
Navigator
and Other
Environment
Objects

JavaScript devotes one category of its objects to browser
software (also called the client by some users). These

objects are not part of any windows or documents that you
see, but rather apply to the inner workings of the browser
software.

In addition to providing some of the same information that
CGI programs on the server extract as environment variables,
these browser-level objects also include information about
how well-equipped the browser is with regard to plug-ins and
Java. And one object newly defined for Navigator 4 reveals
information about the user’s video monitor, which may
influence the way your scripts define information displayed
on the page.

The objects in this chapter don’t show up on the
JavaScript object hierarchy diagrams except as a free-
standing group derived from the navigator and screen objects
(see Appendix A). Internet Explorer 4’s object model,
however, places its corresponding objects under the window
object. Because the window reference is optional, you can
omit it for Internet Explorer 4 and wind up with a cross-
compatible script. With the added built-in capabilities that
each generation of browser introduces, these small
independent objects are sure to grow even more in
importance.

Navigator Object

2525C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Determining which
browser the user has

Branching scripts
according to the
user’s operating
system

Verifying that
a specific plug-in
is installed

✦ ✦ ✦ ✦

506 Part III ✦ JavaScript Object and Language Reference

Properties Methods Event Handlers

appName javaEnabled() (None)

appCodeName preference()

appVersion taintEnabled()

language

mimeTypes[]

platform

plugins[]

userAgent

Syntax
Accessing navigator object properties and methods:

navigator.property | method()

About this object
In Chapter 14, I repeatedly mentioned that the window object is the top banana

of the JavaScript object hierarchy. In other programming environments, you will
likely find an application level higher than the window. You may think that an
object known as the navigator object would be that all-encompassing object. That
is not the case, however.

Although Netscape originally defined the navigator object for the Navigator 2
browser, Microsoft Internet Explorer also supports the object in its object model.
Despite the object name seeming to be tied to a specific commercial browser,
other software vendors appear to find the object vocabulary an acceptable
standard among their JavaScript implementations.

The properties of the navigator object deal with the browser program the user
runs to view documents. Properties include those for extracting the version of the
browser and the platform of the client running the browser. Because so many
properties of the navigator object are similar, I treat four of them together.

507Chapter 25 ✦ Navigator and Other Environment Objects

Properties
appName

appCodeName

appVersion

userAgent
Value: String Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

The best way to see what these properties hold is to view them from two
different versions of Navigator 4: The Windows 95 version and the Macintosh
version (Figure 25-1).

Figure 25-1: Property dumps for the navigator object under Windows 95 (left) and
Macintosh (right) versions of Navigator 4

The appName and appCodeName properties are simply the official name and the
internal code name for the browser application. For Netscape browsers, the
appName value is Netscape; for Internet Explorer, the value is Microsoft
Internet Explorer. Both browsers bear the Netscape code name, Mozilla, as
the appCodeName property.

The appVersion and userAgent properties provide more meaningful detail.
They contain not only the browser’s version number, but also data about the
platform of the browser and the country for which the browser is released (in
Navigator, “I” stands for “international,” which has a less rigid encryption feature
built into it than the “U” version for the United States). It seems that with each
generation of browser, more information is revealed in the userAgent property.
For example in Navigator 4, a code for the localized language of the browser is also
part of the property. The userAgent property is a string similar to the

508 Part III ✦ JavaScript Object and Language Reference

USER_AGENT header that the browser sends to the server at certain points during
the connection process between client and server.

Because the userAgent property reveals more information about a visitor’s
browser than other properties, viewing a selection of such values from many
generations and types of browsers will help you learn how it works. Table 25-1
shows some of the values that your scripts are likely to see. This table does not
include, of course, the many values that would not be reflected by browsers that
do not support JavaScript.

Table 25-1
Typical navigator.userAgent Values

navigator.userAgent Description

Mozilla/4.02 [en] (Win95; I; Nav) Navigator-only version of
Communicator 4.02, English
edition for Windows 95, and
export encryption

Mozilla/4.01 [fr] (Win95; I) Navigator 4.01, French edition
for Windows 95, export
encryption

Mozilla/4.01 [en] (WinNT; U) Navigator 4.01, English edition
for Windows NT with U.S.
encryption

Mozilla/4.01 (Macintosh; I; 68K) Navigator 4.01 for 68xxx
processor on Macintosh

Mozilla/4.0 (compatible; MSIE 4.0b2; Windows NT) Internet Explorer 4.0b2
(Preview 2) on via proxy
gatewayCERN-HTTPD/3.0
libwww/2.17 Windows NT;
accessed via a gateway

Mozilla/3.01Gold (Win95; I) Navigator 3.01 Gold for
Windows 95

Mozilla/3.01 (Macintosh; I; PPC) Navigator 3.01 for PowerPC
Macintosh

Mozilla/3.01 (X11; I; HP-UX A.09.05 9000/720) Navigator 3.01 for HP-UX on
RS-9000

Mozilla/3.01 (X11; I; IRIX 6.2 IP22) Navigator 3.01 for IRIX

Mozilla/3.01 (X11; I; SunOS 5.4 sun4m) Navigator 3.01 for SunOS 5.4

Mozilla/3.01-C-MACOS8 (Macintosh; I; PPC) Navigator 3.01 running on a
MacOS8-equipped PowerPC
Macintosh

509Chapter 25 ✦ Navigator and Other Environment Objects

navigator.userAgent Description

Mozilla/3.01Gold [de] (Win16; I) Navigator 3.01, German
edition for Windows 3.0x

Mozilla/3.0 (Win95; I) Navigator 3 for Windows 95

Mozilla/3.0 WebTV/1.2 (compatible; MSIE 2.0) IE 2 built into a WebTV box,
emulating Navigator 3 (its
scripting compatibility with
Navigator 3 is in question)

Mozilla/3.0 (compatible; MSIE 3.01; Navigator 3 IE 3.01 on a PowerPC
Macintosh, emulating
(which it does better than
Windows versions)
Mac_PowerPC)

Mozilla/2.0 (compatible; MSIE 3.0; AOL 3.0; Windows 3.1) IE 3 (version for America
Online software Version 3)
for Windows 3.1, emulating
Navigator 2

Mozilla/2.0 (compatible; MSIE 3.02; Update a; Windows 95) IE 3.02, Update a for Windows
95, emulating Navigator 2

Mozilla/2.0 (compatible; MSIE 3.01; Windows 95) IE 3.01 for Windows 95,
emulating Navigator 2

Mozilla/2.0 (compatible; MSIE 3.0B; Windows NT) IE 3 (beta) emulating
Navigator 2

Because you will mostly call upon these properties to define a special case for a
particular browser version or platform, choose the property that most easily
provides the information you need to extract. For example, as you can see from
Table 25-1, assuming that all userAgent values starting with “Mozilla” are
Netscape browsers would be wrong. The appName property is a better choice to
examine for this browser distinction.

Be careful about values for navigator.appVersion, especially with regard to
what we know as Internet Explorer 3. If you look through Table 25-1, you will see
that Internet Explorer 3’s userAgent string reveals itself to be a Navigator 2
compatible. The navigator.appVersion string for such versions of Internet
Explorer starts with the userAgent string after the Mozilla/designation. Therefore,
if your scripts for distinguishing browser versions look only at the first character
of the navigator.appVersion value to obtain the browser generation, the script
might think it is working with Internet Explorer 2, rather than 3.0x. In truth, the
Windows versions of Internet Explorer 3 are closer to the scriptability of Navigator
2 than to Navigator 3, so the value returned from the property is an honest self-
appraisal. Still, if your scripts rely on knowing for sure that the version is Internet
Explorer 3.0x, you should use the string.indexOf() method to look for the
presence of the unique string “MSIE 3” in either the navigator.appVerion or
navigator.userAgent values.

510 Part III ✦ JavaScript Object and Language Reference

Speaking of compatibility and browser versions, the question often arises
whether your scripts should distinguish among incremental releases within a
browser’s generation (for example, 3.0, 3.01, 3.02, and so on). The latest
incremental release occasionally contains bug fixes and (rarely) new features that
you may rely on. If that is the case, then I suggest looking for this information
when the page loads and recommend to the user that he or she download the
latest browser version. Beyond that, I suggest scripting for the latest version of a
given generation, and don’t bother branching for incremental releases.

Even scripting for only the browser generation can get you in trouble if you fail
to think ahead. It was common, for example, for scripted pages to look at the first
character of the navigator.appVersion value to determine if the visitor had the
latest browser:

if (navigator.appVersion.charAt(0) == “3”) {
do scripted stuff

}

What this tactic misses is the inevitable evolution of browser versions. When
someone visits with generation 4, the scripting is ignored. It is better to test for the
minimum version by turning that character into a number and comparing
accordingly:

if (parseInt(navigator.appVersion.charAt(0)) >= 3) {
do scripted stuff

}

See Chapter 13 for more information about designing pages for cross-platform
deployment.

Example
Listing 25-1 provides a number of reusable functions that your scripts can use to

determine a variety of information about the currently running browser. All
functions return a Boolean value in line with the pseudo-question presented in the
function’s name. For example, the isWindows() function returns true if the
browser is any type of Windows browser and false if it’s not (in Internet Explorer 3,
the values are zero for false and -1 for true, but those values are perfectly usable in
if condition phrases). Some functions extract one or more characters from
navigator properties to determine the browser’s version number. If this kind of
browser detection occurs frequently in your pages, consider moving these
functions into an external .js source library for inclusion in your pages (see
Chapter 13).

When you load this page, it presents fields that display the results of each
function depending on the type of browser and client operating system you are
using at the time.

Listing 25-1: Functions to Examine Browsers

<HTML>
<HEAD>
<TITLE>UserAgent Property Library</TITLE>
<SCRIPT LANGUAGE="JavaScript">

511Chapter 25 ✦ Navigator and Other Environment Objects

function isWindows() {
return (navigator.appVersion.indexOf("Win") != -1)

}

function isWin95NT() {
return (isWindows() && (navigator.appVersion.indexOf("Win16")

== -1 && navigator.appVersion.indexOf("Windows 3.1") == -1))
}

function isMac() {
return (navigator.appVersion.indexOf("Mac") != -1)

}

function isMacPPC() {
return (isMac() && (navigator.appVersion.indexOf("PPC") != -1

|| navigator.appVersion.indexOf("PowerPC") != -1))
}

function isUnix() {
return (navigator.appVersion.indexOf("X11") != -1)

}

function isNav() {
return (navigator.appName == "Netscape")

}

function isGeneration2() {
return (navigator.appVersion.charAt(0) == "2")

}

function isGeneration3() {
return (navigator.appVersion.charAt(0) == "3")

}

function isGeneration3Min() {
return (parseInt(navigator.appVersion.charAt(0)) >= 3)

}
function isNav4_02() {

return (isNav() && (navigator.appVersion.substring(0,4) ==
"4.02"))
}

function isMSIE3Min() {
return (navigator.appVersion.indexOf("MSIE") != -1)

}

function checkBrowser() {
var form = document.forms[0]
form.brand.value = isNav()
form.win.value = isWindows()
form.win32.value = isWin95NT()
form.mac.value = isMac()

(continued)

512 Part III ✦ JavaScript Object and Language Reference

Listing 25-1 (continued)

form.ppc.value = isMacPPC()
form.unix.value = isUnix()
form.ver3Only.value = isGeneration3()
form.ver3Up.value = isGeneration3Min()
form.Nav4_02.value = isNav4_02()
form.MSIE3.value = isMSIE3Min()

}
</SCRIPT>
</HEAD>

<BODY onLoad="checkBrowser()">
<H1>About This Browser</H1>
<FORM>
<H2>Brand</H2>
Netscape Navigator:<INPUT TYPE="text" NAME="brand" SIZE=5>
<HR>
<H2>Platform</H2>
Windows:<INPUT TYPE="text" NAME="win" SIZE=5>
Windows 95/NT:<INPUT TYPE="text" NAME="win32" SIZE=5><P>
Macintosh: <INPUT TYPE="text" NAME="mac" SIZE=5>
Mac PPC:<INPUT TYPE="text" NAME="ppc" SIZE=5><P>
Unix:<INPUT TYPE="text" NAME="unix" SIZE=5><P>
<HR>
<H2>Version</H2>
3.0x Only:<INPUT TYPE="text" NAME="ver3Only" SIZE=5><P>
3 or Later: <INPUT TYPE="text" NAME="ver3Up" SIZE=5><P>
Navigator 4.02: <INPUT TYPE="text" NAME="Nav4_02" SIZE=5><P>
MSIE 3 or Later: <INPUT TYPE="text" NAME="MSIE3" SIZE=5><P>
</FORM>
</BODY>
</HTML>

Sometimes you may need to use more than one of these functions together. For
example, if you want to create a special situation for the window.open() bug that
afflicts UNIX and Macintosh versions of Navigator 2, then you have to put your
Boolean operator logic powers to work to construct a fuller examination of the
browser:

function isWindowBuggy() {
return (isGeneration2() && (isMac() || isUnix()))

}

Related Items: None.

language
Value: Two-character String Gettable: Yes Settable: No

513Chapter 25 ✦ Navigator and Other Environment Objects

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

Navigator 4 and later include a navigator property that reflects the identifier for
a localized language version of the program (it has nothing to do with scripting or
programming language). These short strings resemble but are not identical to the
URL suffixes for countries. In the navigator.userAgent property value, the
language appears inside brackets, but the raw property value is without the
brackets. Table 25-2 shows a sampling of languages and their designations.

Table 25-2
Sample navigator.language Values

navigator.language Language

en English

de German

es Spanish

fr French

ja Japanese

da Danish

it Italian

ko Korean

nl Dutch

pt Brazilian Portuguese

sv Swedish

The assumption you can make is that a user of a particular language version of
Navigator will also be interested in content in the same language. If your site offers
multiple language paths, then you can use this property setting to automate the
navigation to the proper section for the user.

Related Items: navigator.userAgent property.

mimeTypes[]
Value: Array of MIME types Gettable: Yes Settable: No

514 Part III ✦ JavaScript Object and Language Reference

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔

A MIME (Multipurpose Internet Mail Extension) type is a file format for information
that travels across the Internet. Browsers usually have a limited capability for
displaying or playing information beyond HTML text and one or two image standards
(.gif and .jpg are the most common formats). To fill in the gap, browsers maintain an
internal list of MIME types with corresponding instructions on what to do when
information of a particular MIME type arrives at the client. For example, when a CGI
program serves up an audio stream in an audio format, the browser locates that
MIME type in its table (the MIME type is among the first chunk of information to
reach the browser from the server) and then launches a helper application or
activates a plug-in capable of playing that MIME type. Your browser is not equipped
to display every MIME type, but it does know how to alert you when you don’t have
the helper application or plug-in needed to handle an incoming file. For instance, the
browser may ask if you want to save the file for later use or switch to a Web page
containing more information about the necessary plug-in.

The mimeTypes[] property of the navigator object is simply the array of MIME
types about which your browser knows (see “MimeType Object” later in this
chapter). Navigator 3 and up come with dozens of MIME types already listed in
their tables (even if the browser doesn’t have the capability to handle all those
items automatically). If you have third-party plug-ins in Navigator’s plug-ins
directory/folder or helper applications registered with Navigator, that array
contains these new entries as well.

If your Web pages are media-rich, you likely will want to be sure that each
visitor’s browser is capable of playing the media your page has to offer. With
JavaScript and Navigator, you can cycle through the mimeTypes[] array to find a
match for the MIME type of your media. Then use the properties of the mimeType
object (detailed later in this chapter) to ensure the optimum plug-in is available. If
your media still requires a helper application instead of a plug-in, the array only
lists the MIME type; thus, you won’t be able to determine whether a helper
application has been assigned to this MIME type from the array list.

Example
For examples of this property and details about using the mimeType object, see

the discussion of the object later in this chapter. A number of simple examples
showing how to use this property to see whether the navigator object has a
particular MIME type do not go far enough to determine whether a plug-in is
installed and enabled to play the incoming data.

Related Items: navigator.plugin[] property; mimeType object.

platform
Value: String Gettable: Yes Settable: No

515Chapter 25 ✦ Navigator and Other Environment Objects

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

Another part of the navigator.userAgent is retrievable as a separate entity
starting with Navigator 4. The navigator.platform value reflects the operating
system according to the codes established by Netscape for its userAgent values.
Table 25-3 lists values of the most popular operating systems.

In the long list of browser detection functions in Listing 25-1, I elected not to use
the navigator.platform property because it is limited to Navigator 4 and later,
while the other properties in that listing are available to all scriptable browsers.

Table 25-3
Sample navigator.platform Values

navigator.platform Operating System

Win95 Windows 95

WinNT Windows NT

Win16 Windows 3.x

Mac68k Mac (680x0 CPU)

MacPPC Mac (PowerPC CPU)

SunOS Solaris

Notice that the navigator.platform property does not go into versioning of
the operating system. Only the raw name is provided.

Related Items: navigator.userAgent property.

plugins[]
Value: Array of plug-ins Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔

You rarely find users involved with Web page design for Navigator who have not
heard about plug-ins — the technology that enables you to embed new media types
and foreign file formats directly into Web documents. For instance, instead of
requiring you to view a video clip in a separate window atop the main browser
window, a plug-in enables you to make that viewer as much a part of the page design

516 Part III ✦ JavaScript Object and Language Reference

as a static image. The same goes for audio players, 3-D animation, chat sessions—
even the display of Microsoft Office documents, such as PowerPoint and Word.

Whenever you launch Navigator, you probably watch the status of its loading
process in the splash screen. One of the messages that appears is “Registering
Plug-ins.” During that brief moment, Navigator creates its built-in list of available
plug-ins to include all the plug-in files contained in a special directory/folder (the
name varies with the operating system, but is obvious). The items registered at
launch time are the ones listed in the navigator.plugins[] array. Each plug-in is,
itself, an object with several properties.

Being able to have your scripts investigate the visitor’s browser for a particular
installed plug-in is a valuable capability if you want to guide the user through the
process of downloading and installing a plug-in, if the system does not currently
have it.

Example
For examples of this property and for details about using the plugin object, see

“Plugin Object” later in this chapter.

Related Items: navigator.mimeTypes[] property; plugin object.

Methods
javaEnabled()

Returns: Boolean.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

Although Navigator and Internet Explorer 4 ship with Java support turned on, a
user can easily turn it off in a preferences dialog box. Some corporate installations
may also turn off Java as the default setting for their users. If your pages specify Java
applets, you don’t normally have to worry about this property, because the applet
tag’s alternate text fills the page in the places where the applet would normally go.
But if you are scripting applets from JavaScript (via LiveConnect, Chapter 38), you
won’t want your scripts making calls to applets or Java classes if you have Java
support turned off. In a similar vein, if you are creating a page with JavaScript, you
can fashion two quite different layouts, depending on whether Java is available.

Navigator’s javaEnabled() method returns a Boolean value reflecting the
Preferences setting. This value does not necessarily reflect Java support in the
browser, but rather whether Java is turned on inside a JavaScript 1.1–level or later
browser. A script cannot change the navigator setting, but its value does change
immediately upon toggling the Preference setting.

Related Items: navigator.preference() method; LiveConnect (Chapter 38).

517Chapter 25 ✦ Navigator and Other Environment Objects

preference(name [, val])
Returns: Preference Value.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

Browser preferences are normally set by the user. Until Navigator 4 and the
advent of signed scripts, almost all of their settings had been completely out of
view of scripts, even when it might make sense to expose them. But with signed
scripts and the navigator.preference() method, many preferences are now
viewable and settable with the user’s permission. These preferences were exposed
to scripting primarily for the purposes of centralized configuration administration
for enterprise installations. I don’t recommend altering a public Web site visitor’s
browser preferences, even if given permission to do so — the user may not know
how much trouble you can cause.

When you want to read a particular preference setting, you pass only the
preference name parameter with the method. Reading a preference requires a
signed script with the target of UniversalPreferencesRead (see Chapter 40). To
change a preference, pass both the preference name and the value (with a signed
script target of UniversalPreferencesWrite).

Table 25-4 shows a handful of scriptable preferences in Navigator 4 (learn more
about these settings at http://developer.netscape.com/library/
documentation/deploymt/jsprefs.htm). Each item has a corresponding entry
in the preferences window in Navigator 4 (shown in parentheses). Notice that the
preference name uses dot syntax that mimics the hierarchical structure of the
Navigator 3 preferences menu, rather than the Navigator 4 preferences
organization. The cookie security level is a single preference value with a matrix of
integer values indicating the level.

Table 25-4
navigator.preference Values

navigator.preference Value Preference Dialog Listing

general.always_load_images Boolean (Advanced) Automatically load
images

security.enable_java Boolean (Advanced) Enable Java

javascript.enabled Boolean (Advanced) Enable JavaScript

browser.enable_style_sheets Boolean (Advanced) Enable style sheets

autoupdate.enabled Boolean (Advanced) Enable AutoInstall

(continued)

518 Part III ✦ JavaScript Object and Language Reference

navigator.preference Value Preference Dialog Listing

network.cookie.cookieBehavior 0 (Advanced) Accept all cookies

network.cookie.cookieBehavior 1 (Advanced) Accept only cookies
that get sent back to the
originating server

network.cookie.cookieBehavior 2 (Advanced) Disable cookies

network.cookie.warnAboutCookies Boolean (Advanced) Warn me before
accepting a cookie

One preference to watch out for is the one that disables JavaScript. If you
disable JavaScript, the only way for JavaScript to be reenabled is by the user
manually changing the setting in his or her Navigator preferences dialog box.

Example
The page in Listing 25-2 displays checkboxes for each of the preferences listed

in Table 25-4. To run this script without signing the scripts, turn on codebase
principals, as directed in Chapter 40.

One function reads all the preferences and sets the checkbox values
accordingly. Another function sets a preference when you click its checkbox.
Because of the interaction among three of the cookie settings, it is easier to have
the script rerun the showPreferences() function after each setting, rather than
trying to manually control the properties of the three checkboxes. Rerunning that
function also helps verify that the preference was set.

Listing 25-2: Reading and Writing Browser Preferences

<HTML>
<HEAD>
<TITLE>Reading/Writing Browser Preferences</TITLE>
<SCRIPT LANGUAGE="JavaScript1.2">
function setPreference(pref, value) {

netscape.security.PrivilegeManager.enablePrivilege("UniversalPreference
sWrite")

navigator.preference(pref, value)

netscape.security.PrivilegeManager.disablePrivilege("UniversalPreferenc
esWrite")

showPreferences()
}

function showPreferences() {
var form = document.forms[0]

netscape.security.PrivilegeManager.enablePrivilege("UniversalPreference
sRead")

Caution

519Chapter 25 ✦ Navigator and Other Environment Objects

form.imgLoad.checked =
navigator.preference("general.always_load_images")

form.javaEnable.checked =
navigator.preference("security.enable_java")

form.jsEnable.checked =
navigator.preference("javascript.enabled")

form.ssEnable.checked =
navigator.preference("browser.enable_style_sheets")

form.autoIEnable.checked =
navigator.preference("autoupdate.enabled")

var cookieSetting =
navigator.preference("network.cookie.cookieBehavior")

for (var i = 0; i < 3; i++) {
form.elements["cookie" + i].checked = (i == cookieSetting) ?

true : false
}
form.cookieWarn.checked =

navigator.preference("network.cookie.warnAboutCookies")

netscape.security.PrivilegeManager.disablePrivilege("UniversalPreferenc
esRead")
}
</SCRIPT>
</HEAD>

<BODY onLoad="showPreferences()">
Browser Preferences Settings
<HR>
<FORM>
<INPUT TYPE="checkbox" NAME="imgLoad"
onClick="setPreference('general.always_load_images',this.checked)">Auto
matically Load Images

<INPUT TYPE="checkbox" NAME="javaEnable"
onClick="setPreference('security.enable_java',this.checked)">Java
Enabled

<INPUT TYPE="checkbox" NAME="jsEnable"
onClick="setPreference('javascript.enabled',this.checked)">JavaScript
Enabled

<INPUT TYPE="checkbox" NAME="ssEnable"
onClick="setPreference('browser.enable_style_sheets',this.checked)">Sty
le Sheets Enabled

<INPUT TYPE="checkbox" NAME="autoIEnable"
onClick="setPreference('autoupdate.enabled',this.checked)">AutoInstall
Enabled

<INPUT TYPE="checkbox" NAME="cookie0"
onClick="setPreference('network.cookie.cookieBehavior',0)">Accept All
Cookies

<INPUT TYPE="checkbox" NAME="cookie1"
onClick="setPreference('network.cookie.cookieBehavior',1)">Accept Only
Cookies Sent Back to Server

<INPUT TYPE="checkbox" NAME="cookie2"
onClick="setPreference('network.cookie.cookieBehavior',2)">Disable
Cookies

(continued)

520 Part III ✦ JavaScript Object and Language Reference

Listing 25-2 (continued)

<INPUT TYPE="checkbox" NAME="cookieWarn"
onClick="setPreference('network.cookie.warnAboutCookies',this.checked)"
>Warn Before Accepting Cookies

</FORM>
</BODY>
</HTML>

Related Items: navigator.javaEnabled() method.

taintEnabled()
Returns: Boolean.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

Navigator 3 featured a partially implemented security feature called data
tainting, which was turned off by default. This feature has been replaced by signed
scripts, but for the sake of backward compatibility, the
navigator.taintEnabled() method is available in more modern browsers that
don’t employ tainting (in which case the method returns false). Do not employ this
method in your scripts.

MimeType Object
Properties Methods Event Handlers

description (None) (None)

enabledPlugin

type

suffixes

Syntax
Accessing mimeType properties:

navigator.mimeTypes[i].property

521Chapter 25 ✦ Navigator and Other Environment Objects

About this object
A browser’s mimeType object is essentially an entry in the internal array of

MIME types about which the browser knows. Navigator 3 and later, for example,
ships with an internal list of more than five dozen MIME types. Only a handful of
these types are associated with helper applications or plug-ins. But add to that
plug-ins and other helpers you’ve added over time, and the number of MIME types
can grow to more than a hundred.

The MIME type for the data is usually among the first bits of information to
arrive at a browser from the server. A MIME type consists of two pieces of
information: type and subtype. The traditional way of representing these pieces is
as a pair separated by a slash, as in

text/html
image/gif
audio/wav
audio/x-midi
video/quicktime
application/x-zip-compressed

If a file does not contain the MIME type “header” (or a CGI program sending the
file does not precede the transmission with the MIME type string), the browser
receives the data as a text/plain MIME type. When the file is loaded from a local
hard drive, the browser looks to the filename’s extension (the suffix after the
period) to figure out the file’s type.

Regardless of the way it determines the MIME type of the incoming data, the
browser then acts according to instructions it maintains internally. You can see
these settings by looking at the Applications or Helpers preference settings
(depending on which version of Navigator you use). In Navigator 4, a click on a file
type description reveals the extension and MIME type registered for that type, as
well as whether the file is processed by an application or a plug-in.

By having the mimeType object available to JavaScript, your page can query a
visitor’s browser to discover not only whether it has a particular MIME type listed
currently, but ultimately whether the browser has a corresponding plug-in installed
and enabled. In such queries, the mimeType and plugin objects work together to
help scripts make these determinations.

Because of the close relationships between mimeType and plugin objects, I save
the examples of using these objects and their properties for the end of the chapter.
There, you can see how to build functions into your scripts that enable you to
examine how well a visitor’s Netscape browser is equipped for either a MIME type
or data that requires a specific plug-in (Internet Explorer’s JScript implementation
does not provide facilities for examining this information). In the meantime, be
sure that you understand the properties of both objects.

Properties
description

Value: String Gettable: Yes Settable: No

522 Part III ✦ JavaScript Object and Language Reference

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔

While registering themselves with the browser at launch time, plug-ins can
provide the browser with an extra field of information: a plain-language description
of the plug-in. For example, the Microsoft video plug-in, whose MIME types are
video/msvideo and video/x-msvideo, supplies the following description field:

Video for Windows

When you select About Plug-ins from the Help menu, you can see the
descriptions of the various installed plug-ins. This information is useful primarily
for the kind of display you see in About Plug-ins, rather than as a way for your
scripts to compare values.

When a MIME type does not have a plug-in associated with it (either no plug-in
is installed or a helper application is used instead), you often see the type
property repeated in the description field.

Related Items: None.

enabledPlugin
Value: Plugin object Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔

The descriptions of the mimeType and plugin objects seem to come full circle
when you reach the mimeType.enabledPlugin property, the reason being that the
property is a vital link between a known MIME type and the plug-in that the
browser engages when data of that type arrives.

Knowing which plug-in is associated with a MIME type becomes very important
when you have more than one plug-in capable of playing a given MIME type. For
example, the Crescendo MIDI audio plug-in can take the place of the default
LiveAudio plug-in if you set up your browser that way. Therefore, all MIDI data
streams are played through the Crescendo plug-in. If you prefer to have your Web
page’s MIDI sound played only through LiveAudio, your script needs to know
which plug-in is set to receive your data and perhaps alert the user accordingly.
These kinds of conflicts are not common (at least at this early stage of plug-in
development), because each plug-in developer with a new type of data tries to
choose a MIME type that is unique. But you have no guarantee of such uniqueness
even today, so a careful check of MIME type and plug-in is highly recommended if
you want your page to look professional.

The enabledPlugin property evaluates to a plugin object. Therefore, you can
dig a bit deeper with this information to fetch the name or filename properties of a

523Chapter 25 ✦ Navigator and Other Environment Objects

plug-in directly from a mimeType object. Go through the following steps to see how
this all works (Windows users with Navigator 4 should use Version 4.02 or later):

1. Choose Open Location or Open Page from the File menu and enter

javascript:

2. In the “javascript typein” field, enter

navigator.mimeTypes[0].type

You then see the MIME type and subtype for the first entry in your browser’s
mimeTypes[] array (the exact item varies depending on the items registered
in your browser).

3. Edit the typein field to read

navigator.mimeTypes[0].enabledPlugin

This statement returns a plugin object for the first entry in the mimeTypes[]
array.

4. Add the name property to the end, so that the field reads

navigator.mimeTypes[0].enabledPlugin.name

The result is the name of the plug-in that your browser invokes whenever it
receives data of the type shown as the result of step 2.

Example
See “Looking for MIME and Plug-ins” later in this chapter.

Related Items: None.

type
Value: String Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔

A mimeType object’s type property is the combination of the type and subtype
commonly used to identify the kind of data coming from the server. CGI programs,
for example, typically precede a data transmission with a special header string in
the following format:

Content-type: <type>/<subtype>

This string prompts a browser to look up how to treat an incoming data stream of
this kind. As you see later in this chapter, knowing whether a particular MIME type is

524 Part III ✦ JavaScript Object and Language Reference

listed in the navigator.mimeTypes[] array is not enough. A good script must dig
deeper to uncover additional information about what is truly available for your data.

Example
See “Looking for MIME and Plug-ins” later in this chapter.

Related Items: description property.

suffixes
Value: String Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔

Every MIME type has one or more filename extensions, or suffixes, associated
with it. You can read this information for any mimeType object via the suffixes
property. The value of this property is a string. If the MIME type has more than one
suffix associated with it, the string contains a comma-delimited listing, as in

mpg, mpeg, mpe

Multiple versions of a suffix have no distinction between them. Those MIME
types that are best described in four or more characters (derived from a
meaningful acronym, such as mpeg) have three-character versions to
accommodate the “8-dot-3” filename conventions of MS-DOS and its derivatives.

Example
See “Looking for MIME and Plug-ins” later in this chapter.

Related Items: None.

Plugin Object
Properties Methods Event Handlers

name refresh() (None)

filename

description

length

Syntax
Accessing plug-in properties or method:

navigator.plugins[i].property | method()

525Chapter 25 ✦ Navigator and Other Environment Objects

About this object
Understanding the distinction between the data embedded in documents that

summon the powers of plug-ins and those items that browsers consider to be plug-
ins is important. The former are made part of the document object by way of
<EMBED> tags. If you want to control the plug-in via LiveConnect, you can gain
access through the document.embedName object (see Chapter 38).

The concern here, however, deals with the way the plug-ins work from the
browser’s perspective: The software items registered with the browser at launch
time stand ready for any matching MIME type that comes from the Net. One of the
main purposes of having these objects scriptable is to let your scripts determine
whether a desired plug-in is currently registered with the browser and even to help
with installing a plug-in.

The close association between the plugin and mimeType object, demonstrated
by the mimeType.enabledPlugin property, is equally visible coming from the
direction of the plug-in. A plugin object evaluates to an array of MIME types that
the plug-in interprets. Let’s experiment to make this association clear (Windows
users with Navigator 4 should use Version 4.02 or later):

1. Select Open Location from the File menu and enter

javascript:

2. In the “javascript typein” field, enter

navigator.plugins[“LiveAudio”].length

Instead of the typical index value for the array notation, you use the actual
name of the LiveAudio plug-in. This expression evaluates to 7, meaning that
the navigator.plugins[“LiveAudio”] array entry contains an array of
seven items — the MIME types it recognizes.

3. Edit the typein field to read

navigator.plugins[“LiveAudio”][0].type

That’s not a typo: Because one array evaluates to a different array, the second
set of square brackets is not separated from the first set by a period. In other
words, this statement evaluates to the type property of the first mimeType object
contained by the LiveAudio plug-in.

I doubt that you will have to use this kind of construction much, because if you
know the name of the desired plug-in, you know what MIME types it already
supports. In most cases, you come at the search from the MIME type direction and
look for a specific enabled plug-in. See “Looking for MIME and Plug-ins” later for
details on how to use the plug-in object in a production setting.

526 Part III ✦ JavaScript Object and Language Reference

Properties
name

filename

description

length
Value: String Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔

The first three properties of the plugin object provide descriptive information
about the plug-in file. The plug-in developer supplies the name and description. It’s
unclear whether future versions of plug-ins will differentiate themselves from earlier
ones via either of these fields. That may be important if you are transferring data to
a plug-in that requires a later version of the software. In the meantime, however,
these items can play a role in helping a site visitor understand that a plug-in other
than the ideal one (for a given MIME type) currently has an enabled setting.

Be aware that along the way, Netscape forgot to tell plug-in authors in the early
days to assign the same name to every platform version of a plug-in. Be prepared
for discrepancies across platforms.

Another piece of information available from a script is the plug-in’s filename. On
some platforms, such as Windows, this data comes in the form of a complete
pathname to the plug-in DLL file; on other platforms, only the plug-in file’s name
appears.

Finally, the length property of a plugin object counts the number of MIME
types that the plug-in recognizes. Although you could use this information to loop
through all possible MIME types for a plug-in, a more instructive way would
probably be to have your scripts approach the issue via the MIME type, as
discussed later in this chapter.

Example
See “Looking for MIME and Plug-ins” later in this chapter.

Related Items: mimeType.description property.

Methods
refresh()

Returns: Nothing.

527Chapter 25 ✦ Navigator and Other Environment Objects

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔

You may have guessed that Navigator determines its list of installed plug-ins
while it launches. If you were to drop a new plug-in file into the plug-ins
directory/folder, you would have to quit Navigator and relaunch it before it would
see the new plug-in file. But that isn’t a very friendly approach if you take pains to
guide a user through the downloading and installation of a new plug-in file. The
minute the user quits the browser, you have a slim chance of getting that person
right back. That’s where the refresh() method comes in.

The refresh() method is directed primarily at the browser, but the syntax of
the call reminds the browser to refresh just the plug-ins:

navigator.plugins.refresh()

Interestingly, this command works only for adding a plug-in to the existing
collection. If the user removes a plug-in and invokes this method, the removed one
stays in the navigator.plugins[] array, although it may not be available for use.
Only quitting and relaunching Navigator makes a plug-in removal take full effect.

I think it’s a good idea to have a routine ready that leads a user through
downloading and installing a plug-in not normally delivered with Navigator. Doing
so through a separate window or a branch of your Web site’s organization is ideal.
Always include a refresh() method before returning to the point where the plug-
in is required for your special media.

Example
If you want to experiment with this method, follow this sequence:

1. Move one of the plug-in files from the Navigator plug-ins directory/folder
(whatever it may be called on your operating system) to another
directory/folder.

2. Quit and restart Navigator.

3. Select About Plug-ins from the Help menu and make note of the plug-ins listed
in this screen.

4. Move the plug-in file back to the plug-ins directory/folder.

5. Open Location javascript:

6. In the “javascript typein” field, type

navigator.plugins.refresh()

7. Select About Plug-ins again from the Help menu.

The restored plug-in should now appear as part of the list. Starting with
Navigator 4, plug-ins can be constructed to take advantage of automatic
installation via the SmartUpdate technique. If you are a plug-in developer, consult
Netscape’s developer Web site (http://developer.netscape.com) for details on

528 Part III ✦ JavaScript Object and Language Reference

adding this feature to your plug-in. SmartUpdate obviates the need for MIME type
or plug-in checking as well as the refresh() method for visitors using Navigator 4.

Related Items: None.

Looking for MIME and Plug-ins
If you go to great lengths to add new media and data types to your Web pages,

then you certainly want your visitors to reap the benefits of those additions. But
you cannot be guaranteed that they have the requisite plug-ins installed to
accommodate that fancy data. Fortunately, if your audience is dependent on
Navigator 3 (and not Navigator 4 with its SmartUpdate auto-installation of plug-
ins), you can use JavaScript to inspect the browser to find out if the desired
software is ready for your data.

The value of this inspection capability is that you can maintain better control of
your site visitors who don’t yet have the necessary plug-in in Navigator 3. Rather
than merely providing a link to the plug-in’s download site, you can build a more
complete interface around the downloading and installation of the plug-in, without
losing your visitor. I have some suggestions about such an interface at the end of
this discussion.

How you go about inspecting a visitor’s plug-in library depends on what
information you have about the data file or stream and how precise you must be in
locating a particular plug-in. Some plug-ins may override MIME type settings that
you would expect to be in a browser. For example, a new audio plug-in may take
over for LiveAudio when it’s installed by the user (often without the user’s explicit
permission). Another issue that complicates matters is that the same plug-in may
have a different name (navigator.plugins[i].name property) depending on the
operating system. Therefore, searching your script for the presence of a plug-in by
name is not good enough if the name may be different on the Macintosh version
versus the Windows 95 version. With luck, this naming discrepancy will resolve
itself over time as plug-in developers understand the scripter’s need for
consistency across platforms.

To help you jump-start the process in your scripts, I discuss three utility
functions you can use without modification in your own scripts. These functions
are excerpts from a long listing (Listing 25-3), which is located in its entirety on
the book’s CD-ROM. The pieces not shown here are merely user interface elements
to let you experiment with these functions.

The scripts in Listing 25-3 reveal a bug in the Windows version of Navigator 4
that crashes Navigator when the script attempts to retrieve mimeType objects of
certain types too quickly (in a for loop). The script does work fine in Windows for
Navigator 3. Also, to date I have not found a compatible workaround for any
version of Internet Explorer.

Verifying a MIME type
Listing 25-3a is a function whose narrow purpose is to compare any MIME type

definition (in the <type>/<subtype> format as a string) against the browser’s
internal list of MIME types. The function does more, however, than simply look for
a match. The reason is that the browser can easily list MIME types for which no

Note

529Chapter 25 ✦ Navigator and Other Environment Objects

plug-in is installed (as is the case with dozens of MIME types in the default list
provided in Navigator).

Listing 25-3a: Verifying a MIME type

// Pass "<type>/<subtype>" string to this function to find
// out if the MIME type is registered with this browser
// and that at least some plug-in is enabled for that type.
function mimeIsReady(mime_type) {

for (var i = 0; i < navigator.mimeTypes.length; i++) {
if (navigator.mimeTypes[i].type == mime_type) {

if (navigator.mimeTypes[i].enabledPlugin != null) {
return true

}
}

}
return false

}

The real power of this function comes in the most nested if statement. For
script execution to reach this point, the MIME type in question has been found to
be listed in the browser’s massive mimeTypes[] array. What you really need to
know is whether a plug-in is enabled for that particular MIME type. If the script
passes that final test, then you can safely report back that the browser supports
the MIME type. If, on the other hand, no match has been found after cycling
through all listed MIME types, the function returns false.

Verifying a plug-in
Next, in Listing 25-3b, you let JavaScript see if the browser has a specific plug-in

registered in the navigator.plugins[] array. This method approaches the
installation question from a different angle. Instead of coming with a known MIME
type, you come with a known plug-in. But because more than one registered plug-in
can support a given MIME type, this function explores one step further to see
whether at least one of the plug-in’s MIME types (of any kind) is enabled in the
browser.

Listing 25-3b: Verifying a Plug-in

// Pass the name of a plug-in for this function to see
// if the plug-in is registered with this browser and
// that it is enabled for at least one MIME type of any kind.
function pluginIsReady(plug_in) {

for (var i = 0; i < navigator.plugins.length; i++) {
if (navigator.plugins[i].name.toLowerCase() ==

plug_in.toLowerCase()) {
for (var j = 0; j < navigator.plugins[i].length; j++) {

if (navigator.plugins[i][j].enabledPlugin) {

(continued)

530 Part III ✦ JavaScript Object and Language Reference

Listing 25-3b (continued)

return true
}

}
return false

}
}
return false

}

The parameter for the pluginIsReady() function is a string consisting of the
plug-in’s name as it appears in boldface in the About Plug-ins listing (from the
Navigator Help menu). The script loops through all registered plug-ins for a match
against this string (converting both strings to all lowercase to help overcome
discrepancies in capitalization).

Next comes a second repeat loop, which looks through the MIME types
associated with a plug-in (in this case, only a plug-in whose name matches the
parameter). Notice the use of the strange, double-array syntax for the most nested
if statement: For a given plug-in (denoted by the i index), you have to loop
through all items in the MIME types array (j) connected to that plug-in. The
conditional phrase for the last if statement has an implied comparison against
null (see another way of explicitly showing the null comparison in Listing 25-3a).
The conditional statement evaluates to either an object or a null, which JavaScript
can accept as true or false, respectively. The point is that if an enabled plug-in is
found for the given MIME type of the given plug-in, then this function returns true.

I must emphasize that before using this function, make sure that the plug-in is
internally named the same way on all platforms for which a plug-in version exists.
Such is not the case with many early plug-ins.

Verifying both plug-in and MIME type
The last utility function (Listing 25-3c) is the safest way of determining whether

a visitor’s browser is equipped with the “right stuff” to play your media. This
function requires both a MIME type and plug-in name as parameters and also
makes sure that both items are supported and enabled in the browser before
returning a true.

Listing 25-3c: Verifying Plug-in and MIME type

// Pass "<type>/<subtype>" and plug-in name strings for this
// function to see if both the MIME type and plug-in are
// registered with this browser, and that the plug-in is
// enabled for the desired MIME type.
function mimeAndPluginReady(mimetype,plug_in) {

531Chapter 25 ✦ Navigator and Other Environment Objects

for (var i = 0; i < navigator.plugins.length; i++) {
if (navigator.plugins[i].name.toLowerCase() ==

plug_in.toLowerCase()) {
for (var j = 0; j < navigator.plugins[i].length; j++) {

var mimeObj = navigator.plugins[i][j]
if (mimeObj.enabledPlugin && (mimeObj.type ==

mimetype)) {
return true

}
}
return false

}
}
return false

}

This function resembles the one in Listing 25-3b until you reach the most nested
statements. Here, instead of looking for any old MIME type, you insist on the
existence of an explicit match between the MIME type passed as a parameter and
an enabled MIME type associated with the plug-in. Because this function relies on a
plug-in’s name, the same cautions about checking for name consistency across
platforms applies here. To see how these functions work on your browser, open
the complete file (lst25-03.htm) from the CD-ROM.

Managing plug-in installation (Navigator 3)
If your scripts determine that a visitor is using Navigator 3 and does not have

the plug-in your data expects, you may want to consider providing an electronic
guide to installing the plug-in. One way to do this is to open a new frameset (in the
main window). One frame would contain step-by-step instructions with links to the
plug-in’s download site. The download site’s page would appear in the other frame
of this temporary window. The steps must take into account all installation
requirements for every platform, or, alternatively, you can create a separate
installation document for each unique class of platform. Macintosh files, for
instance, frequently must be decoded from binhex format and then uncompressed
before you move them into the plug-ins folder. Other plug-ins have their own,
separate installation program. The final step should include a call to

navigator.plugins.refresh()

to make sure that the browser updates its internal listings. After that, the script
can go back to the document.referrer, which should be the page that sent the
visitor to the installation pages. All in all, the process is cumbersome — it’s not like
downloading a Java applet. But if you provide some guidance, you stand a better
chance of the user coming back to play your cool media.

532 Part III ✦ JavaScript Object and Language Reference

Screen Object
Properties Methods Event Handlers

availHeight (None) (None)

availWidth

colorDepth

height

pixelDepth

width

Syntax
Accessing screen properties:

screen.property

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ (✔)

About this object
Navigator 4 provides a screen object that lets your scripts inquire about the size

and color settings of the video monitor used to display a page. Properties are
carefully designed to reveal not only the raw width and height of the monitor (in
pixels), but what the available width and height are once you take into account the
operating system’s screen-hogging interface elements (for example, the Windows
95/NT Taskbar and the Mac menubar).

Some of these property values are also accessible in Navigator 3 if you use
LiveConnect to access Java classes directly. Example code for this approach is
supplied in the individual property listings.

Internet Explorer 4 provides a screen object, although it appears as an element
of the window object in the Internet Explorer 4 object model. Only three properties
of the Internet Explorer 4 screen object —height, width, and colorDepth— are
the same syntax as Navigator 4’s screen object.

533Chapter 25 ✦ Navigator and Other Environment Objects

availHeight

availWidth

height

width
Value: Integer Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ (✔)

With Navigator 4’s additional window sizing methods, your scripts may want to
know how large the user’s monitor is. This is particularly important if you are
setting up an application to run in kiosk mode, which occupies the entire screen.
Two pairs of properties let scripts extract the dimensions of the screen. All
dimensions are in pixels.

The gross height and width of the monitor is available from the screen.height
and screen.width properties. Thus, a monitor rated as an 800 × 600 monitor
returns values of 800 and 600 for width and height, respectively. These properties
are available in Internet Explorer 4, as well.

But the gross size is not always completely available as displayable area for a
window. To the rescue come the screen.availWidth and screen.availHeight
properties. For example, Windows 95 and NT 4 display the Taskbar. The default
location for this bar is at the bottom of the window, but users can reorient it along
any edge of the screen. If the default behavior of always showing the Taskbar is in
force, the bar takes away from the screen real estate available for window display
(unless you intentionally size or position a window so that part of the window
extends under the bar). When along the top or bottom edge of the screen, the
Taskbar occupies 28 vertical pixels; when positioned along one of the sides, the
bar occupies 60 horizontal pixels. On the Macintosh platform, the 20-pixel-deep
menubar occupies a top strip of the screen. While windows can be positioned and
sized so they are partially covered by the menubar, it is not a good idea to open a
window in or move a window into that location.

You can use the available screen size values as settings for window properties.
For example, to maximize a window, you must position the window at the top left
of the screen and then set the outer window dimensions to the available sizes, as
follows:

function maximize() {
window.moveTo(0,0)
window.outerWidth = screen.availWidth
window.outerHeight = screen.availHeight

}

534 Part III ✦ JavaScript Object and Language Reference

The above function positions the window appropriately on the Macintosh just
below the menubar so that the window is not obscured by the menubar. If,
however, the client is Windows 95/NT and the user has positioned the Taskbar at
the top of the screen, the window will be partially hidden under the Taskbar (you
cannot query the available screen space’s coordinates).

For Navigator 3, you can use LiveConnect to access a native Java class that
reveals the overall screen size (not the available screen size). If the user is running
Navigator 3 and Java is enabled, the following script fragment can be placed in the
Head portion of your document to set variables with screen width and height:

var toolkit = java.awt.Toolkit.getDefaultToolkit()
var screen = toolkit.getScreenSize()

The screen variable is an object whose properties (width and height) contain
the pixel measures of the current screen. This LiveConnect technique also works in
Navigator 4 (but not in Internet Explorer 3), so you can use one screen size
method for all late-model Navigators. In fact, you can also extract the screen
resolution (pixels per inch) in the same manner. The following statement, added
after the ones above, sets the variable resolution to that value:

var resolution = toolkit.getScreenResolution()

Related Items: window.innerHeight property; window.innerWidth property;
window.outerHeight property; window.outerWidth property; window.moveTo()
method; window.resizeTo() method.

colorDepth

pixelDepth
Value: Integer Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ (✔)

You can design a page for Navigator 4 with different color models in mind,
because your scripts can query the client to find out how many colors the user has
set the monitor to display. This can be helpful if you have more subtle color
schemes that require 16-bit color settings or images tailored to specific palette
sizes.

Both screen.colorDepth and screen.pixelDepth properties return the
number of bits that the color client computer’s video display control panel is set
to. The screen.colorDepth value may take into account a custom color palette,
so in general I prefer to rely only on the screen.pixelDepth value (Internet
Explorer 4 supports only the screen.colorDepth property of this pair). You can
use this value to determine which of two image versions to load, as shown in the
following script fragment that runs as the document loads:

535Chapter 25 ✦ Navigator and Other Environment Objects

if (screen.colorDepth > 8) {
document.write(“<IMG SRC=’logoHI.jpg’ HEIGHT=’60’ WIDTH=’100’”)

} else {
document.write(“<IMG SRC=’logoLO.jpg’ HEIGHT=’60’ WIDTH=’100’”)

}

In this example, the logoHI.jpg image is designed for 16-bit displays or better,
while the colors in logoLO.jpg have been tuned for 8-bit display.

While LiveConnect in Navigator 3 has a way to extract what appears to be the
pixelDepth equivalent, the Java implementation is flawed. You do not always get
the correct value, so I don’t recommend relying on this tactic for Navigator 3 users.

Related Items: None.

✦ ✦ ✦

