings of the
explicit attributes in the cell’s tag. If a style sheet in the element tag governs a cell’s
dimensions, then visit the cell object’s sty1e property to determine the dimen-
sions. Explicit attributes override style sheet rules.

Values for these two properties are length values. These can be pixel integers or
percentage values as strings. Attempts to set the sizes smaller than their default
rendered size results in a cell of default size. Also be aware that enlarging a cell
affects the width of the entire column and/or height of the entire row occupied by
that cell.

On the

y
CD-RBM \ Example on the CD-ROM
ol '

Related Items: COL.width, TR.height properties.

Chapter 27 O Table and List Objects CD-143

noWrap
Value: Boolean Read/Write
NN2 NN3 NN4 NN6 IE3/11 1E3/)2 IE4 IE5 IE5.5
Compatibility 0 0 0 0

The default behavior of a table cell is to wrap text lines within the cell if the text
would extend beyond the right edge of the cell as calculated from the width of the
entire table. But you can force the table to be wider to accommodate the text in an
unwrapped line of text by setting the noWrap property (or NOWRAP attribute) of the
cell to true. The NOWRAP attribute is deprecated in HTML 4.0.

On the \

_ CD \ Example on the CD-ROM

kowSpan

See colSpan.

width

See height.

OL Element Object

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

compact
start

type

CD-144 Partii O Document Objects Reference

Syntax

Accessing OL element object properties and methods:

(TE4+) [window.ldocument.all.elemID.property | method([parameters])
(IE5+/NN6) [window.ldocument.getElementById("elemID"). property |
method([parameters])

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IE4 IE5 IE5.5

Compatibility 0 0 | 0

About this object

The OL (ordered list) element is a container of LI (list item) elements. An ordered
list means that the list items have a sequence and are preceded by a number or let-
ter to signify the position within the sequence. The few element-specific attributes
are being deprecated in favor of style sheet definitions. For the sake of backward
compatibility with existing content, however, it is likely that many future genera-
tions of browsers will continue to support these deprecated attributes. These
attributes are therefore available as properties of the element object.

Most of the special appearance of a list (notably indentation) is handled automati-
cally by the browser’s interpretation of how an ordered list should look. You have
control over the numbering or lettering schemes and the starting point for those

sequences.
Properties
compact
Value: Boolean Read/Write
NN2 NN3 NN4 NN6 IE3/11 1E3/)2 IE4 IE5 I1E5.5
Compatibility O 0 O 0

Although the properties are defined for the browsers just shown (not IE4/Mac, how-
ever), the compact property (and the deprecated attribute it echoes) has no impact
on the density of the listing.

Chapter 27 O Table and List Objects CD-145

start
Value: Integer Read/Write
NN2 NN3 NN4 NNé6 IE3/)1 IE3/)2 IE4A IE5 IE5.5
Compatibility 0 0 0 0

The start property governs which number or letter begins the sequence of leading
characters for nested Ll items. If the TYPE attribute specifies numbers, then the cor-
responding number is used; if it specifies letters, then the letter of the alphabet cor-
responding to the number becomes as the starting character. You can change the
numbering in the middle of a sequence via the L1.value property.

It is an extremely rare case that requires you to modify this property for an existing
OL element. But if your script is creating a new element for a segment of ordered
list items that has some other content intervening from an earlier OL element, you
can use the property to assign a starting value to the OL group.

On the

. CD\‘- Example on the CD-ROM

Related Items: type, LI.value properties.

type
Value: String Constant Read/Write
NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4A IE5 IE5.5
Compatibility O o O O

An OL element can use any of five different numbering schemes. Each scheme has a
type code, whose value you can use for the type property. The following table
shows the property values and examples:

Value Example

A A, B, C,

a a, b, c,

CD-146 Partll O Document Objects Reference

value Example

The default value is 1. You are free to adjust the property after the table has ren-
dered, and you can even stipulate a different type for specific LI elements nested
inside (see the L1.type property). If you want to have further nesting with a differ-
ent numbering scheme, you can nest the OL elements and specify the desired type
for each nesting level, as shown in the following HTML example:

<OL TYPE="A">
One
Two
{LI>Three
<OL TYPE="a">
Sub One
Sub Two
Sub Three
</0L>
Four
</0L>

Indenting the HTML is optional, but it may help you to keep the nesting straight.

A N
:CDdiiﬂ
%

Related Items: start, UL.type, LI.type properties.

Example on the CD-ROM

UL Element Object

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

compactt

type

tSee OL Element Object.

Chapter 27 O Table and List Objects CD-147

Syntax

Accessing UL element object properties and methods:

(TE4+) [window.ldocument.all.elemID.property | method([parameters])
(IE5+/NN6) [window.ldocument.getElementById("elemID").property |
method([parameters])

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility 0 0 | 0

About this object

The UL (unordered list) element is a container of LI (list item) elements. An
unordered list means that the list items have no sequence and are preceded by sym-
bols that don’t signify any particular order. The few element-specific attributes are
being deprecated in favor of style sheet definitions. For the sake of backward com-
patibility with existing content, however, it is likely that many future generations of
browsers will continue to support these deprecated attributes. These attributes are
therefore available as properties of the element object.

Most of the special appearance of a list (notably indentation) is handled automati-

cally by the browser’s interpretation of how an ordered list should look. You have
control over the three possible characters that precede each item.

Properties
type

Value: String Constant Read/Write

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IEA IE5 IE5.5

Compatibility 0 0 0 0

A UL element can use any of three different leading characters. Each character type
has a type code whose value you can employ for the type property. Property values

CD-148 Partll O Document Objects Reference

arecircle,disc, and square. The difference between a circle and disc is that
the circle is unfilled, while the disc is solid. The default value is disc.

On the

. CD\‘- Example on the CD-ROM

Related Items: OL . type, UL.type properties.

LI Element Object

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

type

value

Syntax

Accessing LI element object properties and methods:

(TE4+) [window.ldocument.all.elemID.property | method([parameters])
(IE5+/NN6) [window.ldocument.getElementById("elemID").property |
method([parameters])

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IE4 IE5 IE5.5

Compatibility O 0 O 0

About this object

An LI (list item) element contains the HTML that is displayed for each item within
an OL or UL list. Note that you can put any HTML you want inside a list item, includ-
ing images. Attributes and properties of this element enable you to override the
specifications declared in the OL or UL containers (except in IE/Mac).

Chapter 27 O Table and List Objects CD-149

Properties
type

Value: String Constant Read/Write

NN2 NN3 NN4 NN6 IE3/J1 IE3/J2 IE4 IE5 IE5.5

Compatibility O o O O

Because either an OL or UL container can own an LI element, the type property
accepts any of the values that you assign to the type properties of both the OL and
UL element objects. See the OL.type and UL . type properties earlier in this chapter
for lists of those values.

Exercise caution, however, if you attempt to mix and match types. For example, if
you try to set the LI.type property of an LI element to circle inside an OL ele-
ment, the results vary from browser to browser. NN6, for example, follows your
command; however, IE may display some other characters.

Onthe-“\
CD-RBM "\ Example on the CD-ROM
\ g™
@/

Related Items: OL.type, UL.type properties.

value
Value: Integer Read/Write
NN2 NN3 NN4 NN6 IE3/11 1E3/)2 IE4 IE5 IE5.5
Compatibility O 0 0 0

The value property governs which number or letter is used for the current list item
inside an ordered list. Employ this attribute and property to override the natural
progression. Because these sequence characters can be letters, numbers, or Roman
numerals, the integer you specify for this property is converted to the numbering
scheme in force by the LI or OL element’s type property.

CD-150 Partil O Document Objects Reference

On the

CD\'- Example on the CD-ROM

Related Item: OL.start property.

DL, DT, and DD Element Objects

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

compactt

tSee OL Element Object.

Syntax

Accessing DL, DT, and DD element object properties and methods:

(TE4+) [window.] document.all.elemID.property | method([parameters])
(TE5+/NN6+) [window.] document.getElementById("elemID"). property |
method([parameters])

NN2 NN3 NN4 NN6 IE3/J1 IE3/J)2 IE4 IE5 IE5.5

Compatibility 0 0 | O

About these objects

Three elements — DL, DT, and DD — provide context and (optionally) formatting for
definitions in a document. The DL element is the outer wrapper signifying a defini-
tion list. Each definition term should be inside a DT element, while the definition

description should be in the nested DD element. The HTML for a simple definition
list has the following structure:

Chapter 27 O Table and List Objects C[D-151

<DL>
DT>First term
<DD>First term's definition
<DT>Second term
<DD>Second term's definition
</DL>

While there are no specific requirements for rendering definition lists by conven-
tion, the term and description are usually on different lines with the description
indented.

All three of these elements are treated as element objects, sharing the same proper-
ties, methods, and event handlers of generic element objects. The only one of the
three that has anything special is the DL element, which has a compact property.
IE4+ for Windows does respond to this attribute and property by putting the
description and term on the same line if the term is shorter than the usual indenta-
tion space of the description.

DIR and MENU Element Objects

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

compactt

tSee OL Element Object.

Syntax
Accessing DIR and MENU element object properties and methods:
(TE4+) [window.ldocument.all.elemID.property | method([parameters])

(IE5+/NN6) [window.]ldocument.getElementById("elemID"). property |
method([parameters])

NN2 NN3 NN4 NN6 IE3/) IE3/)2 IE4A IE5 IE5.5

Compatibility O 0 0 0

CD-152 Partiil O Document Objects Reference

About these objects

The DIR and MENU elements are treated in modern browsers as if they were UL ele-
ments for unordered lists of items. Both elements are deprecated in HTML 4.0; yet,
because they are acknowledged in that standard, they are also acknowledged in the
W3C DOM (and the IE DOM, too). Originally intended to assist in creating single and
double columns of text (long since supplanted by tables), usage of these elements
has fallen out of favor and is discouraged.

g g g

	Table and List Objects
	The Table Object Family Hierarchy
	TABLE Element Object
	TBODY, TFOOT, and THEAD Element Objects
	CAPTION Element Object
	COL and COLGROUP Element Objects
	TR Element Object
	TD and TH Element Objects
	OL Element Object
	UL Element Object
	LI Element Object
	DL, DT, and DD Element Objects
	DIR and MENU Element Objects

