CHAPTER

Body Text
Objects

o 0O 0O O

In This Chapter

Obsjects that display
running body fext in

Alarge number of HTML elements fall into a catchall
documents

category of elements whose purposes are slightly more
targeted than contextual elements covered in Chapter 15. In
this group are some very widely used elements, such as the
H1 through H6 header elements, plus several elements that
are not yet widely used because their full support may be
lacking in even some of the most modern browsers. In this
chapter, you find all sorts of text-related objects, excluding
those objects that act as form controls (text boxes and such,
which are covered in Chapter 25). For the most part, proper-
ties, methods, and event handlers of this chapter’s objects are
the generic ones covered in Chapter 15. Only those items that
are unique to each object are covered in this chapter (as will
be the case in all succeeding chapters).

Using the NN Range
and IE TextRange
objects

Scripting search and
replace actions

g o 0 0O

Beyond the HTML element objects covered in this chapter,
you also meet the TextRange object, first introduced in IE4,
and the corresponding Range object from the W3C DOM
implemented in NN6. This object is a very powerful one for
scripters because it allows scripts to work very closely with
body content —not in terms of, for example, the innerText
or nodeValue properties of elements, but rather in terms of
the text as it appears on the page in what users see as para-
graphs, lists, and the like. The TextRange and Range objects
essentially give your scripts cursor control over running body
text for functions, such as cutting, copying, pasting, and appli-
cations that extend from those basic operations — search and
replace, for instance. Bear in mind that everything you read in
this chapter requires in the least the dynamic object models
of I[E4+ and NN6+; some items require IE5+. Unfortunately, the
IE TextRange object is not implemented in [E5/Mac.

CD-2 Partll O Document Objects Reference

BLOCKQUOTE and Q Element Objects

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

cite

Syntax

Accessing BLOCKQUOTE or Q element object properties or methods:

(TE4+) [window.ldocument.all.elemID.property | method([parameters])
(IE5+/NN6) [window.ldocument.getElementById("elemID").property |
method([parameters])

About these objects

The BLOCKQUOTE element is a special-purpose text container. Browsers typically
start the content on its own line in the body and indent on both the left and right
margins approximately 40 pixels. An inline quotation can be encased inside a Q ele-
ment, which does not force the quoted material to start on the next line.

From an object point of view, the only property that distinguishes these two
objects from any other kind of contextual container is the cite property, which
comes from the HTML 4.0 CITE attribute. This attribute simply provides a URL ref-

erence for the citation and does not act as an SRC or HREF attribute to load an
external document.

Property
cite

Value: String Read/Write

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]

Chapter 19 O Body Text Objects (C[D-3

The cite property can contain a URL (as a string) that points to the source of the
quotation in the BLOCKQUOTE or Q element. Future browsers may provide some
automatic user interface link to the source document, but none of the browsers
that support the cite property do anything special with this information.

Related Items: None.

BR Element Object

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

clear

Syntax

Accessing BR element object properties or methods:

(TE4+) [window.ldocument.all.elemID.property | method([parameters])
(IE5+/NN6) [window.ldocument.getElementById("elemID").property |
method([parameters])

About this object

The BR element forces a carriage return and line feed for rendered content on the
page. This element does not provide the same kind of vertical spacing that goes
between paragraphs in a series of P elements. Only one attribute (CLEAR) distin-
guishes this element from generic HTML elements and objects.

Property
clear

Value: String Read/Write

CD-4 Partil O Document Objects Reference

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility o O O 0

The clear property defines how any text in an element following the BR element
wraps around a floating element (for example, an image set to float along the right
margin). While recent browsers expose this property, the attribute on which it is
based is deprecated in the HTML 4.0 specification in an effort to encourage the use
of the clear style sheet attribute for a BR element.

Values for the clear property can be one of the following strings: al1, 1eft, or
right.

Related Items: c1ear stylesheet property.

FONT Element Object

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

color
face

size

Syntax

Accessing FONT element object properties or methods:

(TE4+) [window.ldocument.all.elemID.property | method([parameters])
(IE5+/NN6) [window.ldocument.getElementById("elemID").property |
method([parameters])

About this object

In a juxtaposition of standards implementations, for the first time the FONT element
is exposed as an object only in browsers that also support Cascading Style Sheets
as the preferred way to control font faces, colors, and sizes. This change doesn’t
mean that you shouldn’t use FONT elements in your page with the newer

Chapter 19 O Body Text Objects (C[D-5

browsers — using this element may be necessary for a single page that needs to be
backward-compatible with older browsers. But it does present a quandary for
scripters who want to use scripts to modify font characteristics of body text after
the page has loaded. A good rule of thumb to follow is to use the FONT element
(and script the FONT-HTML element object’s properties) when the page must work
in all browsers; use style sheets (and their scriptable properties) on pages that will
be running exclusively in [E4+ and NN6-+.

Properties
color

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility a 0 O 0

A FONT object’s text color can be controlled via the color property. Values can be
either hexadecimal triplets (for example, #F FCCFF) or the plain-language color
names recognized by most browsers. In either case, the values are case-insensitive
strings.
On the N
_ CD | Example (with Listing 19-1) on the CD-ROM

Related Items: color stylesheet attribute.

face
Value: String Read/Write
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility]] | O

A FONT object’s font face is controllable via the face property. Just as the FACE
attribute (and the corresponding font-family style sheet attribute), you can spec-
ify one or more font names in a comma-delimited string. Browsers start with the
leftmost font face and look for a match in the client computer’s system. The first

CD-6

Part Ill 0 Document Objects Reference

matching font face that is found in the client system is applied to the text sur-
rounded by the FONT element. You should list the most specific fonts first, and gen-
erally allow the generic font faces (sans-serif, serif, and monospace) to come
last; that way you exert at least some control over the look of the font on systems
that don’t have your pretty fonts. If you know that Windows displays a certain font
you like and the Macintosh has something that corresponds to that font but with a
different name, you can specify both names in the same property value. The
browser skips over font face names not currently installed on the client.

On the

CD\'- Example on the CD-ROM

Related Items: font-family style sheet attribute.

size
Value: String Read/Write
NN2 NN3 NN4 NNé6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5
Compatibility]] | O

The size of text contained by a FONT element can be controlled via the size prop-
erty. Unlike the more highly recommended font-size style sheet attribute, the
size property of the FONT element object (and its corresponding SI7E attribute)
are restricted to the relative font size scale imposed by early HTML implementa-
tions: a numbering scale from 1 to 7.

Values for the size property are strings, even though most of the time they are sin-
gle numeral values. You can also specify a size relative to the default value by
including a plus or minus sign before the number. For example, if the default font
size (as set by the browser’s user preferences) is 3, then you can bump up the size
of a text segment by encasing it inside a FONT element and then setting its size
property to "+2".

For more accurate font sizing using units, such as pixels or points, use the font -
size style sheet attribute.

On the

CD\'- Example on the CD-ROM
A g

Related Items: font-size style sheet attribute.

Chapter 19 O Body Text Objects (C[D-7

H1 ... H6 Element Objects

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align

Syntax

Accessing H1 through H6 element object properties or methods:

(TE4+) [window.ldocument.all.elemID.property | method([parameters])
(IE5+/NN6) [window.ldocument.getElementById("elemID").property |
method([parameters])

About these objects

The so-called “heading” elements (denoted by H1, H2, H3, H4, H5, and H6) provide
shortcuts for formatting up to six different levels of headings and subheadings.
While you can simulate the appearance of these headings with P elements and style
sheets, the heading elements very often contain important contextual information
about the structure of the document. With the IE5+ and NN6+ powers of inspecting
the node hierarchy of a document, a script can generate its own table of contents
or outline of a very long document by looking for elements whose nodeName prop-
erties are in the Hn family. Therefore, it is a good idea to continue using these ele-
ments for contextual purposes, even if you intend to override the default
appearance by way of style sheet templates.

As for the scriptable aspects of these six objects, they are essentially the same as
the generic contextual objects with the addition of the a11ign property. Because

each Hn element is a block-level element, you can use style sheets to set their align-
ment rather than the corresponding attribute or property. The choice is up to you.

Property
align

Value: String Read/Write

CD-8

Part Il O Document Objects Reference

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility o O O 0

String values of the a11ign property control whether the heading element is aligned
with the left margin (1eft), center of the page (center), or right margin (right).
The corresponding ALIGN attribute is deprecated in HTML 4.0 in favor of the text -
align style sheet attribute.

Related Items: text-align style sheet attribute.

HR Element Object

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

align
color
noShade
size

width

Syntax

Accessing HR element object properties or methods:

(TE4+) [window.ldocument.all.elemID.property | method([parameters])
(IE5+/NN6) [window.ldocument.getElementById("elemID").property |
method([parameters])

About this object

The HR element draws a horizontal rule according to size, dimension, and align-
ment characteristics normally set by the attributes of this element. Style sheets can
also specify many of those settings, the latter route being recommended for pages
that will be loaded exclusively in pages that support CSS. In [E4+ and NN6+, your
scripts can modify the appearance of an HR element either directly through

Chapter 19 0 Body Text Objects

element object properties or through style sheet properties. To reference a specific
HR element by script, you must assign an 1D attribute to the element —a practice
that you are probably not accustomed to observing.

Properties
align

Value: String Read/Write

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]] O 0

An HR object’s horizontal alignment can be controlled via the align property.
String values enable you to set it to align with the left margin (1eft), the center of
~the page (center), or right margin (right). By default, the element is centered.
On the
_ CD\'- Example (with Listing 19-2) on the CD-ROM

Related Items: text-align style sheet attribute.

color
Value: String Read/Write
NN2 NN3 NN4 NN6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5
Compatibility a] 0 0

An HR object’s color can be controlled via the color property. Values can be either
hexadecimal triplets (for example, #FFCCFF) or the plain-language color names rec-
ognized by most browsers. In either case, the values are case-insensitive strings. If
you change the color from the default, the default shading (3-D effect) of the rule
disappears. | have yet to find the magic value that lets you return the color to the
browser default after it has been set to another color.

CD-9

CD-] O Part Ill 0 Document Objects Reference

On the
CD“" Example on the CD-ROM

Related Items: color style sheet attribute.

noShade
Value: Boolean Read/Write
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility a 0 O 0

A default HR element is displayed with a kind of three-dimensional effect, called
shading. You can turn shading off under script control by setting the noShade prop-
erty to true. But be aware that in IE4+, the noShade property is a one-way journey:
You cannot restore shading after it is removed. Moreover, default shading is lost if
you assign a different color to the rule.

gnth‘e\n E I the CD-ROM
D, xample on the CD-

Related Items: color style sheet attribute.

size
Value: Integer Read/Write
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 1E5.5
Compatibility]] O 0

The size of an HR element is its vertical thickness, as controlled via the size prop-
erty. Values are integers, representing the number of pixels occupied by the rule.

gnth‘e\n E I the CD-ROM
D, xample on the CD-

Related Items: None.

Chapter 19 O Body Text Objects CD-1]

width
Value: Integer or String Read/Write
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility a] 0 0

The width of an HR element is controlled via the width property. By default, the ele-
ment occupies the entire width of its parent container (usually the BODY).

You can specify width as either an absolute number of pixels (as an integer) or as a
percentage of the width of the parent container. Percentage values are strings that

_include a trailing percent character (%).
On the ©

i CD\- Example on the CD-ROM

Related Items: width style sheet attribute.

LABEL Element Object

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers

accessKey
form

htmlFor

Syntax

Accessing LABEL element object properties or methods:

(TE4+) [window.ldocument.all.elemID.property | method([parameters])
(IE5+/NN6) [window.ldocument.getElementById("elemID").property |
method([parameters])

CD-] 2 Partlll 0 Document Objects Reference

About this object

The LABEL element lets you assign a contextual relationship between a form con-
trol (text field, radio button, select list, and so on) and the otherwise freestanding
text that is used to label the control on the page. This element does not control the
rendering or physical relationship between the control and the label —the HTML
source code order does that. Wrapping a form control label inside a LABEL element
is important if scripts will be navigating the element hierarchy of a page’s content
and the relationship between a form control and its label is important to the results
of the document parsing.

Properties
accessKey

Value: String Read/Write

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]] | 0

For most other HTML element objects, the accessKey property description is cov-
ered in the generic element property descriptions of Chapter 15. The function of
the property for the LABEL object is the same as the IE implementation for all other
elements. The single-character string value is the character key to be used in con-
cert with the OS- and browser-specific modifier key (for example, Ctr1 in IE for
Windows) to bring focus to the form control associated with the label. This value is
best set initially via the ACCESSKEY attribute for the LABEL element.

Related Items: accessKey property of generic elements.

form

Value: Form object reference Read-Only

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]

Chapter 19 O Body Text Objects C[D-13

The form property of a LABEL element object returns a reference to the form object
that contains the form control with which the label is associated. This property can
be useful in a node parsing script that wants to retrieve the form container from the
perspective of the label rather than from the form control. The form object refer-
ence returned from the LABEL element object is the same form object reference
returned by the form property of any form control object.

Related Items: form property of INPUT element objects.

htmlFor
Value: String Read/Write
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 1E5.5
Compatibility a 0 O 0

The htmlFor property is a string that contains the ID of the form control element
with which the label is associated. This value is normally set via the HTMLFOR
attribute in the LABEL element’s tag. Modifying this property does not alter the
position or rendering of the label, but it does change the relationships between
label and control.

Related Items: None.

MARQUEE Element Object

For HTML element properties, methods, and event handlers, see Chapter 15.

Properties Methods Event Handlers
behavior start() onBounce
bgColor stop() onFinish
direction onStart
height

hspace

loop

Continued

CD-14 Partil O Document Objects Reference

Properties Methods Event Handlers

scrollAmount
scrollDelay
trueSpeed
vspace

width

Syntax

Accessing MARQUEE element object properties or methods:

(TE4+) [window.]document.all.elemID.property | method([parameters])

About this object

The MARQUEE element is a Microsoft proprietary element that displays scrolling
text within a rectangle specified by the WIDTH and HEIGHT attributes of the element.
Text that scrolls in the element goes between the element’s start and end tags.
The IE4+ object model exposes the element and many properties to the object
model for control by script.

Properties
behavior

Value: String Read/Write

NN2 NN3 NN4 NN6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5

Compatibility a 0 O

The behavior property controls details in the way scrolled text moves within the
scrolling space. Values for this property are one of the following three strings:
alternate, scroll, and s1ide. When set to alternate, scrolling alternates
between left and right (or up and down, depending on the direction property set-
ting). A value of scrol1 means that the text marches completely to and through the
space before appearing again. And a value of s11ide causes the text to march into

Chapter 19 O Body Text Objects (C[D-15

view until the last character is visible. When the s11de value is applied as a prop-
erty (instead of as an attribute value in the tag), the scrolling stops when the text

reaches an edge of the rectangle. Default behavior for the MARQUEE element is the
equivalent of scrol1.

On the \ . L.
cD \ Example (with Listing 19-3) on the CD-ROM

Related Items: direction property of MARQUEE object.

bgColor
Value: Hexadecimal triplet or color name string Read/Write
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE55
Compatibility]] O

The bgColor property determines the color of the background of the MARQUEE
element’s rectangular space. To set the color of the text, either surround the MAR-
QUEE element with a FONT element or apply the color style sheet attribute to the
MARQUEE element. Values for all color properties can be either the common HTML
hexadecimal triplet value (for example, "#00FF00") or any of the Netscape color
names (a list is available at http://developer.netscape.com/docs/manuals/
htmlguid/colortab.htm).

On the |

. CD\'- Example on the CD-ROM

direction

Value: String Read/Write

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility O O 0

The direction property lets you get or set the horizontal or vertical direction in
which the scrolling text moves. Four possible string values are Teft, right, down,
up. The default value is Teft.

CD-] 6 Part Ill 0 Document Objects Reference

On the N

_ CD Example on the CD-ROM

Related Items: behavior property of MARQUEE object.

height
width
Value: Integer Read/Write
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE55
Compatibility O O 0

The height and width properties enable you to get or set the pixel size of the rect-
angle occupied by the element. You can adjust each property independently of the
other, but like most attribute-inspired properties of IE objects, if no HEIGHT or
WIDTH attributes are defined in the element’s tag, you cannot use these properties
to get the size of the element as rendered by default.

Related Items: None.

hspace
vspace
Value: Integer Read/Write
NN2 NN3 NN4 NNé6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5
Compatibility O O 0

The hspace and vspace properties let you get or set the amount of blank margin
space surrounding the MARQUEE element. Adjustments to the hspace property
affect both the left and right (horizontal) margins of the element; vspace governs
both top and bottom (vertical) margins. Margin thicknesses are independent of the
height and width of the element.

Related Items: None.

Chapter 19 O Body Text Objects CD-17

loop
Value: Integer Read/Write
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility a] 0

The Toop property allows you to discover the number of times the MARQUEE ele-
ment was set to repeat its scrolling according to the LOOP attribute. Although this
property is read/write, modifying it by script does not cause the text to loop only
that number of times more before stopping. Treat this property as read-only.
Related Items: None.

scrol TAmount

scrollDelay

Value: Integers Read/Write

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]] O

The scrolTAmount and scrol1Delay properties control the perceived speed and
scrolling smoothness of the MARQUEE element text. The number of pixels between
redrawings of the scrolling text is controlled by the scrol1Amount property. The
smaller the number, the less jerky the scrolling is (the default value is 6). At the
same time, you can control the time in milliseconds between each redrawing of the
text with the scrol1Delay property. The smaller the number, the more frequently
redrawing is performed (the default value is 85 or 90, depending on the operating
system). Thus, a combination of low scrolTAmount and scrol1Delay property
values presents the smoothest (albeit slow) perceived scrolling.

On the

_ CD\'- Example on the CD-ROM

Related Items: trueSpeed property of MARQUEE object.

CD-] 8 Part Ill 0 Document Objects Reference

trueSpeed
Value: Boolean Read/Write
NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility a] 0

IE has a built-in regulator that prevents SCROLLDELAY attribute or scrol1Delay
property settings below 60 from causing the MARQUEE element text to scroll too
quickly. But if you genuinely want to use a speed faster than 60 (meaning, a value
lower than 60), then also set the trueSpeed property to true.

Related Items: scrol1Delay property of MARQUEE object.

Methods

start()
stop()

Returns: Nothing.

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility O] |

Scripts can start or stop (pause) a MARQUEE element via the start () and stop()
methods. Neither method takes parameters, and you are free to invoke them as
often as you like after the page loads. Be aware that the start () method does not
trigger the onStart event handler for the object.

On the

_ CD Example on the CD-ROM

Chapter 19 0 Body Text Objects

Event Handlers

onBounce

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]] O

The onBounce event handler fires only when the MARQUEE element has its behav-
jor set to alternate. In that back-and-forth mode, each time the text reaches a
boundary and is about to start its return trip, the onBounce event fires. If you truly
want to annoy your users, you could have the onBounce event handlers play a
sound at each bounce (I'm kidding — please don’t do this).

Related Items: behavior property of MARQUEE object.

onFinish

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility] O a0

The onFinish event handler fires only when the MARQUEE element has its loop set
to a specific value of 1 or greater. After the final text loop has completed, the
onFinish event fires.

Related Items: 100p property of MARQUEE object.

onStart

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]] O

The onStart event handler fires as the MARQUEE element begins its scrolling, but
only as a result of the page loading. The start () method does not trigger this
event handler.

CD-19

CD-ZO Part Il O Document Objects Reference

Related Items: start () method of MARQUEE object.

Range Object

Properties

Methods Event Handlers

collapsed
commonAncestorContainer
endContainer

end0ffset
startContainer

startOffset

cloneContents()
cloneRange()

collapse()
compareBoundaryPoints()
createContextualFragment()
deleteContents()
detach()
extractContents()
insertNode()
isValidFragment()
selectNode()
selectNodeContents()
setEnd()

setEndAfter()
setEndBefore()
setStart()
setStartAfter()
setStartBefore()
surroundContents()

toString()

Syntax

Creating a Range object:

' Note

Chapter 19 0 Body Text Objects

var rangeRef = document.createRange()
Accessing Range object properties or methods:

(NN6+) rangeRef .property | method([parameters])

About this object

The first release of NN6 suffers from several bugs and omissions with respect to

— the Range object. Discussions about the NN6 Range object throughout this chap-

ter cover some features that may not be implemented or fixed until a later version
of the NN6 browser. | mention specific bugs and omissions found in the early NN6
whenever the description here does not yet match the browser implementation.
Even some of the example listings do not work correctly (or at all) with the first
release of NN6. In time, however, everything described in this section will be a part
of the Netscape browser.

The Range object is the W3C DOM (Level 2) version of what Microsoft had imple-
mented earlier as its TextRange object. A number of important differences (not the
least of which is an almost entirely different property and method vocabulary) dis-
tinguish the behaviors and capabilities of these two similar objects. Although
Microsoft participated in the W3C DOM Level 2 working groups, no participant from
the company is credited on the DOM specification chapter regarding the Range
object. Because the W3C version has not been implemented as of IE5.5, it is
unknown if IE will eventually implement the W3C version. In the meantime, see the
IE/Windows TextRange object section later in this chapter for comparisons
between the two objects. Neither the W3C DOM Range nor Microsoft TextRange
objects are implemented in IE5/Mac.

The purpose of the W3C DOM Range object is to provide hooks to a different “slice”
of content (most typically a portion of a document’s content) that is not necessarily
restricted to the node hierarchy (tree) of a document. While a Range object can be
used to access and modify nodes and elements, it can also transcend node and ele-
ment boundaries to encompass arbitrary segments of a document’s content. The
content contained by a range is sometimes referred to as a selection, but this does
not mean that the text is highlighted on the page, such as a user selection. Instead,
the term “selection” here means a segment of the document’s content that can be
addressed as a unit, separate from the node tree of the document. As soon as the
range is created, a variety of methods let scripts examine, modify, remove, replace,
and insert content on the page.

A range object (meaning, an instance of the static Range object) has a start point
and an end point, which together define the boundaries of the range. The points are
defined in terms of an offset count of positions within a container. These counts are
usually character positions within text nodes (ignoring any HTML tag or attribute
characters), but when both boundaries are at the edges of the same node, the

CD-21

CD-22 Part Ill 0 Document Objects Reference

offsets may also be counts of nodes within a container that surrounds both the
start and end points. An example helps clarify these concepts.

Consider the following simplified HTML document:

<HTML>
<BODY>
<P>This paragraph has an emphasized segment.</P>
</BODY>
</HTMLD

You can create a range that encompasses the text inside the EM element from sev-
eral points of view, each with its own offset counting context:

1. From the EM element’s only child node (a text node). The offset of the start
point is zero, which is the location of the insertion point in front of the first
character (lowercase “e”); the end point offset is 10, which is the character
position (zero-based) following the lowercase “d”.

2. From the EM element. The point of view here is that of the child text node
inside the EM element. Only one node exists here, and the offset for the start
point is 0, while the offset for the end point is 1.

3. From the P element’s child nodes (two text nodes and an element node). You
can set the start point of a range to the very end (counting characters) of the
first child text node of the P element; you can then set the end point to be in
front of the first character of the last child text node of the P element. The
resulting range encompasses the text within the EM element.

4. From the P element. From the point of view of the P element, the range can be
set with an offset starting with 1 (the second node nested inside the P ele-
ment) and ending with 2 (the start of the third node).

While these different points of view provide a great deal of flexibility, they also can
make it more difficult to imagine how you can use this power. The W3C vocabulary
for the Range methods, however, helps you figure out what kind of offset measure
to use.

A range object’s start point could be in one element, and its end point in another.
For example, consider the following HTML:

<P>And now to introduce our very special guest:</P>

If the text shown in boldface indicates the content of a range object, you can see
that the range crosses element boundaries in a way that would make HTML element
or node object properties difficult to use for replacing that range with some other
text. The W3C specification provides guidelines for browser makers on how to han-
dle the results of removing or inserting HTML content that crosses node borders.

' Note

Chapter 19 0 Body Text Objects

An important aspect of the Range object is that the size of a range can be zero or
more characters. Start and end points always position themselves between charac-
ters. When the start point and end point of a range are at the same location, the
range acts like a text insertion pointer.

Working with ranges

To create a range object, use the document.createRange () method and assign the
range object returned by this method to a variable that you can use to control the
range:

var rng = document.createRange()

The first release of NN6 requires that a newly created range be more explicitly
defined (as described in a moment) before scripts can access the range’s proper-
ties. The W3C DOM, however, suggests that a new range has as its containing
node the document node (which encompasses all content of the page, including
the <HTML> tag set). Moreover, the start and end points are set initially to zero,
meaning that the initial range is collapsed at the very beginning of the document.

With an active range stored in a variable, you can use many of the object’s methods
to adjust the start and end points of the range. If the range is to consist of all of the
contents of a node, you have two convenience methods that do so from different
points of view: selectNode() and selectNodeContents(). The sole parameter
passed with both methods is a reference to the node whose contents you want to
turn into a range. The difference between the two methods is how the offset proper-
ties of the range are calculated as a result (see the discussion about these methods
later in the chapter for details). Another series of methods (setStartBefore(),
setStartAfter(), setEndBefore(), and setEndAfter()) let you adjust each end
point individually to a position relative to a node boundary. For the most granular
adjustment of boundaries, the setStart() and setEnd() methods let you specify
a reference node (where to start counting the offset) and the offset integer value.

If you need to select an insertion point (for example, to insert some content into an
existing node), you can position either end point where you want it, and then
invoke the collapse() method. A parameter determines whether the collapse
should occur at the range’s start or end point.

A suite of other methods lets your scripts work with the contents of a range
directly. You can copy (cloneContents()), delete (deleteContents(),
extractContents()), insert a node (insertNode()), and even surround a range’s
contents with a new parent node (surroundContents()). Several properties let
your scripts examine information about the range, such as the offset values, the
containers that hold the offset locations, whether the range is collapsed, and a ref-
erence to the next outermost node that contains both the start and end points.

CD-23

CD-24 !

I O Document Objects Reference

Netscape adds a proprietary method to the Range object (which is actually a
method of an object that is built around the Range object) called
createContextualFragment (). This method lets scripts create a valid node (of
type DocumentFragment) from arbitrary strings of HTML content — a feature that
the W3C DOM does not (yet) offer. This method was devised at first as a substitute
for what eventually became the NN6 innerHTML property.

Using the Range object can be a bit tedious, because it often requires a number of
script statements to execute an action. Three basic steps are generally required to
work with a Range object:

1. Create the text range.

2. Set the start and end points.

3. Act on the range.
As soon as you are comfortable with this object, you will find it provides a lot of
flexibility in scripting interaction with body content. For ideas about applying the

Range object in your scripts, see the examples that accompany the descriptions of
individual properties and methods in the following sections.

Properties

collapsed

On the

Value: Boolean Read-Only

NN2 NN3 NN4 NNé6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]

The collapsed property reports whether a range has its start and end points set
to the same position in a document. If the value is true, then the range’s start and
end containers are the same and the offsets are also the same. You can use this
property to verify that a range is in the form of an insertion pointer just prior to
inserting a new node:

if (rng.collapsed) {
rng.insertNode(someNewNodeReference)
}

CD\'- Example on the CD-ROM
A g

Chapter 19 0 Body Text Objects

Related Items: endContainer, end0ffset, startContainer, start0ffset prop-
erties; Range.collapse() method.

commonAncestorContainer

Value: Node object reference Read-Only

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility a

The commonAncestorContainer property returns a reference to the document tree
node that both the start and end points have in common. It is not uncommon for a
range’s start point to be in one node and the end point to be in another. Yet a more
encompassing node most likely contains both of those nodes, perhaps even the
document.body node. The W3C DOM specification also calls the shared ancestor
node the root node for the range (a term that may make more sense to you).

On the N

_ CD Example on the CD-ROM

Related Items: endContainer, end0ffset, startContainer, startO0ffset prop-
erties; all “set” and “select” methods of the Range object.

endContainer
startContainer

Value: Node object reference Read-Only

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]

The endContainer and startContainer properties return a reference to the docu-
ment tree node that contains the range’s end point and start point, respectively. Be
aware that the object model calculates the container, and the container may not be
the reference you used to set the start and end points of a range. For example, if
you use the selectNode () method to set the start and end points of a range to
encompass a particular node, the containers of the end points are most likely the

CD-25

CD-26 Part Ill 0 Document Objects Reference

next outermost nodes. Thus, if you want to expand a range to the start of the node
that contains the current range’s start point, you can use the value returned by the
startContainer property as a parameter to the setStartBefore() method:

) rng.setStartBefore(rng.startContainer)
On the

. CD\'- Example on the CD-ROM

Related Items: commonAncestor, end0ffset, startOffset properties; all “set”
and “select” methods of the Range object.

end0ffset
startOffset

Value: Integer Read-Only

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility a

The end0ffset and start0ffset properties return an integer count of the number
of characters or nodes for the location of the range’s end point and start point,
respectively. These counts are relative to the node that acts as the container node
for the position of the boundary (see Range.endContainer and
Range.startContainer properties earlier in this chapter).

When a boundary is at the edge of a node (or perhaps “between” nodes is a better
way to say it), the integer returned is the offset of nodes (zero-based) within the
boundary’s container. But when the boundary is in the middle of a text node, the
integer returned is an index of the character position within the text node. The fact
that each boundary has its own measuring system (nodes versus characters, rela-
tive to different containers) can get confusing if you're not careful, because conceiv-
ably the integer returned for an end point could be smaller than that for the start
point. Consider the following nested elements:

<{P>This paragraph has an emphasized segment.</P>

The next script statements set the start of the range to a character within the first
text node and the end of the range to the end of the EM node:

var rng = document.createRange()
rng.setStart(document.getElementById("myP").firstChild, 19)
rng.setEndAfter(document.getElementById("myEM"))

Chapter 19 O Body Text Objects (C[D-27

Using bold face to illustrate the body text that is now part of the range and the pipe
(]) character to designate the boundaries as far as the nodes are concerned, here is
the result of the above script execution:

<P ID="myP">This paragraph has |an <EM ID="myEM">emphasized| segment.</P>

Because the start of the range is in a text node (the first child of the P element), the
range’s start0ffset value is 19, which is the zero-based character position of the
“a” of the word “an.” The end point, however, is at the end of the EM element. The
system recognizes this point as a node boundary, and thus counts the end0ffset
value within the context of the end container: the P element. The end0ffset value
is 2 (the P element’s text node is node index 0; the EM element is node index 1; and
the position of the end point is at the start of the P element’s final text node, at
index 2).

For the endOffset and startOffset values to be of any practical use to a script,
you must also use the endContainer and startContainer properties to read the

~ context for the offset integer values.
On the

CD\'- Example on the CD-ROM

Related Items: endContainer, startContainer properties; all “set” and “select”
methods of the Range object.

Methods

cloneContents()
cloneRange()

Returns: DocumentFragment node reference; Range object reference.

NN2 NN3 NN4 NNé6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]

The cloneContents () method (not implemented in NN6.0, but expected in a future
release) takes a snapshot copy of the contents of a Range object and returns a ref-
erence to that copy. The copy is stored in the browser’s memory, but is not part of
the document tree. The cloneRange () method (available in NN6.0) performs the
same action on an entire range and stores the range copy in the browser’s memory.
A range’s contents can consist of portions of multiple nodes and may not be sur-
rounded by an element node; that’s why its data is of the type DocumentFragment

CD-28 Part Ill 0 Document Objects Reference

(one of the W3C DOM'’s node types). Because a DocumentFragment node is a valid
node, it can be used with other document tree methods where nodes are required
as parameters. Therefore, you can clone a text range to insert a copy elsewhere in
the document.

In contrast, the cloneRange () method deals with range objects. While you are

always free to work with the contents of a range object, the cToneRange () method

returns a reference to a range object, which acts as a kind of wrapper to the con-

tents (just as it does when the range is holding content in the main document). You

can use the cloneRange () method to obtain a copy of one range to compare the

end points of another range (via the Range.compareBoundaryPoints() method).
On the

CD\'- Example on the CD-ROM
A g

Related Items: compareBoundaryPoints(), extractContents () methods.

collapse([startBoolean])

Returns: Nothing.

NN2 NN3 NN4 NNé6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]

Use the collapse() method to shrink a range from its current size down to a single
insertion point between characters. Collapsing a range becomes more important
than you may think at first, especially in a function that is traversing the body or
large chunk of text. For example, in a typical looping word-counting script, you cre-
ate a text range that encompasses the body fully. To begin counting words, you can
first collapse the range to the insertion point at the very beginning of the range.
Next, use the expand () method to set the range to the first word of text (and incre-
ment the counter if the expand () method returns true). At that point, the text
range extends around the first word. You want the range to collapse at the end of
the current range so that the search for the next word starts after the current one.
Use collapse() once more, but this time with a twist of parameters.

The optional parameter of the collapse() method is a Boolean value that directs
the range to collapse itself either at the start or end of the current range. The
default behavior is the equivalent of a value of true, which means that unless oth-
erwise directed, a colTapse () method shifts the text range to the point in front of
the current range. This method works great at the start of a word-counting script,
because you want the text range to collapse to the start of the text. But for subse-
quent movements through the range, you want to collapse the range so that it is

Chapter 19 O Body Text Objects (C[D-29

after the current range. Thus, you include a false parameter to the collapse()
~ method.
On the N

_ CD Example on the CD-ROM

Related Items: Range.setEnd(), Range.setStart() methods.

compareBoundaryPoints(typelnteger,
sourceRangeRef)

Returns: Integer (-1, 0, or 1).

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility a

Generating multiple range objects and assigning them to different variables is not a
problem. You can then use the compareBoundaryPoints () method to compare the
relative positions of start and end points of both ranges. One range is the object
you use to invoke the compareBoundaryPoints () method, and the other range is
the second parameter of the method. The order in which you reference the two
ranges influences the results, based on the value assigned to the first parameter.

Values for the first parameter can be one of four constant values that are properties
of the static Range object: Range.START_TO_START, Range.START_TO_END,
Range.END_TO_START, and Range.END_TO_END. What these values specify is which
point of the current range is compared with which point of the range passed as the
second parameter. For example, consider the following body text that has two text
ranges defined within it:

It was the best of times.

The first text range (assigned in our discussion here to variable rngl) is shown in
boldface, while the second text range (rng?) is shown in bold-italic. In other words,
rng? is nested inside rngl. We can compare the position of the start of rngl
against the position of the start of rng2 by using the Range.START_T0_START value
as the first parameter of the compareBoundaryPoints () method:

var result = rngl.compareBoundaryPoints(Range.START_TO_START, rng2)
The value returned from the compareBoundaryPoints () method is an integer of

one of three values. If the positions of both points under test are the same, then the
value returned is 0. If the start point of the (so-called source) range is before the

CD-3(Q Partll O Document Objects Reference

/

' Note

range on which you invoke the method, the value returned is -1; in the opposite
positions in the code, the return value is 1. Therefore, from the example above,
because the start of rngl is before the start of rng2, the method returns - 1. If you
change the statement to invoke the method on rng?, as in

var result = rng2.compareBoundaryPoints(Range.START_TO_START, rngl)
the result is 1.

In the first release of NN6, the returned values of 1 and -1 are the opposite of what
~~ they should be. This is to be corrected in a subsequent release.
In practice, this method is helpful in knowing if two ranges are the same, if one of
the boundary points of both ranges is the same, or if one range starts where the
other ends.

On the |

CD\'- Example (with Listing 19-4) on the CD-ROM
S

Related Items: None.

createContextualFragment (" text")

Returns: W3C DOM DocumentFragment Node.

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility a

The createContextualFragment () method is a method of the NN6 Range object
(a proprietary extension of the W3C DOM Range object). This method provides a
way, within the context of the W3C DOM Level 2 node hierarchy to create a string of
HTML text (with or without HTML tags, as needed) for insertion or appendage to
existing node trees. During the development of the NN6 browser, this method filled
a gap that was eventually filled by Netscape’s adoption of the Microsoft proprietary
innerHTML property. The method obviates the need for tediously assembling a
complex HTML element via a long series of document.createETement() and
document.createTextNode () methods for each segment, plus the assembly of
the node tree prior to inserting it into the actual visible document. The existence

of the innerHTML property of all element objects, however, reduces the need for
the createContextualFragment () method, while allowing more code to be
shared across browser brands.

Chapter 19 O Body Text Objects C[D-3]

The parameter to the createContextualFragment () method is any text, including
HTML tags. To invoke the method, however, you need to have an existing range object
available. Therefore, the sequence used to generate a document fragment node is

var rng = document.createRange()

rng.selectNode(document.body) // any node will do

var fragment = rng.createContextualFragment("<H1>Howdy</H1>")

As a document fragment, the node is not part of the document node tree until you
use the fragment as a parameter to one of the tree modification methods, such as

~Node.insertBefore() or Node.appendChild().
On the

_ CD\'- Example on the CD-ROM
Related Items: Node object (Chapter 15).

deleteContents()

Returns: Nothing.

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility a

The deTeteContents () method removes all contents of the current range from the
document tree. After deletion, the range collapses to an insertion point where any
surrounding content (if any) cinches up to its neighbors.

Some alignment of a range’s boundaries forces the browser to make decisions
about how element boundaries inside the range are treated after the deletion. An
easy deletion is one for which the range boundaries are symmetrical. For example,
consider the following HTML with a range highlighted in bold:

<{P>0One paragraph with an emphasis inside.</P>

After you delete the contents of this range, the text node inside the EM element dis-
appears, but the EM element remains in the document tree (with no child nodes).
Similarly, if the range is defined as being the entire second child node of the P ele-
ment, as follows

<P>0One paragraph with an emphasis inside.</P>

then deleting the range contents removes both the text node and the EM element
node, leaving the P element with a single, unbroken text node as a child (although

CD-32 Partll O Document Objects Reference

in the previous case, an extra space would be between the words “an” and “inside”
because the EM element does not encompass a space on either side).

When range boundaries are not symmetrical, the browser does its best to maintain
document tree integrity after the deletion. Consider the following HTML and range:

<P>0One paragraph with an emphasis inside.</P>

After deleting this range’s contents, the document tree for this segment looks like
the following:

<P>0One paragraph phasis inside.</P>

The range collapses to an insertion point just before the tag. But notice that
the EM element persisted to take care of the text still under its control. Many other
combinations of range boundaries and nodes are possible, so be sure that you
check out the results of a contents deletion for asymmetrical boundaries before
applying the deletion.

On the

{ CD\-. Example on the CD-ROM

Related Items: Range.extractContents () method.

detach()

Returns: Nothing.

NN2 NN3 NN4 NNé6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility a

The detach() method instructs the browser to release the current range object
from the object model. In the process, the range object is nulled out to the extent
that an attempt to access the object results in a script error. You can still assign a
new range to the same variable if you like. You are not required to detach a range
when you're finished with it, and the browser resources employed by a range are
not that large. But it is good practice to “clean up after yourself,” especially when a
script repetitively creates and manages a series of new ranges.

Related Items: document.createRange() method.

Chapter 19 O Body Text Objects (C[D-33

extractContents ()

Returns: DocumentFragment node reference.

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility a

The extractContents () method (not implemented in the first release of NN6)
deletes the contents of the range and returns a reference to the document
fragment node that is held in the browser memory, but which is no longer part
of the document tree. A range’s contents can consist of portions of multiple
nodes and may not be surrounded by an element node; that’s why its data is of
the type DocumentFragment (one of the W3C DOM’s node types). Because a
DocumentFragment node is a valid node, it can be used with other document tree
methods where nodes are required as parameters. Therefore, you can extract a text
range from one part of a document to insert elsewhere in the document.

On the) X

{ cn Example on the CD-ROM

Related Items: cloneContents(), deleteContents () methods.

insertNode(nodeReference)

Returns: Nothing.

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility O

The insertNode() method (not implemented in the first release of NN6) inserts a
node at the start point of the current range. The node being inserted may be an ele-
ment or text fragment node, and its source can be any valid node creation mecha-
nism, such the document.createTextNode () method or any node extraction
method.

On the

CD\'- Example (with Listing 19-5) on the CD-ROM

Related Items: None.

CD-34 Partil O Document Objects Reference

isValidFragment("HTMLText")

Returns: Boolean.

NN2 NN3 NN4 NNé6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]

The isValidFragment () method belongs to the Netscape-specific version of the
W3C DOM Range object. The method validates text as to whether it can be success-
fully converted to a document fragment node via Netscape’s other proprietary
Range method, createContextualFragment (). Knowing that this is not an

HTML or XML validator is important. Ideally, you pass the text through the
isValidFragment () method prior to creating the fragment, as in the following:

var rng = document.createRange()
rng.selectNode(document.body)
var newHTML = "<H1>Howdy</H1>"
if (rng.isValidFragment(newHTML)) {
var newFragment = rng.createContextualFragment(newHTML)

}
See the description of the Range.createContextualFragment () method earlier

_in this chapter for the application of a document fragment node in NN6.
On the \

_ CD Example on the CD-ROM

Related Items: Range.createContextualFragment () method.

selectNode(nodeReference)
selectNodeContents(nodeReference)

Returns: Nothing.

NN2 NN3 NN4 NNé6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5

Compatibility a

The selectNode() and selectNodeContents () methods are convenience meth-
ods for setting both end points of a range to surround a node or a node’s contents.
The kind of node you supply as the parameter to either method (text node or
element node) has a bearing on the range’s container node types and units of

Chapter 19 O Body Text Objects (C[D-35

measure for each (see the container- and offset-related properties of the Range
object earlier in this chapter).

Starting with the seTectNode () method, if you specify an element node as the one
to select, the start and end container node of the new range is the next outermost
element node; offset values count nodes within that parent element. If you specify a
text node to be selected, the container node for both ends is the parent element of
that text node; offset values count the nodes within that parent.

With the selectNodeContents () method, the start and end container nodes are the
very same element specified as the parameter; offset values count the nodes within
that element. If you specify a text node’s contents to be selected, the text node is the
start and end parent, but the range is collapsed at the beginning of the text.

By and large, you specify element nodes as the parameter to either method, allow-
ing you to set the range to either encompass the element (via selectNode()) or
just the contents of the element (via seTectNodeContents()).

On the |

\
CD \ Example on the CD-ROM

Related Items: setEnd(), setEndAfter(), setEndBefore(), setStart(),
setStartAfter(), setStartBefore() methods.

setEnd(nodeReference, offset)
setStart(nodeReference, offset)

Returns: Nothing.

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility a

You can adjust the start and end points of a text range independently via

the setStart() and setEnd() methods. While not as convenient as the
selectNode() or selectNodeContents () methods, these two methods give
you the ultimate in granularity over precise positioning of a range boundary.

The first parameter to both methods is a reference to a node. This reference can be
an element or text node, but your choice here also influences the kind of measure
applied to the integer offset value supplied as the second parameter. When the first
parameter is an element node, the offset counts are in increments of child nodes
inside the specified element node. But if the first parameter is a text node, the offset
counts are in increments of characters within the text node.

CD-36 Partll O Document Objects Reference

When you adjust the start and end points of a range with these methods, you have
no restrictions to the symmetry of your boundaries. One boundary can be defined
relative to a text node, while the other relative to an element node — or vice versa.

To set the end point of a range to the last node or character within a text node
(depending on the unit of measure for the offset parameter), you can use the
length property of the units being measured. For example, to set the end point to
the end of the last node within an element (perhaps there are multiple nested ele-
ments and text nodes within that outer element), you can use the first parameter
reference to help you get there:

rng.setEnd(document.getElementById("myP"),
document.getElementById("myP").childNodes.length)

These kinds of expressions get lengthy, so you may want to make a shortcut to the
reference to simplify the values of the parameters, as shown in this version that
sets the end point to after the last character of the last text node of a P element:

var nodeRef = document.getElementById("myP").lastChild
rng.setEnd(nodeRef, nodeRef.nodeValue.length)

In both previous examples with the 1ength properties, the values of those proper-
ties are always pointing to the node or character position after the final object
because the index values for those objects’ counts are zero-based. Also bear
in mind that if you want to set a range end point at the edge of a node, you
have four other methods to choose from (setEndAfter(), setEndBefore(),
setStartAfter(), setStartBefore()). The setEnd() and setStart() methods
are best used when an end point needs to be set at a location other than at a node
boundary.

On the |

CD\'- Example on the CD-ROM

Related Items: selectNode(), selectNodeContents(), setEndAfter(),
setEndBefore(), setStartAfter(), setStartBefore() methods.

setEndAfter(nodeReference)
setEndBefore(nodeReference)
setStartAfter(nodeReference)
setStartBefore(nodeReference)

Returns: Nothing.

Chapter 19 O Body Text Objects (C[D-37

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]

You can adjust the start and end points of a text range relative to existing node
boundaries via your choice of these four methods. The “before” and “after” designa-
tions are used to specify which side of the existing node boundary the range should
have for its boundary. For example, using setStartBefore() and setEndAfter()
with the same element node as a parameter is the equivalent of the selectNode ()
method on that element. You may also specify a text node as the parameter to any of
these methods. But because these methods work with node boundaries, the offset
values are always defined in terms of node counts, rather than character counts. At
the same time, however, the boundaries do not need to be symmetrical, so that one
boundary can be inside one node and the other boundary inside another node.

On the

i cn\'- Example on the CD-ROM

Related Items: selectNode(), selectNodeContents(), setEnd(), setStart()
methods.

surroundContents(nodeReference)

Returns: Nothing.

NN2 NN3 NN4 NNé6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5

Compatibility O

The surroundContents () method (not implemented in the first release of NN6)
surrounds the current range with a new parent element. Pass the new parent ele-
ment as a parameter to the method. No document tree nodes or elements are
removed or replaced in the process, but the current range becomes a child node of
the new node; if the range coincides with an existing node, then the relationship
between that node and its original parent becomes that of grandchild and grandpar-
ent. An application of this method may be to surround user-selected text with a
SPAN element whose class renders the content with a special font style or other dis-
play characteristic based on a style sheet selector for that class name.

When the element node being applied as the new parent has child nodes itself,
those nodes are discarded before the element is applied to its new location.
Therefore, for the most predictable results, using content-free element nodes as the
parameter to the surroundContents () method is best.

CD-38 Partil O Document Objects Reference

On the |

. CD\. Example (with Listing 19-6) on the CD-ROM

Related Items: Range.insertNode () method.

toString()

Returns: String.

NN2 NN3 NN4 NN6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5

Compatibility a

Use the toString() method to retrieve a copy of the body text that is contained
by the current text range. The text returned from this method is ignorant of any
HTML tags or node boundaries that exist in the document tree. You also use this
method (eventually) to get the text of a user selection, after it has been converted

~ to a text range (as soon as NN6 implements the planned feature).
On the

i CD\- Example on the CD-ROM

Related Items: selection.getRangeAt(), Range.extractContents() methods.

selection Object

Properties Methods Event Handlers

type clear()
createRange()

empty ()

Syntax

Accessing selection object properties or methods:

(TE4+) [window.ldocument.selection.property | method()

Chapter 19 0 Body Text Objects

About this object

In some ways, the short list of properties and methods for the selection object is
misleading. The items shown in the list belong to the [E4+ seTection object. NN6
implements a selection object (not a part of the W3C DOM), but the first release
of the browser does not provide a way to create such an object. Opening remarks
below provide a preview of how the NN6 selection object will work whenever it is
implemented. Details about properties and methods are not provided at this time.

The IE version

The I[E4+ selection object is a property of the document object, providing
scripted access to any body text or text in a form text control that is selected either
by the user or by script. A selection object of one character or more is always
highlighted on the page, and only one selection object can be active at any given
instant.

Take advantage of the selection object when your page invites a user to select
text for some operation that utilizes the selected text. The best event to use for
working with a selection is the onMouseUp event handler. This event fires on every
release of the mouse, and your script can investigate the document.selection
object to see if any text has been selected (using the selection’s type property).
Turn a selection into a TextRange object via the createRange () method. You can
then use the text property of the text range to access the actual selected charac-
ters. This sequence may seem like a long way to go for the text, perhaps, but the IE
selection object provides no direct property for reading or writing the selected
text.

If you intend to perform some action on a selection, you may not be able to trigger
that action by way of a button or link. In some browser versions and operating sys-
tems, clicking one of these elements automatically deselects the body selection.

The NN version

Navigator 4 provides the document.getSelection() method to let scripts look at
the selected body text, but you have no selection object per se for that browser.
The NN6 selection object intends to improve the situation.

The document.getSelection() is deprecated in NN6 in favor of the roundabout way
of getting a copy of a selection similar to the IE route described previously: Make a
range out of the selection and get the text of the range. To obtain the selection
object representing the current selection, use the window.getSelection() method
(as soon as the method is implemented in NN6). One important difference between
the IE and NN selections is that the NN6 selection object works only on body text,
and not on selections inside text-oriented form controls.

CD-39

CD-4(Q Partil O Document Objects Reference

An NN6 selection object has relationships with the document’s node tree in that
the object defines itself by the nodes (and offsets within those nodes) that encase
the start and end points of a selection. When a user drags a selection, the node in
which the selection starts is called the anchor node; the node holding the text at
the point of the selection release is called the focus node; for double- or triple-
clicked selections, the direction between anchor and focus nodes is in the direction
of the language script (for example, left-to-right in Latin-based script families). In
many ways, an NN6+ selection object behaves just as the W3C DOM Range
object, complete with methods to collapse and extend the selection. Unlike a range,
however, the text encompassed by a selection object is highlighted on the page. If
your scripts need to work with the nodes inside a selection, the getRangeAt ()
method of the selection object returns a range object whose boundary points
coincide with the selection’s boundary points.

Properties
type

Value: String Read-Only

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility a 0 O

The type property returns Text whenever a selection exists on the page.
Otherwise the property returns None. A script can use this information to deter-
mine if a selection is made on the page:

if (document.selection.type == "Text") {
// process selection

}

Microsoft indicates that this property can sometimes return Control, but that ter-
minology is associated with an edit mode outside the scope of this book.
On the) A
_ CD | Example (with Listing 19-7) on the CD-ROM

Related Items: TextRange.select () method.

Chapter 19 0 Body Text Objects

Methods
clear()

Returns: Nothing.

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility] O g

Use the clear () method to delete the current selection from the document. To the
user, the clear () method has the same effect as setting the TextRange.text
property to an empty string. The difference is that you can use the clear ()
method without having to generate a text range for the selection. After you delete a
selection, the selection.type property returns None.

On the 1 N

_ CD Example on the CD-ROM
Related Items: selection.empty() method.

createRange()

Returns: TextRange object.

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]] O

To generate a text range for a user selection in IE, invoke the createRange()
method of the selection object. I'm not sure why the method for the selection
object is called createRange () while text ranges for other valid objects are cre-
ated with a createTextRange () method. The result of both methods is a full-
fledged TextRange object.

On the 1

{ cn\‘-. Example on the CD-ROM

Related Items: TextRange object.

CD-41

CD-42 Partil O Document Objects Reference

empty ()

Returns: Nothing.

NN2 NN3 NN4 NNé6 IE3/J)1 IE3/)2 IE4 IE5 IE5.5

Compatibility a] 0

The empty () method deselects the current IE selection. After deselection, the
selection.type property returns None. The action of the empty () method is the
same as the UnSelect command invoked via the execCommand () method for a doc-
ument. If the selection was made from a TextRange object (via the TextRange.
select () method), the empty () method affects only the visible selection and not
the text range.

On the N

_ CD Example on the CD-ROM

Related Items: selection.clear() method.

Text and TextNode Objects

Properties

Methods Event Handlers

attributest
childNodest
data
firstChildt
TastChildt
lengtht
localNamet
namespaceURIt
nextSiblingt
nodeNamet
nodeTypet

nodeValuet

appendChild()t
appendData()
cloneNode()t
deleteData()
hasChildNodes ()t
insertBefore()t
insertData()
normalize()t
removeChild()t
replaceChild()t
replaceData()

splitText()

Chapter 19 0 Body Text Objects

Properties Methods Event Handlers
ownerDocumentt substringData()

parentNodet

prefixt

previousSiblingt

tSee Chapter 15

Syntax

Accessing Text and TextNode object properties or methods:

(IE5+/NN6+) [window.ldocument.getElementById("id").textNodeRef.property |
method ()

About this object

Discussing both the Text object of the W3C DOM and NN6 in the same breath as the
[E5+ TextNode object is a little tricky. Conceptually, they are the same kind of object in
that they are the document tree objects —text nodes —that contain an HTML ele-
ment’s text (see Chapter 14 for details on the role of the text node in the document
object hierarchy). Generating a new text node by script is achieved the same way in
both object models: document.createTextNode (). What makes the discussion of
the two objects tricky is that while the W3C DOM version comes from a strictly object-
oriented specification (in which a text node is an instance of a CharacterData object,
which, in turn is an instance of the generic Node object), the IE object model is not
quite as complete. For example, while the W3C DOM Text object inherits all of the
properties and methods of the CharacterData and Node definitions, the IE TextNode
object exposes only those properties and method that Microsoft deems appropriate.

No discrepancy in terminology gets in the way as to what to call these objects
because their object names never become part of the script. Instead script state-
ments always refer to text nodes by other means, such as through a child node-
related property of an element object or as a variable that receives the result of the
document.createTextNode () method.

While both objects share a number of properties and one method, the W3C DOM
Text object contains a few methods that have “data” in their names. These proper-
ties and methods are inherited from the CharacterData object in the DOM specifi-
cation. They are discussed as a group in the section about object methods in this
chapter. In all cases, check the browser version support for each property and
method described here.

CD-43

CD-44 Partil O Document Objects Reference

Properties
data
Value: String Read/Write
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility] O g O

The data property contains the string comprising the text node. Its value is identi-
cal to the nodeValue property of a text node. See the description of the nodeValue
property in Chapter 15.

On the

¥ N
_CD , Example on the CD-ROM

Related Items: nodeValue property of all element objects (Chapter 15).

Methods

appendData("text")
deleteData(offset, count)
insertData(offset, "text")
replaceData(offset, count, "text")
substringData(offset, count)

Returns: See text.

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]

These five methods of the W3C DOM Text object provide scripted manipulation of
the text inside a text node. Methods that modify the node’s data automatically
change the values of both the data and nodeValue properties.

The purposes of these methods are obvious for the most part. Any method that
requires an of fset parameter uses this integer value to indicate where in the

Chapter 19 O Body Text Objects (C[D-45

existing text node the deletion, insertion, or replacement starts. Offsets are zero-
based, meaning that to indicate the action should take place starting with the first
character, specify a zero for the parameter. A count parameter is another integer,
but one that indicates how many characters are to be included. For example, con-
sider a text node that contains the following data:

abcdefgh

This node could be a node of an element on the page or a node that has been cre-
ated and assigned to a variable but not yet inserted into the page. To delete the first
three characters of that text node, the statement is

textNodeReference.deleteData(0,3)
This leaves the text node content as
defgh

As for the replaceData() method, the length of the text being put in place of the
original chunk of text need not match the count parameter. The count parameter,
in concert with the offset parameter, defines what text is to be removed and
replaced by the new text.

The substringData() method is similar to the JavaScript core language
String.substr() method in that both require parameters indicating the offset
within the string to start reading and for how many characters. You get the same
result with the substringData() method of a text node as you do from a
nodeValue.substr() method when both are invoked from a valid text node
object.

~ Of all five methods discussed here, only substringData() returns a value: a string.
On the "\
_ CD \ Example (with Listing 19-8) on the CD-ROM

Related Items: appendChild(), removeChild(), replaceChild() methods of ele-
ment objects (Chapter 15).

splitText(offset)

Returns: Text or TextNode object.

NN2 NN3 NN4 NNé6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5

Compatibility O O 0

CD-46 Partil O Document Objects Reference

The splitText () method performs multiple actions with one blow. The offset
parameter is an integer indicating the zero-based index position within the text
node at which the node is to divide into two nodes. After you invoke the method on
the current text node, the current node consists of the text from the beginning of
the node up to the offset position. The method returns a reference to the text node
whose data starts with the character after the dividing point and extends to the end
of the original node. Users won’t notice any change in the rendered text: This
method influences only the text node structure of the document. Using this method
means, for example, that an HTML element that starts with only one text node will
have two after the sp1itText () method is invoked. The opposite action (combin-
ing contiguous text node objects into a single node) is performed by the NN6
normalize() method (Chapter 15).

On the

CD\“ Example on the CD-ROM

Related Items: normalize() method (Chapter 15).

TextRange Object

Properties Methods Event Handlers
boundingHeight collapse()
boundinglLeft compareEndPoints()
boundingTop duplicate()
boundingWidth execCommand()
htmlText expand()
offsetleftt findText()
offsetTopt getBookmark()
text getBoundingClientRect ()t
getClientRects ()t
inRange()
isEqual()
move ()
moveEnd ()

moveStart()
moveToBookmark()

moveToETementText ()

Chapter 19 0 Body Text Objects

Properties Methods Event Handlers

moveToPoint()
parentElement()
pasteHTML()
queryCommandEnabled()
queryCommandIndeterm()
queryCommandState()
queryCommandSupported()
queryCommandText()
queryCommandValue()
scrollIntoView()t
select()

setEndPoint ()

tSee Chapter 15

Syntax

Creating a TextRange object:

var rangeRef = document.body.createTextRange()
var rangeRef = buttonControlRef.createTextRange()
var rangeRef = textControlRef.createTextRange()
var rangeRef = document.selection.createRange()

Accessing TextRange object properties or methods:

(IE4+) rangeRef.property | method([parameters])

About this object

Unlike most of the objects covered in Part Il of the book, the [E4+ TextRange
object is not tied to a specific HTML element. The TextRange object is, instead, an
abstract object that represents text content anywhere on the page (including text
content of a text-oriented form control) between a start point and an end point (col-
lectively, the boundaries of the range). The user may not necessarily know that a
TextRange object exists, because no requirement exists to force a TextRange
object to physically select text on the page (although the TextRange object can be
used to assist scripts in automating the selection of text; or a script may turn a user
selection into a TextRange object for further processing).

CD-47

CD-48 Partll O Document Objects Reference

The purpose of the TextRange object is to give scripts the power to examine, mod-
ify, remove, replace, and insert content on the page. Start and end points of an IE
TextRange object are defined exclusively in terms of character positions within the
element that is used to create the range (usually the BODY element, but also but-
ton- and text-related form control elements). Character positions of body text do
not take into account source code characters that may define HTML elements. This
factor is what distinguishes a TextRange’s behavior from, for instance, the various
properties and methods of HTML elements that let you modify or copy elements
and their text (for example, innerText and outerText properties). A TextRange
object’s start point can be in one element, and its end point in another. For exam-
ple, consider the following HTML:

<P>And now to introduce our very special guest:</P>

If the text shown in boldface indicates the content of a TextRange object, you can
see that the range crosses element boundaries in a way that makes HTML element
object properties difficult to use for replacing that range with some other text.
Challenges still remain in this example, however. Simply replacing the text of the
range with some other text forces your script (or the browser) to reconcile the
issue of what to do about the nested EM element, because the TextRange object
handles only its text. (Your word processing program must address the same kind
of issue when you select a phrase that starts in italic but ends in normal font, and
then you paste text into that selection.)

An important aspect of the TextRange object is that the size of the range can be
zero or more characters. Start and end points always position themselves between
characters. When the start point and end point of a range are at the same location,
the range acts as a text insertion pointer. In fact, when the TextRange object repre-
sents text inside a text-related form control, the select () method of the
TextRange object can be used to display the text insertion pointer where your
script desires. Therefore, through the TextRange object you can script your forms
to always display the text insertion pointer at the end of existing text in a text box
or textarea when the control receives focus.

Working with text ranges

To create a TextRange object, use the createTextRange () method with the
document.body object or any button- or text-related form control object. If

you want to convert a block of selected text to a text range, use the special
createRange() method of the document.selection object. Regardless of how
you create it, the range encompasses the entire text of the object used to generate
the range. In other words, the start point is at the very beginning of the text and the
end point is at the very end. Note that when you create a TextRange object from
the BODY element, text that is inside text-related form controls is not part of the

Chapter 19 0 Body Text Objects

text of the TextRange (just as text field content isn’t selected if you select manu-
ally the entire text of the page).

After you create a TextRange object (assigned to a variable), the typical next steps
involve some of the many methods associated with the object that help narrow the
size of the range. Some methods (move (), moveEnd(), moveStart(), and
sentEndPoint()) offer manual control over the intra-character position for the
start and end points. Parameters of some of these methods understand concepts,
such as words and sentences, so not every action entails tedious character counts.
Another method, moveToElementText (), automatically adjusts the range to
encompass a named element. The oft-used collapse () method brings the start
and end points together at the beginning or end of the current range — helpful
when a script must iterate through a range for tasks, such as word counting or
search and replace. The expand () method can extend a collapsed range to encom-
pass the whole word, whole sentence, or entire range surrounding the insertion
point. Perhaps the most powerful method is findText (), which allows scripts to
perform single or global search and replace operations on body text.

After the range encompasses the desired text, several other methods let scripts act
on the selection. The types of operations include scrolling the page to make the
text represented by the range visible to the user (scrollIntoView()) and select-
ing the text (select()) to provide visual feedback to the user that something is
happening (or to set the insertion pointer at a location in a text form control). An
entire library of additional commands are accessed through the execCommand ()
method for operations, such as copying text to the clipboard and a host of format-
ting commands that can be used in place of style sheet property changes. To swap
text from the range with new text accumulated by your script, you can modify the
text property of the range.

Using the TextRange object can be a bit tedious, because it often requires a num-
ber of script statements to execute an action. Three basic steps are generally
required to work with a TextRange object:

1. Create the text range.

2. Set the start and end points.

3. Act on the range.
As soon as you are comfortable with this object, you will find it provides a lot of
flexibility in scripting interaction with body content. For ideas about applying the

TextRange object in your scripts, see the examples that accompany the following
descriptions of individual properties and methods.

CD-49

CD-50Q Partll O Document Objects Reference

About browser compatibility

The TextRange object is available only for the Windows 9x/NT version of IE4 and
IE5. MacOS versions through IE5 do not support the TextRange object.

The W3C DOM and NN6 implement a slightly different concept of text ranges in
what they call the Range object. In many respects, the fundamental way of working
with a Range object is the same as for a TextRange object: create, adjust start and
end points, and act on the range. But the W3C version (like the W3C DOM itself) is
more conscious of the node hierarchy of a document. Properties and methods of
the W3C Range object reflect this node-centric point of view, so that most of the ter-
minology for the Range object differs from that of the IE TextRange object. As of
this writing, it is unknown if or when IE will implement the W3C Range object.

At the same time, the W3C Range object lacks a couple of methods that are quite
useful with the IE TextRange object—notably findText () and select(). On the
other hand, the Range object, as implemented in NN6, works on all OS platforms.

The bottom line question, then, is whether you can make range-related scripts work
in both browsers. While the basic sequence of operations is the same for both
objects, the scripting vocabulary is quite different. Table 19-1 presents a summary
of the property and method behaviors that the two objects have in common and
their respective vocabulary terms (sometimes the value of a property in one object
is accessed via a method in the other object). Notice that the ways of moving indi-
vidual end points are not listed in the table because the corresponding methods for
each object (for example, moveStart() in TextRange versus setStart() in
Range) use very different spatial paradigms.

Table 19-1
TextRange versus Range Common Denominators
TextRange Object Range Object
text toString()
collapse() collapse()
compareEndPoints() compareEndPoints()
duplicate() clone()
moveToETementText () selectContents()

parentElement() commonParent

Chapter 19 0 Body Text Objects

To blend text range actions for both object models into a single scripted page, you
have to include script execution branches for each category of object model or cre-
ate your own API to invoke library functions that perform the branching. On the IE
side of things, too, you have to script around actions that can cause script errors
when run on MacOS and other non-Windows versions of the browser.

Properties

boundingHeight
boundinglLeft
boundingTop
boundingWidth

Value: Integer Read-Only

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]] |

Every text range has physical dimension and location on the page, even if you can-
not see the range reflected graphically with highlighting. Even a text insertion
pointer (meaning a collapsed text range) has a rectangle whose height equals the
line height of the body text in which the insertion point resides; its width, however,
is zero.

The pixel dimensions of the rectangle of a text range can be retrieved via the
boundingHeight and boundingWidth properties of the TextRange object. When a
text range extends across multiple lines, the dimensions of the rectangle are equal
to the smallest single rectangle that can contain the text (a concept identical to the
bounding rectangle of inline body text, as described in the TextRectangle object
later in this chapter). Therefore, even a range consisting of one character at the end
of one line and another character at the beginning of the next, force the bounding
rectangle to be as wide as the paragraph element.

A text range rectangle has a physical location on the page. The top-left position of
the rectangle (with respect to the browser window edge) is reported by the
boundingTop and boundinglLeft properties. In practice, text ranges that are gener-
ated from selections can report very odd boundingTop values in IE4 when the page
scrolls. Use the of fsetTop and offsetLeft properties for more reliable results.

CD-51

CD-52 Partll O Document Objects Reference

On the)
_ CD\'- Example (with Listing 19-9) on the CD-ROM

Related Items: offsetlLeft, of fsetTop properties of element objects
(Chapter 15).

htmlText
Value: String Read-Only
NN2 NN3 NN4 NN6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5
Compatibility] O g

The html1Text property returns the HTML of the text contained by a text range. If a
range’s start and end points are at the very edges of an element’s text, then the
HTML tag for that element becomes part of the htm1Text property value. Also, if
the range starts in one element and ends partway in another, the tags that influence
the text of the end portion become part of the htm1Text. This property is read-
only, so you cannot use it to insert or replace HTML in the text range (see the
pasteHTML() method and various insert commands associated with the
execCommand () method in the following section).

On the A

. cn Example on the CD-ROM

Related Items: text property.

text
Value: String Read/Write
NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5
Compatibility a 0 O

Use the text property to view or change the string of visible characters that com-
prise a text range. The browser makes some decisions for you if the range you are
about to change has nested elements inside. By and large, the nested element (and
any formatting that may be associated with it) is deleted, and the new text becomes

Chapter 19 O Body Text Objects (C[D-53

part of the text of the container that houses the start point of the text range. By the
same token, if the range starts in the middle of one element and ends in the parent
~element’s text, the tag that governs the start point now wraps all of the new text.
On the

CD\'- Example on the CD-ROM

Related Items: htm1Text property.

Methods
collapse([startBoolean])

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/)1 IE3/)2 IE4 IE5 IE5.5

Compatibility a 0 O

Use the colTapse() method to shrink a text range from its current size down to a
single insertion point between characters. This method becomes more important
than you may think at first, especially in a function that is traversing the body or
large chunk of text. For example, in a typical looping word-counting script, you cre-
ate a text range that encompasses the full body (or text in a TEXTAREA). When the
range is created, its start point is at the very beginning of the text, and its end point
is at the very end. To begin counting words, you can first collapse the range to the
insertion point at the very beginning of the range. Next, use the expand () method
to set the range to the first word of text (and increment the counter if the expand()
method returns true). At that point, the text range extends around the first word.
What you want is for the range to collapse at the end of the current range so that
the search for the next word starts after the current one. Use collapse() once
more, but this time with a twist of parameters.

The optional parameter of the collapse () method is a Boolean value that directs
the range to collapse itself either at the start or end of the current range. The
default behavior is the equivalent of a value of true, which means that unless oth-
erwise directed, a colTapse () method shifts the text range to the point in front of
the current range. That works great as an early step in the word-counting example,
because you want the text range to collapse to the start of the text before doing any
counting. But for subsequent movements through the range, you want to collapse
the range so that it is after the current range. Thus, you include a false parameter
tothe collapse() method.

CD-54 Partil O Document Objects Reference

On the N

_ CD Example on the CD-ROM

Related Items: Range.collapse(), TextRange.expand() methods.

compareEndPoints(" type", rangeRef)

Returns: Integer (-1, 0, or 1).

NN2 NN3 NN4 NN6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5

Compatibility a 0 O

Generating multiple TextRange objects and assigning them to different variables is
no problem. You can then use the compareEndPoints () method to compare the rel-
ative positions of start and end points of two ranges. One range is the object that
you use to invoke the compareEndPoints () method, and the other range is the sec-
ond parameter of the method. The order doesn’t matter, because the first parameter
of the method determines which points in each range you will be comparing.

Values for the first parameter can be one of four explicit strings: StartToEnd,
StartToStart, EndToStart, and EndToEnd. What these values specify is which
point of the current range is compared with which point of the range passed as the
second parameter. For example, consider the following body text that has two text
ranges defined within it:

It was the best of times.

The first text range (assigned in our discussion here to variable rngl) is shown in
boldface, while the second text range (rng?) is shown in bold-italic. In other words,
rng? is nested inside rngl. We can compare the position of the start of rngl
against the position of the start of rng2 by using the StartToStart parameter of
the compareEndPoints() method:

var result = rngl.compareEndPoints("StartToStart", rng2)

The value returned from the compareEndPoints () method is an integer of one of
three values. If the positions of both points under test are the same, then the value
returned is 0. If the first point is before the second, the value returned is -1; if the
first point is after the second, the value is 1. Therefore, from the example above,
because the start of rngl is before the start of rng2, the method returns -1. If you
changed the statement to invoke the method on rng?, as in

Chapter 19 O Body Text Objects (C[D-55

var result = rng2.comparekEndPoints("StartToStart", rngl)

the result would be 1.

In practice, this method is helpful in knowing if two ranges are the same, if one of
the boundary points of both ranges is the same, or if one range starts where the
other ends.

On the
CD\'- Example (with Listing 19-10) on the CD-ROM

Related Items: Range.compareEndPoints () method.

duplicate()

Returns: TextRange object.

NN2 NN3 NN4 NNé6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5

Compatibility O O 0

The duplicate() method returns a TextRange object that is a snapshot copy of the
current TextRange object. In a way, a non-intuitive relationship exists between the
two objects. If you alter the text property of the copy without moving the start or end
points of the original, then the original takes on the new text. But if you move the start
or end points of the original, the text and htm1Text of the original obviously change,
while the copy retains its properties from the time of the duplication. Therefore, this
method can be used to clone text from one part of the document to other parts.

On the

. cn\'- Example on the CD-ROM

Related Items: Range.clone(), TextRange.isEqual () methods.

execCommand (" commandName"[, UIFlagl,
valuell)

Returns: Boolean.

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility 0 O 0

CD-56 Partll O Document Objects Reference

IE4+ for Win32 operating systems lets scripts access a very large number of com-
mands that act on insertion points, abstract text ranges, and selections that are
made with the help of the TextRange object. Access to these commands is through
the execCommand () method, which works with TextRange objects and the document
object (see the document.execCommand () method discussion in Chapter 18 and
list of document- and selection-related commands in Table 18-3).

The first, required parameter is the name of the command that you want to exe-
cute. Only a handful of these commands offer unique capabilities that aren’t better
accomplished within the IE object model and style sheet mechanism. Of particular
importance is the command that lets you copy a text range into the Clipboard.
Most of the rest of the commands modify styles or insert HTML tags at the position
of a collapsed text range. These actions are better handled by other means, but
they are included in Table 19-2 for the sake of completeness only (see Table 18-3 for
additional commands).

Table 19-2
TextRange.execCommand() Commands
Command Parameter Description
Bold None Encloses the text range in a tag pair
Copy None Copies the text range into the Clipboard
Cut None Copies the text range into the Clipboard
and deletes it from the document or text
control
Delete None Deletes the text range
InsertButton ID String Inserts a <BUTTON> tag at the insertion

point, assigning the parameter value to the
1D attribute

InsertFieldset ID String Inserts a <FIELDSET> tag at the insertion
point, assigning the parameter value to the
1D attribute

InsertHoritontalRule ID String Inserts an <HR> tag at the insertion point,
assigning the parameter value to the ID
attribute

InsertIFrame ID String Inserts an <IFRAME> tag at the insertion

point, assigning the parameter value to the
1D attribute

Chapter 19 0 Body Text Objects

Command

Parameter

Description

InsertInputButton

InsertIntpuCheckbox

InsertInputFileUpload

InsertInputHidden

InsertInputImage

InsertInputPassword

InsertInputRadio

InsertInputReset

InsertInputSubmit

InsertIntputText

InsertMarquee

InsertOrderedList

ID String

ID String

ID String

ID String

ID String

ID String

ID String

ID String

ID String

ID String

ID String

ID String

Inserts an <INPUT TYPE="button"> tag
at the insertion point, assigning the param-
eter value to the 1D attribute

Inserts an <INPUT TYPE="checkbox">
tag at the insertion point, assigning the
parameter value to the 1D attribute

Inserts an <INPUT

TYPE="FileUpload"> tag at the inser-
tion point, assigning the parameter value to
the ID attribute

Inserts an <INPUT TYPE="hidden"> tag
at the insertion point, assigning the param-
eter value to the 1D attribute

Inserts an <INPUT TYPE="image"> tag at
the insertion point, assigning the parame-
ter value to the ID attribute

Inserts an <INPUT TYPE="password">
tag at the insertion point, assigning the
parameter value to the 1D attribute

Inserts an <INPUT TYPE="radio"> tag at
the insertion point, assigning the parame-
ter value to the 1D attribute

Inserts an <INPUT TYPE="reset"> tag at
the insertion point, assigning the parame-
ter value to the ID attribute

Inserts an <INPUT TYPE="submit"> tag
at the insertion point, assigning the param-
eter value to the 1D attribute

Inserts an <INPUT TYPE="text"> tag at
the insertion point, assigning the parame-
ter value to the 1D attribute

Inserts a <MARQUEE tag at the insertion
point, assigning the parameter value to the
1D attribute

Inserts an tag at the insertion point,
assigning the parameter value to the 1D
attribute

Continued

CD-57

CD-58 Partill O Document Objects Reference

Table 19-2 (continued)

Command Parameter Description

InsertParagraph ID String Inserts a <P> tag at the insertion point,
assigning the parameter value to the 1D
attribute

InsertSelectDropdown ID String Inserts a <SELECT TYPE="select-

one"> tag at the insertion point, assigning
the parameter value to the 1D attribute

InsertSelectListbox ID String Inserts a <SELECT TYPE="select-mul-
tiple"> tag at the insertion point, assign-
ing the parameter value to the ID attribute

InsertTextArea ID String Inserts an empty <TEXTAREA> tag at the
insertion point, assigning the parameter
value to the 1D attribute

InsertUnroderedlist ID String Inserts a tag at the insertion point,
assigning the parameter value to the 1D
attribute

Italic None Encloses the text range in an <I> tag pair

OverWrite Boolean Sets the text input control mode to over-
write (true) orinsert (false)

Paste None Pastes the current Clipboard contents into
the insertion point or selection

PlayImage None Begins playing dynamic images if they are
assigned to the DYNSRC attribute of the
IMG element

Refresh None Reloads the current page

StopImage None Stops playing dynamic images if they are
assigned to the DYNSRC attribute of the
IMG element

Underline None Encloses the text range in a <U> tag pair

An optional second parameter is a Boolean flag to instruct the command to display
any user interface artifacts that may be associated with the command. The default
is false. For the third parameter, some commands require an attribute value for
the command to work. For example, insert a new paragraph at an insertion point,
you pass the identifier to be assigned to the 1D attribute of the P element. The
syntax is

Chapter 19 O Body Text Objects (C[D-59

myRange.execCommand("InsertParagraph", true, "myNewP")

The execCommand () method returns Boolean true if the command is successful;
false if not successful. Some commands can return values (for example, finding
out the font name of a selection), but these values are accessed through the
queryCommandValue() method.

While the commands in Table 19-2 work on text ranges, even the commands that
work on selections (Table 18-3) can frequently benefit from some preprocessing
with a text range. Consider, for example, a function whose job it is to find every
instance of a particular word in a document and set its background color to a yel-
low highlight. Such a function utilizes the powers of the findText () method of a
text range to locate each instance. Then the select () method selects the text in
preparation for applying the BackColor command. Here is a sample:

function hilitelt(txt) {
var rng = document.body.createTextRange()

for (var i = 0; rng.findText(txt); i++) {
rng.select()
rng.execCommand("BackColor", "false", "yellow")

rng.execCommand("Unselect")
// prepare for next search
rng.collapse(false)

}

This example is a rare case that makes the execCommand () method way of modify-
ing HTML content more efficient than trying to wrap some existing text inside a new
tag. The downside is that you don’t have control over the methodology used to
assign a background color to a span of text (in this case, IE wraps the text in a
 tag with a STYLE attribute set to BACKGROUND-COLOR:yel1ow—probably
not the way you’d do it on your own).

On the |

{ CD\'- Example on the CD-ROM

Related Items: Several query command methods of the TextRange object.

expand("unit")

Returns: Boolean.

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility] O g

CD-60 Part!

I O Document Objects Reference

The single expand () method can open any range — collapsed or not —to the next
largest character, word, or sentence or to the entire original range (for example,
encompassing the text of the BODY element if the range was generated by docu-
ment.body.createTextRange()). The parameter is a string designating which
unit to expand outward to: character, word, sentence, or textedit. If the opera-
tion is successful, the method returns true; otherwise it returns false.

When operating from an insertion point, the expand () method looks for the word
or sentence that encloses the point. The routine is not very smart about sentences,
however. If you have some text prior to a sentence that you want to expand to, but
that text does not end in a period, the expand () routine expands outward until it
can find either a period or the beginning of the range. Listing 15-14 demonstrates a
workaround for this phenomenon. When expanding from an insertion point to a
character, the method expands forward to the next character in language order. If
the insertion point is at the end of the range, it cannot expand to the next charac-
ters, and the expand () method returns false.

It is not uncommon in an extensive script that needs to move the start and end
points all over the initial range to perform several collapse() and expand()
method operations from time to time. Expanding to the full range is a way to start
some range manipulation with a clean slate, as if you just created the range.

On the

CD\'- Example on the CD-ROM

Related Items: TextRange.colTapse() method.

findText("searchString"[, searchScope,

f

lags])

Returns: Boolean.

NN2 NN3 NN4 NNé6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5

Compatibility O O 0

One of the most useful methods of the TextRange object is findText (), whose
default behavior is to look through a text range starting at the range’s start point up
to the end of the range in search of a case-insensitive match for a search string. If
an instance is found in the range, the start and end points of the range are cinched
up to the found text and the method returns true; otherwise it returns false, and
the start and end points do not move. Only the rendered text is searched and not
any of the tags or attributes.

Chapter 19 O Body Text Objects CD-61

Optional parameters let you exert some additional control over the search process.
You can restrict the distance from a collapsed range to be used for searching. The
searchScope parameter is an integer value indicating the number of characters
from the start point. The larger the number, the more text of the range is included
in the search. Negative values force the search to operate backward from the cur-
rent start point. If you want to search backward to the beginning of the range, but
you don’t know how far away the start of the range is, you can specify an arbitrarily
huge number that would encompass the text.

The optional f7ags parameter lets you set whether the search is to be case-sensitive
and/or to match whole words only. The parameter is a single integer value that uses
bit-wise math to calculate the single value that accommodates one or both settings.
The value for matching whole words is 2; the value for matching case is 4. If you
want only one of those behaviors, then supply just the desired number. But for both
behaviors, use the bit-wise XOR operator (the " operator) on the values to reach a
value of 6.

The most common applications of the findText () method include a search-and-
replace action and format changes to every instance of a string within the range.
This iterative process requires some extra management of the process. Because
searching always starts with the range’s current start point, advancing the start
point to the end of the text found in the range is necessary. This advancing allows
a successive application of findText () to look through the rest of the range for
another match. And because findText () ignores the arbitrary end point of the
current range and continues to the end of the initial range, you can use the
collapse(false) method to force the starting point to the end of the range

that contains the first match.

A repetitive search can be accomplished by a while or for repeat loop. The
Boolean returned value of the findText () method can act as the condition for con-
tinuing the loop. If the number of times the search succeeds is not essential to your
script, a while loop works nicely:

while (rng.findText(searchString)) {

rng.collapse(false)
}

Or you can use a for loop counter to maintain a count of successes, such as a
counter of how many times a string appears in the body:

for (var i = 0; rng.findText(searchString); i++) {

rng.collapse(false)

CD-62 Part Ill 0 Document Objects Reference

Some of the operations you want to perform on a range (such as many of the com-
mands invoked by the execCommand () method) require that a selection exists for
the command to work. Be prepared to use the select () method on the range after
the findText () method locates a matching range of text.

On the

N e
(:D , Example (with Listing 19-11) on the CD-ROM

Related Items: TextRange.select () method.

getBookmark()

Returns: Bookmark String.

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]] O

In the context of a TextRange object, a bookmark is not to be confused with the
kinds of bookmarks you add to a browser list of favorite Web sites. Instead, a book-
marKk is a string that represents a definition of a text range, including its location in
a document, its text, and so on. Viewing the string is futile, because it contains
string versions of binary data, so the string means nothing in plain language. But a
bookmark allows your scripts to save the current state of a text range so that it may
be restored at a later time. The getBookmark () method returns the string repre-
sentation of a snapshot of the current text range. Some other script statement can
adjust the TextRange object to the exact specifications of the snapshot with the
moveToBookmark () method (described later in this chapter).

On the

. CD\'- Example on the CD-ROM

Related Items: TextRange.moveToBookmark () method.

inRange(otherRangeRef)

Returns: Boolean.

NN2 NN3 NN4 NNé6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5

Compatibility O O 0

Chapter 19 O Body Text Objects C[D-63

You can compare the physical stretches of text contained by two different text
ranges via the inRange () method. Typically, you invoke the method on the larger
of two ranges and pass a reference to the smaller range as the sole parameter to the
method. If the range passed as a parameter is either contained by or equal to the
text range that invokes the method, then the method returns true; otherwise the
method returns false.

On the

| CD\'- Example on the CD-ROM
Related Items: TextRange.isEqual() method.

isEqual (otherRangeRef)

Returns: Boolean.

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility] O a0

If your script has references to two independently adjusted TextRange objects, you
can use the isEqual () method to test whether the two objects are identical. This
method tests for a very literal equality, requiring that the text of the two ranges be
character-for-character and position-for-position equal in the context of the original
ranges (for example, body or text control content). To see if one range is contained
by another, use the inRange () method instead.

On the A

_ CD \ Example on the CD-ROM

Related Items: TextRange.inRange () method.

move("unit"[, count])

Returns: Integer.

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility O O 0

The move () method performs two operations. First, the method collapses the cur-
rent text range to become an insertion point at the location of the previous end

CD-64 Partil O Document Objects Reference

point. Next, it moves that insertion point to a position forward or backward any
number of character, word, or sentence units. The first parameter is a string speci-
fying the desired unit (character,word, sentence, or textedit). A value of
textedit moves the pointer to the beginning or end of the entire initial text range.
If you omit the second parameter, the default value is 1. Otherwise you can specify
an integer indicating the number of units the collapsed range should be moved
ahead (positive integer) or backward (negative). The method returns an integer
revealing the exact number of units the pointer is able to move —if you specify
more units than are available, the returned value lets you know how far it can go.

Bear in mind that the range is still collapsed after the move () method executes.
Expanding the range around desired text is the job of other methods.

You can also use the move () method in concert with the select () method to posi-
tion the flashing text insertion pointer within a text box or textarea. Thus, you can
script a text field, upon receiving focus or the page loading, to have the text pointer
waiting for the user at the end of existing text. A generic function for such an action
is shown in the following:

function setCursorToEnd(elem) {
if (elem) {
if (elem.type && (elem.type == "text" || elem.type == "textarea")) f{
var rng = elem.createTextRange()
rng.move("textedit")
rng.select()

}

You can then invoke this method from a text field’s onFocus event handler:

{INPUT TYPE="text" ... onFocus="setCursorToEnd(this)">

The function previously shown includes a couple of layers of error checking, such
as making sure that the function is invoked with a valid object as a parameter and
that the object has a type property whose value is one capable of having a text

~ range made for its content.
On the

cn\'- Example on the CD-ROM

Related Items: TextRange.moveEnd (), TextRange.moveStart() methods.

moveEnd("unit"[, count])
moveStart("unit"[, count])

Returns: Integer.

Chapter 19 O Body Text Objects (C[D-65

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility] O O

The moveEnd() and moveStart () methods are similar to the move () method, but
they each act only on the end and starting points of the current range, respectively.
In other words, the range does not collapse before the point is moved. These meth-
ods allow you to expand or shrink a range by a specific number of units by moving
only one of the range’s boundaries.

The first parameter is a string specifying the desired unit (character, word,
sentence, or textedit). A value of textedit moves the pointer to the beginning
or end of the entire initial text range. Therefore, if you want the end point of the
current range to zip to the end of the body (or text form control), use moveEnd
("textedit").If you omit the second parameter, the default value is 1. Otherwise
you can specify an integer indicating the number of units the collapsed range is to
move ahead (positive integer) or backward (negative). Moving either point beyond
the location of the other forces the range to collapse and move to the location spec-
ified by the method. The method returns an integer revealing the exact number of
units the pointer is able to move —if you specify more units than are available, the
returned value lets you know how far it can go.

On the

CD\“ Example on the CD-ROM

Related Items: TextRange.move () method.

moveToBookmark("bookmarkString™")

Returns: Boolean.

NN2 NN3 NN4 NNé6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5

Compatibility 0 O 0

If a snapshot of a text range specification has been preserved in a variable (with the
help of the getBookmark () method), the moveToBookmark() method uses that
bookmark string as its parameter to set the text range to exactly the way it
appeared when the bookmark was originally obtained. If the method is successful,
it returns a value of true, and the text range is set to the same string of text as orig-
inally preserved via getBookmark(). It is possible that the state of the content of

CD-66 Part Ill 0 Document Objects Reference

the text range has been altered to such an extent that resurrecting the original text
~range is not feasible. In that case, the method returns false.
On the N

_ CD Example on the CD-ROM
Related Items: TextRange.getBookmark () method.

moveToElementText(elemObjRef)

Returns: Nothing.

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]] |

The fastest way to cinch up a text range to the boundaries of an HTML element
on the page is to use the moveToETlementText () method. Any valid reference to
the HTML element object is accepted as the sole parameter —just don’t try to
use a string version of the object ID unless it is wrapped in the document.
getElementById() method (IE5+). When the boundaries are moved to the
element, the range’s htm1Text property contains the tags for the element.

On the \

_ CD Example on the CD-ROM
Related Items: TextRange.parentElement () method.

moveToPoint(x, y)

Returns: Nothing.

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility]] |

The moveToPoint () method shrinks the current text range object to an insertion
point and then moves it to a position in the current browser window or frame. You
control the precise position via the x (horizontal) and y (vertical) pixel coordi-
nates specified as parameters. The position is relative to the visible window, and
not the document, which may have been scrolled to a different position. Invoking

Chapter 19 0 Body Text Objects

the moveToPoint () method is the scripted equivalent of the user clicking that spot
in the window. Use the expand () method to flesh out the collapsed text range to
encompass the surrounding character, word, or sentence.

/

'Note Using the moveToPoint () method on a text range defined for a text form control

-~ may cause a browser crash. The method appears safe with the document.body
text ranges, even if the x,y position falls within the rectangle of a text control. Such
a position, however, does not drop the text range into the form control or its
content.

On the } A
\ Example on the CD-ROM

| cn -
4

Related Items: TextRange.move(), TextRange.moveStart(),
TextRange.moveEnd() methods.

parentElement ()

Returns: Element object reference.

NN2 NN3 NN4 NN6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5

Compatibility a 0 O

The parentElement () method returns a reference to the next outermost HTML
element container that holds the text range boundaries. If the text range bound-
aries are at the boundaries of a single element, the parentETement () method
returns that element’s reference. But if the boundaries straddle elements, then the
object returned by the method is the element that contains the text of the least-
nested text portion. In contrast to the expand() and various move-related meth-
ods, which understand text constructs, such as words and sentences, the
parentElement () method is concerned solely with element objects. Therefore, if a
text range is collapsed to an insertion point in body text, you can expand it to
encompass the HTML element by using the parentETement () method as a parame-
ter tomoveToETementText ():

- rng .moveToElementText(rng.parentElement())
On the \

. CD Example on the CD-ROM

Related Items: TextRange.expand(), TextRange.move(),
TextRange.moveEnd(), TextRange.moveStart () methods.

CD-67

CD-68 Part Ill 0 Document Objects Reference

pasteHTML("HTMLText")

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility a] 0

While the execCommand () method offers several commands that insert HTML ele-
ments into a text range, it is probably more convenient to simply paste fully formed
HTML into the current text range (assuming you need to be working with a text
range instead of even more simply setting new values to an element object’s
outerHTML property). Provide the HTML to be inserted as a string parameter to the
pasteHTML() method.

Use the pasteHTML () method with some forethought. Some HTML that you may
attempt to paste into a text range may force the method to wrap additional tags
around the content you provide to ensure the validity of the resulting HTML. For
example, if you were to replace a text range consisting of a portion of text of a P ele-
ment with, for instance an LI element, the pasteHTML () method has no choice but
to divide the P element into two pieces, because a P element is not a valid container
for a solo LI element. This division can greatly disrupt your document object hierar-
chy, because the divided P element assumes the same ID for both pieces. Existing
references to that P element will break, because the reference now returns an array
of two like-named objects.

On the |

CD\'- Example on the CD-ROM

Related Items: outerHTML property; insertAdjacenHTML() method.

queryCommandEnabled("commandName")
queryCommandIndeterm("commandName™)
queryCommandState("commandName")
queryCommandSupported("commandName™)
queryCommandText ("commandName™)
queryCommandValue("commandName")

Returns: See document.queryCommandEnabled() in Chapter 18.

Chapter 19 O Body Text Objects C[D-69

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility] O O

See descriptions under document.queryCommandEnabled() in Chapter 18.

select()

Returns: Nothing.

NN2 NN3 NN4 NN6 IE3/)J1 IE3/)2 IE4 IE5 IE5.5

Compatibility a] 0

The select () method selects the text inside the boundaries of the current text
range. For some operations, such as prompted search and replace, it is helpful to
show the user the text of the current range to highlight what text is about to be
replaced. In some other operations, especially several commands invoked by
execCommand (), the operation works only on a text selection in the document.
Thus, you can use the TextRange object facilities to set the boundaries, followed
by the select () method to prepare the text for whatever command you like. Text
selected by the select () method becomes a selection object (covered earlier in
this chapter).

On the) X

. CD Example on the CD-ROM

Related Items: selection object.

setEndPoint (" type", otherRangeRef)

Returns: Nothing.

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility] O O

In contrast to the moveEnd () method, which adjusts the end point of the current
range with respect to characters, words, sentences, and the complete range, the

CD-70 Partil O Document Objects Reference

setEndPoint () method sets a boundary of the current range (not necessarily the
ending boundary) relative to a boundary of another text range whose reference is
passed as the second parameter. The first parameter is one of four types that con-
trol which boundary of the current range is to be adjusted and which boundary of
the other range is the reference point. Table 19-3 shows the four possible values
and their meanings.

Table 19-3
setEndPoint() Method Types
Type Description
StartToEnd Moves the start point of the current range to the end of the other range

StartToStart Moves the start point of the current range to the start of the other range
EndToStart Moves the end point of the current range to the start of the other range

EndToEnd Moves the end point of the current range to the end of the other range

Note that the method moves only one boundary of the current range at a time. If
you want to make two ranges equal to each other, you have to invoke the method
twice, once with StartToStart and once with EndToEnd. At that instant, the
isEqual () method applied to those two ranges returns true.

Setting a boundary point with the setEndPoint () method can have unexpected
results when the revised text range straddles multiple elements. Don’t be surprised
to find that the new HTML text for the revised range does not include tags from the
outer element container.

On the) A

_ CD Example on the CD-ROM

Related Items: TextRange.moveEnd(), TextRange.moveStart(),
TextRange.moveToETementText () methods.

TextRectangle Object

Properties Methods Event Handlers

bottom
left

Chapter 19 O Body Text Objects C[D-7 1]

Properties Methods Event Handlers

right
top

Syntax

Accessing TextRectangle object properties:

[window. Jdocument.all.elemID.getBoundingClientRect().property
[window.ldocument.all.elemID.getClientRects()[7].property

About this object

The IE5+ TextRectangle object (not implemented in [E5/Mac) exposes to scripts a
concept that is described in the HTML 4.0 specification, whereby an element’s ren-
dered text occupies a rectangular space on the page just large enough to contain
the text. For a single word, the rectangle is as tall as the line height for the font used
to render the word and no wider than the space occupied by the text. But for a
sequence of words that wraps to multiple lines, the rectangle is as tall as the line
height times the number of lines and as wide as the distance between the leftmost
and rightmost character edges, even if it means that the rectangle encloses some
other text that is not part of the element.

If you extract the TextRectangle object for an element by way of, for example,

the getBoundingClientRect () method, be aware that the object is but a snapshot
of the rectangle when the method was invoked. Resizing the page may very well
alter dimensions of the actual rectangle enclosing the element’s text, but the
TextRectangle object copy that you made previously does not change its values to
reflect the element’s physical changes. After a window resize or modification of body
text, any dependent TextRectangle objects should be recopied from the element.

Properties

bottom
left
right
top

Values: Integers Read-Only

CD-72 Partll O Document Objects Reference

NN2 NN3 NN4 NNé6 IE3/J1 IE3/)2 IE4 IE5 IE5.5

Compatibility] O

The screen pixel coordinates of its four edges define every TextRectangle object.
These coordinates are relative to the window or frame displaying the page.
Therefore, if you intend to align a positioned element with an inline element’s

TextRectangle, your position assignments must take into account the scrolling of
the body.

To my eye, the left edge of a TextRectangle does not always fully encompass the
left-most pixels of the rendered text. You may have to fudge a few pixels in the mea-
sure when trying to align a real element with the TextRectangle of another
element.
On the N
_ CD | Example (with Listing 19-12) on the CD-ROM

Related Items: getBoundingClientRect (), getClientRects () methods of ele-
ment objects (Chapter 15).

	Chapter 19: Body Text Objects
	BLOCKQUOTE and Q Element Objects
	BR Element Object
	FONT Element Object
	H1 . . . H6 Element Objects
	HR Element Object
	LABEL Element Object
	MARQUEE Element Object
	Methods
	Event Handlers
	Range Object
	selection Object
	Text and TextNode Objects
	TextRange Object
	TextRectangle Object

