
Location and
History Objects

Not all objects in the document object model are
“things” you can see in the content area of the browser

window. The browser maintains a bunch of other information
about the page you are currently visiting and where you have
been. The URL of the page you see in the browser is called
the location, and browsers store this information in the
location object. And as you surf the Web, the browser stores
the URLs of your past pages in an object called the history
object. You can manually view what that object contains by
looking in the browser menu that lets you jump back to a
previously visited page. This chapter is all about these two
nearly invisible, but important objects.

Not only are these objects valuable to your browser, but
they can also be valuable to snoopers who might want to
write scripts to see what URLs you’re viewing in another
frame or the URLs of other sites you’ve visited in the last
dozen mouse clicks. As a result, there exist security
restrictions that limit access to some of these objects’
properties unless you use signed scripts in Navigator 4. For
older browsers, these properties are simply not available
from a script.

Location Object
Properties Methods Event Handlers

hash assign() (None)

host reload()

hostname replace()

href

pathname

port

protocol

search

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Loading new pages
and other media
types via the location
object

Security restrictions
across frames

Navigating through
the browser history
under script control

✦ ✦ ✦ ✦

270 Part III ✦ JavaScript Object and Language Reference

Syntax
Loading a new document into the current window:

[window.]location = “URL”

Accessing location properties or methods:

[window.]location.property | method([parameters])

About this object
In its place one level below window-style objects in the JavaScript object

hierarchy, the location object represents information about the URL of any
currently open window or of a specific frame. A multiple-frame window displays
the parent window’s URL in the Location field. Each frame also has a location
associated with it, although no overt reference to the frame’s URL can be seen in
the browser. To get URL information about a document located in another frame,
the reference to the location object must include the window frame reference. For
example, if you have a window consisting of two frames, Table 15-1 shows the
possible references to the location objects for all frames comprising the Web
presentation.

Table 15-1
Location Object References in a Two-Frame Browser Window

Reference Description

location URL of frame displaying the document that
(or window.location) runs the script statement containing this

reference

parent.location URL info for parent window that defined the
<FRAMESET>

parent.frames[0].location URL info for first visible frame

parent.frames[1].location URL info for second visible frame

parent.otherFrameName.location URL info for another named frame in the
same frameset

Most properties of a location object deal with network-oriented information.
This information includes various data about the physical location of the
document on the network, including the host server, the protocol being used, and
other components of the URL. Given a complete URL for a typical WWW page, the
window.location object assigns property names to various segments of the URL,
as shown here:

http://www.giantco.com:80/promos/newproducts.html#giantGizmo

271Chapter 15 ✦ Location and History Objects

Property Value

protocol “http:”

hostname “www.giantco.com”

port “80”

host “www.giantco.com:80”

pathname “/promos/newproducts.html”

hash “#giantGizmo”

href “http://www.giantco.com:80/promos newproducts.
html#giantGizmo”

The window.location object can be handy when a script needs to extract
information about the URL, perhaps to obtain a base reference on which to build
URLs for other documents to be fetched as the result of user action. This object
can eliminate a nuisance for Web authors who develop sites on one machine and
then upload them to a server (perhaps at an Internet Service Provider) with an
entirely different directory structure. By building scripts to construct base
references from the directory location of the current document, you can construct
the complete URLs for loading documents. You won’t have to manually change the
base reference data in your documents as you shift the files from computer to
computer or from directory to directory. To extract the segment of the URL and
place it into the enclosing directory, you can use the following:

var baseRef = location.href.substring(0,location.href.lastIndexOf
(“/”) + 1)

Security alert: To allay fears of Internet security breaches and privacy invasions,
scriptable browsers prevent your script in one frame from retrieving location
object properties from other frames whose domain and server are not your own
(unless you are using signed scripts in Navigator 4 — see Chapter 40). This
restriction puts a damper on many scripters’ well-meaning designs and aids for
Web watchers and visitors. If you attempt such property accesses, however, you
will receive an “access disallowed” security warning dialog box.

Setting the value of some location properties is the preferred way to control
which document gets loaded into a window or frame. Though you may expect to
find a method somewhere in JavaScript that contains a plain language “Go” or
“Open” word (to simulate what you see in the browser menu bar), the way to
“point your browser” to another URL is to set the window.location object to that
URL, as in

window.location.href = “http://www.dannyg.com/”

The equals assignment operator (-) in this kind of statement becomes a powerful
weapon. In fact, setting the location object to a URL of a different MIME type, such as
one of the variety of sound and video formats, causes the browser to load those files
into the plug-in or helper application designated in your browser’s settings. Internet

Note

272 Part III ✦ JavaScript Object and Language Reference

Explorer’s object model includes a window.navigate() method that also loads a
document into a window, but this method is not part of Netscape — at least through
Navigator 4.

Two methods complement the location object’s capability to control navigation:
One method is the script equivalent of clicking Reload; the other method enables
you to replace the current document’s entry in the history with that of the next
URL of your script’s choice.

Properties
hash

Value: String Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

The hash mark (#) is a URL convention that directs the browser to an anchor
located in the document. Any name you assign to an anchor (with the ... tag pair) becomes part of the URL after the hash mark. A
location object’s hash property is the name of the anchor part of the current URL
(which consists of the hash mark and the name).

If you have written HTML documents with anchors and directed links to
navigate to those anchors, you have probably noticed that although the
destination location shows the anchor as part of the URL (for example, in the
Location field), the window’s anchor value does not change as the user manually
scrolls to positions in the document where other anchors are defined. An anchor
appears in the URL only when the window has navigated there as part of a link or
in response to a script that adjusts the URL.

Just as you can navigate to any URL by setting the window.location property,
you can navigate to another hash in the same document by adjusting only the
hash property of the location, but without the hash mark (as shown in the
following example). Such navigation, even within a document, causes Navigator 2
and Internet Explorer 3 to reload the document (and scripted navigation to
anchors is incredibly slow in Internet Explorer 3/Windows). No reload occurs in
Navigator 3 and up.

Example
When you load the script in Listing 15-1, adjust the size of the browser window so

only one section is visible at a time. When you click a button, its script navigates to
the next logical section in the progression and eventually takes you back to the top.

273Chapter 15 ✦ Location and History Objects

Listing 15-1: A Document with Anchors

<HTML>
<HEAD>
<TITLE>location.hash Property</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function goNextAnchor(where) {

window.location.hash = where
}
</SCRIPT>
</HEAD>

<BODY>

<H1>Top</H1>
<FORM>
<INPUT TYPE="button" NAME="next" VALUE="NEXT"
onClick="goNextAnchor('sec1')">
</FORM>
<HR>
<H1>Section 1</H1>
<FORM>
<INPUT TYPE="button" NAME="next" VALUE="NEXT"
onClick="goNextAnchor('sec2')">
</FORM>
<HR>
<H1>Section 2</H1>
<FORM>
<INPUT TYPE="button" NAME="next" VALUE="NEXT"
onClick="goNextAnchor('sec3')">
</FORM>
<HR>

<H1>Section 3</H1>
<FORM>
<INPUT TYPE="button" NAME="next" VALUE="BACK TO TOP"
onClick="goNextAnchor('start')">
</FORM>

</BODY>
</HTML>

Anchor names are passed as parameters with each button’s onClick= event
handler. Instead of going through the work of assembling a window.location
value in the function by appending a literal hash mark and the value for the
anchor, here I simply modify the hash property of the current window’s location.
This is the preferred, cleaner method.

If you attempt to read back the window.location.hash property in an added
line of script, however, the window’s actual URL will probably not have been
updated yet, and the browser will appear to be giving your script false information.

274 Part III ✦ JavaScript Object and Language Reference

To prevent this problem in subsequent statements of the same function, construct
the URLs of those statements from the same variable values you used to set the
window.location.hash property — don’t rely on the browser to give you the
values you expect.

Related Items: location.href property.

host
Value: String Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

The location.host property describes both the hostname and port of a URL.
The port is included in the value only when the port is an explicit part of the URL.
If you navigate to a URL that does not display the port number in the Location field
of the browser, the location.host property returns the same value as the
location.hostname property.

Use the location.host property to extract the hostname:port part of the URL
of any document loaded in the browser. This capability may be helpful for building
a URL to a specific document that you want your script to access on the fly.

Example
Use the documents in Listings 15-2 through 15-4 as tools to help you learn the

values that the various window.location properties return. In the browser, open
the file for Listing 15-2. This file creates a two-frame window. The left frame
contains a temporary placeholder (Listing 15-4) that displays some instructions.
The right frame has a document (Listing 15-3) that lets you load URLs into the left
frame and get readings on three different windows available: the parent window
(which creates the multiframe window), the left frame, and the right frame.

Listing 15-2: Frameset for the Property Picker

<HTML>
<HEAD>
<TITLE>window.location Properties</TITLE>
</HEAD>
<FRAMESET COLS="50%,50%" BORDER=1 BORDERCOLOR="black">

<FRAME NAME="Frame1" SRC="lst15-04.htm">
<FRAME NAME="Frame2" SRC="lst15-03.htm">

</FRAMESET>
</HTML>

275Chapter 15 ✦ Location and History Objects

Listing 15-3: Property Picker

<HTML>
<HEAD>
<TITLE>Property Picker</TITLE>
<SCRIPT LANGUAGE="JavaScript">
var isNav4 = (navigator.appName == "Netscape" &&
navigator.appVersion.charAt(0) == 4) ? true : false

function fillLeftFrame() {
newURL = prompt("Enter the URL of a document to show in the

left frame:","")
if (newURL != null && newURL != "") {
parent.frames[0].location = newURL
}

}

function showLocationData(form) {
for (var i = 0; i <3; i++) {

if (form.whichFrame[i].checked) {
var windName = form.whichFrame[i].value
break

}
}
var theWind = "" + windName + ".location"
if (isNav4) {

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserRea
d")

}
var theObj = eval(theWind)
form.windName.value = windName
form.windHash.value = theObj.hash
form.windHost.value = theObj.host
form.windHostname.value = theObj.hostname
form.windHref.value = theObj.href
form.windPath.value = theObj.pathname
form.windPort.value = theObj.port
form.windProtocol.value = theObj.protocol
form.windSearch.value = theObj.search
if (isNav4) {

netscape.security.PrivilegeManager.disablePrivilege("UniversalBrowserRe
ad")

}
}
</SCRIPT>
</HEAD>
<BODY>
Click the "Open URL" button to enter the location of an HTML document
to display in the left frame of this window.
<FORM>

(continued)

276 Part III ✦ JavaScript Object and Language Reference

Listing 15-3 (continued)

<INPUT TYPE="button" NAME="opener" VALUE="Open URL..."
onClick="fillLeftFrame()">
<HR>
<CENTER>
Select a window/frame. Then click the "Show Location Properties" button
to view each window.location property value for the desired window.<P>
<INPUT TYPE="radio" NAME="whichFrame" VALUE="parent" CHECKED>Parent
window
<INPUT TYPE="radio" NAME="whichFrame" VALUE="parent.frames[0]">Left
frame
<INPUT TYPE="radio" NAME="whichFrame" VALUE="parent.frames[1]">This
frame
<P>
<INPUT TYPE="button" NAME="getProperties" VALUE="Show Location
Properties" onClick="showLocationData(this.form)">
<INPUT TYPE="reset" VALUE="Clear"><P>
<TABLE BORDER=2>
<TR><TD ALIGN=right>Window:</TD><TD><INPUT TYPE="text" NAME="windName"
SIZE=30></TD></TR>
<TR><TD ALIGN=right>hash:</TD>
<TD><INPUT TYPE="text" NAME="windHash" SIZE=30></TD></TR>

<TR><TD ALIGN=right>host:</TD>
<TD><INPUT TYPE="text" NAME="windHost" SIZE=30></TD></TR>

<TR><TD ALIGN=right>hostname:</TD>
<TD><INPUT TYPE="text" NAME="windHostname" SIZE=30></TD></TR>

<TR><TD ALIGN=right>href:</TD>
<TD><TEXTAREA NAME="windHref" ROWS=3 COLS=30 WRAP="soft">
</TEXTAREA></TD></TR>

<TR><TD ALIGN=right>pathname:</TD>
<TD><TEXTAREA NAME="windPath" ROWS=3 COLS=30 WRAP="soft">
</TEXTAREA></TD></TR>

<TR><TD ALIGN=right>port:</TD>
<TD><INPUT TYPE="text" NAME="windPort" SIZE=30></TD></TR>

<TR><TD ALIGN=right>protocol:</TD>
<TD><INPUT TYPE="text" NAME="windProtocol" SIZE=30></TD></TR>

<TR><TD ALIGN=right>search:</TD>
<TD><TEXTAREA NAME="windSearch" ROWS=3 COLS=30 WRAP="soft">
</TEXTAREA></TD></TR>
</TABLE>
</CENTER>
</FORM>
</BODY>
</HTML>

277Chapter 15 ✦ Location and History Objects

Listing 15-4: Placeholder Document for Listing 15-2

<HTML>
<HEAD>
<TITLE>Opening Placeholder</TITLE>
</HEAD>
<BODY>
Initial place holder. Experiment with other URLs for this frame (see
right).
</BODY>
</HTML>

Figure 15-1 shows the dual-frame browser window with the left frame loaded
with a page from my Web site.

For the best results, open a URL to a Web document on the network from the
same domain and server from which you load the listings (this could be your local
hard disk). If possible, load a document that includes anchor points to navigate
through a long document. Click the Left frame radio button, and then click the
button that shows all properties. This action fills the table in the right frame with
all the available location properties for the selected window. Figure 15-2 shows the
complete results for a page from my Web site that is set to an anchor point.

Attempts to retrieve these properties from URLs outside of your domain and
server will result in a variety of responses based on your browser and browser
version. Navigator 2 returns null values for all properties. Navigator 3 presents an
“access disallowed” security alert. With codebase principals turned on in
Navigator 4 (see Chapter 40), the proper values will appear in their fields. Internet
Explorer 3 does not have the same security restrictions that Navigator does, so all
values appear in their fields. In Internet Explorer 4, you get a “permission denied”
error alert. See the following discussion for the meanings of the other listed
properties and instructions on viewing their values.

Related Items: location.port property; location.hostname property.

hostname
Value: String Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

278 Part III ✦ JavaScript Object and Language Reference

Figure 15-1: Browser window loaded to investigate window.location properties

Figure 15-2: Readout of all window.
location properties for the left frame

The hostname of a typical URL is the name of the server on the network that
stores the document you’re viewing in the browser. For most Web sites, the server

279Chapter 15 ✦ Location and History Objects

name includes not only the domain name, but the www. prefix as well. The
hostname does not, however, include the port number if such a number is
specified in the URL.

Example
See Listings 15-2 through 15-4 for a set of related pages to help you view the

hostname data for a variety of other pages.

Related Items: location.host property; location.port property.

href
Value: String Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Of all location object properties, the href (hypertext reference) is probably the
one most often called upon in scripting. The location.href property supplies a
string of the entire URL of the specified window object.

Using this property (or just the window.location object reference) on the left
side of an assignment statement is the JavaScript method of opening a URL for
display in a window. Any of the following statements can load my Web site’s index
page into a single-frame browser window:

window.location=”http://www.dannyg.com”
window.location.href=”http://www.dannyg.com”

At times, you may encounter difficulty by omitting a reference to a window.
JavaScript may get confused and reference the document.location property. To
prevent this confusion, the document.location property has been deprecated (put
on the no-no list) by Netscape, and will eventually be removed from JavaScript. In
the meantime, you won’t go wrong by always specifying a window in the reference.

Sometimes you must extract the name of the current directory in a script so
another statement can append a known document to the URL before loading it into
the window. Although the other location object properties yield an assortment of a
URL’s segments, none of them provides the full URL to the current URL’s directory.
But you can use JavaScript string manipulation techniques to accomplish this task.
Listing 15-5 shows such a possibility.

Depending on your browser, the values for the location.href property may be
encoded with ASCII equivalents of nonalphanumeric characters. Such an ASCII
value includes the % symbol and the ASCII numeric value. The most common
encoded character in a URL is the space, %20. If you need to extract a URL and
display that value as a string in your documents, the safest way is to pass all such
potentially encoded strings through the JavaScript internal unescape() function.
For example, if a URL to one of Giantco’s pages is http://www.giantco.com/
product%20list, you can convert it by passing it through the function, as in the
following example:

280 Part III ✦ JavaScript Object and Language Reference

plainURL = unescape(window.location.href)
// result = “http://www.giantco.com/product list”

The inverse function, escape (), is available for sending encoded strings to CGI
programs on servers. See Chapter 27 for more details on these functions.

If assigning a URL to location.href is causing difficulty for you in Internet
Explorer 3, omit the property and assign the URL to the location object. This
shorter statement works fine on all browser versions and platforms. You can also
try the complete URL (including protocol).

Example
Listing 15-5 includes the unescape() function in front of the part of the script

that captures the URL. This function serves cosmetic purposes by displaying the
pathname in alert dialog boxes for browsers that normally display the ASCII-
encoded version.

Listing 15-5: Extracting the Directory of the Current Document

<HTML>
<HEAD>
<TITLE>Extract pathname</TITLE>
<SCRIPT LANGUAGE="JavaScript">
// general purpose function to extract URL of current directory
function getDirPath(URL) {

var result = unescape(URL.substring(0,(URL.lastIndexOf("/")) +
1))

return result
}
// handle button event, passing work onto general purpose function
function showDirPath(URL) {

alert(getDirPath(URL))
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE="button" VALUE="View directory URL"
onClick="showDirPath(window.location.href)">
</FORM>
</BODY>
</HTML>

Related Items: location.pathname property; document.location property;
string object (Chapter 27).

pathname
Value: String Gettable: Yes Settable: Yes

Note

281Chapter 15 ✦ Location and History Objects

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

The pathname component of a URL consists of the directory structure relative
to the server’s root volume. In other words, the root (the server name in an http:
connection) is not part of the pathname. If the URL’s path is to a file in the root
directory, then the location.pathname property is a single slash (/) character.
Any other pathname starts with a slash character, indicating a directory nested
within the root. The value of the location.pathname property also includes the
document name.

Example
See Listings 15-2 through 15-4 for a multiple-frame example you can use to view

the location.pathname property for a variety of URLs of your choice.

Related Items: location.href property.

port
Value: String Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

These days, few consumer-friendly Web sites need to include the port number
as part of their URLs. Port numbers are visible mostly in the less-popular protocols
or in URLs to sites used for private development purposes or that have no
assigned domain names. You can retrieve the value with the location.port
property. If you extract the value from one URL and intend to build another URL
with that component, be sure to include the colon delimiter between the server’s
IP address and port number.

Example
If you have access to URLs containing port numbers, use the documents in

Listings 15-2 through 15-4 to experiment with the output of the location.port
property.

Related Items: location.host property.

protocol
Value: String Gettable: Yes Settable: Yes

282 Part III ✦ JavaScript Object and Language Reference

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

The first component of any URL is the protocol being used for the particular
type of communication. For World Wide Web pages, the Hypertext Transfer
Protocol (http) is the standard. Other common protocols you will see in your
browser include File Transfer Protocol (ftp), File (file), and Mail (mailto). Values
for the location.protocol property include not only the name of the protocol,
but the trailing colon delimiter as well. Thus, for a typical Web page URL, the
location.protocol property is

http:

Notice that the usual slashes after the protocol in the URL are not part of the
location.protocol value. Of all the location object properties, only the full URL
(location.href) reveals the slash delimiters between the protocol and other
components.

Example
See Listings 15-2 through 15-4 for a multiple-frame example you can use to view

the location.protocol property for a variety of URLs. Also try loading an ftp site
to see the location.protocol value for that type of URL.

Related Items: location.href property.

search
Value: String Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Perhaps you’ve noticed the long, cryptic URL that appears in the Location field
of your browser whenever you ask one of the WWW search services to look up
matches for items you’ve entered into the keyword field. The URL starts the
regular way — with protocol, host, and pathname values. But following the more
traditional URL are search commands that are being submitted to the search
engine (a CGI program running on the server). That trailing search query can be
retrieved or set by using the location.search property.

Each search engine has its own formula for query submissions based on the
designs of the HTML forms that obtain details from users. These search queries
come in an encoded format that appears in anything but plain language. If you plan
to script a search query, be sure you fully understand the search engine’s format
before you start assembling a string to assign to the location.search property of
a window.

283Chapter 15 ✦ Location and History Objects

The location.search property also applies to any part of a URL after the
filename, including parameters being sent to CGI programs on the server.

Example
The same security restrictions apply to retrieving the search property as to

most of the location object properties. Because the following example accesses a
domain different from yours, you need Navigator 4 with codebase principals
turned on (see Chapter 40) to get the desired results. If you don’t have Navigator 4
or that feature turned on, just study the code and figures to understand how the
property works.

Load Listing 15-6 to view a two-frame window. The upper frame should contain a
Yahoo! search engine page that lets you enter search keywords and other
specifications (Figure 15-3). The bottom frame (Listing 15-7) contains two buttons.

Listing 15-6: A Search Frameset

<HTML>
<HEAD>
<TITLE>window.search Property</TITLE>
</HEAD>
<FRAMESET ROWS="50%,50%">

<FRAME NAME="Frame1" SRC="http://www.yahoo.com/search.html">
<FRAME NAME="Frame2" SRC="lst15-07.htm">

</FRAMESET>
</HTML>

Listing 15-7: The Search Controller

<HTML>
<HEAD>
<TITLE>Search Viewer/Changer</TITLE>
</HEAD>
<SCRIPT LANGUAGE="JavaScript">
var isNav4 = (navigator.appName == "Netscape" &&
navigator.appVersion.charAt(0) == 4) ? true : false
function scriptedSearch() {

if (isNav4) {

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserRea
d")

}
newSearch=prompt("Enter a new search

string:",top.frames[0].location.search)
if (isNav4) {

netscape.security.PrivilegeManager.revertPrivilege("UniversalBrowserRea
d")

(continued)

284 Part III ✦ JavaScript Object and Language Reference

Listing 15-7 (continued)

}
if (newSearch != null && newSearch != "") {

if (isNav4) {

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserRea
d ")

}
top.frames[0].location.search = newSearch
if (isNav4) {

netscape.security.PrivilegeManager. revertPrivilege
("UniversalBrowserRead ")

}
}

}
function showSearchData() {

if (isNav4) {

netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserRea
d")

}
var msg = "location.href: " + top.frames[0].location.href +

"\n\n"
msg += "location.search: " + top.frames[0].location.search
if (isNav4) {

netscape.security.PrivilegeManager. revertPrivilege
("UniversalBrowserRead")

}
alert(msg)

}
</SCRIPT>
</HEAD>
<BODY>
<FORM>
Perform a search in the Yahoo frame, above. Then click the
"Show <TT>location.search</TT> Property" button to examine the

<TT>window.location.search</TT> property value for the search.<P>
<INPUT TYPE="button" NAME="getProperties" VALUE="Show location.search
Property" onClick="showSearchData()">
</FORM>
Next, click the "Modify Search..." button to modify the current
search as derived from the upper frame's <TT>location.search</TT>
property. Be sure to follow the codes and conventions for the
search engine (e.g., a plus sign between terms).

<FORM>
<INPUT TYPE="button" NAME="opener" VALUE="Modify Search..."
onClick="scriptedSearch()">
</FORM>
</BODY>
</HTML>

285Chapter 15 ✦ Location and History Objects

Figure 15-3: The two-frame window used to experiment with the location.search
property. Yahoo!’s search page is in the upper frame.

After you perform a search in the upper frame, click the bottom button to view
both the complete location.href value and the location.search portion
(shown in Figure 15-4). Click the bottom button to edit the current
location.search value (Figure 15-5).

286 Part III ✦ JavaScript Object and Language Reference

Figure 15-4: The alert dialog box shows both the full URL and the search property.

Figure 15-5: Using the existing
search property as a model, make
small changes to the search property
to see how Yahoo! responds.

Although this interface is not as friendly as the one presented in the Yahoo! or
other search engine pages, this illustration shows that you can control the search
activities of a search engine or CGI parameters from a script. For example, you may
prefer to invent a different user interface to search for specific keywords (or to
present a limited selection to the user of your page). To do this, your script must
gather the user’s input in your document’s form, construct the appropriate search
query (in the search engine’s lingo), and construct a URL that performs the search
for the user. Because of security issues surrounding access to other sites, such
customized interfaces to search engines are best suited to searches performed on
intranet servers where all documents share a domain.

Related Items: location.href property.

287Chapter 15 ✦ Location and History Objects

Methods
assign(“URL”)

Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

In earlier discussions about the location object, I said that you navigate to
another page by assigning a new URL to the location object or location.href
property. There also exists a method, location.assign(), that does the same
thing. In fact, when you set the location object to a URL, JavaScript silently applies
the assign() method. No particular penalty or benefit comes from using the
assign() method, except perhaps to make your code more understandable to
others. I don’t recall the last time I used this method in a production document,
but you are free to use it if you like.

Related Items: location.href property.

reload(unconditionalGETBoolean)
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

The location.reload() method may be inappropriately named, because it
makes you think of the Reload button in the Navigator toolbar. The reload()
method is actually more powerful than the Reload button.

Many form elements retain their screen states when you click Reload (except in
Internet Explorer 3). Text and textarea objects maintain whatever text is inside
them; radio buttons and checkboxes maintain their checked status; select objects
remember which item is selected. About the only items the Reload button destroys
are global variable values and any settable, but not visible, property (for example,
the value of a hidden object). I call this kind of reload a soft reload.

A hard reload, as initiated by the location.reload() method, pushes aside any
document settings the browser may have preserved in memory (in session history)
and completely reopens the document as if you had chosen Open Location or Open
File from the File menu. This method restores all default settings of form elements
and ensures that users (and your scripts) are back at square one with the page.

You can script both types of reloading. For a soft reload, you invoke a window’s
history.go() method, using 0 as the parameter. For a hard reload, you use the
location.reload() method.

288 Part III ✦ JavaScript Object and Language Reference

By default, the reload() method performs what is known as a conditional-GET,
which means that the file is retrieved from the server or the browser’s cache
according to the cache preferences in the browser. If your page must perform an
unconditional-GET to retrieve continually updated server or CGI-based data, then
add a true parameter to the reload() method.

Example
To experience the difference between the two loading styles, load the document

in Listing 15-8. Click a radio button, enter some new text, and make a choice in the
select object. Clicking the Soft Reload button invokes a method that reloads the
document as if you had clicked on the browser’s Reload button. It also preserves
the visible properties of form elements. The Hard Reload button invokes the
location.reload() method, which resets all objects to their default settings.

Listing 15-8: Hard versus Soft Reloading

<HTML>
<HEAD>
<TITLE>Reload Comparisons</TITLE>
<SCRIPT LANGUAGE="JavaScript1.1">
function hardReload() {

location.reload()
}
function softReload() {

history.go(0)
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="myForm">
<INPUT TYPE="radio" NAME="rad1" VALUE = 1>Radio 1

<INPUT TYPE="radio" NAME="rad1" VALUE = 2>Radio 2

<INPUT TYPE="radio" NAME="rad1" VALUE = 3>Radio 3<P>
<INPUT TYPE="text" NAME="entry" VALUE="Original"><P>
<SELECT NAME="theList">
<OPTION>Red
<OPTION>Green
<OPTION>Blue
</SELECT>
<HR>
<INPUT TYPE="button" VALUE="Soft Reload" onClick="softReload()">
<INPUT TYPE="button" VALUE="Hard Reload" onClick="hardReload()">
</FORM>
</BODY>
</HTML>

Related Items: history.go() method.

289Chapter 15 ✦ Location and History Objects

replace(“URL”)
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

In a complex Web site, you may have pages that you do not want to appear in
the user’s history list. For example, a registration sequence may lead the user to
one or more intermediate HTML documents that won’t make much sense to the
user later: You especially don’t want users to see these pages again if they use the
Back button to return to a previous URL.

Although you cannot prevent a document from appearing in the history list
(visible in the Go menu) while the user is looking at that page, you can instruct the
browser to load another document into that window and replace the current
history entry with the entry for the new document. This trick does not empty the
history list but instead removes the current item from the list before the next URL
is loaded. Removing the item from the history list prevents users from seeing the
page again by clicking the Back button later.

Example
Calling the location.replace() method navigates to another URL, similar to

assigning a URL to the location. The difference is that the document doing the
calling won’t appear in the history list after the new document loads. Check the
history listing (in your browser’s usual spot for this info) before and after clicking
Replace Me in Listing 15-9.

Listing 15-9: Invoking the location.replace() Method

<HTML>
<HEAD>
<TITLE>location.replace() Demo</TITLE>
<SCRIPT LANGUAGE="JavaScript1.1">
function doReplace() {

location.replace("lst15-01.htm")
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="myForm">
<INPUT TYPE="button" VALUE="Replace Me" onClick="doReplace()">
</FORM>
</BODY>
</HTML>

290 Part III ✦ JavaScript Object and Language Reference

Related Items: history object.

History Object
Properties Methods Event Handlers

current back() (None)

length forward()

next go()

previous

Syntax
Accessing history properties or methods:

[window.]history.property | method([parameters])

About this object
As a user surfs the Web, the browser maintains a list of URLs for the most

recent stops. This list is represented in JavaScript by the history object. Actual
URLs maintained in that list cannot be surreptitiously extracted by a script unless
you are using signed scripts (in Navigator 4 — see Chapter 40) and the user grants
permission. Under unsigned conditions, a script can methodically navigate to each
URL in the history (by relative number or by stepping back one URL at a time), in
which case the user sees the browser navigating on its own, as if possessed by a
spirit. Good netiquette dictates that you do not navigate a user outside of your
Web site without the user’s explicit permission.

One application for the history object and its back() or go() methods is to
provide the equivalent of a Back button in your HTML documents. That button
triggers a script that checks for any items in the history list and then goes back
one page. Your document doesn’t have to know anything about the URL from
which the user landed at your page.

The behavior of the Back and Forward buttons in Netscape Navigator
underwent a significant change between Versions 2 and 3. In Navigator 2, there was
one history list that applied to the entire browser window. You could load a
frameset into the window and navigate the contents of each frame individually
with wild abandon. But if you then clicked the Back button, Navigator unloaded the
frameset and took you back to the page in history prior to that frameset.

In Navigator 3, each frame (window object) maintains its own history list.
Thus, if you navigated within a frame, a click of the Back button steps you back
out frame by frame. Only after the initial frameset documents appear in the
window does the next Back button click unload the frameset. That behavior
persists today in Navigator 4 and is the basis for Internet Explorer behavior from
Version 3 onward.

291Chapter 15 ✦ Location and History Objects

How JavaScript reacted to the change of behavior over the generations is a bit
murky. In Navigator 2, the history.back() and history.forward() methods
acted like the toolbar buttons, since there was only one kind of history being
tracked. In Navigator 3, however, there was a disconnect between JavaScript
behavior and what the browser was doing internally with history: JavaScript failed
to connect history entries to a particular frame. Therefore, a reference to
history.back() built with a given frame name did not prevent the method from
exceeding the history of that frame. Instead, the behavior was more like a global
back operation, rather than frame-specific.

For Navigator 4 there is one more sea change in the relationship between
JavaScript and these history object methods. The behavior of the Back and
Forward buttons has been shifted to a new pair of window methods:
window.back() and window.forward(). The history object methods are not
specific to a frame that is part of the reference. When the parent.frameName.-
history.back() method reaches the end of history for that frame, further
invocations of that method are ignored.

So much for the history of the history object. As the tale of history object
method evolution indicates, you must use the history object and its methods with
extreme care. Your design must be smart enough to “watch” what the user is doing
with your pages (for example, by checking the current URL before navigating with
these methods). Otherwise, you run the risk of completely confusing your user by
navigating to unexpected places. Your script can also get into trouble because it
cannot detect where the current document may be in the Back-Forward sequence
in history.

Properties

current
next
previous

Value: String Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility (✔) ✔

To know where to go when you click the Back and Forward buttons, the browser
maintains a list of URLs visited. To someone trying to invade your privacy and see
what sites and pages you frequent, this information is valuable. That’s why the
three properties that expose the actual URLs in the history list are restricted to
pages with signed scripts and whose visitors have given permission to read
sensitive browser data (see Chapter 40).

With signed scripts and permission, you can look through the entire array of
history entries in any frame or window. Because the list is an array, you can

292 Part III ✦ JavaScript Object and Language Reference

extract individual items by index value. For example, if the array has 10 entries,
you can see the fifth item by using normal array indexing methods:

var fifthEntry = window.history[4]

No property or method exists that directly reveals the index value of the
currently loaded URL, but you could script an educated guess by comparing the
values of the current, next, and previous properties of the history object
against the entire list.

Since I personally don’t like some unknown entity watching over my shoulder
while I’m on the Net, I respect that same feeling in others and therefore discourage
the use of these powers unless the user is given adequate warning in advance. The
signed script permission dialog does not offer enough detail about the
consequences of revealing this level of information.

Notice that in the compatibility chart these properties were available in some
form in Navigator 3. Access to them required a short-lived security scheme called
data tainting. That mechanism was never fully implemented and has been replaced
by signed scripts.

Related Items: history.length property.

length
Value: Number Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Use the history.length property to count the items in the history list.
Unfortunately, this nugget of information is not particularly helpful in scripting
navigation relative to the current location, because your script cannot extract
anything from the place in the history queue where the current document is
located. If the current document is at the top of the list (the most recently loaded),
you can calculate relative to that location. But users can use the Go menu to jump
around the history list as they like. The position of a listing in the history list does
not change by virtue of navigating back to that document. A history.length of 1,
however, indicates that the current document is the first one the user loaded since
starting the browser software.

Example
The simple function in Listing 15-10 displays one of two alert messages based on

the number of items in the browser’s history.

293Chapter 15 ✦ Location and History Objects

Listing 15-10: A Browser History Count

<HTML>
<HEAD>
<TITLE>History Object</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function showCount() {

var histCount = window.history.length
if (histCount > 5) {

alert("My, my, you\'ve been busy. You have visited " +
histCount + " pages so far.")

} else {
alert("You have been to " + histCount + " Web pages this

session.")
}

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
<INPUT TYPE="button" NAME="activity" VALUE="My Activity"
onClick="showCount()">
</FORM>
</BODY>
</HTML>

Related Items: None.

Methods
back()

Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

The behavior of the history.back() method has changed in Netscape’s
browsers between Versions 3 and 4. Prior to Navigator 4, the method acted
identically to clicking the Back button (and even this unscripted behavior changed
between Navigator 2 and 3 to better accommodate frame navigation). Internet
Explorer 3 and 4 follows this behavior. In Navigator 4, however, the
history.back() method is window/frame-specific. Therefore, if you direct
successive back() methods to a frame within a frameset, the method will be

294 Part III ✦ JavaScript Object and Language Reference

ignored once it has reached the first document to be loaded into that frame. The
Back button (and the new window.back() method) would unload the frameset
and continue taking you back through the browser’s global history.

If you deliberately lead a user to a dead end in your Web site, you should make
sure that the HTML document provides a way to navigate back to a recognizable
spot. Because you can easily create a new window that has no toolbar or menu bar
(non-Macintosh browsers), you may end up stranding your users, because they
have no way to navigate out of a cul-de-sac in such a window. A button in your
document should give the user a way back to the last location.

Unless you need to perform some additional processing prior to navigating back
to the previous location, you can simply place this method as the parameter to the
event handler attribute of a button definition.

Example
For the best demonstration of the differences between history and window

object back() and forward() methods, see Listings 14-20 and 14-21 in the
previous chapter.

Related Items: history.forward() method; history.go() method.

forward()
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Less likely to be scripted than the history.back() action is the method that
performs the opposite action: navigating forward one step in the browser’s history
list. Because the location of the current URL in the history list is impossible for a
script to determine if the page is not part of your Web site, your script may not
know exactly where it will be going. The only time you can confidently use the
history.forward() method is to balance the use of the history.back() method
in the same script — where your script closely keeps track of how many steps the
script heads in either direction. Use the history.forward() method with extreme
caution, and only after performing extensive user testing on your Web pages to
make sure that you’ve covered all user possibilities. The same cautions about
differences introduced in Navigator 4 for history.back() apply equally to
history.forward(): Forward progress extends only through the history listing
for a given window or frame, not the entire browser history list. See Listings 14-18
and 14-19 for a demonstration.

Related Items: history.back() method; history.go() method.

go(relativeNumber | “URLOrTitleSubstring ”)
Returns: Nothing.

295Chapter 15 ✦ Location and History Objects

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Use the history.go() method if you have enough control over your user that
you are confident of the destination before jumping there. This “go” command only
accepts items that already exist in the history listing, so you cannot use it in place
of setting the window.location object to a brand-new URL.

For navigating n steps in either direction along the history list, use the
relativeNumber parameter of the history.go() method. This number is an integer
value that indicates which item in the list to use, relative to the current location.
For example, if the current URL is at the top of the list (that is, the Forward button
in the toolbar is dimmed), then you need to use the following method to jump to
the URL two items backward in the list:

history.go(-2)

In other words, the current URL is the equivalent of history.go(0) (a method
that reloads the window). A positive integer indicates a jump that many items
forward in the history list. Thus, history.go(-1) is the same as
history.back(), whereas history.go(1) is the same as history.forward().

Alternatively, you can specify one of the URLs or document titles stored in the
browser’s history list (titles are what appear in the Go menu). The method is a bit
lenient with the string you specify as a parameter. It compares the string against all
listings. The first item in the history list to contain the parameter string will be
regarded as the match. But, again, no navigation takes place if the item you specify
is not listed in the history.

Like most other history methods, your script will find it difficult to manage the
history list or the current URL’s spot in the queue. That fact makes it even more
difficult for your script to intelligently determine how far to navigate in either
direction or to which specific URL or title matches it should jump. Use this method
only for situations in which your Web pages are in strict control of the user’s
activity (or for designing scripts for yourself that automatically crawl around sites
according to a fixed regimen). Once you give the user control over navigation, you
have no guarantee that the history list will be what you expect, and any scripts
you write that depend on a history object will likely break.

In practice, this method is used mostly to perform a soft reload of the current
window, using the 0 parameter.

If you are developing a page for all scriptable browsers, be aware that Internet
Explorer’s go() method behaves a little differently than Netscape’s. First, a bug in
Internet Explorer 3 causes all invocations of history.go() with a non-zero value
to behave as if the parameter were -1. Second, the string version does not work at
all in Internet Explorer 3 (it generates an error alert); for Internet Explorer 4, the
matching string must be part of the URL and not part of the document title, as in
Navigator. Finally, the reloading of a page with history.go(0) takes a long time to
complete.

Note

296 Part III ✦ JavaScript Object and Language Reference

Example
Fill in either the number or text field of the page in Listing 15-11 and then click

the associated button. The script passes the appropriate kind of data to the go()
method. Be sure to use negative numbers for visiting a page earlier in the history.

Listing 15-11: Navigating to an Item in History

<HTML>
<HEAD>
<TITLE>Go() Method</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function doGoNum(form) {

window.history.go(parseInt(form.histNum.value))
}
function doGoTxt(form) {

window.history.go(form.histWord.value)
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Calling the history.go() method:
<HR>
Enter a number (+/-):<INPUT TYPE="text" NAME="histNum" SIZE=3
VALUE="0">
<INPUT TYPE="button" VALUE="Go to Offset"
onClick="doGoNum(this.form)"><P>
Enter a word in a title:<INPUT TYPE="text" NAME="histWord">
<INPUT TYPE="button" VALUE="Go to Match" onClick="doGoTxt(this.form)">
</FORM>
</BODY>
</HTML>

Related Items: history.back() method; history.forward() method;
location.reload() method.

✦ ✦ ✦

