
The Form Object

The majority of scripting in an HTML document takes
place in and around forms. Because forms tend to be the

primary user interface elements of HTML documents, this
fact shouldn’t be surprising. The challenge of scripting forms
and form elements often comes from getting object
references just right: The references can get pretty long by
the time you start pointing to the property of a form element
(which is part of a form, which is part of a document, which
is part of a window or frame).

The Form in the Object Hierarchy
Take another look at the JavaScript object hierarchy in

Navigator 4 (refer back to Figure 16-1). The form object can
contain a wide variety of form element objects, which are
covered in Chapters 22 through 24. In this chapter, however,
the focus is strictly on the container.

The good news on the compatibility front is that with the
exception of differences when submitting forms to CGI
programs on the server, much of the client-side scripting
works on all scriptable browsers. Where differences exist, I
point out the real gotchas.

Form Object
Properties Methods Event Handlers

action handleEvent() onReset=

elements[] reset() onSubmit=

encoding submit()

length

method

name

target

2121C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The form object as
container of form
elements

How to submit
forms via e-mail

Processing form
validations

✦ ✦ ✦ ✦

414 Part III ✦ JavaScript Object and Language Reference

Syntax
Creating a form:

<FORM
[NAME=”formName”]
[TARGET=”windowName”]
[ACTION=”serverURL”]
[METHOD=GET | POST]
[ENCTYPE=”MIMEType”]
[onReset=”handlerTextOrFunction”]
[onSubmit=”handlerTextOrFunction”] >

</FORM>

Accessing form properties or methods:

[window.] document.formName.property | method([parameters])
[window.] document.forms[index].property | method([parameters])

About this object
Forms and their elements are the primary, two-way gateways between users and

JavaScript scripts. A form element provides the only way that users can enter
textual information or make a selection from a predetermined set of choices,
whether those choices appear in the form of an on/off checkbox, one of a set of
mutually exclusive radio buttons, or a selection from a list.

As you have seen in many Web sites, the form is the avenue for the user to enter
information that gets sent to the server housing the Web files. Just what the server
can do with this information depends on the CGI (Common Gateway Interface)
programs running on the server. If your Web site runs on a server directly under
your control (that is, it is “in-house” or “hosted” by a service), you have the
freedom to set up all kinds of data-gathering or database search programs to
interact with the user. But if you rely on an Internet service provider (ISP) to
house your HTML files, you’re limited to a usually plain set of CGI programs
available to all customers of the service. Custom databases or transactional
services are rarely provided for this kind of dial-up Internet service — popular
with individuals and small businesses who cannot justify the cost of maintaining
their own servers.

Regardless of your Internet server status, you can find plenty of uses for
JavaScript scripts in documents. For instance, rather than using data exchanges
(and Internet bandwidth) to gather raw user input and report any errors, a
JavaScript-enhanced document can preprocess the information to make sure that it
uses the format that is most easily received by your back-end database or other
programs. All corrective interaction takes place in the browser, without one extra
bit flowing across the Net. I devote all of Chapter 37 to form data-validation
techniques.

How you define a form object (independent of the user interface elements,
described later in this chapter) depends a great deal on how you plan to use the

415Chapter 21 ✦ The Form Object

information from the form’s elements. If you’re using the form completely for
JavaScript purposes (that is, no queries or postings will be going to the server), you
do not need to use the ACTION, TARGET, and METHOD attributes. But if your Web
page will be feeding information or queries back to a server, you need to specify at
least the ACTION and METHOD attribute; you need to also specify the TARGET
attribute if the resulting data from the server is to be displayed in a window other
than the calling window and the ENCTYPE attribute if your form’s scripts fashion the
server-bound data in a MIME type other than a plain ASCII stream.

References to form elements
For most client-side scripting, user interaction comes from the elements within

a form; the form object becomes merely a repository for the various elements. If
your scripts will be performing any data validation checks on user entries prior to
submission or other calculations, many statements will have the form object as
part of the reference to the element.

A complex HTML document can have multiple form objects. Each
<FORM>...</FORM> tag pair defines one form. You won’t receive any penalties
(except for potential confusion on the part of someone reading your script) if you
reuse a name for an element in each of a document’s forms. For example, if each of
three forms has a grouping of radio buttons with the name “choice,” the object
reference to each button ensures that JavaScript won’t confuse them. The
reference to the first button of each of those button groups is as follows:

document.forms[0].choice[0]
document.forms[1].choice[0]

document.forms[2].choice[0]

Remember, too, that you can create forms (or any HTML object for that matter)
on the fly when you assemble HTML strings for writing into other windows or
frames. Therefore, you can determine various attributes of a form from settings in
an existing document.

Passing forms and elements to functions
When a form or form element contains an event handler that calls a function

defined elsewhere in the document, a couple shortcuts are available that you can
use to simplify the task of addressing the objects in the function. Failure to grasp
this concept not only causes you to write more code than you have to, but also
hopelessly loses you when you try to trace somebody else’s code in his or her
JavaScripted document. The watchword in event handler parameters is

this

which represents the current object that contains the event handler attribute.
For example, consider the function and form definition in Listing 21-1. The entire
user interface for this listing consists of form elements, as shown in Figure 21-1.

416 Part III ✦ JavaScript Object and Language Reference

Listing 21-1: Passing the Form Object as a Parameter

<HTML>
<HEAD>
<TITLE>Beatle Picker</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function processData(form) {

for (var i = 0; i < form.Beatles.length; i++) {
if (form.Beatles[i].checked) {

break
}

}
var chosenBeatle = form.Beatles[i].value
var chosenSong = form.song.value
alert("Looking to see if " + chosenSong + " was written by " +

chosenBeatle + "...")
}

function checkSong(songTitle) {
var enteredSong = songTitle.value
alert("Making sure that " + enteredSong + " was recorded by the

Beatles.")
}
</SCRIPT>
</HEAD>

<BODY>
<FORM NAME="Abbey Road">
Choose your favorite Beatle:
<INPUT TYPE="radio" NAME="Beatles" VALUE="John Lennon"
CHECKED="true">John
<INPUT TYPE="radio" NAME="Beatles" VALUE="Paul McCartney">Paul
<INPUT TYPE="radio" NAME="Beatles" VALUE="George Harrison">George
<INPUT TYPE="radio" NAME="Beatles" VALUE="Ringo Starr">Ringo<P>

Enter the name of your favorite Beatles song:

<INPUT TYPE="text" NAME="song" VALUE="Eleanor Rigby"
onChange="checkSong(this)"><P>
<INPUT TYPE="button" NAME="process" VALUE="Process Request..."
onClick="processData(this.form)">
</FORM>
</BODY>
</HTML>

417Chapter 21 ✦ The Form Object

Figure 21-1: A variety of elements compose the form of Listing 21-1.

If you want to summon any properties of the form elements to work on them
inside the processData() function, you can go about it in two different ways. One
is to have the onClick= event handler (in the button element at the bottom of the
document) call the processData() function and not pass any parameters. Inside
the function, all references to objects (such as the radio buttons or the song field)
must be complete references, such as

document.forms[0].song.value

to retrieve the value entered into the “song” field.
A more efficient way is to send the form object as a parameter with the call to

the function (as shown in Listing 21-1). By specifying this.form as the parameter,
you tell JavaScript to send along everything it knows about the form from which
the function is being called. At the function, that form object is assigned to a
variable name (arbitrarily set to form here) that appears in parentheses after the
function name. I’ve used the parameter variable name form here because it
represents an entire form. But you can use any valid variable name you like.

Part of the information that comes along with that form is its address among all
JavaScript objects loaded with the document. That means as long as statements
refer to that form object (by its variable name) the full address is automatically
part of the reference. Thus, here I can use form to take the place of
document.forms[0] in any address. To get the value of the song field, the
reference is

form.song.value

Had I assigned the form object to a parameter variable called sylvester, the
reference would have been

sylvester.song.value

418 Part III ✦ JavaScript Object and Language Reference

This referencing methodology works for retrieving or setting properties and
calling an object’s methods. Another version of the this parameter passing style
is simply to use the word this as the parameter. Unlike this.form, which passes
a reference to the entire form connected to a particular element, this passes only
a reference to that one element. In Listing 21-1, you could add an event handler to
the song field to do some validation of the entry (to make sure that the entry
appears in a database array of Beatles’ songs created elsewhere in the document).
Therefore, you want to send only the field object to the function for analysis:

<INPUT TYPE=”text” NAME=”song” onChange=”checkSong(this)”><P>

You then have to create a function to catch this call:

function checkSong(songTitle) {
var enteredSong = songTitle.value
alert(“Making sure that “ + enteredSong + “ was recorded by the

Beatles.”)
}

Within this function, you can go straight to the heart — the value property of
the field element without a long address. The entire field object came along for the
ride with its complete address.

One further extension of this methodology is to pass only a single property of a
form element as a parameter. In the last example, since the checkSong() function
needs only the value property of the field, the event handler could have passed
this.value as a parameter. Because this refers to the very object in which the
event handler appears, this.propertyName syntax lets you extract and pass
along a single property:

<INPUT TYPE=”text” NAME=”song” onChange=”checkSong(this.value)”><P>

A benefit of this way of passing form element data is that the function doesn’t
have to do as much work:

function checkSong(songTitle) {
alert(“Making sure that “ + songTitle + “ was recorded by the

Beatles.”)
}

Therefore, I suggest passing the entire form element (this) when the function
needs to make multiple accesses to that element (perhaps reading one property and
then writing back to that very element’s value property, such as converting a text
field to all uppercase letters). But if only one property is needed in the function, pass
only that one property (this.propertyName). Lastly, if the function will access
multiple elements in a form (for example, a button click means that the function
must retrieve a field’s content), pass the entire form (this.form). Also be aware
that you can submit multiple parameters (for example,
onClick=”someFunction(this.form, this.name)”) or even an entirely different
object from the same form (for example,
onClick=”someFunction(this.form.emailAddr.value)”). Simply adjust your
function’s incoming parameters accordingly (see Chapter 34 for more details about
custom functions).

419Chapter 21 ✦ The Form Object

E-mailing forms
A common request among scripters is the ability to send a form via e-mail back

to the page’s author. This includes the occasional desire to send “secret” e-mail
back to the author whenever someone visits the Web site. Let me address the
privacy issue first.

A site visitor’s e-mail address is valuable personal information that should not
be retrieved from the user without his or her permission or knowledge. That’s one
reason why Netscape plugged a privacy hole in Navigator 2 that allowed
submitting a form to a mailto: URL without requesting permission from the user.
Some workarounds for this could be used in Navigator 3, but I do not condone
surreptitiously lifting e-mail addresses, so I choose not to publicize those
workarounds here.

Microsoft, on the other hand, goes too far in preventing forms e-mailing. While
Netscape’s browsers reveal to the user in an alert that an e-mail message bearing
the user’s e-mail address (as stored in the browser’s preferences) will be sent upon
approval, Internet Explorer 3 does not send form content via e-mail at all; Internet
Explorer 4 sends form content as an attachment, but only after displaying a mail
composition window to the user. In all cases, the mail composition window
appears to the user.

Many ISPs that host Web sites provide standard CGIs for forwarding forms to an
e-mail address of your choice. This manner of capturing form data, however, does
not also capture the visitor’s e-mail address unless your form has a field where the
visitor voluntarily enters that information.

Back to Navigator, if you want to have forms submitted as e-mail messages, you
must attend to three <FORM> tag attributes. The first is the METHOD attribute. It
must be set to POST. Next comes the ACTION attribute. Normally the spot for a URL
to another file or server CGI, you substitute the special mailto: URL followed by an
optional parameter for the subject. Unlike the more fully featured mailto: URLs
possible with the location and link objects (see Chapters 15 and 17), a form’s
mailto: URL can include at most the subject for the message. Here is a sample:

ACTION=”mailto:prez@whitehouse.gov?subject=Opinion Poll”

The last attribute of note is ENCTYPE. If you omit this attribute, Navigator sends
the form data as an attachment consisting of escaped name-value pairs, as in this
example:

name=Danny+Goodman&rank=Scripter+First+Class&serialNumber=042

But if you set the ENCTYPE attribute to “text/plain”, the form name-value
pairs are placed in the body of the mail message in a more human-readable format:

name=Danny Goodman
rank=Scripter First Class
serialNumber=042

To sum up, here would be the complete <FORM> tag for e-mailing the form in
Navigator:

420 Part III ✦ JavaScript Object and Language Reference

<FORM NAME=”entry”
METHOD=POST
ACTION=”mailto:prez@whitehouse.gov?subject=Opinion Poll”
ENCTYPE=”text/plain”>

Changing form attributes
Navigator exposes all form attributes as modifiable properties. Therefore, you

can change, say, the action of a form via a script in response to user interaction on
your page. For example, you might have two different CGI programs on your server
depending on whether a form’s checkbox is checked.

Form attribute properties cannot be changed on the fly in Internet Explorer 3.
They can be modified in Internet Explorer 4.

Buttons in forms
A common mistake that newcomers to scripting make is defining all clickable

buttons as the submit type of input object (<INPUT TYPE=”submit”>). The submit
style of button does exactly what it says: It submits the form. If you don’t set any
METHOD or ACTION attributes of the <FORM> tag, the browser inserts its default
values for you: METHOD=GET and ACTION=<pageURL>. When a form with these
attributes is submitted, the page reloads itself and resets all field values to their
initial values.

Use a submit button only when you want the button to actually submit the form.
If you want a button for other types of action, use the button style (<INPUT
TYPE=”button”>).

Redirection after submission
All of us have submitted a form to a site and seen a “Thank You” page come

back from the server to verify that our submission was accepted. This is warm and
fuzzy, if not logical, feedback for the submission action. It is not surprising that you
would want to re-create that effect even if the submission is to a mailto: URL.
Unfortunately, a problem gets in the way.

A commonsense approach to the situation would call for a script to perform the
submission (via the form.submit() method) and then navigate to another page
that does the “Thank You.” Here would be such a scenario from inside a function
triggered by a click of a link surrounding a nice graphical Submit button:

function doSubmit() {
document.forms[0].submit()
location = “thanks.html”

}

The problem is that when another statement executes after the form.submit()
method, the submission is canceled. In other words, the script does not wait for
the submission to complete itself and verify to the browser that all is well (even
though the browser appears to know how to track that information, given the
status bar feedback during submission). The point is, because JavaScript does not
provide an event that is triggered by a successful submission, there is no sure-fire
way to display your own “Thank You” page.

Note

421Chapter 21 ✦ The Form Object

Don’t be tempted by the window.setTimeout() method to change the location
after some number of milliseconds following the form.submit() method. You
cannot predict how fast the network and/or server will be for every visitor. If the
submission does not fully complete before the timeout ends, then the submission
is still canceled, even if it is partially completed.

It’s too bad we don’t have this power at our disposal yet. Perhaps a future
version of the document object model will provide an event that lets us do
something only after a successful submission.

Form element arrays
Since the first implementation of JavaScript in Navigator 2, Netscape’s document

object model has provided a feature beneficial to a lot of scripters. If you create a
series of like-named objects, they automatically become an array of objects
accessible via array syntax (see Chapter 7). This is particularly helpful if you are
creating forms with columns and rows of fields, such as in an order form. By
assigning the same name to all fields in a column, you can use for loops to cycle
through each row using the loop index as an array index.

As an example, the following code shows a typical function that calculates the
total for an order form row (and calls another custom function to format the
value):

function extendRows(form) {
for (var i = 0; i < Qty.length; i++) {

var rowSum = form.Qty[i].value * form.Price[i].value
form.Total[i].value = formatNum(rowSum,2)

}
}

All fields in the Qty column are named Qty. The item in the first row has the
array index value of zero and is addressed as form.Qty[i].

Unfortunately, Internet Explorer 3 does not turn like-named fields into an array
of references, although Internet Explorer 4 does. But you can still script repetitive
moves through an organized set of fields. The key is to assign names to the fields
that include their index numbers: Qty0, Qty1, Qty2, and so on. You can even
assign these names in a for loop that generates the table:

for (var i = 0; i <= 10; i++) {
...
document.write(“<INPUT TYPE=’text’ NAME=’Qty” + i + “‘>”)
...

}

Later, when it comes time to work with the fields, you can use the indexing
scheme to address the fields:

for (var i = 0; i < Qty.length; i++) {
var rowSum = form[“Qty” + i].value * form[“Price” + i].value
form[“Total” + i].value = formatNum(rowSum,2)

}

In other words, construct names for each item, and use those names as array
index names. This solution is backward and forward compatible.

422 Part III ✦ JavaScript Object and Language Reference

Properties
action

Value: URL Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

The action property (along with the method and target properties) is
primarily for HTML authors whose pages communicate with server-based CGI
scripts. This property is the same as the value you assign to the ACTION attribute
of a <FORM> definition. The value is typically a URL on the server where queries or
postings are sent for submission.

User input may affect how you want your page to access a server. For example,
a checked box in your document may set a form’s action property so that a CGI
script on one server handles all the input, whereas an unchecked box means the
form data goes to a CGI script on an entirely different server. Or, one setting may
direct the action to one mailto: address, whereas another setting sets the action
property to a different mailto: address.

Although the specifications for all three related properties indicate that they
can be set on the fly, such changes are ephemeral. A soft reload eradicates any
settings you make to these properties, so at best you’d make changes only in the
same scripts that submit the form (see form.submit()).

This value is not modifiable in Internet Explorer 3 but is in Internet Explorer 4.

Example
document.forms[0].action = “mailto:jdoe@giantco.com”

Related Items: form.method property; form.target property; form.encoding
property.

elements
Value: Array of sub-objects Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Elements include all the user interface elements defined for a form: text fields,
buttons, radio buttons, checkboxes, selection lists, and more. Like some other

Note

423Chapter 21 ✦ The Form Object

JavaScript object properties, the elements property is an array of all items defined
within the current HTML document. For example, if a form defines three <INPUT>
items, the elements property for that form is an array consisting of three entries,
one for each item. Each entry is the full object specification for that element; so, to
extract properties or call methods for those elements, your script must dig deeper
in the reference. Therefore, if the first element of a form is a text field, and you
want to extract the string currently showing in the field (a text element’s value
property), the reference looks like this:

document.forms[0].elements[0].value

Notice that this reference summons two array-oriented properties along the
way: one for the document’s forms property and, subsequently, one for the form’s
elements property.

You can access an element in other ways, too (see discussions of individual
element objects later in this chapter). An advantage to using the elements
property occurs when you have a form with many elements, each with a related or
potentially confusing name. In such circumstances, references that point directly
to an element’s name may be more difficult to trace or read. On the other hand, the
order of entries in an elements array depends entirely upon their order in the
HTML document — the first <INPUT> item in a form is elements[0], the second is
elements[1], and so on. If you redesign the physical layout of your form elements
after writing scripts for them, the index values you originally had for referencing a
specific form may no longer be valid. Referencing an element by name, however,
works no matter how you move the form elements around in your HTML
document.

To JavaScript, an element is an element, whether it is a radio button or textarea.
If your script needs to loop through all elements of a form in search of particular
kinds of elements, use the type property of every form object (Navigator 3+ and
Internet Explorer 4+) to identify which kind of object it is. The type property
consists of the same string used in the TYPE= attribute of an <INPUT> tag.

Overall, my personal preference is to generate meaningful names for each form
element and use those names in references throughout my scripts. Just the same,
if I have a script that must poll every element or contiguous range of elements for
a particular property value, the indexed array of elements facilitates using a repeat
loop to examine each one efficiently.

Example
The document in Listing 21-2 demonstrates a practical use of the elements

property. A form contains four fields and some other elements mixed in between
(Figure 21-2). The first part of the function that acts on these items repeats
through all the elements in the form to find out which ones are text objects and
which text objects are empty. Notice how I use the type property to separate
objects from the rest, even when radio buttons appear amid the fields. If one field
has nothing in it, I alert the user and use that same index value to place the
insertion point at the field with the field’s focus() method.

424 Part III ✦ JavaScript Object and Language Reference

Listing 21-2: Using the form.elements[] Array

<HTML>
<HEAD>
<TITLE>Elements Array</TITLE>
<SCRIPT LANGUAGE="JavaScript1.1">
function verifyIt() {

var form = document.forms[0]
for (i = 0; i < form.elements.length; i++) {

if (form.elements[i].type == "text" &&
form.elements[i].value == ""){

alert("Please fill out all fields.")
form.elements[i].focus()
break

}
// more tests

}
// more statements

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
Enter your first name:<INPUT TYPE="text" NAME="firstName"><P>
Enter your last name:<INPUT TYPE="text" NAME="lastName"><P>
<INPUT TYPE="radio" NAME="gender">Male
<INPUT TYPE="radio" NAME="gender">Female <P>
Enter your address:<INPUT TYPE="text" NAME="address"><P>
Enter your city:<INPUT TYPE="text" NAME="city"><P>
<INPUT TYPE="checkbox" NAME="retired">I am retired
</FORM>
<FORM>
<INPUT TYPE="button" NAME="act" VALUE="Verify" onClick="verifyIt()">
</FORM>
</BODY>
</HTML>

425Chapter 21 ✦ The Form Object

Figure 21-2: A document with mixed elements

Related Items: text, textarea, button, radio, checkbox, and select objects.

encoding
Value: MIMETypeString Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

You can define a form to alert a server that the data being submitted is in a
MIME type. This property reflects the setting of the ENCTYPE attribute in the form
definition. For mailto: URLs, I recommend setting this value (in the tag or via
script) to “text/plain” to have the form contents placed in the mail message
body. If the definition does not have an ENCTYPE attribute, this property is an
empty string.

This value is not modifiable in Internet Explorer 3 but is in Internet Explorer 4.

Example
formMIME = document.forms[0].encoding

Related Items: form.action method; form.method method.

Note

426 Part III ✦ JavaScript Object and Language Reference

method
Value: “GET” or “POST” Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

A form’s method property is either the GET or POST values assigned to the
METHOD attribute in a <FORM> definition. Terminology overlaps here a bit, so be
careful to distinguish a form’s method of transferring its data to a server from the
object-oriented method (action or function) that all JavaScript forms have.

Of primary importance to HTML documents that submit a form’s data to a
server-based CGI script is the method property, which determines the format used
to convey this information. For example, to submit a form to a mailto: URL, the
method property must be POST. Details of forms posting and CGI processing are
beyond the scope of this book. Consult HTML or CGI documentation to determine
which is the appropriate setting for this attribute in your Web server environment.
If a form does not have a METHOD attribute explicitly defined for it, the default
value is GET.

This value is not modifiable in Internet Explorer 3 but is in Internet Explorer 4.

Example
formMethod = document.forms[0].method

Related Items: form.action property; form.target property; form.encoding
property.

name
Value: String Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Assigning a name to a form via the NAME attribute is optional but highly
recommended when your scripts need to reference a form or its elements. This
attribute’s value is retrievable as the name property of a form. You won’t have
much need to read this property unless you’re inspecting another source’s
document for its form construction, as in

var formName = parent.frameName.document.forms[0].name

Note

427Chapter 21 ✦ The Form Object

target
Value: WindowNameString Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Whenever an HTML document submits a query to a server for processing, the
server typically sends back an HTML page — whether it is a canned response or,
more likely, a customized page based on the input provided by the user. You see
this situation all the time when you perform a search at Web search sites, such as
Yahoo!, Lycos, and AltaVista. In a multiframe or multiwindow environment, you
may want to keep the form part of this transaction in view for the user, while
leaving the responding page in a separate frame or window for viewing. The
purpose of the TARGET attribute of a <FORM> definition is to enable you to specify
where the output from the server’s query should be displayed.

The value of the target property is the name of the window or frame. For
instance, if you define a frameset with three frames and assign the names Frame1,
Frame2, and Frame3 to them, you need to supply one of these names (as a quoted
string) as the parameter of the TARGET attribute of the <FORM> definition.
Navigator and compatible browsers also observe four special window names that
you can use in the <FORM> definition: _top, _parent, _self, and _blank. To set
the target as a separate subwindow opened via a script, be sure to use the window
name from the window.open() method’s second parameter, and not the window
object reference that the method returns.

This value is not modifiable in Internet Explorer 3 but is in Internet Explorer 4.

Example
document.forms[0].target = “resultFrame”

Related Items: form.action property; form.method property; form.encoding
property.

Methods
handleEvent(event)

Returns: Nothing.

Note

428 Part III ✦ JavaScript Object and Language Reference

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

See the discussion of the window.handleEvent() method in Chapter 14 and
the event object in Chapter 33 for details on this ubiquitous form element method.

reset()
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

A common practice, especially with a long form, is to provide a button that
enables the user to return all the form elements to their default settings. The
standard Reset button (a separate object type described in Chapter 23) does that
task just fine. But if you want to clear the form using script control, you must do so
by invoking the reset() method for the form. More than likely, such a call will
come from outside the form, perhaps from a function or from a graphical button. In
such a case, make sure that the reference to the reset() method includes the
complete reference to the form you want to reset — even if the page only has one
form defined for it.

Example
In Listing 21-3, the act of resetting the form is assigned to the HREF attribute of a

link object (that is attached to a graphic called reset.jpg). I use the javascript:
URL to invoke the reset() method for the form directly (in other words, without
doing it via function).

Listing 21-3: form.reset() and form.submit() Methods

<HTML>
<HEAD>
<TITLE>Registration Form</TITLE>
</HEAD>
<BODY>
<FORM NAME="entries" METHOD=POST ACTION="http://www.u.edu/pub/cgi-
bin/register">
Enter your first name:<INPUT TYPE="text" NAME="firstName"><P>
Enter your last name:<INPUT TYPE="text" NAME="lastName"><P>
Enter your address:<INPUT TYPE="text" NAME="address"><P>
Enter your city:<INPUT TYPE="text" NAME="city"><P>
<INPUT TYPE="radio" NAME="gender" CHECKED>Male
<INPUT TYPE="radio" NAME="gender">Female <P>
<INPUT TYPE="checkbox" NAME="retired">I am retired
</FORM>

429Chapter 21 ✦ The Form Object

<P>
<IMG SRC="submit.jpg"
HEIGHT=25 WIDTH=100 BORDER=0>
<IMG SRC="reset.jpg"
HEIGHT=25 WIDTH=100 BORDER=0>
</BODY>
</HTML>

Related Items: onReset= event handler; reset object.

submit()
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

The most common way to send a form’s data to a server’s CGI program for
processing is to have a user click a Submit button. The standard HTML Submit
button is designed to send data from all elements of a form according to the
specifications listed in the <FORM> definition’s attributes. But if you want to
submit a form’s data to a server automatically for a user, or want to use a
graphical button for submission, you can accomplish the submission with the
form.submit() method.

Invoking this method is almost the same as a user clicking a form’s Submit
button (except that the onSubmit= event handler is not triggered in Navigator).
Therefore, you may have an image on your page that is a graphical submission
button. If that image is associated with a link object, you can capture a mouse click
on that image and trigger a function whose content includes a call to a form’s
submit() method (see Listing 21-3).

In a multiple-form HTML document, however, you must be sure to reference the
proper form, either by name or according to its position in a document.forms[]
array. Always make sure that the reference you specify in your script points to the
desired form before submitting any data to a server.

As a security and privacy precaution for people visiting your site, JavaScript
ignores all submit() methods whose associated form action is set to a mailto:
URL. Many Web page designers would love to have secret e-mail addresses
captured from visitors. Because such a capture could be considered an invasion of
privacy, the power has been disabled since Navigator 2.02. You can, however, still
use an explicit Submit button object to mail a form to you from Navigator browsers
only (see “E-mailing forms” earlier).

Because the form.submit() method does not trigger the form’s onSubmit=
event handler, you must perform any presubmission processing and forms
validation in the same script that ends with the form.submit() statement. You
also do not want to interrupt the submission process after the script invokes the

430 Part III ✦ JavaScript Object and Language Reference

form.submit() method. Script statements after one invoking form.submit() —
especially those that navigate to other pages or attempt a second submission —
will cause the first submission to cancel itself.

Example
Consult Listing 21-3 for an example of using the submit() method from outside

of a form.

Related Items: onSubmit= event handler.

Event handlers
onReset=

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

Immediately before a Reset button returns a form to its default settings,
JavaScript sends a reset event to the form. By including an onReset= event
handler in the form definition, you can trap that event before the reset takes place.

A friendly way of using this feature is to provide a safety net for a user who
accidentally clicks on the Reset button after filling out a form. The event handler
can run a function that asks the user to confirm the action.

The onReset= event handler employs a technique that started surfacing with
Navigator 3: The event handler must evaluate to return true for the event to
continue to the browser. This may remind you of the way onMouseOver= and
onMouseOut= event handlers work for links and image areas. This requirement is
far more useful here because your function can control whether the reset
operation ultimately proceeds to conclusion.

Example
Listing 21-4 demonstrates one way to prevent accidental form resets or

submissions. Using standard Reset and Submit buttons as interface elements, the
<FORM> object definition includes both event handlers. Each event handler calls its
own function that offers a choice for users. Notice how each event handler
includes the word return and takes advantage of the Boolean values that come
back from the confirm() method dialog boxes in both functions.

Listing 21-4: The onReset= and onSubmit= Event Handlers

<HTML>
<HEAD>
<TITLE>Submit and Reset Confirmation</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function allowReset() {

return window.confirm("Go ahead and clear the form?")

431Chapter 21 ✦ The Form Object

}
function allowSend() {

return window.confirm("Go ahead and mail this info?")
}
</SCRIPT>
</HEAD>
<BODY>
<FORM METHOD=POST ACTION="mailto:trash3@dannyg.com" onReset="return
allowReset()" onSubmit="return allowSend()">
Enter your first name:<INPUT TYPE="text" NAME="firstName"><P>
Enter your last name:<INPUT TYPE="text" NAME="lastName"><P>
Enter your address:<INPUT TYPE="text" NAME="address"><P>
Enter your city:<INPUT TYPE="text" NAME="city"><P>
<INPUT TYPE="radio" NAME="gender" CHECKED>Male
<INPUT TYPE="radio" NAME="gender">Female <P>
<INPUT TYPE="checkbox" NAME="retired">I am retired<P>
<INPUT TYPE="reset">
<INPUT TYPE="submit">
</FORM>
</BODY>
</HTML>

onSubmit=

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

No matter how a form’s data is actually submitted (by a user clicking a Submit
button or by a script invoking the form.submit() method), you may want your
JavaScript-enabled HTML document to perform some data validation on the user
input, especially with text fields, before the submission heads for the server. You
have the option of doing such validation while the user enters data (see Chapter
37) or in batch mode before sending the data to the server — or both. The place
to trigger this last-ditch data validation is the form’s onSubmit= event handler.

When you define an onSubmit= handler as an attribute of a <FORM> definition,
JavaScript sends the submit event to the form just before it dashes off the data to
the server. Therefore, any script or function that is the parameter of the
onSubmit= attribute executes before the data is actually submitted. Note that this
event handler fires only in response to a genuine Submit-style button, and not from
a form.submit() method.

Any code executed for the onSubmit= event handler must evaluate to an
expression consisting of the word return plus a Boolean value. If the Boolean
value is true, the submission executes as usual; if the value is false, no submission
is made. Therefore, if your script performs some validation prior to submitting
data, make sure that the event handler calls that validation function as part of a
return statement, as shown in Listing 21-4.

432 Part III ✦ JavaScript Object and Language Reference

Even after your onSubmit= event handler traps a submission, JavaScript’s
security mechanism can present additional alerts to the user, depending on the
server location of the HTML document and the destination of the submission.

Example
See Listing 21-4 for an example of trapping a submission via the onSubmit=

event handler.

✦ ✦ ✦

