
The Document
Object

User interaction is a vital aspect of client-side JavaScript
scripting, and most of the communication between

script and user takes place by way of the document object
and its components. Understanding the scope of the
document object is key to knowing how far you can take
JavaScript.

Review the document object’s place within the JavaScript
object hierarchy. Figure 16-1 clearly shows that the document
object is a pivotal point for a large percentage of JavaScript
objects.

In fact, the document object and all that it contains is so
big that I have divided its discussion into many chapters,
each focusing on related object groups. This chapter looks
only at the document object, while each of the eight
succeeding chapters details objects contained by the
document object.

I must stress at the outset that many newcomers to
JavaScript have the expectation that they can, on the fly,
modify sections of a loaded page’s content with ease: replace
some text here, change a table cell there. It’s very important,
however, to understand that except for a limited number of
JavaScript objects, Netscape’s document object model does
not allow a lot of content manipulation after a page has
loaded. The items that can be modified on the fly include text
object values, textarea object values, images (starting with
Navigator 3), and select object list contents

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Accessing arrays of
objects contained by
the document object

Changing content
colors

Writing new
document content to
a window or frame

✦ ✦ ✦ ✦

298 Part III ✦ JavaScript Object and Language Reference

Figure 16-1: The JavaScript object hierarchy

A handful of other invisible properties are modifiable after the fact, but their
settings don’t survive soft reloads of a document. If your pages need to modify
their contents based on user input or timed updates, consider designing your
pages so that scripts write the contents; then let the scripts rewrite the entire page
with your new settings.

Dynamic HTML and Documents
Navigator 4 and Internet Explorer 4 usher in a new concept called Dynamic

HTML (DHTML). I devote Chapters 41 through 43 to the concepts behind DHTML.
One of the advantages of this new page construction technique is that more
content can, in fact, be altered on the fly after a document has loaded. Many of the
roadblocks to creativity in earlier browser versions have been shattered with
DHTML. Unfortunately, Netscape and Microsoft are not yet on the same page of the
playbook when it comes to implementing scriptable interfaces to DHTML. Some
common denominators exist, thanks to the W3C standards body, but both
companies have numerous extensions that operate on different principles.

The fundamental difference is in the way each company implements content
holders that our scripts can modify. Netscape relies on a new HTML <LAYER> tag
and layer object; Microsoft has essentially turned every existing content-related
tag into an object in the Internet Explorer 4 document object model.

Both methodologies have their merits. I like the ability to change text or HTML
for any given element in an Internet Explorer 4 page. At the same time, Netscape’s
layer object, despite the HTML tag proliferation it brings, is a convenient container
for a number of interesting animation effects. Because the point of view of this
book is from that of Navigator, my assumption is you are designing primarily (if not
exclusively) for a Netscape user audience, with the need to be compatible with
Internet Explorer users. Therefore, if you see that I am glossing over a favorite
Internet Explorer–only feature of yours, I do so to keep the discussion focused on
Navigator applications, not to denigrate Microsoft’s accomplishments.

link anchor layer applet image area

text radio fileUpload

textarea checkbox reset

password submit

select

option

frame self parenttop
window

history location toolbar, etc.document

form

button

299Chapter 16 ✦ The Document Object

Document Object
Document Object Properties Methods Event Handlers

alinkColor captureEvents() (None)

anchors[] clear()

applets[] close()

bgColor getSelection()

cookie handleEvent()

cookie open()

domain releaseEvents()

embeds routeEvent()

fgColor write()

forms[] writeln()

images[]

lastModified

layers[]

linkColor

links[]

location

referrer

title

URL

vlinkColor

Syntax
Creating a document:

<BODY
[BACKGROUND=”backgroundImageURL”]
[BGCOLOR=”#backgroundColor”]
[TEXT=”#foregroundColor”]
[LINK=”#unfollowedLinkColor”]
[ALINK=”#activatedLinkColor”]
[VLINK=”#followedLinkColor”]
[onClick=”handlerTextOrFunction”]
[onDblClick=”handlerTextOrFunction”]
[onMouseDown=”handlerTextOrFunction”]

300 Part III ✦ JavaScript Object and Language Reference

[onMouseUp=”handlerTextOrFunction”]
[onKeyDown=”handlerTextOrFunction”]
[onKeyPress=”handlerTextOrFunction”]
[onKeyUp=”handlerTextOrFunction”]
[onLoad=”handlerTextOrFunction”]
[onUnload=”handlerTextOrFunction”]
[onBlur=”handlerTextOrFunction”]
[onFocus=”handlerTextOrFunction”]
[onMove=”handlerTextOrFunction”]
[onResize=”handlerTextOrFunction”]
[onDragDrop=”handlerTextOrFunction”]>

</BODY>

Accessing document properties or methods:

[window.] document.property | method([parameters])

About this object
A document object is the totality of what exists inside the content region of a

browser window or window frame (excluding toolbars, status lines, and so on).
The document is a combination of the content and interface elements that make
the Web page worth visiting.

The officially sanctioned syntax for creating a document object, shown above,
may mislead you to think that only elements defined within <BODY> tags comprise
a document object. In truth, some <HEAD> tag information, such as <TITLE> and,
of course, any scripts inside <SCRIPT> tags, are part of the document as well. So
are some other values (properties), including the date on which the disk file of the
document was last modified and the URL from which the user reached the current
document.

Many event handlers defined in the Body, such as onLoad= and onUnload=, are
not document-event handlers but rather window-event handlers. Load and unload
events are sent to the window after the document finishes loading and just prior to
the document being cleared from the window, respectively. See Chapter 14’s
discussion about the window object for more details about these and other
window events whose event handlers are placed in the <BODY> tag.

Another way to create a document is to use the document.write() method to
blast some or all of an HTML page into a window or frame. The window may be the
current window running a script, a subwindow created by the script, or another
frame in the current frameset. If you are writing the entire document, it is good
practice to write a formal HTML page with all the tags you would normally put into
an HTML file on your server.

301Chapter 16 ✦ The Document Object

Properties

alinkColor
vlinkColor
bgColor
fgColor
linkColor

Value: Hexadecimal triplet string Gettable: Yes Settable: Limited

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Netscape began using these <BODY> attributes for various color settings with
Navigator Version 1.1. Many other browsers now accept these attributes, and they
are part of HTML Level 3.2. All five settings can be read via scripting, but the
ability to change some or all of these properties varies widely with browser and
client platform. Table 16-1 shows a summary of which browsers and platforms can
set which of the color properties. Notice that only document.bgColor is
adjustable on the fly in Navigator browsers.

Table 16-1
Setting Document Colors on the Fly (Browser Versions)

Navigator Internet Explorer

Color Property Windows Mac UNIX Windows Mac UNIX

bgColor All 4 4 All All 4

All others None None None All All 4

If you experiment with setting document.bgColor on Mac or UNIX versions of
Navigator 2 and 3, you may be fooled into thinking that the property is being set
correctly. While the property value may stick, these platforms do not refresh their
windows properly: if you change the color after all content is rendered, the swath
of color obscures the content until a reload of the window. The safest, backward-
compatible scripted way of setting document color properties is to compose the
content of a frame or window and set the <BODY> tag color attributes dynamically.

Values for all color properties can be either the common HTML hexadecimal
triplet value (for example, “#00FF00”) or any of the Netscape color names.
Internet Explorer recognizes these plain language color names, as well. But also be
aware that some colors work only when the user has the monitor set to 16- or 24-
bit color settings.

302 Part III ✦ JavaScript Object and Language Reference

JavaScript object property names are case-sensitive. This is important for the
five property names that begin with lowercase letters and have an uppercase C
within them.

Example
I’ve selected some color values at random to plug into three settings of the ugly

colors group for Listing 16-1. The smaller window displays a dummy button so you
can see how its display contrasts with color settings. Notice that the script sets
the colors of the smaller window by rewriting the entire window’s HTML code.
After changing colors, the script displays the color values in the original window’s
textarea. Even though some colors are set with the Netscape color constant values,
properties come back in the hexadecimal triplet values. You can experiment to
your heart’s content by changing color values in the listing. Every time you change
the values in the script, save the HTML file and reload it in the browser.

Listing 16-1: Color Sampler

<HTML>
<HEAD>
<TITLE>Color Me</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function defaultColors() {

return "BGCOLOR='#c0c0c0' VLINK='#551a8b' LINK='#0000ff'"
}

function uglyColors() {
return "BGCOLOR='yellow' VLINK='pink' LINK='lawngreen'"

}
function showColorValues() {

var result = ""
result += "bgColor: " + newWindow.document.bgColor + "\n"
result += "vlinkColor: " + newWindow.document.vlinkColor + "\n"
result += "linkColor: " + newWindow.document.linkColor + "\n"
document.forms[0].results.value = result

}
// dynamically writes contents of another window
function drawPage(colorStyle) {

var thePage = ""
thePage += "<HTML><HEAD><TITLE>Color Sampler</TITLE></HEAD><BODY

"
if (colorStyle == "default") {

thePage += defaultColors()
} else {

thePage += uglyColors()
}
thePage += ">Just so you can see the variety of items and

color, <A "
thePage += "HREF='http://www.nowhere.com'>here's a link,

and here is another link you
can use on-line to visit and see how its color differs from the
standard link."

303Chapter 16 ✦ The Document Object

thePage += "<FORM>"
thePage += "<INPUT TYPE='button' NAME='sample' VALUE='Just a

Button'>"
thePage += "</FORM></BODY></HTML>"
newWindow.document.write(thePage)
newWindow.document.close()
showColorValues()

}
// the following works properly only in Windows Navigator
function setColors(colorStyle) {

if (colorStyle == "default") {
document.bgColor = "#c0c0c0"

} else {
document.bgColor = "yellow"

}
}
var newWindow = window.open("","","height=150,width=300")
</SCRIPT>
</HEAD>

<BODY>
Try the two color schemes on the document in the small window.
<FORM>
<INPUT TYPE="button" NAME="default" VALUE='Default Colors'
onClick="drawPage('default')">
<INPUT TYPE="button" NAME="weird" VALUE="Ugly Colors"
onClick="drawPage('ugly')"><P>
<TEXTAREA NAME="results" ROWS=3 COLS=20></TEXTAREA><P><HR>
These buttons change the current document, but not correctly on all
platforms<P>
<INPUT TYPE="button" NAME="default" VALUE='Default Colors'
onClick="setColors('default')">
<INPUT TYPE="button" NAME="weird" VALUE="Ugly Colors"
onClick="setColors('ugly')"><P>
</FORM>
<SCRIPT LANGUAGE="JavaScript">
drawPage("default")
</SCRIPT>
</BODY>

To satisfy the curiosity of those who want to change the color of a loaded
document on the fly, the preceding example includes a pair of buttons that set the
color properties of the current document. If you’re running browsers and versions
capable of this power (see Table 16-1), everything will look fine; but in other
platforms, you may lose the buttons and other document content behind the color.
You can still click and activate these items, but the color obscures them. Unless
you know for sure that users of your Web page use only browsers and clients
empowered for background color changes, do not change colors by setting
properties of an existing document. And if you set the other color properties for
Internet Explorer users, the settings are ignored safely by Navigator.

304 Part III ✦ JavaScript Object and Language Reference

If you are using Internet Explorer 3 for the Macintosh, you will experience some
difficulties with Listing 16-1. The script in the main document loses its connection
with the subwindow; it does not redraw the second window with other colors. You
can, however, change the colors in the main document. The significant flicker you
may experience is related to the way the Mac version redraws content after
changing colors.

Related Items: document.links property.

anchors
Value: Array of anchor objects Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Anchor objects (described in Chapter 17) are points in an HTML document
marked with tags. Anchor objects are referenced in URLs by a
trailing hash value. Like other object properties that contain a list of nested
objects, the document.anchors property (notice the plural) delivers an indexed
array of anchors in a document. Use the array references to pinpoint a specific
anchor for retrieving any anchor property.

Anchor arrays begin their index counts with 0: The first anchor in a document,
then, has the reference document.anchors[0]. And, as is true with any built-in
array object, you can find out how many entries the array has by checking the
length property. For example

anchorCount = document.anchors.length

The document.anchors property is read-only (and its array entries come back
as null). To script navigation to a particular anchor, assign a value to the
window.location or window.location.hash object, as described in Chapter
15’s location object discussion.

Example
In Listing 16-2, I appended an extra script to a listing from Chapter 15 to

demonstrate how to extract the number of anchors in the document. The
document dynamically writes the number of anchors found in the document. You
will not likely ever need to reveal such information to users of your page, and the
document.anchors property is not one that you will call frequently. The object
model defines it automatically as a document property while defining actual
anchor objects.

Listing 16-2: Reading the Number of Anchors

<HTML>
<HEAD>

Note

305Chapter 16 ✦ The Document Object

<TITLE>document.anchors Property</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function goNextAnchor(where) {

window.location.hash = where
}
</SCRIPT>
</HEAD>

<BODY>

<H1>Top</H1>
<FORM>
<INPUT TYPE="button" NAME="next" VALUE="NEXT"
onClick="goNextAnchor('sec1')">
</FORM>
<HR>

<H1>Section 1</H1>
<FORM>
<INPUT TYPE="button" NAME="next" VALUE="NEXT"
onClick="goNextAnchor('sec2')">
</FORM>
<HR>

<H1>Section 2</H1>
<FORM>
<INPUT TYPE="button" NAME="next" VALUE="NEXT"
onClick="goNextAnchor('sec3')">
</FORM>
<HR>

<H1>Section 3</H1>
<FORM>
<INPUT TYPE="button" NAME="next" VALUE="BACK TO TOP"
onClick="goNextAnchor('start')">
</FORM>
<HR><P>
<SCRIPT LANGUAGE="JavaScript">
document.write("<I>There are " + document.anchors.length + " anchors
defined for this document</I>")
</SCRIPT>
</BODY>
</HTML>

Related Items: anchor object; location object; document.links property.

applets
Value: Array of applet objects Gettable: Yes Settable: No

306 Part III ✦ JavaScript Object and Language Reference

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

The applets property refers to Java applets defined in a document by the
<APPLET> tag. An applet is not officially an object in the document until the
applet loads completely.

Most of the work you do with Java applets from JavaScript takes place via the
methods and variables defined inside the applet. Although you can reference an
applet according to its indexed array position, you will more likely use the applet
object’s name in the reference to avoid any confusion. For more details, see the
discussion of the applet object later in this chapter and the LiveConnect
discussion in Chapter 38.

Example
The document.applets property is defined automatically as the browser builds

the object model for a document that contains applet objects. You will rarely access
this property, except to determine how many applet objects a document has.

Related Items: applet object.

cookie
Value: String Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

The cookie mechanism in Navigator lets you store small pieces of information
on the client computer in a reasonably secure manner. In other words, when you
need some tidbit of information to persist at the client level while either loading
diverse HTML documents or moving from one session to another, the cookie
mechanism saves the day. Netscape’s technical documentation (much of which is
written from the perspective of a server writing to a cookie) can be found on the
Web at http://www.netscape.com/newsref/std/cookie_spec.html.

The cookie is commonly used as a means to store the username and password
you enter into a password-protected Web site. The first time you enter this
information into a CGI-governed form, the CGI program has Navigator write the
information back to a cookie on your hard disk (usually after encrypting the
password). Rather than bothering you to enter the username and password the
next time you access the site, the server searches the cookie data stored for that
particular server and extracts the username and password for automatic validation
processing behind the scenes.

I cover the technical differences between Navigator and Internet Explorer cookies
later in this section. But if you are using Internet Explorer 3, be aware that the
browser neither reads nor writes cookies when the document accessing the cookie is
on the local hard disk. Internet Explorer 4 works with cookies generated by local files.

Note

307Chapter 16 ✦ The Document Object

The cookie file
Allowing some foreign CGI program to read from and write to your hard disk

may give you pause, but Navigator doesn’t just open up your drive’s directory for
the world to see (or corrupt). Instead, the cookie mechanism provides access to
just one special text file located in a platform-specific spot on your drive.

In Windows versions of Navigator, the cookie file is named cookies.txt and is
located in the Navigator directory; Mac users can find the MagicCookie file inside
the Netscape folder, which is located within the System Folder:Preferences folder.
The cookie file is a text file (but because the MagicCookie file’s type is not TEXT,
Mac users can open it only via applications capable of opening any kind of file).
Internet Explorer uses a different filing system: Each cookie is saved as its own file
inside a Cookies directory within system directories.

If curiosity drives you to open the cookie file, I recommend you do so only with
a copy saved in another directory or folder. Any alteration to the existing file can
mess up whatever valuable cookies are stored there for sites you regularly visit.
Inside the file (after a few comment lines warning you not to manually alter the
file) are lines of tab-delimited text. Each return-delimited line contains one cookie’s
information. The cookie file is just like a text listing of a database.

As you experiment with Navigator cookies, you will be tempted to look into the
cookie file after a script writes some data to the cookie. The cookie file will not
contain the newly written data, because cookies are transferred to disk only when
the user quits Navigator; conversely, the cookie file is read into Navigator’s
memory when it is launched. While you read, write, and delete cookies during a
Navigator session, all activity is performed in memory (to speed up the process) to
be saved later.

A cookie record
Among the “fields” of each cookie record are the following:

✦ Domain of the server that created the cookie

✦ Information on whether you need a secure HTTP connection to access the
cookie

✦ Pathname of URL(s) capable of accessing the cookie

✦ Expiration date of the cookie

✦ Name of the cookie entry

✦ String data associated with the cookie entry

Notice that cookies are domain-specific. In other words, if one domain creates a
cookie, another domain cannot access it through Navigator’s cookie mechanism
behind your back. That reason is why it’s generally safe to store what I call
throwaway passwords (the username/password pairs required to access some free
registration-required sites) in cookies. Moreover, sites that store passwords in a
cookie usually do so as encrypted strings, making it more difficult for someone to
hijack the cookie file from your unattended PC and figure out what your personal
password scheme might be.

Note

308 Part III ✦ JavaScript Object and Language Reference

Cookies also have expiration dates. Because the Navigator cookie file can hold
no more than 300 cookies (as dictated by Navigator), the cookie file can get pretty
full over the years. Therefore, if a cookie needs to persist past the current
Navigator session, it also has an expiration date established by the cookie writer.
Navigator cleans out any expired cookies to keep the file from exploding some
years hence.

Not all cookies have to last beyond the current session, however. In fact, a
scenario in which you use cookies temporarily while working your way through a
Web site is quite typical. Many shopping sites employ one or more temporary
cookie records to behave as the shopping cart for recording items you intend to
purchase. These items are copied to the order form at check-out time. But once
you submit the order form to the server, that client-side data has no particular
value. As it turns out, if your script does not specify an expiration date, Navigator
keeps the cookie fresh in memory without writing it to the cookie file. When you
quit Navigator, that cookie data disappears as expected.

JavaScript access
Scripted access of cookies from JavaScript is limited to setting the cookie (with

a number of optional parameters) and getting the cookie data (but with none of
the parameters).

The JavaScript object model defines cookies as properties of documents, but
this description is somewhat misleading. If you use the default path to set a cookie
(that is, the current directory of the document whose script sets the cookie in the
first place), then all documents in that same directory have read and write access
to the cookie. A benefit of this arrangement is that if you have a scripted
application that contains multiple documents, all documents in the same directory
can share the cookie data. Netscape Navigator, however, imposes a limit of 20
named cookies entries for any domain; Internet Explorer 3 imposes an even more
restrictive limit of one cookie (that is, one name-value pair) per domain. If your
cookie requirements are extensive, then you need to fashion ways of concatenating
cookie data (I do this in the Decision Helper application on the CD-ROM).

Saving cookies
To write cookie data to the cookie file, you use a simple JavaScript assignment

operator with the document.cookie property. But the formatting of the data is
crucial to achieving success. Here is the syntax for assigning a value to a cookie
(optional items are in brackets):

document.cookie = “cookieName=cookieData
[; expires=timeInGMTString]
[; path=pathName]
[; domain=domainName]
[; secure]”

Examine each of the properties individually.

Name/Data
Each cookie must have a name and a string value (even if that value is an empty

string). Such name-value pairs are fairly common in HTML, but they look odd in an

309Chapter 16 ✦ The Document Object

assignment statement. For example, if you want to save the string “Fred” to a
cookie named “userName,” the JavaScript statement is

document.cookie = “userName=Fred”

If Navigator sees no existing cookie in the current domain with this name, it
automatically creates the cookie entry for you; if the named cookie already exists,
Navigator replaces the old data with the new data. Retrieving document.cookie at
this point yields the following string:

userName=Fred

You can omit all the other cookie-setting properties, in which case Navigator
uses default values, as explained in a following section. For temporary cookies
(those that don’t have to persist beyond the current Navigator session), the name-
value pair is usually all you need.

The entire name-value pair must be a single string with no semicolons, commas,
or character spaces. To take care of spaces between words, preprocess the value
with the JavaScript escape() function, which ASCII-encodes the spaces as %20
(and then be sure to unescape() the value to restore the human-readable spaces
when you retrieve the cookie later).

You cannot save a JavaScript array to a cookie. But with the help of the
Array.join() method, you can convert an array to a string; use String.split()
to re-create the array after reading the cookie at a later time. These two methods
are available in Navigator from Version 3 onward and Internet Explorer 4 onward. If
you add extra parameters, notice that all of them are included in the single string
assigned to the document.cookie property. Also, each of the parameters must be
separated by a semicolon and space.

Expires
Expiration dates, when supplied, must be passed as Greenwich mean time

(GMT) strings (see Chapter 29 about time data). To calculate an expiration date
based on today’s date, use the JavaScript Date object as follows:

var exp = new Date()
var oneYearFromNow = exp.getTime() + (365 * 24 * 60 * 60 * 1000)
exp.setTime(oneYearFromNow)

Then convert the date to the accepted GMT string format:

document.cookie = “userName=Fred; expires=” + exp.toGMTString()

In the cookie file, the expiration date and time is stored as a numeric value
(seconds) but, to set it, you need to supply the time in GMT format. You can delete
a cookie before it expires by setting the named cookie’s expiration date to a time
and date earlier than the current time and date. The safest expiration parameter is

expires=Thu, 01-Jan-70 00:00:01 GMT

Omitting the expiration date signals Navigator that this cookie is temporary.
Navigator never writes it to the cookie file and forgets it the next time you quit
Navigator.

310 Part III ✦ JavaScript Object and Language Reference

Path
For client-side cookies, the default path setting (the current directory) is usually

the best choice. You can, of course, create a duplicate copy of a cookie with a
separate path (and domain) so the same data is available to a document located in
another area of your site (or the Web).

Domain
To help synchronize cookie data with a particular document (or group of

documents), Navigator matches the domain of the current document with the
domain values of cookie entries in the cookie file. Therefore, if you were to display
a list of all cookie data contained in a document.cookie property, you would get
back all the name-value cookie pairs from the cookie file whose domain parameter
matches that of the current document.

Unless you expect the document to be replicated in another server within your
domain, you can usually omit the domain parameter when saving a cookie.
Navigator automatically supplies the domain of the current document to the
cookie file entry. Be aware that a domain setting must have at least two periods,
such as

.mcom.com

.hotwired.com

Or, you can write an entire URL to the domain, including the http:// protocol
(as Navigator does automatically when the domain is not specified).

SECURE
If you omit the SECURE parameter when saving a cookie, you imply that the

cookie data is accessible to any document or CGI program from your site that
meets the other domain- and path-matching properties. For client-side scripting of
cookies, you should omit this parameter when saving a cookie.

Retrieving cookie data
Cookie data retrieved via JavaScript is contained in one string, including the

whole name-data pair. Even though the cookie file stores other parameters for each
cookie, you can only retrieve the name-data pairs via JavaScript. Moreover, in
Navigator when two or more (up to a maximum of 20) cookies meet the current
domain criteria, these cookies are also lumped into that string, delimited by a
semicolon and space. For example, a document.cookie string might look like this:

userName=Fred; password=NikL2sPacU

In other words, you cannot treat named cookies as objects. Instead, you must
parse the entire cookie string, extracting the data from the desired name-data pair.

When you know that you’re dealing with only one cookie (and that no more will
ever be added to the domain), you can customize the extraction based on known
data, such as the cookie name. For example, with a cookie name that is seven
characters long, you can extract the data with a statement like this:

var data =
unescape(document.cookie.substring(7,document.cookie.length))

311Chapter 16 ✦ The Document Object

The first parameter of the substring() method includes the equals sign to
separate the name from the data.

A better approach is to create a general purpose function that can work with
single- or multiple-entry cookies. Here is one I use in some of my pages:

function getCookieData(label) {
var labelLen = label.length
var cLen = document.cookie.length
var i = 0
var cEnd
while (i < cLen) {

var j = i + labelLen
if (document.cookie.substring(i,j) == label) {

cEnd = document.cookie.indexOf(“;”,j)
if (cEnd == -1) {

cEnd = document.cookie.length
}
return unescape(document.cookie.substring(j,cEnd))

}
i++

}
return “”

}

Calls to this function pass the name of the desired cookie as a parameter. The
function parses the entire cookie string, chipping away any mismatched entries
(through the semicolons) until it finds the cookie name.

If all of this cookie code still makes your head hurt, you can turn to a set of
functions devised by experienced JavaScripter and Web site designer Bill Dortch of
hIdaho Design. His cookie functions provide generic access to cookies that you can
use in all of your cookie-related pages. Listing 16-3 shows Bill’s cookie functions,
which include a variety of safety nets for date calculation bugs that appeared in
some versions of Netscape Navigator 2. Don’t be put off by the length of the listing:
Most of the lines are comments. Updates to Bill’s functions can be found at
http://www.hidaho.com/cookies/cookie.txt.

Listing 16-3: Bill Dortch’s cookie Functions

<html>
<head>
<title>Cookie Functions</title>
</head>
<body>
<script language="javascript">
<!-- begin script
//
// Cookie Functions -- "Night of the Living Cookie" Version (25-Jul-96)
//
// Written by: Bill Dortch, hIdaho Design <bdortch@hidaho.com>
// The following functions are released to the public domain.
//

(continued)

312 Part III ✦ JavaScript Object and Language Reference

Listing 16-3 (continued)

// This version takes a more aggressive approach to deleting
// cookies. Previous versions set the expiration date to one
// millisecond prior to the current time; however, this method
// did not work in Netscape 2.02 (though it does in earlier and
// later versions), resulting in "zombie" cookies that would not
// die. DeleteCookie now sets the expiration date to the earliest
// usable date (one second into 1970), and sets the cookie's value
// to null for good measure.
//
// Also, this version adds optional path and domain parameters to
// the DeleteCookie function. If you specify a path and/or domain
// when creating (setting) a cookie**, you must specify the same
// path/domain when deleting it, or deletion will not occur.
//
// The FixCookieDate function must now be called explicitly to
// correct for the 2.x Mac date bug. This function should be
// called *once* after a Date object is created and before it
// is passed (as an expiration date) to SetCookie. Because the
// Mac date bug affects all dates, not just those passed to
// SetCookie, you might want to make it a habit to call
// FixCookieDate any time you create a new Date object:
//
// var theDate = new Date();
// FixCookieDate (theDate);
//
// Calling FixCookieDate has no effect on platforms other than
// the Mac, so there is no need to determine the user's platform
// prior to calling it.
//
// This version also incorporates several minor coding improvements.
//
// **Note that it is possible to set multiple cookies with the same
// name but different (nested) paths. For example:
//
// SetCookie ("color","red",null,"/outer");
// SetCookie ("color","blue",null,"/outer/inner");
//
// However, GetCookie cannot distinguish between these and will return
// the first cookie that matches a given name. It is therefore
// recommended that you *not* use the same name for cookies with
// different paths. (Bear in mind that there is *always* a path
// associated with a cookie; if you don't explicitly specify one,
// the path of the setting document is used.)
//
// Revision History:
//
// "Toss Your Cookies" Version (22-Mar-96)
// - Added FixCookieDate() function to correct for Mac date bug
//
// "Second Helping" Version (21-Jan-96)

313Chapter 16 ✦ The Document Object

// - Added path, domain and secure parameters to SetCookie
// - Replaced home-rolled encode/decode functions with Netscape's
// new (then) escape and unescape functions
//
// "Free Cookies" Version (December 95)
//
//
// For information on the significance of cookie parameters,
// and on cookies in general, please refer to the official cookie
// spec, at:
//
// http://www.netscape.com/newsref/std/cookie_spec.html
//
//**
//
// "Internal" function to return the decoded value of a cookie
//
function getCookieVal (offset) {

var endstr = document.cookie.indexOf (";", offset);
if (endstr == -1)

endstr = document.cookie.length;
return unescape(document.cookie.substring(offset, endstr));

}
//
// Function to correct for 2.x Mac date bug. Call this function to
// fix a date object prior to passing it to SetCookie.
// IMPORTANT: This function should only be called *once* for
// any given date object! See example at the end of this document.
//
function FixCookieDate (date) {

var base = new Date(0);
var skew = base.getTime(); // dawn of (Unix) time - should be 0
if (skew > 0) // Except on the Mac - ahead of its time

date.setTime (date.getTime() - skew);
}
//
// Function to return the value of the cookie specified by "name".
// name - String object containing the cookie name.
// returns - String object containing the cookie value, or null if
// the cookie does not exist.
//
function GetCookie (name) {

var arg = name + "=";
var alen = arg.length;
var clen = document.cookie.length;
var i = 0;
while (i < clen) {

var j = i + alen;
if (document.cookie.substring(i, j) == arg)

return getCookieVal (j);
i = document.cookie.indexOf(" ", i) + 1;

if (i == 0) break;
}

(continued)

314 Part III ✦ JavaScript Object and Language Reference

Listing 16-3 (continued)

return null;
}
//
// Function to create or update a cookie.
// name - String object containing the cookie name.
// value - String object containing the cookie value. May contain
// any valid string characters.
// [expires] - Date object containing the expiration data of the cookie. If
// omitted or null, expires the cookie at the end of the current session.
// [path] - String object indicating the path for which the cookie is valid.
// If omitted or null, uses the path of the calling document.
// [domain] - String object indicating the domain for which the cookie is
// valid. If omitted or null, uses the domain of the calling document.
// [secure] - Boolean (true/false) value indicating whether cookie transmission
// requires a secure channel (HTTPS).
//
// The first two parameters are required. The others, if supplied, must
// be passed in the order listed above. To omit an unused optional field,
// use null as a place holder. For example, to call SetCookie using name,
// value and path, you would code:
//
// SetCookie ("myCookieName", "myCookieValue", null, "/");
//
// Note that trailing omitted parameters do not require a placeholder.
//
// To set a secure cookie for path "/myPath", that expires after the
// current session, you might code:
//
// SetCookie (myCookieVar, cookieValueVar, null, "/myPath", null, true);
//
function SetCookie (name,value,expires,path,domain,secure) {

document.cookie = name + "=" + escape (value) +
((expires) ? "; expires=" + expires.toGMTString() : "") +
((path) ? "; path=" + path : "") +
((domain) ? "; domain=" + domain : "") +
((secure) ? "; secure" : "");

}

// Function to delete a cookie. (Sets expiration date to start of epoch)
// name - String object containing the cookie name
// path - String object containing the path of the cookie to delete. This MUST
// be the same as the path used to create the cookie, or null/omitted if
// no path was specified when creating the cookie.
// domain - String object containing the domain of the cookie to delete. This MUST
// be the same as the domain used to create the cookie, or null/omitted if
// no domain was specified when creating the cookie.
//
function DeleteCookie (name,path,domain) {

if (GetCookie(name)) {
document.cookie = name + "=" +

315Chapter 16 ✦ The Document Object

((path) ? "; path=" + path : "") +
((domain) ? "; domain=" + domain : "") +
"; expires=Thu, 01-Jan-70 00:00:01 GMT";

}
}

//
// Examples
//
var expdate = new Date ();
FixCookieDate (expdate); // Correct for Mac date bug - call only once
for given Date object!
expdate.setTime (expdate.getTime() + (24 * 60 * 60 * 1000)); // 24 hrs
from now
SetCookie ("ccpath", "http://www.hidaho.com/colorcenter/", expdate);
SetCookie ("ccname", "hIdaho Design ColorCenter", expdate);
SetCookie ("tempvar", "This is a temporary cookie.");
SetCookie ("ubiquitous", "This cookie will work anywhere in this
domain",null,"/");
SetCookie ("paranoid", "This cookie requires secure
communications",expdate,"/",null,true);
SetCookie ("goner", "This cookie must die!");
document.write (document.cookie + "
");
DeleteCookie ("goner");
document.write (document.cookie + "
");
document.write ("ccpath = " + GetCookie("ccpath") + "
");
document.write ("ccname = " + GetCookie("ccname") + "
");
document.write ("tempvar = " + GetCookie("tempvar") + "
");
// end script -->
</script>
</body>
</html>

Extra batches
You may design a site that needs more than 20 Netscape cookies for a given

domain. For example, in a shopping site, you never know how many items a
customer might load into the shopping cart cookie.

Because each named cookie stores plain text, you can create your own text-
based data structures to accommodate multiple pieces of information per cookie.
(Despite Netscape’s information that each cookie can contain up to 4,000
characters, the value of one name-value pair cannot exceed 2,000 characters.) The
trick is determining a delimiter character that won’t be used by any of the data in
the cookie. In Decision Helper (on the CD-ROM), for example, I use a period to
separate multiple integers stored in a cookie; Netscape uses colons to separate
settings in the custom page cookie data.

With the delimiter character established, you must then write functions that
concatenate these “subcookies” into single cookie strings and extract them on the
other side. It’s a bit more work, but well worth the effort to have the power of
persistent data on the client.

316 Part III ✦ JavaScript Object and Language Reference

Example
Experiment with the last group of statements in Listing 16-3 to create, retrieve,

and delete cookies.

Related Items: String object methods (Chapter 27).

domain
Value: String Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

Security restrictions can get in the way of sites that have more than one server
at their domain. Because some objects, especially the location object, prevent
access to properties of other servers displayed in other frames, legitimate access
to those properties are blocked. For example, it’s not uncommon for popular sites
to have their usual public access site on a server named something like
www.popular.com. If a page on that server includes a front end to a site search
engine located at search.popular.com, visitors who use browsers with these
security restrictions will be denied access.

To guard against that eventuality, a script in documents from both servers can
instruct the browser to think both servers are the same. In the example above, you
would set the document.domain property in both documents to popular.com.
Without specifically setting the property, the default value includes the server
name as well, thus causing a mismatch between host names.

Before you start thinking you can spoof your way into other servers, be aware
that you can set the document.domain property only to servers with the same
domain (following the “two-dot” rule) as the document doing the setting.
Therefore, documents originating only from xxx.popular.com can set their
document.domain properties to popular.com server.

Related Items: window.open() method; window.location object; security
(Chapter 40).

embeds
Value: Array of plug-ins Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

Whenever you want to load data that requires a plug-in application to play or
display, you use the <EMBED> tag. The document.embeds property is merely one
way to determine the number of such tags defined in the document:

317Chapter 16 ✦ The Document Object

var count = document.embeds.length

For controlling those plug-ins in Navigator, you can use the LiveConnect
technology, described in Chapter 38.

forms
Value: Array Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

As I show in Chapter 21, which is dedicated to the form object, an HTML form
(anything defined inside a <FORM>...</FORM> tag pair) is a JavaScript object unto
itself. You can create a valid reference to a form according to its name (assigned
via a form’s NAME= attribute). For example, if a document contains the following
form definition

<FORM NAME=”phoneData”>
input item definitions

</FORM>

your scripts can refer to the form object by name:

document.phoneData

However, a document object also tracks its forms in another way: as a
numbered list of forms. This type of list in JavaScript is called an array, which
means a table consisting of just one column of data. Each row of the table holds a
representation of the corresponding form in the document. In the first row of a
document.forms array, for instance, is the form that loaded first (it was first from
the top of the HTML code). If your document defines one form, the forms property
is an array one entry in length; with three separate forms in the document, the
array is three entries long.

To help JavaScript determine which row of the array your script wants to
access, you append a pair of brackets to the forms property name and insert the
row number between the brackets (this is standard JavaScript array notation).
This number is formally known as the index. JavaScript arrays start their row
numbering with 0, so the first entry in the array is referenced as

document.forms[0]

At that point, you’re referencing the equivalent of the first form object. Any of
its properties or methods are available by appending the desired property or
method name to the reference. For example, to retrieve the value of an input text
field named “homePhone” from the second form of a document, the reference you
use is

document.forms[1].homePhone.value

One advantage to using the document.forms property for addressing a form
object or element instead of the actual form name is that you may be able to

318 Part III ✦ JavaScript Object and Language Reference

generate a library of generalizable scripts that know how to cycle through all
available forms in a document and hunt for a form that has some special element
and property. The following script fragment (part of a repeat loop described more
fully in Chapter 31) uses a loop-counting variable (i) to help the script check all
forms in a document:

for (var i = 0; i < document.forms.length; i++) {
if (document.forms[i]. ...) {

statements
}

}

Each time through the repeat loop, JavaScript substitutes the next higher value
for i in the document.forms[i] object reference. Not only does the array
counting simplify the task of checking all forms in a document, but this fragment is
totally independent of whatever names you assign to forms.

As you saw in the preceding script fragment, there is one more aspect of the
document.forms property that you should be aware of. All JavaScript arrays that
represent built-in objects have a length property that returns the number of entries
in the array. JavaScript counts the length of arrays starting with 1. Therefore, if the
document.forms.length property returns a value of 2, the form references for this
document would be document.forms[0] and document.forms[1]. If you haven’t
programmed these kinds of arrays before, the different numbering systems (indexes
starting with 0, length counts starting with 1) take some getting used to.

If you use a lot of care in assigning names to objects, you will likely prefer the
document.formName style of referencing forms. In this book, you see both indexed
array and form name style references. The advantage of using name references is
that even if you redesign the page and change the order of forms in the document,
references to the named forms will still be valid, whereas the index numbers of the
forms will have changed. See also the discussion in Chapter 21 of the form object
and how to pass a form’s data to a function.

Example
The document in Listing 16-4 is set up to display an alert dialog box that

replicates navigation to a particular music site, based on the checked status of the
“bluish” checkbox. The user input here is divided into two forms: one form with
the checkbox and the other form with the button that does the navigation. A block
of copy fills the space in between. Clicking the bottom button (in the second form)
triggers the function that fetches the checked property of the “bluish” checkbox,
using the document.forms[i] array as part of the address.

Listing 16-4: Using the document.forms Property

<HTML>
<HEAD>
<TITLE>document.forms example</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function goMusic() {

if (document.forms[0].bluish.checked) {
alert("Now going to the Blues music area...")

319Chapter 16 ✦ The Document Object

} else {
alert("Now going to Rock music area...")

}
}
</SCRIPT>
</HEAD>

<BODY>
<FORM NAME="theBlues">
<INPUT TYPE="checkbox" NAME="bluish">Check here if you've got the
blues.
</FORM>
<HR>
M

o

r

e

C

o

p

y

<HR>
<FORM NAME="visit">
<INPUT TYPE="button" VALUE="Visit music site" onClick="goMusic()">
</FORM>
</BODY>
</HTML>

Related Items: form object.

images
Value: Array of image objects Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ (✔) ✔

With images treated as first-class objects beginning with Navigator 3 and
Internet Explorer 4, it’s only natural for a document to maintain an array of all the
image tags defined on the page (just as it does for links and anchors). The prime
importance of having images as objects is that you can modify their content (the
source file associated with the rectangular space of the image) on the fly. You can
find details about the image object in Chapter 18.

The lack of an image object in Windows versions of Internet Explorer 3
disappointed many authors who wanted to swap images on mouse rollovers. Little
known, however, is that the Macintosh version of Internet Explorer (Version 3.01a)
has an image object in its object model, working exactly like Navigator 3’s image
object. The image object is present on all platforms in Internet Explorer 4.

320 Part III ✦ JavaScript Object and Language Reference

Use image array references to pinpoint a specific image for retrieval of any
image property or for assigning a new image file to its src property. Image arrays
begin their index counts with 0: The first image in a document has the reference
document.images[0]. And, as with any array object, you can find out how many
images the array contains by checking the length property. For example

imageCount = document.images.length

Images can also have names, so if you prefer, you can refer to the image object
by its name, as in

imageLoaded = document.imageName.complete

Example
The document.images property is defined automatically as the browser builds

the object model for a document that contains image objects. See the discussion
about the image object in Chapter 18 for reference examples.

Related Items: image object.

lastModified
Value: DateString Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Every disk file maintains a modified timestamp, and most servers expose this
information to a browser accessing a file. This information is available by reading
the document.lastModified property (be sure to observe the uppercase M in the
property name). If your server supplies this information to the client, you can use
the value of this property to present this information for readers of your Web page.
The script automatically updates the value for you, rather than requiring you to
hand-code the HTML line every time you modify the home page.

The returned value is not a date object (Chapter 29) but rather a straight string
consisting of time and date, as recorded by the document’s file system. You can,
however, convert the date string to a JavaScript date object and use the date
object’s methods to extract selected elements for recompilation into readable
form. Listing 16-5 shows an example.

Even local file systems don’t necessarily provide the correct data for every
browser to interpret. For example, in Navigator of all generations for the
Macintosh, dates from files stored on local disks come back as something from the
1920s (although Internet Explorer manages to reflect the correct date). But put that
same file on a UNIX or NT Web server, and the date appears correctly when
accessed via the Net.

Example
Experiment with the document.lastModified property with Listing 16-5. But

also be prepared for inaccurate readings if the file is located on some servers or
local hard disks.

321Chapter 16 ✦ The Document Object

Listing 16-5: document.lastModified Property in Another Format

<HTML>
<HEAD>
<TITLE>Time Stamper</TITLE>
</HEAD>
<BODY>
<CENTER> <H1>GiantCo Home Page</H1></CENTER>
<SCRIPT LANGUAGE="JavaScript">
update = new Date(document.lastModified)
theMonth = update.getMonth() + 1
theDate = update.getDate()
theYear = update.getYear()
document.writeln("<I>Last updated:" + theMonth + "/" + theDate + "/" +
theYear + "</I>")
</SCRIPT>
<HR>
</BODY>
</HTML>

As noted at great length in Chapter 29’s discussion about the date object, you
should be aware that date formats vary greatly from country to country. Some of
these formats use a different order for date elements. When you hard-code a date
format, it may take a form that is unfamiliar to other users of your page.

Related Items: date object (Chapter 29).

layers
Value: String Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

The layer object (Chapter 19) is new as of Netscape Navigator 4 and is not
part of Internet Explorer 4’s object model. Therefore, only the Netscape browser
contains a property that reflects the array of layer objects within a document.
This is the same kind of array used to refer to other document objects, such as
images and applets.

A Netscape layer is a container for content that can be precisely positioned on
the page. Layers can be defined with the Netscape-specific <LAYER> tag or with
W3C standard style-sheet positioning syntax, as explained in Chapter 19. Each
layer contains a document object — the true holder of the content displayed in
that layer. Layers can be nested within each other, but a reference to
document.layers reveals only the first level of layers defined in the document.
Consider the following HTML skeleton:

322 Part III ✦ JavaScript Object and Language Reference

<HTML>
<BODY>
<LAYER NAME=”Europe”>

<LAYER NAME=”Germany”></LAYER>
<LAYER NAME=”Netherlands”></LAYER>

</LAYER>
</BODY>
</HTML>

From the point of view of the primary document, there is one layer (Europe).
Therefore, the length of the document.layers array is 1. But the Europe layer has
a document, in which two more layers are nested. A reference to the array of those
nested layers would be

document.layers[1].document.layers

or

document.Europe.document.layers

The length of this nested array is two: The Germany and Netherlands layers. No
property exists that reveals the entire set of nested arrays in a document, but you
can create a for loop to crawl through all nested layers (shown in Listing 16-6).

Example
Listing 16-6 demonstrates how to use the document.layers property to crawl

through the entire set of nested layers in a document. Using recursion (discussed
in Chapter 34), the script builds an indented list of layers in the same hierarchy as
the objects themselves and displays the results in an alert dialog. After you load
this document (the script is triggered by the onLoad= event handler), compare the
alert dialog contents against the structure of <LAYER> tags in the document.

Listing 16-6: A Layer Crawler

<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript1.2">
var output = ""
function crawlLayers(layerArray, indent) {

for (var i = 0; i < layerArray.length; i++) {
output += indent + layerArray[i].name + "\n"
if (layerArray[i].document.layers.length) {

var newLayerArray = layerArray[i].document.layers
crawlLayers(newLayerArray, indent + " ")

}
}
return output

}
function revealLayers() {

alert(crawlLayers(document.layers, ""))
}

323Chapter 16 ✦ The Document Object

</SCRIPT>
</HEAD>
<BODY onLoad="revealLayers()">
<LAYER NAME="Europe">

<LAYER NAME="Germany"></LAYER>
<LAYER NAME="Netherlands">

<LAYER NAME="Amsterdam"></LAYER>
<LAYER NAME="Rotterdam"></LAYER>

</LAYER>
<LAYER NAME="France"></LAYER>

</LAYER>
<LAYER NAME="Africa">

<LAYER NAME="South Africa"></LAYER>
<LAYER NAME="Ivory Coast"></LAYER>

</LAYER>
</BODY>
</HTML>

Related Items: layer object.

links
Value: Array of link objects Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

The document.links property is similar to the document.anchors property,
except that the objects maintained by the array are link objects — items created
with tags. Use the array references to pinpoint a specific link for
retrieving any link property, such as the target window specified in the link’s HTML
definition.

Link arrays begin their index counts with 0: The first link in a document has the
reference document.links[0]. And, as with any array object, you can find out
how many entries the array has by checking the length property. For example

linkCount = document.links.length

Entries in the document.links property are full-fledged location objects.

Example
The document.links property is defined automatically as the browser builds

the object model for a document that contains link objects. You will rarely access
this property, except to determine the number of link objects in the document.

Related Items: link object; document.anchors property.

324 Part III ✦ JavaScript Object and Language Reference

location
URL

Value: String Gettable: Yes Settable: No (Navigator)

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility (✔) ✔ ✔ (✔) (✔) ✔

The fact that JavaScript frequently reuses the same terms in different contexts
may be confusing to the language’s newcomers. Such is the case with the
document.location property. You may wonder how it differs from the location
object (Chapter 15). In practice, many scripts also get the two confused when
references don’t include the window object. As a result, a new property name,
document.URL, was introduced in Navigator 3 and Internet Explorer 4 to take the
place of document.location. You can still use document.location, but the term
may eventually disappear from the JavaScript vocabulary (or at least from
Netscape’s object model). To help you get into the future mindset, the rest of this
discussion refers to this property as document.URL.

The remaining question is how the window.location object and document.URL
property differ. The answer lies in their respective data types.

A location object, you may recall from Chapter 15, consists of a number of
properties about the document currently loaded in a window or frame. Assigning a
new URL to the object tells the browser to load that URL into the frame. The
document.URL property, on the other hand, is simply a string (read-only in
Navigator) that reveals the URL of the current document. The value may be
important to your script, but the property does not have the “object power” of the
window.location object. You cannot change (assign another value to) this
property value because a document has only one URL: its location on the Net (or
your hard disk) where the file exists, and what protocol is required to get it.

This may seem like a fine distinction, and it is. The reference you use
(window.location object or document.URL property) depends on what you are
trying to accomplish specifically with the script. If the script is changing the
content of a window by loading a new URL, you have no choice but to assign a
value to the window.location object. Similarly, if the script is concerned with the
component parts of a URL, the properties of the location object provide the
simplest avenue to that information. To retrieve the URL of a document in string
form (whether it is in the current window or in another frame), you can use either
the document.URL property or the window.location.href property.

Example
HTML documents in Listing 16-7 through 16-9 create a test lab that enables you

to experiment with viewing the document.URL property for different windows and
frames in a multiframe environment. Results are displayed in a table, with an
additional listing of the document.title property to help you identify documents
being referred to. The same security restrictions that apply to retrieving

325Chapter 16 ✦ The Document Object

window.location object properties also apply to retrieving the document.URL
property from another window or frame.

Listing 16-7: Frameset for document.URL Property Reader

<HTML>
<HEAD>
<TITLE>document.URL Reader</TITLE>
</HEAD>
<FRAMESET ROWS="60%,40%">

<FRAME NAME="Frame1" SRC="lst16-09.htm">
<FRAME NAME="Frame2" SRC="lst16-08.htm">

</FRAMESET>
</HTML>

Listing 16-8: document.URL Property Reader

<HTML>
<HEAD>
<TITLE>URL Property Reader</TITLE>
<SCRIPT LANGUAGE="JavaScript1.1">
function fillTopFrame() {

newURL=prompt("Enter the URL of a document to show in the top
frame:","")

if (newURL != null && newURL != "") {
top.frames[0].location = newURL
}

}

function showLoc(form,item) {
var windName = item.value
var theRef = windName + ".document"
form.dLoc.value = unescape(eval(theRef + ".URL"))
form.dTitle.value = unescape(eval(theRef + ".title"))

}
</SCRIPT>
</HEAD>

<BODY>
Click the "Open URL" button to enter the location of an HTML document
to display in the upper frame of this window.
<FORM>
<INPUT TYPE="button" NAME="opener" VALUE="Open URL..."
onClick="fillTopFrame()">
</FORM>
<HR>
<FORM>
Select a window or frame to view each document property values.<P>

(continued)

326 Part III ✦ JavaScript Object and Language Reference

Listing 16-8 (continued)

<INPUT TYPE="radio" NAME="whichFrame" VALUE="parent"
onClick="showLoc(this.form,this)">Parent window
<INPUT TYPE="radio" NAME="whichFrame" VALUE="top.frames[0]"
onClick="showLoc(this.form,this)">Upper frame
<INPUT TYPE="radio" NAME="whichFrame" VALUE="top.frames[1]"
onClick="showLoc(this.form,this)">This frame<P>
<TABLE BORDER=2>
<TR><TD ALIGN=RIGHT>document.URL:</TD>
<TD><TEXTAREA NAME="dLoc" ROWS=3 COLS=30
WRAP="soft"></TEXTAREA></TD></TR>

<TR><TD ALIGN=RIGHT>document.title:</TD>
<TD><TEXTAREA NAME="dTitle" ROWS=3 COLS=30
WRAP="soft"></TEXTAREA></TD></TR>
</TABLE>
</FORM>
</BODY>
</HTML>

Listing 16-9: Placeholder for Listing 16-7

<HTML>
<HEAD>
<TITLE>Opening Placeholder</TITLE>
</HEAD>
<BODY>
Initial place holder. Experiment with other URLs for this frame (see
below).
</BODY>
</HTML>

Related Items: location object; location.href property.

referrer
Value: String Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

When a link from one document leads to another, the second document can,
under JavaScript control, reveal the URL of the document containing the link. The
document.referrer property contains a string of that URL. This feature can be a

327Chapter 16 ✦ The Document Object

useful tool for customizing the content of pages based on the previous location the
user was visiting within your site. A referrer contains a value only when the user
reaches the current page via a link. Any other method of navigation (such as through
the history or by manually entering a URL) sets this property to an empty string.

The document.referrer property is broken in Windows versions of Internet
Explorer 3 and Internet Explorer 4. In the Windows version, the current document’s
URL is given as the referrer; the proper value is returned in the Macintosh
versions.

Example
This demonstration requires two documents. The first document, in Listing 16-

10, simply contains one line of text as a link to the second document. In the second
document (Listing 16-11), a script verifies the document from which the user came
via a link. If the script knows about that link, it displays a message relevant to the
experience the user had at the first document. Also try opening Listing 16-11 from
the Open File command in the File menu to see how the script won’t recognize the
referrer.

Listing 16-10: A Source Document

<HTML>
<HEAD>
<TITLE>document.referrer Property 1</TITLE>
</HEAD>

<BODY>
<H1>Visit my sister document
</BODY>
</HTML>

Listing 16-11: Checking document.referrer

<HTML>
<HEAD>
<TITLE>document.referrer Property 2</TITLE>
</HEAD>

<BODY><H1>
<SCRIPT LANGUAGE="JavaScript">
if(document.referrer.length > 0 && document.referrer.indexOf("16-
10.htm") != -1){

document.write("How is my brother document?")
} else {
document.write("Hello, and thank you for stopping by.")
}

</SCRIPT>
</H1></BODY>
</HTML>

Note

328 Part III ✦ JavaScript Object and Language Reference

Related Items: link object.

title
Value: String Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

A document’s title is the text that appears between the <TITLE>...</TITLE>
tag pair in an HTML document’s Head portion. The title usually appears in the title
bar of the browser window in a single-frame presentation. Only the title of the
topmost framesetting document appears as the title of a multiframe window. Even
so, the title property for an individual document appearing in a frame is
available via scripting. For example, if two frames are available (UpperFrame and
LowerFrame), a script in the document occupying the LowerFrame frame could
reference the title property of the other frame’s document like this:

parent.UpperFrame.document.title

This property cannot be set by a script except when constructing an entire
HTML document via script, including the <TITLE> tags.

UNIX versions of Navigator 2 fail to return the document.title property value.
Also, in Navigator 4 for the Macintosh, if a script creates the content of another
frame, the document.title property for that dynamically written frame returns
the file name of the script that wrote the HTML, even when it writes a valid
<TITLE> tag set.

Example
See Listings 16-7 through 16-9 for examples of retrieving the document.title

property from a multiframe window.

Related Items: history object.

Methods
captureEvents(eventTypeList)

Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

In Navigator 4, an event filters down from the window object, through the
document object, and eventually reaches its target. For example, if you click a
button, the click event first reaches the window object; then it goes to the

Note

329Chapter 16 ✦ The Document Object

document object; if the button is defined within a layer, the event also filters
through that layer; eventually (in a split second) it reaches the button, where an
onClick= event handler is ready to act on that click.

The Netscape mechanism allows window, document, and layer objects to
intercept events and process them prior to reaching their intended targets (or
preventing them from reaching their destinations entirely). But for an outer
container to grab an event, your script must instruct it to capture the type of event
your application is interested in preprocessing. If you want the document object to
intercept all events of a particular type, use the document.captureEvents()
method to turn that facility on.

The document.captureEvents() method takes one or more event types as
parameters. An event type is a constant value built inside Navigator 4’s event
object. One event type exists for every kind of event handler you see in all of
Navigator 4’s document objects. The syntax is the event object name (Event) and
the event name in all uppercase letters. For example, if you want the document to
intercept all click events, the statement is

document.captureEvents(Event.CLICK)

For multiple events, add them as parameters, separated by the pipe (|)
character:

document.captureEvents(Event.MOUSEDOWN | Event.KEYPRESS)

Once an event type is captured by the document object, it must have a
function ready to deal with the event. For example, perhaps the function looks
through all Event.MOUSEDOWN events and looks to see if the right mouse button
was the one that triggered the event and what form element (if any) is the
intended target. The goal is to perhaps display a pop-up menu (as a separate
layer) for a right-click. If the click comes from the left mouse button, then the
event is routed to its intended target.

To associate a function with a particular event type captured by a document
object, assign a function to the event. For example, to assign a custom
doClickEvent() function to click events captured by the window object, use the
following statement:

document.onclick=doClickEvent

Notice that the function name is assigned only as a reference name, not like an
event handler within a tag. The function, itself, is like any function, but it has the
added benefit of automatically receiving the event object as a parameter. To turn
off event capture for one or more event types, use the document.releaseEvent()
method. See Chapter 33 for details of working with events in this manner.

Example
See the example for the window.captureEvents() method in Chapter 14

(Listing 14-22) to see how to capture events on their way to other objects. You can
substitute the document reference for the window reference in that example to see
how the document version of the method works just like the window version. If
you understand the mechanism for windows, you understand it for documents.
The same is true for the other event methods.

330 Part III ✦ JavaScript Object and Language Reference

Related Items: document.handleEvent() method; document.releaseEvents()
method; document.routeEvent() method; parallel window object event methods.

clear()
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Clearing a document and closing a document are two quite different actions. As
described in the following document.close() section, closing deals with the
layout stream previously opened to a document. Frequently, the stream must be
closed before all data specified in the HTML of the document appears correctly.

Clearing a document, on the other hand, removes from the browser whatever
HTML is written to the document — as well as the object model for that document.
You do not have to clear a document prior to opening or writing to another one
(JavaScript clears the old one for you). In fact, the document.clear() method
does not work correctly, even in Navigator 3, and can cause any number of errors
or crash problems in early browsers. To get the same result as the one that you
expect to get from document.clear(), I recommend loading a blank HTML
document (that is, one with the simplest tags and no visible content).

Related Items: document.close() method; document.write() method;
document.writeln() method.

close()
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Whenever a layout stream is opened to a window via the document.open()
method or either of the document writing methods (which also open the layout
stream), you must close the stream once the document has been written. This
causes the Layout:Complete and Document:Done messages to appear in the
status line (although you may experience some bugs in the status message on
some platforms). The closing step is very important to prepare the window for the
next potential round of replenishment with new script-assembled HTML. If you
don’t close the window, subsequent writing is appended to the bottom of it.

Some or all of the data specified for the window won’t display properly until you
invoke the document.close() method, especially when images are being drawn
as part of the document stream. A common symptom is the momentary

331Chapter 16 ✦ The Document Object

appearance and then disappearance of the document parts. If you see such
behavior, look for a missing document.close() method after the last
document.write() method.

Example
Before you experiment with this method, be sure you understand the

document.write() method described later in this chapter. After that, make a
separate set of the three documents for that method’s example (Listing 16-13
through 16-15 in a different directory or folder). In the takePulse() function
listing, comment out both the document.open() and document.close()
statements, as shown here:

msg += “<P>Make it a great day!</BODY></HTML>”
//parent.frames[1].document.open()
parent.frames[1].document.write(msg)
//parent.frames[1].document.close()

Now try the pages on your browser. You will see that each click of the upper
button appends text to the bottom frame, without first removing the previous text.
The reason is that the previous layout stream was never closed. The document
thinks that you’re still writing to it. Also, without properly closing the stream, the
last line of text may not appear in the most recently written batch.

Related Items: document.open() method; document.clear() method;
document.write() method; document.writeln() method.

getSelection()
Returns: String.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

It’s likely that many Web browser users aren’t aware that they can select and
copy body text in a document for pasting into other application documents. Even
so, Navigator 4 offers a scripted way of capturing the text selected by a user in a
page. The document.getSelection() method returns the string of text selected
by the user. If nothing is selected, an empty string is the result. Returned values
consist only of the visible text on the page, and not the underlying HTML or style
of the text.

Example
The document in Listing 16-12 combines document event capture and the

getSelection() method to display in a textarea object the content of any
selection you make from the text on the page.

332 Part III ✦ JavaScript Object and Language Reference

Listing 16-12: Text Selection

<HTML>
<HEAD>
<TITLE>URL Property Reader</TITLE>
<SCRIPT LANGUAGE="JavaScript1.2">
function showSelection() {

document.forms[0].selectedText.value = document.getSelection()
}
document.captureEvents(Event.MOUSEUP)
document.onmouseup = showSelection
</SCRIPT>
</HEAD>

<BODY>
Select some text and see how JavaScript can capture the
selection:
<HR>
<H2>ARTICLE I</H2>
<P>
Congress shall make no law respecting an establishment of religion, or
prohibiting the free exercise thereof; or abridging the freedom of
speech, or of the press; or the right of the people peaceably to
assemble, and to petition the government for a redress of grievances.
</P>
</HR>
<FORM>
<TEXTAREA NAME="selectedText" ROWS=3 COLS=40 WRAP="virtual"></TEXTAREA>
</FORM>
</BODY>
</HTML>

Related Items: None.

handleEvent(event)
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

When you explicitly capture events in the window, document, or layer object
(by invoking the captureEvents() method for that object), you can control
where the events go after their initial capture. To let an event continue to its
original target (for example, a button that was clicked by a user), you use the
routeEvent() method. But if you want to redirect an event (or class of events) to

333Chapter 16 ✦ The Document Object

a particular event handler elsewhere in the document, use the handleEvent()
method.

See the discussion of the handleEvent() method for the window object in
Chapter 14. The behavior of the handleEvent() method for all objects is the same.

Related Items: document.captureEvents() method; document.releaseEvents()
method; document.routeEvent() method; event object.

open([“mimeType”] [, replace])
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ (✔) (✔) (✔)

Opening a document is different from opening a window. In the case of a
window, you’re creating a new object, both on the screen and in the browser’s
memory. Opening a document, on the other hand, tells the browser to get ready to
accept some data for display in the window named or implied in the reference to
the document.open() method. (For example, parent.frames[1].document.
open() may refer to a different frame in a frameset, whereas document.open()
implies the current window or frame.) Therefore, the method name may mislead
newcomers because the document.open() method has nothing to do with loading
documents from the Web server or hard disk. Rather, this method is a prelude to
sending data to a window via the document.write() or document.writeln()
methods. In a sense, the document.open() method merely opens a door; the
other methods send the data, and the document.close() method closes that door
once the page’s data has been sent in full.

The document.open() method is optional because a document.write() method
that attempts to write to a closed document automatically clears the old document
and opens a new one. Whether or not you use the document.open() method, be
sure to use the document.close() method after all the writing has taken place.

An optional parameter to the document.open() method lets you specify the
nature of the data being sent to the window. A MIME (Multipurpose Internet Mail
Extension) type is a specification for transferring and representing multimedia data
on the Internet (originally for mail transmission, but now applicable to all Internet
data exchanges). You’ve seen MIME depictions in the list of helper applications in
your browser’s preferences settings. A MIME type is represented by a pair of data
type names separated by a slash (such as text/html and image/gif). When you
specify a MIME type as a parameter to the document.open() method, you’re
instructing the browser about the kind of data it is about to receive, so it knows
how to render the data. The values that JavaScript accepts are

text/html
text/plain
image/gif
image/jpeg
image/xbm
plugIn

334 Part III ✦ JavaScript Object and Language Reference

If you omit the parameter, JavaScript assumes the most popular type, text/html
— the kind of data you typically assemble in a script prior to writing to the window.
The text/html type includes any images that the HTML references. Specifying any
of the image types means that you have the raw binary representation of the image
you want to appear in the new document — possible, but unlikely.

Another possibility is to direct the output of a write() method to a Netscape
plug-in. For the mimeType parameter, specify the plug-in’s MIME type (for example,
application/x-director for Shockwave). Again, the data you write to a plug-in
must be in a form that it knows how to handle. The same mechanism also works
for writing data directly to a helper application.

Internet Explorer 3 does not accept any parameters for the document.open()
method. Internet Explorer 4 accepts only the text/html MIME type.

Navigator 4 includes a second, optional parameter to the method: replace.
This parameter does for the document.open() method what the replace()
method does for the location object. For document.open(), it means that the new
document you are about to write replaces the previous document in the window or
frame from being recorded to that window or frame’s history.

Finally, be aware that only Navigator 3 or later enables you to use
document.open() in the same window or frame as the one containing the script
that invokes the document.open() method. Attempting to reopen the script’s own
document with this method in Navigator 2 usually leads to a crash of the browser.

Example
You can see an example of where the document.open() method fits in the

scheme of dynamically creating content for another frame in the discussion of the
document.write() method, later in this chapter.

Related Items: document.close() method; document.clear() method;
document.write() method; document.writeln() method.

releaseEvents(eventTypeList)
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

If your scripts have enabled event capture for the document object (or window
or layer, for that matter), you can turn off that capture with the releaseEvents()
method. This does not inhibit events from reaching their intended target. In fact,
by releasing capture from a higher object, released events don’t bother stopping at
those higher objects anymore.

See the discussion of the releaseEvents() method for the window object in
Chapter 14. The behavior of the releaseEvents() method for all objects is
the same.

Related Items: document.captureEvents() method; document.routeEvent()
method.

Note

335Chapter 16 ✦ The Document Object

routeEvent(event)
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

If you turn on event capturing in the window, document, or layer object (via
their respective captureEvents() methods), the event handler you assign to
those events really captures those events, preventing them from ever reaching
their intended targets. For some page designs this is intentional, for it allows the
higher-level object to handle all events of a particular type. But if your goal is to
perform some preprocessing of events before they reach their destination, you
need a way to pass that event along its regular path. That’s what the
routeEvent() method is for.

See the discussion of the routeEvent () method for the window object in
Chapter 14. The behavior of the routeEvent () method for all objects is the same.

write(“string1” [,”string2” ...
[, “stringn”]])
writeln(“string1” [,”string2” ...
[, “stringn”]])

Returns: Boolean true if successful.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Both of these methods send text to a document for display in its window. The
only difference between the two methods is that document.writeln() appends a
carriage return to the end of the string it sends to the document (but you must
still write a
 to insert a line break).

A common, incorrect conclusion that many JavaScript newcomers make is that
these methods enable a script to modify the contents of an existing document.
This is not true. Once a document has loaded into a window (or frame), the only
text that you can modify without reloading or rewriting the entire page is the
content of text and textarea objects (the exception to this is the manner in which
Internet Explorer 4’s extended object model allows text and HTML substitutions
after document loading). In fact, because of bugs on some versions of Navigator 2,
attempting to write to an existing document may cause the browser to crash. The
behavior was much improved in Navigator 3, and I have more to say about that in
a moment.

336 Part III ✦ JavaScript Object and Language Reference

The two safest ways to use the document.write() and document.writeln()
methods are to

✦ Embed a script in an HTML document to write some or all of the page’s
content

✦ Send HTML code to either a new window or to a separate frame in a
multiframe window

For the first case, you essentially interlace script segments within your HTML.
The scripts run as the document loads, writing whatever scripted HTML content
you like. This task is exactly what you did in script1.htm in Chapter 3.

In the latter case, a script can gather input from the user in one frame and then
algorithmically determine the layout and content destined for another frame. The
script assembles the HTML code for the other frame as a string variable (including
all necessary HTML tags). Before the script can write anything to the frame, it can
optionally open the layout stream (to close the current document in that frame)
with the parent.frameName.document.open() method. In the next step, a
parent.frameName.document.write() method pours the entire string into the
other frame. Finally, a parent.frameName.document.close() method ensures
that the total data stream is written to the window. Such a frame looks just the
same as if it were created by a source document on the server rather than on the
fly in memory. The document object of that window or frame is a full citizen as a
JavaScript document object. You can, therefore, even include scripts as part of the
HTML specification for one of these temporary HTML pages.

Starting with Navigator 3 and Internet Explorer 3, you can write to the current
window, but you should be prepared for the consequences. Once an HTML
document (containing the script that is going to write) is loaded, the page’s
incoming stream has already closed. If you then attempt to apply a series of
document.write() statements, the first document.write() method completely
removes all vestiges of the original document. That includes all of its objects and
scripted variable values. Therefore, if you try to assemble a new page with a series
of document.write() statements, the parameters to the method cannot include
any object references or variables from the original document: They will be gone
before the second document.write() statement executes. To get around this
potential problem, assemble the content for the new screenful of content as one
variable value and then pass that variable as the parameter to a single
document.write() statement. Also be sure to include a document.close()
statement in the next line of script.

Assembling HTML in a script to be written via the document.write() method
often requires skill in concatenating string values and nesting strings. A number of
JavaScript string object shortcuts facilitate the formatting of text with HTML tags
(see Chapter 27 for details).

Whether your script should send lots of small strings via multiple
document.write() methods or assemble a larger string to be sent via one
document.write() method depends partly on the situation (especially when
writing to the current document in Navigator 3) and partly on style. From a
performance standpoint, a fairly standard procedure is to do more preliminary
work in memory and place as few I/O (input/output) calls as possible. On the other
hand, it’s easier to make a difficult-to-track mistake in string concatenation when

337Chapter 16 ✦ The Document Object

you assemble longer strings. My personal preference is to assemble longer strings,
but you should use the system that’s most comfortable for you.

You may see another little-known way of passing parameters to these methods.
Instead of concatenating string values with the plus operator, you can also bring
string values together by separating them with commas. For example, the following
two statements produce the same results:

document.write(“Today is “ + new Date())
document.write(“Today is “,new Date())

Neither form is better than the other, so use the one that feels more comfortable
to your existing programming style.

Using the document.open(), document.write(), and document.close()
methods to display images in a document requires some small extra steps. First,
any URL assignments you write via document.write() must be complete (not
relative) URL references (especially for users of Navigator 2). Accomplishing this
reliably on your HTML authoring computer and the Web server may require you to
algorithmically establish the pathname to the current document on the server (see
Listing 15-5 in the preceding chapter).

The other image trick is to be sure to specify HEIGHT and WIDTH attributes for
every image, scripted or otherwise. Navigator 2 requires these attributes, and
document-rendering performance will be improved on all platforms, because the
values help the browser lay out elements even before their details are loaded.

In addition to the document.write() example that follows (see Listings 16-13,
16-14, and 16-15), you can find fuller implementations that use this method to
assemble images in and bar charts in the bonus applications on the CD-ROM.
Because you can assemble any valid HTML as a string to be written to a window or
frame, a customized, on-the-fly document can be as elaborate as the most complex
HTML document you can imagine.

Example
The example in Listings 16-13 through 16-15 demonstrates several important

points about using the document.write() or document.writeln() methods for
writing to another frame. First is the fact that you can write any HTML code to a
frame, and the browser accepts it as if the source code came from an HTML file
somewhere. In the example, I assemble a complete HTML document, including
basic HTML tags for completeness.

Listing 16-13: Frameset for document.write() Example

<HTML>
<HEAD>
<TITLE>Writin' to the doc</TITLE>
</HEAD>
<FRAMESET ROWS="50%,50%">

<FRAME NAME="Frame1" SRC="lst16-14.htm">
<FRAME NAME="Frame2" SRC="lst16-15.htm">

</FRAMESET>
</HTML>

338 Part III ✦ JavaScript Object and Language Reference

Listing 16-14: document.write() Example

<HTML>
<HEAD>
<TITLE>Document Write Controller</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function takePulse(form) {

var msg = "<HTML><HEAD><TITLE>On The Fly with " +
form.yourName.value + "</TITLE></HEAD>"

msg += "<BODY BGCOLOR='salmon'><H1>Good Day " +
form.yourName.value + "!</H1><HR>"

for (var i = 0; i < form.how.length; i++) {
if (form.how[i].checked) {

msg += form.how[i].value
break

}
}
msg += "<P>Make it a great day!</BODY></HTML>"
parent.Frame2.document.open()
parent.Frame2.document.write(msg)
parent.Frame2.document.close()

}
function getTitle() {

alert("Lower frame document.title is now:" +
parent.Frame2.document.title)
}
</SCRIPT>
</HEAD>

<BODY>
Fill in a name, and select how that person feels today. Then click
"Write To Below" to see the results in the bottom frame.
<FORM>
Enter your first name:<INPUT TYPE="text" NAME="yourName"
VALUE="Dave"><P>
How are you today? <INPUT TYPE="radio" NAME="how" VALUE="I hope that
feeling continues forever." CHECKED>Swell
<INPUT TYPE="radio" NAME="how" VALUE="You may be on your way to
feeling Swell">Pretty Good
<INPUT TYPE="radio" NAME="how" VALUE="Things can only get better from
here.">So-So<P>
<INPUT TYPE="button" NAME="enter" VALUE="Write To Below"
onClick="takePulse(this.form)">
<HR>
<INPUT TYPE="button" NAME="peek" VALUE="Check Lower Frame Title"
onClick="getTitle()">
</BODY>
</HTML>

339Chapter 16 ✦ The Document Object

Listing 16-15: Placeholder for Listing 16-13

<HTML>
<HEAD>
<TITLE>Placeholder</TITLE>
<BODY>
</BODY>
</HTML>

Figure 16-2 shows an example of the frame written by the script.

Figure 16-2: Clicking the Write To Below button in the upper frame causes a
script to assemble and write HTML for the bottom frame.

A second point to note is that this example customizes the content of the
document based on user input. This makes the experience of working with your
Web page feel far more interactive to the user — yet you’re doing it without any
CGI programs running on the server. Although this is a pretty basic computer
programming kind of interaction, this capability is relatively new to Web page
authoring.

The third point I want to bring home is that the document created in the
separate frame by the document.write() method is a real JavaScript document
object. In this example, for instance, the <TITLE> tag of the written document

340 Part III ✦ JavaScript Object and Language Reference

changes if you redraw the lower frame after changing the entry of the name field in
the upper frame. If you click the lower button after updating the bottom frame, you
see that the document.title property has, indeed, changed to reflect the
<TITLE> tag written to the browser in the course of displaying the frame’s page
(except in Macintosh Navigator 4, which exhibits a bug for this property in a
dynamically written document). The fact that you can artificially create full-
fledged, JavaScript document objects on the fly represents one of the most
important powers of serverless CGI scripting (for information delivery to the user)
with JavaScript. You have much to take advantage of here if your imagination is up
to the task. To print or view the source of a document written with JavaScript, you
must use Navigator 3 or later.

Notice that with Navigator 3, you could easily modify Listing 16-14 to write the
results to the same frame as the document containing the field and buttons.
Instead of specifying the lower frame

parent.frames[1].document.open()
parent.frames[1].document.write(msg)
parent.frames[1].document.close()

the code simply could have used

document.open()
document.write(msg)
document.close()

This code would replace the form document with the results and not require
any frames in the first place. Because the code assembles all of the content for the
new document into one variable value, that data survives the one
document.write() method.

The frameset document (Listing 16-13) creates a blank frame by loading a blank
document (Listing 16-15). An alternative I highly recommend is to have the
framesetting document fill the frame with a blank document of its own creation.
See “Blank Frames” in Chapter 14 for further details about this technique for
Navigator 3 and later.

Related Items: document.open(); document.close(); document.clear().

✦ ✦ ✦

