
Image and Area
Objects

For users of Navigator 3, Internet Explorer 4, and later
browsers, images and areas — those items created by

the and <AREA> tags — are first-class objects that can
be scripted for enhanced interactivity. The space reserved for
an tag can be refreshed with other images of the same
size, perhaps to show the highlighting of an icon button when
the cursor rolls atop it. And with scriptable client-side area
maps, pages can be smarter about how users’ clicks on image
regions respond.

One further benefit afforded scripters is that images can
be preloaded into the browser’s image cache as the page
loads. Therefore, if you intend to swap images in response to
user action, no delay occurs in making the first swap: The
image is already in the image cache ready to go.

Image Object
Properties Methods Event Handlers

border (None) onAbort=

complete onError=

height onLoad=

hspace

lowsrc

name

src

vspace

width

x

y

1818C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

How to precache
images

Swapping images
after a document
has loaded

Creating interactive
client-side image
maps

✦ ✦ ✦ ✦

354 Part III ✦ JavaScript Object and Language Reference

Syntax
Creating an image:

<IMG
SRC=”ImageURL”
[LOWSRC=”LowResImageURL”]
NAME=”ImageName”
[HEIGHT=”PixelCount” | “PercentageValue%”]
[WIDTH=”PixelCount” | “PercentageValue%”]
[HSPACE=”PixelCount”]
[VSPACE=”PixelCount”]
[BORDER=”PixelCount”]
[ALIGN=”left” | “right” | “top” | “absmiddle” | “absbottom” |

“texttop” | “middle” | “baseline” | “bottom”
[ISMAP]
[USEMAP=”#AreaMapName”]
[onLoad=”handlerTextOrFunction”]
[onAbort=”handlerTextOrFunction”]
[onError=”handlerTextOrFunction”]>

</BODY>

imageName = new Image([pixelWidth, pixelHeight])

Accessing image properties or methods:

[window.] document.imageName. property | method([parameters])
[window.] document.images[index]. property | method([parameters])

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ (✔) ✔

About this object
Images have been in the HTML vocabulary since the earliest days, but Netscape

Navigator 3 was the first to treat them like first-class JavaScript objects. Internet
Explorer 3 for the Macintosh includes a partial implementation of the image object
(to allow image precaching and swapping), and all flavors of Internet Explorer 4
treat images as true document objects. The primary advantage of this rating is that
scripts can read a number of properties from images and, more importantly,
change the image that occupies the image object’s rectangular space on the page,
even after the document has loaded and displayed an initial image. The key to this
scriptability is the src property of an image.

In a typical scenario, a page loads with an initial image. That image’s tags
specify any of the extra attributes, such as HEIGHT and WIDTH (which help speed
the rendering of the page), and whether the image uses a client-side image map to
make it interactive (see the area object later in this chapter). As the user spends
time on the page, the image can then change (perhaps in response to user action
or some timed event in the script), replacing the original image with a new one in
the same space (the rectangle cannot be modified after the first image loads).

355Chapter 18 ✦ Image and Area Objects

Another benefit of treating images as objects is that a script can create a virtual
image to hold a preloaded image (the image gets loaded into the image cache
without having to display the image). The hope is that one or more unseen images
will load into memory while the user is busy reading the page or waiting for the
page to download. Then, in response to user action on the page, an image can
change almost instantaneously, rather than forcing the user to wait for the image
to load on demand.

To preload an image, begin by generating a new, empty image object as a global
variable. You can preload images either in immediate script statements that run as
the page loads or in response to the window’s onLoad= event handler. An image
that is to take the place of an tag picture must be the same size as the
HEIGHT and WIDTH attributes of the tag. Moreover, you help the virtual image
object creation if you specify the width and height in the parameters of new
Image() constructor. Then assign an image file URL to its src property:

oneImage = new Image(55,68)
oneImage.src = “neatImage.gif”

As this image loads, you see the progress in the status bar, just like any image.
Later, assign the src property of this stored image to the src property of the
image object that appears on the page:

document.images[0].src = oneImage.src

Depending on the type and size of image, you will be amazed at the speedy
response of this kind of loading. With small-palette graphics, the image displays
instantaneously.

A popular user interface technique is to change the appearance of an image
that represents a clickable button when the user rolls the mouse pointer atop
that art. If you surround an image with a link in the latest browser versions, you
can even change images when the user presses and releases the mouse button
(see Chapter 17).

You can accomplish this many ways, depending on the number of images you
need to swap. I employ different methods in relevant listings, such as Listing 17-3
and 18-2. But the barest minimum can be accomplished by preloading both
versions of an image as the document loads, and then changing the src property
of the image object in the relevant mouse event handler. For example, in a script in
the <HEAD> section, you can preload “normal” and “highlighted” versions of some
button art in the following manner:

var normalButton = new Image(80,20)
var hilitedButton = newImage(80,20)
normalButton.src = “homeNormal.gif”
hilitedButton.src = “homeHilited.gif”

Then, in the body of the document, you would create a linked tag along
these lines:

<A HREF=”default.html”
onMouseOver=”document.ToHome.src = hilitedButton.src; return

true”
onMouseOut=”documentToHome.scr = normalButton.src; return true”

>

356 Part III ✦ JavaScript Object and Language Reference

<IMG NAME=”ToHome” SRC=”homeNormal.gif”
WIDTH=80 HEIGHT=20 BORDER=0

>

When a user rolls the mouse over the linked image, the onMouseOver= event
handler changes the URL of the image to the highlighted version loaded into the
cache earlier; when the mouse rolls out of the image, the image changes back.

The speed with which this kind of image swapping takes place may lead you to
consider using this method for animation. Though this method may be practical
for brief bursts of animation, the many other ways of introducing animation to
your Web page (such as via GIF89a-standard images, Java applets, and a variety of
plug-ins) produce animation that offers better speed control and the like. In fact,
swapping preloaded JavaScript image objects for some cartoon-like animations
may actually be too fast. You could build a delay mechanism around the
setInterval() method, but the precise timing between frames would vary with
client processor.

If you place an image inside a table cell, Navigator 3 sometimes generates two
copies of the image object in its object model. This can disturb the content of the
document.images[] array for your scripts. Specifying HEIGHT and WIDTH
attributes for the image can sometimes cure the problem. Otherwise you have to
craft scripts so they don’t rely on the document.images[] array.

Properties

border
height
hspace
name
vspace
width

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

Value: Varies Gettable: Yes Settable: No

This long list of properties for the image object provides read-only access to the
corresponding tag attributes that affect the visual appearance of the image.
The values that these properties return are the same as those used to initially set
the attributes. Once the image is defined by its tag, you cannot change any
of these properties to influence the appearance on the page. More than likely, you
will never need to refer to these properties, unless a script that is about to write a
new page wants to replicate settings from an existing image object.

If you need to set these attributes with JavaScript writing a page on-the-fly, use
the document.write() method to write the equivalent of the actual HTML tags

Note

357Chapter 18 ✦ Image and Area Objects

and the values you would use in a regular document. Also see Chapters 41 through
43 regarding the use of Cascading Style Sheets for other ways to impact the
appearance of a loaded image.
Related Items: None.

complete
Value: Boolean Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

There may be times when you want to make sure that an image object is not
still in the process of loading before allowing another process to take place. This
situation is different from waiting for an image to load before triggering some other
process (which you can do via the image object’s onLoad= event handler). To
verify that the image object displays a completed image, check for the Boolean
value of the complete property. To verify that a particular image file has loaded,
first find out whether the complete property is true; then compare the src
property against the desired filename.

An image’s complete property switches to true even if only the specified
LOWSRC image has finished loading. Do not rely on this property alone for
determining whether the SRC image has loaded if both SRC= and LOWSRC=
attributes are set in the tag.

This property is not reliable in Navigator 4 and Internet Explorer 4. The value
returns true in all instances.

Example
To experiment with the image.complete property, quit and relaunch Navigator

before loading Listing 18-1 (in case the images are in memory cache). As each
image loads, click the “Is it loaded yet?” button to see the status of the complete
property for the image object. The value is false until the loading has finished, at
which time the value becomes true. If you experience difficulty with this property
in your scripts, try adding an onLoad= event handler (even if it is empty, as in
Listing 18-1) to your tag.

Listing 18-1: Scripting image.complete

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript1.1">
function loadIt(theImage,form) {

form.result.value = ""
document.images[0].src = theImage

}
function checkLoad(form) {

form.result.value = document.images[0].complete

Note

358 Part III ✦ JavaScript Object and Language Reference

}
</SCRIPT>
</HEAD>
<BODY>

<FORM>
<INPUT TYPE="button" VALUE="Load keyboard"
onClick="loadIt('cpu2.gif',this.form)">
<INPUT TYPE="button" VALUE="Load arch"
onClick="loadIt('arch.gif',this.form)"><P>
<INPUT TYPE="button" VALUE="Is it loaded yet?"
onClick="checkLoad(this.form)">
<INPUT TYPE="text" NAME="result">
</FORM>
</BODY>
</HTML>

Related Items: img.src property; img.lowsrc property; onLoad= event handler.

lowsrc
Value: String Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

For image files that take several seconds to load, recent browsers enable you to
specify a lower-resolution image or some other quick-loading placeholder to stand
in while the big image crawls to the browser. You assign this alternate image via
the LOWSRC= attribute in the tag. The attribute is reflected in the lowsrc
property of an image object.

Although I list this property as not being settable, you can make a temporary
setting safely, provided that you set it in the same script segment as the statement
that loads an image to the src property. Be aware that if you specify a LOWSRC
image file, the complete property switches to true and the onLoad= event handler
fires when the alternate file finishes loading: They do not wait for the main SRC file
to load.

Example
See the example for the image object’s onLoad= event handler to see how these

elements affect each other.

Related Items: window.open() method; window.focus() method.

src
Value: String Gettable: Yes Settable: Yes

359Chapter 18 ✦ Image and Area Objects

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ (✔) ✔

The key to best using the image object from JavaScript is the src property,
which enables you to assign a URL or preloaded image’s src property as a way of
loading a new image into an existing image’s rectangular space. Be aware that the
height and width of the image object are defined by the attributes in the tag.
If you simply set the src property of an image object to a new image filename,
JavaScript scales the image to fit the dimensions defined by the tag
attributes or (if none are provided) by the dimensions of the first image file loaded
into that object. JavaScript ignores any discrepancy that exists between these
settings and the parameters passed to a new Image(x,y) statement.

Example
In the following example (Listing 18-2), you see a few applications of the image

object. Of prime importance is a comparison of how precached and regular images
feel to the user. As a bonus, I include an example of how to set a timer to
automatically change the images displayed in an image object. This feature seems
to be a popular request among sites that display advertising banners.

Listing 18-2: A Scripted Image Object and Rotating Images

<HTML>
<HEAD>
<TITLE>Image Object</TITLE>
<SCRIPT LANGUAGE="JavaScript1.1">

imageDB = new Array(4)
for (var i = 0; i < imageDB.length ; i++) {

imageDB[i] = new Image(120,90)
imageDB[i].src = "desk" + (i+1) + ".gif"

}

function loadIndividual(form) {
var gifName =

form.individual.options[form.individual.selectedIndex].value
document.thumbnail1.src = gifName

}
function loadCached(form) {

var gifIndex = form.cached.selectedIndex
document.thumbnail2.src = imageDB[gifIndex].src

}
function checkTimer() {

if (document.Timer.timerBox.checked) {
var newIndex = 0
var gifName = document.thumbnail2.src
var gifIndex = (gifName.charAt(gifName.length - 5)) - 1

(continued)

360 Part III ✦ JavaScript Object and Language Reference

Listing 18-2 (continued)

if (gifIndex < imageDB.length - 1) {
newIndex = gifIndex + 1

}
document.thumbnail2.src = imageDB[newIndex].src
document.selections.cached.selectedIndex = newIndex
var timeoutID = setTimeout("checkTimer()",5000)

}
}
</SCRIPT>
</HEAD>

<BODY onLoad=checkTimer()>
<CENTER>
<H2>Image Object Demonstration</H2>
<TABLE BORDER=3>
<TR><TH></TH><TH>Individually Loaded</TH><TH>Pre-cached</TH></TR>
<TR><TD ALIGN=RIGHT>Image:</TD>
<TD></TD>
<TD></TD>
</TR>
<TR><TD ALIGN=RIGHT>Select image:</TD>
<FORM NAME="selections">
<TD>
<SELECT NAME="individual" onChange="loadIndividual(this.form)">
<OPTION VALUE="cpu1.gif">Wires
<OPTION VALUE="cpu2.gif">Keyboard
<OPTION VALUE="cpu3.gif">Disks
<OPTION VALUE="cpu4.gif">Cables
</SELECT>
</TD>
<TD>
<SELECT NAME="cached" onChange="loadCached(this.form)">
<OPTION VALUE="desk1.gif">Bands
<OPTION VALUE="desk2.gif">Clips
<OPTION VALUE="desk3.gif">Lamp
<OPTION VALUE="desk4.gif">Erasers
</SELECT></TD>
</FORM>
</TR></TABLE>
<FORM NAME="Timer">
<INPUT TYPE="checkbox" NAME="timerBox" onClick="checkTimer()">Auto-
cycle through pre-cached images
</FORM>
</CENTER>
</BODY>
</HTML>

You should notice that because the images being preloaded are in a related
sequence, they are conveniently named to make it easy for an array and repeat

361Chapter 18 ✦ Image and Area Objects

loop to manage their preloading. The same numbering scheme lets you link the
images to select object options for a very compact operation.

To observe the maximum effect of the application in Listing 18-2, quit and
relaunch the browser. This clears the image cache for the current session. After
you open Listing 18-2, wait until all status bar activity finishes, then choose images
from the precached list on the right (Figure 18-1). Unless your browser has its
memory cache turned off completely, you should see an instantaneous response to
selecting an image.

Figure 18-1: The image object demonstration page (Images © Aris Multimedia
Entertainment, Inc. 1994)

Next, choose an image from the left-hand listing. You should see the image
loading individually. The same happens for each new image you load. The images
you previously loaded this way are still in the memory cache, so they appear
instantaneously thereafter (until you quit again). These images are small images, of
course, so the impact on the wait time is not substantial. Imagine the perceived
performance improvement for users accessing larger images through the Net.

Finally, check the checkbox to watch the images in the right-hand side of the
table cycle through their grouping, changing images every five seconds. This
mechanism, too, takes advantage of the array numbering for the images.

Related Items: image.lowsrc property.

x
y

Value: Integer Gettable: Yes Settable: No

362 Part III ✦ JavaScript Object and Language Reference

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

Your Navigator 4 script can retrieve the x and y coordinates of an image object
(the top-left corner of the rectangular space occupied by the image) via the
image.x and image.y properties. These properties are read-only, but you can use
Dynamic HTML to change the location of a link if you like (see Chapters 41 to 43).

Even without Dynamic HTML, you can use the information from these
properties to help scroll a document to a precise position (with the
window.scrollTo() method) as a navigational aid in your page. Due to the
different ways each operating system platform renders pages and the different
sizes of browser windows, you can dynamically locate the position of a link given
the current client conditions.

Example
Due to the different ways each operating system platform renders pages and the

different sizes of browser windows, you can dynamically locate the position of a
link given the current client conditions. For example, if you want to scroll the
document so that the link is a few pixels below the top of the window, you could
use a statement such as this:

window.scrollTo(document.images[0].x, (document.images[0].y - 3))

Related Items: window.scrollTo() method.

Event handlers

onAbort=
onError=

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

Your scripts may need to be proactive when a user clicks on the Stop button
while an image is loading or when a network or server problem causes the image
transfer to fail. Use the onAbort= event handler to activate a function in the event
of a user clicking on the Stop button; use the onError= event handler for the
unexpected transfer snafu.

In practice, these event handlers don’t supply all the information you may like
to have in a script, such as the filename of the image that was loading at the time.
If such information is critical to your scripts, then the scripts need to store the
name of a currently loading image to a variable before they set the image’s src
property. You also won’t know the nature of the error that triggers an error event.

363Chapter 18 ✦ Image and Area Objects

You can treat such problems by forcing a scripted page to reload or by navigating
to an entirely different spot in your Web site.

Example
Listing 18-3 includes an onAbort= event handler. If the images already exist in

the cache, you must quit and relaunch the browser to try to stop the image from
loading. In that example, I provide a reload option for the entire page. How you
handle the exception depends a great deal on your page design. Do your best to
smooth over any difficulties that users may encounter.

onLoad=

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

JavaScript sends a load event to an image object when one of three possible
conditions occurs: an image’s LOWSRC image has finished loading; in the absence of
a LOWSRC image specification, the SRC image has finished loading; when each frame
of an animated GIF (GIF89a format) appears.

It’s important to understand that if you define a LOWSRC file inside an tag,
the image object receives no further word about the SRC image having completed
its loading. If this information is critical to your script, verify the current image file
by checking the src property of the image object.

This event handler appears to be broken in Navigator 4.

Example
Quit and restart your browser to get the most from Listing 18-3. As the document

first loads, the LOWSRC image file (the picture of pencil erasers) loads ahead of the
computer keyboard image. When the erasers are loaded, the onLoad= event handler
writes “done” to the text field, even though the main image has not yet loaded. You
can experiment further by loading the arch image. This image takes longer to load,
so the LOWSRC image (set on the fly, in this case) loads way ahead of it.

Listing 18-3: The Image onLoad= Event Handler

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript1.1">
function loadIt(theImage,form) {

form.result.value = ""
document.images[0].lowsrc = "desk1.gif"
document.images[0].src = theImage

}
function checkLoad(form) {

form.result.value = document.images[0].complete
}

(continued)

Note

364 Part III ✦ JavaScript Object and Language Reference

Listing 18-3 (continued)

function signal() {
if(confirm("You have stopped the image from loading. Do you want

to try again?")) {
location.reload()

}
}
</SCRIPT>
</HEAD>
<BODY>
<IMG SRC="cpu2.gif" LOWSRC="desk4.gif" WIDTH=120 HEIGHT=90
onLoad="document.forms[0].result.value='done'" onAbort="signal()">
<FORM>
<INPUT TYPE="button" VALUE="Load keyboard"
onClick="loadIt('cpu2.gif',this.form)">
<INPUT TYPE="button" VALUE="Load arch"
onClick="loadIt('arch.gif',this.form)"><P>
<INPUT TYPE="button" VALUE="Is it loaded yet?"
onClick="checkLoad(this.form)">
<INPUT TYPE="text" NAME="result">
</FORM>
</BODY>
</HTML>

Related Items: image.src property; image.lowsrc property.

Area Object
Properties Methods Event Handlers

target (None) onClick=

[location object properties] onMouseOut=

onMouseOver=

Syntax
Creating an image map area:

<MAP NAME=”areaMapName”>
<AREA

COORDS=”x1,y1,x2,y2,...”|”x-center,y-center,radius”
HREF=”locationOrURL”
[NOHREF]
[SHAPE=”rect” | “poly” | “circle” | “default”]

365Chapter 18 ✦ Image and Area Objects

[TARGET=”windowName”]
[onMouseOver=”handlerTextOrFunction”]
[onMouseOut=”handlerTextOrFunction”]>

</MAP>

Accessing area object properties:

[window.] document.links[index].property

About this object
JavaScript treats a map area object as one of the link objects in a document (see

the link object in Chapter 17). When you think about it, such treatment is not
illogical at all, because clicking on a map area generally leads the user to another
document or anchor location in the same document — a hyperlinked reference.

Although the HTML definitions of links and map areas are quite different, both
kinds of objects have nearly the same properties and event handlers. Therefore, to
read about the details for these items, refer to the discussion about the link object
in Chapter 17. The one difference is that a map area object does not have the same
full array of mouse event handlers.

Client-side image maps are fun to work with, and they have been well-
documented in HTML references since the feature was introduced in Netscape
Navigator 2. Essentially, you define any number of areas within the image, based on
shape and coordinates. Many graphics tools can help you capture the coordinates
of images that you need to enter into the COORDS= attribute of the <AREA> tag.

If one gotcha exists that trips up most HTML authors, it’s the link between the
 and <MAP> tags. The reason is that the link is a little tricky. You must assign
a name to the <MAP>; in the tag, the USEMAP= attribute requires a hash
symbol (#) and the map name. If you forget the hash symbol, you won’t create a
connection between image and map.

The onClick= event handler appears in Netscape’s area object beginning with
Navigator 4. To be backward compatible with Navigator 3, use a javascript: URL
for the HREF attribute if you want a click on the region to navigate to another page.

Example
To demonstrate how to script some area objects atop an image, Listing 18-4

defines six area objects for a space shuttle’s view of the Sinai area. Most of the
areas are rectangular, except for a path along a snakey Nile River that runs near
the bottom of the image. Run the pointer along this path to see how the complex
polygon tracks the twists and turns of the river. Can you find Cairo?

Listing 18-4: A Scripted Image Map

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
function show(msg) {

window.status = msg
return true

(continued)

Note

Caution

366 Part III ✦ JavaScript Object and Language Reference

Listing 18-4 Continued

}
function go(where) {

alert("We're going to " + where + "!")
}
function clearIt() {

window.status = ""
return true

}
</SCRIPT>
</HEAD>
<BODY>
<H1>Sinai and Vicinity</H1>

<MAP NAME="sinai">

<AREA HREF="javascript:go('Cairo')" COORDS="12,152,26,161"
SHAPE="rect" onMouseOver="return show('Cairo')" onMouseOut="return
clearIt()">

<AREA HREF="javascript:go('the Nile River')"
COORDS="1,155,6,162,0,175,3,201,61,232,109,227,167,238,274,239,292,220,
307,220,319,230,319,217,298,213,282,217,267,233,198,228,154,227,107,221
,71,225,21,199,19,165,0,149" SHAPE="poly" onMouseOver="return
show('Nile River')" onMouseOut="return clearIt()">

<AREA HREF="javascript:go('Israel')" COORDS="95,69,201,91"
SHAPE="rect" onMouseOver="return show('Israel')" onMouseOut="return
clearIt()">

<AREA HREF="javascript:go('Saudi Arabia')"
COORDS="256,57,319,121" SHAPE="rect" onMouseOver="return show('Saudi
Arabia')" onMouseOut="return clearIt()">

<AREA HREF="javascript:go('the Mediterranean Sea')"
COORDS="1,55,26,123" SHAPE="rect" onMouseOver="return
show('Mediterranean Sea')" onMouseOut="return clearIt()">

<AREA HREF="javascript:go('the Mediterranean Sea')"
COORDS="27,56,104,103" SHAPE="rect" onMouseOver="return
show('Mediterranean Sea')" onMouseOut="return clearIt()">
</MAP>
</BODY>
</HTML>

Although most maps have HREF attributes that point to URLs on the Web, I use
an internal javascript: URL to demonstrate how the window.status messages
written by onMouseOver= event handlers override the HREF display in the status
bar. For the Mediterranean Sea, I use two adjacent rectangles with identical
behaviors to show another way to handle irregular shapes.

✦ ✦ ✦

